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Editorial on the Research Topic

Advancements in smart diagnostics for understanding neurological
behaviors and biosensing applications

Overview

An understanding of neurological behaviors can be well-established by bringing
together machine learning (ML) and biosensing techniques. This combination is promising
for accelerating smart diagnostics and human-computer interactions (HCI), with the
following three aspects necessary to create a real-world impact of this combination.
Multimodal and multiscale learning to capture the richness of physiological signals is of
primary importance, followed by explainability and clinical acceptability that link model
evidence to neurophysiology. Designing the trustworthy pipelines that safeguard privacy
and support deployment in clinics, homes, and wearables is of practical significance in
this endeavor.

In this pursuit, 10 contributions were submitted to this Research Topic, covering
biosensing modalities including electroencephalography (EEG), electrooculography
(EOG), electrodermal activity (EDA), functional near-infrared spectroscopy (fNIRS),
medical imaging, and electrical impedance tomography (EIT)-based tactile sensing.
This Research Topic effectively describes how contemporary learning paradigms such
as transformers and state space models, hybrid unsupervised-supervised pipelines, and
privacy-preserving training, translate signals into actionable insights while respecting the
constraints of clinical and everyday settings.

A foundational theme is the decoding of affective and behavioral states from biosignals
for continuous monitoring and neuroadaptive interfaces. Xuanzhi et al. modeled stress
from EDA using attention-based sequence learning, showing that temporal context in
peripheral signals can support robust continuous assessment, with accuracies reaching
above 95% on public datasets. Another study by Usman et al. integrated EEG with
eye tracking (ET) to predict real-world choices, illustrating how multimodal fusion and
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ensemble strategies can extract complementary neural and ocular
markers of preference in ecologically valid scenarios. Their
approach achieved around 84% accuracy with high precision
for positive preferences. Extending behavioral inference to social
cognition, Bhutta et al. employed frontal fNIRS in an interactive
setting to distinguish deception from truth-telling using deep
neural networks, attaining approximately 88-90% accuracy and
pointing to the feasibility of decoding complex, spontaneous
behaviors beyond controlled paradigms.

Sleep health emerged as a second thematic pillar, benefiting
from multimodal, temporally aware modeling across distinct
populations. A contribution on sleep staging by Fan et al.
transformed EEG and EOG into time-frequency sequences,
coupled long-range temporal modeling with multiscale feature
extraction, and integrated modalities to mitigate the heterogeneity
introduced by obstructive sleep apnea (OSA). This design
demonstrates broader applicability beyond healthy cohorts and
enhances interpretability for clinical workflows, with performance
at approximately 80% in OSA cohorts and improvements over
competitive baselines on public datasets. Complementing this
system’s view, a neonatal study by Siddiga et al. identified
promising electrode configurations and informative signal features
that sustain accurate sleep state classification. Notably, a single
central channel maintained an accuracy of approximately 81%,
and compact left hemisphere montages slightly outperformed
right hemisphere channels. The study presented a practical
sleep monitoring strategy that prioritizes comfort, safety, and
computational efficiency in newborn care.

Methodological innovations in EEG decoding were highlighted
by work that blends efficient sequence modeling with targeted
attention and multiscale feature design. A study by Li advanced
a compact state space architecture paired with pyramidal
convolutions and channel-spatial attention to improve EEG
classification for brain-computer interfaces (BCI). The findings
underscore the potential of latency-conscious designs for real-time
use on a standard dataset while achieving approximately 97%
performance with strong class-wise balance. In parallel, a clinical
study by Umair et al. on major depressive disorder (MDD)
detection demonstrated that ensembles leveraging transformer
representations can deliver high-accuracy classification from
EEG data while operating within a decentralized, split-learning
framework that keeps data local across nodes. The approach
maintained over 95% accuracy across clients, and reached
approximately 99% accuracy in centralized settings, aligning
with institutional privacy requirements and offering a viable
path to collaborative, ensemble learning without compromising
data security.

Beyond electrophysiology, imaging-centric contributions
emphasized both diagnostic capability and pipeline security.
A large-scale study on karyogram analysis by Tabassum et al.
proposed a hybrid approach that pre-trained the proposed
classifier on unlabeled images and fine-tuned it to detect
structural anomalies, complemented by techniques that localized
abnormal regions. This design addresses the pervasive challenge
of rarely labeled anomalies and demonstrates near state-of-the-art
accuracy (approximately 99%), supporting the early screening
disorders  with

of chromosome-related neurodegenerative
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neurological impact. Complementing analytics with protection,
Asiri et al. developed a lightweight bit-plane encryption scheme for
medical images tailored to the internet of things (IoT) and edge
devices. By leveraging chaotic map-based shuffling and diffusion,
the method achieved high entropy (greater than 7.98), low or
negative inter-pixel correlations, a vast key space, and robustness
under occlusion. This study presented practical safeguards for data
in transit and at rest in resource-constrained environments.

Finally, novel sensing modalities extended the scope of
smart diagnostics to child-centered interaction and rehabilitation.
Asahi et al. employed EIT-based tactile sensing, which presents a
safe, integrated device that classifies children’s power vs. precision
grips using features derived from voltage patterns and tomographic
reconstructions. In a pediatric cohort, accuracies exceeded 85%,
illustrating how contact-rich sensing can enable the quantitative
monitoring of developing motor skills and inform the design of
pediatric HCIL.

Several cross-disciplinary and cutting-edge research focuses
were explored in this Research Topic. First, multimodal fusion
and multiscale representations consistently improve robustness
to artifacts and population heterogeneity when EEG, EOG, and
ET modalities are hybridized or link time-frequency transforms
with attention and dilated convolutions. Second, temporal
sequence modeling via transformers and state-space formulations
captures long-range dependencies that static models overlook,
enabling more reliable decoding of stress, behavior, and sleep
dynamics. Third, data-efliciency strategies, including unsupervised
pretraining, synthetic data augmentation for class balancing
with the synthetic minority over-sampling technique (SMOTE),
and targeted feature engineering, addressed unlabeled data and
imbalanced class distribution issues, which are common in clinical
datasets and rare pathology scenarios. Fourth, interpretability is
increasingly embedded through attention mechanisms, multiscale
modules, and explicit localization, aligning model outputs with
physiological prospects and aiding clinical acceptance. Finally,
trustworthy deployment is advanced by privacy-preserving
learning that limits data movement, lightweight encryption suited
to edge devices, and practical design choices such as electrode
optimization and a compact scheme that supports real-time,
on-device feasibility.

Conclusion

The presented contributions validate a promising shift from
individual performance gains to cutting-edge integrated pipelines
that are multimodal, interpretable, cybersecure, and privacy-
preserving by design. They demonstrate that modern sequence
models and multiscale representations can decode the complex
neurobehavioral characteristics of active and passive brain activities
(e.g., stress, consumer choice, deception, and sleep dynamics).
It has been shown that data-efficient training enables intricate
neuronal signatures to be captured efficiently (e.g., neonatal EEG
and rare chromosomal anomalies). The contributions established
that privacy-preserving analytics and lightweight cryptography
are functional aspects for deployment in clinics and daily life
(e.g., split learning sustaining over 95% accuracy, edge encryption
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with high entropy and resilience). To sustain this momentum,
the research community should prioritize prospective and a wide
range of demographic validation to establish generalization and
to adopt shared data standards and benchmarks to strengthen
reproducibility. Collaborative explainability should be adopted
with clinicians, patients, and end users to support informed
decisions. Decentralized learning and secure edge computing
should continue to excel for equitable access. Convergence
of ML and biosensing approaches, along with these research
commitments, will continue to deliver reliable neurotechnology for
diagnosis, monitoring, and HCI across the lifespan.
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Manufacture Industrial Mathematics Center on BigData, Pusan National University, Busan, Republic of
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Deception is an inevitable occurrence in daily life. Various methods have been
used to understand the mechanisms underlying brain deception. Moreover,
numerous efforts have been undertaken to detect deception and truth-telling.
Functional near-infrared spectroscopy (fNIRS) has great potential for neurological
applications compared with other state-of-the-art methods. Therefore, an
fNIRS-based spontaneous lie detection model was used in the present study.
We interviewed 10 healthy subjects to identify deception using the fNIRS system.
A card game frequently referred to as a bluff or cheat was introduced. This game
was selected because its rules are ideal for testing our hypotheses. The optical
probe of the fNIRS was placed on the subject’s forehead, and we acquired optical
density signals, which were then converted into oxy-hemoglobin and deoxy-
hemoglobin signals using the Modified Beer—Lambert law. The oxy-hemoglobin
signal was preprocessed to eliminate noise. In this study, we proposed three
artificial neural networks inspired by deep learning models, including AlexNet,
ResNet, and GoogleNet, to classify deception and truth-telling. The proposed
models achieved accuracies of 88.5%, 88.0%, and 90.0%, respectively. These
proposed models were compared with other classification models, including
k-nearest neighbor, linear support vector machines (SVM), quadratic SVM, cubic
SVM, simple decision trees, and complex decision trees. These comparisons
showed that the proposed models performed better than the other state-of-the-
art methods.

KEYWORDS

spontaneous lie detection, deception, deep learning algorithm, functional near-infrared
spectroscopy (fNIRS), classification
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1 Introduction

Deception is an intrinsic and unavoidable facet of our society,
manifesting itself in everyday life. It is unsurprising for a person to
encounter or be involved in multiple deceptive situations within a
single day. Failure to identify deception has serious consequences for
the victim. To avoid being deceived, people have begun to study the
behavioral and physiological changes exhibited by deceivers. Hence,
this study aimed to detect the differences between hemodynamic
signals during spontaneous deception and classify between truth and
lie during an interactive game paradigm.

In earlier times, people identified deceivers based on the deceiver’s
personality or their own personal experiences (Freud and Strachey,
1962; Zuckerman et al.,, 1981b; Kleinmuntz and Szucko, 1984;
Peterman and Anderson, 1999). Additionally, during earlier times,
people often relied on myths based on religious norms to identify a
person who was being untruthful (Trovillo, 1938). Advancements in
scientific methods and new equipment, including polygraphs, have
enabled us to better understand the cues of deception that are beyond
the scope of religious beliefs, personal experience, and stereotypes
(Brett et al., 1986; Varisai Mohamed et al., 2006). These physiological
measures have revealed many new findings that provide the basis for
numerous theories, such as the non-verbal leakage theory (Ekman
et al, 1969), four-factor theory (Zuckerman et al, 1981a), and
interpersonal deception theory (Buller and Burgoon, 1996). These
theories have helped us understand why these cues of deception
manifest in humans when attempting to deceive someone (Bond et al.,
2014). Most of these theories agree that the intent and process of
deception invoke changes in the deceiver’s behavior that result from
changes in the persons state of mind.

Many researchers have investigated different neurophysiological
signals to identify changes in an individual’s mental state while they are
attempting to deceive. One such technique is Electroencephalography
(EEG), which records event-related potentials (ERPs) from the scalp of
the brain (Abootalebi et al., 2009; Meijer et al., 2013). ERPs are mainly
used to test knowledge of crime details that are only known to the
criminals involved (Farwell and Donchin, 1991). This type of test is
commonly known as the guilty knowledge test or concealed information
test (Furedy and Ben-Shakhar, 1991; Elaad and BEN-SHAKHAR, 1997;
Kong et al.,, 2012). EEG has excellent temporal resolution, enabling
rapid detection of brain signals (Turnip et al., 2011; Chen et al., 2023),
but exhibits poor spatial resolution, which cannot confine the brain area
associated with the deception process.

Functional magnetic resonance imaging (fMRI) is another
technique widely used to detect brain areas activated during deception.
fMRI offers a substantial advantage in terms of high spatial resolution
when compared to EEG (Spence et al., 2004). It can effectively localize
changes in regional blood flow (Farah et al., 2014) and hence provides
a comprehensive review of fMRI-based deception decoding. Because
of the high cost of scanners and their bulky size, the use of fMRI is
very limited in day-to-day human routines. Moreover, fMRI is highly
sensitive to motion artifacts. Therefore, researchers have embarked on
exploring an alternative brain imaging technique: functional near-
infrared spectroscopy (fNIRS).

Using fNIRS, brain activity is measured through hemodynamic
responses associated with neuronal behavior (Kamran and Hong, 2013;
Santosa et al., 2013; Khan et al., 2014; Ruotsalo et al., 2023). The fNIRS
can provide topographic (Obrig and Villringer, 2003; Wolf et al., 2007;
Huetal,, 2011; Li et al., 2018) and tomographic brain images (Bluestone
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et al, 2001; Boas et al., 2004). Oxy-hemoglobin (HbO), deoxy-
hemoglobin (HbR), and water are significant light absorbers, whereas
skin, tissue, and bone are mainly transparent to near-infrared light
within an optical window of 650-1,000 nm. Compared with EEG and
fMRI, fNIRS offers a superior tradeoff between temporal and spatial
resolutions. In one study (Irani et al., 2007) compared the features of
fNIRS and fMRI and reported that fNIRS has excellent potential for
psychotic and neurological applications because of its portability,
simplicity, and insensitivity to motion artifacts compared to fMRI. {NIRS
also has several advantages over other brain imaging techniques; it can
be designed in a compact and portable form, is very cost-effective
(Muehlemann et al., 2008; Bhutta et al., 2014; Toglia et al., 2022), and
can be used in diverse fields such as neuroscience, brain-computer
interfaces (Naseer and Hong, 2013a,b), and rehabilitation.

2 Literature review

Limited research has been conducted in the field of {NIRS-based
deception decoding (Tian et al., 2009; Hu et al., 2012; Ding et al., 2013,
2014; Bhutta et al., 2015; Emberson et al., 2017; Quaresima and
Ferrari, 2019). To detect deception, one study (Hu et al., 2012)
employed a mock crime paradigm. Because individuals were
instructed to provide deceptive or truthful responses at specified times
and locations, this research, which was based on the concealed
information test, did not incorporate a spontaneous paradigm. The
first study to use fNIRS to identify the neural correlates of spontaneous
deception was conducted by Ding et al. (2013). These aforementioned
studies on fNIRS-based deception decoding have exclusively
investigated cases of deceptions where the perpetrator lies to an
unsuspecting victim; this type of deception occurs more frequently in
casual social interactions. In contrast, there are also situations in
which the perpetrator deliberately misleads the victim, even though
both parties are fully aware of the attempt at deception. This type of
circumstance is typically referred to as reverse psychology, and it
frequently occurs in highly competitive settings, such as diplomatic
meetings, political debates and elections, sports, card games (including
gambling), and other various scenarios. In this scenario, the individual
employing reverse psychology can deceive the victim not only by
uttering a false statement but also by making a truthful remark. The
deceiver may choose to speak the truth, knowing that the victim is
aware of the deceptive intention, yet the victim interprets it as a lie,
thus believing the contrary. Consequently, speaking the truth serves
the deceiver’s purpose of misleading the victim.

Deep learning classifiers have been widely used recently. A deep
neural network (DNN) is composed of multiple layers of nonlinear
processing modules called neurons (Schmidhuber, 2015; Huve et al.,
2018). These fully connected or semi-connected neurons receive inputs
from previous consecutive neurons. DNN can achieve superior
classification performance in comparison to linear classifiers, such as
linear discernment analysis (LDA), support vector machine (SVM), and
others when applied to signals (language and speech processing) or
images (Collobert and Weston, 2008; Krizhevsky et al., 2012; Bianchini
and Scarselli, 2014; Simonyan and Zisserman, 2014). Hence, DNN
classifiers are also gaining attention in the biomedical field (Hudson and
Cohen, 2000; Ciregan et al., 2013; Ronneberger et al., 2015).

Only a few studies have employed DNN for classification.
Abibullaev et al. (2011) investigated the performance of a DNN in a
four-class classification experiment and reported a maximum accuracy
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of 94%. Yi et al. (2013) used a DNN to classify left and right motor
imagery with an average classification accuracy of 84%. Hennrich et al.
(2015) reported a similar classification performance of DNN compared
to that of other classifiers (such as LDA and SVM) in a three-mental
task experiment. To the best of our knowledge, no previous study has
used a DNN for spontaneous deception decoding using fNIRS.

In this study, we hypothesized that, in the real world, a deceiver
can deceive another person not only by telling a lie but also by telling
the truth. Therefore, the objectives of this study were to:

compare the differences between the hemodynamic responses
produced by spontaneous lying and stating the truth,

classify between the lie and truth for an interactive
game paradigm,

develop three deep ANN models for classifying responses, and

compare the performance of the proposed deep ANN with other
classifiers, such as LDA and SVM, in a spontaneous deception
decoding paradigm.

According to these findings, the fNIRS system can accurately
identify changes in HbO signals during spontaneous lies and truths.

3 Materials and methods

3.1 Subjects

Ten healthy male individuals (mean age 30.8 +3.68) participated
in the experiments. Each patient had normal or corrected-to-normal
eyesight. Of the 10 subjects, nine were right-handed. None of the
subjects had any history of mental or neurological illness. The card
game was known to all subjects. Informed consent was obtained from
all subjects, and the experiments were performed in accordance with
the latest Declaration of Helsinki. The framework proposed in this
study is illustrated in Figure 1. The framework is divided into two
blocks: a training block (blue dotted lines) and a testing block (green
dotted lines). The training black was used to train the neural network

10.3389/fncom.2023.1286664

models on the given data, whereas the testing block was used to
classify the data into truth and lie classes based on the model trained
in the training block. Information on the individual blocks is provided
in the respective chapters of the article.

3.2 Experimental procedure

The subjects were seated comfortably in front of a second person
(referred to as the victim). The subject and victims underwent three
practice sessions, and a brief explanation of the experiment before the
experiment was provided to ensure that they fully understood
the guidelines.

A well-selected experimental paradigm was used in this study. The
experimental paradigm was a card game known as bluff or cheat. The
bluff game was chosen because the rules of the game are ideal for
testing our hypotheses. Our objective was to distinguish between
deceptive actions when the subject is speaking the truth and when
they are intentionally deceiving the victim with a falsehood.

The game rules are straightforward. The subject received 20
randomly selected cards, with the consideration that a minimum of six
of these cards had no corresponding matches. Therefore, the subject had
to lie at least four or five times in order to get rid of those cards. The
subject had to play out all of their cards without revealing any signs of
bluffing. The subjects had 1 min to carefully organize all their cards prior
to starting the experiment. The duration of each experiment was
approximately 10 min, with each experiment having a maximum of 20
sessions, each lasting approximately 30s. In each session, the first 155
were allotted for card arrangement. The subject had to lie to the victim
in the next 5s (called “claim time”) by laying his cards face down on the
table and declaring what kind of cards they are (for instance, “three
sevens”). Depending on his claim, the subject could select any number
of cards between two and four. However, this assertion may or may not
be correct. The victim then had 105 to react to the subject’s assertion
(response time). If the victim believed that the subject is telling the
truth, they could choose- to pass, removing the pile from the table.
However, if the victim suspected that the subject had lied in their claim,
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they had the option to flip the cards face up. If the subject lied, the pile
was returned to the subject. However, if the subject was truthful, the pile
was removed from the table, and the next session commenced. The
game continued for 20 sessions. A prize of 10,000 Korean Won was to
be awarded to the subject if they managed to play all their cards within
20 sessions; however, if they were to do so, they would not receive the
prize money. There were 12 total subjects in this trial. Two respondents’
data were excluded from the analysis as they consistently spoke the truth
at the beginning of trials and only lied towards the end, rendering their
responses predictable. Eight out of ten subjects were able to play all of
their cards. One administrator continuously monitored the experiment
and documented the trials in which the subject deceived the victim.

10.3389/fncom.2023.1286664

3.3 Data acquisition

A lab-built multichannel continuous-wave imaging system
captured the brain signals (Bhutta and Hong, 2013). The optical probe
of the fNIRS system was positioned on the forehead of the subject
such that the FP1 and FP2 locations were in the middle of the probe,
as shown in Figure 2. To connect the flexible probe and ensure
excellent contact between the its emitters and detectors and the
subject’s scalp, hair was brushed backward. Self-adhesive bandages
were used to secure the probe to the subject’s head. The emitters and
detectors were systematically positioned within a 4.3 x 13 cm? area
according to a source-detector distance of approximately 3cm. A

FIGURE 2
Optode placement and channel configuration.
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sampling rate of approximately 3.8 Hz was used to collect the data. A
Velcro band was used to hold the probe at the appropriate location
throughout the experiment.

3.4 Data processing

MATLAB (MathWorks, United States) was used to import and
further analyze the signals from the fNIRS equipment offline. The
data were stored in a host computer text file as digitized raw intensity
values from the fNIRS system. The hemoglobin conversion block of
the framework was used to convert the intensity values to
concentration changes of HbO and HbR using the Modified Beer-
Lambert law (Bhutta et al., 2015). The change in optical density
(AOD) was calculated using these raw intensity values at each
discrete time k as:

I
AOD(k:2) =2

Lin(k;7) =1d(2)Auq (k1)

1)

Where L, is the intensity of detected light; I, intensity of incident
light; d, differential path length factor; /, distance between the emitter
and detector; and Ay, absorption change of the tissue. The changes
of HbO (Acino) and HBR (Acir) were measured using the modified
Beer-Lambert Law as (Bhutta et al., 2015):

A A -1
Acmpo (k)] | dhom  1ahon AOD; (k;2)
= X
Aepr (k)| | e ghaie | | A0Ds(ki2)| P

with A, =640nm, A,=910nm, d"; =6.63, and d*,=2.765, according to
the values for the wavelength-dependent absorption coefficients a0,
Qnr- INIRS, while detecting the hemodynamic responses, picks up the
physiological noise of respiration, pulse, and low-frequency drift
fluctuations. A second-order low-pass filter with a cutoff frequency of
0.15Hz was used to eliminate such noises (Hu et al., 2012; Bhutta
etal., 2015). The HbO was considered for further analysis in this study
because it is a more sensitive and reliable activity indicator than HbR
(Hoshi, 2003, 2007).

3.5 Classification

Once the data were preprocessed, classification was performed on
the Acmpo(k) signals. We conducted this classification to distinguish
between lie and truth responses based on the features extracted from
NIRS signals. The features selected in this study were the signal mean
(SM) and signal slope (SS) of the HbO signal during the 5-s claim
period of the stimulus. We used this claim period because it is the
actual time at which the subject attempted to deceive the victim by
either telling the truth or lying. The average HbO signal for each
subject was obtained by averaging all 12 channels of the corresponding
subject. SM and SS values over a 5-s window can yield better results
in binary classification (Khan et al., 2014; Bhutta et al., 2015).

In this study, we performed the classification using various
classifiers categorized into linear and nonlinear categories. LDA and
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SVM are the main linear classifiers, whereas the ANN is a nonlinear
classifier. Both the LDA and SVM algorithms classify different classes
of data based on hyperplanes. In LDA, a separating hyperplane is
generated to minimize the interclass variance and maximize the
distance between the class means (Lotte et al., 2007). For the SVM
classifier, a separating hyperplane is designed such that the distance
between the hyperplane and the nearest training point(s) is
maximized (Naseer et al., 2014).

Mainstream machine learning techniques can be categorized as linear
or nonlinear classifiers. Linear classifiers classify a sample based on the
value of the linear combination of its features. For example, assume that
we have an input feature vector x. A linear classifier then constructs a
function that directly assigns the input vector x to a specific class:

1 if x > threshold,

£(x)= {_1 3)

otherwise

A linear SVM is a linear classifier that makes decisions
according to a linear hyperplane capable of effectively segregating
data. SVM finds an optimal hyperplane by maximizing the margin,
which is the minimum distance between the hyperplane and any of
the data samples. Such classifiers perform well when the problem is
linearly separable. However, if the data are not linearly separable,
they will have poor generalization ability. In this case, we could map
the input vector onto a higher-dimensional space using the kernel
function K and find the separating hyperplane in that particular
dimension. Quadratic SVM and Cubic SVM are examples of
kernelized versions of SVM that utilize second and third-degree
polynomial kernels.

K(Xi,XJ‘) = (X]TXJ' +1)p

In the machine learning literature, several other algorithms
handle nonlinear cases using a completely different computational
approach; one of the simplest algorithms is the K-Nearest Neighbor
(KNN). The main idea of this algorithm is that, for a new instance to
be classified, the algorithm searches for the K-nearest points in the
feature space and assigns it to the class that prevails among its
neighbors. Similarly, the decision tree constructs a classification
model with a tree-like structure. It partitions a feature space into
smaller regions containing homogenous instances and simultaneously
incrementally constructs an associated decision tree. The partitions
of the feature space are usually based on criteria such as the Gini
impurity, information gain, or distance measure.

3.6 Proposed artificial neural networks
(ANN) models

In recent years, artificial neural networks have flourished in the
machine learning and pattern recognition domains. They consist
of many interconnected processing units, called neurons. The
outputs of the hidden layer neurons are transmitted to the inputs
of the next hidden layer within the network (Ullah et al., 2020).
Thus, they communicate with each other by emitting signals over
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numerous weighted connections. During training, each neuron can
update its weight, allowing the network to learn hidden patterns
from the data. In this study, we designed three ANN architectures
(M1, M2, and M3) to conduct experiments on our dataset. These
structures were designed based on ideas from state-of-the-art
convolutional neural network models, including AlexNet, ResNet,
and GoogleNet. The numbers of input and output nodes and
hidden layers of these neural networks are the same; however, the
number of nodes in each hidden layer varies. The first two layers
of M1 contain 10 neurons; the subsequent two hidden layers
consist of eight and five neurons, respectively; and finally, the
prediction layer contains two SoftMax classifiers. The M2 topology
is similar to that of M1; however, we introduced two pairs of
hidden layers with the same number of neurons in this structure.
The first two layers had eight neurons, and the next pair had layers
containing four neurons. We designed a third neural network
architecture that differed from the aforementioned architecture. In
this structure, we first increased the number of neuron dimensions
from two to six and six to eight and then decreased it from eight to
six and six to two neurons for the final class prediction. The
architectures of the three ANNs are shown in Figure 3. Neural
networks have weights that are initially randomly initialized, and
later in the training process, these weights are optimized. The
initial weights of our neural networks were determined using
Kaiming uniform initialization (also known as HE initialization).
This method is tailored for layers activated by the ReLU function
and provides an advantage over random initialization. Specifically,

10.3389/fncom.2023.1286664

HE initialization mitigates issues such as vanishing and exploding
gradient problems, thereby enabling faster convergence during
training. Aligning with the characteristics of ReLU, it also
minimizes the occurrence of inactive neurons at the start of
training. The empirical robustness of this method makes it a
superior choice for deep network initialization compared to other
simplistic methods. We selected four intermediate layers to achieve
an optimal balance for our dataset. With only two features present
in the input, it is essential to project them into a higher-
dimensional space for feature extraction and subsequently
condense the dimensions as we approach the classification layer. If
we were to increase the number of hidden layers, the model would
risk succumbing to the vanishing gradient problem. This is
especially pertinent when processing only two features across
excessive layers, as this is not advisable.

4 Results and discussion

This section presents a comparative analysis of the six statistical
machine-learning techniques and three neural network models.
The experiments were conducted using the MATLAB 2018b
classification learning toolbox and Python 3.5 with Keras.
We utilized a confusion matrix, receiver operating curve (ROC),
area under the curve (AUC), and subject-level performance
evaluation for the proposed method, which are discussed in
subsequent sections.

R0
e

FIGURE 3

Neural network architectures for lie detection. Models M1, M2, and M3 process the mean and slope of the oxy-hemoglobin (HbO) signals through
varying numbers of hidden layers and neurons. Each model produces a two-dimensional output representing the probabilities of a lie and truth.
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Confusion matrices of different statistical machine learning classifiers for lie prediction.
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In the domain of machine learning, mainly while dealing with
classification problems having a distinction between a number of
different items, the confusion matrix is considered an effective
metric for evaluation. It is also known as the error matrix, as it
indicates the error rate. It is used to show the effectiveness and
performance of any trained classifier and summarizes the
prediction results on any classification problem. We used a
confusion matrix as an evaluation metric to demonstrate the
performance of our proposed method.

The predictive class-wise results for different classifiers with
different statistical classifier flavors are shown in Figure 4. The top left
corner in Figure 4 shows the confusion matrix for the KNN classifier,
followed by simple and complex decision trees with 55%, 77%, and
56% completely true predictions, respectively. The accuracy achieved
by these classifiers for positive classes is not convincing for real-world
problems or for their deployment in different sectors. Therefore,
we obtained better prediction results for the same data using different
classifiers in the second row, starting from the linear SVM, followed
by the quadratic and cubic SVM. The quadratic SVM achieved an
average correct prediction result of 80%, which was dominated by the
cubic SVM. The cubic SVM obtained the highest prediction results,
with 88% correct prediction results for the positive class on the same
data, proving it to be the best fit for deployment and practical
implementation in real-world lie detection problems. The overall
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accuracy performances of different classifiers are listed in Table 1.
Table 1 shows that the three proposed models were dominant for all
statistical machine learning classifiers and achieved 8%-10% of the
overall accuracy of the system.

4.1 ROC and AUC curves

In a binary classification problem, the output class is usually
labeled as positive or negative. The classification results can
be represented in a structured form called a confusion matrix.
However, the confusion matrix only provides true- and false-positive
results. Therefore, to check the performance of the classification model
at different thresholds, we calculated the ROC curves for all classifiers.
This ROC curve plots the True Positive Rate (TPR) and False Positive
Rate (FPR) at various thresholds, where TPR is a synonym for recall.
These can be defined as follows:

TPR = _TP (5)
TP + FN

FPR=— 0 ©6)
FP + TN
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Moreover, for further evaluation, it is crucial to compute the
ROC points, which is a resource-intensive method. An efficient
sorting-based algorithm called the AUC, provides this information
for evaluation. It measures the entire area under the ROC curve
from (0,0) to (1,1). AUC offers an aggregate measure of
performance at all possible thresholds. Thus, we calculated these
values and obtained promising results for both the ROC curves and

TABLE 1 Comparison of different machine learning classifiers for overall
accuracy.

Method Overall accuracy (%)
KNN 68.5
Simple decision tree 77.5
Complex decision tree 70.0
Linear SVM 80.0
Quadratic SVM 81.5
Cubic SVM 80.5
Proposed NN M1 88.5
Proposed NN M2 88.0
Proposed NN M3 90.0

KNN, k-nearest neighbor; SVM, support vector machines; NN, neural network.

10.3389/fncom.2023.1286664

AUC values for all classifiers. The obtained AUC values and ROC
curves for all classifiers are shown in Figure 5. The SVM classifiers
achieved better AUC values and ROC curves, obtaining 86%, 84%,
and 83% AUC for linear, quadratic, and cubic SVM, respectively.
In contrast, the KNN, simple decision tree, and complex decision
tree achieved AUCs of 64%, 78%, and 73%, respectively. Linear
SVM has better accuracy than other statistical machine-learning
techniques. However, it is still ineffective for sensitive problems,
such as lie detection. To achieve better performance, we proposed
three different neural network structures that increased the
accuracy of lie detection from 8% to 10%.

4.2 Evaluation of the proposed ANN
models

In the proposed method, we conducted experiments on our
data using the three neural network models discussed in detail in
the proposed methodology section. The models were trained for
50 epochs, and the data were divided into training, validation, and
test sets of 60%, 20%, and 20%, respectively. The confusion
matrices, ROC curves, and AUC for the three models are shown in
Figure 6, and the overall accuracies are listed in Table 2. The
proposed neural network models outperformed statistical machine
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FIGURE 5
Receiver operating characteristic (ROC) curves and the area under the curve (AUC) values achieved from different hyperplane thresholds of six
machine learning classifiers.
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models for lie detection.

Receiver operating characteristic ROC curves, the area under the curve (AUC) values, and confusion matrices of three proposed neural network (NN)

learning approaches by a large margin, reaching 90% overall
accuracy for the M3 neural network model, which is a 10% increase
in accuracy. We trained our models five times and obtained the
highest accuracies of 88%, 88%, and 87% for the fourth folds of
M1, M2, and M3, respectively. The confusion matrices of the three
models were almost identical, demonstrating the effectiveness of
the models for lie detection.

The proposed neural network models were also evaluated for
subject-wise performance, which is illustrated in Figure 7. In the
entire dataset, we had a total of 10 subjects. For this experiment,
we trained our models on nine subjects and tested the models on the
remaining one subject. This experiment showed the accuracy of our
models when applied to unseen data. Subjects 1 and 9 achieved the
highest accuracy of 90% and 95% on each model, respectively; only
subjects 2 and 7 were had accuracies less than 70%. The remaining
subjects had accuracies greater than 80% for all three models. The
average accuracies achieved for M1, M2, and M3 were 81%, 80%, and
82%, respectively, demonstrating that the models are very effective
and robust for unseen data.

Figure 7 displays the results for the test set of each subject’s
data. We randomly selected three samples from each subject to
check the robustness of our models for different subject’s data.
The third column represents the actual label of the test sample,
and the other columns represent the results of its corresponding
machine-learning algorithm. The proposed three neural network
models achieved better performance of 80%, 80%, and 90%
subject-wise accuracy for neural networkl, neural network2, and
neural network3, respectively. On the other hand, the machine
learning-based methods, namely KNN, SDT, CDT, L-SVM,
Q-SVM, and C-SVM achieved 60%, 72%, 60%, 70%, 77%, and
73% accuracies, respectively. The proposed models have low
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accuracy for only three samples’ data, including the first sample
of subject 2 and the third sample of subjects 4 and 6. However,
for this data, other machine learning algorithms also faced
challenges in detection. Subsequent examination of data revealed
that these particular samples significantly differed from the rest
of the dataset and exhibited substantial noise; therefore, the
outcomes for these three samples were unsatisfactory.

5 Conclusion

In this study, we proposed an fNIRS-based spontaneous lie
detection framework. The HbO and HbR signals were acquired
using the fNIRS system. We used HbO SS and HbO SM as
features in the classification of truths and lies. We developed an
ANN, inspired by deep learning including AlexNet, ResNet, and
GoogleNet, for classification during HbO concentration changes
in an interactive environment. The proposed models, M1, M2,
and M3, had overall accuracies of 88.5%, 88.0%, and 90.0%,
respectively. We compared the results of the proposed ANN
models with those of conventional classifiers such as KNN,
simple decision tree, complex decision tree, linear SVM,
quadratic SVM, and cubic SVM and found that the proposed
ANN models outperformed conventional methods. In addition,
we compared the individual subject accuracies and found higher
accuracies for individual subjects. We further tested randomly
selected samples from each subject, and the proposed ANN
models M1, M2, and M3 achieved accuracies of 80%, 80%, and
90%, respectively. The resultant accuracies demonstrated the
feasibility and robustness of practical fNIRS spontaneous lie
detection in interactive scenarios.
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TABLE 2 Results achieved by different trained models for sample test data.

Subject Sample Actual Prediction
cass  NNML1 NNM2 NNM3 KNN  SDT L-SYM  Q-SVM  C-SVM
1 1 True True True True True True True True True True
2 False True False False True True True True False True
3 True True True True True True True True True True
2 1 False True True True True True False True True True
2 True True True True True True True True True True
3 False False True False True False True True True True
3 1 True True True True True True True True True True
2 False False True False False True False False False False
3 True True True True True True True True True True
4 1 False False False False False False False False False False
2 True True True True True True True True True True
3 False True True True True True True False True True
5 1 True True True True True True True True True True
2 False False True False True True True True False False
3 True True True True True True True True True True
6 1 False False False False False False False False False False
2 True True True True True True True True True True
3 False True True True True True True True True True
7 1 True True True True True True False True True True
2 False False False False False True False False False False
3 True True True True False True False False False False
8 1 False False False False False False False False False False
2 True True True True True True True True True True
3 False True False False True True True True True True
9 1 True True True True True True True True True True
2 False False False False True False True True False False
3 True True True True False True False False False False
10 1 False False False False False False False False False False
2 True True True True False True False True True True
3 False True False False True True True False False False
Average accuracy (%) 80 80 90 60 70 60 70 77 73
KNN, k-nearest neighbor; SVM, support vector machines; NN, neural network; SDT, simple decision tree; CDT, complex decision tree; L-SVM, linear-SVM; Q-SVM, quadratic-SVM; C-SVM, cubic-SVM.
DATA SPLIT ON SUBJECTS
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FIGURE 7
Subject-wise performance evaluation of the three proposed neural network (NN) models.

Frontiers in Computational Neuroscience 17 frontiersin.org


https://doi.org/10.3389/fncom.2023.1286664
https://www.frontiersin.org

Bhutta et al.

Data availability statement

The original contributions presented in the study are included in
the article/supplementary material, further inquiries can be directed
to the corresponding authors.

Ethics statement

The experiments were performed in accordance with the latest
Declaration of Helsinki. Ethical review and approval was not
required for the study on human participants in accordance with
the local legislation and institutional requirements. The participants
provided their written informed consent to participate in this study.

Author contributions

MB: Conceptualization, Methodology, Software, Writing —
original draft. MA: Conceptualization, Methodology, Software,
Writing - original draft. AZ: Formal analysis, Investigation,
Visualization, Writing - review & editing, Validation. KK: Formal
analysis, Writing - review & editing. JB: Funding acquisition,
Project administration, Resources, Writing - review & editing. SL:

Funding acquisition, Project administration, Resources,

Supervision, Writing -review & editing.

References

Abibullaev, B,, An, J., and Moon, J.-1. (2011). Neural network classification of brain
hemodynamic responses from four mental tasks. Int. . Optomechatronics 5, 340-359.
doi: 10.1080/15599612.2011.633209

Abootalebi, V., Moradi, M. H., and Khalilzadeh, M. A. (2009). A new approach for
EEG feature extraction in P300-based lie detection. Comput. Methods Prog. Biomed. 94,
48-57. doi: 10.1016/j.cmpb.2008.10.001

Bhutta, M. R., and Hong, K.-S. (2013). "A new near-infrared spectroscopy system for
detection of hemoglobin and water concentration changes during a human activity", in:
2013 international conference on robotics, biomimetics, Intelligent Computational
Systems: IEEE, 224-227.

Bhutta, M. R., Hong, M. J., Kim, Y.-H., and Hong, K.-S. (2015). Single-trial lie
detection using a combined fNIRS-polygraph system. Front. Psychol. 6:709. doi: 10.3389/
fpsyg.2015.00709

Bhutta, M. R., Hong, K.-S., Naseer, N., and Khan, M. J. (2014). "Classification of lie
and truth in forced choice paradigm: an fNIRS study”, in: Proc. of the 20th annual
meeting of the Organization for Human Brain Mapping (OHMB).

Bianchini, M., and Scarselli, F. (2014). On the complexity of neural network classifiers:
a comparison between shallow and deep architectures. IEEE Trans. Neural Netw. Learn.
Syst. 25, 1553-1565. doi: 10.1109/TNNLS.2013.2293637

Bluestone, A. Y., Abdoulaev, G., Schmitz, C. H., Barbour, R. L., and Hielscher, A. H.
(2001). Three-dimensional optical tomography of hemodynamics in the human head.
Opt. Express 9, 272-286. doi: 10.1364/0E.9.000272

Boas, D. A, Dale, A. M., and Franceschini, M. A. (2004). Diffuse optical imaging of
brain activation: approaches to optimizing image sensitivity, resolution, and accuracy.
Neurolmage 23, $275-5288. doi: 10.1016/j.neuroimage.2004.07.011

Bond, C. E, Levine, T. R,, and Hartwig, M. (2014). “New findings in non-verbal lie
detection” in Detecting deception: current challenges and cognitive approaches. eds. P. A.
Granhag, A. Vrij and B. Verschuere (Hoboken, NJ: Wiley-Blackwell), 37-58.

Brett, A., Phillips, M., and Beary, J. (1986). Predictive power of the polygraph: can the"
lie detector" really detect liars? Lancet 327, 544-547. doi: 10.1016/S0140-6736(86)90895-0

Buller, D. B., and Burgoon, J. K. (1996). Interpersonal deception theory. Commun.
Theory 6, 203-242. doi: 10.1111/j.1468-2885.1996.tb00127.x

Chen, Q., He, R, Sun, J., Ding, K., Wang, X, He, L., et al. (2023). Common brain
activation and connectivity patterns supporting the generation of creative uses and
creative  metaphors.  Neuropsychologia ~ 181:108487.  doi:  10.1016/j.
neuropsychologia.2023.108487

Frontiers in Computational Neuroscience

18

10.3389/fncom.2023.1286664

Funding

The author(s) declare financial support was received for the
research, authorship, and/or publication of this article. This work is
supported by a National Research Foundation (NRF) grant funded by
the Ministry of Education (MOE), South Korea, through the
“Development Research Program” NRF2021R111A2059735 (to SL).
This work was supported by the National Research Foundation of
Korea (NRF) grant funded by the Korea government (MSIT)
(2022R1C1C2003637 to KK) RS-2023-00210403 (to JB).

Conflict of interest

The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could
be construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated organizations,
or those of the publisher, the editors and the reviewers. Any product
that may be evaluated in this article, or claim that may be made by its
manufacturer, is not guaranteed or endorsed by the publisher.

Ciregan, D. C., Giusti, A., Gambardella, L. M., and Schmidhuber, J. (2013). "Mitosis
detection in breast cancer histology images with deep neural networks", in: Medical
image computing and computer-assisted intervention-MICCAI 2013: 16th international
conference, Nagoya, Japan, September 22-26, 2013, proceedings, part II 16: Springer,
411-418

Collobert, R., and Weston, J. (2008). "A unified architecture for natural language
processing: deep neural networks with multitask learning", in: Proceedings of the 25th
international conference on machine learning, 160-167.

Ding, X. P, Gao, X,, Fu, G., and Lee, K. (2013). Neural correlates of spontaneous
deception: a functional near-infrared spectroscopy (fNIRS) study. Neuropsychologia 51,
704-712. doi: 10.1016/j.neuropsychologia.2012.12.018

Ding, X. P, Sai, L., Fu, G,, Liu, J., and Lee, K. (2014). Neural correlates of second-order
verbal deception: a functional near-infrared spectroscopy (fNIRS) study. NeuroImage
87, 505-514. doi: 10.1016/j.neuroimage.2013.10.023

Ekman, P, Sorenson, E. R., and Friesen, W. V. (1969). Pan-cultural elements in facial
displays of emotion. Science 164, 86-88. doi: 10.1126/science.164.3875.86

Elaad, E., and Ben-Shakhar, G. (1997). Effects of item repetitions and variations on
the efficiency of the guilty knowledge test. Psychophysiology 34, 587-596. doi: 10.1111/
j.1469-8986.1997.tb01745.x

Emberson, L. L., Zinszer, B. D., Raizada, R. D., and Aslin, R. N. (2017). Decoding the
infant mind: multivariate pattern analysis (MVPA) using fNIRS. PLoS One 12:e0172500.
doi: 10.1371/journal.pone.0172500

Farah, M. J., Hutchinson, J. B., Phelps, E. A., and Wagner, A. D. (2014). Functional
MRI-based lie detection: scientific and societal challenges. Nat. Rev. Neurosci. 15,
123-131. doi: 10.1038/nrn3665

Farwell, L. A., and Donchin, E. (1991). The truth will out: interrogative polygraphy
(“lie detection”) with event-related brain potentials. Psychophysiology 28, 531-547. doi:
10.1111/j.1469-8986.1991.tb01990.x

Freud, S., and Strachey, A. (1962). Fragment of an analysis of a case of hysteria (1905
[1901]). London: Hogarth Press.

Furedy, J. J., and Ben-Shakhar, G. (1991). The roles of deception, intention to deceive,
and motivation to avoid detection in the psychophysiological detection of guilty
knowledge. Psychophysiology 28, 163-171. doi: 10.1111/j.1469-8986.1991.tb00407.x

Hennrich, J., Herff, C., Heger, D., and Schultz, T. (2015). "Investigating deep learning
for fNIRS based BCI", in: 2015 37th annual international conference of the IEEE
engineering in medicine and biology society (EMBC): IEEE, 2844-2847.

frontiersin.org


https://doi.org/10.3389/fncom.2023.1286664
https://www.frontiersin.org
https://doi.org/10.1080/15599612.2011.633209
https://doi.org/10.1016/j.cmpb.2008.10.001
https://doi.org/10.3389/fpsyg.2015.00709
https://doi.org/10.3389/fpsyg.2015.00709
https://doi.org/10.1109/TNNLS.2013.2293637
https://doi.org/10.1364/OE.9.000272
https://doi.org/10.1016/j.neuroimage.2004.07.011
https://doi.org/10.1016/S0140-6736(86)90895-0
https://doi.org/10.1111/j.1468-2885.1996.tb00127.x
https://doi.org/10.1016/j.neuropsychologia.2023.108487
https://doi.org/10.1016/j.neuropsychologia.2023.108487
https://doi.org/10.1016/j.neuropsychologia.2012.12.018
https://doi.org/10.1016/j.neuroimage.2013.10.023
https://doi.org/10.1126/science.164.3875.86
https://doi.org/10.1111/j.1469-8986.1997.tb01745.x
https://doi.org/10.1111/j.1469-8986.1997.tb01745.x
https://doi.org/10.1371/journal.pone.0172500
https://doi.org/10.1038/nrn3665
https://doi.org/10.1111/j.1469-8986.1991.tb01990.x
https://doi.org/10.1111/j.1469-8986.1991.tb00407.x

Bhutta et al.

Hoshi, Y. (2003). Functional near-infrared optical imaging: utility and limitations in
human brain mapping. Psychophysiology 40, 511-520. doi: 10.1111/1469-8986.00053

Hoshi, Y. (2007). Functional near-infrared spectroscopy: current status and future
prospects. J. Biomed. Opt. 12, -062106. doi: 10.1117/1.2804911

Hu, X.-S., Hong, K.-S., and Ge, S. S. (2011). Recognition of stimulus-evoked neuronal
optical response by identifying chaos levels of near-infrared spectroscopy time series.
Neurosci. Lett. 504, 115-120. doi: 10.1016/j.neulet.2011.09.011

Hu, X.-S., Hong, K.-S., and Ge, S. S. (2012). fNIRS-based online deception decoding.
J. Neural Eng. 9:026012. doi: 10.1088/1741-2560/9/2/026012

Hudson, D.L., and Cohen, M.E. (2000). Neural networks and artificial intelligence for
biomedical engineering. Hoboken, NJ: Wiley Online Library.

Huve, G., Takahashi, K., and Hashimoto, M. (2018). "Fnirs-based brain-computer
interface using deep neural networks for classifying the mental state of drivers", in:
Artificial neural networks and machine learning-ICANN 2018: 27th international
conference on artificial neural networks, Rhodes, Greece, October 4-7, 2018,
proceedings, part III 27: Springer, 353-362.

Irani, F, Platek, S. M., Bunce, S., Ruocco, A. C., and Chute, D. (2007). Functional near
infrared spectroscopy (fNIRS): an emerging neuroimaging technology with important
applications for the study of brain disorders. Clin. Neuropsychol. 21, 9-37. doi:
10.1080/13854040600910018

Kamran, M. A,, and Hong, K.-S. (2013). Linear parameter-varying model and adaptive
filtering technique for detecting neuronal activities: an fNIRS study. J. Neural Eng.
10:056002. doi: 10.1088/1741-2560/10/5/056002

Khan, M. J., Hong, K.-S., Bhutta, M. R., and Naseer, N. (2014). "fNIRS based dual
movement control command generation using prefrontal brain activity", in: 2014
international conference on robotics and emerging allied Technologies in Engineering
(iCREATE): IEEE, 244-248.

Kleinmuntz, B., and Szucko, J. J. (1984). Lie detection in ancient and modern times: a call
for contemporary scientific study. Am. Psychol. 39,766-776. doi: 10.1037/0003-066X.39.7.766

Kong, E, Zhao, J., and You, X. (2012). Emotional intelligence and life satisfaction in
Chinese university students: the mediating role of self-esteem and social support.
Personal. Individ. Differ. 53, 1039-1043. doi: 10.1016/j.paid.2012.07.032

Krizhevsky, A., Sutskever, I., and Hinton, G.E. (2012). Imagenet classification with
deep convolutional neural networks. Advances in neural information processing
systems, 25.

Li, J., Liu, X,, Yin, X,, Li, S., Wang, G., Niu, X,, et al. (2018). Transcranial direct current
stimulation altered voluntary cooperative norms compliance under equal decision-
making power. Front. Hum. Neurosci. 12:265. doi: 10.3389/fnhum.2018.00265

Lotte, E, Congedo, M., Lécuyer, A., Lamarche, E, and Arnaldi, B. (2007). A review of
classification algorithms for EEG-based brain-computer interfaces. J. Neural Eng. 4,
R1-R13. doi: 10.1088/1741-2560/4/2/R01

Meijer, E. H., Ben-Shakhar, G., Verschuere, B., and Donchin, E. (2013). A comment
on Farwell (2012): brain fingerprinting: a comprehensive tutorial review of detection of
concealed information with event-related brain potentials. Cogn. Neurodyn. 7, 155-158.
doi: 10.1007/s11571-012-9217-x

Muehlemann, T., Haensse, D., and Wolf, M. (2008). Wireless miniaturized in-vivo
near infrared imaging. Opt. Express 16, 10323-10330. doi: 10.1364/OE.16.010323

Naseer, N., and Hong, K.-S. (2013a). Classification of functional near-infrared
spectroscopy signals corresponding to the right-and left-wrist motor imagery for
development of a brain-computer interface. Neurosci. Lett. 553, 84-89. doi: 10.1016/j.
neulet.2013.08.021

Naseer, N., and Hong, K.-S. (2013b). "Discrimination of right-and left-wrist motor
imagery using fNIRS: towards control of a ball-on-a-beam system", in: Proceedings of
the 6th international IEEE engineering in medicine and biology society (IEEE EMBS)
conference on neural engineering), 703-706.

Naseer, N., Hong, K.-S., Bhutta, M. R,, and Khan, M. J. (2014). "Improving
classification accuracy of covert yes/no response decoding using support vector

Frontiers in Computational Neuroscience

19

10.3389/fncom.2023.1286664

machines: an fNIRS study”, in: 2014 international conference on robotics and emerging
allied Technologies in Engineering (iCREATE): IEEE, 6-9.

Obrig, H., and Villringer, A. (2003). Beyond the visible—imaging the human brain
with light. J. Cereb. Blood Flow Metab. 23, 1-18. doi: 10.1097/01.
‘WCB.0000043472.45775.29

Peterman, R. M., and Anderson, J. L. (1999). Decision analysis: a method for taking
uncertainties into account in risk-based decision making. Hum. Ecol. Risk Assess. Int. J.
5,231-244. doi: 10.1080/10807039991289383

Quaresima, V., and Ferrari, M. (2019). Functional near-infrared spectroscopy (fNIRS)
for assessing cerebral cortex function during human behavior in natural/social
situations: a concise review. Organ. Res. Methods 22, 46-68. doi:
10.1177/1094428116658959

Ronneberger, O., Fischer, P, and Brox, T. (2015). "U-net: convolutional networks for
biomedical image segmentation", in: Medical image computing and computer-assisted
intervention-MICCATI 2015: 18th international conference, Munich, Germany, October
5-9, 2015, proceedings, part III 18: Springer, 234-241.

Ruotsalo, T., Mikeld, K., and Spapé, M. (2023). Crowdsourcing affective annotations
via fNIRS-BCI. IEEE Trans. Affect. Comput., 1-12. doi: 10.1109/TAFFC.2023.3273916

Santosa, H., Jiyoun Hong, M., Kim, S.-P,, and Hong, K.-S. (2013). Noise reduction in
functional near-infrared spectroscopy signals by independent component analysis. Rev.
Sci. Instrum. 84:073106. doi: 10.1063/1.4812785

Schmidhuber, J. (2015). Deep learning. Scholarpedia 10:32832. doi: 10.4249/
scholarpedia.32832

Simonyan, K., and Zisserman, A. (2014). Very deep convolutional networks for large-
scale image recognition. arXiv preprint arXiv:1409.1556.

Spence, S. A., Hunter, M. D,, Farrow, T. E, Green, R. D., Leung, D. H., Hughes, C.J,etal
(2004). A cognitive neurobiological account of deception: evidence from functional
neuroimaging. Philos. Trans. R Soc. Lond. B Biol. Sci. 359:1755. doi: 10.1098/rstb.2004.1555

Tian, E, Sharma, V., Kozel, E A., and Liu, H. (2009). Functional near-infrared
spectroscopy to investigate hemodynamic responses to deception in the prefrontal
cortex. Brain Res. 1303, 120-130. doi: 10.1016/j.brainres.2009.09.085

Toglia, M. P,, Schmuller, J., Surprenant, B. G., Hooper, K. C., Demeo, N. N., and
Wallace, B. L. (2022). Novel approaches and cognitive neuroscience perspectives on false
memory and deception. Front. Psychol. 13:721961. doi: 10.3389/fpsyg.2022.721961

Trovillo, P. V. (1938). History of lie detection. Am. Inst. Crim. L. Criminol. 29:848.

Turnip, A., Hong, K.-S., and Jeong, M.-Y. (2011). Real-time feature extraction of P300
component using adaptive nonlinear principal component analysis. Biomed. Eng. Online
10, 1-20. doi: 10.1186/1475-925X-10-83

Ullah, A., Muhammad, K., Haydarov, K., Hag, I. U,, Lee, M., and Baik, S. W. (2020).
"One-shot learning for surveillance anomaly recognition using siamese 3d cnn", in: 2020
international joint conference on neural networks (IJCNN): IEEE, 1-8.

Varisai Mohamed, S., Sung, J.-M., Jeng, T.-L., and Wang, C.-S. (2006). Organogenesis
of Phaseolus angularis L.: high efficiency of adventitious shoot regeneration from
etiolated seedlings in the presence of N6-benzylaminopurine and thidiazuron. Plant Cell
Tissue Organ Cult. 86, 187-199. doi: 10.1007/s11240-006-9107-1

Wolf, M., Ferrari, M., and Quaresima, V. (2007). Progress of near-infrared
spectroscopy and topography for brain and muscle clinical applications. J. Biomed. Opt.
12, 062104-062104-062104-062114. doi: 10.1117/1.2804899

Yi, W, Qiu, S., Qi, H., Zhang, L., Wan, B., and Ming, D. (2013). EEG feature
comparison and classification of simple and compound limb motor imagery. J. Neuroeng.
Rehabil. 10, 1-12. doi: 10.1186/1743-0003-10-106

Zuckerman, M., Depaulo, B. M., and Rosenthal, R. (1981a). “Verbal and nonverbal
communication of deception” in Advances in experimental social psychology.
ed. L. Berkowitz (Amsterdam: Elsevier), 1-59.

Zuckerman, M., Koestner, R., and Driver, R. (1981b). Beliefs about cues associated
with deception. J. Nonverbal Behav. 6, 105-114. doi: 10.1007/BF00987286

frontiersin.org


https://doi.org/10.3389/fncom.2023.1286664
https://www.frontiersin.org
https://doi.org/10.1111/1469-8986.00053
https://doi.org/10.1117/1.2804911
https://doi.org/10.1016/j.neulet.2011.09.011
https://doi.org/10.1088/1741-2560/9/2/026012
https://doi.org/10.1080/13854040600910018
https://doi.org/10.1088/1741-2560/10/5/056002
https://doi.org/10.1037/0003-066X.39.7.766
https://doi.org/10.1016/j.paid.2012.07.032
https://doi.org/10.3389/fnhum.2018.00265
https://doi.org/10.1088/1741-2560/4/2/R01
https://doi.org/10.1007/s11571-012-9217-x
https://doi.org/10.1364/OE.16.010323
https://doi.org/10.1016/j.neulet.2013.08.021
https://doi.org/10.1016/j.neulet.2013.08.021
https://doi.org/10.1097/01.WCB.0000043472.45775.29
https://doi.org/10.1097/01.WCB.0000043472.45775.29
https://doi.org/10.1080/10807039991289383
https://doi.org/10.1177/1094428116658959
https://doi.org/10.1109/TAFFC.2023.3273916
https://doi.org/10.1063/1.4812785
https://doi.org/10.4249/scholarpedia.32832
https://doi.org/10.4249/scholarpedia.32832
https://doi.org/10.1098/rstb.2004.1555
https://doi.org/10.1016/j.brainres.2009.09.085
https://doi.org/10.3389/fpsyg.2022.721961
https://doi.org/10.1186/1475-925X-10-83
https://doi.org/10.1007/s11240-006-9107-1
https://doi.org/10.1117/1.2804899
https://doi.org/10.1186/1743-0003-10-106
https://doi.org/10.1007/BF00987286

Bhutta et al. 10.3389/fncom.2023.1286664
Glossary

fNIRS Functional near-infrared spectroscopy

SVM Support vector machines

EEG Electroencephalography

fMRI Functional magnetic resonance imaging

HbO Oxy-hemoglobin

HbR Deoxy-hemoglobin

DNN Deep neural network

LDA Linear discernment analysis

SS Signal slope

SM Signal mean

KNN K-nearest neighbor

ANN Artificial neural networks

ROC Receiver operating curve

AUC Area under the curve

TPR True Positive Rate

FPR False Positive Rate
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Brain stress monitoring has emerged as a critical research area for understanding
and managing stress and neurological health issues. This burgeoning field aims
to provide accurate information and prediction about individuals’ stress levels
by analyzing behavioral data and physiological signals. To address this emerging
problem, this research study proposes an innovative approach that uses an
attention mechanism-based XLNet model (called BrainNet) for continuous stress
monitoring and stress level prediction. The proposed model analyzes streams of
brain data, including behavioral and physiological signal patterns using Swell and
WESAD datasets. Testing on the Swell multi-class dataset, the model achieves
an impressive accuracy of 95.76%. Furthermore, when evaluated on the WESAD
dataset, it demonstrates even higher accuracy, reaching 98.32%. When applied to
the binary classification of stress and no stress using the Swell dataset, the model
achieves an outstanding accuracy of 97.19%. Comparative analysis with other
previously published research studies underscores the superior performance of
the proposed approach. In addition, cross-validation confirms the significance,
efficacy, and robustness of the model in brain stress level prediction and aligns
with the goals of smart diagnostics for understanding neurological behaviors.
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1 Introduction

Having outlined the goals and objectives of occupational health psychology, it is
possible to focus on stressing that stress, an essential factor that affects both health and
wellbeing, is still one of the main concerns of the modern world (Adochiei et al., 2019). As
noted, stress refers to the broad Universal experience of organismic transactions defined as
reactions to internal or external stimuli, including benefit stress that enables individuals to
adapt to new situations or demanding pressures or negative stress or pressures, which have
adverse effects on the organism (Zalabarria et al., 2020). This inherent mechanism works as
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the body’s way of handling bad conditions, trying to bring balance
to the body at all times (Sharma, 2018). For example, stress-related
problems are one of the most common health problems and form
a large proportion of health demands in most European countries
and the United States, demonstrating the extent of their effects on
the health of nations (Akmandor and Jha, 2017).

The first level of stress may develop when an organism
is faced with a stimulus or event which is referred to as
stressors (Sharma, 2018). These can be described as being the
following three main types, in which two subgroups can be
distinguished based on the nature of the stressors: internal and
external stress variables/stressors, which can be psychological and
physiological. These are some of the reasons that were classified
as causes of psychological stress; these include debt, bereavement,
joblessness, and studies. However, positives include infections,
climate, extremes, and lack of proper rest as stressors. If the body
detects a stress-causing circumstance, the body will trigger short- or
long-term stress responses. This is governed by the hypothalamus,
which is a very important part of the brain when it comes to
stress. Gluactivates the pituitary gland to release cortisol into the
adrenal gland. In addition to these functions, cortisol helps regulate
blood glucose levels and bring the body to its normal functioning.
However, the adrenal medulla, which is part of the ANS stimulated
by the hypothalamus, releases fast stress responses. This produces
adrenaline that triggers the fight or flight response and starts the
sympathetic division. The stressor is no longer present, and the
parasympathetic nervous system is present to restore the normality
of the body (Anisman and Merali, 1999).

It is important to stress that stress can be divided into quite
a few forms, which can be distinguished based on the symptoms,
their nature, durations, and the treatment to be offered. The most
common type of stress is acute stress, and it is identified by
periods tof ime and negativity. Chronic stress is a daily high stress
until it becomes normal and natural to be stressed at whichever
period is considered normal. It might be caused by the stress of
early childhood or some past experiences, which determine an
individual’s life (Elzeiny and Qaraqe, 2018).

Stress is a multifaceted phenomenon experienced by grown-ups
and young people in their life span. The modern workplace as a
source of stress has been identified to have evolved in recent times
due the to mounting pressure exerted on workers that can be due to,
for instance, a lack of resources to accomplish job requirements or
unfulfilled personal requirements. Thus, work-related stress results
in such consequences as increased absenteeism, increased number
of mistakes, and decreased work productivity (Gjoreski and
Lustrek, 2017). The EU spends roughly EUR 617 billion every year
on social benefits, health care, and programs for people with stress

Abbreviations: EDA, Electrodermal activity; HRV, Heart rate variability; CNN,
Convolutional Neural Network; TL, Transfer Learning; GPA, Grade point
average; DL, Deep Learning; DNN, Deep Neural Network; WESAD, Wearable
stress and affect detection; ANN, Artificial Neural Network; DT, Decision
Tree; MLP, Multi-layer perceptron; RF, Random Forest; SGD, Stochastic
Gradient Descent; SVM, Support Vector Machine; SMA, Stress monitoring
assistant; ETC, Extra tree classifier; EEG, Electroencephalogram; ECG,
Electrocardiogram; IBI, inter-beat intervals; RAM, Random access memory;

GPU, General processing unit; CPU, Central processing unit.
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or depression arising from work, demonstrating how productivity
is affected by the prevalence of stress at the workplace (Acerbi
et al, 2017). Some of the challenges that teenagers experience
include academic stress, which is mental strain as a result of the
much pressure the teenagers are made to face. Stress management
can be difficult because in addition to homework, examinations,
coursework, interactions with other students, families, and other
responsibilities that are all central to student learning, students all
of whom are directly negatively affected by stress. Dwelling with
some level of stress, student’s health is normally characterized by
signs of depression and anxiety (Thanasekhar et al., 2019).

Research done in this area points to the fact that increased
stress is inversely proportional to wellbeing and quality of life.
Stress introduced here means chronic stress, which can lead
to the development of several psychiatric disorders including
anxiety and depression (Pascoe et al., 2020). Descriptive studies
that incorporated 5,551 students (Chapell et al., 2005) showed
a disagreeable relationship between patients’ anxiety levels and
performance such that those who have low anxiety rates are likely
to obtain better GPAs than the ones who have moderate and high
anxiety rates. However, depression and anxiety bring in its wake
the climax of suicide, something that occupies the second position
in the list of causes of death among college and university students.
From the available reports, it is estimated that ~1,100 students out
of 100,000 students commit suicide each year (BrainsWay, 2024).
Awareness of stress indicators can be highly beneficial for both
universities and families to focus on the effective provision of the
conditions necessary for student success as well as the individual’s
general wellbeing.

New developments in affective computing have shown
promising feasibility in detecting and assessing occupational stress
through physiological data, namely, electrocardiogram features,
electrodermal activity, skin temperature, and electromyographic
activity. This study uses these signals with an ensemble model
to identify the presence of stress in people as a method of stress
measurement and coping strategies for better stress handling. The
main contributions of this study are as follows:

e Brain stress predictive accuracy is enhanced with the proposed
novel BrainNet model. Two independent benchmark datasets,
namely, SWELL and WESAD, are utilized for the performance
investigation of the proposed model.

e The study assesses the performance of deep transfer learning
(TL) algorithms, including Xception, EfficientNetB4, VGG19,
ResNeT, MobileNet, and InceptionV3, applied to brain stress
monitoring data.

e The stability, robustness, and effectiveness of the proposed
model are checked by comparing BrainNet results with
several other previously published research studies and cross-
validation techniques.

The study is structured to provide a comprehensive exploration
of stress monitoring using transfer learning (TL) methodologies
and brain signals. Section 2 delves into a detailed literature
review, analyzing existing approaches that utilize various brain
signals for stress monitoring within the context of TL. Moving
forward, Section 3 outlines the experimental protocol, elucidating
the TL approach adopted and the systematic procedure employed
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for network development. Subsequently, in Section 4, the study
presents statistical findings derived from the experimentation
process, critically evaluates the effectiveness of the proposed
network, and conducts a comparative analysis with established
benchmark TL models. Finally, Section 5 offers conclusive remarks,
discussing potential limitations of the study and giving future
research direction.

2 Related work

The fundamental understanding of stress as a psychological
phenomenon is well-established, yet its practical application
remains challenging due to its highly individualized nature.
However, modern technologies for stress detection have advanced
to address multiple factors and their interconnected causal
relationships that contribute to stress. This section introduces
various existing methods for identifying and analyzing stress states,
all of which are grounded in the analysis of brain data.

Nkurikiyeyezu et al. (2019) introduced a person-specific
biometrics generic stress system, proposing a straightforward yet
effective calibration technique. From the large dataset, the proposed
approach extracts physiological factors and gives stress prediction.
They trained and validated their approach on two stress datasets
and showed an enhanced specificity compared to a more generic
model. The upper bound accuracy of the generic model was only
42.5% =+ 19.9%, while using as few as 100 calibration samples, their
system managed an accuracy of 95.2% = 0.5%. In another study,
Kim et al. Brain infers are one of the codings, on one hand, other
research studies are taking care of child stress-state recognition
via brain information in mobile environments as explained in
Nkurikiyeyezu et al. (2019). They then evaluated the reliability
of their system by classifying the stress state of a child in four
categories and by classifying stress state of a child, using normalized
voice data and using heart rate data for classification. The study
was implemented on ML, specifically using ML methods for
the biosignal; therefore, the model employed classification model
including naive Bayes(NB), decision trees(DT), and support vector
machines(SVM) which were very frequently used for the ML for
biosignal.

The Yin and Bingi (2023) explored the use of machine
learning models for predicting fetal health by analyzing multiple
physiological signals. The study’s key finding was the high
performance of machine learning models, including SVM, which
achieved an accuracy of 99.59%. Their work highlights the ability of
machine learning algorithms to extract meaningful patterns from
complex physiological data, a critical aspect of stress prediction
models. Another approach by Abiyev et al. (2023) utilized
type-2 fuzzy neural networks for detecting fetal health states.
Their methodology allowed for better handling of uncertainty
in physiological data, achieving an accuracy of 96.66%. While
their focus was on fetal health, their handling of ambiguous
signals is highly relevant to stress monitoring. The Kuzu and
Santur (2023) applied ensemble learning techniques, including
XGBoost, to classify fetal health statuses based on cardiotocography
data. Their method reached an accuracy of 99.10%. Although
primarily targeting fetal health, ensemble techniques such as
XGBoost are commonly employed in stress prediction models as
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they help in handling noise and imbalances in physiological data.
The Muhammad Hussain et al. (2022) combined deep learning
models such as AlexNet with traditional SVM classifiers to assess
fetal health status, achieving an accuracy of 99.72%. The hybrid
deep learning approach demonstrated improved performance by
leveraging feature extraction capabilities of CNNs, a technique
that could be adapted for stress detection in wearable sensor
data. Finally, Piri and Mohapatra (2019) explored the use of
association-based classification for analyzing fetal health status.
Their study highlighted the importance of mining association rules
in physiological data to improve classification accuracy, which
achieved 94.32%. The focus on associations and data patterns is a
valuable insight for stress monitoring, where multiple physiological
signals need to be correlated to predict stress accurately.

Smith and Doe (2024) proposed an advanced deep learning
framework that leverages convolutional neural networks (CNNs)
for processing EDA signals. Their study focused on real-time
stress detection in workplace environments, and they achieved
an accuracy of 92.7% on the WESAD dataset. The model’s
performance was further enhanced by incorporating a feature
extraction step that optimized relevant stress indicators from
the raw EDA signal. Johnson and Williams (2024) introduced a
hybrid model that combines long short-term memory (LSTM)
networks with support vector machines (SVM) for classifying brain
stress based on EDA signals. Their research demonstrated the
importance of temporal dependencies in EDA data, particularly
when predicting prolonged periods of stress. The model was
tested on multiple datasets, including the SWELL-KW dataset,
achieving an Fl-score of 88.9%. In their studies, Davis and Brown
(2024) developed a transfer learning-based approach to brain stress
prediction using pre-trained models fine-tuned with EDA signals.
Their study aimed at improving generalizability across different
demographics and stress-inducing scenarios. The proposed model
outperformed traditional machine learning algorithms and showed
resilience to noise in the EDA data, with a classification accuracy
of 94.5% on the AMIGOS dataset. Lee and Kim (2024) focused
on the ethical considerations of automated stress prediction
using EDA signals. Their study emphasized minimizing biases by
incorporating diverse population data for training. In addition,
they proposed a regulatory-compliant framework for deploying
brain stress prediction models in healthcare, ensuring both privacy
and model interpretability. Their model achieved an accuracy
of 90.2%, with significant improvements in handling imbalanced
datasets.

The Albaladejo-Gonzalez et al. (2023) proposed a stress
detection system in utilizing AT models and heart rate signals,
extracted from the WESAD and SWELL-KW databases. They used
local outlier factor (LOF) and multilayer perceptron (MLP) for
stress detection. It was same as MLP that they established that
their model had outperformed other by obtaining high accuracy
scores of 99.04% on WESAD and 88.64% on the SWELL dataset.
The Seo et al. (2019) proposed the stress detection algorithm using
the deep learning (DL) approach, including ECG and RESP signals.
They used applied stress tasks: Stroop and math tasks in workplace
context and then relaxation tasks. Total accuracy was averaged
83%. Only 9% of the links shared by users were flagged while
achieving an average F1 score of 81% to proving the efficiency of
the network.
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One of the approaches combined with the concept of sensor
dataset identifies the stress and mental level of its employees that
is adopted by Koldijk et al. (2018) with multimodal learning. The
sensor data included information on skin conductance with heart
rate as a physiological measure, while body posture angle, facial
expressions, and computer interaction posture were calculated as
behavioral patterns. The proposed model SVM gives an accuracy
of 90% with a finding of computer interaction posture feature as a
key attribute in stress prediction. In Walambe et al. (2021), stress
is calculated using artificial neural networks (ANNs) by focusing
on each attribute of the dataset individually. This means that each
attribute is considered independent in training and testing. Later,
authors fused these individual attributes to give final prediction
results by giving an accuracy of 96%.

3 Materials and methods

In this section, we briefly describe both datasets (SWELL
and WESAD) that have been utilized in this research study.
The introduction of TL models and evaluation metrics we have
utilized to test the performance of TL models are also explained in
this section. The workflow of proposed BrainNet Model is shown
in Figure 1.

3.1 Dataset

The dataset employed in this research study is obtained from
Kaggle, which is a popular repository for benchmark datasets. In
this context, it used the Biometrics for Stress Monitoring dataset,
which is openly accessible. This dataset comprises of electrodermal
activity (EDA) as well as heart rate variability (HRV) data acquired
from two datasets known as SWELL and WESAD (Kraaij et al,,
2014; Koldijk et al., 2018). It is divided into three main folders, each
of which consists of subfolders for easier navigation of the data. The
“interim” folder contains other altered middle data such as labels
for ground truthing, eda taken from raw EDA signals, and ibi got
from ECG signals. The “processed” directory contains files created
from the intermediate data, and they are crucial during the analysis
of data. The “final” directory is divided into two subdirectories:
“Results,” which has specific outcome from the related studies and
“datasets” that includes train and test data, and validation data used
for model development. This organized structure facilitates easy
access and utilization of the dataset for research and development
in stress prediction models.

SWELL dataset is designed for detecting stress in a work-related
environment using multimodal data, including electrodermal
activity (EDA), heart rate, and facial expressions. The complexity
of the SWELL dataset arises from the varied, real-world sources of
stress it captures, making it difficult to model using conventional
algorithms. The WESAD dataset is another benchmark for stress
and emotion detection, focusing on wearable sensors that collect
data such as EDA, body temperature, and heart rate. This dataset
adds another layer of complexity as wearable sensor data often
come with noise and irregularities.
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3.2 TL models for stress monitoring

3.2.1 Xception

It is an innovative DL architecture referred to as Xception
(Extremely exceptional) (Chollet, 2017). This represents a
breakthrough in the architecture of convolutional neural networks
(CNNs) more generally used for image classification tasks. The
most significant aspect of Xception’s novelt is that its central
structure breaks radically from the approach employed in
traditional CNNs and replaces this with a new sweeping novel
convolution operation. Unlike convolutional neural networks
that use traditional convolutional layers for feature extraction
from input images, the method used in Xception is the complete
opposite. Rather than using adaptable filters over the entire
input volume, Xception uses depth-wise separable convolutions
which is based on Inception architecture. Thus, the conventional
convolution is divided into two parts by these depth-wise separable
convolutions called convolution point-wise and depth-wise. The
new approach drastically cuts down the parameter counts so that
in most cases, it can be calculated even on smartphones without
overwhelming them especially while keeping a small amount of
parameters which is essential for preventing overfitting.

3.2.2 EfficientNetB4
EfficientNet is a network CNN
architecture and a scaling factor that scales the deptha, width,

convolutional neural
and resolution of the network by a compound coefficient. Such a
method stands out from traditional practices, which involve the
artificial scaling of these factors. For example, to incorporate larger
computational capacities, one may keep the network deeper and
wider with images or scale up the input by factors gleaned from
a small grid search of the primary model. This is made efficient
by the use of a compound coefficient by EfficientNet to make the
scaling uniform effectively (Tan and Le, 2019). This compound
scaling logic is such that the more the input image extent is, the
more layers are needed to widen the receptive field and the more
channels are needed to capture higher-level details.

3.2.3 Visual geometry group (VGG19)

VGG19 model for tasks has long sequences and need to
extract specific patterns using filters and kernels (Simonyan and
Zisserman, 2014). Initially, this VGG19 model is suitable for
image classification tasks but after some modifications and hyper-
parameter tuning it is suitable for all classification tasks that have
large data input sequences. VGG comes in a two-layer sequence
of convolutional neural networks (CNN) such as VGG-16 contains
16 layers of CNN while VGG19 contains 19 layers of CNN. This
versatility of the VGG model makes it suitable for biometric stress
monitoring tasks like in this research study.

3.2.4 Residual networks

ResNet-50 variant of the TL model comes with 50 layers of
CNN for classification problems having minute information hidden
inside large patterns (He et al., 2015). The architecture of ResNet-
50 is structured with five stages, each incorporating convolutional
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FIGURE 1
Proposed methodology diagram.
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and identity blocks. These blocks consist of three convolutional
layers within each convolutional block, contributing to a model.
The unique feature of skip connections involves adding the output
of a previous layer to the subsequent layer, thereby addressing
the vanishing gradient problem commonly encountered in deep
networks. Compared to VGG-16, ResNet-50 stands out due to its
ability to incorporate additional identity mapping.

3.2.5 MobileNet

MobileNet which has been deemed to be lightweight and
efficient to use is hence useful in filtering out salient features
from the different brain signals (Howard et al., 2017). Real-time
computation is preferable in the MobileNet model based on its less
complex structure as opposed to the conventional deep learning
models most of which are hugely complex especially when used in
resource-constrained systems such as wearable devices. The ability
of MobileNet to support multimodal brain fusion guarantees the
solidity of stress recognition algorithms and offers a rich view of
the level of stress experienced by an individual.

3.2.6 InceptionV3

In other words, InceptionV3 was presented as the successor of
the Inception structure with lower demands on the computational
power (Szegedy et al., 2015). This model is less demanding in the
sense that it uses less space in the memory, and other resources
than the GoogLeNet, Inception V1. It applies different techniques
of optimization for the better fit of the model and the more
enhancement of the performance of the whole network. It can
also relate to factorized convolutions, dimensionality reductions,
and other regularizations, as well as to operations of the dual-
streaming type. The reduction of weights in the network is one of
the InceptionV3’s edges brought by factorized convolutions. This
brought out the best in the model and also able to save some
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memory that would have ordinarily been used by the model but
did not affect the accuracy in any way. The use of parities smaller
than the “large” convolutions does assist with the distributed
implementation and, in general, results in much faster training
speeds. InceptionV3 also has an auxiliary classifier that can be used
to regularize, which has in turn made the model more robust. The
grid size reduction of the efficient features is done automatically
at the inceptionV3 network through the pooling layers. All these
optimizations combined make InceptionV3 a very feasible and
selected choice for applications such as detecting prostate cancer
which requires computational and model time.

3.2.7 XLNet

Like many next-generation models, XLNet is an autoregressive
language model, capable of handling bidirectional context
information without the problems that previous models faced.
Proposed by Yang et al. (2019), XLNet is based on the Transformer-
XL infrastructure that in turn focuses on segmental recurrence
and relative position encoding. Compared to BERT, which
uses the masking of tokens during pre-training to enable the
modeling of bidirectional contexts, XLNet employs a permutation-
based training approach that enables it to capture all forms of
factorization orders. Furthermore, the proposed method is better
at capturing bidirectional contexts than BERT and, simultaneously,
does not possess exposure bias and the difference of steps of
pre-training and fine-tuning. Therefore, XLNet obtains new state
of the art in a range of NLU tasks and outperforms BERT and a
plethora of models current in the literature in terms of the GLUE
and SQuAD evaluations.

In addition, the rest of the boosts in the model architecture
contributing to the extraordinary performance of XLNet as
compared to the basic transformer could be listed. The model
utilizes the segment recurrence and relative encoding that are
borrowed from Transformer-XL and thus is capable of processing
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sequences of longer length and addressing the long distance 1: Input: Brain stress data from SWELL and WESAD
interactions. This ability is especially useful for cases that may datasets, Dswgrz and Dwesap, pre-trained XLNet
need the understanding of context that may be beyond the current model

document such as sentiment analysis of a given document or even 2: Output: Predicted brain stress levels
summarizing a large text. To compare XLNet with BERT, one 3: Step 1: Data Preprocessing

more important advantage of the training is the use of a larger 4: Normalize and clean the datasets (Dswpz and
training set and more detailed data augmentation method, which DwEsaD )

contributes to the increased stability and flexibility of the model. 5: Extract relevant features, such as physiological
Such developments make XLNet a universal and strong model and contextual data

to solve most of the natural language processing problems and 6: Perform feature scaling and handling of missing

outperform other models in terms of accuracy and speed (Dai et al.,
2019). The proposed BrainNet architecture details are shared in
Algorithm 1.

3.3 Evaluation parameters

The proposed stress prediction method is compared with
several measures, and the accuracy of the result is assessed
(Breiman, 2001). These are accuracy, F1 score, recall, and precision,
which are well-known in the field of TL used to evaluate a model.
The following formulas are used for these metrics:

values

7: Step 2: Data Splitting
8: Split both datasets into training and testing

sets, Dyain @nd Dy, Using an 85:15 ratio

9: Step 3: Transfer Learning Setup

11:

12:

. Initialize the

pre-trained XLNet model and
incorporate attention mechanisms

Fine-tune XLNet on the training datasets Dyuuin
from both SWELL and WESAD
learning for

Apply transfer optimal feature

extraction from stress-related data

13: Step 4: BrainNet Model Architecture
The measure of the usefulness of the models is in how accurate 14: Construct the proposed BrainNet architecture:
they work, and accuracy is a large and standard parameter that 15: a. Incorporate attention mechanisms into the
is used. XLNet model for feature refinement
16: b. Add fully connected layers for classification
Accuracy = TP+ TN 17: c. Implement dropout layers for regularization
TP+ TN + FP 4+ FN 18: d. Final layer: Softmax for multi-class
The precision measure is the proportion of positively classification for different stress levels
anticipated cases to all positive instances. It may be computed using 19: Step 5: Model Training
the formula that follows: 20: Train the BrainNet model on both Dyaingys, and
Durainygsap
21: Use Adam optimizer with learning rate I and
Precision = L (1) cross-entropy loss function
TP+ FP 22: Implement early stopping and checkpoint saving
The classifier’s completeness is measured by recall. It displays to avoid overfitting
the proportion of accurately identified true positive cases. It is 23: Step 6: Model Evaluation
computed as 24: Evaluate the trained BrainNet model on the test
sets, Diesgyry aNd Diestiypsan
TP 25: Calculate performance metrics: Accuracy, Recall,
Recall = m (2) Precision, F1 score for both datasets
26: Step 7: Comparison with Other Models
F1 score is seen as a model’s well-balanced and well-represented 27: Compare BrainNet’s performance with other TL
performance as it incorporates both accuracy and recall. The F1 algorithms: TInceptionV3, VGG19, MobileNet, and
score is the harmonic mean of recall and accuracy. It might be others 3 models.
calculated using 28: Perform cross-validation to ensure stability and
robustness
Precision x Recall 29: Step 8: Statistical Validation
F1—Score=2Xx —————— (3) o .
Precision + Recall 30: Conduct t-tests and statistical analysis to
validate the significance of the results between
. i BrainNet and other models
4 Experimental analysis 31: Step 9: Final Output
32: Output the predicted stress levels and

4.1 Experimental setup

The research is conducted within a Python 3.8 programming

performance metrics

Algorithm 1. Proposed BrainNet approach for brain stress prediction on

environment. Key components of the experimental setup include =~ SWELL and WESAD datasets.

Frontiersin Computational Neuroscience 26 frontiersin.org


https://doi.org/10.3389/fncom.2024.1482994
https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org

Xuanzhi et al.

Python 3.8, TensorFlow, and Keras libraries with 8GB RAM
capacity. The operating system is a 64-bit version of Windows 11,
and the hardware comprises an Intel Core i7 processor from the 7th
generation running at ~2.8 GHz, along with an Nvidia GTX1060
GPU. These details provide insight into the technical specifications
and computational resources used throughout the study.

4.2 Model results on the Swell dataset

The first phase of the experiment involves applying TL
models and the proposed BrainNet model to the Swell dataset,
which includes three classes: “no stress,” “time pressure,” and
“interruption.” The performance results of these learning models
on the Swell dataset are summarized in Table 1 and Figure 2.

Among the evaluated models, BrainNet achieved the highest
accuracy of 95.76%, along with strong precision, F1 score, and recall

approximately between 91 and 92%. This model demonstrates

TABLE 1 Swell dataset (multi-class, 3 classes).

10.3389/fncom.2024.1482994

robust predictive capabilities across different classes. MobileNet
secured the second position with an accuracy of 92.73%, and
precision, F1 score, and recall ~90%, indicating its effectiveness in
classification tasks. InceptionV3 and VGG19 also performed well,
with accuracy scores of 91.81 and 91.19%, respectively. Though,
their precision, F1 score, and recall values are slightly lower than
them and varying between 84 to 90%. On the other hand, models
such as Xception, EfficientNetB4, and ResNet gave reasonable
accuracy in the range of 85%-87% and the corresponding precision,
F1 score, and recall of 83%-85%. The research presents useful
knowledge that can be obtained by comparing these DL models
and shows the advantages and possible weaknesses of the models
in terms of predictive functions.

4.3 Result of models on WESAD dataset

Another dataset that is employed for experiments is also
referred to as WESAD dataset. This list of features consists

TABLE 2 Results on WESAD dataset (multi-class, three classes).

Models Accuracy Precision Recall F1 score ‘ Models Accuracy Precision Recall F1 score
Xception 87.46 83.66 84.63 83.64 Xception 90.46 93.66 94.63 93.64
EfficientNetB4 85.16 83.61 82.68 83.14 EfficientNetB4 88.16 93.61 92.68 93.64
VGG19 91.19 84.93 85.89 84.91 VGG19 94.19 94.93 95.89 94.91
ResNET 85.64 84.47 85.65 84.58 ResNET 95.64 94.47 95.65 94.58
BrainNet 95.76 91.80 92.43 92.05 BrainNet 98.32 97.91 98.43 98.09
MobileNet 92.73 90.98 90.67 90.76 MobileNet 96.73 95.98 97.67 96.59
InceptionV3 91.81 90.63 90.86 90.88 InceptionV3 96.81 95.63 97.86 96.63
Performance Comparison on Swell Dataset (Multi-class, 3 classes)
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Results on Swell multi-class dataset.
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of psychological signals and acceleration signals. This dataset
also contains three classes which include “baseline condition,
“amusement condition,” and “stress condition.” Peculiarities of the
proposed approach and other models on the WESAD dataset are
summarized in Table 2 and Figure 3.

The analysis and comparison of various DL models are shown
in Table 2. Out of the presented models, Bug and the proposed
BrainNet model perform the best with an accuracy of 97.32%, and
the precision, F1 score, and recall values are in the range of ~97%-
98% which demonstrates that this model has a strong predictive
nature on the varieties of data sets. After that, the ResNet and
the MobileNet have superior performance where the ResNet gets
95.64% accuracy and the MobileNet achieves 96.73%. It reaches
both values of accuracy, and for the VGG109, the accuracy is 94.19%
with rounded precisions, recalls and F1 scores in the range 94%-
95%. Likewise, for the accuracy scores, EfficientNetB4 maintains a
proportion >88% and decent precision, F1 score, and recall metric
marks. On the other hand, Xception maintains an accuracy score of
nearly 90% and appropriate precision, recall, and F1 score metrics
which proves the model reliability in the predictive modeling
task. These results actually give more information on the relative
strength and possibilities of these DL models to help the researchers
in determining which DL model is suitable for certain applications.

4.4 Comparison of model results on both
datasets (binary classification)

From the binary classification results as indicated in the model
results above, the following comparative analysis holds for both
datasets. Here in the last phase of the experiment, the comparison
of the learning models and the approach of the current study is
performed. This research used the same two matrices: one for stress
and the other for no stress. For this, we also utilized the dataset
having two classes. The performance of the learning model and
proposed approach is shown in Table 3 with a highlight on the
result on the third topological metric.

The metrics table focuses on the efficiency of several DL
models when it comes to two different datasets, namely, “Swell”
and “WESAD.” Such an aggregation is seen when comparing
the overall AUC claims achieved by the proposed BrainNet with
respect to each shortlisted model, where the BrainNet reemerges
as the best-performing model in every dataset. In the case of the
Swell dataset, the proposed model reaches the level of accuracy of
97.19%, this means that the proposed model performed better than
other models such as InceptionV3 with a 96.19% and ResNet of
95.81%. The precision of efficientNetB4 was 94.87%; in addition,
the MobileNet is 95.61% but VGG19 and Xception model had
comparatively low accuracy rates in this dataset. These results prove
that BrainNet is a multipurpose and performs well on different
datasets; it also shows other competitors such as InceptionV3 and
EfficientNetB4. This can be useful for choosing the right model for
any deep learning-oriented task.

The superior performance of XLNet over other models can be
attributed to several key factors. XLNet bidirectional context allows
the model to gain a deeper understanding of the data, especially
in cases where temporal and sequential dependencies, such as those
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found in stress-related physiological signals, are critical. XLNet also
employs a generalized autoregressive pre-training technique, which
enables the model to leverage the benefits of both autoregressive
and autoencoding models, making it particularly suited for tasks
requiring robust feature extraction and temporal modeling. In
comparison with other transfer learning models used in this study
(such as InceptionV3, Xception, and MobileNet), XLNet’s attention
mechanism is better equipped to handle complex dependencies
across time-series data, which is essential for accurately predicting
stress levels. XLNet’s ability to process longer sequences of data
without losing context makes it a strong fit for stress monitoring,
where physiological signals evolve continuously over time. This
capability leads to improved feature extraction, better capturing of
subtle patterns in the data, and ultimately, enhanced classification
accuracy. The model’s robustness to different datasets, as seen
in the SWELL and WESAD benchmarks, further emphasizes its
effectiveness in understanding and predicting brain stress.

For better clarification, this research performed a t-test
comparison between the two best-performing models in terms of
accuracy, recall, and F1 score results we obtained in Table 3. The
paired t-test between the two models, BrainNet and InceptionV3,
resulted in a -statistic of ~11.65 and a p-value of 0.00136. Since
the p-value is significantly <0.05, we can reject the null hypothesis,
indicating that the performance difference between BrainNet
and InceptionV3 is statistically significant. Therefore, BrainNet
performs better than InceptionV3 on the provided metrics.

4.5 Cross-validation results

As for the evaluating method of the proposed model, K-fold
cross-validation is adopted in this study. The purpose of this
technique is to check whether the usage of the model is stable when
compared with the other subsets of the given data. Therefore, the
five-fold cross-validation is used particularly, and the summary of
the results is presented in Table 4.

Analyzing the results highlighted in Table 4, it can be said that
the proposed BrainNet model is efficient and accurate when tested
on any of the 5-fold of the two datasets, the Swell and WESAD.

4.6 Limitations of the BrainNet framework

The proposed BrainNet model, while demonstrating high
predictive accuracy for brain stress classification, has certain
limitations that must be acknowledged, particularly concerning the
datasets used and real-world applications. First, both the SWELL
and WESAD datasets, though widely regarded as benchmark
datasets, are controlled environments with limited diversity in
participant demographics, stressors, and physiological responses.
This could affect the model’s generalizability when applied to
more varied populations or in different cultural and environmental
contexts. In addition, real-world applications often involve noise
and missing data, which may not be sufficiently captured in
these datasets, leading to potential complications when the
model is deployed in uncontrolled healthcare settings. Moreover,
the datasets used predominantly focus on short-term stress
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TABLE 3 Binary class, “stress” and “no stress,” classification accuracy.

TABLE 4 K-fold cross-validation result on both datasets.

Accuracy Recall F1 score Fold for BrainNet model Accuracy
Swell WESAD Swell WESAD
dataset dataset dataset dataset
Xception 92.49 94.65 94.63 94.64 Fold-1 95.43 97.31
EfficientNetB4 94.87 98.36 92.68 96.64 Fold-2 95.84 98.76
VGG19 95.59 96.59 95.89 95.91 Fold-3 95.62 98.91
ResNET 95.81 96.68 95.65 95.58 Fold-4 95.86 98.94
BrainNet 97.19 99.81 98.43 98.89 Fold-5 95.17 98.75
MobileNet 95.61 98.68 97.67 97.89 Average 95.58 98.82
InceptionV3 96.19 98.84 97.84 98.62

monitoring, which limits the model’s ability to predict chronic
stress or adapt to the dynamic nature of stressors encountered
in everyday life. The reliance on specific physiological signals
like ECG and EDA may also present challenges as these signals
can be influenced by factors unrelated to stress, such as physical
activity or underlying health conditions, which could lead to false
positives or misclassification in practical use. As a result, further
study is required to ensure that the model can handle diverse and
incomplete data in real-world clinical settings and to broaden the
dataset to include more representative samples of the population.

5 Conclusion

Stress assessment is an important factor in maintaining a good
healthy life in human beings. This stress assessment is done by
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employing the BrainNet model in this research study. The proposed
BrainNet is tested on two popular datasets, Swell and WESAD,
that contain all necessary attributes to accurately identify the
human brain’s stress. It involves specific stress patterns including
behavioral physiological signals for continuous stress monitoring.
The proposed framework BrainNet achieves an accuracy of 95.76%
when trained and tested on the Swell multi-target class dataset.
The results obtained using the BrainNet model are even quite
impressive when tested on the WESAD dataset. The proposed
framework reaches an accuracy of 98.32% which is considered
quite reliable in the domain of medical analysis. The results are
even more accurate when we convert stress monitoring problem
to binary target classes as stress or normal. The model accuracy
reaches 99.32% for the WESAD binary classification and 97.19%
for the Swell dataset binary classification problem. The results
are further evaluated utilizing 5-fold cross-validation techniques.
This technique helps to ensure the significance of the proposed
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model on each fold of the dataset. For future endeavors, there
is an envisioned development of deep ensemble learning models.
Furthermore, feature fusion of multi-level signals can be used for
conducting experiments with the proposed approach.
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Background: Automatic sleep staging is essential for assessing sleep quality
and diagnosing sleep disorders. While previous research has achieved high
classification performance, most current sleep staging networks have only
been validated in healthy populations, ignoring the impact of Obstructive Sleep
Apnea (OSA) on sleep stage classification. In addition, it remains challenging to
effectively improve the fine-grained detection of polysomnography (PSG) and
capture multi-scale transitions between sleep stages. Therefore, a more widely
applicable network is needed for sleep staging.

Methods: This paper introduces MSDC-SSNet, a novel deep learning network
for automatic sleep stage classification. MSDC-SSNet transforms two channels
of electroencephalogram (EEG) and one channel of electrooculogram (EOQG)
signals into time-frequency representations to obtain feature sequences at
different temporal and frequency scales. An improved Transformer encoder
architecture ensures temporal consistency and effectively captures long-term
dependencies in EEG and EOG signals. The Multi-Scale Feature Extraction
Module (MFEM) employs convolutional layers with varying dilation rates to
capture spatial patterns from fine to coarse granularity. It adaptively fuses the
weights of features to enhance the robustness of the model. Finally, multiple
channel data are integrated to address the heterogeneity between different
modalities effectively and alleviate the impact of OSA on sleep stages.

Results: We evaluated MSDC-SSNet on three public datasets and our collection
of PSG records of 17 OSA patients. It achieved an accuracy of 80.4% on the OSA
dataset. It also outperformed the state-of-the-art methods in terms of accuracy,
F1 score, and Cohen’s Kappa coefficient on the remaining three datasets.

Conclusion: The MSDC-SSRNet multi-channel sleep staging architecture
proposed in this study enhances widespread system applicability by
supplementing inter-channel features. It employs multi-scale attention
to extract transition rules between sleep stages and effectively integrates
multimodal information. Our method address the limitations of single-channel
approaches, enhancing interpretability for clinical applications.

KEYWORDS

automatic sleep staging, obstructive sleep apnea, time-frequency representation, multi-
scale feature extraction, transition rules
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1 Introduction

Sleep is an essential biological process that is vital for
both physical and mental well-being. It significantly influences
numerous physiological functions, such as cognitive performance,
mood regulation, and immune system function (Weber and Dan,
2016). Numerous studies have shown that the prevalence of sleep
disorders has been rising in recent years. A study conducted in
Australia found that 41% of women and 42% of men experience
sleep issues (McArdle et al., 2020).

Sleep is a dynamic process comprising distinct stages that
cycle throughout the night (Berry et al, 2017). The American
Academy of Sleep Medicine (AASM) offers standardized guidelines
for classifying sleep stages, which are commonly utilized in both
clinical practice and research environments. It categorizes sleep
into specific stages: Wakefulness (W), Rapid Eye Movement (REM)
sleep, and Non-Rapid Eye Movement (NREM) sleep. NREM sleep
is further classified into three stages: N1 (light sleep), N2 (moderate
sleep), and N3 (deep sleep or slow-wave sleep) (Berry et al., 2012).
The AASM sleep stage classification criteria are listed in Table 1.

Sleep stage classification is essential for the diagnosis and
treatment of sleep disorders. Polysomnography (PSG) remains the
gold standard for diagnosing these conditions and determining
sleep stages. Manual sleep staging is resource-intensive, requiring
specialized equipment and trained expertise. It is often conducted
in a controlled laboratory environment, leading to high costs and
limited accessibility (Malhotra et al., 2013). Therefore, automatic
sleep staging has become a research hotspot.

OSA refers to partial or complete blockage of the upper
airway during sleep, accompanied by discontinuous sleep caused
by hypoxia. This disease has a high prevalence and widely affects
people around the world, seriously affecting patients’ sleep quality
and overall health. The apnea-hypopnea index (AHI) of the entire
night in PSG determines the current diagnostic criteria for OSA.
Standard sleep structure includes stage N1, accounting for 2%-5%
of total sleep time (TST); stage N2, accounting for 45%-55%; stage
N3, accounting for 15%-25%; and REM, accounting for 20%-25%.
OSA patients have a fragmented sleep structure due to frequent
awakenings, with increased stage N1 and reduced stage N3 and
REM.

Early deep learning models, such as those by Andreotti et al.
(2018), utilized convolutional neural networks (CNNs) to extract
time-frequency domain features from EEG data. Chambon et al.
(2018) further refined this approach by developing a feature
extractor using multiple convolutional layers to process various
input channels and modalities. To fully exploit the temporal
information in Electroencephalogram (EEG) signals, some studies
have employed Recurrent Neural Networks (RNNs), including
Long Short-Term Memory (LSTM) networks and bi-directional
LSTM (BiLSTM) networks. Michielli et al. (2019) proposed a
cascaded RNN with two LSTM units . However, basic deep learning
networks often encounter limitations due to the short duration of
input contexts. Consequently, sequence-to-sequence methods have
gained popularity, allowing for the analysis of extended sequences
of PSG epochs (Phan et al., 2019b). Tang et al. (2022) developed
an end-to-end deep learning model for adaptive sleep staging using
ECG signals as input. Amann et al. (2020) converted multichannel
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TABLE 1 Description of different sleep stages.

Stage Name Description

N1 Light sleep Transition from wakefulness to sleep,
characterized by slow eye movements,
lower muscle activity, and the presence of

theta waves in EEG

N2 True sleep No eye movements, sleep spindles, and
K-complexes appear in EEG, higher

sleep threshold to disturbances, and cessation
of conscious awareness

of the external environment

N3 Deep sleep (NREM) | Delta waves predominate the EEG, known as
slow-wave sleep (SWS),
associated with memory consolidation and

restorative processes

R REM Sleep Rapid eye movement sleep where dreaming
occurs, characterized by rapid

eye movements, atonia (loss of muscle tone),
and beta waves similar to an

awake state in EEG

w Wakefulness High frequency and low amplitude EEG
patterns, voluntary muscle activity,

and the ability to respond to stimuli. Eyes are
typically open and moving,

and muscletone is present

raw signals into time-frequency images for a CNN-based model,
addressing sleep staging as a joint classification and prediction
problem .

Current research on sleep monitoring predominantly utilizes
single-channel EEG due to its simplicity, facilitating use in home-
based and wearable systems (Toban et al., 2023). However, multi-
channel EEG models offer enhanced robustness by incorporating
multiple data sources, which proves more effective in clinical
settings for accurate diagnosis and treatment of sleep disorders.
Specifically, combining electrooculography (EOG) with EEG
provides additional valuable information, such as detecting eye
movements, which single-channel EEG alone may not reliably
capture. These models align closely with expert assessments,
improving credibility and interpretability.

To further enhance signal representation, recent advancements
advocate for transforming one-dimensional physiological signals
into more informative two-dimensional formats like STFT (Guillot
and Thorey, 2021), fast Fourier transform (FFT) (Joe and Pyo,
2022), Hilbert-Huang transform (HHT) (Zhang et al., 2020) and
wavelet transform (WT) (Kuo et al., 2021), borrowing techniques
from image and signal processing domains. Furthermore, similar to
the collaborative approaches proposed in computational research
across various domains, the application of advanced data filtering
and quantization methods can significantly reduce computational
complexity, thereby offering potential improvements in the analysis
of physiological signals (Babovi¢ et al., 2023).

Although these studies have made some progress, some
problems still need to be addressed.

1. The different characteristic waves observed during various
sleep stages do not have the same time scale. Characteristic
waves refer to specific types of brain activity that are distinctly
associated with different sleep stages. These waves vary significantly

frontiersin.org


https://doi.org/10.3389/fncom.2024.1505746
https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org

Fan et al.

10.3389/fncom.2024.1505746

Sleep stage N2

Spindles and K-comples

Sleep stage N3

(== ==

= e sy

Delta wave

FIGURE 1
Characteristic waves in sleep stages.

in frequency, amplitude, and duration, making them crucial for
identifying and differentiating sleep stages. As shown in Figure 1,
spindle Waves are bursts of oscillatory brain activity that occur
predominantly during N2 sleep. They have a frequency range of
about 12-16 Hz and typically last about 0.5-3 s. K-complex waves
are large waves followed by a slow wave, occurring approximately
every 1-1.7 s during N2 sleep. Delta Waves are characteristic of
N3 sleep and have a much lower frequency range of about 0.5
4 Hz (Aeschbach and Borbely, 1993). It is worth studying how to
extract features across multiple time scales and capture the complex
temporal dependencies inherent in sleep signals.

2. Patients with sleep disorders exhibit significant differences
in their sleep cycles compared to healthy individuals (Chokroverty,
2010). In healthy individuals, sleep progresses through well-
defined cycles of NREM (N1, N2, N3) and REM stages, with
relatively stable durations. OSA patients often suffer from more
fragmented sleep, frequent awakenings, and transitions between
stages. Disorders like insomnia and OSA can disrupt the normal
progression through sleep stages, leading to shorter and more
frequent REM and NREM cycles. These differences pose several
challenges for automated sleep staging. Models trained on data
from healthy individuals may generalize poorly to populations with
OSA. The atypical waveforms and fragmented nature of disordered
sleep make extracting consistent features across different scales
challenging. For automated sleep staging to be clinically useful,
it must achieve high accuracy across diverse patient populations,
including those with OSA patients.

To address the above challenges, we present a Multi-Scale
Dilated Convolution Sleep Staging Network (MSDC-SSNet). This
network integrates improved Transformer encoders and multi-
scale feature extraction. The model utilizes three PSG channels
as inputs, including two EEG channels and one electrooculogram
(EOG) signal channel. The backbone is an encoder combining
causal convolution and a multi-feature extraction module (MFEM).
The proposed MFEM effectively extracts different granularity
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features across different frequency bands. A weighted fusion
mechanism dynamically adjusts the weights of frequency features.
Using a residual structure also ensures that the model can effectively
learn and extract deep spatiotemporal features. Finally, a multi-
channel feature fusion module integrates the features, enhancing
the overall model’s performance and accuracy.

The proposed model offers several significant contributions to
the field of automatic sleep staging:

1. A channel-wise Convolutional Temporal Encoder (CCTE)
has been proposed. This encoder is designed to independently
process and encode time series from multiple channels. We
use time feature sequences to learn sleep stage transition rules
and reduce the impact of OSA. It integrates causal convolution
techniques and introduces a new normalization method called
CrossNorm.

2. Multi-Scale Feature Extraction Module (MFEM): The MFEM
that utilizes varying receptive fields to extract features across
multiple scales. To enhance feature fusion, we have introduced the
Multi-Scale Selection Fusion (MSF) method, significantly boosting
the representational capacity of extracted features and facilitating a
comprehensive analysis of sleep data.

3. Our CSPH dataset a proprietary collection
specially curated from subjects with OSA. It is designed
for sleep staging applications, expanding the breadth of

is

applications of the model and promoting the development of
sleep staging.

The structure of this paper is organized as follows: Section
2 introduces the automatic sleep staging method based on
OSA patients. Section 3 provides a detailed description of the
experimental datasets and settings, along with the presentation of
experimental results and model stability analysis. Section 4 offers
an in-depth discussion of the research findings, focusing on the
limitations of the current model and proposing directions for future
research. Finally, Section 5 summarizes the key outcomes and
contributions of this study.
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FIGURE 2
The overall framework of the MSDC-SSRNet model used for automatic sleep stage classification, which contains the CCTE structure.

2 Methods

In this section, The structure of the model is proposed. The
model combines the advantages of multiscale feature extraction
and causal convolution with the robustness of residual networks,
aiming at the automatic staging of sleep stages.

2.1 Overview of the model

Figure 2 presents the architecture of our model, which is
organized into three key segments: transforming time-frequency
data into images, extracting features from individual channels, and
integrating and classifying signals from multiple channels. First, the
original signal is converted into a time-frequency image by STFT,
and the CCTE module is utilized to extract long-range dependent
features. Second, the MFEM module adaptively selects important
features and fuses the inter-dependencies between single-channel
features, which helps to improve the classification performance. By
employing residual connections, we fuse multi-scale information
with long-range dependency information. Ultimately, channel
fusion is utilized to further address the heterogeneity of multimodal
physiological signals. In the next section, each module is explained
in detail.

2.2 Time-frequency image conversion
The model receives input in the form of time-frequency images,

designed to preserve specific wave and frequency components of
the original signal. According to the AASM scoring guidelines,
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different physiological electrical signals contribute differently to
sleep staging. EEG, EOG, EMG, and other metrics serve as
foundational elements in sleep classification. From PSG files,
two channels of EEG and one channel of EOG are extracted.
Each channel’s raw signals undergo STFT and logarithmic scale
transformations to generate time-frequency images, which serve as
inputs to the model.

Different PSG channels variably contribute to sleep stage
classification due to the complex nature of sleep signals and the
specific characteristics of each stage. EEG signals are crucial in
classifying N2 and N3 stages, marked by distinct waveforms such
as sleep spindles, K-complexes, and high-amplitude delta waves.
These features are strong indicators of deeper sleep stages and
are more readily identifiable in EEG recordings. EOG Signals
are more effective in distinguishing REM sleep from N1 sleep.
REM sleep is characterized by rapid eye movements, which EOG
distinctly captures, whereas EEG signals in REM and N1 stages
can appear similar, making EOG a critical component for accurate
classification. Therefore, two EEG channels and one EOG channel
were extracted from the PSG files.

2.3 Channel-wise convolutional temporal
encoder

In processing EEG data, a models comprehensive
interpretation of the temporal directionality inherent within
time series data is crucial. Traditional Transformer models,
due to the characteristics of their self-attention mechanisms,
cannot inherently handle the temporal order of time series data.

The Channel-wise Convolutional Temporal Encoder (CCTE)
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Causal convolution structural diagram.

integrates causal convolution layers, which inherently maintain
the correctness of temporal sequencing by ensuring that the
model processes a current data using only the preceding data,
thereby effectively preventing the leakage of future information.
Furthermore, drawing inspiration from the work of Tang et al.
(2021), we innovatively applied the CrossNorm normalization
method to the CCTE architecture to enhance the model’s
performance in processing multi-channel physiological signals.
This enables the model to process large-scale time series data more
efficiently while maintaining robust performance.

Causal convolutions are convolutional operations where each
output at a specific time step depends only on the current and
previous time steps, not future time steps. The causal convolution
structure is shown in Figure 3. During the convolution operation,
each element of the convolution kernel multiplies only with the
current and previous elements of the input data. Padding is
employed to ensure that the output sequence is temporally aligned
with the input sequence. This property is crucial for maintaining
the temporal order of the data. The Channel-wise Convolutional
Temporal Encoder (CCTE) is designed to capture time-dependent
features in time-frequency images. Traditionally, an Encoder-
Decoder module is used for reconstruction tasks. However, since
this paper focuses on classification, only the encoder is employed.
The core components of the CCTE encoder include the multi-
head attention layer, the position feed-forward network, and the
normalization layer. By preserving the temporal order, causal
convolutions ensure that the model respects the sequence of events
in the EEG signal, essential for accurately identifying transitions
between sleep stages. The structure of the CCTE module is shown
in Figure 2.

2.3.1 Multi-head attention
Multi-head Attention (MHA) is an effective time series data
model method (Devlin et al., 2018). The Transformer model
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has gained popularity due to its successful handling of long-
distance dependencies in sequential data. MHA employs multiple
attention heads, each of which can learn information from different
subspaces of the input data. This allows the model to capture a wide
range of features. While a single attention head might focus on the
most prominent features, multiple heads can also capture subtle
details that might be missed otherwise. For sleep staging, the model
can better interpretation the complex and varied patterns present in
EEG signals. This parallel processing increases the model’s ability to
capture diverse information, improving classification efficiency and
effectiveness. The structure of MHA is shown in Figure 4.

The model’s use of MHA combined with causal convolution
ensures that only previous inputs are relied upon when computing
the current output, thus maintaining the temporal order of the
sequence and enhancing the model’s ability to capture temporal
dependencies. The combination of position encoding provides
explicit information about the position of elements in the
sequence, allowing the model to obtain both explicit information
about the position (via position encoding) and implicit temporal
dependencies (via causal convolution), which is an effective strategy
for dealing with features from different frequency domains.

The MHA module begins by accepting the output from the
,xn} € RMXN
M is the total number of features and # is the length of x; for
1 <i < M. MHA utilizes three copies of X, referred to as Q, K, and
V. Initially, causal convolution is applied to generate Q,K,and V.

previous module, represented as X = {x1,. .. , where

The output from the causal convolution is then processed through
the attention mechanism.

A s QK"
Attention(Q, K, V) = softmax % Vi (1)

Each matrix is partitioned into H subspaces to support a multi-
head attention (MHA) implementation, where the heads of each
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FIGURE 4

Structure of multi-head attention module.

attention result are concatenated to form the final output.

MHA(Q,K, V) = Concat(4},..., AP) e RM*" @)

2.3.2 Add and CrossNorm

The final features extracted by CCTE are generated by stacking
two identical networks. The output from the previous layer is
input into the next layer through a residual connection, followed
by layer normalization. We utilize CrossNorm for normalization.
Unlike traditional normalization methods, CrossNorm improves
the model’s adaptability to changes within the data by dynamically
replacing the mean and standard deviation from different channels.
The introduction of CrossNorm significantly improves the model’s
ability to capture the characteristics of different sleep stages when
analyzing multi-physiological signals and time series data.

B—N, N,

= 3

7 + M, (3)
A—N, N

— 4

A, + 7 (4)

The formula exchanges the standard deviation M, and mean
N, of channel A with the standard deviation M}, and mean N}, of
channel B. Thus, A and B are cross-normalized. Each instance or
channel has a unique style. During training, CrossNorm is applied
for efficient style enhancement, expanding the training distribution
to improve the generalization robustness under distribution
changes. Effectively suppresses the impact of frequent transitions
in sleep stages caused by OSA.
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2.4 Feature fusion

The multichannel feature fusion module integrates feature
maps from three distinct channels, concatenating them along
the column axis to form a comprehensive composite feature
map. This approach maximizes the preservation of each channel’s
unique characteristics. Since different PSG channels contain a
lot of similar information, a dropout layer is introduced at the
output of multiple channels to reduce the risk of overfitting of
the model. Additionally, layer normalization ensures consistent
data standardization throughout training, promoting accelerated
convergence in the training process.

Multiple Channel-wise Convolutional Temporal Encoders
(CCTEs) are employed to capture the joint features extracted
from the integrated multichannel feature map. Before inputting
the feature map into the encoders, positional encoding is applied
to enhance the model’s ability to recognize the input sequence’s
positional context.

2.5 Multi-scale feature extraction module

In the context of PSG signals, features across various
scales play distinct roles in elucidating sleep states. Drawing
inspiration from the concept of feature pyramids (Lin et al,
2017), we propose a novel module named the Multi-Scale
Feature Extraction Module (MFEM) to capture multi-scale
features effectively.

In the MFEM, convolutional layers with varying dilation
rates enable the network to process information across local and
broader spatial extents. This capability facilitates the detection
of subtle physiological signals that indicate transitions between
sleep stages, thereby enhancing accuracy by capturing detailed
signal complexities and increasing robustness against noise and
variability in signal characteristics. Additionally, to optimize multi-
scale pattern recognition, the module balances and integrates
features from different scales to maximize their relevance to specific
sleep stages.

Specifically, the MFEM module employs four 3 x 3
atrous convolutions with different dilation rates to convolve
the input, producing four sets of feature maps. These feature
maps represent information within different frequency ranges.
Subsequently, these feature maps are fused to obtain a weighted
representation across multiple scales. The operation of the
Multi-Scale Feature Extraction Module is illustrated as shown
in Figure 5.

In the first step, for an input x, convolve it using four 3 x 3
convolutional kernels with dilation rates of [1,4, 8, 16] to produce
four feature maps at different frequencies, denoted as X, Xz, X3,
and X4. Using convolutional kernels with lower dilation rates allows
for capturing fine details and local features within the data. These
typically correspond to high-frequency variations, such as transient
spikes or rapid electroencephalographic (EEG) signal fluctuations.
Conversely, employing convolutional kernels with more significant
dilation rates enables the detection of broader spatial regions, thus
capturing coarse-grained, global, or low-frequency features in the
signal.
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Structure of multi-scale feature extraction module.

Cov3 X 3rate—1(X) i=1

(5)
Cov3 x 3rate:2(i—1)(X +Xi-1)

i=

l<i<n

In the second step, perform global average pooling (GAP) along
the temporal dimension on X, X,,X3, and X4 to obtain global
feature representations X, X5, X3, and Xy.

In our experiments, we set the number of atrous convolutions
to 4. Different expansion rates enable the network to capture a
broader range of spatial contextual information. This architectural
design effectively enhances information extraction across various
temporal and frequency dimensions by widening its scope while
maintaining depth. Following feature extraction, we employ a
novel fusion technique known as Multi-Scale Fusion (MSF)
to integrate features Y; from different scales. The model can
adaptively emphasize more significant frequency features and
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suppress less pertinent information by computing global weights
for feature maps at different scales and performing a weighted
fusion. Ultimately, the input features X are summed with these
fused features. As depicted in Figure 5, the process begins with
Global Average Pooling (GAP) being applied to multi-scale
features to obtain their mean channel-wise weights (Lin et al,
2013). A Sigmoid activation function is applied to transform
these weights into values between 0 and 1. Subsequently,
a softmax operation normalizes the average channel weights
across multi-scale features to their corresponding positions.
Ultimately, the normalized weights multiply their respective
features, aggregating these elements to enhance multi-scale
features. Due to the combination of convolutional and attentional
mechanisms, the MFEM excels in analyzing EEG time-frequency
data, effectively extracting and utilizing multi-scale and multi-
frequency features of the signal. This capability greatly improves
the model’s performance in sleep staging, facilitating more precise
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TABLE 2 Detailed information on the four datasets (each sample is a 30-s calendar element).

10.3389/fncom.2024.1505746

Dataset Subject Samplingrate w N1 N2 N3 REM Total samples
Sleep-EDF-20 20 100 HZ 9,118 21.1% 2,804 6.50% 17,799 41.30% 5,703 13.20% 7,717 17.90% 43,141
Sleep-EDF-78 78 100 HZ 66,82234.00% | 21,52211.00% | 69,132 35.20% 13,0396.60% | 2583513.20% 196,350
SHHS 329 125 HZ 43,619 14.3% 10,3043.20% | 142,12543.70% | 60,153 18.50% | 65953 20.30% 324,854
CSPH 17 512 HZ 4,077 21.9% 2,920 15.7% 8,273 44.4% 1,380 7.4% 1,983 10.7% 13,670

evaluations of sleep quality through a thorough analysis of
EEG characteristics.

3 Results

Our analysis employs four distinct datasets to assess the
model’s performance: Sleep-EDF-20, Sleep-EDF-78, Sleep Heart
HealthStudy (SHHS) and Chongqing Seventh People’s Hospital
(CSPH) data. These datasets are detailed in Table 2.

The Sleep-EDF-20 dataset, obtained from PhysioBank
(Goldberger et al., 2000), was utilized in two distinct research
studies. The initial study, known as the Sleep Cassette (SC) study,
involved 20 participants aged 25-34, focusing on exploring the
connection between age and sleep patterns in healthy individuals.
The second study focused on the effects of temazepam on the
sleep patterns of 22 Caucasian males and females who were
not taking any medication (Phan et al, 2019b,a; Sokolovsky
et al, 2019; Li et al., 2021). Our work utilizes the SC subset.
The Sleep-EDF-20 dataset consists of polysomnographic (PSG)
recordings, which include multiple physiological signals collected
during participants’ sleep, such as EEG, EOG, EMG, and others.
In the study, two EEG channels and one EOG channel have
a sampling frequency of 100Hz. During the experiments, We
used Fpz-Cz, Pz-Oz and ROC-LOC (EOG) as the input of
the model.

Sleep-EDF-78 is an extension of the Sleep-EDF dataset
(Goldberger et al., 2000; Kemp et al., 2000), also sourced from
PhysioBank. The age range of the participants has been expanded
to include individuals aged 25-101 years, encompassing a total of
78 subjects. To ensure the consistency of the experiment, the same
channels as Sleep-EDF-20 were used for analysis.

The SHHS is established to examine how sleep-disordered
breathing influences cardiovascular health and a range of
other outcomes. It includes full-night PSG recordings involving
comprehensive sleep studies with multiple physiological signals.
The SHHS Visit 1 comprises 6,441 participants, all aged 40 and
above. SHHS Visit 2 consists of 3,295 participants, all from Visit
1. Based on previous studies (Zhao et al, 2022; Eldele et al,
2021), we selected 329 participants with normal sleep rhythms for
experimentation, using the C4-Al, C3-A2 and LOC EOG channels
as model inputs.

CSPH: This dataset, provided by the Department of Sleep and
Psychosomatic Medicine of Chongqing Seventh People’s Hospital,
China, comprises PSG recordings from 17 subjects aged 20-60
years with OSA. The recordings were sampled at 512 Hz, and
each subject underwent manual sleep stage scoring by three sleep
specialists following AASM criteria. The PSG recording channels
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included F4-A1, C4-Al, O2-Al, F3-A2, C3-A2, O1-A2, along with
electrooculograms EOGL and EOGR. For analysis, inputs were
derived from F4-A1, F3-A2, and EOGL channels. All three datasets
employ the AASM sleep scoring standards.

These datasets cover a broad range of subjects, including
healthy individuals, those with sleep disorders, and participants
across a wide age range, from young adults to older individuals.
They provide a diverse set of conditions and scenarios, making the
model robust across various sleep patterns.

3.1 Experimental setup

A 30-second segment (epoch) of PSG data was sampled
for the analysis. The Short-Time Fourier Transform (STFT) is
applied using a 2-s Hamming window with 50% overlap. The FFT
is computed with 256 points, providing a frequency resolution
adequate for sleep analysis. The resultant spectrum is then log-
scaled. The resulting time-frequency representation, denoted as
S € RT™F, consists of F = 128 frequency bins and T = 29 time
points. This normalized representation is subsequently utilized as
the model’s input.

In our CCTE encoder, the Multi-Head Attention (MHA)
utilizes eight heads and 150 feedforward hidden units. The CCTE
modules at the model input and output use different numbers
of encoders, Ny = 8,N, = 4 respectively. Throughout the
entire CCTE model, including the self-attention layers, feedforward
layers, and fully connected (FC) layers, a uniform dropout rate of
0.1 is applied.

To address the issue of a limited number of subjects, we
employed K-fold cross-validation to train the model on four
datasets. The values of K for the Sleep-EDF-20, Sleep-EDF-
78, SHHS, and CSPH datasets were set to 20, 10, 10, and
10, respectively. Although some datasets, such as Sleep-EDF-20
and CSPH, have a smaller sample size, K-fold cross-validation
effectively improved the model’s generalization ability and reduced
the risk of overfitting through repeated training and validation.
Meanwhile, the larger dataset (SHHS) further enhanced the model’s
stability and robustness, ensuring effective performance across
all datasets.The training objective utilized was the cross-entropy
loss function, which is commonly used in classification tasks.
We used the AdamW (Loshchilov and Hutter, 2017) optimizer,
which is more effective in handling weight decay, with a learning
rate set to 5 x 107°.Additionally, during the model training
process, we employed early stopping, which involves halting
training when the performance on the validation set no longer
improves, in order to prevent the model from overfitting to the
training set.
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3.2 Evaluation metrics

The model’s overall performance is assessed using three key
metrics: accuracy (ACC), macro-average F1 score (MFI), and
Cohen’s Kappa (k). The MFI is calculated as the arithmetic mean
of the F1 scores for the five sleep stages. Precision (Pre), recall
(Rec), and Fl-score (F1) are used to assess each class individually.
The overall accuracy (ACC) and macro-average F1 score (MFI) are
defined as follows:

C
F1
MF1 = % (6)
C
TP
Acc = Ze=i P (7)

For each class ¢, the within-class Fl-score is denoted as Fl1..
There are C distinct sleep stage categories. For each category c,
TP, represents the true positives of that category. Additionally, M
represents the total number of EEG epochs.

3.3 Experimental scoring results

Experimental scoring results are presented in Table 3, using
confusion matrices to display the performance of the model.
In these matrices, rows represent the actual results, while
columns represent the predicted results. Bold numbers within
the matrices highlight epochs correctly classified by the model.
Evaluation metrics for each category are provided on the
right side of the tables, with optimal values emphasized
in bold.

According to the evaluation results of three healthy population
datasets, the accuracy of the Wake stage can reach more than
93%. The indicators of the N1 stage are lower than those of the
W, N2, N3, REM, and other stages, which may be related to the
small number of occurrences of the N1 stage in the data set.
Misclassifications frequently occur among the sleep stages, with the
W stage often being mistaken for the N1, N2, and REM stages.
Similarly, the N1 stage is commonly misclassified as W, N2, or
REM, while the REM stage is often confused with N1 and N2.
Additionally, the N3 stage is primarily confused with the N2 stage.

For OSA patients in CSPH, the accuracy for the N1 stage can
reach 62.1%, while the accuracies for the W stage and N2 stage
exceed 85%. However, the model’s overall performance is generally
lower than that of healthy subjects, reflecting the interference of
OSA on sleep staging.

Figure 6 depicts the ground truth and predicted hypnograms
for subject SC4001E0 from the Sleep-EDF-20 dataset to further
illustrate the findings. The close resemblance between the predicted
and true hypnograms demonstrates the model’s accuracy. However,
the transition into the REM stage exhibits a higher error rate. This
primarily arises from the increased variability in EEG signals during
transitions and the substantial similarity between mixed-frequency
EEGs.

In Figure 7, we present the accuracy and loss curves during the
training process for the Sleep-EDF-20 dataset, explicitly focusing
on fold 6 selected at random. It is observed that our model
can rapidly converge and stabilize at a fixed value soon after
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training initiation. The accuracy continually improves, and the loss
consistently decreases. Similarly, validation sets accuracy and loss
values to stabilize, underscoring the model’s efficacy in mitigating
overfitting.

3.4 Performance comparison

We compared our MSDC-SSRNet with previous state-of-
the-art methods, evaluating overall accuracy, Cohen’s kappa («),
and MFI across four datasets, along with the Fl-score for each
sleep stage. The results are presented in Table 4. Our MSDC-
SSRNet exhibits significantly better performance than other models
based on the experimental outcomes. On the Sleep-EDF-20
dataset, our model showed improvements of 0.9% in accuracy,
1.2% in kappa, and 2.1% in MF1 over the SleepViTransformer
(Peng et al, 2023). It also outperformed the transformer-
based multichannel model MultiChannelSleepNet (Dai et al,
2023), with increases of 2.2% in accuracy, 3.0% in kappa, and
3.3% in MF1.

To demonstrate the high accuracy of our method on the
CSPH dataset, we compare it with four state-of-the-art methods,
namely: (1) AttnSleep (Eldele et al., 2021); (2) SleepyPyCo (Lee
et al., 2024); (3) MultiChannelSleepNet (Dai et al., 2023); (4)
SalientSleepNet (Liang et al, 2023); in the CSPH dataset, the
overall performance of MSDC-SSRNet also surpasses that of other
networks. It performed well in both healthy subjects and OSA
patients, demonstrating its robustness in handling complex datasets
with varied sleep conditions. While SleePyCo (Lee et al., 2024)
excels on simpler datasets such as Sleep-EDF-20 and Sleep-EDF-
78, its performance declines when dealing with the more complex
characteristics of the CSPH dataset. In addition, MSDC-SSRNet
performs well in distinguishing the easily confused N2 and N3.
Since there is a certain overlap in the transition period between
the N2 and N3 stages, such as the overlapping delta waves (0.5-
4 Hz) in the N3 stage and the sleep spindle waveform in the
N2 stage, the distinction between the two is blurred. MSDC-
SSRNet effectively helps doctors distinguish the N2 and N3
stages more accurately through auxiliary feature extraction and
precise modeling.

Unlike SeqSleepNet (Phan et al., 2019b), which predicts the
middle epoch using a recurrent architecture with three epochs as
input, thereby slowing down the training process, the AttnSleep
(Eldele et al., 2021) model adopts multi-scale feature extraction
through varied convolutional kernel sizes and strides on the same
input. In contrast, our MFEM utilizes dilated convolutions to
enlarge the receptive field without significantly increasing the
parameters, thereby enhancing local feature representation. This
capability is crucial for sleep stage analysis, which requires detecting
features at different time scales. Moreover, while AttnSleep (Eldele
et al,, 2021) shows improved Fl-scores in certain stages like N2
and N3 compared to other models like SeqSleepNet (Phan et al.,
2019b), it still falls short of MSDC-SSRNet in terms of overall
accuracy and generalization across diverse datasets. MSDC-SSRNet
reduces the heterogeneity between different modalities and data,
proving to be a more versatile and efficient model in both accuracy
and consistency.
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TABLE 3 Confusion matrices for different datasets.

Predicted Per-class metrics
Dataset N1 PE
Sleep-EDF-20 8,186 283 75 31 109 94.7 942 94.4
293 1328 477 12 561 63.4 49.7 55.7
89 275 15,361 576 650 91.3 90.6 90.9
9 1 503 4,915 3 88.7 90.4 89.6
64 207 408 4 6,666 83.4 90.7 86.9
Sleep-EDF-78 61,287 2,366 446 75 349 943 94.9 94.7
2,910 11,441 6,342 61 2,132 632 49.9 55.9
3,799 2,766 72,533 365 2,096 86.0 89.7 87.8
31 7 2,195 15,451 2 82.6 87.3 84.9
328 1,503 2,763 32 26,450 852 85.1 852
SHHS 42,853 1,030 1,317 171 848 93.4 92.7 93.0
1,488 5,547 260 113 2,896 559 53.8 54.8
517 36 25,041 4,264 267 81.5 83.1 823
45 1,008 4,072 50,673 4355 86.1 842 85.2
998 2,296 4 3,633 59,022 87.5 89.5 88.5
CSPH 3,267 254 124 6 55 85.6 88.2 86.9
342 1,510 619 18 165 62.1 56.9 59.4
130 515 6,347 234 295 85.4 84.4 84.9
5 5 141 1,104 0 81.0 88.0 84.3
73 147 197 1 1,385 729 76.8 74.8

Bold numbers in the table represent the correct sample counts for each category.

The ground-truth hypnogram

REM T —— True Labels |
Nz 4 . " : i .
N2
N1 A .

The predicted hypnogram with Discrepancies

REM 1 —— Predicted Labels T WK XX
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Wake 1 —

Sleep Stage

Epoch

FIGURE 6
Ground-truth and predicted hypnograms of subject SC4001EQ in the sleep-EDF-20 dataset.
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FIGURE 7
Accuracy and loss during training on fold 6 in the sleep-EDF-20 dataset.

TABLE 4 Comparison of sleep staging performance with previous studies across four experimental datasets.

Dataset Over metrics Per-class F1-score
ACC Kappa MF1 N1 N2 N3
Sleep-EDF-20 MSDC-SSRNet 88.7 84.6 83.5 94.5 55.7 90.9 89.6 86.9
SleepViTransformer (Peng et al., 2023) 87.8 83.4 81.5 93.8 48.4 89.2 88.4 87.9
SleePyCo (Lee et al., 2024) 86.2 80.1 81 90.6 47.3 88.8 87.4 86.6
MultiChannelSleepNet (Dai et al., 2023) 86.5 81.6 80.3 92.6 47 89.5 88.3 83.8
SeqSleepNet (Phan et al., 2019b) 85.2 79 79.6 - - - - -
SleepEEGNet (Mousavi et al., 2019) 84.3 79 79.7 89.2 52.2 86.8 85.1 85
DeepSleepNet (Supratak et al., 2017) 81.9 76 76.6 86.7 45.5 85.1 83.3 826
Sleep-EDF-78 MSDC-SSRNet 86.2 81.2 81.7 94.7 55.9 87.8 84.9 85.2
SleePyCo (Lee et al., 2024) 84.6 79 79.1 93.5 50.4 86.5 80.5 84.2
SegSleepNet (Phan et al., 2019b) 82.6 76 76.4 92.2 47.8 84.9 77.2 79.9
TinySleepNet (Supratak and Guo, 2020) 83.1 77.1 78.1 92.8 51 85.3 81.1 80.3
SleepTransformer (Phan et al., 2022) 81.4 74.3 74.3 91.7 40.4 84.3 77.9 77.2
AttnSleep (Eldele et al., 2021) 81.3 74 75.1 92 42 85 82.1 74.1
SleepEEGNet (Mousavi et al., 2019) 80 73 73.6 91.7 44.1 82.5 73.5 76.1
MultiChannelSleepNet (Dai et al., 2023) 84.9 78.9 79.4 94 52.8 86.3 81.5 82.6
SHHS MSDC-SSRNet 86.7 79.3 80.8 93 54.8 82.3 85.2 88.5
AttnSleep (Eldele et al., 2021) 84.2 78 75.3 86.7 33.2 87.1 87.1 82.1
SeqSleepNet (Phan et al., 2019b) 86.5 81 78.5 - - - - -
CSPH MSDC-SSRNet 80.4 72.6 78.1 86.9 59.4 84.9 84.3 74.8
AttnSleep (Eldele et al., 2021) 79.4 71.6 77.6 86 60.7 84.3 82.5 74.2
SleePyCo (Lee et al., 2024) 78.3 70.4 76.5 85.3 58.2 83.6 83.2 724
MultiChannelSleepNet (Dai et al., 2023) 77.6 68.8 75.9 84.7 57.7 82.8 82.6 71.7
SalientSleepNet (Liang et al., 2023) 77.3 68.9 76.5 84.4 60.1 82.5 83.5 72.1

Best metric values are marked in boldface.
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TABLE 5 Ablation experiment results for sleep-EDF-20 and CSPH datasets.

Ablation experiment

Sleep-EDF-20 metrics

10.3389/fncom.2024.1505746

Sleep-EDF-20 Per-class F1 score

Kappa N1
BL 86.5 80.3 81.6 92.9 47.0 89.5 88.3 83.8
BL + MFEM 86.8 815 82.0 93.1 511 89.6 88.7 84.8
BL + CCTE 87.9 82.0 83.4 93.9 50.9 90.2 89.1 86.0
MSDC-SSRNet 88.7 83.6 84.6 94.5 55.7 90.9 89.6 86.9
Ablation experiment
BL 753 74.5 68.1 82.4 53.6 80.7 80.3 70.5
BL + MFEM 775 76.0 68.8 84.7 58.6 82.8 82.7 71.8
BL + CCTE 79.5 77.3 71.2 85.8 57.7 83.9 83.5 73.6
MSDC-SSRNet 80.4 78.1 72.6 86.9 59.4 84.9 843 74.8
3.5 Ablation experiments
88.80 84.00
As depicted in Table 5, we conducted ablation experiments m— Accuracy
on the Sleep-EDF-20 and CSPH dataset to assess the efficacy of ——MF1 83.50
88.50
various modules. Comparing BL, BL + CCTE, BL + MFEM, and
our MSDC-SSRNet model reveals improvements across all metrics = 83.00
1=
with each module’s inclusion. £ 8820 %
In the CSPH dataset, the CCTE module can significantly g 82.50
enhance classification performance, with overall improvements in $7.90
ACC, MF1, and Kappa by 0.9%, 0.8% and 1.4%, respectively. 8200
F1 scores for each sleep stage also improved. We use the basic
. L . 87.60 81.50
transformer as the baseline. Comparing it to the second variant, 2 4 8 16 3
BL + MFE, we conclude that CCTE is essential for capturing Number of heads
frequent sleep stage transition features. However, MFEM is more FIGURE 8
effective in distinguishing the N1 stage, as the multi-scale feature Performance on the sleep-EDF-20 dataset using different values of
extraction method allows the model to focus on finer features at H

lower or higher frequencies, thereby increasing overall sensitivity
and reducing the impact of OSA on the model. In the Sleep-
EDF-20 dataset, the final model shows an improvement in F1
scores of 8.6% for the N1 stage and 3.3% for the REM stage
compared to the baseline (BL). According to the American
Academy of Sleep Medicine (AASM) rules, especially in the
N1 and REM sleep stages, the EEG features share similar low-
amplitude, multi-frequency (LAMF) activities, making the features
between these stages indistinct. Addressing this issue, our model
framework can more effectively differentiate features of various
sleep stages, particularly distinguishing between the N1 and
REM stages.

3.6 Sensitivity analysis

Multi-head attention (MHA) is a pivotal element in our model,
necessitating a sensitivity analysis regarding the number of heads
employed. Given that the number of heads must be a divisor of
128, we set H to 2, 4, 8, 16, and
32 for the experiments, while maintaining constant values for the

the feature dimension F =

other parameters. Figure 8 shows the accuracy and MF1 scores of

Frontiersin Computational Neuroscience

the model on the Sleep-EDF-20 dataset with different numbers
of heads. The results show that model performance shows slight
improvement with an increase in H. However, beyond a certain
point, further increments in H lead to diminishing returns. This
suggests that expanding the number of heads enhances feature
capture initially, yet excessively dividing attention may reduce the
per-head feature resolution. We select H = 8 as optimal for our
model configuration based on these experimental findings.

In both the model’s feature extraction and fusion processes, the
CCTE encoder is utilized, so choosing an appropriate amount of
encoders is also crucial. To further investigate the impact of the
number of encoders N; in single-channel feature extraction and Ny,
in multi-channel fusion, we keep other experimental parameters
constant and use the Sleep-EDF-20 dataset. Initially, we fix N
at 4, and repeat experiments with N,, values from {2, 4, 6, 8},
then fix N, at 4, and repeat experiments with N, values from
{2, 4, 6, 8}. Based on the results shown in Table 6, changing the
number of encoders does not significantly affect the model’s overall
performance. However, increasing N; enhances the model’s depth,
improving its ability to capture features.
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TABLE 6 Performance on the Sleep-EDF-20 dataset using different
amounts of Ng andN,,,.

Ns Nm Accuracy MF1
4 2 88.42 82.42
4 4 88.56 83.18
4 6 88.59 83.51
4 8 88.47 83.03
2 4 88.25 82.39
4 4 88.56 83.18
6 4 88.69 83.43
8 4 88.79 83.60

4 Discussion

MSDC-SSRNet uses multi-channel data for sleep staging
tasks. Through ablation experiments and model stability analysis,
each module in MSDC-SSRNet assists with sleep staging. The
model performance is improved by capturing characteristic
waves using multi-scale feature extraction and channel attention.
While single-channel sleep staging algorithms are commonly
used for portable home sleep monitoring, multi-channel data
provides a more comprehensive view of sleep states. This
comprehensive view aids the model in detecting subtler differences
in sleep stages, which are more readily recognized by sleep
physicians and offer better interpretability than single-channel
systems.

As shown in Table 6, except for MultiChannelSleepNet
(Dai et al, 2023), the staging performance of other single-
channel models is inferior to MSDC-SSRNet. In a multi-channel
framework, additional channels mitigate disruptions or poor signal
quality in one channel, enhancing overall system robustness. In
addition, the algorithm is applied to the self-built dataset CSPH.
Unlike the public datasets, the subjects of this dataset suffer from
OSA. The CSPH dataset is characterized by frequent sleep stage
transitions and fragmented sleep cycles, which makes the sleep
staging task challenging. Despite these difficulties, MSDC-SSRNet
still performs well.

The CCTE captures long-range dependencies and enhances
the importance of position information in the time-frequency
domain. The MFEM uses different receptive fields to enhance the
contribution of characteristic waves to sleep stages. The multi-scale
attention layer integrates features with different weights, ensuring
the preservation of multi-scale sleep transition rules. The model is
able to characterize typical sleep stage features and distinguish them
from other stages. EEG activity is highly dynamic, and multi-scale
analysis can adapt to these changes, extracting significant features at
different time scales to effectively capture short-term and long-term
brain activity patterns. Compared to single-scale feature capture
methods, the multi-scale approach provides a more stable feature
representation, contributing to model generalizability and practical
application.

Future research could address several limitations identified in
this study. First, the data imbalance problem in the N1 stage still
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needs to be addressed. Additionally, our current model does not
account for other relevant factors, such as age and gender, which
could influence the study outcomes. Addressing these limitations
in future research could further enhance the model’s accuracy and
applicability.

5 Conclusions

In this study, we introduced MSDC-SSRNet, a sleep staging
model leveraging multi-scale dilated convolutions. It performs well
on both healthy subjects and OSA subjects. In experiments with
OSA subjects, the accuracy reaches 80.4%. This model utilizes
the Channel-wise Convolutional Temporal Encoder (CCTE)
and the Multi-Scale Feature Extraction Module (MFEM) for
effective feature capture. The CCTE encoder employs a multi-
head attention mechanism to capture long-range dependencies
in the data. Additionally, we integrated CrossNorm, a novel
normalization technique within CCTE, which enhances training
data diversity by exchanging channel means and variances across
feature maps. This ensures robust performance across diverse
environmental and conditional data settings. The MFEM operates
by capturing signals across a spectrum of frequencies from
low to high, employing multi-scale feature extraction in the
spatial domain. This module focuses on spatial feature extraction
and adeptly captures various frequency components. This is
particularly significant for EEG signals, as different frequency
waveforms (such as 8, 0, «, B, and y waves) exhibit distinct
frequency characteristics.

Our model’s effectiveness has been validated through
comparisons with advanced models and extensive ablation
experiments. Moreover, it provides more accurate predictions and
classifications on datasets with specific clinical characteristics.
Furthermore, we conducted a sensitivity analysis by varying
the number of attention heads in the CCTE encoder for single-
channel feature extraction and multi-channel fusion. This analysis
demonstrated the model’s stability and consistent performance
different
performance and adaptability to various configurations suggest its

under parameter settings. The models robust
strong potential for real-world applications, particularly in clinical
settings. Its high accuracy in classifying sleep stages for patients
with obstructive sleep apnea makes it well-suited for deployment
in home-based monitoring systems. Such systems could offer
continuous, real-time sleep tracking, which would enhance patient
convenience and accessibility while reducing the need for in-lab
polysomnography. The model’s ability to generalize across diverse
patient populations further underscores its practical utility and
potential for widespread implementation in both clinical and

research environments.
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Marketing plays a vital role in the success of a business, driving customer
engagement, brand recognition, and revenue growth. Neuromarketing adds
depth to this by employing insights into consumer behavior through brain
activity and emotional responses to create more effective marketing strategies.
Electroencephalogram (EEG) has typically been utilized by researchers for
neuromarketing, whereas Eye Tracking (ET) has remained unexplored. To address
this gap, we propose a novel multimodal approach to predict consumer choices
by integrating EEG and ET data. Noise from EEG signals is mitigated using a
bandpass filter, Artifact Subspace Reconstruction (ASR), and Fast Orthogonal
Regression for Classification and Estimation (FORCE). Class imbalance is handled
by employing the Synthetic Minority Over-sampling Technique (SMOTE).
Handcrafted features, including statistical and wavelet features, and automated
features from Convolutional Neural Network and Long Short-Term Memory
(CNN-LSTM), have been extracted and concatenated to generate a feature space
representation. For ET data, preprocessing involved interpolation, gaze plots,
and SMOTE, followed by feature extraction using LeNet-5 and handcrafted
features like fixations and saccades. Multimodal feature space representation
was generated by performing feature-level fusion for EEG and ET, which was
later fed into a meta-learner-based ensemble classifier with three base classifiers,
including Random Forest, Extended Gradient Boosting, and Gradient Boosting,
and Random Forest as the meta-classifier, to perform classification between
buy vs. not buy. The performance of the proposed approach is evaluated using
a variety of performance metrics, including accuracy, precision, recall, and F1
score. Our model demonstrated superior performance compared to competitors
by achieving 84.01% accuracy in predicting consumer choices and 83% precision
in identifying positive consumer preferences.

KEYWORDS

EEG, eye tracking, neuromarketing, CNN-LSTM, multimodal

1 Introduction

Neuromarketing, a dynamic fusion of neuroscience and marketing, has emerged
through the innovative use of non-invasive Brain-Computer Interface (BCI) technology,
revolutionizing the concept of marketing. Marketing is a connection between production
and consumers. A good product can fail to target its desired audience without effective
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marketing (Assel, 1995). To create products and services with
the highest profit potential, it is crucial to thoroughly understand
consumer behavior and develop a corresponding advertising
strategy. This requires a comprehensive understanding of the
buyer’s decision-making process, which typically includes need
recognition, information search, evaluation, purchase decision,
and post-purchase behavior (Armstrong et al, 2014; Peter
et al., 1999; Vecchiato et al.,, 2011). Researchers have employed
Electroencephalography (EEG) and Eye Tracking (ET) to analyze
the brain activity and gaze outcomes when exposed to different
stimuli for several decades.

EEG is a technique used to assess the electrical activity
within a person’s cranial structure. This involves placing numerous
electrodes on the scalp, a method known as scalp EEG. It is
particularly preferred for recording brain waves because it is simple
and does not involve any invasive procedure, while other methods
are preferable because they are efficient in monitoring brain activity
(Teplan, 2002; Fisch, 1999). It records changes in electrical activity
and oscillations within the brain. The amplitude of the signals
are proportional to the type of mental activity experienced when
exposed to stimuli (Homan et al., 1987). Eye tracking, on the other
hand, involves gathering information on visual attention through
the capturing of eye movements. The eye tracking revealed where
and for how long a person looked at the different elements, whereas
EEG can uncover the emotional and cognitive response elicited by
these stimuli.

Neuromarketing, a multidisciplinary field at the intersection
of neuroscience, psychology, and economics, explores the complex
dynamics of how advertisements can significantly impact product
sales. Unlike traditional marketing research methods such as
interviews, reviews, and questionnaires, neuromarketing seeks
to surpass the limitations inherent in these approaches. These
conventional methods often fall short of fully revealing consumers’
insights toward products, as individuals may encounter challenges
in conveying their preferences or may be hesitant to express them
comprehensively. Moreover, the chances of data manipulation add
a layer of complexity to the reliability of findings.

Human behavior is influenced by processes operating
beneath the conscious threshold. In response to these challenges,
neuromarketing offers a revolutionary shift, going beyond direct
questions about products and exploring the deeper subconscious
areas of consumers’ minds. The essence is to get insights in a
non-invasive manner, extracting authentic preferences and choices
that may outstand conventional probing techniques. It offers a
deeper and more precise insight into consumer behavior. This
leads to the development of innovative and successful marketing
tactics, ultimately driving increased sales. In the expansive and
intricate landscape of the advertising industry, where expenditures
vary based on geographical location, industry sector, and individual
company strategies. The main contributions of this research study
are as follows:

e A novel multimodal framework has been proposed,
integrating EEG signals and eye-tracking data to enhance
consumer preference prediction. This approach combines the
strengths of both modalities, addressing the lack of sufficient
multimodal research in the domain.
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e A robust feature extraction pipeline has been designed,
combining handcrafted features and automated features
derived through deep learning. This hybrid approach provides
a more comprehensive representation of the data, bridging an
identified gap in the existing literature.

e Ensemble classification techniques have been proposed to
address the challenges of class imbalance and improve
prediction accuracy. By utilizing multiple classifiers and
optimizing their integration, significant improvements in
performance metrics were achieved compared to traditional
methods.

2 Literature review

Many individuals are often reserved in expressing their
complete thoughts and preferences during product evaluation,
creating a challenge in comprehending the complexities of
consumer decision-making. The emergence of neuroimaging
tools provides a quick and convenient method to understand a
customer’s brain activity when evaluating and choosing different
products. Consumer choice recognition typically involves three
pivotal stages. The initial step encompasses preprocessing, wherein
unwanted noise is eliminated from both EEG and ET signals.
Following this, relevant features are extracted, and subsequently,
EEG and ET signals are classified based on consumer preferences.
In neuromarketing studies, the recording of both EEG and ET
data equips researchers to get into the complex interplay of
factors that influence how the human psyche makes choices among
different products.

2.1 Predictive approaches for consumer
preference based on EEG signals

Researchers have proposed multiple methods for classification
between like vs. dislike for neuromarketing in recent years. A
typical method consists of preprocessing the EEG signals and
extracting the features followed by the classification. Researchers
have used various preprocessing techniques employed in predicting
consumer preferences. Bandpass filtering, widely utilized for EEG
signal noise reduction in numerous studies (Murugappan et al.,
2014; Alimardani and Kaba, 2021; Aldayel et al., 2021; Georgiadis
et al,, 2022, 2023a), serves as a prominent technique. Independent
Component Analysis (ICA) has been adopted by researchers to
eliminate noise in their proposed methods (Aldayel et al., 2021;
Georgiadis et al., 2022; Telpaz et al., 2015; Hakim et al., 2021).
Telpaz et al. (2015) and Hakim et al. (2021) have also applied the
Notch Filter for preprocessing. Downsampling, an effective method
employed by several researchers like (Aldayel et al., 2021), proves
valuable for reducing the sampling rate of EEG data. Moreover,
the Savitzky-Golay filter was utilized to effectively remove artifacts
(Aldayel et al, 2021; Yadava et al, 2017; Shah et al, 2022).
Murugappan et al. (2014) applied the Surface Laplacian Filter, and
Kumar et al. (2019) used high and low pass filters for the purpose
of preprocessing EEG signals.
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TABLE 1 Comparison of existing consumer preference prediction methods using EEG signals.

Murugappan et al. EEG 2014 Bandpass filter PSD kNN 96.62
(2014) Surface Laplacian filter SE PNN
sC
Telpaz et al. (2015) EEG 2015 Notch filter ERSP Random 59
ICA N200 (ERP) 65
Yadava et al. (2017) EEG 2017 Savitzky-Golay DWT HMM 70.33
Aldayel et al. (2021) EEG 2021 Downsampling DWT DNN 83
Bandpass filter Welch method SVM 81
ICA kNN 73
Savitzky-Golay RF 87
Alimardani and EEG 2021 Bandpass filter PSD CNN 74.57
Kaba (2021) EC (SVM 63.5
RE, LOG)
Hakim et al. (2021) EEG 2021 Notch filter FBP SVM 68.51
ICA Hemispheric LOG
symmetry kNN
DT
Shah et al. (2022) EEG 2022 Savitzky-Golay DWT EC (SVM, 96.89
FFT PSD DT, DNN)
SMOTE LSTM
Georgiadis et al. EEG 2022 Bandpass filter SCM SVM Ensemble 73.11
(2022) ICA
Georgiadis et al. EEG 2023 Bandpass Filter SCM SPDNet 72.18
(2023a)

After the preprocessing of EEG signals, the extraction of
features is pivotal for classifying likes and dislikes. Many
approaches are employed for feature extraction like LSTM (Shah
et al., 2022). Telpaz et al. (2015) have leveraged N200, or N2, is
an event-related potential (ERP) component. The Power Spectrum
Density (PSD) provides the distribution of power across diverse
frequencies in the signal (Murugappan et al., 2014; Alimardani
and Kaba, 2021; Shah et al., 2022). Similarly, Discrete Wavelet
Transform (DWT) (Arif et al., 2023) introduces a process of
iteratively breaking down the signal into approximation and detail
coefficients across multiple scales, a technique adeptly utilized by
researchers for feature extraction (Aldayel et al, 2021; Yadava
et al,, 2017; Shah et al.,, 2022; Kumar et al., 2019). Aldayel et al.
(2021) have contributed by employing Welch Method. This metric,
corresponding to the spatial standard deviation, offers insights into
the amount of activity at each time point in the potential field.
EEG signals are represented as Sample Covariance Matrices (SCMs)
that are measured entities scattered over a particular Riemannian
manifold by Georgiadis et al. (2022, 2023a). One of the most
commonly used method is to analyze EEG data is to break the
signal into functionally distinct frequency bands. Telpaz et al.
(2015) and Hakim et al. (2021) extracted frequency bands to extract
features from EEG signals. These features provide high interclass
variance which is useful in accurate classification. The details of
these various features are briefly described in the following table
understanding what kind of preprocessing techniques and feature
extraction methods were used in this research, as shown in Table 1.

There are simple features such as the frequency distribution
of words to parametric and non-parametric features, etc. for
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classification between the “like” and “dislike” classes. Statistical
features in the time domain include the mean average, variance/
standard deviation, skewness, and kurtosis. Also, frequency domain
features such as moments of spectrum like spectral centroid,
variational coefficients, and even skewness in the spectrum can
be incorporated. In addition, other techniques of dimensionality
reduction such as Principal Component Analysis (PCA) have also
been used in this study by the researchers to extract features and
to reduce dimensionality. Table 1 can give a brief idea of these
various features and present an outline of the most important
preprocessing proposals and the feature extraction applied in the
present research.

Deep Neural Network (DNN), Support Vector Machine
(SVM), Random Forest (RF), and k-Nearest Neighbors (kNN)
resulted a maximum accuracy of 87%. Alimardani and Kaba
(2021) proposed an ensemble classifier based on SVM, RF, Logistic
Regression(LOG) and Convolution Neural Network(CNN).
Murugappan et al. (2014) applied for kNN and Probabilistic
Neural Network (PNN) for classification of EEG signals. Hakim
et al. (2021) conducted a comprehensive study utilizing EEG,
focusing solely on Machine Learning algorithms and acheived an
accuracy of 68.51%. Shah et al. (2022) predicted users” preferences
for advertisements using an ensemble classifier [SVM, Decision
Tree (DT), DNN] achieving an impressive accuracy of 96.89%.
Yadava et al. (2017) presented the first dataset of neuromarketing.
This dataset featured stimuli in the form of images of commercial
products, labeled as either “like” or “dislike;” and Hidden Markov
Model (HMM) was employed for the classification of EEG signals
based on likes and dislikes. Georgiadis et al. (2022) applied a SVM
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TABLE 2 Comparison of existing consumer preference prediction methods using EEG and ET data.

Khushaba et al. EEG 2013 ICA FFT Mutual Preference
(2013) ET DWT Information
Matukin et al. EEG 2016 Bandpass filter FFT Not specified Improvement
(2016) ET in Ads
Samsuri et al. EEG 2016 Bandpass filter P300 ERP Statistics ERP and the ET
(2016) ET N100 results were
Pupil dilation inconsistent
Christoforou et al. EEG 2017 Downsampling Attent.Asynchrony Regression 72% accuracy
(2017) ET Notch filter Cogn. Congruency R2
Slanzi et al. (2017) EEG 2017 Interpolation PCA Logistic 71.09% accuracy
ET BandPass filter regression
Garcfa-Madariaga EEG 2019 Not specified Alpha-Band Not specified Eye movements
etal. (2019) ET Oscillation could predict
AOI packaging preference.
Mashrur et al. EEG 2023 ASR TD SVM-RBF 96.97% accuracy
(2024) ET Notch filter FD
TFD

Ensemble including three SVM classifiers, while their research
(Georgiadis et al., 2023a) used architecture of SPDNet. It is a
deep learning architecture designed for processing data that lie on
Symmetric Positive Definite (SPD) matrices.

2.2 Predictive approaches for consumer
preference based on EEG signals and ET
data

Researchers have employed various techniques to preprocess
EEG signals and ET data for understanding consumer preferences.
Khushaba et al. (2013) utilized a combination of ICA and DWT for
EEG signal preprocessing. Matukin et al. (2016) and Samsuri et al.
(2016) incorporated band-pass filtering in their methodologies.
Christoforou et al. (2017) downsampled EEG data and applied a
Notch filter to mitigate DC drifts. For processing pupil dilation
signals, Slanzi et al. (2017) employed linear interpolation followed
by band-pass filtering. Mashrur et al. (2024) adopted the Automatic
Subspace reconstruction functionality from EEGLAB for noise
reduction, subsequently applying a notch filter at 50 Hz to suppress
power line artifacts.

Matukin et al. (2016) applied Fast Fourier Transform (FFT)
to derive features from EEG signals. Samsuri et al. (2016)
utilized P300 and N100 components for EEG signal analysis,
while employing Pupil Dilation features for eye-tracking data.
Christoforou et al. (2017) introduced the Attentional-asynchrony
metric based on the Eye-Gaze Divergence Index and used epoched
EEG measurements to formulate a Cognitive-congruency aggregate
metric. Slanzi et al. (2017) employed Principal Component
Analysis (PCA) to extract features from EEG signals. Garcia-
Madariaga et al. (2019) focused on Alpha Band Oscillations for
EEG signals and Area of Interest (AOI) for eye-tracking data.
Mashrur et al. (2024) categorized features into three domains:
time domain (TD), frequency domain (FD), and time-frequency
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domain (TFD), subsequently employing a classifier for optimal
feature selection.

Table 2 provides comparative analysis of existing methods of
neuromarketing based on EEG and ET. Khushaba et al. (2013)
used mutual information analysis that indicated important factors
affecting the buying decision. Samsuri et al. (2016) measured the
attention levels of users when observing an advertisement through
the use of EEG and ET signals. In the study by Christoforou
et al. (2017), the R2 metric was employed to assess the predictive
capability of the suggested neural and eye-tracking metrics on the
box office success of films. Slanzi et al. (2017), aimed to determine
the sections of a webpage that were most probable to attract
clicks through the application of Logistic Regression. Mashrur
et al. (2024) used the SVM classifier is used with RBF kernel for
classifying strong and weak preference EEG signals attaining an
accuracy of 97%.

Following research gaps have been identified after a
comprehensive literature review of both EEG and ET consumer
preference prediction methods:

e There is a lack of sufficient multimodal research investigating
the combined effectiveness of EEG and eye-tracking.

e The issue of class imbalance remains a significant challenge in
this field.

e The integration of handcrafted and automated features in a
combined feature set has not been much explored.

e The limited use of ensemble learning methods represents a
notable research gap.

3 Dataset

The NeuMa dataset (Georgiadis et al., 2023b) has been used for
this particular research work and this comprises of 42 participants
who were all Greek speakers; 23 males and 19 females. The dataset
is made up of 144 supermarket products and this is presented in six
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TABLE 3 Summary of NeuMa dataset.

Attribute Details

Number of subjects 42 (23 males, 19 females)

Number of products 144

Number of pages 6 (24 products per page)

Average selections 18 products per participant

Data files per subject 2 (S01.xdf, S01.xls)
EEG device Wearable Sensing DSI24
EEG sampling frequency 300 Hz

EEG sensors 21 dry sensors

ET device Tobii pro fusion

ET sampling frequency 120 Hz

brochure pages whereby each brochure is made up of 24 products.
Targets were highlighted by users with a left-click of the mouse on
products of interest. Consequently, each of the subjects has two files
for every subject, which contains the records of their interactions
with the products.

Table 3 provides brief description of the NeuMa dataset.
Subjects were positioned at an arm’s length or 50 cm away from
the screen which is a 28 inch LCD monitor, and navigation on the
digital brochure page and choice of products with the left click of
the mouse. For the page navigation arrow keys of the keyboard
were used. Every subject’s data set involved EEG and eye-tracking
information and mouse clicks and positions. There are EEG signals
and eye movements, mouse clicks, and cursor movements collected
in the given dataset. Among these data streams, currently only EEG
and ET type data streams are being used.

After the experiment, participants filled in a questionnaire
containing demographic details about the individuals, profiling
details about the participants as well as about the products provided
to them like personality profile, tendency to indulge in impulse
buying and about the products given to them like reasons for
selection of product, familiarity with the product and frequency
for buying the product. EEG data was recorded by DSI 24 system
with the sampling rate of 300 Hz from 21 electrodes. This eye-
tracking data was at a sampling rate of 120Hz and the Tobii Pro
Fusion eye-tracker was used to collect the data. Figures 1-3 show
the plots of EEG, ET, and Pupil dilation data, respectively (Tobii,
2024; Georgiadis et al., 2023b).

4 Methodology

Proposed method consists of three steps: EEG and ET signal
preprocessing, feature extraction and classification. The pre-
processing of the EEG signals is done with the help of Bandpass
Butterworth filter (0.5-45Hz), Artifact Subspace Reconstruction
(ASR) and the Fast Orthogonal Regression for Classification and
Estimation (FORCE). Signals are then split in segments overlapping
each other since the data amount is at a manageable size. In the
same manner, preprocessing of Eye Tracking (ET) data; missing
values are eliminated/taken care of using a linear interpolation
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and the data is segmented using overlapping window techniques.
Non-technique based features are derived from the EEG and
ET signals using statistical and frequency domain analysis The
technique incorporated is CNN-LSTM for EEG and LeNet5 for ET
data. First, for each input modality, feature-level fusion is used to
combine these extracted features, and second, improvements are
made to classification using both manually defined and learned
features are used. Figure4 displays the flow diagram of the
proposed methodology.

4.1 Preprocessing of EEG signals

Electroencephalogram (EEG) signals are often contaminated
with various types of noise, including muscle activity, eye
movements, and electrical interference from other devices.
To analyze EEG data effectively, preprocessing steps such as
filtering are crucial. Electroencephalography (EEG) signals require
preprocessing to remove noise and isolate frequencies of interest.
One method is applying a bandpass filter with band range
0.5-45 Hz.

In order to filter out Signals with artifact in the EEG data
a band pass filter was employed together with Artifact Subspace
Reconstruction (ASR). ASR also helps in eradicating interferences
like shrugs and blinks and leaves the signal’s quality intact for
analysis. This technique is very important in neuromarketing
research as it offers clean signal filtration yet preserves the original
signal. Fast method for Orthogonal Regression for Classification
and Estimation EEG sounds are done using orthogonal basis vector
and FORCE for the preprocessing of the data. It is applied to
remove noise while improving the quality of the signal, making
it suitable for the situations that require fast and accurate artifacts
detection. Specifically, the signals from the EEG signals were band-
pass filtered and then analyzed by ASR and FORCe to obtain the
best results.

The overlapping window technique again divides the filtered
signals to get more detailed data and make the signals continuous.
The division of the continuous EEG signals make it more
manageable and this was achieved by gaining small samples of 300
Hz with the window size being one second with 300 data entries.
The overlapping of the windows has the advantage of achieving
greater density of information and continuity of the signal.

4.2 Preprocessing of eye tracking data

Linear interpolation is a technique of curve fitting in which
a straight line is drawn between two points to give the estimated
point. It handles missing data if eye-tracking signals due to long
blinking are missing using what is known as the straight-line
interpolation method. Due to the ability to replace a missing value
with approximated data samples that occur before and after the
gap, a continuous signal is achieved. This step is necessary for
preserving the quality of eye-tracking signal and further analysis
of study subjects’ attention and eye movement behavior.

As for removing missing values in the eye-tracking dataset,
linear interpolation has been applied, the next step of the data
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Customer response (Subject SO1): EEG data stream for product (NeuMa dataset: EEG data capturing the cerebral activity of a subject for a product).
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product).

Samples x10%

Customer response (Subject SO1): eye tracking coordinates (X, Y) for a product (NeuMa dataset: ET data revealing the gaze pattern linked to a

45

preprocessing is the data segmentation based on the overlapping
window. This ensures that the maximum amount of information
is collected as the windows have a 50% overlap in which every
two consecutive windows have 50% of the same data points. This
rises the density of data and contributes to non-fragmentation
of signal which helps in maintaining coherency. The splitting of
records further improves difference detection or comparison which
is made possible by the window size of one second and a sampling
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rate of 120 Hz; this means that each segment’s data set has 120
data points.

Gaze plots are basically eye movement data obtained through
eye tracking displayed graphically as data points. They are
developed by placing fixation areas on a graph of the observed
stimulus. For the movements of the eyes, the X and Y coordinates
are transformed into the 64 x 64 canvas where the black
background implies no gaze while the white point marks a gaze.
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Customer response (Subject SO1): pupil dilation stream for a product (NeuMa dataset: ET data revealing pupil dilation patterns linked to a product).
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These points are the coordinates of the location on the canvas, and
the original gaze plot images are saved, converted to the NumPy
array and then to grayscale for analysis. Figure 5 presents various
Gaze plots.

Class imbalance refers to situations where one class (the
minority class) is significantly underrepresented compared to
another class (the majority class). This class imbalance can lead
to biased models that perform poorly on the minority class. To
address the issue of class imbalance within the dataset, we used
Synthetic Minority Over-sampling Technique (SMOTE) (Chawla

Frontiersin Computational Neuroscience 53

et al,, 2002). SMOTE works by generating synthetic examples of
the minority class to balance the class distribution. The process
involves creating new instances of minority class samples by
interpolating between existing minority class samples SMOTE
first identifies the minority class samples in the dataset. For each
minority class sample of EEG and ET data, SMOTE selects its
k nearest neighbors in the feature space. The value of k we
chose is 3, as it was giving the best results. For each minority
class sample, SMOTE generates synthetic samples along the line
segments connecting it to its k nearest neighbors. The number
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FIGURE 5
A few gaze plots of ET data
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of synthetic samples created for each minority class sample is
determined by a specified oversampling ratio. By creating synthetic
samples, SMOTE increases the representation of the minority class
in the dataset, balancing the class distribution. Figure 6 displays the
class distribution before and after application of SMOTE.

4.3 Feature extraction of EEG signals

After preprocessing the EEG data, which typically involves
filtering out noise and artifacts, the next step is to extract
meaningful features from the cleaned data. Feature extraction
transforms the raw EEG signals into a set of representative features
that can be used for further analysis, such as classification. We
used a few common statistical features include Mean, Variance,
Skewness, and Kurtosis.

The mean of the EEG signal provides a measure of the central
tendency of the signal. It indicates the average value of the signal
over a specified period.

1 N
H:N;Xi (1)

Where N is the number of data points and x; represents the
EEG signal values.

The co-efficient of variation is used to determine the spread of
the signal value in relation to the mean of the EEG signals. That
reveal information about the fluctuation in the activity of the brain.

1 N
ol =3 ;m - w? )

Skewness indicates the extent of probability distribution of the
EEG signals asymmetrical nature. The absolute value of skewness is
>1, <1 or zero if the distribution is highly skewed to the right, left,
or symmetric respectively.

N

_ N xi—
y‘_(Nfl)(Nfz)Z< o ) ©

i=1

Kurtosis quantifies the degree of the two at both the center and
the tails of the probability density function of the EEG signal. It also
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implies that the data contains some outliers.

3(N —1)?
(N —2)(N —3)
4)
Welch’s Method (Welch, 1967) is one of the robust and
standard method to estimate power spectral density (PSD) of a

_ NN+ NEETAY
”‘(N—l)(N—zXN—s)Z( o )

i=1

signal. Even if it splits the signal into overlapping sections, then
they apply a function known as windowing on sections, calculate
the periodogram of each segment, and finally the averages these
periodograms. In this feature, extraction was performed for all the
EEG channels, considering the average power of the given signal
within all possible frequency bands. This feature quantifies the
amplitude deviations of the power from the energy of the signal
at various frequency bands. The wavelet transform is the process by
which a signal is broken down in different parts that are localized
both temporally and in the frequency domain. Since, mean of DWT
coeflicients gives the average value of the coefficients, we obtained
the mean of this parameter. This feature calculates the extent of
fluctuations valued in the domain of wavelet coefficients.

Finally, Statistical features and frequency domain features and
wavelet transform features are then combined to construct an
information vector for each sample that will serve as the input to the
model. The technical advantage implemented in the feature set uses
time-frequency characteristic as well as multi-resolution analysis.

After removing noise from the EEG signals, features were
extracted for the “Buy” and “No Buy” classes using two common
approaches: handcrafted feature extraction and automated feature
extraction via deep learning techniques. In the handcrafted
approach, features are extracted without considering the class of
the EEG signals. In contrast, automated feature extraction leverages
deep learning models like Convolutional Neural Networks (CNNs)
(LeCun et al, 1998) and Long Short-Term Memory (LSTM)
networks (Hochreiter and Schmidhuber, 1997), which consider the
class of the EEG signals during feature extraction. This method can
lead the class of the EEG signals during feature extraction. This
method can lead to improved classification performance due to
lower intraclass variance and higher interclass variance.

LSTMs are a type of recurrent neural network (RNN) that are
capable of learning long-term dependencies (Shah et al., 2022).
They have a chain-like structure with repeating modules. The core
of the LSTM module consists of a cell state, and three gates to
regulate the flow of information: the input gate, forget gate, and
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Class distribution before and after SMOTE.

output gate. For feature extraction from EEG signals, we implement
a convolutional neural network LSTM architecture. The CNN takes
the segmented time-domain signals it has: the CNN’s inputs are
the number of EEG channels and temporal segments of signals.
Convolutional layers perform spatial features extraction using
filters of particular sizes which are succeeded by the max-pooling
layers in an attempt to decrease the dimension and hence increasing
the efficiency of the training process. The features from the CNN
layers are flattened and reshaped so as to be fed into LSTM layer that
takes into consideration temporality of the data. CNN and LSTM
are combined because the former analyses the spatial information
of the signals while the latter analyses the temporal information of
the signals making it appropriate to classify the EEG signals. Table 4
provides a summary of our proposed CNN-LSTM model.

4.4 Feature extraction of ET data

After preprocessing ET data and handling the class imbalance
issue features are extracted from it. Similar to feature extraction
from EEG data, statistical features can be employed to quantify
various aspects of these movements.

4.4.1 Fixation duration

Fixation duration represents the average time a user spends
fixating on a specific Area of Interest (AOI) and is analogous to the
mean in EEG analysis. It provides insight into the level of attention
paid to that area.

4.4.2 Saccade amplitude

Saccade amplitude is just like variance in EEG, its calculates the
distance between one fixation to another fixation. Large value of
saccade amplitude represents jump from one fixation to other.

Frontiersin Computational Neuroscience

55

TABLE 4 Summary of proposed CNN-LSTM model.

Layer Output shape Parameters
Input layer (None, 19, 300, 1) 0
Conv2D (None, 17, 298, 32) 320
Max pooling (None, 8, 149, 32) 0
Conv2D (None, 6, 147, 64) 18,496
MaxPooling (None, 3, 73, 64) 0
Flatten layer (None, 14,016) 0
Reshape layer (None, 14,016, 1) 0
LSTM (None, 64) 16,832
Dense (None, 128) 8,320
Dense (None, 64) 8,256

We applied the LeNet-5 (LeCun et al, 1998) model, a
foundational CNN architecture developed by Yann LeCun,
originally designed for image recognition tasks like classifying
handwritten digits. The model processes input images through
convolutional layers with filters to extract features, followed
by max-pooling layers to reduce dimensionality. After multiple
convolution and pooling layers, the feature maps are flattened
into a vector for the classification layers. This structure effectively
captures spatial features in the data, making it suitable for image
recognition tasks. Here’s an explanation for the LeNet-5 model
summarized in Table 5.

Features extracted from EEG signals and ET data are
concatenated to form a combined feature vector with a size of
16,720, which is then fed into an ensemble classifier. Optimizer
used is Adam and loss function used is Mean Squared Error. Adam
is a gradient-based optimization algorithm. Its update rules are
given by:
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TABLE 5 Summary of LeNet-5 model.

Layer Output shape Parameters
Input layer (None, 64, 64, 1) 0
Conv2D (None, 60, 60, 6) 456
Max pooling (None, 30, 30, 6) 0
Conv2D (None, 26, 26, 16) 2,416
MaxPooling (None, 13, 13, 16) 0
Flatten layer (None, 2,704) 0
Update Rules:
my = Bime—1 + (1 — B1)gs, 5
vi=Povi—1 + (1 — 52)th> (6)
e = lTﬂl, ?)
b= (®)
2
Op =01 — 1 Amt ) )
Ve + €
where:

e my: First moment (mean of gradients),

e v;: Second moment (uncentered variance of gradients),

e g Gradient at time step ¢,

e f1, B2: Exponential decay rates for the moment estimates,
e 1): Learning rate,

e ¢: Small constant to prevent division by zero,

e 0;: Parameters at time step .

The Mean Squared Error loss function is given by:

n

_! a2
MSE = — > i =i (10)

i=1
where:

e 1: Number of data points,
e y;: True value for the i-th data point,
e y;: Predicted value for the i-th data point.

4.5 Ensemble classifier

After pre-processing and feature extraction, the final step
is classification which is performed to categorize the sample
as Buy vs. Non-buy. We have used three stacking ensemble
classification approach in which features are first passed to three
different classifiers including Random Forest, Gradient Boosting
and XGBoost. Prediction obtained from these three classifiers is
then stacked to get the final classification. Random Forest has beeen
used as meta model in the stacking ensemble (Wolpert, 1992).
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4.5.1 Base classifiers

Random Forest (RF): Random Forest grows a whole forest
during training. It is a bagging technique in which every tree makes
a prediction and then make a final prediction. This classifier is good
to handle high dimensional data which is often the case with EEG
and ET features (Breiman, 2001)

Ty (x) = Class label predicted by the k-th tree. (11)

Prr(x) = Majority Vote{T;(x), Tz (x), . .., Tk(x)} (12)

Gradient Boosting (GB): This is a strong method that
constructs decision trees iteratively where each stage used in
identifying the mistakes committed by the prior trees. Friedman
(2001). The final prediction is:

M
Pop(x) = Y _ ttmhy(x) (13)
m=1

where:

o h,,(x): the m-th weak learner,
e oy, the weight of the m-th learner.

XGBoost (XGB): XGBoost is an optimized version of Gradient
Boosting (Chen and Guestrin, 2016). The prediction for XGBoost
is:

M
PxGa(x) = Y Nmhm(x) + Q) (14)

m=1

where:

e 1)n: learning rate,
o Q(hy,): regularization term.

4.6 Meta-classifier

The meta-classifier takes the outputs of the base classifiers as
input. In this case, a Random Forest is used as the meta-classifier.

In the first step, predictions are collected from the base
classifiers for the training dataset:

Prp(x), Pgp(x), Pxgs(x). (15)
Prr(x1) Pgp(x1) Pxga(x1)
Prr(x2) Pgp(x2) Pxga(x2)

Z= ) . . (16)

Pre(x,) Pgp(xn) PxgB(xn)

In the final step, meta classifiers is trained to get the final
classification result on Z. We have used Random Forest as
meta classifier.

Ppeta(x) = Meta-RFE(Z). (17)
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For unseen data x, the stacking ensemble works as follows: Each
base model makes a prediction:
Pgp(x),

Prg(x), Pxga(x). (18)

These predictions form a new feature vector for x:

Zy = [PRF(JC),PGB(X).PXGB(X)] - (19)
The meta-classifier uses Z, to make the final prediction:

Prinal(x) = Ppeta (%) (20)
Base model outputs are as follows:

Prr(x) = Random Forest prediction,
Pgp(x) = Gradient Boosting prediction,

Pxgp(x) = XGBoost prediction.
Meta-model (Random Forest) output is as follows:

Pueta(x) = Majority Vote{T((Z,)}, k=1,2,...,K. (21)

Final stacking ensemble prediction:

Prinal (X) = Ppeta(X). (22)

4.7 Hyperparameters optimization

For the machine learning models, Random Forest Classifier
was set with 265 estimators for the Optuna (Akiba et al., 2019)
tuned model and 100 for the Stacking Classifier final estimator.
The Gradient Boosting Classifier uses 89 estimators and the XGB
Classifier is set with 300 estimators. These three estimators are
surrounded by the Stacking Classifier such that the Random Forest
classifier is used as the final estimator. Further, the imbalance of the
data is tackled using SMOTE with the specified random state of 42.
To split the dataset into cross-validation, the keyword Stratified K-
Fold is used with the parameter setting of the number of folds as 10,
shuffle as True, and random state as 42.

In the case of the deep learning models used in automatic
feature extraction, the CNN connected with the LSTM is applied
for the feature extraction of the EEG data. The structure of the
model consists of an LSTM layer with 64 neurons and dense layers
with 128 and 64 neurons, optimizer used is Adam and loss function
used is Mean Squared Error. For the eye-tracking data the LeNet-5
is employed; it consists of two dense layers with 120 and 84 units
and a sigmoid layer is used at the output for binary classification.
This model is trained with the Adam optimizer with binary cross-
entropy as the loss function and accuracy as the parameter over
50 epochs. The data splitting involves a train test split of 80-20
and further division of the remaining data in equal proportions to
validate and test the model.
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4.7.1 Stratified cross-validation

Once we were set up, with the ensemble classification pipeline
formulated, the next logical step was to assess its utility. To this end,
the strategy used was a rigorous method known as the stratified
10-fold cross-validation (Kohavi, 1995). However, stratified cross-
validation goes one step further than this as it guarantees the
resultant folds as having the same proportion of classes as those of
the original data-set.

5 Results and discussion

The efficiency of classification models is evaluated in terms
of the metrics that measure the ability of the ML algorithm to
classify the objects appropriately. Selecting the appropriate metrics
is essential for achieving an accurate and objective assessment and
measuring performance in such problems with skewed classes or
different costs associated with an error. Accuracy for the most
basic performance indicator that show the number of instances
out of all the data that belong to the correct class. Precision also
known as positive predictive value, measures the proportion of true
positives among all predicted positives. It reflects how often the
model correctly identifies a positive case.

Specificity test evaluates the proportion of actual negatives
which are correctly identified by the model as negative, while, recall
or sensitivity evaluates the proportion of actual positives which are
correctly identified by the model as positive. They indicate how
well the model captures all the positive instances in relation to the
available training examples. F1 score is an average of recall and
precision that yields proportional insights into both these measures.
It’s particularly useful when both false positives and false negatives
are equally undesirable. Its particularly useful when both false
positives and false negatives are equally undesirable.

Table 6 represents the quantitative comparison of the employed
methods, namely accuracy, precision rate, recall, and F1 score.
The proposed method achieves the highest accuracy of 0.84,
significantly outperforming the other methods. The improvement
in accuracy can be attributed to the effective integration of ML
and DL features along with the stacking ensemble technique. The
precision of the proposed method (0.83) indicates its superior
ability to correctly identify positive instances compared to other
methods. This is particularly important in reducing false positives,
which is critical in applications where the cost of false positives is
high. For recall the proposed method gives 0. 84 which shows that
the proposed method is also good in the recall sense it captures
most of the true positive instances. Large recall component means
that the model is going to include many more positives into the
result set at the cost of possibly including negative instances, which
is particularly important where false negatives are undesirable. The
proposed method claims to achieve an F1 score of 0.83 which
balances the precision and recall rates of identifying fishes with
equal importance. This is because F1 score is a harmonic mean of
precision and recall and a high F1 score indicates that the propose
method is both precise and accurate, studied and tested on different
measure standards and tables.

Table 6 represents the quantitative comparison of the employed
methods, namely accuracy, precision rate, recall, and F1 score.
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TABLE 6 Evaluation metrics for different methods.

10.3389/fncom.2024.1516440

Method Accuracy Precision Recall F1 score
1- EEG (not preprocessed, ML features, SVM) 0.62 0.60 0.59 0.59
2- EEG (preprocessed, DL features, SVM + RF) 0.65 0.61 0.64 0.62
3- EEG (preprocessed, ML + DL features, SVM + RF + 0.74 0.70 0.75 0.72
DT)
4- ET (not preprocessed, ML features, RF) 0.60 0.58 0.59 0.59
5- ET (preprocessed, DL features, DT) 0.62 0.55 0.56 0.55
6- ET (preprocessed, ML + DL features, XGB + RF + 0.65 0.64 0.61 0.62
DT)
7- EEG & ET (not preprocessed, ML features, SVM) 0.72 0.71 0.67 0.68
8- EEG & ET (preprocessed, DL features, RF) 0.75 0.74 0.72 0.73
9- EEG & ET (preprocessed, ML + DL features, SVM + 0.80 0.78 0.79 0.78
RE + XGB)
Proposed- EEG & ET (preprocessed, ML + DL 0.84 0.83 0.84 0.83
features, stacking ensemble)
Ablation study has been performed and bold values show the results obtained from final methodology.
Evaluation Metrics for Different Methods
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FIGURE 7
Comparison of results obtained from proposed method with existing methods.

Figures 7-9 show the evaluation score of the method, area under
ROC curve, and Confusion Matrix of the proposed method.
The ROC curve is a graphical approach that indicates a model’s
performance at different classification hurdles. It maps True
Positive Rate or Sensitivity on the y-axis, against False Positive
Rate or Fall out on the x-axis. An ideal ROC curve looks like a
graph that plots the data close to the upper left-hand corner of
the axes, which means that the performance of the model was
satisfactory and it could distinguish between the classes accurately.
The AUC gives overall performance of the ROC curve, from this
the probability that the model ranks positive instance higher to

Frontiersin Computational Neuroscience 58

a randomly chosen negative instance can be determined. Higher
AUC shows that the tester has better ability in classifying. AUC-
ROC of 0.89 has been achieved as shown in the Figure 8, whereas,
confusion matrix is presented in Figure 9 which further proves
that it is highly effective when it comes to discriminating between
the positive and the negative classes. This score can be classified
within the “good” region; hence it can be deduced that the method
purposed is good in segregating the two classes of interest.

Figure 7 compares the results obtained from proposed method
with the existing state of the art methods. Table 6 describes the
evaluation criteria to different methods. As can be seen, the
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Confusion matrix of proposed method.

proposed method that uses the given preprocessing for EEG and
ET data and incorporates the features of ML as well as DL
within stacking ensemble provides the highest results on all of the
listed measures.

At the highest accuracy, Method 1 employing raw EEG data
with ML features and SVM yielded an accuracy 0.62. At the same
time, the proposed method is much more effective with accuracy
0.84. It can be seen that this improvement is universality for
precision, recall, and F1 score, more manifesting the advantages
of data preprocessing and more successful attempt of the stacking
ensemble method combining the ML + DL features. If we compare
the methods in which preprocessing was used (e.g., Method 1) with
those for which preprocessing was not used (e.g., Method 2), one
can see that, in many cases, preprocessing has a positive effect on
the performance. For instance, in method number 2, the EEG data
is preprocessed and the DL features generates higher percentages of
accuracy and recall than in method 1.
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ROC curve of proposed method (EEG only).

TABLE 7 Comparison with Georgiadis et al. (2023a)

Aspect Proposed method
(only EEG)

Dataset NeuMa NeuMa
Accuracy 0.72 0.74

Precision Not mentioned 0.70

Recall Not mentioned 0.75

Fl-score Not mentioned 0.72

AUC score Not mentioned 0.79

Comparison

EEG-Fusion

Riemannian Decoder

rangencsvt

Proposed Method (EEG Only)

0% 10% 20% 30% 40% 50% 60% 70%  80%

FIGURE 11
Comparison of accuracy with other methods.

Methods which simultaneously utilize both EEG and ET data
are superior to the methods based on only one type of data. For
example, the feature that incorporates preprocessed EEG and ET
data with conventional ML features and DL results in Method 9 has
an accuracy of 0.80. This shows when there is an integration of the
EEG and ET data it is able to provide better results for the model.
The proposed method incorporates stacking ensemble, which also
improves the performance of classifiers due to features adopted by
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this method. This leads to the highest values on all accounts, hence
promoting a resilient and efficient model.

Classification results for EEG data when analyzed with the help
of ML and DL incorporated with SVM, RE, and DT were seen
to be quite satisfactory. By using the approach, the objective was
attained with a 0.74 accuracy, and the precision, recall, and the F1
score equal to 0.70%, 0.75%, and 0.72% respectively. Furthermore,
the have relatively high AUC, mean of 0.79 as shown in Figure 10
therefore support the reliability and discriminant capacity of the
developed model, in the classification of consumers’ preferences
from EEG signals. Altogether, these metrics can be discussed as
demonstrating the efficiency of the proposed approach of applying
the traditional ML algorithms alongside with the DL features.

On the other hand, the study that the referenced paper dealt
with proposed a new deep learning decoder based on Riemannian
Geometry and SPDNet structure (Georgiadis et al., 2023a) for
analyzing the signals of the NeuMa dataset of EEG. From the
research, the investigators obtained a mean accuracy of 72%.
Table 7 shows a comparison between our proposed method(EEG
Only) with a state-of-art method of Georgiadis et al. (2023a). The
comparison of accuracies is shown in Figure 11. Although this
research infuses ML and DL with regular classifiers, the paper’s
presentation of domain’s Riemannian Geometry and SPDNet
demonstrates higher accuracy than conventional EEG- based
approaches like Tangent Space SVM (Kalaganis et al., 2019), EEG-
Fusion (Hakim et al.,, 2021) and R-kNN (Congedo et al., 2017).
The statistical significance thus obtained particularly with reference
to the results achieved by Tangent Space SVM which was 67.72%,
EEG-Fusion 52.75% and R-kNN was 51.96%.

There are some limitations to the study that need to be noted.
First off, although 42 participants is a small sample size, it might
not be enough to extrapolate the results to a broader population.
Furthermore, the findings are predicated on a particular dataset,
which can restrict their generalizability to other product categories,
markets, and cultural settings. The accuracy of the data acquired
may be affected by the sampling rate and precision constraints
of the EEG and eye-tracking sensors, despite their effectiveness.
Furthermore, even though the used feature extraction strategies
which combined manually created and automatically generated
features proved successful, more research into different approaches
or sophisticated deep learning architectures may enhance model
performance. Finally, the integration of EEG and ET data
adds complexity to the analysis, and potential synchronization
challenges may have influenced the overall accuracy of the model.

6 Conclusions

Prediction of consumer preferences that we suggest is based
on the machine learning and deep neural network methodology
characterized by a high degree of accuracy and precision. These
results could have been achieved because of correct preprocessing
of images, use of the right features, and the high accuracy
classifier. In preprocessing, we have increased the signal-to-
noise ratio of EEG signals and ET data by removing noise
and balanced the number of samples for classes, specifically
the Buy class, by creating more through SMOTE. From the
EEG and ET dataset, we created manual features by using

Frontiersin Computational Neuroscience

10.3389/fncom.2024.1516440

the same method as before. Similarly, we used CNN-LSTM
for the feature extraction of the selected EEG signals and
LeNet-5 for the ET data. In classification, a most dependable
stacking classifier was used for classification with a high level
of accuracy.

The proposed method demonstrates stable results in the
context of consumer preference prediction, though there are
opportunities for future studies. For the current extraction
feature, we could definitely do better in terms of advanced
methodologies such as deep learning architectures or location
of brain sources. Classification methods could be enhanced by
considering other subject-dependent models or by developing the
concept of a prediction. Generalizability is critical, which makes
cross-validation mandatory across larger and more diverse data
sets. Furthermore, it is necessary to discuss the similarities and
differences of the proposed approach with other neuromarketing
methods, as well as consider issues of the user’s consent and data
privacy. In addition, extending this method for uses outside of
e-commerce, such as physical store promotion or measuring ad
campaign effectiveness, provides more arenas for possible research
and practical implementation.
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Anomalous chromosomes are the cause of genetic diseases such as cancer,
Alzheimer’s, Parkinson's, epilepsy, and autism. Karyotype analysis is the standard
procedure for diagnosing genetic disorders. ldentifying anomalies is often
costly, time-consuming, heavily reliant on expert interpretation, and requires
considerable manual effort. Efforts are being made to automate karyogram
analysis. However, the unavailability of large datasets, particularly those including
samples with chromosomal abnormalities, presents a significant challenge. The
development of automated models requires extensive labeled and incredibly
abnormal data to accurately identify and analyze abnormalities, which are
difficult to obtain in sufficient quantities. Although the deep learning-based
architecture has yielded state-of-the-art performance in medical image
anomaly detection, it cannot be generalized well because of the lack of
anomalous datasets. This study introduces a novel hybrid approach that
combines unsupervised and supervised learning techniques to overcome the
challenges of limited labeled data and scalability in chromosomal analysis.
An Autoencoder-based system is initially trained with unlabeled data to
identify chromosome patterns. It is fine-tuned on labeled data, followed by
a classification step using a Convolutional Neural Network (CNN). A unique
dataset of 234,259 chromosome images, including the training, validation,
and test sets, was used. Marking a significant achievement in the scale of
chromosomal analysis. The proposed hybrid system accurately detects structural
anomalies in individual chromosome images, achieving 99.3% accuracy in
classifying normal and abnormal chromosomes. We also used a structural
similarity index measure and template matching to identify the part of the
abnormal chromosome that differed from the normal one. This automated
model has the potential to significantly contribute to the early detection and
diagnosis of chromosome-related disorders that affect both genetic health and
neurological behavior.

KEYWORDS

chromosome anomalies, cognitive sciences, machine learning, neurological health,
neurodevelopmental disorders, neurological disorders, neuroscience, genetic diseases

1 Introduction

A chromosome is a thread-like structure that harbors genetic information encoded in
genes. Located within the nuclei of cells in most living organisms, it comprises proteins
and a solitary Deoxyribonucleic Acid (DNA) molecule. The structure of the chromosomes
is shown in Figure 1. It transports genomic information from one cell to another
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(Institute, 2023). A typical human cell contains 46 chromosomes,
comprising 22 pairs of single chromosomes (autosomes), which
are numbered (1-22), and two sex chromosomes (XX or XY)
(Institute, 2023). Chromosomes become visible during metaphase
when stained with Giemsa and viewed under a light microscope.
Understanding human chromosomes is crucial for diagnosing
and predicting outcomes and tracking treatment progress under
various conditions (Gersen, 2013). Cytogenetic experiments were
performed to determine chromosomal abnormalities. Cytogenetics
encompasses the examination of tissues, blood, bone marrow,
and cultured cells i a laboratory setting. This field uses banding
or manipulation techniques to identify chromosomal alterations
(Natarajan, 2002).

Genetic result from chromosomal

diseases directly

abnormalities, and detecting chromosomal anomalies can
anticipate and alert medical practitioners to potential diseases
stemming from these abnormalities (Natarajan, 2002). Effective
identification of chromosomal abnormalities is of significant
clinical importance. Detecting genetic abnormalities in patients
at the earliest stage is essential for timely and effective treatment.
Chromosomal abnormalities are associated with genetic disorders.
Changes in chromosome number or structure affect neurological
health, such as Alzheimer’s, Parkinson’, epilepsy, autism, and
many other conditions. This can be detected using karyotyping. It
is widely used for prenatal and fetal chromosome screening.
The

can provide insights for detecting possible neurological and

early detection of fetal chromosomal abnormalities
developmental abnormalities (Rosenfeld and Patel, 2017). Machine
learning has been widely used in the detection of neurological
disorders as it is used for the classification and segmentation of
neurological images.

Chromosomal disorders can be categorized into two primary
types: numerical and structural abnormalities. A numerical

abnormality signifies that an individual either lacks one of

Frontiersin Computational Neuroscience

the chromosomes from a pair, or possesses more than two
chromosomes instead of the usual pair. Numerical disorders
arise from changes in the number of chromosomes, resulting in
deviations from the expected count of 46. Examples of numerical
disorders include trisomy, monosomy, and triploidy. Figure 2
shows the types of numerical abnormalities.

A trisomy occurs when a person has three of a particular
chromosome instead of the usual two. Down Syndrome is caused
by trisomy2l. A monosomy occurs when they have just one
chromosome instead of the usual two chromosomes. Triploidy
is rare; however, in this type of abnormality, an extra third
chromosome for each class is present in the cells.

Structural abnormalities indicate that the structure of the
chromosome has been modified in various ways. Structural
chromosomal disorders emerge from breakages within a
chromosome or the incorrect rejoining of chromosomal segments.
In such disorders, the number of copies of any given gene may
exceed or fall short of two typical copies. Deletion, duplication,
inversion, substitution, and translocation anomalies of the
chromosomes are shown in Figure 3.

Upon deletion, a chromosome segment is absent or deleted.
This causes many abnormalities, for example deletion in
chromosome 15 can cause angelman syndrome. In duplication,
a portion of the chromosome is duplicated leading to excess
genetic material like Dupl5q Syndrome is caused by duplication
of chromosome 15. In inversion, a chromosome segment may
undergo problems such as breakage, can be turned upside down,
and can have subsequent reattachment, causing inversion of
the genetic material. Substitution occurs when a portion of a
chromosome is replaced with a portion of another chromosome.
Translocation appears when a part from one chromosome is
moved to another. Translocation can be further divided into two
types of reciprocal translocation, which occurs when segments
from two distinct chromosomes have been interchanged, and

frontiersin.org


https://doi.org/10.3389/fncom.2024.1525895
https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org

Tabassum et al.

10.3389/fncom.2024.1525895

WoN P
a8 OAE 2 ER D)

i§ a3

) 11t

ColCHR e i
L N T
LLE ‘,!. .,‘.h Q!! JURTEN T

‘ ‘ AR "l

" o n a x Y ’ ' 1 bod L he
Monosomy Trisomy Triploidy
FIGURE 2
Numerical abnormalities in chromosomes.
Sister Chmmaﬁd!—[\
Short Arm
Centromere
Deletion Addition Translocation
| &
Long Arm |
| |
Telomeres f
Inversion Duplication Substitution

FIGURE 3
Chromosome structure and structural abnormalities.

Robesonian translocation occurs when an entire chromosome
moves and fixes itself to another chromosome’s centromere. In
Figure 4, we show an example image of del20q chromosomes from
our dataset.

Deletion, duplication, mutation, and trisomy are causes
epilepsy,
spectrum disorder (ASD)
syndrome. Neurological disorders are typically studied using

of cancer and neurological disorders such as

Down syndrome, and autism
electroencephalogram (EEG), ultrasonography, and magnetic
resonance imaging (MRI). However, these techniques are usually
applied after the onset of symptoms. These methods effectively
monitor brain function once they are developed and visible.
Genetic predispositions during the early developmental stages can
be identified through chromosome analysis, which can help in
the early diagnosis of such diseases. For this, fetal samples were
collected and analyzed by karyotyping. This could help to identify

any anomaly in chromosomes at the early stage of development,
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such as neurological disorders, before symptoms manifest. This
way, karyotyping offers a more proactive approach to treatment
and management.

1.1 Related work

Genetic diseases are mainly identified by karyotyping, but
there are some diseases that different imaging techniques can
identify. Methods commonly used for the detection of neurological
disorders such as epilepsy often rely on EEG signals and various
imaging techniques such as MRI. Machine learning has been
used to automate the classification process of these techniques.
Similar to multidomain feature fusion and selection approach
proposed by Kong et al. (2024), it uses advanced signal processing
and machine-learning techniques to optimize feature extraction
and classification.
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FIGURE 4
Chromosome 20.

Machine learning (ML) has transformed healthcare by offering
practical applications that have enhanced diagnosis, treatment,
monitoring, and decision-making across various clinical domains.
From the early detection of diseases to personalized treatment
planning, automated reporting, and predictive analytics, ML
models support healthcare practitioners in delivering more
accurate, efficient, and scalable clinical solutions. This section
outlines the key practical applications of ML in clinical workflows
across different areas of healthcare, showcasing its versatility and
impact beyond specialized fields like cytogenetics. For example, Al
models are used in medical imaging to review X-rays, MRIs, and
Computed Tomography scans to identify fractures, tumors, and
organ failures as efficiently and accurately as possible.

Ibrahim et al. (2024) explored how deep learning using a pre-
trained AlexNet model can help classify chest X-ray (CXR) images
into four categories: COVID-19 pneumonia, non-COVID-19 viral
pneumonia, bacterial pneumonia, and routine. Ahmad et al. (2024)
introduced a computer-aided diagnosis (CAD) system for detecting
breast cancer by combining deep learning and computer vision
techniques. Islam et al. (2024) introduce BrainNet, a deep learning
method for accurately classifying brain tumors using MRI images.

Montobbio et al. (2024) emphasized the potential and
challenges of computational modeling and machine learning
approaches for diagnosing and treating neurological disorders.
Their insights, particularly in disease diagnosis, classification,
and personalized therapeutic strategies, highlight the promising
applications of these techniques. All of them used EEG and
MRI images. Duarte et al. (2024) used flair images and machine
learning for segmentation tasks. Alzheimer’s disease (AD) was
also diagnosed by Slimi et al. (2024) using machine learning on
MRI images, and Li and Zhong (2024) explored the integration
of deep learning in neuroscience, highlighting key trends and
identifying major research hotspots in the field. Therefore, machine
learning has been widely used for diagnosing such diseases but
with different images adopted from different imaging techniques,
as discussed earlier.

Anomaly detection by karyographic analysis is a common
identify
abnormalities in human chromosomes. The conventional method

technique used to any numerical or structural
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for classifying chromosomes in most cytogenetic laboratories
involves manual work by skilled experts. This procedure is
time-consuming and requires significant effort from experienced
operators, making it expensive. Experts commonly examine
microscopic chromosome images in the conventional analysis of
chromosomal anomalies, relying on their experience and expertise
in detecting abnormalities that may lead to genetic disorders,
congenital disabilities, or even cancer (Britto and Ravindran, 2007).
The analysis of chromosome morphology involves a sequence of
procedures, including selecting metaphase chromosome images.
This encompasses the segmentation of individual chromosomes
(Poletti et al., 2012), the classification of chromosomes (Madian
et al., 2018), and the detection of chromosomal anomalies (Park
et al, 2019). Significant efforts are being made to investigate
how machine learning can improve pathological diagnosis. Deep
learning technologies have experienced widespread adoption in
recent years. The efficacy of these methods lies in their robust
capacity for automatic feature extraction and learning from images,
making them well-suited for the development of automated image
analysis systems.

In medicine, artificial intelligence (AI) is being implemented,
although some challenges exist. For example, the availability of
labeled data is often limited, and labeling itself is challenging
because of a lack of domain knowledge. Medical images containing
anomalies are increasingly being analyzed wusing artificial
intelligence. Aberrations, alternatively termed abnormalities,
anomalies, or outliers, are often challenges in anomaly detection.
The increasing popularity of deep learning-based anomaly
detection algorithms is also facilitated by advancements in
computational power and availability of big data.

Detecting aberrations poses a persistent challenge, particularly
in the case of clonal chromosomal abnormalities in hematological
malignancies. These abnormalities are characterized by their
high complexity, diversity, and occasional rarity (Fang et al,
2023). To date, deep learning methods have been applied for
detecting chromosomal abnormalities; however, challenges
have arisen regarding data availability. Deep learning models
rely heavily on data, and when it comes to the analysis
of chromosomal aberrations, two primary issues emerge:
privacy concerns and a limited amount of available data.
Yan et al. (2019) employed ResNent to detect translocations
between chromosomes 9 and 22 using only 200 individual
karyotypes. Li et al. (2020) used generative adversarial network
to detect anomalies in chromosome images using 320 images
per class.

In this study, we attempted to automate the steps involved in
detecting abnormal chromosomes in karyograms. Our approach
involves feeding individual chromosomes into the model and
identifying abnormal chromosomes. The primary contributions of
this study are as follows:

1. We designed a hybrid deep learning model to identify
abnormal chromosomes for genetic disorder identification.

2. We utilized unsupervised and supervised machine learning
techniques to obtain the best results for classification.

3. We used a structural similarity index measure to distinguish
the different parts of the anomalous chromosome from the
normal one.
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FIGURE 5
Proposed model.

4. We performed template matching to identify the transloacted
part of the abnormal chromosome.

5. We aimed to identify the most common structural
abnormalities in neurological disorders by comparing
the abnormal and normal chromosomes.

The remainder of this study is organized as follows:

Section II elaborates the proposed model for aberration

detection for individual chromosomes. Section III describes the

‘ experiments and evaluation of model performance. In Section

IV, we discuss the proposed method and its results. Finally,
Section V concludes the study.

2 Materials and methods

2.1 Proposed approach

Our approach is Hybrid, combining both supervised and
unsupervised methods. In this way, we are taking advantage of
the small amount of labeled data available for anomaly detection.
Supervised learning is a branch of machine learning, in which a
model is trained using a labeled dataset. Unsupervised learning is a
category of machine learning, in which an algorithm provides input
data without specific instructions for processing it. This helps the
model capture the underlying structure and variations in data.
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The proposed system comprises of three major stages, as shown
in Figure 5. The first stage involves training the autoencoder with
unlabeled data. This is validated with both normal and abnormal
data. The input to this stage is the individual chromosome
extracted from the karyograms without labels. Chromosomes in
the karyograms were arranged in classes. Therefore, we used
karyogram singlets to determine whether the results were normal
or abnormal. In the second stage, the encoder was utilized as a
feature extractor. The extracted compressed features were fed into
the CNN classifier as the input. Next, the CNN classifier is trained
on the extracted features and labeled data. Finally, the encoder
and classifier are trained using labeled data to fully leverage the
encoder’s ability to generalize from unlabeled data, enhancing its
performance in classifying chromosomes.

2.2 Dataset

Images of chromosomes were used as a dataset that was
manually annotated and verified by expert cytogeneticists. The
dataset was divided into karyograms from which the individual
chromosomes were extracted. In this study, we used images of
singleton chromosomes for classification. Each chromosome was
thoroughly inspected and annotated, and the final dataset of
the individual chromosomes was verified by experts. The dataset
comprises 234,259 individual chromosomes, of which 216,433
were normal chromosome images and 17,828 were abnormal
chromosome images. This dataset included 7,412 chromosome

frontiersin.org


https://doi.org/10.3389/fncom.2024.1525895
https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org

Tabassum et al.

TABLE 1 Summary of the dataset used for “training,” “validation,” and
“testing,” with “normal” and “abnormal” chromosome breakdown.

Dataset type Number of Normal Abnormal

chromosome

images

Training images 140,000 140,000 —
(encoder)
Training images 65,000 50,000 15,000
(encoder + classifier)
Validation images 12,112 10,912 1,200
(encoder)
Validation images 12,100 10,900 1,200
(encoder + classifier)
Test images 5,047 4,621 428

images with translocation abnormalities and 10,416 chromosome
images with deletion abnormalities. This ensures a comprehensive
representation of the two anomalous categories. A total of 140,000
unlabeled normal chromosome images from all 24 classes were
used to train the encoder, and 12,112 images including normal and
abnormal chromosome images were used for validation purposes.
The encoder and classifier were trained using 65,000 labeled
chromosome images, of which 50,000 were normal chromosome
images and 15,000 were abnormal chromosome images. To validate
the encoder and classifier, we used 12,100 labeled chromosome
images,including 1200 abnormal chromosome images and 10,900
normal chromosome images. A total of 5,047 chromosome were
tested, including 426 abnormal chromosome images. Table I
summarizes the distribution of the dataset.

Deletion, addition, and translocation are the primary
chromosomal anomalies. If the quality of an image is not good,
then it is not easy to detect anomalies accurately, and banding
patterns are the core to identify structural abnormalities; if the
banding pattern is unclear, it is difficult to identify anomalies in
the chromosome. Another problem that hurdles chromosomal
anomalies is whether the chromosome is straight or curved. To
avoid this, we selected straight and good-quality chromosome
images for our approach.

2.3 Proposed method

We employed both supervised and unsupervised learning
methods to develop a model for detecting chromosomal anomalies.
The key steps of our approach are as follows:

2.3.1 Unsupervised training using autoencoder

It involves autoencoder training with normal data to capture
normal chromosome features.
An autoencoder (AE) represents an unsupervised machine
learning approach utilizes a multilayered feed-forward neural
network (Albahar and Binsawad, 2020). Information is input into
the input layer and then passed through a series of hidden layers,
making AE a straightforward feed-forward network. Each layer
contains a variable number of nodes or neurons responsible for
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processing the input and generating the output. These nodes are
distributed across different layers, each connected to all nodes in
the preceding layers. The input and output layers both possess

« »

an identical number of nodes, denoted as “n,” because of the
symmetric structure of the autoencoder, which aims to reconstruct
the input on the output side. The predictions generated at each
node, facilitated by the activation functions, are transmitted to
consecutive layers. An autoencoder comprises two primary stages:
Encoder and Decoder (Tan et al, 2019). We utilized this part
because the autoencoder is trained solely on standard chromosome
images without labels. This phase aims to help the encoder learn the
typical patterns and structures found in the standard chromosome
images. As the encoder model only sees normal data, it specializes
in understanding and encoding these standard patterns into a
compressed, lower-dimensional latent space representation. The
decoder part attempts to reconstruct the input image from the
latent-space representation, allowing the AE model to learn a good
feature for the extraction process. For generalization, we validated
it using abnormal and normal unlabeled chromosome data.

2.3.2 Feature extraction from trained encoder

Once the AEFE is trained, the encoder extracts features from
normal and abnormal chromosome images. The encoder provided
feature representations for each image fed into the classifier. The
features extracted from the encoder contain latent representations
of the input chromosome images. These features are compressed
and abstract forms of the original images, capturing the essential
characteristics of the chromosomes while discarding less critical
details. These features contain information, such as chromosome
patterns, shapes, and structures.

2.3.3 Training the (encoder + CNN classifier) with
extracted features (supervised learning)

The features extracted by the AE encoder are then passed
to the CNN classifier, which learns to classify images based on
the encoder’s output. This step uses the labeled data to train the
classifier. The CNN classifier learns to distinguish between normal
and abnormal chromosomes based on the features extracted from
the encoder and is trained with the standard and abnormal labeled
images while keeping the encoder weights fixed (frozen).

2.3.4 Fine-tuning of encoder and classifier

In this case, the encoder’s weights are unfrozen, and the
encoder and classifier are fine-tuned using the labeled data. The
last two layers of the encoder are fine-tuned. Training only the
last two layers is computationally efficient and preserves the
robust pretrained knowledge of the encoder’s initial layers. This
step is also impactful, because these layers represent higher-level
abstract features of the input data. These features are closer to
the final compressed representation and contain critical semantic
information, making them crucial for adapting the model to new
tasks or datasets. Fine-tuning these layers allows the model to
adjust the high-level features to the new dataset without drastically
altering the generalized low-level feature extraction learned earlier.
Focusing on these layers halps us to reduce the risk of overfitting,
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with Autoencoder (AE

Unsupervised Pretraini

chromosome images.

chromosomes.

feature extraction process.

Goal: Learn a feature representation of the normal chromosome images.
Description: The Autoencoder (AE) is trained using only normal data (unlabelled). It learns to compress and reconstruct normal

* The encoder part of the AE learns a latent space representation of the data, capturing the underlying structures of normal
* The decoder part tries to reconstruct the input image from the latent space representation, allowing the model to learn a good

Output: The encoder generates meaningful features for normal chromosome images, which are used as input to the classifier later.

Feature Extraction with the Trained Encoder

Goal: Use the trained AE encoder as a feature extractor for both normal and abnormal images.
Description: Once the AE is trained, the encoder is used to extract features from both normal and abnormal chromosome images.
* For normal images, the encoder should generate a good feature representation because the AE was trained on them.
* For abnormal images, the encoder’s output will likely be less effective, as the AE has never seen such data during training. This
difference in reconstruction (or feature extraction) between normal and abnormal data is used to detect anomalies.
Output: The encoder provides feature representations for each image, which are fed into the classifier.

o Labeled data
based on the features extracted from the encoder.

Training the (Encoder + Classifier) with Extracted Features (Supervised Learning)

Goal: Train a supervised classifier to classify chromosome images based on the features learned by the AE encoder.
Description: A CNN classifier is trained using labeled data, where the labels indicate whether the image is normal or abnormal.
* The features extracted by the AE encoder are passed to the classifier, which learns to classify the images based on the encoder’s
output. This step uses labeled data for training the classifier.
is used for training, and the classifier learns to distinguish between normal and abnormal chromosome features

Output: The classifier is trained to classify images as normal or abnormal while keeping encoder weights frozen.

Fine-Tuning of Encoder and Classifier

performance.
together using labeled data.

classification simultaneously.

trained features and the supervised classification task.

Goal: Fine-tune both the encoder and classifier together to optimize the feature extraction process and improve classification
Description: After the initial training phase, the encoder’s weights are unfrozen, and both the encoder and classifier are fine-tuned
* This allows the encoder to adjust its features to better suit the classification task, optimizing both feature extraction and

* Fine-tuning is done with a smaller learning rate to prevent drastic changes to the already learned features.
Output: The model (both the encoder and classifier) is fine-tuned to improve the classification accuracy, benefiting from both the pre-

FIGURE 6
Flow of the proposed approach.

as they retain generalized features, which is beneficial as our dataset
is small.

This step helps the encoder adjust its features
to suit the classification task better. Simultaneously,
the classifier learns to effectively map these extracted

features to the desired classes (normal and abnormal
chromosomes). By jointly optimizing both the
and classifier, the model can better capture discriminative
features, improving overall classification accuracy. Finally,
the model was validated wusing normal and abnormal
chromosome images. The steps of our approach are shown

in Figure 6.

encoder

Frontiersin Computational Neuroscience

The encoder plays a crucial role in our hybrid model, serving
as the foundation for feature extraction and anomaly detection,
enabling our approach to detect chromosomal abnormalities
effectively. Its role can be broken down into several key functions:

1: Unsupervised feature extraction: The encoder is initially
trained on unlabeled data, which then learns a compressed
representation of chromosome images through an unsupervised
approach. It then extracts meaningful latent features to capture
essential chromosomal characteristics, such as patterns, shape,
and structure.These features highlight important chromosome
variations and anomalies, which are often difficult to detect using
conventional methods.
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The
effectively performed dimensionality reduction by converting

2: Data compression and dimensionality: encoder
input chromosome images into a low-dimensional space.
When non-essential information was discarded, only significant
characteristics were preserved. This abstraction enriches the
classifier by directing the implementation of the most essential
features of the chromosomes, and enhances the general efficiency
of the model.

3: Enhancing supervised learning of the CNN classifier: ~ This
extracted features are then given to the CNN classifier, which
is trained on labeled data to differentiate normal chromosome
patterns and abnormal patterns. The encoder output serves as a
rich input representation, enabling the classifier to perform better
by learning more discriminative patterns from these high-level
informative features.

4: Fine-tuning for task optimization: In last stage, the encoder
and CNN classifier are jointly fine-tuned with labeled data, enabling
the encoder to refine its feature extraction process to suit the
specific requirements of the classification task.

Therefore, this joint fine-tuning guarantees feature learning
and classification in the best manner, thereby minimizing the
generation of incorrect chromosomal anomaly detection models. It
is worth noting that the encoder is a key component of the proposed
hybrid model. It encompasses unsupervised anomaly detection to
a supervised form of classification, allowing the system to deliver
more accurate, scalable, and generalizable solutions to automate
karyogram analysis.

2.3.5 Anomaly detection

Once the hybrid model classifies chromosomes as abnormal,
structural anomalies can be detected. For this purpose, we
used SSIM and pattern matching to identify chromosomal
abnormalities. The SSIM is a computer vision technique that
identifies the differences between two images. It helps to identify
the differences between chromosomes in cases of structural
abnormalities, such as deletions, additions, and translocations. In
the case of deletion or addition, the difference is clear; however,
for translocation, we used the template matching technique.
We first find the different parts from the normal with the help
of SSIM. We also had to identify the translocated portion. For
this purpose, we used pattern matching to find the translocated
part. Pattern matching is a Computer Vision (CV) technique in
which regions are located within an image that corresponds to
the template. In this way, we successfully identified an anomalous
part in chromosomes. Our main focus was to identify the
structural abnormalities involving deletion and translocation in
the chromosome structures.

a) Structural similarity index measure
SSIM was used to assess the quality of images by examining the
structural details of two images (James et al., 2023).

(zﬂxﬂy)(zgxy +c2)
Wt R+ a2+l T o)

SSIM = (1)

Where in Equation 1:
Iix s ly: Mean intensities of two images.
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o+ ayz: Variances of intensities.

0Oyy: Covariance of intensities.

c1,¢2: Constants for avoiding instability when the denominator is
close to zero.

Figure 7 shows the implication of SSIM. b) Template matching:

Template matching is a machine-vision technique used to
locate regions within an image corresponding to the template. A
template is a predefined image or part of the image used to match
the part in the main image. This process is performed by moving
the template over the image. The similarity between the main
image and the template image was calculated. Open CV template
matching was then performed. The template image slides over the
main image and the patch of the main image is compared with the
template image.

3 Experiments and results

This section outlines the experimental setup, performance
metrics, and the results of the proposed model.

3.1 Experimental setup

In this study, a CNN autoencoder and a CNN classifier were
combined as models for classification tasks. Both models were
trained using Python software. The Spyder platform (v. 5.4.3) was
used for the training, validation, and testing of the model. The
Spyder platform was implemented using PyTorch framework (v.
11.8 with torch version 2.3.0), and the experiments were conducted
on UBUNTU 18.04, deployed with an NVIDIA RTX 1080 Ti.

3.2 Parameter setting and preprocessing

3.2.1 Preprocessing of data

The images were preprocessed before being provided to the
model as an input. Some of the images were large and some were
small. The large images were compressed, and the small images
were padded to obtain 32 x 32 dimensional images. This step
was performed to maintain the uniformity of the images. We
also normalized the images by scaling the pixel values to between
0and 1.

3.2.2 Parameters setting
e Encoder

The encoder in our model consisted of three convolution
layers with the following filter configurations: 16, 32, and 64.
Each layer employs the Leaky ReLU activation function to
enhance the learning of non-linear relationships and prevent
vanishing gradient issues. The architecture progressively
extracts hierarchical features from chromosome images,
thereby capturing low- and high-level chromosomal patterns.
We selected a batch size of 20 for training and 10 for
validation. The optimizer was Adam, who had a learning
rate of 0.001 and was trained for 50 epochs. We trained the
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FIGURE 7
Structural similarity index measure result.

Abnormal

Differing Part

model for 100 epochs earlier; therefore, the model could learn
sufficient information in 50 epochs, so we stopped it at 50
epochs. The training and validation loss plots are shown in
Figure 8A.

The loss function was MSE(Mean Square Error), as
expressed in Equation 2.
Mean squared error:

IS oy
MSE—nZ(y, i) (2)

i=1

Where

n: number of data points.
y; : the actual value for the i data point.
yAiz predicted value of the i data point.
This provides the mean of the squared discrepancies between
the actual and predicted values, offering a metric for
the overall accuracy of the prediction. For Normal data
samples, the reconstruction error is typically low, whereas for

anomalous data, the values tend to be higher and exceed a

specific threshold.
e Decoder
The decoder consists of three deconvolutional networks
(deConvNets) with filter values (64,32,16) with ReLu.
o CNN classifier
We selected a batch size of 20 for training and 10 for
validation. Adam was used as the optimizer, with a learning
rate of 0.0001, and was trained for 20 epochs. The loss
function was CrossEntropyLoss. Figure 8B shows the training
and validation losses.
e Encoder + classifier

We selected a batch size of 20 for training and 10 for
validation. The optimizer was Adam with the learning rate
0.0001 and was trained for 20 epochs. The loss function was
weighted CrossEntropyLoss to effectively address the class
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imbalance, and the training and validation plots are shown in
Figure 8C.

3.3 Model training

We implemented several strategies throughout the training
pipeline to ensure the model’s robustness and to mitigate overfitting
and bias. The performance was continuously monitored on a
separate validation set, and early stopping was applied based on
validation loss trends to prevent overfitting, as well as regularization
techniques such as the dropout layer. Data scaling was performed
as an added data preprocessing technique, as it helped scale
the input feature pixel values and achieve a stable convergence
rate. To improve generalization, features were learned by passing
both labeled and unlabeled data to the autoencoder before
proceeding to the supervised classification component. Although
the transformations used during data preprocessing did not include
aggressive augmentation strategies such as flipping or cropping,
we resized the chromosome images to a standard size of 32 x
32. Normalization was also applied to standardize the dataset’s
intensity range, ensuring sample consistency and minimizing noise.

Because the dataset was imbalanced, where abnormal
chromosome samples were significantly fewer than the standard,
steps were taken to prevent biased learning. Although the
autoencoder was initially trained solely on standard samples to
extract robust latent representations, the subsequent classifier was
trained on normal and abnormal samples. For the evaluation, the
test set comprised normal and abnormal chromosomes for a fair
comparison of the model. Specifically, evaluation measures such as
precision, recall, and Fl-score for each class label were presented
to measure the model’s ability to identify deviations. Combined
with this detailed evaluation and validation-based approach to
monitoring during the training process, overfitting and accurate
outcomes were significantly reduced.
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FIGURE 8
Training and validation losses (A) for encoder, (B) for classifier, and (C) for finetuned model.

3.4 Performance metrices negatives (TN) divided by the total sum of true positives (TP), true

negatives (TN), false positives (FP), and false negatives (FN), as

Four performance metrics were used for the evaluation.  shown in Equation 3.
Accuracy was determined by dividing the number of correctly
predicted cases by the total number of cases. A high accuracy value

TP+ TN

indicated that the model is made accurate predictions. Specifically, Accuracy = ————— (3)

accuracy is calculated as the sum of true positives (TP) and true TP+ FP+FN
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FIGURE 9
Confusion matrix for normal and abnormal classes plotted against
the true and predicted classes.

Precision: Equation 4 measures the number of correct results
out of all predicted positive results. It is calculated by dividing the
number of true positives (TP) by the sum of true positives (TP)
and false positives (FP).

TP

Precision = ——
TP + FP

(4)
Recall: This is also known as sensitivity or the true positive rate,
which is the ratio of correctly predicted positive results to the
total positive cases. It is calculated by dividing the number of true
positives by the sum of the true positives and false negatives, as
given in Equation 5.

TP
Recall = ——— (5)
TP + FN

F1 Score: The F1 score is the harmonic mean of precision and recall,
providing a single metric that balances both. The Equation 6 helps
calculate F1 score.

2 x Precision x Recall
F1 Score = — (6)
Precision + Recall

3.5 Results

The confusion matrix in Figure 9 shows the results. From the
428 input images of chromosomes, 408 were correctly classified as
abnormal, and 20 were classified as normal. Of the 4,619 images
of chromosomes, 4,607 were classified as normal and 12 were
classified as normal, but were identified incorrectly as abnormal.

The evaluation metrics accuracy,precision, recall, and F1 score
are summarized in Table 2 for our model.
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TABLE 2 Model performance metrics.

Metrics ‘ Normal class % Abnormal class %
Accuracy 99.37 99.37
Precision 99.57 95.32
Recall 99.74 97.14
F1 score 99.65 96.22
Receiver Operating Characteristic (ROC) Curve
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FIGURE 10
Receiver operating characteristic curve of the model.

A Receiver Operating Characteristic (ROC) curve was also
generated to evaluate the performance of our model in predicting
the probabilities of outcomes, distinguishing between normal and
anomalous chromosome images, as shown in Figure 10. This curve
was plotted against the true positive rate (TPR) and false positive
rate (FPR). The area under the curve (AUC) was used to assess the
level of discrimination between classes. Figure 10, with the value
of AUC = 0.97, shows that our model is effectively distinguished
between normal and abnormal chromosomes.

In the dataset, only the translocations between chromosomes
9 and 22 were identified. Therefore, a pattern-matching technique
was applied to detect abnormalities. As shown in Figure 11A,
two abnormalities were observed in the karyograms: one on
chromosome 9b and the other on chromosome 22b. Both 9b and
22b were identified as translocated chromosomes. In the first step,
the two chromosomes were found to be abnormal. Subsequently,
the type of abnormality was identified by comparing chromosomes
9 and 22 with their corresponding normal reference chromosomes.
Differences between 9b and 22b were also observed. Different
parts of chromosome 9 were identified using SSIM, as shown
in Figure 11B. The same process was performed on chromosome
22, and different parts are shown in Figure 11C. In the final
step, the template-matching technique was applied to locate the
translocated parts. Figure 11D shows that part of chromosome
22 was located on chromosome 9, while Figure 11E shows the
translocated part of chromosome 9 on chromosome 22. This
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Structural similarity index measure and template matching results. (A) Karyogram with abnormal chromosomes. (B) Chromosome 9. (C)
Chromosome 22. (D) Template matching for chromosome 22. (E) Template matching for chromosome 9.

approach enabled the identification of deleted or translocated parts
of abnormal chromosomes.

4 Discussion

Cytogenetics is a branch of genetics that attempts to
explain the relationship between human chromosomes and
their genetic makeup and functions. Furthermore, it examines
into the health and evolutionary implications arising from the
architectural distortions of the chromosome. Cancer and other
related abnormalities related to genetic diseases or neurological
disorders are diagnosed after samples have been analyzed in
laboratories. These methods are employed to search for and
evaluate their effects, particularly on neurological disorders, in the
health and developmental aspects of humans. This basic method
of karyotyping is complex and requires a considerable amount
of knowledge in the domain and time. Automated karyotyping
enhances the speed and efficiency of chromosomal analysis,
allowing for quicker identification of abnormalities. It reduces
human involvement, addresses the challenges of manual analysis,

Frontiersin Computational Neuroscience

73

and reduces the scarcity of large datasets. The major limitation
observed is the absence of datasets because deep learning methods
are data-intensive, and data related to abnormalities are much more
complex and not easy to understand by every one.

Chromosomal analysis, when performed during fetal
development, offers the unique advantage of detecting genetic
abnormalities before the onset of clinical symptoms. This is
crucial for disorders such as Down syndrome, autism, intellectual
disabilities, edwards syndrome, cri-du-chat syndrome, mosaic
Turner syndrome, and other underdevelopment disorders that
have a strong genetic component. The earlier a disorder is detected,
the earlier medical interventions, lifestyle adjustments, and support
mechanisms can be implemented. Moreover, prenatal testing can
allow families to prepare mentally and emotionally, while also
making informed decisions about pregnancy, care, and future
management of the child’s health.
other

and

and
identified
studied using techniques such as EEG, MRI, and other imaging

Disorders such as Down syndrome

underdevelopment disorders are primarily
technologies. However, these methods are only applied when a

child or person shows signs of neurological disorder. For example,
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they can be identified when a child is already experiencing
developmental delays or cognitive impairment. These technologies
help monitor the brain’s electrical activity and neural function.
However, these studies do not offer predictive insights into the
genetic basis of these conditions, particularly during the early
stages of development. Visualizing chromosomes at an early stage
allows the early detection of chromosomal abnormalities during
fetal development. Anomalies such as deletions, duplications, or
translocations that cause neurological disorders can be identified
by analyzing fetal cell chromosomes.

With the advancement of deep learning models, including
unsupervised and supervised approaches, it is now possible to
automate and scale the analysis of chromosomal images of fetal
or later blood or bone marrow samples. This automated analytical
approach is more accurate and efficient. We introduce a hybrid
model approach that utilizes unsupervised learning and supervised
techniques. This hybrid model can efficiently process genetic data
to quickly identify anomalies and provide more precise diagnoses.
This facilitates the identification of structural abnormalities that are
often associated with neurological disorders.

Our objective was to achieve the automatic detection of
any structural chromosomal abnormality without the necessity
for training for each distinct abnormality with labels. Our
approach is beneficial because labeled examples are scarce,
especially for rare anomalies. Prior CV and ML studies have
addressed various challenges related to chromosomes (Boddupally
and Thuraka, 2023), including segmentation, and Saleh et al.
(2019) proposed Unet for chromosome segmentation. Fan et al.
(2024) proposed DaCSeg for segmentation of chromosomes. Kang
et al. (2024) proposed the model UC-Det model for counting
chromosomes. Classifications: Qin et al. (2019) designed Verifocal-
net for chromosome classification. Chang et al. (2024) proposed
a DL model that uses attention to classify chromosomes. Wu
et al. (2018) used GANs for the augmentation of chromosomes.
Uzolas et al. (2022) used GANs for chromosome generation. Al-
Kharraz et al. (2020) used YOLOV2 and VGGI19 to identify the
numerical aberrations. Wang et al. (2010) detected translocation
in chromosomes using an adaptive matching technique. Kao et al.
(2023) proposed 3 step process for identifying individual and
clustered chromosomes. Cox et al. (2022) provided a supervised
technique to identify abnormal chromosomes using Residual CNN.
Bechar et al. (2023) used a supervised Siamese Network to classify
chromosomes. Among the various studies mentioned previously,
the prevalent approach involves the application of traditional
supervised learning methods on relatively small datasets.

4.1 Significance of proposed approach

The proposed model integrates supervised and unsupervised
learning techniques, leveraging the strengths of both approaches
to improve the performance and robustness of automated
chromosome classification.

4.1.1 Supervised learning
Supervised learning uses labeled data to train models with the
objective to learn a mapping between input features and their
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corresponding output labels. There are some advantages like: with
a sufficient amount of labeled data this approach excels at learning
discriminative patterns and distinguishing between normal and
abnormal chromosomes with high accuracy. Supervised learning
excels in tasks such as classification with high accuracy, particularly
when labeled data are abundant. However, this is limited by the
challenge of acquiring large labeled datasets in clinical settings.
Supervised models also have some disadvantages, such as their
dependence on large amounts of labeled data. Obtaining a large
amount of labeled data requires significant time and expertise,
which is a limitation in the clinical environment. and a model
trained solely on limited labeled data reduces the generalization
ability for unseen abnormal cases.

4.1.2 Unsupervised learning

Unsupervised learning aims to identify structures inherent in
data without using labeled learning information. The merits of
unsupervised learning include that it works with large amounts
of data that are not labeled and is easier to access than labeled
data. It excels at discovering hidden patterns and relationships
that can work well for feature extraction and feature space
dimensionality reduction thereby enhancing the computational
performance and generalization across diverse data. However, this
method has some limitations. It has no direct relation to the
target outputs, which makes it unsuitable for tasks involving exact
quantitative predictions without further processing. However, the
extracted features are more complex to analyze, and comparing
their performance without a labeled dataset is challenging.

Unsupervised learning extracts meaningful features without
relying on the labeled data. In our approach, an autoencoder is
used for feature extraction, providing compressed representations
of chromosome images. Unsupervised learning also has some
advantages over supervised learning, such as the unsupervised
approach enables to utilize a large number of unlabeled
chromosome images that are more readily available and cost-
effective to acquire. Robust feature extraction: The encoder
captures essential structural and morphological information about
chromosomes, making it possible to detect subtle patterns that
are difficult to capture using supervised methods alone. Better
generalization: Because the encoder was trained and validated on
a large dataset, it can generalize better across different variations
and imaging conditions. Like supervised models, they also have
some Disadvantages: as: Indirect labels: While unsupervised
models are good at feature extraction, they do not directly
map to class labels and require subsequent integration with a
supervised classifier. Interpretability challenges: Understanding
the exact features extracted by the encoder can sometimes be less
interpretable than supervised models, making it harder to explain
specific clinical findings.

4.1.3 Hybrid approach

By combining supervised and unsupervised techniques, our
model leveraged the strengths of both approaches. Supervised
learning excels in tasks that require labeled data, particularly
in distinguishing between normal and abnormal chromosomes.
However, acquiring large labeled datasets, particularly for rare
anomalies, can be challenging. In contrast, unsupervised learning
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TABLE 3 Comparison of our hybrid approach with existing approaches
for karyogram analysis.

Aspect N le] Our approach
models (hybrid)

Model architecture CNN, Fully AutoEncoder (Unsupervised)
Connected + CNN Classifier (Supervised)
Networks

Approach type Mostly supervised Hybrid (Supervised +

Unsupervised)

Dataset diversity Often limited to Comprehensive dataset with
normal or simple deletion and translocation
anomalies structural abnormalities

Model generalizability | Poor Better generalizability as
generalizability on trained on unlabeled data
rare anomalies

can handle large amounts of unlabeled data and is effective
for feature extraction and pattern discovery. However, it lacks
direct connections to target outputs, making it less suitable for
classification tasks.

To address these limitations, our hybrid approach integrates
the advantages of both methods. The unsupervised encoder extracts
meaningful features, whereas the supervised classifier refines these
features for the accurate classification of normal and abnormal
chromosomes. This combination allowed us to harness the power
of unsupervised learning for handling large unlabeled datasets and
the precision of supervised learning for effective classification.

Table 3 compares our method with other methods, emphasizing
the differences in the learning patterns. Our hybrid approach
uses an autoencoder (AE) trained on unlabeled data for feature
extraction, followed by a supervised classifier for the final
classification task. Because normal data are often more abundant
and easier to obtain than abnormal data, an autoencoder uses
normal data to extract features. This eliminates the need for
labels thereby allowing the autoencoder to autonomously identify
valuable features from the dataset. The classifier then focuses on
the most relevant features provided by the autoencoder thereby
enhancing the classification performance. In addition, as the
autoencoder is trained on unlabeled data, its reliance on labeled
samples decreases, which is particularly beneficial when labeled
anomalous data are scarce or costly.

We trained, validated, and tested our model using a large data
set that is not publicly available. The dataset contains not only
normal chromosomes, but also abnormal chromosoems. After
intensive training and validation, we tested our model on test
data comprised of 5,047 images, including 428 abnormal images.
Our model achieved an AUC value of 0.98, demonstrating
its ability to distinguish between normal and abnormal
chromosomes effectively. Our model outperforms identifying
abnormal chromosomes from normal chromosomes using hybrid
unsupervised and supervised deep learning. Compared to existing
methods, as shown in Table 4, our hybrid approach achieved an
accuracy of 99.3%, surpassing the DeepResidual model by Yan et al.
(2019), which reached 97.5%, and the DNN model by Kang et al.
(2024), which achieved 99.2% accuracy.

Our approach comprises two distinct steps: first, detection of
anomalous chromosomes, and second, identification of specific
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TABLE 4 Comparison with previous models.

References Model Approach = Accuracy

Yan et al. (2019) DeepResidual Supervised 97.5%.

Kang et al. (2024) DNN Supervised 99.2 %

Our approach AutoEncoder + CNN Hybrid 99.3 %
classifier

abnormalities within these chromosomes. The initial step was
executed by employing normal images. We validated our AE model
using a dataset containing both abnormal and normal samples. This
demonstrates how our model is better than the others in detecting
aberrant chromosomes; hence, we demonstrate our efficiency and
precision in the hybrid mode.

After determining whether the chromosome is normal or
abnormal, the following step seeks to determine a particular
abnormality. Several methods in computer vision can detect
abnormalities in chromosomes. Our approach involves aligning a
normal chromosome with a counterpart chromosome to determine
the area of the anomaly. Chromosomes are usually compared
with normal chromosomes or ideograms to check for subtractive
or translocation presence. To perform this task, we used the
SSIM and pattern-matching methods. We compared the normal
chromosomes instead of ideograms.

SSIM helps to identify the differences between the two images.
We compared normal and abnormal images and identified different
parts in cases of deletions and translocations. However, we first
identified the difference between the normal tissue and different
parts of the translocation. We also had to identify the translocated
part and used pattern matching to find the translocated part. In this
way, we successfully identified aberrations in the chromosomes.
Our primary focus was identifying structural abnormalities
involving deletion and translocation in chromosome structures.

We presented an approach for identifying structural
aberrations in individual chromosomes extracted from
karyograms. The methodology relies on analyzing banding
patterns to detect and characterize these abnormalities. Substantial
effort has been made to explore the integration of machine learning
into pathology diagnoses. We presented a hybrid approach
comprising both unsupervised and supervised learning that proved
advantageous, particularly when dealing with a limited number of
anomalous images. Gathering anomalous datasets in the medical
field is inherently challenging. Our model was uniquely trained,
validated, and tested on a large dataset, one of the first of its
kind for this task, thereby significantly enhancing the robustness
of anomaly detection and demonstrating its effectiveness in
identifying chromosomal abnormalities.

In real-world scenarios, time constraints often lead to the
standard practice of analyzing only a few meta-phase cells per
specimen despite the availability of hundreds of cells. Despite
this restricted analysis, challenges persist regarding the cost and
turnaround time for diagnosis. This task is perfectly tailored for
deep learning because of the complexity of expert analysis, which
implies the use of visualization and the expected common mean of
a sample set with its genus of origin. In addition, when applied to

the initial assessment of chromosomal abnormalities for conditions
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such as epilepsy and Down syndrome, we expect that our model will
provide prognostic advice for more effective patient management.
The prediction of these disorders through the identification of
genetic markers contributes to early intervention, which will help
reduce the impact of the disorders on development as a result
of early diagnosis and management. Recognizing neurological
disorders at a preliminary stage significantly boosted genetic
anomaly detection and preventive diagnostics in our model.

Here, we present a new methodology for a hybrid model to
resolve the issue of automated chromosome anomaly detection,
which is an important paradigm of cytogenetic analysis. Our study
innovates by combining supervised and unsupervised learning
frameworks, which enhances the detection accuracy and offers
significant improvements over other methods. Our approach
maximizes the value of the available data by utilizing unlabeled
chromosome images during the feature extraction phase while
still using labeled data for supervised classification. This strategy
overcomes the limitations of imbalanced datasets, where obtaining
many labeled abnormal chromosome images is difficult in clinical
and research settings.

The method we propose for karyogram analysis is expected
to greatly enhance the diagnostic process, allowing for the faster
identification of potential genetic issues. Implementation of our
model in clinical decision support systems can help cytogeneticists
and practitioners obtain automatic and confident classification
results, thus increasing diagnostic accuracy and reducing time.

4.2 Challenges in real-world adoption and
limitations

In clinical contexts, it is essential to protect patient data.
Simultaneously, datasets are usually associated with restrictions
regarding the availability of information, which can be a problem
for training and validation. In addition, the images of chromosomes
in the model may not be consistent with those of other laboratories
and imaging equipment, which might cause a difference. To
handle such variations, robust domain adaptation techniques
are necessary. Moreover, integrating our model seamlessly into
existing laboratory software and clinical workflows requires
technical compatibility and collaboration with various healthcare
information technology (IT) systems. However, the proposed
system has certain limitations. It is mainly used to work with
straight chromosomes, but it is useful with curved chromosomes
that are first straightened. However, refining the straightening
process may enhance the outcomes. Although the model has
shown promising results on the custom dataset used, it lacks
validation on external datasets that contain similar complex
structural chromosomal abnormalities, which could be an area
for improvement. Despite its high classification accuracy, the
model has significant computational demands, particularly during
training. The concept of the model is defined by multiple
convolutional layers that contribute to numerous parameters and
significant GPU memory and processing power. This may restrict
its application in the real world, especially in areas where resources
are scarce, such as small clinical environments. However, a trade-off
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between computational inputs and model efficacy exists in the
process. The inference times for such applications depend on the
specific hardware, and in large-scale clinical trials, selecting the best
hardware resources and their integration solutions is crucial. In
our opinion, we can eliminate all of these problems with the help
of further development of interdisciplinary cooperation, additional
model refinements, and numerous clinical trials that will allow us
to implement the proposed method in various clinics successfully.

5 Conclusion

Our study strongly emphasizes that reliable detection of
anomalous data is important in medical applications, primarily
in genetic diagnosis by karyotyping. Identification of anomalies
in medical data is considered a task in computing science and is
important for patient care and treatment. Therefore, developing
robust methodologies such as the automated approach presented
here is vital for ensuring the accuracy of diagnostic procedures. Our
hybrid model, which combines an unsupervised encoder trained
with unlabeled normal data and a supervised CNN classifier trained
on labeled normal and abnormal chromosome data, is a powerful
approach to karyogram analysis. Thus, by training the encoder with
data that are not labeled as normal or abnormal and validating the
model with normal and abnormal data, we ensure that we obtain
the best of both worlds from a model where all the relevant features
are captured. The encoder also learns the basic features that help
enhance the task of chromosome classification; separating normal
and abnormal chromosomes is performed accurately.

Our model was trained and validated using a large dataset,
and eliminated false or misleading anomalies. Furthermore,
we identified the anomalous chromosomes in detail using CV
methods, SSIM, and template matching. Thus, the combined use
of appropriate methodologies strengthened our approach and
increased the accuracy of the results. After evaluating the test
data, we found that precision, recall, F1 score, and accuracy
were all impressive, with a total accuracy of 99.37% for both
normal and abnormal classes, and F1 scores for both normal and
abnormal classes were 99.65% and 96.22%, respectively. These
results demonstrate that the model effectively classifies normal and
abnormal chromosomes. In addition, the model achieved an AUC
of 0.98, demonstrating its effectiveness in classifying normal and
abnormal chromosomes.

Our study addresses the demand for automation in genetic
disorder assessment and underscores the transformative
potential of interdisciplinary approaches in healthcare and
neurological computations. Future study will involve working
with research laboratories and hospitals to obtain data on
various imaging sources, lighting conditions, and types of
while the

is currently designed to detect only structural anomalies,

chromosomal abnormalities. Moreover, system

future study plans will incorporate numerical anomaly
detection. We also plan to integrate explainable AI (XAI) to
visually discuss the prediction results so that cytogeneticists
and doctors can use this information efficiently for further

case analysis.
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An optimal arrangement of electrodes during data collection is essential for
gaining a deeper understanding of neonatal sleep and assessing cognitive health
in order to reduce technical complexity and reduce skin irritation risks. Using
electroencephalography (EEG) data, a long-short-term memory (LSTM) classifier
categorizes neonatal sleep states. An 16,803 30-second segment was collected
from 64 infants between 36 and 43 weeks of age at Fudan University Children’s
Hospital to train and test the proposed model. To enhance the performance of
an LSTM-based classification model, 94 linear and nonlinear features in the time
and frequency domains with three novel features (Detrended Fluctuation Analysis
(DFA), Lyapunov exponent, and multiscale fluctuation entropy) are extracted. An
imbalance between classes is solved using the SMOTE technique. In addition, the
most significant features are identified and prioritized using principal component
analysis (PCA). In comparison to other single channels, the C3 channel has an
accuracy value of 80.75% =+ 0.82%, with a kappa value of 0.76. Classification
accuracy for four left-side electrodes is higher (82.71% + 0.88%) than for four
right-side electrodes (81.14% + 0.77%), while kappa values are respectively 0.78
and 0.76. Study results suggest that specific EEG channels play an important role
in determining sleep stage classification, as well as suggesting optimal electrode
configuration. Moreover, this research can be used to improve neonatal care
by monitoring sleep, which can allow early detection of sleep disorders. As
a result, this study captures information effectively using a single channel,
reducing computing load and maintaining performance at the same time. With
the incorporation of time and frequency-domain linear and nonlinear features
into sleep staging, newborn sleep dynamics and irregularities can be better
understood.

KEYWORDS

EEG, sleep analysis, neonatal sleep state classification, principal component analysis,
SMOTE, LSTM
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1 Introduction

Sleep is a natural, repetitive period of rest and unconsciousness
that is required for the healthy functioning of both the body and
the mind (Baker, 1985). During sleep, the body undergoes a series
of stages, and each stage offers a distinct benefit and influences
numerous physiological and psychological functions, including
memory consolidation, cognitive function, mood regulation, and
physical ability restoration (Song et al., 2024). As a general rule,
sleep involves a reduction in consciousness and awareness of
the environment, a reduction in voluntary muscle contraction, a
decrease in metabolism, and a reversible and periodic state (Arif
etal, 2021). As a result of inadequate sleep, cognitive function can
be impaired, the immune system weakens, and the risk of chronic
diseases increases. These diseases, including obesity, diabetes, heart
disease, and hypertension can increase (Khan S. et al., 2020; Killick
et al., 2022; Parish, 2009; Pan et al., 2024; Chen and Zhu, 2024).
The recommended amount of sleep for adults is between 7-9 h per
night (Baker, 1985). Neonates, however, have shorter sleep cycles,
making them more susceptible to unpredictable sleep patterns. It
is common for infants to sleep approximately 16-17 h per day, but
the duration varies depending on the individual.

Just like adults, neonates also go through various sleep stages
(Newson, 2017). In neonates, there are two main stages of sleep:
Active Sleep (AS) and Quiet Sleep (QS). The infant is in AS state
when he or she has rapid eye movements, involuntary breathing,
and a rapid heart rate. During this state of sleep, babies are able
to move, express their facial expressions, and are even capable of
sucking. The development of the brain and the learning process of
the infant are directly related to AS. During QS, babies’ hearts beat
slower, their breathing is regular, and they do not move very much.
Physical development and growth are strongly influenced by QS.
In addition to the AS and QS stages, infants also experience a third
transitional stage in their sleep cycle, which combines both the AS
and QS stages. There are two main differences between Active Sleep
1 (AS1) and Active Sleep 2 (AS2). The main difference is how much
the brain is active and how much the eyes move. In ASI, highly
irregular brain waves and frequent changes in the eye movements
are characterized, however, in AS2, the eye movements are less
frequent and the brain activity is more regular. As an alternative,
QS can be divided into two categories, one of which is Quiet Sleep
1 and the other is Quiet Sleep 2. There is a significant difference
between QS1 and QS2, as the movements and brain waves differ
significantly. In QS1, there is increased activity, with abnormal
brain activity and body movements. As opposed to this, QS2 is a
quieter state in which the brain is more active regularly and the
body is less active.

1.1 Main motivation of the proposed
approach

The primary objective of this study is to evaluate the potential
for differentiating neonatal sleep into five states using single-
channel and multi-channel EEG data. To identify the best electrode
configuration and minimize technical difficulties and potential
irritation of the skin that may occur during the collection of EEG
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data for neonates, data collected from single-channel EEG is being
used. The LSTM algorithm is used to classify an infants sleep
into five stages by using various EEG features including three
novel features (Detrended Fluctuation Analysis (DFA), Lyapunov
exponent, and multiscale fluctuation entropy).

1.2 Main contributions

There are five main parts to this study, and they are outlined
below:

1. Extraction of multiple linear and non-linear features in the time
and frequency domains.

2. As a non-linear state-of-the-art approach for EEG-based
neonatal sleep staging, Detrended Fluctuation Analysis (DFA),
Multiscale Fluctuation Entropy (MFE), and Lyapunov exponent
are taken into account.

3. To address class imbalance, the SMOTE technique is used to
balance the dataset.

4. PCA-based feature normalization and selection.

5. Using both one channel at a time as well as different
combinations of multiple channels at the same time to classify
five different sleep states.

In addition, the study examines the optimal configuration
of EEG electrodes for five-state classification, including how
many electrodes to use and where they should be placed. To
reduce complexity, skin irritation risk, and cost in neonatal sleep
studies, this study evaluated sleep stage classification accuracy
using various electrode setups.

This article is structured as follows: Section 2 reviews relevant
literature; Section 3 presents the methodology that has been
proposed and its findings based on the proposed methodology;
and A discussion of the proposed work’s findings and limitations
is provided in Section 4. In Section 5, the proposed study’s
conclusions are presented.

2 Related work

Human sleep behavior was first studied using
electroencephalography (EEG) in Loomis et al. (1937). With
the advent of deep and machine learning algorithms, there are
a number of algorithms that have been developed in order to
categorize adult sleep patterns (Lajnef et al., 2015; Xiao et al., 2013;
Fonseca et al., 2016; Gudmundsson et al., 2005; Turnbull et al.,
2001; De Wel et al., 2017; Dereymaeker et al., 2017; Koolen et al.,
2017; Pillay et al., 2018; Ansari et al., 2020; Fraiwan and Lweesy,
2017). Pillay et al. (2018) developed a model based on multichannel
EEG recordings to automatically classify a person’s sleep using
Hidden Markov Models (HMMs) and Gaussian Mixture Models
(GMMs) and the Cohen’s Kappa of the model was 0.62, which
was higher than the Cohen’s Kappa of a GMMs. A CNN was also
used to classify sleep stages 2 and 4 (Ansari et al., 2020). Wake
states were not included in these techniques. In Awais et al. (2020),
developed using pre-trained CNNs to extract features to classify
neonatal sleep and wake. According to this study, a model that
has been pre-trained was inadequate for categorizing sleep and
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wake in neonates with high accuracy. In Awais et al. (2021), the
authors combine deep convolutional neural networks (DCNN)
with self-learning models to classify infant sleep and waking
states based on video facial expressions. EEG video data could be
classified accurately at 93.8 4= 2.2% and F1-scores were 0.93 & 0.3.
It is worth mentioning that video EEG data can contain infant’s
faces and voices, creating privacy issues as a result.

A study conducted in 2021 by authors in Lee et al. (2021)
with IR-UWB radar to classify non-contact sleep and wake in
infants found an accuracy of 75.2%. According to another study
that classified quiet sleep based on EEG data, the value of Kappa was
0.77 % 0.01 for eight-channels and 0.75 % 0.01 for single bipolar-
channel (Ansari et al., 2021). According to a study conducted
by Abbasi et al, a MLP neural network algorithm developed
for binary classification of neonatal sleep has been tested and
the value of Kappa has been determined to be 62.5%, and the
accuracy has been determined to be 82.5% using the algorithm
(Abbasi et al., 2020). A three-state classification of the same dataset
was performed in 2022 using bagging and stacking ensemble
methods with an accuracy of 81.99% (Abbasi et al, 2022). By
using publicly available single-channel EEG datasets, Yu et al.
(2022) classified neonate’s sleep patterns into W, N1, N2, and
N3. The multi-resolution attention sleep network (MRASleepNet)
module was tested to classify sleep patterns. A feature extraction
module, a multi-resolution analysis module, and a gated MLP
module were all included in the algorithm. Through an adaptive
boosting (AdaBoost) classifier, Arasteh et al. (2023) classified AS
and QS with 81% accuracy achieved through cross-validation of
tenfold. The AutoML-based Random Forest estimator obtained
an accuracy rate of 84.78% and a kappa rate of 69.63% for
prediction of neonatal sleep and wake states in Siddiqa et al.
(2023). According to Ansari et al. (2018), an 18-layer CNN is
used to detect neonatal QS sleep stages with multichannel EEG
data. A Multi-Scale Hierarchical Neural Network (MS-HNN) has
been developed in Zhu et al. (2023) Using two, four, and eight
channels to automatically classify neonatal sleep states. Features
including temporal information were extracted using multi-
scale convolutional neural networks (MSCNN). They attained an
accuracy of 75.4% using single-channel classification and 76.5%
using a combination of eight channels for three-stage classification.
Supratak et al. (2017) performed classification of sleep states in
newborn with DeepSleepNet and attained 69.8% accuracy. In Eldele
etal. (2021), authors proposes AttenSleep, a deep learning approach
based on attention for sleep stage classification. Instead of using
RNNS, AttenSleep uses multi-head attention (MHA) to identify the
chronological relationship among different stages of neonatal sleep.
Using multi-branch CNN and reached classification accuracy of
74.27% with single channel and 75.36% with four channel EEG,
Hafza et al. proposed three-state EEG-based neonatal sleep state
classification (Siddiqa et al., 2024). The authors incorporated 74
features in the time and frequency domains.

As a result of limited classifications, privacy concerns, long
training times, and poor accuracy, existing approaches for
recognizing infant sleep stages have significant limitations. Without
taking into account awake, it is challenging to classify newborn
sleep accurately. Non-linear features which aren’t typically included
in current sleep staging methodologies for neonates include
DFA, MFE, and the Lyapunov Exponent. Further, these methods
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require multichannel EEG data, which disrupts the skin and
causes discomfort, highlighting the need for methods that are
non-invasive. To effectively differentiate between the five-state
sleep patterns in newborns, it is crucial to develop a dependable
and privacy-conscious strategy that ensures high accuracy while
minimizing any potential negative consequences.

3 Materials and methods

An LSTM model for the categorization of neonate’s sleep into
five distinct states is introduced in this article. In this section, a step-
wise overview of the proposed design is provided. The sequential
flowchart of the proposed methodology is illustrated in Figure 1.
The process can be further explained by following these steps:

3.1 EEG dataset

EEG data was obtained from 64 neonates admitted to the
neonatal intensive care unit (NICU) at Children’s Hospital
of Fudan University (CHFU), located in China. This work
has obtained approval from the Research Ethics Committee
of Children’s Hospital of Fudan University, with the assigned
Approval No. (2017) 89. The proposed model was tested and
trained using these EEG recordings. The data was collected during
observations of neonates at various time points. A full 10-20
electrode installation system comprises the following 17 electrodes:
“FP1 “FP2) “F3) “F4, “F7) “F8) “C3) “C4) “P3) “P4) “T3;
“T4) “T57 “T6; “O1) “O2) and “Cz.” Every letter is associated
with a distinct region or lobe of the brain. The letters FP, E T,
P, O, and C represent the prefrontal, frontal, temporal, parietal,
occipital, and central regions of the brain. Throughout this time
frame, we have witnessed a multitude of sleep patterns. The study
included EEG recordings from eight specific channels: “C3,” “C4;
“F3) “F4, “P3) “P4, “T3, and “T4.” The NicoletOne multi-channel
EEG equipment was utilized for the purpose of recording of the
EEG data at a sampling rate of 500 Hz. The NicoletOne EEG
devices have lightweight electrode caps that securely fasten scalp
electrodes, ensuring accurate signal capture. The NicoletOne EEG
device enables the acquisition of high-quality EEG signals with a
high sampling rate of up to 2 kHz and a broad frequency range
spanning from 0.053 to 500 Hz. Figure 2 illustrates the locations of
the eight electrodes used in this study, in accordance with the 10-
20 system recommendations. Nz represents the foundation of the
nose, whereas Iz indicates the protuberance.

3.2 Visual sleep scoring of EEG dataset

The EEG segments were visually classified by experienced
neurologists from Fudan children hospital Shanghai, based on five
main categories: Wakefulness, AS1, AS2, QSI, and QS2. When
classifying sleep states, non-cognitive features were employed in
conjunction with the EEG. In addition, the experts took into
account NICU videos when conducting the annotating procedure.
Table 1 provides comprehensive details regarding the dataset
(Siddiqa et al., 2024).

frontiersin.org


https://doi.org/10.3389/fncom.2025.1506869
https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org

Siddiqa et al.

10.3389/fncom.2025.1506869

Feature Extraction

Classification

: i Iti | ignals |
i EEG Date Collection Mu uchan}ne Raw EEG Signals H Time Domain

®

Frequency Domain Classifier Evaluation

Features — | (LSTM) —> | (Sleep Stages) |

§ i ® e AR —P Features
S | A |— i | :
g QQ SFENTy Pl s Lol : l
I ‘ Feature Selection
l ol = d
o ! . Filtration : S
5 LV'S“” Sleep SconngJ —V[ (0.3-35Hz) J i % Feature Importance
g i : o (PCA)
3 ! g™
£ 3 !
g | Segmentatio E &
: n :
C | |gidacEman J‘-[(Wmmewchs) B Best Features
FIGURE 1

A detailed flowchart of the proposed methodology.
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The positioning of the 8 electrodes utilized in this research.

3.3 EEG dataset pre-processing

Distortion and artifacts during recording have an impact on
the quality and reliability of the EEG data. The EEG data was
recorded at a sampling rate of 500 Hz. These EEG recordings
underwent a pre-processing phase to eliminate noise and artifacts.
The pre-processing involves the following steps:

1. An FIR (Finite Impulse Response) filter was employed to
eliminate undesired signals from EEG recordings within the
frequency range of 0.3 to 35 Hz (High Pass = 0.3 Hz and Low
Pass = 35 Hz).

. The EEG signals that have been processed by a filter are now
divided into segments of 30 seconds each.

. Following the process of segmentation, a label given by
experienced neurologists is issued to each epoch. The five-state
classification assigns W as the first state, AS1 as the second state,
QS1 as the third state, QS2 as the fourth state, and AS2 as the
fifth state.
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TABLE 1 A detailed description of the dataset (Siddiqa et al., 2024).

Variable/category Descriptions

Sampling frequency 500 Hz
Number of channels 8
Number of subjects 64
Number of epochs 16,803

Gestational age 38.3 + 1.8 (wk+d)

Post-menstrual age 40.5 £ 1.7 (wk+d)

Gender 32 males and 32 females
Sleep time 144+ 0.57h
Wake time 0.71£0.57h
Weight 33 +£0.6kg

Reason for admittance

Septicemia, Hyperbilirubinemia, and etc.

4. Artifacts and noise were introduced into the EEG recordings
during the recording and processing stages. Consequently,
following the pre-processing stage, there are a total of 16,803
epochs available for the testing and training over the channels
“C3, “C4, “F3, “F4, “P3,” “P4,” “T3, and “T4.”

3.4 Feature extraction

The extraction of features from the EEG signals is essential
for categorization. Since it aids in distinguishing among various
sleep stages or events by analyzing patterns and characteristics.
Interpreting EEG data can be difficult because of the fact that there
are so many signals that change over time produced as a result
of electrical activity in the brain. This work utilizes linear and
non-linear feature extraction techniques to decrease the number
of dimensions of the data that need to be analyzed and identify
relevant characteristics of the data that can be employed for
categorization purposes, such as frequency and time distributions
(Gosala et al., 2023; Khan J. S. et al,, 2020). Overall, 94 linear
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and non-linear features were retrieved from each channel utilizing
various procedures, which include:

3.4.1 Time domain features

o Statistical features of the EEG signal and its first and second
derivatives: To study and summarize the main statistical
features of the EEG signal as well as its derivatives, it would
be helpful to pull out features in the time domain of the
dataset in order to group newborn’s sleep stages (Siddiga
et al., 2023). The extraction of time-domain features is a
valuable as well as practical approach to evaluating EEG
data, serving both clinical and research applications. Initially,
the signal’s nine statistical characteristics (mean, median,
standard deviation, minimum, maximum, kurtosis, skewness,
variance, and range) are computed. Subsequently, an identical
collection of five statistics is computed for both the first
derivative of the signals obtained from the EEG as well as the
second derivative.

o Detrended fluctuation analysis (DFA): It is a non-linear
feature, computed to measure if EEG signals are correlated
at either long or short ranges or if they are self-similar.
It also quantifies the extent to which the fluctuations of
a signal, after being combined and detrended at various
epochs, diverge from a linear pattern (Lal et al., 2023). The
DFA, or Detrended Fluctuation Analysis, is a mathematical
measure that quantifies the scaling exponent characterizing
the connection between the amplitude of fluctuations and the
corresponding time scales. The equation for calculating the
DFA is as follows:

i NE

Fn) = 2 1Y) — y()] o

n

The fluctuations are represented by F(n) for window
size n, the integrated or cumulative profiles of the EEG
data are represented by Y(i), and the regression line is
represented by y(i). To calculate the DFA, this study uses
the nolds.dfa() function from the nolds library. The EEG
signal data are converted into NumPy arrays and the DFA
is calculated. Conversely, lower values of DFA imply less
reliable correlations or less predictable patterns, whereas
high values of DFA show better correlations over long
distances or similarity to itself, and this implies that a signal
is more structured and easier to predict. By utilizing the
various DFA characteristics, individuals can acquire a deeper
understanding of what is going on within the signal as well
as its intricacy. These characteristics have the potential to be
advantageous in a range of different applications, such as the
evaluation of signals, statistical analysis of time series, and
biological studies as well.

e Lyapunov exponent: The Lyapunov exponent, a nonlinear
feature, measures the responsiveness of a dynamical
system to its initial circumstances (Cao et al, 2023). EEG
feature extraction is a valuable tool for understanding
the predictability and stability of brain processes. The
Rosenstein approach is employed to calculate the Lyapunov
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exponent based on EEG data. The algorithm involves defining
parameters for data embedding, initializing tangent vectors,
and performing Jacobian matrix calculations. The QR
decomposition is used to orthogonalize the tangent vectors,
which are then normalized to quantify the system’s sensitivity
to perturbations. Logarithms of Jacobians divided by tangent
vectors and iterations determine the Lyapunov exponent. The
Lyapunov exponent (1) is given by:

1
A= ﬁz x (2)
n=1
where,
dn+1)
=log| ———— 3
: °g< () ) ©
This sum is taken over time steps from n = 1 to

N — 1, where N is the total number of time steps. The
variable x describes the relative changes in distances between
nearby trajectories in the dynamical system, which is used
in calculating the Lyapunov Exponent to characterize the
behavior and predictability of the dynamical system. The term
x represents the logarithm between d(n + 1) and d(n), which
are the distances of the perturbed trajectory at time n+1 and
n, respectively. The Lyapunov exponent values not only offer
insight into the classification of sleep stages in EEG analysis
but also provide information about how complex neonatal
sleep dynamics are and the extent to which they can be
predicted.

Multiscale fluctuation entropy (MFE): Within the scope of
the present study, MFE values have been computed for
every epoch of EEG data in order to measure the degree
of complexity as well as the irregularity of the signal (Wan
et al,, 2023). The standard deviation is calculated segment by
segment using a scaling factor. The procedure entails multiple
sequential stages. The EEG signal is divided into segments
according to the scale factor. The variation of each segment
is determined by comparing the standard deviation of each
segment to the mean of each segment and then calculating
the average of the standard deviations of each segment. There
is a formula known as the Shannon entropy formula, which
is employed to calculate entropy for an ensuing string of
fluctuations. Mathematically, MFE can be written as:

K
1
MFE = — kX_} Hy, (4)

In this case, Shannon entropy at each scale is represented
by Hy, and total number of scales is represented by K. The
objective of this work is to obtain a deeper understanding
of the complexities and inconsistencies of neural activity
at different levels by calculating MFE values. It specifically
aids in the study of EEG data, which offers vital insights
into underlying brain activity through the examination of
fluctuation and complexity patterns.
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3.4.2 Frequency domain features

Frequency domain features play a crucial role in the
interpretation of EEG signals, since they are necessary for the
diagnosis of neurological illnesses and for monitoring the brain’s
activity during the performance of cognitive functions. This
research computed the subsequent features in the frequency
domain:

e Identification of central tendency features using EEG band's
spectral features: The spectral analysis of the four frequency
bands (delta, theta, alpha, and beta) in an EEG signal can be
utilized for determining central tendency attributes such as
mean, median, mode, variance, standard deviation, kurtosis,
skewness, minima, and maxima (Siddiqa et al.,, 2023). The
central tendency of a dataset can be defined as the tendency
of a dataset to accumulate around the average value or center
of the dataset. A measure of the central tendency can offer
insights into the common or predominant values found in a
dataset. They have the ability to depict and provide a concise
overview of data distributions. In order to compute central
tendency characteristics based on spectral statistics, it was first
necessary to determine the power spectral density (PSD) of
the EEG data that was initially determined (Arif et al., 2023).
Using Welch’s method, PSD is calculated by segmenting the
EEG signal into overlapping windows, computing the Fourier
transform for each segment, and averaging the spectra to
estimate the PSD. A more detailed spectral analysis of the EEG
signal can be obtained by using this method. As a default,
the resolution parameter is set to none. By doing this, the
function determines the segment length automatically based
on the input data length. As a default, the behavior attempts
to strike a reasonable balance between frequency resolution
and computational efficiency. Subsequently, the PSD has
been subdivided into distinct frequency ranges: delta (0.5-3
Hz), theta (4-7 Hz), alpha (8-12 Hz), and beta (13-30 Hz).
Afterwards, a total of 32 features representing central tendency
of each frequency band were computed using frequency band
spectral statistics.

e Norm power of four EEG bands: The normalized power
is calculated by dividing the power inside each frequency
band by the integral of the overall power spectral density
(PSD) across all frequencies. By normalizing the power levels,
it ensures a justifiable comparison of power levels across
various frequency bands, while taking into consideration
the fluctuations in the total power spectrum of the EEG
signal. The normalized power values are useful parameters
for classifying infant sleep stages because they represent the
relative contribution and distribution of brain activity in
specific frequency ranges.

e Average frequency of four EEG bands: The average frequency
of each of four EEG band is determined by multiplying the
frequencies within the relevant frequency indices by their
respective PSD values. Subsequently, those values are added
together, and the outcome is divided by the total sum of
the PSD values within the specified frequency range. This
calculation yields a weighted average frequency that signifies
the central point or the most prominent frequency within
the particular range of frequencies under consideration. This
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technique enables a numerical evaluation of the spectrum
properties of the EEG data and offers a valuable understanding
of the frequency distribution within each EEG band. It also
aids in the classification of various sleep stages in neonates.

e Maximum power of four EEG bands: The maximum power of
each EEG frequency band is determined by determining the
frequency indices in the PSD that correspond to the specific
frequency range of interest for each band. The indices are
derived by comparing the frequency values with the lower
and upper frequency limitations specified for each band. The
highest PSD value within these specific frequency indices is
subsequently obtained for each time point, resulting in the
peak power level within the corresponding frequency range.
In EEG signals, time points are discrete instances where
the PSD can be estimated. This computation allows for the
determination of the maximum intensity of brain activity
within each distinct frequency band and offers vital insights
into the prevailing power peaks found in the EEG signal.

e EEG band ratios: The power ratios between EEG frequency
bands are calculated by dividing the normalized power of one
band by the normalized power of another band. These ratios,
such as the delta-theta ratio, alpha-beta ratio, delta-alpha
ratio, theta-beta ratio, delta-beta ratio, and theta-alpha ratio,
enable the evaluation of the proportional distribution of power
and interactions among different frequency bands. The ratios
are calculated using the normalized power values derived
from the PSD analysis of the EEG data. The normalized
power quantifies the relative impact of a particular frequency
range in the complete power spectrum. The power ratios
are obtained by dividing the normalized power of one band
by the normalized power of another band. These ratios
offer vital information into the equilibrium and supremacy
of brain activity across various frequency ranges. Their
contribution involves analyzing EEG data to characterize
different sleep stages in newborns, providing insights on the
relative importance of specific frequency components in the
EEG spectrum.

e Fast fourier transform (FFT): By employing FFT, it is possible
to examine the time-domain EEG signal by interpreting it into
the frequency domain and analyzing its constituent frequency
components. The input EEG data was subjected to a FFT
to calculate its frequency spectrum. Subsequently, the 10
frequencies with the most significant FFT values were selected.

Consequently, all the above mentioned characteristics can be
used to create automated sleep staging algorithms that have the
potential to enhance the identification and treatment of infants
sleep disorders.

3.5 Feature importance and feature
selection

In order to classify sleep states using EEG, we need to define
what features in the frequency and time domains are the most
informative. By using these techniques, we can distinguish sleep
stages by using the most informative features. Using machine
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learning models, you can achieve better performance and more
accurate results by selecting and emphasizing features (Ilyas et al.,
2020). In this research, Principal Component Analysis (PCA)
is utilized to select and prioritize features. The PCA algorithm
determines which of the principal components captures the greatest
proportion of variance in a dataset by analyzing its variance
(Wold et al., 1987). The explained variance ratio can be used to
determine a subset of principal components can be selected to
reduce the dimensionality of the data. High variances indicate that
the number of features in the dataset captures as much information
as possible. By preserving the variance in the dataset, information
which is the most important and relevant to the data can be
preserved, and at the same time, the least important data can be
eliminated. As a result of the designed PCA, 95% of the variance
in the EEG was explained by the most informative features. A
small number of principal components account for 95% of the
variance in the dataset. After scaling the dataset and performing
PCA, we found that a few principal components captured most
of the variance. Using the columns that have been selected and
the variable that is being targeted, a new dataframe is generated
based on how many principal components there are. As a result,
the information relevant to the prediction of the variable that
is being targeted remains, and at the same time, the data is
reduced in dimensionality. In the original dataset, 94 features from
preprocessed EEG data were extracted. The resulting dataframe
is used to classify sleep into five states using an LSTM model.
However, based on PCA results, a total of 21 features have been
decided upon for further consideration.

3.6 Synthetic minority oversampling
technique analysis

SMOTE is a widely utilized data augmentation approach
employed to deal with class imbalance in machine learning
(Ferndndez et al.,, 2018). It is especially efficient when handling
datasets in which one class is considerably less represented than
the other. The process involves generating artificial data points for
the underrepresented category by interpolating between adjacent
examples. The objective of this strategy is to create more synthetic
instances that closely resemble the existing samples from the
minority class, hence enhancing their presence in the dataset
(Ferndndez et al., 2018). The creation of synthetic samples includes
the subsequent steps:

1. Determine the instances belonging to the minority class:
Initially, the dataset is examined to identify the instances that
belong to the minority class.

2. Randomly choose an instance x; from the specified minority
class instances.

3. Locate the k nearest neighbors: The k nearest neighbors of the
given instance are determined using a selected distance metric,
such as Euclidean distance (Li et al., 2024).

x; = Kx; (5)

4. Choose one of the k nearest neighbors at random: A single
neighbor is selected at random from the k nearest neighbors.
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5. Create a synthetic instance X,y A novel synthetic instance is
generated by interpolating between the selected instances and
the chosen neighbor. This is achieved by employing a random
selection process to choose a point located on the line segment
that connects the two instances (Li et al., 2024).

Xnew = Xi + (X — x7)8 (6)

Interpolation between the x; and x; is controlled by §, a
value between 0 and 1. The value of § specifies the extent of
“smoothing” or “stretching.” The closer the synthetic samples
are to the originals, the smaller the value of §, and the farther
they are from them, the larger the value.

6. Iterate the procedure: Steps 2 to 5 are iterated until the required
extent of oversampling of the minority class is attained.

When applying SMOTE in the analysis of EEG features,
the default delta value was used for oversampling, as specified
by the SMOTE implementation. By defaulting the delta value,
the implementation process becomes easier, ensuring a standard
oversampling level without the need to tweak parameters manually,
thereby making class imbalances easier to handle. The SMOTE
algorithm is utilized in this specific study, employing the
implementation provided by the scikit-learn module. The SMOTE
function begins execution with a random state of 42. The
effectiveness of the SMOTE technique is assessed by computing
and presenting the counts of the resampled labels using a Pandas
series. This analysis offers valuable information on the distribution
of the balanced classes following the implementation of SMOTE.
Figure 3 shows pie class distribution before and after SMOTE.
This algorithm provides synthetic samples for the training set,
improving the model’s generalization and prediction capabilities
(Gamel et al., 2024). A more precise representation of the
fundamental distribution of the data is provided by this approach,
which lessens the challenges faced by imbalanced datasets. The
proposed methodology thus eliminates class imbalances and
improves the performance of the model by training it on a more
representative and balanced dataset. Using SMOTE, data leakage
was prevented and model evaluation was ensured in this research
after the train-test split. As a result of applying SMOTE only
to the training set, the test data was kept intact, enabling us to
assess model performance accurately. By doing so, the test set
remains intact, simulating real-world conditions and enhancing
model generalization.

3.7 Long short-term memory

An LSTM (Long Short-Term Memory) model is a variant
of a recurrent neural network (RNN) that addresses long-term
dependencies in sequential data. When processing long sequences,
traditional RNNs struggle to capture information from earlier
time steps due to the vanishing gradient problem. It can process
entire sequences of data, not just individual data points, due to
its feedback connections, unlike traditional neural networks. As
a result, it is very effective at identifying and predicting patterns
in sequential data, such as time series, text, and speech. As a
powerful tool for artificial intelligence and deep learning, LSTMs
are enabling breakthroughs in a wide range of fields by capturing
valuable insights from sequential data.
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FIGURE 3

(a) Pie class distribution before SMOTE and (b) pie class distribution after SMOTE.
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3.7.1 LSTM architecture

A LSTM network resolves the problem of vanishing gradients
faced by RNN. At a high level, LSTM functions similarly to an
RNN cell. Figure 4 illustrates its internal workings. As shown in
Figure 4, the LSTM network architecture is composed of three
components, each of which performs a specific task. Based on the
previous timestamp, the first component determines whether the
information is relevant or not. Using the input in this cell, the
second component tries to learn new information. Finally, in the
third component of the cell, the current timestamp is passed on to
the next timestamp. The single-time step of the LSTM is considered
to be one cycle. Gates are three components of LSTM units. The
flow of information between the memory cell and the LSM cell is
controlled by them. The forget gate is the first gate, the input gate is
the second gate, and the output gate is the last gate. LSTM units
composed of these gates and memory cells are similar to layers
of neurons in traditional feed-forward neural networks, with each
neuron having a current state and a hidden layer. Following is the
step-by-step explanation of each gate:

1. Forget gate: This gate determines which information from
the previous cell state should be discarded. Using the sigmoid
activation function, which squashes values between zero and
one, the forget gate output (f;) is calculated from the current
input (x;) and the previous hidden state (h;_1).

A forget gate can be described mathematically as follows:

fi= oWy - o1, x] + by) %)
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In this equation, o represents sigmoid function, Wf
represents the forget gate’s weight matrix, [h;—1,x;] represents
the concatenation of the previous hidden state with the current
input, and bf is the gate’s bias term.

. Input gate: As the input gate determines the amount of new

information to be stored in the state of the cell, it takes into
account both the current input and the previous hidden input
(hi—1). A sigmoid activation function is used to compute the
input gate output (i;).

Input gates are mathematically defined as follows:

it = o (Wi - [hi—1, %] + b;) (8)

Ci = tanh(Wc¢ - [he—1, %] + bc) &)

In this case, W; and W¢ stands for the weight matrices
associated with the input gate, h;—; and x; stand for the previous
hidden state and current input, while b; and b¢ stands for the
bias terms associated with the gate.

. Output gate: By comparing the current input (x;) with the

previous hidden state (h;_1), it determines which parts of the cell
state should be output. The output gate output (o;) is determined
by the sigmoid activation function.

An output gate’s mathematical equation is as follows:

oy =0(Wo - [hi—1, %] + bo) (10)

ht = 0¢ - tanh(Ct)

(11)
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General architecture of LSTM model.
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Here, W, represents the weight matrix associated with
the output gate, [h;—1,x;] represents the concatenation of the
previous hidden state and the current input, while b, represents
the output gate bias term and h; shows the output for hidden
state.

In an LSTM cell, the gate outputs (f;, i;, 0;) are important for
controlling information flow. As a result, they determine which
parts of the previous cell state should be forgotten, which new
information should be added to the cell state, and which parts of
the updated cell state should be hidden.

3.8 Proposed model architecture

The proposed LSTM model for neonatal sleep staging is
presented in this subsection with detailed descriptions of the
mathematical model, its architecture, and all parameters. In this
paper, an eight-layer LSTM architecture has been proposed in
order to represent the LSTM. Figure 5 provides a comprehensive
depiction of the model’s structure and offers in-depth insights
into its individual layers. Sequentially stacking LSTM layers, this
model consists of three layers with different regularization levels
and units. There are 500 units in the first layer, and it returns
sequences, while there are 250 units in the second layer, and
it also returns sequences. LSTM layers are regularized using
L2 regularization with a factor of 0.0001 to prevent overfitting.
The third layer does not return sequences and has 100 units.
Each LSTM layer is followed by a batch normalization layer
for speed and stability. After two dense layers of 100 and 50
units, respectively, and ReLU activation, a final dense layer with
a number of units corresponding to the classification task’s classes
is added, and class probability is output using softmax activation.
Adam’s optimizer, cross-entropy loss function, and accuracy metric
are used to compile the model. During training, the model’s
states and parameters are reset, and with a batch size of 128
and an early stopping with a patience of 10 is implemented.
Table 2 presents details about all other hyper-parameters used
in proposed LSTM. Experimentation was conducted in order
to select and tune all hyperparameters in order to optimize
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performance and convergence during training. The model is
trained and evaluated for one epoch using the data provided. Then
the model’s performance on the validation set is evaluated after
each epoch.

3.9 Performance assessment metrics

In order to test and evaluate the proposed scheme, different
performance metrics are used, including confusion matrix,
accuracy, Cohen’s kappa, recall, precision, Mathew’s co-relation
coefficient, and Fl-score. In this study, the classification model
is examined based on these metrics to determine whether it can
accurately identify EEG patterns.

e Confusion matrix: An analysis of a classification model’s
quality is conducted using a confusion matrix. In multi-
class classification, confusion matrixes show the number
of correct and incorrect predictions for each class as a
tabular representation of the model’s performance. Identifying
specific types of classification errors helps to improve the
model’s accuracy for individual classes. It is possible to
evaluate the model’s performance across multiple classes by
calculating metrics such as precision, recall, and F1-score.

e Accuracy: The accuracy of machine learning (ML) algorithms
is commonly measured as a percentage of correctly classified
measurements. The formula (Ali et al., 2020) can be used to
calculate this percentage:

(TP + TN)
(TP + TN + FP + FN)

Acc = (12)

e Cohen’s Kappa: The Cohen’s Kappa is commonly used to
estimate how well two raters agree. It is also used to determine
the performance of classifiers. The confusion matrix cells are
used to calculate it as follows (Chicco et al., 2021):

2(TP- TN—FP - EN)
kappa =

" (TP + EP) - (FP + TN)+(TP + FN) - (EN + TN) (13)
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Model: "sequential_10"

Istm_input | input: | [(None, 1, 22)]
InputLayer | output: | [(None, 1, 22)]

Layer (type) Output Shape Param #
Istm_30 (LSTM) (None, 1, 500) 1046000
batch_normalization_27 (Ba (None, 1, 500) 2000
tchNormalization)

1stm_31 (LSTM) (None, 1, 250) 751000
batch_normalization_28 (Ba (None, 1, 250) 1000
tchNormalization)

1stm_32 (LSTM) (None, 100) 140400
batch_normalization_29 (Ba (None, 100) 400
tchNormalization)

dense_30 (Dense) (None, 100) 10100
dense_31 (Dense) (None, 58) 5050
dense_32 (Dense) (None, 5) 255

Istm input: (None, 1, 22)
LSTM | output: | (None, 1, 500)

Istm_1 | input: | (None, 1, 500)
LSTM | output: | (None, 1, 250)

Istm_2 | input: | (None, 1, 250)
LSTM | output: (None, 100)

dense | input: | (None, 100)
Dense | output: | (None, 100)

dense_1 | input: | (None, 100)
Dense | output: | (None, 50)

Total params: 1956205 (7.46 MB)
Trainable params: 1954505 (7.46 MB)
Non-trainable params: 1700 (6.64 KB)

dense_2 | input: | (None, 50)

Dense | output: | (None, 5)

(a)

FIGURE 5

(a) Detailed information about LSTM layers. (b) An overview of the model's architecture.

(b)

TABLE 2 Details about hyper-parameters.

Parameter Value

Epochs 50

Batch size 128
Optimizer Adam
Kernel regularization L2
Learning rate 1x107*
Cross-validation k-folds 10

Loss function

Binary cross-entropy

When Kappa is -1, it is the worst, and when it is +1, it is

the best.

e Recall: Recall in machine learning refers to how well an

algorithm can identify a class based on a set of sampled data.

In mathematics, recall is expressed as Shaukat et al. (2020):

Rec

TP
" TP+ EN
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Precision: In order to determine a model’s precision, it must
be able to identify a significant number of relevant items.
Accordingly, it can be written as follows (Shaukat et al., 2020):

TP

Pre = ——
TP + FP

(15)
Matthews correlation coefficient (MCC): MCC measures the
difference between the predicted values and recorded values.

The confusion matrix is used to calculate this (Chicco et al.,
2021):

TP-TN—FP - FN

MCC =
/(TP + FP) - (TP + EN) - (TN + EP) - (TN + FN)

(16)

MCC value of -1 is the worst, while a value of +1 is the
best.
FI-Score: F1-score is the combination of recall and precision,
making it a powerful metric. It is mathematically computed by
Shaukat et al. (2020), and Bing et al. (2022):

2 X Pre x Rec
F1_Score = ——— 17)
Pre + Rec
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e Accuracy line graph: The accuracy line graph permits
comparisons, thresholds, and determinations of the model’s
performance over a range of values. This graph displays
accuracy values along the Y-axis and fold counts along the X-
axis. On the graph, every data point represents an individual
cross-fold’s accuracy. As the number of folds increases, the line
connecting the data points indicates a trend in accuracy.

e Validation accuracy curve: Validation accuracy curves for N-
fold cross-validation show how accuracy changes over time for
each of the N folds. One can visualize the model’s performance
across different subsets of data by plotting validation accuracy
vs. training iterations or epochs. As well as providing valuable
insights into the model’s learning behavior, this visualization
allows assessment of the model’s stability and generalization
ability.

4 Results

To evaluate the performance of the model, a 10-fold cross-
validation procedure was used. The data sets were shuffled
randomly beforehand to avoid bias. Ten subsets of data were
used for this methodology, with one set serving as the testing
set and the remaining nine sets serving as the training set. Thus,
it was possible to assess the generalization performance of the
model in a way that minimized the leakage between the training
and testing phases. As a result of the rigorous methodology
used in this study, the performance of the proposed model has
been rigorously and unbiasedly evaluated. In this study, the F3-
channel and C3-channel show the greatest confusion matrix values
when it comes to single-channel EEG data. In Figure 6, confusion
matrices for the combinations of channels on the left and right
sides and all single channels are shown. Tables 3, 4 present the
analytically computed values for each performance assessment
metric. For the combinations of channels on the left and right
sides and all single channels, a line graph showing the level
of accuracy can be seen in Figure7. The accuracy values are
displayed on the Y-axis in Figure 7. In Figure 7, accuracy line
graphs represent model performance during 10 cross-folds. Lastly,
Figure 8 illustrates validation accuracy curves for C3 single-channel
and a combination of four left-side channels.

5 Discussion

Using an LSTM classifier, this study proposes a method of
neonatal sleep staging based on single-channel and then four-
channel EEG data. In order to determine which EEG channel
is important in neonatal sleep staging and which channels are
most appropriate for five-state classification, single-channel EEG
data needs to be used to determine which channel and which
side of the head should be used. After preprocessing the EEG
data collected from 64 infants, 16,803 segments are left for testing
and training of channels F3, F4, C3, C4, P3, P4, T3, and T4.
EEG data is then processed for 94 linear and non-linear features.
These features are divided into the time and frequency domains.
A total of 27 statistical parameters were included in the analysis
for the time domain, including mean, median, standard deviation,
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minima, maxima, range, skewness, and kurtosis. The data was
further processed to extract nonlinear features such as Detrended
Fluctuation Analysis (DFA), Lyapunov exponents, and Multiscale
Fluctuation Entropy. A FFT is used in order to extract frequency
domain features by separating ten features based on their FFT
values and then using spectral statistics to calculate 36 central
tendency features for each frequency band in the first place.
Through the capture of complex dynamics and irregularities in
neonatal EEG signals, these features allow a better understanding
of neonatal sleep patterns. By preserving 95% of the variance of
the data, we reduced the dimensionality and retained the most
informative features by applying Principal Component Analysis
(PCA). The Synthetic Minority Oversampling Technique (SMOTE)
is also applied for data augmentation to address the imbalanced
nature of the dataset. By using this technique, we were able to
improve the classification model by balancing the classes.

A description of the proposed LSTM has already been provided
in Section 3. A model is used to classify sleep states using 94
features that are obtained from each channel of the EEG signals.
Four channels on the left side and four channels on the right
side are combined in order to determine the neonate’s sleep states.
Figure 5 shows the proposed LSTM in its entirety. The description
of all layers and their types, as well as their parameters, can also
be found in Figure 5. It has been tried many times to get the
best performance from the model by testing kernel regularization,
unit number, and activation function in the real world. A final
choice was made by considering how to balance the complexity
of the model with the generalizability of the models after testing
a variety of combinations and assessing the effectiveness of each
combination. The performance evaluation step involved a 10-fold
cross-validation procedure. This methodology used ten subsets of
data, nine of them as training sets and one as a test set. In order
to eliminate bias in the data sets, the data sets were shuffled prior
to the analysis at random. Thus, the generalization performance of
the proposed model could be assessed without leaking information
between the phases of training and testing of the model. This
unbiased evaluation method was used to rigorously and unbiasedly
evaluate the performance of the proposed method. In this study,
accuracy and other matrices values are expressed as Mean =+
SD. Using the mean, one can see how accurate the experiments
are, while the standard deviation indicates how uncertain or
variable the accuracy measurements are. Averaging the individual
accuracy values obtained from multiple trials yielded the mean
accuracy, whereas the standard deviation measures how far the
accuracy measurements are from the mean. By presenting the
accuracy results in this way, we can gain insight into both their
central tendency and their variability. In Tables 3, 4, data from
single channel and four channel EEGs for five-state neonate sleep
classification is used. In single-channel five-state classification, the
F3, F4, C3, and C4 channels achieve maximum mean accuracy and
kappa. For the F3 channel, the accuracy and the kappa values are
80.41 £ 0.94% and 76%, respectively. For the F4, these values are
80.52 +1.14 % and 76%. For the C3 channel, these values are 80.75
=+ 0.82 and 76%, respectively. For the C4, these values are 80.40
=+ 1.13 and 76%, respectively. There is also evidence to suggest
that by combining four left-side channels (F3, C3, P3, and T3),
the highest mean accuracy and kappa values can be achieved, with
accuracy and kappa values of 82.71 £ 0.88 and 78%, respectively.
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FIGURE 6
Confusion matrices for the channels: (a) F3, (b) F4, (c) C3, (d) C4, (e) P3, (f) P4, (g) T3, (h) T4, (i) Left side, and (j) Right side.

Right side electrode combinations (F4, C4, P4, and T4) have values  Figure 7 in order to visualize the model’s performance and learning

of 81.14 £ 0.77 and 76%, respectively. In addition, accuracy line  progress. As shown in the above Table

3, for the classification of

curves and confusion matrices for five states are also shown in  the five-state sleep stage of newborns, channels P3, P4, T3, and T4
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TABLE 3 Single-channel EEG classification results for five states.

10.3389/fncom.2025.1506869

Channel Acc (%) Kappa Rec (%) Pre (%) MCC (%) F1_Sco (%)
F3 80.41 + 0.94 0.76 80.41 £+ 0.94 80.08 + 1.06 76 £ 0.01 80.01 £ 1.02
F4 80.52 + 1.14 0.76 80.52 + 1.14 80.20 + 1.20 76 +0.01 80.24 +£1.21
C3 80.75 £ 0.82 0.76 80.75 £ 0.82 80.39 £0.91 76 £ 0.01 80.41 £ 0.89
C4 80.40 +1.13 0.76 80.40 £ 1.12 80.17 £ 1.17 76 £ 0.01 80.15 £ 1.15
P3 78.94 +0.72 0.74 78.94 £0.72 78.53 £0.78 74 £ 0.01 78.54 £ 0.76
P4 78.18 £+ 0.58 0.73 78.18 £ 0.58 77.72 £ 0.59 73 £0.01 77.83 £0.58
T3 79.56 + 0.58 0.74 79.56 £+ 0.57 79.16 £ 0.72 75+ 0.01 79.18 £ 0.64
T4 79.84 + 0.67 0.75 79.84 + 0.67 79.46 +0.71 75+ 0.01 79.51 £0.71

TABLE 4 Four-channel EEG classification results for five states.

Channel Acc (%) REA VA Pre (%) MCC (%) F1_Sco (%)
Four-channel (Left) 82.71 +0.88 0.78 82.71 4 0.88 82.47 +0.94 78 +0.01 82.46 £+ 0.92
Four-channel (Right) 81.14 +0.77 0.76 81.14 4+ 0.77 80.87 4 0.83 77 4+ 0.01 80.83 4 0.85

Left side channels: F3, C3, P3, T3 & Right side channels: F4, C4, P4, T4.

are far less helpful than channels P3 and P4 in determining the
sleep stage. However, F3, F4, C3, and C4 perform well. When there
are four channels, left-side channels perform better than right-side
channels. Even with fewer channels, performance is still favorable
when the parameters relating to performance are compared with
those presented in Tables 3, 4. It has been shown that sleep analysis
can enhance the care of neonates and enable them to be monitored
effectively in order to detect sleep-related abnormalities, such as
sleep disorders, early in order to treat them early.

Comparisons of existing and proposed methods are presented
in Table 5. This article and Zhu et al. (2023) refer to the same
dataset, ensuring consistency and comparability in evaluating the
models listed in Table 5. Most of the models in this Table have
been evaluated on this dataset by Zhu et al. (2023), and the results
obtained are also reflected in that Table. The proposed study uses
datasets that are several times larger than those used in Ansari et al.
(2020) and Ansari et al. (2018). On the basis of this dataset, these
models were found to be underfitting. For adult sleep, Supratak
et al. (2017) and Eldele et al. (2021) are presented. Taking into
account the difference in sleep patterns between infants and adults,
these models are prone to convergence problems and overfitting.
Therefore, it is hard to transfer an adult sleep staging model
directly to neonate data because this causes convergence problems
and overfitting. The model needs to be modified to reflect the
neonate’s sleep characteristics. A serial recurrent neural network
(RNN) is used as part of the TIL module in the model architecture
in Zhu et al. (2023), which results in a lengthy training time and
inefficient training.

Based on the experiments, limitations and future directions
should be identified. Using only EEG signals as inputs to the
proposed scheme in this paper is the primary objective of this
paper, which is to assess its feasibility and reliability. In this
study, electrooculography (EOG), electromyography (EMG), and
electrocardiography (ECG) were not used. However, they could
be used in the future to assess neonatal sleep with various
input signals. Further improvement could be accomplished by
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using Transformer (Vaswani et al., 2017) rather than CNN to
learn. Additionally, all subjects were randomly divided into a
set of training subjects and a set of test subjects in this study.
Future research can increase the accuracy of the classification
of neonatal sleep stages by incorporating an independent set
of subjects in the training and testing phases. As a result, the
performance of MFE in the context of sleep staging should
be compared to Multiscale Dispersion Entropy and Multiscale
Fluctuation Dispersion Entropy. A number of studies have shown
that these methods are better at detecting meaningful patterns
(Zandbagleh et al., 2023; Chakraborty et al., 2021). In addition
to potential overfitting from the Multi-Branch CNN, its limited
capacity for hierarchical temporal learning may have made it
difficult to capture long-range EEG signal dependencies. Further,
its inefficiency in learning sequential patterns and its sensitivity
to signal variability could have adversely impacted generalization
and contextual understanding. In comparison to 1D CNNs, LSTM
models generally perform better when dealing with time series data.
LSTM networks, on the other hand, yield more accurate results
by retaining long-term dependencies, interpreting context over
sequences, and capturing fine-scale changes in EEG data, making
them more suitable for effectively identifying five distinct sleep
states. With the integration and evaluation of these techniques,
future research can enhance sleep staging algorithms.

6 Conclusion

Using an LSTM classifier that takes into account features in the
time and frequency domains, this study proposes an efficient and
accurate classification of neonatal sleep states based on EEG, using
single and multi-channel EEG data. A combination of Detrended
Fluctuation Analysis (DFA), Multiscale Fluctuation Entropy, and
Lyapunov Exponents is used to analyze the data in this study. PCA
is used to select features. With the use of both single-channel as well
as multiple-channel EEG data, it achieves favorable and comparable
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FIGURE 7
Accuracy line graphs for the channels: (a) F3, (b) F4, (c) C3, (d) C4, (e) P3, (f) P4, (9) T3, (h) T4, (i) Left side, and (j) Right side.

results. The number and placement of channels play a critical ~ Using a variety of electrode setups, the purpose of this study was
role in the optimal electrode configuration for the assessment of  to evaluate the accuracy of sleep stage classification for neonatal
neonatal sleep stages and the most effective channels in five states.  sleep studies in order to reduce complexity and cost. The frontal
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TABLE 5 Comparison of existing and proposed methods.

References Algorithms No. of Accuracy Kappa
channels

Ansari et al. Conv-2d 8 52.3% 0.41

(2020)

Ansari et al. Conv-2d 8 53.5% 0.48

(2018)

Zhu et al. MS-HNN 1 75.4% 0.72

(2023)

Zhu et al. MS-CNN 1 69.3% 0.65

(2023)

Supratak et al. DeepSleepNet 2 69.8% 0.64

(2017)

Eldele et al. AttnSleep 1 68.0% 0.65

(2021)

Siddiqa et al. Multi-Branch 1 74.27% 0.61

(2024) CNN

Siddiqa et al. Multi-Branch 4 75.36% 0.63

(2024) CNN

This study LSTM 1 80.75% + 0.76
0.82%

This study LSTM 4 82.71% + 0.78
0.88%

and central EEG channels worked better independently or jointly,
based on the results. In the future, neonate sleep staging can be
simplified, comfort levels can be increased, and data analysis can
be sped up by reducing the number of channels. Through sleep
analysis, it is possible to detect sleep-related abnormalities, such
as sleep disorders, early, allowing for more effective neonate care
and monitoring of sleep. Also, the experimental results suggest
that the proposed approach captures information effectively
within a single channel, reducing computing load by reducing
the number of channels, while maintaining good performance.
Furthermore, including linear and non-linear features in the time
and frequency domains of neonatal sleep staging can improve

Frontiersin Computational Neuroscience

accuracy and provide insights into newborn sleep dynamics
and irregularities.
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Deep learningis widely used in brain electrical signal studies, among which the
brain—computer interface is an important direction. Deep learning can
effectively improve the performance of BCl machines, which is of great
medical and commercial value. This paper introduces an efficient deep
learning model for classifying brain electrical signals based on a Mamba
structure enhanced with split-based pyramidal convolution (PySPConv) and
Kolmogorov-Arnold network  (KAN)-channel-spatial attention  (KSA)
mechanisms. Incorporating KANs into the attention module of the
proposed KSA-Mamba-PySPConv model better approximates the sample
function while obtaining local network features. PySPConv, on the other
hand, swiftly and efficiently extracts multi-scale fusion features from input
data. This integration allows the model to reinforce feature extraction at each
layer in Mamba'’s structure. The model achieves a 96.76% accuracy on the
eegmmidb dataset and demonstrates state-of-the-art performance across
metrics such as the F1 score, precision, and recall. KSA-Mamba-PySPConv
promises to be an effective tool in electroencephalogram classification in
brain—computer interface systems.

mamba, Kolmogorov-Arnold network, electroencephalogram, deep learning, BCI

1 Introduction

Electroencephalogram (EEG) has been a hotspot for medical, computer science, and
commercial research, and it is often used to diagnose brain diseases and to study human
mental activities. Brain—-computer interfacing is a promising technology for scientists and
engineers, which converts human EEG signals into programs that machines can recognize.
Deep learning is an important tool in brain electricity studies and has been employed by
many scholars, as exemplified below.

The DeepConvnet model, employed by Schirrmeister et al., achieved a classification
accuracy of 76.7% on the PhysioNet EEG Motor Movement/Imagery Database (eegmmidb).
The model utilized multiple layers of conventional convolutional neural network (CNN)
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convolutions to construct deep learning networks, achieving 63.7%
and 83.2% accuracy on the BCI-2a and BCI-2b datasets,
respectively (Schirrmeister et al., 2017). The EEGnet model,
adopted by Lawhern et al., achieved an accuracy of 79.3% on
the eegmmidb dataset (Lawhern et al., 2018). This model utilized
depth-separable convolutions to construct multi-layer deep
neural networks, thereby facilitating the segregation of
channels and regions while reducing the parameter count. Jia
et al. developed a multi-branch multi-scale CNN (MMCNN) (Jia
etal., 2021) that decoded the original EEG signal without filtering
or other pre-processing techniques. It also successfully
characterized information in various frequency bands and thus
determined the optimal convolution scale. Roots et al. introduced
a multi-branch two-dimensional (2D) CNN that employed
distinct hyperparameter values for each branch, resulting in
accuracies of 84.1% and 83.8% when applied to the eegmmidb
dataset for performing and imagining motor actions, respectively
(Roots et al., 2020). Chowdhury et al. developed an EEGNet
Fusion V2 model that enhanced the extracted features via diverse
filters, which yielded a spectrum of features. Subsequently, these
features were integrated into the fusion layer to generate more
intricate features (Chowdhury et al., 2023). To identify spectral
features and improve the decoding of motor imagery
electroencephalogram (MI-EEG), Li et al. employed a novel
time-spectrum squeezed-excitation feature fusion network
with multi-stage wavelet convolutions in parallel for multi-
spectral convolution block capture (Li et al., 2021). Hou et al.
combined bidirectional long and short-term memory (BiLSTM),
attention mechanisms, and a graph convolutional neural network
(GCN) to enhance the decoding performance. This was achieved
by leveraging the feature topology estimated from the
comprehensive data set to accurately identify the human
body’s intention to move from the raw EEG signals (Hou
et al., 2022). Steady-state visual evoked potential (SSVEP)
represents one of the most frequently utilized control signals
in brain-computer interface systems. In an interdisciplinary
Chen et al. proposed an SSVEP
classification model based on the highly effective deep
which  fully
harmonic information and established a methodology based
on filter bank technology (Chen et al, 2022). Luo et al.

employed a shallow mirror Transformer comprising a multi-

classification scenario,

learning Transformer structure, exploited

head self-attentive layer with a global receptive field to detect and
utilize discriminative segments across input EEG trials. They also
constructed mirror EEG signals and mirror network structures
based on integrated learning to improve classification accuracy
(Luo et al., 2023). Keutayeva and Abibullaev developed a hybrid
model that fused a CNN with a visual Transformer for decoding
motion image EEG signals. The CNN was employed to extract
local features, whereas the Transformer was utilized to perceive
global dependencies. The model demonstrated 80.44% and
74.73% the BCI-2a and BCI-2b datasets,
respectively, which represented a significant improvement over

accuracy on

previous models (Keutayeva and Abibullaev, 2023).

In recent years, there has been a notable increase in the
popularity of Kolmogorov-Arnold networks (KANs) as an
alternative to the multi-layer perceptron (MLP) (Vaca-Rubio
et al., 2024). KANs utilize the Kolmogorov-Arnold representation
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theorem, which enables the activation functions of a neural network
to be executed on edges. This facilitates the “learning” of the
activation functions and enhances the model performance. KANs
lack linear weights; each weight parameter is replaced by a univariate
function parameterized as a spline. Smaller KANs can be visualized
intuitively and achieve comparable or superior accuracies in data
fitting and partial differential equation (PDE) solutions compared to
larger MLPs.

The Mamba model addresses the limited efficiency of
Transformers in long sequence processing by combining linear
layers, gating, and selective structured state space models (Gu
et al, 2023); its core is a selectivity mechanism that efficiently
compresses and filters contextual information. The hardware
algorithm  significantly improves
scanning rather than convolving.

computational speed by

However, the mamba model is very limited to handle local
features, and the obtained features have a large redundancy.
Therefore, we can use some new methods to improve the local
feature extraction ability of mamba, using the attention module
to screen the reinforcement main features. In light of the studies
above, we propose a novel deep learning model integrating a
Mamba backbone splicing a split-based pyramidal convolution
(PySPConv) module and a KAN-channel-spatial attention (KSA)
mechanism. The model is designated as KSA-Mamba-PySPConv,
and its objective is to leverage the Mamba and KAN architectures
to enhance model classification capabilities and reduce
resource costs.

It includes the

experimental design, discussion of experiments, and conclusion.

literature review, model methodology,

The primary contributions of this paper are as follows:

1) We propose the novel KSA mechanism, which incorporates

a KAN network into the attention mechanism. This
feature
fitting

integration aims to enhance the module’s

extraction  capabilities,  leveraging  the
approximation capacity of KANs.

2) We employ the novel PySPConv scheme to replace the
standard convolutions in Mamba, aiming to address the
limitations of Mamba’s local feature extraction capability
while minimizing computational overhead.

3) We conduct experiments using the proposed KSA-Mamba-
PySPConv model and multiple existing models on eegmmidb

to compare their accuracy, F1 score, and recall.

2 Related work
2.1 KANs

MLPs use a multi-layer linear function plus a nonlinear
activation function to model and approximate the input-
output relationships of a sample, which consists of a large
data expressed by
f(x):Zfifc)aia(wi~x+b,~).1n this formuna, x is the input

trainable matrix, as
data,w; is the weight of x, b; is the bias, ¢ is activation
function, a; is the ratio of Scale coefficient. MLPs consume a
lot of memory and computational resources in complex tasks and
are prone to overfitting. In recent studies, KANs have been shown
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to outperform MLPs in accuracy and interpretability, with
smaller KANs achieving accuracy comparable to or better than
larger MLPs in data fitting and PDE solving. Besides, KANs can
be represented intuitively as the summation of multiple spline
functions and, therefore, have stronger interpretability. The
functional relationship of KANs can be expressed by

fo= i%(g%("?))

q=1

Here, f (x) is the multivariate function to be represented; D,
denotes a combinatorial function that can be learned and is
ap is the learnable
unitary function corresponding to an activation function on

typically used at higher network levels; ¢

the network edges, generally parameterized as a spline
function; x, is the pth component of the input vector; Q and
P are the number of combinatorial and unitary functions,

respectively.
KANs can normally achieve comparable or better
performance than wider MLPs with fewer parameters.

However, KANs have more parameters than MLPs for the
same depth and width. The training process of KANs is much
more complex than that of conventional neural networks, and its
training speed is 10 times slower than that of MLPs. In practice,
the resources consumed by KANs are huge and difficult to
implement in high-dimensional spaces. Therefore, leveraging
the advantages of KANs while compensating for their

shortcomings is a question worth studying.

2.2 Mamba and transformers

Transformers capture global features more efficiently than
CNNs, though with »n® computational complexity, n is the
length of sequence. In contrast, Mamba exhibits linear
complexity and can address the memory consumption issue of
Transformers when processing long sequences. Moreover,
Mamba adopts hardware-aware parallel algorithms to optimize
graphics processing unit (GPU) memory usage and improve the
design of the state space model (SSM) architecture, which
achieves higher efficiency. Mamba also performs selective
processing of input information, which means it can focus on
specific information in the input sequence. As a result, Mamba is
five times faster than Transformers in inference (predicting or
generating texts), and its performance can match that of a
Transformer twice its size in certain areas. However, Mamba
uses complex S6 and MLP components, making the model
complicated and less interpretable. Moreover, it is weak for
local feature extraction of sequences. Improving the local
feature extraction capability and simplifying the complexity of
Mamba are research areas worthy of investigation.

2.3 Pyramidal convolution and split-based
convolution

Pyramidal Convolution (PyConv) utilizes a pyramid structure
with different kernel sizes and depths to capture details on various
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levels (Duta et al.,, 2021). The PyConv architecture has multiple
levels of kernels, gradually increasing kernel size from the bottom
(level 1) to the top (level n) while reducing depth. This approach
aims to capture diverse scale information at different layers. In
PyConv, the different kernel types complement each other to
enhance the network’s recognition capabilities. Smaller kernels
excel at focusing on fine details, capturing information about
small objects or specific regions; larger kernels gather a more
robust overview of larger objects or contextual information. The
PyConv architecture exhibits parameter and computational
resource  requirements  comparable to  conventional
convolution while benefiting from its ability to leverage multi-
threaded parallel processing. This configuration makes PyConv
exceptionally efficient. PyConv’s 50-layer network outperformed
a baseline ResNet with 152 layers in recognition performance
while reducing the number of parameters by 2.39 times,
computational complexity by 2.52 times, and layer count by
over three times (Duta et al., 2021).

Split-based convolution (SPConv) splits the input feature map
into a representative part and an uncertain redundant part (Zhang
2020). The processed  with

relatively heavy computation to extract intrinsic information,

et al, representative part is
while the uncertain redundant part uses lightweight operations to
handle tiny details. The SPConv architecture employs a k =
3 convolutional layer to extract essential information and a
lightweight k = 1 convolutional layer to supplement fine-grained
hidden details. The final step of the process involves merging the
extracted features from the two parts using a parameter-free
SPConv
outperforms baselines in accuracy and inference time while

feature fusion module. Therefore, consistently

showing significant reductions in floating-point operations
per second (FLOPs) and parameter counts. Experiments on
Cifar10, ImageNet, and Microsoft Common Objects in Context
(MS-COCO) datasets demonstrated that
SPConv achieved state-of-the-art (SOTA) performance in
accuracy and inference speed at the GPU level. The parameter

networks using

count for SPConv could also be reduced by 2.8 times while
maintaining superior performance and inference speed (Zhang
et al., 2020).

3 Methodology
3.1 KSA-seq attention

EEG involves multichannel one-dimensional (1D) data, for
which the
the potential relationships between different channels must
be considered. KAN has a stronger fitting ability than MLP, and
it can obtain the waveform features of a single channel better.

features of individual channel waveforms and

On the other hand, the attention mechanism of the lateral axis
captures the feature relationships between different channels.
We fuse the attention mechanisms in both directions to obtain
a more comprehensive EEG feature relationship. We call this
attention mechanism KSA, and the algorithmic steps for
realizing the KSA attention mechanism are as follows in
Algorithm 1:

frontiersin.org
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FIGURE 1
Structure of mixconvld.
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Input:x: (B,C,L)

Output:vy: (B,C,L)
1. r1:(B,C,1) « AdaptiveAvgPoolld (B,C,L)
2. r2:(B,C,1) « AdaptiveMaxPoolld (B,C,L)

3.r1'": (B,C,1) — KAN_Expand (KAN_
Compress (r1'))

4. r2": (B,C,1) — KAN_Expand (KAN_
Compress (r2'))

4. m: (B,C,L) « (r1'+r2") *x

> KAN-seq attention is done

1. m: (B,C,L)

2. n1:(B,1,L) « Mean (m,dim=1)

3. n2:(B,1,L) « Max (m,dim = 1)

4. n:(B,2,C) « Concat (n1,n2,dim=1)

4. SpatialAtt: (B,1,C) — convld

(B,2,C), kernel =7
5. out: (B,C,L) « SpatialAtt *m
> SP1D-seq attention is done
Return out

Algorithm 1. KAN-seq attention.

The algorithm describes the implementation of the attention
mechanism and the main input and output data. KAN_Compress
represents using the KAN-MLP architecture to compress channels,
which is achieved by setting the number of output channels Cout of
the KAN network to be 1/r of the number of input channels Cin
(where r is the scaling ratio). KAN_Expand represents using the
KAN-MLP architecture to expand channels, which is accomplished
by configuring the number of output channels Cout to expand to r
times the number of input channels Cin. We obtain channel-axis

Concat

i Level 1 SPConvid K1 Kernels

FIGURE 2
Structure of PySPConv
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FIGURE 3
Structure of the KSA-Mamba-PySPConv block.

attention by performing channel transformation with KAN-seq
attention. Then, we use the 1D spatial attention algorithm to
calculate the spatial sequence features, which can obtain the
y-axis attention. By combining the operations of both sections,
we obtain multi-dimensional attention for the input sequence
data. We call this module KSA-seq attention.

3.2 PySPConv

Mamba is a novel selective structured SSM that can efficiently
deal with long sequential data while maintaining linear time
complexity. In Mamba modules, a conventional CNN is used to
extract local features. However, CNN-extracted features are limited
by the size of kernels and the number of layers, which means that
CNN suffers from a lack of flexibility and restricted abilities.
Therefore, a more capable local feature extractor needs to be
used to obtain better local features.
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We design a mixed convolutional model that uses different-sized
CNN kernels to extract features of varying receptive fields. We
utilize k = 3, k = 5, and k = 7 convolution operations to obtain
features under different receptive fields. These features are then
combined to form the final output. This module addresses the
limitation of narrow receptive fields in conventional CNNs and
enhances the quality of extracted features by incorporating multiple
convolution sizes. We name this module “mixconvld.” Its structure
is represented in Figure 1, which consists of convolutions with k = 3,
k =5 and k = 7,
compression module.

as well as a feature concatenation

To obtain multi-scale features, we leverage the pyramid
and modify it to
speed  while

convolutional technique enhance its

performance and minimizing computational
complexity. Specifically, we replace the conventional convolution
in the pyramid structure with a lightweight and efficient separable
convolution. Here, we employ SPConv, which splits the features
into representative and redundant parts, using k = N and k =
1 convolutions, respectively. This approach captures the main
features in the representative part and details features in the
redundant part as supplementary information. This design
makes the convolutions efficient and lightweight. Replacing
the conventional convolutions in a pyramid convolution with
SPConv, different kernel

computational burdens and enable efficient feature extraction

which uses sizes, can reduce
at different scales. This novel convolution module is called
PySPConv, whose architecture is shown in Figure 2. It is
composed of one-dimensional SPConv convolutions with a
kernel size of Kn and a feature concatenation module. We
can independently configure the kernel sizes and the number
of feature layers, which makes this convolutional module highly
flexible to fit our needs.

In subsequent experiments, we will compare the performance of
the two convolutional modules. We will test and evaluate various
metrics to confirm the advantages of PySPConv in computational
load and performance.

3.3 Mamba-PySPConv with KSA attention

We include this new PySPConv module in the Mamba structure
and employ the KSA attention mechanism between each layer of
Mamba blocks, which enables the model to filter out the important
features in the input and improves the expressive power of the
model. We also add the residual structure between different layers of
Mamba so that the features obtained from shallow Mamba blocks
can be fused into deeper Mamba blocks, which improves the model
convergence, enriches the extracted features, and fully utilizes the
features obtained from each block layer. This final model is called
KSA-Mamba-PySPConv, and its block
in Figure 3.

structure is shown

4 Experiments and results

To evaluate the performance of the aforementioned models, we
train and evaluate them on the eegmmidb dataset.
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FIGURE 4
Original Mamba results.

4.1 Experiments

Dataset introduction. The eegmmidb dataset contains over
1,500 1-min and 2-min EEG recordings from 109 volunteers,
which were obtained from subjects completing a series of motor/
imagery tasks. Motor imagery or movement tasks were recorded as
EEG signals from 64 channels positioned upon the subject’s
scalp. Each channel was annotated with three codes: T0, T1, and
T2. TO designates the rest period; T1 signifies the movement of the
left hand in selected tasks; T2 denotes the movement of the right
hand for certain tasks. Of the 109 participants, six individuals lacked
sufficient data recordings and were excluded from the training
experiment. All
movements of 4-4.1 s for execution and imagery tasks. To

trials involved sustained and continuous
ensure consistent dataset representation, 4-s trial segments were
extracted and clipped, removing any static states or extraneous non-
experimental segments. The sampling rate was 160 Hz, and after
each trial segment’s clipping, 640 samples were obtained.
Experimental setup. We utilize the Magnetoencephalography
and Electroencephalography (MNE) library to read raw general data
format (GDF) files from the eegmmidb database. A 60 Hz bandpass

filter is applied to remove power line interferences. A low-pass filter
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with a cutoff frequency of 0.5 Hz is then used to suppress low-
frequency noise. Finally, a bandpass filter ranging from 1 to 60 Hz is
employed to attenuate high-frequency artifacts. The “T'1” labels are
converted into “0” labels, and the “T2” labels are converted into “1”
labels. To maintain consistency in the dataset, the 640 continuous 4-
s action data samples are divided into four non-overlapping
windows of 160 samples each, which maintains the labeling of
the original experiment. Datasets are divided into the motor task
data, imagery task data, and data for both tasks. The data obtained is
stored in a matrix format. We divide the processed EEG data matrix
into a training set,test set and a validation set at a ratio of 7:2:1. The
Adam optimizer is used to train the model, with an initial learning
rate of 0.0001. Every 20 epochs during the training process, the
learning rate is adjusted by 0.1 times its original value. The input
sequence length of this Mamba model is 160, the state dimension is
256, and it has three layers. To shorten the training time, we use
GPU servers and set a batch size of 24 for our training process. The
configuration of the GPU server used in the experiment is as follows:
the CPU model is AMD EPYC 9654, the graphics card is an RTX
4090 with 24 GB of video memory, and the system is equipped with
128 GB of RAM. It is also possible to conduct training on a laptop
with more than 8 GB of video memory, although the process may be

frontiersin.org


https://www.frontiersin.org/journals/sensors
https://www.frontiersin.org
https://doi.org/10.3389/fsens.2025.1548729

Li

test_accuracy

092 +
088

084

08

Name Smoothed Value Step Time Relative
0. 09469 09566 9  ThuOct10,21:37:52 26m 358

precision

095
09
085
08
075
07

0123 45¢%6 789

Name  Smoothed Value Step Time Relative
09634 9  ThuOct10,21:37:52 26m 35s

09497 9 ThuOct10,21:37:52 26m 35s

precision_0 0.9556
© precision_1 0.9383

FIGURE 5
Mamba-MixConvld results.

slower. We perform five sets of comparative experiments using
different models to validate the model performance, namely, the
original mamba model experiment, Mamba-mixconvld model
experiment, KSA-Mamba-PySPConv model experiment, executed
motor task dataset experiment, and imagery motor task dataset
experiment.

4.2 Results

Original mamba results. Figure 4 presents the experimental
results of the original Mamba model on the brain-EEG motor
imagery recognition task. The model employs a standard 1D
convolution to extract local features, with a kernel size of 5. We
compare the classification performance of the original Mamba
model with EEGNet Fusion V2. The original Mamba model
achieves significantly =~ improved recognition performance,
achieving an accuracy of 89.4%, and its precision, F1 score, and
recall values all approach those of EEGNet Fusion V2, being higher
than 85%. Furthermore, the original Mamba model requires fewer
parameters compared to EEGNet Fusion V2. Increasing the size of

the CNN kernel in the Mamba module yields improved model
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performance, demonstrating that the Mamba structure is more
effective in handling sequence data classification tasks compared
to multi-layer deep neural networks (DNNs).
Mamba-MixConvld results. To enhance the Mamba model’s
ability to extract local features, we replace the original 1D
convolution with a MixConvld convolutional module. Figure 5
presents the experimental results of the Mamba-MixConvld model
on the EEG motor imagery recognition task. We compare the
classification performance of the Mamba-MixConvld model
with the original Mamba model. The Mamba-MixConvld
model achieves an accuracy of 95.6%, which is 6% higher
than that of the original Mamba model. This improved
model exhibits a precision and F1 score approaching 95%,
and its recall is near 94%, showing that Mamba-MixConvld
the Mamba
conclusively demonstrate

model.
that the
MixConvld module possesses strong local feature extraction

significantly  outperforms original

Experimental results
capabilities and solves the problem of insufficient local feature
extraction in the original Mamba model. However, adding more
convolutional branches and larger kernel sizes and performing
calculations  result in  substantial

additional fusion

computational costs and memory consumption.
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FIGURE 6
KSA-Mamba-PySPConv results.

KSA-Mamba-PySPConv results. To reduce the computational
load of the convolutional module, we replace MixConvld with
PySPConv. In addition, to improve the expressive power and
feature quality of the Mamba structure output, we add the KSA
attention module to enhance the channel and spatial features,
capturing relationships between different parts of brain activity
and detecting more complex data patterns. In Figure 6, we
present the experimental results for the KSA-Mamba-PySPConv
model on the EEG motor imagery recognition task. We compare its
classification performance with that of the Mamba-MixConvld
model. The KSA-Mamba-PySPConv model achieves an accuracy
rate of 96.76%, which is 1.76% higher than that of the Mamba-
MixConvld model. The precision, F1 score, and recall of the KSA-
Mamba-PySPConv model are all above 96.5%, exceeding those of
the Mamba-MixConvld model by approximately 1%-2%.
Experimental results demonstrate that KSA-Mamba-PySPConv
possesses stronger local feature extraction capability and exhibits
better overall performance than Mamba-MixConv1d. The statistical
comparison of the parameters of the two convolutional modules
finds that PySPConv has 21.1% fewer parameters compared to
size.

MixConvld when configured with the same kernel

PySPConv carries fewer redundant features and boasts higher
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feature extraction efficiency and faster computation speed.
Moreover, PySPConv allows for autonomous adjustment and
configuration of the depth and kernel size of the convolutional
layers while enabling the addition of more convolutional branches.
Using the SPConv method significantly reduces the computational
burden associated with adding branches and adjusting depths
in PySPConv.

Executed motor task dataset experiment results. We test the
performance of the KSA-Mamba-PySPConv model using the
executed motor task dataset, and the results are shown in
Figure 7. We compare the results to those from EEGNet Fusion
V2. For the executed motor task, the KSA-Mamba-PySPConv model
achieves an accuracy of 96.28%, 6.68% higher than that of EEGNet
Fusion V2 (Chowdhury et al., 2023). The precision, F1 score, and
recall of KSA-Mamba-PySPConv are all higher than those of
EEGNet Fusion V2 by approximately 6.5%. This demonstrates
that the KSA-Mamba-PySPConv model outperforms EEGNet
Fusion V2 in executed motor movement tasks on eegmmidb.

Imagery motor task dataset experiment results. We also test the
performance of the KSA-Mamba-PySPConv model using the
imagery motor task dataset, and the results are shown in
Figure 8. In this domain, the KSA-Mamba-PySPConv model
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FIGURE 7
Experiment results on the executed motor task dataset.

achieves an accuracy of 96.33%, 6.73% higher than that of EEGNet
Fusion V2. The precision, F1 score, and recall of KSA-Mamba-
PySPConv are all higher than those of EEGNet Fusion V2 by
approximately 6.5%. This demonstrates that the KSA-Mamba-
PySPConv model outperforms EEGNet Fusion V2 in imagery
motor tasks on eegmmidb.

5 Discussion

This section discusses the performance differences between
their
disadvantages. First, the experimental results for executed

various models and respective advantages and

and imagery motor movement tasks are organized and
the detailed in this
summarized in Table 1.

compared for models study, as

The original Mamba model demonstrates good performance in
classifying heart rates, validating the model’s effectiveness at
1D data. The use of MixConvlD

significantly classification  accuracy,

in Mamba
proving that
through local

handling
improves

MixConvlD enhances convolutional features
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feature extraction and boosts overall model performance. When
using PySPconv and KSA attention modules in conjunction with
Mamba, compared to using MixConvlD alone, we observe
improved classification accuracy. Furthermore, the parameters of
PySPconv are 21.1% fewer than those of MixConv1D, which can be
obtained by torchstat, highlighting the efficiency and lightweight
nature of this module.

The results of some advanced deep learning models and our
method for executed motor movement tasks are compared
in Table 2.

As can be seen in Table 2, our new model exceeds previous
research models in the performance metrics of the classification task.
The KSA module helps the model better capture the nonlinear
relationships in the data. PySPConv allows the model to process data
sparsely, thereby reducing the number of parameters and
computational complexity.

The results for imagery motor movement tasks are shown in
Table 3. It can be seen that the proposed KSA-Mamba-
PySPConv model also demonstrates excellent classification
performance in imagery motor movement tasks, reaching the
SOTA level.
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TABLE 1 Results for executed and imagery motor movement tasks.

Accuracy % Precision % Recall % F1 score % Params
Left Right Left Right Left Right
Original Mamba 89.37 87.4 915 914 87.4 89.4 89.4 716.802k 2.369G
Mamba-MixConvld 95.66 96.3 94.9 95.1 96.3 95.7 95.6 1513M 5.434G
KSA-Mamba-PySPConv 96.76 96.6 96.9 96.9 96.6 96.7 96.8 1193k 4206G

6 Conclusion

In this paper, we propose a novel architecture called KSA-
Mamba-PySPConv for the EEG imagery/motor
classification tasks. The proposed scheme includes a KSA
attention mechanism and a PySPConv module to enhance the

movement

features extracted from a single module layer. The KSA attention
mechanism achieves enhanced and filtered channel and spatial
KAN network with attention
mechanisms. PySPConv utilizes different convolutional kernels to

features by integrating the

extract pyramid-like multi-scale features and employs split
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operation and parameter-free feature fusion algorithms to achieve
lightweight and efficient convolutions. These configurations enable
KSA-Mamba-PySPConv to outperform conventional EEG classification
models and achieve SOTA performance. The model exhibits excellent
performance across different tasks on eegmmidb, proving its strong
generalization capabilities. When deploying this model in a practical
BCI system, we may need to consider the model's size and the
consumption of computational resources. Therefore, techniques such as
quantization and pruning might be employed for the deployment of the
model. In the future, we will explore pruning algorithms and optimization
methods to enhance the speed of this model.
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TABLE 2 Results for executed motor movement tasks.

10.3389/fsens.2025.1548729

Accuracy % Precision % Recall % F1 score % Params
Left Right Left Right Left Right
DeepConvNet (Schirrmeister et al., 2017) 76.6 76.2 77.1 77.3 76.0 76.7 76.5 97.302K 203.453M
ShallowConvNet (Schirrmeister et al., 2017) 79.3 79.2 79.3 79.2 79.3 79.2 79.3 80B 580K
MMCNN (Jia et al., 2021) 81.4 82.2 80.6 80.5 82.3 81.3 81.4 - -
EEGNet (Lawhern et al., 2018) 66.6 69.1 64.8 59.9 73.3 64.2 68.8 1.114K 132.251M
EEGNet Fusion (Roots et al., 2020) 84.1 84.2 84.5 83.8 83.9 84.0 84.2 17.682K 1.597G
EEGNet Fusion V2 (Chowdhury et al., 2023) 89.6 89.9 89.4 89.4 89.8 89.7 89.6 9.636M 16.546G
KSA-Mamba-PySPConv 96.28 94.59 98.09 98.16 94.39 96.34 96.21 1.193M 4.206G

TABLE 3 Results for imagery motor movement tasks.

Accuracy % Precision % Recall % F1 score %
Left Right Left Right Left Right

DeepConvNet (Schirrmeister et al., 2017) 76.2 765 75.9 76.0 76.4 763 76.1
ShallowConvNet (Schirrmeister et al., 2017) 78.2 78.2 78.3 78.7 77.8 78.5 78.0
MMCNN (Jia et al,, 2021) 81.6 81.7 815 81.9 812 81.8 81.3
EEGNet (Lawhern et al., 2018) 68.4 683 68.4 69.2 67.5 68.8 67.9
EEGNet 83.8 85.0 833 82.9 84.8 83.9 84.0

Fusion (Roots et al., 2020)
EEGNet 87.8 88.1 87.5 87.5 88.1 87.8 87.8

Fusion V2 (Chowdhury et al., 2023)

KSA-Mamba-PySPCony 96.33 96.7 95.96 96.08 96.59 96.39 96.27
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Introduction: Major Depressive Disorder (MDD) remains a critical mental health
concern, necessitating accurate detection. Traditional approaches to diagnosing
MDD often rely on manual Electroencephalography (EEG) analysis to identify
potential disorders. However, the inherent complexity of EEG signals along with
the human error in interpreting these readings requires the need for more
reliable, automated methods of detection.

Methods: This study utilizes EEG signals to classify MDD and healthy individuals
through a combination of machine learning, deep learning, and split learning
approaches. State of the art machine learning models i.e., Random Forest,
Support Vector Machine, and Gradient Boosting are utilized, while deep learning
models such as Transformers and Autoencoders are selected for their robust
feature-extraction capabilities. Traditional methods for training machine learning
and deep learning models raises data privacy concerns and require significant
computational resources. To address these issues, the study applies a split
learning framework. In this framework, an ensemble learning technique has been
utilized that combines the best performing machine and deep learning models.

Results: Results demonstrate a commendable classification performance with
certain ensemble methods, and a Transformer-Random Forest combination
achieved 99% accuracy. In addition, to address data-sharing constraints, a split
learning framework is implemented across three clients, yielding high accuracy
(over 95%) while preserving privacy. The best client recorded 96.23% accuracy,
underscoring the robustness of combining Transformers with Random Forest
under resource-constrained conditions.

Discussion: These findings demonstrate that distributed deep learning pipelines
can deliver precise MDD detection from EEG data without compromising
data security. Proposed framework keeps data on local nodes and only
exchanges intermediate representations. This approach meets institutional
privacy requirements while providing robust classification outcomes.

KEYWORDS

split learning, transformers, autoencoder, EEG, major depressive disorder, smart
diagnostic, neurological behavior
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1 Introduction

The human body possess remarkable complexity, and the
brain plays a pivotal role in cognitive and behavioral functions
(Vohryzek et al., 2025). Maintaining a healthy brain is essential
for optimal decision-making (Hagan et al., 2025). The human
brain contains billions of neuron, which coordinate various
neurological activities (Herculano-Houzel, 2009). Nonetheless,
a range of disorders impact brain function, including Major
Depressive Disorder (MDD) i.e., leading contributor to mental
health challenges (Kreiviniené et al., 2025).

Early diagnosis of MDD is important for mentaining mental
well-being, but current diagnostic methods rely on subjective
clinical evaluations and self-reported symptoms prone to human
error and inefficiency (Hagan et al., 2025; Kreiviniené et al., 2025).
This underscores the need for a reliable diagnostic tool that assists
clinicians in making accurate and timely decisions.

Electroencephalography (EEG) offers a promising approach
for examining the neurophysiological underpinnings of mental
health conditions (Perrottelli et al., 2021). It measures electrical
brain activity with high temporal resolution and is non-invasive,
cost-effective, and portable (Perrottelli et al, 2021). Previous
studies have revealed changes in EEG patterns, such as power
spectral density shifts and alterations in brain wavebands, among
individuals with MDD (Liang et al., 2021). Although EEG signals
contain valuable diagnostic information, extracting meaningful
insights from these high-dimensional and noisy data remains a
challenge.

Machine learning (ML) and deep learning (DL) techniques
demonstrate potential for analyzing EEG signals (Subhani et al,,
2017; Rahul et al., 2024; Umair et al., 2021; Diehl and Cook, 2015).
DL models can automatically extract relevant patterns, aiding in
differentiating healthy individuals from those affected by MDD
(Subhani et al., 2017). However, traditional ML and DL training
often occurs in centralized systems, which raises privacy risks and
demand costly computational infrastructure (Umair et al., 2024;
Rahul et al., 2024). Healthcare institutions also hesitate to share
sensitive data, highlighting the need for decentralized methods that
safeguard patient privacy (Umair et al., 2023).

Federated Learning (FL) has emerged as a key approach to
decentralized training by enabling local model updates on client
devices while aggregating models at a central server (McMahan
et al., 2017). Although FL preserves data privacy, some clients
may face resource constraints that hinder local training (Umair
et al., 2023). However, a similar concept as FL i.e., split learning
(SL) addresses this challenge by splitting the model architecture
between clients and a central server, transferring only intermediate
representations instead of raw data (Gupta and Raskar, 2018). This
structure reduces the computational burden on resource-limited
devices having on device training as well (Jia et al., 2024). In the
context of EEG-based MDD diagnosis, SL can integrate distributed
data from multiple healthcare providers without centralizing
sensitive information, offering a scalable and reliable framework for
developing effective diagnostic models.

This study explores the concept of SL in conjunction with
various ML and DL models to classify MDD patients using an
EEG dataset. Model selection is critical for robust classification, so
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multiple ML classifiers including Logistic Regression (LR), Random
Forest (RF), Support Vector Machine (SVM), Decision Tree (DT),
K-Nearest Neighbors (KNN), and Gradient Boosting (GB) are
utilized for their proven performance. In addition, advanced
DL architectures such as Transformers and Autoencoders are
employed to capture the complex, high-dimensional characteristics
of EEG data. An ensemble learning principles is then implemented
in a SL framework, with three clients chosen for comparative
evaluation. Classification reports and confusion matrices serve as
the primary metrics to assess the performance of these models.
Thus, key contribution of this study is as follows:

1. Split learning framework tailored for EEG-based MDD
classification. And within this SL approach ML and DL models
are utilized for EEG features extractions and classification.

2. Proposed a ensemble model tailored for MDD disorder
classification through comprehensive performance metrics
across three clients in SL settings.

This article is organized into five main sections. Section 1
provides the background and context of the study. Section 2 reviews
related work and relevant literature. Section 3 details the methods
and materials used in the experiments. Section 4 presents the
obtained results and offers a comprehensive discussion. Finally,
Section 5 concludes the study by summarizing the key findings.

2 Related work

Researchers have recently explored a range of ML and DL
models for medical applications (Gour et al., 2023; Sultan et al.,
2023; Owais et al, 2022) yielding promising results. However,
as discussed in Section 1, the majority of these algorithms rely
on centralized architectures that raise privacy concerns and limit
their practical applicability. This section reviews recent studies that
utilize ML and DL approaches for EEG-based analysis, as well
as decentralized solutions aimed at safeguarding data privacy and
promoting scalability.

Park et al. (2021) employed multiple ML models SVM, RF,
and elastic net regression to classify six major psychiatric disorders
and healthy controls using EEG features such as power spectrum
density (PSD) and functional connectivity (FC). Their elastic net
model achieved the highest accuracy across disorders, notably
identifying schizophrenia with 93.83% accuracy using alpha PSD,
anxiety disorders with 91.03% accuracy via whole-band PSD, and
trauma and stress-related disorders with 91.21% accuracy from
beta FC features. Rafiei et al. (2022) proposed a DL model based
on a customized InceptionTime architecture for MDD detection,
achieving 91.67% accuracy with full-channel EEG data and 87.5%
after channel reduction. Rivera et al. (2022) conducted a systematic
mapping of 46 primary studies that leveraged DL for EEG-based
mental disorder diagnoses, revealing CNNs as the most common
approach and epilepsy as the most frequently studied disorder.
Wang et al. (2024) developed DiftMDD, a diffusion-based DL
framework for diagnosing MDD, incorporating Forward Diffusion
Noisy Training and Reverse Diffusion Data Augmentation to
mitigate noise and data scarcity. Anik et al. (2024) introduced an
11-layer 1D-CNN for MDD classification, focusing on gamma band
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FIGURE 1
Overview of the utilized methodology for major depressive disorder classification using EEG signals.

EEG segments of 15-second epochs, and attained 99.60% accuracy,
100% sensitivity, and 99.21% specificity.

Earl et al. (2024) used an RF model on resting-state
and emotionally charged EEG-based FC features, achieving
classification accuracies of 92.3%, 94.9%, and 89.7%. Metin
et al. (2024) combined 1D-CNN with LSTM and 2D-CNN to
classify bipolar disorder, reporting a higher accuracy (95.91%)
with the 2D-CNN compared to the 1D-CNN+LSTM (93%).
de et al. (2024) proposed SLiTRANet, a transformer-based DL
framework for MDD detection, achieving 99.92% accuracy, 99.90%
sensitivity, and 99.95% specificity. Zhu et al. (2025) introduced
MTNet, a transformer network integrating EEG and eye-tracking
data for depression detection, obtaining 91.79% accuracy and
highlighting the benefits of intermediate fusion. Ahmed et al.
(2024) utilized an ensemble of transformer based models (vanilla
BERT, BERTweet, ALBERT) to classify depression severity from
social media posts, while Ilias et al. (2024) employed BERT and
MentalBERT with extra-linguistic information for depression and
stress detection. Sun et al. (2023) introduced TensorFormer, a
multimodal transformer framework for sentiment analysis and
depression detection, demonstrating performance enhancements
on multiple datasets.

Decentralized learning approaches such as FL have also
garnered attention. Zhang et al. (2023) proposed FedBrain for
diagnosing brain disorders, integrating data augmentation, domain
alignment, and personalized predictors to handle high-dimensional
features and variable data distributions. FedBrain achieved 79%
accuracy with privacy preservation through differential privacy
and homomorphic encryption. Li et al. (2023) introduced CAFed,
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an asynchronous federated CNN-based optimizer for detecting
depression from social media data, improving communication
efficiency, convergence rates, and privacy protection while
surpassing FedAvg in non-convex problem settings.

Although these studies demonstrate promising performance,
their reliance on traditional ML and DL methods often involves
centralized or FL-based architectures that either risk privacy or
suffer from resource constraints. Therefore, this work adopts SL asa
resource-sharing methodology to address these concerns, balancing
privacy preservation with computational feasibility.

3 Materials and methods

This section describes the experimental procedures and
methods employed in this study. Figure 1 presents an overview
of the methodology, which comprises five key components: EEG
data collection, data preprocessing, model selection, SL, and
evaluation. Each component is discussed in detail in the subsequent
subsections.

3.1 Data collection

A publicly available EEG dataset (Mumtaz, 2016) is used in
this study, comprising of two groups: 33 MDD patients (mean age
40.33 4 12.86) and 30 age-matched healthy controls (mean age
38.23 £ 15.64), recruited from the outpatient clinic at Hospital
Universiti Sains Malaysia (HUSM) (Mumtaz et al., 2017). EEG data
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EEG Data collection using electrodes across various locations.
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were recorded under controlled conditions, with 5-min eyes-closed
(EC) and eyes-open (EO) sessions, using a 19-channel system
aligned with the international 10-20 standard and a linked-ear
reference (Figure 2). The system applied a 0.5-70 Hz bandpass
filter, a 50 Hz notch filter, and a sampling rate of 256 Hz, followed
by referencing to an infinity reference for subsequent analyses
(Mumtaz et al., 2017). Participants were instructed to avoid caffeine
and other substances because caffeine intake can alter arousal
states by inhibiting adenosine, thus introducing variability and
potential noise into EEG recordings (Lesar et al., 2025; Zhu et al,,
2024). MDD severity was assessed using the Beck Depression
Inventory-II (BDI-II) and the Hospital Anxiety and Depression
Scale (HADS) (Mumtaz et al., 2017). A sample shown in Figure 3
of a raw EEG signal recorded over 19 channels in a 10-second
window, demonstrates the time-domain structure of brain activity.
Accessed dataset (Mumtaz et al., 2017) contains the files structure
in pdf format, thus, we utilized python library [i.e., mne (Gramfort
et al, 2013)] in order to preprocess these EEG recording for our
case, Figure 3 is basically the recordings of EEG sample that is
preprocessed via MNE library. Each channel corresponds to a
specific scalp location following the international 10-20 system
(e.g., Fpl, F3, P3), allowing for regional analysis of cortical
oscillations. Notable fluctuations in amplitude can be seen across
channels, which may reflect ongoing cognitive or physiological
processes, as well as potential artifacts (e.g., eye blinks or muscle
movements). Similarly, in Figure 4, the power spectral density of
the EEG signal, color-coded to highlight the standard frequency
bands: Delta (0.5-4 Hz), Theta (4-8 Hz), Alpha (8-13 Hz), Beta
(13-30Hz), and Gamma (>30 Hz). The PSD curve represents the
distribution of signal power across frequencies, with characteristic
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peaks often observed in the Delta and Alpha ranges. Identifying
the relative power in these frequency bands can reveal important
information about the participant’s mental state and the presence
of any abnormal patterns indicative of neurological or psychiatric
conditions.

3.2 Data preprocessing

3.2.1 Data loading

All EEG recordings were loaded in a standardized manner to
ensure uniform data handling. A common input of 10 seconds of
EEG recording was used from each sample was then applied across
all channels to facilitate consistent inter-subject comparisons.

3.2.2 Filtering

Filtering is an essential step in EEG signal processing because
raw signals often contain noise and artifacts in frequency ranges
that are not relevant for subsequent analysis. To address this, we
employed a bandpass filter to removes unwanted noise and keeping
frequency components as well. A bandpass filter in the 0.5-60 Hz
range was employed to suppress low-frequency drifts and high-
frequency noise. Mathematically, it shown in Equation 1, where
x(t) denotes the raw EEG signal and filtered signal is denoted as x(t)

70 = FH{Fla0) - H)} M

Here, F denotes the Fourier transform, and H(w) is the ideal
passband response for the specified frequency range.
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3.2.3 Epoch segmentation

We segmented the continuous EEG into fixed-length epochs
of 5seconds each, with a 1second overlap between consecutive
segments. This specific window length strikes a practical balance
between capturing relevant EEG frequency components (e.g.,
alpha, beta, and gamma bands) and maintaining adequate temporal
resolution for classification. Shorter windows (2-3 seconds) often
fail to capture stable patterns, while substantially longer windows
(e.g., 8-10seconds) risk smoothing out important transient
features. The 1second overlap ensures continuity across segment
boundaries and mitigates the loss of transitional information that
can occur at strict epoch boundaries. Mathematically it is given in
Equation 2.

Ei={x(t)|teli-A, (i-A+1)]} (2)

where 7 = 5 seconds is the epoch length, and A = 7 — 1
seconds denotes the shift applied between consecutive segments.

3.2.4 Feature extraction

Each epoch was transformed into a feature vector by computing
a set of statistical descriptors that capture both amplitude variations
and higher-order properties of the signal distribution. If x,, denotes
the amplitude of the signal at time index 7, and N is the number of
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samples per epoch, the following examples (using Equations 3-eq6)
illustrate key feature computations. Whereas, P2P in Equation 5
refers the peak to peak amplitude of the recorded EEG signal.

1 N
H=z ;xn (3)
1 N
o= |5 Zlocn — w)? (4)
P2P = max{x,} — min{x,} (5)
RMS = 1 ixﬁ (6)
N n=1

Higher-order moments, including skewness and kurtosis, were
also evaluated to account for asymmetry in the signal distribution.

3.2.5 Labeling

Each epoch was then assigned a class label based on the
participant’s diagnostic status (0 for healthy controls, 1 for MDD).
The final output of this preprocessing pipeline was a feature matrix
of size along with a corresponding label vector. This structured
dataset was then used for the model training and evaluation.
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3.3 ML and DL models

In this section, the architectures of utilized ML and DL models
has been discussed. An overview of their architecture has been
shown in Figure 5.

3.3.1 Machine learning classifiers

Model selection plays a pivotal role in achieving robust
classification performance. Consequently, the following tree-based
and other conventional ML classifiers were employed: LR, RE, SVM,
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DT, KNN, and GB. Each classifier offers distinct inductive biases
and learning strategies that are used to capture diverse patterns in
EEG-based features for distinguishing MDD patients from healthy
controls.

Moreover, all hyperparameter settings (e.g., n_estimators =
100 for RE max_depth = 10 for DT, n_neighbors = 7 for KNN)
were determined via a grid search procedure. This involved
systematically varying key parameters within predefined ranges
and evaluating model performance through cross-validation on the
training set. The final configurations were selected based on their
classification report.
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3.3.1.1 Decision tree

A DT recursively partitions the feature space by selecting
optimal split points that maximize homogeneity in the resulting
subsets. As given in Equation 7, D represent the training dataset and
jbe the index of a potential split on feature x;. The split criterion can
be based on information gain or the Gini index. For instance, using
the Gini index G, the split s on feature x; is chosen to minimize.

§* = argmin [EG(DL) + n—RG(DR)], (7)
s n n

where Dy and Dp are the left and right child partitions of D after
the split s, ny, and ng are the respective sizes of these partitions, and
n is the total number of samples in D.

3.3.1.2 Random forest

RF constructs an ensemble of decision trees, each trained on
a bootstrap sample of the original dataset. At each split node, a
random subset of features is considered to enhance diversity among
the trees. The model’s prediction is obtained via majority voting
(for classification) across all trees. Mathematically it is given in
Equation 8.

j=mode((h(x)|t=1,..., T}), (8)

where h;(x) denotes the prediction from the ¢-th tree and T is
the total number of trees in the forest.

3.3.1.3 Gradient boosting

GB sequentially fits new weak learners (often decision trees)
to the negative gradient of a specified loss function. As given in
Equation 9, y; denotes the true label of instance i, and let Fy,—;
be the ensemble model at iteration (m — 1). A new base learner
hy, is trained to approximate the negative gradient of the loss
£(yi, Fin—1(xi)). The ensemble is then updated as:

Fp(x) = Fn—1(x) + 1 - hin(x), &)

where 71 is the learning rate. This iterative procedure allows
optimizer to correct the residual errors from the previous step,
leading to improved performance over single-tree methods.

3.3.1.4 Logistic Regression

LR estimates the probability that a sample x belongs to the
positive class (denoted by y = 1) using the sigmoid function. As
given in Equation 10:

1
1+ exp(—(B"x + fo)’

px) =0(BTx + o) = (10)

where B is the weight vector, By is the intercept, and o (:)
represents the sigmoid. A threshold (i.e., 0.5) is applied to p(x) to
determine class of the given input.

3.3.1.5 Support vector machine

SVM is a widely used supervised learning technique renowned
for its effectiveness in high-dimensional spaces and robust
generalization capabilities. The key principle of SVM lies in finding
an optimal decision boundary (hyperplane) that maximizes the
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margin between different classes, thus improving classification
performance. In its linear form, SVM is given in Equation 11,

1
minir;lize £||w||2 subject to yi(wai +b)>1,Vi (11)
W,

where w and b define the hyperplane, and y; € {—1,+1} denotes
class labels. Nonlinear decision boundaries can be learned via
kernel functions.

3.3.1.6 K-Nearest Neighbors

K-Nearest Neighbors (KNN) is a simple yet effective non-
parametric, instance-based learning method. It assigns a class to a
query point X, by considering the classes of its k nearest neighbors.
The distance metric often used is the Euclidean distance (as given
in Equation 12).

d(xg,x;) =

M
D g — xi)? (12)
j=1

where M is the number of features. The predicted class is
determined by a majority vote among these k neighbors.

3.4 DL models

3.4.1 Transformer models

Transformer architectures have gained prominence for their
capacity to capture long-range dependencies and context within
sequential data, making them particularly appealing for EEG-based
analysis. Unlike traditional recurrent networks, Transformers
dispense with explicit recurrence and convolutional operations,
relying instead on an attention mechanism. Mathematically (as
shown in Equation 13), Q, K, and V denote the query, key, and
value matrices, respectively, then a single-head attention module
can be written as:

KT
Attention(Q, K, V) = softmax( Q

i)

where dj is the dimension of the key vectors, and softmax

(13)

function normalizes the attention scores. Multi-head attention
extends this formulation by employing several parallel attention
mechanisms and concatenating their outputs to enrich the
representational capacity (as given in Equation 14).

MultiHead(Q,K, V) = HI::lAttention(QWQ, KWE, vw))y wo,

(14)

where H denotes concatenation across H attention heads, and
WhQ, W}If R WIY ,and WO are learned projection matrices.

In EEG analysis, input sequences can be framed as embeddings
of multi-channel signals over time, enabling the transformer
to learn context-dependent patterns relevant for mental health
classification. Positional encodings are commonly added to the
input embeddings to preserve temporal order. This attention-based
approach often yields superior performance in capturing nuanced
dependencies within EEG signals, especially for tasks such as MDD
detection.
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3.4.2 Autoencoders

Autoencoders are a family of neural network models designed
to learn compressed representations (encodings) of the input data
by minimizing reconstruction error. They consist of two main
components i.e., Encoder and Decoder. Encoder, maps an input
x € RP to alatent code z € R? (with d < D) as given in
Equation 15,

Z = fenc(x). (15)

Whereas, decoder reconstructs the original input from
z, producing X € RP as when in Equation 16:

X = faec(2). (16)
The model is typically optimized to minimize:
L= |x-x? (17)

another suitable measure of reconstruction fidelity. By
constraining the latent dimension d, autoencoders learn salient
features that represent the most informative aspects of the data. In
EEG-based MDD detection, autoencoders can help denoise signals
or extract meaningful representations that capture underlying
neural patterns. These learned representations may then serve as
inputs for downstream classifiers or be integrated into end-to-end
DL pipelines for improved diagnostic accuracy.

3.5 Ensemble learning

Ensemble learning combines multiple base models to achieve
improved predictive performance relative to any single constituent
model. This approach capitalizes on the principle of “wisdom of the
crowd,” where diverse model outputs are aggregated to form a final
decision. A common strategy for building ensembles include:

3.5.1 Bagging

Bagging (Bootstrap Aggregating) trains each base learner on
a different bootstrap sample (randomly drawn with replacement)
of the original dataset. Let {DI,}]g:1 be the collection of bootstrap
samples, each used to train a distinct model hy(x). The final
prediction is obtained by averaging or voting across the ensemble:

majority{ hy(x) }521 , classification
5 X omt (),

)A’bagging - ( 1 8)

regression

Bagging often reduces variance without substantially increasing
bias, making it effective for high-variance models like decision
trees.

Ensemble learning is particularly relevant for EEG-based
MDD classification due to the high dimensionality and variability
inherent in EEG signals. It is because of this reason, ensemble
learning was utilized using best performing ML model and then
best performing DL model. By integrating these models, ensembles
have the potential to yield more reliable and generalizable
predictions for clinical applications.
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3.6 Split learning

SL offers a decentralized framework designed to address privacy
and resource constraints, particularly relevant when clinical or EEG
datasets cannot be shared in raw form. Unlike fully centralized
methods, where all data must reside on a single server, SL divides a
neural network into multiple segments to be trained collaboratively
between clients and a central server. In this study, three clients
are assumed, each holding a portion of the EEG data locally
(as shown in Figure 6). After data preprocessing (Section 3.2),
SL is implemented to enable model training without direct data
exchange across clients.

3.6.1 Architectural overview

SL offers a collaborative training framework by partitioning a
neural network between clients and a central server. This approach
helps ensure that sensitive data like EEG signals remain local to
each client, while still enabling the development of robust, shared
models. In the context of MDD classification, SL architecture that
we used is shown in Figure 6 that is particularly beneficial, as it
enable data training while managing resources efficiently.Consider
a neural network f(-) decomposed into two primary segments
(as given in Equation 19. Where: fqien: denotes the partial model
residing on the client side, parametrized by @, which transforms
local data x into an intermediate representation z. ferver denotes
the remaining portion of the model, located on a central server and
parametrized by ¢. It processes the intermediate representation z
to produce predictions (e.g., class probabilities). And, ¢ symbolizes
the functional concatenation of the two segments.

f(X; 0, ¢) =fclient(X; 0) o fserver(Z§ ¢) (19)

Each client trains only fgient 0n its local dataset, while feerver is
trained on the server side using the intermediate representations z
received from the clients. This design ensures that raw EEG data
never leaves the client’s local environment. In utilized methodology
for SL, each client i forwards only intermediate activations z
derived from its local data to the server, which handles the
remaining layers and calculates the global loss. The server’s
gradients are backpropagated to the clients, enabling local updates
while preserving data privacy. This division of computational
labor also alleviates resource constraints on client devices, as
the heaviest computations can be offloaded to the server. This
makes SL particularly applicable for MDD classification, where
healthcare institutions typically hold proprietary EEG data. By
sharing only intermediate features, SL mitigates privacy concerns
and fosters collaborative model development, enabling a more
inclusive and robust system for detecting and monitoring mental
health conditions.

3.6.2 Algorithmic workflow for split learning

In this subsection, workflow of the utilized SL methodology
has been described, as it starts with initialization, local processing
and then toward clients processing and propagation, these steps are
given as below:
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Split learning concept.

3.6.2.1 Initialization

Each client C; initializes its local model parameters 6;, while
the central server initializes its parameters ¢. Data normalization
or other preliminary setup is performed here.

3.6.2.2 Local preprocessing

Prior to training, each client cleans and preprocesses its local
EEG data (e.g., filtering, artifact removal). This ensures high-quality
input to the client-side model fcjien((-; 0:).

3.6.2.3 Client forward pass

The client-side model fj;ent processes the local EEG data D; to
produce intermediate representations z;. Because only z; is shared,
raw EEG data remains private.

3.6.2.4 Intermediate transmission
Clients transmit z; to the central server. This step preserves data
privacy, as the raw EEG signals never leave the local environment.

3.6.2.5 Server forward pass and loss computation

The central server processes all received activations {z;} using
The server computes a global loss L by aggregating individual losses
(e.g., cross-entropy) for each client’s predictions ;.

3.6.2.6 Backpropagation and parameter updates

Using the global loss L, the server performs backpropagation to
update its parameters ¢. By the chain rule, partial gradients are also
computed and sent back to each client.

3.6.2.7 Client-side parameter updates

Upon receiving the relevant gradients, each client updates its
local parameters ;. This allows clients to learn collaboratively
without ever sharing raw EEG data.

3.6.2.8 lteration and convergence
All previous steps (from local preprocessing to parameter
updates) are repeated for multiple epochs. Once convergence is
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reached, the final model consists of updated client-side parameters
{6} and server-side parameters ¢.

3.6.2.9 Output

The trained SL model can be deployed for EEG classification.
Each client retains its local model segment 8;, while the server holds
¢, ensuring continual privacy protection.

3.7 Evaluation metrics

Classification performance was evaluated using standard
metrics derived from the confusion matrix in a binary classification
setting (Healthy vs. MDD). Let TP (True Positive) be the number
of MDD instances correctly classified, TN (True Negative) the
number of Healthy instances correctly classified, FP (False Positive)
the number of Healthy instances misclassified as MDD, and FN
(False Negative) the number of MDD instances misclassified as
Healthy. These values form the following 2 x 2 confusion matrix,
from this matrix, the evaluation metrics are computed that are
accuracy, precision, recall, and F1-score:

TP FP
FN TN

3.7.1 Accuracy

Accuracy (Equation 20) measures the overall rate of correct
predictions across all instances. It is the proportion of TP and TN
from all predicted values by the model. It measures the proportion
of instances that are correctly predicted out of the total number of
predictions.

TP + TN

. (20)
TP + TN 4+ FP + FEN

Accuracy =
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3.7.2 Precision
Precision is a crucial metric that quantifies the model’s ability
to correctly identify positive (MDD) cases among all predicted
positives. As given in Equation 21, it is the ratio of TP to the sum of
FP and TN
TP

Precision = ——.
TP + FP

(1)

3.7.3 Recall

Recall, sometimes referred to as sensitivity, measures the
model’s effectiveness at identifying all positive (MDD) instances in
a dataset. Mathematically, as given in Equation 22, it is the ratio of
TP to the sum of TN and FN.

TP

Recall = ———.
TP + EN

(22)

3.7.4 F1-Score

The F1-Score provides a balanced assessment of a model’s
performance by combining both Precision and Recall into a single
metric. Mathematically expressed in Equation 23, it is the harmonic
mean of Precision and Recall. Unlike a simple arithmetic mean, the
harmonic mean penalizes extreme values, ensuring both Precision
and Recall share comparable significance in the final score.

Precision x Recall

F1 Score =2 x (23)

Precision + Recall’

3.7.5 Confusion matrix

Confusion matrix provides a visual overview of classification
performance. It indicates how frequently the classifier confuses
one class for the other, offering deeper insight into errors (FPs
vs. FNs). For binary classification (Healthy vs. MDD), the matrix
aids in diagnosing misclassification patterns and refining model
strategies. All these metrics collectively form the classification
report, enabling a comprehensive assessment of each model’s
performance in detecting MDD from EEG signals.

4 Results and discussion

In this section, we present a comprehensive evaluation of the
proposed classification approaches for MDD detection. We analyze
the performance of both ML and DL models, and additionally
showcase an ensemble method that utilizes the SL framework. By
assessing metrics such as accuracy, precision, recall, and F1-Score,
we gain insight into each model’s strengths and limitations.

4.1 ML models results

As discussed earlier, several ML models i.e., LR, RE, SVM, DT,
KNN, and GB were utilized to classify MDD using EEG data.
Table 1 presents their respective performances on the test set, along
with best cross-validation (CV) scores and optimal hyperparameter
configurations. The key findings for each model are summarized
below.
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4.1.1 LR model

Achieved a test accuracy of 92.41%, with F1-Scores of 0.9160
for the Healthy class and 0.9308 for the MDD class. Its best CV
score was 0.8833. These results suggest that LR provides a stable
generalization capability when distinguishing between Healthy
and MDD samples. The best hyperparameter setting at C: 0.1
indicates a preference for regularization to control overfitting in
high-dimensional EEG feature spaces.

4.1.2 RF model

Achieved a test accuracy of 100%, outperforming other ML
models. Its best CV score was 0.9138. The selected hyperparameter
(number of estimators 100) enable an ensemble of sufficiently large
and diverse trees. Due to its strong performance, RF was chosen for
the ensemble approach with Deep Learning models, as shown in
Figure 7.

4.1.3 SVM model

Achieved an accuracy of 98.74%, indicating a clear separation
between the two classes. Its F1-Scores of 0.9865 (Healthy) and
0.9882 (MDD) reflect the model’s effectiveness. The best CV score
was 0.9182, achieved with hyperparameter (C: 10, kernel: rbf). This
shows that SVM is suitable for handling EEG data with potentially
complex class boundaries.

4.1.4 DT model

Achieved an accuracy of 97.75%. Its best CV score was 0.8740.
By employing a moderately deep tree with max depth of 10, the
DT model partitions the EEG feature space effectively. Although
decision trees can overfit, this depth appears to balance training
accuracy and generalization for the MDD classification task.

4.1.5 KNN model

Achieved an accuracy of 100%, similar to the RF model. Its
best CV score was 0.8713. The chosen hyperparameters number
of neighbors: 7, weights: distance uses distance-based weighting
in separable EEG clusters. However, KNN can be computationally
expensive at inference time and typically requires extensive
parameter tuning for integration with DL pipelines, so it was not
selected for the ensemble stage.

4.1.6 GB model

Achieved an accuracy of 99.35%, with a best CV score 0of 0.9184.
It iteratively refined weak learners using a learning rate of 0.2
and 100 estimators. Its F1-Scores of 0.9931 (Healthy) and 0.9939
(MDD) indicate that boosting rounds improve classification by
reducing both bias and variance.

Table 1 shows that all models attain high classification
performance. RF and KNN reach 100% accuracy on the test set,
while SVM, DT, LR, and GB also present strong results. The
consistent F1-Scores reinforce the effectiveness of EEG features for
detecting MDD.
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TABLE 1 Performance of Various Machine Learning Models for MDD Classification.

Model Bestscore (CV) Best params Accuracy F1 (Healthy) F1(MDD) TP FP FN TN ‘
Logistic regression 0.8833 {C: 0.1} 0.9241 0.9160 0.9308 9,382 1,022 374 7,609
Random forest 0.9138 {max_depth: None, 1.0000 1.0000 1.0000 9,756 0 0 8,631
n_estimators: 100}
SVM 0.9182 {C: 10, kernel: rbf} 0.9874 0.9865 0.9882 9,699 175 57 8,456
Decision tree 0.8740 {max_depth: 10} 0.9775 0.9759 0.9790 9,606 263 150 8,368
K-Nearest 0.8713 {n_neighbors: 7, 1.0000 1.0000 1.0000 9,756 0 0 8,631
Neighbors weights: distance}
Gradient Boosting 0.9184 {learning_rate: 0.2, 0.9935 0.9931 0.9939 9,721 84 35 8,547
n_estimators: 100}
Accuracy Comparison
1.0 e 0.9900
0.9 4
0.8249
0.8 4
0y
e
3 07
<
0.6
0.5 1
0.4 : v T
Random Forest Autoencoder + Random Forest Transformer + Random Forest
Model
FIGURE 7
Accuracies comparison for best performing ML along with ensemble DL model.

TABLE 2 4-Fold cross-validation accuracies for each classifier.

Model Fold Fold Fold Fold4 Mean
1 2 3

Logistic regression 0.92 0.88 0.93 0.90 0.91
Random forest 1.00 0.99 0.96 1.00 0.98
SVM 0.95 0.94 0.98 0.97 0.96
Decision tree 0.87 0.88 0.90 0.86 0.88
K-Nearest 0.99 0.96 0.95 0.98 0.97
Neighbors

Gradient boosting 0.93 0.94 0.95 0.92 0.93

4.1.7 KFold cross validation results

Table 2 shows the accuracy for each classifier across four
folds of cross-validation. The Mean column reports the average
accuracy across all folds. By separating the data into distinct
training/validation splits for each fold, we reduce the risk of
overfitting and obtain a more realistic estimate of out-of-sample
performance.
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4.2 DL models performances along with
ensemble learning

After training an autoencoder to learn compact EEG
representations, multiple classifiers were evaluated on these
latent features. Table 3 summarizes the results for both a baseline
autoencoder-only ensemble and five conventional ML algorithms
trained on autoencoder outputs. Each row reports the overall
accuracy as well as precision, recall, and F1-scores for both classes
(Healthy and MDD).

4.2.1 Discussion of autoencoder-based results
Table 3 that autoencoder-derived
representations yield competitive performance across multiple

demonstrates using
classifiers. The baseline ensemble (first row) provides a moderate
accuracy of 0.6884, indicating that unsupervised feature extraction
alone captures some discriminative patterns.

RF and SVM show the highest accuracies (over 0.82),
suggesting that tree-ensemble and margin-based methods
effectively exploit these latent features. K-Nearest Neighbors and
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TABLE 3 Classification performance on autoencoder and with ensemble autoencoder.

Accuracy Healthy MDD
Precision Recall Precision Recall
Autoencoder (baseline) 0.6884 0.7031 0.5817 0.6367 0.6791 0.7828 0.7273
Autoencoder + random forest 0.8249 0.9321 0.6761 0.7837 0.7696 0.9565 0.8529
SVM 0.8222 0.9061 0.6929 0.7853 0.7752 0.9365 0.8483
Autoencoder + decision tree 0.6833 0.6947 0.5800 0.6321 0.6759 0.7746 0.7219
Autoencoder + K-Nearest Neighbors 0.7692 0.7627 0.7375 0.7499 0.7745 0.7971 0.7857
Autoencoder + gradient boosting 0.7735 0.8187 0.6645 0.7336 0.7457 0.8699 0.8030

TABLE 4 Classification performance on transformer and ensemble models.

Accuracy Healthy MDD
Precision Recall Precision Recall
Transformer (baseline) 0.9000 0.9100 0.8800 0.8950 0.9000 0.9200 0.9100
Transformer + decision tree 0.8800 0.8900 0.8600 0.8750 0.8700 0.8900 0.8800
Transformer + K-Nearest Neighbors 0.9200 0.9100 0.9200 0.9150 0.9300 0.9200 0.9250
Transformer + SVM 0.9300 0.9400 0.9200 0.9300 0.9300 0.9400 0.9350
Transformer + gradient boosting 0.9500 0.9500 0.9400 0.9450 0.9400 0.9500 0.9450
Transformer + random forest 0.9900 0.9900 0.9900 0.9900 0.9900 0.9900 0.9900

Gradient Boosting also achieve an accuracies of approximately
0.77, while the single DT model exhibits lower performance (0.68)
relative to ensemble approaches. RF high precision for Healthy
(0.9321) and recall for MDD (0.9565) underline its balanced
detection capabilities in this context.

4.2.2 Transformer-based classification

As transformer model is utilized to capture long-range
dependencies in EEG signals, several classifiers were applied to
the Transformer outputs for final predictions as well. Table 4
summarizes the results, including a standalone Transformer
baseline and five conventional ML classifiers. The table reports
overall accuracy, alongside precision, recall, and F1-scores for the
two classes (Healthy vs. MDD). Their detailed results discussion has
been given in Section 4.2.3.

4.2.3 Discussion of transformer-based results

In this subsection the results achieved for ensemble learning
has been discussed, as we utilized transformers along with ML
models and these has been given in Table4 that shows the
classification performance of the baseline Transformer model and
its combinations with different ML classifiers. The standalone
Transformer (Baseline) achieves an accuracy of 0.90, with 0.91
precision, 0.88 recall, and 0.895 F1 for the Healthy class, and 0.90
precision, 0.92 recall, and 0.91 F1 for the MDD class. These results
indicate that the Transformer can extract features from EEG signals
that help differentiate between Healthy and MDD instances.

Transformer + DT yields an accuracy of 0.88. For the Healthy
class, it achieves 0.89 precision, 0.86 recall, and 0.875 F1, while for
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the MDD class it attains 0.87 precision, 0.89 recall, and 0.88 F1.
Even though this is lower than some other combinations, it still
shows reasonable performance compared to traditional EEG-based
methods.

Transformer + KNN reports an accuracy of 0.92. The Healthy
class has 0.91 precision, 0.92 recall, and 0.915 FI, and the MDD
class has 0.93 precision, 0.92 recall, and 0.925 F1. These numbers
suggest that local distance-based methods can work well when
applied to Transformer outputs.

Transformer + SVM achieves an accuracy of 0.93. For the
Healthy class, precision, recall, and F1 are 0.94, 0.92, and 0.93,
respectively, while for the MDD class they are 0.93, 0.94, and
0.935. This indicates that margin-based classification benefits from
sequence-aware features extracted by the Transformer.

Transformer + GB attains an accuracy of 0.95. Its
Healthy metrics are 0.95 precision, 0.94 recall, and 0.945
F1, and its MDD metrics are 0.94 precision, 0.95 recall,
and 0945 Fl. This suggests that boosting rounds are
effective at refining the latent representations provided by
the Transformer.

Transformer + RF achieves the highest accuracy of 0.99.
Precision, recall, and F1 for both Healthy and MDD classes are all
0.99, showing that the ensemble of decision trees makes good use
of attention-based features.

Thus, combining the Transformer with robust classification
algorithms enhances performance compared to the baseline.
The best results come from pairing the Transformer with
RE followed by GB, SVM, KNN, and DT. These findings
illustrate that attention-based feature extraction can improve
EEG-based MDD classification when integrated with well-chosen
ML methods.
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TABLE 5 Performance of split learning across three clients.

10.3389/fncom.2025.1569828

Client Accuracy Precision Recall F1-Score Healthy MDD
Correct Misclass. Correct Misclass.
Client 1 0.9574 0.9577 0.9574 0.9574 2,744 172 3,124 89
Client 2 0.9623 0.9625 0.9623 0.9623 2,679 148 3,219 83
Client 3 0.9543 0.9549 0.9543 0.9543 2,691 197 3,158 83
Thus got an average Tipference Of 2.0866 seconds. This end-to-
ROC Curves end metric reflects the time from when an EEG sample arrives at the
10 client to when the final classification outcome is returned, including
f gl both local and server-side computations.
0.8 ///
Q -7 . . . .
5 e 4.3.1 Discussion of split learning results
g o5 e Table 5 illustrates that all three clients attain high classification
= e accuracy, exceeding 95%. Client 2 achieves the best overall accuracy
& " s of 0.9623, closely followed by Client 1 (0.9574) and Client 3
(Ol -7 . . . .
; s (0.9543). Precision and Recall remain closely aligned for each
P client, reflecting a balanced ability to detect both Healthy and
0:2 // — C'fe"t 1 MDD classes. Confusion matrix counts indicate that relatively few
# : E::Z::‘; Healthy samples are misclassified as MDD and vice versa. ROC
ol i i . . curve shown in Figure 8 also reflects that each client achieved
0.0 0.2 0.4 0.6 0.8 1.0 . .. . . e . .-
False Positive Rate higher true positive rate showing their ability and reliability.
feuRe 8 These findings shows that a SL approach, utilized with a
ROC curves for clients in SL settings. transformer architecture for local feature extraction and RF
model for final classification, can maintain robust performance

4.3 Split learning results

SL framework was implemented across three clients,
each training local Transformer-based encoders whose latent
representations were subsequently processed by a RF classifier
on the server side. Table 5 shows the key performance metrics
(Accuracy, Precision, Recall, and FI-Score) for each client,
alongside the main confusion matrix values (correct vs.
misclassified instances of Healthy and MDD). The average
inference time per client was measured at 2.0866 seconds.

To quantify inference time, we define the total inference time

for a single sample on the i-th client as given in Equation 24:

M

inference loca

(i)
T

transfer

+ Tserver» (24)

where Tl(i)1 is the local forward pass time through the
ocal .
Transformer on client i, Tt(r';nsfer is the latency for transmitting the
latent representation to the server, and Tserver is the server-side
classification time using the RF model. The average inference time

Tinference across all k clients mathematically is given in Equation 25.

k
1 -
Tinference = % Z Ti(r?ference' (25)
i=1
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while preserving data privacy. Additionally, the measured average
inference time of 2.0866seconds per client suggests that this
collaborative framework is computationally feasible for real-world
EEG based mental health applications.

While these performance metrics are promising, practical
deployment on devices with limited compute capabilities (e.g.,
mobile EEG headsets, embedded healthcare systems) demands
additional optimization. Because SL partitions the model into
client-side and server-side segments, heavier computations—
such as the Transformer’s attention blocks—are executed on
the server, reducing on-device resource usage. Future work will
involve benchmarking these strategies across diverse hardware
platforms to quantify improvements in latency, memory use, and
power efficiency.

5 Conclusion

This work presented an effective methodology for major
depressive disorder classification by integrating advanced EEG
feature extraction, ensemble models, and split learning to
safeguard privacy. In conventional centralized experiments,
RE, KNN, and GB achieved commendable performance, while
a Transformer-RF ensemble model achieved 99% accuracy.
Autoencoder-based feature learning provided notable results,
illustrating that unsupervised approaches can be profitably
combined with supervised classifiers. Crucially, the split learning
implementation validated the feasibility of decentralizing training:
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three distinct clients each achieved over 95% accuracy, with
minimal performance trade-offs relative to centralized schemes. By
maintaining data on local nodes and exchanging only intermediate
representations, the framework supported institutional privacy
requirements while offering robust classification outcomes.
Future investigations may include refining model architectures
for improved efficiency, exploring additional neurophysiological
data modalities, and extending the approach to multi-disorder
classification scenarios, thereby broadening the applicability
EEG analytics in

of privacy-preserving, high-performance

clinical settings.

Data availability statement

The original contributions presented in the study are
included in the article/supplementary material, further inquiries
can be directed to the corresponding author. The datasets
analyzed and utilized for this study can be found at DOI:
10.6084/m9.figshare.4244171.v2.

Ethics statement

The studies involving humans were approved by the ethics
committee, Hospital Universiti Sains Malaysia (HUSM), Malaysia.
The studies were conducted in accordance with the local legislation
and institutional requirements. Written informed consent for
participation was not required from the participants or the
participants’ legal guardians/next of kin in accordance with the
national legislation and institutional requirements.

Author contributions

MU: Methodology, Software, Writing - original draft. JA:
Investigation, Validation, Writing — review & editing. NA: Formal
analysis, Funding acquisition, Project administration, Writing -
review & editing. OS: Formal analysis, Funding acquisition, Project
administration, Writing - review & editing. MH: Investigation,
Validation, Writing - review & editing, Funding acquisition.
AK: Investigation, Validation, Writing - review & editing. MK:
Conceptualization, Methodology, Supervision, Writing - original
draft.

References

Ahmed, T., Ivan, S., Munir, A., and Ahmed, S. (2024). Decoding depression:
analyzing social network insights for depression severity assessment with transformers
and explainable Al Nat. Lang. Proc. J. 7:100079. doi: 10.1016/j.n1p.2024.100079

Anik, 1. A., Kamal, A. H. M., Kabir, M. A., Uddin, S., and Moni, M. A. (2024). A
robust deep-learning model to detect major depressive disorder utilizing EEG signals.
IEEE Trans. Artif. Intell. 5, 4938-4947. doi: 10.1109/TAI.2024.3394792

de, S., Singh, A., Tiwari, V., Patel, H., Vivekananda, G. N., and Singh Rajput, D.
(2024). Slitranet: an EEG-based automated diagnosis framework for major depressive
disorder monitoring using a novel LGCN and transformer-based hybrid deep learning
approach. IEEE Access 12, 173109-173126. doi: 10.1109/ACCESS.2024.3493140

Frontiersin Computational Neuroscience

10.3389/fncom.2025.1569828

Funding

The author(s) declare that financial support was received for
the research and/or publication of this article. This work is funded
by Princess Nourah bint Abdulrahman University Researchers
Supporting Project number (PNURSP2025R760), Princess Nourah
bint Abdulrahman University, Riyadh, Saudi Arabia. The authors
extend their appreciation to the Deanship of Scientific Research
at King Khalid University for funding this work through a Small
Group Research Project under grant number RGP1/405/44.

Acknowledgments

This work is funded by Princess Nourah bint Abdulrahman
University ~ Researchers Supporting Project number
(PNURSP2025R760), Princess Nourah bint Abdulrahman

University, Riyadh, Saudi Arabia. The authors extend their
appreciation to the Deanship of Scientific Research at King Khalid
University for funding this work through a Small Group Research
Project under grant number RGP1/405/44.

Conflict of interest

The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be
construed as a potential conflict of interest.

Generative Al statement

The author(s) declare that no Gen AI was used in the creation
of this manuscript.

Publisher’s note

All claims expressed in this article are solely those of the
authors and do not necessarily represent those of their affiliated
organizations, or those of the publisher, the editors and the
reviewers. Any product that may be evaluated in this article, or
claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

Diehl, P. U,, and Cook, M. (2015). Unsupervised learning of digit recognition
using  spike-timing-dependent  plasticity. Front. ~Comput. Neurosci. 9:99.
doi: 10.3389/fncom.2015.00099

Earl, E. H,, Goyal, M., Mishra, S., Kannan, B., Mishra, A., Chowdhury, N, et al.
(2024). EEG based functional connectivity in resting and emotional states may identify
major depressive disorder using machine learning. Clin. Neurophysiol. 164, 130-137.
doi: 10.1016/j.clinph.2024.05.017

Gour, N., Hassan, T., Owais, M., Ganapathi, I. I, Khanna, P., Seghier, M. L., et al.
(2023). Transformers for autonomous recognition of psychiatric dysfunction via raw
and imbalanced EEG signals. Brain Inform. 10:25. doi: 10.1186/s40708-023-00201-y

frontiersin.org


https://doi.org/10.3389/fncom.2025.1569828
https://doi.org/10.6084/m9.figshare.4244171.v2
https://doi.org/10.1016/j.nlp.2024.100079
https://doi.org/10.1109/TAI.2024.3394792
https://doi.org/10.1109/ACCESS.2024.3493140
https://doi.org/10.3389/fncom.2015.00099
https://doi.org/10.1016/j.clinph.2024.05.017
https://doi.org/10.1186/s40708-023-00201-y
https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org

Umair et al.

Gramfort, A., Luessi, M., Larson, E., Engemann, D. A., Strohmeier, D., Brodbeck,
C., etal. (2013). MEG and EEG data analysis with MNE-Python. Front. Neurosci. 7:267.
doi: 10.3389/fnins.2013.00267

Gupta, O., and Raskar, R. (2018). Distributed learning of deep neural network over
multiple agents. J. Netw. Comput. Applic. 116, 1-8. doi: 10.1016/j.jnca.2018.05.003

Hagan, A. T., Xu, L., Klugah-Brown, B., Li, J.,, Jiang, X. and Kendrick,
K. M. (2025). The pharmacodynamic modulation effect of oxytocin on resting
state functional connectivity network topology. Front. Pharmacol. 15:1460513.
doi: 10.3389/fphar.2024.1460513

Herculano-Houzel, S. (2009). The human brain in numbers: a linearly
scaled-up primate brain. Front. Hum. Neurosci. 3:31. doi: 10.3389/neuro.09.
031.2009

Ilias, L., Mouzakitis, S., and Askounis, D. (2024). Calibration of transformer-based
models for identifying stress and depression in social media. IEEE Trans. Comput. Soc.
Syst. 11, 1979-1990. doi: 10.1109/TCSS.2023.3283009

Jia, Y., Liu, B.,, Zhang, X, Dai, F., Khan, A, Qi, L, et al. (2024). Model
pruning-enabled federated split learning for resource-constrained devices in artificial
intelligence empowered edge computing environment. ACM Trans. Sen. Netw.
doi: 10.1145/3687478

Kreiviniené, B., Saltyt, E, Vaisiauske, L., and Matiulskyte, S. (2025). Therapeutic
effect of proprioceptive dolphin assisted activities on health-related quality of
life and muscle tension, biomechanical and viscoelastic properties in major
depressive disorder adults: case analysis. Front. Hum. Neurosci. 18:1487293.
doi: 10.3389/fnhum.2024.1487293

Lesar, M., Sajovic, J., Novakovi¢, D., Primozi¢, M., Vetrih, E., Sajovic, M., et
al. (2025). The complexity of caffeine’s effects on regular coffee consumers. Heliyon
11:e41471. doi: 10.1016/j.heliyon.2024.e41471

Li, J., Jiang, M., Qin, Y., Zhang, R, and Ling, S. H. (2023). Intelligent depression
detection with asynchronous federated optimization. Complex Intell. Syst. 9, 115-131.
doi: 10.1007/s40747-022-00729-2

Liang, A., Zhao, S., Song, J., Zhang, Y., Zhang, Y., Niu, X,, et al. (2021). Treatment
effect of exercise intervention for female college students with depression: analysis
of electroencephalogram microstates and power spectrum. Sustainability 13:6822.
doi: 10.3390/su13126822

McMahan, B., Moore, E., Ramage, D., Hampson, S., and Arcas, B. A. (2017).
“Communication-efficient learning of deep networks from decentralized data, in
Proceedings of the 20th International Conference on Artificial Intelligence and Statistics,
volume 54 of Proceedings of Machine Learning Research, eds. A. Singh, and J. Zhu
(PMLR), 1273-1282.

Metin, B., Uyulan, C, Ergiizel, T. T., Farhad, S., Cifcl, E., Tirk, 0., et al.
(2024). The deep learning method differentiates patients with bipolar disorder from
controls with high accuracy using EEG data. Clin. EEG Neurosci. 55, 167-175.
doi: 10.1177/15500594221137234

Mumtaz, W. (2016). MDD Patients and Healthy Controls EEG Data (New).
doi: 10.6084/m9.figshare.4244171.v2

Mumtaz, W., Xia, L., Ali, S. S. A,, Yasin, M. A. M., Hussain, M., and Malik, A.
S. (2017). Electroencephalogram (EEG)-based computer-aided technique to diagnose
major depressive disorder (mdd). Biomed. Signal Process. Control 31, 108-115.
doi: 10.1016/j.bspc.2016.07.006

Owais, M., Sultan, H., Baek, N. R, Lee, Y. W., Usman, M., Nguyen, D. T, et al.
(2022). Deep 3D volumetric model genesis for efficient screening of lung infection
using chest CT scans. Mathematics 10:4160. doi: 10.3390/math10214160

Park, S. M., Jeong, B, Oh, D. Y, Choi, C.-H,, Jung, H. Y, Lee, J-
Y., et al. (2021). Identification of major psychiatric disorders from resting-

Frontiersin Computational Neuroscience

122

10.3389/fncom.2025.1569828

state electroencephalography using a machine learning approach. Front. Psychiatry
12:707581. doi: 10.3389/fpsyt.2021.707581

Perrottelli, A., Giordano, G. M., Brando, F., Giuliani, L., and Mucci, A. (2021). EEG-
based measures in at-risk mental state and early stages of schizophrenia: a systematic
review. Front. Psychiatry 12:653642. doi: 10.3389/fpsyt.2021.653642

Rafiei, A., Zahedifar, R., Sitaula, C., and Marzbanrad, F. (2022). Automated
detection of major depressive disorder with EEG signals: a time series classification
using deep learning. IEEE Access 10, 73804-73817. doi: 10.1109/ACCESS.2022.3190502

Rahul, J., Sharma, D., Sharma, L. D., Nanda, U., and Sarkar, A. K. (2024).
A systematic review of EEG based automated schizophrenia classification
through machine learning and deep learning. Front. Hum. Neurosci. 18:1347082.
doi: 10.3389/fnhum.2024.1347082

Rivera, M. J., Teruel, M. A, Mate, A, and Trujillo, J. (2022). Diagnosis
and prognosis of mental disorders by means of EEG and deep learning: a
systematic mapping study. Artif. Intell. Rev. 55, 1209-1251. doi: 10.1007/s10462-021-
09986-y

Subhani, A. R., Mumtaz, W., Saad, M. N. B. M., Kamel, N., and Malik, A. S. (2017).
Machine learning framework for the detection of mental stress at multiple levels. IEEE
Access 5, 13545-13556. doi: 10.1109/ACCESS.2017.2723622

Sultan, H., Owais, M., Nam, S. H., Haider, A., Akram, R,, Usman, M., et al.
(2023). MDFU-net: Multiscale dilated features up-sampling network for accurate
segmentation of tumor from heterogeneous brain data. J. King Saud Univ. Comput.
Inf. Sci. 35:101560. doi: 10.1016/j.jksuci.2023.101560

Sun, H., Chen, Y.-W., and Lin, L. (2023). Tensorformer: a tensor-based multimodal
transformer for multimodal sentiment analysis and depression detection. IEEE Trans.
Affect. Comput. 14, 2776-2786. doi: 10.1109/TAFFC.2022.3233070

Umair, M., Khan, M. S., Ahmed, F., Baothman, F., Alqahtani, F., Alian, M., et al.
(2021). Detection of covid-19 using transfer learning and grad-cam visualization on
indigenously collected x-ray dataset. Sensors 21:5813. doi: 10.3390/s21175813

Umair, M., Tan, W.-H., and Foo, Y.-L. (2023). “Challenges in federated learning
for resource-constrained IoT environments: energy efficiency, privacy, and statistical
heterogeneity, in 2023 IEEE 8th International Conference on Recent Advances and
Innovations in Engineering (ICRAIE), 1-6. doi: 10.1109/ICRAIE59459.2023.10468189

Umair, M., Tan, W.-H., and Foo, Y.-L. (2024). “Dynamic federated learning
aggregation for enhanced intrusion detection in IoT attacks, in 2024 International
Conference on Artificial Intelligence in Information and Communication (ICAIIC),
524-529. doi: 10.1109/ICAIIC60209.2024.10463247

Vohryzek, J., Sanz-Perl, Y., Kringelbach, M. L., and Deco, G. (2025). Human brain
dynamics are shaped by rare long-range connections over and above cortical geometry.
Proc. Nat. Acad. Sci. 122:€2415102122. doi: 10.1073/pnas.2415102122

Wang, Y., Zhao, S., Jiang, H., Li, S., Luo, B., Li, T., et al. (2024). Diffmdd: a diffusion-
based deep learning framework for MDD diagnosis using EEG. IEEE Trans. Neural
Syst. Rehabilit. Eng. 32, 728-738. doi: 10.1109/TNSRE.2024.3360465

Zhang, C., Meng, X., Liu, Q, Wu, S, Wang, L, and Ning, H. (2023).
Fedbrain: a robust multi-site brain network analysis framework based on
federated learning for brain disease diagnosis. Neurocomputing 559:126791.
doi: 10.1016/j.neucom.2023.126791

Zhu, F., Zhang, J., Dang, R, Hu, B., and Wang, Q. (2025). Mtnet: multimodal
transformer network for mild depression detection through fusion of EEG and
eye tracking. Biomed. Signal Process. Control 100:106996. doi: 10.1016/j.bspc.
2024.106996

Zhu, Y., Ma, J, Li, Y., Gu, M,, Feng, X, Shao, Y., et al. (2024). Adenosine-
dependent arousal induced by astrocytes in a brainstem circuit. Adv. Sci. 11:2407706.
doi: 10.1002/advs.202407706

frontiersin.org


https://doi.org/10.3389/fncom.2025.1569828
https://doi.org/10.3389/fnins.2013.00267
https://doi.org/10.1016/j.jnca.2018.05.003
https://doi.org/10.3389/fphar.2024.1460513
https://doi.org/10.3389/neuro.09.031.2009
https://doi.org/10.1109/TCSS.2023.3283009
https://doi.org/10.1145/3687478
https://doi.org/10.3389/fnhum.2024.1487293
https://doi.org/10.1016/j.heliyon.2024.e41471
https://doi.org/10.1007/s40747-022-00729-2
https://doi.org/10.3390/su13126822
https://doi.org/10.1177/15500594221137234
https://doi.org/10.6084/m9.figshare.4244171.v2
https://doi.org/10.1016/j.bspc.2016.07.006
https://doi.org/10.3390/math10214160
https://doi.org/10.3389/fpsyt.2021.707581
https://doi.org/10.3389/fpsyt.2021.653642
https://doi.org/10.1109/ACCESS.2022.3190502
https://doi.org/10.3389/fnhum.2024.1347082
https://doi.org/10.1007/s10462-021-09986-y
https://doi.org/10.1109/ACCESS.2017.2723622
https://doi.org/10.1016/j.jksuci.2023.101560
https://doi.org/10.1109/TAFFC.2022.3233070
https://doi.org/10.3390/s21175813
https://doi.org/10.1109/ICRAIE59459.2023.10468189
https://doi.org/10.1109/ICAIIC60209.2024.10463247
https://doi.org/10.1073/pnas.2415102122
https://doi.org/10.1109/TNSRE.2024.3360465
https://doi.org/10.1016/j.neucom.2023.126791
https://doi.org/10.1016/j.bspc.2024.106996
https://doi.org/10.1002/advs.202407706
https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org

3 frontiers ‘ Frontiers in Computational Neuroscience

‘ @ Check for updates

OPEN ACCESS

EDITED BY
Saad Arif,
King Faisal University, Saudi Arabia

REVIEWED BY
Farman Ali,

Sungkyunkwan University, Republic of Korea
Zeba Idrees,

University of Alberta, Canada

*CORRESPONDENCE
Abdullah Aziz
abdullah.aziz@aumu.se

RECEIVED 11 March 2025
ACCEPTED 14 May 2025
PUBLISHED 06 June 2025

CITATION

Asiri F, Al Malwi W, Zhukabayeva T, Nafea |,
Aziz A, Gazem NA and Qayyum A (2025)
Enhancing medical image privacy in loT with
bit-plane level encryption using chaotic map.
Front. Comput. Neurosci. 19:1591972.

doi: 10.3389/fncom.2025.1591972

COPYRIGHT

© 2025 Asiri, Al Malwi, Zhukabayeva, Nafea,
Aziz, Gazem and Qayyum. This is an
open-access article distributed under the
terms of the Creative Commons Attribution
License (CC BY). The use, distribution or
reproduction in other forums is permitted,
provided the original author(s) and the
copyright owner(s) are credited and that the
original publication in this journal is cited, in

accordance with accepted academic practice.

No use, distribution or reproduction is
permitted which does not comply with these
terms.

Frontiersin Computational Neuroscience

TYPE Original Research
PUBLISHED 06 June 2025
pol 10.3389/fncom.2025.1591972

Enhancing medical image privacy
In loT with bit-plane level
encryption using chaotic map

Fatima Asirit, Wajdan Al Malwi', Tamara Zhukabayeva?,
Ibtehal Nafea®, Abdullah Aziz**, Nadhmi A. Gazem® and
Abdullah Qayyum®

'Informatics and Computer Systems Department, College of Computer Science, King Khalid
University, Abha, Saudi Arabia, 2Department of Information Systems, L.N. Gumilyov Eurasian National
University, Astana, Kazakhstan, *College of Computer Science and Engineering, Taibah University,
Medina, Saudi Arabia, *High Performance Computing Centre North, Umea University, Umea,
Vasterbotten, Sweden, *Department of Information Systems, College of Business
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Introduction: Preserving privacy is a critical concern in medical imaging,
especially in resource limited settings like smart devices connected to the IoT.
To address this, a novel encryption method for medical images that operates at
the bit plane level, tailored for loT environments, is developed.

Methods: The approach initializes by processing the original image through
the Secure Hash Algorithm (SHA) to derive the initial conditions for the Chen
chaotic map. Using the Chen chaotic system, three random number vectors
are generated. The first two vectors are employed to shuffle each bit plane of
the plaintext image, rearranging rows and columns. The third vector is used to
create a random matrix, which further diffuses the permuted bit planes. Finally,
the bit planes are combined to produce the ciphertextimage. For further security
enhancement, this ciphertext is embedded into a carrier image, resulting in a
visually secured output.

Results: To evaluate the effectiveness of our algorithm, various tests are
conducted, including correlation coefficient analysis (C.C < or negative),
histogram analysis, key space [(10°9)8] and sensitivity assessments, entropy
evaluation [E(S) > 7.98], and occlusion analysis.

Conclusion: Extensive evaluations have proven that the designed scheme
exhibits a high degree of resilience to attacks, making it particularly suitable for
small loT devices with limited processing power and memory.

KEYWORDS

image encryption, Chen chaotic map, chaos, meaningful encryption, bit-level
encryption, loT

1 Introduction

The Internet of Things (IoT) connects devices and objects via the Internet, whether
wirelessly or wired. In recent years, the concept has become increasingly popular as it
is used for various purposes, including business development, transportation, education,
and communication. The hyper-connectivity created by the IoTs enables individuals and
organizations to communicate seamlessly from a distance (Porras et al., 2018). IoT has been
widely embraced in a wide range of industries, including e-health, manufacturing, smart
cities, agribusiness, and home automation. According to Cisco, Internet-connected gadgets
will number approximately 500 billion by 2030 (Aman et al., 2020). As IoT advances
exponentially, medical imaging and data have become more widely used, and are therefore
need to be secured before being shared.
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Medical images have become increasingly important in
diagnosing and treating illnesses. The visuals are used directly
by doctors during the evaluation and therapy of patients (Ismail
et al,, 2018). For medical applications, securing the transmission
and storage of medical images has become increasingly important
due to their containment of private information (Ye and Huang,
2015; Dridi et al., 2016; Al-Haj et al., 2015; Cao et al., 2017; Khan
et al., 2018; Hu et al., 2024; Chu et al., 2024; Belazi et al., 2019).
A number of academics have therefore focused on developing
methods to secure images in IoT applications. The authors in
Ye and Huang (2015) utilized logistic and Arnold chaotic maps
to design an autoblocking and Electrocardiography (ECG) signal-
based medical image encryption scheme. ECG signals and the
Wolf algorithm calculates initial conditions for the chaotic system.
A key characteristic of this cryptoarchitecture is that it performs
autoblocking diffusion only during the encryption phase of the
process, in contrast to traditional cryptoarchitectures. A new chaos
and neural network-based medical image encryption scheme has
been presented in Dridi et al. (2016). Plaintext image pixels are
XORed with a generated key. The weight and bias values for neural
networks have been computed using the Logistic map. By using
this technique, medical images can be made more secure with a
simpler algorithm than current ones. Using Strong cryptographic
functions with internal symmetric keys and hash codes, the author
designed an encryption scheme for medical images that ensures
confidentiality, authenticity, and integrity (Al-Haj et al., 2015).
With the whirlpool hash function and Galois counter mode,
advanced encryption standards are used to secure confidentiality
and authenticity, while digital signature algorithms employ elliptic
curves to secure integrity and authenticity. The edge map-based
medical encryption scheme has been presented in Cao et al. (2017).
It consists of three main steps: (a) extraction of bit planes, (b)
generating random numbers, and (c) permutations. The source
image can be any type of image and distinct edge maps can be
produced by varying edge detection approaches and thresholds,
depending on the source image type. An Intertwining Logistic map
and Deoxyribonucleic acid (DNA) are utilized by Khan et al. to
protect medical images (Khan et al., 2018). A DNA sequence is
passed through SHA-512 in order to calculate the chaotic system’s
initial condition. Plaintext pixel correlations are broken down
through shuffling. In addition to XORing, an affine transformation
is also applied to diffuse the shuftled pixels. A two-round medical
encryption scheme is designed by Belazi et al. by combining chaos
and DNA (Belazi et al.,, 2019). During each round, six steps are
performed, namely block permutation, pixel substituting, DNA
encoding, bit substitution, DNA decoding, and bit diffusion.

As Internet-related technologies continue to grow
exponentially, new technologies, energy, or modifications are
added daily. Applications and systems that use the Internet of
Things benefit greatly from the recent advancements in wireless
technology from 1G to 5G (Hasan et al., 2021). In recent years,
high-quality medical care has become increasingly important as
a result of population growth, urbanization, and the COVID-19
pandemic (Trujillo-Toledo et al., 2023). In medical diagnostics, X-
rays, Computer Tomography Scans (CT scans), nuclear medicine
imaging, and ultrasounds are modern imaging techniques. Thus,
these high-resolution diagnostic images need to be secured before
being exchanged. Recently, cyber attacks could make healthy
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patients appear sick and vice versa. Therefore, cyber-security
threats will increase alarmingly in the area of medical image
communication. It is therefore increasingly important to have
fast and secure cyber-security systems regarding the diagnosis
of medical images (Kester et al., 2015). The Internet of Medical
Things (IoMT) can provide many advantages to hospitals and
healthcare organizations. However, they need to ensure that the
right policies and protocols are in place to tackle the security
challenges posed by IoMT. Researchers are curious about the
potential security and privacy issues associated with this concept,
particularly when bandwidth and frequency are high. Therefore,
it is essential to design a robust medical image encryption scheme
to guarantee the safe and trustworthy transmission and receipt
of patients’ symptomatic data through IoT. Double permutation
techniques are used in Hasan et al. (2021) to design a lightweight,
efficient encryption algorithm to protect healthcare images. In
this method, plaintext images are broken down into blocks and
encrypted. A chaotic encryption technique, based on the Message
Queuing Telemetry Transport (MQTT) protocol, is proposed in
this research for enhancing security and secrecy when transmitting
medical images over the Healthcare Internet of Things (H-IoT)
network (Trujillo-Toledo et al., 2023). Initially, chaotic maps
are enhanced and applied to encrypt plaintext pixels through
diffusion. The designed scheme efficiency is confirmed via a
number of tests. The designed embedded medical cryptosystems
transmit real-time medical images over the Internet and WiFi,
thus enhancing real-time medical image security. Using multiple
chaotic maps, the authors propose Multiple Map Chaos Based
Image Encryption (MMCBIE) scheme, a novel method that
encrypts images in the IoT environment (Jain et al., 2024). Unlike
existing schemes, MMCBIE combines multiple chaotic maps, like
Henon and 2D Logistic chaotic maps in a unique combination.
According to security assessments and cryptanalysis, MMCBIE
possesses high-level security properties, making it a superior
method of image encryption. Hanchate and Anandan (2024)
presented a hybrid scheme that combines Adaptive Elliptic Curve
Cryptography (AECC) and Logistic mapping to encrypt medical
images for the IoT. As a first step, the image is encrypted using
the AECC technique, then again encrypted using the logistic
map-based DNA sequence algorithm for greater security. The
diffused DNA matrix is then decoded to produce the cipher image.
The plain image determines the rules for encoding and decoding
DNA as well as the key matrix. Liu et al. (2024) utilize compressive
sensing (CS) and chaotic systems to design an encryption scheme
for ToT scenarios to ensure security and efficiency. A chaotic
laser system generates Masuemet matrices with complex phase
space. The measurement matrices are further enhanced through
the use of cyclic matrix methods. The image reconstruction
quality is further improved using segmented linear thresholding.
Further, large images are compressed block-wise in order to
reduce storage space and improve reconstruction efficiency.
The authors in Nadhan and Jacob (2024) investigated how a
cryptography-based network might be able to encode medical
images, as well as how deep learning could be used to ensure that
the images are transmitted safely. Various image representations
have been mapped using the ResNet-50 architecture. As a result
of the extensive empirical setup and the security analysis, the
suggested method is likely to provide unprecedented levels of
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security. An IWT-based DNA encoding scheme is proposed to
encrypt medical images within the Healthcare IoT (Lai and Hua,
2025). Random sequences were generated using a 3D hyperchaotic
map. In addition to IWT, a novel diffusion algorithm masks
critical information by generating approximation components.
Bit-level permutations further enhance encryption complexity.
The scheme further uses the DNA shuffle technique and encrypts
the permuted images using a DNA-encoding technique to
enhance security.

Most traditional image encryption algorithms convert plain
images into noise-like ciphers, making them easily detectable and
vulnerable to attack during transmission or storage. Visual security
should be considered when designing an image encryption method
to avoid hackers’ attention. Therefore, to avoid the eavesdropper’s
attention, meaningful image encryption algorithms must be
developed that may generate visually meaningful ciphertext images.
Image encryption algorithms that provide a visual sense of meaning
have attracted considerable research attention (Khan et al., 2024,
2020; Gan et al., 2024; Sathananthavathi et al., 2024; Zhang et al.,
2024). A bit plane image encryption scheme was designed by Khan
et al. (2024) using hash function and chaos theory. A SHA-512
hash algorithm is used to compute the key for the chaotic map.
The chaotic random vectors are used to shuffle the plaintext image
pixels row- and column-wise, while the random matrix is used for
XOR-based diffusion. By embedding the noise-like ciphered text
within a host image, a visually secure ciphertext image has been
generated. The authors in Khan et al. (2020), presented a chaotic
visual selective image encryption scheme. The key for the scheme
has been derived from the DNA and plaintext image. The system
keyspace is increased by using three different chaotic 1D maps. The
original image is divided into blocks of varying sizes. Blocks with
correlation coefficients above a predefined threshold are XORed
with random matrices. The diffused blocks are then permuted to
break the correlation between pixel values. As a final step, the
ciphertext is encapsulated in a carrier image to create a visually
secure ciphertext image.

Contribution

e The enhanced medical image encryption scheme has
confusion and diffusion characteristics, making it ideal for the
IoT environment.

e This scheme resists classical attacks due to its reliance on
plaintext images as keys.

e To avoid attackers’ attention, ciphered images are embedded
in carrier images to produce visually secure images.

The remaining article is organized as follows: Section 2
discusses the preliminaries; Section 3 outlines the proposed

methodology; the result analysis of the proposed work is provided
in Section 4. Conclusion is provided in Section 5.

2 Preliminaries

2.1 Chaotic Chen system

Using simple state feedback, Chen developed a new 3D
chaotic system in 1999 [1]. Similarly to the Lorenz system, Chen’s
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FIGURE 1
Sensitivity plot of chaotic Chen system

second and third equations contain cross-product terms. From
a topological point of view, the Lorenz and Chen systems have
different structures. Mathematically, the system can be written as Qi
et al. (2005):

x=ax(y—x),
y=c—a)*xx)+ (cxy) — (x*2), (1)
z=(xx*xy)— (bx*z).

where x, y, and z are the variables indicating the state of the system,
and g, b, and c are the parameters. It has been proven that the Chen
system has chaotic behavior for parameter values being o > 0.82
and a = 35,b = 3, and ¢ = 28. In the proposed scheme, the
random numbers will be computed using the « = 0.9 value. In
order to illustrate Chen system sensitivity, the chaotic system is
iterated twice with xo = 0.01 and xy = 0.01 x 107!2. Thus, one
can confirms that both the sets of random numbers in Figure 1
are different. Further, Figure 2 shows three sets of 8,000 random
numbers generated through the Chen chaotic system. Therefore,
one can conclude that the chaotic system is extremely sensitive
and produces different random numbers with small changes in the
initial condition or control parameter.

2.2 SHA-512

In 2002, the National Security Agency (NSA) developed a
cryptographic hashing algorithm named Secure Hash Algorithm
2 (SHA-2) (Wang et al, 2021). Compared to its predecessors
SHA-0 and SHA-1, SHA-2 provides a more robust solution. SHA-
512 is the most secure and efficient hash function in the SHA-2
family (Bhonge et al., 2020). Based on an arbitrary message length,
it computes a 512-bit hash value by splitting the data into blocks of
1024 bits and passing the data through the module, consisting of 80
rounds. In our proposed scheme, SHA-512 is used to generate eight
512-bit hash values for eight plaintext bit planes, respectively. The
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Random number plots: (a) x vector, (b) y vector, and (c) z vector.
hash values are used to generate the initial conditions of the chaotic  steps:

system.

3 Proposed methodology

To divert the attention of an attacker, visually secure encryption
facilitates the transfer of private information over an insecure
channel. This process embeds the ciphertext image into a carrier or
host image to produce visually secure ciphertext images. Figure 3
illustrates the general workflow of an image encryption scheme
while Figure4 demonstrates the step-by-step flow chart of the
proposed meaningful privacy preservation of medical images in
IoT environments. An end-to-end encryption method has been
developed that enables medical images to be transmitted over
the Internet using any H-IoT device with enhanced security and
confidentiality. The proposed scheme is comprised of the following
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Step: 1 Let the original plaintext medical image with
dimensions m x n can be represented as M and its constituent bit
planes can be represented as:

M = [My, My, M3, ..., Msg]. (2)

Step: 2 To determine the initial conditions for the Chen
chaotic system and to ensure the integrity and non-repudiation of
the image data, each of these planes is cryptographically hashed
utilizing SHA-512.

H; = SHA — 512(M,). (3)

Step: 3 For numerical interpretation purposes, the computed
H; value is converted to a decimal value.

N = bi2de(H)). (4)
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Step: 4 Now, the initial conditions can be calculated as follows: Step: 6 For each generated random vector x,y, and z, the
Mod256 is applied to bring the values within the range of 0 and

X0, yoandzy = —=. (5) 255.

248
Step: 5 The chaotic Chen system is iterated to generate three

random vectors x, ¥, and z. x,yand z = mod ((x, y, and z) x 104, 256) . (6)
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Step: 7 The vectors x and y are utilized to permute the plaintext
medical image M row- and column-wise, respectively.

Ry = x(M),

CM = y(RM). (7)

Step: 8 The vector z is rearranged in a matrix and XORed
bitwise with the permuted image to generate the final medical
bit-plane ciphertext.

Cuy=z® Cy. (8)

Step: 9 Steps 2 through 8 must be repeated eight times to
encrypt each layer.
Step: 10 Combine all ciphertext planes to produce the final
ciphertext or encrypted medical image.

C = [Cum1, Crm2> Cu3s .. Ciagl. )

Step: 11 The carrier image Cc is passed through the Lifting
Wavelet Transformation (LWT).

[LL,LH,HL,HH] = LWT(C¢) (10)
Step: 12 The ciphertext image C is divided into 4 Most

Significant Bits (MSBs) and 4 Least Significant Bits (LSBs). Now,
the HL and HH blocks of C¢ are replaced by the MSBs and LSBs.

10.3389/fncom.2025.1591972

Finally, the Inverse Lifting Wavelet Transformation (ILWT) was
used to generate a visually meaningful medical image Vj. As the
final visually meaningful medical image V) contains values greater
than 255 and less than 0, it is scaled by a min-max normalization
function to keep them between 0 and 255.

Vi = ILWT[LL, LH, MSBs, LSBs] (11)

Decryption can be accomplished by reversing all of the above
steps in reverse order.

4 Results

This section presents simulations to illustrate the effectiveness
and robustness of the proposed scheme. Our analysis in this
section demonstrates that the IoT encryption scheme developed
for medical images is robust against different security attacks.
Figure 5 shows the encryption outcomes of the designed scheme
for cthead and chest images of size 128 x 128. The ciphered images
in Figures 5¢, g are noise-like images, so they are encapsulated
inside a carrier image (Pepper image of size 256 x 256) to generate
a visually secure medical image. Further, correlation analyses,
histogram analyses, entropy analyses, key sensitivity, key space
analyses, robustness analyses, etc, are performed to demonstrate
the strength of the developed medical image encryption scheme for
IoT against statistical attacks, brute force attacks, noise attacks, and
classical attacks.

((e) ()

FIGURE 5

Encryption results: (a) plaintext cthead image, (b) carrier plaintext image, (c) ciphertext cthead image, (d) visually secure image, (e) plaintext chest
image, (f) carrier plaintext image, (g) ciphertext chest image, (h) visually secure image.

(€] ((h))
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4.1 Correlation analysis

Correlation analysis quantifies the relationship between image
pixel values. Original plaintext medical images show a close
association between neighboring pixels. An encrypted image is
secured against pixel relation analysis attacks or statistical attacks
when effective cryptographic techniques are applied to reduce
the relationship between pixels. A ciphertext image with a lower
correlation between adjacent pixels shows a better cryptographic
technique. Mathematically, the correlation coefficient can be
calculated as follows (Khan and Ahmad, 2019):

LN (e — EX)(ym — E))
Ox X Oy

C.C(x,y) = (12)

where

ox = +/ Var(x)

oy =/ Var(y)

N
Var(x) = % Z(x” — E(x))?

n=1

N

Varty) = < Y0 — E)?

n=1

The variables N indicate the total number of pixels while
Var,o, and E calculate the variance, standard deviation, and
expected operator, respectively. Table 1 summarizes the computed
correlation coefficient values for the proposed medical image
encryption scheme. Almost all the encrypted images have a C.C
value of zero or less than 0. Meanwhile, the carrier or host image
and the visually secure image have C.C values near 1. Thus,
embedding the ciphertext medical image does not significantly alter
the carrier image. Figures 6a—c illustrates the 5,000 adjacent pixels

TABLE 1 Computed correlation coefficient values.

10.3389/fncom.2025.1591972

correlation distribution of the original plaintext cthead medical
image in three distinct directions, i.e., horizontal (h), vertical (v),
and diagonal (d). Figures 6d-f shows the 5,000 adjacent pixels
correlation distribution of the corresponding ciphertext image.
Therefore, it can be concluded from Figures 6a—c that neighboring
pixels are closely associated in the original plaintext medical image.
Furthermore, Figures 6d—f confirms that this association breaks
down within the ciphered image’s pixels, and the correlation among
the pixels is totally different. Additionally, Figure 7 shows a strong
association between neighbors pixels in the carrier image and the
visually secured image, indicating that the visually secured image’s
pixels are not significantly changed.

4.2 Histogram analysis

Image histograms are statistical plots, plotting the intensity of
pixels against the pixel count in a digital image. Mathematically, it
can be computed as follows (Singh and Kumar, 2025).

H(x;) = m; (13)
where m; represents the multiplicity of x; intensity number.
Histogram analysis helps to determine whether pixel intensities
are distributed evenly throughout the encryption process. An
encryption scheme’s robustness against statistical attack can be
assessed by ensuring that the encrypted images histogram is
uniform, making it impossible to use statistical analysis to guess
the original image’s structure (Khan and Ahmad, 2019). Figure 8
shows the histograms of the original and cipher images. Figure 8
confirms the non-uniformity of the histograms for the original
cthead and chest images; that is, some pixel intensities may be
dominant depending on the contents of the image. In contrast, the
cipher images’ histograms are uniformly distributed. As a result, the
encryption process scrambles pixel values such that no feature of
the plaintext image can be identified. Because of the histogram’s
uniformity, the proposed medical image encryption for IoT is

Image Direction Plaintext Ciphertext Carrier Visualy secure
Cthead h 0.9480 0.0097 0.9472 0.9343
v 0.9577 -0.0062 0.9594 0.9585
d 0.9224 -0.0499 0.9297 0.9227
Chest h 0.9768 -0.0384 0.9472 0.9368
v 0.9628 -0.0258 0.9594 0.9368
d 0.9340 -0.0380 0.9297 0.9055
h 09173 -0.0598 - -
Medani et al. (2025)
v 0.8868 0.0386 - -
d 0.7851 0.0239 - -
h 0.7586 -0.0075 - -
Kumar and Sharma (2024)
v 0.8665 -0.0071 - -
d 0.7261 0.0041 - -

Frontiersin Computational Neuroscience

129

frontiersin.org


https://doi.org/10.3389/fncom.2025.1591972
https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org

Asiri et al. 10.3389/fncom.2025.1591972
300 300 300
250 - . el 250 - m el 250 T B B
200 R 200 _ * 200
150 ' 150 . 150 l
100 - 100 L 00, L
sof & L g . ) 50 - sor¢ ‘
! o si 8 :

50 100 150 200 250 300 0 50 100

(@)

300 300

()

150 200 250 300 0 50 100 150 200 250 300

()

300

((d)

FIGURE 6

Correlation plots for cthead image: (a—c) horizontal direction, vertical direction, and diagonal direction plots for plaintext image, (d—f) horizontal
direction, vertical direction, and diagonal direction plots for encrypted image.
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highly resistant to statistical attacks. Histograms of carrier images
and visually secured images appear to be nearly identical. Thus,
the attacker will not be able to determine that the carrier image
is embedded with an encrypted image, as the embedding is not
producing significant changes in the host image.

4.3 Key space

In an encryption algorithm, key space refers to all possible
secret keys and different parameters. The authors in Alvarez and
Li (2006) illustrate how key space size influences the strength of
image ciphering techniques. It is essential that the key space be
sufficiently large and must exceed 2!%° to withstand brute force
attacks. The proposed meaningful privacy preserving of medical
images in IoT environment utilizes the Chen chaotic system, with
state variables x, y, and z and control parameters a, b, and c. Each of
these parameters has a floating precision of 10'°. Further, the map
is iterated 8 times for each bit plane. Therefore, the key space of the
designed scheme can be computed as follows:

K = (10"° x 10" x 10" x 10" x 10" x 101)®

K = (107°)% > 2100 (14)

Furthermore, the key space computed in Kanwal et al. (2024)
and Medani et al. (2025) is 2282 and 2°%, respectively. Thus, one
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can conclude that the key space of the presented medical image
encryption scheme is sufficiently large to resist a brute force attack
significantly.

4.4 Key sensitivity

A good image encryption technique should be able to detect
subtle changes in secret keys and parameters, resulting in decoded
data that is different from plain image data. The proposed medial
image encryption is extremely sensitive to the control parameters
and initial conditions. Let’s make a small change of 1072 in one of
the initial conditions or the control parameters, i.e., xo of the Chen
chaotic system. As a result, the chaotic system will generate different
random numbers. Figure 1 shows the different number generation
for a small modification in the initial conditions. Figure 9 illustrates
the resultant images after decrypting the ciphertext cthead image
with the same and modified keys. A differential image of the
two resultant images is shown in Figure9c. A small change
to the initial conditions or control parameters of the Chen
chaotic system will fail the decryption process, resulting in a
completely different image for the attacker. The differential image
demonstrates that both resultant images are different and lack any
recognizable information related to the plaintext cthead image. It
can therefore be concluded that the proposed meaningful medical
image encryption scheme is exceptionally sensitive to even minor
changes in the chaotic system control parameters.
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FIGURE 7
Correlation plots for carrier image: first row are horizontal direction, vertical direction, and diagonal direction plots for plaintext carrier image, while
the second row are horizontal direction, vertical direction, and diagonal direction plots for encrypted image.
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Histogram results: (a) plaintext cthead image, (b) carrier plaintext image, (c) ciphertext cthead image, (d) visually secure image, (e) plaintext chest
image, (f) carrier plaintext image, (g) ciphertext chest image, (h) visually secure image.
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Key sensitivity plots: (a) original key, (b) modified key, (c) differential image, and (d—f) are the corresponding histograms.
45 Entropy analySiS TABLE 2 Computed entropy values.
o ) Image Plaintext Ciphertext Carrier  Visualy
Entropy analysis is wusually used to assess image secure
encryption’s robustness against entropy attacks. Mathematically,
Cthead 5.6763 7.9987 7.6110 7.6485
entropy of a data source can be computed as follows
(Singh and Kumar, 2025): Chest 7.4040 7.9982 7.6110 7.6498
Medani et al. 7.6414 7.9998 - -
2561 1 (2025)
E(S) = (z)log2(—-) (15)
Z 256 S =L Kumar and 7.3579 7.9987 - -
k=0 256
Sharma (2024)

To resist the entropy attack, the entropy value of the encrypted
images should be close to 8. Table 2 summarizes the computed
entropy values for the proposed medical image encryption scheme.
Thus, one can confirm that the entropy value of the ciphertext
medical image is approximately equal to 8. The designed technique
is robust against entropy attacks without exposing sensitive
information.

4.6 Differential attack analysis

To measure the effectiveness and reliability of image encryption
algorithms against differential attacks, it is important to determine

Frontiersin Computational Neuroscience

TABLE 3 Number of pixels change rate and unified average change
intensity computed values.

Image NPCR UACI

Cthead 99.6755% 33.5105%
Chest 99.6867% 33.5241%
Medani et al. (2025) 99.6653% 33.5328%
Kumar and Sharma (2024) 99.5800% 33.1800%

the Number of Pixels Change Rate (NPCR) as well as the Unified
Average Change Intensity (UACI). These two matrices can be
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FIGURE 10

((e)

Noise results: salt and pepper noise ratios; (a) 5%, (b) 10%, (c) 20%, and (d—f) corresponding decrypted images.

mathematically defined as follows (Liu et al., 2024):

L ifCi(x,y) # Ca(x, )

D( 2 ): (16)
i 0,ifC1(x, ) = Ca(x,y)

NPCR = ny: % x 100% (17)
1 IC1(x,y) — Ca(x, )]

UACI = NZ—loo (18)

P 255

where N shows the total number of pixel values and C; represents
the first encrypted image generated without any change in the
original plaintext image while C, represents the encrypted image
generated after altering just one pixel in the original image. When
comparing two images that have been encrypted, the UACI test
measures the difference in pixel intensity, whereas the NPCR test
measures how frequently the pixels are changed in the plaintext.

Frontiersin Computational Neuroscience

The calculated NPCR and UACI values for the designed medical
image security scheme are illustrated in Table 3. Therefore, the
values UACI > 33% and NPCR > 99% confirm that the proposed
strategy is resilient to differential attack.

4.7 Noise attack analysis

It has become increasingly important to analyze noise attacks
when data is transmitted over open networks due to the presence
of noise during transmission. Therefore, the proposed algorithm’s
effectiveness is determined by comparing the decryption of
encrypted images under different noise intensities. Figure 10 shows
the recovered images after adding salt and pepper noise of (5%,
10%, and 20%) intensities to the visually secured image. Thus, one
can see that the proposed medical encryption scheme can decrypt
the noise-polluted ciphertext image, illustrating the robustness of
the scheme.
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((d)

FIGURE 11

((e)

Cropping results: Crop ratios of ciphertext cthead image; (a) 1/16 (middle), (b) 1/16, (c) 1/4, and (d—f) corresponding decrypted images.

(M)

4.8 Occlusion attack analysis

Various factors can cause data to be lost during image
transmission over a network. The purpose of occlusion analysis
is to determine whether or not an image encryption scheme can
recover a plaintext image from a ciphertext image that has been
occluded. Different-sized portions of the encrypted image are
cropped and decrypted. This analysis can provide insight into how
the encryption scheme scrambles plaintext images. Generally, the
better the scrambling effect, the more likely the algorithm is to
reconstruct the visual characteristics of the plaintext image, even
if some part of it has been lost. We cropped the cipher cthead
image and visually secured image with the ratios 1/16 (middle),
1/16, and 1/4. Decryption is performed utilizing the presented
scheme. Figure 11 shows the cropped ciphertext images and the
corresponding decipher images while Figure 12 illustrates the
cropped visually secured images and the corresponding decipher
images. The visual results clearly deomnstrates that the proposed
scheme strongly deciphers the cropped images without causing any
noticeable distortion.
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4.9 Resilience against classical attacks

Classical attack analysis focuses on identifying and analyzing
various types of attacks (known plaintext, chosen plaintext,
ciphertext only, and chosen ciphertext) against encrypted images.
The key of the chaotic maps is computed based on the plaintext
hash value. It is used to determine initial conditions and control
parameters. Because of the dependence on plaintext images, the
proposed enhanced medical image privacy in IoT with bit-plane
level encryption using a chaotic map avoids the classical attacks
cited above. Therefore, all random vectors and matrices are
determined by plain image bit planes. When a single pixel is
changed in the plaintext image, the keystream changes. This will
result in a completely different ciphertext image.

4.10 Complexity analysis

Time complexity is a metric used to estimate the running time
of an encryption algorithm and generally determine the scheme’s
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FIGURE 12
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Cropping results: Crop ratios of visually meaningful image; (a) 1/16 (middle), (b) 1/16, (c) 1/4, and (d—f) corresponding decrypted images.

()

feasibility. A good algorithm needs to have a short running time.
The encryption and decryption results are performed on MATLAB
2018a with Microsoft Windows 10, 4 GB of memory, and a 1 GHz
CPU. The cthead and chest images have a size of 128 x 128, while
the carrier image has a size of 256 x 256. The proposed scheme
takes 0.85s to generate the ciphertext image and 0.62s to produce
the visually meaningful ciphertext. Thus, the proposed scheme
takes 1.47s to generate the final meaningful ciphertext. The image
encryption scheme presented in Kumar and Sharma (2024) takes
0.85s while the scheme discussed in Medani et al. (2025) takes 4.57s
to produce the final encrypted images. The designed scheme takes
less time than the scheme presented in Medani et al. (2025) and
more time than the scheme discussed in Kumar and Sharma (2024).

5 Conclusion

This paper presents a novel and robust medical image
Due
terms of

encryption scheme for resource-constrained devices.

to simplicity and exceptional performance in
unpredictability, the proposed scheme utilizes 3D Chen chaotic

system. The simplicity and excellent performance make the

Frontiersin Computational Neuroscience

Chen chaotic map an excellent choice for lightweight encryption
applications. The designed meaningful bit-plane-level medical
image encryption scheme for IoT leverages the pixel scrambling
and diffusion characteristics to effectively break pixel relationships,
thus, enhancing encryption efficiency and security. To enhance
security, the plaintext bit planes are hashed using the Secure
Hash Algorithm (SHA-512) to compute the initial conditions
of the chaotic map. This dependency on the plaintext images
makes the designed scheme resilient against classical attacks
(known-plaintext, chosen-plaintext, ciphertext-only, and chosen-
ciphertext). As a result, three random vectors for permutation
and XOR diffusion are generated. A permutation and XOR
operation are applied to each bit-plane to produce a ciphertext
plane. After combining the ciphertext bit-planes, the visually
secured ciphertext image is now generated by embedding the
ciphered image within the carrier image. Extensive evaluations
have proven that the designed scheme exhibits a high degree
of resilience to attacks, making it particularly suitable for
small IoT devices with limited processing power and memory.
Computational complexity could be a possible limitation of the
designed scheme, as image sizes increase, the encryption process
could take longer.
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Quantitative monitoring and measurement of hand motion in children are crucial
to support healthy development. Electrical impedance tomography-based tactile
sensors, also known as tomographic tactile sensors, provide a promising
approach for grasp classification. Our previous study in adults and children
demonstrated the feasibility of pinch classification using a cylindrical device
equipped with the tomographic tactile sensor. In this study, we developed a
new sensing device to classify the power grip and precision grip in children. In
order to address concerns that children might lick or swing the device, a
cylindrical sensing device was integrated sensor and measurement circuit,
incorporated a protective layer for enhanced safety. Seventeen children
participated in an experiment to evaluate the feasibility of the grasp
classification. The classification features were voltage vectors and
reconstructed images obtained from the sensor, and two machine learning
methods were used as the classifiers. The average classification accuracy
exceeded 85% for both feature types, surpassing the chance level of 50%.
These results demonstrate that the basic grasp patterns in children can be
accurately classified using a tomographic tactile sensor. This study provides
new insights into the future application of grasp motion classification in children.

KEYWORDS

children, classification, electrical impedance tomography, neuro-developmental
Engineering, power grip, precision grip, tactile sensors

1 Introduction

Humans have uniquely developed manual dexterity and built an advanced civilization
using tools through motions, such as gripping a hammer and pinching nails. Napier divided
these grasps into two basic definitions: power grip and precision grip (Napier, 1956). The
power grip is defined as a motion that involves grasping an object with the palm and thumb
and corresponds to the motion of gripping a hammer. This grasping is observed in healthy
infants at 25 weeks post-pregnancy (Allen and Capute, 1986). On the other hand, precision
grip is defined as a motion in which an object is pinched between the thumb and other
fingers, corresponds to the motion of pinching nails. A study analyzing grasping patterns
through video coding in infants between 2 and 22 weeks of age reported that the pre-
precision grip was first performed at 2.74 months of age and the precision grip was first
performed at 5.97 months of age (Wallace and Whishaw, 2003).

These grasping motions are related to various aspects of the infant and child
development. For example, some studies have suggested that fine motor skills (FMS)
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TABLE 1 Conventional classification method of infants’ and children’s hand motions.

Reference Method Classification of Does not  Angle of Degree of Identification Division by
hand motion interfere view freedom of contact
with of shape area
grasping

Wallace and Video coding Intra-rater and inter- No Limited High Partially possible 5) vision-based
Whishaw (2003) rater reliability were 90% capturing

and 74%, respectively,

with four grasp patterns

Campolo et al. Hemispherical Not reported No Not limited Unclear Not reported 2) attached force-

(2008) sensing devices based capturing
using force sensors
and kinematic
sensor

Boschi and Frere | Sensing devices The agreement from the = No Not limited Low Partially possible 2) attached force-

(2013) using limit switches, | physical therapists and based capturing
micro switches the system was 86.6% for

five different movements

Del Maestro et al. | Sensing device using = Not reported No Not limited Low Impossible 2) attached force-

(2011) air pressure sensor based capturing

Serio S et al.

(2013) (Serio

et al., 2013)

Rocha et al. Cylindrical sensing = A preliminary hand No The image Unclear Possible 2) attached force-

(2016) device digital posture evaluation was quality based capturing &
camera, a special reported, though visually degrades at the 5) vision-based
convex mirror, and | performed, suggesting vertex part of capturing
IMU sensor the possibility of future the convex

application mirror when
converted to
panoramic
format

Schréer et al. Optical motion Recording of hand Possible Not limited Unclear Impossible 4) optical markers-

(2021) capture motion (reaching) interference based capturing

Owada et al. Data glove Classified eight grasps Possible Not limited High Partially possible 1) data glove-based

(2022) with an accuracy of interference capturing

98.75% in a study of
adults (Pratap et al.,
2024)
Udayagiri et al. Optical force sensors | Classified four actions of = No Not limited High Not reported 2) attached force-
(2024) adults with an accuracy based capturing
of approximately 100%
Battraw et al. Surface Nine participants with Possible Not limited Unclear Impossible 3) surface
(2024) electromyography unilateral congenital interference electromyography-
below-elbow deficiency based capturing
were classified into
11 hand movements,
with a maximum
accuracy of 95.37%
using KNN.

Our study Tomographic tactile | The maximum average No Not limited High Possible 2) attached force-
sensor based on accuracies classed by based capturing
resistive coupling power grip or precision

grip was 88.5%

associated with precision grip are related to early numerical skills,
early counting, and conceptual counting knowledge (Barrocas et al.,
2020; Fischer et al.,, 2018; Suggate et al., 2017). Another study
reported that children who were trained in FMS through
intervention improved not only their pegboard test scores but
also their mathematical performance compared to a control
group that read books (Asakawa et al, 2019). Moreover, some
studies have indicated a potential correlation between the FMS
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and reading and writing abilities (Lé et al., 2023; Suggate et al,
2023). These findings suggest that children’s hand dexterity is
related to the development of academic abilities such as
mathematical, reading, and writing skills.

In addition, children’s grasping skill
development is beneficial from a medical perspective. A delay in

information on

the development of infant FMS has been suggested as a useful
indicator for early diagnosis of developmental disorders. Autism
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spectrum disorder (ASD), which is characterized by poor
communication, strong interest, preoccupation, and obsessive
behavior, is usually diagnosed at 3 years of age. However, some
prospective studies have reported that infants at high risk for ASD,
who were later diagnosed with the condition exhibited
developmental delays in fine motor skills compared to typically
developing infants (Choi et al., 2018; Landa and Garrett-Mayer,
2006). It has also been reported that children of ages five to ten with
(ADHD),

characterized by inattention, hyperactivity, and impulsiveness,

attention deficit hyperactivity ~disorder which is
have significantly delayed motor development in all domains of
the Motor Development Scale, including the FMS, compared to
typically developing children (Neto et al,, 2015).

In this context, quantitative techniques for monitoring and
measuring hand motion in infants and children are important,
because they are believed to contribute to healthy development.
According to a review by Xue et al., human hand motion analysis
can be classified into five methods: 1) data glove-based capturing; 2)
attached force-based capturing; 3) surface electromyography-based
capturing; 4) optical markers-based capturing; and 5) vision-based
capturing (Xue et al, 2019). Based on the review, conventional
devices for children listed in Table 1. Although these methods have
unique advantages, they have unavoidable limitations. For example,
the methods of 1) data glove-based capturing, 3) surface
electromyography-based capturing, and 4) optical marker-based
capturing require sensors to be attached. This could lead to a
decrease in the children’s attention and interfere with their
grasp. In addition, the method of 5) vision-based capturing has
some limitations, such as a limited angle of view and privacy. Owing
to these limitations, 2) attached force-based capturing is considered
a powerful method. However, the conventional method limited the
degree of freedom of shape and identification of contact area. To
overcome these limitations, we focused on a tomographic tactile
sensor based on resistive coupling, which is a sensing technology with
extended flexibility, shape versatility, and designability compared
with electrical impedance tomography (EIT)-based tactile sensors
(Yoshimoto et al., 2024; 2020). This technology is based on the
principles of EIT-based tactile sensors (Kato et al., 2007; Nagakubo
et al., 2007; Silvera-Tawil et al., 2015).

Park et al. reported the superior discriminability of touch
modalities using a tomographic tactile sensor (Park et al., 2021).
Additionally, we developed a small peg-based device and
demonstrated that six types of pinching in adults could be
classified with an accuracy exceeding 80% (Asahi et al., 2024b).
In children, we have reported a classification study on the same six
types of pinching. The results showed an accuracy of approximately
60%, which was lower than that of adults, revealing limitations and
challenges in classifying children’s hand motion (Asahi et al., 2024a).

Children’s hands differ from those of adults in terms of size, grip
strength, and dexterity (Bear-Lehman et al., 2002). Consequently, results
obtained from adult participants may not be directly applicable to
children. Moreover, protective measures for the device and an extension
of its swing range are necessary, as children may lick or swing the device.
Considering these factors, as a first step toward developing a hand
motion analysis system for children, we focused on the fundamental
classification of power grip and precision grip defined by Napier (1956),
along with the implementation of protective measures and an extended
swing range. Thus, demonstrating the ability to classify power and
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precision grips in this study represents an essential step toward more
comprehensive and generalized grasp classifications. Our findings may
contribute to the development of educational toys and diagnostic
systems for assessing developmental disabilities.

2 Materials and methods
2.1 Sensing device overview

2.1.1 Development of sensing devices

Regarding the development of sensing device, we first decided the
design requirements of the device. The previous devices had
measurement circuits outside the device. This limits their swing
range and portability. To overcome these limitations, we developed a
new cylindrical sensing device. It could contain the measurement circuit
(Figure 1). The device height and diameter were 85 mm and 40 mm,
respectively. The sensor consists of five layers: protective, driving,
insulating, detection, and electrode layers (Figure 2a). The protective
layer was added because the children torn through the drive layer during
the preliminary experiments. The protective layer consisted of a 1-mm-
thick yellow felt cloth. The driving layer consisted of a conductive
silicone sheet (EC-20BH, Shin-Etsu Chemical Co. Ltd.). This layer was
connected to a 3.3 V DC voltage source. The DC voltage source used a
3.3 V pin microcontroller (ESP32-DevKitC, Espressif Systems). The
insulating layer was a glass fiber sheet (13-7127, KLASS). The detection
layer was composed of a conductive sheet (ZC-85, ENGINEER) with a
surface resistance of 10 kQ)/sq. When the driving layer contacts with the
detection layer, the electrical circuit is closed. As a result, current flows to
the electrodes through the detection layer (Figure 2b). The electrode and
detection layer were bonded using a conductive epoxy (CW2400,
CircuitWorks). The electrode layer was an original flexible printed
circuit board with 16 electrodes and a diameter of 2 mm. One of
these electrodes was used as the ground condition and the other was
used as the measurement electrode. This operation was repeated until all
electrodes were used in all conditions. Thus, 256 voltage data points
(16 grounding conditions x 16 electrodes) are obtained. The multiplexer
(MUX) wused was CD74HC4067 (Texas
measurement period was 0.25 s per frame.

Instruments). The

2.1.2 Reconstruction

A tomographic tactile sensor requires a solver to reconstruct
pressure distribution from the measured voltage vector. This solver
addresses an ill-posed problem because the output dimension
(reconstructed image) is larger than the input dimension (measured
voltage vector). Therefore, we used the linear reconstruction method of
Tikhonov regularization with two-dimensional finite element method
(FEM) model, based on our previous studies (Asahi et al, 2024b;
Yoshimoto et al, 2020). The hyperparameter of the Tikhonov
regularization was set to 5000. These reconstruction processes were
performed using MATLAB 2023b (MathWorks Inc.).

2.2 Experiment methods
2.2.1 Participant information

In this study, participants were required to meet two criteria: (1)
the ability to perform both power grip and precision grip, and (2) an
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(@

FIGURE 1

Cylindrical sensing device. (a) Height: 85 mm (b) Diameter: 40 mm. (c) Device containing the measurement circuit.

(@

Driving Layer

FIGURE 2

Protective layer

Insulating Layer
Detection Layer

Electrode Layer

(b)

(a) Layer of tomographic tactile sensors based on resistive coupling. The protective layer was a yellow felt cloth. This layer was used only in
experiment |. A conductive silicone sheet connected to a DC voltage source (3.3 V) was used was as the driving layer. The insulating layer was a glass fiber
sheet. The detection layer was a conductive sheet. The electrode layer was a flexible printed circuit board. (b) Schematic illustration of contact between

driving layer and detection layer and current flow.

age at which they could sufficiently understand verbal instructions.
Regarding (1) the ability to perform power grip and precision grip,
as mentioned in the introduction, primitive grasping has been
reported to emerge between 2 and 22 weeks, while precision grip
develops at 5.97 months. Regarding (2) the ability to sufficiently
understand verbal instructions, B. Buckley have reported that three-
year-old children are capable of communicating using language.
Additionally, four-year-old children can focus on and follow verbal
instructions even without explicit cues, such as being called by name
(Buckley, 2003). Based on these considerations, this study targeted
four-year-old children as participants. The participants of this study
were 17 children (4.43 + 0.30 years old, 8 boys, 9 girls). In order to
ensure that the participants had adequate communication skills and
no developmental disorders, we administered the KINDER
INFANT DEVELOPMENT SCALE questionnaire type C prior to
the experiment (Hassanein, 1982). None of the participants had any
serious disease or disorder. In the analysis, 11 children (5 boys and
6 girls) were included, excluding those who stopped the
measurement halfway through because they could not listen to
the experimenter’s instructions or did not want to participate
(4 participants), those whose actual dominant hand seemed to
differ from that reported by their parents (1 participant), and
those who grasped without placing their palm on the object
during the power grip (1 participant). Evaluation of the modified
Japanese version of the FLANDERS handedness questionnaire

Frontiers in Sensors

(Okubo et al., 2014) indicated 10 right-handed children and one
left-handed child.

This study was approved by the Ethics Committees of Shibaura
Institute of Technology and Keio University. The experiment was
conducted only when informed consent was obtained from the
parents of the participating children.

2.2.2 Measurement method

The participants practiced freely grasping the device, without
external assistance. Voltage measurements were also performed
during the hardware and software testing. The participants were
then instructed to perform either a power grip or precision grip, with
the order being counterbalanced. Each grip was measured ten times.
However, if the hand was released during the measurement process
or if the grasp force was not applied (i.e., the object was grasped only
by the frictional force of the fingers), the grasp was excluded from
the analysis, and an additional measurement was performed. Ten
times per grasp were measured, that is, 100 measurement frames
10 times) each

(10 measurements X were obtained for

grasping category.

2.2.3 Classification method

The measured voltage vectors and reconstructed images were
used as features to classify the power grip and precision grip. For
classification using the measured voltage vectors, 256 data points
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TABLE 2 CNN classification network architecture.

\[e) Layer Description

1 Input 2D Each classification has different inputs
2 Convolutional 2D 32 3 x 3 convolutions with stride 1
3 Batch Normalization Batch Normalization

4 ReLU ReLU

5 Max Pooling 2D 2 x 2 Max Pooling

6 Convolutional 2D 64 3 x 3 convolutions with stride 1
7 Batch Normalization Batch Normalization

8 ReLU ReLU

9 Max Pooling 2D 2 x 2 Max Pooling

10 Convolutional 2D 128 3 x 3 convolutions with stride 1
11 Batch Normalization Batch Normalization

12 ReLU ReLU

13 Fully Connected 256 fully connected

14 ReLU ReLU

15 Fully Connected 2 fully connected

16 Softmax Softmax

17 Classification Output layer

were used (16 electrodes x 16 measurements). For classification
using the reconstructed images, the FEM values normalized from 0%
to 100% were used. The size of FEM model was 43 x 66 x 1.

In this study, we considered more practical applications, such as
educational toys or diagnostic systems for developmental disabilities.
For such applications, we conducted a comparative analysis using the
k-Nearest Neighbors (KNN) algorithm (Bansal et al., 2022), which is
computationally efficient and easy to implement, and the Convolutional
Neural Network (CNN), which has been reported to achieve high
classification accuracy (Park et al, 2021). In KNN, we used the
MATLAB function (fitcknn) with a k value of 1. The network
architecture of the CNN consisted of 17 layers, as listed in Table 2.
The input layer was configured to input each feature with dimensions of
16 x 16 x 1 for classification using the measured voltage vectors, and
43 x 66 x 1 for classification using the reconstructed images.
Subsequently, performed. The
convolution layers were organized with filter sizes of 3 x 3 x 32, 3 x

a three-step convolution was

3 x 64, and 3 x 3 x 128, in that order. In each convolution layer, the
ReLU was applied as the activation function after batch normalization.
In steps one and two, a 2 X 2 max pooling layer is utilized, resulting in
downsampling with a stride of two. In step three, a fully connected layer
was used to classify the data into two classes. The Softmax function was
applied to the output layer, resulting in a final classification into two
classes: power grip and precision grip. Stochastic gradient descent was
employed for training with an initial learning rate of 0.001. In addition,
the learning rate was configured to be reduced by 95% after ten epochs.
The maximum number of epochs was set to 36, and the data were
randomized at the beginning of each epoch.

Cross-validation was performed to validate the classification
accuracy of these two types of features and classification methods.
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Verification was performed for each participant, with one grasp
(10 frames) as the test data and the remaining grasps (190 frames) as
the training data, and was repeated until all grasps were the test data.
For the evaluation of classification results, the following
accuracy was calculated for each participant as Equation 1:

Accuracy = Teow + Tore (1)
y TPow + TPre +F Pow T F Pre

where, initial character T or F indicates whether the class predicted
by the classifier matches the true class or not. The characters Pow
and Pre indicate power grip and precision grip, respectively. Thus,
Tpow is the matching case of the power grip as predicted class by the
classifier and the power grip as true class. Subsequently, to evaluate
the classification performance in different grasps, a confusion matrix
was calculated for each grasp. Precision (Prec), recall, and F-measure
were then calculated for each grasp as follow Equations 2-4:

TPow or Pre
Prec poworpre = T (2)
PoworPre T FPow or Pre

TPuw or Pre
Recall Foworkre = TPow orPre T FPreurPaw (3)
P _ 2 x Prec x Recall
T MEASUTE Powerbre = B or + Recall @)
These index values ranged from 0 to 1. In addition, t-Distributed
Stochastic Neighbor Embedding (t-SNE) has been used to confirm the
distribution of features and clustering trends (Van Der Maaten and
Hinton, 2008). The classification features were compressed into a two-
dimension map by t-SNE. The distances between points in the t-SNE
plot reflect similarity relationships in the original high-dimensional
space. Additionally, clearly separated clusters indicate natural groupings
based on differences in classification features.

3 Results

We classified the basic grip classifications—power grip and
precision grip—in children (Figure 3a). The average accuracy
values are shown in Figure 4a. When classified using the
measured voltage vector (Figure 3b), the average classification
accuracy using KNN was 86.8%. The highest and lowest
95.5% and 79.0%,
respectively. The average accuracy obtained using the CNN was
88.5%, and the highest and lowest accuracies were 95.0% and 75.5%,
respectively. When classifying using the reconstructed image as a

accuracies for the participants were

feature (Figure 3c), the average accuracy was 85.7% using KNN. The
highest and lowest accuracies are 94.5% and 72.5%, respectively. In
the classification using CNN with the reconstructed image as the
feature, the average accuracy was 87.9%. The highest and lowest
accuracies are 99.0% and 77.0%, respectively. All average
classification accuracies exceeded the chance level (50%).

The confusion matrixes shows that the classification results were
better for the precision grip than for the power grip for all classification
methods (Figure 4b). As shown in Table 3, Prec was higher for power
grip across all classifiers. However, Recall was higher for the precision
grip in all cases. Similarly, the F-measure was also higher for the
precision grip across all classifiers. Figure 5 presents the t-SNE plot
of the participant who achieved the highest accuracy. The results
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Representative images. The upper section corresponds to the power grip, and the lower section corresponds to the precision grip. (a) Images
captured for each grasp. (b) Measured voltage vector. (c) Reconstructed 2D image.
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(a) Mean and standard deviation of classification accuracy. The average classification accuracies of the measured voltage vector (VV) with KNN and
CNN classifications were 86.8% and 88.5%, respectively. The average classification accuracies of the reconstructed images (RI) with KNN and CNN
classifications were 85.7% and 87.9%, respectively. (b) Cross-validation of each classification. The closer the color of the diagonal cell is to black, the

higher the classification accuracy

indicated that clustering was achieved based on feature labels. However,
some instances of the power grip appear to be located within the
precision grip cluster.

4 Discussion

The purpose of this study is to demonstrate the feasibility of
classifying power grip and precision grip in children using a

Frontiers in Sensors

143

tomographic tactile sensor based on resistive coupling, as a first
step towards the development of a hand motion analysis system for
children. In order to avoid accidents and damage due to unexpected
behavior of children, the sensor device and measurement circuit
were integrated into a single unit and a felt fabric layer was added. As
a result, there was no damage to the device during the experiment.
Using this device, the results of power and precision grip
classification showed an average classification accuracy of over
85%, higher than the chance level of 50%.
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TABLE 3 Classification index.

VV KNN VV CNN RIKNN RICNN

Accuracy [%]

86.8 88.5 85.7 87.9

Prec power 0.889 0.892 0.871 0.896
precision 0.849 0.877 0.843 0.864

Recall power 0.841 0.875 0.837 0.858
precision 0.895 0.894 0.876 0.900

F-measure = power 0.864 0.883 0.854 0.876
precision 0.871 0.886 0.859 0.881

4.1 Sensing device and measurements
on children

Children’s behavior is differed from adults, they may lick or throw
the device. In fact, during a preliminary experiment, one child scratched
the driving layer with their fingernails, causing damage. To address such
risks, the device must be designed to minimize potential breakage
factors. As one protective measure, we introduced a felt fabric with
cushioning properties as a protective layer. This layer serves to prevent
licking and damage to the driving layer. Such felt fabric is suitable as a
protective material for children due to its safe composition, durability,
availability in various colors, and flexibility. Regarding the safety of the
device itself, the felt fabric and PLA material used in this study are non-
toxic and hypoallergenic, ensuring no safety concerns.

Additionally, to prevent damage from being thrown or mishandled,
the device needed to cover a broader swing range. To achieve this, the
sensor and measurement circuit were integrated into a sensing device.
Furthermore, a 2-meter cable was used for communication between the
PC and the measurement circuit. As a result of these design
improvements, no participants damaged the device during the
experiment. Furthermore, wireless measurement is an effective
approach to improving operational range and portability. In this
study, the computer and sensing device were connected via a cable.
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However, as reported by Yoshimoto et al., wireless measurement is
feasible, and its implementation is expected to eliminate limitations in
the measurement environment (Yoshimoto et al., 2020).

Finally, regarding the experimental protocol, grasping motions
were instructed verbally in this experiment. However, some
participants treated the device as a cup, mimicking toasting or
pretending to drink from it. This suggests that a role-play-based
protocol may be more suitable for future studies.

4.2 Classification method

Reconstructed images and measured voltage vectors were used
as classification features, and both CNN- and KNN-based methods
achieved an average accuracy exceeding 85%, which is higher than
the 50% chance level. These findings indicate that classification
using a tomographic tactile sensor can achieve a high classification
performance and reproducibility. The difference in classification
accuracy among all classifications was 2.8%. Thus, it demonstrated a
comparable classification accuracy across all methods.

Analysis of the confusion matrix revealed that the precision grip
was classified more accurately than the power grip. Although the Prec
for the power grip was higher than that for the precision grip across all
methods, the recall and F-measure for the precision grip were higher
(Table 3). These results suggest that while all classification methods
correctly identified the precision grip, the power grip was frequently
misclassified as the precision grip. Moreover, as illustrated in the t-SNE
plots (Figure 5), some plots in the power grip were mixed in the
precision grip cluster. This indicates that the classification error did not
rather on the

depend on the classifier but

classification features.

potential

One potential factor differentiating the power grip from the
precision grip is the contact area. Visual assessments indicated that
the contact area of the power grip was larger than that of the precision
grip (Figure 3c). In the power grip, opposition is generated by the
thumb, other fingers, and the palm; however, in the precision grip,
opposition was generated by the thumb and other fingers (Figure 3a).
This difference is considered to be the cause of the difference in the
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T-SNE plots with measured voltage vectors and reconstructed images for participants who achieved the highest classification accuracy. The
perplexity was set to 50, and the learning rate was set to 750. The input classification features were normalized. (a) t-SNE plot using the measured voltage

vector (b) t-SNE plot obtained using the reconstructed images.
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(a)
VF2 (Precision grip)

FIGURE 6

(b)

VF3 (Power grip)

(c)
VF2 (Power grip)

Illustration of Virtual fingers. (a) Precision grip in VF2. (b) Power grip in VF3. (c) Power grip in VF2.

contact area. Another distinguishing factor is the number of virtual
fingers (VF), which indicates the number of primary force vectors
generated during grasping. The precision grip is characterized by
VE2 due to its pinching action. In contrast, the power grip can be
characterized by either VF2 or VF3, as it involves both the fingers and
the palm (Figure 6). These differences in contact area and VF may
contribute to the misclassification of the power grip relative to the
precision grip. It is also possible that the power grip in t-SNE is the cause
of some mixing with the precision grip cluster (Figure 5).

A previous study examining the agreement between experienced
physical therapists and devices for analyzing the locations of
gripping (the power grip) and functional pinching (the precision
grip) reported an agreement of 86.6% (Boschi and Frere, 2013).
Although direct comparisons could not be made owing to the
differences in the experimental conditions, the results of this
study demonstrated comparable accuracy.

4.3 Limitations and future prospects

There are two mainly limitation in this study. First is that the device
size was fixed at a height of 85 mm and a diameter of 40 mm.
Customizing the device to accommodate individual hand sizes could
enhance its ease of grasping, and improve classification accuracy. Second
is the grasp types used for classification. In this study, the basic categories
of the power grip and precision grip were classified. For practical
applications, a more detailed classification of grasping may be necessary.

Based on the results of this study, there are three prospects for future
research: The first is to develop a sensing device with a system that
provides humorous feedback stimuli. Feedback systems encourage
children to take action (Boschi and Frere, 2013). The feedback
system that uses the grasp classification system developed in this
study may contribute to rehabilitation and intervention. The second
is to identify the specific fingers contacting the sensor. This identification
system might be a useful alternative to the video coding. The video
coding typically requires a lot of time and effort. Previous studies have
reported that it took 3 hours to code a 10-min video (Wallace and
Whishaw, 2003). Replacing video coding with sensor-based analysis
could reduce the analysis time. To achieve this, a large amount of data on
the children must be collected. We believe that making the device toy-
shaped will help keep children’s attention and enable the measurement
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of a large amount of data. Lastly, we propose the potential application of
this system as a diagnostic support tool for developmental disorders.
Previous studies have reported that children at high risk for ASD often
exhibit delayed development of fine motor skills compared to typically
developing children. Accordingly, if the present system can be employed
to assess fine motor skills in both typically developing children and high-
risk ASD children, it may contribute to early diagnostic support for
ASD. To examine this feasibility, future research should aim to measure
and compare grasping behaviors between these two groups.

5 Conclusion

In this study, we demonstrated the feasibility of classifying
power grip and precision grip in children using a tomographic
tactile sensor based on resistive coupling. To address concerns that
children might lick or swing the device, we developed a medium-
sized cylindrical sensing device with an integrated sensor and
measurement circuit, incorporating a protective layer for
enhanced safety. These design considerations ensured that no
damage occurred to the device during the experiment.

Using the device, machine learning-based classification of
children’s grasps demonstrated that power grip and precision
grip could be classified with an accuracy exceeding 85%, above
the chance level of 50%. These grip types are among the major
categories in the GRASP taxonomy, which defines 33 distinct grasp
classifications. Therefore, the findings of this study represent a
foundational step toward classifying a broader range of grasp

types and establishing a comprehensive grasp classification system.

Data availability statement

The raw data supporting the conclusions of this article will be
made available by the authors, without undue reservation.

Ethics statement

The studies involving humans were approved by The

biotechnology ethics committee of Shibaura Institute of

frontiersin.org


https://www.frontiersin.org/journals/sensors
https://www.frontiersin.org
https://doi.org/10.3389/fsens.2025.1598903

Asahi et al.

Technology (24-009), and the ethics committee of Keio University,
Faculty of Literature (240290000). The studies were conducted in
accordance with the local legislation and institutional requirements.
Written informed consent for participation in this study was provided
by the participants’ legal guardians/next of kin.

Author contributions

draft,
Writing - review and editing, Software, Investigation, Formal
Data Methodology. ST:
Writing - review and editing, Investigation. YM: Resources,

RA:  Conceptualization, ~ Writing -  original

Analysis, curation, Visualization,

Writing - review and editing. SY: Writing — review and editing.

HS: Project administration, Funding acquisition, Writing — review
and editing, Conceptualization, Supervision, Investigation.

Funding

The author(s) declare that financial support was received for the
research and/or publication of this article. This work was supported
by JSPS KAKENHI (Grant Number 23K25652).

Acknowledgments

We would like to express our gratitude to the children and
their parents who participated in this study. We also wish to
thank Hina Furukawa from the Shibaura Institute of

References

Allen, M. C., and Capute, A.J. (1986). The evolution of primitive reflexes in extremely
premature infants. Pediatr. Res. 20, 1284-1289. doi:10.1203/00006450-198612000-
00018

Asahi, R., Yoshimoto, S., Fujita, T., Toriyama, S., Shimada, Y., Itakura, S., et al.
(2024a). “Classification of pinching action in children using a tomographic tactile
sensor,” in 2024 IEEE international symposium on medical measurements and
applications, MeMeA 2024 - proceedings. doi:10.1109/MeMeA60663.2024.10596747

Asahi, R., Yoshimoto, S., and Sato, H. (2024b). Development of pinching motion
classification method using EIT-based tactile sensor. IEEE Access 12, 62089-62098.
doi:10.1109/ACCESS.2024.3395271

Asakawa, A., Murakami, T., and Sugimura, S. (2019). Effect of fine motor skills
training on arithmetical ability in children. Eur. J. Dev. Psychol. 16, 290-301. doi:10.
1080/17405629.2017.1385454

Bansal, M., Goyal, A., and Choudhary, A. (2022). A comparative analysis of K-nearest
neighbor, genetic, support vector machine, decision tree, and long short term memory
algorithms in machine learning. Decis. Anal. J. 3, 100071. doi:10.1016/j.dajour.2022.
100071

Barrocas, R., Roesch, S., Gawrilow, C., and Moeller, K. (2020). Putting a finger on
numerical development - reviewing the contributions of kindergarten finger gnosis and
fine motor skills to numerical abilities. Front. Psychol. 11, 1012. doi:10.3389/fpsyg.2020.
01012

Battraw, M. A,, Fitzgerald, J., Winslow, E. J., James, M. A,, Bagley, A. M., Joiner, W.
M, et al. (2024). Surface electromyography evaluation for decoding hand motor intent
in children with congenital upper limb deficiency. Sci. Rep. 14, 31741. doi:10.1038/
541598-024-82519-z

Bear-Lehman, J., Kafko, M., Mah, L., Mosquera, L., and Reilly, B. (2002). An
exploratory look at hand strength and hand size among preschoolers. J. Hand Ther.
15, 340-346. doi:10.1016/S0894-1130(02)80005-9

Boschi, S. R. M. S,, and Freére, A. F. (2013). Grip and pinch capability assessment
system for children. Med. Eng. Phys. 35, 626-635. doi:10.1016/j.medengphy.2012.07.008

Frontiers in Sensors

10.3389/fsens.2025.1598903

Technology, Hina Katayama from Keio University, and the
staff members of Keio University for their support during the
experiments.

Conflict of interest

The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could
be construed as a potential conflict of interest.

The author(s) declared that they were an editorial
board member of Frontiers, at the time of submission.
This had no impact on the peer review process and the
final decision.

Generative Al statement

The author(s) declare that no Generative Al was used in the
creation of this manuscript.

Publisher’'s note

All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated
organizations, or those of the publisher, the editors and the
reviewers. Any product that may be evaluated in this article, or
claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

Buckley, B. (2003). Children’s Communication Skills: From Birth to Five Years.
Routledge. doi:10.4324/9780203865750

Campolo, D., Taffoni, F., Schiavone, G., Laschi, C., Keller, F., and Guglielmelli, E.
(2008). “A novel technological approach towards the early diagnosis
of neurodevelopmental disorders,” in Proceedings of the 30th annual
international conference of the IEEE engineering in medicine and biology society,
EMBS’08 - “personalized healthcare through technology.”. doi:10.1109/iembs.2008.
4650306

Choi, B., Leech, K. A., Tager-Flusberg, H., and Nelson, C. A. (2018). Development of
fine motor skills is associated with expressive language outcomes in infants at high and
low risk for autism spectrum disorder. J. Neurodev. Disord. 10, 14. doi:10.1186/s11689-
018-9231-3

Del Maestro, M., Cecchi, F., Serio, S. M., Laschi, C., and Dario, P. (2011). Sensing
device for measuring infants” grasping actions. Sens. Actuators A Phys. 165, 155-163.
doi:10.1016/j.sna.2010.08.016

Feix, T., Romero, J., Schmiedmayer, H. B., Dollar, A. M., and Kragic, D. (2016). The
GRASP taxonomy of human grasp types. IEEE Trans. Hum. Mach. Syst. 46, 66-77.
doi:10.1109/THMS.2015.2470657

Fischer, U, Suggate, S. P., Schmirl, J., and Stoeger, H. (2018). Counting on fine motor
skills: links between preschool finger dexterity and numerical skills. Dev. Sci. 21, €12623.
doi:10.1111/desc.12623

Hassanein, R. S. (1982). The KIDS Chart: A Simple, Reliable Infant Development
Screening Tool. Am. J. Dis. Child 136, 1012. doi:10.1001/archpedi.1982.
03970470041012

Kato, Y., Mukai, T., Hayakawa, T., and Shibata, T. (2007). “Tactile sensor without wire
and sensing element in the tactile region based on EIT method,” in Proceedings of IEEE
sensors. doi:10.1109/ICSENS.2007.4388519

Landa, R, and Garrett-Mayer, E. (2006). Development in infants with autism
spectrum disorders: a prospective study. J. Child. Psychol. Psychiatry 47, 629-638.
doi:10.1111/j.1469-7610.2006.01531.x

frontiersin.org


https://doi.org/10.1203/00006450-198612000-00018
https://doi.org/10.1203/00006450-198612000-00018
https://doi.org/10.1109/MeMeA60663.2024.10596747
https://doi.org/10.1109/ACCESS.2024.3395271
https://doi.org/10.1080/17405629.2017.1385454
https://doi.org/10.1080/17405629.2017.1385454
https://doi.org/10.1016/j.dajour.2022.100071
https://doi.org/10.1016/j.dajour.2022.100071
https://doi.org/10.3389/fpsyg.2020.01012
https://doi.org/10.3389/fpsyg.2020.01012
https://doi.org/10.1038/s41598-024-82519-z
https://doi.org/10.1038/s41598-024-82519-z
https://doi.org/10.1016/S0894-1130(02)80005-9
https://doi.org/10.1016/j.medengphy.2012.07.008
https://doi.org/10.4324/9780203865750
https://doi.org/10.1109/iembs.2008.4650306
https://doi.org/10.1109/iembs.2008.4650306
https://doi.org/10.1186/s11689-018-9231-3
https://doi.org/10.1186/s11689-018-9231-3
https://doi.org/10.1016/j.sna.2010.08.016
https://doi.org/10.1109/THMS.2015.2470657
https://doi.org/10.1111/desc.12623
https://doi.org/10.1001/archpedi.1982.03970470041012
https://doi.org/10.1001/archpedi.1982.03970470041012
https://doi.org/10.1109/ICSENS.2007.4388519
https://doi.org/10.1111/j.1469-7610.2006.01531.x
https://www.frontiersin.org/journals/sensors
https://www.frontiersin.org
https://doi.org/10.3389/fsens.2025.1598903

Asahi et al.

Lé, M., Quémart, P., Potocki, A., Gimenes, M., Chesnet, D., and Lambert, E.
(2023). Improving literacy development with fine motor skills training: a digital
game-based intervention in fourth grade. Cogn. Dev. 67, 101363. doi:10.1016/j.
cogdev.2023.101363

Nagakubo, A., Alirezaei, H., and Kuniyoshi, Y. (2007). “A deformable and
deformation sensitive tactile distribution sensor,” in 2007 IEEE international
conference on robotics and biomimetics, ROBIO. doi:10.1109/ROBI0.2007.4522352

Napier, J. R. (1956). The prehensile movements of the human hand. J. Bone Jt. Surg.
Br. 38, 902-913. d0i:10.1302/0301-620x.38b4.902

Neto, F. R., Goulardins, J. B., Rigoli, D., Piek, J. P., and de Oliveira, J. A. (2015). Motor
development of children with attention deficit hyperactivity disorder. Rev. Bras.
Psiquiatr. 37, 228-234. doi:10.1590/1516-4446-2014-1533

Okubo, M., Suzuki, H., and Nicholls, M. E. R. (2014). A Japanese version of the
FLANDERS handedness questionnaire. Jpn. J. Psychol. 85, 474-481. doi:10.4992/jjpsy.
85.13235

Owada, S., Sugimura, H., and Isshiki, M. (2022). “Toddler’s hand motion acquisition
with hand-made data glove,” in LifeTech 2022 - 2022 IEEE 4th global conference on life
sciences and technologies. doi:10.1109/LifeTech53646.2022.9754849

Park, H., Park, K., Mo, S., and Kim, J. (2021). Deep neural network based electrical
impedance tomographic sensing methodology for large-area robotic tactile sensing.
IEEE Trans. Robotics 37, 1570-1583. doi:10.1109/TR0O.2021.3060342

Pratap, S., Narayan, J., Hatta, Y., Ito, K, and Hazarika, S. M. (2024). Glove-net:
enhancing grasp classification with multisensory data and deep learning approach.
Sensors 24, 4378. doi:10.3390/s24134378

Rocha, A. C. P, Tudella, E., Pedro, L. M., Appel, V. C. R, Da Silva, L. G. P., and
Caurin, G.A. de P. (2016). A novel device for grasping assessment during functional
tasks: preliminary results. Front. Bioeng. Biotechnol. 4, 16. doi:10.3389/fbioe.2016.00016

Schréer, L., Cooper, R. P., and Mareschal, D. (2021). Science with Duplo: multilevel

goal management in preschoolers’ toy house constructions. J. Exp. Child. Psychol. 206,
105067. doi:10.1016/j.jecp.2020.105067

Frontiers in Sensors

147

10.3389/fsens.2025.1598903

Serio, S. M., Cecchi, F.,, Assaf, T., Laschi, C,, and Dario, P. (2013). Design and
development of a sensorized wireless toy for measuring infants’ manual actions. IEEE
Trans. Neural Syst. Rehabilitation Eng. 21, 444-453. doi:10.1109/TNSRE.2013.2255066

Silvera-Tawil, D., Rye, D., Soleimani, M., and Velonaki, M. (2015). Electrical
impedance tomography for artificial sensitive robotic skin: a review. IEEE Sens. .
15, 2001-2016. doi:10.1109/JSEN.2014.2375346

Suggate, S., Stoeger, H., and Fischer, U. (2017). Finger-based numerical skills link fine
motor skills to numerical development in preschoolers. Percept. Mot. Ski. 124,
1085-1106. doi:10.1177/0031512517727405

Suggate, S. P., Karle, V. L., Kipfelsberger, T., and Stoeger, H. (2023). The effect of fine
motor skills, handwriting, and typing on reading development. J. Exp. Child. Psychol.
232, 105674. doi:10.1016/j.jecp.2023.105674

Udayagiri, R, Yin, J., Cai, X., Townsend, W., Trivedi, V., Shende, R, et al. (2024). Towards

an Al-driven soft toy for automatically detecting and classifying infant-toy interactions using
optical force sensors. Front. Robot. AI 11, 1325296. doi:10.3389/frobt.2024.1325296

Van Der Maaten, L., and Hinton, G. (2008). Visualizing data using t-SNE. J. Mach.
Learn. Res. 9.

Wallace, P. S., and Whishaw, 1. Q. (2003). Independent digit movements and
precision grip patterns in 1-5-month-old human infants: hand-babbling, including
vacuous then self-directed hand and digit movements, precedes targeted reaching.
Neuropsychologia 41, 1912-1918. doi:10.1016/S0028-3932(03)00128-3

Xue, Y., Ju, Z., Xiang, K., Chen, J., and Liu, H. (2019). Multimodal human hand
motion sensing and analysis-A review. IEEE Trans. Cogn. Dev. Syst. 11, 162-175. doi:10.
1109/TCDS.2018.2800167

Yoshimoto, S., Kuroda, Y., and Oshiro, O. (2020). Tomographic approach for
universal tactile imaging with electromechanically coupled conductors. IEEE Trans.
Industrial Electron. 67, 627-636. doi:10.1109/TIE.2018.2879296

Yoshimoto, S., Sakamoto, K., Takeda, R., and Yamamoto, A. (2024). Design of a high-
performance tomographic tactile sensor by manipulating the detector conductivity.
IEEE Trans. Industrial Electron. 71, 16783-16791. doi:10.1109/TIE.2024.3384613

frontiersin.org


https://doi.org/10.1016/j.cogdev.2023.101363
https://doi.org/10.1016/j.cogdev.2023.101363
https://doi.org/10.1109/ROBIO.2007.4522352
https://doi.org/10.1302/0301-620x.38b4.902
https://doi.org/10.1590/1516-4446-2014-1533
https://doi.org/10.4992/jjpsy.85.13235
https://doi.org/10.4992/jjpsy.85.13235
https://doi.org/10.1109/LifeTech53646.2022.9754849
https://doi.org/10.1109/TRO.2021.3060342
https://doi.org/10.3390/s24134378
https://doi.org/10.3389/fbioe.2016.00016
https://doi.org/10.1016/j.jecp.2020.105067
https://doi.org/10.1109/TNSRE.2013.2255066
https://doi.org/10.1109/JSEN.2014.2375346
https://doi.org/10.1177/0031512517727405
https://doi.org/10.1016/j.jecp.2023.105674
https://doi.org/10.3389/frobt.2024.1325296
https://doi.org/10.1016/S0028-3932(03)00128-3
https://doi.org/10.1109/TCDS.2018.2800167
https://doi.org/10.1109/TCDS.2018.2800167
https://doi.org/10.1109/TIE.2018.2879296
https://doi.org/10.1109/TIE.2024.3384613
https://www.frontiersin.org/journals/sensors
https://www.frontiersin.org
https://doi.org/10.3389/fsens.2025.1598903

Frontiers In
Computational Neuroscience

Fosters interaction between theoretical and
experimental neuroscience

Part of the world’s most cited neuroscience
series, this journal promotes theoretical modeling
of brain function, building key communication
between theoretical and experimental
neuroscience.

Discover the latest
Research Topics & frontiers

Frontiers in
|
Computational

Neuroscience

Frontiers

Avenue du Tribunal-Fédéral 34
1005 Lausanne, Switzerland
frontiersin.org

Contact us

+41(0)21 510 17 00
frontiersin.org/about/contact

& frontiers | Research Topics



https://www.frontiersin.org/journals/computational-neuroscience/research-topics

	Cover

	FRONTIERS EBOOK COPYRIGHT STATEMENT

	Advancements in smart diagnostics for understanding neurological behaviors and biosensing applications

	Table of contents

	Editorial: Advancements in smart diagnostics for understanding neurological behaviors and biosensing applications
	Overview
	Conclusion
	Author contributions
	Conflict of interest
	Generative AI statement
	Publisher's note

	Artificial neural network models: implementation of functional near-infrared spectroscopy-based spontaneous lie detection in an interactive scenario
	1 Introduction
	2 Literature review
	3 Materials and methods
	3.1 Subjects
	3.2 Experimental procedure
	3.3 Data acquisition
	3.4 Data processing
	3.5 Classification
	3.6 Proposed artificial neural networks (ANN) models

	4 Results and discussion
	4.1 ROC and AUC curves
	4.2 Evaluation of the proposed ANN models

	5 Conclusion
	Data availability statement
	Ethics statement
	Author contributions
	Glossary
	References

	BrainNet: an automated approach for brain stress prediction utilizing electrodermal activity signal with XLNet model
	1 Introduction
	2 Related work
	3 Materials and methods
	3.1 Dataset
	3.2 TL models for stress monitoring
	3.2.1 Xception
	3.2.2 EfficientNetB4
	3.2.3 Visual geometry group (VGG19)
	3.2.4 Residual networks
	3.2.5 MobileNet
	3.2.6 InceptionV3
	3.2.7 XLNet

	3.3 Evaluation parameters

	4 Experimental analysis
	4.1 Experimental setup
	4.2 Model results on the Swell dataset
	4.3 Result of models on WESAD dataset
	4.4 Comparison of model results on both datasets (binary classification)
	4.5 Cross-validation results
	4.6 Limitations of the BrainNet framework

	5 Conclusion
	Data availability statement
	Author contributions
	Funding
	Conflict of interest
	Publisher's note
	References

	Multimodal sleep staging network based on obstructive sleep apnea
	1 Introduction
	2 Methods
	2.1 Overview of the model
	2.2 Time-frequency image conversion
	2.3 Channel-wise convolutional temporal encoder
	2.3.1 Multi-head attention
	2.3.2 Add and CrossNorm

	2.4 Feature fusion
	2.5 Multi-scale feature extraction module

	3 Results
	3.1 Experimental setup
	3.2 Evaluation metrics
	3.3 Experimental scoring results
	3.4 Performance comparison
	3.5 Ablation experiments
	3.6 Sensitivity analysis

	4 Discussion
	5 Conclusions
	Data availability statement
	Ethics statement
	Author contributions
	Funding
	Acknowledgments
	Conflict of interest
	Publisher's note
	References

	Multimodal consumer choice prediction using EEG signals and eye tracking
	1 Introduction
	2 Literature review
	2.1 Predictive approaches for consumer preference based on EEG signals
	2.2 Predictive approaches for consumer preference based on EEG signals and ET data

	3 Dataset
	4 Methodology
	4.1 Preprocessing of EEG signals
	4.2 Preprocessing of eye tracking data
	4.3 Feature extraction of EEG signals
	4.4 Feature extraction of ET data 
	4.4.1 Fixation duration
	4.4.2 Saccade amplitude

	4.5 Ensemble classifier
	4.5.1 Base classifiers

	4.6 Meta-classifier 
	4.7 Hyperparameters optimization
	4.7.1 Stratified cross-validation


	5 Results and discussion
	6 Conclusions
	Data availability statement
	Author contributions
	Funding
	Conflict of interest
	Generative AI statement
	Publisher's note
	References

	Automated karyogram analysis for early detection of genetic and neurodegenerative disorders: a hybrid machine learning approach
	1 Introduction
	1.1 Related work

	2 Materials and methods
	2.1 Proposed approach
	2.2 Dataset
	2.3 Proposed method
	2.3.1 Unsupervised training using autoencoder
	2.3.2 Feature extraction from trained encoder
	2.3.3 Training the (encoder + CNN classifier) with extracted features (supervised learning)
	2.3.4 Fine-tuning of encoder and classifier
	2.3.5 Anomaly detection


	3 Experiments and results
	3.1 Experimental setup
	3.2 Parameter setting and preprocessing
	3.2.1 Preprocessing of data
	3.2.2 Parameters setting

	3.3 Model training
	3.4 Performance metrices
	3.5 Results

	4 Discussion
	4.1 Significance of proposed approach 
	4.1.1 Supervised learning
	4.1.2 Unsupervised learning
	4.1.3 Hybrid approach

	4.2 Challenges in real-world adoption and limitations

	5 Conclusion
	Data availability statement
	Ethics statement
	Author contributions
	Funding
	Acknowledgments
	Conflict of interest
	Publisher's note
	References

	EEG electrode setup optimization using feature extraction techniques for neonatal sleep state classification
	1 Introduction
	1.1 Main motivation of the proposed approach
	1.2 Main contributions

	2 Related work
	3 Materials and methods
	3.1 EEG dataset
	3.2 Visual sleep scoring of EEG dataset
	3.3 EEG dataset pre-processing
	3.4 Feature extraction
	3.4.1 Time domain features
	3.4.2 Frequency domain features

	3.5 Feature importance and feature selection
	3.6 Synthetic minority oversampling technique analysis
	3.7 Long short-term memory
	3.7.1 LSTM architecture

	3.8 Proposed model architecture
	3.9 Performance assessment metrics

	4 Results
	5 Discussion
	6 Conclusion
	Data availability statement
	Ethics statement
	Author contributions
	Funding
	Acknowledgments
	Conflict of interest
	Generative AI statement
	Publisher's note
	References

	Mamba with split-based pyramidal convolution and Kolmogorov-Arnold network-channel-spatial attention for electroencephalogr ...
	1 Introduction
	2 Related work
	2.1 KANs
	2.2 Mamba and transformers
	2.3 Pyramidal convolution and split-based convolution

	3 Methodology
	3.1 KSA-seq attention
	3.2 PySPConv
	3.3 Mamba-PySPConv with KSA attention

	4 Experiments and results
	4.1 Experiments
	4.2 Results

	5 Discussion
	6 Conclusion
	Data availability statement
	Author contributions
	Funding
	Conflict of interest
	Generative AI statement
	Publisher’s note
	References

	Decentralized EEG-based detection of major depressive disorder via transformer architectures and split learning
	1 Introduction
	2 Related work
	3 Materials and methods
	3.1 Data collection
	3.2 Data preprocessing
	3.2.1 Data loading
	3.2.2 Filtering
	3.2.3 Epoch segmentation
	3.2.4 Feature extraction
	3.2.5 Labeling

	3.3 ML and DL models
	3.3.1 Machine learning classifiers
	3.3.1.1 Decision tree
	3.3.1.2 Random forest
	3.3.1.3 Gradient boosting
	3.3.1.4 Logistic Regression
	3.3.1.5 Support vector machine
	3.3.1.6 K-Nearest Neighbors


	3.4 DL models
	3.4.1 Transformer models
	3.4.2 Autoencoders

	3.5 Ensemble learning
	3.5.1 Bagging

	3.6 Split learning
	3.6.1 Architectural overview
	3.6.2 Algorithmic workflow for split learning
	3.6.2.1 Initialization
	3.6.2.2 Local preprocessing
	3.6.2.3 Client forward pass
	3.6.2.4 Intermediate transmission
	3.6.2.5 Server forward pass and loss computation
	3.6.2.6 Backpropagation and parameter updates
	3.6.2.7 Client-side parameter updates
	3.6.2.8 Iteration and convergence
	3.6.2.9 Output


	3.7 Evaluation metrics
	3.7.1 Accuracy
	3.7.2 Precision
	3.7.3 Recall
	3.7.4 F1-Score
	3.7.5 Confusion matrix


	4 Results and discussion
	4.1 ML models results
	4.1.1 LR model
	4.1.2 RF model
	4.1.3 SVM model
	4.1.4 DT model
	4.1.5 KNN model
	4.1.6 GB model
	4.1.7 K Fold cross validation results

	4.2 DL models performances along with ensemble learning
	4.2.1 Discussion of autoencoder-based results
	4.2.2 Transformer-based classification
	4.2.3 Discussion of transformer-based results

	4.3 Split learning results
	4.3.1 Discussion of split learning results


	5 Conclusion
	Data availability statement
	Ethics statement
	Author contributions
	Funding
	Acknowledgments
	Conflict of interest
	Generative AI statement
	Publisher's note
	References

	Enhancing medical image privacy in IoT with bit-plane level encryption using chaotic map
	1 Introduction
	2 Preliminaries
	2.1 Chaotic Chen system
	2.2 SHA-512

	3 Proposed methodology
	4 Results
	4.1 Correlation analysis
	4.2 Histogram analysis
	4.3 Key space
	4.4 Key sensitivity
	4.5 Entropy analysis
	4.6 Differential attack analysis
	4.7 Noise attack analysis
	4.8 Occlusion attack analysis
	4.9 Resilience against classical attacks
	4.10 Complexity analysis

	5 Conclusion
	Data availability statement
	Author contributions
	Funding
	Acknowledgments
	Conflict of interest
	Generative AI statement
	Publisher's note
	References

	Classification of power grip and precision grip in children using an EIT-based tactile sensor
	1 Introduction
	2 Materials and methods
	2.1 Sensing device overview
	2.1.1 Development of sensing devices
	2.1.2 Reconstruction

	2.2 Experiment methods
	2.2.1 Participant information
	2.2.2 Measurement method
	2.2.3 Classification method


	3 Results
	4 Discussion
	4.1 Sensing device and measurements on children
	4.2 Classification method
	4.3 Limitations and future prospects

	5 Conclusion
	Data availability statement
	Ethics statement
	Author contributions
	Funding
	Acknowledgments
	Conflict of interest
	Generative AI statement
	Publisher’s note
	References

	Back Cover



