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Editorial on the Research Topic
 The role of the interactions via movements in the spatial and temporal representation of external objects




Humans execute movements to manipulate their physical surroundings to improve their survival chances. Successful interaction of the brain with the surroundings, which produces purposeful movements, depends on many factors, some of which are highlighted by the contributions in this special issue. The control of movements during an interaction with the physical environment is simplified by a grouping of muscles, called muscle synergies, which serve as the functional unit and can be used across task conditions (d'Avella et al., 2003). Muscle synergies are a small number of fixed patterns of contractions. Movements also reduce the entropy (a measure of surprise) in the patterns of the neuronal activities in the brain that will increase knowledge, forming the basis of voluntary control and perception (Gupta and Bahmer, 2019). In desynchronized states of the brain, which promote information processing (Petersen, 2019), the temporal coupling of neuronal events will occur as a result of the interactions with the physical world (Gupta et al., 2020; Gupta and Bahmer, 2021). Transferring the temporal relationship between external physical events, namely sensory stimuli and movements during an interaction, separated by zero to hundreds of milliseconds, to a corresponding temporal relationship between the neural events triggered by those external physical events requires an accurate representation of the time axis in the brain. This transfer of temporal relationships will lead to the temporal coupling of neural activities, given the external events involved in an interaction. Thus, a “successful interaction” will reduce entropy in activity patterns when neuronal activities are temporally coupled. This reduction in entropy or surprise will result in the gain of knowledge about the interaction, responsible for the sensorimotor control by the brain. Thus, humans control movements as they are being executed, which is referred to as online control (Oostwoud Wijdenes and Medendorp), by resolving the surprise in the spiking pattern of the cortical areas via temporal coupling of neuronal activities, given the external events involved in the interaction.

Online control depends on the instantaneous estimate of the current state of the arm and body in the world. According to Optimal Feedback Control theory, this estimate, which is modulated by context and shaped by experience, is based on integrating forward motor predictions and sensory feedback, such as proprioceptive, visual, and vestibular information. To simplify difficulties, inherent in understanding multimodal estimate's role in online control, Oostwoud Wijdenes and Medendorp have proposed that the earliest online movement corrections are based on multiple single modality state estimates rather than one combined multimodal estimate. Indeed, it has been argued in the past that the detection of visual stimuli pertaining to movements is a fundamental process for the control of reaching movements (Reichenbach et al., 2014).

The visuomotor response in a task involving interaction with physical surroundings is likely to involve both hemispheres, which is underscored in a study by Hagio and Kouzaki, which showed that a visuomotor perturbation during a barrier crossing task affects the movement of the trail leg in addition to the movement of the lead leg.

In their paper, Kostyukov and Tomiak simulate the shoulder and elbow joint torques (JTs), using a two-segment model of the human arm. In contrast to dynamic models, in which the second-order differential equations define the velocities and accelerations of different limb segments, the authors use steady states of the motor system in forced interactions as the chief elements of analysis. It is assumed that the CNS defines the equilibrium states in the motor interaction of the organism with the environment, while movements result from the transitions between a series of equilibrium states. Authors hope that a pattern of the torque effects can provide some simplification of both descending motor programs and their integration at the spinal level.

Josa et al. have studied the effect of action constraints on distance estimation. Authors report that subjects' distance estimation from a cart to a target depended on the weight of the cart, loaded with books or empty. The subjects overestimated the distance when the cart was loaded with books. This, the authors argue, is consistent with the embodied perception theories, which suggest that perception depends on the constraints of potential action.

Avraham et al. (B) investigated the effect of applying a 150 ms delay in visual feedback from the left visual workspace on lateral movements and visual perception of the mid-point of horizontal lines. The authors observed hypermetric movements on the left side, which returned to the baseline during adaptation. In another study by Avraham et al. (A), also with visual feedback of hand movement (movement of the cursor) was delayed by 150 ms, in right or left or both workspaces. The hand movement was followed by drawing circles in the desired direction without any visual feedback. Avraham et al. observed that “delay presented in left and both delay caused symmetrical elongation only to left initiated circles and right delay caused symmetrical elongation to both left and right initiated circles.” Both works underscore the importance of the representation of the time-axis in voluntary movements of the right hand. Presenting the delay in visual feedback also shifts the representation of time-axis, which could be responsible for hypermetric or elongated movements. These findings also suggest that a representation of the time-axis in the left hemisphere may be responsible for the laterality of hemispheres since the delay of the visual feedback in the right workspace (processed by the dominant left hemisphere) leads to symmetrical elongation of the left and right initiated circles.

Sorrentino et al. studied the development of spatial memory in children aged 4–6 years, which required collecting nine colored balls in buckets arranged in three different configurations, namely, Matrix, Cluster, and Cross. The trial ended when all nine colored balls were collected or 30 visits, wrong or correct visits were made, including revisits. The authors found that declarative spatial memory improved with age and movements. Findings showed spatial ability depended on the complexity of the environment.

Saccades are rapid movements of the eyes that abruptly change the point of fixation (Purves and Williams, 2001) when scanning the space during navigation. Fixation points during scanning of the scenery image are the most salient locations. Chauhan et al. present two versions of hierarchical Saccade Velocity Driven Oscillatory Network models. In these two hierarchical models, the output of one layer is used as input for computing the output of the next layer. First, a saccade trajectory map is generated according to decreasing order of saliency of different locations of an image. The saliency is based on three features: intensity, color, and orientation. The saliency trajectory map is processed by the saccade direction layer, which computes the animal's current saccade direction projection on the preferred direction. The computation in the next layer, called the path integration layer, incorporates an amplitude function, resulting in oscillations. The path integration layer projects to the output SC layer, which exhibits a grid-like pattern by extracting the principal components of the oscillatory response. The periodicity in the weights of the principal component due to oscillations corresponds to grid cells in the entorhinal cortex that fire action potentials in navigating animals. The authors argue that oscillations are critical for grid cell generation. Oscillations encode the position information in their respective phase. This is also supported by animal studies that showed a key role for theta oscillations in the normal grid cell activity in the entorhinal cortex (Giocomo et al., 2007).

Gundavarapu et al. present a hierarchical neural field network model of motion processing. The model architecture has an input layer followed by either one or two neural fields (NF), NF1, and NF2, corresponding respectively to the primary visual cortex and middle temporal area. In this model, the lateral connections in the neural fields are trained by unsupervised asymmetric Hebbian learning, to process sequential information in motion stimuli. Neurons in NF1 respond to the direction of the component motion, such as gratings and edges, and the neurons in NF2 respond to the direction of motion of the whole pattern. Additionally, information about the stimulus's temporal sequence is preserved in the network dynamics. Interestingly, translational random dot stimuli flow motion was decoded by a classifier with an accuracy of 90% on the test data, which is a biologically plausible range for most human activities involving interactions with moving objects. The success of neural networks in the above neurobiologically plausible models (Chauhan et al.; Gundavarapu et al.) suggests that many functions of the brain are due to hierarchical processing of information by different higher brain areas and may be driven by learning from experience, similar to neural networks.

Krüger and Hermsdörfer studied duration and fingertip position variability in reaching movements involving touching a target with the right index fingertip at a fixed distance. The targets were manipulated according to three conditions: forced choice with certain and uncertain targets, and a third free choice target. Consistent with previous literature, authors reported that “within-subject between trial variability of fingertip position showed an increase-decrease pattern across the time course of movement execution, with low variability at movement end.” The initial increase in the “between trial variability” is consistent with an increase in the entropy of neuronal spiking in cortical motor areas. However, near the end of the movement, coinciding with the interaction with the external world, there is reduced “between trial variability,” suggesting an increase in correlated activities, which is likely due to an increased probability of the task-specific activation of temporally coupled pairs of neurons. This time course of the change in variability from the beginning to the end of the task is consistent with the role of an initial increase in entropy followed by an increase in mutual information (a measure of correlation), representing information underlying purposeful action (Gupta and Bahmer, 2019). Furthermore, it is expected that the initial increase in the variability is greater if the number of targets is more than one. Thus, the authors found greater variability in fingertip position when two targets instead of one target were presented in a forced-choice task. Krüger and Hermsdörfer also reported an increased length of the movement path in the forced-choice task with two targets. We note that increased length of movement path in forced-choice task with two targets is likely related to greater variability and vice versa. Authors have argued that the increased length of the movement path is responsible for the significantly increased duration of the movement.

Min et al. used a computational model to argue that a learned motor skill can be adapted to a novel condition. The authors proposed that the use of a learned motor skill in a novel setting will produce feedback gain signals, which can tune the output of corticospinal neurons in a computational model of the cortico-basal ganglia-thalamic-cortical circuit. The basal ganglia dynamically modulate motor output with the synergistic combination of two control policies: group control policy (CGP) and individual control policy (ICP). The CGP represents all muscles controlled by a single peripheral nerve, and the IGP represents individual muscles. The synergy between two control policies is optimized by feedback gain signals according to the feedback signals to produce the movements adapted to a novel context. Feedback signals via the cortico-basal ganglia-thalamic-cortical circuit may help in monitoring the movement in a novel context for successful interaction. Learned motor skills may be stored in the premotor area as a circuit pattern, which may be activated in a novel context. The success of movements in novel conditions, given the use of learned motor skills, will be determined by the maximum decrease in entropy in overall cortical spiking firing patterns, which may depend on the temporal coupling of a slightly different set of pairs of neuronal activities. This may occur due to temporal coupling of neuronal activities, caused by signals from proprioceptors relayed by the cerebellum to the cortex as well as activities in cortical motor areas, reflecting actual interactions in novel conditions, which will lead to the modulation of the learned motor skill.

Cohn et al. have proposed the feasibility theory wherein a high-dimensional feasible activation space is a family of valid solutions representing muscle activation patterns, such as muscle synergies, for a given motor task. The authors argue that due to the dependence on anatomical constraints of the nervous system and musculoskeletal system, the feasible activation space contains valid solutions, i.e., prescriptive synergies for executing movements. Feasible activation space may also provide a framework for analyzing how learned motor skills may be modified in novel situations (Min et al.).

Oshima et al. present experimental evidence showing that humans adapt to different speeds of locomotion–walking and running–by altering the spatial coordination patterns, while the temporal coordination pattern remains unaffected by different speeds. Their findings based on the study of the motion of the legs indicate that the control of temporal patterns is independent of the control of spatial patterns. This is consistent with the identification of orthogonal components, which include patterns of muscle contractions, called synergies and temporal components from the analysis of electromyograms by standard multidimensional factorization algorithms (d'Avella et al., 2003). There may be different sets of patterns of muscle contractions–muscle synergies–at different speeds of locomotion, leading to altered spatial patterns. In a related study, Gonzalez-Rubio et al. observed that motor adaptation in the spatial domain was susceptible to feedback in the temporal domain, whereas motor adaptation in the temporal domain was not altered by the feedback in the spatial domain. Since invariant muscle synergies represent the spatial domain, there will be no effect of the feedback in the spatial domain. However, as suggested by other papers in this special issue, the neural representation of time-dimension can be dynamically updated during a task (Avraham et al., A; Avraham et al., B); thus, motor adaptation in the spatial domain is affected by feedback in the temporal domain.

Various contributions to this Frontiers Research Topic suggest that voluntary motor control depends on two independent components: (1) prior, such as muscle synergies, detected by electromyogram analysis, and (2) instantaneous sensorimotor interaction, which leads to temporal coupling of neural events in desynchronized brain states. Moreover, the temporal coupling of neural events depends on an accurate representation of physical time-dimension in the brain, in addition to sensorimotor interactions between the brain and physical surroundings. A successful sensorimotor interaction will result in the temporal coupling of neuronal activities that would reduce the entropy in the patterns of neuronal activities, given a particular task, contributing to smooth voluntary motor control. Future works should investigate how the temporal coupling of neuronal activities and different measures of surprise play a role alongside prior in voluntary movements.


Author contributions

The author confirms being the sole contributor of this work and has approved it for publication.



Acknowledgments

The author is grateful to Professors David W. Franklin and Masahiro Shinya for their encouragement.



Conflict of interest

The author declares that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.



Publisher's note

All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher.



References

 d'Avella, A., Saltiel, P., and Bizzi, E. (2003). Combinations of muscle synergies in the construction of a natural motor behavior. Nat. Neurosci. 6, 300–308. doi: 10.1038/nn1010

 Giocomo, L. M., Zilli, E. A., Fransen, E., and Hasselmo, M. E. (2007). Temporal frequency of subthreshold oscillations scales with entorhinal grid cell field spacing. Science. 315, 1719–1722. doi: 10.1126/science.1139207

 Gupta, D. S., and Bahmer, A. (2019). Increase in mutual information during interaction with the environment contributes to perception. Entropy (Basel). 21. doi: 10.3390/e21040365

 Gupta, D. S., and Bahmer, A. (2021). Editorial: understanding the importance of temporal coupling of neural activities in information processing underlying action and perception. Front. Comput. Neurosci. 15. doi: 10.3389/fncom.2021.729296

 Gupta, D. S., Banerjee, A., Roy, D., and Piras, F. (2020). Editorial: temporal structure of neural processes coupling sensory, motor and cognitive functions of the brain. Front. Comput. Neurosci. 14. doi: 10.3389/fncom.2020.00073

 Petersen, C. C. H. (2019). Sensorimotor processing in the rodent barrel cortex. Nat. Rev. Neurosci. 20, 533–546. doi: 10.1038/s41583-019-0200-y

 Purves, D., and Williams, S. M. (2001). Neuroscience. Sunderland, Mass.: Sinauer Associates.

 Reichenbach, A., Franklin, D. W., Zatka-Haas, P., and Diedrichsen, J. (2014). A dedicated binding mechanism for the visual control of movement. Curr. Biol. 24, 780–785. doi: 10.1016/j.cub.2014.02.030












	
	PERSPECTIVE
published: 19 December 2017
doi: 10.3389/fnint.2017.00038






[image: image2]

State Estimation for Early Feedback Responses in Reaching: Intramodal or Multimodal?


Leonie Oostwoud Wijdenes and W. Pieter Medendorp*


Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, Netherlands

Edited by:
Hugo Merchant, Universidad Nacional Autónoma de México, Mexico

Reviewed by:
Giuseppe Pellizzer, University of Minnesota, United States
 Olivier White, INSERM U1093, Université de Bourgogne Franche Comté, France

* Correspondence: W. Pieter Medendorp, p.medendorp@donders.ru.nl

Received: 27 September 2017
 Accepted: 08 December 2017
 Published: 19 December 2017

Citation: Oostwoud Wijdenes L and Medendorp WP (2017) State Estimation for Early Feedback Responses in Reaching: Intramodal or Multimodal? Front. Integr. Neurosci. 11:38. doi: 10.3389/fnint.2017.00038



Humans are highly skilled in controlling their reaching movements, making fast and task-dependent movement corrections to unforeseen perturbations. To guide these corrections, the neural control system requires a continuous, instantaneous estimate of the current state of the arm and body in the world. According to Optimal Feedback Control theory, this estimate is multimodal and constructed based on the integration of forward motor predictions and sensory feedback, such as proprioceptive, visual and vestibular information, modulated by context, and shaped by past experience. But how can a multimodal estimate drive fast movement corrections, given that the involved sensory modalities have different processing delays, different coordinate representations, and different noise levels? We develop the hypothesis that the earliest online movement corrections are based on multiple single modality state estimates rather than one combined multimodal estimate. We review studies that have investigated online multimodal integration for reach control and offer suggestions for experiments to test for the existence of intramodal state estimates. If proven true, the framework of Optimal Feedback Control needs to be extended with a stage of intramodal state estimation, serving to drive short-latency movement corrections.

Keywords: online movement control, multimodal integration, feedback control, state estimation, vestibular organ


OPTIMALITY IN PERCEPTION AND ACTION

Perceiving and acting can be considered as two sides of the same coin. To serve the perception-action coupling, the sensory system has to estimate the state of the world (e.g., where and what are interesting objects) and body (e.g., where are my hands), while the motor system is concerned with prospective control based on these state estimates, i.e., generating the motor commands needed to acquire a particular task goal. Recent insights suggest that perception and action are not only intertwined at the computational level, following optimality principles (Todorov and Jordan, 2002; Körding and Wolpert, 2004; Shadmehr and Krakauer, 2008; Oostwoud Wijdenes et al., 2016), but also at the neural level (Cisek, 2006; Klein-Flugge and Bestmann, 2012; Grent-'t-Jong et al., 2014).

From a sensory perspective, optimality is defined as minimizing uncertainty about the state of the body and world by combining redundant information from different sensory modalities, weighting each signal in proportion to its reliability (van Beers et al., 1999; Ernst and Bülthoff, 2004; Körding and Wolpert, 2004). Indeed, psychophysical studies have shown that human perception is near-optimal when integrating visual-proprioceptive (van Beers et al., 1999), visual-haptic (Ernst and Banks, 2002), visual-auditory (Alais and Burr, 2004; Körding et al., 2007), or visual-vestibular information (Fetsch et al., 2009; ter Horst et al., 2015). In such studies, the typical approach was to estimate noise levels of the two sensory modalities in separate unimodal experiments, which were then used to predict perception in the bimodal case (but see Clemens et al., 2011 for a different approach). Also within the visual system, information available before and after an eye movement (Oostwoud Wijdenes et al., 2015), and current and remembered visual information appears to be integrated in an optimal manner (Brouwer and Knill, 2009; Atsma et al., 2016).

From a motor angle, optimality additionally includes factors other than variability. Next to controlling for task-relevant but not for task-irrelevant variability of the movement (Todorov and Jordan, 2002; Franklin and Wolpert, 2008; Scott, 2012), effort is also minimized, while accuracy and stability are maximized. These factors are weighted against movement reward, e.g., reaching the goal fast (Liu and Todorov, 2007). For any possible action, the brain needs to know the expected costs as well as the rewarding nature of the sensory states that it might achieve. This requires knowledge of body and world dynamics, called a forward internal model (Miall and Wolpert, 1996; Kawato, 1999; Shadmehr and Mussa-Ivaldi, 2012). Using this knowledge, the brain can compute the expected costs of particular movements, and subsequently select the most optimal movement.

By using the internal model, the brain also relates motor commands to their sensory consequences, which is mandatory to differentiate sensations that arise as a consequence of one's own movements from those that arise from changes in the environment (Cullen, 2004; Körding et al., 2007; Reichenbach et al., 2014). For example, the fact that we cannot tickle ourselves is evidence that the brain can predict (and thereby nullify) the consequences of its own action (Blakemore et al., 1998; Bays et al., 2006). In order to keep sensory predictions accurate, the forward model must be continuously calibrated to the actual dynamics of body and world, called motor adaptation (Wolpert et al., 1995; Shadmehr et al., 2010).

All these considerations imply a natural link between the sensory and motor systems, which is computationally captured by the Optimal Feedback Control (OFC) framework (Todorov and Jordan, 2002; Shadmehr and Krakauer, 2008) (Figure 1A). This framework proposes that the brain estimates the state of the body using a combination of sensory feedback from various modalities and forward predictions about the consequences of the commanded action, based on an internal model of the mapping between motor commands and their effect on the body in the world (Wolpert et al., 1995; Miall and Wolpert, 1996). This body state is then used to control action. However, it is still unclear how information from the forward prediction and the sensory feedback from different modalities are propagated to achieve a coherent multimodal state estimate.


[image: image]

FIGURE 1. (A) Optimal Feedback Control framework (figure based on Shadmehr and Krakauer, 2008). Motor commands produce body movements. An efference copy of the commands is used to predict the sensory consequences of these commands. With some time delay, the sensory consequences of the actual movement are registered by different sensory modalities. The predicted and observed sensory consequences are combined to estimate the current state of the body in the world. This state estimate is fed into the feedback control policy and the feedback gains with which the system responds to perturbations are adapted accordingly (Franklin and Wolpert, 2008). This loop continues until the final desired state is reached. Although the brain does not use the mathematical tools of the OFC framework, we assume that it can describe the results of the actual processes. (B) OFC model with different sensory modalities and their time delays. It can be argued that the earliest stages of movement corrections are controlled via intramodal state estimates that are based on within-modality forward predictions and sensory feedback.



In this article we focus on state estimation in the control of reaching movements. First, we discuss the major problems that the brain needs to solve in order to successfully integrate feedforward predictions and sensory feedback from multiple modalities, then we propose an extension to the OFC model that may help to solve these problems, and finally we suggest possible experiments to test the model extension.



CONTINUOUS MOVEMENT CONTROL

To accomplish reach tasks in an ever-changing world, it is essential to be able to control movements while they are executed, which we will call online control here. The online control of movements is arguably also the most demanding type of control in the link between perception and action because afferent sensory information is changing continuously and the time to make adjustments is limited. For online movement control, sensory information from multiple modalities has to be processed in a very short time frame in order to identify if the current course of movement will end on the desired location, and, if this is not the case, to make appropriate adjustments before the movement ends. For these adjustments to be successful, a reliable estimate of the current state of the body is essential.

The estimate of the current state of the arm can be examined by experimentally perturbing information about the current course of movement via one of the sensory organs and measuring the movement adjustments made in response to the imposed perturbation. Two sensory organs that provide proprioceptive information about the current state of the arm are muscle spindles and mechanoreceptors in the skin (Crevecoeur et al., 2017). After a mechanical perturbation, it takes about 50–100 ms before the hand shows task-dependent movement adjustments (for a review see Pruszynski and Scott, 2012). Within this time frame, movement adjustments depend on verbal instructions, and target and obstacle configurations (Hammond, 1956; Pruszynski et al., 2008; Nashed et al., 2014). Furthermore the gains of such task-dependent adjustments can be modulated throughout the movement (Mutha et al., 2008).

Visual information about the current state of the arm is provided by the eyes. It has been known for a long time that hand movements are under continuous visual control (Woodworth, 1899; Gielen et al., 1984; Pélisson et al., 1986). Even the earliest stages of a movement will be adjusted in response to visual target jumps (Georgopoulos et al., 1981; Van Sonderen and Denier van der Gon, 1991). Response latencies are in the order of 100-150 ms and not affected by movement stage (Gritsenko et al., 2009; Oostwoud Wijdenes et al., 2011; Sarlegna and Mutha, 2015).

Also perturbing visual feedback about current arm position will result in adjustments of the ongoing movement (Brenner and Smeets, 2003; Sarlegna et al., 2003; Saunders and Knill, 2004). In such experiments, participants reach to targets on a screen while seeing a cursor representing their hand position. Jumps of the cursor can probe movement corrections. Like responses to proprioceptive perturbations, adjustments in response to visual perturbations of the target and the cursor are dependent on the task at hand and evolve throughout the movement (Franklin and Wolpert, 2008; Gritsenko et al., 2009; Knill et al., 2011; Oostwoud Wijdenes et al., 2011, 2013; Dimitriou et al., 2013; Franklin et al., 2017) (for a review see Sarlegna and Mutha, 2015).

Furthermore, the vestibular system provides information about the current state of the body. Its sensory organs, the otoliths and semi-circular canals, detect linear acceleration and angular velocity of the head, respectively. It has been shown that vestibular information is also included in the continuous control of hand movements. Passive body rotations during reaches to remembered visual targets result in angular deviations of the hand that correspond to the perceived vestibular perturbation (Bresciani et al., 2002b; Reichenbach et al., 2016). Electrical stimulation over the mastoid processes that produces the illusion of a body rotation (galvanic vestibular stimulation) during the movement also results in online and task-dependent movement adjustments (Bresciani et al., 2002a; Keyser et al., 2017; Smith and Reynolds, 2017). Latencies of reach corrections in response to vestibular perturbations seem to be substantially longer than corrections in response to visual and proprioceptive perturbations, i.e., about 176–240 ms (Bresciani et al., 2002a; Moreau-Debord et al., 2014; Keyser et al., 2017). Preliminary data of experiments probing movement corrections with visual target jumps during passive body acceleration suggests that visuomotor feedback gains are modulated by vestibular input (Oostwoud Wijdenes and Medendorp, 2017). Thus, sophisticated hand movement adjustments are observed in response to perturbations of visual, proprioceptive and vestibular information.

Although the movement adjustment needed to correct for a perturbation of the world or the body can be the same, for example compare a 1 cm rightward target jump and a 1 cm leftward displacement of the representation of the hand (e.g., by means of a cursor jump), the underlying cause of the perturbation is different. For accurate perception and action, it is important that changes in the world are not attributed to changes in the body, and that changes in perception due to noise in the sensors are not attributed to changes in the world (Berniker and Kording, 2008). To help solving this agency problem for the visual system, there is a special binding mechanism that links visual and motor information about movement of the cursor (Reichenbach et al., 2014). For the vestibular system, neurons in the cerebellum are involved in the selective encoding of unexpected but not self-generated self motion (Brooks and Cullen, 2013).



CHALLENGES FOR ONLINE MULTISENSORY INTEGRATION

Perturbation experiments can probe a single sensory modality, e.g., a visual target or cursor jump only perturbs the visual information, or multiple modalities e.g., a passive body rotation perturbs vestibular, proprioceptive and visual information. The current state of the arm can most reliably be estimated by combining information from different modalities, but this involves complex computations taking into account differences in noise properties, internal dynamics and intrinsic reference frames of the various sensors.

A challenge with integrating information from different sensory modalities for the online control of reaching is related to the processing of information in time (Cluff et al., 2015; Scott, 2016). Different sensors have different internal dynamics and involve different neural circuitries. Proprioceptive perturbations induced by a sudden mechanical displacement of the hand cause a stretch in the muscle spindles that almost immediately results in a stretch reflex via the spinal cord (Liddell and Sherrington, 1924). However, it takes 50–100 ms for the reach response to show task dependent modulations (for review see Pruszynski and Scott, 2012). Visual perturbations provoke a change to the input on the retina. Latencies to visual perturbations are somewhat longer than to proprioceptive perturbations, in the order of 100–150 ms (for review see Sarlegna and Mutha, 2015). Vestibular perturbations make the hair cells in the otolith organs or in the semicircular canals bend, which results in action potentials projecting to the vestibular nucleus and the cerebellum. Although for eye movements the first corrections in response to head motion take less than 15 ms (Sparks, 2002), latencies of hand movement corrections that take into account task demands are substantially longer, about 176–240 ms (Bresciani et al., 2002a; Moreau-Debord et al., 2014; Keyser et al., 2017). Thus if someone is thrown off balance during a reach, which perturbs the perceived position of the body proprioceptively, visually and vestibularly at the same time, movement corrections in response to this disturbance are manifested with different delays.

It is unknown which processing stage or stages cause these differences in behavioral delays. Next to sensor dynamics, an obvious difference between modalities is the way that information is encoded. Different sensors collect information about the current position of the hand in different coordinate systems. Proprioceptive afferent information is generally defined in a muscle-centered reference frame (Gardner and Costanzo, 1981). Visual information is initially defined in a retinotopic reference frame, and vestibular information in a head-centered reference frame (Raphan and Cohen, 2002). Later processing steps in the feedforward control of movement, such as reach planning, are carried out in multiple reference frames in large cortical networks (Beurze et al., 2006; McGuire and Sabes, 2009; Cappadocia et al., 2016), and also the hand state estimate is not defined in a single reference frame, but in a mixture of coordinate systems (Berniker et al., 2014). To arrive at these multimodal reference frames may require time-consuming neural coordinate transformations, although there are also modeling and empirical suggestions that the multilayer networks in the brain allow for automatic remapping of sensory inputs in multiple reference frames (Pouget et al., 2002; Azañón et al., 2010), perhaps mediated by neuronal oscillations (Buchholz et al., 2011, 2013; Fries, 2015).



INTRAMODAL STATE ESTIMATES

This raises the question of how the brain achieves fast and accurate online reach control. To deal with differences in delays within the Optimal Feedback Control framework, it has been proposed that the reliability of information from modalities for which it takes more time to evoke task dependent corrections should be reduced (Crevecoeur et al., 2016). Such an approach assumes that modality dependent delays originate from differences on the input side, thus in the sensor dynamics and conduction times to the CNS only. This assumption is in particular questionable when considering the vestibular system in state estimation for reaching movements. Why does it take 176–240 ms to evoke task dependent corrections of the arm? Vestibular ocular responses proceed much faster. Therefore it is unlikely that this delay reflects sensory conduction times only. In the following we will provide alternative reasoning on how the brain might deal with different sensory delays, which may also account for recently published findings.

Franklin et al. (2016) investigated if visual estimates of target and hand position are integrated in a common reference frame for the early online control of reaching. During forward reaching movements with a robotic manipulandum, the target of the reaching movement and the cursor that represented the unseen hand could both, independently, jump to a range of new locations. In half of the trials, the actual lateral position of the robot handle was fixed in order to measure corrective forces in response to the jumps. If the visual distance between the neural representations of hand and target location is the only direct input for the conversion from a spatial to a muscle-based reference frame (Bullock et al., 1998), changes in cursor and target position that result in the same visual distance should result in the same corrective forces (for example the force needed to correct for a 1 cm rightward target jump is the same as the force needed to correct for a 2 cm leftward hand-cursor jump in combination with a 1 cm left target jump). However, consistent with Brenner and Smeets (2003) who showed that simultaneous cursor and target jumps of the same size result in movement corrections, Franklin et al. (2016) found that the force depended on the relative contributions of target and cursor displacements rather than the absolute difference vector. Based on a multichannel model, they conclude that parallel, separate feedback loops within the visuomotor system control for early corrections to changes in visual target and visual hand location. If perturbations of different origin within the same modality are processed in separate channels, it seems reasonable to suggest that multimodal control for early corrections might be also processed in separate channels.

To ensure the short correction latencies that are essential to act promptly in unpredictable, dynamic environments, one could propose that the fastest stage of control is based on intramodal estimates (Figure 1B). Rather than integrating information from multiple modalities, feedforward and feedback information of individual modalities are integrated to estimate the state of the hand based on a single modality. Within this notion, different modalities project via separate channels to the feedback control policy, or taking it a step further, there even might be channel-specific control policies. This type of control circumvents the spatial and temporal challenges related to integrating information from different sensory modalities, and might explain the different latencies that are found to compensate for changes in different modalities. However, such a mechanism lacks in reliability: integrating information from multiple modalities, if congruent, will make the estimate more reliable. Thus a multimodal state estimate probably should control later stages of the movement. Integration for multimodal state estimation may hence be based on intramodal state estimates or on direct feedforward and feedback input from the different sensory organs.

To our knowledge, only few studies have investigated multimodal integration for the online control of reaching by independently perturbing more than one sensory modality. Mutha et al. (2008) investigated the integration of visual and proprioceptive information. They asked participants to make 30° elbow extension movements and on some trials the target jumped 15° toward or away from the start position at movement onset. In addition, 100 ms after the visual perturbation, they mechanically pushed the arm closer to the target, or away from the target. They found that the response to the proprioceptive perturbation was affected by the visual perturbation. If the target jump and the mechanical perturbation were in the same direction, the force that was produced to correct for the perturbations was lower than if the visual and proprioceptive perturbation were in opposite directions. This suggests that the multimodal state estimate is updated quickly and accurately. However, in a second experiment they varied the amplitude of the visual perturbation and were unable to find amplitude related modulations in the corrections for proprioceptive perturbations. This non-linearity in the responses might suggest that early components of the responses may be modulated by separate intramodal state estimates rather than one multimodal estimate, because a multimodal estimate should be optimally tuned to the task.

Crevecoeur et al. (2016) also investigated the integration of visual and proprioceptive information for the online control of movement. Specifically, they asked if the nervous system integrates visual and proprioceptive information based on the sensory reliability, as is typically the case for static perception (van Beers et al., 1999; Ernst and Banks, 2002), or whether it also takes into account the differences in time delays between modalities. They argue that, because it takes longer for visual than for proprioceptive perturbations to affect the hand movement, visual feedback is more corrupted by noise and therefore the brain should discount visual information. Participants were asked to stabilize their finger on a dot. After a short delay their arm was either mechanically perturbed without visual feedback, or the hand-cursor was visually perturbed along a trajectory corresponding to the path of a mechanically perturbed arm, or their arm was mechanically perturbed with visual feedback of the cursor (mechanical + visual perturbation). For mechanical perturbations, participants were instructed to quickly move their hand back to the start dot while looking at their unseen finger. For visual perturbations they were instructed to visually track the cursor. Inventively, Crevecoeur et al. (2016) took gaze as a proxy for the state estimate of the hand location. They found that saccadic latencies were shorter in response to the mechanical and the mechanical + visual perturbations than to the visual perturbation alone. This result supports a multisensory integration model that takes into account the differences in time delays between visual and proprioceptive information. Alternatively, the similarities between mechanical and mechanical + visual response latencies could be explained by early intramodal feedback control, because in that case one would expect an adjustment to start as soon as one of the modalities, in this case proprioception, detects that movement corrections are needed.

Finally, Crevecoeur et al. (2017) investigated the integration of information from skin mechanoreceptors and muscle spindles. Both sources provide information that supports the control of finger movements. Crevecoeur et al. (2017) asked how information from these two sensory modalities is integrated. Participants were asked to touch a surface that could move underneath their index finger. When they perceived surface motion they were asked to push onto the surface to prevent it from slipping. In a two-by-two design they did or did not restrain actual movement of the finger, and the mechanoreceptors of the finger were or were not anesthetized. They found that the initial response to the surface motion at a latency of ~60 ms was modulated by muscle spindle feedback only, since anesthetizing the mechanoreceptors did not affect the response. It took ~90 ms for mechanoreceptor feedback to start contributing to the response. After this time, it seems that mainly finger motion and to a lesser extent strain affects the movement correction, which is not directly what optimal integration would predict. They concluded that the two sensors operate in partially distinct sensorimotor circuits, congruent with the proposal that intramodal state estimates drive short-latency movement corrections.



TESTING INTRAMODAL STATE ESTIMATION

It needs to be tested if the idea of intramodal state estimates for reach control holds water. This is not straightforward to do, because it is difficult to continuously track the state estimate during hand motion (Crevecoeur et al., 2016). Also, over time predictions for models with and without intramodal estimates converge because at longer delays the input for intra- and multimodal state estimation is the same. The critical moment where intramodal estimates give other predictions than a multimodal estimate is in the first couple of 100 ms after the perturbation. During this time, corrections would not be based on a weighted combination of all modalities determined by their reliability, but they would only depend on the modality that first detects the perturbation.

One way to test if the brain constructs intramodal estimates might be to alter the state estimate via one sensory modality and test how state estimates are updated via other modalities (Bernier et al., 2007). For example, one could teach participants a contraction or expansion of the visual consequences of their movements (Hayashi et al., 2016), or teach them to reach in a pulling or pushing force field. Throughout learning, on reaches to the straight-ahead target, one could probe the state estimate with visual, proprioceptive, and vestibular perturbations. If the brain uses intramodal state estimates, the earliest movement corrections for perturbations of the trained modality should result in a response congruent with the new sensorimotor mapping, while the earliest responses of other modalities should not reflect the new mapping until the multimodal state estimate is updated. If responses are the same irrespective of whether the modality was trained directly or indirectly, this would suggest that that even the fastest stage of control is based on a single multimodal state estimate.

So far, the majority of studies investigating online movement corrections used visual and proprioceptive perturbation paradigms. The vestibular system is known to play an important role in sensorimotor control as well (for review see Medendorp and Selen, 2017). We propose to also exploit this modality more extensively when investigating multimodal integration for online control. For example, by using Galvanic Vestibular Stimulation (GVS) (Fitzpatrick and Day, 2004) it is possible to perturb the vestibular input without mechanically affecting hand position – all changes in hand position are related to vestibular feedback responses (Keyser et al., 2017). This enables one to zoom in on the effect of the perturbation without the need to control for corrections due to stretching the arm muscles.



CONCLUDING REMARKS

In conclusion, the online control of reaching movements in the fast and fine-tuned fashion that humans typically display puts high demands on reference frame transformations and requires internal knowledge about conduction time delays of different sensors. Here we considered the novel idea that in light of the speed with which corrections are observed, the earliest adjustments to ongoing movements may be based on intramodal state estimates. Experimental and modeling studies should investigate if this would be a valuable extension to the Optimal Feedback Control framework. Although we have focused on reaching movements here, the framework extends to other types of continuously controlled movements of the arm and hand, such as grasping (Voudouris et al., 2013), as well as those of the leg (Potocanac et al., 2014).
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In daily interactions, our sensorimotor system accounts for spatial and temporal discrepancies between the senses. Functional lateralization between hemispheres causes differences in attention and in the control of action across the left and right workspaces. In addition, differences in transmission delays between modalities affect movement control and internal representations. Studies on motor impairments such as hemispatial neglect syndrome suggested a link between lateral spatial biases and temporal processing. To understand this link, we computationally modeled and experimentally validated the effect of laterally asymmetric delay in visual feedback on motor learning and its transfer to the control of drawing movements without visual feedback. In the behavioral experiments, we asked healthy participants to perform lateral reaching movements while adapting to delayed visual feedback in either left, right, or both workspaces. We found that the adaptation transferred to blind drawing and caused movement elongation, which is consistent with a state representation of the delay. However, the pattern of the spatial effect varied between conditions: whereas adaptation to delay in only the left workspace or in the whole workspace caused selective leftward elongation, adaptation to delay in only the right workspace caused drawing elongation in both directions. We simulated arm movements according to different models of perceptual and motor spatial asymmetry in the representation of delay and found that the best model that accounts for our results combines both perceptual and motor asymmetry between the hemispheres. These results provide direct evidence for an asymmetrical processing of delayed visual feedback that is associated with both perceptual and motor biases that are similar to those observed in hemispatial neglect syndrome.

Keywords: visuomotor delay, space-variant delay, reaching, drawing, adaptation, transfer, hemispatial neglect


INTRODUCTION

When integrating external information for the execution of accurate hand movements, our sensorimotor system overcomes two challenges: laterality and time delays. Laterality is a result of processing asymmetrical visual information across space (Reuter-Lorenz et al., 1990). Time delays are a result of sensory information transmission and processing time, and they may vary between modalities (Hopfield, 1995). Previous studies investigated how the sensorimotor system compensates for differences in the spatial representations between the left and right workspaces (Heilman and Valenstein, 1979; Ziemann and Hallett, 2001; Koch et al., 2011), and for the delays between the different modalities (Miall et al., 1985; Miall and Jackson, 2006; Pressman et al., 2007; Di Luca et al., 2011; Nisky et al., 2011; Honda et al., 2012; Rohde et al., 2014; Avraham et al., 2017a; Farshchian et al., 2018). In this study, we use adaptation and transfer of adaptation paradigms to examine the interplay between these two compensatory processes.

A widely accepted view of sensorimotor control suggests that the execution of accurate movements under various environmental conditions relies on the existence of internal models (Jordan and Rumelhart, 1992; Wolpert and Miall, 1996; Wolpert, 1997; Kawato, 1999). A forward model is an internal representation of the environment that predicts the sensory consequences of a motor command and helps to compensate for changes in the sensory feedback during motor adaptation (Wolpert et al., 1995; Miall et al., 2007). In adaptation studies, the internal representation is typically evaluated from the movements of participants during and after exposure to visual or force perturbations. Throughout the adaptation, the participants modify the kinematics and dynamics of their movements to reduce errors and to maximize task success (Shadmehr and Mussa-Ivaldi, 1994; Cohn et al., 2000; Krakauer et al., 2000; Simani et al., 2007). A common way to assess the adaptation and the construction of an internal model is by examining aftereffects when the perturbation is unexpectedly removed. Another approach is to test for transfer of adaptation to a different workspace (Shadmehr and Mussa-Ivaldi, 1994; Rotella et al., 2015), a different context (Kluzik et al., 2008), or a different task (Shadmehr and Mussa-Ivaldi, 1994; Botzer and Karniel, 2013). Investigating aftereffects and transfer of adaptation reveals how the new kinematics or dynamics are represented by the motor system.

In this study, we examined adaptation to a laterally asymmetric visuomotor delay. We considered the transfer of adaptation to a 150 ms delay that was applied selectively to the visual feedback of hand movements according to the direction of the movement (and consequently, according to the workspace where the movement was applied). Meaning, participants were exposed to a lateral perturbation that was inconsistent between the two workspaces. Previously, spatially uniform visuomotor delay has been shown to cause alterations in movements' extent (Botzer and Karniel, 2013; Avraham et al., 2017a). These studies suggested that the sensorimotor system copes with delayed visual feedback by manipulating the current state variables, and specifically, by changing the gain in the internal representations. In addition, it was previously shown that the human brain has the ability to learn context-dependent perturbations, and to use spatial cues to adapt to multiple different environments (Epstein et al., 1997; Wolpert et al., 1998; Woolley et al., 2007; Howard et al., 2010; Ayala et al., 2015). Therefore, we hypothesized that when presented with an asymmetric delay that is dependent on the workspace and direction in which the target is presented, participants will form an asymmetrical state representation. We expected that this asymmetrical state representation will be demonstrated by asymmetric aftereffects and asymmetric transfer of adaptation to different tasks.

The hemispheres are different in both perceptual and motor processing, and therefore, it is possible that the hemisphere that processes the visuospatial information will also influence the effect of asymmetric delay on lateral movements. Regarding to perceptual processing, the hemispheres exhibit asymmetrical visuospatial perceptual attention, also known as “right hemisphere dominance.” The right hemisphere holds representations of both left and right fields (Heilman and Valenstein, 1979) and is able to inhibit the left hemisphere (Ziemann and Hallett, 2001; Koch et al., 2011), whereas the left hemisphere holds representations of only the right visual field. This implies that presenting delay only in one workspace, when the participant is located in the center, between the two workspaces, might be processed differently between the hemispheres. Another important aspect of lateral right-handed movements is an asymmetry in the visuomotor control of the right hand in right-handers. It is well established that the left hemisphere is involved in right-handed movements toward both right and left workspaces. However, it has also been shown that the right hemisphere can contribute to the control of movements toward the contralateral hemispace with the right hand (Farnè et al., 2003; Heilman and Valenstein, 2010). These perceptual and motor asymmetries in the hemispheres can affect lateral movements when exposed to asymmetrical visual processing across space.

To simulate the possible effects of asymmetric delay, we generated predicted arm movements according to different possible effects on transfer of adaptation with and without laterality in the temporal processing. To validate our model, we performed an experiment in which we exposed participants to direction- and workspace- specific delay between the hand and the visual cursor while performing reaching movements to both left and right targets. We examined the effect of this delay on the amplitude of the reaching movements. To probe for laterality-related changes in the internal representation due to the delay, we investigated the transfer of adaptation to a blind circle-drawing task, in which participants were requested to draw two-dimensional circles with multiple movement directions without visual feedback. We chose a blind drawing task because it allows for the detection of asymmetries in a continuum of directions (Punt et al., 2013); also, eliminating the visual feedback allows for testing the effects of adaptation to delay when participants rely only on feedforward control and proprioceptive feedback.

We found aftereffects of adaptation to delayed visual feedback in reaching movements, and transfer of adaptation to blind drawings. Interestingly, while the reach aftereffects reflected the spatial pattern of the delay perturbation, the transfer effects had significant asymmetries between delay conditions: only when the delay was presented in leftward reaches, regardless of whether it was also presented in the rightward reaches, participants exhibited asymmetrical neglect-like blind drawings. These results are only consistent with a computational model that includes perceptual and motor asymmetry which involves laterality and right hemisphere dominance.



METHODS


Simulation of Arm Movement

To investigate the possible hypotheses for the effect of the asymmetric delay on participants' movements, we used a computational model. Previous studies showed an increase in movement amplitude following adaptation to visuomotor delay (Botzer and Karniel, 2013; Avraham et al., 2017a), and therefore, we simulated the hand movement following adaptation to delay with a magnifying gain in its amplitude. First, we examined the effect of delay without considering any effects of laterality. In this case, the magnifying gain was applied in the control of movements that were performed toward the same direction in which the delay was presented. Second, we examined the effect of laterality in our experiment by testing the effect of perceptual and motor asymmetry in the hemispheres (separated and combined). Here, magnifying gain was applied following excitation of the relevant hemisphere, and inhibitory effect was reflected in multiplying the gain by a step function that canceled all excitation activity.

To simulate arm movements, we modeled arm dynamics as a two link model with two joints: shoulder (θs) and elbow (θe) (Pressman et al., 2008; Nisky et al., 2011). We simulated a simplified control of arm movement with two controllers of trajectory and end-point (Scheidt and Ghez, 2007; Botzer and Karniel, 2013), as depicted in Figure 1. The trajectory controller consisted of a feedforward controller—an inverse model of the arm, and two feedback controllers—for vision and for proprioception (Ghez et al., 2007; Scheidt and Ghez, 2007; Scheidt and Stoeckmann, 2007; Scheidt et al., 2011), and received as an input a desired trajectory. The endpoint controller was implemented as a spring and a damper with an equilibrium at the desired static end of movement, and it stabilized the arm at the end of movement. This model was used to simulate both reaching movements and blind circular movements. To simulate lateral reaching movements, we assumed that the controller tracks a planned minimum-jerk trajectory defined as a smooth trajectory from start to end-position along the x-axis (Flash and Hogan, 1985). Desired circular movements were defined by fitting a 12th order polynomial function to a desired trajectory, in order to achieve smooth velocity and acceleration along with the desired path. Note that this particular structure was chosen as an example to allow for showing the effects of different assumptions of laterality and delay interplay, and our reasoning does not depend on this particular structure or the assumption of the existence of a desired trajectory.
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FIGURE 1. Simulation of arm movement with end-point, feedforward and two feedback controllers. The feedforward controller is an inverse model of the arm (“inverse dynamics” box) that is used to calculate the desired torques for the execution of a desired trajectory. The feedback controller calculates the torques proportional to the error between the desired and actual position and velocity. This controller includes two separate forward models and PD controllers for vision and proprioception (“Proprioceptive Forward Model” and “Visual Forward Model” box, and “PDP” and “PDV” boxes, respectively). The contribution of each modality is multiplied by the transposed Jacobian (“JT”) to convert to joint coordinates, and is weighted by a gain (“GP“ and “GV” boxes). An additional end-point controller is used in order to reduce the error between the actual position of the hand to the desired end point, and is weighted by a sigmoid function ∅(t), which increases the contribution of the end-point controller at the end of the movement. The endpoint feedback is also multiplied by the transposed Jacobean (“JT”) to transform to joints coordinates. Overall, the final torques are a combination of the output signals from all four controllers.



The desired trajectory was presented in Cartesian coordinates, and therefore we used the inverse kinematics equations with the parameters of length (l) of the upper and forearm in order to transform to joints space (Equation 1). The torques required to perform a desired movement were computed from Equations (2)–(5). Equation (2) depicts the dynamics of a two links arm model. Values of arm parameters of mass (m), length (l), center of mass (lc) and inertia (I) of both upper arm (shoulder) and forearm (elbow) are similar to those used in (Scheidt and Ghez, 2007). Additionally, we implemented three PD controllers for proprioceptive (Equation 3) and visual (Equation 4) feedback, and for end-point controller (Equation 5). The end-point controller contribution is weighted by a sigmoid function ∅(t), and both end-point and feedback controllers are multiplied by JT. Position and velocity error (e and ė) is defined as the difference between the actual to the desired arm position and velocity, respectively. The values of all proportional (K) and derivative (B) controllers are presented in Table 1. In addition, hand dynamics were simulated using (Equation 6)—the dynamics of a two-link arm. Arm parameters are as in Equations (1) and (2). To transform the desired trajectory from joint space to Cartesian space we used the direct kinematics (Equation 7).
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Table 1. Values of proportional and derivative controllers.

[image: image]




The predicted arm position and velocity were computed from the inverse controller torques with a forward model. We also assumed that any changes in the inverse model as a result of adaptation will also lead to changes in the visual forward model. By using two different forward models and feedback controllers for vision and proprioception, we were able to differentiate between movements with and without visual feedback. The end-point controller did not change throughout the simulation, and was always used to stabilize the hand at the desired end-position. This controller was multiplied by a sigmoid function [image: image], which increased the contribution of the end-point controller according to a desired timing along the movement (by choosing the value of c). Before adapting to the delay, the time when the sigmoid function was equal to 0.5 was at the end of movement. After adapting to the delay, we assumed that as a result of uncertainty during the movement, the end-point controller will be tuned earlier—approximately in the middle of the movement.

The different stages in the experiment (pre-exposure, early-adaptation, late-adaptation, and post-exposure) were simulated by changing the visual delay and the magnifying gain that represented the delay in the sensorimotor system. In all simulations, we considered the intrinsic visual and proprioceptive delay as no delay, as they are present in all conditions of the experiment. Before the exposure to delay (pre-exposure), the visual feedback was not altered (ΔTv = 0) and no adaptation process has occurred yet (G = 1). At early exposure before adaptation has occurred (early-adaptation), the visual delay was set to ΔTv = 150 ms and the gain still did not change (G = 1). After adapting to the delay (late-adaptation), the gain was changed to G = 1.2 such that the desired trajectory was extended in the direction of the movement. In this stage, the visual delay was ΔTv = 150 ms. To simulate the removal of the delay in the post-exposure stage and the aftereffects, the visual delay was changed to ΔTv = 0, and the gain in this stage was still G = 1.2. Throughout the experiment, the proprioceptive delay was not changed, and therefore we set ΔTp = 0.



Participants and Experimental Setup

Sixty-five right-handed healthy volunteers (ages 18–35, 38 females and 27 males) participated in the study after signing the informed consent form as approved by the Human Participants Research Committee of Ben-Gurion University of the Negev, Be'er-Sheva, Israel. The participants were all naive to the purpose of the experiment and were reimbursed for their participation.

The experiment was administered in a virtual reality environment in which the participant held a robotic arm: six degrees of freedom (DOF) PHANTOM® Premium™ 1.5 haptic device (Geomagic®), controlled by a dedicated C++ code. Participants held the robotic arm with their right hand controlling a cursor displayed on a screen and aligned with their hand location, with a delay of 10 ms because of the display control rate. Participants' hand was hidden from sight the entire experiment by the screen that was located horizontally above their hand, and by a sheet that covered their upper body. Hand movements were constrained to the horizontal plane by an air sled wrist-supporter that reduces friction with the surface.



Protocol

The experiment consisted of two tasks: reaching movements to left or right targets and circle drawing without visual feedback. The trials were presented in a random predetermined order. In the reaching task, a trial was initiated when participants placed a circular cursor, 1 cm diameter, inside a starting point with the same size. The task was to move the cursor from the starting point to a circular target, 2 cm diameter, which appeared in the left or the right side of the task space, at a distance of 10 cm away from the starting position (Figure 2).
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FIGURE 2. Experimental protocol. In each trial, participants were required to make a reaching: move a cursor between a start and an end target to the left (blue bar) or the right (red bar), or to make a blind drawing: draw a circle without visual feedback (beige bar). In the reaching, a start point (light yellow), a target (blue circle), and a cursor were presented. To motivate the participants, we presented a success rate representing the percentage of accurate trials—the trials in which the participants hit the target—out of all reaching trials in the experiment until that time. In the blind drawing, a desired circle path (blue) was presented together with arrows that indicated movement direction (magenta triangles), but no cursor was presented. Overall, there were eight different kinds of circular movements: four different locations—front, back, right, and left, and two different directions—clockwise and counterclockwise. The experiment was divided into three sessions: Baseline, Adaptation, and Washout. During the Baseline and Washout sessions, the cursor movement in the reaching task was concurrent with the movement of the hand. During the Adaptation session, the visual feedback was delayed by 150 ms in movements toward the leftward, the rightward, or both targets (see section Methods for details).



Movement started when the color of the cursor changed after a fixed period of time in which the participant was stationary at the start position; this instructed the participant to perform a smooth point-to-point center-out reaching movement. Movement ended when the velocity was less than 1 cm/s. Following the movement, the visual feedback was turned off and the robot applied a spring-like force that returned the hand to the start position. Due to the nature of our temporal perturbation, we wished to assure similar movement speeds, and therefore, the participants received a feedback about the velocity of their movement. When the maximum velocity was lower than 30 cm/s, the word “Faster” appeared on the screen, and when the velocity was higher than 50 cm/s, the word “Slower” was displayed. To motivate the participants to make accurate movements to the target, they received feedback about the accuracy of their movement. Accurate movements were defined as those in which the center of the cursor was in the range of ± 1 cm from the center of the target. To provide a feedback about the end movement position, we presented the location of the cursor with a color cue that indicated the accuracy of the movement (green for accurate movement and red for inaccurate movement) after 0.2 s from movement ending. In addition, we presented a success rate corresponding to the percentage of successful trials from all reaching trials in the experiment until that time.

In the circle drawing task, a circle with a radius of 3.5 cm was displayed on the screen in four different locations: front, back, right and left. Arrows on the circle indicated the direction of the drawing to either clockwise or counterclockwise. The location of the starting point was always in the middle of the task space in all conditions, identically to the location of the start point in the reaching task. A trial was initiated when participants placed a circular cursor, 1 cm diameter, inside the starting point for a fixed duration. Afterwards, the cursor disappeared and the start point changed its color, instructing the participants to initiate a smooth circular movement along the desired circle from the starting point, in the direction of the arrows. Circular movements did not have velocity constrains. The movement ended when the velocity was less than 0.5 cm/s.

Participants were assigned to one of four groups according to the workspace where they were exposed to delay: (1) only in leftward reaching movements (Left Delay, N = 15), (2) only in rightward reaching movements (Right Delay, N = 15), (3) in both leftward and rightward movements (Both Delay, N = 20), and (4) a control group that was not exposed to any perturbation throughout the entire experiment (No Delay, N = 15).

The first block of the experiment (40 trials) was training for the circle drawing task. In these training trials, participants drew the circles without visual feedback. After each trial, the drawn circle was displayed along with the desired circle and the start point. The purpose of these trials was to acquaint the participants with the task and to train them to draw circles according to a desired trajectory when no visual feedback is presented. The data from the training trials were not included in data analysis. Then, the experiment was divided into three sessions: Baseline, Adaptation, and Washout. In the Baseline session (160 reaching movements and 40 circle movements), participants performed reaching without any perturbation and with interleaved blind circle-drawings. After the baseline session, we presented participants with another block of training for the circle drawing task (16 trials). The purpose of this block was to verify that the circles drawn in the Adaptation session originated from the exposure to the applied perturbation and not from forgetting how to draw the blind circles. In the adaptation session (416 reaching movements and 104 circle movements), the visual feedback between the hand and the cursor in the reaching task was delayed by 150 ms either when the left target appeared (Left Delay, LD), when the right target appeared (Right Delay, RD), or when both right and left targets appeared (Both Delay, BD), depending on the experimental group. For the No-Delay group (ND), there was no change in the Adaptation session. During Washout (160 reaching movements and 40 circle movements), the delay was unexpectedly removed, which enabled us to examine the aftereffect of adaptation. The entire experiment lasted approximately 90 min with four breaks of 1.5 min every 160 reaching trials.



Data Analysis

Position and velocity were recorded during the entire experiment at 200 Hz and were analyzed off-line using custom-written Matlab® code (The MathWorks, Inc., Natick, MA, USA). Both position and velocity were filtered by low pass Butterworth filter with a cutoff frequency of 10 Hz [Matlab function filtfilt()]. In addition, the position was interpolated to fit the number of samples using Matlab function interpft(), which resulted in different sampling rate for each signal that depended on the number of samples in the original signal. For the purpose of data analysis, we defined reach movement initiation when the velocity rose above 5% of the maximum velocity, and movement ending when the velocity decreased below 5% of the maximum velocity. We examined the trajectory in each direction separately, by measuring the amplitude of the movement as the maximum displacement.

In the circle drawing task, due to the importance of the drawing's direction in our study, we first removed all circles that were mistakenly drawn in the direction that was opposite to the instructed direction (1.65% of all circles). Then, we defined the initiation and end of the movement by using both position and velocity. Initially, we found the locations where the hand first leaves and returns to the start position area. This was done to account for only one circle in cases when the participants drew more than one complete circle. Afterwards, we defined the actual initiation and end of the movement based on the velocity thresholds as we defined in the reaching movements. To calculate the deviation of the drawn circles from the desired circle, we measured the peak amplitude (maximum distance) of hand movement in the x and y directions.

In the analysis of the drawn circles, we did not include the data from the early-adaptation stage. From the results of the reaching task in all the conditions, we saw that participants adapted to the perturbation quite fast. Therefore, we could not verify that all drawn circles in all 8 conditions, used for the analysis, were performed in this phase of post-exposure and early-adaptation.



Statistical Analysis

The effect of the perturbation in each condition on the reaching movements was assessed by using a two-way repeated measures ANOVA with between factors of Stage (Late-Baseline/Early-Adaptation/Late-Adaptation/Early-Washout) and Direction (Leftward Movements/Rightward Movements). For the blind drawings, we initially examined the effect of delay on left and right error separately, using one-way repeated measures ANOVA with factor Stage (LB/LA/EW). After dividing between the circles according to initiation workspace, the lateral effect on the blind drawings was examined using two-way repeated measures ANOVA with within factors of Stage (LB/LA/EW) and Initiation-workspace (Left/Right). Then, we examined the differences in the Late Adaptation stage between the experiments using two-way repeated measures ANOVA with between factor of Experiment (LD/RD/BD/ND) and within factor of Initiation-workspace (Left/Right). Data were tested for normality distribution using Lilliefors test. Additionally, we used Mauchly's test to examine whether we can assume sphericity of the data. In case the sphericity assumption was not met, we used Greenhouse-Geisser adjustment. When found significant effects, post-hoc t-test was performed with the Bonferroni correction. Significant effects were defined at the p < 0.05 probability level.




RESULTS


Simulation Study

Using a computational model (Figure 1), we simulated the possible effects of exposure to delay, adaptation, and transfer to blind circle drawing. To validate our simulation and to choose the different parameters, we used the previously observed effect of delay on reaching movements (Botzer and Karniel, 2013). We simulated the effect of asymmetrical delay on the lateral reaching movements before and after adaptation has occurred. Then we used the obtained simulation to examine different hypotheses for the effect of delay on transfer to vision-omitted circular movements according to motor- and perceptual-based models of hemispheric asymmetry (Figure 3).
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FIGURE 3. The effect of delay in left, right, or both hemispaces on rightward and leftward movements. (A) The effect of the hemispheres on movement extent toward both hemispaces. The left hemisphere controls movements of the right hand toward left (blue) and right (red) sides, and the right hemisphere can mediate leftward movements (dashed blue). (B) The effect of delayed visual feedback on the hemispheres according to the visual fields. Delay in left visual field (blue) affects motor circuits responsible for movement extension in the right hemisphere, and delay in the right visual field (red) affects both hemispheres. Following excitation of the right hemisphere after exposure to left delay, the right hemisphere inhibits motor circuits in the left hemisphere, thereby canceling any deviation toward the right hemispace after exposure to left delay (blue arrow).



In the pre-exposure phase, no perturbation was applied, and the simulated arm followed the desired trajectory properly (Figure 4, solid lines). Before adaptation took place, the visual feedback was delayed, but no change in the feedforward or feedback controllers has occurred yet. Hence, a misalignment between the estimated location and the actual observed location of the hand during the reaching task resulted in a positive error, and the feedback controller of the visual modality caused target over-reaching (Figure 4, dotted lines).
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FIGURE 4. Simulation results for reaching movements with the presence of delayed visual feedback. We simulated the movements in the different phases of pre-exposure, early-adaptation, late-adaptation and post-exposure. Positive displacement indicates a rightward movement. The simulation demonstrate overshoot of the target when initially exposed to delay and undershoot when the delay is removed.



After adapting to the delay, movement overshoots gradually decreased. We simulated adaptation to delay based on the use of gain representation (Avraham et al., 2017a). For the late-adaptation condition, we used magnifying gain (G > 1), multiplied by the output of the forward model. Meaning, the desired trajectory was extended in the direction of the movement. The visual forward model was multiplied by the inverse gain, causing a reduction of the error in the visual feedback controller, and leading to a reduction of the over-reaching pattern (Figure 4 dashed line). Following abrupt removal of the delay, the forward and inverse models were still tuned to the delayed condition. However, the visual feedback matched the real location of the hand, which resulted in negative error of the visual modality and under reaching of the target (Figure 4 dashed and dotted line).

After simulating the reaching movements without laterality, we simulated the different models for the effect of asymmetric delay on transfer circular movements (Figure 5). First, we simulated the transfer of adaptation without any effects of laterality. This resulted in elongation of the circles toward the side where the delay was applied (Figures 5A–F). Then, we inserted laterality effects of perceptual, motor, and both perceptual and motor asymmetries (Figure 5G, Table 2). Considering only perceptual asymmetry, the gain in movement amplitude was applied when motor circuits in the left hemisphere were excited. In this case, excitation of the right hemisphere could affect the applied movements by inhibiting the activity of right hemisphere on the left hemisphere. Therefore, an elongation of the circles was only observed in the case of delay in rightward movements, for both left- and right-initiated circles. For motor asymmetry, when motor circuits in the left hemisphere were excited, the magnifying gain was uniform, causing elongation of both left- and right-initiated movements. In contrast, when motor circuits in the right hemisphere were excited, the gain was only applied in the leftward movements, and only they were elongated. This asymmetry yielded an elongation of both left- and right initiated circles in two conditions: delay in only the right workspace, and delay in both left and right workspaces. Delay in the left workspace resulted in only leftward elongation. Applying both perceptual and motor asymmetry resulted in elongation of both sides of the circles in the cases of delay in the right workspace, and only leftward elongation when the delay was in the left workspace or in both workspaces. The authors will be happy to share the code for the simulation with the interested reader.
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FIGURE 5. Simulation results for transfer movements after adaptation to asymmetric delay using different predictions. (A–C) Simulated blind circles after adaptation to delay for the No-Laterality model in clockwise (orange) and counterclockwise (green) directions. The circles are elongated toward the hemispace where the delay was applied. (D–F) Left and right error as a function of the location (front, back, right, and left) and the direction (clockwise—CW—and counterclockwise—CCW) of the drawn circle for the No-Laterality model. The dashed line divides the circles to left- and right-initiated circles. Both left- and right-initiated circles are elongated in the side where the delay was applied. (G) Summary of all possible effects for asymmetric delay. For each condition of delayed side, we expect movements to be elongated toward either the left or the right hemispaces, according to the modeled mechanism.





Table 2. Summary of all possible effects for asymmetric delay.
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In the next step, by using the results of the behavioral experiment, we were able to reject some of the hypothesized models for the transfer effect.



Behavioral Experiment

Reaching Movements-Adaptation to Delay Affects Reaching Movements Toward the Delayed Workspace

To assess adaptation to delay, we first examined the extent of the lateral reaching movement. Reaching movement analysis of the left, right and both delay groups suggest that all groups adapted to the delay (Figure 6). Upon early exposure to the delay, participants over-reached the target in the workspace where the delay was applied. With repeated exposure to the perturbation, they adjusted their movements, and by the end of adaptation, they restored baseline performance. For the two groups that were exposed to asymmetrical delay (LD and RD), the participants also initially started to under-reach the target in the opposite direction, but this effect was weaker and vanished quickly. After the delay was removed, we observed an aftereffect of target under-reach only in movements toward the delayed workspace.
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FIGURE 6. Reaching movements from the Left Delay (LD, A–C), Right Delay (RD, D–F), Both Delay (BD, G–I) and No Delay (ND, J–L) conditions. (A) Examples of movements of a typical participant in the Left Delay group from the Late Baseline (LB), Early adaptation (EA), Late adaptation (LA), and Early Washout (EW) stages. Positive displacement indicates a rightward movement. The participants overshoot the left target when initially exposed to delay, but they quickly adapt and restore baseline movements, and exhibit undershoot in the washout. Interestingly, the movements in the other direction are initially affected, but no aftereffects are observed. (B) Amplitude (line) and 95% confidence intervals (shaded region) of the leftward and rightward movements from the Left Delay condition. Results are presented after subtraction of the movement amplitude at the end of the baseline session and taking absolute value. Positive (negative) value indicates overshoot (undershoot) in the direction of movement. Leftward movements demonstrate typical pattern of adaptation, and the rightward movements exhibit an initial undershoot that is reduced with adaptation and no aftereffect. (C) Mean Amplitude in the presence of left delay in the first and last five movements of the Adaptation stage and the first five movements of the washout for all participants. Asterisks represents significant difference from zero: *p < 0.05, **p < 0.01, ***p < 0.001. (D–F) Similar but mirror results were observed in the Right Delay condition. (G–I) Results for the No Delay condition. Graphs and colors are as in (A–C). Here, The participants overshoot both targets when initially exposed to delay, but they quickly adapt and restore baseline movements, and exhibit undershoot in the washout. (J–L) Results for the No Delay condition. Graphs and colors are as in (A–C). No spatial deviation is observed, as expected.



These observations were supported by a statistical analysis. We divided the experiment to four stages of Late Baseline (LB, 5 last movement before exposure to delay), Early Adaptation (EA, 5 first movements with the presence of delay), Late Adaptation (LA, 5 last movements with the presence of delay) and Early Washout (EW, 5 first movements after removing the delay). Within each experimental group that was exposed to asymmetric delay groups (LD and RD), we found significant changes in the movement amplitude between the different stages in the experiment, and these changes were different between left and right movements [Stage-Workspace interaction effects—LD: F(0.87, 12.15) = 95.14, p < 0.001; RD: F(3, 42) = 45.92, p < 0.001]. In the leftward reaches of the left delay group, we observed a typical adaptation pattern: overshoot in EA [t(14) = 3.59, p < 0.05]; no difference in LA [t(14) = 0.48, p = 1]; and undershoot in EW [t(14) = 4.53, p < 0.01] (all with respect to LB, Figure 6C). The rightward reaches of this group exhibited a different pattern: undershoot in EA [t(14) = 5.92, p < 0.001]; and no difference in LA [t(14) = 0.27, p = 1] and EW [t(14) = 1.53, p = 0.88]. A similar but opposite pattern was observed in the right delay group [rightward reaches: EA: t(14) = 5.22, p < 0.001; LA: t(14) = 1.57, p = 0.83; EW: t(14) = 5.47, p < 0.001; leftward reaches: EA: t(14) = 4.83, p < 0.001, LA: t(14) = 2.01, p = 0.38, and EW: t(14) = 1.14, p = 1, Figure 6F]. Overall, in both the left and right delay groups, the participants adapted to the asymmetric visuomotor delay by adjusting their movement amplitude selectively in the workspace where the delay was applied, and exhibited significant aftereffects of adaptation. The initial undershoot to the other workspace during early exposure to the delay quickly vanished, and there were no aftereffects in the non-delayed workspace.

The extent of reaching movements for the both delay group demonstrated a typical pattern of adaptation that was similar in both directions (Figures 6G–I). There was a statistically significant difference in movement extent between the stages [Stage- F(1.55, 29.26) = 60.51, p < 0.001], but no difference between leftward and rightward movements in the different stages [Direction- F(0.51, 9.75) = 2.78, p = 0.13 and Direction-Stage interaction- F(1.55, 29.26) = 2.38, p = 0.12]. When the delay was first introduced, movements over-reached the target in both sides [t(19) = 4.27, p < 0.01]. Continued exposure to delay in both workspaces led to a reduction of the over-reaching pattern, though the adaptation was not fully achieved compared to baseline performances [t(19) = 3.11, p < 0.05]. When the delay was removed, participants under-reached the target in both sides [t(19) = 7.74, p < 0.001]. These results indicate that when the visual feedback is delayed in both workspaces, the participants adapted to the perturbed visual feedback, and exhibited aftereffects in both workspaces.

The control group did not experience any visual perturbation (Figures 6J–L), and did not demonstrate any deviation in movement extent. This corroborates our claim that the observed spatial deviations are a result of the delayed visual feedback.

Blind Drawing Task-Transfer of Adaptation Causes Spatial Asymmetry That Depends on the Delayed Workspace

To test the transfer of adaptation, we examined the symmetry of blind circle drawing movements that were interleaved with reaching movements. To assess the symmetry, we calculated the left and right error by measuring the maximum deviation in each direction relatively to the ideal circle (that was presented on the screen).

In all the groups that were exposed to the delay, the transfer of adaptation yielded a clear spatial elongation in the blindly drawn circles. However, the pattern of elongation was distinct between the different delay conditions. In a striking contrast to the effects of left and right delay on the reaching movements, the patterns of elongation differed substantially between the asymmetric delay groups LD and RD in the circle drawing task. An example of drawings following adaptation to left delay is depicted in Figure 7A. By examining the left and right errors for each circle (Figure 7A, dark blue and light red bars), we saw that following adaptation to left delay, the circles that started in the left workspace (left-initiated circles) were elongated to the left, whereas the circles that started in the right workspace (right-initiated circles) were not elongated at all. In contrast, following adaptation to right delay, participants drew both left- and right-initiated circles that were elongated to the direction of their initiation; i.e., left-initiated circles were elongated to the left, and right-initiated circles were elongated to the right (Figure 7B). The effect of the initiation workspace is especially highlighted in the front and back circles: the side of the elongation is determined by the clockwise (CW) and counterclockwise (CCW) drawing direction (orange and green traces, respectively) rather than by the spatial location of the circle.
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FIGURE 7. Left and right deviation from the desired trajectory in the circle drawing task. (A) At the center, examples of individual movements of a typical subject that illustrate the deviation of the drawn circles, for both clockwise (orange) and counterclockwise (green) circles. Large black circles are the ideal drawings, and the two small circles are the targets from the reaching task (drawn at scale). Panels around the center present mean of left (dark blue) and right (dark red) error for circles drawn in the end of adaptation session in the presence of delay only in the left side of the tasks space. The panels are located spatially to represent the location and drawing direction of the circles. Asterisks represents significant difference from zero: *p < 0.05, **p < 0.01, ***p < 0.001. (B) Similar to (A) following adaptation to a delay only in the right side of the tasks space. Asterisks are as in (A). (C) Left and right error following adaptation to Left Delay as a function of the location (front, back, right and left) and the direction (clockwise—CW—and counterclockwise—CCW) of the drawn circle. The dashed line divides the circles to left- and right-initiated circles. The elongation is observed only in the left side of the left-initiated circles. (D) Left and right error following adaptation to Right Delay. Surprisingly, the result of the Right Delay is not a mirror picture of the Left Delay condition. Instead, both left- and right-initiated circles are elongated in the side of their initiation hemispace. (E) Both delay condition. The error is different according to the side where the drawing is initiated: when the drawing is initiated in the left–left error is larger than right error, and when the circles are initiated in the right–no deviation is observed. (F) No Delay condition. No similar pattern of difference between left and right error is observed. (G) Statistical analysis of the difference in left and right error for all groups in the experiment. Asterisks are as in (A). Left and Both Delay groups show deviation only toward the left side. Right Delay group shows deviation to both sides.



We divided between the circles according to their initiation workspace—left-initiated circle are: left, front CW and back CCW, and right-initiated circles are: right, front CCW and back CW (Figures 7C,D). Applying similar analysis for the both-delay group, revealed that transfer of adaptation to the blind drawing task resulted in a striking resemblance to those of the left-delay group, showing only elongation of left-initiated circles (Figure 7E). In the control experiment, with no perturbation (Figure 7F), the circles were nearly symmetrical without any lateral pattern. This corroborates that the elongation of the blind circles is not caused by unrelated effects of our setup or fatigue.

The transfer effect of delay on the blind circular drawing movements persisted also in the washout stage. This was despite the fact that the extent of the reaching movements returned very quickly to those observed in the Baseline.

To highlight the laterality in the spatial effects, we performed a summarizing analysis. In this analysis, we distinguished between the circles based on the workspace of the initial drawing movement. Then, we calculated the difference between the left and right errors for each group (Figure 7G). In the LD group, we found a significant change in the elongation of the circles between the stages [Workspace-Stage interaction effect: F(0.97, 57.23) = 18.14, p < 0.001]. Specifically, the left errors were significantly larger than the right errors (meaning left elongation) only for the left-initiated circles during both Late Adaptation [LA: t(59) = 3.47, p < 0.01] and Washout [W: t(59) = 3.96, p < 0.001]. In the RD group, we also found a significant change in the elongation of the circles between the stages [Workspace-Stage interaction effect: F(0.96, 57) = 76.44, p < 0.001]. However, following adaptation to right delay, the left errors were significantly larger than the right errors in left-initiated circles [LA: t(59) = 6.74, p < 0.001; W: t(59) = 4.83, p < 0.001] and right errors were significantly larger than the left errors (meaning right-elongation) in right-initiated circles [LA: t(59) = 3.29, p < 0.01; W: t(59) = 4.17, p < 0.001]. For the BD group, we found a significant main effect of initiation workspace, stage, and the interaction between stage and initiation workspace [F(0.54, 42.75) = 226.45, p < 0.001, F(1.1, 85.5) = 7.8, p < 0.01, and F(1.1, 85.5) = 11.68, p < 0.001, respectively]. Even though the delay perturbation was presented in both sides, only the left-initiated circles were elongated to the left [Figure 7G, positive difference between left and right error compared to the baseline difference LA: t(79) = 4.75, p < 0.001; W: t(79) = 3.65, p < 0.01], and the right-initiated circles were not elongated at all [LA: t(79) = 0.23, p = 1; W: t(79) = 0.25, p = 1]. The comparison of this elongation pattern with the simulation results (Figure 5G) suggests that the effects are caused by a perceptual-motor asymmetry in the processing of the delayed feedback.

We performed another control analysis on the drawings of participants from all four conditions (LD, RD, BD, and ND)—we calculated the front and back deviation from ideal circles. There were no consistent elongation to the front and to the back of neither right- or left-initiated circles (Figure 8), suggesting that the transfer effect was specific to the lateral dimension of movement. However, in our experimental setup, movements toward front and back directions were partly constrained. Therefore, to fully assess the effect of asymmetric delay on movements in these directions, further experiments are required.
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FIGURE 8. Deviation of the drawn circles toward front (gray) and back (black) directions, divided to left and right initiation (dashed line), for (A) Left delay group, (B) Right delay group, (C) Both delay group and (D) No delay group. The X-axis represents the location of the drawn circle (front, back, right, and left) and the direction of clockwise (CW) and counterclockwise (CCW). No pattern of deviation is observed in those directions. (E) Statistical analysis of Back error - Front error Difference for the circles initiated in the left (dark blue) and in the right (light red). Empty bars are for Late Adaptation session and bars with stripes are for Washout session. From the graph, no similar pattern of elongation toward front or back is observed.



From these results we conclude that after adapting to a visuomotor delay between the movement of the hand and its visual feedback in either or both left or the right workspaces, participants presented aftereffects in reach movements to the workspace in which the delay was presented, consistent with context-dependent adaptation. They also exhibited transfer to blind drawing that caused spatial elongation of the drawing, and the pattern of elongation along the frontal plane depended on the workspace in which the delay was presented—left and both delay caused asymmetrical elongation only to left initiated circles and right delay caused symmetrical elongation to both left and right initiated circles. This shows that exposure to delay might be processed differently according to the workspace in which it was presented, and that the laterality in the visual feedback is important for shaping our representation of the environment when adapting to temporal misalignment between the different sensory streams. Importantly, between the models that we simulated, this pattern of transfer is only consistent with the perceptual and motor asymmetry model.




DISCUSSION

In this study, we set out to establish the link between spatial representation of information across workspaces and adaptation to temporal misalignment between the senses. We computationally modeled and experimentally validated the effect of delayed visual feedback of cursor movement that is presented exclusively in one or in both workspaces on participants' movements with and without visual feedback. Consistent with previous studies, the behavioral results show that following an exposure to a visuomotor delay either in one or both workspaces, participants modified the extent of their reaching movements: the abrupt presentation of the delay caused hypermetria—participants made larger reaching movements; they reduced this hypermetria throughout adaptation, and exhibited aftereffects in the workspace where the delay was applied. This means that to reduce the overshoot of the target, participants compensated for the changes in the visual feedback by constructing an internal representation of the perturbation that was specific to the workspace it was applied in. Importantly, the effects of asymmetric delay in the left and right workspaces mirrored each other.

In contrast, transfer of adaptation to the blind circle-drawing task revealed a different picture. Following adaptation to visuomotor delay, we observed hypermetric circles that were elongated only in one side. Whether the circles were hypermetric dependent on the workspace where the drawing was initiated (left or right) and on the workspace in which the delay was presented (left, right or both). The effect of the workspace of drawing initiation on the side of the circle that was hypermetric was demonstrated most clearly in the circles that were drawn in the front and the back locations. Although these circles were all in the middle of the task space, the drawings were different depending on the workspace where they were initiated.

Interestingly, the hypermetria in the drawings was different between the left delay, right delay, and both delay groups. Adaptation to left delay or delay in both workspaces caused elongation of only leftward blind drawings. In contrast, adaptation to right delay caused elongation in both directions. A simulation study confirmed that simple generalization without laterality effect cannot explain these findings. Instead, we had to include an asymmetrical, workspace-dependent, transfer of adaptation. The pattern of asymmetry was not consistent with an asymmetrical transfer model that is based exclusively on perceptual and motor asymmetry, but rather required the combined effect of laterality in perception and action. We concluded that visuomotor delay might be processed differently depending on the workspace in which it was presented, and we further suggest that this difference resulted from Perceptual-Motor Asymmetry between the hemispheres.


Adaptation and Representation of Visuomotor Delay

Visuomotor delay was investigated in various types of movements, such as driving (Cunningham et al., 2001), tracking (Foulkes and Miall, 2000; Leib et al., 2017), and reaching (Botzer and Karniel, 2013). However, the effect of asymmetrical visuomotor delay was not investigated. One exception is a recent study in which participants were exposed to visuomotor delay while performing a complex task of Pong game in one side of the task space. The effect of the delay was examined by reaching movements with no visual feedback performed at the other side. The results of this study showed asymmetrical generalization from left to right but not from right to left (Farshchian et al., 2018). In our study, we found evidence for initial generalization in the reaching movements toward the opposite direction: when the perturbation was first applied, the participants under-reached the target in movements toward the non-delayed side. This initial generalization was consistent between the left and right workspace specific delay groups. However, after adaptation, no aftereffects were observed in movements toward the non-delayed side in both groups. We believe that our results do not contradict the mentioned study findings: in the Farshchian study, participants played and adapted to the delay only in one workspace, and after adaptation, they were examined for aftereffects in the other workspace. In contrast, in our study, the participants adapted and examined for aftereffects in the entire workspace, but with the presence of delay in movements toward only one workspace.

We found that the effect of adaptation to asymmetric delay during a reaching task transferred to the blind circle drawing task. These circle-drawing movements can be considered as rhythmic movement, which are considered significantly distinct from discrete reaching movement in various aspects (Spencer et al., 2003; Buchanan et al., 2006; Hogan and Sternad, 2007). Therefore, our results are consistent with a study that showed transfer of adaptation to visuomotor delay between reaching movements to out-and-back rhythmic movements and vice versa (Botzer and Karniel, 2013). Furthermore, transfer of adaptation to delayed visual feedback during reaching task to rhythmic movements without visual feedback was also observed (Botzer and Karniel, 2013). Our results are also in agreement with previous results that showed transfer of adaptation to visuomotor rotation during discrete reaching movements to rhythmic slice movements (Scheidt and Ghez, 2007).

In the effort to understand how the brain copes with the inherent delay between the senses, it is well accepted that the brain uses forward models that estimate the outcome of the movement from an efferent copy of the motor command. These forward models were suggested to be formed in the cerebellum (Wolpert et al., 1998; Miall et al., 2007) given the evidence for its role in timing of movements (Ivry, 1996; Spencer et al., 2003), the compensation for circuit delays (Suvrathan et al., 2016), and in the scaling of the muscular action (Diener and Dichgans, 1992). In addition, the cerebellum is important for adaptation from sensory prediction errors, i.e., the difference between the predicted and the actual sensory feedback (Taylor et al., 2010; Morehead et al., 2017). It is likely that the cerebellum is involved in adapting movement amplitude when exposed to visuomotor delay, but further investigation is needed to directly examine this hypothesis.

The jury is still out on the question how delay is represented in the motor system. Adaptation to delayed information can be obtained by representing the perturbation as time-based or state-based. On one hand, recent studies provided support for time-based representation of delayed feedback (Witney et al., 1999; Levy et al., 2010; Rohde et al., 2014; Leib et al., 2015; Avraham et al., 2017b). In contrast, other studies provided evidences for state-based representation, and that participants were not able to correctly represent the delay as time difference. For example, adding a delay to force feedback affects stiffness perception (Pressman et al., 2007; Nisky et al., 2008, 2010, 2011; Di Luca et al., 2011). Other example comes from the effect of visuomotor delay on movements during adaptation and its transfer (Botzer and Karniel, 2013; Avraham et al., 2017a). This suggest that humans are not able to perceive the delay as time difference between the sensory inputs, and therefore, are unable to realign the different sensory inputs to avoid perceptual biases. Our results are inconsistent with a time-based representation—the participants modified their movements' extent following exposure to delay, and exhibited aftereffects when the delay was unexpectedly removed—if they would represent the delay as time difference they would have modified the timing of their movements rather than the amplitude.

Once agreed on a state-based representation, which one is used? One possible representation of delay is modification of mass estimation when interacting with robotics arm (Farshchian et al., 2018). This representation cannot be used in our case, as the construction of robotic arm used in our experiment was symmetric. In addition, it was suggested that the misalignment between the hand and the cursor is interpreted as a mechanical load of mass (the cursor) with a spring and a damper that connects between the hand and the cursor. This model was used to explain the changes in grip forces accompanied with delayed visual feedback (Sarlegna et al., 2010), the changes in resistive sensation following adaptation to visuomotor delay (Takamuku and Gomi, 2015), and the generalization between adapting to a visuomotor delay or to a mechanical system between the hand and the cursor (Leib et al., 2017). Another possible state-based representation of visuomotor delay is considering an increase in gain between the hand and the cursor (Avraham et al., 2017a). Both mechanical system and gain representation can be used to explain the hypermetria in our results. Therefore, for simplicity of implementation and interpretation, in our computational model we used the simple gain representation of the delayed visual feedback. Using this gain representation, we were able to simulate the results observed in our experiment both in reaching and blind drawing tasks. However, this particular choice is not critical in our current work, and any remapping that could reproduce elongated reaches and circles could be used to demonstrate the predictions of the different laterality effects.



On the Other Hand?

It is potentially interesting to repeat our experiments with the left hand of either right- or left-handed individuals. However, right-handed individuals use additional cognitive structures outside of the motor system to learn a motor task with the left hand (Grafton et al., 2002). Therefore, examining adaptation to delay with the left hand is not likely to provide a substantial contribution to the validation of our model. Furthermore, testing our model with left-handed participants may also be of limited value for testing our current hypotheses as there are many differences between left and right handed, as demonstrated in the evidence that the cerebral organizations of the hemispheres are not mirror images of each other (Wolff et al., 1977). Such differences were observed in the functional connectivity between motor areas in the two hemispheres in a resting state, which was significantly higher for right handed participants (Pool et al., 2015). This functional connectivity between the hemispheres in right handed may play an important role in learning lateralized perturbation such as the one presented in our study. Therefore, we think that it is interesting to study left-handed individuals, but it is outside of the scope of the current study.



Right Hemisphere Dominance and a Model for Laterality in the Processing of Visuomotor Delay

When faced with an imbalanced stimulation across space, the hemispheres demonstrate different patterns of activation and inhibition, and these are reflected in asymmetric attention, perception, and action across workspaces (Reuter-Lorenz et al., 1990). An example of an asymmetric perception in healthy individuals is leftward perceptual bias—a spatial deviation toward stimuli located on the left side. This bias was suggested to arise from asymmetries in hemispheric activation: the left hemisphere is activated only by stimuli in the right hemispatial field, while the right hemisphere is activated in response to stimuli in both the left and the right hemispatial fields (Heilman and Valenstein, 1979). In addition, the right hemisphere can also interact more strongly with the left hemisphere, by exerting inhibition activity over cortical areas in the left hemisphere (Koch et al., 2011; Gotts et al., 2013). Because the activation process in the right hemisphere occurs in different locations for right or left stimuli (Corbetta et al., 1993), it is possible that the inhibition activity from right to left will only take place in response to left stimuli. Regarding to the control of right hand movements in right handers, it is well known that the left hemisphere controls movements toward both workspaces. However, studies suggested that the right hemisphere is involved in right-hand movements only toward the left workspace (Farnè et al., 2003; Heilman and Valenstein, 2010). This explains why in the case of processing delayed visual feedback in our experiment, leftward movements with the right hand can be strongly affected also by the right hemisphere.

Although we were unable to fully control the participants' gaze direction, and to maintain their middle visual field fixed at the mid-point location, we received strong evidence that our results cannot be attributed solely to the effect of delay on the sensorimotor system without considering the differences between the hemispheres. Based on both of our computational model and experimental results, we suggest that exposure to delay excites motor circuits associated with movement extension in the relevant hemisphere, such that: (1) Delay only in the left workspace has an excitatory effect on brain areas responsible for movement extension in the right hemisphere (Figure 1B). Therefore, an exposure to delay only in the left visual field causes only leftward hypermetria (Figure 1A). (2) Delay in the right workspace affects both hemispheres (Figure 1B), resulting in transfer of hypermetria toward both workspaces (Figure 1A). (3) Delay in both workspaces excites motor areas in both hemispheres. However, as a result of exposure to left delay, the right hemisphere inhibits the left, and cancels the excitatory effect of delay (Figure 1B). Overall, excitation effect is only maintained in the right hemisphere, thereby affecting leftward movements performed without visual feedback and causing leftward hypermetria.

In the current study, we coupled between movement direction and the hemispace toward which the movement is performed. This is because we wanted to understand the basis of the adaptation to asymmetrical delay, without having to consider multiple factors. Future studies should investigate the effect of decoupling these two factors.

The asymmetrical leftward hypermetria in the drawings of the participants can be related to the recently reported asymmetrical expansion of drawings in patients with right brain damage, which is known as “hyperschematia.” This disorder affects the representation of extra-personal space, resulting in left asymmetric expansion both when copying an object or drawing from memory (Rode et al., 2014). In our study, participants' drawings without visual feedback were asymmetrically leftward elongated after adaptation to left delay and delay in both sides.

The observed pattern of activation and inhibition in the hemispheres can also potentially explain some motor impairments that involve asymmetrical perception and action, such as the motor aspects of Hemispatial Neglect. Neglect patient may exhibit unilateral temporal disorders of slowness in initiation and execution of movements (directional hypokinesia and directional bradykinesia, respectively), and unilateral spatial disorders of reduction in movement amplitude (directional hypometria) (Mattingley et al., 1994). In light of motor impairments such as neglect, previous studies proposed a model to explain the imbalance between the hemispheres (Heilman and Valenstein, 2003). In this study, the authors argued that the asymmetry in perception and intention between the hemispheres is a result of asymmetrical representation of the workspaces, such that the right hemisphere incorporates representations for both workspaces, yet the left hemisphere holds representation only for the right workspace. However, in addition to the spatial deficit observed in neglect, several studies also reported time-related impairments. For example, reports of a considerable delay in visual awareness of left stimuli compared to right stimuli (Robertson et al., 1998). Previous studies suggested that neglect is a spatial-temporal rather than a purely spatial deficit (Becchio and Bertone, 2006), and that there is a link between laterality and temporal aspects of information processing. We show here that after an exposure to asymmetrical delay, healthy participants exhibit hypermetric asymmetrical movements. Although the participants exhibited hypermetria rather than hypometria, we believe that this spatial asymmetry can be related to the mechanisms underlying the spatial disorders in neglect. Hence, we suggest that the imbalance between the hemispheres can also be associated with visuo-temporal processes. However, further research is needed in order to ascertain this possibility.

The observed connection between time and space, demonstrated through our model, can help to explain the motor deficits observed in neglect, which has been suggested to be associated with distortions in time processing (Becchio and Bertone, 2006). By integrating the model for unilateral neglect with our proposed model, we can further establish the connection between temporal perturbations and spatial-motor impairments. Understanding the role of each hemisphere in mediating time and space representation can provide important insights on pathological cases involving injury in only one side of the brain and also to provide new directions for diagnosis and rehabilitation.
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We present Feasibility Theory, a conceptual and computational framework to unify today's theories of neuromuscular control. We begin by describing how the musculoskeletal anatomy of the limb, the need to control individual tendons, and the physics of a motor task uniquely specify the family of all valid muscle activations that accomplish it (its ‘feasible activation space'). For our example of producing static force with a finger driven by seven muscles, computational geometry characterizes—in a complete way—the structure of feasible activation spaces as 3-dimensional polytopes embedded in 7-D. The feasible activation space for a given task is the landscape where all neuromuscular learning, control, and performance must occur. This approach unifies current theories of neuromuscular control because the structure of feasible activation spaces can be separately approximated as either low-dimensional basis functions (synergies), high-dimensional joint probability distributions (Bayesian priors), or fitness landscapes (to optimize cost functions).
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1. INTRODUCTION

How the nervous system selects specific levels of muscle activations (i.e., a muscle activation pattern) for a given motor task continues to be hotly debated. Some suggest the nervous system either combines low-dimensional synergies (Dingwell et al., 2010; Kutch and Valero-Cuevas, 2012; Alessandro et al., 2013; Bizzi and Cheung, 2013; Rácz and Valero-Cuevas, 2013; Steele et al., 2013, 2015), learns probabilistic representations of valid muscle activation patterns (Körding and Wolpert, 2004; Sanger, 2011; Berniker et al., 2013; Kording, 2014), or optimizes physiologically-tenable cost functions (Chao and An, 1978; Crowninshield and Brand, 1981; Prilutsky, 2000; Todorov and Jordan, 2002; Scott, 2004; Higginson et al., 2005). At the core of this problem lies the nature of “feasible activation spaces,” and the computational challenge of describing and understanding their high-dimensional structure (for an overview, see Valero-Cuevas, 2015). A feasible activation space is the family of valid solutions (i.e., muscle activation patterns) that meet the mechanical constraints 1of a given motor task. Figure 1 illustrates these neuromechanical interactions that define the feasible activation space for a particular task.


[image: image]

FIGURE 1. Emergence and interpretation of feasible activation spaces for a particular motor task. The descending motor command for a given task is issued by the motor cortex (a), which projects onto inter-neurons and alpha-motor neuron pools in the spinal cord (b). The combined drive to all alpha-motor neurons of a muscle can be considered its total muscle activation level (a value between 0 and 1). If we consider that muscles can, to a large extent, be controlled independently and in different ways, then the overall motor command can be conceptualized as a multi-dimensional muscle activation pattern (i.e., a point) in a high-dimensional muscle activation space (Chao and An, 1978; Spoor, 1983; Kuo and Zajac, 1993; Valero-Cuevas et al., 1998; Todorov and Jordan, 2002) (c). For that muscle activation pattern to be valid, it has to elicit muscle forces (d) capable of satisfying the mechanical constraints of the task—in this case defining a well-directed sub-maximal fingertip force (e). Given the large number of muscles in vertebrates, there can be muscle redundancy: where a given task can be accomplished with a large number of valid muscle activation patterns. We propose that our novel ability to characterize the high-dimensional structure of feasible activation spaces (i) allows to us to compare, contrast, and reconcile today's three dominant approaches to muscle redundancy in sensorimotor control (f–h).



The most the nervous system can do, therefore, is select and apply a specific muscle activation pattern from within the feasible activation space. This is because muscle activation patterns outside of this space are, by definition, inappropriate for the task. In fact, the feasible activation space defines the landscape upon which all neuromuscular learning and performance must occur for that task. Studying neuromuscular control is, therefore, equivalent to studying how the nervous system finds, explores, inhabits, and exploits the contents and structure of feasible activation spaces (Dingwell et al., 2010; Kutch and Valero-Cuevas, 2012; Bizzi and Cheung, 2013; Rácz and Valero-Cuevas, 2013; Steele et al., 2013, 2015; Gallego et al., 2017).

But the “curse of dimensionality” (Bellman and Osborn, 1958; Avis and Fukuda, 1992; Bellman, 2015) makes it computationally challenging to calculate, describe, and understand the nature and structure of high-dimensional feasible activation spaces (Chao and An, 1978; Spoor, 1983; Kuo and Zajac, 1993; Scholz and Schöner, 1999; Valero-Cuevas et al., 2009a; Dingwell et al., 2010; Theodorou and Valero-Cuevas, 2010)—even for an isolated human finger or cat leg generating everyday static forces (Kutch and Valero-Cuevas, 2012; Sohn et al., 2013; Valero-Cuevas, 2015; Valero-Cuevas et al., 2015b). This is due to the computational complexity of algorithms to map the geometric details of objects embedded in high dimensions (Smith, 1984; Lovász, 1999; Fukuda, 2014).

Current theories of neuromuscular control2 are alternative responses to overcome the curse of dimensionality in this context. These alternative approaches, however, are seldom combined and often the insights from one realm are not readily applicable to the others. Here we emphasize how the mechanics of the body and the physics of the task constitute the common ground for all theories.

We now propose “Feasibility Theory,” which is a conceptual framework to characterize feasible activation spaces in detail. While prior work has described how to find such feasible activation spaces for static force production (Valero-Cuevas et al., 1998, 2015a; Venkadesan and Valero-Cuevas, 2008; Kutch and Valero-Cuevas, 2012; Marjaninejad and Valero-Cuevas, 2019), we now explain why the structure of a feasible activation space can be approximated with low-dimensional synergies and probability distribution functions, and can be associated with multiple fitness landscapes over which to optimize (Table 1).



Table 1. Applicability and compatibility of Feasibility Theory with dominant theories of neuromuscular control.
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2. METHODS

In the case of the seven muscles of the human index finger producing static fingertip force, we show that the family of feasible commands, the feasible activation space, is a 3-dimensional polytope embedded in 7-dimensional muscle activation space (Valero-Cuevas et al., 1998). A “polytope” is the formal name for bounded polyhedra in dimensions higher than three. With 4 task constraints applied to 7 muscles, the result is a 3-dimensional polytope embedded in the 7-dimensional muscle activation space. By construction of anatomy, producing static force with a fixed posture naturally leads to a relationship between muscle forces and endpoint torques. The linear constraint equations that define this relationship (and in parallel the polytope that arises from the constraints) accurately represent the set of feasible motor commands (Valero-Cuevas et al., 1998; Sohn et al., 2013; Valero-Cuevas, 2015). Our computational approach hinges on the efficient sampling and complete representation of the geometric structure of high-dimensional polytopes which fully characterizes the family of all valid muscle activation patterns–each of which solves the same task. By definition, this polytope is the null space of the task.

The methods to obtain feasible activation spaces for “tendon-driven” limbs are described in detail in the textbook Fundamentals of Neuromechanics and references therein (Valero-Cuevas, 2015). This tendon-driven approach explicitly and distinctly avoids the conceptual approach to calculate net torques at each joint. Rather, it emphasizes studying the individual actions of all muscles at all levels of analysis, from their neural activation to their contributions to fingertip force. We describe them briefly here.

Consider a tendon-driven limb, such as a finger, with n independently controllable muscles, where we define the neural command to each muscle as a positive value of activation between 0 (no activation) and 1 (maximal activation), where a value of 1 would produce the maximum possible tendon force for that muscle. We do not differentiate between concentric or eccentric contraction—we define muscle activation as the net static tendon tension, normalized by the maximum tendon tension possible by that muscle. We can then visualize the set of all feasible neural commands (i.e., all possible muscle activation patterns) as the points contained in a positive n-dimensional cube with sides of length equal to 1. A specific muscle activation pattern is a point (i.e., an n-dimensional vector a) in this n-dimensional cube (Chao and An, 1978; Spoor, 1983; Kuo and Zajac, 1993; Valero-Cuevas et al., 1998). Now consider a specific task, such as producing a vector of static force with the fingertip, as when holding an object. Clearly, not all muscle activation patterns inside the n-dimensional cube can produce that desired static fingertip force vector: bone lengths, kinematic degrees of freedon, anatomical routing, posture, and muscle strength inequities define the subset of points in the n-cube which produce a fingertip force vector of a specific magnitude and direction. As described in Chao and An (1978), Spoor 1983), Kuo and Zajac (1993), Valero-Cuevas (2015) the musculoskeletal anatomy of the limb, the need to control individual tendons, and the physics of a motor task uniquely specify a polytope embedded in ℝn (i.e., the feasible activation space). This polytope contains the family of (potentially infinite) valid muscle activation patterns that can produce this static force production task. However, these valid muscle coordination patterns are not arbitrarily different because, by construction, the geometric structure of the polytope that contains them defines strict spatial correlations among them (Kutch and Valero-Cuevas, 2012).


 System of Linear Equations to Simulate Static Force Production by a Tendon-Driven System

Consider producing a vector of static force with the endpoint of the limb in a given posture. The constraints that define that task (i.e., the direction and magnitude of the force vector at the endpoint) are linear equations (Valero-Cuevas, 2015) that come from the mapping between neural activation of individual muscles to static endpoint forces and torques the limb can produce. This mapping is linearly modeled by the equation
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where H is the matrix of linear constraints defined by the musculoskeletal anatomy of the limb (Valero-Cuevas et al., 2015b), a is the input vector of n muscle activations, and f∈ℝm is the m-dimensional limb output “wrench” (i.e., the forces and torques the finger can produce at the endpoint).

The output wrench, w, is at most 6-dimensional (i.e., 3 forces and 3 torques) depending on the number of kinematic degrees of freedom of the limb, and usually m < n because limbs have more muscles than kinematic degrees of freedom Valero-Cuevas (2015). Muscles can only pull, so elements of a cannot be negative, and are capped at 1 (i.e., 100% of maximal muscle activation).

What are the muscle coordination patterns that produce a given task? As explained in Valero-Cuevas (2015), the task of producing a static fingertip force vector is defined by specifying the desired values for the elements of the endpoint forces and torques of w. Each value yields a constraint equation, which in turn defines a hyperplane of dimension n−1, and their combination defines the task completely. The feasible activation space of the task, if it is well posed (Chvatal, 1983), is defined by the points a that lie within the n-cube and at the intersection of all constraint hyperplanes.

Geometrically speaking, the feasible activation space is a (n−m)-dimensional convex polytope P embedded in ℝn that contains all n-dimensional muscle coordination patterns (i.e., points a) that satisfy all constraints, and therefore can produce the task. Increasing task specificity by adding more constraints naturally decreases the dimensionality and changes the size and shape of the feasible activation space (Kuo and Zajac, 1993; Sohn et al., 2013; Inouye and Valero-Cuevas, 2016).



 The Hit-and-Run Algorithm Uniformly Samples From Feasible Activation Spaces

Calculating the geometric properties of convex polytopes in high dimensions is computationally challenging. Taking the generalized concept of an n-dimensional volume as an example of a geometric property of interest, the exact volume computations for n-dimensional polytopes is known to be tractable only in a polynomial amount of time (i.e., #P-hard) (Dyer et al., 1989). Currently available volume algorithms can only handle polytopes embedded in small dimensions like 10 or slightly more (Büeler et al., 2000). Studying vertebrate limbs in general, however, can require including several dozen muscles, such as our studies of a 17-muscle human arm and a 31-muscle cat hindlimb model (Valero-Cuevas et al., 2015b); and other models have over 40 muscles of the human lower limb (Arnold et al., 2010; Hamner et al., 2010; Kutch and Valero-Cuevas, 2012; De Sapio et al., 2014).

Similar difficulties arise when computing other geometric properties such as the shape and aspect ratio of P in high dimensions. We and others have described polytopes P by their bounding box (i.e., the range of values in every dimension) (Kutch and Valero-Cuevas, 2011; Sohn et al., 2013), but that singularly overestimates the shape and volume of the feasible activation space as discussed in Valero-Cuevas et al. (2015b). Consider a 3-muscle system with only one constraint, producing a 2-dimensional polygon as the feasible solution space. The bounding box of the polygon has a volume—even though a plane has zero volume—, and can be almost as large as the positive unit cube itself. Similar problems arise in the interpretation of the inscribed and circumscribed ball (Inouye et al., 2014).

We applied the Hit-and-Run method to sample points from the feasible activation space. We have presented a detailed explanation of the Theory (In Chapter 9 of Valero-Cuevas, 2015), and have justified the utility of this method on tendon-driven models of the index finger (Valero-Cuevas et al., 2015a). This complete probabilistic method describes the structure of feasible activation spaces P with a set of uniformly-at-random muscle activation patterns that produce the same wrench. This enables us to derive descriptive statistics, histograms, and point densities of the set of valid muscle activation patterns a uniformly sampled from the polytope. To do so, we use the Hit-and-Run method.

This approach can scale up to ~40 dimensions (i.e., limbs with ~40 independent muscles). This suffices to study extant vertebrate limbs, and thus compare, contrast, combine—and reconcile—today's three dominant approaches to neuromuscular control.

Example of a Tendon-Driven System

Realistic 3-D model of a 7-muscle human index finger

We applied this methodology to our published model of an index finger for static fingertip force production. The model is described in detail elsewhere (Valero-Cuevas et al., 2009a). Briefly, the input to the model is a 7-D muscle activation pattern a, and the output is a 4-D wrench w (i.e., static forces and torques) at the fingertip:

[image: image]

[image: image]

where
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In Cartesian coordinates, the 4-D output wrench corresponds to the anatomical directions shown in Figure 1e.
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The biomechanical model H includes three serial links articulated by four kinematic degrees of freedom (ad-abduction, flexion-extension at the metacarpophalangeal joint, and flexion-extension at the proximal and distal interphalangeal joints). The action of each of the seven muscles (FDP: flexor digitorum profundus, FDS: flexor digitorum superficialis, EIP: extensor indicis proprius, EDC: extensor digitorum communis, LUM: lumbrical, DI: dorsal interosseous, and PI: palmar interosseous) on each joint to produce torque is given by the moment arm matrix R∈ℝ4 × 7. Lastly, J∈ℝ4 × 4 and F0 ∈ ℝ4 × 4 are the Jacobian of the fingertip with 4 kinematic degrees of freedom, and the diagonal matrix containing the maximal strengths of the seven muscles, respectively (Valero-Cuevas, 2000; Valero-Cuevas, 2015). The finger posture was defined to be 0° ad-abduction and 45° flexion at the metacarpophalangeal joint, and 45° and 10° flexion, respectively, at the proximal and distal interphalangeal joints.

Feasible activation space for a static fingertip force task

Our goal is to find the family of all feasible muscle activation patterns that can produce a given task. In particular, the task we explored is producing various magnitudes of a submaximal static force in the distal direction fdistal — in the absence of any τradial, shown in Figure 1e. Therefore the feasible activation space is a polytope P in 7-dimensional activation space that meets the following four linear constraints in a (Valero-Cuevas et al., 1998; Valero-Cuevas, 2000; Valero-Cuevas, 2015)
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These four constraints on the static output of the finger yield a 3-dimensional (i.e., 7−4 = 3) polytope P embedded in 7-dimensional activation space. For details on how to create such models, apply task constraints and find such polytopes via vertex enumeration methods, (see Valero-Cuevas, 2015).

For the index finger model used in this paper, the published maximal feasible force in the distal direction is 28.81 Newtons. We defined the normalized desired distal task intensity as a value ranging between 0 and 1, i.e., each submaximal force can be produced by any of the points contained in its corresponding feasible activation space. For the production of a maximal force, the feasible activation space shrinks to a single point (Chao and An, 1978; Chvatal, 1983; Spoor, 1983; Valero-Cuevas, 2000).

Analysis of Feasible Activation Spaces

Parallel coordinate visualization

For us to understand the structure of the feasible activation space, we aim to visualize the data. If we had a simple model with only three muscles (and one task force dimension), we could plot the feasible activation space as a plane within a 3D cube, as illustrated in Figure 2A. However, in our model, we have seven muscles. In our 3D reality, we cannot create a 7D scatter plot to highlight how muscle activation patterns are spatially located across the muscle dimensions, so we must project the data in a different way.
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FIGURE 2. Parallel coordinates characterize the high-dimensional structure of a feasible activation spaces. Consider four points (i.e., muscle activation patterns) from the polygon that is a feasible activation space (A). The activation level for each muscle (i.e., the coordinates of each point) are sewn across three vertical parallel axes (B). As is common when evaluating muscle coordination patterns, each point can also be assigned a cost as per an assumed cost function. The associated cost for each muscle activation pattern can also be shown as an additional dimension. We show three representative cost functions (C). Activation levels are bound between 0 and 1, and costs are normalized to their respective observed ranges.



Parallel coordinates are a common graphical approach to visualize interactions among high-dimensional data (Krekel et al., 2010; Bachynskyi et al., 2013). To build familiarity with this visualization method, consider the results of a simple 3-dimensional (3-muscle) toy example shown in Figure 2A. This is the dimensionality of a finger with only 3 muscles, aiming to create a unidimensional pressing force. We begin by drawing n parallel vertical lines for each of the dimensions n (i.e., 3 muscles). With the axis limits of each line set between 0 and 1 (at the bottom and top of the plot, respectively), each muscle activation pattern (Figure 2A) is then represented by a zig-zag line that connects to the coordinates between 0 and 1 on each axis, as shown in Figure 2B. The blue zig-zag line that is connected at the top of m1 in Figure 2B represents the muscle activation point equal to (m1 = 0.8, m2 = 0.9, m3 = 0.4). You can see its corresponding location in the 3D cube, mapped to the parallel coordinate zig-zag line (the gray dotted line connects the two representations of the muscle activation pattern).

Neural and metabolic cost functions

As mentioned in the Introduction, the field of neuromuscular control has a long historical tradition of using optimization to find muscle activation patterns that minimize effort, which requires the (often contentious) definition of cost functions (Chao and An, 1978; Crowninshield and Brand, 1981; Spoor, 1983; Prilutsky, 2000). Therefore, we used four representative cost functions to calculate the relative fitness of each of the muscle activation patterns sampled—in effect also calculating the fitness landscape across all possible solutions. The cost functions are defined at the level of neural effort (L1, and L2 norms, representing the normalized sum of descending neural α-drive to the motor neuron pools); and at the level of metabolic cost, thought to be approximated by neural drive weighted by the strength of each muscle ([image: image] and [image: image] norms) (Crowninshield and Brand, 1981; Prilutsky, 2000).

To visualize the costs associated with each valid muscle coordination pattern we simply added three vertical lines at the far right of the parallel coordinates plot, one for each of the three cost functions, as shown in Figure 2C. The variables ai and F0i represent the activation of the ith muscle in a given muscle activation pattern, and the maximal strength of each muscle (Crowninshield and Brand, 1981; Prilutsky, 2000). Maximal muscle strengths are approximated by the multiplying each muscle's physiological cross-sectional area, in cm2, by the maximal active muscle stress of mammalian muscle, 35N/cm2 (Zajac, 1993). These four cost functions are but four examples from the literature; an investigator is free to use this visualization of the feasible activation space with any cost function deemed relevant to their study.

Histograms of the activation level of each muscle across all valid solutions

Muscle-by-muscle histograms are another straightforward way to visualize the many points sampled from the convex polytope. Histograms are particularly helpful because they illustrate the structure of the space of all feasible activations, allowing us to see which muscle activation patterns are on the edge of the space, which solutions exist in the middle of the space, and how the bounds of the space and the distribution change across different tasks (in this case, as the task force increases). They visualize the relative number of solutions (i.e., density of solutions) that required a particular level of activation from a particular muscle within its range of [0, 1]. In addition, the upper and lower bounds of the histograms show, in fact, the size of the side of the bounding box of the polytope in every dimension (i.e., for each independently controlled muscle).

Dimensionality reduction

Investigators have repeatedly reported that electromyographical signals (i.e, experimental estimates of muscle activation patterns) tend to exhibit strong correlations with one another. In these experimental descriptions of dimensionality reduction of neuromuscular control only few independent functions—sometimes called synergies—suffice to explain the majority of the variability in the observed muscle activation patterns (Krishnamoorthy et al., 2003; Dingwell et al., 2010; Kutch and Valero-Cuevas, 2012; Alessandro et al., 2013; Bizzi and Cheung, 2013; Steele et al., 2013, 2015). Principal components analysis (PCA) is a widely used technique to extract these few independent basis functions (correlation vectors called principal components, PCs) from high-dimensional data (Clewley et al., 2008). In this case, PCs are often called the experimental representations of synergies of neural origin (Kutch and Valero-Cuevas, 2012).

Therefore, we applied PCA to points (i.e., muscle coordination patterns) sampled from the feasible activation space at each force level. This provides the PCs that describe the correlations among valid muscle activation patterns for a given task. For example, the feasible activation space P in a 3-muscle system with one constraint is a 2-dimensional polygon embedded in 3-dimensional activation space. Thus, applying PCA to points sampled from the polygon will extract 2 synergies (i.e., 3-dimensional correlation vectors PC1 and PC2) that wholly explain the feasible activation space. By extension, in the case of fingertip force production in Figure 1, the feasible activation space is a 3-dimensional polytope embedded in the 7-dimensional activation space. PCA should also extract, by construction, as many synergies as there are dimensions in the feasible activation space. For static force production with the index fingertip (i.e., 7 muscles and 4 constraints), we know that 3 principal components will describe 100% of the variance in points sampled from the feasible activation space (i.e., 7-dimensional correlation vectors PC1, PC2, and PC3).

Applying PCA to our data allows us to test whether and how its results change when applied to feasible activation spaces for different magnitudes of fingertip force. We applied PCA to feasible activation spaces for fingertip task intensities ranging from 0 to 90% of maximal. Specifically, we applied the prcomp function in R, and specified that the calculation operates on the covariance matrix of the raw data. We compare both the variance explained by each PC and their loadings (e.g., correlations among muscles) as the force level increases (Valero-Cuevas et al., 2016). Lastly, we tested whether the dispersion (i.e. the two central quartiles) and median of our PCA estimates are sensitive to the number of points sampled from each feasible activation space. This is important in practice because experimental studies tend to record and analyze a practical number (e.g., 10) of repetitions of the same motor task from a given subject, and aggregate data from different subjects (Valero-Cuevas and Santello, 2017). Although we have reported that subjects tend to exhibit similar muscle activations for a given task (Valero-Cuevas, 2000), performing dimensionality reduction on such few trials and across multiple non-identical subjects (i.e., samples in Figure 5) may lead to imprecise (i.e., uncertain) estimates of the synergies when sampling from high-dimensional spaces.
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FIGURE 5. Approximating the structure of feasible activation spaces via principal components analysis (PCA) is sensitive to both the task intensity and the amount of input data used. Rows show the variance explained by the first (top) through third (bottom) principal components with increasing data points for a given replicate (left to right). Hit-and-Run sampling provides the ground truth for the high-dimensional structure of the feasible activation set at each task intensity. Each box plot, across all subplots, is formed from 100 metrics (replicates), where each metric is the PC variance explained for a replicate “subject” which performed the task n times (where n is one of 10, 100, or 1000 task repetitions). We find that PCA approximations to this structure do not generalize across tasks intensities (i.e., the polytope changes shape as redundancy is lost), and numbers of points. That is, > 100 muscle activation patterns should be collected from a given subject to confidently estimate the real changes in variance explained as a function of task intensity. Compare points labeled a, b, c, corresponding to 11, 66, and 88% of task intensity, respectively.






3. RESULTS

We used our realistic index finger model to calculate the feasible activation space for the task of producing static fingertip force in the distal direction (see Figure 1). By showing how this same space can be interpreted from three dominant perspectives, we propose a conceptual paradigm to unify today's theories of neuromuscular control. The model contains the contribution of each of the seven muscles of the finger to the resultant static fingertip force vector (Valero-Cuevas, 2015). As described briefly in the Methods, all valid muscle activation patterns to produce a given fingertip force vector (i.e., all ways in which one can combine the actions of the seven muscles to produce a given fingertip force vector) are contained in a low-dimensional polytope embedded in 7-dimensional space. Hit-and-Run is a method for uniform polytope sampling that collects thousands of muscle activation patterns, which become a valid geometric approximation to the structure of the feasible activation space (Valero-Cuevas et al., 2015a). We examined how these feasible activation spaces (and their alternative representations) change with increasing task intensity (i.e., fingertip force magnitude, Figure 1e). In particular, we studied task intensities between 0% (i.e., pure co-contraction without output force) and 100% of maximal static force (i.e., a unique solution Valero-Cuevas et al., 1998).


 Parallel Coordinate Visualization Naturally Reveals the Structure of the Feasible Activation Space

Parallel coordinate visualization effectively reveals correlations that exist among the 1,000 valid muscle activation patterns for each intensity of desired fingertip force, and activation pattern cost, Figures 2, 3.
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FIGURE 3. Activation patterns of the seven muscles of the index finger across six intensities (magnitudes) of a fingertip force vector in the distal direction. The connectivity across parallel coordinates visualizes the correlations among muscle activation patterns at different task intensities. At the extremes of 0 and 100% we have, respectively, the coordination patterns that produce pure co-contraction and no fingertip force, and the one unique solution for maximal fingertip force (Valero-Cuevas et al., 1998). In between, we see how the structure of the feasible activation spaces changes, and that much redundancy is lost rather late (at intensities >80%, in agreement with Sohn et al., 2013). In blue are the activation values, and in red are normalized costs for four common cost functions in the literature. For each task intensity, we produced 1,000 points that are uniformly distributed in the polytope via the Hit-and-Run method. The muscles are FDP: flexor digitorum profundus, FDS: flexor digitorum superficialis, EIP: extensor indicis proprius, EDC: extensor digitorum communis, LUM: lumbrical, DI: dorsal interosseous, PI: palmar interosseous. Color is used solely to differentiate muscle activations (blue) from cost values (red).



Parallel coordinate visualization provides deep insight into the interactions among muscles that can produce a given task. Because it allows interactive exploration of the feasible activation space, one can restrict the activation level of any one or multiple muscles to see the associated activation levels of the remaining muscles (i.e., see a subsample of the feasible activation set). Figure 4 shows how, for 80% of task intensity, only 46% (i.e., [image: image]) of all possible solutions survive when we only keep solutions where EIP and EDC are below 80% of maximal excitation. We chose to limit the extensors, as they are both innervated by the radial nerve and are susceptible to limitation from, for example, neuropathy or stroke. This robustness-related system behavior is visible in other muscle pairs via the interactive parallel coordinates plot. We find that even a minor neural or muscle dysfunction can disproportionally compromise the solution space—even for sub-maximal forces. These results further challenge the definition of muscle redundancy as discussed in detail in Kutch and Valero-Cuevas (2011), (Valero-Cuevas 2015), Marjaninejad and Valero-Cuevas (2019), in that our description of redundancy may need to incorporate the structure of the feasible activation space to best describe how motor control can occur with perturbation to one or more muscles.
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FIGURE 4. Exploration of the feasible activation space for task intensity of 80%. Here we show three informative examples of constraints applied to the points sampled from the feasible activation space (n = 1,000; axes match those of Figure 3). With this interactive visualization, we can easily see how the size (i.e., number of solutions) and characteristics of the family of valid muscle activation patterns change. For example, in the event of (Top) weakness of a group of muscles (54% reduction), (Middle) selection of the lowest 5% of a given cost function (95% reduction), and (Bottom) enforcing the lowest 10% of cost range across multiple cost functions (99.6% reduction). In all cases, the family of valid muscle activation patterns retains a wide range of activation levels for some muscles. While it is challenging to understand the structure of the feasible activation space with a static plot of the parallel coordinates, interactively manipulating the muscle ranges on one or multiple axes makes it very easy to view and describe how muscle activations change in the face of different constraints.



While we know from experience that a limitation on one muscle yields compensation from the others, Figure 4 explains why, and how much to expect. All data used for Figure 4 are for a task intensity of 80%. When we select only the lowest 5% of L2 weighted costs (Figure 4, middle figure) there exist many “near-optimal” solutions that are dramatically different (note the broad ranges and criss-cross patterns in the second panel of in Figure 4). This wide space exists in spite of this strong criterion.

Evaluating the slope of the lines connecting muscles enables an intuitive understanding of inter-muscle correlations. The Pearson product-moment correlation coefficients were 0.99, −0.50, and −0.06 in the adjacent muscle pairs FDP—FDS, LUM—DI, and EIP—EDC, respectively. The interactive parallel coordinate visualization also allows for any pairwise comparison by simply dragging and reordering the vertical axes. This is an effective ad-hoc method to viewing the inter-muscle correlations for exploratory data analysis.



 Low-Dimensional Approximations to the Feasible Activation Space

We applied Principal Component Analysis (PCA) to sampled muscle activation patterns for 10 levels of task intensity. However, to replicate the fact that experimental studies can only collect a finite amount of data from each subject, we did this in an iterative fashion as follows. We collected 10,000 points sampled uniformly at random from each feasible activation space via Hit-and-Run (Valero-Cuevas et al., 2015a). From these 10,000 points, we sampled 10, 100, and 1,000 points at random (to simulate “experimental” sample sizes), and applied PCA to each set of sampled points. For each of the sample sizes, we replicated the sampling 100 times, producing a distribution of principal component results, and thus, a distribution of variance-explained metrics for PC1 (and the same for the other components). This bootstrap analysis serves to inform how many samples one must collect from a subject to get an effective set of principal components. The H matrix was fixed across all replicates and samples.

Figure 5 shows the box plots describing the variances explained by the three principal components (PC1, PC2, and PC3) across task intensities. The third PC, PC3, explains the remainder of the variance (13—15%) for the resulting 3-dimensional polytope. Recall that the 4 task constraints (fradial, fdistal, fpalmar, τpalmar) applied to 7 muscles yield a 3-dimensional polytope embedded in the 7-dimensional muscle activation space (Valero-Cuevas et al., 1998); as such, the sum of all three PCs is exactly 100%. The supplemental website (linked in the Data Availability Statement below) contains alternate versions of Figure 6 with varying input transformations.
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FIGURE 6. PCA loadings change with task intensity. For each of 1,000 task intensities, we collected 1,000 muscle activation patterns from the feasible activation space and performed PCA. The facet rows show the changes in PC loadings, which determine the direction of all PCs in 7-dimensional space. Note that the signs of the loadings depend on the numerics of the PCA algorithm, and are subject to arbitrary flips in sign (Clewley et al., 2008)—thus for clarity we plot them such that FDP's loadings in PC1 are positive at all task intensities. Dotted vertical lines connect loadings of PC2 and PC3 in spite of flips in sign. A discontinuity here is not indicative of a major change to the feasible activation space. It instead, is a result of how PCA selects loadings. The shape of the activation space has tilted at these points, thereby flipping the sign. Note that the values are the same before and after the jump, less the sign. These loadings (i.e., synergies) change systematically, as noted for representative task intensities a, b, c in Figure 5, and more so after b. This reflects changes in the geometric structure of the feasible activation space as redundancy is lost.



The box plots in Figure 5 quantify how different amounts of data change the estimates of variance explained by a PC with task intensity (c.f. labels a vs. b vs. c). We see this dispersion is small in the center and right columns. Note that the ratio of variance explained between PC1 and PC2 between 50 to 80% of task intensity reveals changes in the aspect ratio of the feasible activation space with task intensity.

Importantly, we observe how using experimentally realistic sample sizes of 10 same-task repetitions per subject (the leftmost column in Figure 5) not only does not capture this change, but its standard deviation is large enough to blur the notable differences that are known to appear with larger (but experimentally unrealistic) sample sizes. The impact of impoverishing the number of independent samples fed to PCA reminds us that inadequate amounts of data obfuscate the underlying changes in the structure of the data analyzed (Figure 5).

There were also changes in the loadings of the PCs, especially above 60% task intensity. While the ratio of variance explained between PC1 and PC2 gives a sense of the aspect ratio of the feasible activation space, the loadings of PC1 and PC2 speak to its orientation (Valero-Cuevas, 2015; Valero-Cuevas et al., 2016). Figure 6 shows how the loadings of PC vectors change across labels a, b, and c, Figure 5. These loadings indicate that the orientation of the feasible activation space in 7-dimensional space changes mildly at forces <65% of the maximal task force, and changes more dramatically with higher forces.

These changes we see in (i) the lower and upper bounds of activations, (ii) the relative variance explained and (iii) the loadings for all three PCs, demonstrate that the size, shape, and orientation of the feasible activation space changes with task intensity. The muscle activation distribution “between the bounds” has profound implications for prior work which chiefly examines the ultimate upper- and lower-bounds of activation for tasks in different directions (Simpson et al., 2015; Valero-Cuevas et al., 2015b). Moreover, detecting changes in these high-dimensional structures is done in the best-case scenario, as it exists in the absence of experimental noise, within- and across-subject variability, and measurement error. As will be elaborated in the Discussion, this implies that PCs (i.e., synergies) are laborious to obtain experimentally, and even then do not necessarily generalize across intensity levels.



 Changes in the Probabilistic Structure of the Feasible Activation Space With Increasing Task Intensity, or How Muscle Redundancy Is Lost

The maximal static fingertip force vector in a given direction is produced by a single and unique combination of muscle activations. In contrast, any sub-maximal magnitude of that same vector is produced by an infinite number of solutions (Chao and An, 1978; Spoor, 1983; Valero-Cuevas, 2000; Valero-Cuevas, 2015). Our analysis of feasible activation spaces at different task intensities also allows us to characterize how this redundancy changes, and is eventually lost. The histogram heatmaps in Figure 7 illustrate the changes and shrinking of within-muscle histograms (the space upon which probability density functions must operate) of valid activation levels across task intensities, converging to a single solution at maximal force output. These surface plots show how the normalized histograms (of 1,000 valid activation levels for each muscle at each intensity level) change at each of 100 equally-spaced levels of task intensity between 0 and 1. Following a muscle's column from bottom to top shows the activation histograms converge, naturally, to a spike at the unique value for maximal force production.
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FIGURE 7. The within-muscle probabilistic structure of feasible muscle activation across 1,000 levels of fingertip force intensity. The cross-section of each density plot is the 50-bin histogram of activation for each muscle, at that task intensity. The changes in the breadth and height for each muscle's histogram reveal muscle-specific changes in their probability distributions with task intensity. Height represents the percentage of solutions for that task. The axis going into the page indicates increasing fingertip force intensity up to 100% of maximal. Color is used to provide perspective. It is interesting to note that, for example, both extensor and flexor muscles are used to produce this “precision pinch” force. This is to be expected as the activity in the extensors is necessary to properly direct the fingertip force vector (Valero-Cuevas and Hentz, 2002).



The low flat areas on the sides of each surface plot (e.g., clearly visible for DI) represent muscle activation levels that are not valid for that task intensity. That is, there exist no valid muscle activation patterns that contain that muscle at that level, and thus no points are found there.

These plots show within-muscle probability functions and the rate of convergence to the unique solution for maximal force output across muscles. This is in contrast with the parallel coordinate plots in Figure 3 that shows the correlation across muscles. Importantly, the histograms of activation levels for each muscle need not be symmetric, nor have the same shape (skewness and kurtosis) as the magnitude of the output force increases. For some muscles, the convergence accelerates after 60 or 80% of task intensity (as in LUM and EIP), while others converge monotonically along the entire progression (e.g., DI and PI). The peaks (i.e., modes or most common values) of each histogram at each task intensity represents the slice of the polytope that has the largest relative volume along that muscle's dimension (i.e., greatest frequency of that level of muscle activation across all valid solutions). Importantly, for most muscles (FDP, FDS, EIP, EDC, and LUM), the mode is not necessarily located at the same relative level of activation needed for maximal force output—even when scaling it linearly with task intensity. That is, the histogram at high levels of force is not simply a shifted version of the histogram at low levels of force. The histograms for DI are the exception, whose modes seem to scale linearly with task intensity.

These histograms and the parallel coordinate visualizations demonstrate that the probabilistic and correlation structure, respectively, of feasible activation spaces, do not necessarily generalize across task intensities. Nor can they be inferred from their bounding boxes alone (i.e., upper and lower activation bounds for each muscle). An immediate example is how, for most task intensities, both EIP and LUM have similar lower and upper bounds near 0 and 1, respectively—yet their distributions are thoroughly distinct.




4. DISCUSSION


 summary

Feasibility Theory, as a conceptual and computational approach, is a means to pierce the curse of dimensionality to establish a physics-based ground truth for neuromuscular control. This practical approach can now characterize—in an arguably complete way—the space of all valid ways to activate multiple muscles to produce a given task. This initial presentation is limited to the case of static force production. Additional work is needed to extend to sequences of tasks, as has been done for optimization during gait analysis—where the dynamical constraints during movement are applied in the context of static optimization (Anderson and Pandy, 2001; Simpson et al., 2015). But we can already say that feasible activation spaces are, in fact, the high-dimensional landscapes upon which all neuromuscular learning, control, and performance must occur. These landscapes are predicated upon the strong experimental evidence for linearity in tension-to-force transduction in cadaveric (Kutch and Valero-Cuevas, 2011), live (Kamper et al., 2006), and modeled (Synek and Pahr, 2016) studies. Therefore, they provide an integrative and unifying perspective that demonstrates how today's dominant theories of neuromuscular control are alternative approximations to feasible activation spaces from optimization, synergistic, and probabilistic perspectives. Feasibility Theory unifies these alternative approaches to motor control in the sense that feasible activation spaces represent an objective conceptual and computational common ground for these theories.

Changes in the structure of the feasible activation space do not imply a given control strategy. They merely establish the bounds within which a species evolves a control policy for a given body morphology. It is possible that the nervous system operates within a very small subset of this space—which could be described by different principal components and even probability distribution functions. Feasibility Theory, however, allows us to formally phrase and test such hypotheses.



 The Value of a Cost Function

Optimization is the oldest computational approach to finding valid muscle activation patterns that produce limb function (e.g., Chao and An, 1978). While optimization is, of course, a reasonable hypothesis to explore neuromuscular control (Todorov and Jordan, 2002), some criticize it as a mathematical abstraction that anthropomorphizes neurons with the ability to choose, evaluate and follow cost functions in high-dimensions (De Rugy et al., 2012; Loeb, 2012). There is, nevertheless, an intimate relationship between optimization and feasible activation spaces (Chvatal, 1983). Optimization is analogous to finding the best solution in the dark—guided by repeated small steps based on evaluations of cost- and constraint-function. Computing the feasible activation space is then a means to “turn on the lights” to see all possible valid solutions independently of cost (Valero-Cuevas, 2015). Our complete sampling of high-dimensional feasible activation spaces (Smith, 1984; Lovász, 1999) allows us to compare and contrast families of solutions as per alternative cost functions instead of individual optimal solutions for a particular cost function. Figure 3 demonstrates a complete description of families of valid coordination patterns and their relationship to alternative cost functions. Importantly, similar valid muscle activation patterns can have dissimilar costs and vice versa.

Thus, Feasibility Theory allows us to compare, in detail, alternative “cost landscapes” across the entire set of feasible motor commands. By not having to insist on (or settle for) individual optimal—or near-optimal—solutions, we now have the same ability the nervous system has to explore, compare, and contrast multiple valid (be they optimal or suboptimal) ways to coordinate muscles. Importantly, the relationships among valid muscle activation patterns emerge naturally from the physical properties of the limb and definition of the task. This cost-agnostic approach allows us to re-evaluate our assumptions about what the nervous system cares—and does not care—about. Lastly, this cost-agnostic approach also provides a powerful tool for inverse optimization, i.e., uncovering latent cost functions from data (Tsirakos et al., 1997). Our comparison across cost functions using parallel coordinates is already a form of inverse optimization.



 Freedom Under Constraints

We have so far only used “hard” task constraints which must be met exactly. However, Feasibility Theory also holds for soft constraints. For example, if a tendon-driven system is required to produce a 3D force vector in general distal direction and of a general magnitude (defined, say, as a sphere of 1.0 N radius centered on the nominal force), then we can apply these tolerances to the constraints defining the task. In effect, Feasibility Theory allows us to study both soft and hard constraints where the latitude of the accuracy of the task naturally defines the precision with which muscle activation patterns must be selected. One can define the task intensity to be, say, anywhere between 50 and 60%, and study the concomitant increase in options available to produce forces within that range. Thus, one can characterize the changes in the feasible activation space as the task constraints are relaxed or tightened. Similarly, adding task constraints, such as the need to produce a particular stiffness at the endpoint (Inouye and Valero-Cuevas, 2016), naturally reduces the dimensionality of the feasible activation space.



 How to Apply Feasibility Theory in an Experiment

The most important input to this analysis is the relationship between muscles and the endpoint wrench. With this relationship composed as the H matrix as in 1, and a desired wrench w, Hit-and-Run can be used to produce parallel coordinate plots and density histograms for static force production with vertebrate limbs. For example, using a measure of muscle activation (such as fine-wire EMG), an experimentalist can compare the muscle activation pattern chosen by a research participant in comparison to the full feasible activation space that could achieve the same force, and see how those patterns change across fatigue, disability of a muscle, or manipulation of the feedback. After a tendon-transfer surgery, for example, the subject may initially inhabit only a specific part of the feasible activation space to produce a task, but must use feedback from the parallel coordinate plot to find solutions which take less effort. In effect, visualizing the entire feasible activation space could help us understand how rehabilitation can be guided toward more advantageous local minima (Towles et al., 2008).

In parallel, a scientist with a cost function to test on a model can quickly identify how different cost function parameters can affect the space of feasible activations, and see how specific the global optima is, with respect to other muscle activation patterns. Importantly, anthropometric differences affect the shape of the feasible activation space, so those subject-specific differences must be either incorporated or may be addressed through sensitivity analysis (such as Monte-Carlo manipulation of moment arm values, as in Valero-Cuevas et al., 2015b).



 Extension to Dynamical Force Production or Movement

Limbs are valuable for more than just their ability to produce isometric forces. First, there is the extension to “non-static isometric” force production (e.g., rotating a grasped object with respect to gravity), which must contend with time-varying muscle activation-contraction dynamics and target grasp wrench (i.e., such that the object is always securely held against a time-varying gravity vector Rácz et al., 2012). Joint angles, the end-effector Jacobian, moment arm matrix, and vector of maximal feasible contraction levels per muscle will vary nonlinearly, and with kinematic redundancy as a possibility for a given endpoint location, we can introduce multiple feasible activation spaces that are capable of producing a given task force. Even a simple task in the workspace likely exhibits redundancy at different levels of abstraction, where redundancy is sourced from feasible activation spaces and joint null spaces simultaneously.

As muscles exhibit state dependence, the ability of an animal to produce precise dynamic forces is affected by the tendon tensions from moment to moment. The inter-muscle dynamics across a human index finger, for example, would necessarily require a feasible activation trajectory—which may or may not be representable by a convex hull. Applying Feasibility Theory to non-static isometric force production may require detailed investigation into the dynamics of musculoskeletal force transduction. In parallel to the dynamics, non-convexities may emerge from neural constraints or even nonlinearities and hysteresis of muscle function.

Secondly, Feasibility Theory can be extended to address dynamical behavior by applying it to a sequence of slices in time. That is, a dynamical task can be equivalently analyzed as a sequence of “slices” (Anderson and Pandy, 2001; Cianchetti and Valero-Cuevas, 2009; Simpson et al., 2015; Trinler et al., 2018)—where one can define a feasible activation space at each slice to determine how the nervous system must change activation patterns such that it is always implementing a valid solution (Simpson et al., 2015). When strung together, these individual spaces give rise to a “spatiotemporal tunnel”—the time-varying extension of the feasible activation space (Figure 8).


[image: image]

FIGURE 8. Spatiotemporal Tunneling. A dynamical movement can be decomposed into a sequence of slices in time, where each slice has a corresponding feasible activation space. Strung together, the sequence of feasible activation spaces form the “spatiotemporal tunnel” through which the neuromuscular system must operate. In this 3-dimensional schematic example, the black line represents one valid time-varying sequence of activations for three muscles. Because this sequence exists within each feasible activation space, it necessarily meets the constraints of the dynamical task at each instant.





 Structure, Correlation, and Synergies

The physical properties of the limb and the definition of the task together give rise to a low-dimensional structure of the feasible activation space (Valero-Cuevas, 2015). Therefore, experimental recordings of muscle activations during limb function will exhibit a dimensionality that is smaller than the number of muscles (Tresch and Jarc, 2009; Kutch and Valero-Cuevas, 2012; Alessandro et al., 2013). Thus, applying PCA to the points sampled from the feasible activation space will inevitably find that few PCs can explain the variance in the data (Brock and Valero-Cuevas, 2016).

Our application of PCA at increasing task intensities (i.e., as muscle redundancy is lost) allows us to demonstrate—for the first time to our knowledge—several important features and limitations of dimensionality reduction. For example, we see that the aspect ratio (Figure 5) and orientation (Figure 6) of the feasible activation spaces change as their size shrinks (Figure 7). Thus, such descriptive synergies (Brock and Valero-Cuevas, 2016) extracted from limited experimental observations likely do not generalize well across task intensities. Producing further insights into the feasibility-synergy relationship necessitates more objective metrics of the feasible activation space's structure.

The intensity-dependent structure of feasible activation spaces also has important consequences for motor control and learning. Producing force vectors at the endpoint of a finger or limb with accurate magnitude and direction are critical for versatile manipulation and locomotion (Valero-Cuevas et al., 1998; Donelan et al., 2004; Cole, 2006). If a given synergy can produce such accurate force vectors only for a given task intensity (and thus inaccurate vectors at other intensities), then the attractiveness of task-specific synergies to simplify the neuromuscular control of the limb is reduced. Although we do not present an analysis of task-irrelevant synergies, data from this paper can be concatenated prior to PCA analysis to explore how principal components vary across the entire distal task.

To compensate, the nervous system would need to learn, recall, and implement intensity-specific synergies. Prior experimental work has shown that the nervous system produces accurate fingertip forces of different magnitudes by, instead, likely scaling a remembered muscle activation pattern to produce forces of different magnitudes (Valero-Cuevas, 2000), together with full-dimensional error correction (Valero-Cuevas et al., 2009b). The observation of higher forces yielding more variable PC loadings indicates that lower dimensional substructures could approximate low- and medium-level forces for a given direction, motivating further analyses of PCA effectiveness across task-intensity (and with NMF, for example).

Our results also show how experiments with realistically moderate numbers of participants and test trials likely do not contain sufficient information to produce robust estimates of descriptive synergies across task intensities. As per the curse of dimensionality, sampling uniformly at random from high-dimensional spaces is exponentially difficult. Thus, even for this anatomically complete 7-muscle finger model, PCA depends strongly on the number of independent observations, such as uncorrelated trials from one subject or different subjects. Figure 5 shows that 100 to 1,000 such ideal data points from a simulated “test subject” are needed to produce accurate estimates of changes in the PCs with task intensity (c.f. labels a vs. b vs. c). Future studies should explore how many experimental data points are sufficient from a given subject when recording from only a subset of the many (20+) muscles of human limbs in the presence of experimental noise, inherent stochasticity of EMG, and within- and between-subject variability. Some studies have begun to ask subjects to explore different ways to perform a given task (Kuxhaus et al., 2005; Berger and d'Avella, 2014) (i.e., estimate the structure of the feasible activation space), but in practice, such studies cannot likely collect sufficient data uniformly at random to obtain accurate estimates of the descriptive synergies (Kutch and Valero-Cuevas, 2012).

PCA is one of several methods to extract lower-dimensional representations of motor patterns (d'Avella et al., 2003; Ting and Macpherson, 2005; Clewley et al., 2008). Alternative techniques do not impose orthonormality constraints or over-estimate the real dimensionality of nonlinear underlying manifolds (Clewley et al., 2008). Similarly, Non-Negative Matrix Factorization (NMF) would not be subject to the flips in sign observed in Figure 5 (Tresch et al., 2006). We noted that for a given task intensity a muscle's activation across the sampled solutions can have different variance than the other muscles, and these variances change as task intensity increases (and the feasible activation space shrinks) (see the supplemental website for the task-variance figure). While PCA helps us uncover how these shapes change in this study, PCA can be leveraged to uncover different intramuscular relationships (e.g., analyzing the eigenvalue decomposition of the correlation matrix, as opposed to using PCA on the covariance matrix). Bootstrapping or data shuffling technique for sensitivity analysis are also applicable to dimensionality reduction techniques (Valero-Cuevas et al., 2016).

Feasibility Theory allows us to put dimensionality reduction in perspective. First, as a natural consequence of the definition of a task (i.e., the need to meet specific mechanical constraints). And second, as an approximation to the structure of the latent feasible activation space embedded in high-dimensions. While our results suggest caution when interpreting synergies obtained experimentally, we underscore that dimensionality reduction is, nevertheless, a useful approach to capture the general geometric properties of feasible activation spaces.



 Toward Probabilistic Neuromuscular Control

Our results are particularly empowering for the emerging field of probabilistic neuromuscular control (Körding and Wolpert, 2004; Sanger, 2011; Kording, 2014). Suppose that the nervous system uses some form of probabilistic or Bayesian learning and control strategy. Such approach requires two enabling—and biologically plausible—elements: trial-and-error iterative exploration to build prior distributions, and memory-based exploitation of the probability density functions used to approximate the feasible activation spaces (Körding and Wolpert, 2004). The parallel coordinate plots and histograms in Figures 2, 7 provide, to our knowledge, the first complete (Smith, 1984; Lovász, 1999) characterization of such multi-dimensional conditional motor control spaces for a realistic tendon-driven system performing a well-defined task (i.e., activation of one muscle is contingent upon the activations of the other muscles). With a better understanding of the physical task, future studies into optimal motor control can leverage the feasible activation space to contextualize motor control policies, whether they are experimentally-observed or theoretically predicted (Berniker et al., 2013). As mentioned above, the muscle activation patterns that the nervous systems actually use will necessarily be a subset of these feasible activation spaces.

Feasibility Theory critically empowers the study of fundamental aspects of probabilistic control. For example, an organism can only execute so many trial-and-error iterations during learning, likely too few to completely and exhaustively sample the high-dimensional feasible space of interest. This makes it much more likely that, by virtue of being more easily found, an organism will find and preferentially exploit the strong modes (i.e., narrow and high peaks in Figures 3, 4, and 7) of the multi-dimensional probability density functions than any other region of feasible activation spaces. Thus, first, the maximal ranges of feasible activations described by the bounding box (Sohn et al., 2013; Valero-Cuevas et al., 2015b) may have little practical bearing on how those tasks are learned and executed. And second, those same strong modes would represent strong attractors to create and reinforce motor habits. Habitual control has been proposed based on experimental and empirical data as an alternative to a strict optimization approach to neuromuscular control (De Rugy et al., 2012; Fu et al., 2014). Our work now provides the computational means to link habitual to probabilistic control in isometric force production. This allows us to generate testable hypotheses of how these motor habits are defined by the structure of the feasible activation space, how easily they are learned by the organism, and how difficult or easy it is to break out of them (Raphael et al., 2010).

Motor function likely emerges from trial-and-error (Adolph et al., 2012) or imitation (Oztop et al., 2006; Cattaneo and Rizzolatti, 2009) to identify, remember and adopt easily-found, good enough solutions in the feasible activation space—independently of their cost. It is then possible to use some heuristic approach to improve performance to transition to less likely—but potentially “better” solutions as per some metric relevant to the individual—subregions of the solutions space. But this likely requires numerous iterations in practice, which explains why few are experts at a given motor task, or why rehabilitation is so difficult (Gladwell, 2008; Adolph et al., 2012; Lohse et al., 2014).



 Feasibility Theory as a Theory of Motor Control

Feasibility Theory goes beyond Bayesian control by underscoring how the physics of the body, and the properties of the task are the arbiter that guides the biological process of finding, exploring, inhabiting, and exploiting low-dimensional solution spaces embedded in high-dimensions. Feasibility Theory espouses heuristic local searches—driven by the memory of likelihoods of different individual solutions—to create what ultimately are useful, yet likely sub-optimal, motor habits. These processes hinge on trial-and-error, memory, pattern recognition, and reinforcement that come naturally to neural systems. Even though Feasibility Theory is presented in the context of neural control of the human hand, it applies to tendon-driven organisms in general.

Importantly, organisms perform strict optimization or synergy control at their peril. A feasible activation set is low-dimensional because it loses one dimension with each functional constraint that is being met (Valero-Cuevas et al., 1998; Inouye and Valero-Cuevas, 2016). Thus, moving along such low-dimensional spaces to find a new valid solution is equivalent to moving along a line (which has zero volume) in 3-dimensional space. Taking a step from any one valid point to another valid point on the feasible space runs the risk of “falling off” and failing at the task—a risk that is exponentially exacerbated in higher-dimensions. Thus, searching for improvements in the neighborhood of a known solution necessarily risk task failure and potential injury. These are all arguments in support of the evolutionary and developmentally useful strategy to use good-enough control based on habit or sensorimotor memory rather than optimization or synergy control (De Rugy et al., 2012; Fu and Santello, 2012).

This line of thinking has consequences to neurorehabilitation. Neurological conditions disrupt feasible activation spaces, be it by affecting anatomy of the limb, muscle strength, and independence with which muscles are controlled. Functional recovery following the disruption, if not destruction, of the landscape of valid muscle activation patterns, requires re-learning existent or building new probability density functions. Older adults suffering from reduced perceptuo-motor learning rates are presented an even more constrained feasibility space (Coats et al., 2014).

A probabilistic landscape for neuromuscular function begins to explain why neurorehabilitation in aging adults is so difficult (e.g., Lohse et al., 2014; Hardwick et al., 2016) and why motor learning in children takes thousands of repetitions (Adolph et al., 2012). But it empowers us to leverage knowledge of the families of feasible solutions to create new rehabilitation strategies and testable hypotheses around them.




DATA AVAILABILITY

The datasets generated and analyzed for this study can be found freely available (Git Repository Link), and at the supplemental website (Supplemental Site Link). We designed a web-based parallel coordinate visualization that lets users interactively limit muscles, select solutions, and calculate effects on the feasible activation space from each post-hoc constraint (Figure 4). Our companion site includes ample documentation, code implementation in Scala (with a comprehensive test suite), and all data visualization code in R, including an overhead view of Figure 7.
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FOOTNOTES

1 Mechanical constraints is a formal way to call the physical demands, requirements, or characteristics of a given physical task.

2Neuromuscular control is variously referred to as, inter alia, neural, motor, sensorimotor control.
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The two-segment model of the human arm is considered; the shoulder and elbow joint torques (JTs) are simulated, providing a slow, steady rotation of the force vector at any end-point of the horizontal working space. The sinusoidal waves describe the JTs, their periods coincide with that of the rotation, and phases are defined by the slopes of the correspondent lines from the joint axes to the end-point. Analysis of the JTs includes an application of the same discrete changes in one joint angle under fixation of the other one and vice versa; the JT pairs are compared for the “shoulder” and “elbow” end-point traces that pass under fixation of the elbow and shoulder angles, respectively. Both shifts between the sinusoids and their amplitudes are unchanged along the “shoulder” traces, whereas these parameters change along the “elbow” ones. Therefore, if we consider a combined action of both JTs acting at the proximal and distal joints, we can assume that for the end-point transitions along the “shoulder,” and “elbow” traces this action possesses isotropic and anisotropic properties, respectively. The model also determines the patterns of the torques of coinciding and opposing directions (TCD, TOD), which would evoke a simultaneous loading of the elbow and shoulder muscles with the coinciding or opposing function (flexors, extensors). For a complete force vector turn, the relationship between the TCD and TOD remains fixed in transitions at the “shoulder” end-point traces, whereas it is changing at the “elbow” ones.

Keywords: motor control, electromyography, two-joint movements, joint torques, muscle synergy


INTRODUCTION

Experimental analysis of the central commands that define the parameters of real movements often combine electromyography (EMG) and kinesiology methods. To describe movements of both the entire human body and its separate parts, such as upper and lower limbs, standard approaches of theoretical mechanics are also applied (Hibbeler, 2016). Analysis of multi-joint movements includes the internal models of inter-segmental dynamics (Hollerbach, 1982). Many movement control studies have analyzed relatively fast movements, when velocities of the body segments and their masses are taken into account. To evaluate the central nervous system (CNS) mechanisms for controlling the movements under study, researchers often apply the inverse internal model describing details of biomechanical events (Wolpert and Kawato, 1998; Kawato, 1999; Wolpert and Ghahramani, 2000). Control signals in such a model contain information about the muscle torques defined by inverse dynamics equations. At least partly, the dynamic simulations use the second-order differential equations defining the velocities and accelerations of different limb segments. An alternative method including the theory of position-dependent control (Feldman, 1986, 2011; Bizzi et al., 1992) could be more suitable for the examination of slow movements when the static states of the motor system serve as primary elements of the analysis. An example of this approach is the equilibrium point hypothesis elaborated by Feldman (2011, 2016). The hypothesis assumes that the CNS defines the equilibrium states in the forced interaction of the organism with the environment, while movements constitute transitions between a series of equilibrium states. One of the advantages of the static models is the possibility of accounting for non-linear properties of the neuromuscular system, such as muscle hysteresis (Kostyukov, 1998). Recent studies on various problems of the position-dependent control of the robotic arms can be found elsewhere (Aguilar Ibañez, 2016; Meda-Campana, 2018; Rubio, 2018; Rubio et al., 2018).

Records of slow movements of upper and lower limbs with parallel EMG analysis are frequently used to find the relationships between movements and their central commands. The above approach becomes especially compelling when the same test movements are repeated many times during an experiment in order to apply an off-line averaging procedure. Moreover, this method is suitable for the examination of naturally repeated cyclic movements, such as walking (Bogey and Barnes, 2017) or bicycling (Ting et al., 1999; Wakeling and Horn, 2009). Previously studied examples of voluntarily controlled movements include cyclic planar movements of the arms (Levin et al., 2001) and writing and drawing movements (Dounskaia et al., 2002). Recently, the planar circular movements of the hand with a fixed wrist were studied during the action of elastic tangential loads (Tomiak et al., 2016). Such an experimental model allows one to determine the shoulder and elbow joint torques (JTs) along the movement trajectory, based on the load value and lengths of the limb segments. The above-cited study demonstrates the correspondence between the JTs and the intensities of EMGs recorded from the appropriate muscles. During a complete movement period, each of the JTs includes two components, positive and negative, correlating with activity in the flexor and extensor muscles, respectively. Timings and relative durations of the JTs and EMGs waves are dissimilar for different joints. One of us proposed a simple geometric method that allows us to define the exact positions of the points where the JTs change sign, which simplifies the determination of these points at various curvilinear movement traces in the working space (Kostyukov, 2016). While analyzing two-joint movements, we have also suggested an additional method for marking the sectors of coinciding and opposing synergy along the trajectory of movement (Kostyukov, 2016; Tomiak et al., 2016). The synergy sectors define the sections of the movement trajectory, in which muscles of the same or different function (flexors, extensors) are simultaneously active. A similar procedure for searching the interrelationships between the JTs and EMGs has been applied to the analysis of the isometric muscle contractions when a subject must slowly change the direction of the end-point force in reaction to a visual command signal (Lehedza et al., 2016; Lehedza, 2017).

Following the approaches proposed by Feldman (2011, 2016), the slow (quasi-static) movements are traditionally used to describe the system statics for movement production. In such an approach, the sets of equilibrium states in the system under study usually serve to predict its dynamic behavior. Evaluations of the system statics by temporary changes of the JTs (Lehedza et al., 2016) allow for providing a satisfactory prediction of the EMGs in the muscles generating these forces; however, it seems to be difficult to obtain such data for any point in the working space. In this theoretical study, we have tried to model the essential parameters in the positioning of the limb segments that directly influence the JTs. Two important elements were included in the modeling. First, to take into account all possible directions of the generated forces, we used a steady turning of the force vector within a full cycle of its rotation. Second, to simulate the force generation, we have considered the JTs as functions of two variables representing the current values of the joint angles. Standard methods of analysis allowed us to explore the system behavior for two sets of positioning traces with sequential fixation of variables. This approach led us to find the fundamentally important differences in a combined action of the torques for different types of positioning within the working space. At the same time, we comprehend that the model can be applied only to the analysis of the two-joint muscle contractions in isometry; for considering a real arm movement, the inertial properties of the arm segments, as well as the non-linear effects of neuromuscular dynamics, should be taken into account.



EXPERIMENTAL BACKGROUND AND SIMULATION METHODS

Figure 1 schematically describes a process of generation of isometric force by the human hand with an immobilized wrist. The distal segment is interpreted as an “elongated” forearm; the arm and the force vector are located within the horizontal plane passing via the shoulder joint. In experimental studies of the two-joint isometric arm contractions (Lehedza et al., 2016; Lehedza, 2017), the subject's hand grips the top part of a rigid vertical manipulandum, which allows the researcher to register the direction and amplitude of the created force. Lehedza et al. (2016) describe a construction of the manipulandum in detail. The position of the manipulandum can be changed within the working space before a subject; the correspondent hand location coincides with the end-point position of the generated force. In such experimental setups, lengths of the arm segments do not usually differ significantly from each other; the possible difference is not more than 5–7% of the shoulder segment length; therefore, for the sake of simplicity, the segments are assumed to be of the same length (Ls = Le = L). The first letters of the “shoulder” (S) and “elbow” (E) terms designate the proximal and distal joints the joint angles (αs, αe), the lengths of segments (Ls, Le), and the torques (Ms, Me). Therefore, our task consists in searching the torques Ms and Me, which are necessary to create in the proximal (S) and distal (E) joints to generate the force vector F(θ) by the hand in the end-point belonging to the working space Ω (Figure 2). The forces created by the hand could vary in both their amplitude and direction; when the angle argument θ is changed from 0 to 2π radians, the force vector F(θ) is turning in the counter clockwise direction. The JTs Ms and Me are generated by the cooperative action of the shoulder and elbow muscles. However, we do not consider a possible co-activation of the antagonistic muscles belonging to each of the joints. It is assumed that the force amplitude |F| and the length of segments (L) are constant, so the problem consists in finding the JTs as function of the angles θ, αs, and αe. For a given force vector, the maximal effectiveness of the muscles participating in its creation corresponds to a full inactivity of their antagonists; any contraction of the antagonists would diminish the forced action of the agonists. The co-activation introduces indeterminacy in the system behavior; the co-activation extent can be defined only in a real experiment.


[image: image]

FIGURE 1. Simplified geometry of the two-joint system with designation of the mechanical parameters defining equilibrium with the surrounding space. (A) A right human arm including the shoulder (S) and elbow (E) joints is chosen as an anatomical analog of the system; a similar two-link configuration is used as a basic element in the models of the robotic arm. A simplified forced interaction of the hand (H) with the environment is considered for the case of rigid wrist immobilization. Main characteristics of the system: Ls, Le are the lengths of the proximal (shoulder) and distal (elbow) segments; F(θ) is the vector of the isometric force presenting the result of the interaction of the joint torques Ms(θ) and Me(θ), which are directed perpendicularly to the plane upwardly/downwardly for counter clockwise/clockwise turning actions. The problem consists in finding the joint torques Ms(θ) and Me(θ) for all possible directions of the force vector F(θ) (θ∈[0, 2π] rad). Other designations: hs is the distance between the shoulder joint axis (S) and the hand (H), which is considered the end-point; γs and γe are the angles between axis X' and the lines passing via the axes of the joints (S, E) and the end-point (H). The force reaction of the body at the shoulder joint is shown by the vector R = –F(θ). (B) Graphical presentation of the method of virtual work used to define the functional interdependence between the generated force and joint torques. A detailed description is presented in the text; note that the simulations in this study have been done under a simplifying assumption that lengths of the proximal and distal segments are equal to each other: Ls = Le = L.
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FIGURE 2. Changes in the characteristic angles γs and γe and their difference in dependence on αs provided that αe is fixed. Steps of changes in both arguments are chosen as π/10 rad; separate dependences from αs are drawn for 10 fixed values of αe, ranging from [image: image] = 0 to [image: image] = 9π/10 rad. Successive procedures of numerical analysis are presented in Table 1, left column. The right columns in (A–C) present the same data as in the left ones after changing the end-point angles by their projections on the X-axis of the working space Ω (shown in D). For better distinguishing, the traces [image: image] and [image: image] are marked by open circles. For purposes of the data treatment, additional quantitative information about slopes of the characteristics and distances between them is placed in squares at the correspondent panels. Note the same ordinate calibrations in the paired plots of (A–C) and the conformity between the points in these plots and their positioning within the working space Ω (D). All dimension characteristics in this and other figures are normalized with respect to the radius of the working space (R = 2 L = 1).



For computer simulations and graphical plotting, we used Origin 8.5 software (OriginLab Corporation, USA). The formulae were computed using the internal language of the software, based on operations with the worksheets; the used worksheets consisted of 1,000 rows and from 6 to 15 columns. To change sets of the fixed parameters in the formulae, we used the replication of basic worksheets.



RESULTS OF MODELING


Determination of the JTs by the Virtual Work Method

To determine the JTs Ms and Me, which a subject creates by activation of the corresponding muscles acting around the proximal and distal joints, we used the method of virtual work described in detail in textbooks on theoretical mechanics [for example, (Hibbeler, 2016)]. Thus, the problem is to find the sum of works produced by the JTs Ms and Me during virtual infinitesimal changes in the joint angles δαs and δαe (Figure 1A). On the other hand, this summed work may be equalized to work produced by the force F(θ) along the corresponding path vector r, presenting a sum of the two consecutive infinitesimal vectors, r1 and r2 (Figure 1B):

[image: image]

Figure 1B defines the projections of the force and transition vectors on the coordinate axes:

[image: image]

The first transition presented by vector r1 corresponds to a fixed αe; in this case, hs turns on the angle δαs. The second transition r2 coincides with turning the distal segment on the angle δαe. Due to small values of δαs and δαe, the lengths of the arcs correspond closely to the lengths of vectors r1 and r2:

[image: image]

Following Figure 1A, it is possible to define the distance hs between the shoulder axis S and the end-point H:

[image: image]

Due to the importance of the angles γs and γe for further considerations, we will call them the characteristic angles (CAs). The following expressions define these parameters:

[image: image]

The slopes of vectors r1 and r2 to the abscissa and ordinate axes are equal to γs+π/2; γe+π/2 and γs; γe, respectively. Therefore, we can find projections of the vector r on the coordinate axes:

[image: image]

After applying appropriate substitutions, Equation (1) is as follows:
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Using proper trigonometric conversions, Equation (7) is transformed as follows:

[image: image]

Finally, we can write apparent expressions for the shoulder and elbow JTs:

[image: image]

Therefore, the combined action of JTs in both joints completely and uniquely determines the amplitude and direction of the end-point force F(θ). Within a complete cycle of the force angle change (0 ≤ θ ≤ 2π), two sinusoids describe changes in the shoulder and elbow JTs at a given end-point. The sinusoids have the same period coinciding with the period of the force angle turning; the CAs γs and γe define shifts of the sinusoids to the beginning position of the force vector (θ = 0). The elbow JT has an unchanged amplitude FL within the entire working space, while the amplitude of the shoulder JT is changed from 2FL (for a completely extended elbow joint) to zero (in an “idealized” case of a completely flexed elbow joint). In difference from the previous models of the human arm (Feldman, 1986, 2011; Bizzi et al., 1992; Wolpert and Kawato, 1998; Kawato, 1999), the present model describes the patterns of the JTs for the end-point traces that pass under consecutive fixation of the elbow and shoulder angles. Such an approach allows obtaining a simple graphical form of the JTs presentations, what can be highly effective for a preliminary evaluation of the characteristics of the two-joint movements in real experiments.



Dependence of the CAs on the Joint Angles

Standard methods, allowing one to analyze the CAs γs and γe as functions of two variables αs and αe (see Equation 5), include determination of their dependencies on each of the arguments when another one is fixed. Therefore, two pairs of the functions should be considered: (1) γs(αs|αe = const); γe(αs|αe = const), and (2) γs(αe|αs = const); γe(αe|αs = const). Successive procedures of the numerical analysis, based on the equations of the previous section, are presented in Table 1; the results of the simulations are shown in Figures 2, 3. Figure 2 describes the CAs γs and γe, as well as their difference (γe – γs), which are defined depending on αs for fixed values of αe. Figure 3 presents similar data based on an opposite relationship between the varying and fixed arguments.



Table 1. Sequences of the procedures used to determine the characteristic angles γe and γs in various end-point positions within the working space.
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FIGURE 3. Changes in the characteristic angles γs and γe and their difference in dependence on αe provided that αs is fixed. The steps of the joint angles are the same as in Figure 2; successive procedures of numerical analysis are presented in Table 1, right column. The right columns in (A–C) present the same data as in the left ones after changing the end-point angles by their projections on the X-axis of the working space Ω (shown in D). For ease of distinguishing, the traces [image: image] and [image: image] are marked by open circles. Quantitative information about slopes of the characteristics and distances between them is placed in squares at the correspondent panels. Note the same ordinate calibrations in the paired plots of (A–C) and the conformity between the points in these plots and their positioning within the working space Ω (D).



One can see that both γs and γe depend linearly on each of the arguments, αs and αe, although it is possible to point out some essential differences. When comparing the dependencies of the CAs on αs (Figures 2A,B), the slopes of the lines are equal (δγs/δαs = δγe/δαs = 1), and there is a two-fold difference in the distance between adjacent lines (Δγs = π/20, Δγe = π/10). On the other hand, the dependencies of the CAs on αe (Figures 3A,B) demonstrate a coincidence of the distances between the lines (Δγs = Δγe = π/10), while their slopes show a two-fold difference (δγs/δαe = 0.5; δγe/δαe = 1). Such properties of the CAs lead to essential distinctions in the corresponding behavior of their subtraction. The difference between CAs (γe – γs) defines a relative shift between the JT sinusoids at various end-point positions within the working space. As shown below (section Patterns of Activation of the Proximal and Distal Muscles), such a shift is the primary parameter influencing the torque patterns of the muscles belonging to different joints. In other words, in the two-joint movements, the difference between CAs directly affects the interaction of activity in the muscles of different joints.

The dependency of (γe – γs) on αs remains constant for any fixed value of αe, and it linearly rises with the αe increase (Figure 2C). It should be noticed that a linear increase in the CA difference (γe – γs) with a rise in αe under fixed values of αs is associated with a complete coincidence of the separate lines belonging to different αs (Figure 3C). A definite interest may present the traces of the CA differences, which are plotted against the frontal coordinate of the end-point position (compare right panels in Figures 2C, 3C). For fixed values αe (Figure 2C), these traces present horizontal lines, shifting in an upward direction with a rise of αe. In contrast, when αs is fixed, the correspondent traces have a complex curvilinear appearance, which changes with the increase in αs (Figure 3C). Therefore, one can see that the torque patterns are not changed in the first case and demonstrate a complex modification in the second one.

The joint angles αs, αe are defined unambiguously for any end-point within the working space. Thus, it is possible to change arguments in plots γs(αs), γe(αs) and γs(αe), and γe(αe), which are shown in the left panels in Figures 2A,B, 3A,B, replacing the joint angles by projections of the correspondent points on the X-axis. The right panels in Figures 2A,B, 3A,B demonstrate the results of such a change in the variables. The sets of points in the plots γs(X) presented in Figures 2A, 3A coincide with each other; the only difference relates to the lines connecting the points at these plots. The discrepancy between the lines is due to a difference in the varying and fixed arguments in both sets (compare Figures 2D, 3D). Two sets of the plots γe(X) presented in Figures 2B, 3B show similar behavior. The sets of the points γs(X) and γe(X) demonstrate both similarities and differences. The similarities consist in the likeness of the point distributions, both of which take up more areas at the left part of the working space. The differences lie in the observation that, at the right part of the working space, the γe(X) points are distributed over a relatively broader area compared with the γs(X) points. Such a distribution is mainly well seen near the position of the shoulder joint axis (X = 0). We also note that the γe(X) points cover a more significant range of the angles, compared with the γs(X) ones (about six radians vs. four).



Dependence of the JTs on the Force Direction

By using the above CA plots, it is possible to analyze the JTs at various angles of the end-point force. For simplicity, we do not take into account potential problems associated with the existence of two-joint muscles or with the co-activation of the muscle-antagonists. The controlled changes in the direction of the isometric force vector (change of angle θ in Figure 1A) are realized in our experimental conditions as follows [for details see (Lehedza et al., 2016; Lehedza, 2017)]. A subject creates with his right hand isometric pressure on an unmovable handle, allowing one to measure both the amplitude and direction of the generated force. When performing a task of visual tracing of the force vector, a subject slowly changes the force vector direction under the command signal specified by a point slowly moving along a circular trace on the monitor screen. The center of the circle corresponds to the human's hand position; its radius defines the force amplitude.

Figures 4, 5 present the results of computing the JTs Ms (θ) and Me (θ) for different positions of the subject's hand. Figure 4 demonstrates the changes in the JTs' dependencies on αs for two fixed elbow positions, [image: image] (Figure 4A) and [image: image] (Figure 4B). The Ms and Me families of curves in Figures 4A,B contain the sinusoids that are consecutively shifting to the right with a rise in their order, and the shifts are equal for both joints. Such a picture corresponds to the equality of the gradients of both CAs with respect to the αs (δγs/δαs = δγe/δαs = 1) (Figure 2A). At the same time, a change in the fixed parameter [i.e., [image: image]→[image: image] in Figures 4A,B] evokes different shifts of both sets of curves while keeping a distance between the curves in each of the sets. The Ms sets of curves shift twice as slowly as the Me ones (Δγs = π/20; Δγe = π/10 in Figures 2A,B). While comparing two Ms sets relating to different values of the shoulder angle [[image: image] and [image: image] in Figures 4A,B], one can notice a drop in the torque amplitudes, which corresponds to a shortening of the torque arm hs (see Equation 9). In contrast, the Me amplitudes remain unchanged due to the steadiness of the similar parameter coinciding with the segment's length L.


[image: image]

FIGURE 4. Results of numerical simulation of the joint torques Ms and Me (A,B) for different positions of the subject's hand in the working space Ω (C). Two sets of the torque records with fixation of the elbow joint angle in positions 3π/10 [[image: image]] and 7π/10 [[image: image]] rad are chosen. The torques Ms and Me are defined by Equation (9) using the characteristic angles presented in Figure 2A. Thicker lines highlight the torque traces for shoulder positions [image: image] and [image: image]. Horizontal lines in (D) mark phases of the sign coincidence of the shoulder and elbow torques, both positive (M[image: image]M[image: image]) and negative (M[image: image] M[image: image]), in different traces. Throughout the study, the torques are defined for the action of unit forces at the hand positions; therefore, their calibrations are given in arbitrary units.
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FIGURE 5. Results of the numerical simulation of the joint torques Ms, Me (A,B) for different positions of the subject's hand in the working space Ω (C). Scheme of the data presentation coincides with that in Figure 4; two sets of the torques with fixation of the shoulder joint angles [image: image] and [image: image] are considered The torques Ms and Me are defined by Equation (9) using the characteristic angles presented in Figure 2B. Thicker lines highlight the torque traces for the elbow joint angles [image: image] and [image: image]. Horizontal lines in (D) mark phases of the sign coincidence of the shoulder and elbow torques. Other designations are similar to those in Figure 4.



Figure 5 demonstrates the elbow angle-dependent changes of the JTs. In contrast to the above-described changes, the amplitudes of the Ms curves change in this case even within the same set (Figures 5A,B). The interval between curves in the Ms sets is half that of the Me ones, which is due to a correspondent inequality in the slopes of CAs (δγs/δαe = 0.5; δγe/δαe = 1, see Figures 3A,B).



Patterns of Activation of the Proximal and Distal Muscles

Schematic presentation of various combinations of the activity of flexor and extensor muscles belonging to different joints, as is shown in Figures 3D, 4D, allows us to present in graphical form the changes in the torque patterns (TCD, TOD) for separate transition movements in the joints. As has been shown for two-joint circular movements under a tangential load, central commands to the muscles depend predominantly on positions of the force singular points (FSP), where the JTs change their directions (Kostyukov, 2016; Tomiak et al., 2016). In the above-cited studies, the torque patterns in two-joint movements are considered through the functions of the simultaneously contracted muscles that belong to different joints. The TCD corresponds to contractions of the muscles of the same function (flexors–flexors; extensors–extensors), while the TOD belongs to combinations of the muscles of the opposite modalities (flexors–extensors; extensors–flexors). The proposed approach allows us to analyze the torque patterns for isometric contractions using the CAs (Figure 6). For changes in the force vector angle from 0 to 2π rad, the lines, which are used to designate the CAs, γs and γe, define two pairs of the torque sectors: TCD (M[image: image]M[image: image], M[image: image]M[image: image]) and TOD (M[image: image]M[image: image], M[image: image]M[image: image]) (Figures 6A,B). The weights of the torque sectors (see Figures 6C) are defined as follows:
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The maximal weight of the TCD, equal to 1, relates to a fully extended elbow joint (αe = 0) for any αs. A rise in the αe decreases the TCD weight linearly, converging to a limit value of 0.5 in a hypothetical case of a complete joint flexion (αe = 180°), whereas the weight of the TOD rises from 0 to 0.5 during an increase in the αe from 0 to 180°. Therefore, one can conclude that in movements around the shoulder joint, the torque patterns remain invariable; at the same time, they are noticeably dependent on the elbow joint angles. During a rise in the αe, the weights of TCD and TOD change linearly in the opposite direction, whereas the relationship between them remains unvaried for any fixed αe.


[image: image]

FIGURE 6. Schematic presentation of the patterns of the torques of coinciding and opposing directions (TCD, TOD) in dependence on the positioning of the end-points within the working space. (A) The torque combinations are depicted by the shadowed (TCD) and white (TOD) sectors at the circles interposed in the nodes of intersection of the “shoulder” and “elbow” end-point traces with fixed values of αe and αs, respectively. (B) Combinations the joint torques and related patterns of loading of the flexor (f) and extensor (e) muscles belonging to different joints. (C) Changes in the TCD and TOD weights in dependency on the elbow joint angle (plot in accordance with Equation 10).






DISCUSSION

The JTs that accompany generation of forces by the human right hand are simulated in our study in a framework of a two-joint model of the right arm placed horizontally. The simulation is based on a method of virtual work [for example, see (Hibbeler, 2016)] that had allowed us to define the JTs at each of two joints for any direction of the end-point force and position in the working space. When the frontal slopes of the force vectors (angle θ) change in the range 0–2π, the JTs Ms and Me are presented in dependency on the angle by the sinusoidal functions of different amplitudes and phase lags. The CAs γs and γe define the phase lags of the sinusoids; the elbow JTs are not changed, being equal to the product of the force amplitude and segment length FL; the shoulder JTs, equal to Fhs, vary with the distance from the axis of the shoulder joint to the end-point, hs. For a complete cycle of the force vector turning, the relative times of the flexor and extensor contractions in each of the joints are equal. From the basic geometric definitions, it follows that γe ≥ γs for the entire working space (see Figure 1). Therefore, during continuous turning of the end-point force vector in the counter clockwise direction, the shoulder flexors should always be activated earlier than the elbow flexors, and this has been demonstrated experimentally (Lehedza et al., 2016; Lehedza, 2017).

When considering the isometric muscle contractions for different end-point positions in the curvilinear coordinate system {αs; αe}, it is entirely reasonable to evaluate changes of the shoulder and elbow torque waves for isolated changes in the joint angles, i.e., during the end-point transitions along the “shoulder” and “elbow” traces (Figure 6). The gradients of the phase shifts for the both Ms and Me waves coincide with each other along the “shoulder” traces: δγs/δαs = δγe/δαs = 1, while along the “elbow” traces, the Ms phases shift half as fast as the Me: δγs/δαe = 0.5; δγe/δαe = 1 (Figure 7). Taking into account experimental findings of the correspondence between the timings of the EMGs and related parts of the JTs waves (Lehedza et al., 2016; Lehedza, 2017), the above results may be applied to predict the shifts of the central commands for the respective muscle contractions (Figure 7). In the end-point transitions along the “shoulder” traces (αs-varying; αe-fixed), shifts between Me and Ms waves remain unchanged; therefore, the torque waves are changing in an isotropic manner. In contrast, for the end-point transitions connected with the shoulder joint and fixed elbow one, the torques waves demonstrate the anisotropic manner of changing.
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FIGURE 7. Schematic description of possible differences given changes in the central commands to muscles during the end-point transitions along “shoulder” and “elbow” traces. These differences can be strongly connected with related patterns of the JT changes: isotropic in the first case and anisotropic in the second. Isotropy and anisotropy in changes to the JTs along the “shoulder” and “elbow” traces could be directly related to the equality (inequality) of the relative changes to the CAs γs and γe with respect to the correspondent joint angles.



The central commands to the muscles in two-joint movements depend predominantly on the relative positions of FSPs, where the JTs change their directions (Lehedza et al., 2016; Tomiak et al., 2016; Lehedza, 2017). The FSPs may be used to identify different zones of the torques of coinciding and opposing directions (TCD, TOD), which would evoke a simultaneous loading of the elbow and shoulder muscles with the coinciding or opposing function (flexors, extensors). The distribution of the CA difference (γe – γs) in the working space defines the TCD and TOD sectors (Figure 6). A maximal weight of the TCD (equal to 1) corresponds to a fully extended elbow joint (αe = 0) for any αs-value. The weight is linearly decreased with a rise of αe, converging to a limit value 0.5 at the hypothetical case of the complete flexed elbow, αe = 180°. Contrastingly, the TOD weight rises from 0 to 0.5 during the αe increase of from 0 to 180°. Therefore, the torque patterns are not changed for the isolated movements around the shoulder joint, being, at the same time, noticeably dependent on the elbow joint angles. During a rise of the αe, weights of the TCD and TOD change linearly in opposite directions; however, for fixed αe, the relationship between the torque patterns remains unvaried for all αs-values (Figure 6B). A predominance of the TCD effects for the entire working space can exert an essential influence on the central commands to the muscles. If we assume an equal probability for all possible directions of the end-point forces in a variety of movement programs, one can encounter more frequently the associations of descending activities to the muscles of the same function in different joints (i.e., flexors–flexor or extensors–extensors). The predominance of the TCD effects becomes more and more pronounced with the increase in the end-point distances from the proximal joint; and their maximal weight is achieved at the circular boundary of the working space (Equation 10; Figure 6C). Such a pattern of the torque effects can provide some simplification of both descending motor programs and their realization at the spinal level. At the same time, the above inferences might be related only to a restricted class of movement tasks associated with a generation of the isometric forces F(θ) in all possible directions (0 ≤ θ < 2π) and locations of the end-points within the working space.

The present study includes the analysis of the steady states in two-joint movements, whereas real fast movements are inevitably much more complicated and diversified. Directional preferences in the arm movements were previously revealed for horizontal arm movements and interpreted by a simplified joint control program that involves predominantly passive motion at either the shoulder or elbow (Dounskaia and Goble, 2011; Dounskaia et al., 2011; Dounskaia and Wang, 2014). In studies of skilled throwing in baseball, Hirashima et al. (2007) supported the idea that the CNS could control complex movements by using a hierarchical strategy such as described by the leading joint hypothesis proposed by Dounskaia (2005). The theory suggests that planning of complex movement becomes simpler by choosing one “leading” joint, which provides the dynamic foundation for the entire movement. The kinematics of the leading joint is controlled actively with agonist-antagonist muscle activity similar to that used for the control of single-joint movements. The adjacent “subordinate” joint is strongly influenced by passive dynamics, with activity in the “subordinate” muscles used to adjust the joint kinematics to meet the requirements of the task. In two-joint arm movements, the shoulder joint is usually considered the “leading” one due to a large volume of the musculature and higher inertia of the upper arm. However, fast movements, in which the elbow plays the leading role while the shoulder is subordinated, have been described as well (Debicki et al., 2011).

Subjects can produce arm movements with different speeds and trajectories. In general, however, it is unclear how the CNS plans and coordinates shoulder and elbow motions. The so-called “interaction torques” participate in fast movements, which arise at one joint due to the rotation of adjacent joints (Hollerbach and Flash, 1982). For example, rotation of the proximal shoulder joint influences the motion of the distal elbow and wrist joints through interaction of the torques in the proximal-to-distal direction; similarly, rotation of the distal joints can influence proximal joint motion (Latash et al., 1995; Gribble and Ostry, 1998; Dounskaia et al., 2002; Debicki et al., 2011). On the other hand, in statics (during isometric contractions or slow movements), it seems possible to exclude the above intersegmental interactions. In difference from existing models of the two-joint movements, we concentrated main attention on the positioning of the end-point force vector within the working space. Such an approach allows finding the patterns of the JTs that provide various slopes of the generated efforts in any point of the space. As follows from the present consideration, it is possible to evaluate the interdependence between the end-point force and the JTs at the both joints.

We would like to stress that any consideration of the equilibrium states in two-joint arm movements must also take into account the numerous non-linear properties of a transformation of the efferent signals to muscle contraction. At least three essential elements of uncertainty are present in the static states of the arm under given conditions of loading. First, the prehistory of activation and movement strongly affects the steady states in the system; these processes are directly related to muscle hysteresis (Kostyukov, 1998). Second, both agonist and antagonist muscles provide the resultant torque in each joint; co-activation of the antagonists can constitute a substantial source for the uncertainty in the equilibrium states of the joints (Gorkovenko et al., 2012). Third, the redistribution activity among different parts of individual muscles and between different muscles can be highly expressed, which inevitably leads to ambiguity of motor control.



CONCLUSIONS

The two-segment model of the human arm simulates the shoulder and elbow JTs, providing a slow, steady rotation of the force vector in any end-point of the horizontal working space. The model can be only applied to the analysis of the two-joint muscle contractions in isometry; for considering a real arm movement, the inertial properties of the arm segments, as well as the non-linear effects of neuromuscular dynamics, should be taken into account.

For the force vector slowly rotating at a constant speed, two sinusoidal waves of the same period, equal to that of rotation, describe the elbow and shoulder JTs; the phases of the sinusoids coincide with the slopes of the correspondent lines from the joint axes to the end-point.

For the analysis of the JTs, we propose considering the “shoulder” and “elbow” end-point traces, in which the correspondent joint angle changes under fixation of the other one. Both shifts between the shoulder and elbow JTs and their amplitudes remain unchanged along the “shoulder” tracks, whereas these parameters change essentially at the “elbow” ones. Therefore, the combined action of both JTs possesses isotropic and anisotropic properties at the “shoulder,” and “elbow” traces, respectively.

The proposed model determines the patterns of the TCD, TOD, which would evoke a simultaneous loading of the elbow and shoulder muscles with the coinciding or opposing function (flexors, extensors). The relationship between the TCD and TOD remains fixed in transitions at the “shoulder” end-point traces, whereas it is changing at the “elbow” ones.
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Grid cells and place cells are believed to be cellular substrates for the spatial navigation functions of hippocampus as experimental animals physically navigated in 2D and 3D spaces. However, a recent saccade study on head fixated monkey has also reported grid-like representations on saccadic trajectory while the animal scanned the images on a computer screen. We present two computational models that explain the formation of grid patterns on saccadic trajectory formed on the novel Images. The first model named Saccade Velocity Driven Oscillatory Network -Direct PCA (SVDON—DPCA) explains how grid patterns can be generated on saccadic space using Principal Component Analysis (PCA) like learning rule. The model adopts a hierarchical architecture. We extend this to a network model viz. Saccade Velocity Driven Oscillatory Network—Network PCA (SVDON-NPCA) where the direct PCA stage is replaced by a neural network that can implement PCA using a neurally plausible algorithm. This gives the leverage to study the formation of grid cells at a network level. Saccade trajectory for both models is generated based on an attention model which attends to the salient location by computing the saliency maps of the images. Both models capture the spatial characteristics of grid cells such as grid scale variation on the dorso-ventral axis of Medial Entorhinal cortex. Adding one more layer of LAHN over the SVDON-NPCA model predicts the Place cells in saccadic space, which are yet to be discovered experimentally. To the best of our knowledge, this is the first attempt to model grid cells and place cells from saccade trajectory.

Keywords: saccades, grid cells, salience map, hippocampus, principal component analysis-PCA, oscillator


INTRODUCTION

A map that aids (Andersen et al., 2009) spatial navigation of an animal was believed to be represented in the hippocampal-entorhinal complex (O'Keefe and Dostrovsky, 1971; Taube et al., 1990a,b; Rolls, 1999; Solstad et al., 2008). Grid cells reported in the dorso-caudal medial entorhinal cortex (MEC), fire periodically such that the firing fields of the neuron form a hexagonal grid-like structure in the physical space in which the animal navigates. There is a general consensus that grid cells code for the distance of movement and hence they have been assigned the function of path integration which is essential for spatial navigation (Hafting et al., 2005). There are other spatial cells, fewer in number, like the place cells, border cells, view cells, speed cells etc., that code for one or other aspect of the ambient space (O'Keefe and Dostrovsky, 1971; Taube et al., 1990a,b; Rolls, 1999; Franzius et al., 2007; Solstad et al., 2008; Kropff et al., 2015). The aforementioned neurons are thought to collectively form an internal map of the external space in which the animal navigates.

Killian et al. (2012) reported hexagonal grid-like representations in the MEC of monkeys during mere visual exploration of a scene, even when the animal was not performing active navigation in the external space. Recordings were taken from neurons in Entorhinal Cortex (EC) and hippocampus of three head fixed monkeys, performing a free-viewing visual recognition task, the visual preferential looking task (VPLT; Jutras et al., 2009; Jutras and Buffalo, 2010). Monkeys were shown a sequence of novel images on a computer screen. The displayed images consisted of diverse themes like art, animals, landscape, and people. These static images were scanned by the monkey using a dynamic sequence of fixation. Neurons in MEC emitted action potentials on the multiple fixation points, as the monkey scanned the images; the firing field resembled the canonical grid cells in navigation with distinct hexagonal firing fields (Hafting et al., 2005; Killian et al., 2012). The grid representations generated by the saccadic movements resembled those of spatial navigation in many respects. Gridness scores of saccade grids were comparable with those of the navigation grids. Saccade grids also exhibited theta modulation in its activity. The gradient of the grid scale along the dorso-ventral axis of MEC was reported in the case of saccade grid too and Local Field Potentials (LFPs) showed theta band oscillations (Killian et al., 2012).

Apart from the grid representations on saccade trajectory, experimental studies reported neurons coding for the direction of saccade movement viz. saccade direction (SD) cells (Killian et al., 2015). These cells are analogous to head direction cells, corresponding to spatial navigation, reported in the rat postsubicular region (Taube et al., 1990a,b). SD cells were reported from the posterior EC of two monkeys performing a visual recognition memory task (Manns et al., 2000; Jutras and Buffalo, 2010). During the tasks, the monkeys were allowed to freely scan the complex visual images. These neurons were reported to be preferentially active when the eye movement was made in a particular direction. SD cells showed a gradient in their tuning width such that with the increase in distance from rhinal sulcus, the width of tuning of individual neuron to preferred saccade direction also increased.

There exists a large corpus of literature on the computational models of the grid representation during active navigation. Models of grid cells generally fall into two categories: oscillatory interface models (OI) and attractor network models. Proposed by O'Keefe and Recce (1993), spatial periodicity in OI models arises as a result of the interference between velocity-controlled dendritic and constant somatic oscillations (Burgess et al., 2007) or from purely velocity-driven oscillators (Zilli and Hasselmo, 2010; Burgess and O'Keefe, 2011). In the case of neural attractor model, spatial periodicity arises due to the intrinsic symmetry of the attractor network (Fuhs and Touretzky, 2006; Burak and Fiete, 2009). A hybrid approach has also been used wherein these two methods were combined to explain spatial periodicity (Bush and Burgess, 2014). However, the aforementioned models are based on a biologically unrealistic assumption such as 60° phase difference in the head direction inputs of the oscillatory interference model, or the assumption of the weight connectivity of the attractor network having special symmetry conditions (Mhatre et al., 2012).

The proposed model for the neural representations on the saccade trajectory is built on the principles derived from a recent model that used multisensory modalities to explain the formation of spatial representations during active navigation (Soman et al., 2018a). It was a hybrid neural model that used both oscillatory and rate coded dynamics. The model captured the empirically reported spatial cell representations and the influence of multiple sensory modalities on such representations. We take the general principle of this model and currently adapt it to explain the grid cell representations in saccade trajectory.

We present Saccade Velocity Driven Oscillatory Network (SVDON) model that captures the empirically reported neural representations on saccade trajectories and also makes novel predictions on saccade representation. The input image presented to the SVDON is passed through four stages viz: saccade generation, saccade direction encoding, path integration, and unsupervised neural network stage which are explained in detail in the methods section.



METHODS

In this Section, we present two versions of Saccade Velocity Driven Oscillatory Network (SVDON) model (Shown in Figure 1): SVDON Direct PCA (SVDON-DPCA) and SVDON-Network PCA (SVDON-NPCA). Both the models capture the responses of grid cells to saccadic trajectories. SVDON-DPCA model consists of a Saccade Generating stage (SG), Saccade Direction encoding layer (SD), Path Integration layer (PI), and Spatial Cell layer (SC). SVDON-NPCA model shares a similar architecture except SD layer and SC layer, where it uses the self-organizing map (SOM) and Lateral Anti-Hebbian Network -Spatial cell layer (LAHN-SC) as the output layer. SVDON-NPCA is a network extension of SVDON-DPCA.
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FIGURE 1. Model Architecture of SVDON: The model consists of a saccade generation stage, Saccade Direction Encoding stage, Path Integration stage and the output SC layer. (No copyright permission is required).




SVDON-DPCA Architecture

The information flow in the model can be described as follows. The images to be scanned are given as input to the SG stage of the SVDON model to produce saccade trajectory. Velocity vectors are computed from the generated saccade trajectory. These velocity vectors are further passed on to the SD layer, where each neuron encodes for saccadic direction. Responses from the SD layer are passed on to the PI layer via one-to-one connection. Each neuron in the PI layer is a phase oscillator that receives SD response as its input. This further encodes the saccade position information along that direction component as the phase of the respective oscillator. The PI layer projects to the output SC layer which exhibits grid-like pattern by extracting the principal components of the oscillatory response. Each stage of the model is described below.

Saccade Generation (SG) Stage

The model used for saccade generation is a bottom-up model of attention that is based on locating the single most salient location on the saliency map. Given the input color image, different feature maps are produced by applying linear filters to a specific stimulus property like color, orientation, or intensity. The feature maps are then combined to give three Conspicuity Maps and finally, a saliency map is computed for the Conspicuity maps (Walther and Koch, 2006). A winner-take-all (WTA) mechanism finds the coordinates of the most salient location after scanning the saliency map. Inhibition of return (IOR) of a circular shape with fixed radius is applied around the attended location in the saliency map. Subsequent iteration of the WTA network attends to the locations in decreasing order of saliency. The model is verified in several human psychophysical experiments (Itti, 2005; Peters et al., 2005).

Saliency-Based Bottom-up Attention Model

The input image I is first sub-sampled into a Gaussian pyramid. The Gaussian pyramid is created by convolution of input image I with a set of Gaussian filters and subsampling with a decimation factor of 2 to generate a sequence of reduced resolution images. This process is repeated and a total of 9 different scales are created σ = [0, .., 8] (level: 0 corresponds to the original input image; Walther and Koch, 2006). At level σ, the resolution of the image is 1/2σ of the original image. For level eight i.e., σ = 8, the resolution equals to 1/256th of the input image I and (1/256)2 of the total no of pixels of the input image.

The intensity map MI is computed by adding the r (red), g (green), b (blue) values of the color image (Walther and Koch, 2006).

[image: image]

Intensity Pyramid MI(σ) is created by repeating the same operation at different levels.

Using the Image Pyramid, blue-yellow (BY), and red-green (RG) opponency maps are created at every level (Walther and Koch, 2006).

[image: image]
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Orientation maps Mθ are obtained from intensity maps by convolving the various levels of Intensity pyramids with Gabor filters (Walther and Koch, 2006):

[image: image]

Multiscale feature extraction is done by across scale subtraction Θ between two maps levels c and s in these pyramids. Across scale subtraction Θ, is defined as interpolation to the finer scale, followed by point-to-point subtraction between maps. In other words, it is the difference between fine and coarse scale features of an image. Using many different values for c and s provides truly multiscale feature extraction (Walther and Koch, 2006).

[image: image]

where

[image: image]

Ɲ (·) is a non-linear iterative operator, which promotes local completion among neighborhood salient locations. At each iteration step, self-excitation and neighbor-induced inhibition is implemented with a “difference of Gaussians” filter and then followed by rectification.

Using across scale addition ⊕ features maps are then summed over then normalized again.

[image: image]

Three conspicuity maps of general features are created: one for intensity, one for color and one for orientation (Walther and Koch, 2006).
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Then, a single saliency map is created by combining all the three conspicuity maps (Walther and Koch, 2006).

[image: image]

Within the saliency map, different locations compete for saliency. The most salient location is selected for attention. Inhibition of Return (IOR) is applied to the selected area for some time within a given radius. In the second iteration, the remaining locations compete for saliency and the second most salient location is selected. Thus, a saccadic scan path is created on the image in order of decreasing saliency (Walther and Koch, 2006).

In the simulation, to match with the experimental paradigm, we used 36 novel images wherein each image is presented twice, for 10 s each to produce the saccade trajectory (Killian et al., 2012). Two sample figures with trajectories superimposed on them are shown in Figures 2A,B. Image Source: Caltech-256 Object Category Dataset (Griffin et al., 2007).
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FIGURE 2. Two sample images used (A1,A2) and overlapped trajectory (Yellow) generated on them (B1–B2) by bottom-up model of attention. Sample images are taken from: Caltech-256 Object Category Dataset. (No copyright permission is required).



Saccade Direction Layer (SD) Layer

Saccade trajectory generated from the SG stage is passed to the saccade direction layer (SD). SD layer encodes the animal's current saccade direction as given in Equation (11). The response of ith cell of SD layer is computed as the animal's current saccade direction projection on the ith preferred direction given as.

[image: image]

θ, θi are the current direction and the preferred direction of ith SD cell, respectively.

Path Integration (PI) Layer

SD layer connects to PI layer via one-to-one connections. The response of the ith PI cell is given as,

[image: image]

β is a spatial scaling parameter, A = Amplitude of oscillations. s is the speed of the Saccade. fo is the base frequency of the PI neuron. The ith PI neuron is then thresholded by the following equation.

[image: image]

where, H is Heaviside function and εηthe threshold value.

Power of oscillation is given in decibel as:

[image: image]

Output Layer (SC)

PI values project to SC layer via the weight stage (W–PC). Weights (WPC) from PI layer to SC layer are computed by performing Principal Component Analysis (PCA) over η Thr. PCA was done by extracting the top few eigenvectors of the covariance matrix of the [image: image]. The response of the ith neuron in the SC layer is computed as:

[image: image]

where, H is Heaviside function.

N is the number of PI neurons, εSC is the threshold value.

The top few components of the computed principal component (PC) will be shown to reveal a variety of spatial cell-like responses including grid cells (Figure 3). Spatially periodic firing emerges due to the inherent periodicity in the PC weights. Hexagonal grid-like activity is shown by the neurons whose peaks are separated by ≈ 60° (PC = 6).
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FIGURE 3. Spatial representations from SC layer: (A–F) Firing fields (Left): Blue is the trajectory of the Saccade and red dots are the spike locations; Firing Rate map (Middle): red is peak rate and blue is no firing; Autocorrelation map (Right) of SC layer neuron in SVDON-PCA model.





SVDON-NPCA Architecture

SVDON-NPCA model has a similar architecture to SVDON-DPCA. Here a neural network implementation of PCA is used instead of direct PCA, we replaced 1D SD layer with a Self-Organizing Map (SOM) where a two-dimensional layer of neuron is used to represent saccade direction. Lateral Anti-Hebbian Network (LAHN) is the network implementation of PCA (Foldiak, 1989) which is used to extract the optimal features from the input data by variance maximization principle. The changes made in this model permit us the leverage to study grid cells from network perspective.

Below we explain the SOM architecture of SD layer and the LAHN layer in detail.

Saccade Direction Layer

Like in SVDON-DPCA, here also saccade velocity vectors are passed on to the SOM in the next layer to obtain a direction map. SOM neuron response is given as:
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ψT = [sin(θ), cos(θ)] where θ is current direction of navigation, is given as input given to SOM.

W = Normalized afferent weight matrix of SOM.

Lateral Anti Hebbian Network (LAHN) Layer

LAHN is an afferent Hebbian and lateral anti-Hebbian unsupervised neural network, which extracts the variance feature from the input.

The network is described as

[image: image]

q is the weight of the afferent connection

χ is input PI value

m is the input dimension

n is the number of LAHN neurons, ξ is the network response

Hebbian rule is used to update afferent connection and a anti-Hebbian rule is used to update lateral connection as described below

[image: image]
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Where ηL and ηF lateral and forward learning rate, respectively. After training network weights of LAHN network converges to subspace of principal components of input vector.



Gridness Measure

The hexagonal gridness measure is quantified using Hexagonal Gridness score (HSG) on firing fields of each neuron. HGS is computed using Equations 20, 21 (Hafting et al., 2005).

[image: image]

r is an autocorrelation map, λ (x, y) is firing rate at (x,y) location of the rate map, M is the total no of pixels in the rate map, τx and τy correspond to x and y coordinates with a spatial lag

[image: image]

HGS stands for Hexagonal Gridness Score;

r° is the autocorrelation map rotated by θ degree;

cor(·) stands for correlation function;

min(·) function returns the minimum of its two arguments.




RESULTS


SVDON-DPCA

SC neuron activity is mapped onto saccadic trajectory. Figure 3 shows the firing field, firing rate map and autocorrelation map of the six SC layer neuron receiving the first six principle components.

Hexagonal Firing field is shown by the neuron which received the sixth principal component (Figure 4). A neuron is considered to be canonical if it had a HGS>0 (Hafting et al., 2005).
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FIGURE 4. Spatial representations from sixth SC layer neuron: Firing field (A): Blue is the trajectory of the Saccade and red dots are the firing locations; Firing map (B): red is peak rate and blue is no firing; Autocorrelation map (C) of the sixth SC layer neuron in SVDON- PCA model.





Oscillation Power and β Modulation

Necessity of oscillations to produce grid patterns was contested by varying the oscillatory power in the PI layer. Power is a function of amplitude of oscillations (Equation 14). Hence by changing the amplitude variable (Equation 12), we were able to change the power of the oscillations. By reducing oscillation power there was a loss of Grid Field formation, but grid field reemerged as the oscillation power was restored (Figure 5A).


[image: image]

FIGURE 5. Oscillation power modulation (A): loss of grid field formation on reducing oscillation power (A1); grid field reemerged as the oscillation power was restored (A2). β modulation (B): loss of grid field when β = 0 (B1), grid field reemerged when β = 0.2.



We also analyzed the criticality of the modulation of oscillations in the PI layer by varying the β parameter (Equation 12). Similar loss of grid field is seen with β modulation (Figure 5B).



SVDON-NPCA

LAHN (SC) network of the model shows the spatially periodic firing in Figure 6. The firing fields of LAHN (SC) neurons have more heterogeneity compared to PCA.
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FIGURE 6. Spatial representations of three different neurons (A–C) from LAHN (SC) layer. Left Column is firing field of the neurons (A1–C1); Middle Column is the firing rate of the neurons (A2–C2); and the Right column is autocorrelation map of the neurons (A3–C3).





Spatial Characteristics of Grid Cells

Grid Scale variation across the dorso-ventral axis of MEC has been demonstrated in experimental studies of rodent navigation (Brun et al., 2008; Stensola et al., 2012). A similar gradient was observed in the case of saccadic trajectories also (Killian et al., 2012). To capture this in the model, we varied the β parameter as shown in Figure 7A. This variation is shown in Figure 7B1 contrasted with the experiment results in Figure 7B2. Grid scale was quantified by computing the distances between the six inner hexagonal vertices from the central peak in the autocorrelation map, minimum of these values represents the grid scale. (Burn, Solstad et al., 2008).
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FIGURE 7. Effect of modulation factor β. (A) Grid Scale gradient is captured by varying spatial scale parameter β. (B) Comparison between the model and the experiment. (B1) Grid scale variation in the model by varying β (Grid scale is averaged for 10 trajectories). (B2) Empirically observed grid scale variation at different locations of medial to dorsal rhinal sulcus axis (Killian et al., 2012).





Predicting Place Cells Activity

SVDON-NPCA model is capable of exhibiting place cell like activity on saccadic space when a second LAHN (place cells) layer is added after the first LAHN (SC Layer in Figure 1). Experimental Studies have shown that the number of neurons (Akdogan et al., 2011) in rat CA1 region is about 90 percent of EC (considering only layer 2 and layer 3 of MEC as they form major afferent synapse with CA1). Accordingly, a similar ratio of neurons is kept in LAHN (SC) and LAHN (PC) layers. The output the LAHN (SC) is passed on to LAHN(PC) layer and the activity of the LAHN(PC) layer is observed, LAHN(PC) neurons showed a highly localized firing activity similar to that of place cells. To qualify a neuron as a place cell, the number of peaks in autocorrelation map is examined. A cell is characterized as a place cells if the number of peaks in autocorrelation is one (Soman et al., 2018b) due to its localized firing field and lack of spatial periodicity. LAHN (PC) layer also predicted spatial cells that showed spatial periodicity as shown in Figure 8.
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FIGURE 8. LAHN (PC) layer activity of six different neurons. (A1–F1) firing field (blue is the trajectory of the Saccade and red dots are the spike locations) and (A2–F2) firing maps (red is peak rate and blue is no firing) of 6 different neurons in LAHN(PC). Characterization of LAHN (PC) layer showing the % of cells type vs. the number of neurons in layer. Here PC is Place cells, GC is Grid Cells and NC is non-spatial cells.





Place Activity on Single Image

In the simulations described in the previous sections, the trajectories were obtained from a large number of images and grid and place cell responses are generated from that combined trajectory. In this section, we generate a trajectory from single images and superimpose the place cells generated from that trajectory back on the original image. The objective is to see if the grid and place cells obtained from the trajectory correspond to salient features/objects in the image. To produce saccade trajectory, we presented a single image for 125 s to the saccade trajectory generating model. The trajectory is then used to train the model of Figure 1 with the added module of LAHN (PC). Figure 9 shows results from two images. Place cells obtained from these images are indeed localized on salient objects in the image such as face of the person (Figure 9A3) or the bat of the batsman (Figure 9B3). Image source : ImageNet: A large scale hierarchical Image Database (Deng et al., 2009).


[image: image]

FIGURE 9. Spatial cell response to a single image. (A1,B1) Images given as the input. (A2,B2) are the outputs of LAHN(SC) and (A3,B3) are the outputs of LAHN(PC). Red dots are the firing locations on the image (Images source is ImageNet: A Large-Scale Hierarchical Image Database).






DISCUSSION

We present two models: SVDON-DPCA and SVDON-NDPCA to capture the saccadic representation based on the input saccadic trajectory formed on a series of images. In the SVDON-DPCA, we have shown the formation of hexagonal grid cell periodicity using Direct PCA. The model is simple and transparent and gives an insight into the origins of the grid cell spatial periodicity. In SVDON—NPCA, we used LAHN layer instead of direct PCA to produce hexagonal grid cells. This substitution is made since LAHN is based on a biologically more plausible learning mechanisms viz. lateral anti-Hebbian and afferent Hebbian learning, than the PCA. LAHN weight vectors have been shown to converge to the principal component subspace (Foldiak, 1989). Such a connectivity pattern is critical for a self-organization process because the excitatory Hebbian connections to a neuron could essentially correlate its activity to the input features and the lateral inhibitory connections could ensure competition among the ensemble of neurons to extract out diverse features of the input. This sort of connectivity pattern is biologically plausible and is consistent with the empirically reported GABArgic interneuron connections between the stellate cells in the superficial layer of the medial entorhinal cortex (Couey et al., 2013). In addition to this, anti-Hebbian network has been previously shown to encode the input data optimally by minimizing a representation error/multidimensional scaling cost function (Pehlevan et al., 2015). Hence the model gives insight to the self-organization among the grid/quasi-grid units and the relevance of such a connectivity pattern for optimal spatial representation.

The primate visual system scanning a complex visual scene seems to employ a serial search strategy. In primates, object identification and spatial analysis of the image is achieved by a series of rapid saccadic eye movements. Saccades occur reflexively whenever the eyes are open and also can be elicited voluntarily (Liversedge and Findlay, 2000). Different visual locations compete for activity and the strongest response draws the visual attention. These are called visually salient locations (Slllito et al., 1995; Sillito and Jones, 1996; Levitt and Lund, 1997). The bottom-up model used in our architecture for saccade generation is based on a similar approach that generates a two-dimensional saliency map of the visual environment. Experimental evidence has shown the existence of neural maps in the pulvinar, the superior colliculus, and the intraparietal sulcus which encode for the saliency for visual stimulus (Robinson and Petersen, 1992; Gottlieb et al., 1998; Colby and Goldberg, 1999; Rockland et al., 1999). The results from the models discussed above are similar to the grid cells that have been reported in the rat and bat during locomotion (Hafting et al., 2005; Yartsev et al., 2011). These results imply that ideas of spatial representation for navigation also apply to complex visual scene analysis because these results show that visual exploration of space can give rise to representations for that space even without performing active navigation over the corresponding physical space.

The results produced by our model are consistent with the experimental literature. The variation in the gradient of the grid scale along the dorso-ventral axis of the entorhinal cortex is reported in the experimental literature (Brun et al., 2008; Stensola et al., 2012). It is shown that the grid scale varied from low to high value with the distance from the rhinal sulcus (Killian et al., 2012), which is consistent with a dorsal-ventral gradient in rodents and bats for navigation (Hafting et al., 2005; Yartsev et al., 2011). To incorporate this in our model, we varied the parameter β in Path Integration layer. β determines the modulation factor for the path integration neuron. Even though the model captures gradient in the grid scale by varying the β parameter, it does not explain the modular formation of grid cells along the dorso-ventral axis of MEC where, in each module, grid cells with the same grid scale and grid orientation and different grid phases occur and the grid scale varies across the modules in a geometric progression fashion with a scale ratio of √2. Here, the grid scale can be fitted to any ratio by varying the β parameter accordingly.

From the model results it is understood that oscillations are critical for the grid cell generation. Oscillations introduce the first spatial periodicity by encoding the position information in their respective phase. This periodicity is further transformed to grid-like representations in the higher layer. It was empirically shown in rats that abolition of theta activity in the MEC causes the grid representations to fade out (Giocomo et al., 2007). In the model, we tested the same by decreasing the oscillatory power of the path integration neurons and found a corresponding disruption in the grid representations (Figure 5A). However, we would like to pose this oscillation and grid cell phenomenon as a prediction from the model since this phenomenon has not been reported yet in saccade studies. Further analysis also showed the criticality of modulation in oscillation for the grid formation. Modulation is set to off by making β set to zero. No grid fields are observed in that condition. When β is set to a non-zero value, grid fields start to appear (Figure 5B).

Place cell like activity is predicted by the model on the scaddic space upon adding an extra layer of LAHN(PC) on top of LAHN(SC). Although place cell like activity have not been experimentally reported yet. On giving saccadic trajectory of single images as a input to the model, LAHN(PC) neurons fired on naturally significant locations on image like the face and the bat of the batsman shown in Figure 9. These predictions are consistent with the recent observation that navigation in physical space can be just one of the many roles played by place cells, grid cells and other hippocampal spatial cells.

Taken together, these models computationally try to explain the generation of grid cell representations in the entorhinal cortex based on the saccade trajectory generated during visual exploration of a natural scene. They also predicts the place cells like activity on saccadic space. The grid field generated by the SVDON—DPCA does not have the central firing field which we consider as the limitation of this model, this limitation is overcome by the second model viz. SVDON—NPCA. In the future work, we would like to extend this model by including visual and locomotor input along with the saccadic input and search for the possible existence of joint representations arising out of the spatial navigation of the physical space and saccadic exploration of the image space. Virtual Reality (VR) environments offer a convenient setting for conducting such simulation studies.
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The processes underlying motor decision-making have recently caught considerable amount of scientific attention, focusing on the integration of empirical evidence from sensorimotor control research with psychological theories and computational models on decision-making. Empirical studies on motor decision-making suggest that the kinematics of goal-directed reaching movements are sensitive to the level of target uncertainty during movement planning. However, the source of uncertainty as a relevant factor influencing the process of motor decision-making has not been sufficiently considered, yet. In this study, we test the assumption that the source of target uncertainty has an effect on motor decision-making, which can be proven by analyzing movement variability during the time course of movement execution. Ten healthy young adults performed three blocks with 66 trials of goal-directed reaching movements in each block, across which the source and level of reach target uncertainty at movement onset were manipulated (“no uncertainty”, “extrinsic uncertainty”, and “intrinsic uncertainty”). Fingertip position of the right index finger was recorded using an optical motion tracking system. Standard kinematic measures (i.e., path length and movement duration) as well as variability of fingertip position across the time course of movement execution and at movement end were analyzed. In line with previous studies, we found that a high level of extrinsic target uncertainty leads to increased overall movement duration, which could be attributed to increased path length in this condition, as compared to intrinsic and no target uncertainty (all p < 0.001). Movement duration and path length did not show any differences between the latter two conditions. However, the time course analysis of movement variability revealed significant differences between these two conditions, with increased variability of fingertip position in the presence of intrinsic target uncertainty (Condition × Sampling point: p = 0.01), though considerably less than under high extrinsic target uncertainty (p ≤ 0.001). These findings suggest that both the level and source of uncertainty have a significant effect on the processing of potential action plans during motor decision-making, which can be revealed through the analysis of the time course of movement variability at the end-effector level.

Keywords: reaching movements, sensorimotor control, movement planning, motor control, embodied decision making, time course of variability, kinematics


INTRODUCTION

In everyday life, we are constantly forced to make decisions, often under dynamic and uncertain conditions. This encompasses simple, practical decision, such as whether to take along an umbrella to protect oneself from the potential rain in the afternoon, as well as complex, more abstract decisions, e.g., how the invest the savings to maximize return in 20 years from now. While in some fields of research, e.g., psychology and economics, decision making has a long scientific history (Edwards, 1954; Kahneman and Egan, 2011), motor decision making has more recently caught scientific interest (see e.g., Wu et al., 2015; Gallivan et al., 2018). In this context, motor decision-making can be broadly defined as the process of choosing an action plan from a range of multiple potential actions (Wolpert and Landy, 2012; Wu et al., 2015). Movement planning (often mainly referring to the process of action specification) has been widely investigated for different motor tasks and populations in motor control research. However, the integration of this work with computational models and psychological theories of decision-making has only recently begun (e.g., Trommershäuser et al., 2008; Song and Nakayama, 2009; Ramakrishnan and Murthy, 2013).

Traditionally, movement planning has been assumed to consist of serially organized processes. This includes the selection of the required action to achieve the movement goal, followed by the specification of this action, and finally the issuing of the respective motor command for action execution. Whether perceptual decision making on the movement goal should also be considered as part of the movement planning processes or not is still under debate (Wong et al., 2015) and may depend on the precise definition of motor decision-making. While the theory of serially organized movement planning processes seems to be able to explain a wide range of observable movement patterns, it is not well able to describe rapid changes in movement execution that might be necessary in the presence of dynamic environmental conditions. In addition, recent neurophysiological studies found simultaneous activity in different brain areas assumed to be involved in either action selection or specification in humans and non-human primates (Cisek and Kalaska, 2010; Petzschner and Krüger, 2012). As a theoretical explanation of these findings, the affordance competition hypothesis was proposed (Cisek, 2007). The key assumption of this theory is the parallelism of action selection and specification processes to account for the dynamics and uncertainties in the environment during movement planning. However, the human motor system not only has to account for uncertainties and environmental dynamics during movement planning, but also during movement execution. In order to reflect this point, Cisek and Pastor-Bernier (2014) postulated the theory of embodied decision making. Following this theory, action selection and specification run in parallel not only until movement initiation, but are ongoing processes even during movement execution. This would allow for flexibly changing movement plans during the course of movement execution. In line with this assumption, Gallivan and colleagues provided empirical evidence for the competition of multiple potential action plans even after movement onset using kinematic movement analysis (e.g., Gallivan and Chapman, 2014; Nashed et al., 2017; Gallivan et al., 2018). These studies tested their assumptions using a research paradigm in which participants had to perform rapid reach movements under target uncertainty.

Uncertainty is a central term in (motor) decision-making research. Critically, Downey and Slocum (1975) noted already more than 40 years ago that this term is commonly used without further definition, in the assumption that everybody knows what it means. A study by Lipshitz and Strauss (1997) revealed the many different conceptualizations of uncertainty in the literature, including for example the equalization of uncertainty with risk or ambiguity. Based on this, they propose the classification of uncertainty either according to its issue or according to the source of uncertainty. In that context, they identify three basic sources of uncertainty: incomplete information, inadequate understanding or undifferentiated alternatives. Following the logic of Lipshitz and Strauss (1997), incomplete information refers to the complete lack or only partial knowledge about the (probability of) occurrence of events and their consequences. It is often also referred to as “risk” in the literature (e.g., Hsu et al., 2005). Lipshitz and Strauss (1997) further mention it to be the most commonly cited source of uncertainty. This might be explained by the fact that this source of uncertainty is experimentally or externally well controllable. Inadequate information, on the other hand, refers to the inability to decide on actions because of the lack of understanding of the available information and their consequences. To put it simply, individuals who are uncertain about their decision due to inadequate understanding just do not know what to do with the available information. Last, undifferentiated alternatives correspond to the source of uncertainty that arises from the presence of equally attractive choice option, given that all relevant information are available and fully understood. It is also sometimes referred to as “conflict” in the literature [see Lipshitz and Strauss (1997) for an overview about synonyms used in the literature for the different sources of uncertainty].

With this differentiation in mind, a closer look on the manipulation of uncertainty in studies on motor decision-making in reaching movements seems appropriate. Generally, two different choice conditions can be found in the literature – forced choice and free choice. In forced choice conditions, which draw on the externally imposed (in-)completeness of target information as the source of uncertainty, participants are cued to rapidly reach towards one of multiple potential reach targets. This cue can appear either before or after movement onset [termed “go-after-you know” or “go-before-you-know” tasks, respectively, Gallivan et al. (2018)]. While in the first version of this condition, the level of target uncertainty is minimal, since the participants have complete information of the reach target before movement onset, the level of target uncertainty is high in the second version. In general, the less predictable the cue on the final reach target is or the later it appears, the greater is the extrinsic uncertainty during movement planning. In contrast, the free choice condition draws on ambiguity (“undifferentiated alternatives”) as source of uncertainty, which originates from an intrinsic indecision about choice options. In this condition, individuals have to process and weigh available information and, based on the outcome, freely choose between multiple potential actions. Thus, intrinsic uncertainty does not arise from an externally controlled incompleteness of available information that are required to decide on an action plan, but from an intrinsic limitation to decide for one action plan against another in the presence of all relevant information. Consequently, the more similar potential actions are (e.g., in their costs or likelihood of success), the greater is the intrinsic uncertainty about which motor action to decide on in free choice-tasks. While in the studies reported above (Gallivan and Chapman, 2014; Nashed et al., 2017; Gallivan et al., 2018) the “go-after-you-know”- and free choice-tasks are commonly used as control conditions for the “go-before-you-know”-task, the different source of uncertainty (extrinsic vs. intrinsic) in these conditions is not made explicit.

However, this distinction becomes of fundamental relevance when considering the implications of different sources of uncertainty for motor decision-making strategies. While experimental set-ups using a “go-before-you-know”-task, i.e., causing “extrinsic uncertainty”, enforce the parallel processing of multiple potential action plans even after movement onset (at least up until the final reach target is cued), free choice conditions, inducing “intrinsic uncertainty”, principally allow a serial order of action selection-specification and action execution processes, similar to the “go-after-you-know”-task. While the parallel preparation of multiple potential action plans might be beneficial to cope with uncertainties and environmental dynamics during movement execution, a serial processing strategy is beneficial for minimizing target uncertainty at movement onset. Thus, when individuals can freely choose between ambiguous movement targets, a strategy to reduce uncertainty at movement onset would be to decide for one of the potential action plans immediately after stimulus onset and executing the movement with a minimum of reach target uncertainty. The question of whether and how different sources of uncertainty (extrinsic vs. intrinsic) affect the parallel processing of multiple potential action plans during motor decision-making still needs to be investigated and is addressed in this study.

A promising methodological approach to reveal the differences in motor decision-making related to different sources of uncertainty is to analyze movement variability during the time course of movement execution. The analysis of endpoint variability as a kinematic measure of task performance is well established in motor control research, at least since Fitts’ seminal work on the relationship between movement speed and accuracy (Fitts, 1954; Fitts and Peterson, 1964). Ample empirical evidence suggests that endpoint variability is generally low in healthy young and older adults, but sensitive to different environmental and task constraints (e.g., Gordon et al., 1994; Desmurget et al., 1997; Faisal and Wolpert, 2009; Krüger et al., 2011). The time course of movement variability is supposed to contain additional relevant information about the process through which the underlying motor control strategies come into effect (e.g., Morishige et al., 2006; Krüger et al., 2011; Krüger et al., 2012; Verrel et al., 2012; Krüger et al., 2013). Important for the context of this study, changes in the time course of movement variability at the effector level (e.g., joint angles of the arm) have previously been explained as adjustments of the sensorimotor system to uncertain planning conditions (de Freitas et al., 2007). Empirical evidence has accumulated suggesting that these adjustments become evident as changes in the coordination of the naturally abundant effector degrees of freedom (DoF). In effect, variability in task-relevant directions is minimized, by simultaneously allowing flexibility (i.e., variability) in task-irrelevant directions (e.g., Scholz and Schöner, 1999; Latash et al., 2002; Müller and Sternad, 2004; Liu and Todorov, 2007; Gera et al., 2010; Krüger et al., 2012). This assumption is supported by motor control theories, e.g., optimal feedback control: Todorov and Jordan (2002); Todorov (2004); also see Harris and Wolpert (1998).

In sum, recent scientific efforts have established a link between motor decision-making and sensorimotor control. Empirical evidence suggests a parallelism of action selection and specification to account for uncertainties during movement planning (Chapman et al., 2010; Gallivan and Chapman, 2014). Further, theories hypothesize multiple action planning as an ongoing process even during movement execution to cope with the dynamics in the environment (Cisek and Pastor-Bernier, 2014). These assumptions were supported by empirical evidence highlighting differences in movement kinematics (e.g., movement duration and path length) between reaching movements with or without target uncertainty. However, the source of target uncertainty as a relevant factor influencing the competition of multiple potential action plans during motor decision-making has not been sufficiently considered, yet. In this study, we test the assumption that the source of target uncertainty has an effect on the parallel processing of multiple potential action plans during motor decision-making, which can be proven by analyzing movement variability during the time course of movement execution. On that account, we performed an experiment where participants had to reach towards circular targets for which we varied the sources and levels of target uncertainty. Besides kinematic measures, which can be standardly found in studies on motor decision-making [e.g., path length and movement duration, Gallivan and Chapman (2014)] we analyzed the time course of variability of the fingertip position to gain additional insight into to underlying motor control strategies to cope with uncertainties during motor decision-making.



METHODS

Participants

Ten healthy adults (six female, mean age ± SD: 29.3 ± 4.1 years) voluntarily participated in this study. All were dominantly right handed, as assessed by means of the Oldfield Handedness Inventory (Oldfield, 1971), had normal or corrected-to-normal vision, no neurological impairment and gave written informed consent before participating in the study. The study protocol was in accordance with the Declaration of Helsinki and approved by the Ethical committee of the Medical Faculty, Technical University of Munich.

Procedure

In this study, participants had to perform goal-directed reaching movements under target uncertainty during motor decision-making. For that purpose, participants were seated in front of a table, on which a 15″ Laptop (Dell Vostro 3550) and a number pad were placed (see Figure 1A). The number pad was used to spatially control the start position of the fingertip and the reaching distance by defining a start button at the bottom row of the number pad. While this start button was covered by red tape, all other buttons were covered in a black sleeve. Because of using the number pad, movement initiation as the time point of button release could later be exactly defined and used to control the participants’ adherence to the reaction time constraint (see below). A passive reflective marker was attached on top of the fingernail of the right index finger to record fingertip trajectories towards the targets. Fingertip trajectories were recorded at a recording frequency of 150 Hz using a five camera optical motion tracking system (Qualisys Motion Capture Systems, Oqus5, Sweden). The cameras were mounted on a customized frame of 2.60 × 2.70 × 2.70 m in size (width × length × height). The volume covered by all five cameras was approximately 2 × 2 × 2 m (width × length × height), with the participants and the apparatus positioned fully within the covered area. The seating position of the participants was adjusted so that they were able to touch the screen of the laptop without moving the upper body and that fingertip position was always visible for the motion tracking system the at all times during movement execution. The presentation of the targets on the screen was controlled through Presentation® software (Version 17.2, Neurobehavioral Systems, Inc., Berkeley, CA, United States1).
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FIGURE 1. Experimental set-up. (A) Side view on the set-up, depicting the reach distance and sitting position of the participants. (B) Top view, showing the principal configuration of potential target locations, fixation cross and potential reach trajectories.



Target uncertainty during motor decision-making was systematically manipulated across three blocks (i.e., three conditions) of 66 trials each, with the order of conditions being pseudo-randomized across participants. Condition A & B manipulated the level of uncertainty in a forced choice task between low and high, respectively, with Condition A (“no uncertainty”) following a “go-after-you-know”-paradigm, and Condition B (“extrinsic uncertainty”) following a “go-before-you-know”-paradigm (Gallivan et al., 2018). In contrast, the source of uncertainty was altered in Condition C (“intrinsic uncertainty”), originating from the ambiguity of reach targets in a free choice task. All three conditions followed the general procedure as described in Gallivan and Chapman (2014). Participants were visually presented to circular targets (size: 1.3 cm) on the screen, which were located in 7.5 cm distance either above or on the left or right hand side of a fixation cross (i.e., three possible target locations, target size: 1.3 cm, see Figure 1B). At the beginning of each block, participants were informed about the following testing condition and its consequences for the target display through written instructions on the screen. In Condition A, participants were presented to only one circle in each trial, i.e., either on the left, above or on the right of the fixation cross. In contrast, in Condition B and C, participants were always presented to two circles (i.e., three possible combinations of target locations: left-above, left-right, above-right). Each trial started by the participants pressing the start button on the number pad. Subsequently, and depending on the experimental condition, 1–2 unfilled circles were presented at any of the three locations (see Figure 2) following a random waiting period of 1–2 s. Simultaneously, an acoustic start signal sounded and requested participants to initiate their reaching movement within 100–325 ms. Immediately following the release of the start button the final reaching target was indicated through filling of the respective circle. In Condition A (“no uncertainty”) participants were presented to only one target before and after movement onset, so that there was no uncertainty about the reach target during motor decision making (see Figure 3, 1st column). In Condition B (“extrinsic uncertainty”) participants were presented to two targets on the screen, of which only one filled after release of the start button (see Figure 3, 2nd column). Last, in Condition C (“intrinsic uncertainty”) participants had the free choice to which of the two presented unfilled circles they point. Accordingly, both circles filled after movement initiation (see Figure 3, 3rd column). Participants were asked to perform fast and accurate reaching movements from button release to hitting the reach target and to finish the movement within 1 s. Trials that did not meet the reaction time or movement time constraint were excluded from further analysis. In Conditions A and B, each of the three targets were indicated 22 times as the pointing target (i.e., Condition A: 3 targets × 22 trials = 66 test trials; Condition B: 3 targets × 2 possible target combinations × 11 trials = 66 test trials), while in Condition C participants were asked to point about equally often to each of the three targets. Participants were instructed to strictly follow the visual instructions on the screen. Between each block, participants had the chance to rest for a maximum of 5 min to minimize fatigue-induced changes in task performance and motor behavior. Before the start of each block, participants had the chance to familiarize themselves with the task at hand in a practice block consisting of five trials.


[image: image]

FIGURE 2. Experimental procedure. In each trial, following a random waiting period of 1–2 s after an initial button press, the potential reach targets were displayed as unfilled circles, appearing at any of the three potential target locations surrounding the fixation cross. Simultaneously, an acoustic start signal triggered participant’s response. Upon button release, the final reach target was indicated through filling of the respective circle. Each trial ended with participants touching a circle on the screen. This figure exemplifies the procedure for one potential trial of Condition A. The same temporal procedure applied for Condition B and C. However, for Condition B and C, two circles were displayed at any of the three location-combinations in each trial.
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FIGURE 3. Experimental conditions. Example target displays before and after movement initiation are depicted to highlight the differences between the three experimental conditions. Condition A and B were forced choice conditions with different levels of uncertainty with regard to the amount of available information about the final reach target before movement onset. Condition A (“no uncertainty”) was characterized by very low level of target uncertainty, while Condition B (“extrinsic uncertainty”) was characterized by high level of target uncertainty. In Condition C (“intrinsic uncertainty”) the source of uncertainty was manipulated, i.e., not originating from the limited amount of available target information as in Condition A and B, but from the ambiguity between potential reach targets. Please note that in each of the three experimental conditions, reach targets could be located at any of the three locations and this figure shows different example target locations for each condition.



Data Analysis

Data was analyzed using customized Matlab scripts (MATLAB R2011a, Mathworks, Natick, MA, United States). In a first step, to identify endpoints of single reaching movements (i.e., trials) in the continuous data recording of the fingertip marker position in 3D across all trials, local maxima in depth direction were identified separately for each participant and condition. Endpoints were defined as largest position in depth direction with a minimum distance of 34 cm from the start button and within a range of 5 cm. Subsequently, trials were extracted by going backwards 150 sample in time from the sample of the local maxima. Due to the imposed movement time constraint of 1 s, going backwards 150 samples, which were recorded at 150 Hz, was sufficient to extract the complete fingertip trajectories of valid trials. Subsequently, movement velocity was calculated for each trial and sample as the first derivative of the fingertip trajectory with respect to time. Maximum velocity in depth direction (vmax) was then identified and further used to define movement start and movement end as the first and last sample crossing the threshold of 5% vmax. Subsequently, overall movement duration between movement start and end, as well as deceleration duration, as the duration between vmax and movement end were calculated. To gain insight into the symmetry of the velocity profile, deceleration duration was additionally determined as proportion of overall movement duration in %. Further, path length was calculated as the cumulated positional change between samples in horizontal and vertical direction, summed across all samples. Path length in depth direction was not included in this parameter, since the distance between the start button and the screen was fixed by the experimental set-up and could not vary across trials or conditions. For later statistical analyses of experimental condition effects, overall movement duration, deceleration duration and path length of each participant were first averaged across all trials directed towards the same reach target and then averaged across the three targets.

In a next step, to be able to analyze the time course of movement variability, reach trajectories were space-normalized to allow for comparison across reach targets and conditions. Space-normalization was preferred over normalizing the trajectories in time, as we assumed differences in movement duration between experimental conditions, which potentially would have affected later analysis [for a more detailed discussion on this issue, see Gallivan and Chapman (2014)]. To illustrate one relevant potential issue related to time normalization, assume unconstrained reaching movements under low target uncertainty being characterized by bell-shaped velocity profiles with equal amount of time spent for acceleration and deceleration of the fingertip. Empirical evidence suggests that an experimentally induced increase in reach target uncertainty results in an increase in overall movement duration (Gallivan and Chapman, 2014). This increase could in principal result from an increase in (A) only acceleration duration, (B) only deceleration duration, or (C) both symmetrically. If (A) or (B) would prove to be true, comparing time normalized reach trajectories performed under low and high target uncertainty would result in the comparison of data samples from different phases (i.e., acceleration and deceleration phase). Because of the hypothesized different contribution of both phases to the control of voluntary movements (Woodworth, 1899; Elliott et al., 2001; Elliott et al., 2010), we aimed for normalizing the reach trajectories to a dimension that did not differ between experimental conditions, namely, the distance between movement start and end, to avoid potential artifacts in the outcome of the data analysis. Each trial was normalized to 11 equidistant samples between movement start and movement end. Consequently, each sample corresponds to 10% of the traveled distance in depth direction (i.e., between the start button and laptop screen) starting from 0% (1st sample). Reducing the sample resolution with respect to important kinematic events (e.g., peak velocity, peak acceleration) or certain percentages of movement distance or time is a standard approach in motor control research, especially with regard to the analysis of movement variability across the time course of movement execution (e.g., Scholz and Schöner, 1999; Cuijpers et al., 2004; Krüger et al., 2011; van der Steen and Bongers, 2011). Subsequently, variability in fingertip position was calculated following the procedure of previous work from our group (Krüger et al., 2011) as the within-subject between-trial standard deviation of the mean horizontal fingertip position, separately for each participant, condition, target position and each of the 11 samples. Following that, fingertip variability was averaged across the three reach targets.

Statistical Analysis

Statistical analysis was calculated using SPSS Statistics 23 (IBM Corp., Armonk, NY, United States). Differences in overall movement duration, acceleration duration, deceleration duration, and path length between experimental conditions were analyzed using repeated measurement ANOVA with Condition as within-subject factor. The time course of variability of fingertip position was analyzed using repeated measurement ANOVA with Condition as within-subject factor and time sample as repeated factor. In addition, endpoint variability was analyzed as the variability of fingertip position at the 11th sample by using repeated measurement ANOVA with Condition as within-subject factor. Post-hoc comparisons were calculated using paired-sample t-test to further investigate significant differences between Conditions, and one-way ANOVA for further analyses of significant differences between samples. The critical level of statistical significance was set to α ≤ 0.05. Greenhouse-Geisser corrections of the degrees of freedom were applied if the assumption of sphericity for the ANOVA was violated. Partial eta-square (ηp2) was calculated to aid in the interpretation of the magnitude of observed effects. In accordance with the recommendation of Sink and Stroh (2006) ηp2 ≥ 0.06 was considered as medium effect and ηp2 ≥ 0.14 as large effect.



RESULTS

Qualitatively, the different levels and sources of target uncertainty had a clear influence on reaching movements (see Figure 4). These differences could also be supported by the outcomes of the statistical data analyses, which will be described in the following. Reported absolute values for the different experimental conditions refer to the mean ± SE.
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FIGURE 4. Reach trajectories of one representative participant. Each subfigure depicts all reach trajectories executed in one of the three experimental conditions. The different colors relate to the different final reach targets. The axes represent the three dimension in space plotted in mm. The differences in between-trial variability of fingertip trajectories become clearly visible.



Spatial and Temporal Movement Characteristics

Target uncertainty had a significant influence on temporal and spatial movement characteristics. Path length was significantly increased under extrinsic target uncertainty (Condition B: 588.28 ± 10 mm, vs. A: 553.90 ± 8 mm, and C: 555.83 ± 9 mm, see Figure 5A), as indicated by a main effect of condition (F(2,18) = 16.26, p < 0.001, ηp2 = 0.64) and subsequent post-hoc comparisons (A vs. B: t(9) = -5.03, p = 0.001; A vs. C: t(9) = -0.30, p > 0.05; B vs. C: t(9) = 4.58, p < 0.001). Similarly, overall movement duration was significantly longer under extrinsic uncertainty (Condition B: 562 ± 112 ms, see Figure 5B) as compared to intrinsic or no target uncertainty (Condition C: 455 ± 142 ms and Condition A: 434 ± 129 ms, respectively) which did not differ from each other, as indicated by a significant main effect of condition (F(2,18) = 13.74, p < 0.001, ηp2 = 0.60) and subsequent pairwise comparisons (A vs. B: t(9) = -5.41, p < 0.001; A vs. C: t(9) = -1.06, p > 0.05; B vs. C: t(9) = 3.75, p = 0.005). The differences in overall movement duration could be attributed to a significantly longer deceleration duration under extrinsic target uncertainty as compared to the two other experimental conditions (Condition A: 255 ± 71 ms, B: 322 ± 65 ms, C: 265 ± 78 ms, see Figure 5B) as indicated by a significant main effect of condition (F(2,18) = 12.39, p < 0.001, ηp2 = 0.58) and post-hoc pairwise comparisons (A vs. B: t(9) = -3.84, p = 0.004; A vs. C: t(9) = -0.73, p > 0.05; B vs. C: t(9) = 5.07, p = 0.001). The absolute values of deceleration duration represented 59.02%, 61.67%, and 58.93% of overall movement duration for Condition A, B, and C, respectively. While the absolute amount of time spent after peak velocity was significantly different between the three experimental conditions, the proportion of time was not (p > 0.05).
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FIGURE 5. Spatial and temporal movement characteristics. (A) The group averages (±SE) of path length (horizontal and vertical direction, in mm) are displayed for the three experimental conditions. Path length was significantly increased under extrinsic uncertainty as compared to the other two conditions. (B) Average overall movement duration and duration of deceleration are displayed. Again, the mean ± SE are plotted. Overall movement duration was significantly increased under extrinsic uncertainty, which was related to the significantly increased deceleration duration in this condition. Note that although the proportion of time spent after peak velocity was not statistically different between experimental conditions; ∗∗p < 0.01.



Movement Variability

Variability of fingertip position across the time course of movement execution showed a clear increase-decrease pattern for all conditions. This qualitative observation was supported by a significant main effect of Sample (F(10,90) = 26,60, p < 0.001, ηp2 = 0.75). Importantly, the time course of variability of fingertip position also showed clear differences between experimental conditions (see Figure 6). This qualitative observation was supported by a significant main effect of Condition across all samples (F(2,18) = 28.39, p < 0.001, ηp2 = 0.76) and at movement end (F(2,18) = 3.85, p = 0.04, ηp2 = 0.30). In addition, the interaction of Condition × Sample was significant (F(20,180) = 18.80, p < 0.001, ηp2 = 0.60). Post-hoc comparisons to further elucidate the differences in variability of fingertip position across the time course of movement execution revealed a graded pattern. First, fingertip trajectories in Condition A (“no uncertainty”) showed a generally lower variability as compared to Condition B (“extrinsic uncertainty”), as indicated by a significant main effect of Condition (F(1,9) = 36.24, p < 0.001, ηp2 = 0.80). This difference became evident especially shortly after movement start until movement end (see Figure 6), as indicated by a significant interaction of Condition × Sample (F(10,90) = 21.61, p < 0.001, ηp2 = 0.71) and post-hoc comparisons of single samples (see Table 1).
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FIGURE 6. Time course of variability of fingertip position. For each of the three experimental conditions, the time course of movement variability (mean ± SE) is displayed. Each of the three time courses show an increase-decrease pattern of movement variability, which is most strongly pronounced for Condition B (“extrinsic uncertainty”). There is no difference in variability of fingertip position at movement start between the three experimental conditions.



TABLE 1. Statistical parameters regarding the analysis of the time course of variability of fingertip position for the three experimental conditions.
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The time courses of movement variability also showed significant differences between the experimental conditions with different sources of target uncertainty during motor decision-making. Specifically, fingertip trajectories showed lower variability early after movement start until movement end in the case of intrinsic uncertainty as compared to extrinsic target uncertainty (Condition C vs. B, respectively, see Figure 6 and Table 1). This observation was supported by a significant main effect of Condition (F(1,9) = 26.44, p = 0.001, ηp2 = 0.75), a significant interaction of Condition × Sample (F(10,90) = 10.64, p < 0.001, ηp2 = 0.54) and post-hoc comparisons of single samples (see Table 1). Interestingly, significant differences in variability of fingertip position also became evident between Condition A and C, especially during the mid of movement execution, but not at movement start or end (see Figure 6), as revealed by a significant interaction of Condition × Sample (F(10,90) = 2.57, p = 0.01, ηp2 = 0.22) and subsequent post-hoc comparisons of single samples (see Table 1).



DISCUSSION

In this study, healthy young adults performed reaching movements under three different conditions of target uncertainty. The aim was to investigate the influence of different levels and sources of target uncertainty during motor decision-making on movement execution. To quantify the effect of target uncertainty, variability of fingertip position during the time course of movement execution and at movement end was analyzed, in addition to temporal and spatial movement characteristics. Overall, the results of the study suggest that the time course analysis of movement variability can reveal the effect of different sources of target uncertainty on the processing of potential action plans during motor decision making, which are not captured with standard temporal and spatial kinematic analyses.

Influence of Different Levels of Uncertainty

The first main outcome of our study is that different levels of extrinsic target uncertainty directly affect temporal and spatial movement characteristics of goal-directed reaching movements. This supports existing empirical evidence, which has been accumulated in the last recent years (e.g., Trommershäuser et al., 2005; Song and Nakayama, 2009; Gallivan et al., 2011; Gallivan and Chapman, 2014). During that time, the theoretical approach to movement planning has changed from a hierarchical system, assuming a serial process of action planning, to a theory of parallel action planning (Cisek, 2007; Cisek and Kalaska, 2010). The basic assumption is that the motor system, to account for uncertainties and dynamics in the environment, specifies and prepares multiple potential actions in parallel, of which one is finally selected. More recently, Cisek and Pastor-Bernier (2014) proposed that these two processes, action specification and selection even go in parallel with action execution – termed “embodied decision making”. Empirical evidence stemming from neurophysiological and kinematic data seems to support this view. Work by e.g., the group of Chapman, Gallivan and colleagues provided empirical evidence that, in the presence of target uncertainty, multiple potential action plans are prepared in parallel and that action planning is influenced by e.g., the spatial distribution of targets or their likelihood of appearance (Chapman et al., 2010; Gallivan et al., 2011; Gallivan and Chapman, 2014). They analyzed spatial and temporal characteristics of the movement trajectories (e.g., movement duration, path length, etc.) to highlight differences in movement execution between conditions with low or high target uncertainty due to the availability of information about the final reach target.

In our study, we were able to replicate these findings. We found a significant increase in overall movement duration in the presence of high as compared to no extrinsic uncertainty about the final reach target (Condition B vs. A, respectively). This increase could be attributed to a significantly longer deceleration duration in that condition, which suggests greater amount of online correction processes taking place in the presence of high extrinsic target uncertainty (Elliott et al., 2001; Elliott et al., 2010). However, the proportion of time spent after peak velocity was statistically similar between groups, which limits the general validity of the previous suggestion. In all three conditions, about 60% of overall movement time was spent after peak velocity, indicating a general asymmetry in the velocity profile with longer times spent for deceleration in all conditions. This finding, in combination with the significantly longer absolute time spent after peak velocity, suggests that, under high extrinsic uncertainty, both acceleration and deceleration duration are increased as compared to no uncertainty, with only deceleration duration reaching the statistical level of significance. In the existing literature, increased movement duration under higher levels of extrinsic target uncertainty are explained as resulting from the simultaneous increase in path length, as also observed in our study (see Figure 4), reflecting greater lateral deviation from a straight path between movement start and endpoint (Gallivan and Chapman, 2014). This finding is commonly discussed as resulting from a competition between two different movement plans (for reaching to either one or the other target). Because of this competition, trajectories are initially directed towards a midpoint between the two potential targets, and only after the final reaching target is known, redirected towards it (Gallivan and Chapman, 2014; Gallivan et al., 2018). Alternatively, this finding is discussed as reflecting the execution of a movement plan that optimizes costs for later motor corrections (Nashed et al., 2017; Gallivan et al., 2018). The analyzed spatial and temporal movement parameters in our study do not allow any conclusion in favor or against any of the two options.

Similarly, fingertip variability during the time course of movement execution was by far the highest when motor decision-making took place under high level of extrinsic target uncertainty (Condition B) as compared to the other two conditions. This is a striking evidence for the impact of different levels of extrinsic target uncertainty during motor decision-making on movement execution. It also reflects the dynamics of the motor decision-making process in case of high target uncertainty (Condition B). Even in trials with similar environmental conditions, i.e., with regard to the location of potential reach targets or the onset of the final target display, the competition between multiple potential action plans varied across trials, directly affecting the finally performed movement path, and the variability between movement paths across trials. Overall, within-subject between-trial variability of fingertip position showed an increase-decrease pattern across the time course of movement execution, with low variability at movement end (∼5–10 mm from mean endpoint, see Figure 6). This pattern is similar to previous studies of our group analyzing movement variability to gain insight into movement planning and control processes (see e.g., Krüger et al., 2011, 2012) and illustrates the effectiveness of online-control mechanisms.

Effect of Different Sources of Uncertainty

The second main outcome of our study is that not only the level of target uncertainty affects the parallel processing of multiple potential action plans during motor decision-making, but also the source of target uncertainty and that this can be revealed through analyzing the time course of movement variability. Lipshitz and Strauss (1997) highlighted the existence of different types of uncertainty, which can be classified e.g., according to their source. Following their proposition, decision uncertainty can originate from the limited amount of information about the final reach target (“extrinsic uncertainty” in our study) as well as from the ambiguity of reach options between which participants can freely choose (“intrinsic uncertainty” in our study). Manipulating the amount of information about the final reach target is a common experimental procedure in motor decision making-research (see Gallivan et al., 2018 for a review) and also used in our study to imply conditions of no and high level of extrinsic target uncertainty (Condition A and B, respectively). Implying different sources of uncertainty are much less common experimental manipulations, yet. So far, conditions of free choice are commonly used to reveal and manipulate individual preferences of choice options [see Gallivan and Chapman (2014) for a short summary on these results].

In our study, target preference should not have been a relevant aspect in the free choice condition (Condition C, “intrinsic uncertainty”), as the potential reach targets were not associated with any kind of reward or penalty. In contrast, participants were instructed to reach about equally often to each of the three targets across all trials. This allowed us to focus on the different source of decision uncertainty in this condition as compared to the other two experimental conditions and its consequences on the process of motor decision-making. In the two forced choice conditions (Condition A and B) the motor decision-making strategies were externally imposed by the time point of indication of the final reach target. In Condition A, where the final reach target was cued immediately with stimulus onset, decision uncertainty was minimal, thus, allowed participants to straightly reach towards the indicated target. In contrast, in Condition B, where the final reach target was cued only after movement onset, the experimental set-up enforced the ongoing parallel processing of multiple potential action plans during movement execution. This “embodied decision-making” strategy is supposed to be beneficial to cope with uncertainties and environmental dynamics during movement execution (Cisek and Pastor-Bernier, 2014). The same strategy would also allow to successfully cope with the intrinsic target uncertainty in the free choice condition (Condition C), which should then reflect in the movement kinematics of the reach trajectories. However, when participants were allowed to freely choose between potential reach targets, an alternative motor decision-making strategy of serial action planning could have also been applied. To minimize reach target uncertainty at the time point of movement start, participants could have decided for any of the two potential reach targets immediately after stimulus onset, which would have allowed them to reach straightly to the chosen target, similarly to Condition A, where the reach target was cued before movement onset.

The analysis of spatial and temporal movement characteristics revealed significant differences in path length and overall movement duration between intrinsic and extrinsic target uncertainty (Condition C and B, respectively), but not between the intrinsic and no uncertainty condition (Condition A). This finding seems to support the assumption that, under free choice conditions, decisions on the final reach target are made using a strategy that minimizes uncertainty at movement start. However, the analysis of movement variability revealed a distinct pattern. In contrast to the findings in spatial and temporal movement characteristics, the time course analysis of fingertip variability revealed significant differences between reaching movements under extrinsic (Condition A and B) and intrinsic target uncertainty (Condition C). It became evident that under intrinsic uncertainty (i.e., target ambiguity during free choice) fingertip variability was higher than under low extrinsic target uncertainty early after movement onset until the last quarter of the reach trajectory. This suggests that competition between action plans related to reaching towards different potential targets was still ongoing during movement execution and not finalized at movement onset and supports the theory of embodied decision making (Cisek and Pastor-Bernier, 2014). The results are also compatible with attention based models of selective reaching (Tipper et al., 1997, 1998; Welsh et al., 1999; Welsh and Elliott, 2004). In these models, it is hypothesized that the presence of a non-target stimulus in the environment automatically evokes a neural response, which has to be inhibited to successfully reach towards the target stimulus. This inhibition process acts as a distractor on the initiation and execution of the actual reach movement. From this perspective, the pure presentation of the second potential reach target in the free choice condition (Condition C) could have affected the time course of movement variability by interfering with the preparation and execution of the reaching movement towards the selected target. Thus, even if response selection in the intrinsic uncertainty condition (Condition C) would have been finished before movement initiation, the response inhibition process of the non-selected reach target could have affected the kinematics towards the selected reach target. In general, all of the three above mentioned models (Tipper et al., 1998; Welsh and Elliott, 2004; Cisek and Pastor-Bernier, 2014) agree in their basic assumption that the presence of multiple potential reach targets in the environment automatically evoke parallel responses that compete against each other. At the present moment, we cannot finally conclude whether the observed differences in the time course of movement variability result from the ongoing decision process between potential action plans, as proposed by Cisek and Pastor-Bernier (2014), or from the inhibition process of the non-selected reach target, as proposed by Tipper et al. (1998) and Welsh and Elliott (2004). Further research will be necessary to clarify this point.

Overall, the findings suggests that the time course analysis of movement variability of the end-effector can reveal dynamics in the motor decision-making process, which cannot be captured by standard kinematic movement analyses. The observed differences in the time course of fingertip variability between the conditions of intrinsic uncertainty (Condition C) and low level of extrinsic uncertainty (Condition A) are much smaller as between those two conditions and Condition B (“extrinsic uncertainty”, see Figure 6). This might suggest different levels of uncertainty between the experimental conditions and highlights the relevance of accounting for the different sources and levels of uncertainty in future studies on that topic.

Methodological Considerations

To the best of our knowledge, this is the first study investigating the effect of different sources of target uncertainty on reach kinematics. On this basis, we are aware that it does not take sufficient account for all critical points, which need further consideration in future research. First, we were able to show differences in end-effector variability related to different sources of uncertainty. It is intriguing to conclude that a higher amount of movement variability during movement execution directly relates to a higher level of uncertainty during motor decision-making. However, in the current study we cannot exactly determine the level of uncertainty for the free choice condition. Further studies investigating the effect of different levels of uncertainty in the presence of target ambiguity (“intrinsic uncertainty”), or comparing the effect of similar levels of uncertainty between different sources of uncertainty are needed to further elucidate that point. Second, in this study we analyzed the time course of fingertip variability during movement execution, providing information about end-effector movement control process. However, sophisticated mathematical approaches have been developed, which allow gaining insight into the coordination of the abundant effector degrees of freedom that underlies the control of fingertip position (e.g., Scholz and Schöner, 1999; Müller and Sternad, 2004; Krüger et al., 2017). The application of these approaches might prove to be valuable for further progress in integrating empirical evidence on movement planning and control with psychological theories and computational models on decision-making. Last, we acknowledge the existence of different methodological approaches in calculating movement variability and its changes over time, in particular with regard to (1) time- vs. space-normalization of the movement trajectories and (2) reducing the time resolution to relevant events vs. functional comparison (FDA). For the trajectory normalization we provided our rationale – to normalize to the dimension that varies the least between conditions (cf., Gallivan and Chapman, 2014). While space-normalization is less common in the existing literature, we are convinced by its adequacy for our current study. With regard to the second critical methodological decision, we followed the common procedure in motor control research, without having any reason for considering FDA as more or less appropriate for the purpose of our study. Future studies with a stronger methodological focus might target this aspect.



CONCLUSION

In this study, we investigated the effect of different levels and sources of target uncertainty during motor decision making on the kinematics of reaching movements. In line with previous research, we found increased path length, overall movement duration and deceleration duration with increasing level of extrinsic target uncertainty. Similarly, we found differences in the time course of within-subject, across-trial fingertip variability between different levels of extrinsic target uncertainty, with higher amount of variability going along with higher level of uncertainty. Importantly, we also found increased variability of fingertip position during the time course of movement execution in the presence of intrinsic uncertainty as compared to low level of extrinsic uncertainty, but no differences in path length or movement duration. This suggests that under intrinsic uncertainty, i.e., target ambiguity in free choice condition, multiple potential actions are planned and compete for action during movement execution. This is a remarkable finding, since under the condition of free choice, as tested in this study, in principal a motor decision-making strategy of serial action planning could have been applied to minimize decision uncertainty before movement onset. However, the time course analysis of movement variability revealed that the motor decision-making process was still ongoing during movement execution. Importantly, these differences were not captured by standard kinematic movement analyses. In conclusion, during motor decision making under intrinsic target uncertainty, the strategy of ongoing parallel processing of multiple potential actions during movement execution that allows coping with uncertainties and environmental dynamics seems to be favored over a strategy of serial action planning that minimizes decision uncertainty before movement onset.
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A Corrigendum on
 Target Uncertainty During Motor Decision-Making: The Time Course of Movement Variability Reveals the Effect of Different Sources of Uncertainty on the Control of Reaching Movements
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In the original article, there was a mistake in Figure 2 and the corresponding figure legend as published. The mistake relates to an incorrect description of the timeline of stimulus presentation and the occurrence of the start signal. While it was stated, that the start signal occurred 1,000–2,000 ms after target display, both actually occurred at the exact same time. The correct Figure 2 and legend appears below.
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FIGURE 2. Experimental procedure. In each trial, following a random waiting period of 1–2 s after an initial button press, the potential reach targets were displayed as unfilled circles, appearing at any of the three potential target locations surrounding the fixation cross. Simultaneously, an acoustic start signal triggered participant's response. Upon button release, the final reach target was indicated through filling of the respective circle. Each trial ended with participants touching a circle on the screen. This figure exemplifies the procedure for one potential trial of Condition A. The same temporal procedure applied for Condition B and C. However, for Condition B and C, two circles were displayed at any of the three location-combinations in each trial.



Due to the error in the description of the timeline of stimulus presentation and the occurrence of the start signal described above, a correction has been made to the Methods, subsection Procedure, paragraph two:

“Target uncertainty during motor decision-making was systematically manipulated across three blocks (i.e., three conditions) of 66 trials each, with the order of conditions being pseudo-randomized across participants. Condition A & B manipulated the level of uncertainty in a forced choice task between low and high, respectively, with Condition A (“no uncertainty”) following a “go-after-you-know”-paradigm, and Condition B (“extrinsic uncertainty”) following a “go-before-you-know”-paradigm (Gallivan et al., 2018). In contrast, the source of uncertainty was altered in Condition C (“intrinsic uncertainty”), originating from the ambiguity of reach targets in a free choice task. All three conditions followed the general procedure as described in Gallivan and Chapman (2014). Participants were visually presented to circular targets (size: 1.3 cm) on the screen, which were located in 7.5 cm distance either above or on the left or right hand side of a fixation cross (i.e., three possible target locations, target size: 1.3 cm, see Figure 1B). At the beginning of each block, participants were informed about the following testing condition and its consequences for the target display through written instructions on the screen. In Condition A, participants were presented to only one circle in each trial, i.e., either on the left, above or on the right of the fixation cross. In contrast, in Condition B and C, participants were always presented to two circles (i.e., three possible combinations of target locations: left-above, left-right, above-right). Each trial started by the participants pressing the start button on the number pad. Subsequently, and depending on the experimental condition, 1–2 unfilled circles were presented at any of the three locations (see Figure 2) following a random waiting period of 1–2 s. Simultaneously, an acoustic start signal sounded and requested participants to initiate their reaching movement within 100–325 ms. Immediately following the release of the start button the final reaching target was indicated through filling of the respective circle. In Condition A (“no uncertainty”) participants were presented to only one target before and after movement onset, so that there was no uncertainty about the reach target during motor decision making (see Figure 3, 1st column). In Condition B (“extrinsic uncertainty”) participants were presented to two targets on the screen, of which only one filled after release of the start button (see Figure 3, 2nd column). Last, in Condition C (“intrinsic uncertainty”) participants had the free choice to which of the two presented unfilled circles they point. Accordingly, both circles filled after movement initiation (see Figure 3, 3rd column). Participants were asked to perform fast and accurate reaching movements from button release to hitting the reach target and to finish the movement within 1 s. Trials that did not meet the reaction time or movement time constraint were excluded from further analysis. In Conditions A and B, each of the three targets were indicated 22 times as the pointing target (i.e., Condition A: 3 targets × 22 trials = 66 test trials; Condition B: 3 targets × 2 possible target combinations × 11 trials = 66 test trials), while in Condition C participants were asked to point about equally often to each of the three targets. Participants were instructed to strictly follow the visual instructions on the screen. Between each block, participants had the chance to rest for a maximum of 5 min to minimize fatigue-induced changes in task performance and motor behavior. Before the start of each block, participants had the chance to familiarize themselves with the task at hand in a practice block consisting of five trials.”

In addition, there was an error in the summary of the results on endpoint variability in the Discussion. It was stated that endpoint variability was equal at movement end for all three conditions. In fact, as correctly reported in Table 1 and the Results, endpoint variability was significantly higher for Condition B.

A correction has been made to the Discussion, subsection Influence of Different Levels of Uncertainty, paragraph three:

“Similarly, fingertip variability during the time course of movement execution was by far the highest when motor decision-making took place under high level of extrinsic target uncertainty (Condition B) as compared to the other two conditions. This is a striking evidence for the impact of different levels of extrinsic target uncertainty during motor decision-making on movement execution. It also reflects the dynamics of the motor decision-making process in case of high target uncertainty (Condition B). Even in trials with similar environmental conditions, i.e., with regard to the location of potential reach targets or the onset of the final target display, the competition between multiple potential action plans varied across trials, directly affecting the finally performed movement path, and the variability between movement paths across trials. Overall, within-subject between-trial variability of fingertip position showed an increase-decrease pattern across the time course of movement execution, with low variability at movement end (~5–10 mm from mean endpoint, see Figure 6). This pattern is similar to previous studies of our group analyzing movement variability to gain insight into movement planning and control processes (see e.g., Krüger et al., 2011, 2012) and illustrates the effectiveness of online-control mechanisms.”

The authors apologize for these errors and state that they do not change the scientific conclusions of the article in any way. The original article has been updated.
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Neurons in the dorsal pathway of the visual cortex are thought to be involved in motion processing. The first site of motion processing is the primary visual cortex (V1), encoding the direction of motion in local receptive fields, with higher order motion processing happening in the middle temporal area (MT). Complex motion properties like optic flow are processed in higher cortical areas of the Medial Superior Temporal area (MST). In this study, a hierarchical neural field network model of motion processing is presented. The model architecture has an input layer followed by either one or cascade of two neural fields (NF): the first of these, NF1, represents V1, while the second, NF2, represents MT. A special feature of the model is that lateral connections used in the neural fields are trained by asymmetric Hebbian learning, imparting to the neural field the ability to process sequential information in motion stimuli. The model was trained using various traditional moving patterns such as bars, squares, gratings, plaids, and random dot stimulus. In the case of bar stimuli, the model had only a single NF, the neurons of which developed a direction map of the moving bar stimuli. Training a network with two NFs on moving square and moving plaids stimuli, we show that, while the neurons in NF1 respond to the direction of the component (such as gratings and edges) motion, the neurons in NF2 (analogous to MT) responding to the direction of the pattern (plaids, square object) motion. In the third study, a network with 2 NFs was simulated using random dot stimuli (RDS) with translational motion, and show that the NF2 neurons can encode the direction of the concurrent dot motion (also called translational flow motion), independent of the dot configuration. This translational RDS flow motion is decoded by a simple perceptron network (a layer above NF2) with an accuracy of 100% on train set and 90% on the test set, thereby demonstrating that the proposed network can generalize to new dot configurations. Also, the response properties of the model on different input stimuli closely resembled many of the known features of the neurons found in electrophysiological studies.

Keywords: neural field models, weight asymmetry, pattern selectivity, lateral interactions, primary visual area (V1), middle temporal area (MT), medial superior temporal area (MST)


INTRODUCTION

Visual motion is experienced by living organisms either due to self-motion with respect to the environment or by the motion of individual objects in the environment. Nearly half a century of research has provided a detailed description of motion processing in mammalian visual cortex. For example, we know that motion is processed along the visual motion pathway that consists of at least three hierarchical cortical stages—primary visual cortex (V1), middle temporal area (MT), and medial superior temporal area (MST) (Adelson and Movshon, 1982; Movshon et al., 1985; Movshon and Newsome, 1996; Pack et al., 2001; Orban, 2008; Gilaie-Dotan, 2016). Neurons in each of these stages have diverse response properties and are involved in different aspects of motion processing.

The first cortical stage of primate motion processing starts at V1 where a subset of cells is highly direction selective (Hubel and Wiesel, 1968; Movshon and Newsome, 1996). These cells have relatively small spatiotemporal receptive fields (Hubel and Wiesel, 1974) and encode the direction of motion of local features. These motion cues are often different from the motion of the visual pattern; hence locally encoded motion cues are ambiguous (Wallach, 1976) and result in the so-called aperture problem (Fennema and Thompson, 1979; Wuerger et al., 1996; Pack et al., 2001, 2003). These local motion cues are integrated by the second stage cells at MT (Adelson and Movshon, 1982; Pack et al., 2001; Born and Bradley, 2005) that have relatively larger receptive fields and compute the direction of pattern motion. Earlier experimental studies of pattern motion selectivity were conducted with stimuli consisting of moving plaids (Rodman and Albright, 1989). They showed that MT cells are capable of encoding two-dimensional motion (pattern motion) while V1 cells encode one dimension of stimulus motion (component motion: the motion of a pattern boundary segment such as bar, edge and sinusoidal grating). MT is also thought to estimate overall pattern velocity by combining local velocity cues from V1 (Adelson and Movshon, 1982; Bowns, 1996, 2018). However, some cells in MT (Majaj et al., 2007) selective to components moving in preferred direction rather than the direction of pattern motion. From optical imaging and single-cell recording studies we know that MST cells receive projections from MT, and respond selectively to the higher order optic flow motion, including translation, radial, rotation and combinations of the latter two (Tanaka and Saito, 1989; Duffy and Wurtz, 1991; Orban et al., 1995; Morrone et al., 2000).

Efforts to model the properties of neurons in the motion pathway had progressed with the accumulation of physiological results. There are models that successfully account for various properties of V1 cells, such as orientation selectivity, ocular dominance, and direction selectivity. Adelson and Bergen (1985) used phase independent spatiotemporal filters (created using oriented Gabor functions) to achieve direction selectivity. The filters were designed as quadrature pairs tuned for both directions. Saul and Humphrey (1990) achieved direction selectivity by designing both lagged and non-lagged cells. A model of Simoncelli and Heeger (1998) demonstrated direction selectivity of V1 cells and pattern selectivity of MT cells by integration of constraints. The Heeger model is non-linear and simulated the moving stimulus-response as the sum of the responses to a set of sequential stimuli evenly spaced in time, with an explicit time variable. Others showed that activity-dependent self-organization results in direction selectivity (Shouno and Kurata, 2001; Miikkulainen et al., 2006). Miikkulainen et al. used intra-cortical circuitry to incorporate excitatory and inhibitory effects along with LGN lagged cells to achieve direction selectivity (Miikkulainen et al., 2006).

These early studies either processed the entire stimulus trajectory, or a subset of the trajectory via time-lagged input at a single time step, which is biologically unrealistic. Some models (Somers et al., 1995) focus on explaining a single functional property like orientation selectivity or direction selectivity, therefore accounting only for a subset of visual neural behaviors. The models proposed by Miikkulainen et al. (2006) attempt to explain diverse properties such as orientation selectivity, direction selectivity and ocular dominance of neuronal population in the Primary visual cortex which is the first stage in the motion pathway. Bichler et al. proposed an interesting 2 layer feedforward fully connected neural network model that can learn temporally correlated features directly from vision sensor data using biologically plausible unsupervised STDP learning scheme (Bichler et al., 2012). The biologically plausible motion estimation model (Bowns, 2018) which is an enhanced version of Component-Level Feature Model (Bowns, 2011), can estimate the motion trajectories successfully from 7,000 synthetic moving images.

In this paper, we describe a computational model that can explain the diverse properties of the neurons, such as direction selectivity, pattern selectivity, and translation flow selectivity at different regions of the motion pathway. The proposed network can develop Gabor like receptive fields (Marcelja, 1980; Bowns, 2018) as a result of training the weight connections with moving bars using biologically plausible unsupervised learning rule. A study (Fu, 2004) reported that visual response properties like orientation selectivity, direction selectivity etc. are crucially dependent on the lateral interactions in the visual cortical circuit. They hypothesized that during adaptation Spike-Time-Dependent Plasticity (STDP) allows motion stimuli to induce asymmetry in the intracortical connections. The crucial role of lateral interactions in the development of the retinotopic map (Philips and Chakravarthy, 2015) was recently modeled using LISSOM (Philips and Chakravarthy, 2015) which can be considered as a neural field model with short-range excitation and long-range inhibition. Thus, each neural field unit has excitatory lateral connections with its neighboring units and inhibitory lateral connections with units farther away. We take our lead from this model and used asymmetric Hebb rule to introduce asymmetry in the intra-cortical circuit during adaptation to visual motion stimuli. The famous Hebb postulate (Morris, 1999) can be described as follows:

When an axon of cell A is near enough to excite cell B or repeatedly or persistently takes part in firing it, some growth process or metabolic change takes place in one or both cells such that A's efficiency, as one of the cells firing B, is increased.



MODEL ARCHITECTURE

The architecture of the proposed hierarchical motion processing network with two NFs is shown in Figure 1A. As described in Figure 1A every neuron makes lateral connections with neurons in its neighborhood in two ways: (i) short-range lateral excitatory connections and (ii) long-range lateral inhibitory connections. These lateral connections are permitted to be asymmetric. Also, every neuron is connected to its receptive field via afferent connections. All afferent and lateral connections are randomly initialized.


[image: image]

FIGURE 1. The architecture of the motion processing system. (A) Neural field Model: It consists of two NFs, analogous to V1 and MT of the visual cortex. Input layer represents the receptor surface such as the retina. Each NF is organized as a two-dimensional array of neurons with lateral connections. Every neuron has excitatory afferent (incoming; shown in dotted lines) connections from units in their square-shaped RF. Neighboring neurons have overlapping RFs. In addition, every neuron receives inputs from two types of lateral connections: excitatory connections (green circle represents excitatory radius) with nearby neighbors and inhibitory with neurons farther away (red circle represents inhibitory radius). (B) the timeline of input sequence presentation to the network: The model response to a moving stimulus was simulated at two different time scales. The sequence of n frames was presented to the network over a period of time T. Motion within the stimulus sequence was generated at several discrete time steps “t.” The number of time steps is equal to the number of frames within the sequence. For a given time “t” the lateral interactions were allowed to proceed for several time steps “s,” called the settling time.




Training Procedure

A number of simulations were conducted using traditional patterns used in earlier studies (Simoncelli and Heeger, 1998; Bowns, 2018) such as moving bars, moving plaids, moving RDS etc. to ensure the role of asymmetric lateral interactions in driving motion selective responses. To begin with, various network properties (number of NFs, NF dimension, and number of iterations in settling process) and parameters (receptive field size, excitatory and inhibitory radius, learning rates used during weight adaptation, scaling factors used in lateral interaction) need to be defined depending on the cortical region intended to model. For example, direction selectivity of V1 cells was modeled by a single NF, whereas the pattern selectivity of MT cells was modeled with a network of two NFs. The general strategy adopted for choosing the model parameters is discussed in the subsequent sections. In each simulation, for each NF, parameter set varies (as shown in Table 1) and is determined through trail-and-error method.



Table 1. Parameters used in various simulations.
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The training set is created with short sequences/videos, each composed of 10 images/frames at the most. During training, the individual sequence from the training set was drawn randomly and presented to the network image by image over the time period T (Figure 1B) so that, at a given time step t, the network has access only to the current image.

Each neuron in a given NF at time t first calculates its instantaneous afferent response, which is further modified by neighboring neurons through lateral interactions that result in a stabilized activity pattern. For a given time “t” the lateral interactions were allowed to proceed for several time steps “s,” called the settling time. Once the settled activity is obtained in the NF, the weights (both afferent and lateral) will get updated through asymmetric Hebbian learning (see the following section for details). Now the network is ready for the presentation of the next image at time t+1. This process is repeated until we present the last image of the sequence. Before presenting the next sequence, the neuron activity in the NF was reset to zero, bringing the neurons to the resting state. Presenting the entire training set once to the network is termed as an epoch. Training was carried out until the weights are saturated. Weights are called saturated if 80% of the change in weights (ΔW) approaches to 0. Once the training is completed, the network response was abstracted as a map (using the procedure described in the following sections) to check for the topographic self-organization. Also, the model results were compared with motion sensitivity results from electrophysiological experiments. All simulations were carried out using MATLAB.



Equations Used for Training

Initial Response

For each image presentation, the initial activity Sij of the neuron at (i,j) is computed as a scalar product of afferent weight vector Wij and its receptive field Xij Equation (1); σ is piecewise linear sigmoid activation function; γaff is a constant scaling factor.
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As the afferent connections are random initially, the initial activity pattern on the NF was widespread and distributed all over the NF. This distributed activity was focused into a localized response by the effect of lateral interactions as follows.

Lateral Interactions

Each neuron's initial response was strengthened and sharpened by both short-range lateral excitation and long-range lateral inhibition over several time steps (Figure 1B). A number of time steps are represented by a parameter called the settling time (Table 1). At each of these discrete time steps “s,” the neuron combines its afferent stimulation with lateral interactions (Equation 2). During the iterations, the initial activity pattern that spreads over the substantial part of the NF was slowly converged into a focused patch of activity bubble and settles in the best responding area of the NF. Note that while the NF response settles down, the afferent input remains constant. The overall response of a neuron that combines both afferent and lateral interactions is described by the following equation.

[image: image]

where ηij stands for the activity of the neuron at (i,j), Eij,kl, and Iij,kl are excitatory and inhibitory weights from the neuron (k,l) to (i,j). The relative strengths of excitatory and inhibitory lateral connections of each NF can be represented by constant scaling factors γexc and γinhb.

Weight Adaptation

Once the activity has settled, both afferent and lateral weights for each neuron were modified. The afferent weight connection between NF unit (i,j) and input pixel (k,l) is modified as
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The lateral weights are modified according to a variation of the Hebbian learning. Classical Hebbian learning is temporally symmetric: weight update is dependent on the correlation between pre- and post-synaptic activity. We employ an asymmetric Hebbian rule (Schulz and Reggia, 2004) where the change in weight connection ΔWij,kl from (k,l) to (i,j) is computed as a dot product of pre- and post-synaptic neuron activities at different time steps as shown in Equation (4). Presynaptic activity is the settled activity of (k,l) for the previous frame η kl(t-1) and postsynaptic activity is the increase in the settled activity of (i,j) for the current frame η ij(t) relatively to the previous frame. The asymmetric Hebbian rule is combined with postsynaptic divisive normalization (Turrigiano, 1999) [Equation (5)] to prevent weights from increasing without bounds. The calculated new weight is used until the end of the next settling process.
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where α is the parameter determining the rate of learning. For each type of connection (excitatory, inhibitory) separate learning rates were used.
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where [image: image] is new weight connection from neuron (k,l) to neuron (i,j) at each “t.” Lateral excitatory, inhibitory, and afferent weight connections are normalized separately.

In the neural network theory, the connection weight between two neurons is considered as a parameter that can be adjusted to optimize the performance of the network. This process of parameter adaptation is called learning. In biological terms, it may refer to synaptic changes during development (Gerstner and Kistler, 2002). The famous Hebb postulate (Morris, 1999) is phrased as synaptic changes are driven by the correlated activity of pre- and post-synaptic neurons. Experimental evidence (Tsien, 2000) suggest that the correlation-based synaptic adaptation processes are involved in neural plasticity. The mathematical formulation of Hebb's rule also called correlation-based learning is an interest of our study because of three aspects: locality, cooperativity, and competition. Locality means a change in the synaptic connection depends on local variables. Cooperativity implies that the pre and postsynaptic neurons have to be active simultaneously for synaptic weight change to occur. Competition is essential for any form of self-organization and topographic pattern formation, where weights of a certain subgroup of synapses are strengthened at the expense of others. In simulations, competition can be implemented by inhibitory interactions and the normalizing sum of all weights converging onto the same postsynaptic neuron (Gerstner and Kistler, 2002). Hebb's original postulate does not contain a rule for a decrease of synaptic weights. In such a system all weights saturate at maximum value. To make learning rule more competitive and useful divisive normalization was proposed (Miikkulainen et al., 2006) where each weight is intended to scale down in proportion to its original value. They also stated that initially normalization terms were introduced for a computational reason (Rochester et al., 1956) but many works (Turrigiano, 1999) has uncovered a number of neural regulatory mechanisms within the cell that regulate the overall synaptic strength during adaptation. There are many variants of Hebbian learning rule (Gerstner and Kistler, 2002). STDP is one variant of Hebbian learning where synaptic weight gets strengthen if presynaptic neuron fires just before postsynaptic neuron. Another variant is an asymmetric Hebbian rule (Schulz and Reggia, 2004) and closely resemble the experimentally observed temporal asymmetry embodied in the Spike-Time-Dependent Plasticity (STDP) (Fu, 2004; Caporale and Dan, 2008).

General Procedure Used to Model the Parameters

All the parameters were chosen through systematic manual trial and error exploration (Table 1). For each parameter set, a model with initial random connections was trained and check for the unique spatial representation for each of the input sequences. The parameters that transform different input sequences into very similar spatial representations are discarded.

While conducting a simulations rexc, γinhb are fixed at 3 and 1 and varied rinhb, γexc systematically to find the suitable parameter values. A parameter is said to be suitable if the model learns to spatially represent the sequences in the train set uniquely. rinhb is set to global (the maximum allowable radius in NF) initially and reduced in steps of 2. Initially, γexc is given such a value that assures excitatory-inhibitory balance. When building a computational model, assumptions must be made about biological processes that are not well-understood. The above assumption was also made out of computational necessity and has not been characterized experimentally. The afferent connection strength γaff is set to 1, except in the third simulation. Here γaff is set to 0.3 to reduce the effect of fixed afferent connection on initial activity. All the three learning parameters (αaff, αexc, αinhb) take the same value and are chosen as 0.05. Each moving stimulus is created with a set of images/frames of size 64 × 64. RF is chosen randomly based on the simulation. Using the parameters Image size and RF, NF dimension was calculated as:
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where stride = Number of pixels through which we slide the filter at every step

The systematic exploration of varying parameters one at a time showed that the parameters such as αaff, αexc, αinhb, and settling time are less sensitive and result in a network that is robust to small changes. However, The parameters rexc, rinhb, γexc, γinhb that controls the influence of excitatory and inhibitory inputs, are relatively sensitive and need to fit in the given temporal sequence.

Generating the Topographic Map of Neuron Responses

Neurons in the trained network respond selectively to the direction of motion feature. The preferences of each neuron often vary systematically across the sheet of neurons in the NF revealing an underlying topographic structure. Also, due to the push-pull effect of lateral interactions, short-range excitation ensures correlated activity to similar stimuli over nearby neurons and anti-correlated response over long distances. This effect assembles the neurons within the NF into small patches and each patch becomes active in the specific direction of stimulus motion. Such cortical maps were delineated experimentally in monkeys striate cortex (Blasdel, 1992).

The set of all time-varying stimuli was presented to the trained network to determine the neurons' preferred direction of motion. A neuron is said to be preferred to the specific direction of the motion of the stimulus if and only if the stimulus is effective in achieving a maximum response in the neuron. Each neuron's preferred direction of motion was used as an entry in the map.




RESULTS


Single NF Simulated Using Moving Bar Stimuli Shows Direction Selective Responses Analogous to Those of V1 Cells

In this study, we construct a direction sensitivity map by training a single NF, using a set of sequences of a moving bar pattern. The architecture of the network used for this purpose is shown in Figure 2A, where input images are presented in the input layer, which is then used to stimulate responses in the NF. NF size, number of epochs and other network parameters used in the simulation are shown in Table 1.
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FIGURE 2. Direction sensitivity. (A) The Architecture used to simulate the direction sensitivity of V1 cells: The model consists of two stages: (a) an input layer where moving bar is presented (b) NF (20 × 20 units) analogous to V1. Green arcs represent the excitatory connections and the red arcs represent the inhibitory connections. The afferent connections are represented with blue dotted lines (B). Sample bar stimulus moving in 135°: the bar of size 30 × 2 pixels are placed on 64 × 64 pixels black background and is made to move in 8 directions with the direction of motion perpendicular to the orientation. The motion is captured in a sequence of 8 frames. (C) Network response to moving bar stimulus after 500 epochs of training: the first and the third columns display the first frame of the moving bar sequence, the label above it shows the direction of motion of the bar. The response of NF has plotted in the second and fourth columns. Each input is mapped to the unique spatial position on NF. (D) Direction selectivity map: Direction selectivity map is plotted using the convention described in the section “Generating topographic map.” We observed that the patch of neurons selective to one direction of motion often has an adjacent patch with opposite direction preference. The arrows indicate the direction preferences developed by the neurons on NF. The arrow with the highest magnitude indicates the peak response of the neuron (E). The afferent weights developed by the selected neurons in NF: Initial afferent weights are random. After training Gabor like afferent weights are developed. Different varieties of tuned afferent weights (64 × 64 pixels each) are selected from the whole population (Figure S1) and displayed here.



The training set consists of 8 sequences of a bar moving in 8 directions: 0, 45, 90, 135, 180, 225, 270, and 315°. For instance, in 0°, the bar is placed in vertical position and is moved from left to right. Complete details about the stimuli generation are given in the Methods section.

During the training, each moving bar sequence (Figure 2B) was drawn randomly and presented to the network frame after the frame. Training was carried out as described earlier. Next we examined the response properties of the neurons by plotting the network activity (Figure 2C) to the bar sequence moved in 8 directions: 0, 45, 90, 135, 180, 225, 270, and 315° The activity patch under “NF-Resp” column denotes the population of neurons fired to a given drifting bar. Eight different population bubbles were seen, each specifying its preference to a specific direction of motion. Some populations were overlapped (for example 135 and 315°, 225 and 45°), indicating that some neurons have a preference for more than one direction of motion. Such multiple preferences can be seen in the case of stimuli having different directions of motion with the same orientation.

Direction selectivity map with the neuron's best preferences is plotted in Figure 2D. The color patches indicate a different population of neurons has different direction preferences. The arrows indicate the neuron preferred directions and the magnitude indicate the neuron activity. Almost all adjacent color patches have opposite direction preferences. For instance neuron patches preferential to 135 and 315° are adjacent. Similarly, patches preferential to 45 and 225° are adjacent.

Figure 2E shows the developed afferent weights for the selective neurons. Initial afferent weight values were random and were bounded between 0 and 1. During training, these random weights were self-organized in such a way that the neurons that have the same orientation and opposite direction preferences were pruned as a continuous patch and seen as four big patches in response to 8 moving stimuli. In each patch, neurons were clustered into two subgroups with opposite direction preferences. As shown in Figure 2E some neurons afferent weights are tuned to the specific direction of bar motion, others, particularly neurons present at the boundaries of the patches, showed tuned weight preferences to more than one motion direction. These results were inconsistent with experimental studies (explained in the Discussion section).



Component and Pattern Motion

In case of a moving 2D object, parts of its boundary seen through narrow apertures seem to move in various directions, quite different from the direction of motion of the entire object. This problem is referred to as the aperture problem (Figure 3; Fennema and Thompson, 1979; Wuerger et al., 1996; Pack et al., 2001, 2003). The motion of the boundary segments is called component motion while that of the whole object is called pattern motion. Electrophysiological studies suggest that while V1 neurons respond to the component motion, neurons of MT respond to pattern motion (Rodman and Albright, 1989; Priebe et al., 2003; Bradley and Goyal, 2008). The problem of computing pattern motion from local component cues has been studied extensively using computational modeling (Rust et al., 2006), Psychophysics (Adelson and Movshon, 1982; Movshon and Newsome, 1996), functional Magnetic resonance imaging (Huk and Heeger, 2002), and single unit Electrophysiology (Movshon and Newsome, 1996).
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FIGURE 3. Aperture Problem. (A) A grating pattern consisting of alternating black and white bars. The grating is allowed to move in different directions. Thin arrows in (A) represent the set of physical motions of the grating pattern in various directions. The motion of all these grating patterns is indifferent when viewed through a small window, and this motion direction is perpendicular to the orientation of the grating (as a thick arrow shown in B). This ambiguity in determining the direction of motion of the grating is termed as aperture problem. In case of motion of a two-dimensional object (e.g., square or diamond), local motion cues (dotted arrows show in C) are divergent and are very different from the actual object motion. In (D) thin arrows represent the local motion of each edge seen through RF. An intersection of two constraint lines from both the edges represents the true motion of an object (thick arrow in D).





Two-NF Network Simulated Using Moving Two-Dimensional Object (Plaids, Solid Square) Sequences Show Pattern Selective Responses

We now propose an expanded version of the direction sensitive architecture to model component and pattern selectivity. The proposed hierarchical pattern selectivity model has 3 stages: input layer followed by two NFs (as shown in Figure 1A), corresponding to V1 and MT. We simulated the network with two types of input stimuli: (i) moving the solid square, and (ii) moving plaids, and showed that the neurons in NF1 respond to the direction of component motion (edges, gratings) while those in NF2 respond to the direction of pattern motion (square, plaids).

The training set consists of 2D patterns (square, plaid) moving in 8 directions: 0, 45, 90, 135, 180, 225, 270, and 315°. Complete details about stimuli generation and the parameters used in the simulations are given in the Methods section and Table 1 respectively.

Case 1: Moving Solid Square

NF1(13 × 13 units) was trained using moving square stimuli whose frame size is 64 × 64 pixels and square size is 24 × 24 pixels. The RF of NF1 neuron is of size 12 × 12 pixel. Hence at every instance, NF1 neurons either look at part of a square or no square at all. The parts of a square are horizontal and vertical edges which are also called its components. Due to the smaller receptive fields, NF1 neurons encode only that local motion direction that is orthogonal to edge orientation. As result, NF1 neurons become selective to 4 directions of an edge motion (0, 90, 180, 270°) even though the square moved in 8 directions. To verify that the NF1 neurons respond to the component motion in the input sequence, we created moving edge stimuli that move in four directions (left to right, right to left, top to bottom, and bottom to top). Each moving edge stimulus is made up of 64 frames with frame size 64 × 64 pixels (i.e., for each time step the edge moves one pixel ahead). Eight sample frames of edge moving from left to right are shown in Figure 4A. The responses of NF1 neurons (that was earlier trained using moving square stimuli), to the 4 moving edge stimuli are displayed in Figure 4B. The figure shows four independent neuronal populations, each is selective to the specific edge motion. Figure 4D depicts the direction selectivity map to the edge moving in four directions. Figure 4C represents tuned afferent weights of NF1 selected neurons. We observed that the afferent weights of NF1 neurons were tuned to the direction of motion of an edge.
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FIGURE 4. NF1 neuron preferences to moving edge stimuli. NF1 of the two-NFs network is trained using moving square stimuli. 24 × 24 pixel white square is moved on 64 × 64 pixel black background. As neurons in NF1 has small receptive fields (12 × 12 pixels), at any instance, it can see a part of a square and become selective to local motion cues also called component motion which is an edge motion in this case. (A) Sample input of an edge (64 × 64 pixels) moving from left to right. An edge can be moved in four possible directions [left to right (L to R), right to left (R to L), top to bottom (T to B) and bottom to top (B to T)] and the response of NF1 to an edge motion is displayed in (B). Even though NF1 is trained using moving square objects, most of the NF1 neurons tuned to local edge motion (i.e., component motion). (C) Depicts the trained afferent weights (12 × 12 pixel each) for the selected neurons. (D) Topographic map formed out of NF1 response to edge motion: The arrows indicate the neuron preferences in the direction of edge motion.



Next, we train NF2 keeping NF1 weights fixed. The moving square stimulus was presented to the network frame by frame. The NF1 neuron responses (the local component cues) were presented as input to NF2 neurons. Training was carried out for 500 epochs. We observed that the NF2 neurons are selective to a specific direction of square motion.

We inspected the development of pattern selective properties of the NF2 neurons by computing the network response to a two-dimensional moving object (square). Figures 5A–D displays the network responses to four moving square stimuli. Each cluster depicts the firing patterns of neurons in NF1 and NF2, in response to the presentation of a moving square sequence. The square pattern was translated spatially from one end to another across the frames. Accordingly, NF1 firing pattern (as shown under NF1 column in Figures 5A–D) also displaces, since the neurons here encode the edge motion seen within the RF. In NF2 (as shown under the NF2 column in Figures 5A–D), the activity pattern is stabilized across the frames and the corresponding neuron population is found to be encoded uniquely the true direction of stimulus motion. The pattern selective properties of NF2 neurons are abstracted as a map in Figure 5E. Like neurons in the direction selectivity map of Figure 2D, here also NF2 neurons preserve topography. That is, the patch of neurons responding to a certain direction of motion often have adjacent neuron patch with firing preferences to the opposite direction. Trained afferent weights for the sample of NF2 neurons are plotted in Figure 5F.
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FIGURE 5. NF2 response to moving Square stimuli. (A–D) are four clusters. In each cluster first column depicts the frames of moving squares stimuli (64 × 64 pixels), and the corresponding activity on NF1 (13 × 13 units), and NF2 (15 × 15 units) are shown in the next two columns. The label on the first column represents the direction of motion of a square object (A: 180°, B: 45°, C: 0°, and D: 225°). Neurons in NF1 respond to local motion cues. At each frame presentation, different neurons receive afferent input from the square object and become active, according to its preferred direction of motion, thus the activity pattern follows the square stimulus. In NF2 neurons are selective to the entire object motion (also called pattern motion) by aggregating local motion cues from NF1. Nearly stabilized activity can be seen over the presentation of the whole moving square sequence. Different patches of neurons uniquely become selective to different directions of square motion. (E) Shows the pattern selectivity map plotted out of NF2 neuron responses to moving square stimuli. The arrows indicate the neuron preferences to 8 motion directions: 0, 45, 90, 135, 180, 225, 270, and 315°. The magnitude of the arrow represents the activity of the neuron. Peak activity is represented by neurons with the highest magnitude. (F) Represents the NF2 afferent weights (13 × 13 pixels each) of the selected neurons. It shows that the NF2 neurons developed spatiotemporal receptive fields in the direction of pattern motion.



Case 2: Moving Plaids

Moving gratings and moving plaids are created as described in the Methods section. NF1 was trained with sinusoidal gratings moving in 8 directions. The trained network response is shown in Figure 6B. Eight different firing responses are shown, each corresponding to a specific direction of motion grating. Also, overlapped populations are noticed in case of drifting stimuli with similar orientations and opposite motion directions. The component selectivity map to moving gratings is depicted in Figure 6C.
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FIGURE 6. NF1 response to moving grating stimuli. Grating stimulus consists of alternating black and white bars. Gratings (64 × 64 pixels) are moved in 8 different directions such that the direction of motion is orthogonal to the grating orientation. Plaid stimulus moving in 0° is created by superimposing two gratings moving in 45° and 135° as shown in (A). NF1 (20 × 20 units) is trained with moving grating stimuli for 1,500 epochs and the response is plotted as shown in (B). Here the first and third columns display the frames of moving grating. The label above it indicates the direction of motion of the grating. The second and the fourth columns represent the neuronal preferences to a given grating. As seen in other simulations, different neuron patches become active to different motion directions. Also, component selectivity map is shown in (C). The arrows indicate the neuron preferred directions of motion.



Now the question is: Does NF1, trained using moving grating stimuli, respond to the direction of plaid components by extracting them from the moving plaid stimulus? To this end, we examined NF1 responses to moving plaid stimuli, which is constructed by superimposing two orthogonal moving gratings (chosen from the training set used to train NF1) separated by 90° (Figure 6A). As shown in Figure 7A (under column NF1-Resp) two distinct activity bubbles are observed in response to the moving plaid stimuli. To verify whether these response profiles derived exactly from the same two gratings used to construct the plaid, we compared it to Figure 6B. We were able to ascertain that the NF1 neurons that were trained using moving grating stimuli will produce two distinct population responses; each is corresponding to the moving gratings using which the moving plaid was made of.
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FIGURE 7. Two-NFs network response to moving plaid stimuli. the Plaid (64 × 64 pixels) stimulus is created from its components (two gratings) and is allowed to move in 8 different directions. NF1 (analogous to V1) is trained with plaid components (i.e., moving gratings) and its response to moving plaid stimuli is plotted in (A). First, third, fifth, and seventh columns display a frame in moving plaid sequence. The label above it indicates the direction of motion of a plaid. Second, fourth, sixth, and eighth columns represent the NF1 response to plaids, and two neuron populations are active in response to every moving plaid stimulus. As each plaid is composed of two gratings, neurons that are preferential to these moving gratings are becoming active. For example, the plaid moving in 315° is made from gratings moving in 270 and 0°. The activity pattern of these two plaid components (shown in Figure 6B) gets integrated and produces a plaid response as two activity bubbles. NF2 (analogous to MT) is trained using plaid pattern moving in 8 directions, by keeping NF1 weights constant. The response of NF2 to four sample stimuli is shown in (B). The first column represents frames of moving plaid stimuli, second and third columns labeled as NF1-Resp (20 × 20 units) and NF2-Resp (13 × 13 units) represents the responses of NF1 and NF2, respectively. We observed that in response to 8 moving plaid stimuli 8 different patches of neurons become selective to different directions of motion, and the corresponding pattern selectivity map is shown in (C).



We proceed to train NF2 using moving plaid stimuli, with NF1 weights kept constant. We illustrate the response properties of trained NF2 neurons in Figure 7B. We observed that distinct widely separated clusters of neurons become selective to each moving plaid stimulus. The neuron preferences to different directions of moving plaids are displayed as the pattern selectivity map (Figure 7C).



Three-Layer Network (With Two NFs) Simulated Using Translated Random Dot Stimuli Shows Translational Flow Selective Responses

In this study, we present an extension of the model of the previous study to respond to translated random dot patterns. The architecture of the network used for this purpose (shown in Figure 8A) is similar to the earlier study except that it consists of a single layer perceptron above NF2, which receives input from NF2 in fully connected fashion and was trained using backpropagation. Network properties and the parameters for NF1 and NF2 are fine-tuned according to the present study. More details about the size of the NFs, the number of epochs and other scaling and learning parameters used in the simulation are shown in Table 1.
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FIGURE 8. NF2 response to translational random dot stimuli. (A) Proposed 2NFs network: both NFs are trained using unsupervised asymmetric Hebbian rule and the third single layer perceptron is trained using backpropagation. Random dots stimulus (RDS) is created by placing tiny squares of size 2 × 2 pixel (assumed as dots) on 32 × 32 pixel size grid randomly with a constraint that each 8 × 8 pixel grid can accommodate only one dot. Thus, 16 dots are placed randomly and moved dots coherently in 4 directions: 0, 90, 180, 270° to create translational flow sequences. Thus, each dot configuration creates 4 sequences for the train set. First, third and fifth columns in (B) shows three different dot configurations moving in the same direction. Second, fourth and sixth columns show the NF2 activity, when these configurations moved in 4 directions. Here the neurons encode the coherent motion direction, independent of the precise dot configuration. (C) It represents the translational flow selectivity map in response to the train set consisting of 80 sequences. The arrow direction indicates the neurons preferred direction of motion to the translational flow stimuli. (D) Error plot obtained while training single layer perceptron using NF2 responses of the train set. Single layer perceptron has an input layer and an output layer; the weights (all-to-all connections) between them are trained using regular backpropagation. Perceptron took nearly 300 epochs to learn the input.



The stimulus of this study, a translational flow sequence, was created by moving randomly placed tiny squares (assumed as dots) coherently in 4 directions: 0, 90, 180, and 270°. Sixteen tiny squares, each of size 2 × 2 were placed randomly on a 32 × 32 matrix. We assumed it as dot configuration. Twenty five such random dot configurations were created and each of those configurations is translated in four directions to create 100 translational flow sequences. Out of these, 80 sequences were used for training and the remaining 20 for testing. Complete details about flow stimuli generation were furnished in the Methods section.

During training, each translational flow sequence from the training set was drawn randomly and presented to the network frame after frame. The two NFs in the network were trained one by one as is described in the previous sections. A lower NF was first trained to saturation before the next NF is trained. We fixed afferent weights of NF1 as “1” and maintained them as constant throughout the simulation. This small variation was adapted to ensure the NF1 neurons encode position independent motion selective responses. NF2 afferent weights are random initially and were adapted during training.

We examined the response properties of the trained neurons in both the NFs by plotting the network response to the training set. Figure 8B shows the response of the NF2 neurons to the selected configurations of the training set. It can be observed that in NF2 four different neuron clusters were formed each is selective to the specific direction of translational flow and is independent of dot configuration. The resulting NF2 response of the 80 sequence training set is abstracted as a translational flow selectivity map as shown in Figure 8C. The arrows indicate the preferred direction motion of the neurons.

Generalization capability of NF2 neurons was verified by presenting a test set to the network. We observed that the activity pattern appeared in both the NFs is nearly similar to the activity pattern seen for the training set. To quantify these observations, we added a single layer perceptron network (acts as a classifier) as an additional layer above NF2 and are trained using NF2 neuron responses of the training set. Training was carried out for 300 epochs and the corresponding error bar is shown in Figure 8D. The trained perceptron network successfully classified translational flow sequences into 4 directions with an accuracy of 100 % on the training set and 90% on the test set with 2 misclassifications.



Model Behavior in Response to Variations in rexc, rinhb

Neurons in the neural field (NF) receive initial activity as a weighted sum of input. Each input causes initial activity in many neurons, and most of this activity is redundant. To achieve efficient coding this redundant activity must be reduced where the role of lateral interactions come into the picture. Lateral inhibition introduces competition among the neurons by de-correlating activity between distant neurons in the NF and increasing correlation among nearby neurons. In the simulations, these effects were controlled by 4 parameters: rexc, rinhb, γexc, γinhb.

Case 1: If rexc is too small (e.g., <3) small neuron populations respond to each stimulus. This result in the inefficient use of available map space and smooth topographic maps cannot be produced.

Case 2: If rinhb is low (e.g., close to rexc), decorrelation between distant neurons decreases and the correlation between nearby neurons increases (due to high excitatory), results in highly saturated response spreads across the sheet. Most of the neurons have preferences in multiple directions. Thus, during training inputs are transformed into overlapped spatial representations.

Case 3: If rexc is too high (e.g., half of the network space), a large population of neurons responds to each stimulus, resulting in redundant coding. Different input sequences transform to same spatial representations

Case 4: Too high rinhb (global inhibition) results in the elimination of excitatory activity during settling. As a result, none of the weights get updated in response to the input sequence. Training will not take place.

The same effects can be achieved in small scales by adjusting overall strength of excitatory and inhibitory effects represented by γexc, γinhb. In most of the simulations, γinhb is set to 1 and the only γexc is varied.



Decoding Stimulus Information From the Neuronal Responses of the Trained Network

In all the simulations described above, we showed that the network response and its corresponding map can encode the direction of the moving stimuli. The proposed hierarchical feedforward neural field model acts like encoder where the pixel-based visual representation is transformed into high-level neural population activity patterns. In data analysis terms, the proposed model is creating a spatial map of spatiotemporal input patterns. To quantify the efficiency of this mapping, we used a simple single layer perceptron network as a decoder. Perceptron is a supervised learning algorithm to classify only linearly separable data points (Minsky and Papert, 1969). Here perceptron is not the part of dorsal motion detection stream which we are modeling; rather it is a proof of principle to show that the inputs can be decoded from the abstract maps of the NFs using a linear classifier like perceptron.

Figure 9 represents the sum square error obtained during the perceptron training for the three tested stimuli. Three different learning curves represent the nature of information given to the perceptron network. In case 1: moving bar is a simple stimulus. This information is encoded by single layer neural field network, as a topographically ordered map. The perceptron learned this representation as shown in the error curve and converges at 500 epochs. In case 2: moving square is a two-dimensional object. A two-layer neural field network encoded it as a topographically ordered map, but it is less regular than that formed with bar. Fluctions seen in the error curve before the perceptron converges at 300 epochs, shows that the map generated is more complex than in the previous case. In case 3: moving plaids is more complicated input. A two-layer neural field network encodes this information in much more of complex map form. Perceptron trained with this input converged at nearly 500 epochs.
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FIGURE 9. Error graphs obtained during the perceptron training. (A–C) Represents the error plots obtained for Bar, Square, and Plaids respectively, during the perceptron training. The NF layer encodes the motion information of moving stimuli as a unique neuronal population response over a network space. Perceptron takes this population values as input and learns the pattern in the input. The complexity of this response pattern is low to the bar and high to the plaids. The perceptron trained on less complex bar input converges with smooth error graph and the fluctuations were seen in the error graphs of the other two which were proportional to the complexity of the input.



We made small modifications to the model from one simulation to other. With the simulation using moving square both NF1, NF2 are trained using moving square stimuli whereas in simulation using moving plaids, NF1 is trained using moving gratings and NF2 is trained using moving plaids. In the case of a square, NF1 encodes the direction of motion of an edge. As the square is moving on a black background, at any instance edge motion can be seen through the small receptive field that covers part of a square. NF1 need not be trained by creating a moving edge separately. However, NF1 that trained on plaids, cannot see the direction of motion of gratings from the plaid motion. Plaid moving in 0° was created by a pair of gratings moving in 45 and 315°. The NF1 trained using moving plaids can neither encode the direction of motion of gratings nor the direction of motion of plaids. Also with the simulation using random dots we, made variation to the afferent weights. All initial afferent weights are taken as 1 (unlike other simulations where they are random initially) and keep them constant throughout the simulation to make network learn only one feature, –that is the direction of motion, –and ignore the position information of dot. Due to such spatial homogeneity in the afferent weights, the neuron's response in NF1 is insensitive to the position of the dots.



Robustness of the Model

In this section, we present the robustness of the trained network weights to various noisy stimuli and to the input of varying bar length. Two types of noises are added to the moving bar stimuli.

Salt and pepper noise is added to the training set with the initial noise pixel density 0.01. Fifty noisy sets were generated by increasing the noise pixel density up to 0.99 in steps of 0.02. The density 0.02 indicates 1% (40 pixels approximately) of the image pixels (64 × 64). To increase the noise density in the current noisy set, 1% of the non-noisy image pixels were made noisy by choosing them randomly. All these 50 noisy sets were presented to the network (trained earlier on non-noisy moving bar stimuli) in the sequence and the robustness of the trained weights are abstracted as a robustness index (RI) using the Equation (7). We observed that the RI value was decreased with the increase of noise pixels in the stimuli.
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Note that each neuron in the network that was trained earlier on non-noisy moving bar stimuli shows a high response to the specific direction of bar motion and this direction is considered as the preferred direction of that neuron.

Gaussian noise was added to moving bar stimuli with mean 0 and variance varied from 0.02 to 1 in steps of 0.02. Thus, 50 noisy sets were generated, presented to the trained network in the sequence and observed the decrease in the RI value with the increase of the noise variance.

The RI value calculated above indicates that the network is less tolerant of the highly noisy inputs. To know, the amount of noise allowed in the training set, to produce clear motion selective responses, we conducted 20 trials. In each trial Gaussian, salt and pepper noises are added to the training set as described above and estimated the network performance: by plotting RI value (shown in Figures 10A,B) and by visually inspecting the map generated while presenting the input with varying noise. In the case of Gaussian noise, network shows high tolerance to the noise whose variance is <0.5. Eighty percent of the trials indicate the network fails to converge when the noise variance lies between 0.5 and 0.8 (Table 2). Similarly, in case of salt and pepper noise, network displays high tolerance to the input with pixel density ≤0.3 (i.e., 15% percentage of the image pixels were made noisy) and fails to converge when noise pixels density varies between 0.3 and 0.7 (Table 2). Thus, given network shows high tolerance (i) to the stimuli with Gaussian noise whose noise variance is <0.5 and (ii) to the stimuli with salt and pepper noise whose pixel density is <0.3. Figures 10C,D represents the percentage of pixels deviated from its preferred direction in relation to the noise density.
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FIGURE 10. Robustness of the trained network: NF1(20 × 20 units) trained using non-noisy moving bar is used to test the robustness of the proposed network. (A,B) represents the decrease in the robustness index (RI)of the network with an increase in the noise density. The thick black lines in (A,B) indicates the RI average across 20 trials. In the case of salt and pepper noise, RI reaches zero when 50% of the training set pixels were made noisy. Similar results can be seen with Gaussian noise with variance = 1. The network shows high tolerance: to the Gaussian noise with a variance of <0.5 and to the salt and pepper noise whose density of <0.3. (C,D) represents the number of pixels deviated from its preferred direction in relation to the noise density. (E) represents the robustness of the network to the varying bar length. RI reduced slightly with a change in the bar length. (F) shows the number of neurons deviated from their preferred directions to the change in bar length.





Table 2. Network robustness statistics across 20 trials.
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Varying the Bar Length

The robustness of the trained network to varying bar lengths was also investigated. The test set was created by varying bar length from 15 to 35 pixels in steps of 1 pixel. The bar length in the training set was 30 pixels. The response of the network was abstracted as robustness index. Figure 10E shows that network is highly robust to the changes in the bar length. The slight decrease in the robustness index is proportional to the difference between the bar lengths in training and test stimuli. Figure 10F shows the number of neurons deviated from its preferred direction of motion.




DISCUSSION

The proposed model can explain the diverse properties of the neurons present in different regions of the motion pathway. The model reproduces the motion-selective properties of cells in V1, MT, and MST. We used a hierarchical architecture consisting of neural fields to model the direction-selective cells in V1 and pattern selective cells in MT, and translational flow selective cells in MST complex. All the simulations carried out in this study, follow the same training procedure, and used the same biologically plausible asymmetric Hebb's rule to adapt the weights. The difference lies only in network size and parameter values (Table 1).

We show that the asymmetric intracortical circuitry can learn motion trajectories. In conventional symmetric Hebbian learning the pair of weights connecting a given pair of neurons, converge to the same value since symmetric Hebbian learning leads to symmetric weights. NF with symmetric weights is essentially a Hopfield network and therefore has only fixed point attractors. Such fixed point dynamics are suitable for storing static patterns as in a Hopfield network, but not for storage or generation of sequences. Even in his original paper on associative memories (Hopfield, 1982), Hopfield had suggested an asymmetric variation of the Hebb's rule for storing and generating sequences. However, such simple schemes do not perform well on large sequences and, due to the emergence of spurious states; the sequence information is quickly lost. Buchmann and Schulten (Buhmann and Schulten, 1989) have proposed a more sophisticated version of the same basic model but with extra conditions that prevent transitions to states that are not the immediate next state. Asymmetric Hebbian learning has been applied even for the problem of sequence recognition. Schultz and Reggia (Schulz and Reggia, 2004) have developed an extension of Self-Organizing Map with lateral connections trained by asymmetric Hebbian learning for recognizing phonetic sequences of words. The proposed neural field model is fashioned on similar lines as the models described above. It uses temporally asymmetric Hebbian learning to represent moving stimuli. In order to show that the temporally asymmetric is crucial to our results, we trained the network on moving oriented stimuli with both symmetric and asymmetric Hebbian learning (see Supplementary Results). The results show that the network learns to distinguish the direction of motion only when asymmetric Hebbian learning is used. It confuses between two moving bar stimuli of the same orientation and moving in opposite directions in case of symmetric Hebbian learning.

Earlier models of direction selectivity (Miikkulainen et al., 2006) and pattern selectivity by Rust et al. (2006) achieved motion sensitivity by either of two scenarios: (i) by giving the entire sequence as a stack of frames at a single time step, or (ii) a part of the stimulus is presented to the network via lagged cells. By contrast, the model proposed here has only access to the current frame. Information about the history of the stimulus is preserved in the network dynamics. When the input changes from one frame to the next the lateral interactions that were adapted to the previous frame will drive the new afferent activity and the weights updated with a new settled response will keep the memory of the history.


The Main Findings of the Study

Simulation-1

The model with a single NF is trained to demonstrate direction selective properties of V1 cells. Motion selectivity is demonstrated by showing a tuned neuron response to a moving stimulus. Each neuron becomes selective to the inherent motion feature specified through a sequence of frames. Different neuron populations showed preferences to different motion directions of moving bar. Direction selectivity maps illustrated here resemble what has been observed in animals (Weliky et al., 1996). For instance, a patch of neurons with preference to a specific direction of motion will usually have a neighboring patch with preference to an opposite direction of motion (Shmuel and Grinvald, 1996). We also observed the self-organized tuned afferent weights. We revealed that the push-pull effect of lateral interactions in conjunction with weight asymmetry, develop spatiotemporal receptive fields selective for the direction of motion as found experimentally in the cortex (DeAngelis et al., 1995).

Simulation-2

We modeled the pattern selective responses of MT cells using the hierarchical feed-forward network, using two types of moving stimuli: (i) moving square, (ii) moving plaids.

In case-i, both the NFs were trained with moving square stimuli and showed that neurons in NF1 (analogous to V1) encode the direction of local edge motion (component motion). These local motion cues are integrated and passed on to NF2 (analogous to MT) where neurons respond to the true direction of square motion. Integration of local motion cues by MT neurons was shown earlier in various experimental and modeling studies (Movshon et al., 1985; Movshon and Newsome, 1996; Simoncelli and Heeger, 1998; Pack et al., 2001; Born and Bradley, 2005). To our knowledge, ours is the first modeling study to explain the component and pattern motion selectivity using a two-dimensional object, the square.

In case-ii, the first NF (analogous to V1) was trained with moving gratings and the second NF (analogous to MT) was trained with moving plaids (composed with 2 gratings). We showed that in response to moving plaid stimuli, neurons in V1 produced two activity bubbles, representing the direction of motion of plaid components (i.e., gratings). In MT single activity bubble was observed, representing the true direction of motion of plaids. These results are in accordance with earlier studies where they showed bimodal polar plots to depict responses of V1 cells and unimodal polar plots for MT cells to the moving plaid stimulus (Albright, 1984; Movshon and Newsome, 1996; Rust et al., 2006). We also plotted pattern selectivity maps and spatiotemporal receptive fields that are selective in the direction of pattern motion.

Simulation-3

In this study we simulated a network with two NFs, using more complex stimuli: RDS sequences that follow translational trajectories, to simulate the translational flow selective properties of the neurons at MST. A set of 25 random dot configurations were created and each move in 4 directions to create 100 sequences. NF1, NF2, and perceptron were trained one after the other with sequences created from 20 configurations. Remaining 5 sequences considered as a test set. Now the trained network was presented with the training set. It showed that the NF2 neurons can encode the coherent motion direction of the dots, independent of the dot configuration. When the test set was presented, it showed that the network can extract the direction of motion of the dots in unseen sequences with an accuracy of 90%. Thus, the proposed network can be generalized to extract the motion direction in translational flow sequences. Unlike in earlier simulations in this simulation, we considered RDS moving in 4 directions. Also, the image size is reduced to 32 × 32 pixels. This reduction is done to reduce the computational expense.



Future Studies

In the third study, we proposed and explored network for translational flow selectivity using translational random dot sequences. There are other variants of optic flow, such as radial flow (expansion/contraction) and circular flow (clockwise and anticlockwise rotation). The brain region that is selective to the translational flow is different from the region that is selective for radial and rotational flow (Morrone et al., 2000). In future studies, we would like to explore and simulate the neurons (as NF3) that are selective for radial and rotational flow. Also, we would like to simulate the more biologically plausible models on real-world visual motion inputs. For example, instead of NFs consisting of sigmoidal neurons, we would like to explore more realistic neuron models like the FitzHugh-Nagumo neuron which is likely to present richer dynamics more suitable for motion processing.




METHODS


Moving Bar Stimuli

Rectangular white bars of length 30 pixels and width 2 pixels were oriented in the orthogonal direction of motion were made to move on black background of size 64 × 64 pixels. The bar moving from one end to other in a specific direction creates a single sequence. A set of 8 such sequences were created to train the network by moving the bar in 90, 135, 180, 225, 270, 315, 0, and 45°. Each video sequence is made up of 8 frames with bar displacement (step size) of 7.8 pixels. Single neuron experiments reported that most of the V1 direction-selective neurons are highly selective if stimulus motion direction is perpendicular to its orientation (Albright, 1984).



Moving Gratings and Plaids Stimuli

Moving plaid patterns were generated by superimposing two orthogonal sinusoidal gratings, having the same spatial frequency and moving at the same speed. Two orthogonal gratings with the same spatial frequency have a strong tendency to cohere (Adelson and Movshon, 1982). So first we generated drifting gratings that move orthogonally to its spatial orientation. A single point at which the loci of grating motions intersect will give the plaid motion (Adelson and Movshon, 1982), so we combined gratings separated by 90° to generate plaids. Gratings and plaids are allowed to move in 8 directions: 0, 45, 90, 135, 180, 225, 270, and 315°. For instance, the plaid moving in 45° is generated by the perceptual coherence of two gratings moving in 0 and 90°. The training set was generated with video sequences of moving gratings and moving plaids. Each moving grating sequence is composed of 10 frames with a frame size of 64 × 64. The spatial frequency of the grating is set to 5 pixels.



Moving Square Stimuli

The training set is made up of 8 fixed length sequences with 5 frames each. Each moving stimulus consists of White Square of size 24 × 24 pixels, moving through the origin over a black background of size 64 × 64 pixels. The white square was moved in 8 possible directions: 0, 45, 90, 135, 180, 225, 270, and 315° from 8 different starting positions.



RDS-Translation Stimuli

Random dot stimuli were generated by positioning 16 white dots (actually they are tiny squares and assuming them as dots for simplicity) of size 2 × 2 pixels randomly upon a black square grid of size 32 × 32 pixels with a constraint that each 8 × 8 window of black background can accommodate only one dot. A set of 25 such dot configurations were created and each configuration is moved (displacing X, Y coordinates one location ahead at a time) in 4 directions (θ): 0, 90, 180, 270°. If the dot exceeds the square boundary of the frame, it was wrapped around to reappear on the opposite side of the frame; thus the dot density across the frames was kept constant. Hundred translational random dot sequences were produced with 5 frames each. Out of 100, 80 sequences were used as training set, and the remaining 20 sequences were used as a test set. All the above inputs were programmed in MATLAB.



Perceptron

Single layer multiclass perceptron with input and output layers were used to classify the response of the neural field network and assess its performance. The number of units in the perceptron input layer is equal to a number of neurons in the NF layer from which perceptron receives input. The number of units in the output layer is equal to the number of classes. Thus, perceptron network size is different for different simulations. The equations that govern learning are:
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E = yi − Oi

ΔWj = αIjE

Δbj = αE

where g = Sigmoid function, yi be the correct output, Oi be the actual output, E is the error, α is the learning rate whose value is 0.1 in the simulation.
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This study investigated the role of action constraints related to an object as regards allocentric distance estimation in extrapersonal space. In two experiments conducted in both real and virtual environments, participants intending to push a trolley had to estimate its distance from a target situated in front of them. The trolley was either empty (i.e., light) or loaded with books (i.e., heavy). The results showed that the estimated distances were larger for the heavy trolley than for the light one, and that the actual distance between the participants and the trolley moderated this effect. This data suggests that the potential mobility of an object used as a reference affects distance estimation in extrapersonal space. According to embodied perception theories, our results show that people perceive space in terms of constraints related to their potential actions.
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INTRODUCTION

According to various theoretical approaches, visual space perception depends in part on action constraints [i.e., the phenotypic account (Proffitt and Linkenauger, 2013); the action-specific account (Witt and Riley, 2014); and the evolved navigation theory (Jackson and Willey, 2011)]. Sparrow and Newell (1998) refer to action constraints as every property of an organism (e.g., morphology, physiology, and behavior), a task (e.g., explicit rules, tool properties, and biomechanical rules), and/or the environment (e.g., obstacles and topographical variations) defining the action potentialities of an organism. Despite some disparities, the action constraint theories (ACT) of perception all claim that visual space perception is embodied (Coello and Delevoye-Turrell, 2007; Proffitt, 2013), meaning that body-based information plays a major role in perceptual processes. For a more detailed presentation of these theories, see Morgado and Palluel-Germain (2015).

This approach is debated, however, and alternative theories of spatial perception consider the influence of action constraints to be primarily effective at the response stage rather than at the perceptual stage (Hutchison and Loomis, 2006; Durgin et al., 2009, 2011, 2012; Firestone and Scholl, 2016; for a review, see Philbeck and Witt, 2015). Nevertheless, King et al. (2017) have recently presented new empirical evidence, as well as strong theoretical arguments, for the claim that action constraints have a genuine effect on space perception (see also Philbeck and Witt, 2015). The aim of the present study was not to wind up this debate but to investigate the effects of action constraints on allocentric distance estimation in extrapersonal space. More precisely, we were interested in the effect of an object used as an allocentric reference frame on distance estimation. Throughout this article, we refer to an allocentric reference frame, following Fini et al. (2015), as an object used as a reference for estimating a distance between two objects which are independent of the perceiver’s body.

The literature has shown that space perception can be altered by variations in behavioral capabilities (Witt and Sugovic, 2010; Taylor et al., 2011), physiological state (Schnall et al., 2010; Proffitt and Linkenauger, 2013; White et al., 2013), tool-use (Kirsch et al., 2012; Osiurak et al., 2012; Morgado et al., 2013; Bourgeois et al., 2014), or social support (Fini et al., 2015, 2017). For example, someone’s peripersonal space can be increased when using a tool that enlarges one’s reaching capabilities (Farnè and Làdavas, 2000; Maravita et al., 2001; Serino et al., 2007; Costantini et al., 2011b). The mere presence of others can also enlarge one’s reaching capabilities (Costantini et al., 2011c; Cardellicchio et al., 2013). Recently, similar effects have also been found for extrapersonal space (Fini et al., 2014, 2015, 2017). In a 3D virtual environment, Fini et al. (2015) asked participants to estimate the location (“Near” or “Far”) of a target object located at progressively increasing or decreasing distances from an instructed reference frame. The reference frame was either a virtual human agent or a static object. They found that participants estimated that the target was closer to the agent than to the static object. More interestingly, the results showed that this effect was observable only when the virtual human body was free to move, but not when it was tied to a pole with a rope. These results suggest that using a virtual agent (with movement capabilities) as a reference frame for space categorisation triggers a representation of the action potentialities offered by the environment. Fini et al. (2015) therefore shed a new light not only on the effect of action constraints on distance in extrapersonal space, but also on the effect of the reference frame. This conclusion is in line with several studies suggesting that people tend to automatically adopt other people’s visual perspective when making judgments about their direct environment (Tversky and Hard, 2009; Samson et al., 2010; Surtees and Apperly, 2012). As Fini et al. focused on the comparison between a virtual agent and static objects, however, it is not yet known whether this spatial remapping holds when the allocentric reference frame is a non-human object with action potentialities.

The objective of the present study was to fill this gap in the literature by manipulating the action constraints of a mobile object used as an allocentric reference frame. We hypothesized that when people intend to push an object toward another object located in their extrapersonal space, they perceive the distance between these two objects depending on the anticipated effort needed to move the first object. To test this hypothesis, we designed two experiments in which participants had to estimate several distances between a library trolley and a target, both being in the participant’s extrapersonal space. The library trolley served as an allocentric reference frame. We manipulated the trolley weight by having an empty trolley (i.e., light trolley) and a loaded trolley (i.e., heavy). We manipulated this variable between-subject in Experiment 1 and within-subject in Experiment 2. Experiment 1 took place in a real environment (i.e., a corridor in a library), whereas Experiment 2 took place in a virtual 3D scene (i.e., images representing similar scenes as in Experiment 1). Due to action constraints related to the trolley weight, we expected that the participants would estimate the distances between the trolley and the target as further when the trolley was heavy, than when it was light.



EXPERIMENT 1

In order to reduce the bias related to potential demand characteristics (Durgin et al., 2009), we manipulated the trolley weight in a between-subject design. The objective of this manipulation was to avoid that participants would be compliant with the experimental task demands. In this case, each participant experienced only one condition (i.e., one level of action constraint) and therefore should not be able to somehow strategically adjust her performance according to another condition.

Methods

Participants

Forty students from the University Paul Valery of Montpellier, France (21 females) participated (mage = 23.5, SDage = 3.06). All participants read and signed a written informed consent about the experimental protocol, which was approved by the local ethics committee. All participants had normal or corrected-to-normal vision as indicated by self-report. They were a priori naïve to the purpose of the experiment and they did not participate in prior distance-perception experiments.

Apparatus and Procedure

The experiment took place in a 15-m-long and 2.5-m-wide corridor. The participants were randomly assigned to the light-trolley group or to the heavy-trolley group. In the light-trolley group, the trolley was empty and weighted 12 kg. In the heavy-trolley group, the trolley was filled with books and weighted nearly 170 kg (see Figure 1). The participants had to estimate allocentric distances between the trolley and a cone (i.e., T-C distances) aligned with their midsagittal axis in two conditions depending on the trolley distance to the participants (i.e., P-T distances). In the near condition, the trolley was at 3 or 4 m from the participants, and the T-C distances that the participants had to estimate were equal to 5, 6, 7, and 8 m. In the far condition, the P-T distance was equal to 6 or 7 m, and the T-C distances that the participants had to estimate were equal to 3, 4, 5, and 6 m. We varied the distances to prevent the participants to anchor their estimations in one condition on their estimations in another condition. Both the P-T distances and T-C distances varied randomly within-subject from one trial to another. The participants completed a total of 12 trials, including four practice trials and eight test trials (one test trial∗four T-C distances∗two trolley’s positions). For these practice trials, the P-T distance could be equal to 3, 4, 5, or 6 m and the T-C distance could be equal to 4, 5, 7, or 8 m. At the beginning of each trial, the participants turned back while the experimenter set the trolley and the cone at a selected distance by using small marks on the floor. We empirically determined the size of these marks so that they were unnoticeable from the participants’ position. The participants then turned back again to face the trolley and verbally estimated the T-C distance in meters without time limit. The participants had to stand at the same location throughout the experiment without leaning to one side.


[image: image]

FIGURE 1. Experimental apparatus of Experiment 1 from the participants’ perspective for the light group (A) and the heavy group (B). These pictures represent the near P-T distance condition, with the trolley located 3 m from the participant and the cone (target) located 8 m away from the trolley. Written and informed consent about the potential publication of these images was obtained from the individual appearing on the figure.



Before starting the experiment, the experimenter indicated to the participants that they would have to estimate all the T-C distances as spontaneously as possible, to cover all the T-C distances while walking and pushing the trolley, and to estimate all the T-C distances again. We gave this instruction to lead participants to anticipate the effort needed to push the trolley (Witt et al., 2004). However, at the end of the test, the participants did not push the trolley and did not estimate the T-C distances again. Finally, the experimenter recorded the participants’ height with a tape measure at the end of the experiment (mheavy-group = 172.6 cm, SD = 8.96; mlight-group = 170.2, SD = 7.69).

Results

We computed the median estimated distance per condition for each participant (regarding the use of similar method, see Kirsch et al., 2017). Moreover, given that distances for the near position and for the far position were different, we computed a bias ratio expressing the medians of the estimated distances as a ratio of medians of the actual distances to compare estimations in near and far P-T distances (see the Supplementary Tables S1, S2, available online). A bias ratio of 1 means that the participants estimated the distances perfectly. A bias ratio above 1 or below 1 means that the participants overestimated or underestimated the distances, respectively. We discarded from our analysis the participants who showed inconsistent mean bias ratio between near and far P-T distances as indicated by a difference between these conditions equal to or larger than plus-or-minus 3 SD. This led us to exclude one participant in each group.

We ran a 2 × 2 mixed-designed analysis of variance (ANOVA) with the trolley weight as a between-subject independent variable and P-T distance as a within-subject independent variable. The dependent variable was the bias ratio. This analysis revealed a significant Trolley Weight × P-T Distance interaction, F(1,36) = 4.2, p = 0.047, [image: image] = 0.10 (Figure 2), and a significant main effect for the P-T distance, F(1,36) = 15.3, p < 0.001, [image: image] = 0.298. The main effect of weight was not significant, F(1,36) = 2.4, p = 0.13, [image: image] = 0.062.


[image: image]

FIGURE 2. Mean bias ratio expressing the median estimations as a ratio of the actual median distances depending on trolley weight and the P-T distance factors. A bias ratio above 1 or below 1 means that the participants overestimated or underestimated the distances, respectively. Error bars indicate one SEM. ∗p ≤ 0.05.



An a priori contrast analysis showed that, when the P-T distance was near, participants from heavy-trolley group (mnear/heavy = 0.94, SDnear/heavy = 0.26, N = 19) estimated that the T-C distance was larger than participants from light group (mnear/light = 0.79, SDnear/heavy = 0.21, N = 19), F(1,36) = 3.95, p = 0.05, [image: image] = 0.10. According to our data, the more plausible value for this effect in the population was mheavy trolley-light trolley = 0.15, 95% CI for μheavy trolley-light trolley [0.00, 0,30]. The contrast analysis also showed that this difference vanished when the P-T distance was far, participants from heavy group (mfar/heavy = 0.83, SDfar/heavy = 0.25, N = 19) did not statistically estimate larger distances than participants from the light group (mfar/light = 0.76, SDfar/light = 0.22, N = 19), F(1,36) = 1.05, p = 0.31, [image: image] = 0.03, which accounts, in part, for the absence of a significant main effect of weight. Finally, no correlation was found between the estimations and the height of the participants (r = 0.06).

Discussion Experiment 1

For a near P-T distance, participants estimated that the T-C distance was significantly longer when the trolley was heavy than when it was light. For far P-T distance, this effect decreased and was not statistically significant. These results suggest that the trolley weight effect on distance estimation depends on the P-T distance. This interpretation is consistent with the action-specific account of perception, according to which action potentialities affect space perceptions.

Alternative explanations of our results cannot be ruled out. For instance, one could argue that this effect might arise from the fact that participants anticipated covering a longer average distance while pushing the trolley in the near condition than in the far condition. Indeed, as these conditions differed in terms of actual T-C distances, the participants anticipated pushing the trolley for 65% of the total average distance that they had to cover in the near condition and only for 41% of the total average distance that they had to cover in the far condition. Thus, pushing the trolley required more effort in the near condition than in the far condition, which could explain our results.

Another explanation of the interaction effect could be that visual variables, rather than action constraints, are the sources of the observed differences between the light- and heavy-trolley groups. Indeed, the floor was more occluded by the heavy trolley, which was full of books and with its top being higher in the visual field, than by the light one that was empty. The visibility of the ground plane and the angular declination of the gaze are both known to play a role in distance perception (Ooi et al., 2001), however, if it was the case, we should have observed a larger difference between the heavy and the light trolley groups when the P-T distance was far than when it was near, because the heavy trolley occluded a larger part of the T-C distance. It also seems somewhat counterintuitive to overestimate a partially occluded distance because it would have meant that they overcompensated to account for the occluded portion of the T-C distance. Indeed, experimental arguments have been provided by He et al. (2004) showing that when the ground surface between an observer and a target is disrupted by an occluding object, this leads to egocentric distance underestimation. We think, therefore, that we can rule out this visual interpretation.



EXPERIMENT 2

The results of Experiment 1 revealed a statistically significant Trolley Weight × P-T distance interaction. Given that the effect observed was rather small, some reservations remain whether it really reflected the influence of the manipulated factors. Also, and as claimed earlier, it is possible that participants have anticipated covering a longer average distance while pushing the trolley in the near P-T distance than in the far P-T distance. This confound could compromise the internal validity of our conclusions. Given these limitations, Experiment 2 was a conceptual replication of Experiment 1. Moreover, as people generally make larger distance underestimations in virtual environments than in real environment (Creem-Regehr et al., 2005; Armbrüster et al., 2008), we aimed to extend the conclusions about our effect of interest to virtual environments. Thus, using virtual images instead of real distances and objects allowed us to (1) keep the visual inputs constant across participants, (2) use the same T-C distances in near and far P-T distances, and (3) increase the number of estimations for each distance. Finally, because the lack of power in Experiment 1 is partially due to our between-subject manipulation of the trolley weight, we used a within-subject design in Experiment 2, with systematic order effect addressed by randomization.

Methods

Participants

Given the effect size reported in Experiment 1 ([image: image] = 0.10), the required sample size for Experiment 2 was determine by conducting an a priori power analysis using G∗Power software (version 3.1; Faul et al., 2009). The analysis indicated that a minimum sample size of 14 participants was required in this study to detect a medium to large effect size with an adequate power (1 – ß > 0.80) and an alpha of 0.05. Following this, fifteen students from the University Paul Valery of Montpellier, France, participated (mage = 21.7, sage = 3.8, nine females and six males). All participants had normal or corrected-to-normal vision as indicated by self-report. They were a priori naïve to the purpose of the experiment and they did not participate in prior distance-perception experiments. All participants read and signed a written informed consent about the experimental protocol, which was approved by the local ethics committee.

Apparatus and Procedure

The experiment took place in an experimental room (3.15-m-long and 3-m-wide). A video projector (Epson EB-U04 Tri-LCD) projected the 20 images of a virtual 3D environment depicting allocentric T-C distances on a wall located at 2.5 m from the participants (Figure 3). The images were designed with Archicad 18 and Artlantis 6. The size of the projected images was 108 cm × 180 cm. Each image represented a third person scene were an avatar was standing in a corridor with a trolley and a cone aligned with his midsagittal axis (Figure 4). We chose a third-person view because it appears there is no apparent gain of immersion from first- over third-person view in video games (Black, 2017). On half of the images the trolley was empty (i.e., light trolley) and on the other half the trolley was full of books (i.e., heavy trolley). The trolley was at 3 and 6 m from the avatar in the near and far P-T distance, respectively. The T-C distances varied from 3 to 7 m (five distances with a step of 1 m). The participants had to estimate four times each T-C distance in each experimental condition (2 Trolley Weights × 2 P-T Distances × 5 T-C distances × 4 Blocks × 1 Trial). Within each block, the T-C distance, the P-T distance and the trolley weight randomly varied within subject from one trial to another. For each trial, the participants had to verbally estimate T-C distance with no time limit. Then, they had to press the space bar on a keyboard positioned on their left side to start the next trial. We used the same cover story as in Experiment 1 by telling the participants that they would have to actually push the trolley afterward.


[image: image]

FIGURE 3. Experimental apparatus of Experiment 2 from the participants’ perspective for the light condition. This picture represents the near P-T distance condition, with the light trolley located 3 m from the participant. Written and informed consent about the potential publication of these images was obtained from the individual appearing on the figure.
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FIGURE 4. 3D images used as stimuli in Experiment 2. Image A represents the near P-T distance in light condition, with the trolley located 3 m from the avatar and the cone located 3 m away from the trolley. Image B represents the far P-T distance in the heavy condition, with the trolley located 6 m from the avatar and the cone located 7 m away from the trolley.



Results

We used the same statistical procedure as in Experiment 1 to compute our bias ratio and to discard inconsistent data. This led to the exclusion of two participants. We also ran a 2 × 2 within-subject ANOVA with trolley weight and P-T distance as within-subject independent variables. The dependent variable was the bias ratio for each condition. This analysis revealed a statistically significant Trolley Weight × P-T Distance interaction, F(1,12) = 5.1, p = 0.04, [image: image] = 0.30 (Figure 2), a statistically significant main effect of trolley weight, F(1,12) = 7.3, p = 0.02, [image: image] = 0.38, and statistically main effect of P-T distance, F(1,12) = 6.4, p = 0.03, [image: image] = 0.35. An a priori contrast analysis showed that, when the trolley was near, participants in the heavy-trolley condition (mnear/heavy = 0.51, SDnear/heavy = 0.22, N = 13) estimated that the T-C distance was larger than participants in the in the light-trolley condition (mnear/light = 0.44, SDnear/heavy = 0.19), F(1,12) = 11.6, p = 0.005, η[image: image] = 0.49. According to our data, the more plausible value for this effect in the population was mheavy trolley-light trolley = 0.07, 95% CI for μheavy trolley-light trolley [0.03, 0,11]. The contrast analysis also showed that this difference vanished when the P-T distance was far as participants did not estimated longer distances in the heavy-trolley condition (mfar/heavytrolley = 0.40, SDfar/heavy = 0.16) than in the light-trolley condition (mfar/lighttrolley = 0.40, SDfar/light = 0.20), F(1,12) = 0.14, p = 0.72, [image: image] = 0.00 (see the Supplementary Tables S1, S2, available online).

Discussion Experiment 2

One of the goals of this second experiment was to replicate with virtual stimuli what was found in Experiment 1. For a near P-T distance, participants estimated that the T-C distance was significantly longer when the trolley was heavy than when it was light. For far P-T distance, this effect disappeared and was not statistically significant. Despite this Trolley Weight × P-T Distance interaction, the results of this experiment differ from those of Experiment 1 for two reasons. First, the main effect of trolley weight was statistically significant in Experiment 2, even though it was not in Experiment 1. Given that the unstandardised trolley weight effect size was stronger in Experiment 1 (mheavy trolley-light trolley = 0.09) than in Experiment 2 (mheavy trolley-light trolley = 0.03), this difference in statistical significance is likely due to the unaccounted between-subject variability in the between-subject design. Second, participants underestimated the distances to a larger degree than in Experiment 1 (less than half the actual distances). This was consistent with previous studies showing that distance perception is more compressed in a virtual environment than in real life (Thompson et al., 2004; Creem-Regehr et al., 2005). More importantly, our results indicate that despite a larger bias in distance estimation, the pattern of results from Experiment 2 was consistent with those of Experiment 1. This suggests that our conclusions might hold for the real environment as well as virtual ones. We believe that such similarities in results could be explained by the reliable sense of presence provided by the third-person perspective (Draper et al., 1996; Thompson et al., 2004; Creem-Regehr et al., 2005), but this interpretation would need further investigation.



GENERAL DISCUSSION

As shown in numerous studies, action performance (Witt and Dorsch, 2009) or social factors can bias the estimation of allocentric extent within extrapersonal space (Fini et al., 2014, 2015). In the present study, we investigated the role of action constraints related to an object used as a reference on the estimation of allocentric distances. For this purpose, we designed an experiment in which participants estimated the distances between a trolley and a cone (Experiment 1) while believing that they would push the trolley later. The results showed that the participants estimated longer distances when the trolley was heavy (i.e., loaded with books) than when it was light (i.e., empty). Importantly, such an impact was moderated by the location of the trolley with regard to the participants. Finally, we observed similar results with virtual stimuli (Experiment 2).

Our interpretation of this result is that the anticipated effort required to push the trolley affected the way participants perceived the distance between the trolley and the cone. This interpretation is consistent with the ACT, which claims that action constraints affect visual perception of space (Proffitt and Linkenauger, 2013; Witt and Riley, 2014; Morgado and Palluel-Germain, 2015; Zadra et al., 2016). Our analysis also revealed that the trolley weight affected distance perception only when the trolley was near the participants. This suggests that we met a boundary condition of the effect of the allocentric reference frame – and its related action constraints – on space perception.

The Role of the Reference Frame Characteristics

Some studies have shown that people spontaneously adopt other people’s perspectives when judging space (Tversky and Hard, 2009; Samson et al., 2010; Surtees and Apperly, 2012). For instance, people might take into account the potential movements of others to judge whether a target located in extrapersonal space is near or far from themselves (Fini et al., 2015). One reason for adopting another person’s perspective is the common mapping of one’s own and the other’s motor potentialities (Tversky and Hard, 2009; Samson et al., 2010; Surtees and Apperly, 2012), which can be explained by the remapping of one’s space representation depending on the potential actions of others. As mentioned by Fini et al. (2015), however, it is possible that the human body could affect space perception as a tool with motion opportunities and not necessarily because it is a human reference frame. To answer this question, we used a non-human object with motion potentialities as a reference frame and we tested whether people could remap their space perception according to these potentialities. Our results indicated that distance estimations were indeed different depending on the reference frame characteristics (i.e., trolley weight). Considering that this characteristic has a direct impact on the way someone might plan to interact with an object, it seems likely that they will also integrate it as physical constraint in their own motor potentialities. As tool-use affects perceived distances (Witt et al., 2005), extrapersonal space could also be processed according to the potential actions offered by an allocentric reference frame, which would contribute to scaling the environment to the bioenergetic resources required to traverse the distances (Zadra et al., 2016).

The results of these experiments also revealed that trolley weight affected the participants’ estimations only when the trolley was near them. This suggests that the participants did not integrate the physical constraints of the allocentric reference frame for the far P-T distance. This interpretation is consistent with studies showing that motor simulation and affordances are spatially constrained (Costantini et al., 2010, 2011a), which implies that, depending on the reachability of an object, their perception activates different neural processes, in particular certain motor processes (Rizzolatti et al., 1996; Gallese, 2016). Thus, depending on their spatial relationship with an object, people would not use the same neural patterns when planning to interact with it. We therefore propose that an allocentric reference frame with motion opportunities would lead to different distance estimations of the extrapersonal space depending on such factors as (1) the physical effort needed to move it, and (2) its location in reference to the viewer. We cannot, however, exclude the possibility that the interaction effect is due to alternative explanations and this first interpretation would benefit from further experimental replications.

Alternative Explanations

The experience of perception is known to resist researchers’ attempts to directly measure it in behavioral and neuropsychological studies. An important theoretical and experimental debate is still ongoing regarding whether action genuinely affects either perceptual or post-perceptual processes (for a review, see Philbeck and Witt, 2015). Among the different questions raised by this debate, the one that we are interested in here is whether higher-level cognitive and/or bodily states can “penetrate” perception (Firestone and Scholl, 2016). In other words, whether what one sees is a combination of both bottom-up factors and one’s beliefs, linguistic representations, or action performances.

This question could be asked regarding our results, because the participants performed verbal estimations, which can be affected by both perceptual differences and response-based processes (Poulton, 1979; Witt et al., 2016). For example, one could argue that if participants truly engaged in a motor simulation process and simulated walking with the trolley before their estimations, it would not necessarily mean that perception itself (i.e., visual processing) was altered. The participants could have transposed the number of steps needed to cover the different distances and based their estimations on this mental simulation. Also, and apart from the perceived effort of pushing, this mental process could have led participants to bias their judgments depending on temporal estimates (i.e., the estimated time to move the trolley to the cone).

Visual perception is known to rely on various sources of information, including visual information (Cutting and Vishton, 1995), physiological information (White et al., 2013; Witt and Riley, 2014), action intentions (Witt et al., 2010, 2004, 2005), as well as on multisensory integration processes (Campos et al., 2012, 2014; Kirsch et al., 2017). More precisely, these works show that visual and bodily variables are differently weighted during the estimation of space or object size, depending on the available sources of information. Both the intention to push the trolley and the anticipation of the effort therefore seem likely to be involved in the perceptual process. The extent to which this bodily variable can be accounted for in the final estimation remains, however, an open question.

Witt et al. (2018): see also (Witt and Sugovic, 2013; King et al., 2017; Witt, 2017) recently provided strong experimental arguments in favor of the action-specific approach of perception. Using the Pong task experiment, they showed that when participants were explicitly told the hypothesis and instructed to resist the effect of their ability to block the ball, their ability still affected their perception of the ball’s speed. Those results highlight that visual experience seems affected by one’s ability to act, as well as by the consequences of one’s actions in the environment. More importantly, such findings not only refute the idea of reducing visual experience to mere visual processes, but also question the relevance of the perceptual/post-perceptual distinction when studying the experience of perceiving.



CONCLUSION

We observed that a heavy trolley used as an allocentric reference frame led participants to estimate longer distances than a light trolley. This distinction was only observed when the trolley was located near the participants and not when it was far from them. This therefore suggests that during visual space perception, an allocentric reference frame with motion potentialities can constrain distance estimation in extrapersonal space. Such results are in line with previous studies showing the effects of action constraints on distance perception (Stefanucci and Geuss, 2009; Witt, 2011; Proffitt and Linkenauger, 2013; Morgado et al., 2013; King et al., 2017) and suggest going further by considering an external and a non-living reference frame as a potential “tool” that could increase or decrease people’s action opportunities. The moderation effect of the P-T distance also suggests that the integration of the potentialities offered by an allocentric reference frame is space-dependent. These findings are consistent with an embodied view of perception (Proffitt, 2013) and contribute to emphasizing the relevance of taking into account both visual and body-based information when studying distance perception.



ETHICS STATEMENT

All procedures performed in this study involving human participants were in accordance with the 1964 Helsinki Declaration and its later amendments or comparable ethical standards, and were reviewed and approved by the Scientific and Ethics Committee of Epsylon Laboratory EA4556, University Paul Valéry of Montpellier.



AUTHOR CONTRIBUTIONS

DB, LB, and RJ brought the main idea of the research. RJ, TC, and VM conducted the experiments, collected the data, made the statistical analyses, and wrote the manuscript. NM and RP-G contributed during the writing phase.



FUNDING

The present research was supported by a doctoral fellowship of the University Paul Valéry of Montpellier, France to RJ.



ACKNOWLEDGMENTS

Part of the content of this article first appeared in RJ’s thesis (2017) as the third chapter of the experimental part.



SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found online at: https://www.frontiersin.org/articles/10.3389/fpsyg.2019.00472/full#supplementary-material

TABLE S1 | Raw data of Experiment 1 and Experiment 2.

TABLE S2 | Bias ratios of Experiment 1 and Experiment 2.



REFERENCES

Armbrüster, C., Wolter, M., Kuhlen, T., Spijkers, W., and Fimm, B. (2008). Depth perception in virtual reality: distance estimations in peri- and extrapersonal space. CyberPsychol. Behav. 11, 9–15. doi: 10.1089/cpb.2007.9935

Black, D. (2017). Why can I see my avatar? Embodied visual engagement in the third-person video game. Games Cult. 12, 179–199. doi: 10.1177/1555412015589175

Bourgeois, J., Farnè, A., and Coello, Y. (2014). Costs and benefits of tool-use on the perception of reachable space. Acta Psychol. 148, 91–95. doi: 10.1016/j.actpsy.2014.01.008

Campos, J. L., Butler, J. S., and Bülthoff, H. H. (2012). Multisensory integration in the estimation of walked distances. Exp. Brain Res. 218, 551–565. doi: 10.1007/s00221-012-3048-1

Campos, J. L., Butler, J. S., and Bülthoff, H. H. (2014). Contributions of visual and proprioceptive information to travelled distance estimation during changing sensory congruencies. Exp. Brain Res. 232, 3277–3289. doi: 10.1007/s00221-014-4011-0

Cardellicchio, P., Sinigaglia, C., and Costantini, M. (2013). Grasping affordances with the other’s hand: a TMS study. Soc. Cogn. Affect. Neurosci. 8, 455–459. doi: 10.1093/scan/nss017

Coello, Y., and Delevoye-Turrell, Y. (2007). Embodiment, spatial categorisation and action. Conscious. Cogn. 16, 667–683. doi: 10.1016/j.concog.2007.07.003

Costantini, M., Ambrosini, E., Scorolli, C., and Borghi, A. M. (2011a). When objects are close to me: affordances in the peripersonal space. Psychon. Bull. Rev. 18, 302–308. doi: 10.3758/s13423-011-0054-4

Costantini, M., Ambrosini, E., Sinigaglia, C., and Gallese, V. (2011b). Tool-use observation makes far objects ready-to-hand. Neuropsychologia 49, 2658–2663. doi: 10.1016/j.neuropsychologia.2011.05.013

Costantini, M., Committeri, G., and Sinigaglia, C. (2011c). Ready both to your and to my hands: mapping the action space of others. PLoS One 6:e17923. doi: 10.1371/journal.pone.0017923

Costantini, M., Ambrosini, E., Tieri, G., Sinigaglia, C., and Committeri, G. (2010). Where does an object trigger an action? An investigation about affordances in space. Exp. Brain Res. 207, 95–103. doi: 10.1007/s00221-010-2435-8

Creem-Regehr, S. H., Willemsen, P., Gooch, A. A., and Thompson, W. B. (2005). The influence of restricted viewing conditions on egocentric distance perception: implications for real and virtual indoor environments. Perception 34, 191–204. doi: 10.1068/p5144

Cutting, J. E., and Vishton, P. (1995). “Perceiving layout and knowing distances: the integration, relative potency, and contextual use of different information about depth,” in Handbook of Perception and Cognition Perception of Space and Motion, 2nd Edn, eds W. Epstein and S. J. Rogers (San Diego, CA: Academic Press), 69–117.

Draper, M. H., Wells, M. J., Gawron, V. J., and Furness, T. A. (1996). Exploring the influence of a virtual body on spatial awareness. Proc. Hum. Factors Ergon. Soc. Annu. Meet. 40, 1146–1150. doi: 10.1177/154193129604002208

Durgin, F. H., Baird, J. A., Greenburg, M., Russell, R., Shaughnessy, K., and Waymouth, S. (2009). Who is being deceived? The experimental demands of wearing a backpack. Psychon. Bull. Rev. 16, 964–969. doi: 10.3758/PBR.16.5.964

Durgin, F. H., DeWald, D., Lechich, S., Li, Z., and Ontiveros, Z. (2011). Action and motivation: measuring perception or strategies? Psychon. Bull. Rev. 18, 1077–1082. doi: 10.3758/s13423-011-0164-z

Durgin, F. H., Klein, B., Spiegel, A., Strawser, C. J., and Williams, M. (2012). The social psychology of perception experiments: hills, backpacks, glucose, and the problem of generalizability. J. Exp. Psychol. Hum. Percept. Perform. 38, 1582–1595. doi: 10.1037/a0027805

Farnè, A., and Làdavas, E. (2000). Dynamic size-change of hand peripersonal space following tool use. Neuroreport 11, 1645–1649. doi: 10.1097/00001756-200006050-00010

Faul, F., Erdfelder, E., Buchner, A., and Lang, A.-G. (2009). Statistical power analyses using G∗Power 3.1: tests for correlation and regression analyses. Behav. Res. Methods 41, 1149–1160. doi: 10.3758/BRM.41.4.1149

Fini, C., Bardi, L., Epifanio, A., Committeri, G., Moors, A., and Brass, M. (2017). Transcranial direct current stimulation (tDCS) of the inferior frontal cortex affects the “social scaling” of extrapersonal space depending on perspective-taking ability. Exp. Brain Res. 235, 673–679. doi: 10.1007/s00221-016-4817-z

Fini, C., Brass, M., and Committeri, G. (2015). Social scaling of extrapersonal space: target objects are judged as closer when the reference frame is a human agent with available movement potentialities. Cognition 134, 50–56. doi: 10.1016/j.cognition.2014.08.014

Fini, C., Costantini, M., and Committeri, G. (2014). Sharing space: the presence of other bodies extends the space judged as near. PLoS One 9:e114719. doi: 10.1371/journal.pone.0114719

Firestone, C., and Scholl, B. J. (2016). Cognition does not affect perception: evaluating the evidence for “top-down” effects. Behav. Brain Sci. 39:e229. doi: 10.1017/S0140525X15000965

Gallese, V. (2016). The multimodal nature of visual perception: facts and speculations. Gestalt Theory 38, 127–140.

He, Z. J., Wu, B., Ooi, T. L., Yarbrough, G., and Wu, J. (2004). Judging egocentric distance on the ground: occlusion and surface integration. Perception 33, 789–806. doi: 10.1068/p5256a

Hutchison, J. J., and Loomis, J. M. (2006). Does energy expenditure affect the perception of egocentric distance? A failure to replicate experiment 1 of proffitt, stefanucci, banton, and epstein (2003). Span. J. Psychol. 9, 332–339. doi: 10.1017/S1138741600006235

Jackson, R. E., and Willey, C. R. (2011). Evolved navigation theory and horizontal visual illusions. Cognition 119, 288–294. doi: 10.1016/j.cognition.2010.11.003

King, Z. R., Tenhundfeld, N. L., and Witt, J. K. (2017). What you see and what you are told: an action-specific effect that is unaffected by explicit feedback. Psychol. Res. 82, 507–519. doi: 10.1007/s00426-017-0848-8

Kirsch, W., Herbort, O., Butz, M. V., and Kunde, W. (2012). Influence of motor planning on distance perception within the peripersonal space. PLoS One 7:e34880. doi: 10.1371/journal.pone.0034880

Kirsch, W., Herbort, O., Ullrich, B., and Kunde, W. (2017). On the origin of body-related influences on visual perception. J. Exp. Psychol. Hum. Percept. Perform. 43, 1222–1237. doi: 10.1037/xhp0000358

Maravita, A., Husain, M., Clarke, K., and Driver, J. (2001). Reaching with a tool extends visual–tactile interactions into far space: evidence from cross-modal extinction. Neuropsychologia 39, 580–585. doi: 10.1016/S0028-3932(00)00150-0

Morgado, N., and Palluel-Germain, R. (2015). “How actions constrain the visual perception of space,” in Foundations of Embodied Cognition: Perceptual and Emotional Embodiment, Vol. 1, eds Y. Coell and M. C. Fischer (Hove: PsychologyPress), 167–180.

Morgado, N., Gentaz,É., Guinet, É., Osiurak, F., and Palluel-Germain, R. (2013). Within reach but not so reachable: obstacles matter in visual perception of distances. Psychon. Bull. Rev. 20, 462–467. doi: 10.3758/s13423-012-0358-z

Ooi, T. L., Wu, B., and He, Z. J. (2001). Distance determined by the angular declination below the horizon. Nature 414, 197–200. doi: 10.1038/35102562

Osiurak, F., Morgado, N., and Palluel-Germain, R. (2012). Tool use and perceived distance: when unreachable becomes spontaneously reachable. Exp. Brain Res. 218, 331–339. doi: 10.1007/s00221-012-3036-5

Philbeck, J. W., and Witt, J. K. (2015). Action-specific influences on perception and postperceptual processes: present controversies and future directions. Psychol. Bull. 141, 1120–1144. doi: 10.1037/a0039738

Poulton, E. C. (1979). Models for biases in judging sensory magnitude. Psychol. Bull. 86, 777–803. doi: 10.1037/0033-2909.86.4.777

Proffitt, D. R. (2013). An embodied approach to perception by what units are visual perceptions scaled? Perspect. Psychol. Sci. 8, 474–483. doi: 10.1177/1745691613489837

Proffitt, D. R., and Linkenauger, S. A. (2013). “Perception viewed as a phenotypic expression,” in Action Science: Foundations Of An Emerging Discipline, Vol. 171, eds W. Prinz, M. Beisert, and A. Herwig (Cambridge, MA:MIT Press).

Rizzolatti, G., Fadiga, L., Gallese, V., and Fogassi, L. (1996). Premotor cortex and the recognition of motor actions. Cogn. Brain Res. 3, 131–141. doi: 10.1016/0926-6410(95)00038-0

Samson, D., Apperly, I. A., Braithwaite, J. J., Andrews, B. J., and Bodley Scott, S. E. (2010). Seeing it their way: evidence for rapid and involuntary computation of what other people see. J. Exp. Psychol. Hum. Percept. Perform. 36, 1255–1266. doi: 10.1037/a0018729

Schnall, S., Zadra, J. R., and Proffitt, D. R. (2010). Direct evidence for the economy of action: glucose and the perception of geographical slant. Perception 39, 464–482. doi: 10.1068/p6445

Serino, A., Bassolino, M., Farnè, A., and Làdavas, E. (2007). Extended multisensory space in blind cane users. Psychol. Sci. 18, 642–648. doi: 10.1111/j.1467-9280.2007.01952.x

Sparrow, W. A., and Newell, K. M. (1998). Metabolic energy expenditure and the regulation of movement economy. Psychon. Bull. Rev. 5, 173–196. doi: 10.3758/BF03212943

Stefanucci, J. K., and Geuss, M. N. (2009). Big people, little world: the body influences size perception. Perception 38, 1782–1795. doi: 10.1068/p6437

Surtees, A. D., and Apperly, I. A. (2012). Egocentrism and automatic perspective taking in children and adults. Child Dev. 83, 452–460. doi: 10.1111/j.1467-8624.2011.01730.x

Taylor, J. E. T., Witt, J. K., and Sugovic, M. (2011). When walls are no longer barriers: perception of wall height in parkour. Perception 40, 757–760. doi: 10.1068/p6855

Thompson, W. B., Willemsen, P., Gooch, A. A., Creem-Regehr, S. H., Loomis, J. M., and Beall, A. C. (2004). Does the quality of the computer graphics matter when judging distances in visually immersive environments? Presence 13, 560–571. doi: 10.1162/1054746042545292

Tversky, B., and Hard, B. M. (2009). Embodied and disembodied cognition: spatial perspective-taking. Cognition 110, 124–129. doi: 10.1016/j.cognition.2008.10.008

White, E., Shockley, K., and Riley, M. A. (2013). Multimodally specified energy expenditure and action-based distance judgments. Psychon. Bull. Rev. 20, 1371–1377. doi: 10.3758/s13423-013-0462-8

Witt, J. K. (2011). Action’s effect on perception. Curr. Dir. Psychol. Sci. 20, 201–206. doi: 10.1177/0963721411408770

Witt, J. K. (2017). Action potential influences spatial perception: evidence for genuine top-down effects on perception. Psychon. Bull. Rev. 24, 999–1021. doi: 10.3758/s13423-016-1184-5

Witt, J. K., and Dorsch, T. E. (2009). Kicking to bigger uprights: field goal kicking performance influences perceived size. Perception 38, 1328–1340. doi: 10.1068/p6325

Witt, J. K., Kemmerer, D., Linkenauger, S. A., and Culham, J. (2010). A functional role for motor simulation in identifying tools. Psychol. Sci. 21, 1215–1219. doi: 10.1177/0956797610378307

Witt, J. K., Linkenauger, S. A., and Wickens, C. (2016). Action-specific effects in perception and their potential applications. J. Appl. Res. Mem. Cogn. 5, 69–76. doi: 10.1016/j.jarmac.2015.07.008

Witt, J. K., Proffitt, D. R., and Epstein, W. (2004). Perceiving distance: a role of effort and intent. Perception 33, 577–590. doi: 10.1068/p5090

Witt, J. K., Proffitt, D. R., and Epstein, W. (2005). Tool use affects perceived distance, but only when you intend to use it. J. Exp. Psychol. Hum. Percept. Perform. 31, 880–888. doi: 10.1037/0096-1523.31.5.880

Witt, J. K., and Riley, M. A. (2014). Discovering your inner gibson: reconciling action-specific and ecological approaches to perception–action. Psychon. Bull. Rev. 21, 1353–1370. doi: 10.3758/s13423-014-0623-4

Witt, J. K., and Sugovic, M. (2010). Performance and ease influence perceived speed. Perception 39, 1341–1353. doi: 10.1068/p6699

Witt, J. K., and Sugovic, M. (2013). Response bias cannot explain action-specific effects: evidence from compliant and non-compliant participants. Perception 42, 138–152. doi: 10.1068/p7367

Witt, J. K., Tenhundfeld, N. L., and Tymoski, M. J. (2018). Is there a chastity belt on perception? Psychol. Sci. 29, 139–146. doi: 10.1177/0956797617730892

Zadra, J. R., Weltman, A. L., and Proffitt, D. R. (2016). Walkable distances are bioenergetically scaled. J. Exp. Psychol. Hum. Percept. Perform. 42, 39–51. doi: 10.1037/xhp0000107

Conflict of Interest Statement: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Copyright © 2019 Josa, Camus, Murday, Morgado, Palluel-Germain, Brunel and Brouillet. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.





 

 

 
 
	 
	ORIGINAL RESEARCH
 published: 29 March 2019
 doi: 10.3389/fpsyg.2019.00728
 

  


[image: image2]

The Development of Spatial Memory Analyzed by Means of Ecological Walking Task

Pierpaolo Sorrentino1†, Anna Lardone2†, Matteo Pesoli2, Marianna Liparoti2, Simone Montuori2, Giuseppe Curcio3, Giuseppe Sorrentino2,4,5, Laura Mandolesi6* and Francesca Foti7


1Department of Engineering, Università degli Studi di Napoli Parthenope, Naples, Italy


2Department of Movement Sciences and Wellbeing, Università degli Studi di Napoli Parthenope, Naples, Italy


3Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, L’Aquila, Italy


4Istituto di Diagnosi e Cura Hermitage Capodimonte, Naples, Italy


5Institute of Applied Sciences and Intelligent Systems, CNR, Naples, Italy


6Department of Humanistic Studies, University Federico II, Naples, Italy


7Department of Medical and Surgical Sciences, Università degli studi Magna Græcia di Catanzaro, Catanzaro, Italy


Edited by:
 Daya Shankar Gupta, Camden County College, United States

Reviewed by:
 Francesca Federico, Sapienza Università di Roma, Italy
 Bruno Poucet, Centre National de la Recherche Scientifique (CNRS), France
 Ora Oudgenoeg-Paz, Utrecht University, Netherlands

*Correspondence: Laura Mandolesi, laura.mandolesi@unina.it 

†These authors have contributed equally to this work

Specialty section: This article was submitted to Cognition, a section of the journal Frontiers in Psychology


Received: 30 September 2018
 Accepted: 15 March 2019
 Published: 29 March 2019

Citation: Sorrentino P, Lardone A, Pesoli M, Liparoti M, Montuori S, Curcio G, Sorrentino G, Mandolesi L and Foti F (2019) The Development of Spatial Memory Analyzed by Means of Ecological Walking Task. Front. Psychol. 10:728. doi: 10.3389/fpsyg.2019.00728
 

The present study is aimed at investigating the development of spatial memory in pre-school children aged 4–6 years using an ecological walking task with multiple rewards. The participants were to explore an open space in order to find nine rewards placed in buckets arranged in three spatial configurations: a Cross, a 3 × 3 Matrix, and a Cluster composed of three groups of three buckets each. Clear age-related improvements were evident in all the parameters analyzed. In fact, there was a general trend for younger children to display worse performance than the older ones. Moreover, males performed better than females in both the search efficiency and visiting all buckets. Additionally, the search efficiency proved to be a function of the difficulty of the configuration to be explored: the Matrix and Cluster configurations were easier to explore than the Cross configuration. Taken altogether, the present findings suggest that there is a general improvement in the spatial memory abilities in preschoolers and that solving an open space task could be influenced by gender. Moreover, it can be proposed that both the procedural competences and the memory load requested to explore a specific environment are determined by its specific features.

Keywords: spatial exploration, cognitive map, spatial memory, behavioral task, children


INTRODUCTION

Navigational abilities are strongly correlated with spatial memory processes, including both procedural and declarative components. In fact, when encoding the spatial relationships of an environment (declarative spatial knowledge), one has to learn “how” to move in that environment (procedural spatial knowledge), thus suggesting that procedural competences and mapping abilities are equally necessary for efficient exploration (O’Keefe and Nadel, 1978; Mandolesi et al., 2009). An important role in these processes is played by spatial working memory, which is involved in retention and processing of visuospatial information (Baddeley, 1986; Fenner et al., 2000) and correlated with attentional control (Awh et al., 2006; Gigliotta et al., 2017). In fact, when exploring a new environment, besides the awareness of spatial features, one also needs to temporarily store and manipulate visuospatial information in order to find objects or reach a target, thus inhibiting distracting stimuli (Flouri et al., 2018).

Although spatial competences appear very early and are age-related (Acredolo, 1977; Hermer and Spelke, 1994; Lehnung et al., 1998; Nardini et al., 2009; Bullens et al., 2010; Piccardi et al., 2014), these cognitive processes are not fully developed in children younger than about 7 years of age, and mapping abilities only appear at 10 years of age (Overman et al., 1996; Lehnung et al., 1998; Mandolesi et al., 2009). Behavioral studies in this field are in accordance with neuroimaging research showing functional maturation of cerebral correlates of spatial competences in late childhood and adolescence (Klingberg, 2006). Recently, it has been evidenced that spatial working memory develops throughout childhood and is associated with the maturation of specific white matter tracts (Krogsrud et al., 2018). These findings are in accordance with a recent fMRI study investigating the neurological mechanisms underlying the ability to orient oneself in a virtual environment. In fact, children from 8 to 10 years of age displayed increased neural activity in cerebral areas associated with visuospatial processing and navigation, such as the left cuneus and the mid-occipital area, the left inferior parietal region and precuneus, the right inferior parietal cortex, the right precentral gyrus, the cerebellar vermis, and the medial cerebellar lobes bilaterally (Murias et al., 2019).

In developmental research, it has been seen that, at around 6 months of age, infants possess the ability to use visual landmarks (Acredolo and Evans, 1980; Crowther et al., 2000; Lew et al., 2000) and, by the end of the first year, they are aware of their own position in the environment and learn information about the spatial context in which they are located (through movement and proprioceptive information) (Loomis et al., 1993). In this context, it has been evidenced that 5-year-old children are able to find locations in a spatial array, starting from a novel perspective, using landmarks alone (Nardini et al., 2006).

The evidence regarding gender differences in the development of spatial abilities is more controversial. On one hand, it is clear that, from puberty onward, males display a more efficient use of spatial competencies than females, which might be related to the maturation of specific cerebral structures such as the corpus callosum, the hippocampus, and the frontal cortex (Giedd et al., 1999; Vuontela et al., 2003; Alejandre-Gomez et al., 2007; Méndez-López et al., 2009). On the other hand, the evidence of gender differences during childhood is more debated. Some behavioral studies evidenced that males and females use different strategies to explore the environment and to acquire spatial information (Lawton, 1994, 1996; Robinson et al., 1996; Astur et al., 1998, 2004; Sandstrom et al., 1998; Gibbs and Wilson, 1999; Beilstein and Wilson, 2000; Grön et al., 2000; Blanch et al., 2004). Recently, it has been observed that in some spatial competencies, as well as in object localization, females perform better than males do before the age of 13 (Bocchi et al., 2018).

However, further evidence documented similar performances in both genders with regard to spatial tasks (Linn and Petersen, 1985; Aliotti and Rajabiun, 1991; Anderson and Lajoie, 1996; Overman et al., 1996; Lehnung et al., 1998, 2003; Nichelli et al., 2001; Leplow et al., 2003).

In a previous work, we analyzed the spatial abilities of preschoolers and schoolers using a large-scale radial arm maze (RAM), an ecological instrument that allows the analyses of different facets of spatial function (Mandolesi et al., 2009). In particular, the RAM consists of a central area from which a number of identical arms radiate. At the end of each arm, there is a hidden reward. In the free-choice paradigm, the subject is required to recover all the rewards without making mistakes. Provided that there is only one reward per arm, and that revisiting an arm is considered a mistake, the subject will need both declarative and procedural competencies to perform the task. In this specific setting, we showed a clear age- and gender-related effect in all the parameters analyzed (Mandolesi et al., 2009). In short, younger children (3.5–4 years) performed poorly as compared to older ones (4 years older), and females exhibited acquisition of spatial competences earlier in comparison to males up to 5.5 years old (Mandolesi et al., 2009). However, in the RAM task, children have to find the hidden rewards according to a fixed spatial configuration, and the searching strategies are limited by the number of alternative routes. To overcome this limitation, we investigated the spatial abilities of children aged 4–6 years in a large-scale task without any spatial constraint, so as to make the task harder and potentially uncover developmental trends of spatial memory in this age range, as well as possible gender differences and specific environmental features that might facilitate the exploration. In this spatial task, the child is free to move, adopting exploratory behaviors in accordance with the environment. Thus, the environmental affordances influence the construction of the search strategies as well as the knowledge of the positions of the rewards (Foti et al., 2011, 2015). In particular, in the present study, the participants were asked to explore an open space to search for nine rewards hidden in buckets arranged in three spatial configurations: a Cross, a 3 × 3 Matrix, and a Cluster composed of three groups of three buckets each. We believe that the analysis of spatial exploration in open environments, without any constraints, could increase our knowledge of the development of spatial abilities in children. In the current study, we hypothesize that the characteristics of the environment define the specific spatial memory competencies needed to explore it and, consequently, the implementation of appropriate navigational strategies. For this reason, we expect that the difficulties in exploring will decay as a function of age. Furthermore, we went on to evaluate the locomotion of the participants. To do this, we computed the total distance travelled to complete a task. This information is relevant as it has been shown that locomotion facilitates the acquisition of spatial competencies (Lehnung et al., 2003).



MATERIALS AND METHODS


Participants

Thirty-six healthy Italian children (17 M and 19 F) aged from 4 years and 1 month (4.1) to 6 years and 2 months (6.2) (mean age: 5.3 ± SEM 1.3) participated in the present study. Participants were divided into two groups based on the classes of the kindergarten: group I (N = 18; 9 M and 9°F; mean age: 4.7 ± 0.8) and group II (N = 18; 10 M and 8°F; mean age: 5.8 ± 0.9). All the children attended a public kindergarten in Southern Italy, and none had had previous experience with the multiple reward task. Moreover, none of the children presented neurological or neuropsychological disorders, and all had normal or corrected-to-normal vision. To verify typical cognitive development, all participants were assessed by Raven matrices test (Raven, 1938; Raven Court and Raven, 1995). Written informed consent to perform the task was obtained from the children’s parents. The study was conducted according to the 1964 Declaration of Helsinki and was approved by the Internal Review Board of the University of L’Aquila.



Apparatus

The apparatus was situated in open-air, in a large garden, and consisted of nine orange plastic buckets (18 cm wide × 28 cm high) containing the reward (a little-colored ball). The buckets, along with a swinging cover, were arranged in three different spatial configurations as described in the Procedures section. The apparatus was surrounded by extra-maze cues (trees, swings, benches, etc.) held in constant spatial relations among each other throughout the experiment. During the test phases only, children could see or have physical access to the three different spatial configurations. In order to increase the motivation to pick up the rewards, at the end of each trial, the child received a reward (a little toy) in exchange for all the colored balls found in the buckets (Foti et al., 2011, 2015).



Procedures

Spatial configurations were derived from previous experimental studies that demonstrated reliability in emphasizing task features and have been accurately described in our previous research (Foti et al., 2011, 2015). In the Matrix configuration, the buckets were arranged 4 m apart in a 3 × 3 square matrix. In the Cross configuration, the buckets were arranged 4 m apart in an “X” formation. In the Cluster configuration, the buckets were arranged 4 m apart, in triplets 120° away from each other (in the lower part of Figures 1, 2, the arrangement of the buckets in the three configurations is depicted).


[image: image]

FIGURE 1. Performances of group I and group II on the search task in Matrix, Cluster, and Cross configurations. Bucket arrangement in the three configurations is depicted in the figures below the graphs (A,B,C). Data are presented as mean ± SEM. Asterisks and the p values inside the graphs (A,C) indicate the significance level of post hoc comparisons on the second-order interactions: ***p < 0.0005. The p values of the main factors are reported on the right side of each graph.
 


[image: image]

FIGURE 2. Performances of group I and group II on the search task in Matrix, Cluster, and Cross configurations. Bucket arrangement in the three configurations is depicted in the figures below the graphs. Data are presented as mean ± SEM (A,B,C). The p values inside the graph (C) indicate the significance level of post hoc comparisons on the second-order interaction. The p values of the main factors are reported on the right side of each graph.
 

Each child was allowed to freely explore the apparatus to retrieve the rewards. A trial ended when all nine rewards had been collected or 30 visits (correct or wrong) had been made. Since the buckets were never filled with two rewards in the same trial, the optimal performance consisted of visiting each bucket only once, collecting nine rewards through nine visits. A bucket was considered visited when the child looked inside the bucket. An error was recorded when the child re-visited a bucket already visited during the same trial or when a bucket was never visited. Each participant performed two trials a day (inter-trial interval: 2 h) with a given spatial configuration. On the first day, the children performed two trials with one spatial configuration. The next day, they performed two trials with a different spatial configuration. On the third day, they performed two trials with the remaining spatial configuration. The order of presentation of the three configurations was randomized among children.

At the beginning of the first test day, the experimenter used the same simple verbal instructions to explain the task to each child (“The game is to find some little colored balls. Do you see the orange buckets? You have to reach a bucket, take the little ball inside, until you have collected all the balls. Go and have fun!”). No other instruction or verbal encouragement was provided during the testing. Each participant wore an actigraph device (wActiSleep-BT, ActiGraph, Pensacola, Florida) to record the steps taken during the exploration of each configuration.



Behavioral Parameters

In each of the two trials of a given configuration, the following parameters were analyzed: the search time, i.e., the time (in seconds) to complete the task; the search efficiency, i.e., the number of appropriate visits (successes) performed in the trial; the total errors, i.e., the percentage of total errors out of the total visits (considering both re-visits (visiting a previously depleted bucket) and no-visits to a bucket (skipping a bucket)); and the re-visit errors, the no-visit errors, and the spatial span, i.e., the longest sequence of correct visits. Moreover, in order to evaluate the locomotion, we calculated the total distance (in centimeters) traveled to complete the task.



Drawings

In order to evaluate the graphical and mental representation mapping abilities, after the second trial of each configuration, all children were asked to draw the setting where they had just “played.” Thus, each child drew three drawings, one for each configuration. No instructions were provided either about representing the individual objects, the global setting, or about indicating how many buckets (or rewards) were present in the setting.

In examining the drawings of the three spatial configurations, we evaluated the type of representation, an index rating the egocentric/allocentric ratio of drawings, using a 5-point Likert scale (from 1: clearly egocentric, to 5: clearly allocentric), according to Foti et al., 2018. To objectively assess this parameter, we asked two coders, blind to experimental conditions and expert in mental spatial representations and human navigation, to score each drawing according to its egocentricity/allocentricity. The scoring was considered reliable only when the Cohen’s kappa coefficient showed sufficient consistency (k > 0.75).



Statistical Analysis

The results of each participant belonging to experimental groups were presented as mean values of the two trials of any configuration ± SEM. The data were first tested for normality (Shapiro-Wilk normality test) and homoscedasticity (Levene test) and then compared using three-way analyses of variance (ANOVA) by applying the mixed model for the independent variables (Age and Gender) and repeated measures (Configurations), followed by post hoc using Duncan’s test.

Since in the present study a number of analyses were run, controlling for the alpha inflation was needed. We controlled the proportion of type I errors among all rejected null hypotheses by setting the false discovery rate (FDR) to 0.05. The FDR was estimated through the procedure described in Storey and Tibshirani, 2003. In our results, the 0.05 level of significance corresponded to an FDR < 0.05.




RESULTS


Search Time

With regard to the time spent to complete the test, a three-way ANOVA (Age × Gender × Configuration) was used. Results are reported as F statistic (F), statistical significance (p), and bias effect size estimation ([image: image]). The statistical analysis revealed significant Age (F1,32 = 11.71, p = 0.002, [image: image] = 0.27) and Configuration (F2,64 = 36.99, p < 0.000001, [image: image] = 0.53) effects, while the Gender (F1,32 = 0.0001, p = 0.99) effect was not significant. Also, the first-order Age × Gender (F1,32 = 4.9, p = 0.03, [image: image] = 0.13) and Age × Configuration (F2,64 = 3.78, p = 0.03, [image: image] = 0.10) interactions were significant. Conversely, the first-order Gender × Configuration (F2,64 = 1.08, p = 0.34) and the second-order Age × Gender × Configuration (F2,64 = 1, p = 0.37) interactions were not significant.

As revealed by the post hoc comparisons performed on the first-order Age × Gender interaction, the male children of group II were significantly faster than the male children of group I (p = 0.001), while the two groups of females took similar times (p = 0.4). Moreover, the post hoc comparisons performed on the first-order Age × Configuration interaction showed that, in the Matrix configuration, group I took a similar time in comparison to group II (p = 0.15). However, in the Cross and Cluster configurations, group I was significantly slower than group II (at least p = 0.0005) (Figure 1A).



Search Efficiency

A three-way ANOVA (Age × Gender × Configuration) showed significant Age (F1,32 = 6.94, p = 0.01, [image: image] = 0.18), Gender (F1,32 = 4.99, p = 0.03, [image: image] = 0.13), and Configuration (F2,64 = 3.69, p = 0.03, [image: image] = 0.10) effects. None of the interactions were significant (Age × Gender: F1,32 = 2.12, p = 0.15; Age × Configuration: F2,64 = 0.09, p = 0.91; Gender × Configuration: F2,64 = 2.57, p = 0.08; Age × Gender × Configuration: F2,64 = 0.47, p = 0.62).

Interestingly, post hoc comparison performed on the Age and Gender effects revealed that group II obtained higher values of search efficiency than group I (p = 0.01) and that male children performed better than female children (p = 0.03). Moreover, post hoc comparisons performed on the Configuration effect revealed that the Cross configuration was more difficult than the Matrix and Cluster configurations (Cross vs. Cluster or Matrix: at least p < 0.0001) (Figure 1B).



Total Errors

A three-way ANOVA (Age × Gender × Configuration) revealed significant Age (F1,32 = 10.66, p = 0.003, [image: image] = 0.25) and Configuration (F2,64 = 10.32, p = 0.0001, [image: image] = 0.24) effects, while the Gender (F1,32 = 2.06, p = 0.16) effect was not significant. Moreover, also the first-order interaction Gender × Configuration was significant (F2,64 = 4.24, p = 0.02, [image: image] = 0.12). The remaining interactions were not significant (Age × Gender: F1,32 = 1.27, p = 0.26; Age × Configuration: F2,64 = 0.21, p = 0.81; Age × Gender × Configuration: F2,64 = 0.70, p = 0.5). Post hoc comparisons performed on the Age effect revealed that group I had significantly higher total errors than group II (p = 0.003). Moreover, as revealed by the post hoc comparisons performed on the first-order Gender × Configuration interaction, the performance of female children was worse in the Cross configuration than the performance of male group (p = 0.002), while there were no significant differences between female and male children in the Matrix (p = 0.46) and Cluster (p = 0.07) configurations (Figure 1C).



Re-visit Errors

A three-way ANOVA (Age × Gender × Configuration) revealed significant Age (F1,32 = 9.28, p = 0.005, [image: image] = 0.22) and Configuration effects (F2,64 = 10.89, p = 0.00008, [image: image] = 0.25), while Gender effect was not significant (F1,32 = 1.56, p = 0.22). None of the interactions were significant (Age × Gender: F1,32 = 0.22, p = 0.64; Age × Configuration: F2,64 = 1.04, p = 0.36; Gender × Configuration: F2,64 = 0.95, p = 0.39; Age × Gender  × Configuration: F2,64 = 0.14, p = 0.86). Post hoc comparisons on the Age effect revealed that group I had a significantly higher percentage of re-visit errors than group II (p = 0.005). Moreover, post hoc comparisons performed on the Configuration effect revealed that Cross configuration was more difficult than Matrix and Cluster configurations (Cross vs. Cluster or Matrix: at least p < 0.001) (Figure 2A).



No-Visit Errors

A three-way ANOVA (Age × Gender × Configuration) revealed a significant Gender effect (F1,32 = 4.89, p = 0.03, [image: image] = 0.13), while Age (F1,32 = 3.46, p = 0.07) and Configuration (F2,64 = 3.1, p = 0.06) effects were not significant. None of the interactions were significant (Age × Gender: F1,32 = 2.5, p = 0.12; Age × Configuration: F2,64 = 0.16, p = 0.85; Gender × Configuration: F2,64 = 2.85 p = 0.06; Age × Gender × Configuration: F2,64 = 1.11, p = 0.34). Post hoc comparisons performed on the Gender effect revealed that female children made more no-visit errors than male children did (Figure 2B) (p = 0.03).



Spatial Span

The spatial span is represented by the longest sequence of correct visits. A three-way ANOVA (Age × Gender × Configuration) revealed significant Age (F1,32 = 11.64, p = 0.002, [image: image] = 0.27) and Configuration (F2,64 = 12.85, p = 0.00002, [image: image] = 0.29) effects, while Gender (F1,32 = 0.37, p = 0.55) effect was not significant. Moreover, the first-order interaction Gender × Configuration was significant (F2,64 = 2.94, p = 0.04, [image: image] = 0.02), while the remaining interactions were not significant (Age × Gender: F1,32 = 0.13, p = 0.72; Age × Configuration: F2,64 = 0.71, p = 0.5; Age × Gender × Configuration: F2,64 = 0.32, p = 0.73).

Post hoc comparisons performed on the Age effect showed that group II exhibited higher values of span than group I (p = 0.002). Moreover, post hoc comparisons performed on the first-order interaction Gender × Configuration showed that male children exhibited significantly higher values of span than female children in the Cross configuration (p = 0.045), while there were no significant differences between female and male children in the Matrix (p = 0.22) and Cluster (p = 0.45) configurations (Figure 2C).



Total Distance

A three-way ANOVA (Age × Gender × Configuration) revealed significant Age (F1,32 = 4.48, p = 0.04, [image: image] = 0.12) and Configuration (F2,64 = 39.27, p < 0.000001, [image: image] = 0.55) effects, while the Gender (F1,32 = 3.37, p = 0.08) effect was not significant. None of the interactions were significant (Age × Gender: F1,32 = 0.14, p = 0.71; Age × Configuration: F2,64 = 0.09, p = 0.91; Gender × Configuration: F2,64 = 0.29 p = 0.75; Age × Gender × Configuration: F2,64 = 2.20, p = 0.12). Post hoc comparisons performed on the Age effect showed that group I exhibited higher values of total distance than group I (p = 0.04). Moreover, post hoc comparisons performed on the Configuration effect showed that children exhibited higher values of total distance in the Cross and Cluster configurations than in the Matrix and Cluster configurations (Cluster or Cross vs. Matrix: at least p < 0.0001) (Figures 3A,B).


[image: image]

FIGURE 3. (A) Total distance of group I and group II travelled to complete the task in Matrix, Cluster, and Cross configurations. Data are presented as mean ± SEM. (B) Trajectories traveled by all children of each group are depicted.
 



Drawings

All children willingly drew the spatial setting where they had just “played.” A three-way ANOVA (Age × Gender × Configuration) revealed a significant Age effect (F1,28 = 6.55, p = 0.02, [image: image] = 0.19), while Gender (F1,28 = 0.16, p = 0.69) and Configuration (F2,56 = 2.29, p = 0.11) effects were not significant. None of the interactions were significant (Age × Gender: F1,28 = 0.14, p = 0.71; Age × Configuration: F2,56 = 0.51, p = 0.6; Gender × Configuration: F2,56 = 0.89 p = 0.42; Age × Gender × Configuration: F2,56 = 1.72, p = 0.19). Post hoc comparisons performed on the Age effect revealed that the values of younger children (mean score: 1.24 ± 0.44) were significantly different in comparison to older children (mean score: 2.3 ± 0.81) (Figure 4).


[image: image]

FIGURE 4. Selected drawings of group I and group II. At the end of each configuration, the children were required to draw the setting they had just experienced.
 




DISCUSSION

The present research focused on the development of spatial abilities using ecological settings with different configurations and without spatial constraints. The three configurations children explored were placed outdoor. Thus, our experimental setting allowed children to consider themselves as participants in a search game, thus motivating them to perform the task. Another positive aspect of our task is that it allows the analyses of different facets of spatial memory. In fact, the analysis of all the parameters provides information on procedural competences, on declarative knowledge, on the mental representation of the environment, and on spatial working memory abilities.

The main results of the present study are severalfold.

Firstly, the development of spatial abilities follows a precise developmental trend with a clear age-related improvement. In particular, younger children displayed worse performances as compared to the older ones with regard to the total time employed to complete Cluster and Cross configurations, in the number of total and re-visit errors, in search efficiency, in spatial span, and in distance travelled (Figures 1–3). However, older children did not always have error-free performance or maximum span value, suggesting that at 6 years of age such abilities are not fully developed. To be confirmed, such a hypothesis should be further tested with older children. These findings are in accordance with previous developmental psychological evidence showing that children younger than 7 years of age fail to resolve spatial behavioral tasks (Overman et al., 1996; Lehnung et al., 1998; Mandolesi et al., 2009; Foti et al., 2011). Moreover, our study is in accordance with Lehnung et al. (2003) who have shown that locomotion facilitates the acquisition of declarative knowledge in children under the age of 7 and with Boccia et al. (2017) who have shown that navigational training enhances allocentric spatial recall. Our results suggest that the acquisition of declarative knowledge is more effective if the children are allowed to move in the open space, without spatial constraints. According to this, the children belonging to group II (mean age: 5.8 ± 0.9), besides scoring higher in all parameters as compared to children of group I, drew the configurations mainly as observed from above, thus suggesting a growing capacity of mental representation (Figure 4). However, their mental representative mapping abilities are not fully developed, as evidenced by their drawings, where the representation of the configurations is not always complete and still flawed by elements of egocentric perspective. Conversely, the drawings of younger children were characterized exclusively by the egocentric perspective. These data suggest a clear age-related improvement in the mental representative mapping abilities and support the idea that exploring the space appropriately is a necessary condition in order to build a cognitive spatial map (Mandolesi et al., 2003; Foti et al., 2018).

Other evidence provided in this paper concerns gender differences in solving the multiple reward task. We observed better performance of males than females in search efficiency and in no-visit errors in all configurations (Figures 1, 2) and better performance of males than females in total error and in the spatial span only for the Cross configuration (Figures 1, 2). As will be discussed later, the Cross configuration is the hardest to explore, and it is interesting to note that in this specific experimental condition gender differences emerged. Altogether, these data might appear to be in contradiction with our previous results (Mandolesi et al., 2009). In fact, we found a precocious acquisition of spatial competencies in females both in the procedural components and in the working memory abilities. However, it is important to stress that gender differences may vary widely depending on several factors, such as the spatial task used. In our previous work, we analyzed spatial abilities in children using the radial maze task that is strongly influenced by spatial constraints. Here, children have to explore an open space, without any spatial constraints, and therefore, they had to organize (plan) a path suitable for the configuration to be explored. Thus, it is reasonable to conclude that any gender difference observed in children in a given spatial task cannot be generalized to other spatial tasks. In particular, the Cross configuration is the hardest configuration, where the optimal strategy is not immediately suggested by the geometry. This feature requires further cognitive abilities, such as cognitive flexibility. In fact, the child has to change of strategy when finishing one line and starting a new one. Such peculiarity might make gender differences emerge in this specific task. Thus, one might speculate that spatial constraints are dealt with differently according to the gender of the participant. However, more studies will be needed to confirm or falsify such a hypothesis.

One more piece of evidence provided in this manuscript is that the environment strongly affects spatial exploration. In fact, as explained before, we observed that some configurations are easier to explore than others. In particular, in the Matrix and Cluster configurations, children made fewer re-visit errors and exhibited higher levels of search efficiency than they did in the Cross configuration (Figure 1). Moreover, the Matrix configuration was explored by traveling the shortest distance (Figure 3). To explain these differences, it is important to take into account the characteristics of the three configurations.

Efficient strategies for exploring the Matrix configuration are structured search patterns that follow rows (or columns) sequentially or, conversely, that travel the perimeter of the external “square” to reach the most internal bucket at the end (Foti et al., 2011, 2015). In previous studies, we highlighted that pre-school children explored the Matrix configuration using a structured search patterns characterized by the shortest transitions from one bucket to another (Foti et al., 2011, 2015), thus suggesting that children can orientate themselves in an open environment already at about 6 years of age, as long as structured internal patterns are present. This may be the reason why children explored the Matrix configuration more easily. The Cluster configuration offers the possibility of using a chunking strategy, first visiting the locations within the same cluster and then moving to another one. The chunking theory (Murdock, 1995, 2005; Schyns et al., 1998) predicts that, once the chunks have been retrieved, the burden on memory will be a function of the number of clusters to be explored in the search space (in our case, three) rather than of the total number of locations to be explored (in our case, nine). Thus, the chunking strategy implies a hierarchical organization of memory, substantially reducing the working memory load, thus improving the overall performance (Terrace and McGonigle, 1994; Cohen et al., 2003). Given its reduced mnesic load, even this configuration is not particularly difficult to explore. Hence, one might speculate that the hierarchical organization of particular facets of spatial memory starts to develop earlier than 4 years of age. Finally, the Cross configuration is characterized by strong spatial constraints. As explained before, the most effective strategy to fully explore the Cross configuration requires that the children use an end-to-end search pattern twice, moving along the lines and visiting the next bucket at each step. However, once a line is completed and the children reach its end, it is necessary to switch to the second line by reaching to the farthest bucket (thus modifying the strategy). This change of strategy requires cognitive flexibility, an ability that matures later on during the growth, along with the maturation of the frontal lobes (Oyefiade et al., 2018). This interpretation would explain why the Cross configuration is more difficult to explore in comparison to the Matrix and the Cluster ones.

In conclusion, it can be proposed that both the procedural competences and the memory load requested to explore a specific environment are determined by its specific features. The memory load required might partly explain the difficulties in the exploration of more complex environments by younger children who have not yet completed the maturation of cerebral areas involved in the processing of spatial memory. Likewise, the complexity of the environment to be explored requires specific spatial abilities, which might be related to the emergence of gender differences. Finally, our study shows how the exploration of the environment facilitates the building of its internal representation and highlights that movement plays an important role in the development of spatial abilities.

Overall, our findings provide information about the timing of the development of spatial orientation and spatial memory and are in line with previous evidence. Further investigation is needed to characterize the developmental trend of spatial cognitive functions.
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Split-belt treadmills that move the legs at different speeds are thought to update internal representations of the environment, such that this novel condition generates a new locomotor pattern with distinct spatio-temporal features compared to those of regular walking. It is unclear the degree to which such recalibration of movements in the spatial and temporal domains is interdependent. In this study, we explicitly altered subjects' limb motion in either space or time during split-belt walking to determine its impact on the adaptation of the other domain. Interestingly, we observed that motor adaptation in the spatial domain was susceptible to altering the temporal domain, whereas motor adaptation in the temporal domain was resilient to modifying the spatial domain. This non-reciprocal relation suggests a hierarchical organization such that the control of timing in locomotion has an effect on the control of limb position. This is of translational interest because clinical populations often have a greater deficit in one domain compared to the other. Our results suggest that explicit changes to temporal deficits cannot occur without modifying the spatial control of the limb.

Keywords: locomotion, motor learning, split-belt, spatio-temporal, sensorimotor adaptation, kinematics


1. INTRODUCTION

We are constantly adapting our movements to demands imposed by changes in the environment or our body. In walking, this requires the adaptation of spatial and temporal gait features to control “where” and “when” we step, respectively. Particularly, in split-belt walking when one leg moves faster than the other, it has been observed that subjects minimize spatial and temporal asymmetries by adopting motor patterns specific to the split environment (e.g., Malone et al., 2012). It is thought that this is achieved by updating internal representations of the treadmill for the control of the limb in space and time (Malone et al., 2012). There is a clinical interest in understanding the interdependence in the control of these two aspects of movement because pathological gait often has a greater deficiency in one domain compared to the other (Malone and Bastian, 2014; Finley et al., 2015). Thus, there is a translational interest to determine if spatial and temporal asymmetries in clinical populations can be targeted and treated independently.

Ample evidence supports that the adaptation, and hence control, of spatial and temporal gait features is dissociable. Notably, studies have shown that inter-limb measures, such as step timing (temporal) and step position (spatial) adapt at different rates (Malone and Bastian, 2010; Sombric et al., 2017), they exhibit different generalization patterns (Torres-Oviedo and Bastian, 2010), and follow distinct adaptation dynamics throughout development (Vasudevan et al., 2011; Patrick et al., 2014) or healthy aging (Sombric et al., 2017). In addition, several behavioral studies show that subjects' adjustment of spatial metrics can be altered (Malone and Bastian, 2010; Malone et al., 2012; Long et al., 2016) without modifying the adaptation of temporal gait features. However, the opposite has not been demonstrated. For example, altering intra-limb measures (i.e., characterizing single leg motion) of timing, such as stance time duration (Afzal et al., 2015; Krishnan et al., 2016) also leads to changes in intra-limb spatial features, such as stride lengths. In sum, the spatial and temporal control of the limb is thought to be dissociable, but it remains unclear if the adaptation of internal representations of timing can be altered and what is the impact of such manipulation in the temporal domain on the spatial control of the limb.

In this study we aimed to determine the interdependence between the spatial and temporal control of the limbs during walking, particularly of inter-limb parameters characterizing bipedal coordination. We hypothesized that spatial and temporal inter-limb features are adapted independently based on previous studies demonstrating their dissociation. To test this hypothesis, subjects walked on a split-belt treadmill, which requires the adaptation of spatial and temporal inter-limb coordination. We further altered subjects' movements during split-belt walking by either instructing them “where” (spatial feedback) or “when” (temporal feedback) to take a step. We contrasted the impact of explicitly manipulating movements in one domain on the adaptation of the other domain to determine their interdependence.



2. MATERIALS AND METHODS

We recruited twenty-one healthy young subjects (13 women, 8 men, mean age 24.69 ± 4 years) to voluntarily participate in this study. Subjects were randomly assigned to three groups (n = 7, each): (1) control, (2) spatial feedback, (3) temporal feedback to determine if explicitly altering the limb motion on either the spatial or the temporal domain with visual feedback during split-belt walking had an impact on the adaptation of the other domain (Figure 1A). Notably, if the control of these two domains was dissociable, altering one would not have an effect on the other. Alternatively, if they were interdependent, modifying the adaptation of one domain not only would have an effect on the targeted domain, but will also alter the other one. The protocol was approved by the Institutional Review Board of the University of Pittsburgh and all subjects gave informed consent prior to testing.


[image: image]

FIGURE 1. Expected outcomes, paradigm and feedback visualization. (A) Expected outcomes for dissociable and interdependent internal representations of space and time. If dissociable, the feedback manipulation will only affect the targeted domain without changing the other domain. For example, spatial feedback (indicated with blue outline) would alter spatial features (S) of the motor pattern while temporal ones (T) remain invariant. On the other hand, if the domains are interdependent, feedback manipulation of one domain will also alter the other domain. For example, spatial feedback modifying spatial features of the motor pattern would also change temporal ones. (B) Split-belt walking paradigm used in all groups. Dashed lines separate the different experimental phases. All groups experienced the same number of strides during each phase (Baseline: 150, Familiarization: 150, Adaptation: 600, and Post-adaptation: 450). The two belts moved at the same speed (0.75m/s) during the Baseline and Familiarization phases. Only subjects in the feedback groups walked while observing their movements on a TV screen placed directly in front of them (Feedback On) during the familiarization phase. The feedback to these groups was also given during the Adaptation phase (gray shaded area) during which one belt (fast belt) moved at 1m/s and the other one (slow belt) moved at 0.5m/s. Finally, during Post-adaptation subjects walked again with the two belts moving at the same speed (0.75m/s). (C,D) Visual feedback schematic. Schematic of the legs in the top row illustrate the step position (e.g., αf and αs) and step time (e.g., ts), which were the walking features used in the spatial and temporal feedback tasks, respectively. Bottom rows in (C,D) illustrate the screen shots observed by individuals in the spatial feedback group (C) or in the temporal feedback group (D). Blue rectangles indicated the target step position or step time value that subjects had to achieve with each leg. These rectangles turned green when subjects met the desired step position or step time values and red when they did not. Yellow lines indicated either the step position value (C) or the step time value (D) at heel strike (HS) when taking a step with the right or left leg (e.g., left leg's step position is shown in the screen shot #1). In the example shown, the step position was correct for the right leg but not for the left leg. The light gray progression bars showed in real-time either the distance from the ankle to the hip markers as subjects swing the leg forward (C) or the time that the subject had spent on the standing leg since it hit the ground (D).




2.1. Experimental Protocol

All subjects walked on a split-belt treadmill during four experimental phases: Baseline, Familiarization, Adaptation, and Post-adaptation. The speed for each belt during these phases is shown in Figure 1B. This speed profile enabled individuals to walk at an averaged speed of 0.75 m/s throughout the experiment. In the Baseline phase, individuals walked with the two belts moving at the same speed of 0.75 m/s for 150 strides (~ 3 min). Recordings from these phase were used as the reference gait for every individual. In the Familiarization phase, all participants also walked at 0.75 m/s for 150 strides, but only subjects in the feedback groups received the same visual feedback that they were going to experience during the subsequent Adaptation phase. This was done to allow feedback groups to become habituated to use the provided visual feedback to control either spatial (spatial feedback group) or temporal (temporal feedback group) gait features. In the Adaptation phase, the belts were moved at a 2:1 ratio (1:0.5 m/s) for 600 strides (~13 min). We selected these specific belt speeds because other studies have indicated that they induce robust sensorimotor adaptation (Reisman et al., 2005; Mawase et al., 2014; Sombric et al., 2017; Vervoort et al., 2019) and we observed in pilot tests that subjects with visual feedback at these speeds could successfully modify the spatial and temporal gait features of interest. The self-reported dominant leg walked on the fast belt. In the Post-adaptation phase, all individuals walked with both belts moving at 0.75 m/s for 450 strides (~10 min). This phase was used to quantify gait changes following the Adaptation phase. The treadmill belts were stopped at the end of each experimental phase. A handrail was placed in front of the treadmill for safety purposes, but individuals did not hold it while walking. A custom-built divider was placed in the middle of the treadmill during the entire experimental protocol to prevent subjects from stepping on the same belt with both legs. Subjects also wore a safety harness (SoloStep, SD) that did not interfere with their walking (no body weight support).

We tested three groups: (1) control group, (2) spatial feedback group, (3) temporal feedback group. The control group was asked to “just walk” without any specific feedback on subjects' movements. Each subject in the spatial or temporal feedback groups was instructed to either maintain his/her averaged baseline step position (spatial feedback group) or averaged baseline step time (temporal feedback group) when the feedback was on. Step position was defined as the sagittal distance between the leading leg's ankle to the hip at heel strike (Figure 1C). Step time was defined as the time period from heel strike (i.e., foot landing) of one leg to heel strike of the other leg (Figure 1D). We chose to manipulate step position and step time for consistency with other studies (Malone et al., 2012; Long et al., 2016) and because these parameters are adjusted during split-belt walking to reduce spatial and temporal inter-limb asymmetries, respectively (Malone et al., 2012). Panels C and D in Figure 1 show sample screen shots of the visual feedback observed by each group on a screen placed in front of them. More specifically, we permanently displayed either spatial or temporal targets (blue rectangles) indicating the averaged step position (spatial feedback group) or averaged step time (temporal feedback group) across legs during baseline walking. These targets turned green when subjects achieved the targeted baseline values and they turned red when they did not. A tolerance of ±0.75 and ±1.25% of the baseline value was given to subjects in the spatial and temporal feedback groups, respectively. Yellow lines indicated the actual step position and step time for each leg at every step. Thus, subjects could appreciate how far they were from the targeted spatial or temporal value at every step.



2.2. Data Collection

Kinetic and kinematic data were collected to quantify subjects' gait. Kinematic data was collected at 100 Hz with a motion capture system (VICON motion systems, Oxford, UK). Passive reflective markers were placed bilaterally on bony landmarks at the ankle (malleolus) and the hip (greater trochanter). Kinetic data was collected at 1,000 Hz with the instrumented split-belt treadmill (Bertec, OH). The normal ground reaction force (Fz) was used to detect when the foot landed (i.e., heel strike) or was lifted off (i.e., toe off). A threshold of 10 N was used for detecting heel strikes and toe offs for data analysis, whereas a threshold of 30 N was used for counting strides in real-time.



2.3. Data Analysis
 
2.3.1. Gait Parameters

We computed six gait parameters previously used (Malone et al., 2012) to quantify the adaptation of spatial and temporal control of the limb during split-belt walking: Sout, Tout, SA, TA, SnA, and TnA. We used Sout and Tout because our feedback was designed to directly alter these metrics. For example, subjects in the spatial feedback group were given feedback to maintain the same baseline step position in both legs. Sout is, therefore, a good metric of performance for the spatial feedback group since it quantifies the difference in step positions, αf and αs, when taking a step with the fast and slow leg, respectively. Formally expressed:

[image: image]

αi is a length measurement that indicates the position of the ankle marker relative to the hip marker at heel strike. The subscript i can be either f or s for the leg that is on the fast belt or slow belt, respectively. By convention, Sout is positive when the fast leg's foot lands farther away from the body when taking a step than the slow leg's one (i.e., αf > αs). Sout is zero during baseline and subjects in the feedback group were instructed to maintain this value during split-belt walking.

Similarly, subjects in the temporal feedback group were given feedback to maintain the same baseline step times in both legs. Tout is, therefore, a good metric of performance for the temporal feedback group since it quantifies the difference in step times, ts and tf. Step time ts is defined as the time interval to take a step on the slow belt (i.e., duration from heel strike on the fast belt to the subsequent heel strike on the slow belt) and vice versa for ts. Formally expressed:
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Where Tstride is the stride time (i.e., time interval between two consecutive heel strikes with the same leg). By convention, Tout is positive when the slow leg's step time is longer that the fast leg's one. Tout is zero during baseline and subjects in the feedback group were instructed to maintain this value during split-belt walking. It has been previously shown that Sout and Tout are adapted during split-belt walking to minimize spatial and temporal baseline asymmetries defined as SA and TA, respectively (Malone et al., 2012). Therefore, we also quantified SA and TA because these are adaptive parameters (Reisman et al., 2005; Malone and Bastian, 2010; Malone et al., 2012) that could be indirectly altered by our spatial and temporal feedback even if subjects in these groups were not explicitly instructed to modify them.

SA quantifies differences between the legs in where they oscillate with respect to the body. The oscillation of each leg was computed as the ratio between two distances: step position (α) and stride length (γ) (i.e., anterior-posterior distance from foot position at heel strike to ipsilateral foot position at toe off). Thus, SA (legs' orientation asymmetry) was computed as the difference between these ratios when taking a step with the slow leg (i.e., slow leg leading) vs. the fast leg (see Equation 3).
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In the temporal domain, TA quantified the difference in double support times (i.e., period during which both legs are on the ground) when taking a step with the fast leg (DSs) or slow leg (DSf), respectively (see Equation 4). In other words, DSs is defined as the time from fast heel strike to slow toe off and DSf as the time from slow heel strike to fast toe off.
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Lastly, we computed gait parameters defined as SnA and TnA, to test the specificity of our feedback. Namely, it has been previously observed that these parameters do not change as subjects walk in the split-belt environment (Reisman et al., 2005; Malone et al., 2012; Yokoyama et al., 2018). Thus, these measures are thought to simply reflect the speed difference between the legs, and hence, we expected that our feedback would not alter them. Specifically, SnA quantifies the difference between the fast and slow leg's ranges of motion γf and γs. Formally expressed as:
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The non-adaptive measure in the temporal domain TnA quantifies the difference between the slow and fast leg's stance time durations (which is defined as the interval when the foot is in contact with the ground), which we labeled as STs and STf, respectively. Formally expressed as:
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2.3.2. Outcome Measures

We computed steady state and after-effects to respectively characterize the adaptation and recalibration of walking in the spatial and temporal domains. Both of these outcome measures were computed for each gait parameter described in the previous section. Steady state was used to characterize the spatial and temporal features of the adapted motor pattern once subjects reached a plateau during split-belt walking. Steady state was computed as the averaged of the last 40 strides during the Adaptation phase, except for the very last 5 strides to exclude transient steps when subjects were told to hold on to the handrail prior to stopping the treadmill. After-effects were used to characterize the recalibration of subjects' internal representation of the environment (Roemmich and Bastian, 2015) leading to gait changes that were sustained following split-belt walking compared to baseline spatial and temporal gait features. After-effects were computed as the averaged value for each gait parameter over the first thirty strides of post-adaptation. We used 30 strides, rather than only the initial 1–5 strides, because we were interested in characterizing long lasting after-effects (Long et al., 2015; Roemmich and Bastian, 2015; Mawase et al., 2017). We removed baseline biases from both measures by subtracting the baseline values for each gait parameter averaged over the last 40 strides during baseline (minus the very last transient 5 strides). This was done to exclude individual biases before aggregating subjects' outcome measures in every group.



2.4. Statistical Analysis

We performed separate two-way repeated measures ANOVAs (factors: group and epoch) comparing the control group to either the temporal or spatial feedback groups. This was done to determine the effect of experimentally altering either spatial or temporal measures during split-belt walking on outcome measures in both domains. When main effects of group or epoch were found (p < 0.05), we used Fisher's LSD post-hoc testing to assess if main effects were driven by differences between the control group and feedback group in either domain. We applied a Bonferroni correction to account for 2 comparisons of interest resulting in a significance level set to α = 0.025. We selected to do our analysis with unbiased data (i.e., subject-specific baseline bias removed) to reduce inter-subject variability due to distinct baseline biases and focus on group effects due to the distinct experimental manipulations. Lastly, we performed independent sample t-tests to determine if steady state or after-effects were significantly different from baseline. We applied Bonferroni corrections to account for four comparisons of interest (baseline vs. steady state and baseline vs. after-effects for each of the experimentally targeted Sout and Tout parameters) setting the significance level to α = 0.0125. For all other parameters, we set the significance level to α = 0.025 to account for only two comparisons of interest (baseline vs. after-effects in the spatial and temporal domains). This was done since we were primarily interested in the impact of the experimental manipulation on the after-effects of the parameters that were not explicitly targeted with the visual feedback.




3. RESULTS


3.1. Confirmation of Results Supporting Dissociable Representation of Spatial and Temporal Walking Features

Spatial and temporal gait features adapted and recalibrated independently when feedback was used to alter the spatial control of the limb. This is indicated by the group differences qualitatively observed in the Sout's time courses during Adaptation and Post-adaptation (left panel in Figures 2A,B, respectively) contrasting the overlapping time courses of Tout in the control group (red trace) and spatial feedback group (blue trace) (right panel in Figures 2A,B). Accordingly, we found a significant group effect on Sout (p = 0.0039), but not a group (p = 0.3748) or group by epoch interaction effect on Tout (p = 0.2293). Post-hoc analysis indicated that the spatial feedback reduced the steady state of Sout relative to the control group (S → S : p = 0.0021); such that the steady state values reached by the spatial feedback group were not significantly different from zero (p = 0.0481), whereas those of the control group differed from zero (p = 0.0004). This indicated that individuals in the spatial feedback group were able to maintain their baseline Sout values with the visual feedback on this metric. In contrast, the steady state values of Tout were significantly different from zero in both groups (control group: p < 0.0001; spatial feedback group: p = 0.0004). The dissociation between spatial and temporal control was also shown by the after-effects of Sout and Tout in the control vs. spatial feedback groups (Figure 2B). Post-hoc analysis indicated that the spatial feedback group had reduced after-effects of Sout compared to the control group (S → S : p = 0.0159) and that only the control group had after-effects different from zero (control group: p = 0.0003; spatial feedback group: p = 0.0164). Conversely, Tout was once again not qualitatively different between the groups and the after-effects were non-significantly different from zero on either group (control group: p = 0.4235; spatial feedback group: p = 0.1023). In sum, spatial feedback had a domain-specific effect: it altered the adaptation and recalibration of Sout (targeted spatial parameter) without modifying the adaptation and aftereffects of step time (Tout).
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FIGURE 2. Adaptation and post-adaptation of the parameters Sout (targeted) and Tout in the spatial feedback and control groups. Stride-by-stride time courses show the effect of altering step positions in the adaptation (A) and post-adaptation (B) of Sout and Tout. Each data point in the time courses represents the average of five consecutive strides and shaded areas around the data points represent the standard errors. Bar plots indicate the mean average behavior in the epochs of interest (indicated with the black rectangles), gray dots indicate values for individual subjects, and vertical black lines are standard errors. Horizontal lines between bars illustrate significant differences between groups (p < 0.025). (A) Steady state values of Sout and Tout: we found a significant group difference in Sout's steady state. Colored asterisks indicate that the mean steady state for that group is significantly different from zero (p < 0.0125). (B) After-effect values of Sout and Tout: we found a significant group difference in Sout's after-effects. Colored asterisks indicate that the mean after-effect for that group is significantly different from zero (p < 0.0125).



The dissociation in adaptation and recalibration of spatial and temporal representations of walking was also supported by the analysis of spatial and temporal features known to be adapted by the split-belt task, but not directly targeted by our feedback. Namely, the spatial feedback also modified the Adaptation and Post-adaptation time courses of the legs' orientation asymmetry quantified by SA, which is expected given its relation to Sout. Note that the time courses of SA for the spatial feedback group (blue trace) and control group (red trace) do not overlap during Adaptation and Post-adaptation (left panel Figures 3A,B). In contrast, the time courses of double support asymmetry (TA) were not altered by the spatial feedback, as shown by the overlap of TA values during Adaptation and Post-adaptation of the temporal feedback and control groups (right panel Figures 3A,B). Consistently, we found a significant group effect in SA (p = 0.0091) and a non-significant group (p = 0.8679) or group by epoch interaction (p = 0.2229) in TA. Post-hoc analyses revealed that between group differences in SA were driven by the significantly different SA's steady state (S → SA : p = 0.0177) and trending differences in SA's after-effects (S → SA : p = 0.0358); such that after-effects were significant in the control group (p = 0.0009) but not in the spatial feedback group (p = 0.0542). Conversely, after-effects in double support asymmetry (TA) were significantly different from zero in all groups (control group:p = 0.0044; spatial feedback group:p = 0.0007). These results reiterated that changes in the spatial domain did not modify the temporal control of the limb in the temporal domain, replicating previous findings (Malone et al., 2012; Long et al., 2016).
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FIGURE 3. Adaptation and post-adaptation for the adaptive but non-targeted parameters SA (leg orientation asymmetry) and TA (double support time asymmetry) in the spatial feedback and control groups. Stride-by-stride time courses show the effect of altering the step positions in the adaptation (A) and post-adaptation (B) of SA and TA. Each data point in the time courses represents the average of five consecutive strides and shaded areas around the data points represent the standard errors. Bar plots indicate the mean average behavior in the epochs of interest (indicated with the black rectangles), the gray dots indicate values for individual subjects, and vertical black lines are standard errors. Horizontal lines between bars illustrate significant differences between groups (p < 0.025). We found a significant group effect in SA. (A) Steady States for SA and TA: the significant group effect on SA was driven by differences between the spatial feedback and control group in the non-targeted spatial motor output (adaptive motor output). (B) After-Effects values of SA and TA: we found significant group differences in SA. Colored asterisks indicate after-effect values are significantly different from zero (p < 0.025) according to post-hoc analysis.





3.2. New Evidence for Interdependent Representations of Spatial and Temporal Walking Features

Interestingly, we found that spatial and temporal gait features were not independent in their adaptation and recalibration when feedback was used to alter the temporal control of the limb. This is indicated by the qualitative differences between the time courses of Tout and Sout during the Adaptation (Figure 4A) and Post-adaptation phases (Figure 4B). Namely, the control group (red traces) and temporal feedback group (yellow traces) are different in both spatial and temporal parameters. Consistently, we found a significant group effect on Sout (p = 0.0005) and Tout (p = 0.0034). Post-hoc analyses revealed that the Tout's steady state was significantly different from zero in the control (p = 0.0004) and temporal feedback group (p = 0.0092). Thus, subjects in the temporal feedback group did not fully maintained the baseline values of Tout, even if they were able to use the visual feedback to significantly reduce the Tout steady state during split-belt walking relative to the control group (T → T : p < 0.0001). While the temporal feedback group was designed to alter Tout, we did not anticipate a reduction in the Sout's steady state relative to the control group (T → S : p = 0.0027) because this parameter was not directly targeted by the feedback. The interdependence between spatial and temporal domains was also shown by the analysis of after-effects in Post-adaptation (Figure 4B). Post-hoc analyses indicated that temporal feedback did not change the recalibration of Tout (T → T : p = 0.4663), but altered the recalibration of Sout (T → S : p = 0.0010). The non-significant effect on the recalibration of Tout was expected given that after-effects in this parameter are very short lived resulting in Tout after-effect values that are non-significantly different from zero (control group: p = 0.4235; temporal feedback group: p = 0.8550). In contrast, both groups had after-effects in Sout that were significantly different from zero (control group: p = 0.0003; temporal feedback group: p = 0.0021), but they were unexpectedly smaller in the temporal feedback group compared to the control group. In sum, the temporal feedback impact on adaptation and recalibration of Sout (spatial parameter) indicated an interdependence between the spatial and temporal control of the limb.
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FIGURE 4. Adaptation and post-adaptation of the parameters Sout and Tout (targeted) in the temporal feedback and control groups. Stride-by-stride time courses show the effect of altering step times in the adaptation (A) and post-adaptation (B) of Sout and Tout. Each data point in the time courses represents the average of five consecutive strides and shaded areas around the data points represent the standard errors. Bar plots indicate the mean average behavior in the epochs of interest (indicated with the black rectangles), the gray dots indicate values for individual subjects, and vertical black lines are standard errors. Horizontal lines between bars illustrate significant differences between groups (p < 0.025). There was a significant group effect on Sout and Tout. (A) Steady States values of Tout and Sout: we found significant group differences in Sout's and Tout's steady state. Colored asterisks indicate that the mean steady state for that group is significantly different from zero (p < 0.0125). (B) After-effect values of Tout and Sout: we found a significant group difference in Sout's after-effects. Colored asterisks indicate that the mean after-effect for that group is significantly different from zero (p < 0.0125).



The possible interdependence in space and time was further supported by the analysis of spatial and temporal features known to be adapted by the split-belt task, but not directly targeted by our feedback. Namely, the temporal feedback also modified the Adaptation and Post-adaptation time courses of the legs' orientation asymmetry, quantified by SA, which is a spatial measure related to step position. Note that the time courses of SA for the temporal feedback group (yellow trace) and control group (red trace) do not overlap during Adaptation and Post-adaptation (left panel Figures 5A,B). In contrast, the time courses of double support asymmetry (TA) were not altered by the temporal feedback, as shown by the overlap of TA values during Adaptation and Post-adaptation of the temporal feedback and control groups (right panel Figures 5A,B). Consistently, we found a group effect in SA (p = 0.0029) and a non-significant group (p = 0.8151) or group by epoch interaction (p = 0.3189) in TA. post-hoc analyses revealed that these effects were driven by group differences in SA's steady state (T → SA : p = 0.0138) and SA's after-effects (T → SA : p = 0.0163). Surprisingly, we did not find differences on TA's steady state and after-effects, which we expected given the relation between TA and the temporal measure (Tout) directly altered with the temporal feedback. Thus, after-effects in SA and TA were significantly different from zero in all groups (control group: SA : p = 0.0009 and TA : p = 0.0044; temporal feedback group: SA : p = 0.0080 and TA : p = 0.0009), but only those of SA were reduced in the temporal feedback group compared to controls. In sum, these results indicate that temporal feedback did not have a ubiquitous effect in all gait parameters, but it did alter the adaptation and recalibration of the legs' orientation, which also characterizes the spatial control of the limb in locomotion.
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FIGURE 5. Adaptation and post-adaptation for the adaptive but non-targeted parameters SA (leg orientation asymmetry) and TA (double support time asymmetry) in the temporal feedback and control groups. Stride-by-stride time courses show the effect of altering step times in the adaptation (A) and post-adaptation (B) of SA and TA. Each data point in the time courses represents the average of five consecutive strides and shaded areas around the data points represent the standard errors. Bar plots indicate the mean average behavior in the epochs of interest (indicated with the black rectangles), the gray dots indicate values for individual subjects, and vertical black lines are standard errors. Horizontal lines between bars illustrate significant differences between groups (p < 0.025). There was a significant group effect in SA, but no in TA. (A) Steady State values of TA and SA: the significant group effect on SA was driven by differences between the temporal feedback and control group in the non-targeted spatial motor output (adaptive motor output). (B) After-effects of TA and SA: we found a significant group difference in SA. Colored asterisks indicate after-effect values are significantly different from zero (p < 0.025) according to post-hoc analysis.





3.3. Temporal Feedback Modified the Split-Belt Task to a Greater Extent Than the Spatial Feedback

Surprisingly, temporal feedback altered the difference in stance times between the legs (TnA), whereas the spatial feedback did not. This was unexpected given previous literature indicating that SnA and TnA do not change as subjects walk in the split-belt environment (Reisman et al., 2005; Malone et al., 2012; Yokoyama et al., 2018). Thus, we anticipated that either type of feedback (spatial or temporal) would not alter these “non-adaptive” gait features. Qualitatively, we observed that this was the case for the spatial (SnA), but not for the temporal (TnA) “non-adaptive” parameter (Figure 6A). Note that SnA has the same time course for both groups, whereas TnA has a different time course for the control group (red trace) and the temporal feedback group (yellow trace). Consistently, we found a significant group effect (p = 0.0030) and group by epoch interaction (p = 0.0047) in TnA, whereas a non-significant group (p = 0.3860) or group by epoch interaction effect (p = 0.3719) in SnA. Post-hoc analysis revealed that the temporal feedback group reached a significantly lower steady state when compared to the control group (T → TnA : p < 0.0001). Conversely, the spatial feedback group exhibited the non-adaptive behavior of these parameters SnA and TnA that we anticipated. Namely, the time courses of SnA (Figure 6B, left panel) and TnA (Figure 6B, right panel) were overlapping in these two groups. This similarity is substantiated by the non-significant group effect (SnA : p = 0.2338 and TnA : p = 0.3002) or group by epoch interaction (SnA : p = 0.7452 and TnA : p = 0.8163) in the non-adaptive spatial and temporal parameter. In sum, feedback modifying the adaptation of spatial and temporal gait features had a distinct effect on “non-adaptive” temporal parameters thought to only depend on the speed difference between the legs in the split-belt task.
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FIGURE 6. Adaptation of SnA and TnA measures that are non-adaptive and non-targeted parameters in temporal feedback and control group (A) and spatial feedback and control group (B). Stride-by-stride time courses show the effect of altering the step times or step positions on “non-adaptive” temporal and spatial measures (SnA and TnA) during adaptation. Each data point in the time courses represents the average of five consecutive strides and shaded areas around the data points represent the standard errors. Bar plots indicate the mean average behavior in the epochs of interest (indicated with the black rectangles), the gray dots indicate values for individual subjects, and vertical black lines are standard errors. Horizontal lines between bars illustrate significant differences between groups (p < 0.025). (A) Steady State values of TnA and SnA: we found a significant group effect and group by epoch interaction driven by differences between the temporal feedback and control group in the non-targeted temporal motor output (adaptive motor output). (B) Steady State values of SnA and TnA: we did not find a significant group effect or group by epoch interaction for the spatial feedback and control group in the parameters of interest.






4. DISCUSSION


4.1. Summary

Our study confirms previous results suggesting that there are internal representations of space and time for predictive control of movement. We replicated previous results showing that altering the recalibration in the spatial domain does not impact the temporal domain. However, we also observed that the opposite was not true. That is, explicitly reducing the recalibration in the temporal domain altered movement control in space, suggesting some level of interdependence between these two domains. Interestingly, double support asymmetry was consistently corrected across the distinct spatio-temporal perturbations that subjects experienced, whereas spatial asymmetries were not. This indicates that correcting asymmetries in space and time is prioritized differently by the motor system. Our results are of translational interest because clinical populations often have greater deficits in either the spatial or the temporal control of the limb and our findings suggest that they may not be treated in isolation.



4.2. Separate Representations for Predictive Control of Movements in Space and Time

We find that adaptation of movements to a novel walking situation results in the recalibration of internal representations for predictive control of locomotion; which are expressed as robust after-effects in temporal and spatial movement features. This is consistent with the idea that the motor system forms internal representations of space (Marigold and Drew, 2017) and time (Drew and Marigold, 2015; Avraham et al., 2017; Breska and Ivry, 2018) for predictive motor control. Several behavioral studies suggest separate recalibration of these internal representations of space and time in locomotion because spatial and timing measures exhibit different adaptation rates in the mature motor system (Malone and Bastian, 2010; Darmohray et al., 2019) throughout development (Vasudevan et al., 2011; Patrick et al., 2014) or healthy aging (Sombric et al., 2017). Spatial and temporal recalibration also have distinct generalization patterns across walking environments (Torres-Oviedo and Bastian, 2010; Mariscal et al., 2018) and most importantly, altering the adaptation of spatial features does not modify the adaptation and recalibration of temporal ones, as shown by us and others (Malone et al., 2012; Long et al., 2016). This idea of separate representations of space and time in locomotion is also supported by clinical and neurophysiological studies indicating that different neural structures might contribute to the control (Lafreniere-Roula and McCrea, 2005; Rybak et al., 2006) and adaptation (Choi et al., 2009; Vasudevan et al., 2011; Statton et al., 2018) of the spatial and temporal control of the limb in locomotion.



4.3. Hierarchic Control of Timing Leads to Interdependent Adaptation of Movements in Space and Time

Nonetheless, we also found that explicit control of step timing modifies the adaptation and recalibration of movements in space. This result directly contradicts the dissociable adaptation of spatial and temporal features upon explicitly modifying the adaptation of step position (spatial parameter) (Malone et al., 2012; Long et al., 2016). We find two possible explanations to reconcile these findings. First, there might be a hierarchical relationship between the spatial and temporal control of the limb, such that timing cannot be manipulated without obstructing the adaptation of spatial features. We believe that this type of hierarchical organization is not exclusive to explicit control, but it is also applicable to implicit control of the limb in space and time. This is supported by a recent study indicating that lesions to interpose cerebellar nuclei altering the adaptation of double support asymmetry (temporal parameter) also reduced the after-effects of spatial features (Darmohray et al., 2019), whereas the recalibration of spatial features can be halted without modifying the temporal ones (Darmohray et al., 2019). Future studies are needed to determine if similar results would be observed in human bipedal locomotion. This type of hierarchical organization suggests that the execution of spatial and temporal control of the limb can be encoded by separate interneuronal networks (Lafreniere-Roula and McCrea, 2005; Rybak et al., 2006), but the volitional recruitment of those networks cannot occur in isolation. Second, it is possible that the observed interdependence arose as a byproduct of how we tested it. Namely, it remains an open question if our findings result from altering step time, or similar interdependence would be observed if we had manipulated other temporal measures, such as double support asymmetry. More specifically, our feedback on step time inadvertently reduced the stance time asymmetry associated to split-belt walking. The stance time asymmetry is thought to be critical for forcing subjects to adjust their gait during split-belt walking (Reisman et al., 2005). Therefore, subjects in the temporal feedback group might have reduced the adaptation of spatial parameters because the “perturbation” inducing their update was reduced. In sum, future work is needed to determine the generality of temporal measures influencing spatial ones, however our study provides initial evidence for interdependence.



4.4. Relevance of Double Support Symmetry Over Spatial Asymmetries

We demonstrated that double support symmetry (i.e., TA) is recovered in all groups, regardless of the task. This is in accordance with multiple observations that individuals consistently reduce double support asymmetries induced by split-belt walking since very early age (Patrick et al., 2014) or after lesions to cerebral (Reisman et al., 2007) or cerebellar regions (Vasudevan et al., 2011). Only children with hemispherectomies, where half of the cerebrum is missing, do not correct double support asymmetry when this is augmented (Choi et al., 2009). The adaptation and after-effects of double support were surprising to us because previous work showed that halting the adaptation of step position (Sout≈0) limited the correction of spatial errors (defined as SA) (Malone et al., 2012). In an analogous manner, we anticipated that preventing the adaptation of step times (Tout≈0) during split-belt walking was going to limit the adaptation of double support asymmetry (i.e., temporal error Malone et al., 2012). However, we observed that individuals prioritize differently the correction of spatial and temporal asymmetries: they minimize temporal asymmetries, but not spatial ones. This might be because double support time is the transition period when the body mass is transferred from one leg to the other, which is demanding in terms of energy expenditure (Perry, 1992). Therefore, double support symmetry might be critical for efficient body transfer between the limbs (Kuo et al., 2005; Ruina et al., 2005). Taken together our results suggests that the motor system prioritizes the maintenance of double support symmetry, which might be critical for balance control in bipedal locomotion.



4.5. Explicit vs. Implicit Processes in Locomotor Adaptation

Our study contributes to recent efforts to unveil the potential interaction between explicit corrections and implicit sensorimotor recalibration in locomotion (Malone et al., 2012; Long et al., 2016; Roemmich et al., 2016; Statton et al., 2016; Maeda et al., 2017). Interestingly, we found that preventing foot adjustments during split-belt walking significantly reduced post-adaptation effects compared to the control group. This was also observed when using explicit corrections to reduce the adjustment of foot placement in response to a 2:1 speed belt ratio (Malone et al., 2012) but not in response to a larger 3:1 speed belt ratio (Long et al., 2016). Notably, after-effects following the 3:1 perturbation were equally large with or without explicit corrections during the split condition (Long et al., 2016). One interpretation for these results is that the implicit sensorimotor adaptation in walking is scaled with perturbation magnitude. Thus, explicit corrections preventing foot adjustments in the split condition will have a lesser impact on after-effects induced by large perturbations. This interpretation is consistent with the proportional relation between perturbation size and after-effects upon experiencing unexpected constant forces (Green et al., 2010; Torres-Oviedo and Bastian, 2012; Yokoyama et al., 2018), contrasting the fixed amount of implicit sensorimotor recalibration upon visuomotor perturbations (Kim et al., 2018).



4.6. Study Implications

We provide a novel approach for manipulating stance time, which is a major deficit in stroke survivors (Patterson et al., 2008). It would be interesting to determine if this type of feedback overground or on a regular treadmill could lead to gait improvements post-stroke as those induced by split-belt walking (Reisman et al., 2013; Lewek et al., 2018). Our results also indicate that manipulating the adaptation of movements in the temporal domain alters movements in the spatial domain, suggesting that spatial and temporal deficits in individuals with cortical lesions (Malone and Bastian, 2014; Finley et al., 2015) cannot be treated in complete isolation. Only the correction of timing asymmetries through error-based sensorimotor adaptation could occur while preventing the adaptation of spatial ones, as we did in the spatial feedback group. However, the opposite is not possible, at least with the temporal feedback task that we used.
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When interacting with the environment, the sensorimotor system faces temporal and spatial discrepancies between sensory inputs, such as delay in sensory information transmission, and asymmetrical visual inputs across space. These discrepancies can affect motor control and the representation of space. We recently showed that adaptation to a laterally asymmetric delay in the visual feedback induces neglect-like effects in blind drawing movements, expressed by asymmetrical elongation of circles that are drawn in different workspaces and directions; this establishes a possible connection between delayed feedback and asymmetrical spatial processing in the control of action. In the current study, we investigate whether such adaptation also influences visual perception. In addition, we examined transfer to another motor task – a line bisection task that is commonly used to detect spatial disorders, and extend these results to examine the mapping of these neglect-like effects. We performed two sets of experiments in which participants executed lateral reaching movements, and were exposed to visual feedback delay only in the left workspace. We examined transfer of adaptation to a perceptual line bisection task – answers about the perceived midline of lines that were presented in different directions and workspaces, and to a blind motor line bisection task – reaching movements toward the centers of similar lines. We found that the adaptation to the asymmetrical delay transferred to the control of lateral movements, but did not affect the perceived location of the midlines. Our results clarify the effect of asymmetrical delayed visual feedback on perception and action, and provide potential insights on the link between visuomotor delay and neurological disorders such as the hemispatial neglect syndrome.

Keywords: visuomotor delay, reaching, line bisection, adaptation, transfer, visual perception, hemispatial neglect


INTRODUCTION

To perform accurate hand movements, the sensorimotor system gathers and integrates external information with internal predictions about the outcomes of action. During these processes, perception and action are modified to compensate for possible changes in the environment. Specifically, the sensorimotor system holds asymmetrical representation of spatial information in the hemispheres (Heilman and Valenstein, 1979; Ziemann and Hallett, 2001; Koch et al., 2011). Additionally, it also has to deal with time delays in sensory information transmission and delays between modalities (Miall et al., 1985; Miall and Jackson, 2006; Pressman et al., 2007; Di Luca et al., 2011; Nisky et al., 2011; Honda et al., 2012; Rohde et al., 2014; Avraham et al., 2017a; Farshchian et al., 2018). In this study, by investigating adaptation to laterally asymmetrical delay in the visual feedback, we set out to understand the processes of compensation for laterality and delay in perception and in the control of action.

To cope with time delays in the sensory feedback, our sensorimotor system relies on internal models. The internal models are representations of the motor apparatus and the environment that are used to predict the sensory consequences of motor commands, and thereby are allowing to cope with inherent feedback and processing time delays (Jordan and Rumelhart, 1992; Miall and Wolpert, 1996; Wolpert, 1997; Kawato, 1999). These models are updated when there are changes in our motor apparatus or in the environment. To evaluate updates in internal models, adaptation studies examined participants’ movements and space representation following exposure to visuomotor or force perturbations (Shadmehr and Mussa-Ivaldi, 1994; Cohn et al., 2000; Krakauer et al., 2000; Simani et al., 2007). During adaptation, the participants adjust to the new environment by modifying their movement kinematics and dynamics according to changes in the internal model. These modifications are demonstrated by the observation of aftereffects when the perturbation is removed (Shadmehr and Mussa-Ivaldi, 1994; Krakauer et al., 2000), and sometimes are also accompanied by perceptual biases (Colent et al., 2000; Goedert et al., 2010; Michel et al., 2018).

The nature of the changes in the internal model is investigated by examining generalization to movements performed in different spatial positions or limb postures (Krakauer et al., 2000; Donchin et al., 2003; Wang and Sainburg, 2005; Poh and Taylor, 2018), and transfer of adaptation to a different workspace (Shadmehr and Mussa-Ivaldi, 1994; Rotella et al., 2015) or to a different task (Shadmehr and Mussa-Ivaldi, 1994; Botzer and Karniel, 2013; Avraham et al., 2017a). When presented with a delay in visual feedback, participants initially overshoot the targets of reaching movements, but restore their original movement extent with adaptation, and exhibit aftereffects of undershooting the target (Botzer and Karniel, 2013; Avraham et al., 2018). Interestingly, the transfer of adaptation to delayed visual feedback causes elongation of blind reaching movements (Botzer and Karniel, 2013; Avraham et al., 2017a; Sulimani et al., 2017; Farshchian et al., 2018), and hence, visuomotor delays were proposed to be represented as a minifying visuomotor gain (Botzer and Karniel, 2013; Avraham et al., 2017a; Sulimani et al., 2017).

In our recent study (Avraham et al., 2018), we made the first steps toward linking between asymmetrical representation of spatial information in the hemispheres and adaptation to delayed visual feedback. We defined left and right workspaces as the left and right halves of the space in front of participants (with respect to the midline of their body), and studied adaptation to delayed visual feedback that was presented in either left, right, or both workspaces. We demonstrated a unique pattern of elongated transfer movements after adaptation to these asymmetrical delay conditions. However, because in that study all the movements were initiated in the center, movements in the left workspace were performed in leftward direction, and movements in the right workspace were performed in rightward direction. Therefore, we could not disassociate whether the representation depended on workspace or movement direction.

Previous studies also reported that motor adaptation affects perception. These studies showed evidence for the effect of kinematic (visuomotor rotation) and dynamic (force-field) perturbations on the perceived movement direction and location of the hand (Ostry et al., 2010; Mattar et al., 2012; Marius‘t Hart and Henriques, 2016). The effects were shown to be much smaller than the motor effects, but nevertheless robust and long-lasting (Cressman and Henriques, 2010; Ostry et al., 2010; Ruttle et al., 2016). In addition, perceptual training was also shown to improve motor learning (Darainy et al., 2013). However, in the case of adaptation to visuomotor delay perturbation, a recent study showed that after exposure to delayed visual feedback, the proprioceptive representation remains unaltered, as opposed to the control of action (Sulimani et al., 2017). In light of these contrasting results, an interesting open question is whether the unique visuomotor perturbation combining visuomotor delays and spatial laterality will result in perceptual effects.

One pathology that demonstrates a deficit in spatial and temporal processing of information for perception and action is Hemi-spatial neglect – a neurobehavioral deficit caused by brain damage. Neglect patients fail to perceive and respond to stimuli originating from their contralesional side, mostly their left side, consistently with right-brain damage. Neglect can involve a variety of impairments in spatial information processing for both perception and action, demonstrated in perceptual–attentional and motor-intentional spatial deficits (Bartolomeo et al., 1998; Adair and Barrett, 2008). In addition to the spatial deficits, some studies also reported temporal impairments, suggesting that neglect might be a spatial–temporal deficit (Robertson et al., 1998; Becchio and Bertone, 2006). Several clinical tests are used to diagnose spatial neglect (Adair and Barrett, 2008). Two prominent tests are the perceptual line bisection task and the motor line bisection task (Schenkenberg et al., 1980). The perceptual line bisection test uses a forced choice paradigm. A transected line is presented to participants who need to judge whether the transection mark is on the right side with respect to the midline. In the motor line bisection test, the participants are required to mark the center of a presented line. This means that the participants actually perform reaching movements toward the center of the lines that are presented to them.

In the current study, we adapted the perceptual and motor line bisection tests to investigate transfer of adaptation to asymmetrical delay in visual feedback that may cause transient neglect-like effects on perception and action. We aimed to extend our previous study by answering two questions. First, whether the asymmetrical elongation of movements following adaptation to laterally asymmetrical visuomotor delay will affect both perception and action. Second, whether the asymmetrical elongation is a result of representation of the laterally asymmetric perturbation with respect to the workspace in which the transfer movement was executed, or the direction to which it was oriented. We asked participants to perform lateral center-out reaching movements to both left and right targets, and presented them with visual feedback delay only in movements to the left targets. We tested transfer of adaption to both a blind motor line bisection task (Action group) and a perceptual line bisection task (Perception group). The blind line bisection movements were performed toward leftward or rightward directions in left or right workspaces. We found that adaptation to asymmetrical delay has an asymmetrical transfer to the motor task, but we found no evidence of transfer to the perceptual task. These results demonstrate a dissociation between the effects of adaptation on action and on perception. Overall, our results further establish the effect of lateral and temporal misalignment between modalities, and provide support for independent processing of sensory information in the motor and the perceptual systems.



MATERIALS AND METHODS


Participants and Experimental Setup

Eighty-five right-handed healthy volunteers (ages 18–29 years, 40 females) participated in the study that was approved by the Human Subjects Research Committee of Ben-Gurion University of the Negev, Beersheba, Israel, after signing an informed consent form. The participants were all naive to the purpose of the experiment and were paid to participate. The experiment was administered in a virtual reality environment in which the subject held a PHANTOM® DESKTOPTM (Geomagic®) haptic device that was controlled by a custom-written C++ code. During the experiment, participants held the haptic device with their right hand, controlling a cursor that was displayed on a screen (Figures 1, 2). The cursor movement was synchronized with the hand movement, with a delay of 10 ms resulting from the control loop. The experiment was displayed on a screen located horizontally above the hand of the participants, and their upper body was covered by a sheet such that they could not see their hand. Hand movements were limited to the horizontal plane by an air sled wrist-supporter that reduced friction with the surface. The update rate of the control loop was 1000 Hz.
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FIGURE 1. Experiment 1: protocol and setup for the Action group. (A) Experimental protocol for the blocked design. The experiment was divided to blocks of reaching movement and an action task. (B) Experimental protocol for the interleaved design. The reaching movements and task trials were randomly displayed throughout the experiment in a predetermined order. In the reaching trials, participants were required to move a cursor (magenta circle) between a start point (blue circle) and an end target (light yellow dot) to the left (blue frame) or the right (red frame) side of the task space. To motivate the participants, we presented a success rate representing the percentage of accurate trials (in which the participants hit the target) out of all reaching trials in the experiment until that time. In the action task (gray frame), the participants had to move their hand from the start position (blue circle) to the center of a white line without visual feedback. The dashed magenta line indicates the actual midline and was not presented to the participant. The line and start position were located at three different positions and were all aligned in the lateral axis. The experiment was divided into three sessions: Baseline, Adaptation, and Washout. During the Baseline and Washout sessions, the cursor movement in the reaching task was concurrent with the movement of the hand. During the Adaptation session, the visual feedback was delayed by 0.15 s in movements toward the left side. The stripes representing the different tasks are only for illustration, and the figure does not include the entire trials in the experiment. (C) Experimental setup. Participants held a haptic device, controlling a cursor displayed on a screen. The experiment was displayed on a screen that was located horizontally above participants’ hand (see the section “Materials and Methods” for more details).
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FIGURE 2. Experiment 1: protocol and setup for the Perception group. (A) Experimental protocol for the blocked design. The experiment was divided to blocks of reaching movement and a perceptual task. Reaching movements are the same as in Figure 1. In the perceptual task (gray frame), a white lateral line and probe (white frontal line) were presented. The participant was required to answer whether the probe is on the right side of the line. The dashed magenta line indicates the actual midline and was not presented to the participant. The lines were presented in the same locations as for the Action group. (B) Experimental protocol for the interleaved design. Reaching movements and task trials were randomly displayed in a predetermined order. Here, in the perceptual task, we displayed a white lateral line and a probe (white frontal line). The probe was located in the right or left edge of the line. Participants were required to move the probe to the midline by using the left and right arrows in the keyboard. The dashed magenta line indicates the actual midline and was not presented to the participant. The stripes representing the different tasks are only for illustration, and the figure does not include the entire trials in the experiment. (C) Experimental setup. The setup was similar to the Action group. Experiment 2 was similar to Experiment 1, except that here the lines were presented with a displacement of 5 cm along the frontal axis in both the action and the perception task.





Protocol

We conducted two experiments. In each experiment, we had two different protocols and two groups for each protocol (overall seven groups with N = 10 in each group, and one group with N = 15). In all the experiments, the participants were asked to perform reaching movements to left or right targets relative to a central start position (Figures 1, 2). To assess the effect of asymmetrical temporal perturbation, we applied a delay of 0.15 s only in the left workspace. We probe for the effect of the delay on action and perception with a transfer task that was applied in designated blocks throughout the experiment (protocol A – blocked design, Figures 1A, 2A) or in random trials throughout the experiment (protocol B – interleaved design, Figures 1B, 2B). The transfer task was either a motor line bisection task without visual feedback (Action group, Figure 1), or a perceptual line bisection (Perception group, Figure 2). In Experiment 1, the lines that were presented during the task were aligned with the start position along the lateral dimension (Figures 3A,B). In Experiment 2, the lines were 5 cm away from the start position in the frontal axis (Figures 3C,D). The trials were presented in a random and predetermined order.
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FIGURE 3. Task blocks of motor and perceptual line bisection task for the blocked design in both experiments. (A) Motor line bisection task for Experiment 1. On every trial, a start point (blue circle) and a straight line (white) were displayed, and participant were instructed to perform smooth movement toward the center of the line. The dashed magenta lines indicate the actual midline and were not presented to the participant. Every task block consisted of four different movement types: left to middle, middle to left, middle to right, and right to middle. For every movement, we had five repetitions, such that in each block the participants performed 20 movements. (B) Perceptual line bisection for the blocked design in Experiment 1. In this task, we presented a straight lateral line (white) in three different locations of: left, middle, and right. The line was bisected with a frontal line (white small line), and the participant was required to answer whether the frontal line is on the right side with respect to midline. The start point omitted in the perceptual task. We had eight frontal lines on different locations on the lateral line and each frontal line was displayed four times, such that we had 96 trials in every block. (C) Same as (A), for Experiment 2. Here the lines were 5 cm displaced along the frontal axis. Furthermore, we had additional movement of middle to middle (gray), such that every block contained 25 movements. (D) Perceptual line bisection for Experiment 2. Same as (B), except here the lines were also 5 cm displaced along the frontal axis. Action task trials of the interleaved design were identical to the blocked design. Perceptual task trials of the interleaved design were similar to the ones presented here, except the frontal line was located only on the left or right edge of the presented line.




Experiment 1

In the protocol of the reaching task, there was no difference between the blocked and interleaved protocols. A trial was initiated when participants placed a circular white cursor, 1 cm diameter, inside a starting point, a blue hollow 2 cm diameter circle, which was placed in the middle of the screen. The participant performed a smooth point-to-point reaching movement by moving the cursor from the starting point to a circular yellow target, 1 cm diameter, which appeared in the left or the right side of the workspace, at 10 cm away from the starting position. In each reaching block, the trials order was random and predetermined between left and right targets. Movement started from rest at the start position for 1 s, with a color-cue of the cursor, and ended when the velocity of the haptic device was <0.01 m/s. At the end of the trial, the visual cursor was omitted and the hand of the participant was returned passively to the start position by a spring-like force that was applied by the haptic device. Following the movement, during the passive return to the start position, we presented a feedback based on the accuracy and the velocity of the movement. We defined accurate movements as those that ended within the target, with a velocity that ranged between 0.3 and 0.5 m/s. When the maximum velocity was <0.3 m/s, the word “Faster” appeared on the screen, and when the velocity was >0.5 m/s, the word “Slower” was displayed. Moreover, the position of the cursor at the end of the movement was displayed for 1.5 s, with a color cue that indicated the accuracy of the movement (green for accurate movement and red for inaccurate movement). We also presented a success rate corresponding to the percentage of successful trials from all reaching trials in the experiment until that time.

In the blocked design, the participants performed a transfer task in several blocks throughout the experiment (two blocks in each of the baseline, adaptation, and washout sessions). The Action group (N = 10) performed a blind motor line bisection task. In the blind motor line bisection task, participants performed reaching movements from the same starting hollow blue circle toward the middle of a 10-cm line without visual feedback of their cursor. There were three possible locations for the lines and three start points (left, right, and middle), which were all laterally aligned (Figure 3A). Accordingly, we had four movement types of leftward and rightward lateral movements in each (left and right) workspace. To initiate a movement, the participant placed the cursor into the starting point, after which the cursor disappeared. Similarly to the lateral reaching movements, movement ended when the velocity was <0.01 m/s, and the haptic device applied a spring-like force that returned the hand to the next start position.

The Perception group (N = 10) performed a perceptual line bisection task. In this task, the participants were presented with a 10-cm line located in the same positions as in the action task, with a probe (frontal small line) of 1 cm length that was positioned in one of eight different locations on the line (Figure 3B). The probes were 1 mm apart, while the most distant were located 3.5 mm from the center of the line, symmetrically. This small increment of 1 mm was chosen empirically to observe whether a perceptual bias existed even at baseline. In each trial there were only one line and one probe. The participants were asked to answer whether the probe was located rightward relatively to the center of the line; that is, a yes or no response. In this task, we did not present the start point, and participants were instructed to remain on the start position.

In the interleaved design, the task trials were randomly intertwined throughout the experiment (Figures 1B, 2B). The Action group (N = 15) performed the same task as in the blocked design (Figure 3A). However, the Perception group (N = 10) performed a modified perceptual line bisection task. In this task, we presented a 10-cm line in the same locations as in the blocked design, and a 1-cm probe that was located in the right or the left edge of the presented line (similar to Figure 3B, except from the location of the probe that was in the right or left edge). The participants were required to move the probe to the perceived midline by pressing the right and left arrows in the keyboard without any restrictions on the amount of arrow pressing. When participants decided that the probe is indeed in the midline, they were required to press the up or down arrows, in order to move to the next trial.

We chose to implement two different protocols to probe the effect of laterally asymmetrical delay on perception and action. The blocked design was used to allow fitting the psychometric functions for the perceptual task’s results on data from the same phase in the experiment. The interleaved design allowed a more sensitive examination for transfer of adaptation, likely because it was more resistant to a possible accumulation of decay effects than the blocked design.

The experiment was divided into three sessions: Baseline, Adaptation, and Washout (Figures 1, 2). In the blocked design, each session consisted of two blocks of reaching movements and two task blocks. In the Baseline and Washout sessions, the reaching block contained 60 movements, and in the Adaptation session the first reaching block contained 360 movements and the second contained 60 movements. For the Action group, the task blocks consisted of 20 trials, such that we had five repeats for each movement type. For the Perception group, each task block consisted of 96 trials (four repeats for each line in every block – overall eight repeats for each line in every session). The purpose of having two blocks of reaching in every session was to reinforce the learning before the task block, such that during the task trials the adaptation process will not completely vanish. In the interleaved design, we had 160 reaching movements in the Baseline and Washout sessions, and 416 reaching movements in the Adaptation session. For the Action (Perception) group, we presented 40 (36) task trials in the Baseline and Washout sessions, and 104 (102) task trials in the Adaptation session.

During the Adaptation session of both protocols, the visual feedback in the reaching task was delayed by 0.15 s for leftward movements. The leftward movements were also performed in the left workspace. At the task trials, no perturbation was applied and there was no visual feedback of the movement of the hand. The entire experiment lasted approximately 90 min with four breaks of 2 min every 120 or 160 reaching trials for the blocked and interleaved design, respectively.



Experiment 2

To test the width of the generalization of the adapted representation, we chose to test the transfer of adaptation to movements that have a forward component, and performed a second experiment. The experimental setup was identical to Experiment 1. However, here the lines in the transfer trials were located 5 cm away from the starting point in the frontal axis, such that we had five types of movement in the action task: leftward and rightward diagonal movements in each workspace (angle of 26.57° and 116.57° for the left and right lines, respectively. The angle is calculated with respect to the positive lateral axis) and one frontal movement. Therefore, in the blocked design every task block consisted of 25 trials, and in the interleaved design the Adaptation session consisted of 105 task trials. The number of trials and order of the perceptual task was similar in both experiments.




Data Analysis

Throughout the experiment, we recorded position and velocity at 200 Hz (we down sampled the data from the experiment). The results were analyzed off-line using custom-written MATLAB® code (The MathWorks, Inc., Natick, MA, United States). In the reaching movements with visual feedback, we examined the amplitude of the movements. The amplitude was calculated as the maximum distance along the lateral axis. In the action task, we examined the lateral deviation of participants’ end point position from the center of the presented line.

In the perception task of the blocked design, we evaluated the perceived midline location from the response to each presented probe. First, we computed the probability for a positive response that indicates the probability for the participant to perceive the probe on the right side with respect to midline. Then, we fitted a psychometric curve to the calculated probability using MATLAB toolbox psiginfit(). Finally, we calculated the Point of Subjective Equality (PSE) that corresponds to the location of the probe where the probability for positive answer is 0.5, that is, the perceived location of the midline.

In the perception task of the interleaved design, we evaluated the changes in the perceived midline by examining the distance between the final location of the probe to the actual midline.



Statistical Analysis

In the reaching task, the effect of the laterally asymmetric delay was assessed by comparing the changes in the amplitude of the movements in each group between the different stages of the experiment: Late Baseline (LB), Early Adaptation (EA), Late Adaptation (LA), and Early Washout (EW). The movements that were taken into consideration were five first movements in Adaptation and Washout (EA and EW, respectively), and the five last movements in Baseline and Adaptation (LB and LA, respectively). For both groups, we used three-way repeated measures ANOVA with the amplitude of movements as the dependent variable, and with the following independent factors: one between participants factor of Group (Action/Perception), and two within-participants factors of Direction (Leftward/Rightward) and Stage (LB/EA/LA/EW), including interactions.

In the action task, we used one-way repeated measures ANOVA for each movement type. We compared the two task blocks in the Adaptation session (LA #1 and LA #2) and the first task block in the Washout session (EW) in the blocked design, and LA and EW in the interleaved design, all relatively to the end of the Baseline.

Then, to answer the question whether the mapping following adaptation to laterally asymmetric delay depends on the direction or the workspace of movement, only for Experiment 1, we analyzed the results according to direction and workspace separately. We used two-way ANOVA with two within factors of Stage (LB/LA1/LA2/EW for the blocked design and LB/LA/EW for the interleaved design), Direction or Workspace (Left/Right) and the interaction between them. In the perception task, we used one-way repeated measures ANOVA model. In the blocked design, the dependent variable was the PSE values for every line, and the independent factor was the stage of the experiment (Baseline/Adaptation/Washout). The PSE from both blocks in the Adaptation and the Washout sessions was compared to the PSE from the two blocks in the Baseline session. In the interleaved design, we compared the deviation from midline in the end of the Adaptation session (LA) and in the beginning of the washout (EW), to the end of the Baseline, by using one-way repeated measures ANOVA model.

Significant effects were defined as those at the p < 0.05 probability level. When significant main or interaction effects were found, post hoc testing with Holm’s correction was conducted to identify the source of the differences. To examine whether the number of participants is sufficient for this analysis, we calculated the power of the ANOVA test with a parametric bootstrap test. We repeatedly generated random samples from a normal distribution, and calculated the percentage of statistically significant effects. The parameters of the normal distribution were calculated from the data. Based on examination of the data, the desired effect size (the mean of the normal distribution) was set to 1.5 cm, and the variance was determined based on the calculated variance of each group. The number of participants was chosen as the one that resulted in power >0.75. For the perceptual effects, we also calculated the power of the ANOVA test with a parametric bootstrap test. Here, because effects on perception are typically smaller than the effects on action (Ostry et al., 2010) an acceptable size of an effect was determined as 10% from the effect on action, and the variance was calculated from the data.




RESULTS


Reaching Movements

To assess the adaptation, we examined the change in the amplitude of the lateral reaching movements. This analysis was done to assure that the participants of all groups in all the experiments have adapted to the asymmetrical delay in the visual feedback by selectively modifying their reaching movements in the left workspace. Our results showed that for all groups, participants adapted and modified their movements when they were exposed to delay that was introduced exclusively in leftward movements in the left workspace (in Figures 4A–D, the results of the adaptation curves are displayed only for the Experiment 1, but the results of Experiment 2 are very similar). When the perturbation was first applied, participants over-reached the target only in movements toward the left target. After further exposure to the perturbation, participants returned to baseline performance. Initially, soon after the beginning of the exposure and as participants started adapting their leftward movements, there was also a small change in the rightward movements. This result was also observed in our previous study (Avraham et al., 2018) and it might stemmed from the fact that initially the participants interpret the perturbation as spatial shift. However, this change quickly disappeared as participants built a representation of the laterally asymmetric perturbation, and it was not statistically significant in the overall analysis. After the delay was unexpectedly removed, the leftward movements demonstrated an aftereffect of under-reaching, and as expected, we saw no aftereffects on rightward movements.
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FIGURE 4. Reaching movements for Experiment 1 (A–D). The results of Experiment 2 are similar. (A) Amplitude (line) and 95% confidence intervals (shaded region) of the leftward and rightward movements for the Action group of the blocked design. Results are presented after subtraction of the movement amplitude at the end of the baseline session. Positive (negative) value indicates overshoot (undershoot) in the direction of movement. The leftward movements show typical pattern of adaptation: overshoot when the perturbation is applied and undershoot when the perturbation is unexpectedly removed. The rightward movements are unaffected from the asymmetrical delay. (B) Same as (A) for the Perception group. (C,D) Same as (A,B) for the interleaved design. Here, task trials (white lines) were interleaved throughout the experiment. (E) Mean amplitude of the first and last five movements of the adaptation stage and the first five movements of the washout, compared to the last five movements of the baseline, for both Action and Perception groups of the blocked design in Experiment 1. Colored circles represent the mean amplitude of each subject, and error bars represent 95% confidence interval. ∗∗p < 0.01, ∗∗∗p < 0.001. No difference is observed between the two groups. (F) Similar to (E) for the interleaved design in Experiment 1. (G,H) Similar to (E,F) for Experiment 2. The observed results of the reaching movements are similar between the two groups and two experiments.



These observations were supported by our statistical analysis that is summarized in Table 1 and in Figures 4E–H. We divided the experiment to four stages of LB (five last movement before exposure to delay), EA (five first movements with the presence of delay), LA (five last movements with the presence of delay), and EW (five first movements after removing the delay). For both groups, we performed a three-way repeated measures ANOVA with the amplitude of movements as the dependent variable, and with the following independent factors: one between participants factor of Group (Action/Perception), and two within-participants factors of Direction (Leftward/Rightward) and Stage (LB/EA/LA/EW), including interactions. The statistical analysis yielded a significant interaction between movement direction and stage, and therefore, we conducted a post hoc paired t-test. In both experiments, protocols and groups, we found a typical pattern of adaptation in leftward movements: a significant over-reach in the EA stage, no difference in LA stage, and undershoot in EW stage. In contrast to leftward movements, where the perturbation was applied, throughout the experiment there was no change in rightward movements (Figures 4E–H). These results indicate that participants were able to adapt to the asymmetrical visuomotor delay by asymmetrically modifying their motor commands.

TABLE 1. Statistical analysis for the reaching movements in both experiments.

[image: image]



Action Task – Line Bisection

Next, we aimed to answer two questions about the transfer of adaptation: (1) whether the selective adaptation to an asymmetrical delay in the visual feedback transferred to the blind line bisection movements and (2) whether the transfer depends on the workspace in which the movement is performed or on the direction of the movement. To assess the transfer of adaptation, we analyzed the distance from the end point location of participants’ movement to the actual center of the line in the lateral axis.

In the interleaved design, we first qualitatively examined the time course of the target overshoot in all task trials throughout the experiments compared to the end of the baseline task trials (Figure 5). In Experiment 1 (Figure 5A), we saw an increase in the amplitude during the adaptation in all movement types until roughly the middle of the adaptation phase (around task trial 25). Interestingly, this effect persisted and continued to increase until the LA and EW stages for all movement types except for rightward movements in the right workspace (M2R, pink line). This suggests that the asymmetrical delay transferred to blind lateral leftward line bisection movements in the left workspace and was generalized to leftward movements in the right workspace and rightward movements in the left workspace. In contrast, in Experiment 2 the variability was much larger, and there was no consistent effect on the calculated distance between the participants (Figure 5B).
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FIGURE 5. Movement amplitude in the lateral axis for the interleaved action task in both experiments. (A) Experiment 1. Movement amplitude for the different directions and locations. Results are presented for each line separately: leftward movement in the left workspace (M2L, blue), leftward movement in the right workspace (R2M, green), rightward movement in the left workspace (L2M, orange), and rightward movement in the right workspace (M2R, pink). Shaded regions represent the five last movements in the end of adaptation session (light orange) and five first movements at the beginning of the washout (light green). The results show that for all movement types there is an increase in the amplitude at the beginning of the adaptation (until roughly task trial 25), but only for rightward movements at the right workspace the amplitude decrease before the end of adaptation. (B) Same as (A) for Experiment 2. The results show no consistent increase or decrease in the amplitude during the entire experiment.



To support these qualitative observations with statistical analysis, we divided the data to different stages and examined the effect of the applied perturbation on the change in the amplitude between the different stages. This analysis was performed in both the blocked and the interleaved design. In the blocked design, we examined the changes in the calculated distance between the two task blocks in Adaptation (all five movements from each task block – LA #1 and LA #2) and during the Washout (all five movements from the first task block in Washout – EW) relatively to the end of the Baseline (all five movements from the last task block in Baseline – LB) session. We looked at the two task blocks of adaptation separately to examine how the effect on transfer movements developed throughout adaptation. In the interleaved design, we probe for the changes in movements’ amplitude during the end of the Adaptation (five last task trials in Adaptation – LA) and beginning of the Washout (five first task trials in Washout –EW) sessions relatively to the end of the Baseline (five last task trials in Baseline – LB) session. In our analysis of the washout session, we found no difference between the beginning and end of this session in both protocols. Therefore, to remain consistent with our previous study (Avraham et al., 2018), and to focus on our original research questions on short-term delay effects on generalization across direction and workspace and on perception, we decided to include in our analyses only the early stage of Washout.

First, we examined the effect of the adaptation on each line separately by performing one-way repeated measures ANOVA for each movement type (the results of the entire analysis are summarized in Table 2, statistically significant effects are marked in Figure 6). In Experiment 1, we saw inconsistent results between the two protocols. In the blocked design, only in the Washout session, the deviation of leftward movements in the left workspace increased (d = −0.89, t9 = 3.4, p = 0.02, Figure 6A). The deviation of rightward movements in the left workspace also increased during Washout, but it was not statistically significant (d = 0.57, t9 = 2.46, p = 0.11). The results of the interleaved design showed a more robust effect of the transfer of adaptation, demonstrated in a deviation of leftward movements in the left workspace observed not only in the beginning of the Washout stage, but also in the end of the Adaptation session (LA: d = −0.67, t14 = 2.42, p = 0.02, EW: d = −0.74, t14 = 3.05, p = 0.017). Interestingly, with this more sensitive design, at the washout stage we also found that the transfer effects of adaptation generalized to leftward movements that were performed in the right workspace (LA: d = −0.58, t14 = 1.89, p = 0.07, EW: d = −0.84, t14 = 2.89, p = 0.02). In addition, we also found a significant main effect of stage in the analysis of rightward movements that were performed in the left workspace (η2 = 0.23, F2,28 = 4.26, p = 0.02), but even though the sizes of the effects were large (LA: d = 0.82, t14 = 2.22, p = 0.086, EW: d = 0.78, t14 = 2.08, p = 0.112, Figure 6B), the post hoc t-test with the multiple comparison correction did not yield statistically significant effect. In contrast, the transfer effects to rightward movements in the right workspace were much smaller and not statistically significant (LA: d = 0.22, t14 = 0.68, p = 1, EW: d = 0.35, t14 = 1.11, p = 0.57, Figure 6B). To conclude, the only movements that were clearly not affected by the adaptation to asymmetrical delay in the visual feedback in none of the stages were rightward movements in the right workspace.

TABLE 2. Statistical analysis for the motor line bisection task for each of the different movements in the two experiments.
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FIGURE 6. Spatial deviation from the center of the presented line along the lateral axis in the action task of Experiment 1. (A) Blocked design. At the center, examples of individual movements of a typical subject from the start point (blue circle) toward the center of the presented line (solid black line) in the left (blue) or right (red) directions. Dashed black lines show the actual center of the line and were not presented during the experiment. Panels around the center present the mean deviation in the stages of Late Adaptation 1 (light orange), Late Adaptation 2 (dark orange), and Early Washout (green) compared to the Late Baseline (LB). Colored circles represent the spatial deviation of each subject, and error bars represent 95% confidence interval. ∗p < 0.05. The panels are located spatially to represent the location and direction of the movement. The results suggest an elongation of leftwards movements performed in the left hemispace. (B) Similar to (A) for the interleaved design. Here, we analyzed the five last movements in Adaptation (Late Adaptation, dark orange) and five first movements in Washout (Early Washout, green) compared to the five last movements in the Baseline. The results suggest an elongation of leftward movements performed in both workspaces.



In contrast to these results, in both protocols of Experiment 2, we found no transfer effects in the motor line bisection task; i.e., participants’ movement toward the center of the line showed no deviation from the actual center (Figure 7, statistical analysis is summarized in Table 2). These results suggest that the transferred effect is specific to purely lateral movements and is not evident for movements that include a sagittal component (either diagonal or purely forward movements).
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FIGURE 7. Results of action task in Experiment 2. (A) Blocked design. Results are presented in a similar manner as in Figure 6A, except here participants also did forward (gray) and diagonal movements. (B) Similar to (A) for the interleaved design. The analysis was performed on the five last movements in Adaptation (Late Adaptation, dark orange) and five first movements in Washout (Early Washout, green) compared to the five last movements in the Baseline. The results suggest no spatial deviation of bisection movements.



To answer the second question about the transfer of adaptation, we grouped the movements according to the direction or the workspace in which they were performed, and calculated the mean amplitude of the movement. We performed two-way repeated measures ANOVA with two within factors of Stage (LB/LA1/LA2/EW for the blocked design and LB/LA/EW for the interleaved design) and Direction or Workspace (Left/Right) including the interaction between them. The results of this analysis are shown in Figures 8A,B (left panel for the grouping according to workspace – left and right, and right panel for grouping according to movement direction – leftward and rightward). Statistical results are summarized in Table 3. In the blocked design, the results of workspace analysis showed statistically significant interaction between stage and workspace (η2 = 0.03, F3,27 = 3.4, p = 0.03). We found that a significant elongation of movements was exhibited only in the left workspace, and only during the Washout stage (d = 0.75, t9 = 4.99, p = 0.0045). In addition, we also found a significant difference between the amplitude in the right and left workspace observed in the EW stage (d = 0.76, t9 = 2.38, p = 0.04, Figure 8A). No similar pattern was observed in the direction analysis (Figure 8B).
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FIGURE 8. Spatial deviation from the center of the presented line along the lateral axis in the action task according to workspace (A,C) and direction (B,D) for the blocked design (A,B) and the interleaved design (C,D) in Experiment 1. (A) Deviation of movements according to the spatial location in which they were performed, in the different stages of Late Adaptation 1 (light orange), Late Adaptation 2 (dark orange), and Early Washout (green). Colored circles represent the calculated spatial deviation of each subject, and error bars represent 95% confidence interval. ∗p < 0.05, ∗∗p < 0.01. The results show a significant spatial elongation of movements performed in the left workspace during EW stage. This deviation is also different from right-workspace deviation. (B) Deviation of movements according to the direction toward which they were performed. Bars and colors are as in (A). Results show no direction-related effects. Panels (C,D) are as (A,B) for the interleaved design. Here, we analyzed the different stages of Late Adaptation (dark orange) and Early Washout (green). The results suggest no significant effect of direction or workspace.



TABLE 3. Results of the workspace-and-direction analysis for the results of Experiment 1.
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In the interleaved design, the analysis showed significant interaction between stage and direction (η2 = 0.03, F2,28 = 3.76, p = 0.03) (Figures 8C,D). We found significant elongation of leftward movements in both the end of Adaptation and at the beginning of the Washout (LA: d = 0.66, t14 = 2.62, p = 0.04, EW: d = 0.83, t14 = 3.05, p = 0.025). In addition, there was also a significant difference between leftward and rightward movements at the end of Adaptation (d = 0.65, t14 = 3.42, p = 0.004, Figure 8D). From these results we conclude that the dependency of the transfer effect of adaptation on workspace or direction is different between the two protocols of blocked and interleaved. The interleaved design is more sensitive in discovering transfer of adaptation, but nonetheless, we remain cautious in our answer to the second question about the dependency of the transfer of adaptation on workspace or direction.

Overall, from Experiment 1, we conclude that: (1) the adaptation to the asymmetrical delay in leftward movements generalized to blind line bisection movements, but not if they were rightward movements in the right workspace, and (2) we cannot determine whether the adaptation was workspace or direction dependent. From Experiment 2, we conclude that the generalization of the adaptation to the delay was narrow and limited only to the lateral movements.



Perceptual Line Bisection Task

To examine the effect of asymmetrical delay on perception, in the blocked design we fitted a psychometric curve for each participant (examples are depicted in Figure 9A), and extracted the PSE value to determine the perceptual bias of the lines’ middle location. In the interleaved design, we extracted the difference between the end location of the probe and the actual midline. In both protocols, we used one-way repeated measures ANOVA model. The results showed that in both experiments and both protocols, the statistical analysis (as summarized in Tables 4, 5) yielded no significant effects on the perceived location of the midline between the different stages in the experiment (Figures 9B–E). These results clearly show that the perception was unaffected by adaptation to asymmetrical visuomotor delay.
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FIGURE 9. Results of the perceptual test in the different stages for both experiments and both protocols. (A) An example of three psychometric curves from a typical participant in the blocked design of Experiment 1. The dots represent the actual data from the different sessions of Baseline (purple), Adaptation (orange), and Washout (green), and solid lines are the fitted curves. Error bars represent 95% confidence interval. (B) PSE results for the blocked design in Experiment 1. Values are presented for the Adaptation (orange) and Washout (green) relative to Baseline. Colored circles represent the PSE value of each participant and error bars are 95% confidence interval. The bars are located spatially to represent the spatial direction of midline deviation. (C) Results of the perceptual test for the interleaved design in Experiment 1. We present the deviation in the end location of the probe compared to actual midline for Late Adaptation (orange) and Early Washout (green) relative to the end of Baseline. Circles and error bars are as in (B). Panels (D) and (E) are same as (B) and (C) for the blocked and interleaved design in Experiment 2, respectively. Overall, no perceptual bias is demonstrated in both experiments and both protocols.



TABLE 4. Results for the PSE value for each one of the presented lines in the two experiments.
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TABLE 5. Results for the spatial deviation observed in the perceptual task of the interleaved design.
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DISCUSSION

To understand the effect of laterality and time delays on action and perception, we investigated the effect of adaptation to laterally asymmetrical delay on movements and on visual perception. Following exposure to delay that was introduced exclusively in the left workspace, participants modified the extent of their reaching movements only in the left side, where the delay was applied. When participants were initially exposed to the delay, their leftward movements became hypermetric compared to the end of the Baseline session, i.e., they over reached the target. Throughout adaptation, they reduced the hypermetria, resulting in movements similar to those observed in the end of the Baseline. Additionally, aftereffects were observed when the delay was unexpectedly removed in terms of target undershoot. These results indicate that a workspace-specific internal representation was constructed to compensate for the movement errors caused by the perturbation.

In the transfer tasks, we observed that the adaptation to the asymmetric delay only affected action, and not perception. More specifically, we found that the effect of adaptation to a laterally asymmetrical delay transferred to the lateral blind motor line bisection task for left-workspace movements in one protocol, and to all leftward movements in another protocol. This effect was demonstrated in elongated movements compared to the movements performed before the exposure to the perturbation. Interestingly, only movements in the lateral direction were elongated, both leftward and rightward movements (Experiment 1), and movements that had substantial frontal component were not elongated (Experiment 2). In contrast, no effect was observed in the perceived midpoint of the presented lines in the Perception groups of both experiments in any of the protocols. Therefore, we conclude that the transfer of adaptation is dependent on the paradigm by which the participants were exposed to the perturbation, with a more pronounced and broader effect when the transfer trials were interleaved between the exposure trials.


Adaptation and Representation of Visuomotor Delay

The effect of adaptation to a visuomotor delay on the execution of movements has been extensively investigated (Miall et al., 1985; Miall and Jackson, 2006; Honda et al., 2012; Rohde et al., 2014; Avraham et al., 2017a; Sulimani et al., 2017). Furthermore, the adaptation to delay that was presented only in one workspace was also examined (Avraham et al., 2018; Farshchian et al., 2018). In line with our results, Farshchian et al. (2018) found evidence for generalization of adaptation between left and right workspaces. However, our current results from the interleaved design are not consistent with our previous study with a similar adaptation to laterally asymmetric delay paradigm (Avraham et al., 2018), where transfer of adaptation was restricted to leftward movements in the left workspace. This might be because of the difference in the transfer task that was used in the two experiments. In our previous study we used circular drawing movements with multiple movement directions, whereas in the current study we used line bisection task with only lateral movements.

We found that the effect of adaptation to a left hemispace-specific delay during a reaching task transferred to the lateral (leftward and rightward) line bisection movements, but with a different manner according to the different protocols we tested. In the blocked design protocol, only movements that were performed in the left workspace were elongated, and only in the washout stage, while the interleaved design protocol yielded elongated leftward movements in both workspaces and during both LA and washout. In our previous study, we found that following adaptation to laterally asymmetric visuomotor delay in the left workspace, all the circles that were initiated in the left workspace were hypermetric (Avraham et al., 2018). By assuming a workspace-dependent generalization, we were able to explain the intriguing effect of adaptation to asymmetrical delay on transfer circular movements and to model a concept of perceptual-motor asymmetry in the hemispheres. However, in that experiment, workspace and direction were coupled, as all the movements started from the center. Here, our results showed that laterally asymmetrical delay that was presented during leftward reaching movements has a pronounced transfer effect on blind leftward movements in the left-workspace and not on blind rightward movements in the right workspace. There was also influence on leftward movements in the right workspace. In addition, even though we did not find a significant influence on rightward movements in the left workspace, the size of the mean change in hand amplitude was large. In light of the results from both blocked and interleaved design we conclude that the adaptation to asymmetrical delay transferred to leftward movements performed in the left workspace, and that the generalization to other directions or workspaces is dependent on the way participants were exposed to the perturbation and the exact protocol that was used for testing the transfer of adaptation.

Adaptation to asymmetrical delay transferred to the lateral blind line bisection movements. These movements can be considered as reaching movements toward the center of the presented line. Therefore, this result is in agreement with previous studies that showed hypermetric blind reaching movements after adaptation to delay (Botzer and Karniel, 2013; Avraham et al., 2018). These results are in agreement with the results of the interleaved design. However, in our blocked design protocol, the transferred effects were only observed in the Washout session, after the participants already practiced reaching movements without delay. This may indicate that the process of building an internal representation was slower in the blocked design than in the interleaved design. Consequently, even though no new information is being learned during the transfer blocks, they could have weakened the adaptation and cause a forgetting in the learning process as they interrupted the sequence of learning (Scheidt et al., 2000; Shmuelof et al., 2012). On the other hand, the interleaved design allowed for capturing the transfer of adaptation faster and highlighted that it generalized more broadly.

The way the sensorimotor system represents delay is still under dispute. On the one hand, studies have shown evidence for time-based representation (Witney et al., 1999; Levy et al., 2010; Rohde et al., 2014; Leib et al., 2015; Avraham et al., 2017b; Leib et al., 2018). On the other hand, other behavioral results demonstrated limited ability to represent time in the motor system, which raise the possibility for a state-based representation (Pressman et al., 2007; Sarlegna et al., 2010; Di Luca et al., 2011; Nisky et al., 2011; Takamuku and Gomi, 2015; Avraham et al., 2017a). Our results are consistent with a state-based representation, as the participants modified the extent of the reaching movements and exhibited aftereffects when the delay was removed. This implies that the participants did not represent the delay as a time-lag between the hand and the cursor.



Visuomotor Adaptation and Perceptual Space Representation

We found no effect of motor adaptation on participants’ perceived midline, which shows that the space representation was unaffected by the adaptation process. This result is inconsistent with previous studies that showed transfer effects from action to perception (Ostry et al., 2010; Mattar et al., 2012; Marius‘t Hart and Henriques, 2016). However, in these studies perception was examined in terms of perceived direction and location of the hand, unlike in the current study in which we examined perception in terms of space representation. A similar result was also recently reported in a study that compared force field and prism adaptation by means of transferred effect to space representation (Michel et al., 2018). The results of this study showed no effect of force field adaptation on visual perception. In contrast, in the case of prism adaptation, transferred effects were observed in both control of action and space representation (Colent et al., 2000; Goedert et al., 2010; Fortis et al., 2018). Previous studies that compared delayed visual feedback and prism adaptation revealed different underlying mechanisms of adaptation between the two types of perturbations (Smith and Bowen, 1980). In addition, the observed difference can be related to the two learning processes theory (Smith et al., 2006); recent studies of prism adaptation suggested that the slow process is more dominant than the fast process (Michel et al., 2003), and that a third learning process is required in order to fully explain the decay of prism aftereffects after experiencing prism adaptation for 500 trials (Inoue et al., 2014). These characteristics of prism adaptation might be the cause for the different transfer of perceptual effects in comparison with our results and the results of force field adaptation. Another reason for potential discrepancy may be the stronger realism of adaptation to prism goggles compared to the virtual reality scenario in our setup.

There is an ongoing controversy about the existence of two distinct pathways for action and perception in the visual system. One view suggests that there are two separate pathways for processing of visual information for perception and for control of action (Goodale and Milner, 1992). This idea is supported by behavioral evidence for independent processing of information for perception and action in grasping (Aglioti et al., 1995; Ganel and Goodale, 2003; Milstein et al., 2018), and lifting (Flanagan and Beltzner, 2000). Alternatively, evidence suggested that action and perception might be intertwined in some cases (Franz et al., 2000; Smeets and Brenner, 2006; Reichenbach and Diedrichsen, 2015). According to this view, the observed dissociation between action and perception could be a result of different types of measures and environmental cues that are affecting each of the processes differently (Smeets and Brenner, 2006). However, this entire line of research did not examine motor adaptation effects, except from very fast adaptation of grip force during lifting (Flanagan and Beltzner, 2000). Here, we showed that when breaking the simultaneity between the visual and proprioceptive input, participants’ perceptual space representation remained unaffected. Therefore, when participants were asked to report the perceived location of a presented midline, no deviation was observed. However, their lateral movements toward the midline are modified when no visual feedback is provided. While our results demonstrate a dissociation between processing of visual information for action and perception following adaptation to visuomotor delay, we interpret them in the context of motor adaptation processes that affect differently transfer to action and perception (Ostry et al., 2010; Mattar et al., 2012; Marius‘t Hart and Henriques, 2016), rather than in the context of the different pathways in processing of visual information (Goodale and Milner, 1992; Milner and Goodale, 2006). Future studies are needed to examine potential interconnections between these two separate lines of research.

Our results showed transfer effects to the control of action but not to perceptual space representation. In the blocked design, this difference between action and perception could have stemmed from the large amount of data that are required for generating a psychometrical curve, which might have affected the learning sequence. However, in the interleaved design, the perceptual task did not require such large amount of data, and was very similar to the action task, excluding the planning and execution of a reaching movement. Therefore, we conclude that the results of the perceptual task from the interleaved design are more appropriate for comparison with the action task than the block design. Nevertheless, the conclusions of both protocols were consistent showing that there was no transfer of adaptation to a bias in perception.

In our previous work, we found spatial deviations after adaptation to laterally visuomotor delay. We explained these results with a model for perceptual and motor asymmetry in the hemispheres. However, it is noteworthy to distinguish between the unbiased perception discussed in the current study and the perceptual dominance component of the model in our previous study (Avraham et al., 2018). In the present study, perception is interpreted as the spatial representation that is reported by the subject. In contrast, in our previous study, perception is referred to the space representation in the hemispheres which forms our motor behavior across space. Accordingly, the observed dissociation between action and perception does not contradict our proposed model for perceptual and motor asymmetry in the hemispheres that explain the motor effects.



Hemi-Spatial Neglect and Hyperschematia

Neglect patients fail to perceive and respond to stimuli presented on the side contralateral to their lesion. Studies on neglect patients showed that the foundation of neglect is a deficit in both perceptual space representation and motor behavior across space (Marotta et al., 2003; Adair and Barrett, 2008; Rossit et al., 2012). The motor impairments can be demonstrated in temporal disorders of slowness in movement initiation (directional hypokinesia) or in execution of movements (directional bradykinesia), and unilateral spatial disorders of reduction in movement amplitude (directional hypometria) (Mattingley et al., 1992, 1994). Moreover, the motor impairment can also be observed in leftward movements performed in the right workspace (Danckert and Ferber, 2006). In the current study, our motor task yielded neglect-like elongated line bisection movements. However, our perceptual line bisection test results showed no midline perceptual biases. Therefore, we conclude that temporal processes cannot be addressed as the main neural basis of neglect, but they might be associated with the spatial motor distortions in neglect, and can be used as a rehabilitation technique in cases of severe motor impairment.

Another pathology is the “hyperschematia,” in which patients exhibit leftward enlargement of drawings both when copying an object or drawing from memory (Rode et al., 2014). This disorder is more frequent after right-brain damage, and the patients are unaware to their deficit (Rode et al., 2018). In the current study, left-workspace lateral movements were elongated after exposure to laterally asymmetrical delay, and no effect on perception was observed. Therefore, we suggest that the disorder in hyperschematia might be related to visuo-temporal processing. However, further investigation is required.

Understanding the functional lateralization in the hemispheres and related behaviors when presented with temporal and spatial perturbations may help us to better understand pathological cases involving injury in only one hemisphere manifesting in misperception of the environment as well as motoric impairments. By deepening our understanding, we might be able to develop new and improved diagnostic and rehabilitation methods to help patients with these complex syndromes.
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Humans walk, run, and change their speed in accordance with circumstances. These gaits are rhythmic motions generated by multi-articulated movements, which have specific spatiotemporal patterns. The kinematic characteristics depend on the gait and speed. In this study, we focused on the kinematic coordination of locomotor behavior to clarify the underlying mechanism for the effect of speed on the spatiotemporal kinematic patterns for each gait. In particular, we used seven elevation angles for the whole-body motion and separated the measured data into different phases depending on the foot-contact condition, that is, single-stance phase, double-stance phase, and flight phase, which have different physical constraints during locomotion. We extracted the spatiotemporal kinematic coordination patterns with singular value decomposition and investigated the effect of speed on the coordination patterns. Our results showed that most of the whole-body motion could be explained by only two sets of temporal and spatial coordination patterns in each phase. Furthermore, the temporal coordination patterns were invariant for different speeds, while the spatial coordination patterns varied. These findings will improve our understanding of human adaptation mechanisms to tune locomotor behavior for changing speed.

Keywords: walk, run, kinematic coordination, spatiotemporal pattern, speed effect, singular value decomposition


1. INTRODUCTION

Humans walk, run, and change their speed at will depending on their circumstances. These gaits are rhythmic motions generated by multi-articulated movements that have specific spatiotemporal patterns. The kinematic characteristics of locomotor behavior vary to produce different gaits and speeds. For example, the stance leg during walking is almost straight, with slight knee flexion, and it rotates around the foot-contact point like an inverted pendulum (Lee and Farley, 1998). In contrast, the stance leg during running behaves like a spring, with knee bending (Cavagna et al., 1976). Many kinematic parameters, such as stride length and gait cycle, also change at different gaits and speeds (Nilsson et al., 1985). Such kinematic variations are locomotor outcomes of the complicated musculoskeletal system controlled by the central nervous system.

Despite large differences in locomotor behavior, there are common kinematic characteristics, which were highlighted by extracting low-dimensional structures from measured kinematics data. For example, when three elevation angles of the thigh, shank, and foot of one leg in the sagittal plane were plotted for one gait cycle, the trajectory lay close to a plane, which has been referred to as the planar law (Borghese et al., 1996; Ivanenko et al., 2007). This low-dimensional structure explains the intersegmental coordination during locomotion. In addition, the orientation of the plane constraining the trajectory changes with changes in gait and speed, suggesting that humans adapt to the speed change by tuning the intersegmental coordination (Bianchi et al., 1998; Ivanenko et al., 2007, 2008).

Human locomotion, including walking and running, is generated by moving the whole body using the legs. The legs have different roles depending on the foot-contact condition. In particular, the stance leg supports the body weight and produces propulsive and decelerative forces against the ground. In contrast, the swing leg swings the foot forward in the air and determines the stride length. Our previous work (Funato et al., 2010) investigated how spatiotemporal patterns of walking kinematics vary according to the speed by focusing on the kinematic coordination depending on the foot-contact condition. Specifically, we used seven elevation angles for the trunk and thighs, shanks, and feet of both legs, and extracted the kinematic coordination patterns using singular value decomposition for the single-stance (SS) and double-stance (DS) phases independently. As a result, a large portion of the seven angles was reproduced by the average posture and only two sets of spatial (intersegmental) and temporal coordination patterns for both phases. Furthermore, the temporal coordination patterns exhibited almost no change, while the average posture and spatial coordination patterns changed with speed.

In this study, we extended the previous analysis to running. While walking has a DS phase, running has a flight (FL) phase, in which both feet are in the air. We investigated the seven elevation angles for running for the SS and FL phases separately and examined how the kinematic coordination patterns changed with speed. We analyzed measured data for both walking and running and compared the speed effect on the spatiotemporal kinematic coordination patterns between the gaits.



2. METHODS


2.1. Experiments

The study subjects were eight healthy men [age: 22–24 years, weight: 64.7 ± 6.6 kg (mean ± standard deviation), height: 1.75 ± 0.07 m]. They walked at 3, 4, and 5 km/h or ran at 9, 13, and 17 km/h on a treadmill (ITR3017, Bertec Corp.). A motion capture system (MAC3D Digital RealTime System, NAC Image Technology, Inc.) was used to measure the motion. Reflective markers were attached to the subjects' skin over several body landmarks on both the left and right sides: head, upper limit of the acromion, greater trochanter, lateral condyle of the knee, lateral malleolus, second metatarsal head, and heel. The sampling frequency was 500 Hz. This study was approved by the Ethics Committee of Doshisha University. Written informed consent was obtained from all participants after the procedures had been fully explained.



2.2. Analysis

We used the measured data for 40 walking steps and 75 running steps for each subject and each speed. From the measured time-series data, we calculated the angles for seven segments (trunk and right and left feet, shanks, and thighs) defined on the sagittal plane: [image: image]. These angles were defined as elevation angles (Figure 1A) based on the assumption that elevation angles behave more stereotypically than relative angles (Borghese et al., 1996; Ivanenko et al., 2007).


[image: image]

FIGURE 1. Definition of elevation angles (positive for anticlockwise direction; A). Time series of elevation angles for one gait cycle composed of double-stance phases (DS1, DS2) and single-stance phases (SS1, SS2) for walking (B) and single-stance phases (SS1, SS2) and flight phases (FL1, FL2) for running (C). These data are averages at 3 km/h for walking and 9 km/h for running by subject IG. FC-R, FC-L, FO-R, and FO-L indicate right foot contact, left foot contact, right foot off, and left foot off, respectively.



We separated the measured data into DS and SS phases for walking and FL and SS phases for running. These phases appear twice in each gait cycle, as shown in Figure 1: DS1 (starting with right foot contact), SS1 (supported on right leg), DS2 (starting with left foot contact), and SS2 (supported on left leg) for walking and SS1 (supported on right leg), FL1 (starting with right foot off), SS2 (supported on left leg), and FL2 (starting with left foot off) for running. Because SS1 and SS2, DS1 and DS2, and FL1 and FL2 are identical except for the difference in right or left, we used only DS1 and SS1 for walking and SS1 and FL1 for running. The number of data points in each phase was standardized at 100 (t = t1, …, t100).

We used [image: image] for each phase by arranging the time-series data of the elevation angles θ(t) from t1 to t100. From singular value decomposition, we obtained

[image: image]

where [image: image] was constructed by repeating the temporal average of θ(t), [image: image], for 100 samplings; λi ∈ ℝ, [image: image], and [image: image] (i = 1, …, 7) are the singular value and the left and right singular vectors of Θ − Θ0, respectively; zi and λivi explain the intersegmental and temporal coordination patterns, respectively; θ0 is the average posture and can be decomposed into the amplitude |θ0| and normalized vector [image: image] (= θ0/|θ0|); and [image: image] explains the intersegmental pattern of the average posture.

To investigate the speed effect on the kinematic coordination, we used statistical methods to determine similarity for the extracted coordination patterns by singular value decomposition. To find any significant differences, we applied a multivariate analysis of variance (MANOVA) with factors speed and subject to the temporal coordination pattern λivi, intersegmental patterns zi and [image: image], and normal vector of the constraint planes spanned by z1 and z2, and applied a 2-way analysis of variance (ANOVA) with factors speed and subject to the magnitude |θ0| of the average posture, where λivi was converted to a vector with 25 elements. Because zi and [image: image] are significant, we applied a 2-way ANOVA to each segment further, where the significance levels are based on Bonferroni correction. In addition, to compare the speed effect on the intersegmental pattern zi and average posture θ0 between the DS and SS phases for walking and between the SS and FL phases for running, we used a paired t-test to the cosine similarity of the normal vectors of the constraint planes, to the cosine similarity of [image: image], and to the difference in |θ0| between 3 and 5 km/h for walking and between 9 and 17 km/h for running. Furthermore, to determine significant differences in the SS phase between walking and running, we applied a MANOVA with factors gait and subject to the temporal coordination patterns λivi, intersegmental coordination patterns zi, and average posture intersegmental pattern [image: image] and applied a 2-way ANOVA with factors gait and subject to the average posture amplitude |θ0|. Because zi and [image: image] are significant, we also applied a 2-way ANOVA to each segment further, where the significance levels are based on Bonferroni correction. In each MANOVA and ANOVA, we confirmed that the interactions are not significant.




3. RESULTS


3.1. Kinematic Coordination Patterns During Walking and Running

The kinematic coordination at 3 km/h for walking and 9 km/h for running for eight subjects was analyzed using singular value decomposition. Table 1 shows the singular value λi and the cumulative proportion Λi ([image: image]). Although the SS phase for running had a slightly smaller cumulative proportion than the other phases, most of the cumulative proportion exceeded 99% by the second coordination pattern. This indicates that the whole-body movement in each phase can be represented by only two sets of the intersegmental coordination patterns z1, z2 and temporal coordination patterns λ1v1, λ2v2 (Figure 2).



Table 1. Singular value λi and cumulative proportion Λi for eight subjects for each phase at 3 km/h for walking and 9 km/h for running.
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FIGURE 2. Intersegmental coordination pattern zi and temporal coordination pattern λivi obtained by singular value decomposition for walking (A) and running (B). These data show average and standard deviation (error bar for zi and gray region for λivi, too small to be visible) at 3 km/h for walking and 9 km/h for running by subject IG. Tr, Th, Sh, and Fo indicate trunk, thigh, shank, and foot, respectively.



The extracted intersegmental coordination patterns z1, z2 are a subspace of the seven-dimensional space of θ(t). The whole-body movement lies close to the subspace in each phase and the subspace was switched between the DS and SS phases for walking and the SS and FL phases for running, depending on the foot-contact condition. To clarify this structure, we applied singular value decomposition to the data for one-half of a gait cycle by combining the DS and SS phases (DS-SS) for walking and the SS and FL phases (SS-FL) for running. Table 2 shows the singular value λi and the cumulative proportion Λi. The cumulative proportion for three elements exceeded 99% in both gaits for every subject This indicates that the whole-body movement for the half-gait cycle is included in the subspace spanned by three intersegmental coordination patterns, which we call ẑ1, ẑ2, and ẑ3. Figure 3 shows the whole-body movement and subspaces for each phase in the three-dimensional subspaces spanned by ẑ1, ẑ2, and ẑ3, illustrated in the same way as in Funato et al. (2010). The coordination patterns z1, z2 span a plane for each phase in the three-dimensional subspace. The start point of the DS phase and the end point of the SS phase appear at different positions (Figure 3A). However, when the left-right symmetry of the leg movements is assumed, these two points can be regarded as identical and the whole-body movement is represented by a closed-loop trajectory on these planes. The same is true for the SS and FL phases (Figure 3B).



Table 2. Singular value λi and cumulative proportion Λi of eight subjects for half-gait cycle at 3 km/h for walking and 9 km/h for running.
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FIGURE 3. Whole-body movement and constraint planes of each phase in three-dimensional subspace for walking (A) and running (B). Axes are given by three intersegmental coordination patterns ẑ1, ẑ2, and ẑ3 calculated from data of half-gait cycles DS-SS for walking and SS-FL for running. The planes are spanned by intersegmental coordination patterns z1 and z2 of each phase. These data were obtained from average at 3 km/h for walking and 9 km/h for running by subject IG. Edge points of the whole-body movement trajectory can be regarded as identical under left-right symmetry of leg movements, and the trajectory has a closed loop on these planes.





3.2. Speed Effect on Kinematic Coordination

To clarify how the kinematic coordination depends on speed, we investigated the intersegmental coordination patterns z1, z2; temporal coordination patterns λ1v1, λ2v2; and average posture θ0 for different speeds in each phase.

Figure 4 shows the temporal coordination patterns λ1v1, λ2v2 averaged across subjects for each phase at 3, 4, and 5 km/h for walking and 9, 13, and 17 km/h for running. These patterns had high similarity in each phase. To find any differences, we applied a MANOVA (Pillai's trace) with the factors of subject and speed to the discretized temporal coordination patterns, as shown in Table 3. This result shows no significant effect of speed on the temporal patterns in each phase.


[image: image]

FIGURE 4. Temporal coordination pattern λivi for each phase at 3, 4, and 5 km/h for walking (A) and 9, 13, and 17 km/h for running (B). These are averaged data across subjects.





Table 3. P-values of MANOVA for temporal coordination pattern λivi, MANOVA for intersegmental coordination pattern zi, and 2-way ANOVA for elements of zi.
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Figure 5 shows the intersegmental coordination patterns z1, z2 averaged across subjects for each phase at 3, 4, and 5 km/h for walking and 9, 13, and 17 km/h for running. These patterns also had high similarity in each phase. We applied a MANOVA (Pillai's trace) with the factors subject and speed, as shown in Table 3. Despite high similarity in appearance, this result shows that the intersegmental patterns exhibited a statistically significant effect of speed at the 1% level in each phase. Because the MANOVA was significant, we applied a 2-way ANOVA with the factors subject and speed to each segment, as shown in Table 3. The result shows that almost all speed effects are significant at 1% level in each phase and each segment. These suggest that the orientation of the constraint planes in Figure 3 changes for the speed, as obtained in our previous work for walking (Funato et al., 2010). To clarify the speed effect on the plane orientation, we calculated the normal vector of z1 and z2 in each phase in the three-dimensional subspaces spanned by ẑ1, ẑ2, and ẑ3 at 3 km/h for walking and 9 km/h for running in the same way in Funato et al. (2010). We applied a MANOVA (Pillai's trace) with the factors subject and speed to the normal vectors and the results showed p < 0.01 for all phases. In addition, we further investigated the difference of the changes in the plane orientation between the DS and SS phases for walking and between the SS and FL phases for running. Specifically, we applied a paired t-test to the cosine similarity of the normal vectors between 3 and 5 km/h for walking and between 9 and 17 km/h for running to determine whether the SS and DS phases have different cosine similarities for walking and whether the SS and FL phases have different cosine similarities for running, as shown in Table 4. Statistically significant differences were found at the 1% level for both walking and running. These results indicate that the constraint plane orientation changes for the speed change and that different phases have different changes in the plane orientation.


[image: image]

FIGURE 5. Intersegmental coordination pattern zi for each phase at 3, 4, and 5 km/h for walking (A) and 9, 13, and 17 km/h for running (B). These patterns were obtained from average and standard deviation across subjects. Tr, Th, Sh, and Fo indicate trunk, thigh, shank, and foot, respectively.





Table 4. Cosine similarity of normal vectors of constraint planes and p-values of paired t-test.
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To investigate the speed effect on the average posture, we examined the amplitude |θ0| and intersegmental pattern [image: image]. Figure 6 shows the amplitudes |θ0|, patterns [image: image], and stick pictures averaged across subjects for each phase at 3, 4, and 5 km/h for walking and 9, 13, and 17 km/h for running. Although the amplitudes clearly increased as the speed increased, these also showed high similarity in each phase. We applied a 2-way ANOVA with the factors subject and speed for |θ0| and a MANOVA (Pillai's trace) with the factors subject and speed for [image: image], as shown in Table 5. Despite high similarity in appearance, statistically significant differences were found at the 1% level in both |θ0| and [image: image] for all phases. Because the MANOVA was significant for [image: image], we applied a 2-way ANOVA with the factors subject and speed to each segment, as shown in Table 5. The result shows that almost all speed effects are significant at 1% level in each phase and each segment. To further clarify the speed effect on the average posture, we compared the changes in |θ0| and [image: image] between the DS and SS phases for walking and between the SS and FL phases for running. For |θ0|, we applied a paired t-test to the difference in |θ0| between 3 and 5 km/h for walking and between 9 and 17 km/h for running to determine whether the DS and SS phases have different changes for walking and whether the SS and FL phases have different changes for running, as shown in Table 6. Statistically significant differences were found at the 1% level for both walking and running. For [image: image], we applied a paired t-test to the cosine similarity of [image: image] at 3 and 5 km/h for walking and 9 and 17 km/h for running to determine whether the DS and SS phases have different cosine similarities for walking and the SS and FL phases have different cosine similarities for running, as shown in Table 6. Statistically significant differences were found at the 1% level for both walking and running. These results indicate that both the amplitude and intersegmental pattern of the average posture change for the speed changes and that different phases have different changes in the average posture characteristics.


[image: image]

FIGURE 6. Amplitude |θ0| of average posture for each phase at 3, 4, and 5 km/h for walking (A) and 9, 13, and 17 km/h for running (B). Intersegmental pattern [image: image] of average posture for each phase at 3, 4, and 5 km/h for walking (C) and 9, 13, and 17 km/h for running (D). Tr, Th, Sh, and Fo indicate trunk, thigh, shank, and foot, respectively. Stick picture of average posture for each phase at 3, 4, and 5 km/h for walking (E) and 9, 13, and 17 km/h for running (F). These data were obtained from average and standard deviation across subjects.





Table 5. P-values of 2-way ANOVA for average posture amplitude |θ0|, MANOVA for average posture intersegmental pattern [image: image], and 2-way ANOVA for elements of [image: image].
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Table 6. Difference of average posture amplitude |θ0|, cosine similarity of average posture intersegmental pattern [image: image], and p-values of paired t-test.
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3.3. Comparison Between Walking and Running

Because both walking and running have the SS phase, we compared the kinematic coordination between 3 km/h for walking and 9 km/h for running. We applied a MANOVA (Pillai's trace) for the temporal coordination patterns λ1v1, λ2v2; intersegmental coordination patterns z1, z2; and average posture intersegmental pattern [image: image] and applied a paired t-test for the average posture amplitude |θ0|, as shown in Table 7. Although the temporal coordination patterns had no apparent difference between the gaits, the others had statistically significant differences at the 1% level. Because the MANOVA was significant for [image: image], we applied a 2-way ANOVA with the factors subject and gait to each segment, as shown in Table 7. The result shows that almost all gait effects are significant at 1% level in each phase and each segment.



Table 7. P-values of MANOVA for temporal coordination pattern λivi, intersegmental coordination pattern zi, and average posture intersegmental pattern [image: image] and 2-way ANOVA for elements of zi, [image: image], and average posture amplitude |θ0| to determine significant differences in the SS phase between walking and running.
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4. DISCUSSION

In this study, we analyzed the whole-body movement using measurements taken during walking and running. In particular, the time series of seven elevation angles were decomposed by singular value decomposition after being separated into the DS and SS phases for walking and SS and FL phases for running (Figure 1). The whole-body movement was revealed to be composed of the average posture and only two sets of principal intersegmental and temporal coordination patterns irrespective of the phase and gait (Table 1). We investigated the relationship between the coordination patterns and gait speed to clarify the underlying mechanism for adapting the whole-body movement to the speed change at each phase.

Previous works (Borghese et al., 1996; Ivanenko et al., 2008) have shown that three elevation angles for one leg in one gait cycle can be described by a closed loop on a plane. Such planar covariation of the elevation angles held for various gaits, such as running (Hicheur et al., 2006; Ivanenko et al., 2007), curved walking (Courtine and Schieppati, 2004), backward walking (Grasso et al., 1998; Hicheur et al., 2006), walking on inclined surfaces (Noble and Prentice, 2008), walking with bent or erect posture (Grasso et al., 2000), stepping over an obstacle (Ivanenko et al., 2005b; Maclellan and McFadyen, 2010), walking with body weight unloading (Ivanenko et al., 2002), and walking on a slippery surface (Cappellini et al., 2010), which suggests an invariant characteristic in locomotion. In addition, this characteristic appeared in toddlers (Cheron et al., 2001; Ivanenko et al., 2004, 2005a; Dominici et al., 2007, 2010; Hallemans and Aerts, 2009; Cappellini et al., 2016); neonates (Dominici et al., 2011); gait disorders (Grasso et al., 2004; Laroche et al., 2007; Leurs et al., 2012; Martino et al., 2014; Cappellini et al., 2016; Ishikawa et al., 2017; Wallard et al., 2018); and also various animals (Catavitello et al., 2018), including cats (Poppele and Bosco, 2003), dogs (Catavitello et al., 2015), monkeys (Courtine et al., 2005; Ogihara et al., 2012), and birds (Ogihara et al., 2014). Investigating the coordination structures has provided useful insights for adaptation mechanisms in locomotion. To reveal a more detailed structure of kinematic coordination during human walking and running, we used seven angles of the whole body, including the trunk, and separated the measured data depending on the foot-contact condition. Because relative joint angles are not stereotypical across subjects and are more variable than elevation angles, the planarity of the joint angles is weaker for the analysis of three angles of one leg (Borghese et al., 1996; Ivanenko et al., 2007). Extracting the low-dimensional structure depends on the coordinate system (Yamasaki et al., 2013). We used the elevation angles for the analysis and our results showed that most of the cumulative proportion exceeded 99% by the second coordination pattern (Table 1), which indicates that we successfully extracted the low-dimensional structure from the seven angles. Specifically, the seven angles can be described by a closed-loop trajectory on two different constraint planes under the condition of left-right symmetry (Figure 3). The spatial nature was characterized by the location and orientation of the planes, and the temporal nature by the trajectory on the planes. The location and orientation were determined by the average posture θ0 and intersegmental coordination patterns z1, z2, and the trajectory by the temporal coordination patterns λ1v1, λ2v2.

The extracted temporal coordination patterns λ1v1, λ2v2 showed no apparent effect of the speed condition irrespective of the phase and gait (Table 3). This implies that the shape of the trajectory remained on the constraint planes. Such temporal invariance has been observed in curved walking when compared with straight-ahead walking (Courtine and Schieppati, 2004). In contrast, the extracted intersegmental coordination patterns z1, z2 showed apparent variance with the gait speed in each phase (Table 3). Previous works (Bianchi et al., 1998; Ivanenko et al., 2007, 2008) have shown that the orientation of the constraint plane for three elevation angles of one leg varies for the gait and speed. The orientation of the constraint planes of the seven elevation angles for the whole body also changes for the gait and speed. Furthermore, the DS phase for walking and FL phase for running had larger changes in the plane orientation for speed than did the SS phase [0.97 ± 0.01 (95%CI) and 1.00 ± 0.00 (95%CI) for the DS and SS phases, respectively, of walking and 0.97 ± 0.00 (95%CI) and 0.99 ± 0.00 (95%CI) for the FL and SS phases, respectively, of running] (Table 4). The average posture amplitude |θ0| and intersegmental pattern [image: image] also showed apparent speed effects in each phase (Table 5). From a comparison of these characteristics between the DS and SS phases for walking and SS and FL phases for running, the DS phase has larger changes in |θ0| and [image: image] than the SS phase for walking [0.25 ± 0.01 (95%CI) and 0.05 ± 0.01 (95%CI) for the DS and SS phases, respectively, in |θ0| and 0.98 ± 0.00 (95%CI) and 0.99 ± 0.00 (95%CI) for the DS and SS phases, respectively, in [image: image]], similar to the orientation of the constraint planes (Table 6). In contrast, while the SS phase has a larger change in |θ0| than the FL phase for running [0.77 ± 0.03 (95%CI) and 0.63 ± 0.01 (95%CI) for the SS and FL phases, respectively], the FL phase has a larger change in [image: image] than the SS phase [0.988 ± 0.001 (95%CI) and 0.992 ± 0.001 (95%CI) for the FL and SS phases, respectively]. These results suggest that, to change speed, humans tune their locomotor kinematics largely in the gait-specific phases.

A comparison of the kinematic coordination patterns in the SS phase between walking and running revealed that while the temporal coordination patterns λ1v1, λ2v2 were similar, the intersegmental coordination patterns z1, z2 and the average posture amplitude |θ0| and pattern [image: image] differed (Table 7). In particular, the amplitude |θ0| had a large difference and was larger for running than for walking [e.g., 0.86 ± 0.01 (95%CI) at 3 km/h for walking and 1.70 ± 0.03 (95%CI) at 9 km/h for running], as shown in Figures 6A,B. This suggests that while walking uses an erect posture, running uses a bent posture. In addition to this difference, the foot of the stance leg and the thigh and shank of the swing leg in z1 and the thigh and shank of the stance leg in z2 had clearly different contributions between the gaits (Figure 5). Specifically, the foot had a larger contribution for running in the stance leg of z1. In the swing leg of z1, while the shank had a larger contribution than the thigh for walking, the shank and thigh had similar contributions for running. In the stance leg of z2, while the thigh had a larger contribution for walking, the shank had a larger contribution for running. While the first intersegmental coordination pattern z1 mainly contributed to the limb axis orientation, the second intersegmental coordination pattern z2 contributed to the limb axis length. The foot movement of the stance leg in running is larger than that in walking and contributes to the limb axis rotation. For the swing leg, while the thigh movement is larger than the shank movement for walking, they are comparable for running. From [image: image], this induced knee extension and then flexion sequentially for walking, which corresponds to the last half of the movement of the double-knee action. In contrast, for running, this induced sequential knee flexion and extension, which corresponds to the spring-like knee bending. These differences reflect different movements between the gaits.

The central pattern generator (CPG) in the spinal cord is largely responsible for adaptive motor control in locomotion (Orlovsky et al., 1999). It has been suggested that the CPG consists of hierarchical networks that include the rhythm generator (RG) and pattern formation (PF) networks (Burke et al., 2001; Lafreniere-Roula and McCrea, 2005; Rybak et al., 2006a,b). The RG network generates the locomotion rhythm in response to sensory feedback, while the PF network shapes the rhythm into spatiotemporal motor patterns through interneurons. The CPG separately controls the spatial and temporal patterns in the RG and PF networks, respectively. In this study, we investigated the adaptation mechanism that produces different speeds in human walking and running by extracting low-dimensional structures from measured kinematics data with singular value decomposition to study the kinematic spatiotemporal coordination patterns. The singular value decomposition divides the data into spatial and temporal patterns on an orthonormal basis, which is useful for elucidating the underlying mechanism for such spatiotemporal patterns. In particular, our results revealed invariant features in the temporal coordination patterns and variant features in the spatial coordination patterns, which show different control strategies for the spatial and temporal patterns in the CPG. In addition to the kinematics data, the analysis of electromyographic data, which reflects motor control strategies more directly than kinematics data, has also shown low-dimensional structures for different walking and running speeds (Cappellini et al., 2006; Hagio et al., 2015; Yokoyama et al., 2016, 2017). These results suggest coordinated motor control patterns and provided useful insights for the adaptation mechanisms in locomotion. Because human locomotion is generated through the control of a redundant musculoskeletal system, the analysis of the low-dimensional coordination structures is useful. In addition to the analysis of measured data, modeling approaches also provided useful insights for the mechanism that forms the low-dimensional structures from a mathematical viewpoint (Jo and Massaquoi, 2007; Barliya et al., 2009; Neptune et al., 2009; Aoi et al., 2010, 2019; Aoi and Funato, 2016). We would like to integrate the measured data analysis and modeling approach to further clarify the adaptation mechanism for locomotion in the future.
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When walking around a room or outside, we often need to negotiate external physical objects, such as walking up stairs or stepping over an obstacle. In previous studies on obstacle avoidance, lead and trail legs in humans have been considered to be controlled independently on the basis of visual input regarding obstacle properties. However, this perspective has not been sufficient because the influence of visuomotor transformation in the lead leg on the trail leg has not been fully elucidated due to technical limitations in the experimental tasks of stepping over physical obstacles. In this study, we investigated how visuomotor transformation in the lead leg affected movement trajectories in the trail leg using a visually guided task of crossing over a virtual obstacle. Trials for stepping over a physical obstacle were established followed by visually guided tasks in which cursors corresponding to the subject’s lead and trail limb toe positions were displayed on a head-mounted display apparatus. Subjects were instructed to manipulate the cursors so that they precisely crossover a virtual obstacle. In the middle of the trials, the vertical displacement of the cursor only in the lead leg was reduced relative to the actual toe movement during one or two consecutive trials. This visuomotor perturbation resulted in higher elevation not only in the lead limb toe position but also in the trail limb toe trajectories, and then the toe heights returned to the baseline in washout trials, indicating that the visuomotor transformation for obstacle avoidance in the lead leg affects the trail leg trajectory. Taken together, neural resources of limb-specific motor memories for obstacle crossing movements in the lead and trail legs can be shared based on visual input regarding obstacle properties.
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INTRODUCTION

Humans can perform locomotion while negotiating external physical objects, such as walking up stairs and stepping over an obstacle. Negotiating obstacles requires an accurate neural representation of the obstacle properties and adaptive spatiotemporal gait modification ability (Drew and Marigold, 2015). Many previous findings provide evidence that visual information about the characteristics and location of the obstacle with respect to the body plays an important role in the planning of gait trajectory modifications (Patla et al., 1996; Mohagheghi et al., 2004; Wilkinson and Sherk, 2005). Individuals fixate on the obstacle for at least two steps before crossing it, which drives transformation of visual information regarding obstacle properties into an appropriate motor command to step over it (Patla and Vickers, 1997).

In obstacle avoidance with both legs, the visual information directly contributes to planning limb elevation in the first leg, or lead leg, whereas continual visual guidance is not needed in the second leg, or trail leg (Patla and Rietdyk, 1993; Patla, 1998; Rhea and Rietdyk, 2007; Lajoie et al., 2012). Previous studies on obstacle avoidance in humans have debated the relationship of limb elevation control between the lead and trail legs. Rhea and Rietdyk (2011) demonstrated that obstacle contact with the trail leg results in changes in toe elevation and clearance in that leg but not in the lead leg in subsequent trials (Rhea and Rietdyk, 2011). The removal of all vision during the last portion close to an obstacle and during obstacle crossing increased the toe elevation height only in the lead leg (Mohagheghi et al., 2004). These previous studies provided the current perspective that sensorimotor transformation based on proprioceptive information regarding the interaction between the obstacle and one limb does not affect the crossing movements in the other leg. Accordingly, lead and trail limb trajectories are considered to be determined based on independent controllers. This knowledge, however, should be revalidated, because the visual information in the affected leg was not available to the other leg movement in the previous studies (Mohagheghi et al., 2004; Rhea and Rietdyk, 2011). The influence of the change of visuomotor transformation in one leg on that in the other leg has not been fully elucidated despite the importance of vision in crossing an obstacle. In this study, we addressed how the modification of sensorimotor transformation in the lead leg based on visual input influences movements in the trail leg.

To date, methods to alter visuomotor transformation in stepping over a physical obstacle have not been proposed. Here, we constructed a new experimental paradigm of obstacle avoidance with visuomotor perturbation using a clearance task over a virtual visual obstacle (Kim et al., 2018). Visuomotor perturbation tasks have been performed in many studies to examine the motor response against the perturbation; for example, a cursor representing the hand position was laterally translated from the current hand position during visually guided reaching movements (Saunders and Knill, 2003; Franklin and Wolpert, 2008; Veyrat-Masson et al., 2010). In the present task, subjects manipulated two cursors representing the lead and trail limb toe positions displayed on the screen of a head-mounted display so that they stepped over a virtual visual obstacle. The virtual obstacle avoidance task makes it possible to experimentally operate the behavior of visually guided toe trajectories in the lead leg and then investigate the effect on the trail limb toe trajectories. Altogether, we could clarify the influence of novel visuomotor transformation in the lead leg on that in the trail leg.

Therefore, the first objective of this study was to construct an experimental paradigm of a virtual obstacle avoidance task and then to verify whether the virtual task could be used to understand motor control in crossing a physical obstacle. Using this method, we then examined how the alteration of visuomotor transformation in the lead leg affected movement trajectories in the trail leg during obstacle crossing in humans. We hypothesized that toe elevation height in the trail leg is corrected with the change of visuomotor transformation in the lead leg without visual information about the trail limb trajectories if visuomotor transformation in the lead leg affected movement in the trail leg. This study will make a significant contribution to understanding the interaction between lead and trail limb motor control in stepping over an obstacle.



MATERIALS AND METHODS


Participants

Thirteen healthy adults (8 males and 5 females, age = 24.3 ± 4.3 years, height = 169.5 ± 8.8 cm, weight = 63.9 ± 14.7 kg, mean ± SD) participated in this study. All subjects had normal/corrected vision and no history of musculoskeletal or neurological disorders. None of the subjects had any knowledge of the purpose of the study, apart from being told that it was aimed at understanding the movement strategies during obstacle clearance. Informed consent was given prior to the experiment. The experimental procedures were conducted in accordance with the Declaration of Helsinki and were approved by the Local Ethics Committee of the Graduate School of Human and Environmental Studies, Kyoto University (19-H-2).



Task for Stepping Over a Physical Obstacle

During the physical tasks, subjects were required to step over an obstacle (Figure 1A). The obstacle was 89 cm wide with a depth of 3.5 cm and a height of 22 cm. The size of obstacle was within the range of that used in the previous studies (width: 57–100 cm; depth: 0.3–10 cm; height: 1–30 cm; Patla and Vickers, 1997; Mohagheghi et al., 2004; Rhea and Rietdyk, 2011; Lajoie et al., 2012; Kim et al., 2018). At the beginning of a trial, subjects were instructed to stand rigidly with their toes precisely on a start line drawn on the floor. The obstacle was placed 50 cm in front of the start line. After stepping over the obstacle with their right leg (i.e., lead leg), subjects paused while straddling the obstacle between the both legs for 2 s. This delay period was set particularly for a virtual task described below, which was shorter than that used in previous studies on working memory regarding obstacle height in humans (more than 5 s; Lajoie et al., 2012; Shinya et al., 2012). Then, subjects cleared the obstacle with their left leg (i.e., trail leg). After a trial, subjects returned to the start line. All movement initiation timings were verbally instructed by an experimenter.
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FIGURE 1. Experimental setup and protocol. (A) overhead view of the sequence of foot placements taken by subjects to step over the obstacle (denoted by a solid black rectangle) in the right (lead; step 1) and left (trail; step 2) legs. Before crossing the obstacle, subjects were instructed to stand with their toes on a start line (dashed black line) drawn on the floor. The initial foot position was shown as gray footprints. (B) monitor view of a head-mounted display (HMD) apparatus during stepping over a virtual visual obstacle. Two-dimensional coordinates in Y and Z axes corresponds to the coordinates shown in (A). Subjects manipulated the two cursors representing lead (white) and trail (red) limb toe positions. (C) Organization of an experimental session. In the Block 1, 18 physical-obstacle crossing trials were performed followed by the Block 2 with 18 trials that required visually guided stepping over a virtual obstacle. In the Block 3, 8 cursor-blinded (CB) trials in which the cursor representing only the trail limb toe position was blinded were randomly interleaved in every 3rd virtual obstacle crossing trial. The Block 4 contained 10 sets of 6 consecutive trials consisting of one or two visuomotor perturbation (VP) trials sandwiched between pairs of CB trials and followed by either two or three null trials. The illustration labeled HMD indicates that subjects wore an HMD apparatus in the blocks. (D) The difference of cursor and toe trajectories in lead and trail legs across each null, CB and VP trial. Both in CB and VP trials, the cursor (red) corresponding to trail limb toe position was invisible.




Experimental Setup for Virtual Visual Obstacle Avoidance Task

Realtime tracking and display of toe positions in MATLAB (R2018a, The MathWorks Inc., Natick, MA, United States) figure enabled us to construct a task for stepping over a virtual visual obstacle. Toe trajectories on each leg were sampled at 100 Hz by the three-dimensional optical motion capture system (OptiTrack V100:R2, Natural Point Inc., Oregon, United States) with 10 cameras spaced around subjects. Three infrared reflective markers were attached on the toe in each leg to create the rigid body. To extract motion capture data from Motive 2.0.2 software (Natural Point Inc., Oregon, United States), the MATLAB Wrapper Class from the NatNet Software Development Kit provided by OptiTrack was used (Maselli et al., 2017). This allowed for rigid body coordinates to be streamed to MATLAB. Several functions were written in MATLAB for finding mechanical quantities based on rigid body coordinates. These functions were then called programmatically by the Java script using the MATLAB Engine API for Java provided by MathWorks.

Just before the tasks in the virtual visual condition, subjects wore a head-mounted display apparatus (PlayStation VR, Sony Interactive Entertainment, Tokyo, Japan), which occluded direct vision of their own bodies and the landscape around them. The headset display was synchronized with a computer screen that captured the toe trajectories. The lead and trail limb toe positions on a sagittal plane were displayed in the 2-dimensional coordinates of a MATLAB figure at 100 Hz as white and red cursors, respectively. The start position was drawn as a triangle on the left side of the screen. The virtual visual obstacle that corresponded to the physical obstacle with a depth of 3.5 cm, a height of 22 cm and placed 50 cm in front of the start position was also displayed. The drawing of the figure and the running of tasks were implemented using custom-made MATLAB script. One experimenter stood behind and slightly to the side of the subjects to prevent a fall.



Visually Guided Stepping Task Over a Visual Obstacle

Subjects manipulated the two cursors representing the lead and trail limb toe positions displayed on the screen of a head-mounted display apparatus (Figure 1B). At the beginning of each trial, subjects were instructed to set two cursors precisely on a start position. After a 2.5 s holding period, subjects moved the white cursor corresponding to the toe position in their right leg (i.e., lead leg) and cleared the virtual obstacle. The red cursor representing the toe position in the left leg (i.e., trail leg) was then maneuvered to step over the virtual obstacle in 2 s. This delay period was set to encourage attention to the obstacle and the cursor corresponding to the toe position in the trail leg. After 1.5 s, subjects were instructed to move both cursors and return backwards to the start position by sliding their feet. All instructions about holding, movement initiation and going back to the start line were shown in the center of the screen as the messages, “wait,” “go” and “go back home,” respectively. If subjects moved the cursor over 50 cm on the right or left side, a warning message, “attention to the right or left,” was displayed. Subjects were told by an experimenter that a physical object corresponding to the configuration of the virtual object was placed in front of them, although there was indeed no physical object.



Experimental Procedure in Physical and Virtual Obstacle Tasks

The experiment began with a block of 18 trials of clearing a physical obstacle (Block 1 in Figure 1C). This was followed by two consecutive blocks of 18 and 24 trials, respectively, of stepping over a virtual visual obstacle (Blocks 2 and 3 in Figure 1C). Every 3rd trial in Block 3, a cursor-blinded trial was randomly interleaved (Figure 1D). In the cursor-blinded trial, the cursor representing only the trail limb toe position was blinded throughout the trial. Note that subjects were instructed to step over a virtual obstacle in front of them without visual information about the trail limb toe trajectories. In Block 4, one or two visuomotor perturbation trials were sandwiched between pairs of cursor-blinded trials (Block 4 in Figure 1C). During the visuomotor perturbation trial, the vertical migration length of the cursor corresponding to the lead leg was altered 0.6-fold relative to the actual toe movement (Figure 1D). Consequently, successful clearance of the virtual visual obstacle required elevation of the lead limb toe at least 37 cm. After each consecutive trial, i.e. [cursor-blinded–perturbation (–perturbation)– cursor-blinded], either two or three trials in which both cursors representing the lead and trail limb toe positions were visible were presented so that each set, referred to as “perturbation sets,” consisted of six consecutive trials. Each perturbation set with either one or two perturbations was assayed five times in pseudorandom order. Generally, in the studies using visuomotor perturbation, the perturbation was applied more consistently throughout a lot of trials (Imamizu et al., 1995; Krakauer et al., 2000). In the number of consecutive obstacle clearance trials, however, the toe height gradually decreases potentially due to fatigue or the process to search the optimal strategy (Rhea and Rietdyk, 2011). These factors will make it complex to identify whether the change of toe height is owing to the corrective response against the perturbation or the other factors. To avoid the confusion, we have selected the task where one or two perturbation was applied between the cursor-blinded trials to quantify the spontaneous corrective response to the perturbation (Albert and Shadmehr, 2016).



Data Collection and Analysis

Three-dimensional lead and trail limb toe positions streamed from Motive software were stored at 100 Hz via custom-written MATLAB (R2018b, Mathworks, Natick, MA, United States) software. The data were high-pass filtered at 5 Hz using a zero-phase-lag 2nd-order Butterworth filter. Maximum toe elevation for the lead and trail legs was defined as the maximum vertical position of each leg’s toe marker during the stepping trajectory over the obstacle. All data were processed using custom-written MATLAB programs.



Statistics

We calculated Pearson correlation coefficient between the mean vertical heights of toe elevation while stepping over the virtual visual and physical obstacles across each subject. In addition, two-way repeated measures ANOVA was used to test the difference in the height of toe elevation between perturbation sets and trial conditions in each set. Once a significant main effect of condition was observed, post hoc tests using Tukey’s method were used to compare the height of toe elevation in the baseline of the perturbation sets with that after visuomotor perturbation. For all the statistical tests, the data points exceeding 3 scaled median absolute deviations away from the median were defined as outliers and were removed. An α threshold of 0.05 was used throughout to assess statistical significance.



RESULTS


Association of Motor Performance in Stepping Over Physical and Virtual Obstacles

We first verified whether the relationship of the lead leg to the trail leg during clearance of a physical obstacle was examined from the tasks with a virtual obstacle. To this end, the association of motor performance between crossing movements over physical and virtual obstacles was investigated. The vertical toe elevation both in the lead and trail legs decreased when subjects cleared the virtual visual obstacle despite the requirement of the vertical toe elevation to be the same as that of stepping over a physical obstacle (Figure 2A). Just after switching from the physical to the virtual visual tasks, however, the toe elevation for the lead leg was close to that at the end of crossing the physical obstacle (Figures 2B,C), indicating the possibility that a prior history of toe elevation for the physical obstacle remained during crossing movements over the virtual visual obstacle. Association with motor performance was also observed as the common strategy for how high each subject raised his or her feet during obstacle clearance. Across each subject, the vertical heights of lead toe elevation while stepping over the virtual visual obstacle were strongly correlated with those while clearing the physical obstacle (Figure 2D, lead leg; r = 0.77, p = 0.0035). This interaction of motor performance between the different environments indicates that the task with a virtual visual obstacle can examine the control strategies in stepping over the physical obstacle. In the case of the trail leg, however, the relationship of the toe height between physical and virtual environments was lower as compared with that in the lead leg (Figure 2D, trail leg; r = 0.47, p = 0.12).
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FIGURE 2. Motor performance in stepping over physical and virtual visual obstacles. (A) lead (top) and trail (bottom) limb toe trajectories while crossing physical (black line) and virtual (gray line) obstacles. The toe trajectories are the average for all subjects from trials 11 to 18 in the Blocks 1 and 2, respectively, that required stepping over the physical and virtual obstacles. The anteroposterior position and height of the obstacle was shown as a dark gray bar relative to the start position. (B) The trial-by-trial changes of toe elevation height in 36 consecutive trials in the Blocks 1 (black line) and 2 (gray line). Error bars represent the standard error of the mean. The obstacle height is shown as a black dotted line. (C) Toe elevation across each subject in 3 consecutive phases; trials 11–18 in Block 1; the trial at the beginning of Block 2; trials 11–18 in Block 2. The obstacle height is shown as a black dotted line. (D) The relationship of toe elevation between physical and virtual obstacles. The circles represent the mean values calculated in each subject, and + signs indicate outliers.




Adaptable Change of Lead Toe Elevation During Obstacle Clearance With Visuomotor Perturbation

The vision-based toe trajectory modification during obstacle avoidance was examined with repeated perturbation sets composed of six consecutive trials in Block 4 (Figure 1C). The mean height of the lead limb toe elevation for all subjects was shown in the six trials with two consecutive perturbations (Figure 3A, lead leg). Once the visuomotor perturbation was applied in the second trial, toe elevation increased compared with the first trial. The difference in toe height between the first and second trials reflected feedback correction for the visuomotor perturbation during movement, whereas the change in toe height that occurred from the first trial to each of the other trials reflected both within-movement feedback correction and predicted movement after offline correction. Modification of lead limb toe elevation was consistently observed in individual subjects (Figure 3B, lead leg). Two out of 13 subjects, however, did not modify the toe elevation that reached into the required height, i.e., 37 cm, after visuomotor perturbation. These subjects needed to increase their toe elevation on the perturbation trial compared to others because the toe height in the first baseline trial was lower than the other subjects.
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FIGURE 3. Change of toe elevation due to 2 consecutive visuomotor perturbations. (A) Lead (top) and trail (bottom) limb toe elevations during sets of 6 successive trials with two visuomotor perturbation (VP) trials in Block 4 (Figure 1C). The data are the mean values for all repetitions and subjects. Error bars represent the standard error of the mean. Dashed line represents the lowest value of the desired toe height during the perturbation. (B) Mean toe heights in Block 4 across each subject. Dashed line represents the lowest value of the desired toe height during the perturbation. (C) Difference of the toe height between each trial and the initial cursor-blinded trial on each perturbation set. The data are the mean values for all repetitions and subjects. Error bars represent the standard error of the mean. Asterisk means statistically significant difference in the toe heights from the initial trial to each following trial; *p < 0.05 and **p < 0.001 using the post hoc Tukey test.


Lead limb toe height was quantified relative to the first trial on each perturbation set across each subject (Figure 3C, lead leg). It can be clearly seen that subjects effectively scaled lead leg elevation in response to the perturbation trials (F5,59 = 11.81, p = 5.7 × 10–8). Post hoc tests indicated that the toe heights in the lead leg were higher than those in the first trial during the two consecutive visual perturbations (p = 0.059 and 0.0045). In the following washout trials, i.e., from the fourth to sixth trials, the lead toe height was returning to the baseline value (p = 0.0042, 3.22 × 10–4 and 0.049). These results indicate that the vision-based motor plan for stepping over the obstacle with the lead leg was modified using the virtual visual obstacle avoidance task.



Effect of Visual-Based Motor Planning in the Lead Leg on the Trail Leg While Stepping Over an Obstacle

As in the lead leg, the trail limb toe elevation was quantified on each perturbation set with two consecutive visuomotor perturbation trials (Figure 3A, trail leg). Note that the cursor representing the trail limb toe position was invisible in both cursor-blinded and perturbation trials (Figure 1D). Hence, the alteration in toe height observed from the second to the fourth trials depended on the movement in the lead leg. Before and after the cursor in the lead leg was perturbed, significant effect was observed in the trail limb toe elevation (F5,59 = 8.18, p = 6.15 × 10–6). Post hoc tests indicated that the trail limb toe trajectories in the second and third trials were elevated higher relative to the baseline despite the lack of visual information regarding the trail leg (Figure 3C, trail leg; p = 0.024 and 0.013), indicating that the trail limb toe trajectories were modified based on the vision-based errors in the lead leg. In several subjects, trail limb toe elevation was not comparable to the required height after the visuomotor perturbation (Figure 3B, trail leg). According to the result, the effect of the visuomotor error in the lead leg on the trail limb movement was smaller than that on the lead leg itself. The trail limb toe height was then modified toward the baseline value from the fourth to sixth washout trials where the perturbations were removed (p = 0.059, 0.94, and 0.28).

The modification of trail limb toe trajectories on the basis of the visual errors in the lead leg was also observed in the perturbation sets with one visuomotor perturbation trial (Figure 4). There was significant effect due to the perturbation both in the lead and trail limb toe elevation (F5,59 = 13.13, p = 1.22 × 10–8; F5,59 = 8.18, p = 6.15 × 10–6). The mean trail limb toe height increased in the second trial without visual input about that toe position (Figure 4B, trail leg; post hoc Tukey test, p = 0.031) while the lead limb toe height was corrected to be higher from the second to fourth trials (Figure 4B, lead leg; post hoc Tukey test, p = 0.016, 2.28 × 10–6 and 0.013), and then went back to the baseline in the following trials (post hoc Tukey test, p = 0.15 and 0.28).
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FIGURE 4. Change of toe elevation due to one visuomotor perturbation. (A) Lead (black line) and trail (gray line) limb toe elevation during sets of 6 successive trials with one visuomotor perturbation (VP) trial in Block 4 (Figure 1C). The data are the mean values for all repetitions and subjects. Error bars represent the standard error of the mean. Dashed line represents the lowest value of the desired toe height during the perturbation. (B) Difference of the toe height between each trial and the initial cursor-blinded trial on each perturbation set. The data are the mean values for all repetitions and subjects. Error bars represent the standard error of the mean. Asterisk means statistically significant difference in the toe heights from the initial trial to each following trial; *p < 0.05 and **p < 0.001 using the post hoc Tukey test.




DISCUSSION

The main aim of the present study was to examine the effects of visuomotor transformation in the lead leg on movement trajectories in the trail leg during obstacle crossing in humans. To this end, the experimental paradigm of a virtual obstacle avoidance task was first constructed that makes it possible to alter the visuomotor transformation involved in obstacle crossing. The interactive motor performance between the physical and virtual visual tasks indicated that the virtual visual obstacle task enabled us to examine motor control in stepping over an external physical obstacle. With this available method, we then demonstrated that the trail limb toe trajectories were modified after visuomotor perturbation in visually guided lead limb movement. Therefore, the results suggest that visuomotor transformation in the lead leg contribute to a motor plan for trail limb toe trajectories during obstacle crossing.

According to previous studies on obstacle avoidance in humans, lead and trail legs were considered to be controlled independently on the basis of visual input regarding obstacle properties (Patla and Rietdyk, 1993; Patla, 1998; Rhea and Rietdyk, 2007), and lead leg non-visual sensorimotor signals, proprioceptive information, or efferent copy signals play a relatively minor role in guiding the trail leg trajectory (Lajoie et al., 2012). In contrast, in the present study, the visuomotor error that occurred in visually guided lead limb movement led to correction of the toe elevation height not only in the perturbed lead limb but also in the unperturbed trail limb; therefore, the trail limb movement depended on the sensory error feedback from the lead limb. The bilateral movement correction elicited in response to unilateral perturbations occurred when the task goal was shared between the right and left arms, indicating that sensory feedback from one limb can modify the movement of another limb in a task-dependent manner (Mutha and Sainburg, 2009; Omrani et al., 2013). Although the lead and trail limb toe positions were independently controlled in the present study, the underlying goals of the obstacle clearance task would be shared in both legs. Furthermore, while this study measured the corrective response of the lead and trail limb movements after the one or two visuomotor perturbation trials, the response remained in the following null trials (Figures 3, 4), indicating the learning response against the transient perturbation (Albert and Shadmehr, 2016). In this sense, the bilateral movement correction might reflect interlimb transfer of the visuomotor learning. A previous study on locomotor adaptation demonstrated the interlimb transfer of learning effects on a new obstacle avoidance task occurred when the lead leg became the trail leg, and vice versa (van Hedel et al., 2002). The interlimb transfer was also observed following adaptation to a novel visuomotor condition in visually guided reaching movement (Imamizu and Shimojo, 1995; Sainburg and Wang, 2002). Thus, movement information learned with one limb transfers to the same movements made with the other limb in a task-dependent manner. Despite the interlimb transfer of movements, each limb can also adapt to visuomotor rotation oppositely directed for the two arms (Wang and Sainburg, 2003). The adaptations to opposite visuomotor rotations are known to interfere with each other within the same arm (Krakauer et al., 2000; Tong et al., 2002). The movement information obtained during the opposite arm training is obligatorily competed with subsequent performance with the other arm (Kumar et al., 2018), whereas the limb-specific memories for both arms can be stored (Wang and Sainburg, 2003). Together, these findings suggest that learning of a visuomotor rotation is represented in shared neural resources for the acquisition of motor memories across different limb’s controller. In the case of an obstacle crossing movement, it has been reported that the obstacle properties would be stored in the working memory represented as spatiotemporal neural activity in area 5 of the posterior parietal cortex (Lajoie et al., 2010; Wong and Lomber, 2019). Limb-specific memories might be stored for the lead and trail legs but can be affected by the sensorimotor information in the other limb. Indeed, proprioceptive feedback and an efferent copy signal provided when stepping over an obstacle with the lead limb enhanced memory of the obstacle height that was recalled in the trail limb movement compared with the case in which only visual information was available (McVea and Pearson, 2007; McVea et al., 2009; Shinya et al., 2012). The present study suggested that neural resources of limb-specific motor memories for obstacle crossing movements in lead and trail legs were shared based on visual input regarding the interaction between obstacle properties and limb movements. By contrast, there is the possibility that different explicit strategies were used for control of lead and trail legs (Taylor and Ivry, 2011). Future experiments are needed to examine whether the corrective response in a trail leg after visuomotor correction in a lead leg reflects implicit or limb-specific explicit control for stepping over an obstacle.

Motor skill transfer between physical and virtual visual environments was demonstrated in previous studies that tried to enhance motor performance in the real world based on virtual reality training for sports and rehabilitation (Todorov et al., 1997; Sveistrup, 2004; Adamovich et al., 2009). The virtual environments can present combinations of multimodal stimuli that are not found in the natural world and produce changes in the environment that would not be possible physically. Clinical and rehabilitation therapists or trainers gain unique benefits from being able to control stimuli in virtual reality environments. The virtual reality environment is increasingly used not only for application but also for neuroscience research (Tarr and Warren, 2002; Bohil et al., 2011). Motor tasks guided by visual cues corresponding to actual movements are virtual reality tasks in the broad sense (Krakauer et al., 2000). The present study expanded a visually guided motor task into an obstacle crossing movement and then demonstrated the transfer of motor performance; toe elevation early in the task of crossing over a virtual obstacle was biased by the preceding physical task. The result suggested that the visual perception and the sensorimotor processes engaged in each of the physical and virtual tasks are related to each other. Furthermore, there was a correlation between toe elevation in the physical and virtual tasks, indicating that the common strategies of movement planning to implement successful obstacle crossing were used in these two environments. Therefore, the visually guided task of crossing over a virtual obstacle is an effective experimental paradigm to investigate motor control of coordinated movements in the lead and trail legs during obstacle avoidance, which can take the place of physical tasks. This paradigm has the potential to expand the present experimental setup into motor tasks in novel visuomotor environments with various visual gains or combined with multimodal sensory stimuli. However, the fact remains that there was an apparent gap in the environment and resultant motor performance between the virtual and the physical tasks (Lin et al., 2015). For example, attributes of the obstacle as well as the toe position are available to the trail leg during the null trials of the virtual task whereas these were out of sight in the physical task. The visual information about the obstacle and the toe position only on the sagittal plane was also specific to the virtual task. Whether and how the present results in the virtual task were transferred to the physical environment should be tested in future studies.

In summary, visuomotor perturbation applied only to the lead leg movement in the middle of tasks of crossing over a virtual visual obstacle resulted in trajectory modification not only in the lead leg but also in the trail limb toe, indicating that the visuomotor transformation for obstacle avoidance in the lead leg affects trail leg trajectories. To date, lead and trail legs in humans have been considered to be controlled independently, whereas these results suggest that neural resources of limb-specific motor memories for obstacle crossing movements in lead and trail legs were shared based on visual input regarding obstacle properties and limb trajectories during crossing. The obstacle clearance task in the virtual visual environment is a practical experimental paradigm that makes it possible to flexibly alter spatiotemporal coordination in the visuomotor system regarding obstacle perception and lower-limb movements.
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Humans learn motor skills (MSs) through practice and experience and may then retain them for recruitment, which is effective as a rapid response for novel contexts. For an MS to be recruited for novel contexts, its recruitment range must be extended. In addressing this issue, we hypothesized that an MS is dynamically modulated according to the feedback context to expand its recruitment range into novel contexts, which do not involve the learning of an MS. The following two sub-issues are considered. We previously demonstrated that the learned MS could be recruited in novel contexts through its modulation, which is driven by dynamically regulating the synergistic redundancy between muscles according to the feedback context. However, this modulation is trained in the dynamics under the MS learning context. Learning an MS in a specific condition naturally causes movement deviation from the desired state when the MS is executed in a novel context. We hypothesized that this deviation can be reduced with the additional modulation of an MS, which tunes the MS-produced muscle activities by using the feedback gain signals driven by the deviation from the desired state. Based on this hypothesis, we propose a feedback gain signal-driven tuning model of a learned MS for its robust recruitment. This model is based on the neurophysiological architecture in the cortico-basal ganglia circuit, in which an MS is plausibly retained as it was learned and is then recruited by tuning its muscle control signals according to the feedback context. In this study, through computational simulation, we show that the proposed model may be used to neurophysiologically describe the recruitment of a learned MS in novel contexts.

Keywords: motor skill recruitment, muscle synergy, corticospinal tract, reinforcement learning, cortico-basal ganglia circuit, muscle loading, feedback gain control


INTRODUCTION

Innate and learned motor skills (MSs) are recruited in the central nervous system (CNS) for effective and fast motor control in response to novel external circumstances such as disturbances. To recruit an MS in response to novel contexts, its contextual information must be afferently transmitted to the CNS through feedback control processes. Therefore, the recruitment of an MS should be considered in the feedback control process. However, this mechanism has not been addressed in previous studies related to feedback control, such as proportional integral derivative control (Petkos and Vijayakunar, 2007) and optimal feedback control (Todorov and Jordan, 2002; Liu and Todorov, 2007), because these studies focused only on correcting motor control errors through feedback gain control. In addressing this issue, we hypothesized that an MS is dynamically modulated according to the feedback context to expand its recruitment range into novel contexts, which do not involve the learning of an MS. The following two sub-issues are taken into account in this article.

Dynamic modulation of an MS in response to the feedback context is a mechanism that allows rapid recruitment of an MS in a novel context. In validating this hypothesis, the Synergy strategy-based muscle Control (SC) proposed in our previous study (Min et al., 2018) is a valuable concept because it contributes to the dynamic modulation of an MS to regulate the functional redundancy of individual muscle units for the feedback context. To achieve this SC-driven MS (SC-MS), all muscle units contributing to an MS need to be classified into multiple group units according to their innervation by peripheral nerves derived from the brachial plexus. Consequently, these group units cause the contracting sets of muscles, termed motor primitives (MPs) (Giszter et al., 1993), to effectively suppress the control redundancy of muscle units in feedback control. In our previous study (Min et al., 2018), this muscle control policy was defined as the group control policy (GCP) that outputs the same control signal to all muscle units constituting a group unit. Although the GCP is an effective control policy for suppressing the control redundancy of muscle units in feedback control, it needs assistance to generate novel patterns of muscle activities that cannot be produced by combining group units. To assist GCP, the individual control policy (ICP) was defined as the control policy for outputting identified individual control signals to individual muscle units. These two control policies synergistically combine to optimally control muscle units according to the feedback context. This synergy may neurophysiologically correspond to the combination of corticospinal neurons (CSTs) in the primary motor cortex (M1) and its second type of CSTs, termed cortico-motoneuronal cells (CMs), through the corticospinal tract, which was addressed in a previous study (Rathelot and Strick, 2009). In this previous study, it was suggested that the MPs activated by the CSTs in M1 through their connection with interneurons in the spinal cord may be adjusted by the signals that are produced from CMs through their monosynaptic connection with motor neurons (MNs) in the spinal cord. This adjusting of MPs may sculpt novel motor output patterns for highly skilled movements that cannot be produced by combining MPs. Consequently, the combination of two ways of controlling muscles in the corticospinal tract is more plausible in neurophysiologically representing an MS than CSTs driven one way, which is the route for controlling MPs termed muscle synergies (Tresch et al., 1999; d'Avella et al., 2003; Torres-Oviedo et al., 2006; Safavynia and Ting, 2012; Ting and Macpherson, 2012; Barroso et al., 2014; Suzuki et al., 2017; Amundsen Huffmaster et al., 2018; De Marchis et al., 2018; Kibushi et al., 2018; Toma and Santello, 2019), whose individual MP units are composed of spatiotemporally fixed muscle activities. These studies demonstrate that SC may be neurophysiologically suitable for characterizing the dynamic modulation of an MS.

Even if an MS is dynamically modulated for its recruitment in novel feedback contexts, this modulation is trained in the dynamics under the MS learning context. Therefore, this learning condition of an MS naturally brings about movement control deviation from the desired state in a novel context. To overcome this handicap, a learned MS needs to be modified in response to a novel context. In addressing this issue, we propose a Tuned Synergy strategy-based muscle Control (T-SC) model, in which the SC-MS is tuned in response to the feedback context. Through this tuning, the aforementioned deviation is supposedly reduced. In designing this model, we assumed that the tuning signals of the SC-MS are cumulatively modified to tune SC-MS-produced muscle activities according to the deviation from the desired movement, which is recognized through feedback control. This hypothesis is based on experimental evidence demonstrating that the response through sensorimotor control is coupled with ongoing decision processes, which are reflected by the accumulated feedback information (Selen et al., 2012). In a previous related study (d'Avella and Pai, 2010), this issue was also addressed with regard to the limited recruitment range of existing modules such as muscle synergies in novel contexts. However, an alternative solution, apart from learning a new MS, has not been suggested so far. The proposed T-SC may be an alternative motion control strategy for novel contexts because it is more efficient for the rapid adaptation of motion control in novel contexts than learning a new MS.

The neurophysiological architecture and mathematical description of the T-SC model are presented in sections Neurophysiological Architecture and Mathematical Model, respectively. To validate this model, we simulated the recruitment of the SC-MS in novel contexts that were not present when the MS was learned (section Results).



MATERIALS AND METHODS


Neurophysiological Architecture

The neurophysiological architecture of T-SC is based on experimental evidence (Spraker et al., 2007) showing that the cortico-basal ganglia (cortico-BG) circuit is involved in scaling the force generation according to the external environment. Accordingly, this evidence is applicable to validating the recruitment of a learned SC-MS through tuning its muscle force control signals according to the feedback context. In this architecture, the operation of T-SC in the CNS may be achieved as follows.

Based on the experimental evidence (Pruszynski et al., 2011) for involvement of the M1 region in modulating the proprioceptive response related to the knowledge of limb mechanics, we surmised that the sensory feedback signals, sfb, including the contextual information for the dynamic states of the skeletal joint, are transferred to M1 through its somatosensory pathway (London and Miller, 2013). These feedback signals, sfb, are inputted to the basal ganglia (BG) through M1. In the cortico-BG loop (Barto, 1995; Doya, 2000, 2007, 2008; Ito and Doya, 2011), the BG selectively disinhibits the activities of both M1 and the brainstem to select the optimal tactic for motion control (Hikosaka et al., 2000). The extent of this disinhibition is controlled via dopamine release (Shinnamon, 1993) during reinforcement learning (Houk et al., 1995). Therefore, the BG is assumed to dynamically produce a trade-off between inhibition and disinhibition of the activity in M1 during sequential motion control (Nambu et al., 2002). Further, section Recruiting a Learned MS via the Cortico-Basal Ganglia Loop discusses the neurophysiological evidence for the involvement of the BG in kinematic control through the recruitment of a learned MS. Based on this experimental evidence, in the BG, we assumed that an SC-MS is dynamically modulated by inhibiting or disinhibiting the GCP and ICP, which regulate the functional redundancy of individual muscle units for sfb, as discussed in section Introduction. This modulation is mathematically described in section Dynamic Modulation of an SC-MS. Through this modulation, the SC-MS produces a muscle control signal, [image: image], that is efferently copied, as uSC, to the spinal cord through the corticospinal neurons (CSTs) in M1. Through this process, a learned SC-MS retained in the BG is dynamically modulated to produce uSC according to the feedback context sfb. A discussion of this modulation is introduced in sections Recruiting a learned MS via the Cortico-Basal Ganglia Loop and Muscle Control Scheme of the Corticospinal Tract in Recruiting an SC-MS.

The signals uSC are assumed to be tuned in M1 because experimental evidence (Herter et al., 2009) has shown that neural activity in M1 is broadly tuned to novel contexts, such as mechanical perturbations applied to the shoulder and elbow, and reflects knowledge of joint–limb dynamics (Pruszynski et al., 2011). Based on this supposition, the uSC may be tuned with the following dynamic modulation process for the feedback context. Concurrent with the aforementioned input of sfb to M1, the goal states so of sfb are also input to M1 from the association cortex. Both sfb and so are inputs to the muscle loading tuner and the difference between the two signals is transferred to the tuning gain (TG), Gtuning, of uSC. The Gtuning consists of agonist and antagonist loading signals, which disinhibit the activities of loaded muscles and inhibit the activities of unloaded muscles by properly scaling them (Nashed et al., 2015). This tuning process generates the optimal muscle control signals u*, which descend to MNs in the spinal cord to control the muscles. This tuning is mathematically described in section Tuning of a Learned SC-MS.



Mathematical Model
 
Dynamic Modulation of an SC-MS

As mentioned in section Introduction, we have defined the group units as muscle control units, which produce the contracting sets of muscles, termed MPs. These group units and their belongings are determined according to the peripheral nerves innervating them (Table 1). Based on this neurophysiological definition, the GCP is defined as the control policy considering individual muscle units as a component of the group unit, in which all components respond to the feedback context with one common signal. In contrast to the GCP, the ICP is defined as the control policy considering individual muscle units as independent units of the group units, thereby controlling individual muscle units with their identified signals. Therefore, by optimizing the synergy between these two control policies for a feedback context, an SC-MS is dynamically modulated for the feedback context. This modulation is mathematically defined by the following model based on our previous study (Min et al., 2018):

[image: image]

where PtSC is the synergy coordinate of the GCP weight vG and ICP weight vI. This is determined by the critic value (CV) V(st), which evaluates the potential of the feedback contextual vector st at time t for reaching the goal state. As the st is produced through the performance of the SC-MS, the V(st) presents an evaluation of the performance of the SC-MS for the goal state. Therefore, the PtSC is dynamically optimized according to the performance of the SC-MS at time t for the goal state. The synergy between vG and vI is simulated in Figures 4, 5A, 6A, 7A (see section Results). By applying the PtSC to Equation (2b), the SC-MS, using the actor model in Equation (2a), is dynamically modulated. This achievement is rewarded by functionally improving the V(st) (Min et al., 2018). Consequently, this improvement reinforces the SC-MS to achieve its goal state. This CV-driven reinforcement learning is based on the actor–critic model (Barto, 1995; Sutton and Barto, 1998), which is designed to simulate reinforcement learning (Houk et al., 1995) in the BG. The simulation condition of this learning is precisely described in section Learning and Recruitment Condition of an SC-MS.


Table 1. Elements of the neuromuscular system controlling the elbow joint.

[image: Table 1]

Using PtSC optimized through the aforementioned learning, the SC-MS is dynamically modulated to generate the muscle control signals uSC as follows:

[image: image]

[image: image]

where the UiSC(st) functions as the actor generating the control signal of the ith muscle of uSC and sig(x) is the sigmoid function. The function ni(t) produces the white noise in determining the activities of individual muscles. The magnitude of ni(t) is determined according to σ(st) by considering V(st). σ0 is a constant parameter. This noise is designed to enhance the learning dynamic of an MS, thereby being suppressed by setting σ0 to zero in simulating its recruitment. B is the parameter controlling the baseline of sig(x), i.e., the value of sig(x = 0.0). The base function bk(st) is the kth element of a normalized Gaussian network (NGSN). K is the total number of base functions. The node of bk(st) is defined as the parameter [image: image], which is the ith element of the center of bk(st) and [image: image] is its range. This [image: image] is determined before the learning takes place. As the state vector st comprises the joint angle and its velocity, the predetermined format of the NGSN is designed based on the grid distribution of the two-dimensional state by setting the total number of state elements n to 2. The symbol [image: image] is the ith element of the contextual vector st. [image: image] is the network weight of bk(st) in producing the ith muscle activity. As described in Equation (2b), the [image: image] is the summation of [image: image] and wkg, which are, respectively, weighted by vI and vG of PtSC. The parameter wkg is the kth NGSN weight of the gth group unit, which is governed by the GCP, whereas wki is the kth NGSN weight of the ith muscle affiliated to the gth group unit, which is governed by the ICP. The weights wki and wkg are optimized through the aforementioned SC-MS learning. For further information, including the optimizing process of wki and wkg regarding Equation (2b), refer to our previous study (Min et al., 2018).



Tuning of a Learned SC-MS

As shown in Figure 1, the learned SC-MS-produced uSC is additionally tuned to u* with the TG signal Gtuning from the muscle loading tuner, which is cumulatively modified as the feedback gain parameters of uSC according to the deviation from the desired state recognized through feedback control. This tuning is mathematically modeled as follows:

[image: image]

where Gtuning functions as a feedback gain parameter that is the diagonal matrix composed of Gituning. The symbol n represents the total number of muscles involved in the motion control. The flexor gain GF or the extensor gain GE is determined by Gituning according to the function of the individual muscles ui in controlling the joint.


[image: Figure 1]
FIGURE 1. The proposed architecture of the tuned synergy strategy-based muscle control (T-SC). The feedback state sfb is transferred to the primary cortex M1 through the transcortical pathway, and the goal state so is transferred to M1 from the association cortex. The basal ganglia estimate the SC signal [image: image] that regulates the functional redundancy of individual muscles within the SC for the feedback context sfb and outputs [image: image] into the corticospinal neurons (CSTs) in M1. The CSTs encode [image: image] to uSC, which are then tuned to u* by the tuning gain signal Gtuning from the muscle loading tuner. The tuned signals u* are transferred to the skeletal muscles via the spinal cord and the motor neurons (MNs).


The Gtuning is modified by its incremental signal ΔGtuning as follows:

[image: image]

where ΔGtuning(t) is composed of the flexor and extensor components, ΔGF(t), ΔGE(t). These two components are estimated by Δs(t) and its gain matrix k(t). Δs(t) is the difference between the feedback state [image: image] and its desired state [image: image], in which both [image: image] and [image: image] are zero.

The matrix k(t) is composed of the following three components: the angle term kp(t), the angular velocity term kd(t), and the angular acceleration term ka(t). These terms contribute to the flexor part [image: image] and the extensor part [image: image]. The components kp(t) and kd(t) of kE are designed as minus terms of kF to simulate the activities of extensors. However, the acceleration term ka(t) is set to the same value for both the agonist and the antagonist because the direction of the angular acceleration frequently changes, thus it needs to be suppressed to maintain stable motion control during the co-contraction of both the agonist and the antagonist. These three k components are optimally modulated to make the joint angular state approach the goal state by using Equation (5). To achieve this modulation, the three k terms of ΔGtuning(t) are modeled to be proportional to [image: image] using the function sig(x) as follows:

[image: image]

where B (B = 0.4) is the parameter controlling the baseline of sig(x), that is, the value for sig(x = 0.0), whereas the parameters Ckp (Ckp = 0.2), Ckd (Ckd = 0.2), and Cka (Cka = 0.002) are the constant values of sig(x). The parameter A (A = 10.0) is the constant gain of the Gaussian function for modulating kp(t), and the parameter D (D = 20.0) is the constant value for modulating kd(t) and ka(t). These k components are dynamically modulated considering Δs(t), which was described in Equation (4). As shown in Figure 2A, to model the gain term of [image: image], kp(t) is modeled to mainly function as [image: image], which is the sigmoid function of [image: image] in the first term of sig(). In low-speed undershooting or overshooting, kp(t) functions as [image: image], which is the sigmoid function of [image: image] in the second term of sig(). Using the hybridization of these two terms, kp(t) is modeled as shown in Figure 2A. Due to this modeling, kp(t) responds to [image: image] under consideration of [image: image]. To optimally modulate kd(t) and ka(t) as the gain terms of [image: image] and [image: image], their corresponding [image: image] needs to be considered as the feedback context responding to undershooting and overshooting, as shown in Figure 2B. Owing to this consideration, the response of these k terms to the feedback context is slower than kp(t) considering [image: image] in high-speed undershooting.


[image: Figure 2]
FIGURE 2. The functions of three k-terms involving the tuning of a motor skill for its recruitment according to the feedback context (ΔΘG, [image: image]). (A) The function of the angle term kp. (B) The functions of the angular velocity term kd and angular acceleration term ka.


The TG increments generated according to the aforementioned calculations in Equations (4) and (5) are accumulated to modify the corresponding TG signals as follows:

[image: image]

where the initial TG, Gtuning(0), is set to 1.0 to simulate non-interference by the TG. To achieve this modification, GF(t) and GE(t), termed the flexor and extensor components of Gtuning(t), respectively, must be above zero. Therefore, if GF(t) or GE(t) is modified to be below zero, the corresponding signal is set to zero by suppressing its increment.




Simulation Architecture

The simulation architecture has been described in detail in our previous study (Min et al., 2018). This architecture is composed of the musculoskeletal finite-element (FE) model (Figure 3), its motion control agent model, and the interface model, which integrates both of the aforementioned models. Precise descriptions are as follows.


[image: Figure 3]
FIGURE 3. (A) A musculoskeletal finite-element (FE) model of the human arm. Each muscle consists of multiple nodes that are used to precisely model its path along with the wrapping. The wrapping is used to keep the path of the muscles within the precise moment arm. (B) Experimental setup of human subjects for evaluating the simulation result.



Musculoskeletal Finite-Element Model

The musculoskeletal model proposed in our previous study (Min et al., 2018) was used for simulating the motion control of a musculoskeletal system. This model was designed using LS-DYNA (Livermore Software Technology Corporation, Livermore, CA, USA), which is an explicit FE code developed for dynamic analyses through simulation. To consider the trade-offs between analytical precision and calculation costs in simulating the motion control of the musculoskeletal FE model, the muscles are designed with FE modeling using multiple bar elements of the muscles that formulate muscle paths between the origin and the insertion points in LS-DYNA. The characteristic features of the muscle forces, which change according to the length of the muscle and its contraction velocity, were modeled using a Hill-type model (Hill and Sec, 1938; Zajac et al., 1985; Thelen, 2003). Anatomical references (Neumann, 2002) were used to align the origin and insertion points and the via points, and to represent the appropriate muscle moment arms using the wrapping contacts (Hada et al., 2007). The predicted muscle moment arms were well-validated against data from several experimental studies (Amis et al., 1979; Murray et al., 1995). As shown in Figure 3A, the proposed FE model consists of two rigid body parts: one representing the upper arm and shoulder, and the other representing the lower arm and hand. The two body parts are linked using a joint constraint that represents the ulnar–humeral joint. The mass of the lower arm was 1.7 kg. The principal moments of inertia of the lower arm body were I11 = 7.66 × 10−3 kg m2, I22 = 7.36 × 10−3 kg m2, and I33 = 0.34 × 10−3 kg m2.



Integration of the Musculoskeletal Finite-Element Model and Its Motion Control Agent Model

The entire architecture was implemented through software programming, in which the agent model of the SC-MS was programed with C++ code to perform the learning and recruitment of the LS-DYNA-coded musculoskeletal FE model. This performance was achieved through a C++ code interface model, which was programmed to allow the coding difference between the aforementioned two models.



Learning and Recruitment Condition of an SC-MS

To validate the recruitment of the SC-MS under novel conditions involving transient and sustained disturbances, the learning condition of the SC-MS was not affected by any external interference as follows.

In the simulation architecture, the agent model reinforced an MS to be dynamically modulated by the SC, described in Equation (1), for controlling the forearm to reach a goal without any disturbances. Through this reinforcement learning, the agent model learned an SC-MS. During this learning process, the control range of the elbow joint was limited to 30–140°. The aim of this task was to move the hand to its goal position, where the elbow joint angle was at 70°, and to maintain this position. The degree of freedom of the joint was 1. The nine muscles listed in Table 1 were activated to control the elbow in the simulation, as shown in Figure 3A. The time step t was 0.01 s. If the total learning time in a trial exceeded 2.0 s or if the angle of the elbow joint was out of the defined control range, a new trial was started after randomly changing the initial position. This process was repeated 780 times.

The SC-MS learned through the above process was recruited in the same time steps as the aforementioned learning time steps. Further information has been provided in detail in our previous study (Min et al., 2018).




Experimental Setup

To evaluate the proposed simulation model by comparison with the actions of four human subjects (four men, 40–44 years old) under the same conditions as those used in the simulation, we measured the loading responses of the study subjects, which is the same task as that in the simulation. All subjects were healthy and did not have any motor disorders. We assumed that these subjects have learned the MS recruited to achieve the aforementioned novel task throughout their whole life because the goal task of the MS described in section Learning and Recruitment Condition of an SC-MS can be achieved naturally by healthy subjects.

As shown in Figure 3B, in this experiment, the elbow joint angle was measured while the subject held a 1 kg load in his hand. To measure the responses to the loading condition through pure feedback control, the subjects were blindfolded with their eyes closed and were not informed about the timing of the loading. In addition, the distance between the initial falling point of the weight and the initial position of the hand was set close to zero. Furthermore, to approximate the novel condition as closely as possible, only data that were recorded during the first trial for each of the four subjects were used. The subject was instructed to try to recover as soon as possible the preloading posture set at 70°. All subjects were instructed to recover and maintain their preloading posture under this loading condition for 2.0 s. The shoulder and wrist joints were fixed during the measurement of the motion of the elbow joint. In this setting, we measured the positions of the shoulder, elbow, and wrist using OPTOTRAK 3020 (Northern Digital, Waterloo, Ontario, Canada), which is a three-dimensional position measurement device. We then used the measured positions of these three joints to calculate the angular movement of the elbow joint. The experimental setup has been described in detail in our previous study (Min et al., 2018).

All subjects provided written informed consent prior to their participation. The protocol was approved by the Tokyo Metropolitan Institute of Medical Science's ethics committees and was conducted in accordance with the ethical standards of the Declaration of Helsinki.




RESULTS

As mentioned in section Introduction, because of the dynamic modulation of an MS driven by the SC for novel feedback contexts, an SC-MS may be recruited in the CNS as a valuable learned MS. To validate this supposition, we tested the concept of T-SC in a model that tunes the SC-MS by gaining its signals to robustly recruit it in novel feedback contexts.

As shown in Figure 1, the T-SC is neurophysiologically achieved by tuning the SC-MS according to sensory feedback signals, which are generated in response to the context. Therefore, the T-SC may contribute to recruiting the SC-MS in the feedback control process. To validate this recruitment process, the simulation results of the SC-MS recruitment procedure in response to three novel sustained disturbances that did not involve the learning process of the SC are discussed in this section.


T-SC in a Novel Sustained Disturbance

Novel dynamic contexts in recruiting a learned MS are classified into transient and sustained disturbances. In our previous work (Min et al., 2018), we tested the motion control robustness of the SC-MS in these two types of dynamic contexts that did not involve SC-MS learning. In this test, the SC-MS demonstrated good recruitment against a transient disturbance, such as an impacting force, by recovering the pre-impacted context well. However, the SC-MS revealed the limitations of its recruitment in response to sustained disturbances; it only recovered to the point below the pre-disturbed point, as shown in Figure 4. As this difference in recruiting an SC-MS is attributed to the difference between their loading durations for an SC-MS, we hypothesized that the SC-MS needs to be tuned with accumulative gain signals that consider the duration of the disturbance. To address this issue, we validated the T-SC for novel sustained disturbances as follows.


[image: Figure 4]
FIGURE 4. Comparison of a synergy strategy-based muscle control motor skill (SC-MS) and a tuned SC-MS (T-SC-MS) in recruiting the retained motor skill after a 1 kg loading. Top row: Comparison of the SC-MS and T-SC-MS simulations in recruiting the same retained motor skill, and evaluation of the T-SC to reproduce the joint traces experimentally determined in human subjects. Second row: Critic value (CV) according to the joint angular state. Third row: Two control policies according to the CV. GCP, group control policy; ICP, individual control policy.


To validate the T-SC, we compared the performance of the SC-MS and the tuned SC-MS (T-SC-MS) in recovering the preloading posture against a sustained 1 kg loading. This sustained loading did not involve SC-MS learning. The results are shown in the top row of Figure 4. The left column in the top row of Figure 4 demonstrates that the SC-MS found a new posture at 60°, which is below the preloading posture at 70°. By contrast, the T-SC-MS could successfully recover the preloading posture. This simulated recovering joint angular trace was within the real motion trace corridor range derived from the four experimental subjects using the same conditions as the simulation. This achievement of T-SC-MS was simulated through the following T-SC process.

As shown in Figure 1, the joint angular context may be afferently copied to the CNS as the contextual feedback signal and transferred to the BG via M1. According to this feedback signal, striosomal molecules functioning as adaptive critics in the BG (Houk et al., 1995) may estimate the CV as the evaluation of the recruitment of the SC-MS in recovering the preloading state. This is shown in the second row of Figure 4. After sustained 1 kg loading, the CV of the SC-MS decreases accordingly, and remained below, the CV of the preloading state according to maintaining the new posture below the preloading posture after 0.6 s. In comparison with SC-MS recruitment, the CV of the T-SC-MS also decreased during the undershooting, but it recovered to the level of the preloading state. Consequently, the T-SC-MS was more highly valued than the SC-MS in recruiting the learned MS to recover the preloading state after 0.4 s.

According to this CV-based evaluation of the SC-MS recruitment, the BG may optimally regulate the synergistic role redundancy between the GCP and ICP of individual muscles by using the rule based on Equation (1). As mentioned above, the CVs decreased from the preloading value because of their corresponding undershooting, shown in the top row of Figure 4. According to these CVs, as shown in both columns of the third row of Figure 4, the GCP increased whereas the ICP decreased because the GCP-driven group unit control is more effective than the ICP-driven individual muscle unit control in recovering the preloading context during undershooting. This synergy between the GCP and the ICP is differently regulated by SC-MS and T-SC-MS according to their CVs as follows.

After 0.4 s, SC-MS and T-SC-MS differently regulated the synergistic redundancy between the GCP and the ICP compared with before 0.4 s as follows. T-SC-MS started to recover the pre-disturbed CV from its lowest value after 0.4 s. According to this CV recovery, the GCP and ICP started to recover from their highest and lowest values, respectively. After 0.9 s, the two control policies successfully recovered to their pre-disturbed values and were then kept stable at that state. In comparison with the T-SC-MS, the SC-MS maintained the new CV below the pre-disturbed CV after 0.7 s, thereby insufficiently recovering its two pre-disturbed control policies. This comparison is demonstrated in the third row of Figure 4. This superior achievement of T-SC-MS compared with SC-MS for the same novel disturbance is attributed to the following tuning process of an SC-MS.

As shown in Figure 5A, the SC-MS-produced signals were loaded with GF and GE, the agonistic and antagonistic signals of the TG, respectively, according to the recruitment process of a learned MS in Figure 1. These two TG signals were dynamically generated through the following feedback gain process of a learned MS in Figure 5B.


[image: Figure 5]
FIGURE 5. Tuning the learned synergy strategy-based muscle control motor skill (SC-MS) to recruit it after a 1 kg loading. (A) Loading the SC-MS-produced signals with tuning gain (TG) signals. (B) The process of producing TG signals. The SC-MS produced the activities of eight muscles, which are pronator teres(PT), brachialis(BRA), biceps brachii (long head)(BILH), biceps brachii(short head)(BISH), brachioradialis(BRAD),anconeus(ANCN), triceps brachii(long head)(TRIO), triceps brachii(medial head)(TRIM), and triceps brachii (lateral head)(TRIA).


Under the rule based on Equation (5), the three k-term components of the TG in the third graph in the top row of Figure 5B were determined according to the joint angle and velocity deviations from the desired states, [image: image]and [image: image], respectively, in the second graph in the top row of Figure 5B. As described in Figure 2A, the component kp is designed to be sensitive to the increase in [image: image], which is attributed to the high undershooting. Therefore its increase was faster and higher than both kd and ka that are designed to respond to the increase of [image: image], which was attributed to the undershooting or overshooting angle deviation (Figure 2B).

According to Equation (4), these three k-term components combined with their corresponding deviations from the desired states to produce three incremental components of GF and GE, as shown in the second and third graphs in the top row of Figure 5B. This combination produced the ΔGF and ΔGE, as shown in the first graph in the bottom row of Figure 5B. According to the rule of Equation (6), GF and GE must be above zero. Therefore, if either GF(t) or GE(t) is modified to be below zero, the corresponding signal is set to zero by suppressing its increment. Under this rule, ΔGF and ΔGE were regulated to modify GF and GE, respectively, as shown in the second graph in the bottom row of Figure 5B. The bottom part of this graph shows ΔGF and ΔGE, which actually contribute to modifying the GF and GE, respectively. The tracks of GF or GE were as follows.

After a sustained 1 kg loading, GF increased from 1.0 to its peak value of 3.3 in response to the drop in the joint position, followed by a decrease in responding to the recovery of the preloading context, and finally remained at a stable value of 2.7 to maintain the preloading context. By contrast, GE decreased under the same conditions from 1.0 to the lower value 0.0 in response to the decrease in the joint position before increasing, reflecting the preloading context recovery, and finally reached a stable value of 0.25 to retain the preloading posture. Hence, GF increased and GE decreased from 1.0 during the recovery of the preloading posture in response to a sustained disturbance. These TG signals, as shown in Figure 5A, contributed to additionally modulating the SC-MS through tuning its signals as follows.

The parameter GF is reflected in the increased activities of agonists that were kept at higher values in the recovered preloading context compared with their preloading activities. Conversely, the parameter GE decreased the antagonist activities and then maintained them at lower values in the recovered preloading context in comparison with their preloading activities.

The aforementioned results demonstrate that the SC-MS can be robustly recruited for a novel feedback context with additional modulation, which was achieved through tuning its signals.



T-SC in Further Novel Contexts

As shown in section T-SC in a Novel Sustained Disturbance, we verified that an SC-MS can be robustly recruited by tuning it for a novel sustained 1 kg loading, which did not involve learning of the SC-MS. In this section, we demonstrate the versatility of this recruitment process in further novel contexts.


Recruitment in Undershooting Attributed to a Novel Sustained 2 kg Loading

To examine the recruitment of a learned SC-MS by tuning it in an additional severe undershooting context, we simulated the recruitment of a T-SC-MS for sustained 2 kg loading, which is two times the weight of the 1 kg loading used in section T-SC in a Novel Sustained Disturbance. The simulation of this recruitment process is shown in Figures 6A,B. The top graph of the first column in Figure 6A shows the joint angular trace during the recruitment process of the SC-MS for this disturbance as follows.
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FIGURE 6. Tuning the learned synergy strategy-based muscle control motor skill (SC-MS) to recruit it after a 2 kg loading. (A) Loading the SC-MS-produced signals with tuning gain (TG) signals. (B) The process of producing TG signals. The SC-MS produced the activities of eight muscles, which are pronator teres(PT), brachialis(BRA), biceps brachii (long head)(BILH), biceps brachii(short head)(BISH), brachioradialis(BRAD),anconeus(ANCN), triceps brachii(long head)(TRIO), triceps brachii(medial head)(TRIM), and triceps brachii (lateral head)(TRIA).


After loading with 2 kg, the joint angular trace dropped below the preloading position to about 62° and then increased to be maintained at about 65° for a short time. However, the joint angle declined again to about 55°, but finally recovered to about 75° near the goal state and then was kept stable at that state. Two decreases in angle value and some overshoot during the recruitment of the SC-MS showed an incomplete recovery for 2 kg loading in comparison with the process for 1 kg. This difference is attributed to further severe disturbances over a 1 kg loading. This movement could be achieved through the following recruitment processes of the T-SC-MS.

As mentioned in section T-SC in a Novel Sustained Disturbance, the parameter CV evaluates the recruitment of an SC-MS to achieve the goal state. The second graph of the first column in Figure 6A shows the CV as the evaluation of the recruitment of T-SC-MS for a 2 kg loading. Owing to the aforementioned severe decrease, the CV for a 2 kg loading decreased further than the CV for a 1 kg loading during undershooting. As shown in the third graph of the first column of Figure 6A, this decrease in the CV increased the GCP more than the decrease in the CV under the 1 kg loading. Accordingly, the ICP was suppressed further than that under the 1 kg loading. This CV-driven synergy between two control policies regulates the control redundancy of individual muscle units. Through this regulation, the muscle activities are produced, as shown in the second column of Figure 6A. These signals were loaded with GF and GE according to the recruitment process of a learned MS in Figure 1. These two TG signals were dynamically produced through the following feedback gain process of a learned MS in Figure 6B.

Under the rule based on Equation (5), the three k-term components of the TG shown in the third graph in the top row of Figure 6B were determined by the joint angle and velocity deviations from the desired states, [image: image] and [image: image], respectively, in the second graph in the top row of Figure 6B. After loading with 2 kg, as mentioned above, the joint movement developed in two downward steps. In the first step, the component kp drastically increased to respond to the increase of [image: image], which was attributed to the high-speed downward motion. Concurrently, both kd and ka increased by less than kp because they responded to [image: image], the increase in which was less than the increase in [image: image]. During this step, the response traces of the three k-term components were similar to those observed with a 1 kg loading. In the second step, all three k-term components increased substantially in response to the large increases in both [image: image] and [image: image]. This is attributed to the feedback context, in which the joint angle state was far from its preloading state with a high downward speed. After this second drop, the joint angular state mostly recovered by 0.8 s to its preloading goal state before slowly reaching the preloading state. In response to this recovery, the kp drastically decreased in response to the decrease in [image: image] in downward speed, and both kd and ka concurrently decreased in response to the decrease in [image: image]. After 0.8 s, kd and ka increased slightly by about 1.0 s in response to the slight overshooting of [image: image] and then decreased quite slowly in response to the quite slow decrease of [image: image] to zero. Under the rule of Equation (4), these three k-term components combined with the corresponding deviations from the desired state, which are shown in the second graph in the top row of Figure 6B. These combinations produced the ΔGF and ΔGE, as shown in the first graph in the bottom row of Figure 6B. According to the rule of Equation (6), ΔGF and ΔGE were regulated to modify GF and GE, respectively, as shown in the second graph in the bottom row of Figure 6B. The bottom part of this graph shows ΔGF and ΔGE, which actually contribute to modifying the GF and GE, respectively. The tracks of the TGs and their contribution to tuning the SC-MS were as follows.

GF increased in response to the two drops in joint angle value and then slowly decreased to a stable level. To assist GF, the parameter GE was suppressed during the first drop, but increased substantially during the second drop before slowly dropping to a stable level. These two agonist and antagonist TG signals were loaded onto the SC-MS-produced muscle activities, as shown in the second and third columns of Figure 6A. Through this loading, they were tuned to the optimal muscle activities for recruiting the SC-MS under a 2 kg loading.



Recruitment in Overshooting Attributed to a Novel Sustained−1 kg Loading

The overshooting during the SC-MS learning process is transiently driven by incorrectly controlling the joint and is eventually suppressed by gravity. Therefore, the SC-MS learned to control the overshooting with very little extensor activation, which functions as the agonist for overshooting. Because of this learning condition of the SC-MS, the overshooting driven by the sustained negative disturbance on the hand is further severe novel disturbance in recruiting the SC-MS than the undershooting driven by the sustained positive disturbances such as 1 kg or 2 kg loading. Therefore, to recruit the SC-MS during the sustained negative disturbance-driven overshooting, the SC-MS needs to be tuned more than the sustained positive disturbance-driven undershooting. By simulating the recruitment of the T-SC-MS during the overshooting driven by a sustained negative disturbance, we tested the tuning process to robustly recruit the SC-MS in an entirely novel context as follows.

After loading a −1 kg weight on the simulated hand, the joint angular trace was raised to about 98° and then decreased to about 66° (top graph, first column of Figure 7A). Finally, the joint angular trace overshot by about 76° and then stably recovered to the preloading state. According to this contextual joint angular trace, the CV was determined as shown in the second graph of the first column of Figure 7A. Further, gravity, which reflects the movement, needs to be considered in determining the CV. As mentioned in the first paragraph of this section, it is comparatively easy for an SC-MS to suppress the incorrect control-driven transient overshooting because of gravity during its learning process. Therefore, even if the overshooting attributed to the sustained negative disturbance on the hand is a further severe context for the SC-MS, the CV for recruiting the SC-MS during the overshooting is less than that during the undershooting [second graph, second column of Figure 4 (first column of 5A), and first column of 6A]. Because of this evaluation of the CV, as shown in the third graph in the first column of Figure 7A, the change in the GCP and ICP weights in response to this negative sustained disturbance was suppressed to a small range in comparison with its response to positive sustained disturbances such as a 1 or 2 kg loading. This process was regulated using Equation (1). As mentioned above, this response is attributed to the learning condition of SC-MS, in which the transient overshooting driven by incorrect control is controlled by a small amount of activity of the extensors because gravity contributes to the recovery of the preloading state from its overshooting state. Because of this learning condition of SC-MS, the extensors functioning as agonists for negative sustained disturbance need to be loaded more than the flexors functioning as agonists for positive sustained disturbance. To process this additional modulation, the SC-MS-produced muscle activities shown in the second column of Figure 7A were loaded with the antagonistic and agonistic TGs, GF and GE, respectively. These TGs were produced by the following process.
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FIGURE 7. Tuning the learned synergy strategy-based muscle control motor skill (SC-MS) to recruit it after a −1 kg loading. (A) Loading the SC-MS-produced signals with tuning gain (TG) signals. (B) The process of producing TG signals. The SC-MS produced the activities of eight muscles, which are pronator teres(PT), brachialis(BRA), biceps brachii (long head)(BILH), biceps brachii(short head)(BISH), brachioradialis(BRAD),anconeus(ANCN), triceps brachii(long head)(TRIO), triceps brachii(medial head)(TRIM), and triceps brachii (lateral head)(TRIA).


As shown in the first graph in the bottom row of Figure 7B, the three incremental components of GF and GE were produced by combining the three k-term components of the TG (third graph, top row of Figure 7B) and their corresponding deviations from the desired state (second graph, top row of Figure 7B). These three components of GF and GE were summed to produce ΔGF and ΔGE, respectively, which were accumulated to produce GF and GE as shown in the second graph in the bottom row of Figure 7B. The precise process was achieved as follows.

In agreement with the rules shown in Figures 2A,B, during the initial overshooting shown in the first graph in the top row of Figure 7B, the kp component was almost suppressed in response to the high overshooting but the kd and ka components drastically increased in response to the large increase in [image: image]. After the joint movement started to recover to its preloading state at about 0.57 s, kp drastically increased in response to the large increase in [image: image]; this increase was attributed to the high-speed downward motion, and both the kd and ka components decreased in response to the decrease in [image: image]. Thereafter, the joint angle finally recovered to its preloading state via the slight undershooting and the second overshooting, which was less pronounced. In response to this recovery, kp decreased to almost zero, whereas kd and ka stably decreased to their preloading values via their transient increase, as shown in the third graph in the top row of Figure 7B. According to Equation (4), these three k-term components combined with their corresponding deviations of desired states to produce the ΔGF and ΔGE, as shown in the first graph in the bottom row of Figure 7B. Under the rule of Equation (6), the ΔGF and ΔGE were regulated to modify the GF and GE, respectively, as shown in the second graph in the bottom row of Figure 7B. The bottom part of this graph shows the ΔGF and ΔGE, which actually contribute to modifying the GF and GE, respectively. The tracks of the TGs and their contribution to tuning the SC-MS were as follows.

GE substantially increased during the overshooting and then stabilized at a lower level owing to the recovery of the preloading state. To assist GE, GF was completely suppressed during the overshoot and then increased for a very short time before decreasing slowly to a stable level.

Because of this modulation of GF, as shown in the top of the second and third columns of Figure 7A, the SC-MS-produced signals of flexors were dynamically unloaded in response to the overshooting attributed to a negative sustained disturbance because they were antagonists for the negative disturbance. In comparison with the flexors, the extensors were highly loaded with GE to function as agonists against the overshooting (the bottom part of the second and third columns, Figure 7A). Through this tuning process, the handicap in recruiting an SC-MS under overshooting conditions attributed to sustained negative disturbances, which was mentioned in the first paragraph of this section, could be overcome.





DISCUSSION

A learned MS can potentially be used for effective motor control in a novel context. In addressing this issue, we hypothesized that an MS can be retained through learning it in the CNS and then recruiting it. Through the simulation using the proposed neurophysiological computational model, we have shown that the MS might be retained through learning the muscle synergy to achieve its task and recruited through dynamically tuning it according to novel feedback contexts. In this tuning, the learned muscle synergy, termed SC-MS, produces the muscle control signals through its dynamic modulation according to the feedback context and these signals are additionally loaded with tuning signals, termed TG signals, which are dynamically modulated according to the feedback context. Through this dynamic modulation, a skilled MS might be recruited in a variety of conditions besides those experienced during motor learning. Furthermore, this involvement of the muscles' synergy with a skilled MS demonstrates that it might subserve the learning and retaining of an MS in the CNS.


Dynamic Modulation of an MS According to the Feedback Context

To recruit a learned MS for novel contexts, we assumed that a learned MS is dynamically modulated for the feedback context. In addressing this issue, we used the concept of SC (Min et al., 2018), which dynamically regulates the redundant functional roles of individual muscles according to consecutive feedback contexts. As described in Equations (1) and (2), this SC-driven regulation contributes to the dynamic modulation of an MS for the feedback context. Consequently, this modulation contributes to robust recruitment of an MS in various novel feedback contexts that did not involve the learning of an MS, as shown in Figures 4, 5A, 6A, 7A. These results show that the SC may be an optimal strategy to learn an MS and to recruit it.



Robust Recruitment of a Learned MS Through Tuning It According to the Feedback Context and Its Implications

Even if an SC-MS is modulated according to the feedback context as mentioned in the above subsection, this modulation is learned in the dynamics under the learning context of SC-MS. Because of this learning condition, to robustly recruit an SC-MS in a novel context, it needs to be additionally tuned. To validate this tuning, we hypothesized that a muscle loading tuner may operate in the CNS to tune the SC-MS through dynamically loading its muscle control signals according to the feedback context. This hypothesis was validated with the simulation results shown in Figures 5A, 6A, 7A, in which the SC-MS could be successively recruited through dynamically loading its muscle control signals according to the feedback context under three different novel sustained disturbances. This recruitment may involve the rapid adaptation of motion control to novel contexts without learning a new MS for them. If this rapid adaptation is impaired, the normal motion control in novel dynamic contexts may be seriously disturbed. To test the potential clinical implications, this hypothesis needs to be further studied in neurophysiology. Through this study, the proposed model may provide a new clinical view of motion control disorders attributed to cortico-BG loop-related CNS diseases in pathophysiology and therapeutics/rehabilitation. Furthermore, through the transcortical circuit, the recruitment-produced muscle control signals may be transferred to the cerebellum as a correction signal to train a neural network, on which a feedforward motor command is generated in the cerebellum (Kawato et al., 1987; Kawato, 1990; Kambara et al., 2009). Therefore, the T-SC may involve robust feedforward motion control in novel contexts.

Previous studies, such as proportional integral derivative control (Petkos and Vijayakunar, 2007) and optimal feedback control (Todorov and Jordan, 2002; Liu and Todorov, 2007) in modeling the feedback control process, focused only on the correction of the motor control error but did not address the contribution of a learned MS to feedback control. Our new approach to recruitment of a learned MS in novel contexts may offer a new viewpoint for this previously unaddressed feedback control issue.



Recruiting a Learned MS via the Cortico-Basal Ganglia Loop

The BG contributes to “stabilization augmentation” by facilitating an optimal activity that fits the desired situation and context while suppressing other ongoing CNS activities that would interfere with the desired behavior (Mink, 1996). Furthermore, Turner and Anderson (1997) showed that movement-related changes in pallidal discharge to specific parameters of movement are discharge of neurons in the skeletomotor portions of both pallidal segmentations. This BG response is demonstrated by encoding the combination of the sensory and contextual state through the sensory feedback process, which may involve online motion control with the selective facilitation and suppression of different frontal thalamocortical circuits (Turner and Anderson, 1997). As the BG reinforces a new MS through reinforcement learning and retains it subsequently (Lehéricy et al., 2005), this online motion control role of the BG may involve the recruitment of a learned MS retained in the BG, which is dynamically modulated by the selective facilitation and suppression of different frontal thalamocortical circuits. Based on the aforementioned previous studies, this cortico-BG scheme may be a common framework for the learning and recruitment of an MS in the CNS. Therefore, the T-SC-driven recruitment of a learned MS though the cortico-BG loop may involve different kinds of motion control, which need to respond to various sensory feedback contexts via the M1 from different sensory areas, including the somatosensory cortex and the visual cortex. This hypothesis may be reasonable, even if it has recently been demonstrated that the roles of neural structures differ between different tasks (Paparella et al., 2020).



Muscle Control Scheme of the Corticospinal Tract in Recruiting an SC-MS

The experimental evidence introduced in section Recruiting a Learned MS via the Cortico-Basal Ganglia Loop shows that the BG may retain a learned MS and involve the recruitment of it to control movement according to the feedback context. Based on this concept, to recruit an SC-MS according to the feedback context, we assumed that the BG may dynamically modulate an SC-MS with the synergistic combination of two control policies of the SC, GCP, and ICP, which is driven by a combination of their inhibition and disinhibition. As shown in Figure 1, this synergistic combination of GCP and ICP in the BG produces muscle control signals through the corticospinal tract. As outlined in section Introduction, GCP-driven signals may function as group unit control signals that are decoded into synergistic combinations of MPs (Bizzi et al., 1991; d'Avella et al., 2003) retained in the spinal cord because the group units produce the contraction sets of muscles termed MPs in processing the SC. Furthermore, as the ICP-driven signals serve as the control signals for individual muscle units, they may be directly copied from the corticomotor neurons among the CSTs to MNs. Therefore, the ICP-driven signals sculpt GCP-driven signals through their synergistic combination to optimally modulate an SC-MS according to the feedback context. This recruitment of an SC-MS may support the concept introduced in section Introduction that muscle activities are produced by combining two pathways of MNs (Rathelot and Strick, 2009).



Evaluating the Proposed Model in Comparison With Human Subjects

Evaluating the proposed computational model in comparison with human subjects, the two disadvantages of the computational model were as follows.

In this study, an SC-MS was learned only through one learning experience of a particular task, which was to move the hand to its goal within a limited joint angular range as described in section Learning and Recruitment Condition of an SC-MS. While learning the SC-MS, no disturbances were involved (Min et al., 2018), as described in section Learning and Recruitment Condition of an SC-MS. Therefore, the recruitment of an SC-MS under sustained disturbance was simulated as a pure novel recruitment, as described in section Results. To evaluate this simulation in comparison with human subjects, as shown in the top row of Figure 4, we approximated a pure novel recruitment as closely as possible using only those data that were recorded during the first trial for each of the four subjects. However, the subjects have experienced and learned various tasks during their whole life and thereby have experienced various tasks under various sustained disturbances. Therefore, the sustained 1 kg loading on the hand is not a pure novel context for these subjects. Consequently, this should be taken into account when evaluating the simulation results through a comparison with the subjects' movements. Because of the disadvantage attributed to pure novel recruitment, an SC-MS is even more difficult to recruit under novel sustained disturbances, such as a sustained 1 kg loading, than the subjects. Considering this disadvantage, we may evaluate that an SC-MS can be robustly recruited through the proposed recruitment model termed T-SC.

As mentioned in section Introduction, innate and learned MSs are recruited in the CNS for effective and fast motion control in response to novel external disturbances. To validate this, the recruitment of a learned MS in a pure feedback control process is the most optimal task because the pure feedback control, which is not involved in the prediction of any disturbance, may need the most effective and fast response to the feedback context. Therefore, as described in section Results, novel recruitment with T-SC was simulated in pure feedback control. To evaluate this simulation by comparison with human subjects' movements, as shown in the top row of Figure 4, we approximated this pure feedback control process as closely as possible, as described in section Experimental Setup, through an experimental setting in which the subjects were blindfolded and not informed regarding the timing of the loading. To avoid the weight being misloaded on the subjects' hands, as shown in Figure 3B, the distance between the initial falling point of the weight and the initial position of the hand was set close to zero. Further, we instructed the subjects not to predict the timing of the loading weight. However, even though this instruction was given to the subjects, they might instinctively have some preliminary joint stiffness by co-contraction of both agonists and antagonists in preparation for the incoming disturbance before loading. Because of this, as shown in the top row of the right column of Figure 4, the mean joint angular trace of the subjects after loading undershot was slower than the simulating joint angular trace. In evaluating the simulation results in the top row of Figure 4, we considered that the simulation model was disadvantaged in responding to a disturbance in comparison with human subjects.
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Dimensionality Reduction

Motor Primitives / Synergies
/Modular Organization

PCA, NMF, etc. describe the general shape and structure of the feasible activation space. The resulting basis functions serve as
an approximation of the input-output relationship of the system (.., descriptive synergies).

If the basis functions mentioned above are of neural origin, they would be the means by which the nervous system inhabits the
feasible activation space and executes valid solutions (L., prescriptive synergies).

Uncontrolled Manifold (UCM)
Theory

Exploration-Exploitation

Probabilistic Neuromuscular
Control

Optimization / Minimal Intervention
Principle/
Optimal Control

The UCM Theory emphasizes that the temporal evolution of muscle activation patterns in the interior of the feasible activation
space need ot be as tightly controlled as those at its boundaries. This is because moving between interior points has no impact
on the output as they constitute the null-space of the task (Le., they are “goal-equivalent’ as in Scholz and Schiner, 1999). In
contrast, Feasibilty Theory describes details of the structure of the feasible activation space.

Heuristic and trial-and-error approaches can be used to find points within the Feasible Activation Space because itis a
needle-in-a-haystack problem. By definition, there is a small likelihood of finding a point on a low-dimensional manifold embedded
in a high-dimensional space (e.g...the volume of a line is zero). Thus, the families of valid solutions found are preferentially adopted
(e.g., as motor habits De Rugy et al., 2012). Such a heavily iterative approach is compatible with reinforcement

learning (Valero-Cuevas et al., 20092), motor babbling (Touwen, 1976), the hundreds of thousands of steps children take when
learning to walk (Adolph et ., 2012), or the mass practice a patient needs for effective rehabiltation (Lang et al., 2009).

If muscle activation patterns within the feasible activation space can be found (by any means), they can be combined to build
probabity density functions (.., Bayesian priors). A likely valid action for a particular situation can then be selected via Bayes’
Theorem (e.g., Kérding and Wolpert, 2004).

Every point in the feasible activation space is, by definition, valid. However, if a cost function is used to evaluate each pointin it, the
feasible activation space is transformed into a fitness landscape. Optimization methods can then navigate this fitness landscape
to find local and global minima (e.g., Crowninshield and Brand, 1981; Anderson and Pandy, 2001; Todorov and Jordan, 2002).
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