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Editorial on the Research Topic

Advancements in smart diagnostics for understanding neurological

behaviors and biosensing applications

Overview

An understanding of neurological behaviors can be well-established by bringing

togethermachine learning (ML) and biosensing techniques. This combination is promising

for accelerating smart diagnostics and human-computer interactions (HCI), with the

following three aspects necessary to create a real-world impact of this combination.

Multimodal and multiscale learning to capture the richness of physiological signals is of

primary importance, followed by explainability and clinical acceptability that link model

evidence to neurophysiology. Designing the trustworthy pipelines that safeguard privacy

and support deployment in clinics, homes, and wearables is of practical significance in

this endeavor.

In this pursuit, 10 contributions were submitted to this Research Topic, covering

biosensing modalities including electroencephalography (EEG), electrooculography

(EOG), electrodermal activity (EDA), functional near-infrared spectroscopy (fNIRS),

medical imaging, and electrical impedance tomography (EIT)-based tactile sensing.

This Research Topic effectively describes how contemporary learning paradigms such

as transformers and state space models, hybrid unsupervised-supervised pipelines, and

privacy-preserving training, translate signals into actionable insights while respecting the

constraints of clinical and everyday settings.

A foundational theme is the decoding of affective and behavioral states from biosignals

for continuous monitoring and neuroadaptive interfaces. Xuanzhi et al. modeled stress

from EDA using attention-based sequence learning, showing that temporal context in

peripheral signals can support robust continuous assessment, with accuracies reaching

above 95% on public datasets. Another study by Usman et al. integrated EEG with

eye tracking (ET) to predict real-world choices, illustrating how multimodal fusion and
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ensemble strategies can extract complementary neural and ocular

markers of preference in ecologically valid scenarios. Their

approach achieved around 84% accuracy with high precision

for positive preferences. Extending behavioral inference to social

cognition, Bhutta et al. employed frontal fNIRS in an interactive

setting to distinguish deception from truth-telling using deep

neural networks, attaining approximately 88–90% accuracy and

pointing to the feasibility of decoding complex, spontaneous

behaviors beyond controlled paradigms.

Sleep health emerged as a second thematic pillar, benefiting

from multimodal, temporally aware modeling across distinct

populations. A contribution on sleep staging by Fan et al.

transformed EEG and EOG into time-frequency sequences,

coupled long-range temporal modeling with multiscale feature

extraction, and integrated modalities to mitigate the heterogeneity

introduced by obstructive sleep apnea (OSA). This design

demonstrates broader applicability beyond healthy cohorts and

enhances interpretability for clinical workflows, with performance

at approximately 80% in OSA cohorts and improvements over

competitive baselines on public datasets. Complementing this

system’s view, a neonatal study by Siddiqa et al. identified

promising electrode configurations and informative signal features

that sustain accurate sleep state classification. Notably, a single

central channel maintained an accuracy of approximately 81%,

and compact left hemisphere montages slightly outperformed

right hemisphere channels. The study presented a practical

sleep monitoring strategy that prioritizes comfort, safety, and

computational efficiency in newborn care.

Methodological innovations in EEG decoding were highlighted

by work that blends efficient sequence modeling with targeted

attention and multiscale feature design. A study by Li advanced

a compact state space architecture paired with pyramidal

convolutions and channel-spatial attention to improve EEG

classification for brain-computer interfaces (BCI). The findings

underscore the potential of latency-conscious designs for real-time

use on a standard dataset while achieving approximately 97%

performance with strong class-wise balance. In parallel, a clinical

study by Umair et al. on major depressive disorder (MDD)

detection demonstrated that ensembles leveraging transformer

representations can deliver high-accuracy classification from

EEG data while operating within a decentralized, split-learning

framework that keeps data local across nodes. The approach

maintained over 95% accuracy across clients, and reached

approximately 99% accuracy in centralized settings, aligning

with institutional privacy requirements and offering a viable

path to collaborative, ensemble learning without compromising

data security.

Beyond electrophysiology, imaging-centric contributions

emphasized both diagnostic capability and pipeline security.

A large-scale study on karyogram analysis by Tabassum et al.

proposed a hybrid approach that pre-trained the proposed

classifier on unlabeled images and fine-tuned it to detect

structural anomalies, complemented by techniques that localized

abnormal regions. This design addresses the pervasive challenge

of rarely labeled anomalies and demonstrates near state-of-the-art

accuracy (approximately 99%), supporting the early screening

of chromosome-related neurodegenerative disorders with

neurological impact. Complementing analytics with protection,

Asiri et al. developed a lightweight bit-plane encryption scheme for

medical images tailored to the internet of things (IoT) and edge

devices. By leveraging chaotic map-based shuffling and diffusion,

the method achieved high entropy (greater than 7.98), low or

negative inter-pixel correlations, a vast key space, and robustness

under occlusion. This study presented practical safeguards for data

in transit and at rest in resource-constrained environments.

Finally, novel sensing modalities extended the scope of

smart diagnostics to child-centered interaction and rehabilitation.

Asahi et al. employed EIT-based tactile sensing, which presents a

safe, integrated device that classifies children’s power vs. precision

grips using features derived from voltage patterns and tomographic

reconstructions. In a pediatric cohort, accuracies exceeded 85%,

illustrating how contact-rich sensing can enable the quantitative

monitoring of developing motor skills and inform the design of

pediatric HCI.

Several cross-disciplinary and cutting-edge research focuses

were explored in this Research Topic. First, multimodal fusion

and multiscale representations consistently improve robustness

to artifacts and population heterogeneity when EEG, EOG, and

ET modalities are hybridized or link time-frequency transforms

with attention and dilated convolutions. Second, temporal

sequence modeling via transformers and state-space formulations

captures long-range dependencies that static models overlook,

enabling more reliable decoding of stress, behavior, and sleep

dynamics. Third, data-efficiency strategies, including unsupervised

pretraining, synthetic data augmentation for class balancing

with the synthetic minority over-sampling technique (SMOTE),

and targeted feature engineering, addressed unlabeled data and

imbalanced class distribution issues, which are common in clinical

datasets and rare pathology scenarios. Fourth, interpretability is

increasingly embedded through attention mechanisms, multiscale

modules, and explicit localization, aligning model outputs with

physiological prospects and aiding clinical acceptance. Finally,

trustworthy deployment is advanced by privacy-preserving

learning that limits data movement, lightweight encryption suited

to edge devices, and practical design choices such as electrode

optimization and a compact scheme that supports real-time,

on-device feasibility.

Conclusion

The presented contributions validate a promising shift from

individual performance gains to cutting-edge integrated pipelines

that are multimodal, interpretable, cybersecure, and privacy-

preserving by design. They demonstrate that modern sequence

models and multiscale representations can decode the complex

neurobehavioral characteristics of active and passive brain activities

(e.g., stress, consumer choice, deception, and sleep dynamics).

It has been shown that data-efficient training enables intricate

neuronal signatures to be captured efficiently (e.g., neonatal EEG

and rare chromosomal anomalies). The contributions established

that privacy-preserving analytics and lightweight cryptography

are functional aspects for deployment in clinics and daily life

(e.g., split learning sustaining over 95% accuracy, edge encryption
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with high entropy and resilience). To sustain this momentum,

the research community should prioritize prospective and a wide

range of demographic validation to establish generalization and

to adopt shared data standards and benchmarks to strengthen

reproducibility. Collaborative explainability should be adopted

with clinicians, patients, and end users to support informed

decisions. Decentralized learning and secure edge computing

should continue to excel for equitable access. Convergence

of ML and biosensing approaches, along with these research

commitments, will continue to deliver reliable neurotechnology for

diagnosis, monitoring, and HCI across the lifespan.
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Artificial neural network models: 
implementation of functional 
near-infrared spectroscopy-based 
spontaneous lie detection in an 
interactive scenario
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Kwang Su Kim 3,4, Jong Hyuk Byun 5,6* and Seung Won Lee 7*
1 Department of Electrical and Computer Engineering, University of UTAH Asia Campus, Incheon, 
Republic of Korea, 2 Department of Intelligent Mechatronics Engineering, Sejong University, Seoul, 
Republic of Korea, 3 Department of Scientific Computing, Pukyong National University, Busan, Republic 
of Korea, 4 Interdisciplinary Biology Laboratory (iBLab), Division of Biological Science, Graduate School 
of Science, Nagoya University, Nagoya, Japan, 5 Department of Mathematics and Institute of 
Mathematical Science, Pusan National University, Busan, Republic of Korea, 6 Finace Fishery 
Manufacture Industrial Mathematics Center on BigData, Pusan National University, Busan, Republic of 
Korea, 7 Department of Precision Medicine, Sungkyunkwan University School of Medicine, Suwon, 
Republic of Korea

Deception is an inevitable occurrence in daily life. Various methods have been 
used to understand the mechanisms underlying brain deception. Moreover, 
numerous efforts have been undertaken to detect deception and truth-telling. 
Functional near-infrared spectroscopy (fNIRS) has great potential for neurological 
applications compared with other state-of-the-art methods. Therefore, an 
fNIRS-based spontaneous lie detection model was used in the present study. 
We interviewed 10 healthy subjects to identify deception using the fNIRS system. 
A card game frequently referred to as a bluff or cheat was introduced. This game 
was selected because its rules are ideal for testing our hypotheses. The optical 
probe of the fNIRS was placed on the subject’s forehead, and we acquired optical 
density signals, which were then converted into oxy-hemoglobin and deoxy-
hemoglobin signals using the Modified Beer–Lambert law. The oxy-hemoglobin 
signal was preprocessed to eliminate noise. In this study, we  proposed three 
artificial neural networks inspired by deep learning models, including AlexNet, 
ResNet, and GoogleNet, to classify deception and truth-telling. The proposed 
models achieved accuracies of 88.5%, 88.0%, and 90.0%, respectively. These 
proposed models were compared with other classification models, including 
k-nearest neighbor, linear support vector machines (SVM), quadratic SVM, cubic 
SVM, simple decision trees, and complex decision trees. These comparisons 
showed that the proposed models performed better than the other state-of-the-
art methods.

KEYWORDS

spontaneous lie detection, deception, deep learning algorithm, functional near-infrared 
spectroscopy (fNIRS), classification
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1 Introduction

Deception is an intrinsic and unavoidable facet of our society, 
manifesting itself in everyday life. It is unsurprising for a person to 
encounter or be involved in multiple deceptive situations within a 
single day. Failure to identify deception has serious consequences for 
the victim. To avoid being deceived, people have begun to study the 
behavioral and physiological changes exhibited by deceivers. Hence, 
this study aimed to detect the differences between hemodynamic 
signals during spontaneous deception and classify between truth and 
lie during an interactive game paradigm.

In earlier times, people identified deceivers based on the deceiver’s 
personality or their own personal experiences (Freud and Strachey, 
1962; Zuckerman et  al., 1981b; Kleinmuntz and Szucko, 1984; 
Peterman and Anderson, 1999). Additionally, during earlier times, 
people often relied on myths based on religious norms to identify a 
person who was being untruthful (Trovillo, 1938). Advancements in 
scientific methods and new equipment, including polygraphs, have 
enabled us to better understand the cues of deception that are beyond 
the scope of religious beliefs, personal experience, and stereotypes 
(Brett et al., 1986; Varisai Mohamed et al., 2006). These physiological 
measures have revealed many new findings that provide the basis for 
numerous theories, such as the non-verbal leakage theory (Ekman 
et  al., 1969), four-factor theory (Zuckerman et  al., 1981a), and 
interpersonal deception theory (Buller and Burgoon, 1996). These 
theories have helped us understand why these cues of deception 
manifest in humans when attempting to deceive someone (Bond et al., 
2014). Most of these theories agree that the intent and process of 
deception invoke changes in the deceiver’s behavior that result from 
changes in the person’s state of mind.

Many researchers have investigated different neurophysiological 
signals to identify changes in an individual’s mental state while they are 
attempting to deceive. One such technique is Electroencephalography 
(EEG), which records event-related potentials (ERPs) from the scalp of 
the brain (Abootalebi et al., 2009; Meijer et al., 2013). ERPs are mainly 
used to test knowledge of crime details that are only known to the 
criminals involved (Farwell and Donchin, 1991). This type of test is 
commonly known as the guilty knowledge test or concealed information 
test (Furedy and Ben-Shakhar, 1991; Elaad and BEN-SHAKHAR, 1997; 
Kong et al., 2012). EEG has excellent temporal resolution, enabling 
rapid detection of brain signals (Turnip et al., 2011; Chen et al., 2023), 
but exhibits poor spatial resolution, which cannot confine the brain area 
associated with the deception process.

Functional magnetic resonance imaging (fMRI) is another 
technique widely used to detect brain areas activated during deception. 
fMRI offers a substantial advantage in terms of high spatial resolution 
when compared to EEG (Spence et al., 2004). It can effectively localize 
changes in regional blood flow (Farah et al., 2014) and hence provides 
a comprehensive review of fMRI-based deception decoding. Because 
of the high cost of scanners and their bulky size, the use of fMRI is 
very limited in day-to-day human routines. Moreover, fMRI is highly 
sensitive to motion artifacts. Therefore, researchers have embarked on 
exploring an alternative brain imaging technique: functional near-
infrared spectroscopy (fNIRS).

Using fNIRS, brain activity is measured through hemodynamic 
responses associated with neuronal behavior (Kamran and Hong, 2013; 
Santosa et al., 2013; Khan et al., 2014; Ruotsalo et al., 2023). The fNIRS 
can provide topographic (Obrig and Villringer, 2003; Wolf et al., 2007; 
Hu et al., 2011; Li et al., 2018) and tomographic brain images (Bluestone 

et  al., 2001; Boas et  al., 2004). Oxy-hemoglobin (HbO), deoxy-
hemoglobin (HbR), and water are significant light absorbers, whereas 
skin, tissue, and bone are mainly transparent to near-infrared light 
within an optical window of 650–1,000 nm. Compared with EEG and 
fMRI, fNIRS offers a superior tradeoff between temporal and spatial 
resolutions. In one study (Irani et al., 2007) compared the features of 
fNIRS and fMRI and reported that fNIRS has excellent potential for 
psychotic and neurological applications because of its portability, 
simplicity, and insensitivity to motion artifacts compared to fMRI. fNIRS 
also has several advantages over other brain imaging techniques; it can 
be  designed in a compact and portable form, is very cost-effective 
(Muehlemann et al., 2008; Bhutta et al., 2014; Toglia et al., 2022), and 
can be used in diverse fields such as neuroscience, brain-computer 
interfaces (Naseer and Hong, 2013a,b), and rehabilitation.

2 Literature review

Limited research has been conducted in the field of fNIRS-based 
deception decoding (Tian et al., 2009; Hu et al., 2012; Ding et al., 2013, 
2014; Bhutta et  al., 2015; Emberson et  al., 2017; Quaresima and 
Ferrari, 2019). To detect deception, one study (Hu et  al., 2012) 
employed a mock crime paradigm. Because individuals were 
instructed to provide deceptive or truthful responses at specified times 
and locations, this research, which was based on the concealed 
information test, did not incorporate a spontaneous paradigm. The 
first study to use fNIRS to identify the neural correlates of spontaneous 
deception was conducted by Ding et al. (2013). These aforementioned 
studies on fNIRS-based deception decoding have exclusively 
investigated cases of deceptions where the perpetrator lies to an 
unsuspecting victim; this type of deception occurs more frequently in 
casual social interactions. In contrast, there are also situations in 
which the perpetrator deliberately misleads the victim, even though 
both parties are fully aware of the attempt at deception. This type of 
circumstance is typically referred to as reverse psychology, and it 
frequently occurs in highly competitive settings, such as diplomatic 
meetings, political debates and elections, sports, card games (including 
gambling), and other various scenarios. In this scenario, the individual 
employing reverse psychology can deceive the victim not only by 
uttering a false statement but also by making a truthful remark. The 
deceiver may choose to speak the truth, knowing that the victim is 
aware of the deceptive intention, yet the victim interprets it as a lie, 
thus believing the contrary. Consequently, speaking the truth serves 
the deceiver’s purpose of misleading the victim.

Deep learning classifiers have been widely used recently. A deep 
neural network (DNN) is composed of multiple layers of nonlinear 
processing modules called neurons (Schmidhuber, 2015; Huve et al., 
2018). These fully connected or semi-connected neurons receive inputs 
from previous consecutive neurons. DNN can achieve superior 
classification performance in comparison to linear classifiers, such as 
linear discernment analysis (LDA), support vector machine (SVM), and 
others when applied to signals (language and speech processing) or 
images (Collobert and Weston, 2008; Krizhevsky et al., 2012; Bianchini 
and Scarselli, 2014; Simonyan and Zisserman, 2014). Hence, DNN 
classifiers are also gaining attention in the biomedical field (Hudson and 
Cohen, 2000; Cireşan et al., 2013; Ronneberger et al., 2015).

Only a few studies have employed DNN for classification. 
Abibullaev et al. (2011) investigated the performance of a DNN in a 
four-class classification experiment and reported a maximum accuracy 
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of 94%. Yi et al. (2013) used a DNN to classify left and right motor 
imagery with an average classification accuracy of 84%. Hennrich et al. 
(2015) reported a similar classification performance of DNN compared 
to that of other classifiers (such as LDA and SVM) in a three-mental 
task experiment. To the best of our knowledge, no previous study has 
used a DNN for spontaneous deception decoding using fNIRS.

In this study, we hypothesized that, in the real world, a deceiver 
can deceive another person not only by telling a lie but also by telling 
the truth. Therefore, the objectives of this study were to:

	•	 compare the differences between the hemodynamic responses 
produced by spontaneous lying and stating the truth,

	•	 classify between the lie and truth for an interactive 
game paradigm,

	•	 develop three deep ANN models for classifying responses, and
	•	 compare the performance of the proposed deep ANN with other 

classifiers, such as LDA and SVM, in a spontaneous deception 
decoding paradigm.

According to these findings, the fNIRS system can accurately 
identify changes in HbO signals during spontaneous lies and truths.

3 Materials and methods

3.1 Subjects

Ten healthy male individuals (mean age 30.8 ± 3.68) participated 
in the experiments. Each patient had normal or corrected-to-normal 
eyesight. Of the 10 subjects, nine were right-handed. None of the 
subjects had any history of mental or neurological illness. The card 
game was known to all subjects. Informed consent was obtained from 
all subjects, and the experiments were performed in accordance with 
the latest Declaration of Helsinki. The framework proposed in this 
study is illustrated in Figure 1. The framework is divided into two 
blocks: a training block (blue dotted lines) and a testing block (green 
dotted lines). The training black was used to train the neural network 

models on the given data, whereas the testing block was used to 
classify the data into truth and lie classes based on the model trained 
in the training block. Information on the individual blocks is provided 
in the respective chapters of the article.

3.2 Experimental procedure

The subjects were seated comfortably in front of a second person 
(referred to as the victim). The subject and victims underwent three 
practice sessions, and a brief explanation of the experiment before the 
experiment was provided to ensure that they fully understood 
the guidelines.

A well-selected experimental paradigm was used in this study. The 
experimental paradigm was a card game known as bluff or cheat. The 
bluff game was chosen because the rules of the game are ideal for 
testing our hypotheses. Our objective was to distinguish between 
deceptive actions when the subject is speaking the truth and when 
they are intentionally deceiving the victim with a falsehood.

The game rules are straightforward. The subject received 20 
randomly selected cards, with the consideration that a minimum of six 
of these cards had no corresponding matches. Therefore, the subject had 
to lie at least four or five times in order to get rid of those cards. The 
subject had to play out all of their cards without revealing any signs of 
bluffing. The subjects had 1 min to carefully organize all their cards prior 
to starting the experiment. The duration of each experiment was 
approximately 10 min, with each experiment having a maximum of 20 
sessions, each lasting approximately 30 s. In each session, the first 15 s 
were allotted for card arrangement. The subject had to lie to the victim 
in the next 5 s (called “claim time”) by laying his cards face down on the 
table and declaring what kind of cards they are (for instance, “three 
sevens”). Depending on his claim, the subject could select any number 
of cards between two and four. However, this assertion may or may not 
be correct. The victim then had 10 s to react to the subject’s assertion 
(response time). If the victim believed that the subject is telling the 
truth, they could choose to pass, removing the pile from the table. 
However, if the victim suspected that the subject had lied in their claim, 

FIGURE 1

Proposed framework for spontaneous lie detection in an interactive scenario. SM: signal mean and SS: signal slope.
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they had the option to flip the cards face up. If the subject lied, the pile 
was returned to the subject. However, if the subject was truthful, the pile 
was removed from the table, and the next session commenced. The 
game continued for 20 sessions. A prize of 10,000 Korean Won was to 
be awarded to the subject if they managed to play all their cards within 
20 sessions; however, if they were to do so, they would not receive the 
prize money. There were 12 total subjects in this trial. Two respondents’ 
data were excluded from the analysis as they consistently spoke the truth 
at the beginning of trials and only lied towards the end, rendering their 
responses predictable. Eight out of ten subjects were able to play all of 
their cards. One administrator continuously monitored the experiment 
and documented the trials in which the subject deceived the victim.

3.3 Data acquisition

A lab-built multichannel continuous-wave imaging system 
captured the brain signals (Bhutta and Hong, 2013). The optical probe 
of the fNIRS system was positioned on the forehead of the subject 
such that the FP1 and FP2 locations were in the middle of the probe, 
as shown in Figure  2. To connect the flexible probe and ensure 
excellent contact between the its emitters and detectors and the 
subject’s scalp, hair was brushed backward. Self-adhesive bandages 
were used to secure the probe to the subject’s head. The emitters and 
detectors were systematically positioned within a 4.3 × 13 cm2 area 
according to a source-detector distance of approximately 3 cm. A 

FIGURE 2

Optode placement and channel configuration.
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sampling rate of approximately 3.8 Hz was used to collect the data. A 
Velcro band was used to hold the probe at the appropriate location 
throughout the experiment.

3.4 Data processing

MATLAB (MathWorks, United States) was used to import and 
further analyze the signals from the fNIRS equipment offline. The 
data were stored in a host computer text file as digitized raw intensity 
values from the fNIRS system. The hemoglobin conversion block of 
the framework was used to convert the intensity values to 
concentration changes of HbO and HbR using the Modified Beer–
Lambert law (Bhutta et  al., 2015). The change in optical density 
(ΔOD) was calculated using these raw intensity values at each 
discrete time k as:

	
∆ ( ) = ( )

= ( )∆ ( )( )OD k
I

I k
ld kout

in
a;

;
;λ

λ
λ µ λ

λ

ln

	
(1)

Where Iout is the intensity of detected light; Iin, intensity of incident 
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and detector; and Δμa, absorption change of the tissue. The changes 
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with λ1 = 640 nm, λ2 = 910 nm, dλ
1 = 6.63, and dλ

2 = 2.765, according to 
the values for the wavelength-dependent absorption coefficients αHbO, 
αHbR. fNIRS, while detecting the hemodynamic responses, picks up the 
physiological noise of respiration, pulse, and low-frequency drift 
fluctuations. A second-order low-pass filter with a cutoff frequency of 
0.15 Hz was used to eliminate such noises (Hu et al., 2012; Bhutta 
et al., 2015). The HbO was considered for further analysis in this study 
because it is a more sensitive and reliable activity indicator than HbR 
(Hoshi, 2003, 2007).

3.5 Classification

Once the data were preprocessed, classification was performed on 
the ΔcHbO(k) signals. We conducted this classification to distinguish 
between lie and truth responses based on the features extracted from 
fNIRS signals. The features selected in this study were the signal mean 
(SM) and signal slope (SS) of the HbO signal during the 5-s claim 
period of the stimulus. We used this claim period because it is the 
actual time at which the subject attempted to deceive the victim by 
either telling the truth or lying. The average HbO signal for each 
subject was obtained by averaging all 12 channels of the corresponding 
subject. SM and SS values over a 5-s window can yield better results 
in binary classification (Khan et al., 2014; Bhutta et al., 2015).

In this study, we  performed the classification using various 
classifiers categorized into linear and nonlinear categories. LDA and 

SVM are the main linear classifiers, whereas the ANN is a nonlinear 
classifier. Both the LDA and SVM algorithms classify different classes 
of data based on hyperplanes. In LDA, a separating hyperplane is 
generated to minimize the interclass variance and maximize the 
distance between the class means (Lotte et al., 2007). For the SVM 
classifier, a separating hyperplane is designed such that the distance 
between the hyperplane and the nearest training point(s) is 
maximized (Naseer et al., 2014).

Mainstream machine learning techniques can be categorized as linear 
or nonlinear classifiers. Linear classifiers classify a sample based on the 
value of the linear combination of its features. For example, assume that 
we have an input feature vector x. A linear classifier then constructs a 
function that directly assigns the input vector x to a specific class:
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A linear SVM is a linear classifier that makes decisions 
according to a linear hyperplane capable of effectively segregating 
data. SVM finds an optimal hyperplane by maximizing the margin, 
which is the minimum distance between the hyperplane and any of 
the data samples. Such classifiers perform well when the problem is 
linearly separable. However, if the data are not linearly separable, 
they will have poor generalization ability. In this case, we could map 
the input vector onto a higher-dimensional space using the kernel 
function K and find the separating hyperplane in that particular 
dimension. Quadratic SVM and Cubic SVM are examples of 
kernelized versions of SVM that utilize second and third-degree 
polynomial kernels.
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In the machine learning literature, several other algorithms 
handle nonlinear cases using a completely different computational 
approach; one of the simplest algorithms is the K-Nearest Neighbor 
(KNN). The main idea of this algorithm is that, for a new instance to 
be classified, the algorithm searches for the K-nearest points in the 
feature space and assigns it to the class that prevails among its 
neighbors. Similarly, the decision tree constructs a classification 
model with a tree-like structure. It partitions a feature space into 
smaller regions containing homogenous instances and simultaneously 
incrementally constructs an associated decision tree. The partitions 
of the feature space are usually based on criteria such as the Gini 
impurity, information gain, or distance measure.

3.6 Proposed artificial neural networks 
(ANN) models

In recent years, artificial neural networks have flourished in the 
machine learning and pattern recognition domains. They consist 
of many interconnected processing units, called neurons. The 
outputs of the hidden layer neurons are transmitted to the inputs 
of the next hidden layer within the network (Ullah et al., 2020). 
Thus, they communicate with each other by emitting signals over 
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numerous weighted connections. During training, each neuron can 
update its weight, allowing the network to learn hidden patterns 
from the data. In this study, we designed three ANN architectures 
(M1, M2, and M3) to conduct experiments on our dataset. These 
structures were designed based on ideas from state-of-the-art 
convolutional neural network models, including AlexNet, ResNet, 
and GoogleNet. The numbers of input and output nodes and 
hidden layers of these neural networks are the same; however, the 
number of nodes in each hidden layer varies. The first two layers 
of M1 contain 10 neurons; the subsequent two hidden layers 
consist of eight and five neurons, respectively; and finally, the 
prediction layer contains two SoftMax classifiers. The M2 topology 
is similar to that of M1; however, we  introduced two pairs of 
hidden layers with the same number of neurons in this structure. 
The first two layers had eight neurons, and the next pair had layers 
containing four neurons. We  designed a third neural network 
architecture that differed from the aforementioned architecture. In 
this structure, we first increased the number of neuron dimensions 
from two to six and six to eight and then decreased it from eight to 
six and six to two neurons for the final class prediction. The 
architectures of the three ANNs are shown in Figure 3. Neural 
networks have weights that are initially randomly initialized, and 
later in the training process, these weights are optimized. The 
initial weights of our neural networks were determined using 
Kaiming uniform initialization (also known as HE initialization). 
This method is tailored for layers activated by the ReLU function 
and provides an advantage over random initialization. Specifically, 

HE initialization mitigates issues such as vanishing and exploding 
gradient problems, thereby enabling faster convergence during 
training. Aligning with the characteristics of ReLU, it also 
minimizes the occurrence of inactive neurons at the start of 
training. The empirical robustness of this method makes it a 
superior choice for deep network initialization compared to other 
simplistic methods. We selected four intermediate layers to achieve 
an optimal balance for our dataset. With only two features present 
in the input, it is essential to project them into a higher-
dimensional space for feature extraction and subsequently 
condense the dimensions as we approach the classification layer. If 
we were to increase the number of hidden layers, the model would 
risk succumbing to the vanishing gradient problem. This is 
especially pertinent when processing only two features across 
excessive layers, as this is not advisable.

4 Results and discussion

This section presents a comparative analysis of the six statistical 
machine-learning techniques and three neural network models. 
The experiments were conducted using the MATLAB 2018b 
classification learning toolbox and Python 3.5 with Keras. 
We utilized a confusion matrix, receiver operating curve (ROC), 
area under the curve (AUC), and subject-level performance 
evaluation for the proposed method, which are discussed in 
subsequent sections.

FIGURE 3

Neural network architectures for lie detection. Models M1, M2, and M3 process the mean and slope of the oxy-hemoglobin (HbO) signals through 
varying numbers of hidden layers and neurons. Each model produces a two-dimensional output representing the probabilities of a lie and truth.
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In the domain of machine learning, mainly while dealing with 
classification problems having a distinction between a number of 
different items, the confusion matrix is considered an effective 
metric for evaluation. It is also known as the error matrix, as it 
indicates the error rate. It is used to show the effectiveness and 
performance of any trained classifier and summarizes the 
prediction results on any classification problem. We  used a 
confusion matrix as an evaluation metric to demonstrate the 
performance of our proposed method.

The predictive class-wise results for different classifiers with 
different statistical classifier flavors are shown in Figure 4. The top left 
corner in Figure 4 shows the confusion matrix for the KNN classifier, 
followed by simple and complex decision trees with 55%, 77%, and 
56% completely true predictions, respectively. The accuracy achieved 
by these classifiers for positive classes is not convincing for real-world 
problems or for their deployment in different sectors. Therefore, 
we obtained better prediction results for the same data using different 
classifiers in the second row, starting from the linear SVM, followed 
by the quadratic and cubic SVM. The quadratic SVM achieved an 
average correct prediction result of 80%, which was dominated by the 
cubic SVM. The cubic SVM obtained the highest prediction results, 
with 88% correct prediction results for the positive class on the same 
data, proving it to be  the best fit for deployment and practical 
implementation in real-world lie detection problems. The overall 

accuracy performances of different classifiers are listed in Table 1. 
Table 1 shows that the three proposed models were dominant for all 
statistical machine learning classifiers and achieved 8%–10% of the 
overall accuracy of the system.

4.1 ROC and AUC curves

In a binary classification problem, the output class is usually 
labeled as positive or negative. The classification results can 
be  represented in a structured form called a confusion matrix. 
However, the confusion matrix only provides true- and false-positive 
results. Therefore, to check the performance of the classification model 
at different thresholds, we calculated the ROC curves for all classifiers. 
This ROC curve plots the True Positive Rate (TPR) and False Positive 
Rate (FPR) at various thresholds, where TPR is a synonym for recall. 
These can be defined as follows:

	
TPR

TP

TP FN
=

+ 	
(5)

	
FPR

FP

FP TN
=

+ 	
(6)

FIGURE 4

Confusion matrices of different statistical machine learning classifiers for lie prediction.
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Moreover, for further evaluation, it is crucial to compute the 
ROC points, which is a resource-intensive method. An efficient 
sorting-based algorithm called the AUC, provides this information 
for evaluation. It measures the entire area under the ROC curve 
from (0,0) to (1,1). AUC offers an aggregate measure of 
performance at all possible thresholds. Thus, we calculated these 
values and obtained promising results for both the ROC curves and 

AUC values for all classifiers. The obtained AUC values and ROC 
curves for all classifiers are shown in Figure 5. The SVM classifiers 
achieved better AUC values and ROC curves, obtaining 86%, 84%, 
and 83% AUC for linear, quadratic, and cubic SVM, respectively. 
In contrast, the KNN, simple decision tree, and complex decision 
tree achieved AUCs of 64%, 78%, and 73%, respectively. Linear 
SVM has better accuracy than other statistical machine-learning 
techniques. However, it is still ineffective for sensitive problems, 
such as lie detection. To achieve better performance, we proposed 
three different neural network structures that increased the 
accuracy of lie detection from 8% to 10%.

4.2 Evaluation of the proposed ANN 
models

In the proposed method, we conducted experiments on our 
data using the three neural network models discussed in detail in 
the proposed methodology section. The models were trained for 
50 epochs, and the data were divided into training, validation, and 
test sets of 60%, 20%, and 20%, respectively. The confusion 
matrices, ROC curves, and AUC for the three models are shown in 
Figure  6, and the overall accuracies are listed in Table  2. The 
proposed neural network models outperformed statistical machine 

FIGURE 5

Receiver operating characteristic (ROC) curves and the area under the curve (AUC) values achieved from different hyperplane thresholds of six 
machine learning classifiers.

TABLE 1  Comparison of different machine learning classifiers for overall 
accuracy.

Method Overall accuracy (%)

KNN 68.5

Simple decision tree 77.5

Complex decision tree 70.0

Linear SVM 80.0

Quadratic SVM 81.5

Cubic SVM 80.5

Proposed NN M1 88.5

Proposed NN M2 88.0

Proposed NN M3 90.0

KNN, k-nearest neighbor; SVM, support vector machines; NN, neural network.
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learning approaches by a large margin, reaching 90% overall 
accuracy for the M3 neural network model, which is a 10% increase 
in accuracy. We trained our models five times and obtained the 
highest accuracies of 88%, 88%, and 87% for the fourth folds of 
M1, M2, and M3, respectively. The confusion matrices of the three 
models were almost identical, demonstrating the effectiveness of 
the models for lie detection.

The proposed neural network models were also evaluated for 
subject-wise performance, which is illustrated in Figure  7. In the 
entire dataset, we  had a total of 10 subjects. For this experiment, 
we trained our models on nine subjects and tested the models on the 
remaining one subject. This experiment showed the accuracy of our 
models when applied to unseen data. Subjects 1 and 9 achieved the 
highest accuracy of 90% and 95% on each model, respectively; only 
subjects 2 and 7 were had accuracies less than 70%. The remaining 
subjects had accuracies greater than 80% for all three models. The 
average accuracies achieved for M1, M2, and M3 were 81%, 80%, and 
82%, respectively, demonstrating that the models are very effective 
and robust for unseen data.

Figure 7 displays the results for the test set of each subject’s 
data. We randomly selected three samples from each subject to 
check the robustness of our models for different subject’s data. 
The third column represents the actual label of the test sample, 
and the other columns represent the results of its corresponding 
machine-learning algorithm. The proposed three neural network 
models achieved better performance of 80%, 80%, and 90% 
subject-wise accuracy for neural network1, neural network2, and 
neural network3, respectively. On the other hand, the machine 
learning-based methods, namely KNN, SDT, CDT, L-SVM, 
Q-SVM, and C-SVM achieved 60%, 72%, 60%, 70%, 77%, and 
73% accuracies, respectively. The proposed models have low 

accuracy for only three samples’ data, including the first sample 
of subject 2 and the third sample of subjects 4 and 6. However, 
for this data, other machine learning algorithms also faced 
challenges in detection. Subsequent examination of data revealed 
that these particular samples significantly differed from the rest 
of the dataset and exhibited substantial noise; therefore, the 
outcomes for these three samples were unsatisfactory.

5 Conclusion

In this study, we proposed an fNIRS-based spontaneous lie 
detection framework. The HbO and HbR signals were acquired 
using the fNIRS system. We  used HbO SS and HbO SM as 
features in the classification of truths and lies. We developed an 
ANN, inspired by deep learning including AlexNet, ResNet, and 
GoogleNet, for classification during HbO concentration changes 
in an interactive environment. The proposed models, M1, M2, 
and M3, had overall accuracies of 88.5%, 88.0%, and 90.0%, 
respectively. We  compared the results of the proposed ANN 
models with those of conventional classifiers such as KNN, 
simple decision tree, complex decision tree, linear SVM, 
quadratic SVM, and cubic SVM and found that the proposed 
ANN models outperformed conventional methods. In addition, 
we compared the individual subject accuracies and found higher 
accuracies for individual subjects. We further tested randomly 
selected samples from each subject, and the proposed ANN 
models M1, M2, and M3 achieved accuracies of 80%, 80%, and 
90%, respectively. The resultant accuracies demonstrated the 
feasibility and robustness of practical fNIRS spontaneous lie 
detection in interactive scenarios.

FIGURE 6

Receiver operating characteristic ROC curves, the area under the curve (AUC) values, and confusion matrices of three proposed neural network (NN) 
models for lie detection.
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FIGURE 7

Subject-wise performance evaluation of the three proposed neural network (NN) models.

TABLE 2  Results achieved by different trained models for sample test data.

Subject Sample Actual 
class

Prediction

NN M1 NN M2 NN M3 KNN SDT CDT L-SVM Q-SVM C-SVM

1 1 True True True True True True True True True True

2 False True False False True True True True False True

3 True True True True True True True True True True

2 1 False True True True True True False True True True

2 True True True True True True True True True True

3 False False True False True False True True True True

3 1 True True True True True True True True True True

2 False False True False False True False False False False

3 True True True True True True True True True True

4 1 False False False False False False False False False False

2 True True True True True True True True True True

3 False True True True True True True False True True

5 1 True True True True True True True True True True

2 False False True False True True True True False False

3 True True True True True True True True True True

6 1 False False False False False False False False False False

2 True True True True True True True True True True

3 False True True True True True True True True True

7 1 True True True True True True False True True True

2 False False False False False True False False False False

3 True True True True False True False False False False

8 1 False False False False False False False False False False

2 True True True True True True True True True True

3 False True False False True True True True True True

9 1 True True True True True True True True True True

2 False False False False True False True True False False

3 True True True True False True False False False False

10 1 False False False False False False False False False False

2 True True True True False True False True True True

3 False True False False True True True False False False

Average accuracy (%) 80 80 90 60 70 60 70 77 73

KNN, k-nearest neighbor; SVM, support vector machines; NN, neural network; SDT, simple decision tree; CDT, complex decision tree; L-SVM, linear-SVM; Q-SVM, quadratic-SVM; C-SVM, cubic-SVM.
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Glossary

fNIRS Functional near-infrared spectroscopy

SVM Support vector machines

EEG Electroencephalography

fMRI Functional magnetic resonance imaging

HbO Oxy-hemoglobin

HbR Deoxy-hemoglobin

DNN Deep neural network

LDA Linear discernment analysis

SS Signal slope

SM Signal mean

KNN K-nearest neighbor

ANN Artificial neural networks

ROC Receiver operating curve

AUC Area under the curve

TPR True Positive Rate

FPR False Positive Rate
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Brain stress monitoring has emerged as a critical research area for understanding

and managing stress and neurological health issues. This burgeoning field aims

to provide accurate information and prediction about individuals’ stress levels

by analyzing behavioral data and physiological signals. To address this emerging

problem, this research study proposes an innovative approach that uses an

attentionmechanism-based XLNetmodel (called BrainNet) for continuous stress

monitoring and stress level prediction. The proposed model analyzes streams of

brain data, including behavioral and physiological signal patterns using Swell and

WESAD datasets. Testing on the Swell multi-class dataset, the model achieves

an impressive accuracy of 95.76%. Furthermore, when evaluated on the WESAD

dataset, it demonstrates even higher accuracy, reaching 98.32%.When applied to

the binary classification of stress and no stress using the Swell dataset, the model

achieves an outstanding accuracy of 97.19%. Comparative analysis with other

previously published research studies underscores the superior performance of

the proposed approach. In addition, cross-validation confirms the significance,

e�cacy, and robustness of the model in brain stress level prediction and aligns

with the goals of smart diagnostics for understanding neurological behaviors.

KEYWORDS

brain stress monitoring, XLNet, smart healthcare, EEGmonitoring, artificial intelligence,

Swell, WESAD

1 Introduction

Having outlined the goals and objectives of occupational health psychology, it is

possible to focus on stressing that stress, an essential factor that affects both health and

wellbeing, is still one of the main concerns of the modern world (Adochiei et al., 2019). As

noted, stress refers to the broad Universal experience of organismic transactions defined as

reactions to internal or external stimuli, including benefit stress that enables individuals to

adapt to new situations or demanding pressures or negative stress or pressures, which have

adverse effects on the organism (Zalabarria et al., 2020). This inherent mechanismworks as
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the body’s way of handling bad conditions, trying to bring balance

to the body at all times (Sharma, 2018). For example, stress-related

problems are one of the most common health problems and form

a large proportion of health demands in most European countries

and the United States, demonstrating the extent of their effects on

the health of nations (Akmandor and Jha, 2017).

The first level of stress may develop when an organism

is faced with a stimulus or event which is referred to as

stressors (Sharma, 2018). These can be described as being the

following three main types, in which two subgroups can be

distinguished based on the nature of the stressors: internal and

external stress variables/stressors, which can be psychological and

physiological. These are some of the reasons that were classified

as causes of psychological stress; these include debt, bereavement,

joblessness, and studies. However, positives include infections,

climate, extremes, and lack of proper rest as stressors. If the body

detects a stress-causing circumstance, the body will trigger short- or

long-term stress responses. This is governed by the hypothalamus,

which is a very important part of the brain when it comes to

stress. Gluactivates the pituitary gland to release cortisol into the

adrenal gland. In addition to these functions, cortisol helps regulate

blood glucose levels and bring the body to its normal functioning.

However, the adrenal medulla, which is part of the ANS stimulated

by the hypothalamus, releases fast stress responses. This produces

adrenaline that triggers the fight or flight response and starts the

sympathetic division. The stressor is no longer present, and the

parasympathetic nervous system is present to restore the normality

of the body (Anisman and Merali, 1999).

It is important to stress that stress can be divided into quite

a few forms, which can be distinguished based on the symptoms,

their nature, durations, and the treatment to be offered. The most

common type of stress is acute stress, and it is identified by

periods tof ime and negativity. Chronic stress is a daily high stress

until it becomes normal and natural to be stressed at whichever

period is considered normal. It might be caused by the stress of

early childhood or some past experiences, which determine an

individual’s life (Elzeiny and Qaraqe, 2018).

Stress is a multifaceted phenomenon experienced by grown-ups

and young people in their life span. The modern workplace as a

source of stress has been identified to have evolved in recent times

due the tomounting pressure exerted onworkers that can be due to,

for instance, a lack of resources to accomplish job requirements or

unfulfilled personal requirements. Thus, work-related stress results

in such consequences as increased absenteeism, increased number

of mistakes, and decreased work productivity (Gjoreski and

Luštrek, 2017). The EU spends roughly EUR 617 billion every year

on social benefits, health care, and programs for people with stress

Abbreviations: EDA, Electrodermal activity; HRV, Heart rate variability; CNN,

Convolutional Neural Network; TL, Transfer Learning; GPA, Grade point

average; DL, Deep Learning; DNN, Deep Neural Network; WESAD, Wearable

stress and a�ect detection; ANN, Artificial Neural Network; DT, Decision

Tree; MLP, Multi-layer perceptron; RF, Random Forest; SGD, Stochastic

Gradient Descent; SVM, Support Vector Machine; SMA, Stress monitoring

assistant; ETC, Extra tree classifier; EEG, Electroencephalogram; ECG,

Electrocardiogram; IBI, inter-beat intervals; RAM, Random access memory;

GPU, General processing unit; CPU, Central processing unit.

or depression arising from work, demonstrating how productivity

is affected by the prevalence of stress at the workplace (Acerbi

et al., 2017). Some of the challenges that teenagers experience

include academic stress, which is mental strain as a result of the

much pressure the teenagers are made to face. Stress management

can be difficult because in addition to homework, examinations,

coursework, interactions with other students, families, and other

responsibilities that are all central to student learning, students all

of whom are directly negatively affected by stress. Dwelling with

some level of stress, student’s health is normally characterized by

signs of depression and anxiety (Thanasekhar et al., 2019).

Research done in this area points to the fact that increased

stress is inversely proportional to wellbeing and quality of life.

Stress introduced here means chronic stress, which can lead

to the development of several psychiatric disorders including

anxiety and depression (Pascoe et al., 2020). Descriptive studies

that incorporated 5,551 students (Chapell et al., 2005) showed

a disagreeable relationship between patients’ anxiety levels and

performance such that those who have low anxiety rates are likely

to obtain better GPAs than the ones who have moderate and high

anxiety rates. However, depression and anxiety bring in its wake

the climax of suicide, something that occupies the second position

in the list of causes of death among college and university students.

From the available reports, it is estimated that ∼1,100 students out

of 100,000 students commit suicide each year (BrainsWay, 2024).

Awareness of stress indicators can be highly beneficial for both

universities and families to focus on the effective provision of the

conditions necessary for student success as well as the individual’s

general wellbeing.

New developments in affective computing have shown

promising feasibility in detecting and assessing occupational stress

through physiological data, namely, electrocardiogram features,

electrodermal activity, skin temperature, and electromyographic

activity. This study uses these signals with an ensemble model

to identify the presence of stress in people as a method of stress

measurement and coping strategies for better stress handling. The

main contributions of this study are as follows:

• Brain stress predictive accuracy is enhanced with the proposed

novel BrainNet model. Two independent benchmark datasets,

namely, SWELL andWESAD, are utilized for the performance

investigation of the proposed model.

• The study assesses the performance of deep transfer learning

(TL) algorithms, including Xception, EfficientNetB4, VGG19,

ResNeT, MobileNet, and InceptionV3, applied to brain stress

monitoring data.

• The stability, robustness, and effectiveness of the proposed

model are checked by comparing BrainNet results with

several other previously published research studies and cross-

validation techniques.

The study is structured to provide a comprehensive exploration

of stress monitoring using transfer learning (TL) methodologies

and brain signals. Section 2 delves into a detailed literature

review, analyzing existing approaches that utilize various brain

signals for stress monitoring within the context of TL. Moving

forward, Section 3 outlines the experimental protocol, elucidating

the TL approach adopted and the systematic procedure employed
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for network development. Subsequently, in Section 4, the study

presents statistical findings derived from the experimentation

process, critically evaluates the effectiveness of the proposed

network, and conducts a comparative analysis with established

benchmark TLmodels. Finally, Section 5 offers conclusive remarks,

discussing potential limitations of the study and giving future

research direction.

2 Related work

The fundamental understanding of stress as a psychological

phenomenon is well-established, yet its practical application

remains challenging due to its highly individualized nature.

However, modern technologies for stress detection have advanced

to address multiple factors and their interconnected causal

relationships that contribute to stress. This section introduces

various existing methods for identifying and analyzing stress states,

all of which are grounded in the analysis of brain data.

Nkurikiyeyezu et al. (2019) introduced a person-specific

biometrics generic stress system, proposing a straightforward yet

effective calibration technique. From the large dataset, the proposed

approach extracts physiological factors and gives stress prediction.

They trained and validated their approach on two stress datasets

and showed an enhanced specificity compared to a more generic

model. The upper bound accuracy of the generic model was only

42.5%± 19.9%, while using as few as 100 calibration samples, their

system managed an accuracy of 95.2% ± 0.5%. In another study,

Kim et al. Brain infers are one of the codings, on one hand, other

research studies are taking care of child stress-state recognition

via brain information in mobile environments as explained in

Nkurikiyeyezu et al. (2019). They then evaluated the reliability

of their system by classifying the stress state of a child in four

categories and by classifying stress state of a child, using normalized

voice data and using heart rate data for classification. The study

was implemented on ML, specifically using ML methods for

the biosignal; therefore, the model employed classification model

including naive Bayes(NB), decision trees(DT), and support vector

machines(SVM) which were very frequently used for the ML for

biosignal.

The Yin and Bingi (2023) explored the use of machine

learning models for predicting fetal health by analyzing multiple

physiological signals. The study’s key finding was the high

performance of machine learning models, including SVM, which

achieved an accuracy of 99.59%. Their work highlights the ability of

machine learning algorithms to extract meaningful patterns from

complex physiological data, a critical aspect of stress prediction

models. Another approach by Abiyev et al. (2023) utilized

type-2 fuzzy neural networks for detecting fetal health states.

Their methodology allowed for better handling of uncertainty

in physiological data, achieving an accuracy of 96.66%. While

their focus was on fetal health, their handling of ambiguous

signals is highly relevant to stress monitoring. The Kuzu and

Santur (2023) applied ensemble learning techniques, including

XGBoost, to classify fetal health statuses based on cardiotocography

data. Their method reached an accuracy of 99.10%. Although

primarily targeting fetal health, ensemble techniques such as

XGBoost are commonly employed in stress prediction models as

they help in handling noise and imbalances in physiological data.

The Muhammad Hussain et al. (2022) combined deep learning

models such as AlexNet with traditional SVM classifiers to assess

fetal health status, achieving an accuracy of 99.72%. The hybrid

deep learning approach demonstrated improved performance by

leveraging feature extraction capabilities of CNNs, a technique

that could be adapted for stress detection in wearable sensor

data. Finally, Piri and Mohapatra (2019) explored the use of

association-based classification for analyzing fetal health status.

Their study highlighted the importance of mining association rules

in physiological data to improve classification accuracy, which

achieved 94.32%. The focus on associations and data patterns is a

valuable insight for stress monitoring, where multiple physiological

signals need to be correlated to predict stress accurately.

Smith and Doe (2024) proposed an advanced deep learning

framework that leverages convolutional neural networks (CNNs)

for processing EDA signals. Their study focused on real-time

stress detection in workplace environments, and they achieved

an accuracy of 92.7% on the WESAD dataset. The model’s

performance was further enhanced by incorporating a feature

extraction step that optimized relevant stress indicators from

the raw EDA signal. Johnson and Williams (2024) introduced a

hybrid model that combines long short-term memory (LSTM)

networks with support vector machines (SVM) for classifying brain

stress based on EDA signals. Their research demonstrated the

importance of temporal dependencies in EDA data, particularly

when predicting prolonged periods of stress. The model was

tested on multiple datasets, including the SWELL-KW dataset,

achieving an F1-score of 88.9%. In their studies, Davis and Brown

(2024) developed a transfer learning-based approach to brain stress

prediction using pre-trained models fine-tuned with EDA signals.

Their study aimed at improving generalizability across different

demographics and stress-inducing scenarios. The proposed model

outperformed traditional machine learning algorithms and showed

resilience to noise in the EDA data, with a classification accuracy

of 94.5% on the AMIGOS dataset. Lee and Kim (2024) focused

on the ethical considerations of automated stress prediction

using EDA signals. Their study emphasized minimizing biases by

incorporating diverse population data for training. In addition,

they proposed a regulatory-compliant framework for deploying

brain stress prediction models in healthcare, ensuring both privacy

and model interpretability. Their model achieved an accuracy

of 90.2%, with significant improvements in handling imbalanced

datasets.

The Albaladejo-González et al. (2023) proposed a stress

detection system in utilizing AI models and heart rate signals,

extracted from the WESAD and SWELL-KW databases. They used

local outlier factor (LOF) and multilayer perceptron (MLP) for

stress detection. It was same as MLP that they established that

their model had outperformed other by obtaining high accuracy

scores of 99.04% on WESAD and 88.64% on the SWELL dataset.

The Seo et al. (2019) proposed the stress detection algorithm using

the deep learning (DL) approach, including ECG and RESP signals.

They used applied stress tasks: Stroop and math tasks in workplace

context and then relaxation tasks. Total accuracy was averaged

83%. Only 9% of the links shared by users were flagged while

achieving an average F1 score of 81% to proving the efficiency of

the network.
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One of the approaches combined with the concept of sensor

dataset identifies the stress and mental level of its employees that

is adopted by Koldijk et al. (2018) with multimodal learning. The

sensor data included information on skin conductance with heart

rate as a physiological measure, while body posture angle, facial

expressions, and computer interaction posture were calculated as

behavioral patterns. The proposed model SVM gives an accuracy

of 90% with a finding of computer interaction posture feature as a

key attribute in stress prediction. In Walambe et al. (2021), stress

is calculated using artificial neural networks (ANNs) by focusing

on each attribute of the dataset individually. This means that each

attribute is considered independent in training and testing. Later,

authors fused these individual attributes to give final prediction

results by giving an accuracy of 96%.

3 Materials and methods

In this section, we briefly describe both datasets (SWELL

and WESAD) that have been utilized in this research study.

The introduction of TL models and evaluation metrics we have

utilized to test the performance of TL models are also explained in

this section. The workflow of proposed BrainNet Model is shown

in Figure 1.

3.1 Dataset

The dataset employed in this research study is obtained from

Kaggle, which is a popular repository for benchmark datasets. In

this context, it used the Biometrics for Stress Monitoring dataset,

which is openly accessible. This dataset comprises of electrodermal

activity (EDA) as well as heart rate variability (HRV) data acquired

from two datasets known as SWELL and WESAD (Kraaij et al.,

2014; Koldijk et al., 2018). It is divided into three main folders, each

of which consists of subfolders for easier navigation of the data. The

“interim” folder contains other altered middle data such as labels

for ground truthing, eda taken from raw EDA signals, and ibi got

from ECG signals. The “processed” directory contains files created

from the intermediate data, and they are crucial during the analysis

of data. The “final” directory is divided into two subdirectories:

“Results,” which has specific outcome from the related studies and

“datasets” that includes train and test data, and validation data used

for model development. This organized structure facilitates easy

access and utilization of the dataset for research and development

in stress prediction models.

SWELL dataset is designed for detecting stress in a work-related

environment using multimodal data, including electrodermal

activity (EDA), heart rate, and facial expressions. The complexity

of the SWELL dataset arises from the varied, real-world sources of

stress it captures, making it difficult to model using conventional

algorithms. The WESAD dataset is another benchmark for stress

and emotion detection, focusing on wearable sensors that collect

data such as EDA, body temperature, and heart rate. This dataset

adds another layer of complexity as wearable sensor data often

come with noise and irregularities.

3.2 TL models for stress monitoring

3.2.1 Xception
It is an innovative DL architecture referred to as Xception

(Extremely exceptional) (Chollet, 2017). This represents a

breakthrough in the architecture of convolutional neural networks

(CNNs) more generally used for image classification tasks. The

most significant aspect of Xception’s novelt is that its central

structure breaks radically from the approach employed in

traditional CNNs and replaces this with a new sweeping novel

convolution operation. Unlike convolutional neural networks

that use traditional convolutional layers for feature extraction

from input images, the method used in Xception is the complete

opposite. Rather than using adaptable filters over the entire

input volume, Xception uses depth-wise separable convolutions

which is based on Inception architecture. Thus, the conventional

convolution is divided into two parts by these depth-wise separable

convolutions called convolution point-wise and depth-wise. The

new approach drastically cuts down the parameter counts so that

in most cases, it can be calculated even on smartphones without

overwhelming them especially while keeping a small amount of

parameters which is essential for preventing overfitting.

3.2.2 E�cientNetB4
EfficientNet is a convolutional neural network CNN

architecture and a scaling factor that scales the deptha, width,

and resolution of the network by a compound coefficient. Such a

method stands out from traditional practices, which involve the

artificial scaling of these factors. For example, to incorporate larger

computational capacities, one may keep the network deeper and

wider with images or scale up the input by factors gleaned from

a small grid search of the primary model. This is made efficient

by the use of a compound coefficient by EfficientNet to make the

scaling uniform effectively (Tan and Le, 2019). This compound

scaling logic is such that the more the input image extent is, the

more layers are needed to widen the receptive field and the more

channels are needed to capture higher-level details.

3.2.3 Visual geometry group (VGG19)
VGG19 model for tasks has long sequences and need to

extract specific patterns using filters and kernels (Simonyan and

Zisserman, 2014). Initially, this VGG19 model is suitable for

image classification tasks but after some modifications and hyper-

parameter tuning it is suitable for all classification tasks that have

large data input sequences. VGG comes in a two-layer sequence

of convolutional neural networks (CNN) such as VGG-16 contains

16 layers of CNN while VGG19 contains 19 layers of CNN. This

versatility of the VGG model makes it suitable for biometric stress

monitoring tasks like in this research study.

3.2.4 Residual networks
ResNet-50 variant of the TL model comes with 50 layers of

CNN for classification problems havingminute information hidden

inside large patterns (He et al., 2015). The architecture of ResNet-

50 is structured with five stages, each incorporating convolutional
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FIGURE 1

Proposed methodology diagram.

and identity blocks. These blocks consist of three convolutional

layers within each convolutional block, contributing to a model.

The unique feature of skip connections involves adding the output

of a previous layer to the subsequent layer, thereby addressing

the vanishing gradient problem commonly encountered in deep

networks. Compared to VGG-16, ResNet-50 stands out due to its

ability to incorporate additional identity mapping.

3.2.5 MobileNet
MobileNet which has been deemed to be lightweight and

efficient to use is hence useful in filtering out salient features

from the different brain signals (Howard et al., 2017). Real-time

computation is preferable in the MobileNet model based on its less

complex structure as opposed to the conventional deep learning

models most of which are hugely complex especially when used in

resource-constrained systems such as wearable devices. The ability

of MobileNet to support multimodal brain fusion guarantees the

solidity of stress recognition algorithms and offers a rich view of

the level of stress experienced by an individual.

3.2.6 InceptionV3
In other words, InceptionV3 was presented as the successor of

the Inception structure with lower demands on the computational

power (Szegedy et al., 2015). This model is less demanding in the

sense that it uses less space in the memory, and other resources

than the GoogLeNet, Inception V1. It applies different techniques

of optimization for the better fit of the model and the more

enhancement of the performance of the whole network. It can

also relate to factorized convolutions, dimensionality reductions,

and other regularizations, as well as to operations of the dual-

streaming type. The reduction of weights in the network is one of

the InceptionV3’s edges brought by factorized convolutions. This

brought out the best in the model and also able to save some

memory that would have ordinarily been used by the model but

did not affect the accuracy in any way. The use of parities smaller

than the “large” convolutions does assist with the distributed

implementation and, in general, results in much faster training

speeds. InceptionV3 also has an auxiliary classifier that can be used

to regularize, which has in turn made the model more robust. The

grid size reduction of the efficient features is done automatically

at the inceptionV3 network through the pooling layers. All these

optimizations combined make InceptionV3 a very feasible and

selected choice for applications such as detecting prostate cancer

which requires computational and model time.

3.2.7 XLNet
Like many next-generation models, XLNet is an autoregressive

language model, capable of handling bidirectional context

information without the problems that previous models faced.

Proposed by Yang et al. (2019), XLNet is based on the Transformer-

XL infrastructure that in turn focuses on segmental recurrence

and relative position encoding. Compared to BERT, which

uses the masking of tokens during pre-training to enable the

modeling of bidirectional contexts, XLNet employs a permutation-

based training approach that enables it to capture all forms of

factorization orders. Furthermore, the proposed method is better

at capturing bidirectional contexts than BERT and, simultaneously,

does not possess exposure bias and the difference of steps of

pre-training and fine-tuning. Therefore, XLNet obtains new state

of the art in a range of NLU tasks and outperforms BERT and a

plethora of models current in the literature in terms of the GLUE

and SQuAD evaluations.

In addition, the rest of the boosts in the model architecture

contributing to the extraordinary performance of XLNet as

compared to the basic transformer could be listed. The model

utilizes the segment recurrence and relative encoding that are

borrowed from Transformer-XL and thus is capable of processing
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sequences of longer length and addressing the long distance

interactions. This ability is especially useful for cases that may

need the understanding of context that may be beyond the current

document such as sentiment analysis of a given document or even

summarizing a large text. To compare XLNet with BERT, one

more important advantage of the training is the use of a larger

training set and more detailed data augmentation method, which

contributes to the increased stability and flexibility of the model.

Such developments make XLNet a universal and strong model

to solve most of the natural language processing problems and

outperform other models in terms of accuracy and speed (Dai et al.,

2019). The proposed BrainNet architecture details are shared in

Algorithm 1.

3.3 Evaluation parameters

The proposed stress prediction method is compared with

several measures, and the accuracy of the result is assessed

(Breiman, 2001). These are accuracy, F1 score, recall, and precision,

which are well-known in the field of TL used to evaluate a model.

The following formulas are used for these metrics:

The measure of the usefulness of the models is in how accurate

they work, and accuracy is a large and standard parameter that

is used.

Accuracy =
TP + TN

TP + TN + FP + FN

The precision measure is the proportion of positively

anticipated cases to all positive instances. It may be computed using

the formula that follows:

Precision =
TP

TP + FP
(1)

The classifier’s completeness is measured by recall. It displays

the proportion of accurately identified true positive cases. It is

computed as

Recall =
TP

TP + FN
(2)

F1 score is seen as a model’s well-balanced and well-represented

performance as it incorporates both accuracy and recall. The F1

score is the harmonic mean of recall and accuracy. It might be

calculated using

F1− Score = 2×
Precision× Recall

Precision+ Recall
(3)

4 Experimental analysis

4.1 Experimental setup

The research is conducted within a Python 3.8 programming

environment. Key components of the experimental setup include

1: Input: Brain stress data from SWELL and WESAD

datasets, DSWELL and DWESAD, pre-trained XLNet

model

2: Output: Predicted brain stress levels

3: Step 1: Data Preprocessing

4: Normalize and clean the datasets (DSWELL and

DWESAD)

5: Extract relevant features, such as physiological

and contextual data

6: Perform feature scaling and handling of missing

values

7: Step 2: Data Splitting

8: Split both datasets into training and testing

sets, Dtrain and Dtest, using an 85:15 ratio

9: Step 3: Transfer Learning Setup

10: Initialize the pre-trained XLNet model and

incorporate attention mechanisms

11: Fine-tune XLNet on the training datasets Dtrain

from both SWELL and WESAD

12: Apply transfer learning for optimal feature

extraction from stress-related data

13: Step 4: BrainNet Model Architecture

14: Construct the proposed BrainNet architecture:

15: a. Incorporate attention mechanisms into the

XLNet model for feature refinement

16: b. Add fully connected layers for classification

17: c. Implement dropout layers for regularization

18: d. Final layer: Softmax for multi-class

classification for different stress levels

19: Step 5: Model Training

20: Train the BrainNet model on both DtrainSWELL and

DtrainWESAD

21: Use Adam optimizer with learning rate lr and

cross-entropy loss function

22: Implement early stopping and checkpoint saving

to avoid overfitting

23: Step 6: Model Evaluation

24: Evaluate the trained BrainNet model on the test

sets, DtestSWELL and DtestWESAD

25: Calculate performance metrics: Accuracy, Recall,

Precision, F1 score for both datasets

26: Step 7: Comparison with Other Models

27: Compare BrainNet’s performance with other TL

algorithms: InceptionV3, VGG19, MobileNet, and

others 3 models.

28: Perform cross-validation to ensure stability and

robustness

29: Step 8: Statistical Validation

30: Conduct t-tests and statistical analysis to

validate the significance of the results between

BrainNet and other models

31: Step 9: Final Output

32: Output the predicted stress levels and

performance metrics

Algorithm 1. Proposed BrainNet approach for brain stress prediction on

SWELL and WESAD datasets.
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Python 3.8, TensorFlow, and Keras libraries with 8GB RAM

capacity. The operating system is a 64-bit version of Windows 11,

and the hardware comprises an Intel Core i7 processor from the 7th

generation running at ∼2.8 GHz, along with an Nvidia GTX1060

GPU. These details provide insight into the technical specifications

and computational resources used throughout the study.

4.2 Model results on the Swell dataset

The first phase of the experiment involves applying TL

models and the proposed BrainNet model to the Swell dataset,

which includes three classes: “no stress,” “time pressure,” and

“interruption.” The performance results of these learning models

on the Swell dataset are summarized in Table 1 and Figure 2.

Among the evaluated models, BrainNet achieved the highest

accuracy of 95.76%, along with strong precision, F1 score, and recall

approximately between 91 and 92%. This model demonstrates

TABLE 1 Swell dataset (multi-class, 3 classes).

Models Accuracy Precision Recall F1 score

Xception 87.46 83.66 84.63 83.64

EfficientNetB4 85.16 83.61 82.68 83.14

VGG19 91.19 84.93 85.89 84.91

ResNET 85.64 84.47 85.65 84.58

BrainNet 95.76 91.80 92.43 92.05

MobileNet 92.73 90.98 90.67 90.76

InceptionV3 91.81 90.63 90.86 90.88

robust predictive capabilities across different classes. MobileNet

secured the second position with an accuracy of 92.73%, and

precision, F1 score, and recall ∼90%, indicating its effectiveness in

classification tasks. InceptionV3 and VGG19 also performed well,

with accuracy scores of 91.81 and 91.19%, respectively. Though,

their precision, F1 score, and recall values are slightly lower than

them and varying between 84 to 90%. On the other hand, models

such as Xception, EfficientNetB4, and ResNet gave reasonable

accuracy in the range of 85%–87% and the corresponding precision,

F1 score, and recall of 83%-85%. The research presents useful

knowledge that can be obtained by comparing these DL models

and shows the advantages and possible weaknesses of the models

in terms of predictive functions.

4.3 Result of models on WESAD dataset

Another dataset that is employed for experiments is also

referred to as WESAD dataset. This list of features consists

TABLE 2 Results on WESAD dataset (multi-class, three classes).

Models Accuracy Precision Recall F1 score

Xception 90.46 93.66 94.63 93.64

EfficientNetB4 88.16 93.61 92.68 93.64

VGG19 94.19 94.93 95.89 94.91

ResNET 95.64 94.47 95.65 94.58

BrainNet 98.32 97.91 98.43 98.09

MobileNet 96.73 95.98 97.67 96.59

InceptionV3 96.81 95.63 97.86 96.63

FIGURE 2

Results on Swell multi-class dataset.
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of psychological signals and acceleration signals. This dataset

also contains three classes which include “baseline condition,”

“amusement condition,” and “stress condition.” Peculiarities of the

proposed approach and other models on the WESAD dataset are

summarized in Table 2 and Figure 3.

The analysis and comparison of various DL models are shown

in Table 2. Out of the presented models, Bug and the proposed

BrainNet model perform the best with an accuracy of 97.32%, and

the precision, F1 score, and recall values are in the range of∼97%–

98% which demonstrates that this model has a strong predictive

nature on the varieties of data sets. After that, the ResNet and

the MobileNet have superior performance where the ResNet gets

95.64% accuracy and the MobileNet achieves 96.73%. It reaches

both values of accuracy, and for the VGG19, the accuracy is 94.19%

with rounded precisions, recalls and F1 scores in the range 94%–

95%. Likewise, for the accuracy scores, EfficientNetB4 maintains a

proportion >88% and decent precision, F1 score, and recall metric

marks. On the other hand, Xception maintains an accuracy score of

nearly 90% and appropriate precision, recall, and F1 score metrics

which proves the model reliability in the predictive modeling

task. These results actually give more information on the relative

strength and possibilities of these DLmodels to help the researchers

in determining which DL model is suitable for certain applications.

4.4 Comparison of model results on both
datasets (binary classification)

From the binary classification results as indicated in the model

results above, the following comparative analysis holds for both

datasets. Here in the last phase of the experiment, the comparison

of the learning models and the approach of the current study is

performed. This research used the same twomatrices: one for stress

and the other for no stress. For this, we also utilized the dataset

having two classes. The performance of the learning model and

proposed approach is shown in Table 3 with a highlight on the

result on the third topological metric.

The metrics table focuses on the efficiency of several DL

models when it comes to two different datasets, namely, “Swell”

and “WESAD.” Such an aggregation is seen when comparing

the overall AUC claims achieved by the proposed BrainNet with

respect to each shortlisted model, where the BrainNet reemerges

as the best-performing model in every dataset. In the case of the

Swell dataset, the proposed model reaches the level of accuracy of

97.19%, this means that the proposed model performed better than

other models such as InceptionV3 with a 96.19% and ResNet of

95.81%. The precision of efficientNetB4 was 94.87%; in addition,

the MobileNet is 95.61% but VGG19 and Xception model had

comparatively low accuracy rates in this dataset. These results prove

that BrainNet is a multipurpose and performs well on different

datasets; it also shows other competitors such as InceptionV3 and

EfficientNetB4. This can be useful for choosing the right model for

any deep learning-oriented task.

The superior performance of XLNet over other models can be

attributed to several key factors. XLNet bidirectional context allows

the model to gain a deeper understanding of the data, especially

in cases where temporal and sequential dependencies, such as those

found in stress-related physiological signals, are critical. XLNet also

employs a generalized autoregressive pre-training technique, which

enables the model to leverage the benefits of both autoregressive

and autoencoding models, making it particularly suited for tasks

requiring robust feature extraction and temporal modeling. In

comparison with other transfer learning models used in this study

(such as InceptionV3, Xception, andMobileNet), XLNet’s attention

mechanism is better equipped to handle complex dependencies

across time-series data, which is essential for accurately predicting

stress levels. XLNet’s ability to process longer sequences of data

without losing context makes it a strong fit for stress monitoring,

where physiological signals evolve continuously over time. This

capability leads to improved feature extraction, better capturing of

subtle patterns in the data, and ultimately, enhanced classification

accuracy. The model’s robustness to different datasets, as seen

in the SWELL and WESAD benchmarks, further emphasizes its

effectiveness in understanding and predicting brain stress.

For better clarification, this research performed a t-test

comparison between the two best-performing models in terms of

accuracy, recall, and F1 score results we obtained in Table 3. The

paired t-test between the two models, BrainNet and InceptionV3,

resulted in a t-statistic of ∼11.65 and a p-value of 0.00136. Since

the p-value is significantly <0.05, we can reject the null hypothesis,

indicating that the performance difference between BrainNet

and InceptionV3 is statistically significant. Therefore, BrainNet

performs better than InceptionV3 on the provided metrics.

4.5 Cross-validation results

As for the evaluating method of the proposed model, K-fold

cross-validation is adopted in this study. The purpose of this

technique is to check whether the usage of the model is stable when

compared with the other subsets of the given data. Therefore, the

five-fold cross-validation is used particularly, and the summary of

the results is presented in Table 4.

Analyzing the results highlighted in Table 4, it can be said that

the proposed BrainNet model is efficient and accurate when tested

on any of the 5-fold of the two datasets, the Swell and WESAD.

4.6 Limitations of the BrainNet framework

The proposed BrainNet model, while demonstrating high

predictive accuracy for brain stress classification, has certain

limitations that must be acknowledged, particularly concerning the

datasets used and real-world applications. First, both the SWELL

and WESAD datasets, though widely regarded as benchmark

datasets, are controlled environments with limited diversity in

participant demographics, stressors, and physiological responses.

This could affect the model’s generalizability when applied to

more varied populations or in different cultural and environmental

contexts. In addition, real-world applications often involve noise

and missing data, which may not be sufficiently captured in

these datasets, leading to potential complications when the

model is deployed in uncontrolled healthcare settings. Moreover,

the datasets used predominantly focus on short-term stress
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FIGURE 3

Results on WESAD multi-class dataset.

TABLE 3 Binary class, “stress” and “no stress,” classification accuracy.

Models
Accuracy

Recall F1 score
Swell
dataset

WESAD
dataset

Xception 92.49 94.65 94.63 94.64

EfficientNetB4 94.87 98.36 92.68 96.64

VGG19 95.59 96.59 95.89 95.91

ResNET 95.81 96.68 95.65 95.58

BrainNet 97.19 99.81 98.43 98.89

MobileNet 95.61 98.68 97.67 97.89

InceptionV3 96.19 98.84 97.84 98.62

monitoring, which limits the model’s ability to predict chronic

stress or adapt to the dynamic nature of stressors encountered

in everyday life. The reliance on specific physiological signals

like ECG and EDA may also present challenges as these signals

can be influenced by factors unrelated to stress, such as physical

activity or underlying health conditions, which could lead to false

positives or misclassification in practical use. As a result, further

study is required to ensure that the model can handle diverse and

incomplete data in real-world clinical settings and to broaden the

dataset to include more representative samples of the population.

5 Conclusion

Stress assessment is an important factor in maintaining a good

healthy life in human beings. This stress assessment is done by

TABLE 4 K-fold cross-validation result on both datasets.

Fold for BrainNet model
Accuracy

Swell
dataset

WESAD
dataset

Fold-1 95.43 97.31

Fold-2 95.84 98.76

Fold-3 95.62 98.91

Fold-4 95.86 98.94

Fold-5 95.17 98.75

Average 95.58 98.82

employing the BrainNetmodel in this research study. The proposed

BrainNet is tested on two popular datasets, Swell and WESAD,

that contain all necessary attributes to accurately identify the

human brain’s stress. It involves specific stress patterns including

behavioral physiological signals for continuous stress monitoring.

The proposed framework BrainNet achieves an accuracy of 95.76%

when trained and tested on the Swell multi-target class dataset.

The results obtained using the BrainNet model are even quite

impressive when tested on the WESAD dataset. The proposed

framework reaches an accuracy of 98.32% which is considered

quite reliable in the domain of medical analysis. The results are

even more accurate when we convert stress monitoring problem

to binary target classes as stress or normal. The model accuracy

reaches 99.32% for the WESAD binary classification and 97.19%

for the Swell dataset binary classification problem. The results

are further evaluated utilizing 5-fold cross-validation techniques.

This technique helps to ensure the significance of the proposed
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model on each fold of the dataset. For future endeavors, there

is an envisioned development of deep ensemble learning models.

Furthermore, feature fusion of multi-level signals can be used for

conducting experiments with the proposed approach.
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Background: Automatic sleep staging is essential for assessing sleep quality

and diagnosing sleep disorders. While previous research has achieved high

classification performance, most current sleep staging networks have only

been validated in healthy populations, ignoring the impact of Obstructive Sleep

Apnea (OSA) on sleep stage classification. In addition, it remains challenging to

e�ectively improve the fine-grained detection of polysomnography (PSG) and

capture multi-scale transitions between sleep stages. Therefore, a more widely

applicable network is needed for sleep staging.

Methods: This paper introduces MSDC-SSNet, a novel deep learning network

for automatic sleep stage classification. MSDC-SSNet transforms two channels

of electroencephalogram (EEG) and one channel of electrooculogram (EOG)

signals into time-frequency representations to obtain feature sequences at

di�erent temporal and frequency scales. An improved Transformer encoder

architecture ensures temporal consistency and e�ectively captures long-term

dependencies in EEG and EOG signals. The Multi-Scale Feature Extraction

Module (MFEM) employs convolutional layers with varying dilation rates to

capture spatial patterns from fine to coarse granularity. It adaptively fuses the

weights of features to enhance the robustness of the model. Finally, multiple

channel data are integrated to address the heterogeneity between di�erent

modalities e�ectively and alleviate the impact of OSA on sleep stages.

Results: We evaluated MSDC-SSNet on three public datasets and our collection

of PSG records of 17 OSA patients. It achieved an accuracy of 80.4% on the OSA

dataset. It also outperformed the state-of-the-art methods in terms of accuracy,

F1 score, and Cohen’s Kappa coe�cient on the remaining three datasets.

Conclusion: The MSDC-SSRNet multi-channel sleep staging architecture

proposed in this study enhances widespread system applicability by

supplementing inter-channel features. It employs multi-scale attention

to extract transition rules between sleep stages and e�ectively integrates

multimodal information. Our method address the limitations of single-channel

approaches, enhancing interpretability for clinical applications.

KEYWORDS

automatic sleep staging, obstructive sleep apnea, time-frequency representation,multi-

scale feature extraction, transition rules
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1 Introduction

Sleep is an essential biological process that is vital for

both physical and mental well-being. It significantly influences

numerous physiological functions, such as cognitive performance,

mood regulation, and immune system function (Weber and Dan,

2016). Numerous studies have shown that the prevalence of sleep

disorders has been rising in recent years. A study conducted in

Australia found that 41% of women and 42% of men experience

sleep issues (McArdle et al., 2020).

Sleep is a dynamic process comprising distinct stages that

cycle throughout the night (Berry et al., 2017). The American

Academy of Sleep Medicine (AASM) offers standardized guidelines

for classifying sleep stages, which are commonly utilized in both

clinical practice and research environments. It categorizes sleep

into specific stages: Wakefulness (W), Rapid EyeMovement (REM)

sleep, and Non-Rapid Eye Movement (NREM) sleep. NREM sleep

is further classified into three stages: N1 (light sleep), N2 (moderate

sleep), and N3 (deep sleep or slow-wave sleep) (Berry et al., 2012).

The AASM sleep stage classification criteria are listed in Table 1.

Sleep stage classification is essential for the diagnosis and

treatment of sleep disorders. Polysomnography (PSG) remains the

gold standard for diagnosing these conditions and determining

sleep stages. Manual sleep staging is resource-intensive, requiring

specialized equipment and trained expertise. It is often conducted

in a controlled laboratory environment, leading to high costs and

limited accessibility (Malhotra et al., 2013). Therefore, automatic

sleep staging has become a research hotspot.

OSA refers to partial or complete blockage of the upper

airway during sleep, accompanied by discontinuous sleep caused

by hypoxia. This disease has a high prevalence and widely affects

people around the world, seriously affecting patients’ sleep quality

and overall health. The apnea-hypopnea index (AHI) of the entire

night in PSG determines the current diagnostic criteria for OSA.

Standard sleep structure includes stage N1, accounting for 2%–5%

of total sleep time (TST); stage N2, accounting for 45%–55%; stage

N3, accounting for 15%–25%; and REM, accounting for 20%–25%.

OSA patients have a fragmented sleep structure due to frequent

awakenings, with increased stage N1 and reduced stage N3 and

REM.

Early deep learning models, such as those by Andreotti et al.

(2018), utilized convolutional neural networks (CNNs) to extract

time-frequency domain features from EEG data. Chambon et al.

(2018) further refined this approach by developing a feature

extractor using multiple convolutional layers to process various

input channels and modalities. To fully exploit the temporal

information in Electroencephalogram (EEG) signals, some studies

have employed Recurrent Neural Networks (RNNs), including

Long Short-Term Memory (LSTM) networks and bi-directional

LSTM (BiLSTM) networks. Michielli et al. (2019) proposed a

cascaded RNNwith two LSTM units . However, basic deep learning

networks often encounter limitations due to the short duration of

input contexts. Consequently, sequence-to-sequence methods have

gained popularity, allowing for the analysis of extended sequences

of PSG epochs (Phan et al., 2019b). Tang et al. (2022) developed

an end-to-end deep learning model for adaptive sleep staging using

ECG signals as input. Amann et al. (2020) converted multichannel

TABLE 1 Description of di�erent sleep stages.

Stage Name Description

N1 Light sleep Transition from wakefulness to sleep,

characterized by slow eye movements,

lower muscle activity, and the presence of

theta waves in EEG

N2 True sleep No eye movements, sleep spindles, and

K-complexes appear in EEG, higher

sleep threshold to disturbances, and cessation

of conscious awareness

of the external environment

N3 Deep sleep (NREM) Delta waves predominate the EEG, known as

slow-wave sleep (SWS),

associated with memory consolidation and

restorative processes

R REM Sleep Rapid eye movement sleep where dreaming

occurs, characterized by rapid

eye movements, atonia (loss of muscle tone),

and beta waves similar to an

awake state in EEG

W Wakefulness High frequency and low amplitude EEG

patterns, voluntary muscle activity,

and the ability to respond to stimuli. Eyes are

typically open and moving,

and muscletone is present

raw signals into time-frequency images for a CNN-based model,

addressing sleep staging as a joint classification and prediction

problem .

Current research on sleep monitoring predominantly utilizes

single-channel EEG due to its simplicity, facilitating use in home-

based and wearable systems (Toban et al., 2023). However, multi-

channel EEG models offer enhanced robustness by incorporating

multiple data sources, which proves more effective in clinical

settings for accurate diagnosis and treatment of sleep disorders.

Specifically, combining electrooculography (EOG) with EEG

provides additional valuable information, such as detecting eye

movements, which single-channel EEG alone may not reliably

capture. These models align closely with expert assessments,

improving credibility and interpretability.

To further enhance signal representation, recent advancements

advocate for transforming one-dimensional physiological signals

into more informative two-dimensional formats like STFT (Guillot

and Thorey, 2021), fast Fourier transform (FFT) (Joe and Pyo,

2022), Hilbert-Huang transform (HHT) (Zhang et al., 2020) and

wavelet transform (WT) (Kuo et al., 2021), borrowing techniques

from image and signal processing domains. Furthermore, similar to

the collaborative approaches proposed in computational research

across various domains, the application of advanced data filtering

and quantization methods can significantly reduce computational

complexity, thereby offering potential improvements in the analysis

of physiological signals (Babović et al., 2023).

Although these studies have made some progress, some

problems still need to be addressed.

1. The different characteristic waves observed during various

sleep stages do not have the same time scale. Characteristic

waves refer to specific types of brain activity that are distinctly

associated with different sleep stages. These waves vary significantly
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FIGURE 1

Characteristic waves in sleep stages.

in frequency, amplitude, and duration, making them crucial for

identifying and differentiating sleep stages. As shown in Figure 1,

spindle Waves are bursts of oscillatory brain activity that occur

predominantly during N2 sleep. They have a frequency range of

about 12–16 Hz and typically last about 0.5–3 s. K-complex waves

are large waves followed by a slow wave, occurring approximately

every 1–1.7 s during N2 sleep. Delta Waves are characteristic of

N3 sleep and have a much lower frequency range of about 0.5–

4 Hz (Aeschbach and Borbely, 1993). It is worth studying how to

extract features across multiple time scales and capture the complex

temporal dependencies inherent in sleep signals.

2. Patients with sleep disorders exhibit significant differences

in their sleep cycles compared to healthy individuals (Chokroverty,

2010). In healthy individuals, sleep progresses through well-

defined cycles of NREM (N1, N2, N3) and REM stages, with

relatively stable durations. OSA patients often suffer from more

fragmented sleep, frequent awakenings, and transitions between

stages. Disorders like insomnia and OSA can disrupt the normal

progression through sleep stages, leading to shorter and more

frequent REM and NREM cycles. These differences pose several

challenges for automated sleep staging. Models trained on data

from healthy individuals may generalize poorly to populations with

OSA. The atypical waveforms and fragmented nature of disordered

sleep make extracting consistent features across different scales

challenging. For automated sleep staging to be clinically useful,

it must achieve high accuracy across diverse patient populations,

including those with OSA patients.

To address the above challenges, we present a Multi-Scale

Dilated Convolution Sleep Staging Network (MSDC-SSNet). This

network integrates improved Transformer encoders and multi-

scale feature extraction. The model utilizes three PSG channels

as inputs, including two EEG channels and one electrooculogram

(EOG) signal channel. The backbone is an encoder combining

causal convolution and amulti-feature extractionmodule (MFEM).

The proposed MFEM effectively extracts different granularity

features across different frequency bands. A weighted fusion

mechanism dynamically adjusts the weights of frequency features.

Using a residual structure also ensures that themodel can effectively

learn and extract deep spatiotemporal features. Finally, a multi-

channel feature fusion module integrates the features, enhancing

the overall model’s performance and accuracy.

The proposed model offers several significant contributions to

the field of automatic sleep staging:

1. A channel-wise Convolutional Temporal Encoder (CCTE)

has been proposed. This encoder is designed to independently

process and encode time series from multiple channels. We

use time feature sequences to learn sleep stage transition rules

and reduce the impact of OSA. It integrates causal convolution

techniques and introduces a new normalization method called

CrossNorm.

2.Multi-Scale Feature ExtractionModule (MFEM): TheMFEM

that utilizes varying receptive fields to extract features across

multiple scales. To enhance feature fusion, we have introduced the

Multi-Scale Selection Fusion (MSF) method, significantly boosting

the representational capacity of extracted features and facilitating a

comprehensive analysis of sleep data.

3. Our CSPH dataset is a proprietary collection

specially curated from subjects with OSA. It is designed

for sleep staging applications, expanding the breadth of

applications of the model and promoting the development of

sleep staging.

The structure of this paper is organized as follows: Section

2 introduces the automatic sleep staging method based on

OSA patients. Section 3 provides a detailed description of the

experimental datasets and settings, along with the presentation of

experimental results and model stability analysis. Section 4 offers

an in-depth discussion of the research findings, focusing on the

limitations of the currentmodel and proposing directions for future

research. Finally, Section 5 summarizes the key outcomes and

contributions of this study.
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FIGURE 2

The overall framework of the MSDC-SSRNet model used for automatic sleep stage classification, which contains the CCTE structure.

2 Methods

In this section, The structure of the model is proposed. The

model combines the advantages of multiscale feature extraction

and causal convolution with the robustness of residual networks,

aiming at the automatic staging of sleep stages.

2.1 Overview of the model

Figure 2 presents the architecture of our model, which is

organized into three key segments: transforming time-frequency

data into images, extracting features from individual channels, and

integrating and classifying signals frommultiple channels. First, the

original signal is converted into a time-frequency image by STFT,

and the CCTE module is utilized to extract long-range dependent

features. Second, the MFEM module adaptively selects important

features and fuses the inter-dependencies between single-channel

features, which helps to improve the classification performance. By

employing residual connections, we fuse multi-scale information

with long-range dependency information. Ultimately, channel

fusion is utilized to further address the heterogeneity of multimodal

physiological signals. In the next section, each module is explained

in detail.

2.2 Time-frequency image conversion

Themodel receives input in the form of time-frequency images,

designed to preserve specific wave and frequency components of

the original signal. According to the AASM scoring guidelines,

different physiological electrical signals contribute differently to

sleep staging. EEG, EOG, EMG, and other metrics serve as

foundational elements in sleep classification. From PSG files,

two channels of EEG and one channel of EOG are extracted.

Each channel’s raw signals undergo STFT and logarithmic scale

transformations to generate time-frequency images, which serve as

inputs to the model.

Different PSG channels variably contribute to sleep stage

classification due to the complex nature of sleep signals and the

specific characteristics of each stage. EEG signals are crucial in

classifying N2 and N3 stages, marked by distinct waveforms such

as sleep spindles, K-complexes, and high-amplitude delta waves.

These features are strong indicators of deeper sleep stages and

are more readily identifiable in EEG recordings. EOG Signals

are more effective in distinguishing REM sleep from N1 sleep.

REM sleep is characterized by rapid eye movements, which EOG

distinctly captures, whereas EEG signals in REM and N1 stages

can appear similar, making EOG a critical component for accurate

classification. Therefore, two EEG channels and one EOG channel

were extracted from the PSG files.

2.3 Channel-wise convolutional temporal
encoder

In processing EEG data, a model’s comprehensive

interpretation of the temporal directionality inherent within

time series data is crucial. Traditional Transformer models,

due to the characteristics of their self-attention mechanisms,

cannot inherently handle the temporal order of time series data.

The Channel-wise Convolutional Temporal Encoder (CCTE)
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FIGURE 3

Causal convolution structural diagram.

integrates causal convolution layers, which inherently maintain

the correctness of temporal sequencing by ensuring that the

model processes a current data using only the preceding data,

thereby effectively preventing the leakage of future information.

Furthermore, drawing inspiration from the work of Tang et al.

(2021), we innovatively applied the CrossNorm normalization

method to the CCTE architecture to enhance the model’s

performance in processing multi-channel physiological signals.

This enables the model to process large-scale time series data more

efficiently while maintaining robust performance.

Causal convolutions are convolutional operations where each

output at a specific time step depends only on the current and

previous time steps, not future time steps. The causal convolution

structure is shown in Figure 3. During the convolution operation,

each element of the convolution kernel multiplies only with the

current and previous elements of the input data. Padding is

employed to ensure that the output sequence is temporally aligned

with the input sequence. This property is crucial for maintaining

the temporal order of the data. The Channel-wise Convolutional

Temporal Encoder (CCTE) is designed to capture time-dependent

features in time-frequency images. Traditionally, an Encoder-

Decoder module is used for reconstruction tasks. However, since

this paper focuses on classification, only the encoder is employed.

The core components of the CCTE encoder include the multi-

head attention layer, the position feed-forward network, and the

normalization layer. By preserving the temporal order, causal

convolutions ensure that the model respects the sequence of events

in the EEG signal, essential for accurately identifying transitions

between sleep stages. The structure of the CCTE module is shown

in Figure 2.

2.3.1 Multi-head attention
Multi-head Attention (MHA) is an effective time series data

model method (Devlin et al., 2018). The Transformer model

has gained popularity due to its successful handling of long-

distance dependencies in sequential data. MHA employs multiple

attention heads, each of which can learn information from different

subspaces of the input data. This allows the model to capture a wide

range of features. While a single attention head might focus on the

most prominent features, multiple heads can also capture subtle

details that might be missed otherwise. For sleep staging, the model

can better interpretation the complex and varied patterns present in

EEG signals. This parallel processing increases the model’s ability to

capture diverse information, improving classification efficiency and

effectiveness. The structure of MHA is shown in Figure 4.

The model’s use of MHA combined with causal convolution

ensures that only previous inputs are relied upon when computing

the current output, thus maintaining the temporal order of the

sequence and enhancing the model’s ability to capture temporal

dependencies. The combination of position encoding provides

explicit information about the position of elements in the

sequence, allowing the model to obtain both explicit information

about the position (via position encoding) and implicit temporal

dependencies (via causal convolution), which is an effective strategy

for dealing with features from different frequency domains.

The MHA module begins by accepting the output from the

previous module, represented as X = {x1, . . . , xN} ∈ R
M×N , where

M is the total number of features and n is the length of xi for

1 ≤ i ≤ M. MHA utilizes three copies of X, referred to as Q, K, and

V . Initially, causal convolution is applied to generate Q̂, K̂, and V̂ .

The output from the causal convolution is then processed through

the attention mechanism.

Attention(Q̂, K̂, V̂) = softmax

(

Q̂K̂T

√
F

)

Vi (1)

Each matrix is partitioned into H subspaces to support a multi-

head attention (MHA) implementation, where the heads of each
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FIGURE 4

Structure of multi-head attention module.

attention result are concatenated to form the final output.

MHA(Q̂, K̂, V̂) = Concat(A1, . . . ,AH) ∈ R
M×n (2)

2.3.2 Add and CrossNorm
The final features extracted by CCTE are generated by stacking

two identical networks. The output from the previous layer is

input into the next layer through a residual connection, followed

by layer normalization. We utilize CrossNorm for normalization.

Unlike traditional normalization methods, CrossNorm improves

the model’s adaptability to changes within the data by dynamically

replacing the mean and standard deviation from different channels.

The introduction of CrossNorm significantly improves the model’s

ability to capture the characteristics of different sleep stages when

analyzing multi-physiological signals and time series data.

B− Nb

Ma
+

Na

Mb
(3)

A− Na

Mb
+

Nb

Ma
(4)

The formula exchanges the standard deviation Ma and mean

Na of channel A with the standard deviation Mb and mean Nb of

channel B. Thus, A and B are cross-normalized. Each instance or

channel has a unique style. During training, CrossNorm is applied

for efficient style enhancement, expanding the training distribution

to improve the generalization robustness under distribution

changes. Effectively suppresses the impact of frequent transitions

in sleep stages caused by OSA.

2.4 Feature fusion

The multichannel feature fusion module integrates feature

maps from three distinct channels, concatenating them along

the column axis to form a comprehensive composite feature

map. This approach maximizes the preservation of each channel’s

unique characteristics. Since different PSG channels contain a

lot of similar information, a dropout layer is introduced at the

output of multiple channels to reduce the risk of overfitting of

the model. Additionally, layer normalization ensures consistent

data standardization throughout training, promoting accelerated

convergence in the training process.

Multiple Channel-wise Convolutional Temporal Encoders

(CCTEs) are employed to capture the joint features extracted

from the integrated multichannel feature map. Before inputting

the feature map into the encoders, positional encoding is applied

to enhance the model’s ability to recognize the input sequence’s

positional context.

2.5 Multi-scale feature extraction module

In the context of PSG signals, features across various

scales play distinct roles in elucidating sleep states. Drawing

inspiration from the concept of feature pyramids (Lin et al.,

2017), we propose a novel module named the Multi-Scale

Feature Extraction Module (MFEM) to capture multi-scale

features effectively.

In the MFEM, convolutional layers with varying dilation

rates enable the network to process information across local and

broader spatial extents. This capability facilitates the detection

of subtle physiological signals that indicate transitions between

sleep stages, thereby enhancing accuracy by capturing detailed

signal complexities and increasing robustness against noise and

variability in signal characteristics. Additionally, to optimize multi-

scale pattern recognition, the module balances and integrates

features from different scales to maximize their relevance to specific

sleep stages.

Specifically, the MFEM module employs four 3 × 3

atrous convolutions with different dilation rates to convolve

the input, producing four sets of feature maps. These feature

maps represent information within different frequency ranges.

Subsequently, these feature maps are fused to obtain a weighted

representation across multiple scales. The operation of the

Multi-Scale Feature Extraction Module is illustrated as shown

in Figure 5.

In the first step, for an input x, convolve it using four 3 × 3

convolutional kernels with dilation rates of [1, 4, 8, 16] to produce

four feature maps at different frequencies, denoted as X1,X2,X3,

andX4. Using convolutional kernels with lower dilation rates allows

for capturing fine details and local features within the data. These

typically correspond to high-frequency variations, such as transient

spikes or rapid electroencephalographic (EEG) signal fluctuations.

Conversely, employing convolutional kernels with more significant

dilation rates enables the detection of broader spatial regions, thus

capturing coarse-grained, global, or low-frequency features in the

signal.
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FIGURE 5

Structure of multi-scale feature extraction module.

Xi =

{

Cov3× 3rate=1(X) i = 1

Cov3× 3rate=2(i−1)(X + Xi−1) 1 < i ≤ n
(5)

In the second step, perform global average pooling (GAP) along

the temporal dimension on X1,X2,X3, and X4 to obtain global

feature representations X1,X2,X3, and X4.

In our experiments, we set the number of atrous convolutions

to 4. Different expansion rates enable the network to capture a

broader range of spatial contextual information. This architectural

design effectively enhances information extraction across various

temporal and frequency dimensions by widening its scope while

maintaining depth. Following feature extraction, we employ a

novel fusion technique known as Multi-Scale Fusion (MSF)

to integrate features Yi from different scales. The model can

adaptively emphasize more significant frequency features and

suppress less pertinent information by computing global weights

for feature maps at different scales and performing a weighted

fusion. Ultimately, the input features X are summed with these

fused features. As depicted in Figure 5, the process begins with

Global Average Pooling (GAP) being applied to multi-scale

features to obtain their mean channel-wise weights (Lin et al.,

2013). A Sigmoid activation function is applied to transform

these weights into values between 0 and 1. Subsequently,

a softmax operation normalizes the average channel weights

across multi-scale features to their corresponding positions.

Ultimately, the normalized weights multiply their respective

features, aggregating these elements to enhance multi-scale

features. Due to the combination of convolutional and attentional

mechanisms, the MFEM excels in analyzing EEG time-frequency

data, effectively extracting and utilizing multi-scale and multi-

frequency features of the signal. This capability greatly improves

the model’s performance in sleep staging, facilitating more precise
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TABLE 2 Detailed information on the four datasets (each sample is a 30-s calendar element).

Dataset Subject Sampling rate W N1 N2 N3 REM Total samples

Sleep-EDF-20 20 100 HZ 9,118 21.1% 2,804 6.50% 17,799 41.30% 5,703 13.20% 7,717 17.90% 43,141

Sleep-EDF-78 78 100 HZ 66,822 34.00% 21,522 11.00% 69,132 35.20% 13,039 6.60% 25,835 13.20% 196,350

SHHS 329 125 HZ 43,619 14.3% 10,304 3.20% 142,125 43.70% 60,153 18.50% 65,953 20.30% 324,854

CSPH 17 512 HZ 4,077 21.9% 2,920 15.7% 8,273 44.4% 1,380 7.4% 1,983 10.7% 13,670

evaluations of sleep quality through a thorough analysis of

EEG characteristics.

3 Results

Our analysis employs four distinct datasets to assess the

model’s performance: Sleep-EDF-20, Sleep-EDF-78, Sleep Heart

HealthStudy (SHHS) and Chongqing Seventh People’s Hospital

(CSPH) data. These datasets are detailed in Table 2.

The Sleep-EDF-20 dataset, obtained from PhysioBank

(Goldberger et al., 2000), was utilized in two distinct research

studies. The initial study, known as the Sleep Cassette (SC) study,

involved 20 participants aged 25–34, focusing on exploring the

connection between age and sleep patterns in healthy individuals.

The second study focused on the effects of temazepam on the

sleep patterns of 22 Caucasian males and females who were

not taking any medication (Phan et al., 2019b,a; Sokolovsky

et al., 2019; Li et al., 2021). Our work utilizes the SC subset.

The Sleep-EDF-20 dataset consists of polysomnographic (PSG)

recordings, which include multiple physiological signals collected

during participants’ sleep, such as EEG, EOG, EMG, and others.

In the study, two EEG channels and one EOG channel have

a sampling frequency of 100Hz. During the experiments, We

used Fpz-Cz, Pz-Oz and ROC-LOC (EOG) as the input of

the model.

Sleep-EDF-78 is an extension of the Sleep-EDF dataset

(Goldberger et al., 2000; Kemp et al., 2000), also sourced from

PhysioBank. The age range of the participants has been expanded

to include individuals aged 25–101 years, encompassing a total of

78 subjects. To ensure the consistency of the experiment, the same

channels as Sleep-EDF-20 were used for analysis.

The SHHS is established to examine how sleep-disordered

breathing influences cardiovascular health and a range of

other outcomes. It includes full-night PSG recordings involving

comprehensive sleep studies with multiple physiological signals.

The SHHS Visit 1 comprises 6,441 participants, all aged 40 and

above. SHHS Visit 2 consists of 3,295 participants, all from Visit

1. Based on previous studies (Zhao et al., 2022; Eldele et al.,

2021), we selected 329 participants with normal sleep rhythms for

experimentation, using the C4-A1, C3-A2 and LOC EOG channels

as model inputs.

CSPH: This dataset, provided by the Department of Sleep and

Psychosomatic Medicine of Chongqing Seventh People’s Hospital,

China, comprises PSG recordings from 17 subjects aged 20–60

years with OSA. The recordings were sampled at 512 Hz, and

each subject underwent manual sleep stage scoring by three sleep

specialists following AASM criteria. The PSG recording channels

included F4-A1, C4-A1, O2-A1, F3-A2, C3-A2, O1-A2, along with

electrooculograms EOGL and EOGR. For analysis, inputs were

derived from F4-A1, F3-A2, and EOGL channels. All three datasets

employ the AASM sleep scoring standards.

These datasets cover a broad range of subjects, including

healthy individuals, those with sleep disorders, and participants

across a wide age range, from young adults to older individuals.

They provide a diverse set of conditions and scenarios, making the

model robust across various sleep patterns.

3.1 Experimental setup

A 30-second segment (epoch) of PSG data was sampled

for the analysis. The Short-Time Fourier Transform (STFT) is

applied using a 2-s Hamming window with 50% overlap. The FFT

is computed with 256 points, providing a frequency resolution

adequate for sleep analysis. The resultant spectrum is then log-

scaled. The resulting time-frequency representation, denoted as

S ∈ R
T×F , consists of F = 128 frequency bins and T = 29 time

points. This normalized representation is subsequently utilized as

the model’s input.

In our CCTE encoder, the Multi-Head Attention (MHA)

utilizes eight heads and 150 feedforward hidden units. The CCTE

modules at the model input and output use different numbers

of encoders, Ns = 8,Nm = 4 respectively. Throughout the

entire CCTEmodel, including the self-attention layers, feedforward

layers, and fully connected (FC) layers, a uniform dropout rate of

0.1 is applied.

To address the issue of a limited number of subjects, we

employed K-fold cross-validation to train the model on four

datasets. The values of K for the Sleep-EDF-20, Sleep-EDF-

78, SHHS, and CSPH datasets were set to 20, 10, 10, and

10, respectively. Although some datasets, such as Sleep-EDF-20

and CSPH, have a smaller sample size, K-fold cross-validation

effectively improved the model’s generalization ability and reduced

the risk of overfitting through repeated training and validation.

Meanwhile, the larger dataset (SHHS) further enhanced themodel’s

stability and robustness, ensuring effective performance across

all datasets.The training objective utilized was the cross-entropy

loss function, which is commonly used in classification tasks.

We used the AdamW (Loshchilov and Hutter, 2017) optimizer,

which is more effective in handling weight decay, with a learning

rate set to 5 × 10−5.Additionally, during the model training

process, we employed early stopping, which involves halting

training when the performance on the validation set no longer

improves, in order to prevent the model from overfitting to the

training set.

Frontiers inComputationalNeuroscience 08 frontiersin.org39

https://doi.org/10.3389/fncom.2024.1505746
https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org


Fan et al. 10.3389/fncom.2024.1505746

3.2 Evaluation metrics

The model’s overall performance is assessed using three key

metrics: accuracy (ACC), macro-average F1 score (MF1), and

Cohen’s Kappa (κ). The MF1 is calculated as the arithmetic mean

of the F1 scores for the five sleep stages. Precision (Pre), recall

(Rec), and F1-score (F1) are used to assess each class individually.

The overall accuracy (ACC) and macro-average F1 score (MF1) are

defined as follows:

MF1 =

∑C
c=1 F1c

C
(6)

ACC =

∑C
c=1 TPc

M
(7)

For each class c, the within-class F1-score is denoted as F1c.

There are C distinct sleep stage categories. For each category c,

TPc represents the true positives of that category. Additionally, M

represents the total number of EEG epochs.

3.3 Experimental scoring results

Experimental scoring results are presented in Table 3, using

confusion matrices to display the performance of the model.

In these matrices, rows represent the actual results, while

columns represent the predicted results. Bold numbers within

the matrices highlight epochs correctly classified by the model.

Evaluation metrics for each category are provided on the

right side of the tables, with optimal values emphasized

in bold.

According to the evaluation results of three healthy population

datasets, the accuracy of the Wake stage can reach more than

93%. The indicators of the N1 stage are lower than those of the

W, N2, N3, REM, and other stages, which may be related to the

small number of occurrences of the N1 stage in the data set.

Misclassifications frequently occur among the sleep stages, with the

W stage often being mistaken for the N1, N2, and REM stages.

Similarly, the N1 stage is commonly misclassified as W, N2, or

REM, while the REM stage is often confused with N1 and N2.

Additionally, the N3 stage is primarily confused with the N2 stage.

For OSA patients in CSPH, the accuracy for the N1 stage can

reach 62.1%, while the accuracies for the W stage and N2 stage

exceed 85%. However, the model’s overall performance is generally

lower than that of healthy subjects, reflecting the interference of

OSA on sleep staging.

Figure 6 depicts the ground truth and predicted hypnograms

for subject SC4001E0 from the Sleep-EDF-20 dataset to further

illustrate the findings. The close resemblance between the predicted

and true hypnograms demonstrates the model’s accuracy. However,

the transition into the REM stage exhibits a higher error rate. This

primarily arises from the increased variability in EEG signals during

transitions and the substantial similarity between mixed-frequency

EEGs.

In Figure 7, we present the accuracy and loss curves during the

training process for the Sleep-EDF-20 dataset, explicitly focusing

on fold 6 selected at random. It is observed that our model

can rapidly converge and stabilize at a fixed value soon after

training initiation. The accuracy continually improves, and the loss

consistently decreases. Similarly, validation sets accuracy and loss

values to stabilize, underscoring the model’s efficacy in mitigating

overfitting.

3.4 Performance comparison

We compared our MSDC-SSRNet with previous state-of-

the-art methods, evaluating overall accuracy, Cohen’s kappa (κ),

and MF1 across four datasets, along with the F1-score for each

sleep stage. The results are presented in Table 4. Our MSDC-

SSRNet exhibits significantly better performance than other models

based on the experimental outcomes. On the Sleep-EDF-20

dataset, our model showed improvements of 0.9% in accuracy,

1.2% in kappa, and 2.1% in MF1 over the SleepViTransformer

(Peng et al., 2023). It also outperformed the transformer-

based multichannel model MultiChannelSleepNet (Dai et al.,

2023), with increases of 2.2% in accuracy, 3.0% in kappa, and

3.3% in MF1.

To demonstrate the high accuracy of our method on the

CSPH dataset, we compare it with four state-of-the-art methods,

namely: (1) AttnSleep (Eldele et al., 2021); (2) SleepyPyCo (Lee

et al., 2024); (3) MultiChannelSleepNet (Dai et al., 2023); (4)

SalientSleepNet (Liang et al., 2023); in the CSPH dataset, the

overall performance of MSDC-SSRNet also surpasses that of other

networks. It performed well in both healthy subjects and OSA

patients, demonstrating its robustness in handling complex datasets

with varied sleep conditions. While SleePyCo (Lee et al., 2024)

excels on simpler datasets such as Sleep-EDF-20 and Sleep-EDF-

78, its performance declines when dealing with the more complex

characteristics of the CSPH dataset. In addition, MSDC-SSRNet

performs well in distinguishing the easily confused N2 and N3.

Since there is a certain overlap in the transition period between

the N2 and N3 stages, such as the overlapping delta waves (0.5–

4 Hz) in the N3 stage and the sleep spindle waveform in the

N2 stage, the distinction between the two is blurred. MSDC-

SSRNet effectively helps doctors distinguish the N2 and N3

stages more accurately through auxiliary feature extraction and

precise modeling.

Unlike SeqSleepNet (Phan et al., 2019b), which predicts the

middle epoch using a recurrent architecture with three epochs as

input, thereby slowing down the training process, the AttnSleep

(Eldele et al., 2021) model adopts multi-scale feature extraction

through varied convolutional kernel sizes and strides on the same

input. In contrast, our MFEM utilizes dilated convolutions to

enlarge the receptive field without significantly increasing the

parameters, thereby enhancing local feature representation. This

capability is crucial for sleep stage analysis, which requires detecting

features at different time scales. Moreover, while AttnSleep (Eldele

et al., 2021) shows improved F1-scores in certain stages like N2

and N3 compared to other models like SeqSleepNet (Phan et al.,

2019b), it still falls short of MSDC-SSRNet in terms of overall

accuracy and generalization across diverse datasets. MSDC-SSRNet

reduces the heterogeneity between different modalities and data,

proving to be a more versatile and efficient model in both accuracy

and consistency.
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TABLE 3 Confusion matrices for di�erent datasets.

Predicted Per-class metrics

Dataset W N1 N2 N3 REM PR PE F1

Sleep-EDF-20 8,186 283 75 31 109 94.7 94.2 94.4

293 1328 477 12 561 63.4 49.7 55.7

89 275 15,361 576 650 91.3 90.6 90.9

9 1 503 4,915 3 88.7 90.4 89.6

64 207 408 4 6,666 83.4 90.7 86.9

Sleep-EDF-78 61,287 2,366 446 75 349 94.3 94.9 94.7

2,910 11,441 6,342 61 2,132 63.2 49.9 55.9

3,799 2,766 72,533 365 2,096 86.0 89.7 87.8

31 7 2,195 15,451 2 82.6 87.3 84.9

328 1,503 2,763 32 26,450 85.2 85.1 85.2

SHHS 42,853 1,030 1,317 171 848 93.4 92.7 93.0

1,488 5,547 260 113 2,896 55.9 53.8 54.8

517 36 25,041 4,264 267 81.5 83.1 82.3

45 1,008 4,072 50,673 4,355 86.1 84.2 85.2

998 2,296 4 3,633 59,022 87.5 89.5 88.5

CSPH 3,267 254 124 6 55 85.6 88.2 86.9

342 1,510 619 18 165 62.1 56.9 59.4

130 515 6,347 234 295 85.4 84.4 84.9

5 5 141 1,104 0 81.0 88.0 84.3

73 147 197 1 1,385 72.9 76.8 74.8

Bold numbers in the table represent the correct sample counts for each category.

FIGURE 6

Ground-truth and predicted hypnograms of subject SC4001E0 in the sleep-EDF-20 dataset.

Frontiers inComputationalNeuroscience 10 frontiersin.org41

https://doi.org/10.3389/fncom.2024.1505746
https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org


Fan et al. 10.3389/fncom.2024.1505746

FIGURE 7

Accuracy and loss during training on fold 6 in the sleep-EDF-20 dataset.

TABLE 4 Comparison of sleep staging performance with previous studies across four experimental datasets.

Dataset System Over metrics Per-class F1-score

ACC Kappa MF1 W N1 N2 N3 REM

Sleep-EDF-20 MSDC-SSRNet 88.7 84.6 83.5 94.5 55.7 90.9 89.6 86.9

SleepViTransformer (Peng et al., 2023) 87.8 83.4 81.5 93.8 48.4 89.2 88.4 87.9

SleePyCo (Lee et al., 2024) 86.2 80.1 81 90.6 47.3 88.8 87.4 86.6

MultiChannelSleepNet (Dai et al., 2023) 86.5 81.6 80.3 92.6 47 89.5 88.3 83.8

SeqSleepNet (Phan et al., 2019b) 85.2 79 79.6 – – – – –

SleepEEGNet (Mousavi et al., 2019) 84.3 79 79.7 89.2 52.2 86.8 85.1 85

DeepSleepNet (Supratak et al., 2017) 81.9 76 76.6 86.7 45.5 85.1 83.3 82.6

Sleep-EDF-78 MSDC-SSRNet 86.2 81.2 81.7 94.7 55.9 87.8 84.9 85.2

SleePyCo (Lee et al., 2024) 84.6 79 79.1 93.5 50.4 86.5 80.5 84.2

SeqSleepNet (Phan et al., 2019b) 82.6 76 76.4 92.2 47.8 84.9 77.2 79.9

TinySleepNet (Supratak and Guo, 2020) 83.1 77.1 78.1 92.8 51 85.3 81.1 80.3

SleepTransformer (Phan et al., 2022) 81.4 74.3 74.3 91.7 40.4 84.3 77.9 77.2

AttnSleep (Eldele et al., 2021) 81.3 74 75.1 92 42 85 82.1 74.1

SleepEEGNet (Mousavi et al., 2019) 80 73 73.6 91.7 44.1 82.5 73.5 76.1

MultiChannelSleepNet (Dai et al., 2023) 84.9 78.9 79.4 94 52.8 86.3 81.5 82.6

SHHS MSDC-SSRNet 86.7 79.3 80.8 93 54.8 82.3 85.2 88.5

AttnSleep (Eldele et al., 2021) 84.2 78 75.3 86.7 33.2 87.1 87.1 82.1

SeqSleepNet (Phan et al., 2019b) 86.5 81 78.5 – – – – –

CSPH MSDC-SSRNet 80.4 72.6 78.1 86.9 59.4 84.9 84.3 74.8

AttnSleep (Eldele et al., 2021) 79.4 71.6 77.6 86 60.7 84.3 82.5 74.2

SleePyCo (Lee et al., 2024) 78.3 70.4 76.5 85.3 58.2 83.6 83.2 72.4

MultiChannelSleepNet (Dai et al., 2023) 77.6 68.8 75.9 84.7 57.7 82.8 82.6 71.7

SalientSleepNet (Liang et al., 2023) 77.3 68.9 76.5 84.4 60.1 82.5 83.5 72.1

Best metric values are marked in boldface.
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TABLE 5 Ablation experiment results for sleep-EDF-20 and CSPH datasets.

Ablation experiment Sleep-EDF-20 metrics Sleep-EDF-20 Per-class F1 score

ACC MF1 Kappa W N1 N2 N3 REM

BL 86.5 80.3 81.6 92.9 47.0 89.5 88.3 83.8

BL + MFEM 86.8 81.5 82.0 93.1 51.1 89.6 88.7 84.8

BL + CCTE 87.9 82.0 83.4 93.9 50.9 90.2 89.1 86.0

MSDC-SSRNet 88.7 83.6 84.6 94.5 55.7 90.9 89.6 86.9

Ablation experiment CSPH metrics CSPH Per-class F1 score

ACC MF1 Kappa W N1 N2 N3 REM

BL 75.3 74.5 68.1 82.4 53.6 80.7 80.3 70.5

BL + MFEM 77.5 76.0 68.8 84.7 58.6 82.8 82.7 71.8

BL + CCTE 79.5 77.3 71.2 85.8 57.7 83.9 83.5 73.6

MSDC-SSRNet 80.4 78.1 72.6 86.9 59.4 84.9 84.3 74.8

3.5 Ablation experiments

As depicted in Table 5, we conducted ablation experiments

on the Sleep-EDF-20 and CSPH dataset to assess the efficacy of

various modules. Comparing BL, BL + CCTE, BL + MFEM, and

our MSDC-SSRNet model reveals improvements across all metrics

with each module’s inclusion.

In the CSPH dataset, the CCTE module can significantly

enhance classification performance, with overall improvements in

ACC, MF1, and Kappa by 0.9%, 0.8% and 1.4%, respectively.

F1 scores for each sleep stage also improved. We use the basic

transformer as the baseline. Comparing it to the second variant,

BL + MFE, we conclude that CCTE is essential for capturing

frequent sleep stage transition features. However, MFEM is more

effective in distinguishing the N1 stage, as the multi-scale feature

extraction method allows the model to focus on finer features at

lower or higher frequencies, thereby increasing overall sensitivity

and reducing the impact of OSA on the model. In the Sleep-

EDF-20 dataset, the final model shows an improvement in F1

scores of 8.6% for the N1 stage and 3.3% for the REM stage

compared to the baseline (BL). According to the American

Academy of Sleep Medicine (AASM) rules, especially in the

N1 and REM sleep stages, the EEG features share similar low-

amplitude, multi-frequency (LAMF) activities, making the features

between these stages indistinct. Addressing this issue, our model

framework can more effectively differentiate features of various

sleep stages, particularly distinguishing between the N1 and

REM stages.

3.6 Sensitivity analysis

Multi-head attention (MHA) is a pivotal element in our model,

necessitating a sensitivity analysis regarding the number of heads

employed. Given that the number of heads must be a divisor of

the feature dimension F = 128, we set H to 2, 4, 8, 16, and

32 for the experiments, while maintaining constant values for the

other parameters. Figure 8 shows the accuracy and MF1 scores of

FIGURE 8

Performance on the sleep-EDF-20 dataset using di�erent values of

H.

the model on the Sleep-EDF-20 dataset with different numbers

of heads. The results show that model performance shows slight

improvement with an increase in H. However, beyond a certain

point, further increments in H lead to diminishing returns. This

suggests that expanding the number of heads enhances feature

capture initially, yet excessively dividing attention may reduce the

per-head feature resolution. We select H = 8 as optimal for our

model configuration based on these experimental findings.

In both the model’s feature extraction and fusion processes, the

CCTE encoder is utilized, so choosing an appropriate amount of

encoders is also crucial. To further investigate the impact of the

number of encodersNs in single-channel feature extraction andNm

in multi-channel fusion, we keep other experimental parameters

constant and use the Sleep-EDF-20 dataset. Initially, we fix Ns

at 4, and repeat experiments with Nm values from {2, 4, 6, 8},

then fix Nm at 4, and repeat experiments with Ns values from

{2, 4, 6, 8}. Based on the results shown in Table 6, changing the

number of encoders does not significantly affect the model’s overall

performance. However, increasing Ns enhances the model’s depth,

improving its ability to capture features.
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TABLE 6 Performance on the Sleep-EDF-20 dataset using di�erent

amounts of Ns andNm.

Ns Nm Accuracy MF1

4 2 88.42 82.42

4 4 88.56 83.18

4 6 88.59 83.51

4 8 88.47 83.03

2 4 88.25 82.39

4 4 88.56 83.18

6 4 88.69 83.43

8 4 88.79 83.60

4 Discussion

MSDC-SSRNet uses multi-channel data for sleep staging

tasks. Through ablation experiments and model stability analysis,

each module in MSDC-SSRNet assists with sleep staging. The

model performance is improved by capturing characteristic

waves using multi-scale feature extraction and channel attention.

While single-channel sleep staging algorithms are commonly

used for portable home sleep monitoring, multi-channel data

provides a more comprehensive view of sleep states. This

comprehensive view aids the model in detecting subtler differences

in sleep stages, which are more readily recognized by sleep

physicians and offer better interpretability than single-channel

systems.

As shown in Table 6, except for MultiChannelSleepNet

(Dai et al., 2023), the staging performance of other single-

channel models is inferior to MSDC-SSRNet. In a multi-channel

framework, additional channels mitigate disruptions or poor signal

quality in one channel, enhancing overall system robustness. In

addition, the algorithm is applied to the self-built dataset CSPH.

Unlike the public datasets, the subjects of this dataset suffer from

OSA. The CSPH dataset is characterized by frequent sleep stage

transitions and fragmented sleep cycles, which makes the sleep

staging task challenging. Despite these difficulties, MSDC-SSRNet

still performs well.

The CCTE captures long-range dependencies and enhances

the importance of position information in the time-frequency

domain. The MFEM uses different receptive fields to enhance the

contribution of characteristic waves to sleep stages. The multi-scale

attention layer integrates features with different weights, ensuring

the preservation of multi-scale sleep transition rules. The model is

able to characterize typical sleep stage features and distinguish them

from other stages. EEG activity is highly dynamic, and multi-scale

analysis can adapt to these changes, extracting significant features at

different time scales to effectively capture short-term and long-term

brain activity patterns. Compared to single-scale feature capture

methods, the multi-scale approach provides a more stable feature

representation, contributing to model generalizability and practical

application.

Future research could address several limitations identified in

this study. First, the data imbalance problem in the N1 stage still

needs to be addressed. Additionally, our current model does not

account for other relevant factors, such as age and gender, which

could influence the study outcomes. Addressing these limitations

in future research could further enhance the model’s accuracy and

applicability.

5 Conclusions

In this study, we introduced MSDC-SSRNet, a sleep staging

model leveraging multi-scale dilated convolutions. It performs well

on both healthy subjects and OSA subjects. In experiments with

OSA subjects, the accuracy reaches 80.4%. This model utilizes

the Channel-wise Convolutional Temporal Encoder (CCTE)

and the Multi-Scale Feature Extraction Module (MFEM) for

effective feature capture. The CCTE encoder employs a multi-

head attention mechanism to capture long-range dependencies

in the data. Additionally, we integrated CrossNorm, a novel

normalization technique within CCTE, which enhances training

data diversity by exchanging channel means and variances across

feature maps. This ensures robust performance across diverse

environmental and conditional data settings. The MFEM operates

by capturing signals across a spectrum of frequencies from

low to high, employing multi-scale feature extraction in the

spatial domain. This module focuses on spatial feature extraction

and adeptly captures various frequency components. This is

particularly significant for EEG signals, as different frequency

waveforms (such as δ, θ , α, β , and γ waves) exhibit distinct

frequency characteristics.

Our model’s effectiveness has been validated through

comparisons with advanced models and extensive ablation

experiments. Moreover, it provides more accurate predictions and

classifications on datasets with specific clinical characteristics.

Furthermore, we conducted a sensitivity analysis by varying

the number of attention heads in the CCTE encoder for single-

channel feature extraction and multi-channel fusion. This analysis

demonstrated the model’s stability and consistent performance

under different parameter settings. The model’s robust

performance and adaptability to various configurations suggest its

strong potential for real-world applications, particularly in clinical

settings. Its high accuracy in classifying sleep stages for patients

with obstructive sleep apnea makes it well-suited for deployment

in home-based monitoring systems. Such systems could offer

continuous, real-time sleep tracking, which would enhance patient

convenience and accessibility while reducing the need for in-lab

polysomnography. The model’s ability to generalize across diverse

patient populations further underscores its practical utility and

potential for widespread implementation in both clinical and

research environments.
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Marketing plays a vital role in the success of a business, driving customer

engagement, brand recognition, and revenue growth. Neuromarketing adds

depth to this by employing insights into consumer behavior through brain

activity and emotional responses to create more e�ective marketing strategies.

Electroencephalogram (EEG) has typically been utilized by researchers for

neuromarketing, whereas Eye Tracking (ET) has remained unexplored. To address

this gap, we propose a novel multimodal approach to predict consumer choices

by integrating EEG and ET data. Noise from EEG signals is mitigated using a

bandpass filter, Artifact Subspace Reconstruction (ASR), and Fast Orthogonal

Regression for Classification and Estimation (FORCE). Class imbalance is handled

by employing the Synthetic Minority Over-sampling Technique (SMOTE).

Handcrafted features, including statistical and wavelet features, and automated

features from Convolutional Neural Network and Long Short-Term Memory

(CNN-LSTM), have been extracted and concatenated to generate a feature space

representation. For ET data, preprocessing involved interpolation, gaze plots,

and SMOTE, followed by feature extraction using LeNet-5 and handcrafted

features like fixations and saccades. Multimodal feature space representation

was generated by performing feature-level fusion for EEG and ET, which was

later fed into ameta-learner-based ensemble classifier with three base classifiers,

including Random Forest, Extended Gradient Boosting, and Gradient Boosting,

and Random Forest as the meta-classifier, to perform classification between

buy vs. not buy. The performance of the proposed approach is evaluated using

a variety of performance metrics, including accuracy, precision, recall, and F1

score. Ourmodel demonstrated superior performance compared to competitors

by achieving 84.01% accuracy in predicting consumer choices and 83% precision

in identifying positive consumer preferences.

KEYWORDS

EEG, eye tracking, neuromarketing, CNN-LSTM, multimodal

1 Introduction

Neuromarketing, a dynamic fusion of neuroscience and marketing, has emerged

through the innovative use of non-invasive Brain–Computer Interface (BCI) technology,

revolutionizing the concept of marketing. Marketing is a connection between production

and consumers. A good product can fail to target its desired audience without effective
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marketing (Assel, 1995). To create products and services with

the highest profit potential, it is crucial to thoroughly understand

consumer behavior and develop a corresponding advertising

strategy. This requires a comprehensive understanding of the

buyer’s decision-making process, which typically includes need

recognition, information search, evaluation, purchase decision,

and post-purchase behavior (Armstrong et al., 2014; Peter

et al., 1999; Vecchiato et al., 2011). Researchers have employed

Electroencephalography (EEG) and Eye Tracking (ET) to analyze

the brain activity and gaze outcomes when exposed to different

stimuli for several decades.

EEG is a technique used to assess the electrical activity

within a person’s cranial structure. This involves placing numerous

electrodes on the scalp, a method known as scalp EEG. It is

particularly preferred for recording brain waves because it is simple

and does not involve any invasive procedure, while other methods

are preferable because they are efficient in monitoring brain activity

(Teplan, 2002; Fisch, 1999). It records changes in electrical activity

and oscillations within the brain. The amplitude of the signals

are proportional to the type of mental activity experienced when

exposed to stimuli (Homan et al., 1987). Eye tracking, on the other

hand, involves gathering information on visual attention through

the capturing of eye movements. The eye tracking revealed where

and for how long a person looked at the different elements, whereas

EEG can uncover the emotional and cognitive response elicited by

these stimuli.

Neuromarketing, a multidisciplinary field at the intersection

of neuroscience, psychology, and economics, explores the complex

dynamics of how advertisements can significantly impact product

sales. Unlike traditional marketing research methods such as

interviews, reviews, and questionnaires, neuromarketing seeks

to surpass the limitations inherent in these approaches. These

conventional methods often fall short of fully revealing consumers’

insights toward products, as individuals may encounter challenges

in conveying their preferences or may be hesitant to express them

comprehensively. Moreover, the chances of data manipulation add

a layer of complexity to the reliability of findings.

Human behavior is influenced by processes operating

beneath the conscious threshold. In response to these challenges,

neuromarketing offers a revolutionary shift, going beyond direct

questions about products and exploring the deeper subconscious

areas of consumers’ minds. The essence is to get insights in a

non-invasive manner, extracting authentic preferences and choices

that may outstand conventional probing techniques. It offers a

deeper and more precise insight into consumer behavior. This

leads to the development of innovative and successful marketing

tactics, ultimately driving increased sales. In the expansive and

intricate landscape of the advertising industry, where expenditures

vary based on geographical location, industry sector, and individual

company strategies. The main contributions of this research study

are as follows:

• A novel multimodal framework has been proposed,

integrating EEG signals and eye-tracking data to enhance

consumer preference prediction. This approach combines the

strengths of both modalities, addressing the lack of sufficient

multimodal research in the domain.

• A robust feature extraction pipeline has been designed,

combining handcrafted features and automated features

derived through deep learning. This hybrid approach provides

a more comprehensive representation of the data, bridging an

identified gap in the existing literature.

• Ensemble classification techniques have been proposed to

address the challenges of class imbalance and improve

prediction accuracy. By utilizing multiple classifiers and

optimizing their integration, significant improvements in

performance metrics were achieved compared to traditional

methods.

2 Literature review

Many individuals are often reserved in expressing their

complete thoughts and preferences during product evaluation,

creating a challenge in comprehending the complexities of

consumer decision-making. The emergence of neuroimaging

tools provides a quick and convenient method to understand a

customer’s brain activity when evaluating and choosing different

products. Consumer choice recognition typically involves three

pivotal stages. The initial step encompasses preprocessing, wherein

unwanted noise is eliminated from both EEG and ET signals.

Following this, relevant features are extracted, and subsequently,

EEG and ET signals are classified based on consumer preferences.

In neuromarketing studies, the recording of both EEG and ET

data equips researchers to get into the complex interplay of

factors that influence how the human psyche makes choices among

different products.

2.1 Predictive approaches for consumer
preference based on EEG signals

Researchers have proposed multiple methods for classification

between like vs. dislike for neuromarketing in recent years. A

typical method consists of preprocessing the EEG signals and

extracting the features followed by the classification. Researchers

have used various preprocessing techniques employed in predicting

consumer preferences. Bandpass filtering, widely utilized for EEG

signal noise reduction in numerous studies (Murugappan et al.,

2014; Alimardani and Kaba, 2021; Aldayel et al., 2021; Georgiadis

et al., 2022, 2023a), serves as a prominent technique. Independent

Component Analysis (ICA) has been adopted by researchers to

eliminate noise in their proposed methods (Aldayel et al., 2021;

Georgiadis et al., 2022; Telpaz et al., 2015; Hakim et al., 2021).

Telpaz et al. (2015) and Hakim et al. (2021) have also applied the

Notch Filter for preprocessing. Downsampling, an effective method

employed by several researchers like (Aldayel et al., 2021), proves

valuable for reducing the sampling rate of EEG data. Moreover,

the Savitzky–Golay filter was utilized to effectively remove artifacts

(Aldayel et al., 2021; Yadava et al., 2017; Shah et al., 2022).

Murugappan et al. (2014) applied the Surface Laplacian Filter, and

Kumar et al. (2019) used high and low pass filters for the purpose

of preprocessing EEG signals.
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TABLE 1 Comparison of existing consumer preference prediction methods using EEG signals.

References Data Year Preprocessing Feature
extraction

Classifier Accuracy (%)

Murugappan et al.

(2014)

EEG 2014 Bandpass filter

Surface Laplacian filter

PSD

SE

SC

kNN

PNN

96.62

Telpaz et al. (2015) EEG 2015 Notch filter

ICA

ERSP

N200 (ERP)

Random 59

65

Yadava et al. (2017) EEG 2017 Savitzky-Golay DWT HMM 70.33

Aldayel et al. (2021) EEG 2021 Downsampling

Bandpass filter

ICA

Savitzky-Golay

DWT

Welch method

DNN

SVM

kNN

RF

83

81

73

87

Alimardani and

Kaba (2021)

EEG 2021 Bandpass filter PSD CNN

EC (SVM

RF, LOG)

74.57

63.5

Hakim et al. (2021) EEG 2021 Notch filter

ICA

FBP

Hemispheric

symmetry

SVM

LOG

kNN

DT

68.51

Shah et al. (2022) EEG 2022 Savitzky-Golay

FFT

SMOTE

DWT

PSD

LSTM

EC (SVM,

DT, DNN)

96.89

Georgiadis et al.

(2022)

EEG 2022 Bandpass filter

ICA

SCM SVM Ensemble 73.11

Georgiadis et al.

(2023a)

EEG 2023 Bandpass Filter SCM SPDNet 72.18

After the preprocessing of EEG signals, the extraction of

features is pivotal for classifying likes and dislikes. Many

approaches are employed for feature extraction like LSTM (Shah

et al., 2022). Telpaz et al. (2015) have leveraged N200, or N2, is

an event-related potential (ERP) component. The Power Spectrum

Density (PSD) provides the distribution of power across diverse

frequencies in the signal (Murugappan et al., 2014; Alimardani

and Kaba, 2021; Shah et al., 2022). Similarly, Discrete Wavelet

Transform (DWT) (Arif et al., 2023) introduces a process of

iteratively breaking down the signal into approximation and detail

coefficients across multiple scales, a technique adeptly utilized by

researchers for feature extraction (Aldayel et al., 2021; Yadava

et al., 2017; Shah et al., 2022; Kumar et al., 2019). Aldayel et al.

(2021) have contributed by employingWelch Method. This metric,

corresponding to the spatial standard deviation, offers insights into

the amount of activity at each time point in the potential field.

EEG signals are represented as Sample CovarianceMatrices (SCMs)

that are measured entities scattered over a particular Riemannian

manifold by Georgiadis et al. (2022, 2023a). One of the most

commonly used method is to analyze EEG data is to break the

signal into functionally distinct frequency bands. Telpaz et al.

(2015) and Hakim et al. (2021) extracted frequency bands to extract

features from EEG signals. These features provide high interclass

variance which is useful in accurate classification. The details of

these various features are briefly described in the following table

understanding what kind of preprocessing techniques and feature

extraction methods were used in this research, as shown in Table 1.

There are simple features such as the frequency distribution

of words to parametric and non-parametric features, etc. for

classification between the “like” and “dislike” classes. Statistical

features in the time domain include the mean average, variance/

standard deviation, skewness, and kurtosis. Also, frequency domain

features such as moments of spectrum like spectral centroid,

variational coefficients, and even skewness in the spectrum can

be incorporated. In addition, other techniques of dimensionality

reduction such as Principal Component Analysis (PCA) have also

been used in this study by the researchers to extract features and

to reduce dimensionality. Table 1 can give a brief idea of these

various features and present an outline of the most important

preprocessing proposals and the feature extraction applied in the

present research.

Deep Neural Network (DNN), Support Vector Machine

(SVM), Random Forest (RF), and k-Nearest Neighbors (kNN)

resulted a maximum accuracy of 87%. Alimardani and Kaba

(2021) proposed an ensemble classifier based on SVM, RF, Logistic

Regression(LOG) and Convolution Neural Network(CNN).

Murugappan et al. (2014) applied for kNN and Probabilistic

Neural Network (PNN) for classification of EEG signals. Hakim

et al. (2021) conducted a comprehensive study utilizing EEG,

focusing solely on Machine Learning algorithms and acheived an

accuracy of 68.51%. Shah et al. (2022) predicted users’ preferences

for advertisements using an ensemble classifier [SVM, Decision

Tree (DT), DNN] achieving an impressive accuracy of 96.89%.

Yadava et al. (2017) presented the first dataset of neuromarketing.

This dataset featured stimuli in the form of images of commercial

products, labeled as either “like” or “dislike,” and Hidden Markov

Model (HMM) was employed for the classification of EEG signals

based on likes and dislikes. Georgiadis et al. (2022) applied a SVM
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TABLE 2 Comparison of existing consumer preference prediction methods using EEG and ET data.

Author Data Year Preprocessing Feature
extraction

Classification Results

Khushaba et al.

(2013)

EEG

ET

2013 ICA

DWT

FFT Mutual

Information

Preference

Matukin et al.

(2016)

EEG

ET

2016 Bandpass filter FFT Not specified Improvement

in Ads

Samsuri et al.

(2016)

EEG

ET

2016 Bandpass filter P300 ERP

N100

Pupil dilation

Statistics ERP and the ET

results were

inconsistent

Christoforou et al.

(2017)

EEG

ET

2017 Downsampling

Notch filter

Attent.Asynchrony

Cogn. Congruency

Regression

R2

72% accuracy

Slanzi et al. (2017) EEG

ET

2017 Interpolation

BandPass filter

PCA Logistic

regression

71.09% accuracy

García-Madariaga

et al. (2019)

EEG

ET

2019 Not specified Alpha-Band

Oscillation

AOI

Not specified Eye movements

could predict

packaging preference.

Mashrur et al.

(2024)

EEG

ET

2023 ASR

Notch filter

TD

FD

TFD

SVM-RBF 96.97% accuracy

Ensemble including three SVM classifiers, while their research

(Georgiadis et al., 2023a) used architecture of SPDNet. It is a

deep learning architecture designed for processing data that lie on

Symmetric Positive Definite (SPD) matrices.

2.2 Predictive approaches for consumer
preference based on EEG signals and ET
data

Researchers have employed various techniques to preprocess

EEG signals and ET data for understanding consumer preferences.

Khushaba et al. (2013) utilized a combination of ICA and DWT for

EEG signal preprocessing. Matukin et al. (2016) and Samsuri et al.

(2016) incorporated band-pass filtering in their methodologies.

Christoforou et al. (2017) downsampled EEG data and applied a

Notch filter to mitigate DC drifts. For processing pupil dilation

signals, Slanzi et al. (2017) employed linear interpolation followed

by band-pass filtering. Mashrur et al. (2024) adopted the Automatic

Subspace reconstruction functionality from EEGLAB for noise

reduction, subsequently applying a notch filter at 50 Hz to suppress

power line artifacts.

Matukin et al. (2016) applied Fast Fourier Transform (FFT)

to derive features from EEG signals. Samsuri et al. (2016)

utilized P300 and N100 components for EEG signal analysis,

while employing Pupil Dilation features for eye-tracking data.

Christoforou et al. (2017) introduced the Attentional-asynchrony

metric based on the Eye-Gaze Divergence Index and used epoched

EEGmeasurements to formulate a Cognitive-congruency aggregate

metric. Slanzi et al. (2017) employed Principal Component

Analysis (PCA) to extract features from EEG signals. García-

Madariaga et al. (2019) focused on Alpha Band Oscillations for

EEG signals and Area of Interest (AOI) for eye-tracking data.

Mashrur et al. (2024) categorized features into three domains:

time domain (TD), frequency domain (FD), and time-frequency

domain (TFD), subsequently employing a classifier for optimal

feature selection.

Table 2 provides comparative analysis of existing methods of

neuromarketing based on EEG and ET. Khushaba et al. (2013)

used mutual information analysis that indicated important factors

affecting the buying decision. Samsuri et al. (2016) measured the

attention levels of users when observing an advertisement through

the use of EEG and ET signals. In the study by Christoforou

et al. (2017), the R2 metric was employed to assess the predictive

capability of the suggested neural and eye-tracking metrics on the

box office success of films. Slanzi et al. (2017), aimed to determine

the sections of a webpage that were most probable to attract

clicks through the application of Logistic Regression. Mashrur

et al. (2024) used the SVM classifier is used with RBF kernel for

classifying strong and weak preference EEG signals attaining an

accuracy of 97%.

Following research gaps have been identified after a

comprehensive literature review of both EEG and ET consumer

preference prediction methods:

• There is a lack of sufficient multimodal research investigating

the combined effectiveness of EEG and eye-tracking.

• The issue of class imbalance remains a significant challenge in

this field.

• The integration of handcrafted and automated features in a

combined feature set has not been much explored.

• The limited use of ensemble learning methods represents a

notable research gap.

3 Dataset

The NeuMa dataset (Georgiadis et al., 2023b) has been used for

this particular research work and this comprises of 42 participants

who were all Greek speakers; 23 males and 19 females. The dataset

is made up of 144 supermarket products and this is presented in six
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TABLE 3 Summary of NeuMa dataset.

Attribute Details

Number of subjects 42 (23 males, 19 females)

Number of products 144

Number of pages 6 (24 products per page)

Average selections 18 products per participant

Data files per subject 2 (S01.xdf, S01.xls)

EEG device Wearable Sensing DSI24

EEG sampling frequency 300 Hz

EEG sensors 21 dry sensors

ET device Tobii pro fusion

ET sampling frequency 120 Hz

brochure pages whereby each brochure is made up of 24 products.

Targets were highlighted by users with a left-click of the mouse on

products of interest. Consequently, each of the subjects has two files

for every subject, which contains the records of their interactions

with the products.

Table 3 provides brief description of the NeuMa dataset.

Subjects were positioned at an arm’s length or 50 cm away from

the screen which is a 28 inch LCD monitor, and navigation on the

digital brochure page and choice of products with the left click of

the mouse. For the page navigation arrow keys of the keyboard

were used. Every subject’s data set involved EEG and eye-tracking

information and mouse clicks and positions. There are EEG signals

and eye movements, mouse clicks, and cursor movements collected

in the given dataset. Among these data streams, currently only EEG

and ET type data streams are being used.

After the experiment, participants filled in a questionnaire

containing demographic details about the individuals, profiling

details about the participants as well as about the products provided

to them like personality profile, tendency to indulge in impulse

buying and about the products given to them like reasons for

selection of product, familiarity with the product and frequency

for buying the product. EEG data was recorded by DSI 24 system

with the sampling rate of 300 Hz from 21 electrodes. This eye-

tracking data was at a sampling rate of 120Hz and the Tobii Pro

Fusion eye-tracker was used to collect the data. Figures 1–3 show

the plots of EEG, ET, and Pupil dilation data, respectively (Tobii,

2024; Georgiadis et al., 2023b).

4 Methodology

Proposed method consists of three steps: EEG and ET signal

preprocessing, feature extraction and classification. The pre-

processing of the EEG signals is done with the help of Bandpass

Butterworth filter (0.5–45Hz), Artifact Subspace Reconstruction

(ASR) and the Fast Orthogonal Regression for Classification and

Estimation (FORCE). Signals are then split in segments overlapping

each other since the data amount is at a manageable size. In the

same manner, preprocessing of Eye Tracking (ET) data; missing

values are eliminated/taken care of using a linear interpolation

and the data is segmented using overlapping window techniques.

Non-technique based features are derived from the EEG and

ET signals using statistical and frequency domain analysis The

technique incorporated is CNN-LSTM for EEG and LeNet5 for ET

data. First, for each input modality, feature-level fusion is used to

combine these extracted features, and second, improvements are

made to classification using both manually defined and learned

features are used. Figure 4 displays the flow diagram of the

proposed methodology.

4.1 Preprocessing of EEG signals

Electroencephalogram (EEG) signals are often contaminated

with various types of noise, including muscle activity, eye

movements, and electrical interference from other devices.

To analyze EEG data effectively, preprocessing steps such as

filtering are crucial. Electroencephalography (EEG) signals require

preprocessing to remove noise and isolate frequencies of interest.

One method is applying a bandpass filter with band range

0.5–45Hz.

In order to filter out Signals with artifact in the EEG data

a band pass filter was employed together with Artifact Subspace

Reconstruction (ASR). ASR also helps in eradicating interferences

like shrugs and blinks and leaves the signal’s quality intact for

analysis. This technique is very important in neuromarketing

research as it offers clean signal filtration yet preserves the original

signal. Fast method for Orthogonal Regression for Classification

and Estimation EEG sounds are done using orthogonal basis vector

and FORCE for the preprocessing of the data. It is applied to

remove noise while improving the quality of the signal, making

it suitable for the situations that require fast and accurate artifacts

detection. Specifically, the signals from the EEG signals were band-

pass filtered and then analyzed by ASR and FORCe to obtain the

best results.

The overlapping window technique again divides the filtered

signals to get more detailed data and make the signals continuous.

The division of the continuous EEG signals make it more

manageable and this was achieved by gaining small samples of 300

Hz with the window size being one second with 300 data entries.

The overlapping of the windows has the advantage of achieving

greater density of information and continuity of the signal.

4.2 Preprocessing of eye tracking data

Linear interpolation is a technique of curve fitting in which

a straight line is drawn between two points to give the estimated

point. It handles missing data if eye-tracking signals due to long

blinking are missing using what is known as the straight-line

interpolation method. Due to the ability to replace a missing value

with approximated data samples that occur before and after the

gap, a continuous signal is achieved. This step is necessary for

preserving the quality of eye-tracking signal and further analysis

of study subjects’ attention and eye movement behavior.

As for removing missing values in the eye-tracking dataset,

linear interpolation has been applied, the next step of the data
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FIGURE 1

Customer response (Subject S01): EEG data stream for product (NeuMa dataset: EEG data capturing the cerebral activity of a subject for a product).

FIGURE 2

Customer response (Subject S01): eye tracking coordinates (X,Y) for a product (NeuMa dataset: ET data revealing the gaze pattern linked to a

product).

preprocessing is the data segmentation based on the overlapping

window. This ensures that the maximum amount of information

is collected as the windows have a 50% overlap in which every

two consecutive windows have 50% of the same data points. This

rises the density of data and contributes to non-fragmentation

of signal which helps in maintaining coherency. The splitting of

records further improves difference detection or comparison which

is made possible by the window size of one second and a sampling

rate of 120 Hz; this means that each segment’s data set has 120

data points.

Gaze plots are basically eye movement data obtained through

eye tracking displayed graphically as data points. They are

developed by placing fixation areas on a graph of the observed

stimulus. For the movements of the eyes, the X and Y coordinates

are transformed into the 64 × 64 canvas where the black

background implies no gaze while the white point marks a gaze.
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FIGURE 3

Customer response (Subject S01): pupil dilation stream for a product (NeuMa dataset: ET data revealing pupil dilation patterns linked to a product).

FIGURE 4

Flow diagram of proposed methodology.

These points are the coordinates of the location on the canvas, and

the original gaze plot images are saved, converted to the NumPy

array and then to grayscale for analysis. Figure 5 presents various

Gaze plots.

Class imbalance refers to situations where one class (the

minority class) is significantly underrepresented compared to

another class (the majority class). This class imbalance can lead

to biased models that perform poorly on the minority class. To

address the issue of class imbalance within the dataset, we used

Synthetic Minority Over-sampling Technique (SMOTE) (Chawla

et al., 2002). SMOTE works by generating synthetic examples of

the minority class to balance the class distribution. The process

involves creating new instances of minority class samples by

interpolating between existing minority class samples SMOTE

first identifies the minority class samples in the dataset. For each

minority class sample of EEG and ET data, SMOTE selects its

k nearest neighbors in the feature space. The value of k we

chose is 3, as it was giving the best results. For each minority

class sample, SMOTE generates synthetic samples along the line

segments connecting it to its k nearest neighbors. The number
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FIGURE 5

A few gaze plots of ET data.

of synthetic samples created for each minority class sample is

determined by a specified oversampling ratio. By creating synthetic

samples, SMOTE increases the representation of the minority class

in the dataset, balancing the class distribution. Figure 6 displays the

class distribution before and after application of SMOTE.

4.3 Feature extraction of EEG signals

After preprocessing the EEG data, which typically involves

filtering out noise and artifacts, the next step is to extract

meaningful features from the cleaned data. Feature extraction

transforms the raw EEG signals into a set of representative features

that can be used for further analysis, such as classification. We

used a few common statistical features include Mean, Variance,

Skewness, and Kurtosis.

The mean of the EEG signal provides a measure of the central

tendency of the signal. It indicates the average value of the signal

over a specified period.

µ =
1

N

N
∑

i=1

xi (1)

Where N is the number of data points and xi represents the

EEG signal values.

The co-efficient of variation is used to determine the spread of

the signal value in relation to the mean of the EEG signals. That

reveal information about the fluctuation in the activity of the brain.

σ 2
=

1

N

N
∑

i=1

(xi − µ)2 (2)

Skewness indicates the extent of probability distribution of the

EEG signals asymmetrical nature. The absolute value of skewness is

>1, <1 or zero if the distribution is highly skewed to the right, left,

or symmetric respectively.

γ1 =
N

(N − 1)(N − 2)

N
∑

i=1

(

xi − µ

σ

)3

(3)

Kurtosis quantifies the degree of the two at both the center and

the tails of the probability density function of the EEG signal. It also

implies that the data contains some outliers.

γ2 =
N(N + 1)

(N − 1)(N − 2)(N − 3)

N
∑

i=1

(

xi − µ

σ

)4

−
3(N − 1)2

(N − 2)(N − 3)

(4)

Welch’s Method (Welch, 1967) is one of the robust and

standard method to estimate power spectral density (PSD) of a

signal. Even if it splits the signal into overlapping sections, then

they apply a function known as windowing on sections, calculate

the periodogram of each segment, and finally the averages these

periodograms. In this feature, extraction was performed for all the

EEG channels, considering the average power of the given signal

within all possible frequency bands. This feature quantifies the

amplitude deviations of the power from the energy of the signal

at various frequency bands. The wavelet transform is the process by

which a signal is broken down in different parts that are localized

both temporally and in the frequency domain. Since, mean of DWT

coefficients gives the average value of the coefficients, we obtained

the mean of this parameter. This feature calculates the extent of

fluctuations valued in the domain of wavelet coefficients.

Finally, Statistical features and frequency domain features and

wavelet transform features are then combined to construct an

information vector for each sample that will serve as the input to the

model. The technical advantage implemented in the feature set uses

time-frequency characteristic as well as multi-resolution analysis.

After removing noise from the EEG signals, features were

extracted for the “Buy” and “No Buy” classes using two common

approaches: handcrafted feature extraction and automated feature

extraction via deep learning techniques. In the handcrafted

approach, features are extracted without considering the class of

the EEG signals. In contrast, automated feature extraction leverages

deep learning models like Convolutional Neural Networks (CNNs)

(LeCun et al., 1998) and Long Short-Term Memory (LSTM)

networks (Hochreiter and Schmidhuber, 1997), which consider the

class of the EEG signals during feature extraction. This method can

lead the class of the EEG signals during feature extraction. This

method can lead to improved classification performance due to

lower intraclass variance and higher interclass variance.

LSTMs are a type of recurrent neural network (RNN) that are

capable of learning long-term dependencies (Shah et al., 2022).

They have a chain-like structure with repeating modules. The core

of the LSTM module consists of a cell state, and three gates to

regulate the flow of information: the input gate, forget gate, and
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FIGURE 6

Class distribution before and after SMOTE.

output gate. For feature extraction from EEG signals, we implement

a convolutional neural network LSTM architecture. The CNN takes

the segmented time-domain signals it has: the CNN’s inputs are

the number of EEG channels and temporal segments of signals.

Convolutional layers perform spatial features extraction using

filters of particular sizes which are succeeded by the max-pooling

layers in an attempt to decrease the dimension and hence increasing

the efficiency of the training process. The features from the CNN

layers are flattened and reshaped so as to be fed into LSTM layer that

takes into consideration temporality of the data. CNN and LSTM

are combined because the former analyses the spatial information

of the signals while the latter analyses the temporal information of

the signals making it appropriate to classify the EEG signals. Table 4

provides a summary of our proposed CNN-LSTMmodel.

4.4 Feature extraction of ET data

After preprocessing ET data and handling the class imbalance

issue features are extracted from it. Similar to feature extraction

from EEG data, statistical features can be employed to quantify

various aspects of these movements.

4.4.1 Fixation duration
Fixation duration represents the average time a user spends

fixating on a specific Area of Interest (AOI) and is analogous to the

mean in EEG analysis. It provides insight into the level of attention

paid to that area.

4.4.2 Saccade amplitude
Saccade amplitude is just like variance in EEG, its calculates the

distance between one fixation to another fixation. Large value of

saccade amplitude represents jump from one fixation to other.

TABLE 4 Summary of proposed CNN-LSTMmodel.

Layer Output shape Parameters

Input layer (None, 19, 300, 1) 0

Conv2D (None, 17, 298, 32) 320

Max pooling (None, 8, 149, 32) 0

Conv2D (None, 6, 147, 64) 18,496

MaxPooling (None, 3, 73, 64) 0

Flatten layer (None, 14,016) 0

Reshape layer (None, 14,016, 1) 0

LSTM (None, 64) 16,832

Dense (None, 128) 8,320

Dense (None, 64) 8,256

We applied the LeNet-5 (LeCun et al., 1998) model, a

foundational CNN architecture developed by Yann LeCun,

originally designed for image recognition tasks like classifying

handwritten digits. The model processes input images through

convolutional layers with filters to extract features, followed

by max-pooling layers to reduce dimensionality. After multiple

convolution and pooling layers, the feature maps are flattened

into a vector for the classification layers. This structure effectively

captures spatial features in the data, making it suitable for image

recognition tasks. Here’s an explanation for the LeNet-5 model

summarized in Table 5.

Features extracted from EEG signals and ET data are

concatenated to form a combined feature vector with a size of

16,720, which is then fed into an ensemble classifier. Optimizer

used is Adam and loss function used is Mean Squared Error. Adam

is a gradient-based optimization algorithm. Its update rules are

given by:
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TABLE 5 Summary of LeNet-5 model.

Layer Output shape Parameters

Input layer (None, 64, 64, 1) 0

Conv2D (None, 60, 60, 6) 456

Max pooling (None, 30, 30, 6) 0

Conv2D (None, 26, 26, 16) 2,416

MaxPooling (None, 13, 13, 16) 0

Flatten layer (None, 2,704) 0

Update Rules:

mt = β1mt−1 + (1− β1)gt , (5)

vt = β2vt−1 + (1− β2)g
2
t , (6)

m̂t =
mt

1− β t
1

, (7)

v̂t =
vt

1− β t
2

, (8)

θt = θt−1 − η
m̂t

√

v̂t + ǫ
, (9)

where:

• mt : First moment (mean of gradients),

• vt : Second moment (uncentered variance of gradients),

• gt : Gradient at time step t,

• β1,β2: Exponential decay rates for the moment estimates,

• η: Learning rate,

• ǫ: Small constant to prevent division by zero,

• θt : Parameters at time step t.

The Mean Squared Error loss function is given by:

MSE =
1

n

n
∑

i=1

(yi − ŷi)
2, (10)

where:

• n: Number of data points,

• yi: True value for the i-th data point,

• ŷi: Predicted value for the i-th data point.

4.5 Ensemble classifier

After pre-processing and feature extraction, the final step

is classification which is performed to categorize the sample

as Buy vs. Non-buy. We have used three stacking ensemble

classification approach in which features are first passed to three

different classifiers including Random Forest, Gradient Boosting

and XGBoost. Prediction obtained from these three classifiers is

then stacked to get the final classification. Random Forest has beeen

used as meta model in the stacking ensemble (Wolpert, 1992).

4.5.1 Base classifiers
Random Forest (RF): Random Forest grows a whole forest

during training. It is a bagging technique in which every tree makes

a prediction and thenmake a final prediction. This classifier is good

to handle high dimensional data which is often the case with EEG

and ET features (Breiman, 2001)

Tk(x) = Class label predicted by the k-th tree. (11)

PRF(x) = Majority Vote{T1(x),T2(x), . . . ,TK(x)} (12)

Gradient Boosting (GB): This is a strong method that

constructs decision trees iteratively where each stage used in

identifying the mistakes committed by the prior trees. Friedman

(2001). The final prediction is:

PGB(x) =

M
∑

m=1

αmhm(x) (13)

where:

• hm(x): them-th weak learner,

• αm: the weight of them-th learner.

XGBoost (XGB): XGBoost is an optimized version of Gradient

Boosting (Chen and Guestrin, 2016). The prediction for XGBoost

is:

PXGB(x) =

M
∑

m=1

ηmhm(x)+ �(hm) (14)

where:

• ηm: learning rate,

• �(hm): regularization term.

4.6 Meta-classifier

The meta-classifier takes the outputs of the base classifiers as

input. In this case, a Random Forest is used as the meta-classifier.

In the first step, predictions are collected from the base

classifiers for the training dataset:

PRF(x), PGB(x), PXGB(x). (15)

Z =













PRF(x1) PGB(x1) PXGB(x1)

PRF(x2) PGB(x2) PXGB(x2)
...

...
...

PRF(xn) PGB(xn) PXGB(xn)













(16)

In the final step, meta classifiers is trained to get the final

classification result on Z. We have used Random Forest as

meta classifier.

PMeta(x) = Meta-RF(Z). (17)
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For unseen data x, the stacking ensemble works as follows: Each

base model makes a prediction:

PRF(x), PGB(x), PXGB(x). (18)

These predictions form a new feature vector for x:

Zx =
[

PRF(x), PGB(x), PXGB(x)
]

. (19)

The meta-classifier uses Zx to make the final prediction:

PFinal(x) = PMeta(x). (20)

Base model outputs are as follows:

PRF(x) = Random Forest prediction,

PGB(x) = Gradient Boosting prediction,

PXGB(x) = XGBoost prediction.

Meta-model (Random Forest) output is as follows:

PMeta(x) = Majority Vote{Tk(Zx)}, k = 1, 2, . . . ,K. (21)

Final stacking ensemble prediction:

PFinal(x) = PMeta(x). (22)

4.7 Hyperparameters optimization

For the machine learning models, Random Forest Classifier

was set with 265 estimators for the Optuna (Akiba et al., 2019)

tuned model and 100 for the Stacking Classifier final estimator.

The Gradient Boosting Classifier uses 89 estimators and the XGB

Classifier is set with 300 estimators. These three estimators are

surrounded by the Stacking Classifier such that the Random Forest

classifier is used as the final estimator. Further, the imbalance of the

data is tackled using SMOTE with the specified random state of 42.

To split the dataset into cross-validation, the keyword Stratified K-

Fold is used with the parameter setting of the number of folds as 10,

shuffle as True, and random state as 42.

In the case of the deep learning models used in automatic

feature extraction, the CNN connected with the LSTM is applied

for the feature extraction of the EEG data. The structure of the

model consists of an LSTM layer with 64 neurons and dense layers

with 128 and 64 neurons, optimizer used is Adam and loss function

used is Mean Squared Error. For the eye-tracking data the LeNet-5

is employed; it consists of two dense layers with 120 and 84 units

and a sigmoid layer is used at the output for binary classification.

This model is trained with the Adam optimizer with binary cross-

entropy as the loss function and accuracy as the parameter over

50 epochs. The data splitting involves a train test split of 80–20

and further division of the remaining data in equal proportions to

validate and test the model.

4.7.1 Stratified cross-validation
Once we were set up, with the ensemble classification pipeline

formulated, the next logical step was to assess its utility. To this end,

the strategy used was a rigorous method known as the stratified

10-fold cross-validation (Kohavi, 1995). However, stratified cross-

validation goes one step further than this as it guarantees the

resultant folds as having the same proportion of classes as those of

the original data-set.

5 Results and discussion

The efficiency of classification models is evaluated in terms

of the metrics that measure the ability of the ML algorithm to

classify the objects appropriately. Selecting the appropriate metrics

is essential for achieving an accurate and objective assessment and

measuring performance in such problems with skewed classes or

different costs associated with an error. Accuracy for the most

basic performance indicator that show the number of instances

out of all the data that belong to the correct class. Precision also

known as positive predictive value, measures the proportion of true

positives among all predicted positives. It reflects how often the

model correctly identifies a positive case.

Specificity test evaluates the proportion of actual negatives

which are correctly identified by the model as negative, while, recall

or sensitivity evaluates the proportion of actual positives which are

correctly identified by the model as positive. They indicate how

well the model captures all the positive instances in relation to the

available training examples. F1 score is an average of recall and

precision that yields proportional insights into both thesemeasures.

It’s particularly useful when both false positives and false negatives

are equally undesirable. It’s particularly useful when both false

positives and false negatives are equally undesirable.

Table 6 represents the quantitative comparison of the employed

methods, namely accuracy, precision rate, recall, and F1 score.

The proposed method achieves the highest accuracy of 0.84,

significantly outperforming the other methods. The improvement

in accuracy can be attributed to the effective integration of ML

and DL features along with the stacking ensemble technique. The

precision of the proposed method (0.83) indicates its superior

ability to correctly identify positive instances compared to other

methods. This is particularly important in reducing false positives,

which is critical in applications where the cost of false positives is

high. For recall the proposed method gives 0. 84 which shows that

the proposed method is also good in the recall sense it captures

most of the true positive instances. Large recall component means

that the model is going to include many more positives into the

result set at the cost of possibly including negative instances, which

is particularly important where false negatives are undesirable. The

proposed method claims to achieve an F1 score of 0.83 which

balances the precision and recall rates of identifying fishes with

equal importance. This is because F1 score is a harmonic mean of

precision and recall and a high F1 score indicates that the propose

method is both precise and accurate, studied and tested on different

measure standards and tables.

Table 6 represents the quantitative comparison of the employed

methods, namely accuracy, precision rate, recall, and F1 score.
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TABLE 6 Evaluation metrics for di�erent methods.

Method Accuracy Precision Recall F1 score

1- EEG (not preprocessed, ML features, SVM) 0.62 0.60 0.59 0.59

2- EEG (preprocessed, DL features, SVM + RF) 0.65 0.61 0.64 0.62

3- EEG (preprocessed, ML + DL features, SVM + RF +

DT)

0.74 0.70 0.75 0.72

4- ET (not preprocessed, ML features, RF) 0.60 0.58 0.59 0.59

5- ET (preprocessed, DL features, DT) 0.62 0.55 0.56 0.55

6- ET (preprocessed, ML + DL features, XGB + RF +

DT)

0.65 0.64 0.61 0.62

7- EEG & ET (not preprocessed, ML features, SVM) 0.72 0.71 0.67 0.68

8- EEG & ET (preprocessed, DL features, RF) 0.75 0.74 0.72 0.73

9- EEG & ET (preprocessed, ML + DL features, SVM +

RF + XGB)

0.80 0.78 0.79 0.78

Proposed- EEG & ET (preprocessed, ML + DL

features, stacking ensemble)

0.84 0.83 0.84 0.83

Ablation study has been performed and bold values show the results obtained from final methodology.

FIGURE 7

Comparison of results obtained from proposed method with existing methods.

Figures 7–9 show the evaluation score of the method, area under

ROC curve, and Confusion Matrix of the proposed method.

The ROC curve is a graphical approach that indicates a model’s

performance at different classification hurdles. It maps True

Positive Rate or Sensitivity on the y-axis, against False Positive

Rate or Fall out on the x-axis. An ideal ROC curve looks like a

graph that plots the data close to the upper left-hand corner of

the axes, which means that the performance of the model was

satisfactory and it could distinguish between the classes accurately.

The AUC gives overall performance of the ROC curve, from this

the probability that the model ranks positive instance higher to

a randomly chosen negative instance can be determined. Higher

AUC shows that the tester has better ability in classifying. AUC-

ROC of 0.89 has been achieved as shown in the Figure 8, whereas,

confusion matrix is presented in Figure 9 which further proves

that it is highly effective when it comes to discriminating between

the positive and the negative classes. This score can be classified

within the “good” region; hence it can be deduced that the method

purposed is good in segregating the two classes of interest.

Figure 7 compares the results obtained from proposed method

with the existing state of the art methods. Table 6 describes the

evaluation criteria to different methods. As can be seen, the
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FIGURE 8

ROC curve of proposed method.

FIGURE 9

Confusion matrix of proposed method.

proposed method that uses the given preprocessing for EEG and

ET data and incorporates the features of ML as well as DL

within stacking ensemble provides the highest results on all of the

listed measures.

At the highest accuracy, Method 1 employing raw EEG data

with ML features and SVM yielded an accuracy 0.62. At the same

time, the proposed method is much more effective with accuracy

0.84. It can be seen that this improvement is universality for

precision, recall, and F1 score, more manifesting the advantages

of data preprocessing and more successful attempt of the stacking

ensemble method combining the ML + DL features. If we compare

the methods in which preprocessing was used (e.g., Method 1) with

those for which preprocessing was not used (e.g., Method 2), one

can see that, in many cases, preprocessing has a positive effect on

the performance. For instance, in method number 2, the EEG data

is preprocessed and the DL features generates higher percentages of

accuracy and recall than in method 1.

FIGURE 10

ROC curve of proposed method (EEG only).

TABLE 7 Comparison with Georgiadis et al. (2023a)

Aspect Georgiadis
et al. (2023a)

Proposed method
(only EEG)

Dataset NeuMa NeuMa

Accuracy 0.72 0.74

Precision Not mentioned 0.70

Recall Not mentioned 0.75

F1-score Not mentioned 0.72

AUC score Not mentioned 0.79

FIGURE 11

Comparison of accuracy with other methods.

Methods which simultaneously utilize both EEG and ET data

are superior to the methods based on only one type of data. For

example, the feature that incorporates preprocessed EEG and ET

data with conventional ML features and DL results in Method 9 has

an accuracy of 0.80. This shows when there is an integration of the

EEG and ET data it is able to provide better results for the model.

The proposed method incorporates stacking ensemble, which also

improves the performance of classifiers due to features adopted by
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this method. This leads to the highest values on all accounts, hence

promoting a resilient and efficient model.

Classification results for EEG data when analyzed with the help

of ML and DL incorporated with SVM, RF, and DT were seen

to be quite satisfactory. By using the approach, the objective was

attained with a 0.74 accuracy, and the precision, recall, and the F1

score equal to 0.70%, 0.75%, and 0.72% respectively. Furthermore,

the have relatively high AUC, mean of 0.79 as shown in Figure 10

therefore support the reliability and discriminant capacity of the

developed model, in the classification of consumers’ preferences

from EEG signals. Altogether, these metrics can be discussed as

demonstrating the efficiency of the proposed approach of applying

the traditional ML algorithms alongside with the DL features.

On the other hand, the study that the referenced paper dealt

with proposed a new deep learning decoder based on Riemannian

Geometry and SPDNet structure (Georgiadis et al., 2023a) for

analyzing the signals of the NeuMa dataset of EEG. From the

research, the investigators obtained a mean accuracy of 72%.

Table 7 shows a comparison between our proposed method(EEG

Only) with a state-of-art method of Georgiadis et al. (2023a). The

comparison of accuracies is shown in Figure 11. Although this

research infuses ML and DL with regular classifiers, the paper’s

presentation of domain’s Riemannian Geometry and SPDNet

demonstrates higher accuracy than conventional EEG- based

approaches like Tangent Space SVM (Kalaganis et al., 2019), EEG-

Fusion (Hakim et al., 2021) and R-kNN (Congedo et al., 2017).

The statistical significance thus obtained particularly with reference

to the results achieved by Tangent Space SVM which was 67.72%,

EEG-Fusion 52.75% and R-kNN was 51.96%.

There are some limitations to the study that need to be noted.

First off, although 42 participants is a small sample size, it might

not be enough to extrapolate the results to a broader population.

Furthermore, the findings are predicated on a particular dataset,

which can restrict their generalizability to other product categories,

markets, and cultural settings. The accuracy of the data acquired

may be affected by the sampling rate and precision constraints

of the EEG and eye-tracking sensors, despite their effectiveness.

Furthermore, even though the used feature extraction strategies

which combined manually created and automatically generated

features proved successful, more research into different approaches

or sophisticated deep learning architectures may enhance model

performance. Finally, the integration of EEG and ET data

adds complexity to the analysis, and potential synchronization

challenges may have influenced the overall accuracy of the model.

6 Conclusions

Prediction of consumer preferences that we suggest is based

on the machine learning and deep neural network methodology

characterized by a high degree of accuracy and precision. These

results could have been achieved because of correct preprocessing

of images, use of the right features, and the high accuracy

classifier. In preprocessing, we have increased the signal-to-

noise ratio of EEG signals and ET data by removing noise

and balanced the number of samples for classes, specifically

the Buy class, by creating more through SMOTE. From the

EEG and ET dataset, we created manual features by using

the same method as before. Similarly, we used CNN-LSTM

for the feature extraction of the selected EEG signals and

LeNet-5 for the ET data. In classification, a most dependable

stacking classifier was used for classification with a high level

of accuracy.

The proposed method demonstrates stable results in the

context of consumer preference prediction, though there are

opportunities for future studies. For the current extraction

feature, we could definitely do better in terms of advanced

methodologies such as deep learning architectures or location

of brain sources. Classification methods could be enhanced by

considering other subject-dependent models or by developing the

concept of a prediction. Generalizability is critical, which makes

cross-validation mandatory across larger and more diverse data

sets. Furthermore, it is necessary to discuss the similarities and

differences of the proposed approach with other neuromarketing

methods, as well as consider issues of the user’s consent and data

privacy. In addition, extending this method for uses outside of

e-commerce, such as physical store promotion or measuring ad

campaign effectiveness, provides more arenas for possible research

and practical implementation.
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and M. Adeel Ijaz
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Anomalous chromosomes are the cause of genetic diseases such as cancer,

Alzheimer’s, Parkinson’s, epilepsy, and autism. Karyotype analysis is the standard

procedure for diagnosing genetic disorders. Identifying anomalies is often

costly, time-consuming, heavily reliant on expert interpretation, and requires

considerable manual e�ort. E�orts are being made to automate karyogram

analysis. However, the unavailability of large datasets, particularly those including

samples with chromosomal abnormalities, presents a significant challenge. The

development of automated models requires extensive labeled and incredibly

abnormal data to accurately identify and analyze abnormalities, which are

di�cult to obtain in su�cient quantities. Although the deep learning-based

architecture has yielded state-of-the-art performance in medical image

anomaly detection, it cannot be generalized well because of the lack of

anomalous datasets. This study introduces a novel hybrid approach that

combines unsupervised and supervised learning techniques to overcome the

challenges of limited labeled data and scalability in chromosomal analysis.

An Autoencoder-based system is initially trained with unlabeled data to

identify chromosome patterns. It is fine-tuned on labeled data, followed by

a classification step using a Convolutional Neural Network (CNN). A unique

dataset of 234,259 chromosome images, including the training, validation,

and test sets, was used. Marking a significant achievement in the scale of

chromosomal analysis. The proposed hybrid system accurately detects structural

anomalies in individual chromosome images, achieving 99.3% accuracy in

classifying normal and abnormal chromosomes. We also used a structural

similarity index measure and template matching to identify the part of the

abnormal chromosome that di�ered from the normal one. This automated

model has the potential to significantly contribute to the early detection and

diagnosis of chromosome-related disorders that a�ect both genetic health and

neurological behavior.

KEYWORDS

chromosome anomalies, cognitive sciences, machine learning, neurological health,

neurodevelopmental disorders, neurological disorders, neuroscience, genetic diseases

1 Introduction

A chromosome is a thread-like structure that harbors genetic information encoded in

genes. Located within the nuclei of cells in most living organisms, it comprises proteins

and a solitary Deoxyribonucleic Acid (DNA) molecule. The structure of the chromosomes

is shown in Figure 1. It transports genomic information from one cell to another
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FIGURE 1

Normal karyogram of a typical human cell.

(Institute, 2023). A typical human cell contains 46 chromosomes,

comprising 22 pairs of single chromosomes (autosomes), which

are numbered (1–22), and two sex chromosomes (XX or XY)

(Institute, 2023). Chromosomes become visible during metaphase

when stained with Giemsa and viewed under a light microscope.

Understanding human chromosomes is crucial for diagnosing

and predicting outcomes and tracking treatment progress under

various conditions (Gersen, 2013). Cytogenetic experiments were

performed to determine chromosomal abnormalities. Cytogenetics

encompasses the examination of tissues, blood, bone marrow,

and cultured cells i a laboratory setting. This field uses banding

or manipulation techniques to identify chromosomal alterations

(Natarajan, 2002).

Genetic diseases result directly from chromosomal

abnormalities, and detecting chromosomal anomalies can

anticipate and alert medical practitioners to potential diseases

stemming from these abnormalities (Natarajan, 2002). Effective

identification of chromosomal abnormalities is of significant

clinical importance. Detecting genetic abnormalities in patients

at the earliest stage is essential for timely and effective treatment.

Chromosomal abnormalities are associated with genetic disorders.

Changes in chromosome number or structure affect neurological

health, such as Alzheimer’s, Parkinson’s, epilepsy, autism, and

many other conditions. This can be detected using karyotyping. It

is widely used for prenatal and fetal chromosome screening.

The early detection of fetal chromosomal abnormalities

can provide insights for detecting possible neurological and

developmental abnormalities (Rosenfeld and Patel, 2017). Machine

learning has been widely used in the detection of neurological

disorders as it is used for the classification and segmentation of

neurological images.

Chromosomal disorders can be categorized into two primary

types: numerical and structural abnormalities. A numerical

abnormality signifies that an individual either lacks one of

the chromosomes from a pair, or possesses more than two

chromosomes instead of the usual pair. Numerical disorders

arise from changes in the number of chromosomes, resulting in

deviations from the expected count of 46. Examples of numerical

disorders include trisomy, monosomy, and triploidy. Figure 2

shows the types of numerical abnormalities.

A trisomy occurs when a person has three of a particular

chromosome instead of the usual two. Down Syndrome is caused

by trisomy21. A monosomy occurs when they have just one

chromosome instead of the usual two chromosomes. Triploidy

is rare; however, in this type of abnormality, an extra third

chromosome for each class is present in the cells.

Structural abnormalities indicate that the structure of the

chromosome has been modified in various ways. Structural

chromosomal disorders emerge from breakages within a

chromosome or the incorrect rejoining of chromosomal segments.

In such disorders, the number of copies of any given gene may

exceed or fall short of two typical copies. Deletion, duplication,

inversion, substitution, and translocation anomalies of the

chromosomes are shown in Figure 3.

Upon deletion, a chromosome segment is absent or deleted.

This causes many abnormalities, for example deletion in

chromosome 15 can cause angelman syndrome. In duplication,

a portion of the chromosome is duplicated leading to excess

genetic material like Dup15q Syndrome is caused by duplication

of chromosome 15. In inversion, a chromosome segment may

undergo problems such as breakage, can be turned upside down,

and can have subsequent reattachment, causing inversion of

the genetic material. Substitution occurs when a portion of a

chromosome is replaced with a portion of another chromosome.

Translocation appears when a part from one chromosome is

moved to another. Translocation can be further divided into two

types of reciprocal translocation, which occurs when segments

from two distinct chromosomes have been interchanged, and
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FIGURE 2

Numerical abnormalities in chromosomes.

FIGURE 3

Chromosome structure and structural abnormalities.

Robesonian translocation occurs when an entire chromosome

moves and fixes itself to another chromosome’s centromere. In

Figure 4, we show an example image of del20q chromosomes from

our dataset.

Deletion, duplication, mutation, and trisomy are causes

of cancer and neurological disorders such as epilepsy,

Down syndrome, and autism spectrum disorder (ASD)

syndrome. Neurological disorders are typically studied using

electroencephalogram (EEG), ultrasonography, and magnetic

resonance imaging (MRI). However, these techniques are usually

applied after the onset of symptoms. These methods effectively

monitor brain function once they are developed and visible.

Genetic predispositions during the early developmental stages can

be identified through chromosome analysis, which can help in

the early diagnosis of such diseases. For this, fetal samples were

collected and analyzed by karyotyping. This could help to identify

any anomaly in chromosomes at the early stage of development,

such as neurological disorders, before symptoms manifest. This

way, karyotyping offers a more proactive approach to treatment

and management.

1.1 Related work

Genetic diseases are mainly identified by karyotyping, but

there are some diseases that different imaging techniques can

identify. Methods commonly used for the detection of neurological

disorders such as epilepsy often rely on EEG signals and various

imaging techniques such as MRI. Machine learning has been

used to automate the classification process of these techniques.

Similar to multidomain feature fusion and selection approach

proposed by Kong et al. (2024), it uses advanced signal processing

and machine-learning techniques to optimize feature extraction

and classification.
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FIGURE 4

Chromosome 20.

Machine learning (ML) has transformed healthcare by offering

practical applications that have enhanced diagnosis, treatment,

monitoring, and decision-making across various clinical domains.

From the early detection of diseases to personalized treatment

planning, automated reporting, and predictive analytics, ML

models support healthcare practitioners in delivering more

accurate, efficient, and scalable clinical solutions. This section

outlines the key practical applications of ML in clinical workflows

across different areas of healthcare, showcasing its versatility and

impact beyond specialized fields like cytogenetics. For example, AI

models are used in medical imaging to review X-rays, MRIs, and

Computed Tomography scans to identify fractures, tumors, and

organ failures as efficiently and accurately as possible.

Ibrahim et al. (2024) explored how deep learning using a pre-

trained AlexNet model can help classify chest X-ray (CXR) images

into four categories: COVID-19 pneumonia, non-COVID-19 viral

pneumonia, bacterial pneumonia, and routine. Ahmad et al. (2024)

introduced a computer-aided diagnosis (CAD) system for detecting

breast cancer by combining deep learning and computer vision

techniques. Islam et al. (2024) introduce BrainNet, a deep learning

method for accurately classifying brain tumors using MRI images.

Montobbio et al. (2024) emphasized the potential and

challenges of computational modeling and machine learning

approaches for diagnosing and treating neurological disorders.

Their insights, particularly in disease diagnosis, classification,

and personalized therapeutic strategies, highlight the promising

applications of these techniques. All of them used EEG and

MRI images. Duarte et al. (2024) used flair images and machine

learning for segmentation tasks. Alzheimer’s disease (AD) was

also diagnosed by Slimi et al. (2024) using machine learning on

MRI images, and Li and Zhong (2024) explored the integration

of deep learning in neuroscience, highlighting key trends and

identifying major research hotspots in the field. Therefore, machine

learning has been widely used for diagnosing such diseases but

with different images adopted from different imaging techniques,

as discussed earlier.

Anomaly detection by karyographic analysis is a common

technique used to identify any numerical or structural

abnormalities in human chromosomes. The conventional method

for classifying chromosomes in most cytogenetic laboratories

involves manual work by skilled experts. This procedure is

time-consuming and requires significant effort from experienced

operators, making it expensive. Experts commonly examine

microscopic chromosome images in the conventional analysis of

chromosomal anomalies, relying on their experience and expertise

in detecting abnormalities that may lead to genetic disorders,

congenital disabilities, or even cancer (Britto and Ravindran, 2007).

The analysis of chromosome morphology involves a sequence of

procedures, including selecting metaphase chromosome images.

This encompasses the segmentation of individual chromosomes

(Poletti et al., 2012), the classification of chromosomes (Madian

et al., 2018), and the detection of chromosomal anomalies (Park

et al., 2019). Significant efforts are being made to investigate

how machine learning can improve pathological diagnosis. Deep

learning technologies have experienced widespread adoption in

recent years. The efficacy of these methods lies in their robust

capacity for automatic feature extraction and learning from images,

making them well-suited for the development of automated image

analysis systems.

In medicine, artificial intelligence (AI) is being implemented,

although some challenges exist. For example, the availability of

labeled data is often limited, and labeling itself is challenging

because of a lack of domain knowledge. Medical images containing

anomalies are increasingly being analyzed using artificial

intelligence. Aberrations, alternatively termed abnormalities,

anomalies, or outliers, are often challenges in anomaly detection.

The increasing popularity of deep learning-based anomaly

detection algorithms is also facilitated by advancements in

computational power and availability of big data.

Detecting aberrations poses a persistent challenge, particularly

in the case of clonal chromosomal abnormalities in hematological

malignancies. These abnormalities are characterized by their

high complexity, diversity, and occasional rarity (Fang et al.,

2023). To date, deep learning methods have been applied for

detecting chromosomal abnormalities; however, challenges

have arisen regarding data availability. Deep learning models

rely heavily on data, and when it comes to the analysis

of chromosomal aberrations, two primary issues emerge:

privacy concerns and a limited amount of available data.

Yan et al. (2019) employed ResNent to detect translocations

between chromosomes 9 and 22 using only 200 individual

karyotypes. Li et al. (2020) used generative adversarial network

to detect anomalies in chromosome images using 320 images

per class.

In this study, we attempted to automate the steps involved in

detecting abnormal chromosomes in karyograms. Our approach

involves feeding individual chromosomes into the model and

identifying abnormal chromosomes. The primary contributions of

this study are as follows:

1. We designed a hybrid deep learning model to identify

abnormal chromosomes for genetic disorder identification.

2. We utilized unsupervised and supervised machine learning

techniques to obtain the best results for classification.

3. We used a structural similarity index measure to distinguish

the different parts of the anomalous chromosome from the

normal one.
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FIGURE 5

Proposed model.

4. We performed template matching to identify the transloacted

part of the abnormal chromosome.

5. We aimed to identify the most common structural

abnormalities in neurological disorders by comparing

the abnormal and normal chromosomes.

The remainder of this study is organized as follows:

Section II elaborates the proposed model for aberration

detection for individual chromosomes. Section III describes the

experiments and evaluation of model performance. In Section

IV, we discuss the proposed method and its results. Finally,

Section V concludes the study.

2 Materials and methods

2.1 Proposed approach

Our approach is Hybrid, combining both supervised and

unsupervised methods. In this way, we are taking advantage of

the small amount of labeled data available for anomaly detection.

Supervised learning is a branch of machine learning, in which a

model is trained using a labeled dataset.Unsupervised learning is a

category of machine learning, in which an algorithm provides input

data without specific instructions for processing it. This helps the

model capture the underlying structure and variations in data.

The proposed system comprises of three major stages, as shown

in Figure 5. The first stage involves training the autoencoder with

unlabeled data. This is validated with both normal and abnormal

data. The input to this stage is the individual chromosome

extracted from the karyograms without labels. Chromosomes in

the karyograms were arranged in classes. Therefore, we used

karyogram singlets to determine whether the results were normal

or abnormal. In the second stage, the encoder was utilized as a

feature extractor. The extracted compressed features were fed into

the CNN classifier as the input. Next, the CNN classifier is trained

on the extracted features and labeled data. Finally, the encoder

and classifier are trained using labeled data to fully leverage the

encoder’s ability to generalize from unlabeled data, enhancing its

performance in classifying chromosomes.

2.2 Dataset

Images of chromosomes were used as a dataset that was

manually annotated and verified by expert cytogeneticists. The

dataset was divided into karyograms from which the individual

chromosomes were extracted. In this study, we used images of

singleton chromosomes for classification. Each chromosome was

thoroughly inspected and annotated, and the final dataset of

the individual chromosomes was verified by experts. The dataset

comprises 234,259 individual chromosomes, of which 216,433

were normal chromosome images and 17,828 were abnormal

chromosome images. This dataset included 7,412 chromosome
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TABLE 1 Summary of the dataset used for “training,” “validation,” and

“testing,” with “normal” and “abnormal” chromosome breakdown.

Dataset type Number of
chromosome

images

Normal Abnormal

Training images

(encoder)

140,000 140,000 —

Training images

(encoder + classifier)

65,000 50,000 15,000

Validation images

(encoder)

12,112 10,912 1,200

Validation images

(encoder + classifier)

12,100 10,900 1,200

Test images 5,047 4,621 428

images with translocation abnormalities and 10,416 chromosome

images with deletion abnormalities. This ensures a comprehensive

representation of the two anomalous categories. A total of 140,000

unlabeled normal chromosome images from all 24 classes were

used to train the encoder, and 12,112 images including normal and

abnormal chromosome images were used for validation purposes.

The encoder and classifier were trained using 65,000 labeled

chromosome images, of which 50,000 were normal chromosome

images and 15,000 were abnormal chromosome images. To validate

the encoder and classifier, we used 12,100 labeled chromosome

images,including 1200 abnormal chromosome images and 10,900

normal chromosome images. A total of 5,047 chromosome were

tested, including 426 abnormal chromosome images. Table 1

summarizes the distribution of the dataset.

Deletion, addition, and translocation are the primary

chromosomal anomalies. If the quality of an image is not good,

then it is not easy to detect anomalies accurately, and banding

patterns are the core to identify structural abnormalities; if the

banding pattern is unclear, it is difficult to identify anomalies in

the chromosome. Another problem that hurdles chromosomal

anomalies is whether the chromosome is straight or curved. To

avoid this, we selected straight and good-quality chromosome

images for our approach.

2.3 Proposed method

We employed both supervised and unsupervised learning

methods to develop a model for detecting chromosomal anomalies.

The key steps of our approach are as follows:

2.3.1 Unsupervised training using autoencoder
It involves autoencoder training with normal data to capture

normal chromosome features.

An autoencoder (AE) represents an unsupervised machine

learning approach utilizes a multilayered feed-forward neural

network (Albahar and Binsawad, 2020). Information is input into

the input layer and then passed through a series of hidden layers,

making AE a straightforward feed-forward network. Each layer

contains a variable number of nodes or neurons responsible for

processing the input and generating the output. These nodes are

distributed across different layers, each connected to all nodes in

the preceding layers. The input and output layers both possess

an identical number of nodes, denoted as “n,” because of the

symmetric structure of the autoencoder, which aims to reconstruct

the input on the output side. The predictions generated at each

node, facilitated by the activation functions, are transmitted to

consecutive layers. An autoencoder comprises two primary stages:

Encoder and Decoder (Tan et al., 2019). We utilized this part

because the autoencoder is trained solely on standard chromosome

images without labels. This phase aims to help the encoder learn the

typical patterns and structures found in the standard chromosome

images. As the encoder model only sees normal data, it specializes

in understanding and encoding these standard patterns into a

compressed, lower-dimensional latent space representation. The

decoder part attempts to reconstruct the input image from the

latent-space representation, allowing the AE model to learn a good

feature for the extraction process. For generalization, we validated

it using abnormal and normal unlabeled chromosome data.

2.3.2 Feature extraction from trained encoder
Once the AE is trained, the encoder extracts features from

normal and abnormal chromosome images. The encoder provided

feature representations for each image fed into the classifier. The

features extracted from the encoder contain latent representations

of the input chromosome images. These features are compressed

and abstract forms of the original images, capturing the essential

characteristics of the chromosomes while discarding less critical

details. These features contain information, such as chromosome

patterns, shapes, and structures.

2.3.3 Training the (encoder + CNN classifier) with
extracted features (supervised learning)

The features extracted by the AE encoder are then passed

to the CNN classifier, which learns to classify images based on

the encoder’s output. This step uses the labeled data to train the

classifier. The CNN classifier learns to distinguish between normal

and abnormal chromosomes based on the features extracted from

the encoder and is trained with the standard and abnormal labeled

images while keeping the encoder weights fixed (frozen).

2.3.4 Fine-tuning of encoder and classifier
In this case, the encoder’s weights are unfrozen, and the

encoder and classifier are fine-tuned using the labeled data. The

last two layers of the encoder are fine-tuned. Training only the

last two layers is computationally efficient and preserves the

robust pretrained knowledge of the encoder’s initial layers. This

step is also impactful, because these layers represent higher-level

abstract features of the input data. These features are closer to

the final compressed representation and contain critical semantic

information, making them crucial for adapting the model to new

tasks or datasets. Fine-tuning these layers allows the model to

adjust the high-level features to the new dataset without drastically

altering the generalized low-level feature extraction learned earlier.

Focusing on these layers halps us to reduce the risk of overfitting,
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FIGURE 6

Flow of the proposed approach.

as they retain generalized features, which is beneficial as our dataset

is small.

This step helps the encoder adjust its features

to suit the classification task better. Simultaneously,

the classifier learns to effectively map these extracted

features to the desired classes (normal and abnormal

chromosomes). By jointly optimizing both the encoder

and classifier, the model can better capture discriminative

features, improving overall classification accuracy. Finally,

the model was validated using normal and abnormal

chromosome images. The steps of our approach are shown

in Figure 6.

The encoder plays a crucial role in our hybrid model, serving

as the foundation for feature extraction and anomaly detection,

enabling our approach to detect chromosomal abnormalities

effectively. Its role can be broken down into several key functions:

1: Unsupervised feature extraction: The encoder is initially

trained on unlabeled data, which then learns a compressed

representation of chromosome images through an unsupervised

approach. It then extracts meaningful latent features to capture

essential chromosomal characteristics, such as patterns, shape,

and structure.These features highlight important chromosome

variations and anomalies, which are often difficult to detect using

conventional methods.
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2: Data compression and dimensionality: The encoder

effectively performed dimensionality reduction by converting

input chromosome images into a low-dimensional space.

When non-essential information was discarded, only significant

characteristics were preserved. This abstraction enriches the

classifier by directing the implementation of the most essential

features of the chromosomes, and enhances the general efficiency

of the model.

3: Enhancing supervised learning of the CNN classifier: This

extracted features are then given to the CNN classifier, which

is trained on labeled data to differentiate normal chromosome

patterns and abnormal patterns. The encoder output serves as a

rich input representation, enabling the classifier to perform better

by learning more discriminative patterns from these high-level

informative features.

4: Fine-tuning for task optimization: In last stage, the encoder

and CNN classifier are jointly fine-tuned with labeled data, enabling

the encoder to refine its feature extraction process to suit the

specific requirements of the classification task.

Therefore, this joint fine-tuning guarantees feature learning

and classification in the best manner, thereby minimizing the

generation of incorrect chromosomal anomaly detection models. It

is worth noting that the encoder is a key component of the proposed

hybrid model. It encompasses unsupervised anomaly detection to

a supervised form of classification, allowing the system to deliver

more accurate, scalable, and generalizable solutions to automate

karyogram analysis.

2.3.5 Anomaly detection
Once the hybrid model classifies chromosomes as abnormal,

structural anomalies can be detected. For this purpose, we

used SSIM and pattern matching to identify chromosomal

abnormalities. The SSIM is a computer vision technique that

identifies the differences between two images. It helps to identify

the differences between chromosomes in cases of structural

abnormalities, such as deletions, additions, and translocations. In

the case of deletion or addition, the difference is clear; however,

for translocation, we used the template matching technique.

We first find the different parts from the normal with the help

of SSIM. We also had to identify the translocated portion. For

this purpose, we used pattern matching to find the translocated

part. Pattern matching is a Computer Vision (CV) technique in

which regions are located within an image that corresponds to

the template. In this way, we successfully identified an anomalous

part in chromosomes. Our main focus was to identify the

structural abnormalities involving deletion and translocation in

the chromosome structures.

a) Structural similarity index measure

SSIM was used to assess the quality of images by examining the

structural details of two images (James et al., 2023).

SSIM =
(2µxµy)(2σxy + c2)

(µ2
x + µ2

y + c1)(σ 2
x + σ 2

y + c2)
(1)

Where in Equation 1:

µx , µy: Mean intensities of two images.

σ 2
x + σ 2

y : Variances of intensities.

σxy: Covariance of intensities.

c1,c2: Constants for avoiding instability when the denominator is

close to zero.

Figure 7 shows the implication of SSIM. b) Template matching:

Template matching is a machine-vision technique used to

locate regions within an image corresponding to the template. A

template is a predefined image or part of the image used to match

the part in the main image. This process is performed by moving

the template over the image. The similarity between the main

image and the template image was calculated. Open CV template

matching was then performed. The template image slides over the

main image and the patch of the main image is compared with the

template image.

3 Experiments and results

This section outlines the experimental setup, performance

metrics, and the results of the proposed model.

3.1 Experimental setup

In this study, a CNN autoencoder and a CNN classifier were

combined as models for classification tasks. Both models were

trained using Python software. The Spyder platform (v. 5.4.3) was

used for the training, validation, and testing of the model. The

Spyder platform was implemented using PyTorch framework (v.

11.8 with torch version 2.3.0), and the experiments were conducted

on UBUNTU 18.04, deployed with an NVIDIA RTX 1080 Ti.

3.2 Parameter setting and preprocessing

3.2.1 Preprocessing of data
The images were preprocessed before being provided to the

model as an input. Some of the images were large and some were

small. The large images were compressed, and the small images

were padded to obtain 32 × 32 dimensional images. This step

was performed to maintain the uniformity of the images. We

also normalized the images by scaling the pixel values to between

0 and 1.

3.2.2 Parameters setting
• Encoder

The encoder in our model consisted of three convolution

layers with the following filter configurations: 16, 32, and 64.

Each layer employs the Leaky ReLU activation function to

enhance the learning of non-linear relationships and prevent

vanishing gradient issues. The architecture progressively

extracts hierarchical features from chromosome images,

thereby capturing low- and high-level chromosomal patterns.

We selected a batch size of 20 for training and 10 for

validation. The optimizer was Adam, who had a learning

rate of 0.001 and was trained for 50 epochs. We trained the
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FIGURE 7

Structural similarity index measure result.

model for 100 epochs earlier; therefore, the model could learn

sufficient information in 50 epochs, so we stopped it at 50

epochs. The training and validation loss plots are shown in

Figure 8A.

The loss function was MSE(Mean Square Error), as

expressed in Equation 2.

Mean squared error:

MSE =
1

n

n
∑

i=1

(yi − ŷi)
2 (2)

Where

n: number of data points.

yi : the actual value for the i
th data point.

yˆi: predicted value of the ith data point.

This provides the mean of the squared discrepancies between

the actual and predicted values, offering a metric for

the overall accuracy of the prediction. For Normal data

samples, the reconstruction error is typically low, whereas for

anomalous data, the values tend to be higher and exceed a

specific threshold.

• Decoder

The decoder consists of three deconvolutional networks

(deConvNets) with filter values (64,32,16) with ReLu.

• CNN classifier

We selected a batch size of 20 for training and 10 for

validation. Adam was used as the optimizer, with a learning

rate of 0.0001, and was trained for 20 epochs. The loss

function was CrossEntropyLoss. Figure 8B shows the training

and validation losses.

• Encoder + classifier

We selected a batch size of 20 for training and 10 for

validation. The optimizer was Adam with the learning rate

0.0001 and was trained for 20 epochs. The loss function was

weighted CrossEntropyLoss to effectively address the class

imbalance, and the training and validation plots are shown in

Figure 8C.

3.3 Model training

We implemented several strategies throughout the training

pipeline to ensure themodel’s robustness and tomitigate overfitting

and bias. The performance was continuously monitored on a

separate validation set, and early stopping was applied based on

validation loss trends to prevent overfitting, as well as regularization

techniques such as the dropout layer. Data scaling was performed

as an added data preprocessing technique, as it helped scale

the input feature pixel values and achieve a stable convergence

rate. To improve generalization, features were learned by passing

both labeled and unlabeled data to the autoencoder before

proceeding to the supervised classification component. Although

the transformations used during data preprocessing did not include

aggressive augmentation strategies such as flipping or cropping,

we resized the chromosome images to a standard size of 32 ×

32. Normalization was also applied to standardize the dataset’s

intensity range, ensuring sample consistency andminimizing noise.

Because the dataset was imbalanced, where abnormal

chromosome samples were significantly fewer than the standard,

steps were taken to prevent biased learning. Although the

autoencoder was initially trained solely on standard samples to

extract robust latent representations, the subsequent classifier was

trained on normal and abnormal samples. For the evaluation, the

test set comprised normal and abnormal chromosomes for a fair

comparison of the model. Specifically, evaluation measures such as

precision, recall, and F1-score for each class label were presented

to measure the model’s ability to identify deviations. Combined

with this detailed evaluation and validation-based approach to

monitoring during the training process, overfitting and accurate

outcomes were significantly reduced.
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FIGURE 8

Training and validation losses (A) for encoder, (B) for classifier, and (C) for finetuned model.

3.4 Performance metrices

Four performance metrics were used for the evaluation.

Accuracy was determined by dividing the number of correctly

predicted cases by the total number of cases. A high accuracy value

indicated that the model is made accurate predictions. Specifically,

accuracy is calculated as the sum of true positives (TP) and true

negatives (TN) divided by the total sum of true positives (TP), true

negatives (TN), false positives (FP), and false negatives (FN), as

shown in Equation 3.

Accuracy =
TP + TN

TP + FP + FN
(3)
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FIGURE 9

Confusion matrix for normal and abnormal classes plotted against

the true and predicted classes.

Precision: Equation 4 measures the number of correct results

out of all predicted positive results. It is calculated by dividing the

number of true positives (TP) by the sum of true positives (TP)

and false positives (FP).

Precision =
TP

TP + FP
(4)

Recall: This is also known as sensitivity or the true positive rate,

which is the ratio of correctly predicted positive results to the

total positive cases. It is calculated by dividing the number of true

positives by the sum of the true positives and false negatives, as

given in Equation 5.

Recall =
TP

TP + FN
(5)

F1 Score: The F1 score is the harmonicmean of precision and recall,

providing a single metric that balances both. The Equation 6 helps

calculate F1 score.

F1 Score =
2× Precision× Recall

Precision+ Recall
(6)

3.5 Results

The confusion matrix in Figure 9 shows the results. From the

428 input images of chromosomes, 408 were correctly classified as

abnormal, and 20 were classified as normal. Of the 4,619 images

of chromosomes, 4,607 were classified as normal and 12 were

classified as normal, but were identified incorrectly as abnormal.

The evaluation metrics accuracy,precision, recall, and F1 score

are summarized in Table 2 for our model.

TABLE 2 Model performance metrics.

Metrics Normal class % Abnormal class %

Accuracy 99.37 99.37

Precision 99.57 95.32

Recall 99.74 97.14

F1 score 99.65 96.22

FIGURE 10

Receiver operating characteristic curve of the model.

A Receiver Operating Characteristic (ROC) curve was also

generated to evaluate the performance of our model in predicting

the probabilities of outcomes, distinguishing between normal and

anomalous chromosome images, as shown in Figure 10. This curve

was plotted against the true positive rate (TPR) and false positive

rate (FPR). The area under the curve (AUC) was used to assess the

level of discrimination between classes. Figure 10, with the value

of AUC = 0.97, shows that our model is effectively distinguished

between normal and abnormal chromosomes.

In the dataset, only the translocations between chromosomes

9 and 22 were identified. Therefore, a pattern-matching technique

was applied to detect abnormalities. As shown in Figure 11A,

two abnormalities were observed in the karyograms: one on

chromosome 9b and the other on chromosome 22b. Both 9b and

22b were identified as translocated chromosomes. In the first step,

the two chromosomes were found to be abnormal. Subsequently,

the type of abnormality was identified by comparing chromosomes

9 and 22 with their corresponding normal reference chromosomes.

Differences between 9b and 22b were also observed. Different

parts of chromosome 9 were identified using SSIM, as shown

in Figure 11B. The same process was performed on chromosome

22, and different parts are shown in Figure 11C. In the final

step, the template-matching technique was applied to locate the

translocated parts. Figure 11D shows that part of chromosome

22 was located on chromosome 9, while Figure 11E shows the

translocated part of chromosome 9 on chromosome 22. This
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FIGURE 11

Structural similarity index measure and template matching results. (A) Karyogram with abnormal chromosomes. (B) Chromosome 9. (C)

Chromosome 22. (D) Template matching for chromosome 22. (E) Template matching for chromosome 9.

approach enabled the identification of deleted or translocated parts

of abnormal chromosomes.

4 Discussion

Cytogenetics is a branch of genetics that attempts to

explain the relationship between human chromosomes and

their genetic makeup and functions. Furthermore, it examines

into the health and evolutionary implications arising from the

architectural distortions of the chromosome. Cancer and other

related abnormalities related to genetic diseases or neurological

disorders are diagnosed after samples have been analyzed in

laboratories. These methods are employed to search for and

evaluate their effects, particularly on neurological disorders, in the

health and developmental aspects of humans. This basic method

of karyotyping is complex and requires a considerable amount

of knowledge in the domain and time. Automated karyotyping

enhances the speed and efficiency of chromosomal analysis,

allowing for quicker identification of abnormalities. It reduces

human involvement, addresses the challenges of manual analysis,

and reduces the scarcity of large datasets. The major limitation

observed is the absence of datasets because deep learning methods

are data-intensive, and data related to abnormalities are muchmore

complex and not easy to understand by every one.

Chromosomal analysis, when performed during fetal

development, offers the unique advantage of detecting genetic

abnormalities before the onset of clinical symptoms. This is

crucial for disorders such as Down syndrome, autism, intellectual

disabilities, edwards syndrome, cri-du-chat syndrome, mosaic

Turner syndrome, and other underdevelopment disorders that

have a strong genetic component. The earlier a disorder is detected,

the earlier medical interventions, lifestyle adjustments, and support

mechanisms can be implemented. Moreover, prenatal testing can

allow families to prepare mentally and emotionally, while also

making informed decisions about pregnancy, care, and future

management of the child’s health.

Disorders such as Down syndrome and other

underdevelopment disorders are primarily identified and

studied using techniques such as EEG, MRI, and other imaging

technologies. However, these methods are only applied when a

child or person shows signs of neurological disorder. For example,

Frontiers inComputationalNeuroscience 12 frontiersin.org73

https://doi.org/10.3389/fncom.2024.1525895
https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org


Tabassum et al. 10.3389/fncom.2024.1525895

they can be identified when a child is already experiencing

developmental delays or cognitive impairment. These technologies

help monitor the brain’s electrical activity and neural function.

However, these studies do not offer predictive insights into the

genetic basis of these conditions, particularly during the early

stages of development. Visualizing chromosomes at an early stage

allows the early detection of chromosomal abnormalities during

fetal development. Anomalies such as deletions, duplications, or

translocations that cause neurological disorders can be identified

by analyzing fetal cell chromosomes.

With the advancement of deep learning models, including

unsupervised and supervised approaches, it is now possible to

automate and scale the analysis of chromosomal images of fetal

or later blood or bone marrow samples. This automated analytical

approach is more accurate and efficient. We introduce a hybrid

model approach that utilizes unsupervised learning and supervised

techniques. This hybrid model can efficiently process genetic data

to quickly identify anomalies and provide more precise diagnoses.

This facilitates the identification of structural abnormalities that are

often associated with neurological disorders.

Our objective was to achieve the automatic detection of

any structural chromosomal abnormality without the necessity

for training for each distinct abnormality with labels. Our

approach is beneficial because labeled examples are scarce,

especially for rare anomalies. Prior CV and ML studies have

addressed various challenges related to chromosomes (Boddupally

and Thuraka, 2023), including segmentation, and Saleh et al.

(2019) proposed Unet for chromosome segmentation. Fan et al.

(2024) proposed DaCSeg for segmentation of chromosomes. Kang

et al. (2024) proposed the model UC-Det model for counting

chromosomes. Classifications: Qin et al. (2019) designed Verifocal-

net for chromosome classification. Chang et al. (2024) proposed

a DL model that uses attention to classify chromosomes. Wu

et al. (2018) used GANs for the augmentation of chromosomes.

Uzolas et al. (2022) used GANs for chromosome generation. Al-

Kharraz et al. (2020) used YOLOV2 and VGG19 to identify the

numerical aberrations. Wang et al. (2010) detected translocation

in chromosomes using an adaptive matching technique. Kao et al.

(2023) proposed 3 step process for identifying individual and

clustered chromosomes. Cox et al. (2022) provided a supervised

technique to identify abnormal chromosomes using Residual CNN.

Bechar et al. (2023) used a supervised Siamese Network to classify

chromosomes. Among the various studies mentioned previously,

the prevalent approach involves the application of traditional

supervised learning methods on relatively small datasets.

4.1 Significance of proposed approach

The proposed model integrates supervised and unsupervised

learning techniques, leveraging the strengths of both approaches

to improve the performance and robustness of automated

chromosome classification.

4.1.1 Supervised learning
Supervised learning uses labeled data to train models with the

objective to learn a mapping between input features and their

corresponding output labels. There are some advantages like: with

a sufficient amount of labeled data this approach excels at learning

discriminative patterns and distinguishing between normal and

abnormal chromosomes with high accuracy. Supervised learning

excels in tasks such as classification with high accuracy, particularly

when labeled data are abundant. However, this is limited by the

challenge of acquiring large labeled datasets in clinical settings.

Supervised models also have some disadvantages, such as their

dependence on large amounts of labeled data. Obtaining a large

amount of labeled data requires significant time and expertise,

which is a limitation in the clinical environment. and a model

trained solely on limited labeled data reduces the generalization

ability for unseen abnormal cases.

4.1.2 Unsupervised learning
Unsupervised learning aims to identify structures inherent in

data without using labeled learning information. The merits of

unsupervised learning include that it works with large amounts

of data that are not labeled and is easier to access than labeled

data. It excels at discovering hidden patterns and relationships

that can work well for feature extraction and feature space

dimensionality reduction thereby enhancing the computational

performance and generalization across diverse data. However, this

method has some limitations. It has no direct relation to the

target outputs, which makes it unsuitable for tasks involving exact

quantitative predictions without further processing. However, the

extracted features are more complex to analyze, and comparing

their performance without a labeled dataset is challenging.

Unsupervised learning extracts meaningful features without

relying on the labeled data. In our approach, an autoencoder is

used for feature extraction, providing compressed representations

of chromosome images. Unsupervised learning also has some

advantages over supervised learning, such as the unsupervised

approach enables to utilize a large number of unlabeled

chromosome images that are more readily available and cost-

effective to acquire. Robust feature extraction: The encoder

captures essential structural and morphological information about

chromosomes, making it possible to detect subtle patterns that

are difficult to capture using supervised methods alone. Better

generalization: Because the encoder was trained and validated on

a large dataset, it can generalize better across different variations

and imaging conditions. Like supervised models, they also have

some Disadvantages: as: Indirect labels: While unsupervised

models are good at feature extraction, they do not directly

map to class labels and require subsequent integration with a

supervised classifier. Interpretability challenges: Understanding

the exact features extracted by the encoder can sometimes be less

interpretable than supervised models, making it harder to explain

specific clinical findings.

4.1.3 Hybrid approach
By combining supervised and unsupervised techniques, our

model leveraged the strengths of both approaches. Supervised

learning excels in tasks that require labeled data, particularly

in distinguishing between normal and abnormal chromosomes.

However, acquiring large labeled datasets, particularly for rare

anomalies, can be challenging. In contrast, unsupervised learning
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TABLE 3 Comparison of our hybrid approach with existing approaches

for karyogram analysis.

Aspect Existing
models

Our approach
(hybrid)

Model architecture CNN, Fully

Connected

Networks

AutoEncoder (Unsupervised)

+ CNN Classifier (Supervised)

Approach type Mostly supervised Hybrid (Supervised +

Unsupervised)

Dataset diversity Often limited to

normal or simple

anomalies

Comprehensive dataset with

deletion and translocation

structural abnormalities

Model generalizability Poor

generalizability on

rare anomalies

Better generalizability as

trained on unlabeled data

can handle large amounts of unlabeled data and is effective

for feature extraction and pattern discovery. However, it lacks

direct connections to target outputs, making it less suitable for

classification tasks.

To address these limitations, our hybrid approach integrates

the advantages of bothmethods. The unsupervised encoder extracts

meaningful features, whereas the supervised classifier refines these

features for the accurate classification of normal and abnormal

chromosomes. This combination allowed us to harness the power

of unsupervised learning for handling large unlabeled datasets and

the precision of supervised learning for effective classification.

Table 3 compares ourmethodwith othermethods, emphasizing

the differences in the learning patterns. Our hybrid approach

uses an autoencoder (AE) trained on unlabeled data for feature

extraction, followed by a supervised classifier for the final

classification task. Because normal data are often more abundant

and easier to obtain than abnormal data, an autoencoder uses

normal data to extract features. This eliminates the need for

labels thereby allowing the autoencoder to autonomously identify

valuable features from the dataset. The classifier then focuses on

the most relevant features provided by the autoencoder thereby

enhancing the classification performance. In addition, as the

autoencoder is trained on unlabeled data, its reliance on labeled

samples decreases, which is particularly beneficial when labeled

anomalous data are scarce or costly.

We trained, validated, and tested our model using a large data

set that is not publicly available. The dataset contains not only

normal chromosomes, but also abnormal chromosoems. After

intensive training and validation, we tested our model on test

data comprised of 5,047 images, including 428 abnormal images.

Our model achieved an AUC value of 0.98, demonstrating

its ability to distinguish between normal and abnormal

chromosomes effectively. Our model outperforms identifying

abnormal chromosomes from normal chromosomes using hybrid

unsupervised and supervised deep learning. Compared to existing

methods, as shown in Table 4, our hybrid approach achieved an

accuracy of 99.3%, surpassing the DeepResidual model by Yan et al.

(2019), which reached 97.5%, and the DNN model by Kang et al.

(2024), which achieved 99.2% accuracy.

Our approach comprises two distinct steps: first, detection of

anomalous chromosomes, and second, identification of specific

TABLE 4 Comparison with previous models.

References Model Approach Accuracy

Yan et al. (2019) DeepResidual Supervised 97.5%.

Kang et al. (2024) DNN Supervised 99.2 %

Our approach AutoEncoder + CNN

classifier

Hybrid 99.3 %

abnormalities within these chromosomes. The initial step was

executed by employing normal images. We validated our AEmodel

using a dataset containing both abnormal and normal samples. This

demonstrates how our model is better than the others in detecting

aberrant chromosomes; hence, we demonstrate our efficiency and

precision in the hybrid mode.

After determining whether the chromosome is normal or

abnormal, the following step seeks to determine a particular

abnormality. Several methods in computer vision can detect

abnormalities in chromosomes. Our approach involves aligning a

normal chromosome with a counterpart chromosome to determine

the area of the anomaly. Chromosomes are usually compared

with normal chromosomes or ideograms to check for subtractive

or translocation presence. To perform this task, we used the

SSIM and pattern-matching methods. We compared the normal

chromosomes instead of ideograms.

SSIM helps to identify the differences between the two images.

We compared normal and abnormal images and identified different

parts in cases of deletions and translocations. However, we first

identified the difference between the normal tissue and different

parts of the translocation. We also had to identify the translocated

part and used pattern matching to find the translocated part. In this

way, we successfully identified aberrations in the chromosomes.

Our primary focus was identifying structural abnormalities

involving deletion and translocation in chromosome structures.

We presented an approach for identifying structural

aberrations in individual chromosomes extracted from

karyograms. The methodology relies on analyzing banding

patterns to detect and characterize these abnormalities. Substantial

effort has been made to explore the integration of machine learning

into pathology diagnoses. We presented a hybrid approach

comprising both unsupervised and supervised learning that proved

advantageous, particularly when dealing with a limited number of

anomalous images. Gathering anomalous datasets in the medical

field is inherently challenging. Our model was uniquely trained,

validated, and tested on a large dataset, one of the first of its

kind for this task, thereby significantly enhancing the robustness

of anomaly detection and demonstrating its effectiveness in

identifying chromosomal abnormalities.

In real-world scenarios, time constraints often lead to the

standard practice of analyzing only a few meta-phase cells per

specimen despite the availability of hundreds of cells. Despite

this restricted analysis, challenges persist regarding the cost and

turnaround time for diagnosis. This task is perfectly tailored for

deep learning because of the complexity of expert analysis, which

implies the use of visualization and the expected common mean of

a sample set with its genus of origin. In addition, when applied to

the initial assessment of chromosomal abnormalities for conditions
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such as epilepsy andDown syndrome, we expect that ourmodel will

provide prognostic advice for more effective patient management.

The prediction of these disorders through the identification of

genetic markers contributes to early intervention, which will help

reduce the impact of the disorders on development as a result

of early diagnosis and management. Recognizing neurological

disorders at a preliminary stage significantly boosted genetic

anomaly detection and preventive diagnostics in our model.

Here, we present a new methodology for a hybrid model to

resolve the issue of automated chromosome anomaly detection,

which is an important paradigm of cytogenetic analysis. Our study

innovates by combining supervised and unsupervised learning

frameworks, which enhances the detection accuracy and offers

significant improvements over other methods. Our approach

maximizes the value of the available data by utilizing unlabeled

chromosome images during the feature extraction phase while

still using labeled data for supervised classification. This strategy

overcomes the limitations of imbalanced datasets, where obtaining

many labeled abnormal chromosome images is difficult in clinical

and research settings.

The method we propose for karyogram analysis is expected

to greatly enhance the diagnostic process, allowing for the faster

identification of potential genetic issues. Implementation of our

model in clinical decision support systems can help cytogeneticists

and practitioners obtain automatic and confident classification

results, thus increasing diagnostic accuracy and reducing time.

4.2 Challenges in real-world adoption and
limitations

In clinical contexts, it is essential to protect patient data.

Simultaneously, datasets are usually associated with restrictions

regarding the availability of information, which can be a problem

for training and validation. In addition, the images of chromosomes

in the model may not be consistent with those of other laboratories

and imaging equipment, which might cause a difference. To

handle such variations, robust domain adaptation techniques

are necessary. Moreover, integrating our model seamlessly into

existing laboratory software and clinical workflows requires

technical compatibility and collaboration with various healthcare

information technology (IT) systems. However, the proposed

system has certain limitations. It is mainly used to work with

straight chromosomes, but it is useful with curved chromosomes

that are first straightened. However, refining the straightening

process may enhance the outcomes. Although the model has

shown promising results on the custom dataset used, it lacks

validation on external datasets that contain similar complex

structural chromosomal abnormalities, which could be an area

for improvement. Despite its high classification accuracy, the

model has significant computational demands, particularly during

training. The concept of the model is defined by multiple

convolutional layers that contribute to numerous parameters and

significant GPU memory and processing power. This may restrict

its application in the real world, especially in areas where resources

are scarce, such as small clinical environments. However, a trade-off

between computational inputs and model efficacy exists in the

process. The inference times for such applications depend on the

specific hardware, and in large-scale clinical trials, selecting the best

hardware resources and their integration solutions is crucial. In

our opinion, we can eliminate all of these problems with the help

of further development of interdisciplinary cooperation, additional

model refinements, and numerous clinical trials that will allow us

to implement the proposed method in various clinics successfully.

5 Conclusion

Our study strongly emphasizes that reliable detection of

anomalous data is important in medical applications, primarily

in genetic diagnosis by karyotyping. Identification of anomalies

in medical data is considered a task in computing science and is

important for patient care and treatment. Therefore, developing

robust methodologies such as the automated approach presented

here is vital for ensuring the accuracy of diagnostic procedures. Our

hybrid model, which combines an unsupervised encoder trained

with unlabeled normal data and a supervised CNN classifier trained

on labeled normal and abnormal chromosome data, is a powerful

approach to karyogram analysis. Thus, by training the encoder with

data that are not labeled as normal or abnormal and validating the

model with normal and abnormal data, we ensure that we obtain

the best of both worlds from a model where all the relevant features

are captured. The encoder also learns the basic features that help

enhance the task of chromosome classification; separating normal

and abnormal chromosomes is performed accurately.

Our model was trained and validated using a large dataset,

and eliminated false or misleading anomalies. Furthermore,

we identified the anomalous chromosomes in detail using CV

methods, SSIM, and template matching. Thus, the combined use

of appropriate methodologies strengthened our approach and

increased the accuracy of the results. After evaluating the test

data, we found that precision, recall, F1 score, and accuracy

were all impressive, with a total accuracy of 99.37% for both

normal and abnormal classes, and F1 scores for both normal and

abnormal classes were 99.65% and 96.22%, respectively. These

results demonstrate that the model effectively classifies normal and

abnormal chromosomes. In addition, the model achieved an AUC

of 0.98, demonstrating its effectiveness in classifying normal and

abnormal chromosomes.

Our study addresses the demand for automation in genetic

disorder assessment and underscores the transformative

potential of interdisciplinary approaches in healthcare and

neurological computations. Future study will involve working

with research laboratories and hospitals to obtain data on

various imaging sources, lighting conditions, and types of

chromosomal abnormalities. Moreover, while the system

is currently designed to detect only structural anomalies,

future study plans will incorporate numerical anomaly

detection. We also plan to integrate explainable AI (XAI) to

visually discuss the prediction results so that cytogeneticists

and doctors can use this information efficiently for further

case analysis.
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An optimal arrangement of electrodes during data collection is essential for

gaining a deeper understanding of neonatal sleep and assessing cognitive health

in order to reduce technical complexity and reduce skin irritation risks. Using

electroencephalography (EEG) data, a long-short-termmemory (LSTM) classifier

categorizes neonatal sleep states. An 16,803 30-second segment was collected

from 64 infants between 36 and 43 weeks of age at Fudan University Children’s

Hospital to train and test the proposed model. To enhance the performance of

an LSTM-based classification model, 94 linear and nonlinear features in the time

and frequency domainswith three novel features (Detrended Fluctuation Analysis

(DFA), Lyapunov exponent, and multiscale fluctuation entropy) are extracted. An

imbalance between classes is solved using the SMOTE technique. In addition, the

most significant features are identified and prioritized using principal component

analysis (PCA). In comparison to other single channels, the C3 channel has an

accuracy value of 80.75% ± 0.82%, with a kappa value of 0.76. Classification

accuracy for four left-side electrodes is higher (82.71% ± 0.88%) than for four

right-side electrodes (81.14% ± 0.77%), while kappa values are respectively 0.78

and 0.76. Study results suggest that specific EEG channels play an important role

in determining sleep stage classification, as well as suggesting optimal electrode

configuration. Moreover, this research can be used to improve neonatal care

by monitoring sleep, which can allow early detection of sleep disorders. As

a result, this study captures information e�ectively using a single channel,

reducing computing load and maintaining performance at the same time. With

the incorporation of time and frequency-domain linear and nonlinear features

into sleep staging, newborn sleep dynamics and irregularities can be better

understood.

KEYWORDS

EEG, sleep analysis, neonatal sleep state classification, principal component analysis,

SMOTE, LSTM
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1 Introduction

Sleep is a natural, repetitive period of rest and unconsciousness

that is required for the healthy functioning of both the body and

the mind (Baker, 1985). During sleep, the body undergoes a series

of stages, and each stage offers a distinct benefit and influences

numerous physiological and psychological functions, including

memory consolidation, cognitive function, mood regulation, and

physical ability restoration (Song et al., 2024). As a general rule,

sleep involves a reduction in consciousness and awareness of

the environment, a reduction in voluntary muscle contraction, a

decrease in metabolism, and a reversible and periodic state (Arif

et al., 2021). As a result of inadequate sleep, cognitive function can

be impaired, the immune system weakens, and the risk of chronic

diseases increases. These diseases, including obesity, diabetes, heart

disease, and hypertension can increase (Khan S. et al., 2020; Killick

et al., 2022; Parish, 2009; Pan et al., 2024; Chen and Zhu, 2024).

The recommended amount of sleep for adults is between 7–9 h per

night (Baker, 1985). Neonates, however, have shorter sleep cycles,

making them more susceptible to unpredictable sleep patterns. It

is common for infants to sleep approximately 16–17 h per day, but

the duration varies depending on the individual.

Just like adults, neonates also go through various sleep stages

(Newson, 2017). In neonates, there are two main stages of sleep:

Active Sleep (AS) and Quiet Sleep (QS). The infant is in AS state

when he or she has rapid eye movements, involuntary breathing,

and a rapid heart rate. During this state of sleep, babies are able

to move, express their facial expressions, and are even capable of

sucking. The development of the brain and the learning process of

the infant are directly related to AS. During QS, babies’ hearts beat

slower, their breathing is regular, and they do not move very much.

Physical development and growth are strongly influenced by QS.

In addition to the AS and QS stages, infants also experience a third

transitional stage in their sleep cycle, which combines both the AS

and QS stages. There are twomain differences between Active Sleep

1 (AS1) and Active Sleep 2 (AS2). The main difference is howmuch

the brain is active and how much the eyes move. In AS1, highly

irregular brain waves and frequent changes in the eye movements

are characterized, however, in AS2, the eye movements are less

frequent and the brain activity is more regular. As an alternative,

QS can be divided into two categories, one of which is Quiet Sleep

1 and the other is Quiet Sleep 2. There is a significant difference

between QS1 and QS2, as the movements and brain waves differ

significantly. In QS1, there is increased activity, with abnormal

brain activity and body movements. As opposed to this, QS2 is a

quieter state in which the brain is more active regularly and the

body is less active.

1.1 Main motivation of the proposed
approach

The primary objective of this study is to evaluate the potential

for differentiating neonatal sleep into five states using single-

channel and multi-channel EEG data. To identify the best electrode

configuration and minimize technical difficulties and potential

irritation of the skin that may occur during the collection of EEG

data for neonates, data collected from single-channel EEG is being

used. The LSTM algorithm is used to classify an infant’s sleep

into five stages by using various EEG features including three

novel features (Detrended Fluctuation Analysis (DFA), Lyapunov

exponent, and multiscale fluctuation entropy).

1.2 Main contributions

There are five main parts to this study, and they are outlined

below:

1. Extraction of multiple linear and non-linear features in the time

and frequency domains.

2. As a non-linear state-of-the-art approach for EEG-based

neonatal sleep staging, Detrended Fluctuation Analysis (DFA),

Multiscale Fluctuation Entropy (MFE), and Lyapunov exponent

are taken into account.

3. To address class imbalance, the SMOTE technique is used to

balance the dataset.

4. PCA-based feature normalization and selection.

5. Using both one channel at a time as well as different

combinations of multiple channels at the same time to classify

five different sleep states.

In addition, the study examines the optimal configuration

of EEG electrodes for five-state classification, including how

many electrodes to use and where they should be placed. To

reduce complexity, skin irritation risk, and cost in neonatal sleep

studies, this study evaluated sleep stage classification accuracy

using various electrode setups.

This article is structured as follows: Section 2 reviews relevant

literature; Section 3 presents the methodology that has been

proposed and its findings based on the proposed methodology;

and A discussion of the proposed work’s findings and limitations

is provided in Section 4. In Section 5, the proposed study’s

conclusions are presented.

2 Related work

Human sleep behavior was first studied using

electroencephalography (EEG) in Loomis et al. (1937). With

the advent of deep and machine learning algorithms, there are

a number of algorithms that have been developed in order to

categorize adult sleep patterns (Lajnef et al., 2015; Xiao et al., 2013;

Fonseca et al., 2016; Gudmundsson et al., 2005; Turnbull et al.,

2001; De Wel et al., 2017; Dereymaeker et al., 2017; Koolen et al.,

2017; Pillay et al., 2018; Ansari et al., 2020; Fraiwan and Lweesy,

2017). Pillay et al. (2018) developed a model based on multichannel

EEG recordings to automatically classify a person’s sleep using

Hidden Markov Models (HMMs) and Gaussian Mixture Models

(GMMs) and the Cohen’s Kappa of the model was 0.62, which

was higher than the Cohen’s Kappa of a GMMs. A CNN was also

used to classify sleep stages 2 and 4 (Ansari et al., 2020). Wake

states were not included in these techniques. In Awais et al. (2020),

developed using pre-trained CNNs to extract features to classify

neonatal sleep and wake. According to this study, a model that

has been pre-trained was inadequate for categorizing sleep and
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wake in neonates with high accuracy. In Awais et al. (2021), the

authors combine deep convolutional neural networks (DCNN)

with self-learning models to classify infant sleep and waking

states based on video facial expressions. EEG video data could be

classified accurately at 93.8 ± 2.2% and F1-scores were 0.93 ± 0.3.

It is worth mentioning that video EEG data can contain infant’s

faces and voices, creating privacy issues as a result.

A study conducted in 2021 by authors in Lee et al. (2021)

with IR-UWB radar to classify non-contact sleep and wake in

infants found an accuracy of 75.2%. According to another study

that classified quiet sleep based on EEG data, the value of Kappa was

0.77 ± 0.01 for eight-channels and 0.75 ± 0.01 for single bipolar-

channel (Ansari et al., 2021). According to a study conducted

by Abbasi et al., a MLP neural network algorithm developed

for binary classification of neonatal sleep has been tested and

the value of Kappa has been determined to be 62.5%, and the

accuracy has been determined to be 82.5% using the algorithm

(Abbasi et al., 2020). A three-state classification of the same dataset

was performed in 2022 using bagging and stacking ensemble

methods with an accuracy of 81.99% (Abbasi et al., 2022). By

using publicly available single-channel EEG datasets, Yu et al.

(2022) classified neonate’s sleep patterns into W, N1, N2, and

N3. The multi-resolution attention sleep network (MRASleepNet)

module was tested to classify sleep patterns. A feature extraction

module, a multi-resolution analysis module, and a gated MLP

module were all included in the algorithm. Through an adaptive

boosting (AdaBoost) classifier, Arasteh et al. (2023) classified AS

and QS with 81% accuracy achieved through cross-validation of

tenfold. The AutoML-based Random Forest estimator obtained

an accuracy rate of 84.78% and a kappa rate of 69.63% for

prediction of neonatal sleep and wake states in Siddiqa et al.

(2023). According to Ansari et al. (2018), an 18-layer CNN is

used to detect neonatal QS sleep stages with multichannel EEG

data. A Multi-Scale Hierarchical Neural Network (MS-HNN) has

been developed in Zhu et al. (2023) Using two, four, and eight

channels to automatically classify neonatal sleep states. Features

including temporal information were extracted using multi-

scale convolutional neural networks (MSCNN). They attained an

accuracy of 75.4% using single-channel classification and 76.5%

using a combination of eight channels for three-stage classification.

Supratak et al. (2017) performed classification of sleep states in

newborn with DeepSleepNet and attained 69.8% accuracy. In Eldele

et al. (2021), authors proposes AttenSleep, a deep learning approach

based on attention for sleep stage classification. Instead of using

RNNs, AttenSleep uses multi-head attention (MHA) to identify the

chronological relationship among different stages of neonatal sleep.

Using multi-branch CNN and reached classification accuracy of

74.27% with single channel and 75.36% with four channel EEG,

Hafza et al. proposed three-state EEG-based neonatal sleep state

classification (Siddiqa et al., 2024). The authors incorporated 74

features in the time and frequency domains.

As a result of limited classifications, privacy concerns, long

training times, and poor accuracy, existing approaches for

recognizing infant sleep stages have significant limitations.Without

taking into account awake, it is challenging to classify newborn

sleep accurately. Non-linear features which aren’t typically included

in current sleep staging methodologies for neonates include

DFA, MFE, and the Lyapunov Exponent. Further, these methods

require multichannel EEG data, which disrupts the skin and

causes discomfort, highlighting the need for methods that are

non-invasive. To effectively differentiate between the five-state

sleep patterns in newborns, it is crucial to develop a dependable

and privacy-conscious strategy that ensures high accuracy while

minimizing any potential negative consequences.

3 Materials and methods

An LSTM model for the categorization of neonate’s sleep into

five distinct states is introduced in this article. In this section, a step-

wise overview of the proposed design is provided. The sequential

flowchart of the proposed methodology is illustrated in Figure 1.

The process can be further explained by following these steps:

3.1 EEG dataset

EEG data was obtained from 64 neonates admitted to the

neonatal intensive care unit (NICU) at Children’s Hospital

of Fudan University (CHFU), located in China. This work

has obtained approval from the Research Ethics Committee

of Children’s Hospital of Fudan University, with the assigned

Approval No. (2017) 89. The proposed model was tested and

trained using these EEG recordings. The data was collected during

observations of neonates at various time points. A full 10-20

electrode installation system comprises the following 17 electrodes:

“FP1,” “FP2,” “F3,” “F4,” “F7,” “F8,” “C3,” “C4,” “P3,” “P4,” “T3,”

“T4,” “T5,” “T6,” “O1,” “O2,” and “Cz.” Every letter is associated

with a distinct region or lobe of the brain. The letters FP, F, T,

P, O, and C represent the prefrontal, frontal, temporal, parietal,

occipital, and central regions of the brain. Throughout this time

frame, we have witnessed a multitude of sleep patterns. The study

included EEG recordings from eight specific channels: “C3,” “C4,”

“F3,” “F4,” “P3,” “P4,” “T3,” and “T4.” TheNicoletOnemulti-channel

EEG equipment was utilized for the purpose of recording of the

EEG data at a sampling rate of 500 Hz. The NicoletOne EEG

devices have lightweight electrode caps that securely fasten scalp

electrodes, ensuring accurate signal capture. The NicoletOne EEG

device enables the acquisition of high-quality EEG signals with a

high sampling rate of up to 2 kHz and a broad frequency range

spanning from 0.053 to 500 Hz. Figure 2 illustrates the locations of

the eight electrodes used in this study, in accordance with the 10–

20 system recommendations. Nz represents the foundation of the

nose, whereas Iz indicates the protuberance.

3.2 Visual sleep scoring of EEG dataset

The EEG segments were visually classified by experienced

neurologists from Fudan children hospital Shanghai, based on five

main categories: Wakefulness, AS1, AS2, QS1, and QS2. When

classifying sleep states, non-cognitive features were employed in

conjunction with the EEG. In addition, the experts took into

account NICU videos when conducting the annotating procedure.

Table 1 provides comprehensive details regarding the dataset

(Siddiqa et al., 2024).
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FIGURE 1

A detailed flowchart of the proposed methodology.

FIGURE 2

The positioning of the 8 electrodes utilized in this research.

3.3 EEG dataset pre-processing

Distortion and artifacts during recording have an impact on

the quality and reliability of the EEG data. The EEG data was

recorded at a sampling rate of 500 Hz. These EEG recordings

underwent a pre-processing phase to eliminate noise and artifacts.

The pre-processing involves the following steps:

1. An FIR (Finite Impulse Response) filter was employed to

eliminate undesired signals from EEG recordings within the

frequency range of 0.3 to 35 Hz (High Pass = 0.3 Hz and Low

Pass = 35 Hz).

2. The EEG signals that have been processed by a filter are now

divided into segments of 30 seconds each.

3. Following the process of segmentation, a label given by

experienced neurologists is issued to each epoch. The five-state

classification assigns W as the first state, AS1 as the second state,

QS1 as the third state, QS2 as the fourth state, and AS2 as the

fifth state.

TABLE 1 A detailed description of the dataset (Siddiqa et al., 2024).

Variable/category Descriptions

Sampling frequency 500 Hz

Number of channels 8

Number of subjects 64

Number of epochs 16,803

Gestational age 38.3± 1.8 (wk+d)

Post-menstrual age 40.5± 1.7 (wk+d)

Gender 32 males and 32 females

Sleep time 1.44± 0.57 h

Wake time 0.71± 0.57 h

Weight 3.3± 0.6 kg

Reason for admittance Septicemia, Hyperbilirubinemia, and etc.

4. Artifacts and noise were introduced into the EEG recordings

during the recording and processing stages. Consequently,

following the pre-processing stage, there are a total of 16,803

epochs available for the testing and training over the channels

“C3,” “C4,” “F3,” “F4,” “P3,” “P4,” “T3,” and “T4.”

3.4 Feature extraction

The extraction of features from the EEG signals is essential

for categorization. Since it aids in distinguishing among various

sleep stages or events by analyzing patterns and characteristics.

Interpreting EEG data can be difficult because of the fact that there

are so many signals that change over time produced as a result

of electrical activity in the brain. This work utilizes linear and

non-linear feature extraction techniques to decrease the number

of dimensions of the data that need to be analyzed and identify

relevant characteristics of the data that can be employed for

categorization purposes, such as frequency and time distributions

(Gosala et al., 2023; Khan J. S. et al., 2020). Overall, 94 linear
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and non-linear features were retrieved from each channel utilizing

various procedures, which include:

3.4.1 Time domain features
• Statistical features of the EEG signal and its first and second

derivatives: To study and summarize the main statistical

features of the EEG signal as well as its derivatives, it would

be helpful to pull out features in the time domain of the

dataset in order to group newborn’s sleep stages (Siddiqa

et al., 2023). The extraction of time-domain features is a

valuable as well as practical approach to evaluating EEG

data, serving both clinical and research applications. Initially,

the signal’s nine statistical characteristics (mean, median,

standard deviation, minimum, maximum, kurtosis, skewness,

variance, and range) are computed. Subsequently, an identical

collection of five statistics is computed for both the first

derivative of the signals obtained from the EEG as well as the

second derivative.

• Detrended fluctuation analysis (DFA): It is a non-linear

feature, computed to measure if EEG signals are correlated

at either long or short ranges or if they are self-similar.

It also quantifies the extent to which the fluctuations of

a signal, after being combined and detrended at various

epochs, diverge from a linear pattern (Lal et al., 2023). The

DFA, or Detrended Fluctuation Analysis, is a mathematical

measure that quantifies the scaling exponent characterizing

the connection between the amplitude of fluctuations and the

corresponding time scales. The equation for calculating the

DFA is as follows:

F(n) =

√

∑

[Y(i)− y(i)]2

n
(1)

The fluctuations are represented by F(n) for window

size n, the integrated or cumulative profiles of the EEG

data are represented by Y(i), and the regression line is

represented by y(i). To calculate the DFA, this study uses

the nolds.dfa() function from the nolds library. The EEG

signal data are converted into NumPy arrays and the DFA

is calculated. Conversely, lower values of DFA imply less

reliable correlations or less predictable patterns, whereas

high values of DFA show better correlations over long

distances or similarity to itself, and this implies that a signal

is more structured and easier to predict. By utilizing the

various DFA characteristics, individuals can acquire a deeper

understanding of what is going on within the signal as well

as its intricacy. These characteristics have the potential to be

advantageous in a range of different applications, such as the

evaluation of signals, statistical analysis of time series, and

biological studies as well.

• Lyapunov exponent: The Lyapunov exponent, a nonlinear

feature, measures the responsiveness of a dynamical

system to its initial circumstances (Cao et al., 2023). EEG

feature extraction is a valuable tool for understanding

the predictability and stability of brain processes. The

Rosenstein approach is employed to calculate the Lyapunov

exponent based on EEG data. The algorithm involves defining

parameters for data embedding, initializing tangent vectors,

and performing Jacobian matrix calculations. The QR

decomposition is used to orthogonalize the tangent vectors,

which are then normalized to quantify the system’s sensitivity

to perturbations. Logarithms of Jacobians divided by tangent

vectors and iterations determine the Lyapunov exponent. The

Lyapunov exponent (λ) is given by:

λ =
1

N − 1

N−1
∑

n=1

x (2)

where,

x = log

(

d(n+ 1)

d(n)

)

(3)

This sum is taken over time steps from n = 1 to

N − 1, where N is the total number of time steps. The

variable x describes the relative changes in distances between

nearby trajectories in the dynamical system, which is used

in calculating the Lyapunov Exponent to characterize the

behavior and predictability of the dynamical system. The term

x represents the logarithm between d(n + 1) and d(n), which

are the distances of the perturbed trajectory at time n+1 and

n, respectively. The Lyapunov exponent values not only offer

insight into the classification of sleep stages in EEG analysis

but also provide information about how complex neonatal

sleep dynamics are and the extent to which they can be

predicted.

• Multiscale fluctuation entropy (MFE): Within the scope of

the present study, MFE values have been computed for

every epoch of EEG data in order to measure the degree

of complexity as well as the irregularity of the signal (Wan

et al., 2023). The standard deviation is calculated segment by

segment using a scaling factor. The procedure entails multiple

sequential stages. The EEG signal is divided into segments

according to the scale factor. The variation of each segment

is determined by comparing the standard deviation of each

segment to the mean of each segment and then calculating

the average of the standard deviations of each segment. There

is a formula known as the Shannon entropy formula, which

is employed to calculate entropy for an ensuing string of

fluctuations. Mathematically, MFE can be written as:

MFE =
1

K

K
∑

k=1

Hk (4)

In this case, Shannon entropy at each scale is represented

by Hk, and total number of scales is represented by K. The

objective of this work is to obtain a deeper understanding

of the complexities and inconsistencies of neural activity

at different levels by calculating MFE values. It specifically

aids in the study of EEG data, which offers vital insights

into underlying brain activity through the examination of

fluctuation and complexity patterns.

Frontiers inComputationalNeuroscience 05 frontiersin.org83

https://doi.org/10.3389/fncom.2025.1506869
https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org


Siddiqa et al. 10.3389/fncom.2025.1506869

3.4.2 Frequency domain features
Frequency domain features play a crucial role in the

interpretation of EEG signals, since they are necessary for the

diagnosis of neurological illnesses and for monitoring the brain’s

activity during the performance of cognitive functions. This

research computed the subsequent features in the frequency

domain:

• Identification of central tendency features using EEG band’s

spectral features: The spectral analysis of the four frequency

bands (delta, theta, alpha, and beta) in an EEG signal can be

utilized for determining central tendency attributes such as

mean, median, mode, variance, standard deviation, kurtosis,

skewness, minima, and maxima (Siddiqa et al., 2023). The

central tendency of a dataset can be defined as the tendency

of a dataset to accumulate around the average value or center

of the dataset. A measure of the central tendency can offer

insights into the common or predominant values found in a

dataset. They have the ability to depict and provide a concise

overview of data distributions. In order to compute central

tendency characteristics based on spectral statistics, it was first

necessary to determine the power spectral density (PSD) of

the EEG data that was initially determined (Arif et al., 2023).

Using Welch’s method, PSD is calculated by segmenting the

EEG signal into overlapping windows, computing the Fourier

transform for each segment, and averaging the spectra to

estimate the PSD. Amore detailed spectral analysis of the EEG

signal can be obtained by using this method. As a default,

the resolution parameter is set to none. By doing this, the

function determines the segment length automatically based

on the input data length. As a default, the behavior attempts

to strike a reasonable balance between frequency resolution

and computational efficiency. Subsequently, the PSD has

been subdivided into distinct frequency ranges: delta (0.5–3

Hz), theta (4–7 Hz), alpha (8–12 Hz), and beta (13–30 Hz).

Afterwards, a total of 32 features representing central tendency

of each frequency band were computed using frequency band

spectral statistics.

• Norm power of four EEG bands: The normalized power

is calculated by dividing the power inside each frequency

band by the integral of the overall power spectral density

(PSD) across all frequencies. By normalizing the power levels,

it ensures a justifiable comparison of power levels across

various frequency bands, while taking into consideration

the fluctuations in the total power spectrum of the EEG

signal. The normalized power values are useful parameters

for classifying infant sleep stages because they represent the

relative contribution and distribution of brain activity in

specific frequency ranges.

• Average frequency of four EEG bands: The average frequency

of each of four EEG band is determined by multiplying the

frequencies within the relevant frequency indices by their

respective PSD values. Subsequently, those values are added

together, and the outcome is divided by the total sum of

the PSD values within the specified frequency range. This

calculation yields a weighted average frequency that signifies

the central point or the most prominent frequency within

the particular range of frequencies under consideration. This

technique enables a numerical evaluation of the spectrum

properties of the EEG data and offers a valuable understanding

of the frequency distribution within each EEG band. It also

aids in the classification of various sleep stages in neonates.

• Maximum power of four EEG bands: The maximum power of

each EEG frequency band is determined by determining the

frequency indices in the PSD that correspond to the specific

frequency range of interest for each band. The indices are

derived by comparing the frequency values with the lower

and upper frequency limitations specified for each band. The

highest PSD value within these specific frequency indices is

subsequently obtained for each time point, resulting in the

peak power level within the corresponding frequency range.

In EEG signals, time points are discrete instances where

the PSD can be estimated. This computation allows for the

determination of the maximum intensity of brain activity

within each distinct frequency band and offers vital insights

into the prevailing power peaks found in the EEG signal.

• EEG band ratios: The power ratios between EEG frequency

bands are calculated by dividing the normalized power of one

band by the normalized power of another band. These ratios,

such as the delta-theta ratio, alpha-beta ratio, delta-alpha

ratio, theta-beta ratio, delta-beta ratio, and theta-alpha ratio,

enable the evaluation of the proportional distribution of power

and interactions among different frequency bands. The ratios

are calculated using the normalized power values derived

from the PSD analysis of the EEG data. The normalized

power quantifies the relative impact of a particular frequency

range in the complete power spectrum. The power ratios

are obtained by dividing the normalized power of one band

by the normalized power of another band. These ratios

offer vital information into the equilibrium and supremacy

of brain activity across various frequency ranges. Their

contribution involves analyzing EEG data to characterize

different sleep stages in newborns, providing insights on the

relative importance of specific frequency components in the

EEG spectrum.

• Fast fourier transform (FFT): By employing FFT, it is possible

to examine the time-domain EEG signal by interpreting it into

the frequency domain and analyzing its constituent frequency

components. The input EEG data was subjected to a FFT

to calculate its frequency spectrum. Subsequently, the 10

frequencies with the most significant FFT values were selected.

Consequently, all the above mentioned characteristics can be

used to create automated sleep staging algorithms that have the

potential to enhance the identification and treatment of infant’s

sleep disorders.

3.5 Feature importance and feature
selection

In order to classify sleep states using EEG, we need to define

what features in the frequency and time domains are the most

informative. By using these techniques, we can distinguish sleep

stages by using the most informative features. Using machine
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learning models, you can achieve better performance and more

accurate results by selecting and emphasizing features (Ilyas et al.,

2020). In this research, Principal Component Analysis (PCA)

is utilized to select and prioritize features. The PCA algorithm

determines which of the principal components captures the greatest

proportion of variance in a dataset by analyzing its variance

(Wold et al., 1987). The explained variance ratio can be used to

determine a subset of principal components can be selected to

reduce the dimensionality of the data. High variances indicate that

the number of features in the dataset captures as much information

as possible. By preserving the variance in the dataset, information

which is the most important and relevant to the data can be

preserved, and at the same time, the least important data can be

eliminated. As a result of the designed PCA, 95% of the variance

in the EEG was explained by the most informative features. A

small number of principal components account for 95% of the

variance in the dataset. After scaling the dataset and performing

PCA, we found that a few principal components captured most

of the variance. Using the columns that have been selected and

the variable that is being targeted, a new dataframe is generated

based on how many principal components there are. As a result,

the information relevant to the prediction of the variable that

is being targeted remains, and at the same time, the data is

reduced in dimensionality. In the original dataset, 94 features from

preprocessed EEG data were extracted. The resulting dataframe

is used to classify sleep into five states using an LSTM model.

However, based on PCA results, a total of 21 features have been

decided upon for further consideration.

3.6 Synthetic minority oversampling
technique analysis

SMOTE is a widely utilized data augmentation approach

employed to deal with class imbalance in machine learning

(Fernández et al., 2018). It is especially efficient when handling

datasets in which one class is considerably less represented than

the other. The process involves generating artificial data points for

the underrepresented category by interpolating between adjacent

examples. The objective of this strategy is to create more synthetic

instances that closely resemble the existing samples from the

minority class, hence enhancing their presence in the dataset

(Fernández et al., 2018). The creation of synthetic samples includes

the subsequent steps:

1. Determine the instances belonging to the minority class:

Initially, the dataset is examined to identify the instances that

belong to the minority class.

2. Randomly choose an instance xi from the specified minority

class instances.

3. Locate the k nearest neighbors: The k nearest neighbors of the

given instance are determined using a selected distance metric,

such as Euclidean distance (Li et al., 2024).

x̂i = Kixi (5)

4. Choose one of the k nearest neighbors at random: A single

neighbor is selected at random from the k nearest neighbors.

5. Create a synthetic instance xnew: A novel synthetic instance is

generated by interpolating between the selected instances and

the chosen neighbor. This is achieved by employing a random

selection process to choose a point located on the line segment

that connects the two instances (Li et al., 2024).

xnew = xi + (x̂i − xi)δ (6)

Interpolation between the xi and x̂i is controlled by δ, a

value between 0 and 1. The value of δ specifies the extent of

“smoothing” or “stretching.” The closer the synthetic samples

are to the originals, the smaller the value of δ, and the farther

they are from them, the larger the value.

6. Iterate the procedure: Steps 2 to 5 are iterated until the required

extent of oversampling of the minority class is attained.

When applying SMOTE in the analysis of EEG features,

the default delta value was used for oversampling, as specified

by the SMOTE implementation. By defaulting the delta value,

the implementation process becomes easier, ensuring a standard

oversampling level without the need to tweak parameters manually,

thereby making class imbalances easier to handle. The SMOTE

algorithm is utilized in this specific study, employing the

implementation provided by the scikit-learn module. The SMOTE

function begins execution with a random state of 42. The

effectiveness of the SMOTE technique is assessed by computing

and presenting the counts of the resampled labels using a Pandas

series. This analysis offers valuable information on the distribution

of the balanced classes following the implementation of SMOTE.

Figure 3 shows pie class distribution before and after SMOTE.

This algorithm provides synthetic samples for the training set,

improving the model’s generalization and prediction capabilities

(Gamel et al., 2024). A more precise representation of the

fundamental distribution of the data is provided by this approach,

which lessens the challenges faced by imbalanced datasets. The

proposed methodology thus eliminates class imbalances and

improves the performance of the model by training it on a more

representative and balanced dataset. Using SMOTE, data leakage

was prevented and model evaluation was ensured in this research

after the train-test split. As a result of applying SMOTE only

to the training set, the test data was kept intact, enabling us to

assess model performance accurately. By doing so, the test set

remains intact, simulating real-world conditions and enhancing

model generalization.

3.7 Long short-term memory

An LSTM (Long Short-Term Memory) model is a variant

of a recurrent neural network (RNN) that addresses long-term

dependencies in sequential data. When processing long sequences,

traditional RNNs struggle to capture information from earlier

time steps due to the vanishing gradient problem. It can process

entire sequences of data, not just individual data points, due to

its feedback connections, unlike traditional neural networks. As

a result, it is very effective at identifying and predicting patterns

in sequential data, such as time series, text, and speech. As a

powerful tool for artificial intelligence and deep learning, LSTMs

are enabling breakthroughs in a wide range of fields by capturing

valuable insights from sequential data.
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FIGURE 3

(a) Pie class distribution before SMOTE and (b) pie class distribution after SMOTE.

3.7.1 LSTM architecture
A LSTM network resolves the problem of vanishing gradients

faced by RNN. At a high level, LSTM functions similarly to an

RNN cell. Figure 4 illustrates its internal workings. As shown in

Figure 4, the LSTM network architecture is composed of three

components, each of which performs a specific task. Based on the

previous timestamp, the first component determines whether the

information is relevant or not. Using the input in this cell, the

second component tries to learn new information. Finally, in the

third component of the cell, the current timestamp is passed on to

the next timestamp. The single-time step of the LSTM is considered

to be one cycle. Gates are three components of LSTM units. The

flow of information between the memory cell and the LSM cell is

controlled by them. The forget gate is the first gate, the input gate is

the second gate, and the output gate is the last gate. LSTM units

composed of these gates and memory cells are similar to layers

of neurons in traditional feed-forward neural networks, with each

neuron having a current state and a hidden layer. Following is the

step-by-step explanation of each gate:

1. Forget gate: This gate determines which information from

the previous cell state should be discarded. Using the sigmoid

activation function, which squashes values between zero and

one, the forget gate output (ft) is calculated from the current

input (xt) and the previous hidden state (ht−1).

A forget gate can be described mathematically as follows:

ft = σ (Wf · [ht−1, xt]+ bf ) (7)

In this equation, σ represents sigmoid function, Wf

represents the forget gate’s weight matrix, [ht−1, xt] represents

the concatenation of the previous hidden state with the current

input, and bf is the gate’s bias term.

2. Input gate: As the input gate determines the amount of new

information to be stored in the state of the cell, it takes into

account both the current input and the previous hidden input

(ht−1). A sigmoid activation function is used to compute the

input gate output (it).

Input gates are mathematically defined as follows:

it = σ (Wi · [ht−1, xt]+ bi) (8)

Ct = tanh(WC · [ht−1, xt]+ bC) (9)

In this case, Wi and WC stands for the weight matrices

associated with the input gate, ht−1 and xt stand for the previous

hidden state and current input, while bi and bC stands for the

bias terms associated with the gate.

3. Output gate: By comparing the current input (xt) with the

previous hidden state (ht−1), it determines which parts of the cell

state should be output. The output gate output (ot) is determined

by the sigmoid activation function.

An output gate’s mathematical equation is as follows:

ot = σ (Wo · [ht−1, xt]+ bo) (10)

ht = ot · tanh(Ct) (11)
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FIGURE 4

General architecture of LSTM model.

Here, Wo represents the weight matrix associated with

the output gate, [ht−1, xt] represents the concatenation of the

previous hidden state and the current input, while bo represents

the output gate bias term and ht shows the output for hidden

state.

In an LSTM cell, the gate outputs (ft , it , ot) are important for

controlling information flow. As a result, they determine which

parts of the previous cell state should be forgotten, which new

information should be added to the cell state, and which parts of

the updated cell state should be hidden.

3.8 Proposed model architecture

The proposed LSTM model for neonatal sleep staging is

presented in this subsection with detailed descriptions of the

mathematical model, its architecture, and all parameters. In this

paper, an eight-layer LSTM architecture has been proposed in

order to represent the LSTM. Figure 5 provides a comprehensive

depiction of the model’s structure and offers in-depth insights

into its individual layers. Sequentially stacking LSTM layers, this

model consists of three layers with different regularization levels

and units. There are 500 units in the first layer, and it returns

sequences, while there are 250 units in the second layer, and

it also returns sequences. LSTM layers are regularized using

L2 regularization with a factor of 0.0001 to prevent overfitting.

The third layer does not return sequences and has 100 units.

Each LSTM layer is followed by a batch normalization layer

for speed and stability. After two dense layers of 100 and 50

units, respectively, and ReLU activation, a final dense layer with

a number of units corresponding to the classification task’s classes

is added, and class probability is output using softmax activation.

Adam’s optimizer, cross-entropy loss function, and accuracy metric

are used to compile the model. During training, the model’s

states and parameters are reset, and with a batch size of 128

and an early stopping with a patience of 10 is implemented.

Table 2 presents details about all other hyper-parameters used

in proposed LSTM. Experimentation was conducted in order

to select and tune all hyperparameters in order to optimize

performance and convergence during training. The model is

trained and evaluated for one epoch using the data provided. Then

the model’s performance on the validation set is evaluated after

each epoch.

3.9 Performance assessment metrics

In order to test and evaluate the proposed scheme, different

performance metrics are used, including confusion matrix,

accuracy, Cohen’s kappa, recall, precision, Mathew’s co-relation

coefficient, and F1-score. In this study, the classification model

is examined based on these metrics to determine whether it can

accurately identify EEG patterns.

• Confusion matrix: An analysis of a classification model’s

quality is conducted using a confusion matrix. In multi-

class classification, confusion matrixes show the number

of correct and incorrect predictions for each class as a

tabular representation of the model’s performance. Identifying

specific types of classification errors helps to improve the

model’s accuracy for individual classes. It is possible to

evaluate the model’s performance across multiple classes by

calculating metrics such as precision, recall, and F1-score.

• Accuracy: The accuracy of machine learning (ML) algorithms

is commonly measured as a percentage of correctly classified

measurements. The formula (Ali et al., 2020) can be used to

calculate this percentage:

Acc =
(TP + TN)

(TP + TN + FP + FN)
(12)

• Cohen’s Kappa: The Cohen’s Kappa is commonly used to

estimate how well two raters agree. It is also used to determine

the performance of classifiers. The confusion matrix cells are

used to calculate it as follows (Chicco et al., 2021):

kappa =
2(TP · TN−FP · FN)

(TP + FP) · (FP + TN)+(TP + FN) · (FN + TN)
(13)
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FIGURE 5

(a) Detailed information about LSTM layers. (b) An overview of the model’s architecture.

TABLE 2 Details about hyper-parameters.

Parameter Value

Epochs 50

Batch size 128

Optimizer Adam

Kernel regularization L2

Learning rate 1× 10−4

Cross-validation k-folds 10

Loss function Binary cross-entropy

When Kappa is –1, it is the worst, and when it is +1, it is

the best.

• Recall: Recall in machine learning refers to how well an

algorithm can identify a class based on a set of sampled data.

In mathematics, recall is expressed as Shaukat et al. (2020):

Rec =
TP

TP + FN
(14)

• Precision: In order to determine a model’s precision, it must

be able to identify a significant number of relevant items.

Accordingly, it can be written as follows (Shaukat et al., 2020):

Pre =
TP

TP + FP
(15)

• Matthews correlation coefficient (MCC): MCC measures the

difference between the predicted values and recorded values.

The confusion matrix is used to calculate this (Chicco et al.,

2021):

MCC =
TP · TN−FP · FN

√
(TP + FP) · (TP + FN) · (TN + FP) · (TN + FN)

(16)

MCC value of –1 is the worst, while a value of +1 is the

best.

• F1-Score: F1-score is the combination of recall and precision,

making it a powerful metric. It is mathematically computed by

Shaukat et al. (2020), and Bing et al. (2022):

F1_Score =
2× Pre× Rec

Pre+ Rec
(17)
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• Accuracy line graph: The accuracy line graph permits

comparisons, thresholds, and determinations of the model’s

performance over a range of values. This graph displays

accuracy values along the Y-axis and fold counts along the X-

axis. On the graph, every data point represents an individual

cross-fold’s accuracy. As the number of folds increases, the line

connecting the data points indicates a trend in accuracy.

• Validation accuracy curve: Validation accuracy curves for N-

fold cross-validation show how accuracy changes over time for

each of the N folds. One can visualize the model’s performance

across different subsets of data by plotting validation accuracy

vs. training iterations or epochs. As well as providing valuable

insights into the model’s learning behavior, this visualization

allows assessment of the model’s stability and generalization

ability.

4 Results

To evaluate the performance of the model, a 10-fold cross-

validation procedure was used. The data sets were shuffled

randomly beforehand to avoid bias. Ten subsets of data were

used for this methodology, with one set serving as the testing

set and the remaining nine sets serving as the training set. Thus,

it was possible to assess the generalization performance of the

model in a way that minimized the leakage between the training

and testing phases. As a result of the rigorous methodology

used in this study, the performance of the proposed model has

been rigorously and unbiasedly evaluated. In this study, the F3-

channel and C3-channel show the greatest confusion matrix values

when it comes to single-channel EEG data. In Figure 6, confusion

matrices for the combinations of channels on the left and right

sides and all single channels are shown. Tables 3, 4 present the

analytically computed values for each performance assessment

metric. For the combinations of channels on the left and right

sides and all single channels, a line graph showing the level

of accuracy can be seen in Figure 7. The accuracy values are

displayed on the Y-axis in Figure 7. In Figure 7, accuracy line

graphs represent model performance during 10 cross-folds. Lastly,

Figure 8 illustrates validation accuracy curves for C3 single-channel

and a combination of four left-side channels.

5 Discussion

Using an LSTM classifier, this study proposes a method of

neonatal sleep staging based on single-channel and then four-

channel EEG data. In order to determine which EEG channel

is important in neonatal sleep staging and which channels are

most appropriate for five-state classification, single-channel EEG

data needs to be used to determine which channel and which

side of the head should be used. After preprocessing the EEG

data collected from 64 infants, 16,803 segments are left for testing

and training of channels F3, F4, C3, C4, P3, P4, T3, and T4.

EEG data is then processed for 94 linear and non-linear features.

These features are divided into the time and frequency domains.

A total of 27 statistical parameters were included in the analysis

for the time domain, including mean, median, standard deviation,

minima, maxima, range, skewness, and kurtosis. The data was

further processed to extract nonlinear features such as Detrended

Fluctuation Analysis (DFA), Lyapunov exponents, and Multiscale

Fluctuation Entropy. A FFT is used in order to extract frequency

domain features by separating ten features based on their FFT

values and then using spectral statistics to calculate 36 central

tendency features for each frequency band in the first place.

Through the capture of complex dynamics and irregularities in

neonatal EEG signals, these features allow a better understanding

of neonatal sleep patterns. By preserving 95% of the variance of

the data, we reduced the dimensionality and retained the most

informative features by applying Principal Component Analysis

(PCA). The SyntheticMinority Oversampling Technique (SMOTE)

is also applied for data augmentation to address the imbalanced

nature of the dataset. By using this technique, we were able to

improve the classification model by balancing the classes.

A description of the proposed LSTM has already been provided

in Section 3. A model is used to classify sleep states using 94

features that are obtained from each channel of the EEG signals.

Four channels on the left side and four channels on the right

side are combined in order to determine the neonate’s sleep states.

Figure 5 shows the proposed LSTM in its entirety. The description

of all layers and their types, as well as their parameters, can also

be found in Figure 5. It has been tried many times to get the

best performance from the model by testing kernel regularization,

unit number, and activation function in the real world. A final

choice was made by considering how to balance the complexity

of the model with the generalizability of the models after testing

a variety of combinations and assessing the effectiveness of each

combination. The performance evaluation step involved a 10-fold

cross-validation procedure. This methodology used ten subsets of

data, nine of them as training sets and one as a test set. In order

to eliminate bias in the data sets, the data sets were shuffled prior

to the analysis at random. Thus, the generalization performance of

the proposed model could be assessed without leaking information

between the phases of training and testing of the model. This

unbiased evaluation method was used to rigorously and unbiasedly

evaluate the performance of the proposed method. In this study,

accuracy and other matrices values are expressed as Mean ±

SD. Using the mean, one can see how accurate the experiments

are, while the standard deviation indicates how uncertain or

variable the accuracy measurements are. Averaging the individual

accuracy values obtained from multiple trials yielded the mean

accuracy, whereas the standard deviation measures how far the

accuracy measurements are from the mean. By presenting the

accuracy results in this way, we can gain insight into both their

central tendency and their variability. In Tables 3, 4, data from

single channel and four channel EEGs for five-state neonate sleep

classification is used. In single-channel five-state classification, the

F3, F4, C3, and C4 channels achieve maximum mean accuracy and

kappa. For the F3 channel, the accuracy and the kappa values are

80.41 ± 0.94% and 76%, respectively. For the F4, these values are

80.52 ±1.14 % and 76%. For the C3 channel, these values are 80.75

± 0.82 and 76%, respectively. For the C4, these values are 80.40

± 1.13 and 76%, respectively. There is also evidence to suggest

that by combining four left-side channels (F3, C3, P3, and T3),

the highest mean accuracy and kappa values can be achieved, with

accuracy and kappa values of 82.71 ± 0.88 and 78%, respectively.
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FIGURE 6

Confusion matrices for the channels: (a) F3, (b) F4, (c) C3, (d) C4, (e) P3, (f) P4, (g) T3, (h) T4, (i) Left side, and (j) Right side.

Right side electrode combinations (F4, C4, P4, and T4) have values

of 81.14 ± 0.77 and 76%, respectively. In addition, accuracy line

curves and confusion matrices for five states are also shown in

Figure 7 in order to visualize the model’s performance and learning

progress. As shown in the above Table 3, for the classification of

the five-state sleep stage of newborns, channels P3, P4, T3, and T4
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TABLE 3 Single-channel EEG classification results for five states.

Channel Acc (%) Kappa Rec (%) Pre (%) MCC (%) F1_Sco (%)

F3 80.41± 0.94 0.76 80.41± 0.94 80.08± 1.06 76± 0.01 80.01± 1.02

F4 80.52± 1.14 0.76 80.52± 1.14 80.20± 1.20 76± 0.01 80.24± 1.21

C3 80.75± 0.82 0.76 80.75± 0.82 80.39± 0.91 76± 0.01 80.41± 0.89

C4 80.40± 1.13 0.76 80.40± 1.12 80.17± 1.17 76± 0.01 80.15± 1.15

P3 78.94± 0.72 0.74 78.94± 0.72 78.53± 0.78 74± 0.01 78.54± 0.76

P4 78.18± 0.58 0.73 78.18± 0.58 77.72± 0.59 73± 0.01 77.83± 0.58

T3 79.56± 0.58 0.74 79.56± 0.57 79.16± 0.72 75± 0.01 79.18± 0.64

T4 79.84± 0.67 0.75 79.84± 0.67 79.46± 0.71 75± 0.01 79.51± 0.71

TABLE 4 Four-channel EEG classification results for five states.

Channel Acc (%) Kappa Rec (%) Pre (%) MCC (%) F1_Sco (%)

Four-channel (Left) 82.71± 0.88 0.78 82.71± 0.88 82.47± 0.94 78± 0.01 82.46± 0.92

Four-channel (Right) 81.14± 0.77 0.76 81.14± 0.77 80.87± 0.83 77± 0.01 80.83± 0.85

Left side channels: F3, C3, P3, T3 & Right side channels: F4, C4, P4, T4.

are far less helpful than channels P3 and P4 in determining the

sleep stage. However, F3, F4, C3, and C4 perform well. When there

are four channels, left-side channels perform better than right-side

channels. Even with fewer channels, performance is still favorable

when the parameters relating to performance are compared with

those presented in Tables 3, 4. It has been shown that sleep analysis

can enhance the care of neonates and enable them to be monitored

effectively in order to detect sleep-related abnormalities, such as

sleep disorders, early in order to treat them early.

Comparisons of existing and proposed methods are presented

in Table 5. This article and Zhu et al. (2023) refer to the same

dataset, ensuring consistency and comparability in evaluating the

models listed in Table 5. Most of the models in this Table have

been evaluated on this dataset by Zhu et al. (2023), and the results

obtained are also reflected in that Table. The proposed study uses

datasets that are several times larger than those used in Ansari et al.

(2020) and Ansari et al. (2018). On the basis of this dataset, these

models were found to be underfitting. For adult sleep, Supratak

et al. (2017) and Eldele et al. (2021) are presented. Taking into

account the difference in sleep patterns between infants and adults,

these models are prone to convergence problems and overfitting.

Therefore, it is hard to transfer an adult sleep staging model

directly to neonate data because this causes convergence problems

and overfitting. The model needs to be modified to reflect the

neonate’s sleep characteristics. A serial recurrent neural network

(RNN) is used as part of the TIL module in the model architecture

in Zhu et al. (2023), which results in a lengthy training time and

inefficient training.

Based on the experiments, limitations and future directions

should be identified. Using only EEG signals as inputs to the

proposed scheme in this paper is the primary objective of this

paper, which is to assess its feasibility and reliability. In this

study, electrooculography (EOG), electromyography (EMG), and

electrocardiography (ECG) were not used. However, they could

be used in the future to assess neonatal sleep with various

input signals. Further improvement could be accomplished by

using Transformer (Vaswani et al., 2017) rather than CNN to

learn. Additionally, all subjects were randomly divided into a

set of training subjects and a set of test subjects in this study.

Future research can increase the accuracy of the classification

of neonatal sleep stages by incorporating an independent set

of subjects in the training and testing phases. As a result, the

performance of MFE in the context of sleep staging should

be compared to Multiscale Dispersion Entropy and Multiscale

Fluctuation Dispersion Entropy. A number of studies have shown

that these methods are better at detecting meaningful patterns

(Zandbagleh et al., 2023; Chakraborty et al., 2021). In addition

to potential overfitting from the Multi-Branch CNN, its limited

capacity for hierarchical temporal learning may have made it

difficult to capture long-range EEG signal dependencies. Further,

its inefficiency in learning sequential patterns and its sensitivity

to signal variability could have adversely impacted generalization

and contextual understanding. In comparison to 1D CNNs, LSTM

models generally perform better when dealing with time series data.

LSTM networks, on the other hand, yield more accurate results

by retaining long-term dependencies, interpreting context over

sequences, and capturing fine-scale changes in EEG data, making

them more suitable for effectively identifying five distinct sleep

states. With the integration and evaluation of these techniques,

future research can enhance sleep staging algorithms.

6 Conclusion

Using an LSTM classifier that takes into account features in the

time and frequency domains, this study proposes an efficient and

accurate classification of neonatal sleep states based on EEG, using

single and multi-channel EEG data. A combination of Detrended

Fluctuation Analysis (DFA), Multiscale Fluctuation Entropy, and

Lyapunov Exponents is used to analyze the data in this study. PCA

is used to select features.With the use of both single-channel as well

as multiple-channel EEG data, it achieves favorable and comparable
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FIGURE 7

Accuracy line graphs for the channels: (a) F3, (b) F4, (c) C3, (d) C4, (e) P3, (f) P4, (g) T3, (h) T4, (i) Left side, and (j) Right side.

results. The number and placement of channels play a critical

role in the optimal electrode configuration for the assessment of

neonatal sleep stages and the most effective channels in five states.

Using a variety of electrode setups, the purpose of this study was

to evaluate the accuracy of sleep stage classification for neonatal

sleep studies in order to reduce complexity and cost. The frontal
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FIGURE 8

Validation accuracy curves for the channels: (a) C3 and (b) Left side.

TABLE 5 Comparison of existing and proposed methods.

References Algorithms No. of
channels

Accuracy Kappa

Ansari et al.

(2020)

Conv-2d 8 52.3% 0.41

Ansari et al.

(2018)

Conv-2d 8 53.5% 0.48

Zhu et al.

(2023)

MS-HNN 1 75.4% 0.72

Zhu et al.

(2023)

MS-CNN 1 69.3% 0.65

Supratak et al.

(2017)

DeepSleepNet 2 69.8% 0.64

Eldele et al.

(2021)

AttnSleep 1 68.0% 0.65

Siddiqa et al.

(2024)

Multi-Branch

CNN

1 74.27% 0.61

Siddiqa et al.

(2024)

Multi-Branch

CNN

4 75.36% 0.63

This study LSTM 1 80.75%±

0.82%

0.76

This study LSTM 4 82.71%±

0.88%

0.78

and central EEG channels worked better independently or jointly,

based on the results. In the future, neonate sleep staging can be

simplified, comfort levels can be increased, and data analysis can

be sped up by reducing the number of channels. Through sleep

analysis, it is possible to detect sleep-related abnormalities, such

as sleep disorders, early, allowing for more effective neonate care

and monitoring of sleep. Also, the experimental results suggest

that the proposed approach captures information effectively

within a single channel, reducing computing load by reducing

the number of channels, while maintaining good performance.

Furthermore, including linear and non-linear features in the time

and frequency domains of neonatal sleep staging can improve

accuracy and provide insights into newborn sleep dynamics

and irregularities.
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Mamba with split-based
pyramidal convolution and
Kolmogorov-Arnold
network-channel-spatial
attention for
electroencephalogram
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Deep learning is widely used in brain electrical signal studies, amongwhich the
brain–computer interface is an important direction. Deep learning can
effectively improve the performance of BCI machines, which is of great
medical and commercial value. This paper introduces an efficient deep
learning model for classifying brain electrical signals based on a Mamba
structure enhanced with split-based pyramidal convolution (PySPConv) and
Kolmogorov-Arnold network (KAN)-channel-spatial attention (KSA)
mechanisms. Incorporating KANs into the attention module of the
proposed KSA-Mamba-PySPConv model better approximates the sample
function while obtaining local network features. PySPConv, on the other
hand, swiftly and efficiently extracts multi-scale fusion features from input
data. This integration allows the model to reinforce feature extraction at each
layer in Mamba’s structure. The model achieves a 96.76% accuracy on the
eegmmidb dataset and demonstrates state-of-the-art performance across
metrics such as the F1 score, precision, and recall. KSA-Mamba-PySPConv
promises to be an effective tool in electroencephalogram classification in
brain–computer interface systems.

KEYWORDS

mamba, Kolmogorov-Arnold network, electroencephalogram, deep learning, BCI

1 Introduction

Electroencephalogram (EEG) has been a hotspot for medical, computer science, and
commercial research, and it is often used to diagnose brain diseases and to study human
mental activities. Brain–computer interfacing is a promising technology for scientists and
engineers, which converts human EEG signals into programs that machines can recognize.
Deep learning is an important tool in brain electricity studies and has been employed by
many scholars, as exemplified below.

The DeepConvnet model, employed by Schirrmeister et al., achieved a classification
accuracy of 76.7% on the PhysioNet EEGMotorMovement/Imagery Database (eegmmidb).
The model utilized multiple layers of conventional convolutional neural network (CNN)
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convolutions to construct deep learning networks, achieving 63.7%
and 83.2% accuracy on the BCI-2a and BCI-2b datasets,
respectively (Schirrmeister et al., 2017). The EEGnet model,
adopted by Lawhern et al., achieved an accuracy of 79.3% on
the eegmmidb dataset (Lawhern et al., 2018). This model utilized
depth-separable convolutions to construct multi-layer deep
neural networks, thereby facilitating the segregation of
channels and regions while reducing the parameter count. Jia
et al. developed a multi-branch multi-scale CNN (MMCNN) (Jia
et al., 2021) that decoded the original EEG signal without filtering
or other pre-processing techniques. It also successfully
characterized information in various frequency bands and thus
determined the optimal convolution scale. Roots et al. introduced
a multi-branch two-dimensional (2D) CNN that employed
distinct hyperparameter values for each branch, resulting in
accuracies of 84.1% and 83.8% when applied to the eegmmidb
dataset for performing and imagining motor actions, respectively
(Roots et al., 2020). Chowdhury et al. developed an EEGNet
Fusion V2 model that enhanced the extracted features via diverse
filters, which yielded a spectrum of features. Subsequently, these
features were integrated into the fusion layer to generate more
intricate features (Chowdhury et al., 2023). To identify spectral
features and improve the decoding of motor imagery
electroencephalogram (MI-EEG), Li et al. employed a novel
time-spectrum squeezed-excitation feature fusion network
with multi-stage wavelet convolutions in parallel for multi-
spectral convolution block capture (Li et al., 2021). Hou et al.
combined bidirectional long and short-term memory (BiLSTM),
attention mechanisms, and a graph convolutional neural network
(GCN) to enhance the decoding performance. This was achieved
by leveraging the feature topology estimated from the
comprehensive data set to accurately identify the human
body’s intention to move from the raw EEG signals (Hou
et al., 2022). Steady-state visual evoked potential (SSVEP)
represents one of the most frequently utilized control signals
in brain–computer interface systems. In an interdisciplinary
classification scenario, Chen et al. proposed an SSVEP
classification model based on the highly effective deep
learning Transformer structure, which fully exploited
harmonic information and established a methodology based
on filter bank technology (Chen et al., 2022). Luo et al.
employed a shallow mirror Transformer comprising a multi-
head self-attentive layer with a global receptive field to detect and
utilize discriminative segments across input EEG trials. They also
constructed mirror EEG signals and mirror network structures
based on integrated learning to improve classification accuracy
(Luo et al., 2023). Keutayeva and Abibullaev developed a hybrid
model that fused a CNN with a visual Transformer for decoding
motion image EEG signals. The CNN was employed to extract
local features, whereas the Transformer was utilized to perceive
global dependencies. The model demonstrated 80.44% and
74.73% accuracy on the BCI-2a and BCI-2b datasets,
respectively, which represented a significant improvement over
previous models (Keutayeva and Abibullaev, 2023).

In recent years, there has been a notable increase in the
popularity of Kolmogorov-Arnold networks (KANs) as an
alternative to the multi-layer perceptron (MLP) (Vaca-Rubio
et al., 2024). KANs utilize the Kolmogorov-Arnold representation

theorem, which enables the activation functions of a neural network
to be executed on edges. This facilitates the “learning” of the
activation functions and enhances the model performance. KANs
lack linear weights; each weight parameter is replaced by a univariate
function parameterized as a spline. Smaller KANs can be visualized
intuitively and achieve comparable or superior accuracies in data
fitting and partial differential equation (PDE) solutions compared to
larger MLPs.

The Mamba model addresses the limited efficiency of
Transformers in long sequence processing by combining linear
layers, gating, and selective structured state space models (Gu
et al., 2023); its core is a selectivity mechanism that efficiently
compresses and filters contextual information. The hardware
algorithm significantly improves computational speed by
scanning rather than convolving.

However, the mamba model is very limited to handle local
features, and the obtained features have a large redundancy.
Therefore, we can use some new methods to improve the local
feature extraction ability of mamba, using the attention module
to screen the reinforcement main features. In light of the studies
above, we propose a novel deep learning model integrating a
Mamba backbone splicing a split-based pyramidal convolution
(PySPConv) module and a KAN-channel-spatial attention (KSA)
mechanism. The model is designated as KSA-Mamba-PySPConv,
and its objective is to leverage the Mamba and KAN architectures
to enhance model classification capabilities and reduce
resource costs.

It includes the literature review, model methodology,
experimental design, discussion of experiments, and conclusion.
The primary contributions of this paper are as follows:

1) We propose the novel KSA mechanism, which incorporates
a KAN network into the attention mechanism. This
integration aims to enhance the module’s feature
extraction capabilities, leveraging the fitting
approximation capacity of KANs.

2) We employ the novel PySPConv scheme to replace the
standard convolutions in Mamba, aiming to address the
limitations of Mamba’s local feature extraction capability
while minimizing computational overhead.

3) We conduct experiments using the proposed KSA-Mamba-
PySPConv model and multiple existing models on eegmmidb
to compare their accuracy, F1 score, and recall.

2 Related work

2.1 KANs

MLPs use a multi-layer linear function plus a nonlinear
activation function to model and approximate the input-
output relationships of a sample, which consists of a large
trainable data matrix, as expressed by
f(x) ≈ ∑N(c)

i�1 aiσ(wi · x + bi).In this formuna, x is the input
data,wi is the weight of x, bi is the bias, σ is activation
function, ai is the ratio of Scale coefficient. MLPs consume a
lot of memory and computational resources in complex tasks and
are prone to overfitting. In recent studies, KANs have been shown
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to outperform MLPs in accuracy and interpretability, with
smaller KANs achieving accuracy comparable to or better than
larger MLPs in data fitting and PDE solving. Besides, KANs can
be represented intuitively as the summation of multiple spline
functions and, therefore, have stronger interpretability. The
functional relationship of KANs can be expressed by

f x( ) � ∑Q
q�1

Φq ∑P
p�1

ϕq,p xp( )⎛⎝ ⎞⎠.

Here, f(x) is the multivariate function to be represented; Φq

denotes a combinatorial function that can be learned and is
typically used at higher network levels; ϕq,p is the learnable
unitary function corresponding to an activation function on
the network edges, generally parameterized as a spline
function; xp is the pth component of the input vector; Q and
P are the number of combinatorial and unitary functions,
respectively.

KANs can normally achieve comparable or better
performance than wider MLPs with fewer parameters.
However, KANs have more parameters than MLPs for the
same depth and width. The training process of KANs is much
more complex than that of conventional neural networks, and its
training speed is 10 times slower than that of MLPs. In practice,
the resources consumed by KANs are huge and difficult to
implement in high-dimensional spaces. Therefore, leveraging
the advantages of KANs while compensating for their
shortcomings is a question worth studying.

2.2 Mamba and transformers

Transformers capture global features more efficiently than
CNNs, though with n2 computational complexity, n is the
length of sequence. In contrast, Mamba exhibits linear
complexity and can address the memory consumption issue of
Transformers when processing long sequences. Moreover,
Mamba adopts hardware-aware parallel algorithms to optimize
graphics processing unit (GPU) memory usage and improve the
design of the state space model (SSM) architecture, which
achieves higher efficiency. Mamba also performs selective
processing of input information, which means it can focus on
specific information in the input sequence. As a result, Mamba is
five times faster than Transformers in inference (predicting or
generating texts), and its performance can match that of a
Transformer twice its size in certain areas. However, Mamba
uses complex S6 and MLP components, making the model
complicated and less interpretable. Moreover, it is weak for
local feature extraction of sequences. Improving the local
feature extraction capability and simplifying the complexity of
Mamba are research areas worthy of investigation.

2.3 Pyramidal convolution and split-based
convolution

Pyramidal Convolution (PyConv) utilizes a pyramid structure
with different kernel sizes and depths to capture details on various

levels (Duta et al., 2021). The PyConv architecture has multiple
levels of kernels, gradually increasing kernel size from the bottom
(level 1) to the top (level n) while reducing depth. This approach
aims to capture diverse scale information at different layers. In
PyConv, the different kernel types complement each other to
enhance the network’s recognition capabilities. Smaller kernels
excel at focusing on fine details, capturing information about
small objects or specific regions; larger kernels gather a more
robust overview of larger objects or contextual information. The
PyConv architecture exhibits parameter and computational
resource requirements comparable to conventional
convolution while benefiting from its ability to leverage multi-
threaded parallel processing. This configuration makes PyConv
exceptionally efficient. PyConv’s 50-layer network outperformed
a baseline ResNet with 152 layers in recognition performance
while reducing the number of parameters by 2.39 times,
computational complexity by 2.52 times, and layer count by
over three times (Duta et al., 2021).

Split-based convolution (SPConv) splits the input feature map
into a representative part and an uncertain redundant part (Zhang
et al., 2020). The representative part is processed with
relatively heavy computation to extract intrinsic information,
while the uncertain redundant part uses lightweight operations to
handle tiny details. The SPConv architecture employs a k =
3 convolutional layer to extract essential information and a
lightweight k = 1 convolutional layer to supplement fine-grained
hidden details. The final step of the process involves merging the
extracted features from the two parts using a parameter-free
feature fusion module. Therefore, SPConv consistently
outperforms baselines in accuracy and inference time while
showing significant reductions in floating-point operations
per second (FLOPs) and parameter counts. Experiments on
Cifar10, ImageNet, and Microsoft Common Objects in Context
(MS-COCO) datasets demonstrated that networks using
SPConv achieved state-of-the-art (SOTA) performance in
accuracy and inference speed at the GPU level. The parameter
count for SPConv could also be reduced by 2.8 times while
maintaining superior performance and inference speed (Zhang
et al., 2020).

3 Methodology

3.1 KSA-seq attention

EEG involves multichannel one-dimensional (1D) data, for
which the features of individual channel waveforms and
the potential relationships between different channels must
be considered. KAN has a stronger fitting ability than MLP, and
it can obtain the waveform features of a single channel better.
On the other hand, the attention mechanism of the lateral axis
captures the feature relationships between different channels.
We fuse the attention mechanisms in both directions to obtain
a more comprehensive EEG feature relationship. We call this
attention mechanism KSA, and the algorithmic steps for
realizing the KSA attention mechanism are as follows in
Algorithm 1:
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Input:x: (B,C,L)

Output: y: (B,C,L)

1. r1: (B,C,1) ← AdaptiveAvgPool1d (B,C,L)

2. r2: (B,C,1) ← AdaptiveMaxPool1d (B,C,L)

3. r1’: (B,C,1) ← KAN_Expand (KAN_

Compress (r1′))
4. r2’: (B,C,1) ← KAN_Expand (KAN_

Compress (r2′))
4. m: (B,C,L) ← (r1’+r2′) *x

⊳ KAN-seq attention is done

1. m: (B,C,L)

2. n1: (B,1,L) ← Mean (m,dim = 1)

3. n2: (B,1,L) ← Max (m,dim = 1)

4. n: (B,2,C) ← Concat (n1,n2,dim = 1)

4. SpatialAtt: (B,1,C) ← conv1d

(B,2,C), kernel = 7

5. out: (B,C,L) ← SpatialAtt *m

⊳ SP1D-seq attention is done

Return out

Algorithm 1. KAN-seq attention.

The algorithm describes the implementation of the attention
mechanism and the main input and output data. KAN_Compress
represents using the KAN-MLP architecture to compress channels,
which is achieved by setting the number of output channels Cout of
the KAN network to be 1/r of the number of input channels Cin
(where r is the scaling ratio). KAN_Expand represents using the
KAN-MLP architecture to expand channels, which is accomplished
by configuring the number of output channels Cout to expand to r
times the number of input channels Cin. We obtain channel-axis

FIGURE 1
Structure of mixconv1d.

FIGURE 2
Structure of PySPConv.
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attention by performing channel transformation with KAN-seq
attention. Then, we use the 1D spatial attention algorithm to
calculate the spatial sequence features, which can obtain the
y-axis attention. By combining the operations of both sections,
we obtain multi-dimensional attention for the input sequence
data. We call this module KSA-seq attention.

3.2 PySPConv

Mamba is a novel selective structured SSM that can efficiently
deal with long sequential data while maintaining linear time
complexity. In Mamba modules, a conventional CNN is used to
extract local features. However, CNN-extracted features are limited
by the size of kernels and the number of layers, which means that
CNN suffers from a lack of flexibility and restricted abilities.
Therefore, a more capable local feature extractor needs to be
used to obtain better local features.

We design amixed convolutional model that uses different-sized
CNN kernels to extract features of varying receptive fields. We
utilize k = 3, k = 5, and k = 7 convolution operations to obtain
features under different receptive fields. These features are then
combined to form the final output. This module addresses the
limitation of narrow receptive fields in conventional CNNs and
enhances the quality of extracted features by incorporating multiple
convolution sizes. We name this module “mixconv1d.” Its structure
is represented in Figure 1, which consists of convolutions with k = 3,
k = 5, and k = 7, as well as a feature concatenation
compression module.

To obtain multi-scale features, we leverage the pyramid
convolutional technique and modify it to enhance its
performance and speed while minimizing computational
complexity. Specifically, we replace the conventional convolution
in the pyramid structure with a lightweight and efficient separable
convolution. Here, we employ SPConv, which splits the features
into representative and redundant parts, using k = N and k =
1 convolutions, respectively. This approach captures the main
features in the representative part and details features in the
redundant part as supplementary information. This design
makes the convolutions efficient and lightweight. Replacing
the conventional convolutions in a pyramid convolution with
SPConv, which uses different kernel sizes, can reduce
computational burdens and enable efficient feature extraction
at different scales. This novel convolution module is called
PySPConv, whose architecture is shown in Figure 2. It is
composed of one-dimensional SPConv convolutions with a
kernel size of Kn and a feature concatenation module. We
can independently configure the kernel sizes and the number
of feature layers, which makes this convolutional module highly
flexible to fit our needs.

In subsequent experiments, we will compare the performance of
the two convolutional modules. We will test and evaluate various
metrics to confirm the advantages of PySPConv in computational
load and performance.

3.3 Mamba-PySPConv with KSA attention

We include this new PySPConv module in the Mamba structure
and employ the KSA attention mechanism between each layer of
Mamba blocks, which enables the model to filter out the important
features in the input and improves the expressive power of the
model. We also add the residual structure between different layers of
Mamba so that the features obtained from shallow Mamba blocks
can be fused into deeper Mamba blocks, which improves the model
convergence, enriches the extracted features, and fully utilizes the
features obtained from each block layer. This final model is called
KSA-Mamba-PySPConv, and its block structure is shown
in Figure 3.

4 Experiments and results

To evaluate the performance of the aforementioned models, we
train and evaluate them on the eegmmidb dataset.

FIGURE 3
Structure of the KSA-Mamba-PySPConv block.
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4.1 Experiments

Dataset introduction. The eegmmidb dataset contains over
1,500 1-min and 2-min EEG recordings from 109 volunteers,
which were obtained from subjects completing a series of motor/
imagery tasks. Motor imagery or movement tasks were recorded as
EEG signals from 64 channels positioned upon the subject’s
scalp. Each channel was annotated with three codes: T0, T1, and
T2. T0 designates the rest period; T1 signifies the movement of the
left hand in selected tasks; T2 denotes the movement of the right
hand for certain tasks. Of the 109 participants, six individuals lacked
sufficient data recordings and were excluded from the training
experiment. All trials involved sustained and continuous
movements of 4–4.1 s for execution and imagery tasks. To
ensure consistent dataset representation, 4-s trial segments were
extracted and clipped, removing any static states or extraneous non-
experimental segments. The sampling rate was 160 Hz, and after
each trial segment’s clipping, 640 samples were obtained.

Experimental setup. We utilize the Magnetoencephalography
and Electroencephalography (MNE) library to read raw general data
format (GDF) files from the eegmmidb database. A 60 Hz bandpass
filter is applied to remove power line interferences. A low-pass filter

with a cutoff frequency of 0.5 Hz is then used to suppress low-
frequency noise. Finally, a bandpass filter ranging from 1 to 60 Hz is
employed to attenuate high-frequency artifacts. The “T1” labels are
converted into “0” labels, and the “T2” labels are converted into “1”
labels. To maintain consistency in the dataset, the 640 continuous 4-
s action data samples are divided into four non-overlapping
windows of 160 samples each, which maintains the labeling of
the original experiment. Datasets are divided into the motor task
data, imagery task data, and data for both tasks. The data obtained is
stored in a matrix format. We divide the processed EEG data matrix
into a training set,test set and a validation set at a ratio of 7:2:1. The
Adam optimizer is used to train the model, with an initial learning
rate of 0.0001. Every 20 epochs during the training process, the
learning rate is adjusted by 0.1 times its original value. The input
sequence length of this Mamba model is 160, the state dimension is
256, and it has three layers. To shorten the training time, we use
GPU servers and set a batch size of 24 for our training process. The
configuration of the GPU server used in the experiment is as follows:
the CPU model is AMD EPYC 9654, the graphics card is an RTX
4090 with 24 GB of video memory, and the system is equipped with
128 GB of RAM. It is also possible to conduct training on a laptop
with more than 8 GB of video memory, although the process may be

FIGURE 4
Original Mamba results.
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slower. We perform five sets of comparative experiments using
different models to validate the model performance, namely, the
original mamba model experiment, Mamba-mixconv1d model
experiment, KSA-Mamba-PySPConv model experiment, executed
motor task dataset experiment, and imagery motor task dataset
experiment.

4.2 Results

Original mamba results. Figure 4 presents the experimental
results of the original Mamba model on the brain-EEG motor
imagery recognition task. The model employs a standard 1D
convolution to extract local features, with a kernel size of 5. We
compare the classification performance of the original Mamba
model with EEGNet Fusion V2. The original Mamba model
achieves significantly improved recognition performance,
achieving an accuracy of 89.4%, and its precision, F1 score, and
recall values all approach those of EEGNet Fusion V2, being higher
than 85%. Furthermore, the original Mamba model requires fewer
parameters compared to EEGNet Fusion V2. Increasing the size of
the CNN kernel in the Mamba module yields improved model

performance, demonstrating that the Mamba structure is more
effective in handling sequence data classification tasks compared
to multi-layer deep neural networks (DNNs).

Mamba-MixConv1d results. To enhance the Mamba model’s
ability to extract local features, we replace the original 1D
convolution with a MixConv1d convolutional module. Figure 5
presents the experimental results of the Mamba-MixConv1d model
on the EEG motor imagery recognition task. We compare the
classification performance of the Mamba-MixConv1d model
with the original Mamba model. The Mamba-MixConv1d
model achieves an accuracy of 95.6%, which is 6% higher
than that of the original Mamba model. This improved
model exhibits a precision and F1 score approaching 95%,
and its recall is near 94%, showing that Mamba-MixConv1d
significantly outperforms the original Mamba model.
Experimental results conclusively demonstrate that the
MixConv1d module possesses strong local feature extraction
capabilities and solves the problem of insufficient local feature
extraction in the original Mamba model. However, adding more
convolutional branches and larger kernel sizes and performing
additional fusion calculations result in substantial
computational costs and memory consumption.

FIGURE 5
Mamba-MixConv1d results.
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KSA-Mamba-PySPConv results. To reduce the computational
load of the convolutional module, we replace MixConv1d with
PySPConv. In addition, to improve the expressive power and
feature quality of the Mamba structure output, we add the KSA
attention module to enhance the channel and spatial features,
capturing relationships between different parts of brain activity
and detecting more complex data patterns. In Figure 6, we
present the experimental results for the KSA-Mamba-PySPConv
model on the EEG motor imagery recognition task. We compare its
classification performance with that of the Mamba-MixConv1d
model. The KSA-Mamba-PySPConv model achieves an accuracy
rate of 96.76%, which is 1.76% higher than that of the Mamba-
MixConv1d model. The precision, F1 score, and recall of the KSA-
Mamba-PySPConv model are all above 96.5%, exceeding those of
the Mamba-MixConv1d model by approximately 1%–2%.
Experimental results demonstrate that KSA-Mamba-PySPConv
possesses stronger local feature extraction capability and exhibits
better overall performance than Mamba-MixConv1d. The statistical
comparison of the parameters of the two convolutional modules
finds that PySPConv has 21.1% fewer parameters compared to
MixConv1d when configured with the same kernel size.
PySPConv carries fewer redundant features and boasts higher

feature extraction efficiency and faster computation speed.
Moreover, PySPConv allows for autonomous adjustment and
configuration of the depth and kernel size of the convolutional
layers while enabling the addition of more convolutional branches.
Using the SPConv method significantly reduces the computational
burden associated with adding branches and adjusting depths
in PySPConv.

Executed motor task dataset experiment results. We test the
performance of the KSA-Mamba-PySPConv model using the
executed motor task dataset, and the results are shown in
Figure 7. We compare the results to those from EEGNet Fusion
V2. For the executed motor task, the KSA-Mamba-PySPConv model
achieves an accuracy of 96.28%, 6.68% higher than that of EEGNet
Fusion V2 (Chowdhury et al., 2023). The precision, F1 score, and
recall of KSA-Mamba-PySPConv are all higher than those of
EEGNet Fusion V2 by approximately 6.5%. This demonstrates
that the KSA-Mamba-PySPConv model outperforms EEGNet
Fusion V2 in executed motor movement tasks on eegmmidb.

Imagery motor task dataset experiment results. We also test the
performance of the KSA-Mamba-PySPConv model using the
imagery motor task dataset, and the results are shown in
Figure 8. In this domain, the KSA-Mamba-PySPConv model

FIGURE 6
KSA-Mamba-PySPConv results.
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achieves an accuracy of 96.33%, 6.73% higher than that of EEGNet
Fusion V2. The precision, F1 score, and recall of KSA-Mamba-
PySPConv are all higher than those of EEGNet Fusion V2 by
approximately 6.5%. This demonstrates that the KSA-Mamba-
PySPConv model outperforms EEGNet Fusion V2 in imagery
motor tasks on eegmmidb.

5 Discussion

This section discusses the performance differences between
various models and their respective advantages and
disadvantages. First, the experimental results for executed
and imagery motor movement tasks are organized and
compared for the models detailed in this study, as
summarized in Table 1.

The original Mamba model demonstrates good performance in
classifying heart rates, validating the model’s effectiveness at
handling 1D data. The use of MixConv1D in Mamba
significantly improves classification accuracy, proving that
MixConv1D enhances convolutional features through local

feature extraction and boosts overall model performance. When
using PySPconv and KSA attention modules in conjunction with
Mamba, compared to using MixConv1D alone, we observe
improved classification accuracy. Furthermore, the parameters of
PySPconv are 21.1% fewer than those of MixConv1D, which can be
obtained by torchstat, highlighting the efficiency and lightweight
nature of this module.

The results of some advanced deep learning models and our
method for executed motor movement tasks are compared
in Table 2.

As can be seen in Table 2, our new model exceeds previous
researchmodels in the performance metrics of the classification task.
The KSA module helps the model better capture the nonlinear
relationships in the data. PySPConv allows the model to process data
sparsely, thereby reducing the number of parameters and
computational complexity.

The results for imagery motor movement tasks are shown in
Table 3. It can be seen that the proposed KSA-Mamba-
PySPConv model also demonstrates excellent classification
performance in imagery motor movement tasks, reaching the
SOTA level.

FIGURE 7
Experiment results on the executed motor task dataset.
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6 Conclusion

In this paper, we propose a novel architecture called KSA-
Mamba-PySPConv for the EEG imagery/motor movement
classification tasks. The proposed scheme includes a KSA
attention mechanism and a PySPConv module to enhance the
features extracted from a single module layer. The KSA attention
mechanism achieves enhanced and filtered channel and spatial
features by integrating the KAN network with attention
mechanisms. PySPConv utilizes different convolutional kernels to
extract pyramid-like multi-scale features and employs split

operation and parameter-free feature fusion algorithms to achieve
lightweight and efficient convolutions. These configurations enable
KSA-Mamba-PySPConv to outperform conventional EEG classification
models and achieve SOTA performance. The model exhibits excellent
performance across different tasks on eegmmidb, proving its strong
generalization capabilities. When deploying this model in a practical
BCI system, we may need to consider the model’s size and the
consumption of computational resources. Therefore, techniques such as
quantization and pruning might be employed for the deployment of the
model. In the future, we will explore pruning algorithms and optimization
methods to enhance the speed of this model.

FIGURE 8
Experiment results on the imagery motor task dataset.

TABLE 1 Results for executed and imagery motor movement tasks.

Model Accuracy % Precision % Recall % F1 score % Params flops

Left Right Left Right Left Right

Original Mamba 89.37 87.4 91.5 91.4 87.4 89.4 89.4 716.802k 2.369G

Mamba-MixConv1d 95.66 96.3 94.9 95.1 96.3 95.7 95.6 1513M 5.434G

KSA-Mamba-PySPConv 96.76 96.6 96.9 96.9 96.6 96.7 96.8 1193k 4.206G
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TABLE 3 Results for imagery motor movement tasks.

Model Accuracy % Precision % Recall % F1 score %

Left Right Left Right Left Right

DeepConvNet (Schirrmeister et al., 2017) 76.2 76.5 75.9 76.0 76.4 76.3 76.1

ShallowConvNet (Schirrmeister et al., 2017) 78.2 78.2 78.3 78.7 77.8 78.5 78.0

MMCNN (Jia et al., 2021) 81.6 81.7 81.5 81.9 81.2 81.8 81.3

EEGNet (Lawhern et al., 2018) 68.4 68.3 68.4 69.2 67.5 68.8 67.9

EEGNet
Fusion (Roots et al., 2020)

83.8 85.0 83.3 82.9 84.8 83.9 84.0

EEGNet
Fusion V2 (Chowdhury et al., 2023)

87.8 88.1 87.5 87.5 88.1 87.8 87.8

KSA-Mamba-PySPConv 96.33 96.7 95.96 96.08 96.59 96.39 96.27

TABLE 2 Results for executed motor movement tasks.

Model Accuracy % Precision % Recall % F1 score % Params Flops

Left Right Left Right Left Right

DeepConvNet (Schirrmeister et al., 2017) 76.6 76.2 77.1 77.3 76.0 76.7 76.5 97.302K 203.453M

ShallowConvNet (Schirrmeister et al., 2017) 79.3 79.2 79.3 79.2 79.3 79.2 79.3 80B 580K

MMCNN (Jia et al., 2021) 81.4 82.2 80.6 80.5 82.3 81.3 81.4 - -

EEGNet (Lawhern et al., 2018) 66.6 69.1 64.8 59.9 73.3 64.2 68.8 1.114K 132.251M

EEGNet Fusion (Roots et al., 2020) 84.1 84.2 84.5 83.8 83.9 84.0 84.2 17.682K 1.597G

EEGNet Fusion V2 (Chowdhury et al., 2023) 89.6 89.9 89.4 89.4 89.8 89.7 89.6 9.636M 16.546G

KSA-Mamba-PySPConv 96.28 94.59 98.09 98.16 94.39 96.34 96.21 1.193M 4.206G
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Introduction:Major Depressive Disorder (MDD) remains a critical mental health

concern, necessitating accurate detection. Traditional approaches to diagnosing

MDD often rely on manual Electroencephalography (EEG) analysis to identify

potential disorders. However, the inherent complexity of EEG signals along with

the human error in interpreting these readings requires the need for more

reliable, automated methods of detection.

Methods: This study utilizes EEG signals to classify MDD and healthy individuals

through a combination of machine learning, deep learning, and split learning

approaches. State of the art machine learning models i.e., Random Forest,

Support Vector Machine, and Gradient Boosting are utilized, while deep learning

models such as Transformers and Autoencoders are selected for their robust

feature-extraction capabilities. Traditional methods for trainingmachine learning

and deep learning models raises data privacy concerns and require significant

computational resources. To address these issues, the study applies a split

learning framework. In this framework, an ensemble learning technique has been

utilized that combines the best performing machine and deep learning models.

Results: Results demonstrate a commendable classification performance with

certain ensemble methods, and a Transformer-Random Forest combination

achieved 99% accuracy. In addition, to address data-sharing constraints, a split

learning framework is implemented across three clients, yielding high accuracy

(over 95%) while preserving privacy. The best client recorded 96.23% accuracy,

underscoring the robustness of combining Transformers with Random Forest

under resource-constrained conditions.

Discussion: These findings demonstrate that distributed deep learning pipelines

can deliver precise MDD detection from EEG data without compromising

data security. Proposed framework keeps data on local nodes and only

exchanges intermediate representations. This approach meets institutional

privacy requirements while providing robust classification outcomes.

KEYWORDS

split learning, transformers, autoencoder, EEG, major depressive disorder, smart

diagnostic, neurological behavior
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1 Introduction

The human body possess remarkable complexity, and the

brain plays a pivotal role in cognitive and behavioral functions

(Vohryzek et al., 2025). Maintaining a healthy brain is essential

for optimal decision-making (Hagan et al., 2025). The human

brain contains billions of neuron, which coordinate various

neurological activities (Herculano-Houzel, 2009). Nonetheless,

a range of disorders impact brain function, including Major

Depressive Disorder (MDD) i.e., leading contributor to mental

health challenges (Kreivinienė et al., 2025).

Early diagnosis of MDD is important for mentaining mental

well-being, but current diagnostic methods rely on subjective

clinical evaluations and self-reported symptoms prone to human

error and inefficiency (Hagan et al., 2025; Kreivinienė et al., 2025).

This underscores the need for a reliable diagnostic tool that assists

clinicians in making accurate and timely decisions.

Electroencephalography (EEG) offers a promising approach

for examining the neurophysiological underpinnings of mental

health conditions (Perrottelli et al., 2021). It measures electrical

brain activity with high temporal resolution and is non-invasive,

cost-effective, and portable (Perrottelli et al., 2021). Previous

studies have revealed changes in EEG patterns, such as power

spectral density shifts and alterations in brain wavebands, among

individuals with MDD (Liang et al., 2021). Although EEG signals

contain valuable diagnostic information, extracting meaningful

insights from these high-dimensional and noisy data remains a

challenge.

Machine learning (ML) and deep learning (DL) techniques

demonstrate potential for analyzing EEG signals (Subhani et al.,

2017; Rahul et al., 2024; Umair et al., 2021; Diehl and Cook, 2015).

DL models can automatically extract relevant patterns, aiding in

differentiating healthy individuals from those affected by MDD

(Subhani et al., 2017). However, traditional ML and DL training

often occurs in centralized systems, which raises privacy risks and

demand costly computational infrastructure (Umair et al., 2024;

Rahul et al., 2024). Healthcare institutions also hesitate to share

sensitive data, highlighting the need for decentralized methods that

safeguard patient privacy (Umair et al., 2023).

Federated Learning (FL) has emerged as a key approach to

decentralized training by enabling local model updates on client

devices while aggregating models at a central server (McMahan

et al., 2017). Although FL preserves data privacy, some clients

may face resource constraints that hinder local training (Umair

et al., 2023). However, a similar concept as FL i.e., split learning

(SL) addresses this challenge by splitting the model architecture

between clients and a central server, transferring only intermediate

representations instead of raw data (Gupta and Raskar, 2018). This

structure reduces the computational burden on resource-limited

devices having on device training as well (Jia et al., 2024). In the

context of EEG-based MDD diagnosis, SL can integrate distributed

data from multiple healthcare providers without centralizing

sensitive information, offering a scalable and reliable framework for

developing effective diagnostic models.

This study explores the concept of SL in conjunction with

various ML and DL models to classify MDD patients using an

EEG dataset. Model selection is critical for robust classification, so

multipleML classifiers including Logistic Regression (LR), Random

Forest (RF), Support Vector Machine (SVM), Decision Tree (DT),

K-Nearest Neighbors (KNN), and Gradient Boosting (GB) are

utilized for their proven performance. In addition, advanced

DL architectures such as Transformers and Autoencoders are

employed to capture the complex, high-dimensional characteristics

of EEG data. An ensemble learning principles is then implemented

in a SL framework, with three clients chosen for comparative

evaluation. Classification reports and confusion matrices serve as

the primary metrics to assess the performance of these models.

Thus, key contribution of this study is as follows:

1. Split learning framework tailored for EEG-based MDD

classification. And within this SL approach ML and DL models

are utilized for EEG features extractions and classification.

2. Proposed a ensemble model tailored for MDD disorder

classification through comprehensive performance metrics

across three clients in SL settings.

This article is organized into five main sections. Section 1

provides the background and context of the study. Section 2 reviews

related work and relevant literature. Section 3 details the methods

and materials used in the experiments. Section 4 presents the

obtained results and offers a comprehensive discussion. Finally,

Section 5 concludes the study by summarizing the key findings.

2 Related work

Researchers have recently explored a range of ML and DL

models for medical applications (Gour et al., 2023; Sultan et al.,

2023; Owais et al., 2022) yielding promising results. However,

as discussed in Section 1, the majority of these algorithms rely

on centralized architectures that raise privacy concerns and limit

their practical applicability. This section reviews recent studies that

utilize ML and DL approaches for EEG-based analysis, as well

as decentralized solutions aimed at safeguarding data privacy and

promoting scalability.

Park et al. (2021) employed multiple ML models SVM, RF,

and elastic net regression to classify six major psychiatric disorders

and healthy controls using EEG features such as power spectrum

density (PSD) and functional connectivity (FC). Their elastic net

model achieved the highest accuracy across disorders, notably

identifying schizophrenia with 93.83% accuracy using alpha PSD,

anxiety disorders with 91.03% accuracy via whole-band PSD, and

trauma and stress-related disorders with 91.21% accuracy from

beta FC features. Rafiei et al. (2022) proposed a DL model based

on a customized InceptionTime architecture for MDD detection,

achieving 91.67% accuracy with full-channel EEG data and 87.5%

after channel reduction. Rivera et al. (2022) conducted a systematic

mapping of 46 primary studies that leveraged DL for EEG-based

mental disorder diagnoses, revealing CNNs as the most common

approach and epilepsy as the most frequently studied disorder.

Wang et al. (2024) developed DiffMDD, a diffusion-based DL

framework for diagnosing MDD, incorporating Forward Diffusion

Noisy Training and Reverse Diffusion Data Augmentation to

mitigate noise and data scarcity. Anik et al. (2024) introduced an

11-layer 1D-CNN forMDD classification, focusing on gamma band
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FIGURE 1

Overview of the utilized methodology for major depressive disorder classification using EEG signals.

EEG segments of 15-second epochs, and attained 99.60% accuracy,

100% sensitivity, and 99.21% specificity.

Earl et al. (2024) used an RF model on resting-state

and emotionally charged EEG-based FC features, achieving

classification accuracies of 92.3%, 94.9%, and 89.7%. Metin

et al. (2024) combined 1D-CNN with LSTM and 2D-CNN to

classify bipolar disorder, reporting a higher accuracy (95.91%)

with the 2D-CNN compared to the 1D-CNN+LSTM (93%).

de et al. (2024) proposed SLiTRANet, a transformer-based DL

framework for MDD detection, achieving 99.92% accuracy, 99.90%

sensitivity, and 99.95% specificity. Zhu et al. (2025) introduced

MTNet, a transformer network integrating EEG and eye-tracking

data for depression detection, obtaining 91.79% accuracy and

highlighting the benefits of intermediate fusion. Ahmed et al.

(2024) utilized an ensemble of transformer based models (vanilla

BERT, BERTweet, ALBERT) to classify depression severity from

social media posts, while Ilias et al. (2024) employed BERT and

MentalBERT with extra-linguistic information for depression and

stress detection. Sun et al. (2023) introduced TensorFormer, a

multimodal transformer framework for sentiment analysis and

depression detection, demonstrating performance enhancements

on multiple datasets.

Decentralized learning approaches such as FL have also

garnered attention. Zhang et al. (2023) proposed FedBrain for

diagnosing brain disorders, integrating data augmentation, domain

alignment, and personalized predictors to handle high-dimensional

features and variable data distributions. FedBrain achieved 79%

accuracy with privacy preservation through differential privacy

and homomorphic encryption. Li et al. (2023) introduced CAFed,

an asynchronous federated CNN-based optimizer for detecting

depression from social media data, improving communication

efficiency, convergence rates, and privacy protection while

surpassing FedAvg in non-convex problem settings.

Although these studies demonstrate promising performance,

their reliance on traditional ML and DL methods often involves

centralized or FL-based architectures that either risk privacy or

suffer from resource constraints. Therefore, this work adopts SL as a

resource-sharingmethodology to address these concerns, balancing

privacy preservation with computational feasibility.

3 Materials and methods

This section describes the experimental procedures and

methods employed in this study. Figure 1 presents an overview

of the methodology, which comprises five key components: EEG

data collection, data preprocessing, model selection, SL, and

evaluation. Each component is discussed in detail in the subsequent

subsections.

3.1 Data collection

A publicly available EEG dataset (Mumtaz, 2016) is used in

this study, comprising of two groups: 33 MDD patients (mean age

40.33 ± 12.86) and 30 age-matched healthy controls (mean age

38.23 ± 15.64), recruited from the outpatient clinic at Hospital

Universiti Sains Malaysia (HUSM) (Mumtaz et al., 2017). EEG data
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FIGURE 2

EEG Data collection using electrodes across various locations.

were recorded under controlled conditions, with 5-min eyes-closed

(EC) and eyes-open (EO) sessions, using a 19-channel system

aligned with the international 10–20 standard and a linked-ear

reference (Figure 2). The system applied a 0.5–70 Hz bandpass

filter, a 50 Hz notch filter, and a sampling rate of 256 Hz, followed

by referencing to an infinity reference for subsequent analyses

(Mumtaz et al., 2017). Participants were instructed to avoid caffeine

and other substances because caffeine intake can alter arousal

states by inhibiting adenosine, thus introducing variability and

potential noise into EEG recordings (Lesar et al., 2025; Zhu et al.,

2024). MDD severity was assessed using the Beck Depression

Inventory-II (BDI-II) and the Hospital Anxiety and Depression

Scale (HADS) (Mumtaz et al., 2017). A sample shown in Figure 3

of a raw EEG signal recorded over 19 channels in a 10-second

window, demonstrates the time-domain structure of brain activity.

Accessed dataset (Mumtaz et al., 2017) contains the files structure

in pdf format, thus, we utilized python library [i.e., mne (Gramfort

et al., 2013)] in order to preprocess these EEG recording for our

case, Figure 3 is basically the recordings of EEG sample that is

preprocessed via MNE library. Each channel corresponds to a

specific scalp location following the international 10–20 system

(e.g., Fp1, F3, P3), allowing for regional analysis of cortical

oscillations. Notable fluctuations in amplitude can be seen across

channels, which may reflect ongoing cognitive or physiological

processes, as well as potential artifacts (e.g., eye blinks or muscle

movements). Similarly, in Figure 4, the power spectral density of

the EEG signal, color-coded to highlight the standard frequency

bands: Delta (0.5–4Hz), Theta (4–8Hz), Alpha (8–13Hz), Beta

(13–30Hz), and Gamma (>30Hz). The PSD curve represents the

distribution of signal power across frequencies, with characteristic

peaks often observed in the Delta and Alpha ranges. Identifying

the relative power in these frequency bands can reveal important

information about the participant’s mental state and the presence

of any abnormal patterns indicative of neurological or psychiatric

conditions.

3.2 Data preprocessing

3.2.1 Data loading
All EEG recordings were loaded in a standardized manner to

ensure uniform data handling. A common input of 10 seconds of

EEG recording was used from each sample was then applied across

all channels to facilitate consistent inter-subject comparisons.

3.2.2 Filtering
Filtering is an essential step in EEG signal processing because

raw signals often contain noise and artifacts in frequency ranges

that are not relevant for subsequent analysis. To address this, we

employed a bandpass filter to removes unwanted noise and keeping

frequency components as well. A bandpass filter in the 0.5–60Hz

range was employed to suppress low-frequency drifts and high-

frequency noise. Mathematically, it shown in Equation 1, where

x(t) denotes the raw EEG signal and filtered signal is denoted as x̃(t)

x̃(t) = F
−1

{

F{x(t)} ·H(ω)
}

(1)

Here, F denotes the Fourier transform, and H(ω) is the ideal

passband response for the specified frequency range.
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FIGURE 3

Raw EEG data, recorded over 19 channels in a 10-second window, demonstrates the time-domain structure of brain activity.

3.2.3 Epoch segmentation
We segmented the continuous EEG into fixed-length epochs

of 5 seconds each, with a 1 second overlap between consecutive

segments. This specific window length strikes a practical balance

between capturing relevant EEG frequency components (e.g.,

alpha, beta, and gamma bands) andmaintaining adequate temporal

resolution for classification. Shorter windows (2–3 seconds) often

fail to capture stable patterns, while substantially longer windows

(e.g., 8–10 seconds) risk smoothing out important transient

features. The 1 second overlap ensures continuity across segment

boundaries and mitigates the loss of transitional information that

can occur at strict epoch boundaries. Mathematically it is given in

Equation 2.

Ei =
{

x(t)
∣

∣ t ∈ [i · 1, (i · 1 + τ )]
}

(2)

where τ = 5 seconds is the epoch length, and 1 = τ − 1

seconds denotes the shift applied between consecutive segments.

3.2.4 Feature extraction
Each epoch was transformed into a feature vector by computing

a set of statistical descriptors that capture both amplitude variations

and higher-order properties of the signal distribution. If xn denotes

the amplitude of the signal at time index n, and N is the number of

samples per epoch, the following examples (using Equations 3–eq6)

illustrate key feature computations. Whereas, P2P in Equation 5

refers the peak to peak amplitude of the recorded EEG signal.

µ =
1

N

N
∑

n=1

xn (3)

σ =

√

√

√

√

1

N

N
∑

n=1

(xn − µ)2 (4)

P2P = max{xn} −min{xn} (5)

RMS =

√

√

√

√

1

N

N
∑

n=1

x2n (6)

Higher-order moments, including skewness and kurtosis, were

also evaluated to account for asymmetry in the signal distribution.

3.2.5 Labeling
Each epoch was then assigned a class label based on the

participant’s diagnostic status (0 for healthy controls, 1 for MDD).

The final output of this preprocessing pipeline was a feature matrix

of size along with a corresponding label vector. This structured

dataset was then used for the model training and evaluation.
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FIGURE 4

The power spectral density of the EEG signal, color-coded to highlight the standard frequency bands: Delta (0.5–4Hz), Theta (4–8Hz), Alpha

(8–13Hz), Beta (13–30Hz), and Gamma (>30Hz).

FIGURE 5

ML and DL models architectural overview.

3.3 ML and DL models

In this section, the architectures of utilized ML and DL models

has been discussed. An overview of their architecture has been

shown in Figure 5.

3.3.1 Machine learning classifiers
Model selection plays a pivotal role in achieving robust

classification performance. Consequently, the following tree-based

and other conventionalML classifiers were employed: LR, RF, SVM,

DT, KNN, and GB. Each classifier offers distinct inductive biases

and learning strategies that are used to capture diverse patterns in

EEG-based features for distinguishing MDD patients from healthy

controls.

Moreover, all hyperparameter settings (e.g., n_estimators =

100 for RF, max_depth = 10 for DT, n_neighbors = 7 for KNN)

were determined via a grid search procedure. This involved

systematically varying key parameters within predefined ranges

and evaluating model performance through cross-validation on the

training set. The final configurations were selected based on their

classification report.
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3.3.1.1 Decision tree

A DT recursively partitions the feature space by selecting

optimal split points that maximize homogeneity in the resulting

subsets. As given in Equation 7,D represent the training dataset and

j be the index of a potential split on feature xj. The split criterion can

be based on information gain or the Gini index. For instance, using

the Gini index G, the split s on feature xj is chosen to minimize.

s∗ = argmin
s

[nL

n
G(DL) +

nR

n
G(DR)

]

, (7)

whereDL andDR are the left and right child partitions ofD after

the split s, nL and nR are the respective sizes of these partitions, and

n is the total number of samples in D.

3.3.1.2 Random forest

RF constructs an ensemble of decision trees, each trained on

a bootstrap sample of the original dataset. At each split node, a

random subset of features is considered to enhance diversity among

the trees. The model’s prediction is obtained via majority voting

(for classification) across all trees. Mathematically it is given in

Equation 8.

ŷ = mode
(

{ ht(x) | t = 1, . . . , T}
)

, (8)

where ht(x) denotes the prediction from the t-th tree and T is

the total number of trees in the forest.

3.3.1.3 Gradient boosting

GB sequentially fits new weak learners (often decision trees)

to the negative gradient of a specified loss function. As given in

Equation 9, yi denotes the true label of instance i, and let Fm−1

be the ensemble model at iteration (m − 1). A new base learner

hm is trained to approximate the negative gradient of the loss

ℓ(yi, Fm−1(xi)). The ensemble is then updated as:

Fm(x) = Fm−1(x)+ η · hm(x), (9)

where η is the learning rate. This iterative procedure allows

optimizer to correct the residual errors from the previous step,

leading to improved performance over single-tree methods.

3.3.1.4 Logistic Regression

LR estimates the probability that a sample x belongs to the

positive class (denoted by y = 1) using the sigmoid function. As

given in Equation 10:

p(x) = σ (β⊤x + β0) =
1

1+ exp(−(β⊤x + β0))
, (10)

where β is the weight vector, β0 is the intercept, and σ (·)

represents the sigmoid. A threshold (i.e., 0.5) is applied to p(x) to

determine class of the given input.

3.3.1.5 Support vector machine

SVM is a widely used supervised learning technique renowned

for its effectiveness in high-dimensional spaces and robust

generalization capabilities. The key principle of SVM lies in finding

an optimal decision boundary (hyperplane) that maximizes the

margin between different classes, thus improving classification

performance. In its linear form, SVM is given in Equation 11,

minimize
w,b

1

2
‖w‖2 subject to yi(w

⊤xi + b) ≥ 1, ∀i, (11)

where w and b define the hyperplane, and yi ∈ {−1,+1} denotes

class labels. Nonlinear decision boundaries can be learned via

kernel functions.

3.3.1.6 K-Nearest Neighbors

K-Nearest Neighbors (KNN) is a simple yet effective non-

parametric, instance-based learning method. It assigns a class to a

query point xq by considering the classes of its k nearest neighbors.

The distance metric often used is the Euclidean distance (as given

in Equation 12).

d(xq, xi) =

√

√

√

√

M
∑

j=1

(xqj − xij)2, (12)

where M is the number of features. The predicted class is

determined by a majority vote among these k neighbors.

3.4 DL models

3.4.1 Transformer models
Transformer architectures have gained prominence for their

capacity to capture long-range dependencies and context within

sequential data, making them particularly appealing for EEG-based

analysis. Unlike traditional recurrent networks, Transformers

dispense with explicit recurrence and convolutional operations,

relying instead on an attention mechanism. Mathematically (as

shown in Equation 13), Q, K, and V denote the query, key, and

value matrices, respectively, then a single-head attention module

can be written as:

Attention(Q,K,V) = softmax
(QK⊤

√

dk

)

V , (13)

where dk is the dimension of the key vectors, and softmax

function normalizes the attention scores. Multi-head attention

extends this formulation by employing several parallel attention

mechanisms and concatenating their outputs to enrich the

representational capacity (as given in Equation 14).

MultiHead(Q,K,V) =
∥

∥

H

h=1
Attention(QWQ

h
, KWK

h , VW
V
h )W

O,

(14)

where
∥

∥ denotes concatenation across H attention heads, and

W
Q
h
,WK

h
,WV

h
, andWO are learned projection matrices.

In EEG analysis, input sequences can be framed as embeddings

of multi-channel signals over time, enabling the transformer

to learn context-dependent patterns relevant for mental health

classification. Positional encodings are commonly added to the

input embeddings to preserve temporal order. This attention-based

approach often yields superior performance in capturing nuanced

dependencies within EEG signals, especially for tasks such as MDD

detection.
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3.4.2 Autoencoders
Autoencoders are a family of neural network models designed

to learn compressed representations (encodings) of the input data

by minimizing reconstruction error. They consist of two main

components i.e., Encoder and Decoder. Encoder, maps an input

x ∈ R
D to a latent code z ∈ R

d (with d < D) as given in

Equation 15,

z = fenc(x). (15)

Whereas, decoder reconstructs the original input from

z, producing x̂ ∈ R
D as when in Equation 16:

x̂ = fdec(z). (16)

The model is typically optimized to minimize:

L = ‖x− x̂‖2, (17)

another suitable measure of reconstruction fidelity. By

constraining the latent dimension d, autoencoders learn salient

features that represent the most informative aspects of the data. In

EEG-based MDD detection, autoencoders can help denoise signals

or extract meaningful representations that capture underlying

neural patterns. These learned representations may then serve as

inputs for downstream classifiers or be integrated into end-to-end

DL pipelines for improved diagnostic accuracy.

3.5 Ensemble learning

Ensemble learning combines multiple base models to achieve

improved predictive performance relative to any single constituent

model. This approach capitalizes on the principle of “wisdom of the

crowd,” where diverse model outputs are aggregated to form a final

decision. A common strategy for building ensembles include:

3.5.1 Bagging
Bagging (Bootstrap Aggregating) trains each base learner on

a different bootstrap sample (randomly drawn with replacement)

of the original dataset. Let {Db}
B
b=1

be the collection of bootstrap

samples, each used to train a distinct model hb(x). The final

prediction is obtained by averaging or voting across the ensemble:

ŷbagging =

{

majority
{

hb(x)
}B

b=1
, classification

1
B

∑B
b=1 hb(x), regression

(18)

Bagging often reduces variance without substantially increasing

bias, making it effective for high-variance models like decision

trees.

Ensemble learning is particularly relevant for EEG-based

MDD classification due to the high dimensionality and variability

inherent in EEG signals. It is because of this reason, ensemble

learning was utilized using best performing ML model and then

best performing DL model. By integrating these models, ensembles

have the potential to yield more reliable and generalizable

predictions for clinical applications.

3.6 Split learning

SL offers a decentralized framework designed to address privacy

and resource constraints, particularly relevant when clinical or EEG

datasets cannot be shared in raw form. Unlike fully centralized

methods, where all data must reside on a single server, SL divides a

neural network into multiple segments to be trained collaboratively

between clients and a central server. In this study, three clients

are assumed, each holding a portion of the EEG data locally

(as shown in Figure 6). After data preprocessing (Section 3.2),

SL is implemented to enable model training without direct data

exchange across clients.

3.6.1 Architectural overview
SL offers a collaborative training framework by partitioning a

neural network between clients and a central server. This approach

helps ensure that sensitive data like EEG signals remain local to

each client, while still enabling the development of robust, shared

models. In the context of MDD classification, SL architecture that

we used is shown in Figure 6 that is particularly beneficial, as it

enable data training while managing resources efficiently.Consider

a neural network f (·) decomposed into two primary segments

(as given in Equation 19. Where: fclient denotes the partial model

residing on the client side, parametrized by θ , which transforms

local data x into an intermediate representation z. fserver denotes

the remaining portion of the model, located on a central server and

parametrized by φ. It processes the intermediate representation z

to produce predictions (e.g., class probabilities). And, ⋄ symbolizes

the functional concatenation of the two segments.

f (x; θ ,φ) = fclient(x; θ) ⋄ fserver(z;φ) (19)

Each client trains only fclient on its local dataset, while fserver is

trained on the server side using the intermediate representations z

received from the clients. This design ensures that raw EEG data

never leaves the client’s local environment. In utilized methodology

for SL, each client i forwards only intermediate activations z

derived from its local data to the server, which handles the

remaining layers and calculates the global loss. The server’s

gradients are backpropagated to the clients, enabling local updates

while preserving data privacy. This division of computational

labor also alleviates resource constraints on client devices, as

the heaviest computations can be offloaded to the server. This

makes SL particularly applicable for MDD classification, where

healthcare institutions typically hold proprietary EEG data. By

sharing only intermediate features, SL mitigates privacy concerns

and fosters collaborative model development, enabling a more

inclusive and robust system for detecting and monitoring mental

health conditions.

3.6.2 Algorithmic workflow for split learning
In this subsection, workflow of the utilized SL methodology

has been described, as it starts with initialization, local processing

and then toward clients processing and propagation, these steps are

given as below:
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FIGURE 6

Split learning concept.

3.6.2.1 Initialization

Each client Ci initializes its local model parameters θ i, while

the central server initializes its parameters φ. Data normalization

or other preliminary setup is performed here.

3.6.2.2 Local preprocessing

Prior to training, each client cleans and preprocesses its local

EEG data (e.g., filtering, artifact removal). This ensures high-quality

input to the client-side model fclient(·; θ i).

3.6.2.3 Client forward pass

The client-side model fclient processes the local EEG data Di to

produce intermediate representations zi. Because only zi is shared,

raw EEG data remains private.

3.6.2.4 Intermediate transmission

Clients transmit zi to the central server. This step preserves data

privacy, as the raw EEG signals never leave the local environment.

3.6.2.5 Server forward pass and loss computation

The central server processes all received activations {zi} using

The server computes a global loss L by aggregating individual losses

(e.g., cross-entropy) for each client’s predictions yi.

3.6.2.6 Backpropagation and parameter updates

Using the global loss L, the server performs backpropagation to

update its parameters φ. By the chain rule, partial gradients are also

computed and sent back to each client.

3.6.2.7 Client-side parameter updates

Upon receiving the relevant gradients, each client updates its

local parameters θ i. This allows clients to learn collaboratively

without ever sharing raw EEG data.

3.6.2.8 Iteration and convergence

All previous steps (from local preprocessing to parameter

updates) are repeated for multiple epochs. Once convergence is

reached, the final model consists of updated client-side parameters

{θ i} and server-side parameters φ.

3.6.2.9 Output

The trained SL model can be deployed for EEG classification.

Each client retains its local model segment θ i, while the server holds

φ, ensuring continual privacy protection.

3.7 Evaluation metrics

Classification performance was evaluated using standard

metrics derived from the confusion matrix in a binary classification

setting (Healthy vs. MDD). Let TP (True Positive) be the number

of MDD instances correctly classified, TN (True Negative) the

number of Healthy instances correctly classified, FP (False Positive)

the number of Healthy instances misclassified as MDD, and FN

(False Negative) the number of MDD instances misclassified as

Healthy. These values form the following 2 × 2 confusion matrix,

from this matrix, the evaluation metrics are computed that are

accuracy, precision, recall, and F1-score:

[

TP FP

FN TN

]

3.7.1 Accuracy
Accuracy (Equation 20) measures the overall rate of correct

predictions across all instances. It is the proportion of TP and TN

from all predicted values by the model. It measures the proportion

of instances that are correctly predicted out of the total number of

predictions.

Accuracy =
TP+ TN

TP+ TN+ FP+ FN
. (20)
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3.7.2 Precision
Precision is a crucial metric that quantifies the model’s ability

to correctly identify positive (MDD) cases among all predicted

positives. As given in Equation 21, it is the ratio of TP to the sum of

FP and TN

Precision =
TP

TP+ FP
. (21)

3.7.3 Recall
Recall, sometimes referred to as sensitivity, measures the

model’s effectiveness at identifying all positive (MDD) instances in

a dataset. Mathematically, as given in Equation 22, it is the ratio of

TP to the sum of TN and FN.

Recall =
TP

TP+ FN
. (22)

3.7.4 F1-Score
The F1-Score provides a balanced assessment of a model’s

performance by combining both Precision and Recall into a single

metric. Mathematically expressed in Equation 23, it is the harmonic

mean of Precision and Recall. Unlike a simple arithmetic mean, the

harmonic mean penalizes extreme values, ensuring both Precision

and Recall share comparable significance in the final score.

F1 Score = 2×
Precision× Recall

Precision+ Recall
. (23)

3.7.5 Confusion matrix
Confusion matrix provides a visual overview of classification

performance. It indicates how frequently the classifier confuses

one class for the other, offering deeper insight into errors (FPs

vs. FNs). For binary classification (Healthy vs. MDD), the matrix

aids in diagnosing misclassification patterns and refining model

strategies. All these metrics collectively form the classification

report, enabling a comprehensive assessment of each model’s

performance in detecting MDD from EEG signals.

4 Results and discussion

In this section, we present a comprehensive evaluation of the

proposed classification approaches for MDD detection. We analyze

the performance of both ML and DL models, and additionally

showcase an ensemble method that utilizes the SL framework. By

assessing metrics such as accuracy, precision, recall, and F1-Score,

we gain insight into each model’s strengths and limitations.

4.1 ML models results

As discussed earlier, several ML models i.e., LR, RF, SVM, DT,

KNN, and GB were utilized to classify MDD using EEG data.

Table 1 presents their respective performances on the test set, along

with best cross-validation (CV) scores and optimal hyperparameter

configurations. The key findings for each model are summarized

below.

4.1.1 LR model
Achieved a test accuracy of 92.41%, with F1-Scores of 0.9160

for the Healthy class and 0.9308 for the MDD class. Its best CV

score was 0.8833. These results suggest that LR provides a stable

generalization capability when distinguishing between Healthy

and MDD samples. The best hyperparameter setting at C: 0.1

indicates a preference for regularization to control overfitting in

high-dimensional EEG feature spaces.

4.1.2 RF model
Achieved a test accuracy of 100%, outperforming other ML

models. Its best CV score was 0.9138. The selected hyperparameter

(number of estimators 100) enable an ensemble of sufficiently large

and diverse trees. Due to its strong performance, RF was chosen for

the ensemble approach with Deep Learning models, as shown in

Figure 7.

4.1.3 SVM model
Achieved an accuracy of 98.74%, indicating a clear separation

between the two classes. Its F1-Scores of 0.9865 (Healthy) and

0.9882 (MDD) reflect the model’s effectiveness. The best CV score

was 0.9182, achieved with hyperparameter (C: 10, kernel: rbf). This

shows that SVM is suitable for handling EEG data with potentially

complex class boundaries.

4.1.4 DT model
Achieved an accuracy of 97.75%. Its best CV score was 0.8740.

By employing a moderately deep tree with max depth of 10, the

DT model partitions the EEG feature space effectively. Although

decision trees can overfit, this depth appears to balance training

accuracy and generalization for the MDD classification task.

4.1.5 KNN model
Achieved an accuracy of 100%, similar to the RF model. Its

best CV score was 0.8713. The chosen hyperparameters number

of neighbors: 7, weights: distance uses distance-based weighting

in separable EEG clusters. However, KNN can be computationally

expensive at inference time and typically requires extensive

parameter tuning for integration with DL pipelines, so it was not

selected for the ensemble stage.

4.1.6 GB model
Achieved an accuracy of 99.35%, with a best CV score of 0.9184.

It iteratively refined weak learners using a learning rate of 0.2

and 100 estimators. Its F1-Scores of 0.9931 (Healthy) and 0.9939

(MDD) indicate that boosting rounds improve classification by

reducing both bias and variance.

Table 1 shows that all models attain high classification

performance. RF and KNN reach 100% accuracy on the test set,

while SVM, DT, LR, and GB also present strong results. The

consistent F1-Scores reinforce the effectiveness of EEG features for

detecting MDD.

Frontiers inComputationalNeuroscience 10 frontiersin.org117



Umair et al. 10.3389/fncom.2025.1569828

TABLE 1 Performance of Various Machine Learning Models for MDD Classification.

Model Best score (CV) Best params Accuracy F1 (Healthy) F1 (MDD) TP FP FN TN

Logistic regression 0.8833 {C: 0.1} 0.9241 0.9160 0.9308 9,382 1,022 374 7,609

Random forest 0.9138 {max_depth: None,

n_estimators: 100}

1.0000 1.0000 1.0000 9,756 0 0 8,631

SVM 0.9182 {C: 10, kernel: rbf} 0.9874 0.9865 0.9882 9,699 175 57 8,456

Decision tree 0.8740 {max_depth: 10} 0.9775 0.9759 0.9790 9,606 263 150 8,368

K-Nearest

Neighbors

0.8713 {n_neighbors: 7,

weights: distance}

1.0000 1.0000 1.0000 9,756 0 0 8,631

Gradient Boosting 0.9184 {learning_rate: 0.2,

n_estimators: 100}

0.9935 0.9931 0.9939 9,721 84 35 8,547

FIGURE 7

Accuracies comparison for best performing ML along with ensemble DL model.

TABLE 2 4-Fold cross-validation accuracies for each classifier.

Model Fold
1

Fold
2

Fold
3

Fold 4 Mean

Logistic regression 0.92 0.88 0.93 0.90 0.91

Random forest 1.00 0.99 0.96 1.00 0.98

SVM 0.95 0.94 0.98 0.97 0.96

Decision tree 0.87 0.88 0.90 0.86 0.88

K-Nearest

Neighbors

0.99 0.96 0.95 0.98 0.97

Gradient boosting 0.93 0.94 0.95 0.92 0.93

4.1.7 K Fold cross validation results
Table 2 shows the accuracy for each classifier across four

folds of cross-validation. The Mean column reports the average

accuracy across all folds. By separating the data into distinct

training/validation splits for each fold, we reduce the risk of

overfitting and obtain a more realistic estimate of out-of-sample

performance.

4.2 DL models performances along with
ensemble learning

After training an autoencoder to learn compact EEG

representations, multiple classifiers were evaluated on these

latent features. Table 3 summarizes the results for both a baseline

autoencoder-only ensemble and five conventional ML algorithms

trained on autoencoder outputs. Each row reports the overall

accuracy as well as precision, recall, and F1-scores for both classes

(Healthy and MDD).

4.2.1 Discussion of autoencoder-based results
Table 3 demonstrates that using autoencoder-derived

representations yield competitive performance across multiple

classifiers. The baseline ensemble (first row) provides a moderate

accuracy of 0.6884, indicating that unsupervised feature extraction

alone captures some discriminative patterns.

RF and SVM show the highest accuracies (over 0.82),

suggesting that tree-ensemble and margin-based methods

effectively exploit these latent features. K-Nearest Neighbors and
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TABLE 3 Classification performance on autoencoder and with ensemble autoencoder.

Method Accuracy Healthy MDD

Precision Recall F1 Precision Recall F1

Autoencoder (baseline) 0.6884 0.7031 0.5817 0.6367 0.6791 0.7828 0.7273

Autoencoder + random forest 0.8249 0.9321 0.6761 0.7837 0.7696 0.9565 0.8529

SVM 0.8222 0.9061 0.6929 0.7853 0.7752 0.9365 0.8483

Autoencoder + decision tree 0.6833 0.6947 0.5800 0.6321 0.6759 0.7746 0.7219

Autoencoder + K-Nearest Neighbors 0.7692 0.7627 0.7375 0.7499 0.7745 0.7971 0.7857

Autoencoder + gradient boosting 0.7735 0.8187 0.6645 0.7336 0.7457 0.8699 0.8030

TABLE 4 Classification performance on transformer and ensemble models.

Method Accuracy Healthy MDD

Precision Recall F1 Precision Recall F1

Transformer (baseline) 0.9000 0.9100 0.8800 0.8950 0.9000 0.9200 0.9100

Transformer + decision tree 0.8800 0.8900 0.8600 0.8750 0.8700 0.8900 0.8800

Transformer + K-Nearest Neighbors 0.9200 0.9100 0.9200 0.9150 0.9300 0.9200 0.9250

Transformer + SVM 0.9300 0.9400 0.9200 0.9300 0.9300 0.9400 0.9350

Transformer + gradient boosting 0.9500 0.9500 0.9400 0.9450 0.9400 0.9500 0.9450

Transformer + random forest 0.9900 0.9900 0.9900 0.9900 0.9900 0.9900 0.9900

Gradient Boosting also achieve an accuracies of approximately

0.77, while the single DT model exhibits lower performance (0.68)

relative to ensemble approaches. RF high precision for Healthy

(0.9321) and recall for MDD (0.9565) underline its balanced

detection capabilities in this context.

4.2.2 Transformer-based classification
As transformer model is utilized to capture long-range

dependencies in EEG signals, several classifiers were applied to

the Transformer outputs for final predictions as well. Table 4

summarizes the results, including a standalone Transformer

baseline and five conventional ML classifiers. The table reports

overall accuracy, alongside precision, recall, and F1-scores for the

two classes (Healthy vs.MDD). Their detailed results discussion has

been given in Section 4.2.3.

4.2.3 Discussion of transformer-based results
In this subsection the results achieved for ensemble learning

has been discussed, as we utilized transformers along with ML

models and these has been given in Table 4 that shows the

classification performance of the baseline Transformer model and

its combinations with different ML classifiers. The standalone

Transformer (Baseline) achieves an accuracy of 0.90, with 0.91

precision, 0.88 recall, and 0.895 F1 for the Healthy class, and 0.90

precision, 0.92 recall, and 0.91 F1 for the MDD class. These results

indicate that the Transformer can extract features from EEG signals

that help differentiate between Healthy and MDD instances.

Transformer + DT yields an accuracy of 0.88. For the Healthy

class, it achieves 0.89 precision, 0.86 recall, and 0.875 F1, while for

the MDD class it attains 0.87 precision, 0.89 recall, and 0.88 F1.

Even though this is lower than some other combinations, it still

shows reasonable performance compared to traditional EEG-based

methods.

Transformer + KNN reports an accuracy of 0.92. The Healthy

class has 0.91 precision, 0.92 recall, and 0.915 F1, and the MDD

class has 0.93 precision, 0.92 recall, and 0.925 F1. These numbers

suggest that local distance-based methods can work well when

applied to Transformer outputs.

Transformer + SVM achieves an accuracy of 0.93. For the

Healthy class, precision, recall, and F1 are 0.94, 0.92, and 0.93,

respectively, while for the MDD class they are 0.93, 0.94, and

0.935. This indicates that margin-based classification benefits from

sequence-aware features extracted by the Transformer.

Transformer + GB attains an accuracy of 0.95. Its

Healthy metrics are 0.95 precision, 0.94 recall, and 0.945

F1, and its MDD metrics are 0.94 precision, 0.95 recall,

and 0.945 F1. This suggests that boosting rounds are

effective at refining the latent representations provided by

the Transformer.

Transformer + RF achieves the highest accuracy of 0.99.

Precision, recall, and F1 for both Healthy and MDD classes are all

0.99, showing that the ensemble of decision trees makes good use

of attention-based features.

Thus, combining the Transformer with robust classification

algorithms enhances performance compared to the baseline.

The best results come from pairing the Transformer with

RF, followed by GB, SVM, KNN, and DT. These findings

illustrate that attention-based feature extraction can improve

EEG-based MDD classification when integrated with well-chosen

ML methods.
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TABLE 5 Performance of split learning across three clients.

Client Accuracy Precision Recall F1-Score Healthy MDD

Correct Misclass. Correct Misclass.

Client 1 0.9574 0.9577 0.9574 0.9574 2,744 172 3,124 89

Client 2 0.9623 0.9625 0.9623 0.9623 2,679 148 3,219 83

Client 3 0.9543 0.9549 0.9543 0.9543 2,691 197 3,158 83

FIGURE 8

ROC curves for clients in SL settings.

4.3 Split learning results

SL framework was implemented across three clients,

each training local Transformer-based encoders whose latent

representations were subsequently processed by a RF classifier

on the server side. Table 5 shows the key performance metrics

(Accuracy, Precision, Recall, and F1-Score) for each client,

alongside the main confusion matrix values (correct vs.

misclassified instances of Healthy and MDD). The average

inference time per client was measured at 2.0866 seconds.

To quantify inference time, we define the total inference time

for a single sample on the i-th client as given in Equation 24:

T
(i)
inference

= T
(i)
local

+ T
(i)
transfer

+ Tserver, (24)

where T
(i)
local

is the local forward pass time through the

Transformer on client i, T
(i)
transfer

is the latency for transmitting the

latent representation to the server, and Tserver is the server-side

classification time using the RF model. The average inference time

Tinference across all k clients mathematically is given in Equation 25.

Tinference =
1

k

k
∑

i=1

T
(i)
inference

. (25)

Thus got an average Tinference of 2.0866 seconds. This end-to-

endmetric reflects the time fromwhen an EEG sample arrives at the

client to when the final classification outcome is returned, including

both local and server-side computations.

4.3.1 Discussion of split learning results
Table 5 illustrates that all three clients attain high classification

accuracy, exceeding 95%. Client 2 achieves the best overall accuracy

of 0.9623, closely followed by Client 1 (0.9574) and Client 3

(0.9543). Precision and Recall remain closely aligned for each

client, reflecting a balanced ability to detect both Healthy and

MDD classes. Confusion matrix counts indicate that relatively few

Healthy samples are misclassified as MDD and vice versa. ROC

curve shown in Figure 8 also reflects that each client achieved

higher true positive rate showing their ability and reliability.

These findings shows that a SL approach, utilized with a

transformer architecture for local feature extraction and RF

model for final classification, can maintain robust performance

while preserving data privacy. Additionally, the measured average

inference time of 2.0866 seconds per client suggests that this

collaborative framework is computationally feasible for real-world

EEG based mental health applications.

While these performance metrics are promising, practical

deployment on devices with limited compute capabilities (e.g.,

mobile EEG headsets, embedded healthcare systems) demands

additional optimization. Because SL partitions the model into

client-side and server-side segments, heavier computations—

such as the Transformer’s attention blocks—are executed on

the server, reducing on-device resource usage. Future work will

involve benchmarking these strategies across diverse hardware

platforms to quantify improvements in latency, memory use, and

power efficiency.

5 Conclusion

This work presented an effective methodology for major

depressive disorder classification by integrating advanced EEG

feature extraction, ensemble models, and split learning to

safeguard privacy. In conventional centralized experiments,

RF, KNN, and GB achieved commendable performance, while

a Transformer-RF ensemble model achieved 99% accuracy.

Autoencoder-based feature learning provided notable results,

illustrating that unsupervised approaches can be profitably

combined with supervised classifiers. Crucially, the split learning

implementation validated the feasibility of decentralizing training:
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three distinct clients each achieved over 95% accuracy, with

minimal performance trade-offs relative to centralized schemes. By

maintaining data on local nodes and exchanging only intermediate

representations, the framework supported institutional privacy

requirements while offering robust classification outcomes.

Future investigations may include refining model architectures

for improved efficiency, exploring additional neurophysiological

data modalities, and extending the approach to multi-disorder

classification scenarios, thereby broadening the applicability

of privacy-preserving, high-performance EEG analytics in

clinical settings.
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effect of proprioceptive dolphin assisted activities on health-related quality of
life and muscle tension, biomechanical and viscoelastic properties in major
depressive disorder adults: case analysis. Front. Hum. Neurosci. 18:1487293.
doi: 10.3389/fnhum.2024.1487293
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Introduction: Preserving privacy is a critical concern in medical imaging,

especially in resource limited settings like smart devices connected to the IoT.

To address this, a novel encryption method for medical images that operates at

the bit plane level, tailored for IoT environments, is developed.

Methods: The approach initializes by processing the original image through

the Secure Hash Algorithm (SHA) to derive the initial conditions for the Chen

chaotic map. Using the Chen chaotic system, three random number vectors

are generated. The first two vectors are employed to shu	e each bit plane of

the plaintext image, rearranging rows and columns. The third vector is used to

create a random matrix, which further di�uses the permuted bit planes. Finally,

the bit planes are combined to produce the ciphertext image. For further security

enhancement, this ciphertext is embedded into a carrier image, resulting in a

visually secured output.

Results: To evaluate the e�ectiveness of our algorithm, various tests are

conducted, including correlation coe�cient analysis (C.C < or negative),

histogram analysis, key space [(1090)8] and sensitivity assessments, entropy

evaluation [E(S) > 7.98], and occlusion analysis.

Conclusion: Extensive evaluations have proven that the designed scheme

exhibits a high degree of resilience to attacks, making it particularly suitable for

small IoT devices with limited processing power and memory.

KEYWORDS

image encryption, Chen chaotic map, chaos, meaningful encryption, bit-level

encryption, IoT

1 Introduction

The Internet of Things (IoT) connects devices and objects via the Internet, whether

wirelessly or wired. In recent years, the concept has become increasingly popular as it

is used for various purposes, including business development, transportation, education,

and communication. The hyper-connectivity created by the IoTs enables individuals and

organizations to communicate seamlessly from a distance (Porras et al., 2018). IoT has been

widely embraced in a wide range of industries, including e-health, manufacturing, smart

cities, agribusiness, and home automation. According to Cisco, Internet-connected gadgets

will number approximately 500 billion by 2030 (Aman et al., 2020). As IoT advances

exponentially, medical imaging and data have become more widely used, and are therefore

need to be secured before being shared.

Frontiers inComputationalNeuroscience 01 frontiersin.org123

https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org/journals/computational-neuroscience#editorial-board
https://www.frontiersin.org/journals/computational-neuroscience#editorial-board
https://www.frontiersin.org/journals/computational-neuroscience#editorial-board
https://www.frontiersin.org/journals/computational-neuroscience#editorial-board
https://doi.org/10.3389/fncom.2025.1591972
http://crossmark.crossref.org/dialog/?doi=10.3389/fncom.2025.1591972&domain=pdf&date_stamp=2025-06-06
mailto:abdullah.aziz@umu.se
https://doi.org/10.3389/fncom.2025.1591972
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/fncom.2025.1591972/full
https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org


Asiri et al. 10.3389/fncom.2025.1591972

Medical images have become increasingly important in

diagnosing and treating illnesses. The visuals are used directly

by doctors during the evaluation and therapy of patients (Ismail

et al., 2018). For medical applications, securing the transmission

and storage of medical images has become increasingly important

due to their containment of private information (Ye and Huang,

2015; Dridi et al., 2016; Al-Haj et al., 2015; Cao et al., 2017; Khan

et al., 2018; Hu et al., 2024; Chu et al., 2024; Belazi et al., 2019).

A number of academics have therefore focused on developing

methods to secure images in IoT applications. The authors in

Ye and Huang (2015) utilized logistic and Arnold chaotic maps

to design an autoblocking and Electrocardiography (ECG) signal-

based medical image encryption scheme. ECG signals and the

Wolf algorithm calculates initial conditions for the chaotic system.

A key characteristic of this cryptoarchitecture is that it performs

autoblocking diffusion only during the encryption phase of the

process, in contrast to traditional cryptoarchitectures. A new chaos

and neural network-based medical image encryption scheme has

been presented in Dridi et al. (2016). Plaintext image pixels are

XORed with a generated key. The weight and bias values for neural

networks have been computed using the Logistic map. By using

this technique, medical images can be made more secure with a

simpler algorithm than current ones. Using Strong cryptographic

functions with internal symmetric keys and hash codes, the author

designed an encryption scheme for medical images that ensures

confidentiality, authenticity, and integrity (Al-Haj et al., 2015).

With the whirlpool hash function and Galois counter mode,

advanced encryption standards are used to secure confidentiality

and authenticity, while digital signature algorithms employ elliptic

curves to secure integrity and authenticity. The edge map-based

medical encryption scheme has been presented in Cao et al. (2017).

It consists of three main steps: (a) extraction of bit planes, (b)

generating random numbers, and (c) permutations. The source

image can be any type of image and distinct edge maps can be

produced by varying edge detection approaches and thresholds,

depending on the source image type. An Intertwining Logistic map

and Deoxyribonucleic acid (DNA) are utilized by Khan et al. to

protect medical images (Khan et al., 2018). A DNA sequence is

passed through SHA-512 in order to calculate the chaotic system’s

initial condition. Plaintext pixel correlations are broken down

through shuffling. In addition to XORing, an affine transformation

is also applied to diffuse the shuffled pixels. A two-round medical

encryption scheme is designed by Belazi et al. by combining chaos

and DNA (Belazi et al., 2019). During each round, six steps are

performed, namely block permutation, pixel substituting, DNA

encoding, bit substitution, DNA decoding, and bit diffusion.

As Internet-related technologies continue to grow

exponentially, new technologies, energy, or modifications are

added daily. Applications and systems that use the Internet of

Things benefit greatly from the recent advancements in wireless

technology from 1G to 5G (Hasan et al., 2021). In recent years,

high-quality medical care has become increasingly important as

a result of population growth, urbanization, and the COVID-19

pandemic (Trujillo-Toledo et al., 2023). In medical diagnostics, X-

rays, Computer Tomography Scans (CT scans), nuclear medicine

imaging, and ultrasounds are modern imaging techniques. Thus,

these high-resolution diagnostic images need to be secured before

being exchanged. Recently, cyber attacks could make healthy

patients appear sick and vice versa. Therefore, cyber-security

threats will increase alarmingly in the area of medical image

communication. It is therefore increasingly important to have

fast and secure cyber-security systems regarding the diagnosis

of medical images (Kester et al., 2015). The Internet of Medical

Things (IoMT) can provide many advantages to hospitals and

healthcare organizations. However, they need to ensure that the

right policies and protocols are in place to tackle the security

challenges posed by IoMT. Researchers are curious about the

potential security and privacy issues associated with this concept,

particularly when bandwidth and frequency are high. Therefore,

it is essential to design a robust medical image encryption scheme

to guarantee the safe and trustworthy transmission and receipt

of patients’ symptomatic data through IoT. Double permutation

techniques are used in Hasan et al. (2021) to design a lightweight,

efficient encryption algorithm to protect healthcare images. In

this method, plaintext images are broken down into blocks and

encrypted. A chaotic encryption technique, based on the Message

Queuing Telemetry Transport (MQTT) protocol, is proposed in

this research for enhancing security and secrecy when transmitting

medical images over the Healthcare Internet of Things (H-IoT)

network (Trujillo-Toledo et al., 2023). Initially, chaotic maps

are enhanced and applied to encrypt plaintext pixels through

diffusion. The designed scheme efficiency is confirmed via a

number of tests. The designed embedded medical cryptosystems

transmit real-time medical images over the Internet and WiFi,

thus enhancing real-time medical image security. Using multiple

chaotic maps, the authors propose Multiple Map Chaos Based

Image Encryption (MMCBIE) scheme, a novel method that

encrypts images in the IoT environment (Jain et al., 2024). Unlike

existing schemes, MMCBIE combines multiple chaotic maps, like

Henon and 2D Logistic chaotic maps in a unique combination.

According to security assessments and cryptanalysis, MMCBIE

possesses high-level security properties, making it a superior

method of image encryption. Hanchate and Anandan (2024)

presented a hybrid scheme that combines Adaptive Elliptic Curve

Cryptography (AECC) and Logistic mapping to encrypt medical

images for the IoT. As a first step, the image is encrypted using

the AECC technique, then again encrypted using the logistic

map-based DNA sequence algorithm for greater security. The

diffused DNA matrix is then decoded to produce the cipher image.

The plain image determines the rules for encoding and decoding

DNA as well as the key matrix. Liu et al. (2024) utilize compressive

sensing (CS) and chaotic systems to design an encryption scheme

for IoT scenarios to ensure security and efficiency. A chaotic

laser system generates Masuemet matrices with complex phase

space. The measurement matrices are further enhanced through

the use of cyclic matrix methods. The image reconstruction

quality is further improved using segmented linear thresholding.

Further, large images are compressed block-wise in order to

reduce storage space and improve reconstruction efficiency.

The authors in Nadhan and Jacob (2024) investigated how a

cryptography-based network might be able to encode medical

images, as well as how deep learning could be used to ensure that

the images are transmitted safely. Various image representations

have been mapped using the ResNet-50 architecture. As a result

of the extensive empirical setup and the security analysis, the

suggested method is likely to provide unprecedented levels of
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security. An IWT-based DNA encoding scheme is proposed to

encrypt medical images within the Healthcare IoT (Lai and Hua,

2025). Random sequences were generated using a 3D hyperchaotic

map. In addition to IWT, a novel diffusion algorithm masks

critical information by generating approximation components.

Bit-level permutations further enhance encryption complexity.

The scheme further uses the DNA shuffle technique and encrypts

the permuted images using a DNA-encoding technique to

enhance security.

Most traditional image encryption algorithms convert plain

images into noise-like ciphers, making them easily detectable and

vulnerable to attack during transmission or storage. Visual security

should be considered when designing an image encryption method

to avoid hackers’ attention. Therefore, to avoid the eavesdropper’s

attention, meaningful image encryption algorithms must be

developed that may generate visually meaningful ciphertext images.

Image encryption algorithms that provide a visual sense of meaning

have attracted considerable research attention (Khan et al., 2024,

2020; Gan et al., 2024; Sathananthavathi et al., 2024; Zhang et al.,

2024). A bit plane image encryption scheme was designed by Khan

et al. (2024) using hash function and chaos theory. A SHA-512

hash algorithm is used to compute the key for the chaotic map.

The chaotic random vectors are used to shuffle the plaintext image

pixels row- and column-wise, while the random matrix is used for

XOR-based diffusion. By embedding the noise-like ciphered text

within a host image, a visually secure ciphertext image has been

generated. The authors in Khan et al. (2020), presented a chaotic

visual selective image encryption scheme. The key for the scheme

has been derived from the DNA and plaintext image. The system

keyspace is increased by using three different chaotic 1Dmaps. The

original image is divided into blocks of varying sizes. Blocks with

correlation coefficients above a predefined threshold are XORed

with random matrices. The diffused blocks are then permuted to

break the correlation between pixel values. As a final step, the

ciphertext is encapsulated in a carrier image to create a visually

secure ciphertext image.

Contribution

• The enhanced medical image encryption scheme has

confusion and diffusion characteristics, making it ideal for the

IoT environment.

• This scheme resists classical attacks due to its reliance on

plaintext images as keys.

• To avoid attackers’ attention, ciphered images are embedded

in carrier images to produce visually secure images.

The remaining article is organized as follows: Section 2

discusses the preliminaries; Section 3 outlines the proposed

methodology; the result analysis of the proposed work is provided

in Section 4. Conclusion is provided in Section 5.

2 Preliminaries

2.1 Chaotic Chen system

Using simple state feedback, Chen developed a new 3D

chaotic system in 1999 [1]. Similarly to the Lorenz system, Chen’s

FIGURE 1

Sensitivity plot of chaotic Chen system.

second and third equations contain cross-product terms. From

a topological point of view, the Lorenz and Chen systems have

different structures.Mathematically, the system can be written as Qi

et al. (2005):

ẋ = a ∗ (y− x),

ẏ = ((c− a) ∗ x)+ (c ∗ y)− (x ∗ z),

ż = (x ∗ y)− (b ∗ z).

(1)

where x, y, and z are the variables indicating the state of the system,

and a, b, and c are the parameters. It has been proven that the Chen

system has chaotic behavior for parameter values being α > 0.82

and a = 35, b = 3, and c = 28. In the proposed scheme, the

random numbers will be computed using the α = 0.9 value. In

order to illustrate Chen system sensitivity, the chaotic system is

iterated twice with x0 = 0.01 and x0 = 0.01 × 10−12. Thus, one

can confirms that both the sets of random numbers in Figure 1

are different. Further, Figure 2 shows three sets of 8,000 random

numbers generated through the Chen chaotic system. Therefore,

one can conclude that the chaotic system is extremely sensitive

and produces different random numbers with small changes in the

initial condition or control parameter.

2.2 SHA-512

In 2002, the National Security Agency (NSA) developed a

cryptographic hashing algorithm named Secure Hash Algorithm

2 (SHA-2) (Wang et al., 2021). Compared to its predecessors

SHA-0 and SHA-1, SHA-2 provides a more robust solution. SHA-

512 is the most secure and efficient hash function in the SHA-2

family (Bhonge et al., 2020). Based on an arbitrary message length,

it computes a 512-bit hash value by splitting the data into blocks of

1024 bits and passing the data through the module, consisting of 80

rounds. In our proposed scheme, SHA-512 is used to generate eight

512-bit hash values for eight plaintext bit planes, respectively. The

Frontiers inComputationalNeuroscience 03 frontiersin.org125

https://doi.org/10.3389/fncom.2025.1591972
https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org


Asiri et al. 10.3389/fncom.2025.1591972

FIGURE 2

Random number plots: (a) x vector, (b) y vector, and (c) z vector.

hash values are used to generate the initial conditions of the chaotic

system.

3 Proposed methodology

To divert the attention of an attacker, visually secure encryption

facilitates the transfer of private information over an insecure

channel. This process embeds the ciphertext image into a carrier or

host image to produce visually secure ciphertext images. Figure 3

illustrates the general workflow of an image encryption scheme

while Figure 4 demonstrates the step-by-step flow chart of the

proposed meaningful privacy preservation of medical images in

IoT environments. An end-to-end encryption method has been

developed that enables medical images to be transmitted over

the Internet using any H-IoT device with enhanced security and

confidentiality. The proposed scheme is comprised of the following

steps:

Step: 1 Let the original plaintext medical image with

dimensions m × n can be represented as M and its constituent bit

planes can be represented as:

M = [M1,M2,M3, ...,M8]. (2)

Step: 2 To determine the initial conditions for the Chen

chaotic system and to ensure the integrity and non-repudiation of

the image data, each of these planes is cryptographically hashed

utilizing SHA-512.

H1 = SHA− 512(M1). (3)

Step: 3 For numerical interpretation purposes, the computed

H1 value is converted to a decimal value.

N = bi2de(H1). (4)
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FIGURE 3

General encryption methodology.

FIGURE 4

A detailed step-wise flowchart of the proposed scheme.

Step: 4 Now, the initial conditions can be calculated as follows:

x0, y0 and z0 =
N

248
. (5)

Step: 5 The chaotic Chen system is iterated to generate three

random vectors x, y, and z.

Step: 6 For each generated random vector x, y, and z, the

Mod256 is applied to bring the values within the range of 0 and

255.

x, y and z = mod
(

(x, y, and z)× 1014, 256
)

. (6)
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Step: 7 The vectors x and y are utilized to permute the plaintext

medical imageM row- and column-wise, respectively.

RM = x(M),

CM = y(RM). (7)

Step: 8 The vector z is rearranged in a matrix and XORed

bitwise with the permuted image to generate the final medical

bit-plane ciphertext.

CM = z ⊕ CM . (8)

Step: 9 Steps 2 through 8 must be repeated eight times to

encrypt each layer.

Step: 10 Combine all ciphertext planes to produce the final

ciphertext or encrypted medical image.

C = [CM1,CM2,CM3, ...,CM8]. (9)

Step: 11 The carrier image CC is passed through the Lifting

Wavelet Transformation (LWT).

[LL, LH,HL,HH] = LWT(CC) (10)

Step: 12 The ciphertext image C is divided into 4 Most

Significant Bits (MSBs) and 4 Least Significant Bits (LSBs). Now,

the HL and HH blocks of CC are replaced by the MSBs and LSBs.

Finally, the Inverse Lifting Wavelet Transformation (ILWT) was

used to generate a visually meaningful medical image VM . As the

final visually meaningful medical image VM contains values greater

than 255 and less than 0, it is scaled by a min-max normalization

function to keep them between 0 and 255.

VM = ILWT[LL, LH,MSBs, LSBs] (11)

Decryption can be accomplished by reversing all of the above

steps in reverse order.

4 Results

This section presents simulations to illustrate the effectiveness

and robustness of the proposed scheme. Our analysis in this

section demonstrates that the IoT encryption scheme developed

for medical images is robust against different security attacks.

Figure 5 shows the encryption outcomes of the designed scheme

for cthead and chest images of size 128× 128. The ciphered images

in Figures 5c, g are noise-like images, so they are encapsulated

inside a carrier image (Pepper image of size 256× 256) to generate

a visually secure medical image. Further, correlation analyses,

histogram analyses, entropy analyses, key sensitivity, key space

analyses, robustness analyses, etc, are performed to demonstrate

the strength of the developed medical image encryption scheme for

IoT against statistical attacks, brute force attacks, noise attacks, and

classical attacks.

FIGURE 5

Encryption results: (a) plaintext cthead image, (b) carrier plaintext image, (c) ciphertext cthead image, (d) visually secure image, (e) plaintext chest

image, (f) carrier plaintext image, (g) ciphertext chest image, (h) visually secure image.
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4.1 Correlation analysis

Correlation analysis quantifies the relationship between image

pixel values. Original plaintext medical images show a close

association between neighboring pixels. An encrypted image is

secured against pixel relation analysis attacks or statistical attacks

when effective cryptographic techniques are applied to reduce

the relationship between pixels. A ciphertext image with a lower

correlation between adjacent pixels shows a better cryptographic

technique. Mathematically, the correlation coefficient can be

calculated as follows (Khan and Ahmad, 2019):

C.C(x, y) =
1
N

∑N
n=1(xn − E(x))(yn − E(y))

σx × σy
(12)

where

σx =
√

Var(x)

σy =
√

Var(y)

Var(x) =
1

N

N
∑

n=1

(xn − E(x))2

Var(y) =
1

N

N
∑

n=1

(yn − E(y))2

The variables N indicate the total number of pixels while

Var, σ , and E calculate the variance, standard deviation, and

expected operator, respectively. Table 1 summarizes the computed

correlation coefficient values for the proposed medical image

encryption scheme. Almost all the encrypted images have a C.C

value of zero or less than 0. Meanwhile, the carrier or host image

and the visually secure image have C.C values near 1. Thus,

embedding the ciphertext medical image does not significantly alter

the carrier image. Figures 6a–c illustrates the 5,000 adjacent pixels

correlation distribution of the original plaintext cthead medical

image in three distinct directions, i.e., horizontal (h), vertical (v),

and diagonal (d). Figures 6d–f shows the 5,000 adjacent pixels

correlation distribution of the corresponding ciphertext image.

Therefore, it can be concluded from Figures 6a–c that neighboring

pixels are closely associated in the original plaintext medical image.

Furthermore, Figures 6d–f confirms that this association breaks

down within the ciphered image’s pixels, and the correlation among

the pixels is totally different. Additionally, Figure 7 shows a strong

association between neighbors pixels in the carrier image and the

visually secured image, indicating that the visually secured image’s

pixels are not significantly changed.

4.2 Histogram analysis

Image histograms are statistical plots, plotting the intensity of

pixels against the pixel count in a digital image. Mathematically, it

can be computed as follows (Singh and Kumar, 2025).

H(xi) = mi (13)

where mi represents the multiplicity of xi intensity number.

Histogram analysis helps to determine whether pixel intensities

are distributed evenly throughout the encryption process. An

encryption scheme’s robustness against statistical attack can be

assessed by ensuring that the encrypted image’s histogram is

uniform, making it impossible to use statistical analysis to guess

the original image’s structure (Khan and Ahmad, 2019). Figure 8

shows the histograms of the original and cipher images. Figure 8

confirms the non-uniformity of the histograms for the original

cthead and chest images; that is, some pixel intensities may be

dominant depending on the contents of the image. In contrast, the

cipher images’ histograms are uniformly distributed. As a result, the

encryption process scrambles pixel values such that no feature of

the plaintext image can be identified. Because of the histogram’s

uniformity, the proposed medical image encryption for IoT is

TABLE 1 Computed correlation coe�cient values.

Image Direction Plaintext Ciphertext Carrier Visualy secure

Cthead h 0.9480 0.0097 0.9472 0.9343

v 0.9577 -0.0062 0.9594 0.9585

d 0.9224 -0.0499 0.9297 0.9227

Chest h 0.9768 -0.0384 0.9472 0.9368

v 0.9628 –0.0258 0.9594 0.9368

d 0.9340 –0.0380 0.9297 0.9055

Medani et al. (2025)

h 0.9173 –0.0598 - -

v 0.8868 0.0386 - -

d 0.7851 0.0239 - -

Kumar and Sharma (2024)

h 0.7586 –0.0075 - -

v 0.8665 –0.0071 - -

d 0.7261 0.0041 - -
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FIGURE 6

Correlation plots for cthead image: (a–c) horizontal direction, vertical direction, and diagonal direction plots for plaintext image, (d–f) horizontal

direction, vertical direction, and diagonal direction plots for encrypted image.

highly resistant to statistical attacks. Histograms of carrier images

and visually secured images appear to be nearly identical. Thus,

the attacker will not be able to determine that the carrier image

is embedded with an encrypted image, as the embedding is not

producing significant changes in the host image.

4.3 Key space

In an encryption algorithm, key space refers to all possible

secret keys and different parameters. The authors in Alvarez and

Li (2006) illustrate how key space size influences the strength of

image ciphering techniques. It is essential that the key space be

sufficiently large and must exceed 2100 to withstand brute force

attacks. The proposed meaningful privacy preserving of medical

images in IoT environment utilizes the Chen chaotic system, with

state variables x, y, and z and control parameters a, b, and c. Each of

these parameters has a floating precision of 1015. Further, the map

is iterated 8 times for each bit plane. Therefore, the key space of the

designed scheme can be computed as follows:

K = (1015 × 1015 × 1015 × 1015 × 1015 × 1015)8

K = (1090)8 >> 2100 (14)

Furthermore, the key space computed in Kanwal et al. (2024)

and Medani et al. (2025) is 2282 and 2598, respectively. Thus, one

can conclude that the key space of the presented medical image

encryption scheme is sufficiently large to resist a brute force attack

significantly.

4.4 Key sensitivity

A good image encryption technique should be able to detect

subtle changes in secret keys and parameters, resulting in decoded

data that is different from plain image data. The proposed medial

image encryption is extremely sensitive to the control parameters

and initial conditions. Let’s make a small change of 10−12 in one of

the initial conditions or the control parameters, i.e., x0 of the Chen

chaotic system. As a result, the chaotic systemwill generate different

random numbers. Figure 1 shows the different number generation

for a small modification in the initial conditions. Figure 9 illustrates

the resultant images after decrypting the ciphertext cthead image

with the same and modified keys. A differential image of the

two resultant images is shown in Figure 9c. A small change

to the initial conditions or control parameters of the Chen

chaotic system will fail the decryption process, resulting in a

completely different image for the attacker. The differential image

demonstrates that both resultant images are different and lack any

recognizable information related to the plaintext cthead image. It

can therefore be concluded that the proposed meaningful medical

image encryption scheme is exceptionally sensitive to even minor

changes in the chaotic system control parameters.
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FIGURE 7

Correlation plots for carrier image: first row are horizontal direction, vertical direction, and diagonal direction plots for plaintext carrier image, while

the second row are horizontal direction, vertical direction, and diagonal direction plots for encrypted image.

FIGURE 8

Histogram results: (a) plaintext cthead image, (b) carrier plaintext image, (c) ciphertext cthead image, (d) visually secure image, (e) plaintext chest

image, (f) carrier plaintext image, (g) ciphertext chest image, (h) visually secure image.
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FIGURE 9

Key sensitivity plots: (a) original key, (b) modified key, (c) di�erential image, and (d–f) are the corresponding histograms.

4.5 Entropy analysis

Entropy analysis is usually used to assess image

encryption’s robustness against entropy attacks. Mathematically,

entropy of a data source can be computed as follows

(Singh and Kumar, 2025):

E(S) =

256−1
∑

k=0

(
1

256
)log2(

1
1
256

) (15)

To resist the entropy attack, the entropy value of the encrypted

images should be close to 8. Table 2 summarizes the computed

entropy values for the proposed medical image encryption scheme.

Thus, one can confirm that the entropy value of the ciphertext

medical image is approximately equal to 8. The designed technique

is robust against entropy attacks without exposing sensitive

information.

4.6 Di�erential attack analysis

Tomeasure the effectiveness and reliability of image encryption

algorithms against differential attacks, it is important to determine

TABLE 2 Computed entropy values.

Image Plaintext Ciphertext Carrier Visualy
secure

Cthead 5.6763 7.9987 7.6110 7.6485

Chest 7.4040 7.9982 7.6110 7.6498

Medani et al.

(2025)

7.6414 7.9998 - -

Kumar and

Sharma (2024)

7.3579 7.9987 - -

TABLE 3 Number of pixels change rate and unified average change

intensity computed values.

Image NPCR UACI

Cthead 99.6755% 33.5105%

Chest 99.6867% 33.5241%

Medani et al. (2025) 99.6653% 33.5328%

Kumar and Sharma (2024) 99.5800% 33.1800%

the Number of Pixels Change Rate (NPCR) as well as the Unified

Average Change Intensity (UACI). These two matrices can be
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FIGURE 10

Noise results: salt and pepper noise ratios; (a) 5%, (b) 10%, (c) 20%, and (d–f) corresponding decrypted images.

mathematically defined as follows (Liu et al., 2024):

D(x, y) =

{

1, ifC1(x, y) 6= C2(x, y)

0, ifC1(x, y) = C2(x, y)
(16)

NPCR =

∑

x,y

D(x, y)

N
× 100% (17)

UACI =
1

N

∑

x,y

|C1(x, y)− C2(x, y)|

255
100 (18)

where N shows the total number of pixel values and C1 represents

the first encrypted image generated without any change in the

original plaintext image while C2 represents the encrypted image

generated after altering just one pixel in the original image. When

comparing two images that have been encrypted, the UACI test

measures the difference in pixel intensity, whereas the NPCR test

measures how frequently the pixels are changed in the plaintext.

The calculated NPCR and UACI values for the designed medical

image security scheme are illustrated in Table 3. Therefore, the

values UACI > 33% and NPCR > 99% confirm that the proposed

strategy is resilient to differential attack.

4.7 Noise attack analysis

It has become increasingly important to analyze noise attacks

when data is transmitted over open networks due to the presence

of noise during transmission. Therefore, the proposed algorithm’s

effectiveness is determined by comparing the decryption of

encrypted images under different noise intensities. Figure 10 shows

the recovered images after adding salt and pepper noise of (5%,

10%, and 20%) intensities to the visually secured image. Thus, one

can see that the proposed medical encryption scheme can decrypt

the noise-polluted ciphertext image, illustrating the robustness of

the scheme.
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FIGURE 11

Cropping results: Crop ratios of ciphertext cthead image; (a) 1/16 (middle), (b) 1/16, (c) 1/4, and (d–f) corresponding decrypted images.

4.8 Occlusion attack analysis

Various factors can cause data to be lost during image

transmission over a network. The purpose of occlusion analysis

is to determine whether or not an image encryption scheme can

recover a plaintext image from a ciphertext image that has been

occluded. Different-sized portions of the encrypted image are

cropped and decrypted. This analysis can provide insight into how

the encryption scheme scrambles plaintext images. Generally, the

better the scrambling effect, the more likely the algorithm is to

reconstruct the visual characteristics of the plaintext image, even

if some part of it has been lost. We cropped the cipher cthead

image and visually secured image with the ratios 1/16 (middle),

1/16, and 1/4. Decryption is performed utilizing the presented

scheme. Figure 11 shows the cropped ciphertext images and the

corresponding decipher images while Figure 12 illustrates the

cropped visually secured images and the corresponding decipher

images. The visual results clearly deomnstrates that the proposed

scheme strongly deciphers the cropped images without causing any

noticeable distortion.

4.9 Resilience against classical attacks

Classical attack analysis focuses on identifying and analyzing

various types of attacks (known plaintext, chosen plaintext,

ciphertext only, and chosen ciphertext) against encrypted images.

The key of the chaotic maps is computed based on the plaintext

hash value. It is used to determine initial conditions and control

parameters. Because of the dependence on plaintext images, the

proposed enhanced medical image privacy in IoT with bit-plane

level encryption using a chaotic map avoids the classical attacks

cited above. Therefore, all random vectors and matrices are

determined by plain image bit planes. When a single pixel is

changed in the plaintext image, the keystream changes. This will

result in a completely different ciphertext image.

4.10 Complexity analysis

Time complexity is a metric used to estimate the running time

of an encryption algorithm and generally determine the scheme’s
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FIGURE 12

Cropping results: Crop ratios of visually meaningful image; (a) 1/16 (middle), (b) 1/16, (c) 1/4, and (d–f) corresponding decrypted images.

feasibility. A good algorithm needs to have a short running time.

The encryption and decryption results are performed on MATLAB

2018a with Microsoft Windows 10, 4 GB of memory, and a 1 GHz

CPU. The cthead and chest images have a size of 128 × 128, while

the carrier image has a size of 256 × 256. The proposed scheme

takes 0.85s to generate the ciphertext image and 0.62s to produce

the visually meaningful ciphertext. Thus, the proposed scheme

takes 1.47s to generate the final meaningful ciphertext. The image

encryption scheme presented in Kumar and Sharma (2024) takes

0.85s while the scheme discussed in Medani et al. (2025) takes 4.57s

to produce the final encrypted images. The designed scheme takes

less time than the scheme presented in Medani et al. (2025) and

more time than the scheme discussed in Kumar and Sharma (2024).

5 Conclusion

This paper presents a novel and robust medical image

encryption scheme for resource-constrained devices. Due

to simplicity and exceptional performance in terms of

unpredictability, the proposed scheme utilizes 3D Chen chaotic

system. The simplicity and excellent performance make the

Chen chaotic map an excellent choice for lightweight encryption

applications. The designed meaningful bit-plane-level medical

image encryption scheme for IoT leverages the pixel scrambling

and diffusion characteristics to effectively break pixel relationships,

thus, enhancing encryption efficiency and security. To enhance

security, the plaintext bit planes are hashed using the Secure

Hash Algorithm (SHA-512) to compute the initial conditions

of the chaotic map. This dependency on the plaintext images

makes the designed scheme resilient against classical attacks

(known-plaintext, chosen-plaintext, ciphertext-only, and chosen-

ciphertext). As a result, three random vectors for permutation

and XOR diffusion are generated. A permutation and XOR

operation are applied to each bit-plane to produce a ciphertext

plane. After combining the ciphertext bit-planes, the visually

secured ciphertext image is now generated by embedding the

ciphered image within the carrier image. Extensive evaluations

have proven that the designed scheme exhibits a high degree

of resilience to attacks, making it particularly suitable for

small IoT devices with limited processing power and memory.

Computational complexity could be a possible limitation of the

designed scheme, as image sizes increase, the encryption process

could take longer.
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Classification of power grip and
precision grip in children using an
EIT-based tactile sensor

Ryunosuke Asahi1, Shumpei Toriyama1, Yasuyo Minagawa2,
Shunsuke Yoshimoto3 and Hiroki Sato1*
1Graduate School of Engineering and Science, Shibaura Institute of Technology, Saitama, Japan,
2Department of Psychology, Faculty of Letters, Keio University, Tokyo, Japan, 3Graduate School of
Engineering, Osaka University, Suita, Japan

Quantitative monitoring andmeasurement of handmotion in children are crucial
to support healthy development. Electrical impedance tomography-based tactile
sensors, also known as tomographic tactile sensors, provide a promising
approach for grasp classification. Our previous study in adults and children
demonstrated the feasibility of pinch classification using a cylindrical device
equipped with the tomographic tactile sensor. In this study, we developed a
new sensing device to classify the power grip and precision grip in children. In
order to address concerns that children might lick or swing the device, a
cylindrical sensing device was integrated sensor and measurement circuit,
incorporated a protective layer for enhanced safety. Seventeen children
participated in an experiment to evaluate the feasibility of the grasp
classification. The classification features were voltage vectors and
reconstructed images obtained from the sensor, and two machine learning
methods were used as the classifiers. The average classification accuracy
exceeded 85% for both feature types, surpassing the chance level of 50%.
These results demonstrate that the basic grasp patterns in children can be
accurately classified using a tomographic tactile sensor. This study provides
new insights into the future application of grasp motion classification in children.

KEYWORDS

children, classification, electrical impedance tomography, neuro-developmental
Engineering, power grip, precision grip, tactile sensors

1 Introduction

Humans have uniquely developed manual dexterity and built an advanced civilization
using tools through motions, such as gripping a hammer and pinching nails. Napier divided
these grasps into two basic definitions: power grip and precision grip (Napier, 1956). The
power grip is defined as a motion that involves grasping an object with the palm and thumb
and corresponds to the motion of gripping a hammer. This grasping is observed in healthy
infants at 25 weeks post-pregnancy (Allen and Capute, 1986). On the other hand, precision
grip is defined as a motion in which an object is pinched between the thumb and other
fingers, corresponds to the motion of pinching nails. A study analyzing grasping patterns
through video coding in infants between 2 and 22 weeks of age reported that the pre-
precision grip was first performed at 2.74 months of age and the precision grip was first
performed at 5.97 months of age (Wallace and Whishaw, 2003).

These grasping motions are related to various aspects of the infant and child
development. For example, some studies have suggested that fine motor skills (FMS)
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associated with precision grip are related to early numerical skills,
early counting, and conceptual counting knowledge (Barrocas et al.,
2020; Fischer et al., 2018; Suggate et al., 2017). Another study
reported that children who were trained in FMS through
intervention improved not only their pegboard test scores but
also their mathematical performance compared to a control
group that read books (Asakawa et al., 2019). Moreover, some
studies have indicated a potential correlation between the FMS

and reading and writing abilities (Lê et al., 2023; Suggate et al.,
2023). These findings suggest that children’s hand dexterity is
related to the development of academic abilities such as
mathematical, reading, and writing skills.

In addition, information on children’s grasping skill
development is beneficial from a medical perspective. A delay in
the development of infant FMS has been suggested as a useful
indicator for early diagnosis of developmental disorders. Autism

TABLE 1 Conventional classification method of infants’ and children’s hand motions.

Reference Method Classification of
hand motion

Does not
interfere
with

grasping

Angle of
view

Degree of
freedom
of shape

Identification
of contact

area

Division by
Xue et al.
(2019)

Wallace and
Whishaw (2003)

Video coding Intra-rater and inter-
rater reliability were 90%
and 74%, respectively,
with four grasp patterns

No Limited High Partially possible 5) vision-based
capturing

Campolo et al.
(2008)

Hemispherical
sensing devices
using force sensors
and kinematic
sensor

Not reported No Not limited Unclear Not reported 2) attached force-
based capturing

Boschi and Frère
(2013)

Sensing devices
using limit switches,
micro switches

The agreement from the
physical therapists and
the system was 86.6% for
five different movements

No Not limited Low Partially possible 2) attached force-
based capturing

Del Maestro et al.
(2011)
Serio S et al.
(2013) (Serio
et al., 2013)

Sensing device using
air pressure sensor

Not reported No Not limited Low Impossible 2) attached force-
based capturing

Rocha et al.
(2016)

Cylindrical sensing
device digital
camera, a special
convex mirror, and
IMU sensor

A preliminary hand
posture evaluation was
reported, though visually
performed, suggesting
the possibility of future
application

No The image
quality
degrades at the
vertex part of
the convex
mirror when
converted to
panoramic
format

Unclear Possible 2) attached force-
based capturing &
5) vision-based
capturing

Schröer et al.
(2021)

Optical motion
capture

Recording of hand
motion (reaching)

Possible
interference

Not limited Unclear Impossible 4) optical markers-
based capturing

Owada et al.
(2022)

Data glove Classified eight grasps
with an accuracy of
98.75% in a study of
adults (Pratap et al.,
2024)

Possible
interference

Not limited High Partially possible 1) data glove-based
capturing

Udayagiri et al.
(2024)

Optical force sensors Classified four actions of
adults with an accuracy
of approximately 100%

No Not limited High Not reported 2) attached force-
based capturing

Battraw et al.
(2024)

Surface
electromyography

Nine participants with
unilateral congenital
below-elbow deficiency
were classified into
11 hand movements,
with a maximum
accuracy of 95.37%
using KNN.

Possible
interference

Not limited Unclear Impossible 3) surface
electromyography-
based capturing

Our study Tomographic tactile
sensor based on
resistive coupling

The maximum average
accuracies classed by
power grip or precision
grip was 88.5%

No Not limited High Possible 2) attached force-
based capturing
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spectrum disorder (ASD), which is characterized by poor
communication, strong interest, preoccupation, and obsessive
behavior, is usually diagnosed at 3 years of age. However, some
prospective studies have reported that infants at high risk for ASD,
who were later diagnosed with the condition exhibited
developmental delays in fine motor skills compared to typically
developing infants (Choi et al., 2018; Landa and Garrett-Mayer,
2006). It has also been reported that children of ages five to ten with
attention deficit hyperactivity disorder (ADHD), which is
characterized by inattention, hyperactivity, and impulsiveness,
have significantly delayed motor development in all domains of
the Motor Development Scale, including the FMS, compared to
typically developing children (Neto et al., 2015).

In this context, quantitative techniques for monitoring and
measuring hand motion in infants and children are important,
because they are believed to contribute to healthy development.
According to a review by Xue et al., human hand motion analysis
can be classified into five methods: 1) data glove-based capturing; 2)
attached force-based capturing; 3) surface electromyography-based
capturing; 4) optical markers-based capturing; and 5) vision-based
capturing (Xue et al., 2019). Based on the review, conventional
devices for children listed in Table 1. Although these methods have
unique advantages, they have unavoidable limitations. For example,
the methods of 1) data glove-based capturing, 3) surface
electromyography-based capturing, and 4) optical marker-based
capturing require sensors to be attached. This could lead to a
decrease in the children’s attention and interfere with their
grasp. In addition, the method of 5) vision-based capturing has
some limitations, such as a limited angle of view and privacy. Owing
to these limitations, 2) attached force-based capturing is considered
a powerful method. However, the conventional method limited the
degree of freedom of shape and identification of contact area. To
overcome these limitations, we focused on a tomographic tactile
sensor based on resistive coupling, which is a sensing technology with
extended flexibility, shape versatility, and designability compared
with electrical impedance tomography (EIT)-based tactile sensors
(Yoshimoto et al., 2024; 2020). This technology is based on the
principles of EIT-based tactile sensors (Kato et al., 2007; Nagakubo
et al., 2007; Silvera-Tawil et al., 2015).

Park et al. reported the superior discriminability of touch
modalities using a tomographic tactile sensor (Park et al., 2021).
Additionally, we developed a small peg-based device and
demonstrated that six types of pinching in adults could be
classified with an accuracy exceeding 80% (Asahi et al., 2024b).
In children, we have reported a classification study on the same six
types of pinching. The results showed an accuracy of approximately
60%, which was lower than that of adults, revealing limitations and
challenges in classifying children’s handmotion (Asahi et al., 2024a).

Children’s hands differ from those of adults in terms of size, grip
strength, and dexterity (Bear-Lehman et al., 2002). Consequently, results
obtained from adult participants may not be directly applicable to
children. Moreover, protective measures for the device and an extension
of its swing range are necessary, as childrenmay lick or swing the device.
Considering these factors, as a first step toward developing a hand
motion analysis system for children, we focused on the fundamental
classification of power grip and precision grip defined by Napier (1956),
along with the implementation of protective measures and an extended
swing range. Thus, demonstrating the ability to classify power and

precision grips in this study represents an essential step toward more
comprehensive and generalized grasp classifications. Our findings may
contribute to the development of educational toys and diagnostic
systems for assessing developmental disabilities.

2 Materials and methods

2.1 Sensing device overview

2.1.1 Development of sensing devices
Regarding the development of sensing device, we first decided the

design requirements of the device. The previous devices had
measurement circuits outside the device. This limits their swing
range and portability. To overcome these limitations, we developed a
new cylindrical sensing device. It could contain the measurement circuit
(Figure 1). The device height and diameter were 85 mm and 40 mm,
respectively. The sensor consists of five layers: protective, driving,
insulating, detection, and electrode layers (Figure 2a). The protective
layer was added because the children torn through the drive layer during
the preliminary experiments. The protective layer consisted of a 1-mm-
thick yellow felt cloth. The driving layer consisted of a conductive
silicone sheet (EC-20BH, Shin-Etsu Chemical Co. Ltd.). This layer was
connected to a 3.3 V DC voltage source. The DC voltage source used a
3.3 V pin microcontroller (ESP32-DevKitC, Espressif Systems). The
insulating layer was a glass fiber sheet (13-7127, KLASS). The detection
layer was composed of a conductive sheet (ZC-85, ENGINEER) with a
surface resistance of 10 kΩ/sq. When the driving layer contacts with the
detection layer, the electrical circuit is closed. As a result, current flows to
the electrodes through the detection layer (Figure 2b). The electrode and
detection layer were bonded using a conductive epoxy (CW2400,
CircuitWorks). The electrode layer was an original flexible printed
circuit board with 16 electrodes and a diameter of 2 mm. One of
these electrodes was used as the ground condition and the other was
used as themeasurement electrode. This operation was repeated until all
electrodes were used in all conditions. Thus, 256 voltage data points
(16 grounding conditions × 16 electrodes) are obtained. Themultiplexer
(MUX) used was CD74HC4067 (Texas Instruments). The
measurement period was 0.25 s per frame.

2.1.2 Reconstruction
A tomographic tactile sensor requires a solver to reconstruct

pressure distribution from the measured voltage vector. This solver
addresses an ill-posed problem because the output dimension
(reconstructed image) is larger than the input dimension (measured
voltage vector). Therefore, we used the linear reconstruction method of
Tikhonov regularization with two-dimensional finite element method
(FEM) model, based on our previous studies (Asahi et al., 2024b;
Yoshimoto et al., 2020). The hyperparameter of the Tikhonov
regularization was set to 5000. These reconstruction processes were
performed using MATLAB 2023b (MathWorks Inc.).

2.2 Experiment methods

2.2.1 Participant information
In this study, participants were required to meet two criteria: (1)

the ability to perform both power grip and precision grip, and (2) an
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age at which they could sufficiently understand verbal instructions.
Regarding (1) the ability to perform power grip and precision grip,
as mentioned in the introduction, primitive grasping has been
reported to emerge between 2 and 22 weeks, while precision grip
develops at 5.97 months. Regarding (2) the ability to sufficiently
understand verbal instructions, B. Buckley have reported that three-
year-old children are capable of communicating using language.
Additionally, four-year-old children can focus on and follow verbal
instructions even without explicit cues, such as being called by name
(Buckley, 2003). Based on these considerations, this study targeted
four-year-old children as participants. The participants of this study
were 17 children (4.43 ± 0.30 years old, 8 boys, 9 girls). In order to
ensure that the participants had adequate communication skills and
no developmental disorders, we administered the KINDER
INFANT DEVELOPMENT SCALE questionnaire type C prior to
the experiment (Hassanein, 1982). None of the participants had any
serious disease or disorder. In the analysis, 11 children (5 boys and
6 girls) were included, excluding those who stopped the
measurement halfway through because they could not listen to
the experimenter’s instructions or did not want to participate
(4 participants), those whose actual dominant hand seemed to
differ from that reported by their parents (1 participant), and
those who grasped without placing their palm on the object
during the power grip (1 participant). Evaluation of the modified
Japanese version of the FLANDERS handedness questionnaire

(Okubo et al., 2014) indicated 10 right-handed children and one
left-handed child.

This study was approved by the Ethics Committees of Shibaura
Institute of Technology and Keio University. The experiment was
conducted only when informed consent was obtained from the
parents of the participating children.

2.2.2 Measurement method
The participants practiced freely grasping the device, without

external assistance. Voltage measurements were also performed
during the hardware and software testing. The participants were
then instructed to perform either a power grip or precision grip, with
the order being counterbalanced. Each grip was measured ten times.
However, if the hand was released during the measurement process
or if the grasp force was not applied (i.e., the object was grasped only
by the frictional force of the fingers), the grasp was excluded from
the analysis, and an additional measurement was performed. Ten
times per grasp were measured, that is, 100 measurement frames
(10 measurements × 10 times) were obtained for each
grasping category.

2.2.3 Classification method
The measured voltage vectors and reconstructed images were

used as features to classify the power grip and precision grip. For
classification using the measured voltage vectors, 256 data points

FIGURE 1
Cylindrical sensing device. (a) Height: 85 mm (b) Diameter: 40 mm. (c) Device containing the measurement circuit.

FIGURE 2
(a) Layer of tomographic tactile sensors based on resistive coupling. The protective layer was a yellow felt cloth. This layer was used only in
experiment I. A conductive silicone sheet connected to a DC voltage source (3.3 V) was used was as the driving layer. The insulating layer was a glass fiber
sheet. The detection layer was a conductive sheet. The electrode layer was a flexible printed circuit board. (b) Schematic illustration of contact between
driving layer and detection layer and current flow.
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were used (16 electrodes × 16 measurements). For classification
using the reconstructed images, the FEM values normalized from 0%
to 100% were used. The size of FEM model was 43 × 66 × 1.

In this study, we considered more practical applications, such as
educational toys or diagnostic systems for developmental disabilities.
For such applications, we conducted a comparative analysis using the
k-Nearest Neighbors (KNN) algorithm (Bansal et al., 2022), which is
computationally efficient and easy to implement, and the Convolutional
Neural Network (CNN), which has been reported to achieve high
classification accuracy (Park et al., 2021). In KNN, we used the
MATLAB function (fitcknn) with a k value of 1. The network
architecture of the CNN consisted of 17 layers, as listed in Table 2.
The input layer was configured to input each feature with dimensions of
16 × 16 × 1 for classification using the measured voltage vectors, and
43 × 66 × 1 for classification using the reconstructed images.
Subsequently, a three-step convolution was performed. The
convolution layers were organized with filter sizes of 3 × 3 × 32, 3 ×
3 × 64, and 3 × 3 × 128, in that order. In each convolution layer, the
ReLU was applied as the activation function after batch normalization.
In steps one and two, a 2 × 2 max pooling layer is utilized, resulting in
downsampling with a stride of two. In step three, a fully connected layer
was used to classify the data into two classes. The Softmax function was
applied to the output layer, resulting in a final classification into two
classes: power grip and precision grip. Stochastic gradient descent was
employed for training with an initial learning rate of 0.001. In addition,
the learning rate was configured to be reduced by 95% after ten epochs.
The maximum number of epochs was set to 36, and the data were
randomized at the beginning of each epoch.

Cross-validation was performed to validate the classification
accuracy of these two types of features and classification methods.

Verification was performed for each participant, with one grasp
(10 frames) as the test data and the remaining grasps (190 frames) as
the training data, and was repeated until all grasps were the test data.

For the evaluation of classification results, the following
accuracy was calculated for each participant as Equation 1:

Accuracy � TPow + TPre

TPow + TPre + FPow + FPre
(1)

where, initial character T or F indicates whether the class predicted
by the classifier matches the true class or not. The characters Pow
and Pre indicate power grip and precision grip, respectively. Thus,
TPow is the matching case of the power grip as predicted class by the
classifier and the power grip as true class. Subsequently, to evaluate
the classification performance in different grasps, a confusion matrix
was calculated for each grasp. Precision (Prec), recall, and F-measure
were then calculated for each grasp as follow Equations 2–4:

Prec Pow or Pre � TPow or Pre

TPow or Pre + FPow or Pre
(2)

Recall Pow or Pre � TPow or Pre

TPow or Pre + FPre or Pow
(3)

F −measure Pow or Pre � 2 × Prec × Recall
Prec + Recall

(4)

These index values ranged from 0 to 1. In addition, t-Distributed
Stochastic Neighbor Embedding (t-SNE) has been used to confirm the
distribution of features and clustering trends (Van Der Maaten and
Hinton, 2008). The classification features were compressed into a two-
dimension map by t-SNE. The distances between points in the t-SNE
plot reflect similarity relationships in the original high-dimensional
space. Additionally, clearly separated clusters indicate natural groupings
based on differences in classification features.

3 Results

We classified the basic grip classifications—power grip and
precision grip—in children (Figure 3a). The average accuracy
values are shown in Figure 4a. When classified using the
measured voltage vector (Figure 3b), the average classification
accuracy using KNN was 86.8%. The highest and lowest
accuracies for the participants were 95.5% and 79.0%,
respectively. The average accuracy obtained using the CNN was
88.5%, and the highest and lowest accuracies were 95.0% and 75.5%,
respectively. When classifying using the reconstructed image as a
feature (Figure 3c), the average accuracy was 85.7% using KNN. The
highest and lowest accuracies are 94.5% and 72.5%, respectively. In
the classification using CNN with the reconstructed image as the
feature, the average accuracy was 87.9%. The highest and lowest
accuracies are 99.0% and 77.0%, respectively. All average
classification accuracies exceeded the chance level (50%).

The confusion matrixes shows that the classification results were
better for the precision grip than for the power grip for all classification
methods (Figure 4b). As shown in Table 3, Prec was higher for power
grip across all classifiers. However, Recall was higher for the precision
grip in all cases. Similarly, the F-measure was also higher for the
precision grip across all classifiers. Figure 5 presents the t-SNE plot
of the participant who achieved the highest accuracy. The results

TABLE 2 CNN classification network architecture.

No Layer Description

1 Input 2D Each classification has different inputs

2 Convolutional 2D 32 3 × 3 convolutions with stride 1

3 Batch Normalization Batch Normalization

4 ReLU ReLU

5 Max Pooling 2D 2 × 2 Max Pooling

6 Convolutional 2D 64 3 × 3 convolutions with stride 1

7 Batch Normalization Batch Normalization

8 ReLU ReLU

9 Max Pooling 2D 2 × 2 Max Pooling

10 Convolutional 2D 128 3 × 3 convolutions with stride 1

11 Batch Normalization Batch Normalization

12 ReLU ReLU

13 Fully Connected 256 fully connected

14 ReLU ReLU

15 Fully Connected 2 fully connected

16 Softmax Softmax

17 Classification Output layer
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indicated that clustering was achieved based on feature labels. However,
some instances of the power grip appear to be located within the
precision grip cluster.

4 Discussion

The purpose of this study is to demonstrate the feasibility of
classifying power grip and precision grip in children using a

tomographic tactile sensor based on resistive coupling, as a first
step towards the development of a hand motion analysis system for
children. In order to avoid accidents and damage due to unexpected
behavior of children, the sensor device and measurement circuit
were integrated into a single unit and a felt fabric layer was added. As
a result, there was no damage to the device during the experiment.
Using this device, the results of power and precision grip
classification showed an average classification accuracy of over
85%, higher than the chance level of 50%.

FIGURE 3
Representative images. The upper section corresponds to the power grip, and the lower section corresponds to the precision grip. (a) Images
captured for each grasp. (b) Measured voltage vector. (c) Reconstructed 2D image.

FIGURE 4
(a)Mean and standard deviation of classification accuracy. The average classification accuracies of the measured voltage vector (VV) with KNN and
CNN classifications were 86.8% and 88.5%, respectively. The average classification accuracies of the reconstructed images (RI) with KNN and CNN
classifications were 85.7% and 87.9%, respectively. (b) Cross-validation of each classification. The closer the color of the diagonal cell is to black, the
higher the classification accuracy.
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4.1 Sensing device and measurements
on children

Children’s behavior is differed from adults, they may lick or throw
the device. In fact, during a preliminary experiment, one child scratched
the driving layer with their fingernails, causing damage. To address such
risks, the device must be designed to minimize potential breakage
factors. As one protective measure, we introduced a felt fabric with
cushioning properties as a protective layer. This layer serves to prevent
licking and damage to the driving layer. Such felt fabric is suitable as a
protective material for children due to its safe composition, durability,
availability in various colors, and flexibility. Regarding the safety of the
device itself, the felt fabric and PLAmaterial used in this study are non-
toxic and hypoallergenic, ensuring no safety concerns.

Additionally, to prevent damage from being thrown ormishandled,
the device needed to cover a broader swing range. To achieve this, the
sensor and measurement circuit were integrated into a sensing device.
Furthermore, a 2-meter cable was used for communication between the
PC and the measurement circuit. As a result of these design
improvements, no participants damaged the device during the
experiment. Furthermore, wireless measurement is an effective
approach to improving operational range and portability. In this
study, the computer and sensing device were connected via a cable.

However, as reported by Yoshimoto et al., wireless measurement is
feasible, and its implementation is expected to eliminate limitations in
the measurement environment (Yoshimoto et al., 2020).

Finally, regarding the experimental protocol, grasping motions
were instructed verbally in this experiment. However, some
participants treated the device as a cup, mimicking toasting or
pretending to drink from it. This suggests that a role-play-based
protocol may be more suitable for future studies.

4.2 Classification method

Reconstructed images and measured voltage vectors were used
as classification features, and both CNN- and KNN-based methods
achieved an average accuracy exceeding 85%, which is higher than
the 50% chance level. These findings indicate that classification
using a tomographic tactile sensor can achieve a high classification
performance and reproducibility. The difference in classification
accuracy among all classifications was 2.8%. Thus, it demonstrated a
comparable classification accuracy across all methods.

Analysis of the confusion matrix revealed that the precision grip
was classified more accurately than the power grip. Although the Prec
for the power grip was higher than that for the precision grip across all
methods, the recall and F-measure for the precision grip were higher
(Table 3). These results suggest that while all classification methods
correctly identified the precision grip, the power grip was frequently
misclassified as the precision grip. Moreover, as illustrated in the t-SNE
plots (Figure 5), some plots in the power grip were mixed in the
precision grip cluster. This indicates that the classification error did not
depend on the classifier but rather on the potential
classification features.

One potential factor differentiating the power grip from the
precision grip is the contact area. Visual assessments indicated that
the contact area of the power grip was larger than that of the precision
grip (Figure 3c). In the power grip, opposition is generated by the
thumb, other fingers, and the palm; however, in the precision grip,
opposition was generated by the thumb and other fingers (Figure 3a).
This difference is considered to be the cause of the difference in the

TABLE 3 Classification index.

Accuracy [%] VV KNN VV CNN RI KNN RI CNN

86.8 88.5 85.7 87.9

Prec power 0.889 0.892 0.871 0.896

precision 0.849 0.877 0.843 0.864

Recall power 0.841 0.875 0.837 0.858

precision 0.895 0.894 0.876 0.900

F-measure power 0.864 0.883 0.854 0.876

precision 0.871 0.886 0.859 0.881

FIGURE 5
T-SNE plots with measured voltage vectors and reconstructed images for participants who achieved the highest classification accuracy. The
perplexity was set to 50, and the learning rate was set to 750. The input classification features were normalized. (a) t-SNE plot using themeasured voltage
vector (b) t-SNE plot obtained using the reconstructed images.
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contact area. Another distinguishing factor is the number of virtual
fingers (VF), which indicates the number of primary force vectors
generated during grasping. The precision grip is characterized by
VF2 due to its pinching action. In contrast, the power grip can be
characterized by either VF2 or VF3, as it involves both the fingers and
the palm (Figure 6). These differences in contact area and VF may
contribute to the misclassification of the power grip relative to the
precision grip. It is also possible that the power grip in t-SNE is the cause
of some mixing with the precision grip cluster (Figure 5).

A previous study examining the agreement between experienced
physical therapists and devices for analyzing the locations of
gripping (the power grip) and functional pinching (the precision
grip) reported an agreement of 86.6% (Boschi and Frère, 2013).
Although direct comparisons could not be made owing to the
differences in the experimental conditions, the results of this
study demonstrated comparable accuracy.

4.3 Limitations and future prospects

There are two mainly limitation in this study. First is that the device
size was fixed at a height of 85 mm and a diameter of 40 mm.
Customizing the device to accommodate individual hand sizes could
enhance its ease of grasping, and improve classification accuracy. Second
is the grasp types used for classification. In this study, the basic categories
of the power grip and precision grip were classified. For practical
applications, a more detailed classification of graspingmay be necessary.

Based on the results of this study, there are three prospects for future
research: The first is to develop a sensing device with a system that
provides humorous feedback stimuli. Feedback systems encourage
children to take action (Boschi and Frère, 2013). The feedback
system that uses the grasp classification system developed in this
study may contribute to rehabilitation and intervention. The second
is to identify the specific fingers contacting the sensor. This identification
system might be a useful alternative to the video coding. The video
coding typically requires a lot of time and effort. Previous studies have
reported that it took 3 hours to code a 10-min video (Wallace and
Whishaw, 2003). Replacing video coding with sensor-based analysis
could reduce the analysis time. To achieve this, a large amount of data on
the children must be collected. We believe that making the device toy-
shaped will help keep children’s attention and enable the measurement

of a large amount of data. Lastly, we propose the potential application of
this system as a diagnostic support tool for developmental disorders.
Previous studies have reported that children at high risk for ASD often
exhibit delayed development of fine motor skills compared to typically
developing children. Accordingly, if the present system can be employed
to assess finemotor skills in both typically developing children and high-
risk ASD children, it may contribute to early diagnostic support for
ASD. To examine this feasibility, future research should aim to measure
and compare grasping behaviors between these two groups.

5 Conclusion

In this study, we demonstrated the feasibility of classifying
power grip and precision grip in children using a tomographic
tactile sensor based on resistive coupling. To address concerns that
children might lick or swing the device, we developed a medium-
sized cylindrical sensing device with an integrated sensor and
measurement circuit, incorporating a protective layer for
enhanced safety. These design considerations ensured that no
damage occurred to the device during the experiment.

Using the device, machine learning-based classification of
children’s grasps demonstrated that power grip and precision
grip could be classified with an accuracy exceeding 85%, above
the chance level of 50%. These grip types are among the major
categories in the GRASP taxonomy, which defines 33 distinct grasp
classifications. Therefore, the findings of this study represent a
foundational step toward classifying a broader range of grasp
types and establishing a comprehensive grasp classification system.

Data availability statement

The raw data supporting the conclusions of this article will be
made available by the authors, without undue reservation.
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The studies involving humans were approved by The
biotechnology ethics committee of Shibaura Institute of

FIGURE 6
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