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Editorial on the Research Topic

Molecular Mechanisms in Stress and Trauma Related Disorders

Psychosocial stress is ubiquitous in modern societies and represents a potentially preventable risk
factor for a host of aberrant phenotypes (1). Interestingly, despite their ubiquity, psychosocial
stressors can elicit diverse and often unpredictable psychologic and somatic outcomes among
exposed individuals. What constellation of mechanisms determines whether some individuals will
suffer a variety of negative consequences in the face of adverse environments, whereas others will
remain intact or even thrive during periods of stress exposure? A body of evidence has suggested
that this interindividual variability may result from complex molecular mechanisms that collectively
shape individual responses and outcomes to stress at the cellular, physiological, neuroendocrine,
and behavioral levels. However, the exact molecular contributors to such responses and outcomes
are poorly understood. In this Research Topic, we present a series of both original studies and
review articles that shed new light into how stress-related conditions may be influenced by processes
such as inflammation, circadian biology, intracellular signaling pathways, oxidative stress,
and epigenetics.

Stress exposure can trigger episodes of major depression (2). Furthermore, both MDD and
childhood maltreatment have been previously shown to promote inflammation in a potentially
synergistic manner (3), yet the underlying mechanisms are still incompletely understood. In an
original study, de Punder et al. demonstrate that only patients with both depression and a history of
childhood adversity exhibit heightened inflammation, whereas depressed subjects without
childhood adversity have inflammatory profiles similar to those of control subjects. In a
systematic review and meta-analysis, Perrin et al. show that increased inflammation in
depression is associated with glucocorticoid resistance, primarily indicated by higher levels and
impaired suppression of the stress hormone cortisol. Together these findings suggest the existence of
g March 2020 | Volume 11 | Article 10315
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inflammatory subtypes of major depression that may be
characterized by previous exposure to childhood adversity and/
or aberrant glucocorticoid signaling.

Another key molecular process addressed herein is circadian
biology and its particular involvement in trauma-related
disorders. In an original study, Linnstaedt et al. show that
genetic polymorphisms in circadian pathway genes influence
risk for the development of posttraumatic stress symptoms
following exposure to multiple types of psychologic trauma,
including motor vehicle accidents, sexual assault, and burn
injury. Complementarily, Agorastos et al. review how the stress
system interacts at multiple levels with circadian biology and the
potential relevance of these interactions for posttraumatic stress
disorder. These articles underscore the importance of further
dissecting the role of circadian biology in stress and trauma-
related disorders.

Three original articles address how chemical modifications of
nucleic acids, acting at multiple levels to influence DNA and
RNA integrity and function, may be implicated in stress-related
disorders. He et al. examine DNA methylation—one of the
critical epigenetic mechanisms that regulate gene expression—
and show that childhood maltreatment in humans is associated
with higher, whereas bipolar disorder with lower, blood
methylation levels of the gene expressing the cytokine and
stem cell factor KIT ligand. Dick et al. employ a mouse model
of chronic social defeat stress and show that chronic stress can set
into motion adenosine-to-inosine RNA editing, a co-/
posttranscriptional RNA modification that influences protein
isoform expression, within the corticolimbic regions of the
mouse brain). Boeck et al. examine oxidative stress and DNA
damage in postpartum women and show that exposure to
childhood maltreatment is positively associated with levels of
8-isoprostane, a marker of lipid peroxidation, but not with
markers of oxidative DNA or RNA damage. Further studies
will be needed to uncover how stress and trauma exposure may
induce such chemical modifications of DNA and RNA to
contribute to diverse health and disease outcomes.

Lastly, a series of review articles highlight novel roles for other
signaling pathways and molecular processes. Gassen and Rein
discuss the role of autophagy—an evolutionarily conserved
intracellular pathway responsible for energy, organelle, and
protein homeostasis—in depressive phenotypes and its potential
Frontiers in Psychiatry | www.frontiersin.org 26
involvement in antidepressant action. Stepan et al. discuss recent
evidence suggesting a role for Hippo signaling—a signaling pathway
involved in organ development, tissue homeostasis, and
regeneration—in neuroplasticity and stress-related phenotypes.
Gold and Kadriu provide a perspective on the physiologic and
molecular mechanisms underlying the involvement of the lateral
habenula—a brain region with antireward properties and
bidirectional connections to the stress system—in the
development of anhedonia and other depressive phenotypes.
Papadopoulou et al. review how early life stressors—including
those occurring before conception, in utero, and postnatally—get
embedded to shape subsequent responses to stressful environments,
and how this embedding takes place at the molecular level. By
covering such diverse mechanisms and processes, these review
articles underscore how several molecular and cellular
mechanisms may interact at multiple levels and in complex ways
to contribute to diverse outcomes after stress and trauma exposure.

In conclusion, this Research Topic has aimed at providing up-
to-date evidence on the molecular mechanisms that may
underlie the development of stress and trauma-related
disorders. A wide range of molecular processes were examined,
including inflammatory processes, circadian biology, key
intracellular pathways such as autophagy and Hippo signaling,
oxidative stress, and epigenetic regulation. It is our hope that this
compilation and the resultant discussion will stimulate fruitful
research that aims at unraveling the molecular cascade of events
through which stressful experiences may contribute to the
development of aberrant disease phenotypes. Furthermore,
while keeping in mind that these mechanisms likely act
complementarily and in complex ways to shape diverse stress-
related outcomes across individuals, deeper insights into the role
of individual molecular mechanisms can have important
implications for identifying novel molecular targets, eventually
enhancing our ability to predict, prevent, diagnose, and treat
stress-related disorders.
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Previous studies suggest that genetic variants within genes affecting the circadian rhythm

influence the development of posttraumatic stress symptoms (PTSS). In the present

study, we used data from three emergency care-based cohorts to search genetic variants

in circadian pathway genes previously associated with neuropsychiatric disorders for

variants that influence PTSS severity. The three cohorts used included a discovery

cohort of African American men and women enrolled following motor vehicle collision

(n = 907) and two replication cohorts: one of multi-ethnic women enrolled following

sexual assault (n= 274) and one of multi-ethnic men and women enrolled following major

thermal burn injury (n = 68). DNA and RNA were collected from trauma survivors at the

time of initial assessment. Validated questionnaires were used to assess peritraumatic

distress severity and to assess PTSS severity 6 weeks, 6 months, and 1 year following

trauma exposure. Thirty-one genetic variants from circadian rhythm genes were selected

for analyses, and main effect and potential gene∗stress and gene∗sex interactions

were evaluated. Secondary analyses assessed whether associated genetic variants

affected mRNA expression levels. We found that six genetic variants across five circadian

rhythm-associated genes predicted PTSS outcomes following motor vehicle collision
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(p < 0.05), but only two of these variants survived adjustment for multiple comparisons

(False Discovery Rate< 5%). The strongest of these associations, an interaction between

the PAR-zip transcription factor, thyrotroph embryonic factor (TEF ) variant rs5758324

and peritraumatic distress, predicted PTSS development in all three cohorts. Further

analysis of genetic variants in the genetic region surrounding TEFrs5758324 (±125,000

nucleotides) indicated that this allele showed the strongest association. Further, TEF RNA

expression levels (determined via RNA-seq) were positively associatedwith PTSS severity

in distressed individuals with at least one copy of the TEFrs5758324 minor allele. These

results suggest that rs5758324 genetic variant in TEF, a regulator of clock-controlled

genes and key mediator of the core circadian rhythm, influence PTSS severity in a

stress-dependent manner.

Keywords: PTSD, genetic polymorphism, circadian rhythm, trauma, TEF, RNA

INTRODUCTION

Unfortunately, traumatic events are common in life. For instance,
each year in the United States, more than 11 million individuals
experience a motor vehicle collision (MVC) (1), more than
one million women are sexually assaulted (2), and more
than 50,000 individuals are hospitalized after major thermal
burn injury (3). Although most individuals recover following
trauma exposure, a substantial proportion develop adverse
post-traumatic neuropsychiatric sequelae such as persistent
posttraumatic stress symptoms (PTSS).

Individual genetic differences influence vulnerability to PTSS
following trauma exposure: data from twin research and genetic
association studies estimate the heritability of PTSS to be between
29 and 40 percent (4–6). The study of genetic variants associated
with vulnerability to PTSS has provided a number of valuable
clues and new directions in understanding the pathogenesis
and manifestations of the disorder. The first GWAS for PTSS
identified an association between genetic variants in the retinoid-
related orphan receptor alpha gene, a gene that stabilizes
environmental influences on the circadian rhythm (7), and
PTSS vulnerability (8). This association has been subsequently
replicated in both studies of PTSS (9, 10) and other stress-related
disorders (11–17) [but also failed to replicate for PTSS (18)].

In addition to these data, evidence continues to accrue
more broadly that the circadian rhythm plays an important
role in PTSS development and symptom expression (19–30).
The circadian rhythm entrains the body to 24 h light-dark
cycles through transcription-translation feedback loops in the
hypothalamic suprachiasmatic nucleus and throughout the body
in cells of almost every tissue (31, 32). This cycling allows the
body to adjust behavior, metabolism, and physiology in response
to environmental cues. One specific type of environmental
stimulus known to influence the circadian rhythm (and vice
versa) is physiological stress exposure (33, 34). It has been

Abbreviations: VC, motor vehicle collision; SA, sexual assault; MThBI, major

thermal burn injury; ED, emergency department; DNA, deoxyribonucleic acid;

RNA, ribonucleic acid; TEF, thyrotroph embryonic factor; PTSS, posttraumatic

stress symptoms; GWAS, genome wide association study.

hypothesized that interactions between circadian and stress
systems may contribute to the underlying pathogenesis of
neuropsychiatric disorders (35), and a growing body of evidence
supports this hypothesis (36–40).

Evidence supporting the interplay between the circadian clock
and stress systems includes data from a variety of studies. For
instance, clock genes (e.g., PER1, PER2, TIMELESS, NPAS2)
have been shown to be regulated by stress hormones such as
glucocorticoids (GC) (41–43). GC release throughout a 24 h
period follows a circadian rhythm in which levels are highest at
the beginning of the wake period and lowest at the beginning of
the sleep period (44). Animals with key circadian rhythm genes
knocked out have altered GC levels (45). Additionally, FKBP5, a
chaperone protein that plays a role in the regulation of circulating
GC levels, and has been shown to play a role in stress related
disorders (46, 47), is rhythmically expressed in most tissues (48).

In the current study, we used prospective data from three
emergency department based trauma cohorts (one discovery
and two replication cohorts) to test the hypothesis that genetic
variants in circadian rhythm genes predict PTSS development
following trauma exposure. In addition, we hypothesized that
the relationship between polymorphisms in circadian rhythm
genes and PTSSmight be dependent on stress levels (as measured
via reported peritraumatic distress levels or via the critical
stress regulator FKBP5).We found a significant, stress-dependent
relationship between a genetic variant in the circadian rhythm-
associated thyrotroph embryonic factor (TEF) gene, rs5758324,
and PTSS development that replicated across all three cohorts. In
addition, analyses of mRNA expression data from the discovery
cohort suggest that this allele is functional.

METHODS

Study Design, Setting, and Eligibility
Criteria
Motor Vehicle Collision (MVC) Study
This prospective longitudinal study enrolled African American
individuals ≥18 and ≤65 years of age presenting to the ED
within 24 h of MVC. The details of this study have been described
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previously (49). This study was approved by the institutional
review boards at the data-coordinating center (The University of
North Carolina at Chapel Hill) and at all participating hospitals.
Each study participant provided written informed consent before
enrollment.

Eligible and consenting participants provided blood samples
in the ED and completed an ED interview evaluation. Research
assistants performed interview evaluations at the time of the
ED visit using a web-based survey with explicit definitions of
variables. Patients whowere not alert and oriented were excluded,
as were patients who did not self-identify as African American,
pregnant patients, prisoners, patients unable to read and
understand English, or patients taking opioids above a total daily
dose of 30mg of oral morphine or equivalent. Data extraction
from the ED medical record obtained injury characteristics and
medications administered in the ED. Participant demographic
characteristics (including age, sex, and educational attainment)
were obtained from the ED medical record and from participant
self-report. Six weeks, six months, and one year after the MVC,
participants completed a follow-up interview by telephone,
online, or via mail.

Assessments and outcome definitions for the MVC study
MVC-related PTSS was assessed at all three follow-up timepoints
(6 weeks, 6 months, and 1 year) using the Impact of Event
Scale: Revised (IESR) (50). This 22-item questionnaire includes
avoidance, intrusion and hyperarousal subscales. Scores range
from 0 to 88. Using a previously validated cutoff [IESR≥ 33 (51)],
we estimated that 29% of individuals enrolled following MVC
had PTSD 6 months following trauma exposure.

Peritraumatic distress in the ED was measured using
the Peritraumatic Distress Inventory, a 13-item questionnaire
assessing the level of distress experienced immediately after a
traumatic event (52). This assessment measures life threat, loss
of control, helplessness/anger, and guilt/shame. Each item on the
questionnaire was evaluated via numeric rating scale from 0 (no
distress) to 4 (high distress). A validated cut-off score of 23 was
used to identify those with substantial distress (53).

Sexual Assault (SA) Study
This prospective longitudinal study is similar in design to its pilot
study described previously (54) and to the MVC study described
above. Women ≥18 and ≤65 years of age presenting to one of
13 sexual assault nurse examiner (SANE) programs within 72 h
of sexual assault trauma were enrolled. Women unable to give
informed consent (e.g., due to intoxication) were excluded, as
were women who were hospitalized after sexual assault, lived
with their assailant, were prisoners, were pregnant, did not have a
telephone, and/or did not live within driving distance for follow-
up interviews. Institutional Review Board (IRB) approval was
obtained at all study sites, and all study participants provided
written informed consent.

Assessments and outcome definitions for the SA study
SA-related PTSS was assessed at three follow-up timepoints (6
weeks, 6 months, and 1 year) using the civilian version of the
posttraumatic stress disorder checklist (PCL) (55). This validated

17-item questionnaire assesses posttraumatic distress symptoms
in relation to a stressful experience. A total symptom severity
score (range = 17–85) can be obtained by summing the scores
from each of the 17 items that have response options ranging
from 1 “Not at all” to 5 “Extremely.” Using this PCL scale, we
estimated the incidence of PTSD 6 months following trauma
exposure in this cohort of sexual assault survivors to be 62%.

One week following sexual assault, participants were asked
about peritraumatic distress symptoms in the period since
the assault using measures from PROMIS 8b. These measures
include statements such as “I felt fearful,” “I felt nervous,” “I felt
anxious,” “I felt tense,” and “I felt uneasy.” Participants rated each
item with a score from 1 to 5 (ranging from never to always),
with a total possible score from 8 to 40. The median score was
used to distinguish womenwith high distress from those with low
distress.

Major Thermal Burn Injury (MThBI) Study
Patients undergoing tissue autograft after MThBI between
February 2012 through June 2015 at one of the three
burn centers (University of North Carolina, Chapel Hill,
NC, MedStar Washington Hospital Center, Washington, DC,
and University of South Florida, Tampa, FL) were enrolled.
Exclusion criteria included age <18 or >65, admission >72 h
after MThBI, estimated total body surface area (TBSA) burn
>30%, intentional, electrical or a chemical mechanism, autograft
performed >14 days after admission to burn center or autograft
decision made >7 days after admission, Childs-Pugh liver failure
stage B or C, end stage renal disease, chronic opioid use
>20 morphine equivalents per day before burn, preburn skin
disorder causing pruritus, substantial co-morbid injury (e.g.,
blast injury resulting in major trauma in addition to burn),
pregnancy or breastfeeding, residing greater than 100 miles
from site, and burn that required escharotomy. In addition,
individuals unwilling to provide a blood sample, prisoners,
suicidal, homicidal, psychotic individuals, and individuals who
did not read and speak English were excluded. The Institutional
Review Board at each burn center approved the study protocol,
and each participant provided written informed consent.

Assessments and outcome definitions for the MThBI study
MThBI-related PTSS severity was assessed 1 day, 6 weeks,
6 months, and 1 year following burn injury using the PCL
questionnaire (as described above for the SA study). In this
MThBI cohort, an estimated 13% of individuals reported PTSD 6
months following trauma exposure. This questionnaire was also
administered in the immediate aftermath of trauma (day 1) and
served as the measure for peritraumatic distress. A previously
reported cutoff of 23 was used to distinguish individuals with
high distress vs. those with low distress (56).

DNA Collection and Genotyping
Study personnel collected blood samples at the time of
enrollment using PAXgene DNA tubes. Following DNA
purification (PAXgene blood DNA kit, QIAGEN), genotyping
using the InfiniumMulti-Ethnic Global Array (MEGA, Illumina)
was performed (AKESOgen, Inc; Atlanta, GA). DNA from an
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individual with known genotype (NA19819, Coriell Institute,
Camden, NJ) and two repeat samples were included in each
genotyping batch (96 samples) to ensure genotypic accuracy and
reliability.

Thirty-one genetic variants across nine circadian rhythm
associated genes were selected for analyses based on previous
association with PTSS or related neuropsychiatric disorders
(see Table 1 for references) and whether they were included
on the MEGA chip. These genetic variants had excellent
call rates (>98%) and were in Hardy-Weinberg equilibrium
(Supplementary Table 1, p ≤ 0.05).

RNA Collection and Sequencing
PAXgene RNA tubes were used to collect blood in the ED at the
time of enrollment. Total RNA was isolated using the PAXgene
bloodmiRNA kit (QIAGEN) and stored at−80◦C until use. RNA
concentration and purity were measured using a NanoDrop 1000
(Nanodrop Technologies, Wilmington, DE).

One hundred and eighty-four samples were selected for RNA
sequencing based on whether individuals reported relatively high
or relatively low levels of PTSS over time after MVC. This
selection occurred intermittently throughout the study and well
prior to the planning of these specific analyses.

Template libraries for total RNA sequencing were produced
from 600 ng total RNA using Ovation Human Blood RNA-
Seq Library Systems kit (NuGen, San Carlos, CA) according
to manufacturer’s specifications. Libraries were multiplexed in
groups of six and sequenced on a HiSeq 2500 at the University
of North Carolina at Chapel Hill High Throughput Sequencing
Facility. Raw sequencing reads were aligned to the human hg19
genome assembly using STAR (version 2.4.2a) (57). Expression
levels of each transcript (n = 20,353) were estimated via RSEM
(58) using University of California Santa Cruz (UCSC) known
gene transcript and gene definitions. Raw RSEM read counts for
all samples were normalized to the overall upper quartile (59)
before comparison and visualization. Consistent with study goals,
only messenger RNA aligning to the TEF gene was included in
these analyses.

TABLE 1 | Baseline characteristics of study participants.

Discovery Replication cohorts

Characteristic MVCa SAb MThBIc

Enrolled, n 930 274 68

Age, years, mean (SD) 35.1 (12.7) 28.8 (11.4) 37.6 (12.2)

Females, n (%) 578 (62.2) 274 (100) 18 (26.5)

African American, n (%) 930 (100) 46 (16.8) 27 (39.7)

Education, n (%)

8–11 yrs 71 (7.6) 17 (6.2) 8 (11.8)

High school 290 (31.2) 70 (25.5) 24 (35.3)

Post-high school 42 (4.5) 12 (4.4) 2 (2.9)

Some college 338 (36.3) 124 (45.3) 23 (33.8)

College graduate 137 (14.7) 44 (16.1) 8 (11.8)

Post-graduate studies 36 (3.9) 7 (2.6) 3 (4.4)

aMVC, motor vehicle collision cohort; bSA, sexual assault cohort; cMThBI, major thermal

burn injury cohort.

Selection of Circadian Rhythm Associated
Genetic Variants for Primary Analyses
The genetic variants selected for analyses in this study
originate from genes in the core circadian rhythm pathway
that are involved directly in the core feedback mechanism
or are transcriptional regulators of clock-controlled genes
that affect tissue specific physiological processes such as
neurotransmission, immune processes, and endocrine signaling
(Supplementary Figure 1). We used a structured literature
review to identify genetic variants within such circadian rhythm
genes that have previously been shown to be associated
with PTSS or related neuropsychiatric disorders. To perform
this literature review, we first searched the PubMed (NCBI)
database using the following search terms: “post-traumatic stress
disorder”/“PTSD” and “CLOCK” or “BMAL1” or “BMAL2” or
“ARNTL” or “ARNTL2” or “PER1” or “PER2” or “PER3” or
“CRY1” or “CRY2” or “REV-ERB” or “NR1D2” or “NR1D1” or
“RORA” or “RORB” or “CSNK1E” or “NPAS2” or “TEF” or
“TIMELESS” or “VIP,” “VIPR2.” We then searched for related
neuropsychiatric disorders as the outcome in conjunction with
each of the genes listed above. This search resulted in 207 total
manuscripts describing 204 genetic variants with association to
the queried disorders (Supplementary File 1). We then grouped
these genetic variants into four tiers based on the following
criteria: Tier 1: significant association between the genetic variant
and the above defined neuropsychiatric disorders across two or
more previous reports, and minor allele frequency (MAF > 0.05)
(n = 19 genetic variants); Tier 2: significant association between
the genetic variant and the above defined neuropsychiatric
disorders in at least one previous report, andMAF> 0.05 (n= 98
genetic variants); Tier 3: no significant association detected in
previous report(s) (n = 24 genetic variants); Tier 4: MAF < 0.05
or no record of the MAF for African or Caucasian populations
(n = 63 genetic variants). We then selected genetic variants
from Tiers 1 and 2 for association analyses (n = 117 genetic
variants). However, only a subset of these genetic variants were
included on the genotyping array we had used to assess genetic
variants in these cohorts. Thus, thirty-one genetic variants across
nine circadian rhythm associated genes were included in primary
analyses (Supplementary File 1 and Supplementary Table 2).

Analyses
Genetic Association Analyses
Sociodemographic characteristics of the sample were
summarized using standard descriptive statistics. Repeated
measures mixed models were used to evaluate the association
between each of the 31 genetic variants and PTSS outcomes
over time and for the following potential interactions: sex ×

genetic variant, peritraumatic distress × genetic variant, and
FKBP5 (using the tagging allele, rs3800383) × genetic variant.
[FKBP5 was included in these analyses as a secondary measure
for stress interactions, since FKBP5 is a critical mediator of
the hypothalamic pituitary axis and is highly associated with
PTSS (46)]. Models were adjusted for potential confounding
by age, education level, time since the traumatic event, and
enrollment study site. Sex, distress, and FKBP5-dependent
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effects were evaluated because of increasing evidence that such
interactions are frequently present [e.g., (60–62)] and because
such effects have been found for circadian rhythm associated
genes previously (36–40). A dominant genetic model [two
copies of the major allele (coded as 0) vs. one or more copies
of the minor allele (coded as 1)] was used for all models.
Marginal means corresponding to PTSS severity were derived
from the fully adjusted models. False discovery rate (FDR)
was controlled for in each analysis subset (e.g., main effects,
stress interaction, sex interaction) separately. when determining
statistical significance. All analyses were performed using SPSS
and SAS software (v24; SPSS Inc. Chicago, IL; SAS 9.4, SAS
Institute Inc., Cary, NC). Of note, the raw data supporting the
conclusions of this manuscript will be made available by the
authors, without undue reservation, to any qualified researcher.

RNA Expression Analyses
RNA expression data was only available for theMVC cohort; thus
analyses assessing the relationship between the genetic variant
TEFrs5758324 and its effect on TEF mRNA expression were
assessed in this cohort alone. The total cohort with RNA data
(n= 184) was stratified by high and low distress and by rs5758324
major vs. minor allele. For each subgroup, bivariate analyses
were used to assess the strength and direction of the relationship
between TEF mRNA expression and PTSS severity. Due to non-
normal distribution of TEF mRNA sequencing reads (Shapiro-
Wilk test for normality, p < 0.05), Spearman’s rank correlation
coefficients were reported.

Bioinformatics Analyses
Linkage disequilibrium was assessed in this study using LDlink,
a web-based application that enables exploration of population
specific linkage structures based on data from 1000 Genomes
Project Phase 3 and dbSNP build 142 (63).

RESULTS

Participants
Baseline characteristics of participants in the discovery and
replication cohorts are shown in Table 1. The motor vehicle
collision (MVC) cohort has been described previously (49).
This study exclusively enrolled African American women and
men (n = 930) who reported to the emergency department
(ED) within 24 h of an MVC. The sexual assault (SA study) is
an on-going study of multi-ethnic women who presented for
emergency care within 72 h of SA. All participants enrolled in
the SA study with PTSS outcome data available at the time of
analyses were genotyped (n = 274). The major thermal burn
injury (MThBI) study enrolled African American and European
American women and men within 72 h of thermal burn injury
(n = 68). Follow-up rates at the final 1 year follow-up timepoint
were ≥ 85% for all three studies.

Genetic Variants Selected for Primary
Analyses
Because our cohort sizes were relatively small, to reduce the
likelihood of type I and type II error we performed a candidate
gene study using genetic variants in circadian rhythm associated

genes previously associated with neuropsychiatric disorder
vulnerability. These 31 genetic variants (Table 2), were identified
via structured literature review (see Methods for details).

Relationship Between Circadian Rhythm
Associated Genetic Variants and PTSS
Severity Following Trauma Exposure
MVC Discovery Cohort Analyses
Repeated measures mixed models adjusting for ED study site,
participant age, education level, and sex were used to assess
whether any of the 31 variants identified in previous literature
predicted PTSS severity after MVC. For each genetic variant,
we assessed for main effect relationships with PTSS and for
potential interactions with sex, peritraumatic distress, and
FKBP5 (using the rs3800373 tagging allele). Eight associations
were identified (Table 3). Two of these, from the thyrotroph
embryonic factor (TEF) gene, survived false discovery rate
(FDR < 0.05) adjustment: TEFrs5758324∗peritraumatic distress
[F(1, 824) = 10.54, p = 3.7 × 10−2] and TEFrs738499∗FKBP5
[F(1, 830) = 10.05, p = 4.96 × 10−2]. Stratified analyses
demonstrating the direction and magnitude of effect for all
associations inTable 3 are presented in Supplementary Figure 2.
Additionally, demographic data stratified by allele for
TEFrs5758324 is presented in Supplementary Table 3.

Replication Analyses in SA and MThBI Cohorts
In repeated measures mixed model replication analyses,
TEFrs5758324 significantly predicted PTSS severity in a
peritraumatic distress-dependent manner in both the SA cohort
[F(1, 257) = 5.52, p = 0.020, Table 4] and the MThBI cohort
[F(1, 57) = 5.72, p = 0.020, Table 4]. Because the discovery
cohort was comprised of only African American individuals
(MAF= 0.35), we also assessed whether TEFrs5758324 predicted
PTSS when limiting analyses to this strata alone (16.8% of SA
cohort, 39.7% of MThBI cohort) (MAF range for different
ancestry groups= 0.17–0.78; overall MAF = 0.48). We observed
similar results for African American individuals as for the full
cohort [SA, F(1, 33) = 4.57, p = 0.040; MThBI, F(1, 18) = 7.52,
p= 0.013].

TEFrs5758324 Predicts PTSS Severity
Following Trauma Exposure in a Stress
Dependent Manner
Stratified analyses were performed to determine whether
the direction and magnitude of the relationship between
TEFrs5758324 and PTSS severity was similar in the three
cohorts. Marginal means demonstrated that the direction of
effect was similar across all three trauma exposures (Figure 1).
Additionally, individuals with high distress and at least one
copy of the TEFrs5758324 minor allele reported the highest
PTSS severity compared to the other subgroups (Figure 1).
This relationship persisted when adjusting for the time of
trauma exposure, litigation status, and previous life trauma.
Additionally, the effect of TEFrs5758324 and distress on PTSS
severity following MVC did not seem to differ over the three
posttraumatic timepoints measured (F = 0.51, p = 0.598).
In the SA and MThBI cohorts, this difference was most
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TABLE 2 | Genetic variants in circadian rhythm genes that have previously been shown to be associated with neuropsychiatric disorders and are the focus of primary

analyses in the current study (n = 31 genetic variants).

Gene name Gene symbol Genomic location SNP Previous associations

Aryl hydrocarbon receptor nuclear

translocator like

ARNTL; BMAL1 11p15 rs7107287 Anxious temperament (64); BD (65)

[-10pt] rs1982350 Depression (66); BD (65)

rs11022778 MDD, appetite changes (67); age at first suicide

attempt (68)

rs969485 Depression (66)

Clock circadian regulator CLOCK 4q12 rs534654 Violent suicide attempts (68); BD (69)

rs1801260 MDD in males (36); BD (70, 71); SAD (72);

appetite disturbance (67); MDD (73);

chronotype (74); evening activity (75, 76);

insomnia during depression treatment (77);

insomnia with MDD + BD (78)

Neuronal PAS domain protein 2 NPAS2 2q11.2 rs1562313 BD with seasonal pattern (79)

rs12622050 BD with seasonal pattern (79)

rs2305159 BD with seasonal pattern (79)

rs6740935 MDD (73)

Period 2 PER2 2q37.3 rs6431590 MDD (17)

Period 3 PER3 1p36.23 rs10462018 MDD (73)

rs228642 MDD (80)

RAR related orphan receptor A RORA 15q22.2 rs4774388 Depression (66); BD (81)

rs2414680 MDD (73)

rs16943472 MDD (73)

rs4775351 MDD (73)

rs8023563 Depression (16)

rs12906588 Depression (16)

rs809736 Response to antidepressants (15)

rs782931 BD (82)

rs13329238 BD (81)

rs9302215 BD (81)

rs11071557 BD (81)

rs12915776 BD (81)

rs8041466 BD (81)

rs34720147 BD (81)

RAR related orphan receptor B RORB 9q22 rs7022435 BD (83)

TEF, PAR bZIP transcription factor TEF 22q13.2 rs738499 Depression (74, 84–87); sleep disturbances

(88)

rs5758324 MDD (73)

Timeless circadian clock TIMELESS 12q13.3 rs11171856 violent suicide attempts (68)

MDD, major depressive disorder; BD, bipolar disorder.

pronounced among African American individuals. In sum, these
data support the hypothesis that, TEFrs5758324 has a stress-
dependent influence on PTSS severity, across a range of trauma
exposures and ethnicities.

TEFrs5758324 Shows the Strongest
Association With PTSS Compared to Other
Genetic Variants in the Surrounding Region
To determine whether the observed association for
TEFrs5758324 is likely attributable to the TEF gene locus
(vs. another gene in linkage disequilibrium with TEFrs5758324),
we assessed for an association between PTSS and available genetic
variants (i.e., variants in our genotyping array) within a 250 kb
span surrounding TEFrs5758324. The strongest stress-dependent

association with PTSS severity originated from three of the four
genetic variants mapping to the TEF gene (rs5751086, p = 3.8
× 10−3; rs738499, p = 3.3 × 10−3; rs5758324, p = 1.2 × 10−3;
Figure 2). These genetic variants are all located in intronic or
upstream regions of TEF (Figure 2) and are in high linkage
disequilibrium with each other (Supplementary Figure 3).

TEFrs5758324 Affects the Relationship
Between TEF mRNA Expression and PTSS
Severity
To evaluate potential functional effects of TEFrs5758324, we
used RNA sequencing data available in a subset of individuals
(n = 184) in the MVC cohort to assess the relationship between
TEF mRNA expression levels and PTSS severity. To perform this
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TABLE 3 | Relationship between genetic variants in circadian rhythm genes and posttraumatic stress symptom severity following motor vehicle collision trauma in African

American individuals (n = 930).

Gene name SNP Alleles Interaction F statistic p-value* p-value# (FDR adj.)

RORB rs7022435 G/A - 5.22 2.26 * 10−2 0.315

BMAL1 rs969485 A/G - 5.13 2.38 * 10−2 0.315

RORA rs4774388 T/C - 4.70 3.05 * 10−2 0.315

RORA rs4774388 T/C sex 6.18 1.31 * 10−2 0.406

NPAS2 rs12622050 G/A distress 5.10 2.41 * 10−2 0.250

TEF rs5758324 T/G distress 10.54 1.20 * 10−3 3.70 * 10−2

TEF rs738499 T/G distress 8.69 3.30 * 10−3 5.10*10−2

TEF rs738499 T/G FKBP5 10.05 1.60 * 10−3 4.96 * 10−2

Relationships examined include genetic variant main effects, and interactions between the genetic variant and participant sex, peritraumatic distress, or FKBP5 tagging allele, rs3800373.

* p-value generated via repeated measures mixed models (6 week, 6 months, 1 year), adjusted for age, sex, emergency department enrollment site, education, and time following motor

vehicle collision. A dominant genetic model was used for all genetic polymorphisms. #False discovery rate (FDR) adjusted p-values.

Bold values indicate significance at the p < 0.05 threshold.

TABLE 4 | Relationship between genetic variants in circadian rhythm genes and posttraumatic stress symptoms in individuals following sexual assault (SA, n = 274) and

major thermal burn injury (MThBI, n = 68) trauma.

SA cohort MThBI cohort

Gene name SNP Interaction p-value (All)* p-value (AA)* p-value (All)* p-value (AA)*

RORB rs7022435 – 0.641 0.112 NA NA

BMAL1 rs969485 – 0.663 0.546 0.351 0.443

RORA rs4774388 – 0.579 0.630 0.601 0.928

RORA rs4774388 sex – – 0.505 0.899

NPAS2 rs12622050 distress 0.171 0.131 0.296 0.333

TEF rs5758324 distress 0.020 0.040 0.020 0.013

TEF rs738499 distress 0.233 0.421 0.524 0.206

TEF rs738499 FKBP5 0.995 0.665 0.485 0.909

Only genetic variants shown to be associated with posttraumatic stress symptoms following motor vehicle collision (MVC) were assessed in these cohorts.

*p-value generated via repeated measures mixed models (6 week, 6 months, 1 year), adjusted for age, sex, emergency department enrollment site, education, and time following sexual

assault (SA) or major thermal burn injury (MThBI). AA, African American individuals only; NA, genetic variant not available.

Bold values indicate significance at the p < 0.05 threshold.

analysis, we first stratified individuals with RNA data based on
their peritraumatic distress level and the presence or absence of
at least one copy of the TEFrs5758324 minor allele. In distressed
individuals with at least one copy of the minor allele, we observed
a statistically significant positive correlation between TEFmRNA
and PTSS severity (Table 5, Figure 3). In the other three strata,
there were no statistically significant correlations between TEF
mRNA and PTSS severity (Table 5). These data indicate that the
TEFrs5758324 minor allele strengthens the relationship between
TEF RNA expression and subsequent PTSS severity in stressed
individuals.

DISCUSSION

In the present study, we searched among genetic variants
in circadian pathway genes associated with neuropsychiatric
disorders for variants that influence posttraumatic stress
symptom severity after traumatic stress. We identified a genetic
variant in the TEF gene, rs5758324, that had a stress-dependent
influence on posttraumatic stress symptom severity across three
different trauma exposures (MVC, SA, and MThBI) and across

multiple ethnicities, such that individuals with peritraumatic
distress and at least one copy of the minor allele had the highest
levels of PTSS over time. Additional TEF variants in LD with
TEFrs5758324 were also significantly associated with PTSS in a
stress-dependent manner, suggesting that TEFrs5758324 might
be an important risk locus for PTSS. Further, a strong positive
relationship between TEF mRNA expression and PTSS severity
was observed in individuals with high levels of peritraumatic
distress and at least one copy of the TEFrs5758324 minor allele,
suggesting that the variant may be functional.

TEF is one of several key regulatory transcription factors
within the circadian rhythm pathway. TEF, along with several
other key circadian-associated transcriptional activators, binds at
D-box promoter sites to promote transcription of a number of
clock-controlled genes as well as key genes in the core circadian
feedback loop including NR1D1, NR1D2, PER, and CRY (89–
91). How TEF polymorphisms might influence the pathogenesis
of PTSS remains poorly understood. Such polymorphisms
may affect sleep quality in the days or weeks after trauma,
contributing to PTSS onset or preventing remittance via a variety
of mechanisms (92, 93). In addition, TEF has been found to
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FIGURE 1 | Results of stratified analyses assessing the influence of the interaction between TEFrs5758324 and peritraumatic distress on posttraumatic stress

symptom (PTSS) severity following motor vehicle collision (MVC), sexual assault (SA) and major thermal burn injury (MThBI) trauma exposures. PTSS severity in

individuals with low and high distress and the major or at least one copy of the minor allele at TEFrs5758324 shown in all panels. Specific cohort data shown as

follows: (A) MVC study participants (n = 931). All participants in this study were African American. (B) SA study participants (n = 274). (C) African American individuals

from the SA study (n = 46). (D) MThBI study participants (n = 68). (E) African American individuals from the MThBI study (n = 27). Outliers defined using Tukey criteria

are represented by black dots. *p-value < 0.05, #p-value < 0.001.

influence brain levels of serotonin and dopamine through the
clock-controlled gene, PDXK (94). Future studies defining the
role of TEF in PTSS pathogenesis, such as knock-out or gene
silencing animal studies, or the evaluation of peritraumatic sleep
patterns among distressed individuals with and without the
TEFrs5758324 minor allele is warranted.

While previous studies have identified a relationship
between polymorphisms in the TEF gene and PTSS-associated
neuropsychiatric disorders, most focused on TEFrs738499, a
polymorphism in high LD with TEFrs5758324 (D’ = 0.987,
R2 = 0.272). (This allele was associated with PTSS development
in our discovery cohort, but did not replicate in SA and MThBI
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FIGURE 2 | Association between genetic variants in the genomic region surrounding TEFrs5758324 and PTSS severity following motor vehicle collision (MVC)

trauma. (Top) The –log p-values of the peritraumatic distress -dependent association between each genetic variant (represented by a dot on the graph) and PTSS

severity following MVC were plotted vs. the location of each genetic variant on Chromosome 22. The horizontal dotted line indicates a significance threshold of

p = 0.05. Corresponding genes mapping to the genomic region are indicated below the graph and shading/colors are coordinated between the dots representing

genetic variants and the gene to which they map. (Bottom) Magnified schematic of the TEF gene indicating both isoforms for the TEF transcript, the relative location

of exons and introns, and the relative location of each genetic variant assessed within the TEF gene. (TEF isoform 1: ENST00000266304.8 and TEF isoform 2:

ENST00000406644.7). Genome coordinates refer to GRCh38/hg38 Assembly.

TABLE 5 | Effect of stress and TEFrs5758324 on the correlation between TEF

mRNA levels and PTSS severity following motor vehicle collision (MVC, n = 184).

Distress level Allele Correlation between TEF mRNA and PTSS

severity following MVC

Correlation coefficienta p-value

Low distress TT −0.005 0.956

TG/GG −0.070 0.441

High distress TT 0.048 0.599

TG/GG 0.183 0.035

aSpearman’s rho.

Bold values indicate significance at the p < 0.05 threshold.

survivors). Previous literature has identified an association
between TEFrs738499 and depression (74, 84–87) and sleep
disturbances (88). Interestingly, an expanded study of the initial
cohort that identified an association between TEFrs738499

and depression failed to replicate the relationship (73),
suggesting that TEFrs738499 might not be a functional allele
or might not have relevance to all populations or types of
depression. The same expanded study that failed to replicate
the association for TEFrs738499 identified an association at the
trend-level for TEFrs5758324. Consistent with the hypothesis
that TEFrs5758324 is functional, publicly available data from
the GTEx consortium (95) indicates that in 44 cell lines/tissues
examined, TEFrs5758324 is an expression quantitative trait locus
(eQTL). Additionally, using data cataloged by Metamoodics
(96), TEF mRNA is increased in the frontal cortex of individuals
with neuropsychiatric disorders (though this online database did
not distinguish genetic variant effects on mRNA expression).

We did not detect a main effect relationship between
TEF alleles and PTSS outcomes similarly to previous studies.
Instead, we detected a gene × environment interaction, where
stressed individuals with at least one copy of the minor
allele reported the highest PTSS severity. Such gene × stress
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FIGURE 3 | Relationship between circulating TEF mRNA expression levels

and PTSS severity following motor vehicle collision (MVC) trauma in individuals

who reported high peritraumatic distress in the early aftermath of trauma

exposure and who had at least one copy of the TEFrs5758324 minor allele.

Shown is representative data from PTSS levels measured 6 months following

MVC (n = 50; Spearman’s rho = 0.386, p = 0.009). No relationship between

TEF mRNA and PTSS severity was observed for other subgroups of

individuals: high peritraumatic distress and TEFrs5758324 major allele (n = 45;

Spearman’s rho = −0.007, p = 0.967), low peritraumatic distress and

TEFrs5758324 minor allele (n = 42; Spearman’s rho = −0.074, p = 0.642),

low peritraumatic distress and TEFrs5758324 major allele (n = 38;

Spearman’s rho = −0.087, p = 0.604).

interactions are being increasingly identified (97–99). For
instance, the relationship between FKBP5 alleles and PTSS/PTSS
related neuropsychiatric outcomes have consistently been shown
to be stress dependent (46, 47, 100–102). Future studies
should consider such interactions when examining genetic
associations between TEF or other circadian rhythm genes and
neuropsychiatric disorders.

A number of limitations should be considered when
interpreting this manuscript. First, this study used a candidate
gene approach to test a specific hypothesis regarding the
role of circadian rhythm genetic variants in predicting PTSS
development. Many in the mental health field are moving away
from candidate gene studies, in favor of GWAS approaches.
However, given their ability to evaluate pathways with high
pre-test probability, test for interactions, replicate results across
multiple studies and ethnicities, and use multilayered data
analyses to evaluate for evidence of functionality, we believe that
they still have merit and utility to advance the field. Second, our
functional assessment of TEFrs5758324 using mRNA expression
analyses was limited to blood expression levels. TEF is widely
expressed throughout the body, with highest expression in the
brain. Therefore, it is possible that blood measurements of
expression are not an accurate proxy for brain expression. A
previous report showed that the transcriptome of some central
nervous tissues and the blood overlap (103), suggesting that TEF
blood expression might approximate nervous tissue expression.
However, further studies are needed to directly address this
possibility. Third, we only assessed association between four TEF
variants and PTSS development. The use of targeted sequencing

methods could provide further granulation of genetic variation
across the TEF gene and enable us to pinpoint the most
influential genetic variants in this genomic region (in addition to
TEFrs5758324). Fourth, we did not examine whether additional
factors related to stress or the circadian clock, such as stress
hormone levels and/or sleep quality mediates the relationship
between TEFrs5758324 and PTSS outcomes. However, such
analyses would be of interest for future studies. Fifth, the list
of candidate SNPs identified via literature search, that were
analyzed for association with PTSS in the current study, was
limited in scope due to the reliance on previous studies showing
an association between a circradian rhythm associated gene
and a PTSS related disorder. This study design resulted in
an under sampling of SNPs in key circadian rhythm genes
such as CRY1 and PER1. In the future, higher-powered studies
would benefit from assessing tagging SNPs across all circadian
rhythm associated genes to identify additional circadian rhythm
SNPs that might predict PTSS following trauma exposure.
Sixth, we do not know from which blood cell component our
RNA expression originated, thus limiting our ability to make
inferences about the origin of TEF mRNA in this study. Seventh,
only approximately one-third of African American individuals
carry the TEFrs5758324 minor allele. In combination with
African Americans comprising only a subset of the SA and
MThBI cohorts, stratified analyses were likely underpowered.
Finally, the genetic variant in RORA, rs8042149, which was
identified in the first GWAS for PTSD (8) was unfortunately
not included on our genotyping array, thus we were not able to
assess whether this particular allele predicted PTSS in our trauma
cohorts. Additionally, there was very little LD between our RORA
variants andRORArs8042149. Therefore, this study should not be
considered a failed replication.

In conclusion, the above data, from multiple trauma
exposures and across ethnicities, suggest that individuals with
the TEFrs5758324 minor allele and high levels of peritraumatic
distress experience more severe PTSS than individuals with
the TEFrs5758324 major allele. Further, the above data
provide preliminary evidence that TEFrs5758324 is functional.
Further studies are needed to elucidate potential mechanisms
mediating these relationships, as improved understanding of
such mechanisms could contribute to improved PTSS prevention
and treatment.
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Background: Major depressive disorder (MDD) is a complex psychiatric condition with

different subtypes and etiologies. Exposure to adverse childhood experiences (ACE) is

an important risk factor for the development of MDD later in life. Evidence suggests that

pro-inflammatory processes may convey this risk as both MDD and ACE have been

related to increased levels of inflammation. In the present study, we aimed to disentangle

the effects of MDD and ACE on inflammation levels.

Methods: Markers of inflammation (plasma interleukin(IL)-6 and high sensitive C-reactive

protein (hsCRP) concentrations, white blood cell (WBC) count and a composite

inflammation score (CIS) combining all three) were assessed in 23 MDD patients with

ACE, 23 MDD patients without ACE, 21 healthy participants with ACE, and 21 healthy

participants without ACE (mean age: 35 ± 11 (SD) years). None of the patients and

participants was taking psychotropic medication. ACE was assessed with the Early

Trauma Inventory (ETI) and was defined as moderate to severe exposure to sexual or

physical abuse.

Results: Group differences in the different inflammatory measures were observed. MDD

patients with ACE showed significantly higher IL-6 concentrations (p = 0.018), higher

WBC counts (p = 0.003) and increased general inflammation levels as indicated by the

CIS (p = 0.003) compared to healthy controls. In contrast, MDD patients without ACE

displayed similar inflammation levels to the control group (p = 0.93).

Conclusion: We observed elevated inflammation in MDD patients with a history of ACE,

which could indicate a subtype of “inflammatory depression”. Accordingly, MDD patients

with ACE might potentially benefit from anti-inflammatory therapies.

Keywords: acute-phase protein, childhood adversity, childhood maltreatment, depression, inflammation, pro-

inflammatory cytokine
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INTRODUCTION

Major depressive disorder (MDD) is a frequent and heterogenic
disorder and despite numerous studies performed over the
last decades, there are still inconsistencies in clinical findings
regarding the pathological mechanisms contributing to the
development of MDD (1). Therefore, greater understanding
of the biological processes and pathways underlying the
pathophysiology of depression is of key importance for the
development of early interventions and personalized therapies.

Adverse childhood experiences (ACE) have been shown to
predispose to the development of MDD later in life (2, 3) and
in addition induce greater risk for acquiring several somatic
conditions, including cardiovascular disease (CVD) (3). A large
body of evidence suggests that ACE is linked to a chronic
pro-inflammatory state in adulthood (4–6). Alterations in the
dynamics of the neuroendocrine stress response likely contribute
to the manifestation of a pro-inflammatory immune phenotype
in these individuals (7). It has been suggested that stressors
occurring early in life can be biologically embedded through
epigenetic modifications in stress-related genes (8) and program
the immune system to become hyper-responsive in response to
challenge with diminished sensitivity to the inhibitory effect of
glucocorticoids (9).

Chronic inflammation is characterized by elevated levels of
pro-inflammatory cytokines, acute phase proteins, and increases
in white blood cell (WBC) numbers (10–12). Several studies
reported higher circulating levels of inflammatory mediators,
such as the pro-inflammatory cytokine IL-6 and the acute phase-
protein C-reactive protein (CRP) (4, 5), and increased WBC
counts (13, 14) in adults exposed to early adversity. Because
chronic inflammation is associated with both ACE and several
physical and psychiatric conditions, including MDD (15–18), it
has been proposed as a key mechanism through which severe
stress exposure during childhood can influence health outcomes
throughout the lifespan (6, 19). This notion is further supported
by the observation that increased activation of pro-inflammatory
pathways (reflected by increased circulating levels of CRP and IL-
6) precedes the development of depressive symptoms (17), and
by studies that report that inflammation is more pronounced in a
subgroup of MDD patients that are exposed to ACE (20–23).

The overall goal of the present study was to replicate
previous findings regarding associations between ACE, MDD
and inflammation, and to further disentangle the effects of
MDD and ACE on inflammation using a well-controlled, full
factorial design including four carefully diagnosed groups of
healthy participants and MDD patients with and without a
history of ACE. None of the patients and participants was taking
psychotropic medication. We hypothesized accumulative effects
of MDD and ACE on inflammation levels.

MATERIAL AND METHODS

Participants
Patients and healthy participants were recruited by public
postings and from our specialized affective disorder unit at
the Department of Psychiatry and Psychotherapy, Campus

Benjamin Franklin, Charité -Universitätsmedizin Berlin. All
participants provided written informed consent. Healthy
participants and outpatients received monetary compensation
for their participation. The study was approved by the local
ethical committee.

Depressed patients were included if they fulfilled criteria for
MDD as assessed with the Structured Clinical Interview for
DSM-IV axis I (SCID-I) (24) to validate psychiatric diagnoses.
In addition, current depressive symptoms were captured by the
Montgomery Asberg Depression Rating Scale (MADRS) (25, 26)
and the Beck Depression Inventory (BDI) (27).

ACE was assessed by using a semi-structured interview, the
Early Trauma Inventory (ETI) (28, 29), and was defined as
repeated physical or sexual abuse at least once a month over one
year or more before the age of 18.

In the MDD groups, schizophrenia, schizoaffective disorder,
bipolar disorder, depressive disorder with psychotic features,
dementia, eating disorders, panic disorder, alcohol or drug
dependence led to exclusion. Healthy participants with and
without ACE were free of any current mental disorder. Further
exclusion criteria for all participants were CNS relevant diseases,
neurological diseases, severe somatic diseases, diabetes type 1 and
2, steroid diseases, hypertonia, current infections, pregnancy and
the intake of psychotropic medication. Physical health criteria
were checked by physical examination, clinical interview and a
complete blood count (CBC).

The study sample comprised 23 MDD patients with
ACE (MDD+/ACE+), 23 MDD patients without ACE
(MDD+/ACE–), 21 participants with ACE but no current,
or lifetime MDD (MDD–/ACE+) and 21 participants with
no current or lifetime MDD and no childhood adversity
(MDD–/ACE–, healthy comparison group).

Study Protocol
All patients and participants underwent one study visit including
psychiatric and medical diagnostic by physical examination,
blood sampling and clinical interviews including SCID-I and
MADRS as well as assessment of ACE using the ETI.
Afterwards they completed a MDD related questionnaire (BDI).
Blood samples were sent immediately to the laboratory of
the Institute of Medical Psychology, Campus Mitte, Charité–
Universitätsmedizin Berlin, Germany, and to the Labor Berlin–
Charité Vivantes GmbH, Berlin, Germany, for further analyses.

Inflammatory Measures
Plasma IL-6 concentrations were analyzed using a commercially
available high sensitivity ELISA kit (eBioscience), according to
the manufacturer’s instructions. The limit of detection was 0.007
pg/ml. The intra- and inter-assay coefficients of variability for
plasma IL-6measurements were 10 and 12%, respectively. Plasma
hsCRP concentrations were analyzed using a commercially
available Instant ELISA kit (eBioscience), according to the
manufacturer’s instructions. The limit of detection was 3 pg/ml.
The intra- and inter-assay coefficients of variability for plasma
hsCRP measurements were 6 and 8%, respectively. WBC counts
were obtained from a standard clinical complete blood count
panel using a Sysmex XN 1000 (Sysmex).
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Statistics
General linear models and Chi2 tests were used to compare
groups concerning demographics and clinical data (see Table 1).
Post hoc tests (Bonferroni) were conducted when applicable. IL-
6 and hsCRP measures were first log transformed to normalize
distributions. Since IL-6 and hsCRP concentrations and WBC
count are established measures of pro-inflammatory activity,
represent three biologically related components of inflammation
[i.e., (a) pro-inflammatory cytokines (b) acute phase proteins
and (c) increasedWBC numbers], and inter-correlated with each
other (all r’s >0.2), we combined these measures into a single
composite measure. Principal-component analysis identified
one single factor, the composite inflammation score (CIS),
accounting for 48% of the variance in analyte determinations. A
common factor takes full advantage of the predictive values of
the three measures, while minimizing measurement errors of the
single components (21).

General linear models were used to compare groups regarding
inflammatory measures. In order to investigate the groups effects
on inflammatory measures in more detail, and because we
expected the lowest inflammation levels in the control group, we
studied a priori defined contrasts between the controls and the
three study groups.

Many potential cofounders were excluded by design (see
above). However, additional adjusted analysis included covariates
that differed significantly between the four groups (i.e., BMI and
smoking see Table 1).

Data analysis was performed using the SPSS statistical
software (SPSS 23.0, Inc., Chicago, IL, USA). The significance
level was set at p < 0.05 for all applied analysis.

Missing Data
Complete blood counts were missing for 8 individuals (4
MDD+/ACE+, 2 MDD+/ACE–, 1 MDD–/ACE+ and 1 MDD–
/ACE–). For IL-6, a measurement was missing for 1MDD patient
without ACE (MDD+/ACE–). General linear models indicated
there were no group differences regarding the number of missing
biological measurements (p= 0.42).

RESULTS

Sample Characteristics
Table 1 summarizes group demographics and clinical
characteristics. In accordance with our recruitment, MDD
patients and healthy participant with ACE (MDD+/ACE+,
MDD–/ACE+) had significantly higher total ETI scores
compared to the MDD patients without ACE (MDD+/ACE–)
and the control group (MDD–/ACE–). MDD patients with
and without ACE did not differ in depression severity and
both groups had higher depression scores compared to healthy
individuals with and without ACE. MDD patients with ACE
had a higher BMI compared to MDD patients without ACE and
smoked more than healthy controls. No group differences were
observed in age, sex and educational level.

Inflammatory Measures
As presented in Table 2, we identified significant group effects on
IL-6 [F(3, 83) = 3.32, p = 0.024, η

2 = 0.11], CRP concentration
[F(3, 84) = 3.10, p = 0.031, η

2 = 0.10] and WBC count
[F(3, 76) = 3.44, p = 0.021, η

2 = 0.12]. To investigate these
effects in more detail, we studied a priori defined contrasts
between controls and the different study groups (see Table 3).
We observed significantly higher IL-6 concentrations (p= 0.018)
and WBC counts (p = 0.003) in MDD patients with ACE
compared to healthy controls, also after controlling for BMI
and smoking (IL-6, p = 0.044; WBC count, p = 0.048). CRP
levels were significantly higher in healthy individuals with ACE
(p = 0.031). However, this effect was no longer significant after
controlling for BMI and smoking (p = 0.052). Untransformed
and unadjusted mean group values for IL-6, hsCRP and WBC
counts are presented in Figures 1A–C.

There was a significant group effect on the CIS [F(3, 75) = 4.76,
p =0.004, η

2 = 0.16, Table 2]. Contrasts between the controls
and the different study groups showed that inflammation
levels tended to be increased in healthy participants with ACE
(p = 0.073, Table 3) and were significantly higher in MDD
patients with ACE compared to healthy controls (p = 0.003,
Table 3), also after controlling for BMI and smoking (p = 0.034,
Table 3). Unadjusted mean group CIS values are depicted in
Figure 1D.

DISCUSSION

With the present study we aimed to disentangle the effects of
MDD and ACE on alterations in levels of inflammation by using
well-controlled, defined and discrete groups of adults with and
without a history of ACE and an MDD diagnosis. Confirming
our hypothesis, we observed the highest inflammation levels in
MDD patients with a history of ACE. These results replicate
prior research showing that inflammation is elevated in a
subgroup of MDD patients exposed to ACE (21). Our results
are also in line with previous studies reporting that elevations in
inflammatory measures observed inMDD patients are associated
with childhood trauma (22, 23, 30). Another study comparing
cytokine levels between healthy controls and MDD patients with
and without a history of ACE found the highest levels of 13
different cytokines in the ACE exposed MDD patients (31).
However, in contrast to our findings, no increases in plasma
levels of IL-6 were observed in this subgroup of MDD patients.
A possible explanation for this discrepancy could be the use of
different assay methodology.

Group differences were not completely homogenous
regarding the different inflammatory measures that we assessed.
While IL-6 concentrations and WBC counts were elevated in
MDD patients with ACE, higher CRP concentrations were seen
in healthy individuals exposed to ACE compared to healthy
controls. This last finding is supported by a recent meta-analysis
suggesting that the association between childhood trauma and
inflammatory measures, including CRP, is not moderated by the
presence of a psychiatric diagnosis (5). However, our finding
that CRP is increased in healthy individuals exposed to ACE
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TABLE 1 | Demographic and clinical characteristics of healthy participants and depressed patients without ACE (MDD–/ACE–, MDD+/ACE–) and healthy participants

and depressed patients with ACE (MDD–/ACE+, MDD+/ACE+).

MDD–/ACE–

(n = 21)

MDD+/ACE–

(n = 23)

MDD–/ACE+

(n = 21)

MDD+/ACE+

(n = 23)

Statistics

(GLM, Chi2)

Age (SD) 33.90 (9.77) 32.61 (11.74) 34.05 (10.53) 38.09 (11.36) p = 0.36

Sex (m/f) 8/13 5/18 6/15 9/14 p = 0.55

BMI (SD) 23.23 (3.56)a,b 21.49 (2.87)a 23.79 (3.14)a,b 25.05 (2.93)b p = 0.003

Smoking (y/n) 4/17 a 5/18 a 7/14 a,b 14/9 b p = 0.012

Educational level (%)

Lower/Intermediate 23.8% 21.7% 28.6% 47.8% p = 0.21

Upper Secondary School 76.2% 78.3% 71.4% 52.2%

DEPRESSIVE SYMPTOMS

BDI (SD) 1.05 (1.56)a 25.41 (8.96)b 4.64 (4.75)a 26.81 (8.62)b p < 0.001

MADRS score (SD) 0.62 (0.81)a 28.26 (5.71)b 1.67 (1.83) a 27.41 (8.01)b p < 0.001

ADVERSE CHILDHOOD EXPERIENCES

ETI sum score (SD) 12.67 (21.13) a 195.39 (205.48)a 619.62 (371.74)b 752.09 (482.57)b p < 0.001

a,bGroups with values that do not share a superscript within the same line of text are significantly different from each other. ACE, Adverse childhood experiences; BMI, Body mass index;

BDI, Becks Depression Index; ETI, Early Trauma Interview; GLM, General linear model; MADRS, Montgomery Asberg Depression Rating Scale; MDD, Major depressive disorder; SD,

Standard deviation.

TABLE 2 | Mean values of the inflammatory measures of healthy participants and depressed patients without ACE (MDD–/ACE–, MDD+/ACE–) and healthy participants

and depressed patients with ACE (MDD–/ACE+, MDD+/ACE+).

MDD–/ACE– MDD+/ACE– MDD–/ACE+ MDD+/ACE+ GLM

IL-6 (Ln) pg/ml (SE) −1.28 (0.25) −1.44 (0.30) −1.12 (0.29) −0.43 (0.14) F (3, 83) = 3.32

p = 0.024

hsCRP (Ln) mg/L (SE) −1.96 (0.22) −2.12 (0.21) −1.20 (0.29) −1.49 (0.23) F (3, 84) = 3.10

p = 0.031

WBC count 109/L (SE) 6.01 (0.27) 6.52 (0.53) 6.97 (0.53) 8.09 (0.50) F (3, 76) = 3.44

p = 0.021

CIS (SE) −0.36 (0.16) −0.39 (0.23) 0.18 (0.24) 0.57 (0.20) F (3, 75) = 4.76

p = 0.004

ACE, Adverse childhood experiences; Composite inflammation score; GLM, General linear model, MDD, Major depressive disorder; SE, Standard error; WBC, White blood cell.

was no longer significant after adjusting for BMI and smoking.
As previously reported by others, unhealthy lifestyle factors like
increased BMI and smoking are associated with ACE (32) and
have been shown to have an effect on inflammation (33, 34).
Therefore, these lifestyle factors could have contributed to the
observed elevations in CRP concentrations.

Altogether, the data presented here support the hypothesis
that ACEmight be a risk factor for developing aMDD later in life,
and that this risk is partly mediated by increases in activation of
pro-inflammatory pathways (19). In line with this, inflammation
levels did not differ between MDD patients without ACE
and healthy controls, suggesting that biological mechanisms,
other than inflammation, might play a more prominent role
in the pathogenesis of depression in these patients. Although
previous research has shown increased inflammatory measures
in depression (15, 17, 18), in most studies the effects of ACE have
not been taken into account.

ACE is not only a risk factor for the development of
depression. Also other psychiatric disorders, such as post-
traumatic stress-disorder (PTSD), anxiety disorders, and bipolar
disorder have been associated with a history of ACE (35,

36) and are as well related to increased inflammation (37,
38). However, until now, only few studies systematically
investigated the separate and interactive effects of disease status
and a history of ACE on inflammation (39–41). Therefore,
future research should attempt to further identify the role of
ACE in activating inflammatory pathways in these psychiatric
conditions.

Findings from this study are limited by the use of a
cross sectional design and the relatively modest sample
size, which might have led to insufficient power. Also our
study sample included relatively more female than male
participants, indicating that our results might be impacted by
gender bias. However, the groups did not differ significantly
regarding the female to male ratio. In addition, the number of
immune parameters that we assessed was limited, and future
studies should include additional measures of acute-phase
proteins, cytokines, and immune cell characteristics in order
to gain better understanding of the biological processes and
pathways underlying the inflammation-related pathophysiology
of depression in patients with and without a history
of ACE.
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TABLE 3 | Mean differences in inflammatory measures between each of the three study groups (MDD+/ACE–, MDD–/ACE+ and MDD+/ACE+) and control group

(MDD–/ACE–) before (unadjusted) and after adjusting for BMI and smoking.

MDD–/ACE– MDD+/ACE– MDD–/ACE+ MDD+/ACE+

IL-6 (Ln) pg/ml

Unadjusted (95% CI) – −0.16 (−0.87, 0.54)

p = 0.65

0.16 (−0.55, 0.87)

p = 0.65

0.85 (0.15, 1.54)*

p = 0.018

BMI & Smoking (95% CI) – −0.10 (−0.83, 0.63)

p = 0.79

0.14 (−0.58, 0.86)

p = 0.70

0.77 (0.02,1.53)*

p = 0.044

hsCRP (Ln) mg/L

Unadjusted (95% CI) – −0.16 (−0.83, 0.51)

p =0.64

0.76 (0.07, 1.45)*

p = 0.031

0.47 (−0.20, 1.14)

p =0.17

BMI & Smoking (95% CI) – −0.04 (−0.72, 0.63)

p =0.90

0.68 (−0.01, 1.36)

p =0.052

0.21 (−0.50, 0.92)

p =0.56

WBC count 109/L

Unadjusted (95% CI) – 0.51 (−0.80, 1.82)

p =0.44

0.96 (−0.36, 2.28)

p =0.15

2.08 (0.74, 3.42)**

p = 0.003

BMI & Smoking (95% CI) – 0.60 (−0.65, 1.84)

p =0.34

0.69 (−055, 1.93)

p =0.27

1.33 (0.01, 2.65)*

p = 0.048

CIS

Unadjusted (95% CI) – −0.27 (−0.62, 0.56)

p = 0.93

0.54 (−0.05, 1.13)

p = 0.073

0.94 (0.34, 1.54)**

p = 0.003

BMI & Smoking (95% CI) – 0.11 (−0.48, 0.69)

p = 0.72

0.47 (−0.10, 1.04)

p = 0.11

0.66 (0.05, 1.26)*

p = 0.034

ACE, Adverse childhood experiences; CI, Confidence interval; CIS, Composite inflammation score; MDD, Major depressive disorder; WBC, White blood cell. *indicates significant

difference compared to the control group, p-value < 0.05; **p-value < 0.01.

FIGURE 1 | Untransformed and unadjusted mean group values for (A) Il-6, (B) hsCRP, (C) WBC count and (D) the unadjusted mean group CIS (±SE). *p-value <

0.05, **p-value < 0.01 in comparison to the control group (MDD–/ACE–). ACE, Adverse childhood experiences; CIS, Composite inflammation score; MDD, Major

depressive disorder; WBC, White blood cell.
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Our study has several strengths. The study sample consisted of
four carefully diagnosed groups which allowed us to disentangle
the effects of MDD and ACE on inflammation. Furthermore,
none of the patients and participants was taking psychotropic
medications. All patients and participants received detailed
diagnostics and a physical examination. Our findings of increased
levels of inflammation in MDD patients (and to a lesser extent
in healthy individuals) exposed to ACE, in this rather young
study sample further emphasize the clinical importance of our
results, since elevated inflammation is a risk factor implied
in the development of somatic disorders like CVD (3, 42).
Moreover, the pro-inflammatory state observed in depression
also has consequences for treatment success, since patients with
elevated inflammation are less likely to respond to conventional
antidepressants (43, 44).

In summary, in this well-controlled study, we replicated
findings from prior research suggesting accumulative effects
of MDD and ACE on a more pro-inflammatory state, while
inflammation levels did not differ betweenMDDpatients without
ACE and healthy controls. These findings suggest that a subgroup
of MDD patients with a history of ACE might benefit from an
anti-inflammatory intervention.
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Discovery of the Hippo pathway and its core components has made a significant

impact on our progress in the understanding of organ development, tissue homeostasis,

and regeneration. Upon diverse extracellular and intracellular stimuli, Hippo signaling

regulates stemness, cell proliferation and apoptosis by a well-conserved signaling

cascade, and disruption of these systems has been implicated in cancer as well as

metabolic and neurodegenerative diseases. The central role of Hippo signaling in cell

biology also results in prominent links to stress-regulated pathways. Genetic variations,

epigenetically provoked upregulation of Hippo pathway members and dysregulation of

cellular processes implicated in learning and memory, are linked to an increased risk

of stress-related psychiatric disorders (SRPDs). In this review, we summarize recent

findings, supporting the role of Hippo signaling in SRPDs by canonical and non-canonical

Hippo pathway interactions.

Keywords: hippo pathway, KIBRA, psychophysiological stress, synaptic plasticity, glucocorticoids, GPCRs

INTRODUCTION

When the Hippo pathway was first discovered in Drosophila, it appeared as a linear kinase
cascade highly relevant for proliferation and homeostasis, because deletion of core component
genes resulted in an uncontrolled growth of multiple tissues (1, 2). Subsequent research identified
mammalian orthologs of Hippo components and additional kinases, transcription factors and
various adapter proteins directly or indirectly involved in Hippo signaling, providing a complex
molecular network with strong regulatory effects on development, homeostasis, and regeneration
(3–5). Upstream activators of the Hippo pathway include G-protein-coupled receptors (GPCR),
integrins, and cell-cell adhesion factors, stress-reactive glucocorticoid hormones, metabolism-
regulating hormones, growth factors, and mitogens (6).

Dysregulated Hippo signaling is associated with various cancers and a wide range of metabolic,
cardiovascular, neurodevelopmental, and neurodegenerative diseases (3, 7). Regulators of Hippo
pathway are expressed in the adults’ brain suggesting their implementation in normal brain
performance. Recent research further extends the Hippo signaling network and its potential to
be therapeutically harnessed based on genetic association studies linking Hippo pathway members
to stress-related-psychiatric disorders (SRPDs) (8–11). Key molecular and cellular processes that
are thought to be involved in the pathophysiology of SPRDs are modulated by Hippo pathway
members. Furthermore, various proteins of the Hippo signaling pathway are linked via the GR,
GPCRs, Wnt-signaling and other pathways to stress-regulated signaling cascades (12–16).
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In this review we highlight emerging evidence of an
interaction between Hippo signaling and the stress axis and
suggest how this novel link may correlate with the genesis of
SRPDs.

THE HIPPO PATHWAY IN MAMMALS AND
ITS CANONICAL ACTIVATION

The regulatory endpoints of the Hippo pathway are the two
homologous transcriptional co-activators, yes-associated protein
(YAP) and transcriptional co-activator with PDZ-binding motif
(TAZ) (3, 7) (Figure 1). YAP and TAZ are widely expressed
throughout the brain and non-neuronal tissues especially during
embryogenesis1 In adult humans YAP is expressed in the
subventricular zone of the lateral ventricle and subgranular
zone of the dentate gyrus, the regions providing neurogenesis
in mammalian brains. Weak immunostaining was found in
the prefrontal cortex of humans (17). YAP expresses in the
midbrain, possibly, to protect dopaminergic neurons from
degeneration (18). TAZ expression appears to contribute to brain
mitochondrial respiration, the function of hippocampal neurons
and glia, and modulates cognitive abilities in mice (19). It is
of note that Hippo pathway activity is retained in the adult
hippocampus. A role of the hippocampus in neurogenesis and
stress resilience (20), denote the Hippo pathway as a target for
biomarker discovery and therapeutic interventions in SRPDs.

The regulation of YAP and TAZ is governed by two
major protein kinase complexes, the mammalian Sterile 20-
like kinases 1 and 2 (MST1/2), and the large tumor suppressor
homolog LATS1/2 and their direct interaction partners SAV1
(MST1/2) and MOB1A/MOB1B (LATS1/2). Activation of
MST1/2 and LATS1/2 causes phosphorylation of YAP/TAZ.
Phospho-YAP/TAZ is either degraded or sequestered in the
cytoplasm by the 14-3-3 protein, whereas after inactivation of the
upstream kinase cascade dephosphorylated YAP/TAZ translocate
to the nucleus. AJUBA antagonizes YAP phosphorylation and
therefore prevents its activation. Through association with
various transcription factors, like the TEAD family transcription
factors (TEAD1-4), YAP/TAZ initiates transcription of several
genes mainly involved in the regulation of development,
homeostasis, and regeneration (3, 7) (Figure 1). This core-
signaling cascade is activated/ inactivated by multiple stimuli
and modulated by various post-translational modifications or
through hetero complex re-organization, e.g., NF2 (Merlin)
inhibits LATS through phosphorylation (3, 7) (Figure 1).
Although, YAP and TAZ are primarily controlled at the level
of their nuclear accumulation (nucleocytoplasmic shuttling),
it is incompletely elucidated if nuclear entry occurs passively
(diffusion), if it is a mediated process, or a combination of both
(21). In a recent report mechanical forces have been shown to
increase the permeability of the nuclear pore thereby facilitating
the nuclear accumulation of YAP (22), whereas another study
identified a nuclear localization sequence (NLS) and a nuclear
export sequence (NES) for TAZ (21). Moreover 14-3-3 protein

1Mouse Brain Atlas. http://mousebrain.org/genesearch.html

and TEAD family members have been proposed to be cytosolic
and nuclear “retention factors,” respectively (21).

NON-CANONICAL REGULATION OF HIPPO
SIGNALING BY PSYCHOPHYSIOLOGICAL
STRESS

Accumlating evidence suggests that the core complexes and
accessory proteins of the Hippo pathway can be modulated
by molecular pathways that play a fundamental role in stress
signaling. The non-canonical regulation of the Hippo pathway
with regard to SRPDs will be the focus of the following chapter.

GLUCOCORTICOIDS IMPACT ON HIPPO
PATHWAY

Release of glucocorticoids (GCs), such as cortisol, from the
adrenal glands, is the final stage of hypothalamic-pituitary-
adrenal (HPA) axis activation during emotionally stressful
experiences [psychophysiological stress, depicted as “stress”
throughout the manuscript, (23)]. GCs belong to the class of
steroid hormones and act via specialized nuclear receptors to
adapt behavior to a constantly changing environment. Despite
the critical role that stress plays for body homeostasis, it is widely
implicated in the onset of SRPDs (23). Sorrentino and colleagues
described a molecular cascade that links glucocorticoid signaling
to YAP regulation. In an interdisciplinary approach the
researchers show, that the activation of glucocorticoid receptors
(GRs) results in elevated YAP protein levels, its translocation
to the nucleus and subsequently to enhanced transcriptional
activity. Fibronectin was identified as a target of the GR.
Increased fibronectin expression stimulates the focal adhesion-
Src pathway, which in turn activates cytoskeleton-dependent
YAP activation providing a direct link between the stress-
hormone axis and Hippo signaling (24).

GPCRs AND HIPPO PATHWAY IN SRPDs
AND RELATED PSYCHOPATHOLOGIES

GPCR Signaling
Extracellular signals act on synapses to drive spine
morphogenesis and synaptic plasticity. Among multiple
classes of receptors G protein-coupled receptors (GPCRs) are
the working horses of neuronal communication. Overexpression
or exogenous stimulation of a variety of GPCRs corresponds
to Hippo pathway activity. Serotonin 5-HT4, adrenerergic α1B,
metabotropic glutamate mGlu2, and adenosine A1A receptors
are directly mediating neuronal transmission in the brain
and are shown to contribute to stress-related abnormalities in
mammals (25–29). These receptors, which are linked to brain-
body crosstalk (LPA receptors, purinergic receptors, muscarinic
acetylcholine receptor M1, angiontensin II receptor, free fatty
acid receptor 1, platelet-activating factor receptor, thromboxane
A2, frizzled homolog D4, complement component 3a receptor
1, estrogen receptor 1, opioid receptor 11, secretin receptor,
thyroid-stimulating hormone receptor, gastrin-releasing peptide
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FIGURE 1 | The Hippo Pathway and its canonical upstream regulators. The translocation of YAP and TAZ and respective translational effects of the Hippo pathway

are omitted when these two factors are phosphorylated due to LAST1/2 and MST1/2 activity. Both components can be affected independently via a wide range of

canonical upsream regulators. Being retained in the cytoplasm YAP and TAZ are ubiquitinated and degraded. ADHD, attention deficit hyperactivity disorder. LATS 1/2,

large tumor suppressor kinase 1/2; MOB1A/MOB1B, Mps one binder kinase activator 1A/1B; MST1/2, macrophage-stimulating protein 1/2; SAV1, salvador family

WW domain containing protein 1 (protein WW45); TAZ, transcriptional co-activator with PDZ-binding motif; TEAD1-4, TEA domain transcription factors 1-4; YAP,

yes-associated protein.

receptor, melanocortin receptor 1, somatostatin receptor 1,
prostaglandin E receptor 2, and bombesin-like receptor 3) affect
both the Hippo-YAP and Hippo-TAZ signaling via activation of
Rho GTPases (16).

In contrast, dopamine D1 and adrenergic β2 receptors appear
as a way for the selective inhibition of Hippo-YAP signaling.
These GPCRs induce YAP phosphorylationmainly via cAMP and
PKA (16).

Selective regulation of the Hippo-YAP signaling by 5-HT2B
receptors activation has been shown in hepatocytes (30) and
cardiomyocytes (31). These data suggest an effect of acute
and chronic serotonin neurotransmission disturbance on Hippo
signaling and provides a strong link between stress and related
pathologies in peripheral organs. Although most available
drugs to treat the symptoms of SRPDs (antidepressants) target
serotonergic neurotransmission (32), a putative modulation of
Hippo signaling by antidepressants remains a topic of future
research.

Wnt SIGNALING

Components of the Wnt pathway are transcriptional targets
and therefore downstream targets for the Hippo pathway (13–
15). The upstream influence of the canonical Wnt/β-catenin
signaling on the Hippo pathway has been described recently (12).
Consequently, a dynamical interaction in the presence of Wnt
YAP/TAZ is released from the destruction complex, escaping
degradation in the cytoplasm. In absence of Wnt the YAP/TAZ-
dependent β-TrCP (β-transducin repeats-containing proteins)

recruitment allows β-catenin destruction (33). Notably, the β-
TrCP-mediated β-catenin degradation is GSK3–dependent (34).
GSK3 plays a critical role in the regulation of Wnt—Hippo
interaction (14).

CANONICAL HIPPO PATHWAY LINKS TO
SRPDs

Multiple studies have shown a direct association between
members of the hippo pathway and SRPDs. Most data comes
from genetic studies that report an association of allelic variation
in the KIBRA (KIdney and BRAin) gene with (episodic)
memory performance, gray and white matter volume and
differences in functional brain activity (35–41). Substitution of
C for T in the 9th intron (rs17070145) of the KIBRA gene,
was first linked to memory performance and functional brain
activity in a genome-wide association study (35). However, the
functional role of the gene is still unclear since replication of
the first results has proven difficult and sometimes delivered
contradicting results. In line with the initial results, the
rs17070145-T allele has been associated with better episodic
memory functioning (36–41). However, several other studies
have either associated the absence of rs17070145-T with better
memory performance (42, 43), or were unable to show any link
of this Single Nucleotide Polymorphism (SNP) with cognitive
capabilities (43–46). CLSTN2 (calsyntenin 2), another hippo
pathway member (SNP rs6439886), is mainly localized in the
postsynaptic compartment of excitatory neurons in brain regions
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relevant for learning and memory like the medial temporal
lobe (47), and has also been linked to memory performance by
Passotiropoulos et al. (35) and in subsequent cohorts (48, 49).
Another study, however, did not support the influence of the
KIBRA SNP, with or without the CLSTN2 SNP, on longitudinal
memory decline or hippocampal atrophy in older adults (44).

It has been speculated, that the lack of consensus across
studies stem from age-related neuropathological changes on
memory performance, which may interact with polymorphisms
such as KIBRA and CLSTN2, the so-called “resource modulation
hypothesis” (40, 44). Supporting evidence comes from studies
taking age, increased risk for specific diseases and pre-existing
diseases into account (9, 10, 46). Stickel et al. (40) report, that
KIBRA results in decreased verbal memory performance and
lower brain volumes in CC homozygotes compared to T carriers,
particularly among older persons (40). In individuals with
unipolar depression, Pantzar et al. (10) showed an interactive
effect of KIBRA and CLSTN2 polymorphisms on memory
performance, but not in older individuals without depression
(10). They also found poorer episodic recall and recognition

performance in non-T carriers (10). In contrast, in patients with
major depressive disorder, Liu et al. (9) found that rs17070145
associates with better memory performance in non-T carriers
(9). In cognitively normal adults with different genetic risk
of Alzheimer’s disease, based on their Aβ-amyloid levels and
apolipoprotein E (APOE) ε2/ε3/ε4 genotype, Porter et al. (46)
reported faster rates of cognitive decline and hippocampal
atrophy in individuals with higher Aβ-amyloid levels and APOE
ε4+ ve, that did not carry the rs17070145-T allele (46). Although
this suggests that the exact role of the KIBRA, SNP rs17070145
in learning and memory is still unclear, further investment in
understanding its well-established role in cognitive performance
is essential to make progress from mechanism to disease in
SRPDs.

Another association of two neighboring SNPs in the KIBRA
gene in almost complete linkage disequilibrium, rs10038727, and
rs4576167, with lifetime risk for post-traumatic stress disorder
was described in two samples from African conflict regions
(8). Carriers of the minor allele of both SNPs displayed a
diminished disease risk (8). Nitric oxide synthase 1 adaptor

FIGURE 2 | KIBRA/Hippo pathway as a shunt of stressful input. In the postsynaptic button Hippo pathway is modulated with a variety of secondary messenger

systems, implemented in transduction of neurontransmitters, neuropeptides, and hormones. The Hippo pathway biderectioinally interacts with KIBRA signaling. In

turn, the adaptive, neuroplasticity determined by AMPAR expression (and trafficking) is promoted. AMPARs, α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid

receptors; cAMP, cyclic adenosine monophosphate; FN1, fibronectin 1; Fz, Frizzeled; GSK3, Glycogen synthase kinase 3; GPCR, G protein coupled receptors; GR,

glucocorticoid receptor; KIBRA, Kidney and Brain Protein 1 (also WWC1); LATS 1/2, large tumor suppressor kinase 1/2; MOB1A/MOB1B, Mps one binder kinase

activator 1A/1B; MST1/2, macrophage-stimulating protein 1/2; PICK1, protein interacting with C-kinase 1; PKA, protein kinase A; PKC, protein kinase C; Rho

GTPase, Rho guanosine-5′-triphosphatase; SAV1, salvador family WW domain containing protein 1 (protein WW45); TAZ, transcriptional co-activator with

PDZ-binding motif; YAP, yes-associated protein.
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protein (NOS1AP) also known as carboxyl-terminal PDZ ligand
of neuronal nitric oxide synthase protein (CAPON) is an adaptor
protein of the Hippo pathway and is encoded by the NOS1AP
gene in humans (11, 50). CAPON is supposed to modulate
glutamate neurotransmission via interaction with postsynaptic
density (PSD) scaffolding proteins PSD93 and PSD95 (50). Xu
et al. (11) showed an increased expression of CAPON in the
prefrontal cortex in post-mortem tissue of patients with bipolar
disorder (11).

KIBRA AS POTENTIAL MEDIATOR OF
SYNAPTIC STRESS EFFECTS

Accumulating evidence suggests that the scaffold protein
expressed by the KIdney and BRAin gene [KIBRA; sometimes
referred to as WW and C2 domain-containing protein 1
(WWC1)], is critical for synaptic plasticity, the cellular
mechanism thought to underlie learning and memory (51–56).
Althought it has not yet been demonstrated directly, KIBRA
is a potential candidate to, at least partially, mediate the well-
established stress effects on synaptic plasticity and cognitive
performance (57, 58).

KIBRA is predominantly expressed in the kidney and
the brain, in particular in structures important for learning
and memory like the hippocampus, cortex, cerebellum,
and hypothalamus (59, 60). In neuronal cells, KIBRA has
a somatodendritic staining pattern with enrichment in
perinuclear regions and the postsynaptic density (PSD)
(54, 59). Previous studies have shown that KIBRA has various
bindings partners, mainly mediated by the two N-terminal WW
domains, a glutamic acid–rich motif and motifs for binding
atypical PKC and PDZ domains (54, 56, 61). This includes the
postsynaptic proteins dendrin and synaptopodin, postsynaptic
α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid
receptors (AMPARs, the main fast stimulatory receptor of the
neurotransmitter glutamate ), and the atypical protein kinase C
(PKC) isoform protein kinase Mζ (PKMζ) (52, 53, 59, 60, 62, 63).

PKMζ is brain specific and crucially involved in AMPA-
receptor trafficking, a core mechanism of synaptic plasticity,
and in the maintenance of long-term potentiation (LTP) in the
hippocampus, which is thought to be the cellular correlate of
learning and memory in mammals and involves AMPA and
NMDA receptors of glutamate (51, 63–65). PKMζ is colocalized
with KIBRA especially in the hippocampus and dentate gyrus
(65), and KIBRA knock-out mice exhibit reduced learning and
memory performance in spatial memory tasks, accompanied by
decreased PKMζ levels (56). These results are in line with the
observation that KIBRA associates with AMPARs and its partner

protein interacting with C-kinase 1 (PICK1), which has been

shown to accelerate the rate of AMPAR subunit recycling to the
postsynaptic membrane (53). Moreover, KIBRA knock out mice
exhibit an impaired LTP and long-term depression (LTD) in the
hippocampus and show deficits in contextual fear learning and
memory (53).

Overexpression of KIBRA in neurons facilitates LTP, but
prevents the induction of LTD, likely by an increased constitutive
recycling of AMPARs. In contrast, knock down of KIBRA
abolishes LTP and decreases AMPAR recycling supporting a
role of KIBRA as a bidirectional regulator of synaptic plasticity
in hippocampal neurons (52). In a recent study, Tracy et al.
(55) show that memory loss and LTP impairment in a mouse
model of Alzheimer’s disease critically depends on reduced
synaptic KIBRA levels accompanied by reduced activity-induced
postsynaptic actin remodeling and AMPAR insertion, which can
be rescued by promoting actin polymerization or by restoring
KIBRA expression (55).

The WWC family comprises two additional highly similar
paralogs, WWC2, and WWC3 (61). Although it has been
speculated that WWC2 can balanceWWC1 knock out (53), their
role in brain function remains unclear.

CONCLUSION

Strong evidence suggests that both, Hippo- and stress signaling
are involved in the pathophysiology of SRPDs. However, the
possible interaction between Hippo signaling and the stress
hormone axis has been widely neglected so far. Especially KIBRA
as a mediator of adaptive neuroplasticity that is directly linked
to the stress hormone axis via GR-signaling might balance the
reduced cognitive capabilities observed in most SRPDs (see
Figure 2).

Although there are many important questions that
remain unanswered (e.g., exact role of KIBRA in memory),
pharmacological targeting of Hippo signaling might offer
guidance for the development of novel prophylactic and
therapeutic approaches to treat SRPDs more effectively.
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Background: Childhood adversity increases the risk of a range of mental disorders

including bipolar disorder, but the underlying mechanisms are still unknown. Previous

studies identified DNA methylation levels at the cg27512205 locus on the KIT Ligand

(KITLG) gene as a mediator between childhood adversity and stress responsivity. This

raises the question whether this locus also plays a role in stress related disorders

such as bipolar disorder. Therefore, the current study aims to compare the level of

KITLG (cg27512205) methylation between bipolar patients and healthy individuals and

its relation to childhood adversity.

Methods: KITLG (cg27512205) methylation was measured in 50 bipolar disorder

patients and 91 healthy control participants using the HumanMethylation450K BeadChip

platform. Childhood adversity in each individual was assessed using the Childhood

Trauma Questionnaire. Analyses of the association of KITLG methylation with bipolar

disorder, the association of childhood adversity with bipolar disorder as well as the

association of KITLGmethylation with childhood adversity in bipolar patients and controls

were conducted using linear regression with age, gender, childhood adversity, smoking,

and cell-type composition estimates as covariates.

Results: KITLG (cg27512205) methylation level was significantly lower in bipolar

disorder patients (β = −0.351, t = −6.316 p < 0.001). Childhood adversity levels were

significantly higher in the bipolar disorder group (β = 4.903, t = 2.99, p = 0.003). In the

bipolar disorder patients KITLGmethylation was not associated with childhood adversity

(β = 0.004, t= 1.039, p= 0.304) in contrast to the healthy controls (β = 0.012, t= 3.15,

p = 0.002).

Conclusions: KITLG methylation was lower in bipolar disorder despite high levels of

childhood adversity, whereas childhood adversity was associated with higher KITLG

methylation in healthy controls. In addition to lower methylation at this locus there is

an indication that failure to adjust KITLGmethylation to high levels of childhood adversity

is a risk factor for bipolar disorder.

Keywords: DNA methylation, KITLG, bipolar disorder, childhood adversity, stress

35

https://www.frontiersin.org/journals/psychiatry
https://www.frontiersin.org/journals/psychiatry#editorial-board
https://www.frontiersin.org/journals/psychiatry#editorial-board
https://www.frontiersin.org/journals/psychiatry#editorial-board
https://www.frontiersin.org/journals/psychiatry#editorial-board
https://doi.org/10.3389/fpsyt.2018.00743
http://crossmark.crossref.org/dialog/?doi=10.3389/fpsyt.2018.00743&domain=pdf&date_stamp=2019-01-22
https://www.frontiersin.org/journals/psychiatry
https://www.frontiersin.org
https://www.frontiersin.org/journals/psychiatry#articles
https://creativecommons.org/licenses/by/4.0/
mailto:m.p.m.boks@umcutrecht.nl
https://doi.org/10.3389/fpsyt.2018.00743
https://www.frontiersin.org/articles/10.3389/fpsyt.2018.00743/full
http://loop.frontiersin.org/people/586870/overview
http://loop.frontiersin.org/people/46091/overview


He et al. KITLG Methylation Is Associated With Bipolar Disorder

INTRODUCTION

Bipolar disorder is a severe psychiatric disorder characterized by
mood episodes ranging frommania to severe depression (1). The
life time prevalence of bipolar disorder is 0.5–1.5% in the general
population and 5–10% for first degree relatives (2). Although
the pathogenesis of bipolar disorder is not well understood, both
genetic and environment factors are involved.

One major detrimental environmental factor for developing
mental disorders including bipolar disorder later in life is
childhood adversity (3, 4). Childhood adversity encompasses a
wild range of adversities before the age of 16, such as physical,
emotional and sexual abuse, household poverty, separation from
a parent and neglect. Previous studies found that children
with childhood adversity have a high risk to develop bipolar
disorder (5). However, how childhood adversity contributes to
the development of bipolar disorder is still largely unknown.

Recent studies highlight the role of DNA methylation in
the pathway of childhood adversity to bipolar disorder (6).
DNA methylation is one of the epigenetic mechanisms that can
modulate gene expression in response to the environment might
account for part of the risk to bipolar disorder (7). Childhood
adversity as a detrimental environmental factor could therefore,
contribute to DNA methylation differences in key pathways
involved in bipolar disorder. In our previous genome-wide
DNA methylation analysis, KIT Ligand (KITLG) (cg27512205)
methylation was positively associated with childhood trauma and
served as a mediator between childhood trauma and blunted
cortisol stress reactivity in healthy controls (8). Since impaired
cortisol stress reactivity is associated with bipolar disorder (9, 10),
this could imply an association between KITLGmethylation with
bipolar disorder. Moreover, bipolar disorder patients also report
higher levels of childhood adversity (11), which may lead to
higher KITLG methylation if the previous findings in healthy
controls were to be extrapolated to bipolar disorder patients.

Therefore, the current study hypothesizes the presence of
higher KITLG methylation in bipolar disorder patients as
compared to healthy controls in agreement with expected
higher level of childhood adversity. To examine this hypothesis,
we investigate the relationship between KITLG (cg27512205)
methylation level in a case-control sample of bipolar disorder
patients and healthy controls and the relation to childhood
adversity.

MATERIALS AND METHODS

Study Population
Sample recruitment has been previously described (8, 12). In
short, 50 bipolar patients and 91 control participants were
included at the University Medical Center Utrecht (UMCU).
All participants had three or more Dutch grandparents. All
participants provided informed consent prior to the inclusion
of the study, and the study was approved by the Medical Ethics
Committee of the UMCU and performed according to the ICH
guidelines for Good Clinical Practice and the latest amendments
of the Declaration of Helsinki. All the blood samples from the
participants were drawn in the morning before 12 a.m. None

of the healthy controls were taking any prescription medication
at the time of testing nor did any of the participants ever
participate in stress-related research before. To verify drug use,
first self-report of current use of psychoactive substances was
obtained followed by checking with urine multi-drug screening
device (InstantView). If participants smoked daily, they were
defined as a smoker. Confirmation of the absence of any mental
or physical disorder in the healthy controls was obtained by
an independent rater in an interview according to the Mini-
International Neuropsychiatric Interview (MINI) plus criteria
(13). For bipolar disorder participants only, the Structured
Clinical Interview for DSM-IV (SCID) was used to diagnose the
clinical characteristics, including mood and psychotic symptoms,
number of manic, and depressive episodes, comorbid psychiatric
diagnosis and age of disease onset (14). Euthymia in the
bipolar disorder patients was established using the Inventory
for Depressive Symptoms—Self Report (IDS-SR) (15) and manic
symptoms were assessed using the Altman Self-Rating Mania
Scale (ASRM) (16). All patients were on a stable (at least 1
month)medication dose. The sample characteristics are provided
in Table 1.

Childhood Adversity
Childhood adversity was measured using the short version of
the Childhood Trauma Questionnaire (CTQ) (17). The Dutch
translation of CTQ and validity of the 25 clinical CTQ items has
been demonstrated in clinical and population samples (17, 18).
One translation item “I believe I was molested” was excluded
since this translation was found to be an invalid indicator of
childhood sexual abuse in a previous validation study (18). We
calculate the sum score of all individual abuse questions to
generate a continuous outcome.

DNA Methylation Analyses
DNA methylation level of KITLG (cg27512205) was
extracted from previously described Illumina Infinium
HumanMethylation450K BeadChip data (12). In short, DNA

TABLE 1 | Sample characteristics (n = 141).

Variable n (%) or mean

(range)

Control Bipolar disorder p

Number, n 91 50

Age, years; mean (sd) 33.50 (15.68) 43.52 (12.83) <0.001

Female sex, n (%) 44 (48.4%) 25 (50%) 0.853

Smoking, n (%) 11 (12.1%) 18 (36%) 0.001

Age at onset, years;

mean (sd)

None 26.37 (11.45)

Number of episodes;

mean (sd)

None 6.39 (5.12)

Childhood trauma score

(mean, sd)

31.77 (8.37) 36.56 (10.28) 0.004

BIPOLAR DISORDER GROUP

Bipolar I, n None 46

Bipolar II, n None 4

Bipolar disorder Not

Otherwise Specified

(NOS), n

None 0
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was obtained from blood using a commercial kit (Qiagen, CA,
USA). The DNA concentration and integrity were assessed by
riboGreen and BioAnalyser, respectively. Bisulfite conversion
was performed by using Zymo Kit (ZYMO Research, CA, USA).
Samples were distributed on different chips based on gender
and age to reduce batch effects. To remove further systematic
differences, the samples were normalized using Beta MIxture
Quantile dilation (BMIQ) and batch effects of sentrix array
and position were removed with the Combat procedure from
the sva package (19). Intensity and quality parameters were
obtained from genome studio software. X chromosome, Y
chromosome and non-specific binding probes were removed
(20). Based on literature (21), probes were excluded based on
a detection P value > 0.001 and bead count <5 in 5% of the
samples. In addition, probes with SNPs of minor allele frequency
>5% within 10 base pairs of the primer were excluded after
constructing ancestry estimates as proposed by Barfield et al.
(22). 385,882 DNA methylation probes survived quality control,
including the KITLG cg27512205 probe. All samples were
included as none of the samples had more than 1% of probes
failed. Cell-type composition estimates were derived using the
Houseman procedure (23). Methylation analyses were carried
out using M-values (log2 ratio of methylation probe intensity)
for better statistical validity (24), but beta values of methylation
were used for graphical display.

Statistical Analysis
Quality control of DNA methylation was conducted with R
version 3.1.2 (25). Other statistical analyses were performed
using SPSS Statistics 23.0. Analysis of the association of KITLG
(cg27512205) methylation with bipolar disorder was done using
linear regression with KITLG methylation as dependent and
diagnosis as the main determinant. Age, gender, childhood
adversity, smoking, and six different cell-type composition
estimates (B cells, CD8T cells, CD4T cells, natural killer
cells, monocytes, and granulocytes) were included as covariates
since they have a potential impact on DNA methylation (26).
Differences in childhood adversity between patients and controls
were examined using linear regression, in a separate model.
This relation was analyzed while adjusted for age, gender and
smoking status. The association between KITLGmethylation and
childhood adversity was analyzed by linear regression model in
control and bipolar patients separately. Age, gender and smoking
were included as covariates.

RESULTS

Baseline Characteristics of Bipolar Cohort
A summary of the sample characteristics of bipolar disorder
cohort is provided in Table 1. In the bipolar disorder group, 46
participants were diagnosed with bipolar disorder I type and 4
with bipolar disorder II type. The mean age of participants in
the control group was significantly lower than in the bipolar
disorder (BD) group (control = 33.5, BD = 43.52, p < 0.001).
The proportion of smokers was significantly higher in the BD
group (control = 12.1%, BD = 36%, P = 0.001), but no relation
was present between KITLG methylation and smoking status

(β = 0.001, t = 0.099, p = 0.922). Childhood trauma score was
significantly higher in bipolar group than in controls (β = 4.903,
t= 2.990, p= 0.003; model fit: F = 8.940, p= 0.003, R2 = 0.060),
but these differences were attenuated after adjustment for age
gender and smoking(β = 3.043, t = 1.817, p = 0.071; model
fit: F = 8.498, p < 0.001, R2 = 0.200). In the bipolar disorder
group, comorbid psychiatric diagnosis were: Anxiety disorder
Not Otherwise Specified (NOS) (n = 1), Generalized anxiety
disorder (n = 2), Panic disorders (n = 4); Agoraphobia without
history of panic disorder (n = 1), Specific phobia (n = 2),
Obsessive-compulsive disorder (n = 2), Posttraumatic stress
disorder (n = 1). Considering to the low frequency of the
comorbid psychiatric diagnosis in the bipolar disorder group,
we do not specifically exam the association of each comorbid
psychiatric diagnosis with KITLGmethylation level.

KITLG Methylation Analyses
KITLG methylation level was significantly lower in bipolar
disorder patients compared to the healthy controls (mean
control= 0.185, mean bipolar= 0.139) (β =−0.351, t=−6.316
p < 0.001; model fit: F = 18.56, p < 0.001, R2 = 0.407) after
adjustment for age, gender, childhood adversity, smoking, and
cell types. Figure 1 shows the adjusted individual levels of KITLG
methylation per diagnostic group. No association of medication
(mood stabilizer, antidepressant and antipsychotics) with KITLG
methylation was present in the bipolar disorder group: Mood-
stabilizers (β = 0.008, t = 1.153, p = 0.255); antidepressants
(β= 0.006, t= 0.732, p= 0.468) and antipsychotics (β=−0.008,
t = −1.279, p = 0.208), (Model fit: F = 0.937, p = 0.488,
R2 = 0.135).

FIGURE 1 | KITLG (cg27512205) methylation (beta value) in healthy controls

(blue dots) and bipolar disorder patients (red square). Black bar on each

column shows the standard deviation of beta value of KITLG methylation in

each group. Mean methylation level of KITLG is significantly lower in the

bipolar group (*p < 0.001).
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FIGURE 2 | Association of KITLG (cg26512205) methylation level with

childhood adversity in both healthy controls (blue dots) and bipolar disorder

patients (red square). Y-axis is the beta value of KITLG (cg26512205)

methylation level after adjustment for cell type composition, age, gender and

smoking. X-axis is the childhood adversity score. Significant positive

association between childhood adversity and KITLG methylation was present

in the healthy individuals (b = 0.012, p = 0.002). No significant association

between KITLG methylation and childhood adversity in the bipolar disorder

patients was present (b = 0.004, t = 1.039, p = 0.304).

Association Between Childhood Adversity
and KITLG Methylation
Figure 2 shows the association of KITLG (cg26512205)
methylation level (beta value) with childhood adversity in
both healthy controls and bipolar disorder patients. There was
no significant association between KITLG methylation and
childhood adversity in the bipolar disorder patients (β = 0.004,
t = 1.039, p = 0.304), whereas there was a significant positive
association between childhood adversity and KITLGmethylation
associated in the healthy individuals (β = 0.012, p = 0.002;
model fit: F = 23.11, p < 0.001, R2 = 0.444).

DISCUSSION

Here, we follow up the previously reported association of KITLG
methylation with childhood adversity and stress reactivity by
exploring the relationship between KITLG DNA methylation
levels at the locus cg27512205 and bipolar disorder. To our
knowledge, this is the first study to report the association of
KITLGmethylation with bipolar disorder. We found lower DNA
methylation levels at this stress related gene in bipolar disorder
patients (n = 50) than in healthy controls (n = 91). In contrast
to the positive association between childhood adversity with
KITLG methylation in controls, we did not observe such an
association in bipolar disorder patients. These findings suggest
that failure to increase KITLG methylation in response to
childhood adversity may constitute a risk factor for bipolar
disorder.

Previously, we already reported of the positive association
between KITLG methylation and childhood adversity in healthy
controls (8). It is this finding that led to the expectation of KITLG
hypermethylation among bipolar disorder patients exposed to
higher levels of childhood adversity. However, the current study
found KITLG hypomethylation in bipolar disorder patients
and no relationship between childhood adversity and KITLG
methylation in this group. This finding is consistent with a model
whereby KITLG hypermethylation after childhood adversity is
adaptive and failure to adapt is a characteristic of bipolar
disorder patients. However, visual inspection of the relations
between childhood adversity and KITLG methylation (Figure 2)
points to systematic lower KITLG methylation in bipolar
disorder.

Although unexpected, these findings are consistent with other
recent reports that the protein coded by KITLG gene, known
as stem cell factor (SCF), is significantly higher in children of
bipolar disorder patients who develop mood disorder later in life
(27). These higher levels of the KITLG protein SCF before disease
onset are consistent with less repression on gene expression and
transcription (28) and DNA hypomethylation at this locus. The
specific KITLG locus (cg27512205, chr12: 88579621) that we
focused on in the current study, is located in a H3K27ac-enriched
region as well as on the 5’ end of a CpG island near the KITLG
gene. Mechanistically, DNA hypomethylation in the H3K27ac-
enriched region is associated with a more open chromatin
structure which indicates active gene transcription (29, 30).
Moreover, DNAmethylation differences frequently occur in CpG
island shores and subsequently affect gene transcription and
expression (31). These two co-occurrences suggest that KITLG
hypomethylation at this CpG locus could indeed alter gene
transcription and SCF levels. Another factor that could influence
gene transcription level are genetic variants. For instance, gene
polymorphism of FKBP5, an important functional regulator of
the glucocorticoid receptor (GR), can mediated gene–childhood
trauma interactions through DNA methylation level (32) and
similarly genetic variants modify the methylation response to
maternal famine (33). The KITLG locus in the current study
contains just one genetic variant with no functional relevance
for expression and therefore no indication of a role in genetic
regulation is currently available.

A putative link between KITLG function and bipolar disorder
is that the ligand of the C-kit receptor (SCF), is involved in
hematopoiesis (34), neurogenesis, and neuroprotection (35) and
induces glucocorticoid receptor gene (NR3C1) expression in
response to stress induced erythropoiesis (36). This implies a
positive regulation of KITLG gene to NR3C1 expression, a key
gene in the stress response (37, 38), that in term plays a role
in bipolar disorder (9) and the response to trauma (39–41).
Though the current finding is based on blood, the database from
Hannon et al, shows that methylation of this specific KITLG
locus (cg27512205) in the blood is significantly correlated with
prefrontal cortex and superior temporal gyrus in the brain (42).
This implies that blood KITLGmethylation may serve as a proxy
for KITLGmethylation in these brain areas.

Some limitations need to be considered when interpreting
these results. First, the focus on one specific locus (cg27512205)
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based on our previous work, could potentially neglect DNA
methylation at other genes that play a role in bipolar disorder.
Using available Illumina Infinium HumanMethylation450K
BeadChip data, an unbiased genome-wide DNA methylation
analysis to investigate the interaction between bipolar disorder
and childhood adversity may further our understanding
of epigenetic difference related to childhood adversity
and bipolar disorder. Second, though for some epigenetic
loci blood may provide a reasonable proxy based on
concordances in methylation patters between blood and
brain (43, 44), it is a limitation considering that bipolar
disorder is a psychiatry disorder residing largely in the brain.
Another limitation of the study is that the Illumina 450 k
BeadChip cannot distinguish between 5-Methylcytosine and
5-Hydroxymethylcytosin.

In conclusion, this study shows that KITLG methylation
level is significantly lower in bipolar disorder despite relatively
high childhood adversity exposure in bipolar disorder patients.
This suggests a failure to adjust this epigenetic mark in
response to childhood adversity in those vulnerable to bipolar
disorder.
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Childhood maltreatment (CM) is associated with an increased risk for the development

of psychiatric and somatic disorders in later life. A potential link could be oxidative stress,

which is defined as the imbalance between the amount of reactive oxygen species

(ROS) and the neutralizing capacity of anti-oxidative defense systems. However, the

findings linking CM with oxidative stress have been inconsistent so far. In this study,

we aimed to further explore this association by investigating biological markers of

DNA and lipid damage due to oxidation in a comprehensive approach over two study

cohorts of postpartum women (study cohort I and study cohort II). The severity of CM

experiences (maltreatment load) was assessed in both studies using the Childhood

Trauma Questionnaire. In study cohort I (N = 30), we investigated whether CM was

associated with higher levels of structural DNA damage in peripheral blood mononuclear

cells (PBMC) by two methods that are highly sensitive for detecting nuclear DNA strand

breaks (comet assay and γH2AX staining). In study cohort II (N= 117), we then assessed

in a larger cohort, that was specifically controlled for potential confounders for oxidative

stress measurements, two established serum and plasma biomarkers of oxidative

stress, one representing oxidative DNA and RNA damage (8-hydroxy-2
′

-deoxyguanosine

and 8-hydroxyguanosine; 8-OH(d)G) and the other representing lipid peroxidation

(8-isoprostane). In study cohort I, the analyses revealed no significant main effects

of maltreatment load on cellular measures of nuclear DNA damage. The analyses of

peripheral oxidative stress biomarkers in study cohort II revealed a significant main

effect of maltreatment load on free 8-isoprostane plasma levels, but not on total

8-isprostane plasma levels and 8-OH(d)G serum levels. Taken together, by combining

different methods and two study cohorts, we found no indications for higher oxidative

DNA damages with higher maltreatment load in postpartum women. Further research is

needed to investigate whether this increase in free 8-isoprostane is a marker for oxidative

stress or whether it is instead functionally involved in ROS-related signaling pathways that

potentially regulate inflammatory processes following a history of CM.

Keywords: childhood maltreatment, oxidative stress, lipid peroxidation, DNA damage, 8-isoprostane, 8-OH(d)G,

comet assay, γH2AX
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INTRODUCTION

The experience of emotional, physical and/or sexual abuse, as
well as emotional and/or physical neglect during childhood
(i.e., childhood maltreatment [CM]) may cast a long shadow
on adult health: A growing body of literature has shown that
individuals with a history of CM are at greater risk to develop
both mental and physical disorders later in life (1). Although
accumulating research supports the hypothesis that CM is
biologically embedded and exerts a long-lasting influence on
stress-responsive systems (2, 3), research elucidating the causal
pathways underlying the association of CM with adult health
outcomes is nevertheless sparse. The research investigating this
potential link focuses more andmore on oxidative stress, which is
defined as the imbalance between the amount of reactive oxygen
species (ROS) and the neutralizing capacity of anti-oxidative
defense systems (4).

Physiologically, ROS are produced in several subcellular
structures (mainly within mitochondria) and serve important
signaling functions that are essential for the coordination of
metabolic, inflammatory, and stress response-related processes
(4, 5). If the amount of ROS production, however, exceeds the
physiological level and cannot be counterbalanced by the body’s
antioxidant defense systems, ROS readily attack lipids, proteins,
DNA, and RNA (6). These ROS-induced modifications are also
often applied in biomedical research as stable biomarkers to
assess states of oxidative stress. One of the most investigated
biomarkers for oxidative stress is 8-isoprostane, a specific
peroxidation product of arachidonic acid and therefore a marker
of lipid peroxidation (7). The levels of the oxidized nucleobase
guanine within DNA (8-hydroxy-2′-deoxyguanosine; 8-OHdG)
and RNA (8-hydroxyguanosine; 8-OHG) are often used as
circulating markers for oxidative DNA and RNA damage (8).
In addition, (oxidative) DNA damage can further be assessed
on a cellular level by the comet assay or by the staining for
phosphorylated histone H2AX (γH2AX). While the comet assay
is a direct measure for DNA single and double strand breaks
(9), γH2AX plays a role in signaling DNA double strand breaks
and initiating their repair by supporting the recruitment and
localization of DNA repair proteins (10). If such oxidative
damages accumulate over time, they may have detrimental effects
both at the cellular and at the systemic level (6, 11).

So far, oxidative stress was found to be involved in many
physical diseases, like migraine, neurodegenerative diseases,
cardiovascular diseases, and cancer (12–15)—amongst them
several disorders that are observed at higher rates in individuals
with a history of CM (1). Oxidative stress and related damages
have also been implicatedmore andmore in psychiatric disorders
(16), including depression [see (17) for a review], bipolar
disorder [see (18) for a meta-analysis], schizophrenia (19, 20),

Abbreviations: 8-OHdG, 8-hydroxy-2’-deoxyguanosine; 8-OHG, 8-

hydroxyguanosine; BMI, body mass index; CI, confidence interval; CM, childhood

maltreatment; CRP, C-reactive protein; CTQ, Childhood Trauma Questionnaire;

HO-1, heme oxygenase-1; PBMC, peripheral blood mononuclear cells; PIM,

probabilistic index model; PTSD, posttraumatic stress disorder; ROS, reactive

oxygen species; SCID, Structured Clinical Interview; γH2AX, phosphorylated

histone H2AX.

posttraumatic stress disorder (PTSD) (21), anxiety disorders
(22), and different personality disorders (23). In affective
disorders, higher oxidative stress and decreased antioxidant
enzyme activities were associated with a lower health-related
quality of life (24). Not only psychiatric disorders, but also
other psychological stress factors like psychosocial stress (25),
subjectively perceived stress (26, 27), chronic caregiving stress
(27, 28), intimate partner violence (29), and sociodemographic
disadvantage (30) were all reported to be associated with
increased oxidative stress levels.

With regard to CM, findings have however been inconsistent
so far: While do Prado et al. (31) reported that CMwas associated
with higher plasma levels of oxidative-stress-related protein
carbonylation and an imbalance between oxidative molecules
and antioxidants, Fanning et al. (23) found no significant
association between CM and plasma levels of oxidative stress
biomarkers (8-OH(d)G and 8-isoprostane) in individuals with
different personality disorders. Additionally, Bergholz et al. (32)
recently showed an association between complex childhood
traumatization and nuclear DNA damage (γH2AX staining) in
peripheral blood lymphocytes, while Simsek et al. (33) previously
reported that children with a history of childhood sexual abuse
did not differ in serum levels of antioxidant enzymes, the
antioxidant coenzyme Q, and DNA damage (8-OH(d)G) from
children without such experiences.

By investigating risk and resilience factors in the
transgenerational transmission of CM in two study cohorts
of postpartum women (study cohort I and study cohort II),
we also found evidence for alterations in serum oxidative
stress biomarkers and serum antioxidants applying targeted
(study cohort I) and untargeted (study cohort II) metabolomics
analyses (34, 35). Study cohort I showed reduced serum levels
of metabolites with antioxidant capacity (L-carnitine and
acetylcarnitine) and increased biomarkers of oxidative stress
(Arginine-to-Citrulline ratio) (34). In study cohort II, untargeted
metabolomics indicated higher serum levels of bilirubin IXa,
another metabolite with antioxidant capacity, among women
with CM compared to non-exposed women (35). Bilirubin is
an end product of heme degradation by heme oxygenase-1
(HO-1), an enzyme with known anti-inflammatory and anti-
oxidative properties (36, 37). Accordingly, higher levels of serum
bilirubin were previously suggested to reflect the intensity of
initial oxidative stress (38). Further analyses in study cohort I
investigating the respiratory activity of mitochondria—the main
producers of ROS—in intact peripheral blood mononuclear
cells (PBMC), showed that CM was not only associated with
alterations in mitochondrial activity, but also indicated an
increase in cellular ROS production with increasing severity of
CM experiences (34). These measures were further associated
with a pro-inflammatory status of PBMC as represented by an
increased spontaneous release of pro-inflammatory cytokines
(34). As mitochondria and ROS are critical regulators of
inflammatory processes (11, 39, 40), these findings suggest that
alterations in mitochondrial activity and ROS production might
not only constitute stress-related cellular damages but could
also be functionally involved in adaptive signaling pathways.
In the same study cohort, we observed that telomeres, the
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protective caps of our chromosomes that are more vulnerable
for oxidative DNA damages than the rest of the genome (41),
were significantly shorter in the long-living immune cell subset
of memory cytotoxic T cells in women with CM compared to
those without (42).

In sum, the complex picture arising on CM-related changes
in ROS levels and the question whether oxidative stress is of
physiological importance with regard to its signaling function
or has damaging effects, remains far from being understood.
Continuing our previous analyses in study cohort I (34) and
study cohort II (35), this study aimed to investigate markers of
oxidative DNA and lipid damage in a comprehensive approach
over these two study cohorts of postpartum women with CM.
In study cohort I (N = 30), we investigated whether CM was
associated with higher levels of oxidative DNA damage in PBMC
by two methods that are highly sensitive for detecting nuclear
DNA strand breaks (comet assay and γH2AX staining). In study
cohort II (N = 117), we then assessed in this larger, independent
study cohort, that was specifically controlled for potential
confounders for oxidative stress measurements, two established
blood serum and plasma biomarkers of oxidative stress, one
representing oxidative DNA and RNA damage (8-hydroxy-2

′

-
deoxyguanosine and 8-hydroxyguanosine; 8-OH(d)G) and the
other representing lipid peroxidation (8-isoprostane).

MATERIALS AND METHODS

Design and Procedure of Study Cohort I
and Study Cohort II
Participants of two longitudinal studies (study cohort I and
study cohort II; see Measures in study cohort I and Analyses
in study cohort II for detailed description), both investigating
risk and resilience factors in the transgenerational transmission
of CM, were used for the analyses. Study cohort I constituted
thereby the pilot study to show the feasibility for a large-
scale assessment, i.e., study cohort II, which was part of the
project “My Childhood—Your Childhood.” For both studies,
women were recruited shortly after giving birth to a child (<1
week postpartum) at the maternity ward of the Ulm University
Hospital (time point t0). Exclusion criteria for study participation
were maternal age under 18 years, severe health problems of
mother or child, severe complications during parturition, and
an insufficient knowledge of the German language. Participating
mother-infant-dyads were then accompanied over 1 year with
two follow-up assessments, the first 3 months postpartum (t1)
and the second 12 months postpartum (t2). The studies were
approved by the Ethics Committee of Ulm University and all
procedures followed the current version of the Declaration of
Helsinki (43).

After providing written informed consent, women were
retrospectively interviewed about their history of maltreatment
experiences below the age of 18 years with the German short
version of the Childhood Trauma Questionnaire (44–46). The
CTQ covers the five CM subscales emotional, physical, and sexual
abuse as well as emotional and physical neglect. The CTQ sum
score (range 25–125) was used as a cumulative measure for the
severity of maltreatment experiences, the so-called maltreatment

load (47). Using standardized cut-off criteria for the classification
of CM based on CTQ sum scores (44, 45), participants were
categorized into “no CM,” “low CM,” “moderate CM,” and “severe
CM” based on reported CM experiences for recruitment, follow-
up, and selection of study participants for biological analyses (see
Study participants of study cohort I and Study participants of
study cohort II). In addition to the assessment of CM experiences,
women were further asked to provide basic socio-demographic
information at t0.

During the follow-up interview at t1, women provided
detailed socio-demographic, clinical, and medical data in self-
report. Additionally, whole blood samples were collected by
venipuncture between 11 a.m. and 2:30 p.m. for the isolation
of PBMC, plasma, and serum samples (EDTA-Monovettes
for plasma collection and for whole blood sampling for
PBMC isolation as well as S-Monovettes for serum collection;
Sarstedt, Nümbrecht, Germany). To minimize additional acute
psychological strain, the study participants were not obligated to
fast overnight prior to the assessment.

Serum C-Reactive Protein (CRP) Content
To exclude participants who presented with signs of an acute
inflammatory status at t1, we assessed the serum CRP levels
in all participants of study cohort I and study cohort II. For
serum collection, whole blood was centrifuged for 10min at
3,000 g and 4◦C. Serum samples were aliquoted and stored frozen
at −80◦C until further analysis. Afterwards, serum CRP levels
were measured at the Central Facility for Clinical Chemistry
of the University Hospital Ulm using a chemiluminescence
immunoassay analyzed on a Cobas 6,000 platform (Roche
Diagnostics, Risch, Switzerland) for study cohort I and on a
Cobas 8,000 platform (Roche Diagnostics, Risch, Switzerland)
for study cohort II. One participant of study cohort I and three
participants of study cohort II showed a CRP level >10 mg/l,
which is indicative of an acute infection, and were therefore
excluded from all subsequent analyses.

Measures in Study Cohort I
Study Participants of Study Cohort I
In study I (conducted from March 2012–May 2013), a total
of 240 women gave written informed consent and participated
in the screening interview (t0). Oversampling for individuals
with a higher maltreatment load, 112 women were invited and
67 actually participated at the follow-up interview 3 months
postpartum (t1; see Supplementary Figure S1 for detailed
description of study flow and drop-out rates). Applying the
established cut-off criteria of the CTQ (44, 45), 25 of these women
were categorized as having no CM experiences, 22 as having
low CM experiences, five as having moderate CM experiences,
and 15 as having severe CM experiences. As study participants
with moderate and severe CM experiences were significantly
younger than women with no or low CM experiences
[F(3, 47) = 3.76, p = 0.017], a subsample of 31 participants
was selected out of this total study cohort to match women
with no and low CM experiences and women with moderate
and severe CM experiences for age [see (34) for a detailed
description]. Body mass index (BMI) was a secondary matching
criterion as BMI influences levels of oxidative stress (48, 49).
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The final study cohort selected for biological analyses consisted
of N = 8 women with no, N = 8 women with low, N = 4
women with moderate and N = 11 women with severe CM
experiences. Additionally, one study participant with low CM
experiences was subsequently excluded from the analyses, as the
serum CRP level indicated the presence of an acute inflammatory
status [see Serum C-reactive protein (CRP) content]. Thus,
reported statistical data of study cohort I are based on a final
sample of N = 30 women (see Supplementary Figure S2 for the
distribution of the maltreatment load).

Isolation of Peripheral Blood Mononuclear Cells

(PBMC)
For the assessment of nuclear DNA damage, PBMC were isolated
from whole blood by Ficoll-Hypaque gradient centrifugation
according to the manufacturer’s protocol (GE Healthcare,
Chalfont St. Giles, UK) immediately after blood sampling.
Isolated cells were stored at −80◦C in cryopreservation medium
(dimethyl sulphoxide: Sigma-Aldrich, St. Louis, MO, USA; fetal
calf serum: Sigma-Aldrich; dilution 1:10). For the analyses, frozen
PBMC were thawed, washed twice in phosphate-buffered saline
(PBS) at room temperature and counted with trypan blue staining
for the quantification of living cells. An aliquot of 1 × 105 cells
was then used for the detection of nuclear strand breaks by
comet assay and an aliquot of 5 × 105 cells was fixated in a 3:1
(v/v) solution of methanol (Sigma-Aldrich) and glacial acetic acid
(VWR, Radnor, PA VWR, Radnor, PA, USA) for the detection
of γH2AX foci.

Comet Assay
The comet assay measures DNA strand breaks (single strand and
double strand breaks) after lysis of the cells (9). The alkaline
version of the comet assay (single-cell gel electrophoresis) was
performed on PBMC as previously described by Speit and
Hartmann (50). In short, 5 × 104 cells were suspended in
an agarose gel on a microscopy slide. Following lysis (for
at least 1 h), cells were denatured with alkali (pH 13) for
30min and electrophoresis was performed for 25min at 25V
and 300mA using a Consort Electronics power supply ev231
(CONSORT, Turnhout, Belgium). Slides were subsequently
stained with ethidium bromide (Roth, Karlsruhe, Germany) for
the analysis of the DNA migration distance by fluorescence
microscopy (Olympus BX41 U-LH100HG, Olympus, Tokyo,
Japan; Supplementary Figure S3). The software Comet Assay II
(Perceptive Instruments, Haverhill, UK) was used to determine
the median tail intensity (percentage of DNA in the tail) and
median tail moment (tail intensity× tail length) of 100 randomly
selected cells per slide on two slides per sample. For each run,
a positive control (x-ray irradiated Hela cells) and a negative
control (non-irradiated Hela cells) were included. The measures
tail intensity and tail moment were used for statistical analyses.

Detection of γH2AX Foci
As a marker for DNA double strand breaks (10), we measured
phosphorylated histone H2AX (γH2AX) in intact cells. For
fluorescence staining, 1 × 105 fixated cells were spread out
onto superfrost slides (Menzel-Glaeser, Braunschweig, Germany)

and washed with PBS (2 × 5min). Subsequently, cells were
permeabilized with pepsin for 10min at 37◦C, washed twice
in washing buffer (70% [v/v] formamide, 10mM Tris base,
0.1% [w/v] bovine serum albumin) for 20min each, twice in
TBS-Tween (1%) for 5min each, and twice in PBS for 5min
each. All cover slips were then treated with 200 µl primary
antibody solution (Anti-phospho-Histone H2A.X [Ser139],
Merck, Millipore, Billerica, MA, USA) diluted 1:1,000 in blocking
buffer (0.9M PBS, 19% [w/v] bovine serum albumin, 0.1%
v/v Tween 20) and incubated over night at 4◦C. On the
next day, the slides were washed with PBS (2 × 5min) and
then incubated with 200 µl secondary antibody solution (goat
anti-mouse Alexa-Fluor 488 nm, Life Technologies, Carlsbad,
CA, USA; dilution 1:300 in blocking buffer) for 1 h in a
humid chamber at room temperature. Thereafter, the slides
were washed with PBS (2 × 5min). Finally, cell nuclei were
counterstained with DAPI using Vectashield Mounting Medium
(Vector Laboratories, Burlingame, CA, USA). Analysis of γH2AX
was performed using a Leica DM5000 B fluorescent microscope
(Leica Microsystems, Wetzlar, Germany), and images were taken
at a 1,000-fold magnification and an exposure time of 400ms
(Supplementary Figure S4). One hundred cells per sample were
assessed and the number of γH2AX foci was counted manually.
In each run, a positive control (x-ray irradiated Hela cells) and a
negative control (non-irradiated Hela cells) were included. For
statistical analyses, the following two measures were applied:
the number of γH2AX foci per cell (γH2AX foci/cell) and the
percentage of cells with γH2AX foci.

Analyses in Study Cohort II
Study Participants of Study Cohort II
The participants of study cohort II were recruited within the
“My Childhood—Your Childhood” project which was conducted
from October 2013 to December 2016. After providing written
informed consent, 533 women participated at t0 in study II [see
(51) for a detailed description]. Three months postpartum, 285
of these women participated at t1 (see Supplementary Figure S5

for detailed description of study flow and drop-out rates)
in a detailed psychodiagnostic interview. Lifetime psychiatric
disorders were diagnosed by trained psychologists with the
German version of the Structured Clinical Interview (SCID-I)
(52) for the diagnosis of major axis I disorders of the Diagnostic
and Statistical Manual of Mental Disorders [4th ed., text rev.;
DSM-IV-TR; (53)].

At t1, we were able to obtain peripheral blood samples
from 252 women for the generation of serum and plasma
samples. According to the established cut-off criteria of the
CTQ (44, 45), 141 of these women were categorized as having
no CM experiences, 52 as having low CM experiences, 28 as
having moderate CM experiences, and 31 as having severe
CM experiences. In order to validate the association between
the maltreatment load and oxidative stress biomarkers in a
sample that was controlled for potential confounding factors
known to influence oxidative stress biomarkers such as current
cigarette smoking (54) and BMI (48, 49), we excluded women
who reported current smoking at t1 (N = 14: NnoCM = 6,
N low CM = 3, Nmoderate CM = 2, and Nsevere CM = 3) and women
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with a BMI > 30 kg/m2; N = 22: NnoCM = 10, N lowCM = 3,
Nmoderate CM = 4, andNsevere CM = 5) from the biological analyses
in study cohort II. Furthermore, women with autoimmune
diseases (N = 12: NnoCM = 7, N lowCM = 2, Nmoderate CM =

2, and Nsevere CM = 1), non-Caucasian ethnicity (NnoCM =

1), acute intake of psychotropic medication (Nsevere CM = 1),
acute illness (self-report; N = 24: NnoCM = 14, N lowCM = 5,
Nmoderate CM = 3, and Nsevere CM = 2), and missing psychological
data (N low CM = 1) were excluded. For women without CM
experiences, a lifetime history of a psychiatric disorder (N = 28)
and experiences of severe distress within the last 3 months (e.g.,
death of a close person;N = 10) were applied as further exclusion
criteria. From the remaining N = 65 women without CM
experiences, N = 46 were selected for oxidative stress analysis
due to limited capacity of financial resources. Additionally,
three study participants (two women with no CM experiences
and one with severe CM experiences) were excluded from
the statistical analyses as the serum CRP levels indicated the
presence of an acute inflammatory status [see Serum C-reactive
protein (CRP) content]. To this end, the final study cohort II
(N = 117) consisted of 44 women with no CM experiences, 38
women with low CM experiences, 17 women with moderate CM
experiences and 18 women with severe CM experiences. CM
experiences (see Supplementary Figure S6 for the distribution of
the maltreatment load).

Blood Sampling
In study cohort II, oxidative stress parameters were assessed
in serum and plasma samples. Therefore, whole blood (one
pre-chilled S-Monovette for serum and one pre-chilled
EDTA-Monovette for plasma sampling), was centrifuged for
10min at 3,000 g and 4◦C. Serum and plasma samples were
aliquoted and stored frozen at −80◦C until further analysis.
Serum samples were used for the quantification of 8-OH(d)G
and plasma samples for the assessment of free and total
8-isoprostane levels.

Oxidative Stress Parameters in Serum and Plasma
Serum 8-OH(d)G levels were quantified using the DNA/RNA
Oxidative Damage ELISA Kit (Item No. 589320, Cayman
Chemical, Ann Arbor, MI, USA) according to the manufacturer’s
protocol. This immunoassay covers three oxidized guanine
species as marker for DNA/RNA oxidative damage: 8-hydroxy-

2
′

-deoxaguanosine from DNA, 8-hydroxyguanosine from
RNA and 8-hydroxyguanine from either DNA or RNA.
As recommended in the manufacturer’s protocol, serum
samples were diluted 1:25 prior to analysis. The assay
has a range from 10.3 to 3,000 pg/ml and a sensitivity of
approximately 30 pg/ml. As markers for lipid peroxidation,
free (circulating) and total 8-isoprostane levels were measured
in blood plasma. Total 8-isoprostane is a combination of
free 8-isoprostane and 8-isoprostane that is esterified to
phospholipids. Free and total plasma 8-isoprostane levels
were measured using the 8-isoprostane ELISA Kit (Item No.
516351, Cayman Chemical, Ann Arbor, MI, USA) according
to the manufacturer’s protocol. The assay has a range from
0.8 to 500 pg/ml and a sensitivity of approximately 3 pg/ml.

For the measurement of free 8-isoprostane, plasma samples
were used untreated, whereas an additional alkaline hydrolysis
step was performed for the analysis of total 8-isoprostane.
Analyses were performed in thawed samples in duplicates
and averaged values were used for statistical analyses. Samples
were randomly distributed over the plates to prevent any
batch effects.

Statistical Analyses
All biological analyses were performed blinded with respect
to clinical variables. Statistical analyses were performed using
R version 3.5.0 (55) and p-values <0.05 were considered
as significant. In accordance with the findings that the risk
for developing PTSD after traumatic experiences increases
with increasing traumatic load (56, 57), there is accumulating
evidence pointing toward a dose-response-relationship between
the severity ofmaltreatment experiences (maltreatment load) and
associated biological alterations (34, 51, 58, 59). Therefore, we
tested for an association between cellular, serum, and plasma
biomarkers of oxidative stress-related damages and the CTQ
sum score as a continuous measure for the maltreatment load.
Due to skewness, non-normality, and outliers in oxidative
stress measures as well as in the maltreatment load, the use
of traditional parametric methods was inappropriate. Thus,
the nonparametric probabilistic index model (PIM) of Thas
et al. (60), a robust rank-based equivalent of the generalized
linear model, was applied [R package “pim” version 2.0.0.2:
(61)]. Due to the relatively small sample size, no covariates
were included in the statistical analyses in study cohort I,
which was, however, matched for age and BMI to minimize
the influence of these potential confounders. For study cohort
II, the influence of potential confounders for oxidative stress
measurements (smoking, obesity, autoimmune diseases, non-
Caucasian ethnicity, acute intake of psychotropic medication,
and acute illness) was minimized using exclusion criteria (see
Study participants of study cohort II). Age was included as
covariate in the statistical analyses of study cohort II as oxidative
stress was found to be involved in aging (62). The probability (P)
for an increase of the outcome variable was modeled as a function
of the predictors (study cohort I: maltreatment load; study cohort
II: maltreatment load and age). The estimates (b), 95% confidence
intervals (CI) of the estimates (b[95% CI]), standard errors (SE
b), as well as related z-statistics and p-values were used for these
rank-based regression models.

RESULTS: CHILDHOOD MALTREATMENT
AND OXIDATIVE STRESS BIOMARKERS IN
STUDY COHORT I AND STUDY COHORT II

All descriptive sociodemographic and biological data of study
cohort I and study cohort II can be found in Tables 1 and 2,
respectively. The levels of humoral oxidative stress markers (8-
OH(d)G, free 8-isoprostane, and total 8-isoprostane) in maternal
blood at t1 did not differ significantly between the different types
of delivery at t0 (all p > 0.18). For a graphical overview of
the biological raw data see Supplementary Figure S7. All results
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TABLE 1 | Socio-demographic and clinical data of study cohort I and study cohort II.

Study cohort I Study cohort II

(N = 30) (N = 117)

Mean ± SD or N (%) Range Mean ± SD or N (%) Range

DEMOGRAPHICS

Age (years) 31.6 ± 6.0 22 – 44 33.0 ± 4.1 23 – 43

BMI (kg/m2) 25.3 ± 6.4 19 – 47 23.7 ± 3.0a 16.5 – 30

Smoking status [yes, N (%)] 8 (28.6 %)b – – –

Ethnicity [Caucasian, N (%)] 29 (96.7 %)c – 117 (100 %) –

Number of children 2 ± 1 1 – 5 2 ± 1a 1 – 4

Living in a partnership [yes, N (%)] 30 (100 %) 114 (99.1 %)d –

Academic education [yes, N (%)] 13 (43.3 %) – 88 (75.9 %)a –

Vaginal delivery [yes, N (%)] 30 (100 %) – 89 (76.7 %)a –

Time interval between last food intake and blood drawing (minutes) 125.5 ± 125.9e 5 – 480 114.7 ± 76.1a 0 – 333

ADVERSITY AND PSYCHIATRIC SYMPTOM LOAD

CTQ sum score 42.8 ± 14.2 25 – 73 35.0 ± 10.0 25 – 81

Emotional abuse sum score 9.8 ± 5.3 5 – 21 7.4 ± 3.4 5 – 21

Physical abuse sum score 7.1 ± 3.8 5 – 18 6.0 ± 2.5 5 – 21

Sexual abuse sum score 6.7 ± 4.1 5 – 25 5.9 ± 3.1 5 – 21

Emotional neglect sum score 12.3 ± 4.8 5 – 22 9.9 ± 3.9 5 – 18

Physical neglect sum score 6.9 ± 2.9 5 – 16 5.9 ± 1.8 5 – 15

Psychiatric diagnoses lifetime Self-report SCID diagnosisa

Depressive disorder [N (%)] 6 (20.0 %) – 15 (12.9 %) –

Anxiety disorder [N (%)] 2 (6.7 %) – 21 (18.1 %)f –

Borderline personality disorder [N (%)] 2 (6.7 %)g – – –

Eating disorder [N (%)] 1 (3.3 %)h – – –

Compulsive disorder [N (%)] 1 (3.3 %) – 1 (0.9 %) –

Alcohol use disorder [N (%)] – – 4 (3.4 %) –

Stimulant use disorder [N (%)] – – 2 (1.7 %) –

Trauma–related disorders [N (%)] – – 4 (3.4 %) –

CHRONIC ILLNESSESi Self-report Self-report a

Thyroid disease [N (%)] 5 (16.7 %) – 22 (19.0 %) –

Hypertension [N (%)] 2 (6.7 %) – – –

Allergy [N (%)] 1 (3.3 %) – 2 (1.7 %) –

Asthma [N (%)] 7 (6.0 %) –

Epilepsy [N (%)] – – 2 (1.7 %) –

Neurodermatitis [N (%)] – – 2 (1.7 %) –

MEDICATIONj Self-report Self-reporta

L-Thyroxin [N (%)] 4 (13.3 %) – 26 (22.4 %) –

Psychotropic medication [N (%)] 3 (10.0 %) – – –

Oral contraceptives [N (%)] 1 (3.3 %) – 14 (12.1 %) –

Analgesic [N (%)] – – 6 (5.2 %) –

Asthma inhaler [N (%)] – – 2 (1.7 %) –

BMI, Body mass index; CTQ, Childhood Trauma Questionnaire; SCID, Structured Clinical Interview.
aN = 116, one missing value. bN = 28, two missing values. cOne study participant of Brazilian origin. dN = 115, two missing values. eN = 27, three missing values. fOne subject with

depressive disorder, anxiety disorder and trauma-related disorder. gOne subject with lifetime Borderline personality disorder and anxiety disorder. hOne subject with lifetime diagnosis of

eating disorder and mild depression. iChronic illnesses that have been reported by more than two study participants. In study cohort I, one study participant reported each the following

chronic illnesses: asthma, chronic bronchitis, colitis ulcerosa, epilepsy, and psoriasis vulgaris. In study cohort II, one study participant reported each the following chronic illnesses:

chronic venous insufficiency, circular hair loss, coagulation disorder, hay fever, prediabetes, prolaktinoma, protein S deficiency, prothrombin mutation, Scheuermann’s disease, scoliosis,

and von Willebrand disease. jMedication reported if at least 2 study participants reported intake.

of the probabilistic index models reported in the following are
summarized in Table 3. With regard to cellular measures of
(oxidative) DNA damage assessed in study cohort I, the analyses
revealed no significant main effects of maltreatment load—as
measured by the CTQ sum score—on tail intensity (b=−0.0011,

p = 0.95) and tail moment (b = −0.0035, p = 0.83). These
results were confirmed by γH2AX fluorescence staining, with no
significant main effects of maltreatment load on γH2AX foci/cell
(b = 0.0065, p = 0.68) and the percentage of cells with γH2AX
foci (b=−0.0004, p= 0.97).
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TABLE 2 | Cellular, serum, and plasma measures of oxidative stress biomarkers in

study cohort I and study cohort II.

Mean ± SD Range Median IQR

STUDY COHORT I (N = 30)

Tail Intensity (%) 2.97 ± 1.64 0.74–8.52 2.60 1.75

Tail Moment (AU) 0.26 ± 0.16 0.08–0.90 0.24 0.16

γH2AX foci/cella 0.31 ± 0.28 0.01–1.03 0.22 0.30

% cells with γH2AX focia 18.97 ± 14.23 1–50 16 20

STUDY COHORT II (N = 117)

8-OH(d)G levels (pg/ml) 4456 ± 1076 1336–7480 4343 1571

Free 8-isoprostane levels (pg/ml) 36.8 ± 79.5 2.1–538.2 20.1 11.9

Total 8-isoprostane levels (pg/ml) 364.7 ± 187.5 97.9–1094.2 323.0 254.5

aN = 29.

TABLE 3 | Probabilistic Index Model results on the association between the CTQ

sum score and cellular (study cohort I), serum, and plasma measures (study

cohort II) of oxidative stress-related damage.

Regressor b b [95% CI] SE z p

STUDY COHORT I (N = 30)

Tail Intensity −0.0011 [−0.0333;0.0312] 0.02 −0.06 0.95

Tail Moment −0.0035 [−0.0348;0.0279] 0.02 −0.22 0.83

γH2AX foci/cella 0.0065 [−0.0249;0.0380] 0.02 0.41 0.68

% cells with γH2AX focia −0.0004 [−0.0298;0.0288] 0.02 −0.03 0.97

STUDY COHORT II (N = 117)b

8-OH(d)G 0.0155 [−0.0076;0.0386] 0.01 1.32 0.19

Free 8-isoprostane 0.0277 [0.0065;0.0490] 0.01 2.56 0.01

Total 8-isoprostane 0.0187 [−0.0043;0.0417] 0.01 1.60 0.11

CI, Confidence interval; CTQ, Childhood Trauma Questionnaire.
aN = 29.
bProbabilistic Index Models in study cohort II included maternal age as covariate.

The analyses of serum and plasma oxidative stress biomarkers
assessed in study cohort II revealed a significant main effect
of maltreatment load on free 8-isoprostane levels (b = 0.0277,
p = 0.01), but not on total 8-isprostane (b = 0.0187, p = 0.11)
and 8-OH(d)G (b= 0.0155, p= 0.19) levels. Thus, the probability
for higher free 8-isoprostane levels increased significantly with
a higher maltreatment load (Figure 1). No significant main
effects were found for the covariate age on free and total
8-isoprostane and 8-OH(d)G levels, respectively (p > 0.05).
Results remained the same when one outlier in total 8-
isoprostane (1094.2 pg/ml) and four outliers in free 8-isoprostane
(>200 pg/ml) were excluded from the respective analyses.
Including the time interval between the last food intake and
blood drawing as additional covariate in our statistical analyses of
study cohort I and study cohort II did not alter the significance of
the results.

DISCUSSION

We comprehensively assessed serum, plasma, and cellular
measures that are well-established biomarkers of oxidative
stress-related damages—i.e., DNA/RNA damages and lipid
peroxidation—over two study cohorts of postpartum women

with a history of childhood maltreatment. In both cohorts, we
previously found indications for oxidative imbalances in relation
to CM: in study cohort I we showed that CM was associated
with increased ROS production and reduced levels of L-
carnitine and acetylcarnitine, two serum metabolites that inherit
antioxidant capacities (34), while untargeted metabolomics
analyses revealed a higher signal intensity for bilirubin in CM-
affected individuals of study cohort II (35). Bilirubin is an end
product of heme degradation by HO-1. The enzyme itself as
well as its degradation products, like bilirubin, were reported to
have immunomodulatory, anti-inflammatory, and anti-oxidative
properties (36–38). Building on these results, the analyses of two
cellular measures of nuclear DNA damage (DNA migration in
the comet assay and the appearance of γH2AX foci within the
cell nucleus) indicated now, however, that CM and in particular
the maltreatment load was not related to an increase in oxidative
DNA damage in PBMC in study cohort I. This finding was
further supported by the analyses conducted in study cohort
II, a cohort controlled for the potential confounding factors
smoking and BMI, where we did neither find a significant
association between maltreatment load and the serum levels of
8-OH(d)G. Thus, by combining three different methods and two
study cohorts, we consistently found that CM was not related
to oxidative DNA damages in postpartum women. With regard
to lipid peroxidation, we found that an increasing maltreatment
load was significantly associated with a higher probability for
increased plasma levels of free 8-isoprostane, but not with
plasma levels of total 8-isoprostane in study cohort II. In line
with previous findings from our group (34, 51, 58, 59), we
found with regard to free 8-isoprostane level again a significant
influence of the severity of CM experiences, thus supporting
the hypothesis of a dose-dependent effect of maltreatment load.
Together, these results bear several potential suggestions: (1)
that an increase in ROS levels and associated oxidation products
in CM-affected individuals might not only be seen with regard
to its damaging potential, but might instead serve a functional
role, (2) that CM-related oxidative damages may be persistent
at the level of lipid peroxidation, while DNA repair mechanisms
may counterbalance and thus cope with oxidative stress-induced
DNA damages, and (3) that exogenous or endogenous resilience
factors may influence the association of CMwith oxidative stress-
related damages. These potential implications will be discussed in
the following.

Consistent with our findings, two previous studies did not
report any significant associations between childhood abuse and
neglect and serum 8-OH(d)G levels in children (33) and in
adults with and without different personality disorders (23).
Fanning et al. (23) further found in the same cohort no
association between CM and plasma 8-isoprostane levels, but
the authors did not specify whether they assessed free or total
8-isoprostane. While we found no significant alterations in
total 8-isoprostane levels, we found a significantly increased
probability of higher free 8-isoprostane plasma levels with
higher maltreatment load in postpartum women. In contrast
to esterified 8-isoprostane that constitutes the major fraction
of total 8-isoprostane levels, free 8-isoprostane can not only be
generated by the non-enzymatic, ROS-mediated peroxidation of
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arachidonic acid, but also by an alternate enzymatic pathway
that is catalyzed by the inflammation-induced prostaglandin-
endoperoxidase synthase (63–66). It was therefore recently
suggested that an increase in total 8-isoprostane may be
indicative of oxidative stress, whereas a sole increase in free 8-
isoprostane may rather point to the involvement of inflammatory
processes (15). For the interpretation of 8-isoprostane results,
it is therefore necessary to always consider both pathways, the
oxidative stress-related and the inflammation-related pathway.
With regard to these two pathways, Eick et al. (30) previously
reported a higher chemical fraction of 8-isoprostane urine
levels in pregnant women with poor psychosocial status (e.g.,
high anxiety levels, high depression levels, low self-esteem, low
mastery, and high subjective stress), but no difference in the
enzymatic fraction by investigating the ratio of 8-isoprostane to
prostaglandin F2α. These results point toward the presence of
increased oxidative stress levels in association with psychosocial
disadvantages as well as with extremely stressful life events, such
as family death, during pregnancy (30). In contrast, we found
a significant association between the severity of maltreatment
experiences in childhood and free 8-isoprostane levels, but
not total 8-isoprostane levels. Thus, our findings in study
cohort II might be indicative of increased chronic inflammatory
processes associated with CM in postpartum women rather
than of increased oxidative stress. CM has been consistently
associated with a phenotype of chronic low-grade inflammation
[reviewed in (67)]. In line with this suggestion, we previously
found in study cohort I not only that CM was associated
with increased immuno-cellular ROS production in postpartum
women, but also that this increase in ROS production was
further associated with a pro-inflammatory status of the cells
(34). Indeed, mounting evidence indicates that ROS are not
only by-products of mitochondrial oxidative phosphorylation,
but also have important signaling functions and are involved
in pathways regulating anti-microbial effects (68), apoptosis
(69), autophagy (70), and inflammation (39, 40). Excessive ROS
production by mitochondria can drive the gene-expression and
production of pro-inflammatory cytokines through activation of
pro-inflammatory transcription factors (e.g., NFκB) and through
activation of the NLRP3 inflammasome (39, 40). Subsequently,
inflammation can also induce ROS production by inflammatory
cells leading to higher levels of oxidative stress (5). Thus,
the observation of increased ROS production and ROS-related
oxidation products with CM could be a sign of inflammatory
signaling processes rather than for high oxidative stress levels
causing cellular damage.

A second potential explanation for the observed difference in
oxidative DNA/RNA and lipid damages with CM might lie in
a difference in repair, metabolism, and excretion dynamics. In
contrast to lipids, DNA repair mechanism may counterbalance
and thus cope with oxidative stress-induced DNA damages (71,
72). As such, lipid peroxidation might persist and constitute a
long-term marker of stress experiences, while oxidative DNA
damages might rather be observable in association with acute
stress experiences or it might take more severe levels of
psychological and oxidative stress to induce persistent oxidative
DNA damages. Consistent with this hypothesis, it was recently

FIGURE 1 | Effect for the maltreatment load (CTQ sum score) on free

8-isoprostane in study cohort II. The results of the rank-based regression

model for free 8-isoprostane are visualized as the probability (P) for an increase

of free 8-isoprostane modeled as a function of the predictors (maltreatment

load (CTQ sum score) and age as covariate). Free 8-isoprostane was

measured as marker for lipid peroxidation in study cohort II (N = 117).

bCTQ, Estimate for the main effect of the CTQ sum score; CTQ, Childhood

Trauma Questionnaire; P, Probability for an increase of the outcome variable

modeled as a function of the predictors.

reported that adult psychiatric patients with a history of complex
childhood traumatization presented significantly higher levels
of nuclear DNA damage in PBMC as assessed by γH2AX
staining compared to healthy individuals and also compared
to psychiatric patients with low levels of complex childhood
traumatization (32). Complex childhood traumatization was here
defined as the experience of sexual, physical or emotional abuse
by a primary caregiver or another member of the family or
social group the victim belongs to (32). Investigating refugees
with a high traumatic load, we also reported that individuals
with PTSD showed higher levels of basal DNA breakage in
PBMC compared to trauma-exposed subjects without PTSD
and non-trauma-exposed control subjects (21). Individuals with
PTSD showed, however, a higher cellular capacity to repair
single-strand breaks after exposure to ionizing x-radiation (21),
which may point toward a trauma-specific effect on cellular
DNA repair processes. Cellular repair mechanisms of oxidative
DNA damages may play an even stronger role in protecting the
DNA against mutations, which can—if they are not recognized
and repaired—lead to a higher risk for somatic diseases
like cancer (73).

Although CM constitutes a major risk factor for both adverse
mental and physical disorders, not all individuals with a history
of CM develop pathological health outcomes in the long-term.
It therefore has been suggested that individual vulnerability
and resilience factors such as the genetic background, but
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also environmental, behavioral, and psychosocial factors can
influence “how deep CMgets under the skin” (74, 75). In line with
this suggestion, our working group showed that women with CM
reported lower levels of perceived stress, if they concomitantly
reported higher levels of social support (76). We further showed
that the stress-related hormone cortisol potentiates the effect
of CM on telomere length shortening and on the increase in
immune-cellular oxygen consumption (42, 59). On the other
hand, the attachment-related hormone oxytocin may buffer the
biological effects of childhood maltreatment on telomere length
and cellular oxygen consumption (42, 59). Furthermore, there
is first evidence that nutrition like the supplementation with
omega-3 fatty acid has beneficial effects on lipid peroxidation
(77). Future studies should therefore take genetic, psychosocial,
behavioral, and biological factors into account to further dissect
the association of CM with oxidative stress states and related
cellular and structural damages.

While the present study has several strengths such as
the consistency of the observed findings across different
research methods across two study cohorts, there are also
some limitations: Biological assessment in our study was
conducted three months postpartum. The postpartum period is
characterized by major life transitions, which are particularly
stressful for mothers with a history of CM (76). Therefore,
increased current perceived stress and adverse childhood
experiences are comorbid and it is difficult to disentangle the
effects on oxidative stress markers. By investigating this specific
study cohort, we were able to analyze differences in oxidative
stress markers with respect to negative childhood maltreatment
experiences in a highly demanding and sensitive time period.

Pregnancy and parturition are not only associated with social
and psychological alterations, but also with biological alterations
characterized by substantial changes in the maternal immune
and endocrine system (78, 79). Pregnancy and especially the
third trimester is furthermore associated with increased oxidative
stress markers in women with uncomplicated pregnancies (80).
However, it was further reported that most of the oxidative
stress markers had returned to non-pregnant levels 6 to 8
weeks postpartum and were comparable to those of non-
pregnant and non-postpartum women (80). Furthermore, our
reported oxidative stress values are comparable to those of
non-pregnant women (15, 81). According to these findings,
it can be assumed that pregnancy-related changes in the
oxidative stress system had mostly normalized at the time
point of biological assessment in our studies. Nevertheless,
the results need to be replicated in non-postpartum women
and investigated also in men to show the generalizability of
the findings.

Our study cohorts consisted of healthy, non-clinical
community samples with a relatively high socioeconomic status.
As the socioeconomic status is a protective factor for mental
health (82), the high socioeconomic status of our study cohorts
might contribute to the observation of small effects of the
maltreatment load on oxidative stress markers in blood.

Due to ethical considerations, we collected non-fasting blood
samples for mothers who were potentially still breastfeeding their
children three months postpartum. Non-fasting blood collection

could also have an effect on the oxidative stressmarkersmeasured
in blood, which should be analyzed in future studies. We
comprehensively assessed serum, plasma, and cellular measures
that are well-established and stable biomarkers of oxidative
stress-related damages. However, they are all indirect markers for
oxidative stress. Future studies should use new technologies, for
example electro-spin-resonance (ESR), to directly measure ROS
in blood and biological fluids (83).

Furthermore, the intake of medication, mainly of thyroid
hormones, as well as the presence of comorbid diseases, both
somatic and psychiatric disorders, might have an effect on
the measured oxidative stress levels. Exclusion of individuals
with somatic or psychiatric disorders would lead to a non-
representative study cohort as negative health outcomes are
observed at higher rates in CM-affected individuals (1).
Nevertheless, the influence of different co-morbid chronic and
psychiatric disorders in individuals with a history of CM on
oxidative stress parameters has to be investigated in more detail
in further studies.

CONCLUSION

In conclusion, a history of CMwas associated with higher plasma
levels of free 8-isoprostane, but not with total 8-isoprostane in
postpartum women. By combining different methods and two
study cohorts, we found no indications for higher oxidative
DNA damages with higher maltreatment load in postpartum
women. Further research is needed to investigate whether
the increase in free 8-isoprostane is a persistent marker for
oxidative stress or whether it is instead functionally involved
in ROS-related signaling pathways that potentially regulate
inflammatory processes following a history of CM. Additionally,
even in non-psychiatric cohorts with CM, possible treatment
effects by behavioral, psychotherapeutic, or mental stress coping
interventions should be investigated for their protective potential
against the biological sequelae of early life adversities to reduce
the risk for mental as well as physical health conditions in the
aftermath of CM.
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Stressful Newborn Memories:  
Pre-Conceptual, In Utero, 
and Postnatal Events
Zoe Papadopoulou 1, Angeliki-Maria Vlaikou 1,2, Daniela Theodoridou 1, 
Georgios S. Markopoulos 1, Konstantina Tsoni 3, Eleni Agakidou 3,  
Vasiliki Drosou-Agakidou 3, Christoph W. Turck 4, Michaela D. Filiou 2,4*  
and Maria Syrrou 1*

1 Laboratory of Biology, Faculty of Medicine, School of Health Sciences, University of Ioannina, Ioannina, Greece, 
2 Laboratory of Biochemistry, Department of Biological Applications and Technology, School of Health Sciences, University 
of Ioannina, Ioannina, Greece, 3 1st Department of Neonatology and Neonatal Intensive Care Unit, Medical Faculty, Aristotle 
University School of Health Sciences, Thessaloniki, Greece, 4 Max Planck Institute of Psychiatry, Munich, Germany

Early-life stressful experiences are critical for plasticity and development, shaping 
adult neuroendocrine response and future health. Stress response is mediated by the 
autonomous nervous system and the hypothalamic–pituitary–adrenal (HPA) axis while 
various environmental stimuli are encoded via epigenetic marks. The stress response 
system maintains homeostasis by regulating adaptation to the environmental changes. 
Pre-conceptual and in utero stressors form the fetal epigenetic profile together with 
the individual genetic profile, providing the background for individual stress response, 
vulnerability, or resilience. Postnatal and adult stressful experiences may act as the 
definitive switch. This review addresses the issue of how preconceptual in utero and 
postnatal events, together with individual differences, shape future stress responses. 
Putative markers of early-life adverse effects such as prematurity and low birth weight are 
emphasized, and the epigenetic, mitochondrial, and genomic architecture regulation of 
such events are discussed.

Keywords: stress, predisposition, epigenetics, low birth weight, individuality, early-life stress, mitochondria

STRESS, BRAIN, AND THE ENVIRONMENT

Physiological or biological stress is the response to a stressor, i.e., an environmental condition or a 
stimulus. Τhe body responds to stress by sympathetic nervous system activation as a result of the 
fight-or-flight response. The stress response aims to restore homeostatic control and facilitate 
adaptation. The brain processes stress in three main areas: amygdala, hippocampus, and prefrontal 
cortex (PFC). Amygdala and hippocampus play a critical role in memory formation and are associated 
with anxiety, fear, and cognitive processes. PFC is the brain region linked to planning complex 
cognitive behavior, personality expression, decision making, and moderating social behavior (1). The 
basic activity of the PFC region is to orchestrate thoughts and actions in accordance with internal 
goals and executive function (2). Corticosteroid receptors that react to the stressor through steroid 

Abbreviations: GR, glucocorticoid receptor; GRE, glucocorticoid response elements; HPA, hypothalamic–pituitary–adrenal; 
LBW, low birth weight; MR, mineralocorticoid receptor; PGGR, Primary Generalized Glucocorticoid Resistance (Chrousos 
syndrome); SNP, single-nucleotide polymorphism.
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hormone binding  are  abundant in these areas (3, 4). It is well 
established that stressful experiences during critical periods of 
early brain development can affect emotional and behavioral 
functions in adult life (5). The autonomous nervous system and 
the hypothalamic–pituitary–adrenal (HPA) axis are responsible 
for these functions and mediate stress response through targeted 
hormone release. This system acts by negative feedback to maintain 
brain homeostasis. The hypothalamus is stimulated by its inputs 
and releases the corticotropin-releasing hormone. This hormone 
is transported to its target, the pituitary gland, where it binds to the 
targeted receptors and causes the release of the adrenocorticotropic 
hormone. Although the main purpose of this system is well 
understood, recent studies attempt to identify underlying genetic 
mechanisms of brain function modulating mediators of this system 
including adrenaline and neuropeptides (6). Glucocorticoids reach 
the brain through the peripheral blood flow, where they bind to 
specific types of cytoplasmic glucocorticoid receptors (GRs) and 
mineralocorticoid receptors (MRs). MRs make up the majority of 
stress corticosteroid receptors with a high affinity for cortisol and 
are activated as soon as a stressor appears. GRs have a low affinity 
for cortisol and are only activated when stress reaches its peak on 
the brain. This complex is then translocated to the nucleus, where it 
binds to specific DNA elements [glucocorticoid response elements 
(GREs)] and acts as a transcription factor activating or repressing 
a great number of genes (7).

EARLY-LIFE STRESS, LEARNING, 
AND MEMORY

Exposure to early-life stressful events has been shown to activate 
the HPA stress hormone system. HPA axis mediator and receptor 
genes are prime targets of epigenetic modifications by DNA 
methylation and histone acetylation (8). The combination of 
genetic and epigenetic factors affects cell function and brain 
development. As a result, individuals who have experienced 
chronic stress during early development and childhood are at 
high risk for a wide range of behavioral problems that persist 
into adulthood. This phenotype becomes evident by learning 
and emotion regulation difficulties, alcohol and substance 
abuse, externalizing problems, as well as depression and anxiety 
disorders (7). Children who have experienced maltreatment or 
were exposed to maternal deprivation trauma have shown poor 
performance in tasks involving working memory, attention, 
planning, and learning processes (9, 10). In rodents, maternal 
deprivation is a well-established paradigm of early-life stress. 
Maternal deprivation of newborns from their dam leads to 
epigenetic changes in specific imprinted genes and dysfunctions. 
Behavioral and molecular effects depend on the duration and 
type of maternal deprivation and individual predisposition (11).

IN UTERO STRESS EXPOSURES

Intrauterine life events may have a much greater impact on 
epigenetic profiles than stressful exposures during adult life (12). 
Early stages of embryonic development are characterized by 

heightened brain plasticity that is adversely affected by exposure 
to environmental insults (13). Complex gene environment 
interactions during critical early developmental periods may 
have lasting effects and result in adult psychopathology (14, 
15). Maternal stress exposure, anxiety, and depression during 
pregnancy are considered in utero adverse experiences and 
have been associated with low birth weight (LBW) and future 
health problems (16–24). LBW, apart from being a risk factor for 
neonatal morbidity and mortality, has been proposed as a marker 
of early-life adversities (25, 26).

In this mini-review, genetic and epigenetic factors that shape 
stress response are discussed. The contribution of mitochondria 
and individual predisposition to developing mental health 
problems in response to a stressful stimulus will also be addressed.

GENETICS AND EPIGENETICS  
OF THE STRESS RESPONSE

Early-life adversities have been implicated in the occurrence 
of neuropsychiatric conditions, such as, Post-traumatic stress 
disorder (PTSD), depression, psychosis, and phenotypes 
resembling mood- and anxiety-related disorders (4–8). Recent 
data are beginning to unravel the complex interactions between 
genes and environment, namely, an individual’s genetic and 
epigenetic profile that renders the person resilient or at risk 
for developing a stress-related disorder (9, 10). Apart from the 
genetics of neuroendocrine stress response, it is important to 
take into consideration its epigenetic profile (11). A plethora 
of epigenetic marks, contributing to either the enhanced or 
suppressed expression of a gene, in combination with risk- 
or resilience-related predisposing polymorphisms, shape an 
individual’s phenotype (27). The complex interaction of the 
genetic background with the epigenetic profile that reflects early-
life experiences and is potentially reversible by environmental 
factors can result in a phenotype that is either resilient or sensitive 
towards adverse stress exposures (28, 29). Several genes and their 
epigenetic regulation have been implicated in the susceptibility 
to early-life stress. An overview of the below-discussed genes and 
their interrelations is provided in Figure 1.

NR3C1 and NR3C2 genes (Nuclear Receptor Subfamily  3 
Group C Member 1 and 2), encoding the GR and MR, 
respectively, are widely expressed in limbic regions of the brain 
and regulate HPA axis activity by cortisol binding. Deregulation 
of the GR–MR function may lead to HPA axis malfunction and 
stress vulnerability (43–45). The NR3C1 gene, localized on the 
5q31-32 chromosome, contains nine exons (1–9) (45, 46). In 
the 5′ Untranslated region (UTR), alternative splice variants of 
the first exon form the distal and proximal gene promoter that 
contains a crucial CpG island regulating the expression of exon 
1F. The multiple alternative first exon splice variants render the 
expression of NR3C1 tissue-specific (47–50). The first study in 
humans examining the epigenetic status of 1F promoter in low 
prenatal and increased maternal postnatal depression showed 
elevated methylation levels. This effect is reversed by maternal 
stroking of the newborns during the first postnatal weeks (51). In 
a thorough meta-analysis, psychosocial maternal prenatal stress 
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was significantly correlated with DNA methylation at CpG 36 of 
the 1F promoter (52). Interestingly, prenatal exposure of depressed 
mothers to serotonin reuptake inhibitors was not associated with 
alterations in the methylation profile of the 1F promoter. However, 
a correlation between the psychological profiles of depressed 
mothers, especially during the third trimester, and increased HPA 
axis reactivity of the newborns, has been reported (53). Maternal 
anxiety during the first two trimesters also affects the methylation 
status of NR3C1, thus diminishing NR3C1 gene expression (54). 
In a study examining the effects of maternal-related stressors 
such as maternal deprivation due to financial difficulties, daily 
psychosocial stress, and war-related phenomena, a strong 
correlation was found between the aforementioned maternal 
stressors, neonatal birth weight, and methylation of multiple CpG 
sites in the upstream NR3C1 promoter. These results support 
the hypothesis that intrauterine development and maternal 
environmental stressors affect the plasticity and adaptation to 
adverse stimuli (55). Further supporting this notion, decreased 
expression of NR3C1 was observed in hippocampal tissues of 
suicide completers abused during childhood. These findings can 

be explained by alterations in hippocampal methylation of tissue-
specific NR3C1, which persist into adulthood and lead to changes 
in HPA axis function (56–58). The NR3C2 gene on 4q31.1 
has recently been associated with behavioral abnormalities. 
Cognitive ability following acute stress has been associated with 
genetic variation of the GR–MR. Specifically, single-nucleotide 
polymorphisms (SNPs) of the above genes seem to affect cognition 
and HPA axis function (59, 60). In individuals with a history of 
childhood maltreatment, the minor NR3C2 allele rs17581262 was 
correlated, among others, with lower amygdala and hippocampal 
volumes and major depression, suggesting that  this  allele is a 
predisposing risk factor for stress-related disorders (61).

FKBP5 (6p21.31) encodes a 51-kDa immunophilin, which 
is a major component of the GR heterocomplex. Upon stress 
exposure, cortisol diffuses into the cytoplasm and binds the 
GR (62–64). FKBP5 slows down the translocation of GR to 
the nucleus (65, 66). FKBP5 expression is regulated by GREs 
via a cortisol-dependent short negative feedback loop (67, 
68). Ιn intron 2 of FKBP5 and close to a functional GRE, the 
significant SNP rs1360780 was identified (69). Structurally, 
the rare risk allele alters the chromatin conformation after GR 
binding to the GRE, inducing the transcription of FKBP5. In 
the presence of the protective allele, this induction is absent 
(67, 69). The aforementioned SNP has been linked to a variety 
of mental health conditions including depression, anxiety, 
psychosis, and posttraumatic stress disorder (70–72). During 
their in utero formation, brain regions including the amygdala 
and hippocampus are particularly vulnerable in cases of antenatal 
maternal depression and anxiety (73, 74). FKBP5 genetic variation 
among neonates combined with antenatal maternal depression 
can predispose toward the development of depressive symptoms 
in the offspring later in life due to alterations in neonatal brain 
regions (75). Interestingly, recent reports on the association of 
depression with childhood maltreatment did not report FKBP5 
methylation to be involved in mediatory mechanisms (76, 77).

Alterations in GR function through NR3C1 lead to a rare 
endocrinological condition known as Primary Generalized 
Glucocorticoid Resistance (PGGR, Chrousos syndrome) (78, 79). 
Mutations in the NR3C1 gene result in receptor conformation 
changes and low ligand binding affinity and contribute to the 
clinical profile and pathogenesis (80–83). PGGR is characterized 
by decreased tissue sensitivity toward cortisol, resulting in 
malfunctioning negative feedback loops (84, 85). This causes a 
compensatory activation of the HPA axis and hypersecretion of its 
end products (80, 85, 86). Interestingly, FKBP5 has been implicated 
in glucocorticoid resistance. The gene’s overexpression is considered 
to be responsible for the low ligand-binding affinity of the GR in 
New World primates, providing a selective advantage of an overall 
normal adrenal function but with high concentrations of circulating 
Adrenocorticotropic hormone (ACTH) and cortisol (87, 88).

Brain-derived neurotrophic factor (BDNF) is a neurotrophin 
expressed in hippocampus and PFC affecting neuron survival, 
development, and plasticity. Early-life stress and Val66Met 
polymorphism result in lower BDNF availability (29, 89).

Τhe GILZ (glucocorticoid-induced leucine zipper) or TSC22D3 
gene, located on Xq22.2 (90), is induced by cortisol-bound GR. 
This complex binds on the GRE in the promoter of GILZ, thus 

FIGURE 1 | The role of molecular genetic markers in cellular stress response. 
The interconnection between genes IGF2, MBL2, MEST, NR3C1, NR3C2, 
TSC22D3, and BDNF in the context of stress response is shown. Membrane-
bound IGF2 induction by maternal distress is associated with nuclear NR3C2 
induction (3). IGF2 shows similar changes in methylation levels with NR3C1 
during age-related stress (4), FKBP5 during the development of preterm 
infants (30), and MEST in infertile males (31). MBL2 and FKBP5 upregulation 
has been associated with parental-nutrition-induced stress (32, 33). NR3C2 
and NR3C1 interact to control gene expression during stress (8, 34). Nuclear 
NR3C1 (glucocorticoid receptor) seems to be a convergence point for 
FKBP5 (9, 35), NR3C2 (10, 36), MEST (11, 37), and IGF2 (4) action in stress. 
TSC22D3 is an established glucocorticoid signaling responsive gene that is 
regulated by NR3C1 (27, 38) and an NR3C2 target (28). BDNF is upregulated 
by IGF2 (39) in an Alzheimer’s disease mouse model, inhibited by NR3C1 
(40) in neuron-like cells, and associated with high NR3C2 and low NR3C1 
in high-cholesterol-diet rats (41). FKBP5 elevation is associated with BDNF 
suppression and improved anxiety, depression, and posttraumatic stress 
disorder conditions (42). Gene interaction analysis was performed using the 
Genomatix Pathway System (Genomatix.de).
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rendering this gene a valid measure of GR function (91–93). 
In an avian species, GILZ expression in the pituitary gland 
seems to be upregulated by glucocorticoids during the second 
half of the embryonic development and possibly plays a role in 
regulating pituitary hormone expression levels (94). GILZ is 
widely expressed in the brain, and its function depends on HPA 
axis activation. Increased expression of GILZ was found in the 
hippocampus and medial PFC of stressed mice, indicating a 
region-specific function (95). In human studies, decreased GILZ  
Messenger RNA (mRNA) levels were found in the PFC and the 
amygdaloid nuclei in teenage suicide completers (96). The above 
findings are only beginning to decipher the role of GILZ both in 
stress regulation and in immune system function.

GENETICS AND EPIGENETICS OF EARLY 
EMBRYONIC DEVELOPMENT

MBL2 (mannose binding lectin 2) is an important regulator of 
innate immunity and inflammatory processes. The MBL2 gene 
encodes for a protein that assembles into a mannose-binding 
lectin complex. MBL2 plays a very important role in the first-line 
immune responses, as a component of neonate immunity when 
the adaptive immunity system is not sufficiently developed (97). In 
humans, MBL2 expression levels are determined genetically by a 
number of polymorphic sites of the gene as well as in its promoter 
region. Three non-synonymous SNPs, which are linked to absence 
or low levels of MBL2, have been identified in exon 1 and the 
promoter region. The most important MBL2 gene SNPs associated 
with early infection and preterm delivery risk are variants B 
[rs1800450 (GGC→GAC)], C [rs1800451 (GGA→GAA)], and 
D [rs5030737 (CGT→TGT)]. Moreover, there are SNPs in the 
promoter region at position −550 in variant H/L (rs11003125) 
and at position −221 in variant X/Y (rs7096206) (25, 98). These 
MBL2 gene polymorphisms are associated with an increased risk 
of perinatal and neonatal infections and risk of premature delivery 
(99, 100). MBL2 levels could not predict the risk of newborn 
morbidity or mortality as a single factor since morbidity is also 
affected by other factors including sex, premature delivery, birth 
weight, etc. (97).

IGF2 (insulin growth factor 2), an imprinted gene, acts as a 
growth factor promoting differentiation and metabolism and 
plays an important role in the development and nutritional 
needs of the fetus (101). IGF2 and H19 are two genes of the same 
imprinted domain expressed from the paternal and maternal 
allele, respectively, that have been implicated in the control of 
placental and embryonic growth through cell proliferation and 
apoptosis (102, 103). H19 is crucial for growth and differentiation 
of the placenta (104, 105).

MEST (mesoderm specific transcript, 7q32) is a paternally 
expressed imprinted gene, which influences placental and 
embryonic growth, as well as birth weight of the infant (31, 106). 
MEST is a member of the a/b-hydrolase superfamily and expressed 
in the embryonic mesoderm (107). Increased MEST expression 
is linked to infants with high birth weight. Decreased MEST 
gene expression is observed in premature embryos compared to 
normal embryos, but does not affect DNA methylation (108).

MATERNAL STRESS AND 
MITOCHONDRIA

Moving from single genes to subcellular functional systems, 
converging lines of evidence have pointed to an important 
role of mitochondria, the traditional “powerhouses of the 
cell,” as regulators of the stress response (109–111). Given 
the maternal origin and inheritance of mitochondria, it is 
plausible that maternal stress may exercise its effects on the 
offspring via alterations of mitochondrial pathways in both 
the in utero maternal microenvironment and offspring. Along 
these lines, it has been shown that maternal prenatal stress 
affects mitochondrial protein expression in pathways related to 
mitochondrial biogenesis and energy production in PFC and 
hippocampus of male rat offspring (112). Early-life maternal 
deprivation leads to a decrease in mitochondrial-related muscle 
gene expression in adult rats. Interestingly, adult-onset chronic 
stress had no effect on mitochondrial-related muscle gene 
expression function, indicating an early-life stress-specific effect 
(113). In humans, maternal psychosocial stress has been reported 
to alter the expression of mitochondrial proteins in the placenta 
(114). In this study, a link between mitochondrial changes 
and infant temperament has also been suggested. Maternal 
psychosocial stress and lifetime trauma have been associated 
with decreased mitochondrial DNA copy number in the placenta 
(115, 116).

INDIVIDUALITY

Chronic stress links changes in the epigenetic landscape with 
health conditions (117). Different cell types are characterized 
by distinct patterns of gene expression due to developmental, 
environmental, physiological, and pathological reasons 
(117). Epigenetic mechanisms affect gene function in a 
dynamic way as a result of different environmental exposures 
during fetal development. Early-life stressful experiences, 
such as  nutritional deprivation, lack of maternal care, or 
chemical exposure during critical developmental periods, 
can lead to phenotypic differences later in life (118). In 
addition to genetic susceptibility (polymorphisms, genomic 
architecture) inter-individual phenotypic variations are 
also the result of epigenetic modifications. Once we realize 
how different environmental triggers affect the individual 
epigenetic processes, we may be able to develop new means 
to prevent or reverse environmentally driven epigenetic 
changes. A recent study supports this theory and suggests 
that adaptation to stress is a combination of three important 
factors: genetic predisposition, early-life environment, and 
late-life environment (119). In animal models, strain, age, sex, 
frequency, and duration of the stressor, time point within the 
light cycle and temperature, and even the housing conditions 
are some of the environmental factors that shape the stress 
response(120–122). In humans, genetic background, age, sex, 
type, frequency, and duration of the stressor and developmental 
stage have been suggested to be  important factors that shape 
individual stress response (123).
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DISCUSSIONS PERSPECTIVES

Early-life stress can influence brain plasticity with lasting 
effects. Epigenetic factors including type of exposure, 
timing, and diversity of experience in combination with 
genetic predisposition contribute to the individual resilience 
or  vulnerability toward stress. Elucidating the interplay 
and downstream affected pathways (Figure 2) among i) 
housekeeping genes of the reproductive system, ii) regulators of 
the HPA axis, iii) components of mitochondrial heterogeneity, 
and iv) individual genomic architecture will facilitate our 
understanding of the impact of early-life stressful events for 
later life outcomes. Our analysis reveals the top 20 “satellite” 
genes (Figure 2) that form a functional network, affecting and 
being affected by the core genes controlling early-life stress. 
Potentially stressful or compensatory individual experiences 
during lifetime may have an impact on the epigenetic 

landscape, thus masking the effects of early-life experiences. 
An improved understanding will allow an integrated, systemic 
approach to address pathological stress responses and pinpoint 
novel molecular targets for pharmacological and therapeutic 
interventions.
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FIGURE 2 | Gene interaction network discussed in the current review. The network was generated by the GeneMANIA prediction server (124). The left panel 
presents the different types of interactions with respective color coding, depicted with lines connecting genes in the network: physical interactions (pink), predicted 
(orange), co-expression (purple), and shared protein domains. The right panel presents gene functions, depicted with colored slices inside the respective genes: 
chaperone-mediated protein folding (red), heat shock protein binding (blue), calcium dependent protein binding (dark blue), protein folding (green), learning of 
memory (orange), complement activation (light blue), cognition (purple).
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Adenosine-to-Inosine RNA Editing 
Within Corticolimbic Brain Regions 
Is Regulated in Response to Chronic 
Social Defeat Stress in Mice
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and Alon Chen 1,4*

1 Department of Stress Neurobiology and Neurogenetics, Max Planck Institute of Psychiatry, Munich, Germany, 2 CytoReason, 
Tel-Aviv, Israel, 3 The Mina and Everard Goodman Faculty of LifeSciences, Bar-Ilan University, Ramat-Gan, Israel, 4 Department 
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Adenosine-to-inosine (A-to-I) RNA editing is a co-/posttranscriptional modification of double-
stranded RNA, catalyzed by the adenosine deaminase acting on RNA (ADAR) family of 
enzymes, which results in recognition of inosine as guanosine by translational and splicing 
machinery causing potential recoding events in amino acid sequences. A-to-I editing is 
prominent within brain-specific transcripts, and dysregulation of editing at several well-studied 
loci (e.g., Gria2, Htr2c) has been implicated in acute and chronic stress in rodents as well 
as neurological (e.g., Alzheimer’s) and psychopathological disorders such as schizophrenia 
and major depressive disorder. However, only a small fraction of recoding sites has been 
investigated within the brain following stress, and our understanding of the role of RNA editing 
in transcriptome regulation following environmental stimuli remains poorly understood. Thus, 
we aimed to investigate A-to-I editing at hundreds of loci following chronic social defeat stress 
(CSDS) in mice within corticolimbic regions responsive to chronic stress regulation. Adult male 
mice were subjected to CSDS or control conditions for 21 days and dynamic regulation of A-to-I 
editing was investigated 2 and 8 days following the final defeat within both the medial prefrontal 
cortex (mPFC) and basolateral amygdala (BLA). Employing a targeted resequencing approach, 
which utilizes microfluidics-based multiplex polymerase chain reaction (PCR) coupled with  
next-generation sequencing, we analyzed A-to-I editing at ~100 high-confidence editing sites 
within the mouse brain. CSDS resulted in acute regulation of transcripts encoding several ADAR 
enzymes, which normalized 8 days following the final defeat and was specific for susceptible 
mice. In contrast, sequencing analysis revealed modest and dynamic regulation of A-to-I 
editing within numerous transcripts in both the mPFC and BLA of resilient and susceptible mice 
at both 2 and 8 days following CSDS with minimal overlap between regions and time points. 
Editing within the Htr2c transcript and relative abundance of Htr2c messenger RNA (mRNA)
variants were also observed within the BLA of susceptible mice 2 days following CSDS. These 
results indicate dynamic RNA editing within discrete brain regions following CSDS in mice, 
further implicating A-to-I editing as a stress-sensitive molecular mechanism within the brain of 
potential relevance to resiliency and susceptibility to CSDS.

Keywords: A-to-I RNA editing, chronic social defeat stress, microfluidics-based multiplex polymerase chain 
reaction, adenosine deaminases acting on RNA, ADAR, chronic stress
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INTRODUCTION

Adenosine-to-inosine (A-to-I) RNA editing is a co-/
posttranscriptional modification of double-stranded RNA 
(dsRNA), which is catalyzed by the adenosine deaminases acting 
on RNA (ADAR) family of enzymes and is the most abundant 
form of RNA editing in higher eukaryotes (1). ADAR enzymes 
deaminate adenosine bases to inosine, which is recognized as 
guanosine by ribosomes and splicing machinery. As such, RNA 
editing can induce nonsynonymous amino acid changes resulting 
in differential protein isoform expression and thus is considered 
a key mechanism of transcriptome and proteome diversification 
in metazoans (2).

Three members of the ADAR family are encoded in the 
mammalian genome including the catalytically active ADAR 
(ADAR1) and ADARB1 (ADAR2), as well as ADARB2 (ADAR3), 
which lacks a catalytic domain and is primarily restricted to low-
level expression within the brain (3). Furthermore, ADAR has 
two distinct splicing isoforms including the constitutive 110-kDa 
isoform ADAR1 (p110) and the interferon-inducible isoform 
ADAR (p150) (4). ADARs mediate RNA editing at millions 
of sites in the mammalian transcriptome in both coding and 
noncoding RNA. Recent evidence suggests that ADAR primarily 
mediates A-to-I editing at repetitive elements, such as Alu repeats 
in primates, where ADARB1 is primarily responsible for editing at 
coding sites, although a degree of overlap exists between targeted 
sites of the two enzymes within mammalian tissues (5). Although 
several functions are known for editing events in noncoding sites 
[e.g., alteration of microRNA (miRNA) binding to 3′untranslated 
regions (UTRs) and alternative splicing regulation] (6–8), much 
interest has been focused on editing sites within coding regions 
capable of inducing nonsynonymous recoding events. These events 
are appreciated as a common form of proteome diversification in 
both basal and pathological states (9). Interestingly, such recoding 
events are enriched within the brain and also reside more 
commonly in transcripts associated with brain function, such as 
those encoding ion channels and neuromodulator receptors (10). 
For example, well-established ADARB1-dependent editing of the 
Gria2 transcript encoding the alpha-amino-3-hydroxy-5-methyl-
4-isoxazole propionate (AMPA) receptor subunit Glutamate 
Ionotropic Receptor AMPA Type Subunit 2 (GRIA2) is essential 
for normal development as Adarb1 knockout mice die within 3 
weeks of birth. This can be rescued upon transgenic coexpression 
of the fully edited Gria2 isoform in these mice (11). Another well-
established role of RNA editing within the mammalian brain is 
regulation of the 5-hydroxytryptamine2C (5-HT2C) receptor as 
multiple recoding sites in the Htr2c transcript generates multiple 
5-HT2C receptor isoforms with varying G protein affinities and 
thus receptor function (12).

RNA editing within the brain is also sensitive to environmental 
and pharmacological stimuli as acute and chronic stress as well 
as antidepressant treatment in rodents dynamically regulates 
Htr2c editing and thus serotonergic signaling within discrete 
brain regions (13, 14). Moreover, editing of the Htr2c transcript 
is observed within both the dorsolateral prefrontal cortex (PFC) 
(BA9) and anterior cingulate cortex (BA24) of patients with 
major depressive disorder (MDD), indicative of the translational 

relevance of investigating stress-induced regulation of well-
conserved editing sites in rodent models of acute and chronic 
stress (15, 16). Despite this, our understanding of the stress-
induced changes in the RNA editome remain restricted to well-
studied candidate loci. Broader high-throughput approaches are 
necessary to identify novel stress-sensitive editing sites within 
the brain of potential relevance to stress-related psychiatric 
disorders.

Recent advancements in next-generation sequencing (NGS) 
technologies have significantly enhanced our ability to accurately 
quantify A-to-I editing throughout the transcriptome and 
broadened our understanding of aberrant A-to-I editing in 
several neurological diseases (e.g., Alzheimer’s disease, epilepsy, 
and amyotrophic lateral sclerosis) (17–19) and psychiatric 
disorders (schizophrenia, bipolar disorder, and autism spectrum 
disorder) (20). However, application of NGS-based techniques in 
rodent models of acute and chronic stress is lacking such that our 
understanding of the role of RNA editing in acute and long-term 
adaptations to stress remains poorly understood.

Thus, this study aimed to investigate aberrant RNA editing 
within corticolimbic brain regions following chronic social 
defeat stress (CSDS) in adult mice. CSDS is a well-characterized 
model of depression-like behavior with significant etiological, 
predictive, discriminative, and face validity. CSDS induces 
diverse transcriptome changes within corticolimbic circuits such 
as the medial prefrontal cortex (mPFC) and basolateral amygdala 
(BLA) thought to subserve stable behavioral deficits in this model 
(21, 22). We therefore hypothesized that CSDS would induce 
dynamic changes within the RNA editome within the mPFC 
and BLA. To identify novel stress-sensitive editing sites within 
these brain regions, we employed an established microfluidics-
based multiplex polymerase chain reaction and deep sequencing 
(mmPCR-seq) approach (19, 23) to accurately quantify RNA 
editing at hundreds of loci within the brain following CSDS.

METHODS

Animals
Male C57BL/6 mice at 10 to 12 weeks old were employed 
for all experiments (Charles River, Sulzfeld, Germany). Mice 
were single housed in the animal facilities of the Max Planck 
Institute of Psychiatry in Munich, Germany, for 1 week prior to 
experimentation and were maintained under standard conditions 
(12L:12D light cycle, lights on at 07:00 AM, temperature 23 ± 2°C) 
with food and water available ad libitum. All experiments were 
approved by and conducted in accordance with the regulations 
of the local Animal Care and Use Committee (Government of 
Upper Bavaria, Munich, Germany).

Chronic Social Defeat Stress
Mice were randomly assigned to stress (n = 25) or control 
conditions (n = 16) and were subjected to 21 days of social defeat 
or daily handling, respectively. CSDS was conducted essentially as 
previously described (24). Briefly, male CD1 mice (16 to 18 weeks 
of age) were employed as resident mice and were habituated to the 
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social defeat cage for 1 week prior to experimentation. On each 
defeat day, experimental mice were introduced into the home 
cage (45 cm × 25 cm) of a dominant resident mouse, and mice 
were left until a social defeat was achieved with minimal injury to 
experimental mice (generally >2 min). Once mice were defeated, 
the animals were separated by a wire mesh to prevent physical 
contact while enabling sensory contact for 24 h. Experimental 
mice were defeated daily by an unfamiliar, resident mouse for 
21 days between 9:00 and 16:00 h to minimize habituation to 
the CSDS procedure. Control mice (Con) were singly housed 
in their home cage and handled daily throughout the CSDS 
procedure. Immediately following the final defeat, experimental 
mice were single housed. One day following the final defeat, all 
mice were subjected to the social interaction (SI) test to enable 
classification of susceptible (SUS) [social interaction (SI) ratio 
<1] and resilient mice (RES) (SI ratio >1) as previously described 
(22, 24). Following the SI test, all mice remained in their home 
cage undisturbed until tissue collection either 2 days (control, 
n = 8; susceptible, n = 10; resilient, n = 4) or 8 days (control, n = 8;  
susceptible, n = 8; resilient, n = 3) following the final defeat.

Tissue Collection and Corticosterone 
Analysis
Either 2 or 8 days following the final defeat, mice were sacrificed 
(9:00–10:00) and brains were rapidly dissected, snap frozen, 
and stored at −80°C. Bilateral adrenal glands were dissected, 
cleaned of excess fat, and weighed. Whole blood was collected 
in Ethylenediaminetetraacetic acid tubes and centrifuged at  
8,000 × g for 10 min at 4°C. Plasma was then aliquoted and stored 
at −20°C until corticosterone analysis, employing a commercially 
available radioimmunoassay kit (MP Biomedicals Inc).

Brain Region Microdissection, RNA 
Extraction, and Reverse Transcription
Frozen brains were serially sectioned at 250 µm on a cryostat, and 
the mPFC (including prelimbic, infralimbic, and cingulate cortex) 
and BLA were microdissected and stored at −80°C. Total RNA was 
extracted from mPFC and BLA tissue from each animal utilizing the 
miRNeasy mini kit (QIAGEN). Briefly, tissue punches were lysed in 
700 µl of Qiazol, and total RNA was extracted as per manufacturer’s 
instructions (QIAGEN). RNA integrity was assessed on an Agilent 
Tapestation 2200 with the RNA screentape kit (Thermo Fisher), and 
all RNA samples were confirmed to have RNA integrity number 
(RIN) values > 8. Total RNA was DNase treated with the TURBO 
DNase free kit as per manufacturer’s instructions (Ambion). 
DNase-treated RNA was quantified with the Qubit 3.0 (Thermo 
Fisher), and 200 ng of RNA was reverse transcribed to cDNA in 
20-µL reactions employing the iScript™ cDNA Synthesis Kit as 
per manufacturer’s instructions (Bio-Rad). Complementary DNA 
(cDNA) was stored at −20°C prior to further analysis. Due to failure 
of cDNA synthesis for multiple samples, final group sizes analyzed 
for RNA editing and quantitative PCR (qPCR) analysis were as 
follows: control 2 days, n = 6–8; susceptible 2 days, n = 10; resilient  
2 days, n = 4; control 8 days, n = 5–8; susceptible 8 days, n = 7–8; 
resilient 8 days, n = 3.

Quantitative Real-Time Polymerase  
Chain Reaction
Determination of relative transcript expression was conducted 
using the 2−ΔΔCT method (25, 26). Exon spanning primers for 
candidate transcripts Adar, Adar variant 2, Adar variant 3, Adarb1, 
Adarb2, Nova1, Commd2, Gria4, and Htr2c and endogenous 
controls Gapdh, Rpl13a, and Sdha were designed using Primer 3  
(http://frodo.wi.mit.edu/). Primer efficiencies were confirmed to 
be 90–110%. qPCR was conducted on a Quantistudio Flex7 PCR 
system (Applied Biosystems, USA) using Quantifast SYBR® Green 
(QIAGEN) as per manufacturer’s instructions. All data are expressed 
as fold change relative to control mice at each time point.

Targeted Resequencing of RNA Editing 
Sites in RNA Samples Using the Fluidigm 
Access Array Coupled With Illumina HiSeq 
2500 Sequencing
To precisely detect and measure the levels of A-to-I RNA editing 
at candidate editing sites in mouse brain tissue, we employed a 
targeted resequencing approach utilizing mmPCR-seq essentially 
as previously described (19). Candidate editing sites were 
selected from the mouse RADAR database (v.2; http://rnaedit.
com/) based on the following criteria: i) location within protein 
coding genes, ii) induction of nonsynonymous amino acid 
changes, iii) species conservation, and iv) location within genes 
associated with neuronal function. Applying these criteria, we 
generated a candidate list of 551 editing sites for which targeted 
gene and editing-site-specific exon spanning primers were 
designed using Primer 3.0 (http://frodo.wi.mit.edu/). Selected 
primers were tested for specificity and sensitivity by PCR prior to 
their inclusion to the finalized primer set (Supplemental Table 
1). Amplification of target regions containing targeting editing 
loci was conducted with the Access Array™ System for Illumina 
Sequencing Systems as per manufacturer’s instructions. Briefly, 
4 µL of single primer pair (4 μM per primer in 1× AA loading 
buffer) was loaded into the primer inlets of the 48.48 Access 
Array integrated fluidic circuits (IFC) (Fluidigm). To prepare 
the cDNA templates, 2.25 μL of each cDNA sample was added to 
2.75 μL of presample mix containing the following enzyme and 
reagents from the Roche FastStart High Fidelity PCR System: 
0.5 μL of 10× FastStart High Fidelity Reaction Buffer wo/Mg, 
0.5 μL of dimethyl sulfoxide (DMSO) (5%), 0.1 μL of 10 mM 
PCR Grade Nucleotide Mix (200 μM), 0.9 μL of 25 mM MgCl2  
(4.5 mM), 0.25 μL of 20× Access Array Loading Reagent 
(Fluidigm), 0.05 μL of FastStart High Fidelity Enzyme Blend, 
and 0.7 μL of PCR grade water. Four microliters of this mix 
was loaded into the sample inlets of the 48.48 Access Array 
IFC (Fluidigm). After the loading of both samples and primers 
via IFC Controller AX (Fluidigm) loading script, the IFC was 
subject to thermal cycling using the FC1 Cycler (Fluidigm) with 
the following program for 40 cycles: 50°C for 2 min, 70°C for 
20 min, 95°C 10 min; 10 cycles of 95°C for 15 s, 59.5°C for 30 s, 
72°C for 1 min; 4 cycles of 95°C for 15 s, 80°C for 30 s, 59.5°C 
for 30 s, 72°C for 1 min; 10 cycles of 95°C for 15 s, 59.5°C for 30 s, 
72°C for 1 min; 4 cycles of 95°C for 15 s, 80°C for 30 s, 60°C 
for 30 s, 72°C for 1 min; 8 cycles of 95°C for 15 s, 59.5°C for  
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30 s, 72°C for 1 min; 4 cycles of 95°C for 15 s, 80°C for 30 s, 60°C 
for 30 s; 72°C for 1 min; finalizing with 72°C for 3 min. Once 
PCR has terminated, the IFC was transferred to another IFC 
Controller AX (Fluidigm) and mini-libraries were harvested 
by the controller harvest script. Thus, mini-libraries from each 
sample were obtained for further barcoding and sequencing.

Sequencing Adaptor and Barcode Addition
For each sample, 1.0 μL of the PCR products harvested from 
the IFC was 1:110 diluted and added to 15 μL of presample 
mix containing the following enzyme and reagents from the 
Roche FastStart High Fidelity PCR System: 2 μL of 10× FastStart 
High Fidelity Reaction Buffer wo/Mg, 1 μL of DMSO (5%),  
0.4 μL of 10 mM PCR Grade Nucleotide Mix (200 μM), 3.6 μL of  
25 mM MgCl2 (4.5 mM), 0.2 μL of FastStart High Fidelity 
Enzyme Blend, and 7.8 μL of PCR-grade water. To that samples 
mix, 4 μL of primer mix from the 2 μM Access Array Barcode 
Library for Illumina Sequencer—384 (Fluidigm, PN 100-3771), 
utilizing the B-set; PE2_BC_CS2 and PE1–CS1 barcode primer 
combination. We used the following PCR program: 95°C for  
10 min; 10 cycles of 95°C for 30 s, 60°C for 30 s, and 72°C for  
1 min; and 72°C for 5 min. Amplified libraries were purified with 
AMPure XP beads (Beckman Coulter) and subjected to paired-
end 100-bp sequencing on an Illumina Hiseq2500.

Bioinformatics Sequence Analysis
Bioinformatics analysis was conducted essentially as previously 
described (19). Briefly, the University of California, Santa Cruz 
(UCSC) mouse genome browser (NCBI37/mm9) assembly is 
used to identify any A/G mismatches within the target cDNA 
sequences. Such mismatches were summed and calculated for 
their signal strength according to the overall number of reads 
coverage and the percentage of A-to-G levels.

Prealignment Processing
Fastq files were deindexed into 48 samples according to the 
individual barcodes used by an in-house script. All reads were 
trimmed of the universal CS1 and CS2 sequences, and short 
reads (<20 nt) were removed. Alignment of the processed reads 
was made using bwa version 0.7.4-r385, using the mem option 
and the parameters -k 20 -B 3 -O 3 -T 20 for seed in the length 
of the average primer and for considering the Ion typical error of 
small indel.

Alignment Process
Sequences were aligned to the mouse refseq database, and reads 
aligning to multiple loci were excluded from further analysis. 
Samtools mpileup was employed for aligned sequencing reads, 
and in-house scripts were employed to transfer the results to 
the genomic locations from the refseq loci followed by counting 
the number of different nucleotides in each genomic location 
that had a q score ≥20. To obtain high-confidence editing sites, 
only loci with >2,000 reads were included for further analysis, 
resulting in a total of 100 sites within the BLA and 105 sites 
within the mPFC (Supplemental Table 2). Data presented for 
each editing loci represent the total number of reads, and the 

calculated percentage of reads that have a “G” at the specified 
genomic location was conducted accordingly with the formula  
(# of “G” reads/[# of “G” reads + # of “A” reads]).

Statistical Analysis
Two-way repeated-measures analysis of variance (ANOVA) with 
Sidak post hoc comparison was used to compare body weights 
throughout the CSDS procedure and SI time in the SI test between 
control and stressed mice. One-way ANOVAs with Sidak post hoc 
comparisons were used to compare SI ratios between control, 
susceptible, and resilient mice as well as between groups at 
each time point for body weights at sacrifice, adrenal weights, 
corticosterone levels, qPCR expression levels, Htr2c editing, 
and isoform abundance. Editing levels were roughly normally 
distributed, and no normalization was applied such that paired t 
tests were employed for each RNA editing site. Significance was 
accepted as p < 0.05. Data are presented as mean ± standard error 
of the mean (SEM) unless otherwise stated.

RESULTS

Adult male mice were subjected to 21 days of CSDS with no 
significant differences in body weight observed throughout the 
stress procedure as revealed by a main effect of time [F(3,117) = 
45.83, p < 0.001] but not of treatment or an interaction between 
factors (Figure 1A). CSDS significantly decreased SI with a novel 
CD1 mouse as evidenced by a main effect of trial [F(1,37) = 5.252] 
and a treatment by trial interaction [F(2,37) = 14.47] whereby 
susceptible mice spent significantly decreased time in the 
interaction zone in the CD1 compared to the habituation trial  
(p < 0.001, Figure 1B). For the SI ratio, there was a main effect of 
treatment [F(2,37) = 13.72, p < 0.001] and significantly decreased 
SI ratio in susceptible mice and an increased SI ratio in resilient 
mice compared to controls (p < 0.05, Figure 1C). There were no 
differences in body weight between groups 2 or 8 days following 
the final defeat (Figure 1D). However, CSDS induced adrenal 
hypertrophy as evidenced by a main effect of treatment at 2 days 
[F(2,19) = 5.42, p = 0.014] with significantly increased adrenal 
weights in both susceptible and resilient mice compared to 
controls at 2 days (p < 0.01) but not 8 days [F(2,16) = 2.524, p = 
0.111] following the final defeat (Figure 1E). No differences in 
basal corticosterone were observed at either time point following 
CSDS (Figure 1F).

As stress is known to alter A-to-I editing and ADAR levels 
within the rodent brain, we initially analyzed mRNA expression 
of transcripts encoding ADAR enzymes within the BLA and 
mPFC following CSDS. No significant difference in Adar mRNA 
expression levels was observed in the BLA 2 days following the 
final defeat, although a trend toward increased Adar transcript 
variant 3 mRNA encoding the shorter ADAR1 p110 protein 
and Adarb1 mRNA expression was evident in both susceptible 
and resilient mice, yet this did not reach statistical significance 
(Figure 2A). In contrast, CSDS induced a significant decrease in 
Adar transcript variant 2 mRNA (p = 0.018) encoding the longer 
ADAR1 p150 protein and Adarb1 mRNA expression (p = 0.002) 
specifically in the mPFC of susceptible mice 2 days following the 
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final defeat (Figure 2C). No differences in expression levels of 
Adar mRNAs were observed 8 days following CSDS (Figure 2).

To assess CSDS-induced A-to-I RNA editing within the mPFC 
and BLA, we employed an established mmPCR-seq approach 
for sensitive and accurate quantification of RNA editing (19). 
Employing high-confidence editing sites (see Methods), we 
quantified editing at 100 sites within the mouse BLA and 105 
sites within the mouse mPFC. Sequencing analysis revealed that 
global levels of A-to-I editing within the BLA did not differ at either 
2 days [Control mice (Con), 22.96% ± 0.23%; susceptible mice 
(SUS), 23.10% ± 0.46%; resilient mice (RES), 23.06% ± 0.33%] or  
8 days (Con, 23.42% ± 0.29%; SUS, 23.09% ± 0.08%; RES, 23.39% ± 
0.19%) following CSDS. Similarly, no differences were observed in 
the mPFC at 2 days (Con, 24.65% ± 0.24%; SUS, 24.66% ± 0.34%, 
RES, 25.03% ± 0.40%) or 8 days following CSDS (Con, 24.93% ± 
0.25%; SUS, 24.65% ± 0.20%; RES, 24.62% ± 0.34%). Considering 
the lack of differences in global editing levels between groups, 
we pooled all samples in each region and found a significantly 
increased global editing level within the mPFC (24.74% ± 0.12%) 
compared to BLA (23.20% ± 0.14%, p < 0.001). This finding and 
global editing levels are in line with those previously reported for 
the rodent brain with mmPCR-seq (5, 27).

In contrast, differential A-to-I editing was observed at four 
editing sites in susceptible mice and one site in resilient mice 
within the BLA 2 days following CSDS with another seven 
differentially edited sites identified in susceptible mice and six 
sites in resilient mice 8 days following CSDS within this region 

(Table 1). Dynamic regulation of editing within the Zfp324 
transcript was observed within the BLA of susceptible mice 
with decreased and increased editing observed at 2 and 8 days, 
respectively. No other persistent changes were observed in this 
region. Within the mPFC, four sites were differentially edited in 
susceptible mice and another four sites were differentially edited 
in resilient mice 2 days following CSDS with a further seven sites 
in susceptible mice and four sites in resilient mice differentially 
edited 8 days following CSDS (Table 2). Increased editing at 
the Commd2 locus encoding the Copper metabolism Murr1 
domain-containing protein 2 (COMMD2) was observed at both 
2 and 8 days following CSDS with no other persistent changes 
observed. Moreover, RNA editing of a nonsynonymous recoding 
site within the Nova1 transcript encoding the RNA binding 
protein (RBP) NOVA Alternative Splicing Regulator 1 (NOVA1) 
was also observed in both the BLA and mPFC 8 days following 
CSDS, although in opposite directions. Differential editing of 
several sites following CSDS did not alter mRNA expression 
levels of candidate transcripts in either brain region (Figure 3).

Well-established A-to-I editing of five sites within the Htr2c 
transcript, known as A, B, C, D, and E, results in the generation of 
32 mRNA variants generating up to 24 different protein isoforms 
of the HTR2C receptor with varying biochemical properties (28). 
As expected, we detected high-confidence editing at sites A, B, 
C, and D but only minimal editing at site E within the mouse 
BLA and mPFC (Figure 4). CSDS induced a modest increase in 
editing at both the C and D sites within the BLA of susceptible 

FIGURE 1 | Chronic social defeat stress (CSDS) induces social avoidance and adrenal hypertrophy without changes in basal corticosterone levels. Body weight 
throughout the stress procedure did not differ between groups (A). Following CSDS, susceptible mice spent significantly less time investigating a novel CD1 mouse 
than an empty cage in the social interaction (SI) test (B) and significantly decreased the SI ratio in susceptible and increased SI ratio in resilient mice compared 
to controls (C). CSDS did not alter body weight at 2 or 8 days following the final defeat (D) but induced an increase in adrenal weight in both susceptible and 
resilient mice at 2 days but not 8 days (E) with no changes in basal corticosterone (F). ***p < 0.001, two-way repeated measures (RM) ANOVA with Sidak post hoc 
comparisons; *p < 0.05, susceptible and resilient groups compared to control, one-way ANOVA with Sidak post hoc comparisons.
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mice but not resilient mice 2 days following the final defeat 
(Figure 4A) with no other changes observed at 8 days (Figure 
4B) or within the mPFC at either time point (Figure 4C and D).

Editing at these loci induces recoding events, ultimately 
generating different HTR2C protein isoforms. Thus, we next 
quantified the relative abundance of Htr2c mRNA variants within 
the BLA and mPFC following CSDS. As expected, there was a 
similar distribution of Htr2c mRNA variants within the BLA 
and mPFC, with the edited VNV isoform being most abundant 
in both regions (Figure 5), as previously reported in the rodent 
brain (27). Following CSDS, we observed a trend toward an effect 
of treatment for the VNI variant [F(2,18) = 3.068, p = 0.071] mainly 
due to a trend toward decreased VNI abundance in susceptible 
mice at this time point (p = 0.058, Figure 5A). No other changes 
were observed within the BLA at 8 days (Figure 5B) or within the 
mPFC (Figure 5C and D).

DISCUSSION

In this study, we demonstrated that CSDS in adult mice induces 
a moderate degree of differential editing in a subset of novel 

transcripts within the BLA and mPFC, including modest 
regulation of editing within the Htr2c transcript and thus isoform 
abundance previously demonstrated to be sensitive to stress-
induced regulation. Our results further emphasize the sensitivity 
of RNA editing to stress and suggest that both acute and 
chronic changes in editing, although moderate, may contribute 
to behavioral deficits observed following CSDS in adult mice. 
Moreover, differential regulation in susceptible and resilient mice 
suggests that RNA editing may be a novel molecular mechanism 
involved in resiliency and susceptibility in this model requiring 
further investigation.

To our knowledge, this is the first study to investigate a large 
subset of RNA editing sites within the mouse brain in response to 
chronic stress and the first report of A-to-I editing following CSDS. 
Interestingly, minimal changes in transcripts encoding ADAR 
enzymes were identified following CSDS. Specific reduction 
of the interferon-inducible Adar variant 2 (p150) and Adarb1 
mRNA levels was observed within the mPFC of susceptible 
mice only without changes in global RNA editing in these mice. 
RNA editing within the rodent brain is relatively stable upon 
induction of ADAR p150, such that decreased levels within the 
mPFC are unlikely to explain observed effects in this study (29).  

FIGURE 2 | CSDS acutely alters transcripts encoding adenosine deaminases acting on RNA (ADARs) within the medial prefrontal cortex (mPFC) of susceptible 
mice. Following CSDS, no changes in Adar, Adarb1, or Adarb2 mRNA levels were observed within the basolateral amygdala (BLA) at 2 days (A) or 8 days  
(B). CSDS significantly decreased the expression levels of Adar variant 2 (p150) and Adarb1 mRNA in the mPFC only in mice susceptible to the CSDS procedure 
(C). No changes were observed within the mPFC 8 days following CSDS (D). Control 2 days, n = 7; susceptible 2 days, n = 10; resilient 2 days, n = 4; control 8 
days, n = 5–7; susceptible 8 days, n = 7; resilient 8 days, n = 3. *p < 0.05, one-way ANOVA with Sidak post hoc comparisons.
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TABLE 1 | Differentially editied loci within the basolateral amygdala (BLA) following chronic social defeat stress (CSDS).

Gene name Edit site 
location

Edit % 
CON

SEM 
CON

Edit % 
SUS

SEM 
SUS

Edit % 
difference 

SUS

p value 
SUS

Edit % 
RES

SEM 
RES

Edit % 
difference 

RES

p value 
RES

BLA 2 d CON vs. SUS

Htr2c (site C) chrX:143604236 22.902 0.958 25.718 0.317 2.816 0.005 24.957 0.234 2.055 0.128
Htr2c (site D) chrX:143604241 58.005 0.627 60.312 0.572 2.306 0.021 59.048 0.653 1.043 0.299
Zfp324 chr7:13557536 16.870 1.008 14.172 0.635 −2.698 0.031 13.263 1.282 −3.607 0.056
Gabra3 chrX:69690631 89.342 0.362 90.279 0.246 0.937 0.044 89.567 0.634 0.226 0.747

BLA 2 d CON vs. RES

Gla chrX:131123629 3.590 0.736 5.317 0.909 1.727 0.210 6.121 0.689 2.530 0.046

BLA 8 d CON vs. SUS

Zfp324 chr7:13557536 13.305 0.557 15.761 0.582 2.456 0.009 13.596 2.069 0.291 0.849
Copa chr1:174022479 4.663 0.100 4.299 0.081 −0.364 0.016 4.556 0.074 −0.107 0.552
Tcp11l1 chr2:104521242 16.440 0.616 18.758 0.567 2.318 0.017 17.583 0.451 1.143 0.313
Gria4 chr9:4456006 91.448 1.531 86.767 1.210 −4.680 0.035 87.457 0.697 −3.991 0.161
Fubp3 chr2:31471414 6.945 0.257 6.087 0.273 −0.858 0.040 7.249 0.289 0.303 0.528
Qpctl chr7:19725738 9.246 0.284 10.356 0.406 1.110 0.040 9.674 0.366 0.429 0.432
Nova1 chr12:47801321 12.654 0.441 11.435 0.321 −1.218 0.049 10.818 0.201 −1.835 0.038

BLA 8 d CON vs. RES

Bri3bp chr5:125936975 74.982 0.324 73.838 0.957 −1.144 0.253 77.648 0.162 2.665 0.001
Slc35e1 chr8:75004254 23.534 0.452 24.349 1.537 0.815 0.598 27.133 0.748 3.599 0.003
Samd8 chr14:22616933 25.989 0.501 27.677 1.143 1.688 0.180 29.333 1.179 3.344 0.012
Nt5dc3 chr10:86299972 2.464 0.085 2.340 0.089 −0.124 0.333 2.103 0.063 −0.361 0.037
Nup155 chr15:8109489 52.694 0.924 54.684 1.203 1.990 0.206 56.497 0.412 3.803 0.039

Microfluidics-based multiplex polymerase chain reaction and deep sequencing (mmPCR-seq) identified differential editing at numerous editing sites within the BLA at both 2 and 8 
days following CSDS. No persistent changes in editing levels were observed at both 2 and 8 days following CSDS. Underlined edit site locations indicate RNA editing sites within 
exons. Italicized edit site locations indicate RNA editing sites within 3′UTRs. p < 0.05, Student’s t test.
CON, control; SUS, susceptible; RES, resilient.

TABLE 2 | Differentially editied loci within the medial prefrontal cortex (mPFC) following CSDS.

Gene name Edit site 
location

Edit % 
CON

SEM 
CON

Edit % 
SUS

SEM 
SUS

Edit % 
difference 

SUS

p value 
SUS

Edit % 
RES

SEM 
RES

Edit % 
difference 

RES

p value 
RES

mPFC 2 d CON vs. SUS

Commd2 chr3:57448409 58.522 2.379 67.992 2.120 9.470 0.009 63.454 0.666 4.932 0.186
Rsad1 chr11:94401990 5.970 2.226 13.520 1.520 7.551 0.011 9.871 2.994 3.901 0.329
Wipi2 chr5:143145189 58.787 2.598 50.223 2.574 −8.564 0.034 53.321 1.579 −5.465 0.193
Zfp81 chr17:33472367 2.595 0.755 0.806 0.356 −1.789 0.036 1.347 1.079 −1.248 0.364

mPFC 2 d CON vs. RES

Ncl chr1:88244312 27.480 0.792 30.468 1.239 2.988 0.074 31.555 1.045 4.076 0.013
Snhg11 chr2:158209361 21.319 0.392 23.068 1.234 1.749 0.239 24.089 0.775 2.770 0.005
Acan chr7:86242858 3.867 0.336 4.053 0.840 0.187 0.853 2.069 0.306 −1.798 0.007
Nt5dc3 chr10:86299972 2.380 0.070 2.367 0.230 −0.013 0.962 2.628 0.065 0.248 0.048

mPFC 8 d CON vs. SUS

Rn45s chr17:39980697 22.675 1.391 16.562 1.606 −6.113 0.017 20.696 0.906 −1.979 0.382
Iqgap1 chr7:87856938 4.055 0.938 8.971 1.192 4.916 0.009 4.685 2.215 0.630 0.762
Commd2 chr3:57448409 59.534 1.400 64.514 1.180 4.980 0.019 62.746 2.209 3.212 0.241
Klf16 chr10:80030104 9.441 0.346 10.741 0.329 1.300 0.020 10.037 0.560 0.595 0.372
Rwdd2b chr16:87434377 17.327 1.261 14.255 0.554 −3.072 0.038 18.937 4.031 1.610 0.632
Nova1 chr12:47801321 10.549 1.160 13.241 0.374 2.691 0.038 12.090 0.446 1.541 0.401
Dagla chr19:10320223 3.144 0.253 2.450 0.151 −0.695 0.033 2.536 0.153 −0.609 0.157

mPFC 8 d CON vs. RES

Rabl5 chr5:137388969 16.523 0.454 15.679 0.455 −0.844 0.184 14.702 0.318 −1.821 0.045
Copa chr1:174022479 4.310 0.140 4.301 0.096 −0.009 0.955 4.944 0.154 0.634 0.036
Dnajc18 chr18:35834187 12.818 0.434 13.277 0.512 0.459 0.528 14.915 0.687 2.098 0.025

Microfluidics-based multiplex PCR and deep sequencing (mmPCR-seq) identified differential editing at numerous editing sites within the PFC at both 2 and 8 days following CSDS. 
Increased editing at a site within the Commd2 transcript was observed at both 2 and 8 days following CSDS with no other persistent changes observed. Underlined edit site 
locations indicate RNA editing sites within exons. Italicized edit site locations indicate RNA editing sites within 3′UTRs. p < 0.05, Student’s t test.
CON, control; SUS, susceptible; RES, resilient.
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As ADARB1 is primarily responsible for editing at recoding 
sites (5), decreased expression in susceptible mice may mediate 
decreased editing at specific ADARB1 target sites. However, 
we observed both increased editing within Commd2 and 
Rsad1 and decreased editing in Wipi2 and Zfp81 within the 
mPFC of susceptible mice. Moreover, editing differences were 
also observed following CSDS in the absence of Adar mRNA 
expression changes, suggesting that differential RNA editing is 
unlikely to be mediated by the Adarb1 mRNA expression changes 
observed. This is in line with evidence suggesting complex 
regulation of RNA editing activity in a tissue-specific and cell-
type-specific manner independent of ADAR family expression 
levels including interaction with RBPs, such as fragile X mental 
retardation protein (2, 5, 30, 31). Thus, our results suggest that 
differential RNA editing at the sites identified in this study is 
more likely mediated by site-specific regulation of editing activity 
opposed to CSDS-induced changes in the levels of ADAR family 
enzymes.

Although we identified differential editing at novel editing 
sites within the mouse brain, notable differential editing was 
observed within the Htr2c transcript specifically within the BLA 
of susceptible mice. Considering the well-established regulation 
of editing within this transcript in rodent models of acute and 
chronic stress as well as within the brain of MDD patients (13–
16, 32), these results further implicate editing at this transcript 
in susceptibility to CSDS and support the model’s relevance to 

stress-related psychiatric disorders. However, it must be noted 
that stress-induced editing of the Htr2c transcript and variant 
abundance is context-dependent based on species, strain, stress 
modality, brain region, and developmental age (27, 28). RNA 
editing of the Htr2c transcript reduces both receptor/Gαq-protein 
coupling and constitutive activity of the 5HT2C receptor (12, 33, 
34). Transgenic mice exclusively expressing the fully edited VGV 
isoform also display anxiogenic and aggressive behaviors, with 
altered 5-HTR2C receptor signaling within discrete brain regions 
in these mice (35). Thus, editing at this locus may mediate altered 
5HTR2C signaling within the BLA of susceptible mice following 
CSDS, yet further investigation is needed to assess the functional 
consequences of CSDS-induced editing at the Htr2c locus in this 
context.

Editing within transcripts encoding Gamma-Aminobutyric 
Acid Type A (GABAA) and AMPA receptor subunits were also 
affected following CSDS. Differential editing of sites in the Gabra3 
and Gria4 transcripts were identified within the BLA 2 and 8 days 
following CSDS, respectively. The Gabra3 transcript encodes the 
α3 GABAA receptor subunit with editing at this highly conserved 
site resulting in an isoleucine-to-methionine change in the third 
transmembrane domain. This site is developmentally regulated 
and mediates receptor trafficking and GABA sensitivity whereby 
increased editing is thought to decrease GABAA receptor signaling 
(36, 37). Editing at this site was also increased following chronic 
mild stress within the PFC of adult female rats, suggesting that 

FIGURE 3 | Expression levels of differentially edited transcripts are unaltered following CSDS. No significant changes in the expression levels of several differentially 
edited transcripts were observed with the BLA (A) or mPFC (B) at 2 days or within the BLA (C) or mPFC (D) 8 days following the final defeat. Control 2 days, n = 7; 
susceptible 2 days, n = 10; resilient 2 days, n = 4; control 8 days, n = 5–7; susceptible 8 days, n = 7; resilient 8 days, n = 3.
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this site may be sensitive to various stress modalities in different 
contexts (27). Moreover, modulation of GABAA signaling within 
the BLA impairs SI in rats (38). Alterations in GABAA signaling 
via RNA editing may contribute to the social avoidance phenotype 
observed in susceptible mice in this model, although the 
functional consequences of stress-induced Gabra3 editing need to 
be established following CSDS.

Glutamatergic signaling may also be affected by stress-induced 
RNA editing as increased editing within the Gria4 transcript 
encoding the AMPAR α4 subunit in the BLA of susceptible mice 
at 8 days is indicative of more persistent changes in the RNA 
editome. Editing at this Gria4 site confers differences in AMPA 
receptorchannel kinetics due to regulation of Gria4 splicing 
variants, which is sensitive to neuronal stimulation in rat primary 
cortical neurons (39). Thus, decreased editing in susceptible mice 
may mediate AMPAR signaling deficits in the BLA in part via 
RNA editing. Indeed, differential AMPAR signaling has been 
reported within the PFC (40) and hippocampus (41) following 
CSDS in mice. Further work is required to assess the role of 
AMPAR signaling, as well as GABAergic signaling, in stress 
susceptibility following CSDS.

Apart from changes in the aforementioned established 
editing sites, we aimed to identify novel editing sites sensitive 

to stress-induced regulation following CSDS. One such example 
is the Nova1 transcript encoding the RBP NOVA1. Editing at 
this Nova1 recoding site results in a serine-to-glycine exchange, 
which stabilizes the NOVA1 protein by decreasing proteasome-
mediated degradation (42). Interestingly, we identified modest 
changes in Nova1 editing in both the BLA and mPFC 8 days 
following CSDS with increased and decreased editing observed, 
respectively. Within the BLA, Nova1 was similarly edited in 
both susceptible and resilient mice with differential editing only 
observed within the mPFC of susceptible mice, suggesting that 
Nova1 editing is regulated in a region-specific manner following 
chronic stress. Considering the effects of RNA editing upon 
NOVA1 protein stability and the lack of CSDS-induced changes 
in Nova1 mRNA levels, it would be of interest to assess NOVA1 
protein levels within the BLA and mPFC following CSDS. 
Moreover, considering the established role of NOVA1 as an 
important RBP within the brain, which mediates both alternative 
splicing (43) and miRNA activity (44), NOVA1 is an interesting 
novel candidate requiring further investigation for its role in 
stress-induced regulation of the transcriptome.

Apart from such nonsynonymous recoding sites, the majority 
of differential editing sites identified in the current study were 
located within the 3′UTR of various transcripts such that the 

FIGURE 4 | RNA editing of the Htr2c transcript is altered within the BLA of susceptible mice 2 days following CSDS. Sequencing analysis revealed modest 
increases of RNA editing at Htr2c sites C and D within the BLA of susceptible but not resilient mice 2 days following CSDS (A) with no other changes observed 
at 8 days (B) or at 2 days (C) or 8 days within the mPFC (D). Control 2 days, n = 6–8; susceptible 2 days, n = 10; resilient 2 days, n = 4; control 8 days, n = 7–8; 
susceptible 8 days, n = 7; resilient 8 days, n = 3. *p < 0.05, one-way ANOVA with Sidak post hoc comparisons.
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protein coding capacity of these mRNAs remains unaltered. 
However, RNA editing within 3′UTRs regulates mRNA availability 
and translation efficiency due to the editing of miRNA binding 
sites, which can induce differential miRNA-mediated regulation 
of edited transcripts (6). Persistent increases in editing at a site 
within the 3′UTR of Commd2 in the mPFC of susceptible mice did 
not, however, alter mRNA levels in this brain region, suggesting 
that miRNA activity at this site is likely unaffected by editing at 
the site examined in this context. Further studies are required to 
investigate the consequences of CSDS-induced editing in 3′UTRs 
in this study including those sites identified in resilient mice 
such as in the 3′UTR of Ncl encoding the eukaryotic nucleolar 
phosphoprotein Nucelolin, which interestingly interacts with the 
brain-specific small nucleolar RNA MBII-52, known to regulate 
Htr2c editing within the mammalian brain (45). Furthermore, 
many differentially edited sites were identified within transcripts 
encoding proteins with poorly understood functions, particularly 
in resilient mice (e.g., Bri3bp and Slc35e1), which should be the 
focus of further investigation.

Several caveats to this study must be noted, including the 
small sample size for resilient groups as well as the mainly modest 
changes in editing levels observed. Repetition of mmPCR-seq 
analysis in a larger CSDS cohort would likely enable identification 

of further stress-sensitive editing sites, particularly those associated 
with resiliency. Moreover, utilizing RNA-seq would enable 
transcriptome-wide analysis of stress-induced editing and mRNA 
levels. Despite this, the A-to-I editing changes observed in this 
study are similar with the editing level changes observed in the rat 
PFC and amygdala following chronic stress employing a similar 
mmPCR-seq technique (27). Such modest changes of RNA 
editing in bulk brain tissue are also likely explained by cellular 
heterogeneity as recent advances in single-cell transcriptomics 
have demonstrated that A-to-I editing is indeed cell type specific 
with changes even observed between different cells of given 
cellular population within the mammalian brain (46, 47). Thus, it 
would be of interest in the future to study stress-induced changes 
in RNA editing using single cell transcriptomics.

In conclusion, the current study has identified A-to-I 
editing as another molecular mechanism of likely relevance 
to stress resiliency and susceptibility to CSDS in adult mice, 
in line with the growing appreciation for stress-induced 
regulation of RNA metabolism within the brain (21, 48, 49). 
Further investigation of the consequences of these editing 
changes is required at both the mRNA and protein levels 
to decipher the functional consequences of RNA editing 
following chronic stress.

FIGURE 5 | Relative abundance of Htr2c variants is minimally altered within the BLA 2 days following CSDS. CSDS induced a nominally significant decrease of 
the VNI Htr2c transcript variant in the BLA of susceptible mice 2 days following CSDS (A) with no other changes observed at 8 days (B) or at 2 days (C) or 8 days 
within the mPFC (D). Control 2 days, n = 6–8; susceptible 2 days, n = 10; resilient 2 days, n = 4; control 8 days, n = 7–8; susceptible 8 days, n = 7; resilient 8 days, 
n = 3. #p = 0.058, one-way ANOVA with Sidak post hoc comparisons.
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Autophagy has been recognized as evolutionary conserved intracellular pathway that 
ensures energy, organelle, and protein homeostasis through lysosomal degradation of 
damaged macromolecules and organelles. It is activated under various stress situations, 
e.g., food deprivation or proteotoxic conditions. Autophagy has been linked to several 
diseases, more recently also including stress-related diseases such as depression. A 
growing number of publications report on the role of autophagy in neurons, also referred 
to as “neuronal autophagy” on the one hand, and several studies describe effects of 
antidepressants—or of compounds that exert antidepressant-like actions—on autophagy 
on the other hand. This minireview highlights the emerging evidence for the involvement of 
autophagy in the pathology and treatment of depression and discusses current limitations 
as well as potential avenues for future research.

Keywords: autophagy, depression, antidepressant, stress, FKBP51 signalling

DEPRESSION IS A PREVALENT AND SEVERE DISEASE

Worldwide, depression is one of the most frequent clinical conditions and the leading cause of 
disability affecting more than 300 million people of all ages, according to World Health Organization 
(WHO) statistics (http://www.who.int/news-room/fact-sheets/detail/depression). Depression is 
characterized by a cluster of symptoms that include depressed mood, fear, feelings of worthlessness, 
loss of energy and interest, reduced responsiveness to pleasurable stimuli, lack of appetite, cognitive 
impairment, and sleep disturbances (1). A high percentage of seriously depressed patients receive no 
appropriate treatment, even in developed countries (2). Suicidal ideation is a further characteristic of 
depression and up to 15% of severely depressed individuals commit suicide. Depression represents 
also a major independent risk factor for other diseases like cardiovascular disease, dementia, 
diabetes, and osteoporosis (3, 4).

The high complexity of this mental disorder accounts for the difficulties in elucidating its 
molecular underpinnings. Overall, it has been increasingly accepted that a multitude of factors 
ranging from genetic predisposition to environmental challenges contribute to the pathophysiology 
of depression. In addition to the analysis of specific targets, research efforts increasingly resort to 
screening platforms to probe the genome, epigenome, etc. in an unbiased way. Examples of the 
major specific systems under investigation are monoaminergic, glutamatergic, and stress hormone 
systems, neuropeptides as modulators of the neuronal cell function including neurogenesis, 
neuronal morphology, and intracellular signaling pathways.

In genetics, huge efforts produced intriguing results; however, the field is haunted by the lack of 
consistency and reproducibility [for a recent review, see Ref. (5)]. Thus, increasingly large cohorts are 
investigated, and meta-analyses are employed to probe several hundred thousands of individuals (6). 
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Nevertheless, not the least due to the difficulties to move from 
gene association to molecular mechanism, hypothesis-driven 
approaches continue to be pursued intensely.

Monoamine deficiency was the first hypothesis unfolded 
over several years, tracing back more than half a century, and 
probably is the most influential one (7, 8). It postulates lack of 
monoaminergic neurotransmitters and thus impaired synaptic 
neurotransmission as cause for depression; several newer 
antidepressant drugs were developed based on this hypothesis. 
Other examples include glutamatergic dysfunction and the 
corticosteroid hypothesis of depression (7, 9). A vast array of 
studies supports the link between the stress hormone system 
and depression (9, 10). More specifically, impaired corticosteroid 
receptor function has been suggested to result in inappropriately 
high secretions of corticotropin releasing hormone (CRH), 
vasopressin, adrenocorticotropin, and cortisol (9). A role of 
autophagy in depression is a more recent hypothesis put forward 
(11), which can be viewed as one of the ramifications of the stress 
response as outlined below.

AUTOPHAGY IS A CELLULAR 
HOMEOSTASIS PROCESS AND PART 
OF THE STRESS RESPONSE

Autophagy is a pivotal process to ensure homeostasis of cells, 
and thus of tissues and the organism, in physiological as well as 
pathological situations (12, 13). This highly conserved mechanism 
leads to the degradation of damaged cytosolic proteins, 
aggregates, organelles, and also pathogens through a step-wise 
process. The basic mechanism is detailed in several excellent 
reviews (13–15), so it is described here only briefly: Autophagy 
involves a series of autophagy-related genes (ATGs), originally 
identified in yeast. Initially, membrane material is excised, most 
likely from the endoplasmic reticulum, giving rise to a membrane 
sac that is further expanded to form a double membrane vesicle 
called autophagosome. To be degraded material is enclosed into 
this vesicle; selected additional material can be transferred into 
the autophagosome. Degradation is achieved upon fusion with 
lysosomes to form autolysosomes: From the initial isolation of 
membrane material needed for the formation of autophagosomes 
to the final fusion step, autophagy involves a number of proteins 
governing membrane dynamics (16). There are different types 
of autophagy, with macroautophagy being the most commonly 
described one (15); this review only deals with macroautophagy, 
because research on the emerging subject of neuronal autophagy 
did not yet aim at specifying the type of autophagy.

The crucial physiological role of autophagy is reflected 
in its links to several diseases and the increasing efforts to 
exploit this process for pharmacological intervention (17–
21). Initially, autophagy was identified as response to calorie 
restriction to maintain energy homeostasis (22). Today, several 
pharmacological and environmental factors are known to induce 
autophagy, in particular various kinds of stressors (13, 17). Thus, 
autophagy is an important facet of the stress response, and like 
the stress response in general, autophagy is a beneficial process, 
but excess activation can be detrimental under certain conditions 

(23, 24). For example, apoptosis (often referred to as Type I 
cell death) and autophagy are considered mutually exclusive 
(13). Others debate this exclusiveness and argue that excessive 
autophagy can cause type II cell death characterized by the 
formation of large autophagic vacuoles (25, 26).

Chronic stress in mice, which frequently is used to model 
depression (27, 28), also has been reported to enhance autophagy 
[for recent examples, see Refs. (29, 30)]. The observation that 
a further increase in autophagic markers goes along with 
the reversal of the behavioral effects again argues in favor of 
autophagy being a beneficial component of the stress response in 
general (13, 30). Nevertheless, evidence also has been provided 
for a role of autophagy induction for depressive-like behavior 
and cognitive impairment induced by prenatal stress (31). Very 
recently, inhibition of autophagy was shown to attenuate the 
induction of depressive-like behavior by ecstasy in rats (32).

AUTOPHAGY IN DEPRESSION: EVIDENCE 
FROM DISEASE AND DISEASE MODEL 
STUDIES

In human, a study using a small sample size found elevated 
expression of autophagy genes in blood mononuclear cells from 
individuals suffering from major depression in comparison to 
healthy controls (33). Similarly, decreased mRNA expression 
of AKT1 and mTOR was found in individuals with short-term 
bipolar disorder compared to healthy controls (34), which might 
lead to the induction of autophagy. Similarly, a post-mortem study 
revealed compromised mTOR signaling in the prefrontal cortex 
in major depressive disorder (35). How could this be reconciled 
with the observation that enhanced autophagy response in blood 
mononuclear cells to ex vivo antidepressant treatment predicts 
clinical treatment success (36)? Similar to the stress response in 
general, autophagy is a beneficial response up to a certain limit, 
so we hypothesize that this adaptation might be insufficient in 
some (disease) cases and needs further boosting through various 
kinds of treatments.

Short-term calorie restriction, one of the most efficient inducers 
of autophagy (22), has been reported to have antidepressant 
effects in human and antidepressant-like effects in mice, while 
the effects of long-term calorie restriction are controversial (37). 
Likewise, physical exercise has been shown both to enhance 
autophagy (38) and to reduce depressive symptoms in human 
(39). Nevertheless, given the plethora of effects of both calorie 
restriction and exercise, these studies only provide a rather vague 
support of a potential link between autophagy and depression.

Studies more directly documenting a link of autophagy to 
psychiatric disease mainly were performed with animal models, 
with all the debated limitations that come with animal models that 
try to replicate aspects of depression (27). Maternal separation 
(40) increased autophagic markers in the prefrontal cortex, but 
not in the hippocampus (41). This is mimicked by the differential 
effect of corticosterone in primary astrocytes from these brain 
regions (42), while another study found that prenatal stress 
significantly elevated autophagy markers in the hippocampus 
of male offspring (31). On the other hand, signs of decreased 
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autophagy also have been reported in depression-relevant animal 
models. For example, chronic unpredictable stress decreased 
autophagic markers (43, 44). LPS as well as unpredictable 
chronic mild stress induced depression-like symptoms in rodents 
along with reduced expression of autophagic markers (45, 46). 
Furthermore, inhibition of the autophagy initiator Beclin1 
(47) induced depression-like behavioral changes in mice (48). 
Thus, no consistent picture of enhanced or reduced autophagy 
in depression yet emerges from animal models. Further, it is 
difficult to conclude about functional autophagy, as flux assays 
or determining turnover of long-lived proteins is complicated to 
perform in mice.

AUTOPHAGY IN DEPRESSION: EVIDENCE 
FROM TREATMENT EFFECTS

Given the scarcity of studies on disease correlation, the hypothesis 
that autophagy is involved in depression mainly is based on the 
effects of antidepressants on autophagy. One of the earliest hints 
for a role of antidepressants in autophagy was the observation 
of autophagy-associated structures in the cytoplasm upon 
treatment of cells with the tricyclic antidepressant clomipramine 
(chlorimipramine) (49). This phenomenon could be caused by 
either induction of autophagy or blocking the autophagy flux, 
thus actually blocking functional autophagy. It should be noted 
here that the conclusion of active autophagy often is based on 
the mere appearance of autophagic markers, which is not correct 
in the absence of experiments assessing the autophagic flux or 
turnover of long-lived proteins (50). Employing appropriate 
experiments, it was shown later that desmethylclomipramine, the 
active metabolite of clomipramine, interferes with the autophagic 
flux and thus functional autophagy (51). In contrast to the effect 
of clomipramine, another tricyclic antidepressant, amitriptyline, 
was found to increase autophagy in primary neurons and 
astrocytes, similarly to the selective serotonin reuptake inhibitor 
citalopram; however, the selective serotonin and noradrenaline 
reuptake inhibitor venlafaxine did not alter autophagy (52, 53). 
Thus, it appears that antidepressants diversely impact functional 
autophagy, possibly also in a cell-type-dependent manner.

Conspicuously, the canonical autophagy inducer rapamycin 
has been found to exert antidepressant-like effects (54, 55), 
emphasizing the role of the mTOR pathway (56). Conversely, 
several other established antidepressants and compounds that 
are reported to exert antidepressant-like effects were shown to 
modulate autophagy in various experimental models. Among 
the established antidepressants are the tricyclic antidepressants 
desipramine, nortriptyline, and imipramine, the tetracyclic 
antidepressants maprotiline and mianserin, the noradrenergic 
and serotonergic antidepressant mirtazapine, the selective 
serotonin reuptake inhibitors fluoxetine (Prozac), sertraline, and 
paroxetine, the serotonin-norepinephrine reuptake inhibitor 
desvenlafaxine, the atypical antidepressant agomelatine, lithium 
[for a review, see Ref. (57)], and the anticonvulsant valproic acid. 
Further drugs with both antidepressant-like effects and impact 
on autophagy include trehalose, hypericin, which is one of the 
principal components of Saint John’s wort, Salvianolic acid B, 

rosiglitazone, silibinin, dapsone, geldanamycin, α-tocopherol, 
and extracts of Euryale ferox Salisb (see Table 1 for more details 
and citations). Of note, also electroconvulsive therapy, which 
particularly is used for severe or treatment-resistant depression 
(58), was reported to enhance autophagy (59).

Mechanistically, antidepressants appear to address various 
pathways to impact autophagy. For example, FKBP51, which is a 
glucocorticoid receptor and stress regulator linked to psychiatric 
diseases (84–86), has been shown to be required for the effects of 
antidepressants on both autophagy and depressive-like behavior 
(36, 87). Another very recent study discovered that the previously 
reported effects of antidepressants on the acid sphingomyelinase 
(ASM) (88, 89) trigger a pathway leading to upregulation of 
autophagy, which is required for the behavioral effects in mice 
(48). More specifically, this pathway involves the accumulation 
of antidepressants in lysosomes, where they inhibit ASM. This 
leads to an increase in sphingomyelin and finally of ceramide 
in the endoplasmic reticulum. Ceramide, in turn, activates the 
phosphatase PP2A, which stimulates the kinase ULK, a known 
activator of autophagy (48).

Of the pleiotropic effects of the mood stabilizer lithium (90), 
its autophagy-inducing action does not operate through GSK3β, 
but by inhibition of inositol monophosphatase (91). Despite 
first glimpses, overall there is considerable lack of mechanistic 
understanding of how antidepressants link to autophagy. This 
is partly due to the incomplete knowledge about the molecular 
interaction partners of antidepressants. Progress in this direction 
(92) will help elucidating the molecular connection to autophagy. 
This may also contribute to sorting the actions of antidepressants, 
because not everything antidepressants do has to be related to 
depression treatment. Another long-standing conundrum in 
understanding how antidepressants work is the observation 
that clinical effects typically take weeks to become manifest, 
while known targets like neurotransmitter transporters are 
affected immediately. It is unlikely that autophagy will offer an 
obvious solution. Arguably, it contributes to starting a process of 
neuronal reorganization that ultimately constitutes the transition 
from disease to health (cf. Figure 1). Neurogenesis might be 
part of this process, as extensively discussed elsewhere (93). 
In this context, it is intriguing that autophagy increases adult 
neurogenesis (94, 95); thus, it is possible that antidepressants and 
lithium operate, at least in part, through autophagy to induce 
neurogenesis (90, 96).

The vast majority of publications report an increase in 
autophagy by antidepressants. This is also the case for the fast-
acting antidepressant ketamine (75), even though it is known to 
enhance mTOR activity (98). However, as alluded to above, flux 
assays are missing in many studies (cf. Table 1), which may lead to 
erroneous interpretation and conflicting results. More specifically, 
many of these reports merely observed an upregulation of 
autophagic markers, for example, lipidation of LC3B (i.e., an 
increase in the ratio of LC3II/I), which is not sufficient to make 
conclusions about functional autophagy. Overall it appears more 
likely that antidepressants diversely affect autophagy. Another 
important issue is the concentration at which antidepressants 
are administered in experimental models. This concentration 
typically is in the range of 10 µM n cell culture or 10 mg/kg in 
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animal experiments, sometimes even higher. While it has been 
reported that similar doses can be reached in the brain (99, 
100), effects reached at concentrations based on the results of 
therapeutic drug monitoring (101) may more closely mimic the 
clinical situation. For example, paroxetine (used at the therapeutic 
drug dose of 120 ng/ml = 0.9 µM) and amitriptyline (used at the 
therapeutic drug dose of 120 mg/ml = 0.37 µM) enhanced the 

expression of autophagy markers in blood mononuclear cells 
from depressed patients exposed to these reduced concentrations 
ex vivo (36).

CONCLUSION AND OUTLOOK

Over the last few years, several studies provided evidence for 
a link of autophagy to the pathophysiology and treatment of 
depression. Despite impressive progress, the mechanism is far 
from being understood. This is not surprising for a complex 
disease like depression, which poses particular experimental 
challenges and epistemological limitations, as exemplified by the 
complex mechanisms linking stress with depressive behavior. The 
molecular effects of antidepressants ultimately need to produce 
alterations in the pattern of neuronal activity that underlie the 
transition between diseased and healthy status (Figure 1). This 
means that some neuronal activity needs to be decreased and 
some needs to be increased. Interestingly, neuronal stimulation 
not only induces autophagy (102); increased autophagy 
also impacts synaptic function. For example, induction of 
autophagy by mTOR inhibition in presynaptic terminals rapidly 
alters presynaptic structure and reduces neurotransmission 
(103). Conversely, loss of autophagy slows down synaptic 
neurotransmission while gain of autophagy increases it (104). 
The latter finding has been conceptualized by the function 
of autophagy in protein homeostasis by removing damaged 
proteins, in this case those involved in synaptic vesicle exocytosis 
in particular (104, 105). Intriguingly in a mouse model of 
learnt helplessness evoking depressive-like behavior, decreased 
levels of the presynaptic vesicle membrane docking and fusion 
SNARE protein Snap25a occur along with impaired autophagy; 
administration of fluoxetine attenuates both these effects 
(106). The SNARE proteins are important components of the 
membrane reorganizing machinery at the synaptic membrane, 
and there is an interdependence between autophagy and synaptic 
vesicle trafficking (107, 108). In addition, electroconvulsive 
therapy enhances not only autophagic markers (59) but also the 
membrane trafficking machinery (109).

In light of the presumably diverse impact of antidepressants 
on autophagy, enhanced recycling of distinct synaptic proteins 
by inducing autophagy is unlikely to fully picture the mechanism 
of antidepressants. Given the fact that autophagy needs the 
activity of a number of membrane reorganizing and membrane 
trafficking proteins, we consider it plausible that processes 
impacting autophagy may also impact membrane reorganizing 
processes at the synapse, and thus would not require the later 
steps autophagy (cf. Figure 1). In general, these processes could 
be fast, because they do not necessarily require the synthesis 
of new proteins. They could limit synaptic neurotransmission 
when autophagy and neurotransmission compete for additional 
membrane material; conversely, autophagy would promote 
neurotransmission if there are shared mechanisms for the 
generation and fusion of membrane material. Thus, it will 
be of great interest to learn about the conditions under which 
autophagy increases or decreases synaptic neurotransmission, 
possibly in a neurotransmitter-specific fashion.

FIGURE 1 | Autophagy as part of antidepressant action. To move from 
diseased (depressed) to healthy state, ultimately a change in neuronal activity 
is required (A). To achieve this, several ways of antidepressant actions 
are proposed including effects on hormonal systems, immune system, 
and neurogenesis, which all might be intertwined with autophagy (97); 
this figure focuses on synaptic neurotransmission. The by far most often 
described effect of antidepressants on synaptic neurotransmission operates 
through directly blocking neurotransmitter reuptake transporters (part of 
the membrane proteins, (B). These transporters may also be addressed 
through signaling pathways that regulate their expression and/or function 
(C), not part of this review). The role of autophagy in antidepressant action 
frequently is explained by maintaining protein homeostasis in general, 
and the functional integrity of membrane proteins involved in synaptic 
neurotransmission in particular (D). These membrane proteins comprise not 
only transport proteins, but also, e.g., presynaptic SNARE proteins engaged 
in neurotransmission. Given the similarity of membrane dynamic processes 
in autophagy and synaptic neurotransmission, and to reconcile the diverse 
findings of antidepressant effects on autophagy, we also discussed the 
hypothesis that antidepressants address pathways that change membrane 
organization, directly linking to synaptic neurotransmission (E).
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Experiments employing genetic and pharmacological 
intervention strategies are needed to finally proof the 
involvement of functional autophagy in antidepressant action 
and to disentangle the mechanism including the level of synaptic 
neurotransmission. More specifically, (conditional) knock-outs 

of central autophagy genes are available in mice. The high interest 
in autophagy modulators has led to the discovery of a range of 
novel autophagy inducers and inhibitors, which can be tested 
in animal models in depression. While compounds that inhibit 
autophagy through blocking the fusion between autophagosome 

TABLE 1 | Overview of the various autophagy-impacting compounds that are used as antidepressants or reported to exert antidepressant-like effects in animal models. 

Compound/
Antidepressant

Experimental system Results, autophagic markers Flux, LLP Citation

Clomipramine*,
Desmethyl-clomipramine

Human glioma cells Autophagy-associated structures no (49)
HeLa Cells, ATG5-/-MEFs LC3BII/I up, increase in DM structures, flux blocked, LLP 

degradation down
yes (51)

Amitriptyline* Primary rat astrocytes and neurons, ATG5-/-MEFs Increased autophagy (LC3BII/I, Beclin1 up) yes (52)
Mouse stress model, patient blood cells, HEK 
cells, rat cortical astrocytes

ATG12, LC3II/I, Beclin1, pAkt1 and VPS34 were up, 
increased flux

yes (36)

Corticosterone-stressed mice Increased autolysosomes, affects pBeclin, pULK, 
increased p62

no (48)

Citalopram* Primary rat astrocytes and neurons Increased LC3BII/I and Beclin1 no (52)
Venlafaxine* Primary rat astrocytes and neurons No effect no (52)
Desipramine* C6 glioma cells Inhibition of mTor pathway, increased Beclin1, LC3, 

autophagosomes
no (60)

L929 cells
ATG7-/- MEFs

Autophagy induction (LC3II/I up, p62 down, no (61)

Nortriptyline* High content chemical screen in HeLa cells Autophagy induction (LC3II/I, flux) yes (62)
Imipramine* Glioma cells, mouse models of gliomagenesis Upregulation of LC3II/I, increased flux, more autophagic 

vacuoles
Yes (cells) (63)

THP-1 cells, depressed patients, ATG5-/-MEFs mRNA of LC3 and Beclin1 up, LC3II/I up no (64)
U-87MG glioma cells Inhibition of PI3K/Akt/mTOR signaling, LC3II/I up no (65)

Maprotiline* Burkitt’s lymphoma cell line Beclin1 up, more cytoplasmic vacuoles no (66)
Mianserin* THP-1 cells, depressed patients mRNA of LC3 and Beclin1 up no (64)
Mirtazapine* THP-1 cells, depressed patients, ATG5-/-MEFs mRNA of LC3 and Beclin1 up, LC3II/I up no (64)
Fluoxetine* Human breast cancer cell lines Upregulation of LC3II/I, Beclin1, ATG5; p62 down yes (67)

Human adipose-derived stem cells, mature 
adipocytes

Upregulation of LC3II/I, ATG12, SQSTM1, Beclin1, ATG7 no (68)

Brain injury in rats Upregulation of Beclin1, LC3 punctae no (69)
Stress model in rats Upregulation of Beclin1 and LC3II increased PI3K/Akt/

mTOR activity.
no (43)

Burkitt’s lymphoma cell line Beclin1 up, more cytoplasmic vacuoles no (66)
Sertraline* Non–small cell lung cancer cells LC3II up, increased flux, autolysosome formation yes (70)

AML cell lines LC3II/I increased no (71)
Paroxetine* THP-1 cells, depressed patients mRNA of LC3 and Beclin1 up no (64)

Mouse stress model, patient blood cells, HEK 
cells, rat cortical astrocytes

ATG12, LC3II/I, Beclin1, pAkt1 and VPs34 were up, 
increased flux

yes (36)

Desvenlafaxine* THP-1 cells, depressed patients mRNA of LC3 and Beclin1 up no (64)
Agomelatine# THP-1 cells, depressed patients mRNA of LC3 and Beclin1 up no (64)
Lithium* ALS mouse model Increased number of autophagic vacuoles (Beclin1 and LC3) no (72)

Prion-infected cells LC3II/I and flux increased yes (73)
VPA* Human glioma cell lines LC3II/I and Beclin1 increased no (74)
Ketamine* Human epithelial cells LC3II/I and Beclin1 increased no (75)
Trehalose Mouse model of manic-like behaviors Reduced ratio of p62/beclin1 in the frontal cortex no (76)

Diverse mammalian cells, ATG5-/-MEFs Increased LC3II/I, flux yes (77)
Hypericin Human macrophages LC3II/I and Beclin1 up, p62 down, only in combination 

with ultrasound
no (78)

Leishmania promastigotes mRNA of AMPK up, ATGs diversely regulated no (79)
Salvianolic acid B Depression model in rats Compound restores treatment-induced impairment of 

autophagy (LC3II/I, Beclin1)
no (46)

Rosiglitazone* Depression mouse model, N2a cells, primary 
neurons

Increases Beclin1, ULK1, LC3II/I, pAMPK, and pAKT1, 
decreases p62 in stressed mice

no (45)

Silibinin# Depression mouse model Decreased LC3II/I no (80)
Dapsone* Cognition-compromised rats Enhanced LC3II/I and Beclin1, decreased p62 no (81)
Geldanamycin Rat model of anxiety and depression Atg12, Atg7, and LC3II/I increased no (82)
α-tocopherol* Mouse model of depression Enhanced LC3II/I, pAMPK decreased p62, pmTOR no (44)
Euryale ferox Salisb extracts Mouse model of depression, HT22 cells Enhanced LC3II/I, pAMPK decreased p62, pmTOR no (83)

*Labels drugs approved by the United States Food and Drug Administration. #Approved in the European Union. LLP, assay to determine the stability of long-lived proteins; 
DM, double membrane; MEF, mouse embryonic fibroblasts; VPA, valproic acid; AML, acute myeloid leukemia; ALS, amyotrophic lateral sclerosis.
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and lysosome frequently elicit toxic effects when applied over a 
long period of time, they might be useful for assessing the role of 
autophagy in the immediate actions of antidepressants in some 
test regimes such as the forced swim test. It will also be interesting 
to learn whether and how antidepressants can be grouped 
according to their impact on autophagy. This categorization 
may not follow the pattern of their mechanism so far known. 
Finally, it should be investigated whether the dose dependency 
for autophagy induction by antidepressants is the same as or at 
least similar to the therapeutic doses.
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Emerging preclinical and clinical evidence indicate that the lateral habenula plays a 
major role in the pathophysiology of depressive illness. Aberrant increases in neuronal 
activity in the lateral habenula, an anti-reward center, signals down-regulation of 
brainstem dopaminergic and serotonergic firing, leading to anhedonia, helplessness, 
excessive focus on negative experiences, and, hence, depressive symptomatology. 
The lateral habenula has distinctive regulatory adaptive role to stress regulation in part 
due to its bidirectional connectivity with the hypothalamic–pituitary–adrenal (HPA) axis. 
In addition, studies show that increased lateral habenula activity affects components 
of sleep regulation including slow wave activity and rapid eye movement (REM), both 
disrupted in depressive illness. Lack of perceived reward experienced during the 
adverse outcomes also precipitates lateral habenula firing, while outcomes that meet 
or exceed expectations decrease lateral habenula firing and, in turn, increase midbrain 
dopaminergic and serotonergic neurotransmission. The ability to update expectations of 
the environment based on rewards and aversive stimuli reflects a potentially important 
survival mechanism relevant to the capacity to adapt to changing circumstances. 
What if one lives in a continuously aversive and invalidating environment or under the 
conditions of chronic stress? If there is a propensity of the habenula to release many 
burst discharges over time, an individual could habitually come to perceive the world 
as perpetually disappointing. Conceivably, the lateral habenula could learn to expect 
an adverse outcome systematically and communicate it more easily. Thus, if the lateral 
habenula fires more frequently, it may lead to a state of continuous disappointment and 
hopelessness, akin to depression. Furthermore, postmortem studies reveal that the 
size of the lateral habenula and total number of neurons are decreased in patients who 
had depressive illness. Novel research in the field shows that ketamine induces rapid 
and sustained antidepressant effect. Intriguingly, recent preclinical animal models show 
that ketamine abolishes N-methyl-D-aspartate receptor (NMDAR)-dependent lateral 
habenula bursting activity, leading to rapid resolution of depressive symptoms.

Keywords: ketamine, major depressive disorder, lateral habenula, HPA axis, NMDA-type receptors, sleep
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INTRODUCTION

The habenula is a component of the diencephalon and, together 
with the pineal gland, makes up the epithalamus (1). This 
evolutionary well-conserved structure plays a central role 
connecting forebrain and midbrain (2). It is involved in multiple 
processes that are core components of the major depressive 
syndrome such as reward processing, cognition, stress adaptation, 
sleep and circardian rythm regulation, biological rhythms, and 
the regulation of monoaminergic (dopamine and serotonin) 
neurotransmission (2–6). Its dysfunction has been implicated 
in psychiatric illnesses closely related to maladaptive processing 
of positive and negative valence (7). Further, lateral habenula 
serves as an interface among emotions, stressors, and cognitions. 
The hypothalamic–pituitary–adrenal (HPA) axis and lateral 
habenula appears to have unique bidirectional regulation, thus 
perturbations of the HPA axis are associated with alterations of 
lateral habenula function (5).

Lateral Habenula and Reward Processing in 
Depression: Interaction With Dopaminergic 
and Serotoninergic Neurotransmission
One of the functions of the lateral habenula is to encode negative 
motivational values associated with primary punishment in 
humans (8) and primates (9, 10). Thus, the habenula encodes 
the values of cues previously paired with an aversive outcome. 
Accordingly, habenula responses predict the extent to which 
individuals withdraw or approach negative and positive cues, 
respectively, thus playing a central role in driving aversive 
motivated learning and behavior (7, 11). This is accomplished 
through the extensive connections of the lateral habenula neurons 
(largely glutamatergic) to dopamine neurons in the ventral 
tegmental area (VTA) and the substantia nigra (8, 9). In addition, 
the rostromedial tegmental nucleus (RMTg) also known as the 
GABAergic tail of the VTA, receives glutamatergic inputs from 
the lateral habenula and sends substantial GABAergic projections 
to the midbrain dopaminergic system including VTA, as well 
dorsal raphe nucleus, locus coeruleus and other regions. Notably, 
VTA receives direct projections from the lateral habenula as well 
(6, 7, 9).

When a reward is smaller than expected or the anticipated 
reward is unsatisfactory, the firing rate of the lateral habenula 
increases, leading to inhibition of dopamine release from midbrain 
dopaminergic neurons that project to the nucleus accumbens, 
highly involved in reward processing (2, 7, 12, 13). Therefore, 
the lateral habenula is implicated in encoding information about 
aversive signals or missing rewards. Its firing rate increases in 
response to chronic stress, punishment, and stimuli that have 
been previously associated with negatively charged experiences 
(7, 11). Accordingly, the lateral habenula plays a key function in 
learning from painful experiences and in making decisions to avoid 
such aversive experiences in the future (12, 13). In contrast, if the 
expected reward meets or exceeds our expectations, the firing rate 
of the lateral habenula decreases, leading to activation of brainstem 
dopaminergic nuclei, which activate the nucleus accumbens (2, 
12–14) that is critically important for mediating and experiencing 

reward. This activity is thought to help us remember the details of 
how we obtained the reward. Thus, this will also help us to remember 
how to get the reward in the future (7). When the encoding of the 
reward becomes hyperactive, it can result in obsessive reward-
seeking behaviors involved in addiction disorders (15).

Lateral habenula also interacts with the raphe nuclei and the 
serotonergic system. When the firing rate of the lateral habenula 
is high, the release of serotonin from the raphe nuclei is reduced, 
resulting in decreased serotonin neurotransmission. Input to the 
lateral habenula from the basal ganglia increases the firing rate 
of the lateral habenula, leading to aversive outcomes, but this 
pathway is suppressed by serotonin (16, 17).

The ability to update expectations of the environment based 
on rewards and aversive stimuli reflects a potentially important 
survival mechanism relevant to the capacity to adapt to changing 
circumstances (12, 13). Theoretically, if one lives in a continuously 
highly aversive and invalidating environment or under the 
conditions of chronic stress, there will be a propensity of the habenula 
to release many burst discharges over time, so that an individual 
could systematically come to perceive the world as perpetually 
disappointing (12, 13, 18). Conceivably, the habenula could learn 
to expect an adverse outcome systematically and communicate it 
more easily. Thus, Kaye et al. note that if the habenula fires more 
frequently, it may lead to a state of continuous disappointment 
and hopelessness, akin to depression. In addition, lateral habenula 
neuronal activity is significantly enhanced in rodent animal models 
of depression (13, 19) as well as in depressed patients (20–22).

Given its unique capability to relay information from limbic 
forebrain to midbrain monoamine nuclei via high-density 
afferents to monoaminergic centers, the lateral habenula could 
potentially induce the down-regulation of the serotonergic, 
noradrenergic, and dopaminergic systems. This complex process, 
resulting from functional hyperactivation of the lateral habenula, 
has critical implications for regulating aversive behaviors and 
depressive pathophysiology (2, 16, 23, 24).

Bidirectional Relationship Between 
Activation of the Hypothalamic–Pituitary–
Adrenal Axis and the Lateral Habenula
The paraventricular nucleus of the hypothalamus contains 
abundant corticotropin-releasing hormone (CRH) neurons, 
which release CRH to activate the pituitary–adrenal axis. 
The paraventricular nucleus of the hypothalamus sends 
direct projections to the lateral habenula, but the functional 
consequences of this projection are unknown (3, 23). During 
increased stress and adverse experiences, the HPA axis and the 
lateral habenula are concomitantly activated (25), but it is not 
clear, however, which occurs first.

Direct activation of the lateral habenula is associated with HPA 
axis activation (25, 26). As a corollary, bilateral lesioning of the 
lateral habenula abolishes the HPA axis and behavioral responses 
to stress (27). The extent to which these phenomena reflect direct 
interactions between the lateral habenula and the hypothalamic 
CRH neurons or proceed by intermediary pathways ultimately 
linking the habenula to hypothalamic CRH neurons and vice 
versa is currently unknown.
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The lateral habenula also expresses CRH receptor 1 (CRHR1) 
receptors, which are activated via restraint stress. CRH activates 
the lateral habenula (23). Although this stress-mediated activation 
of habenula CRH receptors is likely to participate in the stress 
response, this premise remains to be validated. To this end, work 
from Authement et al., show that CRH-mediated physiological 
stimulation in slices or behavioral maternal deprivation in rodent 
pups decreased the abundance of potassium channels in pups, 
which in turn increases the firing rate of lateral habenula neurons 
(23). Further work is required to elucidate the relationship 
among CNS pathways that mediate the relationship between 
hypothalamic and extrahypothalamic CRH neurons and their 
consequent behavioral and physiological effects.

Impact of Lateral Habenula on Sleep 
Alterations in Depression
Sleep is another domain that is systematically disrupted in 
patients with depressive illness. Most notably, patients with 
depressive illness have decreased slow wave sleep activity and a 
systematic increase in rapid eye movement (REM) sleep, as well 
as a faster onset of REM sleep than controls (28). Specifically, 
the lateral habenula appears to have a critical role in regulating 
oscillatory theta hippocampal activity through modulation 
of temporal dopaminergic and serotoninergic firing pattern, 
suggesting a synaptic mechanism for memory consolidation 
during REM sleep, a decrease in slow wave sleep, and a highly 
significant increase in REM sleep (16, 28). Thus, an increase in 
the activity of the lateral habenula would result in the decrease in 
slow wave sleep and the significant augmentation of REM sleep, 
well-known characteristics of depressive illness.

Glutamatergic Modulation and the Lateral Habenula: 
Evidence From Preclinical and Clinical Studies
One of the most exciting paradigm shifts in biological psychiatry 
in the past two decades is the discovery that a single subanesthetic 
dose of ketamine (a prototypic glutamatergic modulator) to 
treatment-resistant depressed patients induces rapid and sustained 
antidepressant responses within hours, often lasting as long as 
1–2 weeks (29). This initial hypothesis surrounding the fast-
onset antidepressant response was related to direct and indirect 
N-methyl-D-aspartate receptor (NMDAR) inhibition in the 
hippocampus and medial prefrontal cortex, which in turn induced 
a rapid increase in neuroplasticity and neurogenesis (30,  31). 
However, recent animal work regarding the mechanism of ketamine 
action implicate the conversion of ketamine into an abundant 
distinct metabolite known as hydroxynorketamine (HNK) found 
both in human and rodent plasma. HNK seems to be critical in 
the increase in presynaptic glutamate release, and inducing early 
and sustained activation of the α-amino-3-hydroxy-5-methyl-
4-isoxazole-propionic acid receptor (AMPAR) relative to the 
NMDAR in hippocampus (32, 33). In fact, Zanos et al., in a series 
of well-controlled experiments, demonstrated that HNK exerted 
antidepressant effects on forced swim test and learned helplessness 
tests independent of NMDAR effects, a process that appears to be 
related to physiologic activation of AMPAR in the hippocampus 
and medial prefrontal cortex (32). Blockade of AMPA receptors 

in these loci with the specific AMPA blocker NBQX abolished 
the antidepressant effects of ketamine (32). Furthermore, Zanos 
et al., found that at relevant antidepressant concentrations  
(10 µM) (2R,6R)-HNK neither inhibited NMDARs nor induced 
any of the side effects typically associated with ketamine (32, 34). 
However, at this stage, there are no human studies to substantiate 
the antidepressant properties of HNK in humans.

Intriguingly, recent work from Yang et al. proposed that 
inhibition of lateral habenula glutamatergic neurons may be an 
additional NMDA-dependent mechanism. Their work revealed 
that local administration of ketamine or other compounds that 
block NMDAR-inhibited bursting activity of the lateral habenula 
had a rapid antidepressant effect (35). This group also found that 
photo-stimulation of lateral habenula drives behavioral despair 
and anhedonia, which is blocked by inhibiting the NMDA bursting 
activity effects on monoaminergic reward centers (35). While the 
blockade of NMDA receptors in the lateral habenula was sufficient 
to reverse experimentally induced behavioral despair, blockade of 
low-voltage-sensitive T-type voltage sensitive calcium channels 
(T-VSCC) was also sufficient to induce rapid-antidepressant 
effects (35). This work provides a simpler model whereby ketamine 
quickly (minutes to hours) elevates mood by blocking NMDAR-
dependent burst activity of lateral habenula neurons and, in 
turn, disinhibits downstream monoaminergic reward centers 
(35). However, it remains unclear whether NMDAR-dependent 
antagonism alone may be sufficient for ketamine’s fast onset and 
protracted antidepressant effects. While this hypothesis needs 
to be substantiated in clinical studies, non-NMDAR-mediated 
glutamatergic potentiation and sustained activation of AMPARs 
seem to be central to the long-lasting antidepressant effect of 
ketamine and its main metabolite, HNK.

In an animal model of depression, the learned helplessness 
test, the lateral habenula activity is significantly increased, 
and the activity of brainstem dopaminergic neurons was 
concomitantly inhibited (19). The increase in lateral habenular 
firing rate resolved with the administration of antidepressants 
(19). In a congenital animal model of learned helplessness, the 
lateral habenular firing rate was also increased, which resolved 
after antidepressant administration (36). In models of depression 
provoked by maternal separation, lateral habenular firing was 
increased, but resolved with interventions that normalized the 
lateral habenular firing rate (37).

Further, a complete pharmacologic stereotaxic inhibition 
of lateral habenular firing bursts ameliorated depression-like 
behaviors in rodents and ameliorated the decreased raphe 
nucleus firing and serotonergic neurotransmission associated 
with increased habenular neuronal activity (36). The latter 
finding is compatible with work showing that activation of the 
lateral habenula inhibits the serotonergic raphe nuclear firing 
rates. In addition, Yang et al. show that acute ketamine treatment 
inhibits NMDAR-dependent burst activity in the lateral 
habenula, resulting in the disinhibition of the downstream 
activity of midbrain dopaminergic neurons and serotoninergic 
neurons, which are responsible for activating the reward 
centers in the brain. As noted, local blockade of NMDARs or 
low-voltage-sensitive T-type voltage sensitive calcium channels 
(T-VSCCs) in the lateral habenula sufficed to induce rapid 
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antidepressant effects (35). Furthermore, in an animal model 
of maternal-deprivation-induced severe early life stress, a 
single in vivo administration of ketamine induced long-lasting 
antidepressant effects as well as the reversal of lateral habenula 
neuronal dysfunction up to 72 h post-injection (38).

Prior research has shown that lateral habenula and 
the serotoninergic neurotransmission are bidirectionally 
interconnected, but the functional role of this interconnection 
has been largely elusive. Recently, scientists have been 
able to shed light into this functional interconnectivity 
using optogenetic or pharmacological approaches through 
perturbation of serotonin signaling, which influences lateral 
habenula activity. Indeed, tryptophan depletion in patients 
with depressive illness increases cerebral blood flow in the 
lateral habenula and initiates increased firing rates, indicated by 
the lateral habenula’s capacity to down-regulate raphe nucleus 
activity in patients with depressed mood (24). Moreover, Carlson 
et al. showed that single-dose ketamine infusion in treatment-
resistant major depressive disorder (MDD) patients abolishes 
glucose hypermetabolism in lateral habenula compared to 
baseline (39), indicative of normalization of habenular brain 
activity following ketamine infusion.

A postmortem histologic study in MDD patients showed not 
only decreased size of the lateral habenula but also a reduction 
in the total number of lateral habenular neurons (40). While 
limited in number and power, the habenular volumetric 
alteration studies have produced mixed results for the field so 
far, in part due to limited spatial resolution and delineation 
of the structure. For example, a previous study in patients 
with depressive illness revealed volumetric reduction of the 
lateral habenula that was most prominent in bipolar depressed 
patients and in female patients undergoing a current major 
depressive episode (41). In contrast, Liu et al. show increased 
habenula volume in unmedicated depressed subjects compared 
to healthy volunteers (42). Interestingly, the study showed 
a positive association of habenula volume and more severe 
anhedonia scores. Consistent with that, other studies have 
found that greater habenula volume was associated with onset 
of first-episode depression (43) and correlated with depression 
symptom severity scores (44).

Deep brain stimulation of the lateral habenula of a patient 
with severe treatment-resistant depression completely abolished 
depressive symptomatology. Intriguingly, an inadvertent 
cessation of stimulation, the subject experienced a relapse of 
depression but regained remission after the reinstatement of 
habenular stimulation (22).

Lawson et al. found that, in healthy volunteers, lateral 
habenula activation increased as conditioned stimuli became 
more strongly associated with electrically induced shocks. 
This pattern was significantly different in depressed subjects, 
for whom habenula activation decreased significantly with 
increasing association between conditioned stimuli and electric 
shocks. In both volunteers and patients, individual differences 
in habenula volume were negatively associated with symptoms 
of anhedonia (20). In this study, depressed subjects exhibited 
abnormal negative task-related habenula responses during 
aversive conditioning. The direction of this effect is opposite to 

that predicted by other accounts of depression based on findings 
in animal models. The authors speculate that the negative 
habenula responses may result by the loss of the capacity to 
actively avoid negative cues in MDD, which could lead to 
excessive negative focus (8, 20).

Molecular Mechanisms
While lateral habenula neurons are primarily glutamatergic, its 
input come from discrete brain areas and are both excitatory 
(glutamatergic) and inhibitory (GABAergic) in nature (3). These 
inputs are integrated into complex bidirectional downstream 
regulatory fashion with the monoaminergic system via both 
direct and indirect connections to the VTA. In addition, the 
lateral habenula indirectly inhibits dopaminergic neurons in VTA 
and serotoninergic neurons in raphe nuclei through GABAergic 
RMTg, conveying information indicative of negative reward and 
aversive stimuli (15, 45). In animal models, lateral habenular 
circuits are involved in behavioral avoidance and inhibition 
of motor response appraised through various afferent circuits 
and efferent circuit to RMTg (45). Experimental activation of 
lateral habenular circuits in animal models produces active, 
passive, and conditioned behavioral avoidance (2). As noted, 
direct inhibition of lateral habenular NMDA receptors either 
optogenetically or via the use of ketamine produces rapid-acting 
antidepressant effects in multiple animal models of depression-
like syndromes (35).

Cui et al. demonstrated that an astroglial potassium 
channel Kir4.1 is up-regulated in the lateral habenular model 
of depression, associated with an increased firing rate of the 
lateral habenula (46). Loss of Kir4.1 in the lateral habenula 
ameliorates the increased firing rate of this structure and resolves 
depressive symptomatology (46). Specific gain of Kir4.1 in 
the lateral habenula, on the other hand, promotes depressive 
symptomatology (46). Thus, Kir4.1 in the lateral habenula may 
serve as a conceivable target for the drug treatment discovery in 
depression.

The mechanism by which an up-regulated Kir4.1 mediates 
depression has not been definitively established. Recent 
data indicate that up-regulated Kir4.1 may lead to neuronal 
hyperpolarization, inactivating T-type voltage-sensitive 
calcium channels, which in turn lead to NMDAR bursts that 
ultimately result in increased suppression of downstream 
monoaminergic centers. Hence, as noted, ketamine blockage 
of lateral habenula NMDA receptors results in amelioration of 
depression-like symptoms in rodents (35).

P11 is another multifunctional protein that interacts with 
serotonin receptor enzymes, chromatin remodeling factors, 
and ion channels, which are critically involved in depression-
like behaviors and antidepressant actions (18). p11 is 
enriched in distinct neuronal types, especially in the nucleus 
accumbens. A previous study revealed that chronic stress 
leads to an increase in p11 in dopamine D2 neurons, which 
contributes to behaviors suggestive of depression in an animal 
model of depression-like behaviors in animal models. P11 is 
also significantly increased in the lateral habenula of chronicly 
stressed animal models (18). Specific knockout of p11 in 
the lateral habenula alleviates the stress-induced depressive 
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behaviors. On the other hand, overexpression of p11 in the 
lateral habenula results in depressive behaviors (18). Thus, 
p11 may appears to have a key role in the pathophysiology 
of depression and an interesting target for pharmacological 
intervention.

Using a quantitative proteomic screen, Li et al. discovered 
a signaling pathway enzyme known as the β form of calcium/
calmodulin-dependent protein kinase type II (βCaMΚΙΙ), 
which, when overexpressed in the lateral habenula, produced 
depressive-like behaviors (47). Manipulations increasing 
the presence of βCaMΚΙΙ consistently increased depressive 
behaviors, including anhedonia and behavioral despair (48). In 
contrast, antidepressant medications and RNA interference of 
βCaMΚΙΙ significantly diminished depressive manifestations 
(48). The mechanisms by which up-regulation of βCaMΚΙΙ leads 
to increased firing rates of the lateral habenula have not been 
definitively determined, yet βCaMΚΙΙ, nevertheless, represents 
a potential target for ameliorating depressive symptomatology.

Stressful stimuli that increase lateral habenular firing rates 
and promote a depressive behavioral phenotype increase 
protein phosphatase 2A (PP2A), which has known influence 
on the functional activity of the GABAB receptor that regulate 
G-coupled inwardly rectifying potassium channel receptor 
(GIRK) (49). Specifically, chronic stress causes significant 
weakening of GABAB GIRK function and neuronal excitability, 
which is restored by pharmacologic inhibition of PP2A 
(49). Thus,  PP2A inhibitors may have therapeutic efficacy 
in depressive syndromes associated with increased firing of 
lateral habenula  neurons. More so, recent data indicate that 
pharmacological activation GABAB receptor or axon-sparing 
lesion in the RMTg, a region that receives dense projection 
from lateral habenula, significantly suppresses the lateral 
habenula firing rate (50). Hence, the restoration GABAB 
signaling may ameliorate depression symptomatology (49).

In sum, the confluence effect of stress-induced up- 
regulation of Kir4.1, p11, βCaMKII, and PP2A activity in 
lateral habenula contributes to amplification of its firing bursts 
activity and subsequent inhibition of monoaminergic reward 
centers, therefore contributing to depressive symptomatology. 
This research suggests that parallel cellular processes converge 
in the lateral habenula to transduce the impact of aversive 
stimuli.

KEY CONCEPTS

 1. Aversive and invalidating environmental stimuli individually 
or coupled with chronic stress precipitate increased firing of 
the lateral habenula, leading to down-regulation of brainstem 
dopaminergic neurotransmission and decreased activity of 
the nucleus accumbens, inducing anhedonia and depressive 
symptomatology.

 2. Increased lateral habenular firing also leads to down-
regulation of the serotonergic neurons in raphe nuclei neurons 
and decreased serotonergic neurotransmission, known to be 
implicated in depressive symptomatology.

 3. In contrast, outcomes that meet or exceed expectations 
lead to decreased lateral habenular firing and increases in 
dopaminergic and serotonergic neurotransmission. The 
ability to update expectations of the environment based on 
rewards and disappointments, reflects a potentially important 
survival mechanism relevant to the capacity to adapt to ever-
changing environmental circumstances.

 4. Multiple lines of evidence derived by both preclinical and 
clinical studies confirm the relationship between stimuli 
that activate the firing rate of the lateral habenula and the 
appearance of depressive symptomatology. Postmortem 
studies clinical finding of a smaller lateral habenula in 
depressed patients, while human clinical imaging studies 
show increased glucose utilization of this structure, which 
normalizes following ketamine treatment.

 5. Broadly, ketamine-induced rapid antidepressant and 
antianhedonic effects are believed to be mediated by  
a) direct inhibition of spontaneous synaptic NMDAR in 
the prefrontal cortex and hippocampus or inhibition of 
NMDAR-burst activity in lateral habenula, b) indirect 
inhibition of NMDAR at a presynaptic GABAergic 
interneuron site, or c) conversion of ketamine to its active 
metabolite HNK, inducing an early and sustained activation 
of AMPAR at hippocampus, proving for the first time that 
NMDAR inhibition is not essential for the antidepressant 
effects of ketamine.

 6. Direct injection of ketamine into the lateral habenula, an 
anti-reward center abundant in NMDA receptors, induces 
rapid amelioration of experimentally induced depressive-like 
syndromes in animal models.

 7. Aversive stimuli induce up-regulation of the Kir4.1 or p11 is 
associated with rapid firing rates in the lateral habenula and 
induces depression-like phenotype, while pharmacological 
down-regulation or knockout manipulation in animal models 
is associated with resolution of depression-like symptoms.

 8. Increasing the presence of the enzyme βCaMKII consistently 
increased depressive behaviors, including anhedonia and 
behavioral despair. In contrast, antidepressant medications 
and RNA interference of βCaMKII significantly diminished 
depressive manifestations.

 9. Chronic stress causes significant weakening of GABAB–
GIRK pathway function and neuronal excitability in lateral 
habenula, which is restored by pharmacologic inhibition of 
PP2A. Thus, PP2A inhibitors may have therapeutic efficacy 
in depressive syndromes associated with increased firing of 
lateral habenula neurons.

 10. The HPA axis and the lateral habenula appear to be 
intricately interconnected to regulate the stress-related 
adaptive response to aversive stimuli.

 11. Increase in lateral habenula firing rate induces decrease in 
slow wave activity through the influence of serotonin neurons 
in the VTA and raphe nuclei, whereas the augmentation of 
REM sleep activity appears to be mediated by descending 
brainstem circuits via RMTg.

 12. Strategies aimed at decreasing the firing rate of the lateral 
habenula show great promise for significant amelioration of 
associated depressive symptomatology.
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Background: Glucocorticoid resistance—reduced function of the glucocorticoid 
receptor (GR)—is seen in many depressed patients. It is argued that this resistance to 
glucocorticoids leads to failure of normal feedback regulation on the immune system. 
High levels of pro-inflammatory cytokines result.

Purpose: We sought to identify evidence supporting or refuting a link between 
glucocorticoid resistance and immune dysregulation in depression and to summarize 
retrieved evidence in aggregate form.

Methods: We systematically reviewed and meta-analyzed studies that examined cytokine 
levels in depressed patients compared with controls and that also reported a measure of 
glucocorticoid resistance. These measures included plasma cortisol, the dexamethasone 
suppression test (DST), GR expression levels, and the results of in vitro assays of GR 
function. We conducted four separate meta-analyses to test for moderating effects of 
glucocorticoid resistance on cytokine production in depression.

Results: After sub-grouping 32 studies by the ratio of cortisol levels in patients compared 
with controls, we observed a trend for increasing glucocorticoid resistance (i.e., the most 
hypercortisolemic patients) to be associated with increased production of interleukin (IL)-6 
[d = 0.94; 95% CI (0.29, 1.59)] and tumour necrosis factor (TNF)-α [d = 0.46; 95% CI 
(0.12, 0.79)]. We stratified nine studies that reported DST results by relative glucocorticoid 
resistance between patients and controls, identifying a trend for higher glucocorticoid 
resistance in patients, compared with controls, to be associated with higher cytokine 
production in patients (170 patients and 187 controls). This was particularly evident when 
studies were sub-grouped by source of cytokine—plasma (d = 1.04; 95% CI, 0.57–1.50) 
versus in vitro (d = 0.24; 95% CI, −0.20 to 0.67). Stratifying the four studies (147 patients 
and 118 controls) that used in vitro assays of GR function or GR expression to quantify 
glucocorticoid resistance revealed variable contributions to cytokine production in patients 
compared with controls (overall effect size: d = 1.35; 95% CI 0.53–2.18). Combining our 
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analyses of studies that reported DST results with those that used in vitro assays of 
GR function or GR expression to quantify glucocorticoid resistance (302 patients and 
277 controls), we noted that although depressed patients produced more cytokines than 
controls (d = 1.02; 95% CI, 0.55–1.49), there was no evident positive correlation between 
glucocorticoid resistance and inflammation.

Conclusions: Our work provides some support for a model conceptualizing glucocorticoid 
resistance as a requisite for increased inflammation in depression. The limited number of 
studies identified highlights the need for purpose-designed investigations that directly 
examine the relationship between glucocorticoid resistance and cytokine production 
in depression.

Keywords: depression, cytokines, glucococorticoids, glucocorticoid resistance, inflammation

INTRODUCTION

Endogenous glucocorticoids play an essential role in driving 
adaptive responses to stress. They increase available blood 
glucose and initiate lipolysis for increased metabolic demands 
under stress, alter behavioral responses to stress, and modulate 
stress-induced immune function to prevent overactivation and 
consequent damage to host tissues (1, 2).

Secretion of endogenous glucocorticoids is tightly 
controlled by the hypothalamic–pituitary–adrenal axis (HPA 
axis). Corticotropin releasing factor (CRF) produced in the 
periventricular nucleus of the hypothalamus triggers release of 
adrenocorticotropin (ACTH) by the anterior pituitary. ACTH 
in turn triggers release of glucocorticoids, especially cortisol 
in humans, from the adrenal cortex (3). Importantly, secreted 
glucocorticoids engage feedback mechanisms in the anterior 
pituitary and the hypothalamus to limit further secretion of 
ACTH and CRF, respectively.

A large body of work has identified that in diseases of chronic 
stress, disruptions in the normal regulation of the HPA axis 
are present. In depressed patients, increased cortisol levels (4) 
that are resistant to feedback regulation by the HPA axis have 
been detected (5, 6). Similar increases in glucocorticoids and 
disruptions of HPA axis regulation in non-depressed patients are 
associated with the Cushing syndrome of glucocorticoid excess 
(7), yet depressed patients with elevated cortisol levels do not 
manifest the same syndrome. This observation argues for the 
presence of a resistance to high glucocorticoid levels in depressed 
patients. Multiple mechanisms have been invoked to explain 
this, including: impairments in glucocorticoid receptor (GR) 
function, changes in GR expression, alterations in glucocorticoid 
bioavailability through modified protein binding in the serum, 
changes in the HPA axis feedback rheostat, and impacts on the 
ability of the immune system to modulate glucocorticoid function 
(3). Indeed, proinflammatory cytokines can also feedback on 
the hypothalamus and anterior pituitary, for example, at times 
increasing HPA axis activity through modulation of GR function 
and expression (3, 8).

A reciprocal relationship between glucocorticoids and 
immune function also exists—high levels of glucocorticoids are 

known to strongly inhibit immune function. This well-known 
property of glucocorticoids is exploited in the clinical treatment 
of inflammatory and autoimmune diseases (2, 9) and is believed 
to play a role in protecting the nervous system from an over-
active inflammatory response (10). In depression, high levels of 
glucocorticoids can co-exist with high levels of pro-inflammatory 
cytokines such as interleukin (IL)-1β, IL-6, and tumour necrosis 
factor (TNF)-α (8, 11). The concurrent presence of high 
glucocorticoid levels and high cytokine levels in depressed patients 
creates a complex interplay between the immune system and the 
HPA axis. For example, high levels of glucocorticoids would be 
expected to dampen immune function and cytokine elaboration, 
but they do not always. Models to explain this phenomenon suggest 
that high levels of glucocorticoids in depression cause resistance to 
glucocorticoid feedback on the HPA axis and that this developed 
glucocorticoid resistance allows the escape of pro-inflammatory 
signaling pathways from normal feedback inhibition (11) through 
the mechanisms discussed above.

Many studies have focused on characterizing either elevated 
glucocorticoids or cytokine-mediated inflammation in depression. 
Few works have focused on the relationship between glucocorticoid 
resistance and inflammation in depression, and the few that have 
produced conflicting results. We were interested in exploring 
this relationship further and hoping to resolve inconsistencies 
between the results of individual studies. Therefore, we conducted 
a systematic review and meta-analysis of all published studies that 
simultaneously reported the results of indices of glucocorticoid 
resistance and cytokine levels in depression. Such indices of 
glucocorticoid resistance included plasma cortisol (4), the 
dexamethasone suppression test (DST) (12), GR expression (11), and 
in vitro functional assays of the GR (13). Classically in depression, 
plasma cortisol is elevated, and dexamethasone is unable to restore 
this elevation to normality. GR expression is downregulated, and 
in vitro functional assays of the GR show resistance to exogenous 
glucocorticoid actions. Using this knowledge, we examined for 
links between glucocorticoid resistance and the elaboration of 
high levels of pro-inflammatory cytokines in depression and 
summarized these results to produce aggregate effects. We hoped 
to identify enough aggregate evidence to allow us to resolve the 
conflict present in the primary literature.
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METHODS

We conducted our search and review using the methods outlined 
by Preferred Reporting Items for Systematic Reviews and Meta-
analyses (PRISMA) (14).

Search Strategy
We reasoned that evidence of glucocorticoid resistance may manifest 
by either of three outcomes in depressed patients—elevated plasma 
cortisol compared with control; greater proportional abnormalities 
on the DST/other endocrine suppression test(s) compared with 
control; or evidence of glucocorticoid resistance only in vitro or 
through reduced GR expression compared with control.

Endocrine suppression tests assess the ability of exogenously 
supplied glucocorticoids to suppress endogenous effects of cortisol 
and other glucocorticoids. The DST is the most commonly used of 
such assays. The DST identifies glucocorticoid resistance in subjects 
by examining the ability of exogenously supplied dexamethasone 
to suppress plasma cortisol levels in vivo. Subjects in whom 
serum cortisol levels do not reduce following dexamethasone 
administration are classified as “non-suppressors” and display 
in vivo evidence of glucocorticoid resistance (12).

Evidence of glucocorticoid resistance in blood or ex vivo 
cells is determined using a similar premise, namely, the ability 
of exogenous glucocorticoids to suppress in vitro proliferation 
or function of immune cells isolated from depressed patients 
and controls, or by reduced GR expression in depressed patients 
compared with controls.

To ensure that all three manifestations of glucocorticoid 
resistance were explored, we conducted three separate yet 
complementary literature searches to assess all eventualities.

i) Glucocorticoid Resistance as Assessed by 
Elevated Plasma Cortisol in Depressed Patients, 
Compared to Controls
MEDLINE, EMBASE, PsycInfo, and the Cochrane Database were 
searched for articles from origin until October 31, 2018, using the 
following search strategy: (exp Depression OR exp Depressive 
Disorder) AND (exp Adrenal Cortex Hormones OR exp Pituitary-
Adrenal System) AND (exp Cytokines OR exp Inflammation 
Mediators OR exp Leukocytes OR exp Macrophages). Results 
were limited to studies in humans and reported in English. 
Inclusion criteria were as follows: studies that reported a measure 
of cortisol (preferably morning) in each adult (age > 17 years) 
depressed patient and control, as well as corresponding cytokine 
levels (measured either from blood or from in vitro studies 
of blood or immune cells) in both subject populations, and 
depression diagnosed in patients using a standardized clinical/
diagnostic interview. Criteria leading to study exclusion included 
the following: presence of bipolar, psychotic or substance use 
disorders in patients or controls; acute  infection in patients or 
controls within 2 weeks of the study; and obesity [body mass index 
(BMI) > 30] in patients or controls.

Anticipating that a low number of studies would be retrieved 
by our search, we did not exclude studies in which patients or 

controls suffered from chronic medical conditions (e.g., endocrine, 
inflammatory, autoimmune, oral-dental, or neurologic disease) or 
in which immune-modulating therapies, such as glucocorticoids 
or biologics, were used in patients or controls so long as only a 
minority of subjects (<10%) possessed either of these respective 
characteristics, or in which matched controls, including matching 
for chronic medical conditions and immune modulating therapies, 
were used. We also did not exclude studies in which depressed 
patients experienced co-morbid anxiety disorders, so long as the 
anxiety disorder was not the primary diagnosis at the time of study.

The search was executed by AP. Retrieved titles and abstracts 
were screened by AP and MH to assess conformity with inclusion 
and exclusion criteria. Disputes about the appropriateness for 
study inclusion were resolved by AP. Articles deemed suitable for 
inclusion were retrieved in full text and examined by AP. Reference 
lists of retrieved articles were also examined to identify additional 
relevant articles not identified in our database searches.

ii) Glucocorticoid Resistance Measured by DST 
or Other Endocrine Suppression Test in Patients 
and Controls
A similar search strategy was employed to that above. Identical 
databases for the same periods were queried using the following search 
terms: (exp Depression OR exp Depressive Disorder OR exp Affective 
Symptoms) AND (exp Hydrocortisone OR exp Glucocorticoids 
OR exp Adrenal Cortex Hormones OR exp Pituitary-Adrenal 
System) AND (exp Receptors, Steroid OR exp Dexamethasone OR 
suppression test.mp. OR glucocorticoid resistance.mp). AND (exp 
Inflammation OR exp Inflammation Mediators OR exp Cytokines 
OR exp Leukocytes OR exp Macrophages). Results were again limited 
to studies in humans and reported in English. Inclusion criteria 
were as follows: studies that reported a result from an endocrine 
suppression test in each adult (age > 17 years) depressed patient and 
control, as well as corresponding cytokine levels (measured either 
from blood or from in vitro studies of blood or immune cells) in both 
subject populations; and depression diagnosed in patients using a 
standardized clinical/diagnostic interview. Criteria leading to study 
exclusion were the same as those enumerated above. The search was 
executed, and articles screened and retrieved as described above.

iii) Glucocorticoid Resistance Measured Only In Vitro 
or by GR Expression
Identical databases for the same periods as above were queried 
using the following search terms: (exp Depression OR exp 
Depressive Disorder) AND (exp Adrenal Cortex Hormones OR 
exp Pituitary-adrenal System OR Steroid Receptor) AND (exp 
Cytokines OR exp Inflammatory Mediators OR exp Leukocytes OR 
exp Macrophages). Search results were limited as above. Inclusion 
criteria were: studies that reported a result from an in vitro assay 
of GR function, such as suppression of in vitro proliferation of 
immune cells by exogenous glucocorticoids or measurement of 
cytokine production as an assay for GR function in blood, or GR 
expression in each adult (age > 17) depressed patient and control, 
as well as corresponding cytokine levels (measured from plasma) 
in both subject populations; and depression diagnosed in patients 
using a standardized clinical/diagnostic interview. Criteria leading 

91

https://www.frontiersin.org/journals/psychiatry#articles
https://www.frontiersin.org/journals/psychiatry
www.frontiersin.org


Glucocorticoids and Cytokines in DepressionPerrin et al.

4 June 2019 | Volume 10 | Article 423Frontiers in Psychiatry | www.frontiersin.org

to study exclusion were the same as above. The search was executed, 
and articles screened and retrieved as described above.

Data Extraction
Means and standard deviations for individual cytokine level from 
depressed patients and controls were extracted from studies when 
reported. When such values were not reported, we contacted 
study authors to obtain either raw data or the necessary values. 
When there were gaps in the data set of a given study (i.e., not all 
subjects had reported a measure of glucocorticoid resistance and a 
measure of cytokine level) and we were unable to obtain additional 
data from the study authors to bridge these gaps, we included 
these studies as they represented a minority in our analysis. Such 
inclusions are noted in the presented summary tables.

In some studies, values for plasma cortisol and cytokines 
were not normally distributed. We estimated mean and standard 
deviations from reported medians, data ranges, and sample sizes 
using the method of Wan (15). Non-Gaussian data has been 
found to have limited impact on the outcomes of meta-analysis 
(16), and given the small number of studies retrieved, we felt that 
excluding such data would materially bias our analysis.

When depressed subjects were divided into subtypes of the 
illness (i.e., with atypical features, with melancholic features, etc.), 
we combined all listed sub-types into one group of depressed 
patients and calculated means and standard deviations for these 
single groups. Where studies reported data on more than one 
patient group (e.g., patients with depression and another disease, 
as well as patients with depression only), we extracted data for 
patients with depression only, unless matched controls were used.

In the case of endocrine suppression test results, we extracted 
counts of suppressors and non-suppressors from reported studies or 
unpublished data provided by study authors. Although the plasma 
cortisol level used to define non-suppression in the DST varied from 
study to study, all cut-offs exceeded the generally accepted value of 
1.8 µg/dL (17). If a study used a significantly higher cut-off value, we 
did not modify suppression and non-suppression counts as for such 
studies we did not possess the raw post-dexamethasone cortisol 
values that would have allowed us to make such modifications.

In vitro studies commonly reported outcomes for assays of GR 
function as percentage of basal effect. We extracted the difference 
of these percentages from 100% for further use in our study. GR 
expression levels from whole blood were reported as fold-change 
and extracted as such.

Meta-Analysis
Meta-analyses were conducted using RevMan5 (18) and effect 
sizes are reported as Cohen’s d. Cohen’s d is calculated as follows:

x xdepressed control

depressed control

−

−σ σ2 2

2

We derived effect sizes from means and standard deviations 
of cytokine levels from depressed patients and controls. Where 

reported, we preferentially used plasma values of cytokines in 
our analysis. When stimulated cytokine levels from in vitro assays 
were used, we selected the stimulant level at which maximal 
response was noted by the study authors.

Since we identified experimental variability during our 
systematic review, we presumed that there would be heterogeneity 
in our meta-analysis attributable to this variability and therefore 
conducted analysis using a random effects model.

A priori, we hypothesized that relative glucocorticoid 
resistance differences between patients and controls would also 
contribute to the heterogeneity observed between studies. Thus, 
we constructed two measures of relative glucocorticoid resistance 
that would allow us to undertake modifier analysis.

i) Glucocorticoid Resistance as Assessed by Relative 
Plasma Cortisol Levels Between Depressed Patients 
and Controls
We presumed that glucocorticoid resistance would manifest by 
high levels of plasma cortisol. We therefore used the ratio of 
average plasma cortisol in patients to average plasma cortisol in 
controls to assess relative glucocorticoid resistance between the 
two subject groups. Subsequent modifier analysis sub-grouped 
effect sizes from studies into those studies where patients were 
hypercortisolemic compared to controls (ratio patient:control 
> 1.2), patients had essentially similar plasma cortisol levels to 
controls (ratio, 0.8 < patient:control < 1.2; “eucortisolemia”), 
and where patients displayed lower plasma cortisol levels than 
controls (ratio patient:control < 0.8; “hypocortisolemia”). This 
modifier analysis allowed us to examine effect sizes in studies in 
which patients may have displayed more glucocorticoid resistance 
than in controls and to compare these with effect sizes from 
studies where there was a reduced relative difference in presumed 
glucocorticoid resistance between patients and controls.

Since we decided to use such an approach in our meta-
analysis, we report pooled effect sizes only for those cytokines 
whose values were reported by five or more retrieved studies.

ii) Glucocorticoid Resistance Measured by DST or Other 
Endocrine Suppression Test in Patients and Controls, or 
in In Vitro Studies of GR Function in Blood or Cells from 
Patients and Controls or from GR Expression Levels in 
the Blood of Patients and Controls
To assess relative differences in glucocorticoid resistance between 
patients and controls when an endocrine suppression test was 
used, we developed a continuous measure of this comparison—
the “glucocorticoid resistance index.”

proportion of suppressors proportion ofcontrol − ssuppressors
proportion of suppressors

patients

conntrol

This measure of relative difference in glucocorticoid 
resistance varies between −1 (all controls glucocorticoid 
resistant and none of patients) and 1 (all patients 
glucocorticoid  resistant and none of controls). Such an 
approach avoids the mathematical difficulties inherent to 
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comparing numbers of non-suppressors in patients and 
controls. We used the “glucocorticoid resistance index” as a 
variable to rank retrieved studies by the relative difference in 
glucocorticoid resistance between patients and controls (i.e., 
studies listed first in Figures 4, 5, and 6 are those in which 
most, if not all, patients are glucocorticoid resistant and few, if 
any, controls are glucocorticoid resistant).

To analyze relative glucocorticoid resistance using in vitro 
measures of GR function, we modified the “glucocorticoid 
resistance index” as follows:

[ ] [1 1− − −proportion of basal proportion ofcontrol basal
proportion of basal

patients

control

]
[ ]1−

where “basal” is assay output in the absence of exogenous 
glucocorticoid. This measure varies in an identical manner to 
the classic “glucocorticoid resistance index.” When reported, we 
preferentially used these measures of GR function instead of GR 
expression.

To analyze relative glucocorticoid resistance using GR expression, 
we modified the “glucocorticoid resistance index” as follows:

GR expression GR expression
GR ex

control patients−
ppressioncontrol

This measure varies identically to those discussed above.
As we retrieved insufficient studies to conduct meta-analysis 

by individual cytokine in this arm of analysis, we selected from 
each study the cytokine reported (if more than one was reported) 
using the following prioritization criteria: 1) for studies reporting 
an endocrine suppression test result in patients and controls, 
cytokines for which most of the other studies also reported a 
value; barring this, cytokines for which a plasma level, rather 
than an in vitro level, was reported; 2)  for studies reporting an 
in vitro measure of GR function or GR expression in patients 
and controls, cytokines for which most of other studies also 
reported a value from plasma; barring this, cytokines for which 
the maximum positive effect size was demonstrated in plasma.

Assessment of Heterogeneity
Heterogeneity in pooling effects sizes was first assessed visually 
on forest plots. Standard assessments of heterogeneity calculated 
by RevMan (τ2 and I2) were further used to assess the contribution 
of heterogeneity between studies to overall appropriateness in 
pooling effect sizes. τ2

 and I2 were used to examine the impact 
of moderator analysis on pooled effects sizes generated in sub-
group analysis.

Sensitivity Analysis and Reporting Bias
We conducted standard serial exclusion of studies to assess for 
individual study effect on the overall effect size reported. Funnel 
plots were generated in RevMan (18).

RESULTS

As three separate yet complementary approaches were utilized 
to examine our question, we report results for each approach 
serially.

i) Glucocorticoid Resistance as Assessed 
by Relative Plasma Cortisol Levels 
Between Depressed Patients and Controls
There were 3,328 articles identified in our database search 
(Figure  1). After removal of duplicates and review of titles and 
abstracts to ensure that studies met our inclusion criteria, 45 articles 
were retrieved for full-text review. Twelve articles were excluded 
for the following reasons: 2 studies did not include a control group; 
5 studies did not report a measure of cortisol; 1 study reported 
cytokine levels only after oral dexamethasone challenge of patients 
and controls; 1 study did not report cytokine measures; 1 study 
did not use a structured clinical/diagnostic interview to diagnose 
depression in patients or to exclude mental illness in controls; 
2 studies included patients who suffered from bipolar, psychotic, 
or substance use disorders.

Further detailed review of the remaining 33 articles identified 
two articles that examined the same cytokine in the same patient 
population. We excluded one of these articles (19) to avoid 
duplication bias and included the other, which reported a more 
comprehensive analysis of the subjects (20). This left 32 articles 
to include in our review (Table 1).

All studies were either of a case–control design or a non-
randomized cohort design. For the latter type of study, we 
extracted data only from the baseline timepoint. This removed 
the impact of treatment interventions and effectively transformed 
the extracted data into a case–control design.

All studies reported either plasma or salivary cortisol levels 
in patients and controls. One study reported both plasma 
and salivary cortisol as well as GR expression (45). Thirty 
(94%) studies collected blood or saliva for cortisol analysis in 
the morning, generally between the hours of 0700 and 1100 
(Table 1). Of the two remaining studies, one collected samples 
for cortisol analysis in the afternoon (50) and the other did so 
in the evening (47). Nine studies specifically mentioned a rest 
period of 15 to 45 min prior to the collection of samples used 
for quantification of cortisol (20–22, 23, 29, 35, 41, 44, 50). The 
remaining studies did not comment on this subject. Only two 
studies reported cortisol awakening responses in the form of area 
under the curve with respect to ground (AUCg) as their cortisol 
outcome measure (37, 49). All other studies reported average 
cross-sectional cortisol levels at the time specified in Table 1.

Twenty-four (75%) studies reported plasma, blood or salivary 
levels of cytokines measured by either ELISA or mRNA expression. 
The remaining studies reported only cytokine or mRNA levels 
from in vitro analysis of whole blood or immune cells. For the 
24 studies that reported plasma, blood or salivary levels of 
cytokines, 23 either collected cytokine samples concomitantly 
with cortisol samples or within 1 h of the collection of cortisol 
samples. The remaining study (47) collected cytokine samples at 
1200 and cortisol samples between 1900 and 2200. 
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Of note, 29 (91%) studies reported results from patients 
and controls with no psychiatric nor medical co-morbidities. 
Two studies were conducted exclusively in the elderly (age 
range, 50–90 years) who displayed a number of medical 
co-morbidities, such as coronary artery disease, diabetes, 
osteoarthritis, and major vascular neurocognitive disorder (45, 
48). Patient and control groups in these studies were equally 
matched for medical and psychiatric co-morbidities, including 
neurocognitive disorders (48).

Antidepressant medications were used in patients in 69% of 
reviewed studies. Only three studies included patients who were 
using anti-inflammatory medications including glucocorticoids 
(doses not reported), but in two of these studies, less than 5% of 

patients used these medications (37, 49), and in the other study 
(48), anti-inflammatory medication use was negated by the use 
of matched controls. A small number of studies (13%) had gaps 
in the reported data that could not be rectified by attempted 
contact with study authors (21, 43, 48, 49).

Seven studies reported C-reactive protein (CRP) levels (20, 37, 
44, 45, 47, 49, 50), one study reported eosinophil cationic protein 
(ECP) levels (27), one study reported eosinophil chemotactic 
protein-2 (EOTAXIN-2) levels (27), five studies reported 
interferon-γ (IFN-γ) levels (22, 27, 36, 39, 43), six studies 
reported IL-1β levels (23, 31, 38, 40, 43, 46), two studies reported 
IL-1 receptor antagonist (IL-1RA) levels (31, 47), five studies 
reported IL-2 levels (23, 24, 26, 30, 39), two studies reported 

FIGURE 1 | Search strategy and article review process. Details of this are found in text. Abbreviations are as follows: DST, dexamethasone suppression test; GR, 
glucocorticoid receptor.
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TABLE 1 | Studies included in analysis using relative plasma cortisol levels as a measure of glucocorticoid resistance.

Study Patients Control Age Medical 
co-morbidity

Psychiatric 
co-morbidity

Medications 
in patients

Anti-
inflammatories

Diagnostic 
method

Cortisol 
source; 
sample 
timing/
detail

Cortisol 
level 
patients

Cortisol 
level 
control

Cortisol 
ratio—
patients/
control

Cytokine; 
source; 
sample 
timing/
detail 

Stimulant Cytokine level 
patient

Cytokine Level 
Control

Alesci (21)a 9 
outpatients

9, 
matched

Adult No No Yes No SCID-IV Plasma; at 
0800/after 
30-min rest

9.7 +/− 1.0 
(SEM) µg/dL

11.4 +/− 
0.8 (SEM) 
µg/dL

0.85 IL-6; plasma; 
0900/after 
60-min rest

None 5.3 +/− 1.5 (SEM) 
pg/ml

3.4 +/− 0.6 
(SEM) pg/ml

Allen (22) 37 
combined 
inpatients 
and 
outpatients

20 Adult No No Yes No SCID-IV Salivary; 
30-min post-
awakening/
variable 
waking time

12.24 +/− 
3.55 (SD) 
nM

10.5 +/− 
1.5 (SD) 
nM

1.16 IL-6, IL-8, 
IL-10, IFN-γ; 
plasma; 
between 0800 
and 1100

None IL-6—2.72 +/− 
1.67 (SD) pg/ml; 
IL-8— 2.23 +/− 3.55 
(SD); IL-10 – 7.27 
+/− 2.73 (SD) pg/ml; 
IFN-γ—17.7 +/− 4.27 
(SD) pg/ml

IL-6—2.8 +/− 0.3 
(SEM) pg/ml; 
IL-8 - 11 +/− 1.0 
(SEM) pg/ml; 
IL-10 - 6.5 +/− 
1.0 (SEM) pg/ml; 
IFN-γ—15.2 +/− 
2.3 (SEM) pg/ml

Anisman 
(23)

45 
outpatients

27 Adult No No No No Patient—
clinical 
interview; 
control— 
MINI

Plasma; 
between 
0730 and 
0900/after 
20-min rest

12.61 +/− 
3.59 (SD) 
µg/dL

16.18 +/− 
5.45 (SD) 
µg/dL

0.78 IL-1β, IL-2; 
ex vivo cells 
stimulated

PHA IL-1β—1,281.1 +/− 
36.19 (SD) µg/ml; IL- 
2—512.89 +/− 22.9 
(SD) pg/ml

IL-1β—1,400 
+/− 519.62 (SD) 
µg/ml; IL-2—980 
+/− 519.62 (SD) 
pg/ml

Bauer (24) 36 
inpatients

31 Adult No No Yes No Patient—
clinical 
interview; 
control— 
clinical 
interview

Salivary; 
at 1000/
prior to 
phlebotomy

11.88 +/− 
3.5 (SD) nM

9.1 +/− 5.7 
(SD) nM

1.31 IL-2, TNF-α; 
ex vivo cells 
stimulated

PHA 
(IL-2), LPS 
(TNF-α)

IL-2—338.5 +/− 
69.8 (SEM) pg/ml; 
TNF-α—880 +/− 90 
(SEM) pg/ml

IL-2 297.1 +/− 
101.7 (SEM) pg/
ml; TNF-α—890 
+/− 90 (SEM) 
pg/ml

Carvalho 
(25)

19 
inpatients

21 Adult No No Yes No SCID-IV Plasma; 
morning

340 +/− 30 
(SEM) pg/ml

200 +/− 
20 (SEM) 
pg/ml

1.7 IL-4, IL-6, 
IL-10, MCP-1, 
TNF-α, VEGF; 
plasma; 
morning

None IL-4—2.6 +/− 0.1 
(SEM) pg/ml; IL-6 - 
3.0 +/− 0.1 (SEM) 
pg/ml; IL-10—1.7 
+/− 0.05 (SEM) pg/
ml; MCP-1—150 
+/− 15 (SEM) pg/
ml; TNF-α—2.9 
+/− 0.1 (SEM) pg/ml; 
VEGF—14.5 +/− 1.5 
(SEM) pg/ml

IL-4—3.2 +/− 
0.5 (SEM) pg/
ml; IL-6 - 1.9 +/− 
0.15 (SEM) pg/
ml; IL-10—1.3 
+/− 0.05 (SEM) 
pg/ml; MCP-1 
- 120 +/− 10 
(SEM) pg/ml; 
TNF-α- 2.3 +/− 
0.2 (SEM) pg/ml; 
VEGF - 23 +/− 2 
(SEM) pg/ml

Carvalho 
(13)

15, 
inpatients

28 Adult No No Yes No Patient—
SCID–IV; 
control – not 
specified

Plasma; at 
1000

429.4 +/− 
55.4 (SEM) 
nM

242.2 +/− 
14.8 (SEM) 
nM

1.77 IL-6; plasma 
and whole 
blood 
stimulated; at 
1000 (plasma)

LPS 
(whole 
blood)

Plasma—3.0 +/− 
0.29 (SEM) pg/
ml; whole blood 
stimulated—1,025 
+/− 175 (SEM) pg/ml

Plasma—2.4 +/− 
0.1 (SEM) pg/
ml; whole blood 
stimulated—875 
+/− 150 (SEM) 
pg/ml

Cubala 
(20)b

20 
outpatients

20 Adult No No No No SCID-IV Plasma; 
between 
0800 and 
0900/after 
45-min rest

426.95 
(369.2, 
484.6) (95% 
CI) nM

322 (264.5, 
379.5) 
(95% CI) 
nM

1.33 CRP; salivary; 
between 0800 
and 0900/after 
45-min rest

None 108.07 +/− 97.74 
(SD) pg/ml

115.7 +/− 80.18 
(SD) pg/ml

Darko (26) 20 
inpatients

20 Adult No No No No SCID-III Plasma; 
between 
0830 and 
0930

20 +/− 5 
(SD) µg/dL

16 +/− 5 
(SD) µg/dL

1.25 IL-2; ex vivo 

cells stimulated
PHA 3.3 +/− 6.0 (SD) 

IU/ml
3.0 +/− 3.2 (SD) 
IU/ml
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TABLE 1 | Continued

Study Patients Control Age Medical 
co-morbidity

Psychiatric 
co-morbidity

Medications 
in patients

Anti-
inflammatories

Diagnostic 
method

Cortisol 
source; 
sample 
timing/
detail

Cortisol 
level 
patients

Cortisol 
level 
control

Cortisol 
ratio—
patients/
control

Cytokine; 
source; 
sample 
timing/
detail 

Stimulant Cytokine level 
patient

Cytokine Level 
Control

Du (27) 21 
outpatients

27 Adult No No Not specified No Clinical 
interview

Salivary; at 
0800

8.6 +/− 2.4 
(SEM) pg/µL

8.4 +/− 
1.5 (SEM) 
pg/µL

1.02 ECP, 
EOTAXIN-2, 
IFN-γ, 
RANTES, TNF-
α; plasma; at 
0800

None ECP—8.9 +/− 
0.6 (SEM) µg/L; 
EOTAXIN-2 − 306.9 
+/− 72.7 (SEM) pg/
ml; IFN-γ—149.5 +/− 
10.1 (SEM) pg/ml; 
RANTES—3368.0 
+/− 129.6 (SEM) pg/
ml; TNF-α—132.3 
+/− 9.8 (SEM) pg/ml 

ECP—12.5 +/− 
1.9 (SEM) µg/L; 
EOTAXIN-2— 
383.6 +/− 84.0 
(SEM) pg/ml; 
IFN-γ—143.8 +/− 
6.7 (SEM) pg/ml; 
RANTES— 
3,410.8 +/− 
113.9 (SEM) 
pg/ml; TNF-
α—126.8 +/− 8.8 
(SEM) pg/ml

Fitzgerald 
(28)

19 38 Adult No No Yes No Patient—
clinical 
interview; 
control—not 
specified

Plasma; 
between 
0900 and 
1100

325.5 +/− 
26.4 (SEM) 
nM

294.6 +/− 
28.3 (SEM) 
nM

1.1 IL-6; TNF-α; 
plasma; 
between 0900 
and 1100

None TNF-alpha—22.02 
+/− 3.62 picogram/
ml (mean +/− SEM); 
n = 19, IL-6—1.18 
+/− 0.12 picogram/
ml; n = 19

TNF-alpha— 
12.10 +/− 2.56 
picogram/mL  
(mean +/− SEM); 
n = 38, IL-6—
0.73 +/− 0.11 
picogram/ml;  
n = 38

Humphreys 
(29)

9 
outpatients

11 Adult No No No No Patient—
SCID-IV; 
control—not 
specified

Plasma; at 
0800/after 
30-min rest

20.1 +/− 3.7 
(SEM) µg/dL

19.5 +/− 
7.7 (SEM) 
µg/dL

1.03 IL-6; ex 

vivo cells 
unstimulated 
and stimulated

LPS Unstimulated— 
3,541.2 +/− 
726.8 (SEM) pg/
ml; stimulated 
– 19,867.7 +/− 
3,649.2 (SEM) pg/ml

Unstimulated— 
380.4 +/− 77.5 
(SEM) pg/ml; 
stimulated— 
33,142.2 +/− 
1,547.2 (SEM) 
pg/ml

Jozuka (30) 17 
outpatients

10 Adult No No No No Clinical 
interview

Plasma; 
between 
0900 and 
1000

7.1 +/− 4.5 
(SD) µg/dL

12.3 +/− 
3.8 (SD) 
µg/dL

0.58 IL-2; plasma; 
between 0900 
and 1000

None 542 +/− 111 (SD) 
pg/ml

344 +/− 98 (SD) 
pg/ml

Kaestner 
(31)

37 
inpatients

37 Adult No No No No SCID-IV Plasma; at 
0800

203.51 +/− 
14.46 (SD) 
ng/ml

180 +/− 
80 (SD) 
ng/ml

1.13 IL-1β, IL-1RA; 
plasma; at 
0800

None IL-1β—37.3 +/− 
6.19 (SD) pg/ml; 
IL-1RA—2,224.32 
+/− 47.81 (SD) pg/ml

IL-1β—21 +/− 
27 (SD) pg/ml; 
IL-1RA—1,600 
+/− 750 (SD) 
pg/ml

Kahl (32) 34 
outpatients

25 Adult No No Yes No Patient—
SCID-IV; 
controls—
standardized 
psychiatric 
interview

Plasma; 
between 
0700 and 
0800

579.1 +/− 
162.6 (SD)

423.4 +/− 
150.1 (SD) 
nM

1.37 IL-6, TNF-α; 
plasma; 
between 0700 
and 0800

None IL-6—1.5 +/− 0.8 
(SD) pg/ml; TNF-
α—1.7 +/− 1.5 (SD) 
pg/ml

IL-6—1.7 +/− 
1.4 (SD) pg/ml; 
TNF-α —0.7 +/− 
0.5 (SD) pg/ml

Kahl (33) 27 
inpatients

19 Adult No No Yes No Patient—
SCID-IV; 
control—
standard 
psychiatric 
interview

Plasma; 
between 
0700 and 
0800

556.7+/− 
150.5 (SD) 
nM

412.3 +/− 
123.4 (SD) 
nM

1.35 IL-6, TNF-α; 
plasma; 
between 0700 
and 0800

None IL-6—1.9 +/− 2.2 
(SD) pg/ml; TNF-
α—1.9 +/− 1.8 (SD) 
pg/ml

IL-6—1.8 +/− 
1.4 (SD) pg/ml; 
TNF-α —0.8 +/− 
0.5 (SD) pg/ml

96

https://www.frontiersin.org/journals/psychiatry#articles
https://www.frontiersin.org/journals/psychiatry
www.frontiersin.org


G
lucocorticoids and C

ytokines in D
epression

P
errin et al.

9
June 2019 | Volum

e 10 | A
rticle 423

Frontiers in P
sychiatry | w

w
w

.frontiersin.org

TABLE 1 | Continued

Study Patients Control Age Medical 
co-morbidity

Psychiatric 
co-morbidity

Medications 
in patients

Anti-
inflammatories

Diagnostic 
method

Cortisol 
source; 
sample 
timing/
detail

Cortisol 
level 
patients

Cortisol 
level 
control

Cortisol 
ratio—
patients/
control

Cytokine; 
source; 
sample 
timing/
detail 

Stimulant Cytokine level 
patient

Cytokine Level 
Control

Kahl (34) 18 20 Adult No No Yes No Patient—
SCID-IV; 
control—
standardized 
psychiatric 
interview

Plasma; 
between 
0700 and 
0800

661 +/− 384 
(SD) nM

554 +/− 
119 (SD) 
nM

1.19 IL-6, TNF-α; 
plasma; 
between 0700 
and 0800

None IL-6—1.45 +/− 1.8 
(SD) pg/ml; TNF-
α—3.90 +/− 0.9 (SD) 
pg/mL

IL-6—0.76 +/− 
0.33 (SD) pg/
ml; TNF-α—1.99 
+/− 0.51 (SD) 
pg/mL

Karlovic 
(35)

55 
inpatients

18 Adult No No Yes No SCID-IV Plasma; 
between 
0800 and 
0900/after 
30-min rest

711.24 +/− 
26.9 (SD) 
nM

560 +/− 
65.2 (SD) 
nM

1.27 IL-6, TNF-α; 
plasma; 
between 0800 
and 0900/after 
30-min rest

None IL-6—2.83 +/− 1.70 
(SD) pg/ml; TNF-
α—6.47 +/− 2.57 
(SD) pg/ml

IL-6—1.75 +/− 
1.1 (SD) pg/L; 
TNF-α - 5.40 +/− 
1.5 (SD) pg/L

Landmann 
(36)

22 
outpatients

22 Adult No No Yes No Patient—
clinical 
interview; 
control—not 
specified

Plasma; at 
0800

505 +/− 27 
(SEM) nM

465 +/− 
35 (SD) nM

1.09 IFN-γ, TNF-α; 
plasma (IFN-γ); 
at 0800 (IFN-γ),  
ex vivo cells 
stimulated 
(TNF-α)

LPS IFN-γ—30 +/− 8 
(SEM) ng/L; TNF-
α—1.42 +/− 0.4 
(SEM) ng/L

IFN-γ—17 +/− 4 
(SEM) ng/L; TNF-
α—2.01 +/− 0.49 
(SEM) ng/L

Lamers (37) 233 
inpatients 
and 
outpatients

543 Adult Yes—CAD 
(~5%); DM 
(~5%)

Yes—anxiety 
disorders

Yes Yes (~5%) Composite 
Diagnostic 
International 
Interview

Salivary; 
awakening 
response 
(area under 
curve to 
ground) at 
awakening, 
30-, 45- and 
60-min post-
awakening/
variable 
waking time

19.38 +/− 
4.41 (SD) nM

18.47 +/− 
6.85 (SD) 
nM

1.05 CRP, IL-6, 
TNF-α; 
plasma; not 
specified

None CRP—1.53 +/− 1.24 
(SD) mg/L; IL-6—0.9 
+/− 0.95 (SD) pg/ml; 
TNF-α – 0.91 +/− 0.96 
(SD) pg/ml

CRP—1.12 +/− 
3.23 (SD) mg/L; 
IL-6—0.73 +/− 
2.58 (SD) pg/ml;  
TNF-α—0.84 +/−  
1.90 (SD) pg/ml

Lisi (38)b 8 10 Adult No No Yes No MINI Salivary; at 
0800

0.49 +/− 
0.08 (SEM) 
µg/dL

0.43 +/− 
0.08 (SEM) 
µg/dL

1.14 IL-1β, IL-6; 
mRNA from 
ex vivo cells 
stimulated

LPS IL-1β—595.86 +/− 
 930.1 (SD) U; IL-6 — 
1,322.65 +/− 
1,740.07 (SD) U 

IL-1β—300.37 
+/− 442.48 (SD) 
U; IL-6—612.63 
+/− 912.97 
(SD) U

Lopes (39) 22 
outpatients

15 Adult No No Yes No SCID-IV Salivary; at 
0800/always 
prior to 
venipuncture

7.8 +/− 1.0 
(SEM) nM

12.5 +/− 
0.5 (SEM) 
nM

0.624 IL-2, IL-4, 
IL-6, IL-10, 
IFN-γ, TNF-α; 
ex vivo cells 
stimulated 

PHA IL-2—512.14 +/− 
109.12 (SEM) pg/ml;  
IL-4—346.37 +/− 
87.48 (SEM) pg/ml; 
IL-6—3,931.82 +/− 
880.15 (SEM) pg/ml; 
IL-10—1617.94 +/− 
413.02 (SEM) pg/
ml; IFN-γ—2,390.71 
+/− 548.54; n = 22; 
TNF-α—2034.02 +/− 
491.16 (SEM) pg/ml

IL-2—1060.90 
+/− 189.40 
(SEM) pg/ml; 
IL-4—2997.29 
+/− 1,710.04 
(SEM) pg/ml; 
IL-6—4,867.81 
+/− 1,532.65 
(SEM) pg/ml; 
IL-10—2,467 
+/− 956.16 
(SEM) pg/ml; 
IFN-γ—2,813.09 
+/− 767.76; TNF-
α— 2,063.64 +/− 
593.13 (SEM) 
pg/ml
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TABLE 1 | Continued

Study Patients Control Age Medical 
co-morbidity

Psychiatric 
co-morbidity

Medications 
in patients

Anti-
inflammatories

Diagnostic 
method

Cortisol 
source; 
sample 
timing/
detail

Cortisol 
level 
patients

Cortisol 
level 
control

Cortisol 
ratio—
patients/
control

Cytokine; 
source; 
sample 
timing/
detail 

Stimulant Cytokine level 
patient

Cytokine Level 
Control

Maes (40) 19 
inpatients

10 Adult No No Yes No Patient—
SCID-III; 
control—not 
specified

Plasma; at 
0800

18.92 +/− 
4.32 (SD) 
µg/dL

21.65 +/− 
10.10 (SD) 
µg/dL

0.87 IL-1β; ex 

vivo cells 
stimulated

PHA 2,225 +/− 1,773 (SD) 
pg/ml

1115 +/− 1105 
(SD) pg/ml

Maes (41) 48 
inpatients

32 Adult No No Yes No Patient—
SCID-IV; 
control—
structured 
interview

Plasma; at 
0900/after 
30-min rest

9.7 +/− 4.5 
(SEM) µg/dL

9.3 +/− 
3.7 (SEM) 
µg/dL

0.96 IL-6, sIL-2R; 
plasma; at 
0845/after 
15-min rest

None IL-6—3.5 +/− 0.3 
(SEM) pg/ml; sIL- 
2R—293 +/− 69 
(SEM) U/ml

IL-6—1.5 +/− 0.3 
(SEM) pg/ml; 
sIL-2R—236 +/− 
100 (SEM) U/ml

Maes (42) 17 
inpatients

8 Adult No No Yes No Patient—
SCID-III; 
controls—
not specified

Plasma; at 
0800

19.34 +/− 
4.53 (SD) 
µg/dL

22.7 +/− 
10.6 (SD) 
µg/dL

0.85 IL-6; ex 

vivo cells 
stimulated

PHA 45.3 +/− 6.93 (SD) 
ng/ml

26.6 +/− 13.7 
(SD) ng/ml

Marques-
Deak (43)a

45–46 
outpatients

36–39, 
matched

Adult No No No No Patient—
SCID-IV; 
control—not 
specified

Plasma; at 
0800

11.6 +/− 3.8 
(SD) µg/dL

12.4 +/− 
5.5 (SD) 
µg/dL

0.94 IFN-γ, IL-1β, 
IL-6; plasma; 
at 0800

None IFN-γ—197.4 
+/− 230.8 (SD) IU/
ml; IL-1β—36.4 
+/− 18.5 (SD) ng/
ml; IL-6—132.4 +/− 
83.2 (SD) ng/ml

IFN-γ—148.4 +/− 
149.8 (SD) IU/
ml; IL-1β—35.2 
+/− 14.1 (SD) ng/
ml; IL-6—129.3 
+/− 61.6 (SD) 
ng/ml

Martinac 
(44)

49 
inpatients

40 Adult No No No No Patient—
MINI; 
control—not 
specified

Plasma; at 
0800/after 
30-min rest

748.6 +/− 
419.31 (SD) 
nM

476 +/− 
116.88 
(SD) nM

1.57 CRP, IL-6, 
TNF-α; 
plasma; at 
0800/after 
30-min rest

None CRP—1.4 +/− 0.84 
(SD) mg/L; IL-6 - 2 
+/− 0.38 (SD) pg/ml; 
TNF-α—5.9 +/− 2.29 
(SD) pg/ml

 CRP—0.7 +/− 
0.31 (SD) mg/L; 
IL-6—1.0 +/− 
0.77 (SD) pg/
ml; TNF-α – 5.0 
+/− 2.31 (SD) 
pg/ml

Nikkheslat 
(45)b

19–20 
outpatients

27–33, 
matched

Geriatric 
(~68–70)

Yes—past 
MI (~40%); 
HTN (~75%); 
DM (~20%); 
dyslipidemia 
(~60%)

No Yes (~40%) No Clinical 
Interview 
Schedule-
Revised 

Plasma; 
before 
1000

CRP—
288.80 
+/− 119.29 
(SD) nM; 
IL-6—
290.79 
+/− 123.91 
(SD) nM

CRP—
341.67 
+/− 104.58 
(SD) nM; 
IL-6—
369.22 
+/− 117.16 
(SD) nM

CRP—
0.85; 
IL-6—0.79

CRP, IL-6; 
plasma; before 
1000

None CRP—4.99 +/− 
4.57 (SD) mg/L; 
IL-6—2.38 +/− 1.90 
(SD) pg/ml

CRP—3.34 +/− 
4.29 (SD) mg/L; 
IL-6—2.21 +/− 
2.49 (SD) pg/ml

Rudzki (46) 34 
outpatients

29 Adult No No Yes No Clinical 
interview

Plasma; 
between 
0800 and 
0900

174.76 +/− 
12.08 (SEM) 
µg/ml

136.35 
+/− 10.29 
(SEM) 
µg/ml

1.28 IL-1β, IL-6, 
TNF-α; 
plasma; 
between 0800 
and 0900

None IL-1β—0.122 +/− 
0.14 (SEM) pg/ml; 
IL-6—2.07 +/− 2.58 
(SEM) pg/ml; TNF-
α—1.09 +/− 0.4 
(SEM) pg/ml

IL-1β—0.43 +/− 
0.26 (SEM) pg/
ml; IL-6—1.26 
+/− 0.1 (SEM) 
pg/ml; TNF-
α—1.7 +/− 0.13 
(SEM) pg/ml
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TABLE 1 | Continued

Study Patients Control Age Medical 
co-morbidity

Psychiatric 
co-morbidity

Medications 
in patients

Anti-
inflammatories

Diagnostic 
method

Cortisol 
source; 
sample 
timing/
detail

Cortisol 
level 
patients

Cortisol 
level 
control

Cortisol 
ratio—
patients/
control

Cytokine; 
source; 
sample 
timing/
detail 

Stimulant Cytokine level 
patient

Cytokine Level 
Control

Simmons 
(47)b

26 
outpatients

28 Adult No No Yes No SCID-IV Salivary; 
between 
1900 and 
2200

CRP—1.31 
+/− 0.66 
(SD) nM; 
IL-1RA—1.31 
+/− 0.65 
(SD) nM; 
IL-6—1.29 
+/− 0.65 (SD) 
nM

CRP—1.21 
+/− 0.52 
(SD) nM; 
IL-1RA— 
1.20 
+/− 0.51 
(SD) nM; 
IL-6—1.20 
+/− 0.56 
(SD) nM

CRP - 
1.085; 
IL-1RA - 
1.091; IL-6 
- 1.075

CRP, IL-1RA, 
IL-6; plasma; 
at 1200

None CRP—3.17 +/− 
2.91 (SD) mg/L; 
IL-1RA—0.35 
+/− 0.20 (SD) ng/ml; 
IL-6—1.06 +/− 0.48 
(SD) pg/ml

CRP—2.54 +/− 
2.54 (SD) mg/L; 
IL-1RA—0.36 
+/− 0.28 
(SD) ng/ml; 
IL-6—0.72 +/− 
0.36 (SD) pg/ml

Trzonkowski 
(48)a

10 
inpatients

10, 
matched

Geriatric 
(~50–90)

Yes, multiple Yes—MNCD 
(~50%)

No Yes SCID-IV Plasma; 
between 
0700 and 
0800

355 +/− 35 
(SD) nM

280 +/− 
20 (SD) nM

1.27 IL-6, TNF-α; 
plasma; 
between 0700 
and 0800

None IL-6—650 +/− 140 
(SD) fg/ml; TNF-α 
– 0.6 +/− 0.3 (SD) 
pg/ml

IL-6—230 
+/− 20 (SD) fg/
ml; TNF-α —0.3 
+/− 0.05 (SD) 
pg/ml

Verduijn 
(49)a

1,083 
outpatients

228 Adult Yes, multiple Yes—
Substance 
use

Yes Yes (~5%) Composite 
Diagnostic 
International 
Interview

Salivary; 
awakening 
response 
(Area Under 
Curve to 
Ground) at 
awakening, 
30-, 45- and 
60-min post-
awakening/
variable 
waking time

19.4 +/− 7.4 
(SD) nM

18.2 +/− 
7.0 (SD) 
nM

1.07 CRP, IL-6; 
plasma; 
around 0800

None CRP—1.39 +/− 
3.59 (SD) mg/L; 
IL-6—0.80 +/− 2.63 
(SD) mg/L

CRP—1.14 +/− 
3.09 (SD) mg/L; 
IL-6—0.71 +/− 
2.47 (SD) mg/L

Weinstein 
(50)b

14 
outpatients

14 Adult No No Yes No SCID-IV Plasma; 
between 
1200 and 
1600/after 
30-min rest

IL-6/CRP— 
12.05 +/−  
6.10 (SD) U; 
TNF-α— 
12.48 +/− 
6.16 (SD) U

IL-6/CRP—
11.71 +/− 
5.38 (SD) 
U; TNF-
α—12.05 
+/− 5.41 
(SD) U

IL-6/
CRP—
1.029; 
TNF-
α—1.036

CRP, IL-6, 
TNF-α; 
plasma; 
between 1200 
and 1600/after 
30-min rest

None CRP—1.35 +/− 1.18 
(SD) U; IL-6 - 3.0 
+/−3.33 (SD) U; 
TNF-α—2.48 +/− 
1.31 (SD) U

CRP—2.01 
+/− 2.15 (SD) 
U; IL-6 - 1.23 
+/− 1.13 (SD) 
U; TNF-α—3.11 
+/− 1.83 (SD) U

Where only a single standardized interview is listed, it was applied to both patient and control. acortisol and cytokine levels were not reported for every patient and control; analysis based on mean and standard deviation reported in paper. banalysis based on raw data provided by study authors. 
Abbreviations are as follows: CAD, coronary artery disease; DM, diabetes mellitus; MI, myocardial infarction; HTN, hypertension; MNCD, major neurocognitive disorder; SCID-IV, Structured Clinical Interview for DSM-IV; SCID-III, Structured Clinical Interview for DSM-III; MINI, Mini-international Psychiatric 
Interview; SD, standard deviation; SEM, standard error of the mean; PHA, phytohemagglutinin; ECP, eosinophil cationic protein; EOTAXIN-2, eosinophil chemotactic protein-2; IL-1RA, IL-1 receptor antagonist; MCP-1, monocyte chemoattractant protein-1; RANTES, Regulated on Activation, Normal T cell 
Expressed and Secreted.
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IL-4 levels (25, 39), 23 studies reported IL-6 levels (13, 21, 22, 
25, 28, 29, 32–34, 35, 37, 38, 41–49–50), one study reported IL-8 
levels (22), three studies reported IL-10 levels (22, 25, 39), one 
study reported monocyte chemoattractant protein-1 (MCP-1) 
levels (25), one study reported regulated on activation, normal 
T cell expressed and secreted (RANTES) levels (27), one study 
reported soluble IL-2 Receptor (sIL-2R) levels (41), 15 studies 
reported TNF-α levels (24, 25, 27, 28, 32–36, 37, 39, 44, 46, 48, 
50), and one study reported vascular endothelial growth factor 
(VEGF) levels (25).

As stated previously, we only meta-analyzed data for a specific 
cytokine if five or more studies reported values in patients and 
controls. We therefore meta-analyzed data for CRP, IFN-γ, IL-1β, 
IL-2, IL-6, TNF-α, comparing depressed patients with controls.

Irrespective of glucocorticoid resistance levels, patient levels of 
CRP (d = 0.23; 95% CI, −0.01 to 0.46), IFN-γ (d = 0.22; 95% CI, 
−0.02 to 0.47), IL-1β (d = 0.18; 95% CI, −0.24 to 0.61), and IL-2 
(d = −0.12; 95% CI, −1.04 to 0.80) were all not significantly different 
from control. The number of studies included for these cytokines 
only just met the minimum number articulated above and in most 

cases the distribution of studies between “cortisolemic” states was 
uneven, leading to insufficient study number in each sub-group to 
conduct a formal analysis (data not shown).

IL-6 analysis was based on 1,850 patients and 1,232 controls. 
Overall effect size was 0.61 (95% CI, 0.36–0.85), demonstrating 
a significantly higher level of IL-6 in depressed patients than 
in controls (p < 0.0001; Figure 2). Heterogeneity was visually 
evident in this analysis, and this was reflected in statistical 
analysis of the same (τ2 = 0.25; p < 0.00001; I2 = 84%). Overall 
effect size was insensitive to serial exclusion of studies.

Grouping studies by glucocorticoid resistance revealed 
that when glucocorticoid resistance in patients was higher in 
either the hypercortisolemic or eucortisolemic sub-groups 
(ratio patient:control > 1.2, or 0.8 < ratio patient:control < 1.2, 
respectively), overall effect size was significantly larger than in 
the two studies where patients were hypocortisolemic (ratio 
patient:control < 0.8) (Figure 2). Notably, hypercortisolemic 
patients (d = 0.94; 95% CI, 0.29–1.59) tended to produce more 
IL-6 compared with controls than did eucortisolemic patients 
(d  = 0.52; 95% CI, 0.26–0.77), but this difference was not 

FIGURE 2 | Forest plot analysing effect size for IL-6, sub-grouping studies by relative plasma cortisol levels. Hypercortisolemic corresponds to patient:control 
plasma cortisol ratio > 1.2; eucortisolemic corresponds to patient:control plasma cortisol ratio > 0.8 or < 1.2; hypocortisolemic corresponds to patient:control 
plasma cortisol ratio < 0.8.
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statistically significant (Figure 2). The difference in effect size 
observed between hypercortisolemic and eucortisolemic sub-
groups was insensitive to serial exclusion of studies. Overall, sub-
group difference testing revealed a significant result (χ2 = 7.3; df = 2; 
p = 0.03), but we did not interpret this to signify the existence 
of a true difference between the three sub-groups as the 95% 
confidence intervals associated with effect sizes in each sub-group 
sequentially overlapped as one moved from hypocortisolemic to 
eucortisolemic to hypercortisolemic. 

Sub-grouping by presumed glucocorticoid resistance status 
did not appreciably reduce heterogeneity of the meta-analysis 
in the hypercortisolemic (τ2 = 0.74; p < 0.00001; I2 = 89%) or 
the eucortisolemic (τ2 = 0.13; p < 0.00001; I2 = 77%) sub-groups. 
The hypocortisolemic sub-group was homogeneous visually and 
statistically (Figure 2).

Analysis for TNF-α was based on data from 604 patients and 864 
controls. Irrespective of presumed glucocorticoid resistance status, 
overall effect was moderate [d = 0.40; 95% CI, 0.12–0.68); p = 0.006]. 
Heterogeneity was visible on forest plots (Figure 3) and was reflected 
in measures of heterogeneity in the overall analysis (τ2 = 0.21; p < 
0.00001; I2 = 78%). Subgrouping by glucocorticoid resistance status 
revealed a non-significant trend for hypercortisolemic patients to 
produce more TNF-α than eucortisolemic patients when compared 
with control (d = 0.46; 95% CI, 0.12–0.79 and d = 0.39; 95% CI, −0.19 
to 0.98, respectively). An insufficient number of studies reported 
TNF-α levels in hypocortisolemic patients to allow comparison of 

this sub-group to the hypercortisolemic and eucortisolemic sub-
groups (Figure 3). Significant heterogeneity was evident in both 
latter sub-groups (τ2 = 0.15; p < 0.005; I2 = 65% and τ2 = 0.43; p < 
0.00001; I2 = 86%, respectively).

Censoring of Kahl et al. (34), which was a visual outlier in the 
eucortisolemic sub-group (Figure 3) accentuated the difference 
in effect size between the hypercortisolemic and eucortisolemic 
sub-groups (whole data set d = 0.46 and 0.39 versus adjusted 
d = 0.46 and 0.07, respectively), but this did not result in a 
statistically significant difference between the two sub-groups. 
Eucortisolemic sub-group heterogeneity significantly decreased 
with this censure (adjusted τ2 = 0.03; p = 0.18; I2 = 36%). Serial 
exclusion of Rudzki et al. (46) and Trzonkowski et al. (48) from 
the hypercortisolemic sub-group did not significantly alter the 
difference in effect size between the hypercortisolemic and the 
eucortisolemic sub-groups. Only exclusion of Rudzki et al. (46) 
from the hypercortisolemic sub-group significantly reduced 
sub-group heterogeneity (adjusted τ2 = 0.06; p = 0.10; I2 = 43%).

ii) Glucocorticoid Resistance Measured by 
DST or Other Endocrine Suppression Test 
in Patients and Controls
Six hundred forty articles were identified in our database 
search (Figure 1). After removal of duplicates and review of 
titles and abstracts to ensure that studies met our inclusion 

FIGURE 3 | Forest plot analysing effect size for TNF-α, sub-grouping studies by relative plasma cortisol levels. Hypercortisolemic corresponds to patient:control 
plasma cortisol ratio > 1.2; eucortisolemic corresponds to patient:control plasma cortisol ratio > 0.8 or < 1,2; hypocortisolemic corresponds to patient:control 
plasma cortisol ratio < 0.8.
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criteria, 20 articles were retrieved for full-text review. 11 
studies were excluded for the following reasons: four were 
conference abstracts for which we could not obtain associated 
study data; four studies did not include a control group; two 
studies did not use an independent measure of glucocorticoid 
resistance; one study did not measure glucocorticoid 
resistance. This left nine studies for our review (Table 2). All 
included studies were of a similar design to that described 
in  the section Glucocorticoid Resistance as Assessed by 
Relative Plasma Cortisol Levels Between Depressed Patients 
and Controls.

Eight of nine studies evaluated glucocorticoid resistance using 
the DST. One study (28) used a previously validated cutaneous 
glucocorticoid resistance test (53) to evaluate glucocorticoid 
resistance. For this study, we used equivalent suppressor counts 
in patients and controls to calculate the “glucocorticoid resistance 
index.” Six studies reported unstimulated levels of cytokines, 
either measured by ELISA or by mRNA expression levels of 
cytokines (13, 28, 29, 36, 51, 52). Six studies used stimulation 
with mitogens to elicit increased cytokine secretion either from 
whole blood or in vitro culture of immune cells (13, 24, 29, 36, 
38, 40), but only three studies relied exclusively on this method 
(24, 38, 40).

All studies were completed on adult patients and controls 
who had no medical nor psychiatric co-morbidities, including 
substance use. Seven of nine studies reported data from patients 
who were at least partially treated with antidepressants at 
the time of assay. No subjects in any of the studies were using 
anti-inflammatory medications or had a history or current 
manifestation of inflammatory illnesses.

One study reported IFN-γ levels (36), 2 studies reported 
IL-1β levels (38, 40), one study reported IL-2 levels (24), six 
studies reported IL-6 levels (13, 28, 29, 38, 51, 52), and three 
studies reported TNF-α levels (24, 28, 36). Five studies examined 
multiple cytokines (24, 28, 29, 36, 38), though not all studies 
reported a level for each cytokine examined (29).

IL-6 levels from studies that examined this cytokine were 
used to determine effect sizes, whereas in the case of studies that 
did not examine IL-6, unstimulated levels of another cytokine 
were used (see Figure 4). This approach was taken to minimize 
heterogeneity introduced by pooling plasma and stimulated 
study results. All patients were at least as glucocorticoid resistant 
as controls.

When studies were ranked from high glucocorticoid 
resistance in patients to low glucocorticoid resistance using the 
“glucocorticoid resistance index,” there was a slight trend for 
studies that reported high glucocorticoid resistance in patients 
to produce larger effect sizes (based on 170 patients and 187 
controls; Figure 4A). Examination of regression residuals did 
not support the existence of a significant trend, however (data 
not shown). Patients overall produced significantly higher levels 
of cytokines than did controls (d = 0.81; 95% CI, 0.39–1.23); 
p = 0.0002). Significant heterogeneity was noted in this analysis 
(τ2 = 0.27; p = 0.001; I2 = 69%).

Since three of nine studies used in the above analysis only 
were able to contribute data obtained by stimulating in vitro 

cultured immune cells with mitogens, we hypothesized that this 
experimental dichotomy may have introduced heterogeneity that 
affected our overall analysis.

When we performed moderator analysis that separated studies 
into those where cytokine levels were obtained from plasma 
and those where cytokine values were obtained from in vitro 
stimulated immune cells, there was a reduction in heterogeneity 
within subgroups (plasma: τ2 = 0.20; p = 0.02; I2 = 62%; stimulated: 
τ2 = 0.03; p = 0.31; I2 = 15%; Figure 4B). Furthermore, this analysis 
revealed the preservation of effect size in the plasma sub-group 
(d = 1.04; 95% CI, 0.57–1.50) and separation of this effect from 
that seen in the in vitro stimulated sub-group (d = 0.24; 95% CI, 
−0.20 to 0.67). the difference between these two sub-groups was 
statistically significant (χ2 = 6.07; df = 1; p = 0.01). 

iii) Glucocorticoid Resistance Measured 
in In Vitro or from GR Expression Levels 
in Patients and Controls
Two hundred sixty-five articles were identified in our database 
search (Figure 1). After removal of duplicates and review of titles 
and abstracts to ensure that studies met our inclusion criteria, five 
articles were retrieved for full-text review. One study was excluded 
since it assessed only depressive symptoms and did not assess for 
the presence of a major depressive episode using a standardized 
clinical/diagnostic interview. One study was excluded because 
it assessed only children aged 6 to 11 years. Through expert 
consultation during peer review, we identified one additional study 
that did not appear in our literature search. This left four studies 
for our review (Table 3). All studies were of a case–control design.

Two of four studies used suppression of lipopolysaccharide 
(LPS)-induced IL-6 production by exogenous glucocorticoids 
to measure glucocorticoid resistance (13, 45, 54). Two studies 
used GR expression to assess glucocorticoid resistance (55, 
56). Patients in all studies generally displayed at least as much 
glucocorticoid resistance as controls did (Table 3).

Three of four studies examined adult patients and controls 
with no medical or psychiatric co-morbidities. The remaining 
study (45) examined geriatric patients only (age range 68–70). 
This latter study was conducted in subjects already known to 
suffer from coronary artery disease and thus both patients 
and controls displayed several cardiac co-morbidities. These 
included hypertension (~75% prevalence), dyslipidemia (~60% 
prevalence), diabetes (~20% prevalence), and previous myocardial 
infarction (~40% prevalence), although the prevalence of these 
co-morbidities were relatively equal between patients and controls.

The prevalence of patient antidepressant usage in each study 
varied between ~40% and 100%. None of the reviewed studies 
included patients or controls who were taking anti-inflammatory 
medications.

The most commonly reported cytokine level was IL-6, which 
was reported by all studies (13, 45, 54–56). IL-6 levels were used 
from three studies (13, 55, 56) to determine effect size, whereas 
CRP was used for the other study (45).

Overall effect size, based on 147 patients and 118 controls, 
was significantly different from 0 (d = 1.35; 95% CI, 0.53–2.18; 
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TABLE 2 | Studies included in analysis using endocrine suppression tests to measure relative glucocorticoid resistance.

Study Patients Controls Medications 
used in 
patients?

Diagnostic 
method

Cortisol 
source

Endocrine 
suppression 
test used

Endocrine 
suppression 
test results

Glucocorticoid 
resistance 
index

Cytokine and 
source

Stimulant Cytokine patient Cytokine control

Bauer (24) 36 
inpatients

31 Yes Clinical 
interview

Salivary DST Patient—26/36; 
control—30/31 
suppressors

0.25 IL-2; TNF-α; 
ex vivo cells 
stimulated

PHA 
(IL-2), LPS 
(TNF-α)

IL-2—338.5 +/− 69.8 
(SEM) pg/ml; TNF-
α—870 +/− 115 (SEM) 
pg/ml

IL-2—297.1 +/− 101.7 
(SEM) pg/ml; TNF-
α—880 +/− 100 (SEM) 
pg/ml

Carvalho 
(13)

15 
inpatients

28 Yes Patient—
SCID-IV; 
control—not 
specified

Plasma DST Patient—0/15 
suppressors; 
control—28/28 
suppressors

1 IL-6; plasma 
and whole 
blood 
stimulated

LPS Plasma—3.0 +/− 0.29 
(SEM) pg/ml; whole 
blood stimulated—1,025 
+/− 175 (SEM) pg/mL

Plasma—2.4 +/− 0.1 
(SEM) pg/ml; whole 
blood stimulated - 875 
+/− 150 (SEM) pg/ml

Fitzgerald 
(28)

19 38 Yes Patient—
clinical 
interview; 
control—not 
specified

Plasma Skin blanching 
secondary 
to topical 
corticosteroid 
cream

Patient—0/19 
suppressors; 
control—38/38 
suppressors

1 IL-6, TNF-α; 
plasma

None IL-6—1.18 +/− 0.12 
(SEM) pg/ml; TNF-
α—22.02 +/− 3.62 (SEM) 
pg/ml

IL-6—0.73 +/− 0.11 
(SEM) pg/ml; TNF-
α—12.10 +/− 2.56 
(SEM) pg/ml

Humphreys 
(29)

9 11 No Patient—
SCID-IV; 
control—not 
specified

Plasma DST Patient—7/9 
suppressors; 
control—10/11 
suppressors

0.14 IL-6; ex 
vivo cells 
unstimulated 
and stimulated

LPS Unstimulated—3,541.2 
+/− 726.8 (SEM) pg/ml; 
stimulated—19,867.7 
+/− 3649.2 (SEM) pg/ml

Unstimulated—380.4 
+/− 77.5 (SEM) pg/ml; 
stimulated—33,142.2 
+/− 1,547.2 (SEM) 
pg/ml

Landmann 
(36)

22 
outpatients

22 Yes Patient—
clinical 
interview; 
control—not 
specified

Plasma DST Patient—21/22 
suppressors; 
control—21/22 
suppressors

0 IFN-γ, TNF-α; 
plasma (IFN-γ) 
and ex vivo 
cells stimulated 
(TNF-α)

LPS IFN-γ—30 +/− 8 (SEM) 
ng/L; TNF-α—1.42 +/− 
0.4 (SEM) ng/L

IFN-γ—17 +/− 4 (SEM) 
ng/L; TNF-α - 2.01 
+/− 0.49 (SEM) ng/L

Lisi (38) 8 10 Yes MINI Salivary DST IL-1β—
patient—5/8 
suppressors, 
control—4/6 
suppressors; 
IL-6—
patient—6/8 
suppressors, 
control—4/7 
suppressors

IL-1β—0.0625; 
IL-6 —−0.31

IL-1β, IL-6; 
mRNA from 
ex vivo cells 
stimulated

LPS IL-1β—595.86 +/− 
930.1 (SD) U; IL-6 
− 1322.65 +/− 1740.07 
(SD) U 

IL-1β—444.68 
+/− 488.03 (SD) U; 
IL-6—695.3 +/− 
1,027.38 (SD) U

Maes (40) 19 
inpatients

10 Yes Patient—
SCID-III; 
control—not 
specified

Plasma DST Patient—13/19 
suppressors; 
control—8/10 
suppressors

0.145 IL-1β; ex vivo 
cells stimulated

PHA 2,225 +/− 1,773 (SD) 
pg/ml

1,115 +/− 1,105 (SD) 
pg/ml

Musselman 
(51)

11 
inpatients 
and 
outpatients

9 No SCID-III Plasma DST Patient—8/11 
suppressors; 
control—9/9 
suppressors

0.27 IL-6; plasma None 172.5 +/− 180.42 (SD) 
pg/ml

20.05 +/− 25.86 (SD) 
pg/ml

Soygur (52) 30 
inpatients

30 Yes SCID-IV Plasma DST Patient—63% 
suppressors; 
control—100% 
suppressors

0.37 IL-6; plasma None 17.75 +/− 5.15 (SD) 
ng/ml

9.5 +/− 4.66 (SD) 
ng/ml

Where only a single standardized interview is listed, it was applied to both patient and control. Abbreviations are as for Table 1, with the following exception: DST, dexamethasone suppression test.
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p = 0.001; Figure 5). Heterogeneity was high (τ2 = 0.61; p < 
0.0001; I2 = 87%). Sensitivity analysis demonstrated that 
the overall effect size was mildly sensitive to exclusion only 
of Carvalho et al. (55) (adjusted effect size following study 
removal of d = 1.26; 95% CI, −0.01 to 2.53). Ranking studies by 
calculated glucocorticoid resistance did not reveal an obvious 
positive association between glucocorticoid resistance and 
cytokine production (Figure 5).

Building on our ability to standardize measurements of 
glucocorticoid resistance obtained through DST or other 
endocrine suppression tests, in vitro assays of GR function and 
GR expression levels using our glucocorticoid resistance index, 
we conducted a combined analysis of the studies included 
in Figure 4 and 5, using the effect sizes and glucocorticoid 
resistance index values reported in those figures (Figure 6). 
The data presented for Carvalho et al. (13) in Figure 4A was 
used for this analysis as inclusion of the data for this study from 
Figure 5 as well would have resulted in duplication bias. For 
302 patients and 277 controls, overall effect size was moderate 
(d = 1.02; 95% CI, 0.55–1.49; p < 0.0001], but heterogeneity was 
high (τ2 = 0.56; p < 0.00001; I2 = 84%). Ranking studies from 
high to low glucocorticoid resistance index did not reveal a 

significant trend for higher inflammation to be associated with 
higher levels of glucocorticoid resistance in patients compared 
with controls (Figure 6). This was confirmed by observation of 
regression residuals (data not shown).

DISCUSSION

Individual studies have reported a possible positive association 
between glucocorticoid resistance and cytokine-mediated 
inflammation in depression. Other studies have failed to find 
evidence of the same phenomenon. The conflicting nature of the 
primary literature, combined with a consensus in the field that such 
a positive association indeed exists (11, 57), lead us to conduct the 
systematic review and meta-analytic work described above.

Initially we hypothesized that we would validate a positive 
association between glucocorticoid resistance and cytokine-
mediated inflammation. Despite multiple methods of examining 
our hypothesis, however, we found only modest evidence to support 
this idea, with the largest effects noticeable when glucocorticoid 
resistance is measured by plasma or salivary cortisol. Furthermore, 
when we combined data in which glucocorticoid resistance was 

FIGURE 4 | (A) Forest plot reporting effect size for cytokine stratified by “glucocorticoid resistance index” (GRI) calculated from DST or other endocrine suppression 
test. The specific cytokine selected for inclusion (based on criteria enumerated in Methods) is listed after the study name. Studies are ranked by GRI from high to 
low. (B) Forest plot of studies in (A) sub-grouped by source of cytokine. Stimulated levels were obtained from in vitro cultured cells using the stimulant specified in 
Table 2. Rank based on GRI (listed) as in (A). 
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TABLE 3 | Studies included in analysis using in vitro assays of GR function or GR expression to measure relative glucocorticoid resistance.

Study Patients Control Age Medical 
co-morbidity

Medications 
in patients

Diagnostic 
method

GR 
expression 
patients

GR 
expression 
control

In vitro 
assay % of 
basal with 
glucocorticoid 
patients

In vitro 
assay % of 
basal with 
glucocorticoid 
controls

Glucocorticoid 
resistance 
index

Cytokine 
measured

Cytokine 
level patient

Cytokine 
level control

Carvalho 
(13, 54)

15 
inpatients

28 Adult No Yes Patient—
SCID-IV; 
control—not 
specified

77 +/− 7 
(SEM) %

56 +/− 13 
(SEM) %

0.25 IL-6; 
plasma

1025 +/− 
175 (SEM) 
pg/ml

875 +/− 150 
(SEM) pg/ml

Carvalho 
(55)a

47
inpatients

42 Adult No Yes Patients—
SCID-IV; 
control—clinical 
interview

0.8 1 0.2 IL-1β, 
IL-6, IL-8; 
plasma

IL-1β—58.75 
+/− 43.93 
(SD) pg/ml; 
IL-6—1.525 
+/− 1.104 
(SD) pg/ml; 
IL-8—55 +/− 
40.55 (SD) 
pg/ml

IL-1β—22.5 
+/− 13.79 
(SD) pg/ml; 
IL-6 —0.2625 
+/− 0.08 
(SD) pg/ml; 
IL-8—22.5 
+/− 18.39 
(SD) pg/ml

Cattaneo 
(56)

74 
outpatients

34 Adult Not 
specifically 
excluded

Yes Patient—
Schedules 
for Clinical 
Assessment in 
Neuropsychiatry; 
control—
Psychosis 
Screening 
Questionnaire

0.85 +/− 
0.01 (SEM)

1.03 +/− 
0.02 (SEM)

0.17 IL-1A, 
IL-1B, IL-4, 
IL-6, IL-7, 
IL-8, IL-10, 
MIF, TNF; 
whole 
blood

IL-1α—1.00 
+/− 0.02 
(SEM); 
IL-1β—1.51 
+/− 0.03 
(SEM); 
IL-4—0.90 
+/− 0.02 
(SEM); 
IL-6—1.32 
+/− 0.01 
(SEM); 
IL-7—0.99 
+/− 0.02 
(SEM); 
IL-8—1.01 
+/− 0.01 
(SEM); 
IL-10—1.02 
+/− 0.01 
(SEM); 
MIF—1.30 
+/−0.03 
(SEM); 
TNF—1.55 
+/− 0.04

IL-1α—0.96 
+/− 0.04 
(SEM); 
IL-1β—1.03 
+/− 0.03 
(SEM); 
IL-4—0.99 
+/− 0.02 
(SEM); 
IL-6—1.08 
+/− 0.02 
(SEM); 
IL-7—1.03 
+/− 0.05 
(SEM); 
IL-8—1.00 
+/− 0.04 
(SEM); 
IL-10—1.00 
+/− 0.02 
(SEM); 
MIF—0.98 
+/− 0.04 
(SEM); 
TNF—0.97 
+/− 0.04 
(SEM)
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measured by the DST or other endocrine suppression tests, 
in vitro assays of GR function and GR expression, we were unable 
to increase the resolution of our analysis (Figure 6). The cross-
sectional nature of our analysis may have obscured a significant 
mild-to-moderate trend in the relationship between inflammation 
and more systemic measures of glucocorticoid resistance (e.g., 
cortisol levels, DST) that would have otherwise been detected by 
prospective studies specifically designed to address this question. 
A limitation of the current analysis is the design of the included 
studies, but in the absence of further published studies, we feel that 
our work is unlikely to have missed a significant trend.

We took an unbiased and inclusive approach to our literature 
search and review methodology. Although this may have 
contributed to the increased heterogeneity of meta-analytic 
results observed, it also allowed as many possible manifestations 
of glucocorticoid resistance to be included. At the same time, 
each measure of glucocorticoid resistance that we invoked had 
its limitations. Serum cortisol levels are not always elevated in 
depressed patients, as demonstrated by our review [e.g., Refs. 
(39) and (45)] and by other studies that were outside of our 
inclusion criteria (58–60). Work in the elderly suggests that 
frailty drives exhaustion of the HPA axis in depression, possibly 
leading to hypocortisolemia (59, 61, 62) whereas chronic over-
stimulation of the HPA axis in other age groups can cause long-
term hypocortisolemia (61, 63). Furthermore, diurnal variations 
in cortisol levels are a well-known phenomenon of the HPA 
axis, with the highest cortisol levels evident in healthy subjects 
within the first hour of awakening from sleep. Most studies 
incorporated in our analysis (94%) measured cortisol in the 
morning hours, but not all targeted the hour following arousal 
(see Table 1). In fact, the hours of cortisol measurement spanned 
0700–1100. This could have created variability in our assessment 
of glucocorticoid resistance in a given study, perhaps hampering 
the aggregation of data reported in Figures 2 and 3. On the 
other hand, the fact that most studies in our analysis restricted 
their measurement of cortisol to morning hours suggests that 
any variability that may have been introduced by this factor is 
likely minimal. Along the same line, levels of cytokines are also 
known to cycle in a circadian fashion. For example, the nadir of 
IL-6 in healthy subjects occurs between the hours of 0800 and 
1000 (64), very near to the hours that cortisol experiences its 
zenith. In the analysis represented in Figures 2 and 3, almost all 
studies (96%) that reported plasma levels of cytokines collected 
samples concurrently with those used to assess cortisol levels. 
The adherence of most studies to rigid timing when measuring 
cortisol and cytokines means that our assessment of the impact 
of glucocorticoid resistance on inflammation using reported 
cortisol levels is unlikely to have been significantly affected by 
circadian variabilities in these two factors.

Inflammation associated with chronic medical conditions can 
also compound variabilities between the included studies (65). 
We invoked the DST as a measure of glucocorticoid resistance to 
circumvent some of these limitations, but by its nature the DST 
measures peripheral glucocorticoid resistance only. Challenges 
persist in translating findings from the DST into inferences about 
effects in the central nervous system (CNS) and DST results are 
subject to a number of confounders such co-morbid medical TA
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illnesses (66). Finally, in vitro measurements of glucocorticoid 
resistance represent the most controlled mechanism through 
which to test peripheral resistance to glucocorticoids but suffer, 
like the DST, from limitations in translating their findings to 
the CNS. GR mRNA expression levels suffer from the same 
limitation (17).

Combining all three of these measures of glucocorticoid 
resistance has allowed us to take a complementary approach in 
our analysis, maximizing the likelihood that any trends present 
would be detected. We found that studies that used in vitro 
measures of GR function and/or GR expression to measure 
glucocorticoid resistance delivered the largest aggregate effect 
size [d = 1.35; 95% CI (0.53, 2.18)], but this must be balanced 
against the observation that we did not detect an obvious positive 
association between glucocorticoid resistance and cytokine 
production in that analysis. Thus, it is tempting to speculate that 
in vitro measurement of GR function and/or GR expression may 
be more likely to detect a significant effect, perhaps by removing 
potential confounders from the analysis. Verification of this 
contention will require further studies using these measures to be 
conducted. The other two approaches used to assess glucocorticoid 
resistance in our study only delivered effect sizes between 0.5 and 
1. These measures of glucocorticoid resistance may be subject 
to greater confounding. In the case of relative cortisol levels as 

a measurement of glucocorticoid resistance, studies included in 
our analysis obtained cortisol from varying sources (e.g., plasma 
and salivary) and the timing of cortisol measurement may have 
varied slightly between studies, even when a standardized time 
of collection was reported. Both possibilities could have created 
small variations between studies. In the case of the DST or other 
endocrine suppression tests as a measure of glucocorticoid 
resistance, a significant source of variation could be the different 
cut-off levels used by the included studies to classify a participant 
as a non-suppressor. As we mentioned in our Methods, all cut-offs 
used exceeded the generally accepted value of 1.8 µg/dL (17), but 
we were unable to create a standardized cut-off level as we did not 
possess the raw post-dexamethasone cortisol values that would 
have allow us to make such a determination. Taken together, 
we contend that although all measurements of glucocorticoid 
resistance are subject to confounding, in vitro measurements of 
GR function and/or GR expression may represent the method 
least likely to be subject to bias as in vitro assays allow tighter 
control of potential confounders and GR expression may represent 
a more durable measure of the effects of excess glucocorticoids 
in depressed patients than do cross-sectional measurements of 
cortisol or cortisol responses.

In this regard, using GR expression to identify glucocorticoid 
resistance in depression is a relatively new technique. 

FIGURE 5 | Forest plot reporting effect size for cytokine stratified by “glucocorticoid resistance index” (GRI) calculated from in vitro GR functional assay or GR expression. 
The specific cytokine selected for inclusion (based on criteria enumerated in Methods) is listed after the study name. Studies are ranked by GRI from high to low.

FIGURE 6 | Forest plot reporting effect size for cytokine stratified by “glucocorticoid resistance index” (GRI) calculated from DST or other endocrine 
suppression test results, in vitro GR functional assay or GR expression. Studies are ranked by GRI from high to low. All study data included in this figure were 
previously shown in Figures 4 or 5. Only the data for Carvalho et al. (13) from Figure 4A was used in this analysis as inclusion of data from this study from 
both Figure 4A and Figure 5 would have introduced duplication bias. Listed beside each study is the glucocorticoid resistance outcome measure that was 
used to calculate the GRI.
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Matsubara et al. (67) were among the first to identify decreased 
expression of the α transcript of the GR in depressed patients 
(GRα mRNA encodes the active form of the GR). Prior to this it 
was believed that the alterations in GR function in depression 
were driven primarily by post-translational modifications to 
the GR or its signalling pathways (68). Two subsequent studies 
(55, 56), including one from our group (56), confirmed that GR 
expression is indeed reduced in depressed patients. Carvalho 
et al. (55) found that increased levels of IL-8 in depressed 
patients correlated inversely with GR expression levels, 
suggesting that a certain level of intrinsic inflammation may 
occur independently of glucocorticoid resistance in depression, 
and that this inflammation plays a key role in the subsequent 
development of glucocorticoid resistance and further immune 
dysregulation through downregulation of GR transcript 
expression. This compounds the many impairments in GR 
function that occur during glucocorticoid resistance, including 
impaired translocation of the active GR from the cytoplasm to 
the nucleus, reduced affinity of the GR for its transcriptional 
binding sites and activation of competitor isoforms of the GR 
that impair the function of GRα (3). Although full exploration 
of the mechanism that underlies decreased GR expression in 
depression due to glucocorticoid resistance is still to come, 
the importance of GR expression as an independent signifier 
of glucocorticoid resistance is reinforced by the observation 
that GR expression levels did not correlate with the results of 
the DST in the population of depressed patients studied by 
Matsubara et al. (67). Furthermore, a reversal of decreased 
GR expression is seen when patients are treated with 
antidepressants (56), arguing that GR expression represents an 
important outcome of glucocorticoid resistance. Including GR 
expression analysis along with the DST and cortisol studies in 
any characterization of glucocorticoid resistance in depression 
is therefore highly desirable.

Our development of the glucocorticoid resistance index, 
a normalized way to compare glucocorticoid resistance 
between patients and controls across multiple studies, is 
rooted in the concept of relative differences. Thus, small 
absolute differences in resistance between patients and 
controls in a given study could result in a large relative 
difference. We feel that this limitation is acceptable as it is 
challenging to compare studies that report absolute counts of 
suppressors and non-suppressors in the DST or other in vitro 
measures of glucocorticoid resistance. Our index allows rapid 
conversion of absolute measures of glucocorticoid resistance 
into meaningful differences through which studies can be 
compared. As well, our index allows the conversion of count 
data on glucocorticoid resistance into a continuous measure 
of the same, possibly facilitating the use of meta-regression 
techniques in moderator analysis. In this study, we considered 
the use of meta-regression on our moderator, but preliminary 
analysis demonstrated no significant trends in plots of 
regression residuals (see Results). Nonetheless, we were able 
to capitalize on the power of the glucocorticoid resistance 
index when we combined data from studies using the DST 
or endocrine suppression tests, in vitro assays of GR function 
and GR expression in Figure 6.

Ideally, a common measure of glucocorticoid resistance 
would be used. The field as a whole has faced challenges in 
this task as it is unclear which measure should be adopted as 
standard (17). This likely relates in part to the variable results 
that are obtained when multiple measurements of resistance 
are applied to a single population of patients and controls. 
For example, when we used the cortisol levels of patients 
and controls, as well as in vitro measures of GR function to 
assess glucocorticoid resistance in the subjects analyzed by 
Nikkheslat et al. (45), we noted variances in the degree of 
glucocorticoid resistance inferred. We do not feel that this 
represents a systemic flaw in the data reported; rather, it is 
likely the result of the variability found when glucocorticoid 
resistance is quantified by different measures. We propose that 
multiple methods for evaluating glucocorticoid resistance are 
likely ideal for comparing data across many studies. Studies, 
such as those conducted by Miller et al. (69), which although 
not included in our meta-analysis due to conflict with our 
inclusion criteria, represent an ideal approach, assessing 
glucocorticoid resistance and inflammation through multiple 
independent measures.

Several studies that measured glucocorticoid resistance and 
cytokine production were identified by our review but were not 
be included in our meta-analyses. Doolin et al. (70) examined the 
relationship between waking salivary cortisol levels and mRNA 
expression of IL-1β and IFN-γ in whole blood. Measurements 
of both cytokine mRNA levels were non-Gaussian, with 
outcomes reported only as the results of non-parametric tests. 
We were unable to obtain raw data to circumvent this limitation. 
Nonetheless, Doolin et al. (70) report an inverse association 
between decreased morning cortisol reactivity, a marker of 
glucocorticoid resistance in depression, and IL-1β expression. 
No such relationship between cortisol reactivity and IFN-γ 
expression was found. Therefore, some support for an association 
between glucocorticoid resistance increased cytokine production 
in depression was found.

Stelzhammer et al. (71) used multiplex immunoassay and 
mass spectrometry to examine the relationship between plasma 
cortisol and IL-1RA, IL-16, and MIF in depressed and controls. 
They report higher levels of plasma cortisol and all three 
inflammatory markers in depressed patients but did not report 
parametric outcomes of statistical tests. Therefore, we were 
unable to incorporate this data into our analysis, but observe that 
elevated plasma cortisol and cytokine production co-existed in 
depressed patients (71), consistent with models promulgated in 
the literature (11).

Finally, Maes et al. (72) utilized the same patients as 
those in Maes et al. (40), undertaking in vitro analysis of 
both glucocorticoid resistance and cytokine production 
in cell culture supernatants. A strong association between 
elevated resistance to glucocorticoids (assessed using in vitro 
proliferation in the presence of exogenous glucocorticoids) 
and in vitro IL-1β production was noted. We elected to 
incorporate in our meta-analysis only studies that reported an 
in vitro measure of glucocorticoid resistance and plasma levels 
of cytokines in Figure 5 and therefore, Maes et al. (72) was 
excluded from our analysis. Nonetheless, this study further 
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supports the idea that elevated glucocorticoid resistance 
in depression is associated with increased cytokine-based 
inflammation.

Initially we considered more stringency in our exclusion 
criteria, such as removal of all studies in which medical 
co-morbidities were present in patients and controls, but we 
later re-considered this decision when we uncovered a body 
of literature that demonstrated changes in glucocorticoid 
resistance in patients who were both depressed and afflicted 
with a chronic illnesses such as cancer (51, 52). We amended 
our approach to include study participants who may have 
suffered from medical conditions, so long as their inclusion 
was balanced by matching controls. We reasoned that this 
would increase the resolution of our work, and we believe that 
it did without materially biasing our results, as censoring of the 
four studies examining glucocorticoid resistance and cytokine 
production in depressed patients with a variety of medical 
illnesses [e.g., asthma (27), cancers (51, 52), and cardiac disease 
(45)] did not significantly change our conclusions (data not 
shown). Unfortunately, the heterogeneity of these four studies 
in terms of the medical illnesses displayed by study subjects 
and the lack of similar published works precluded a more 
detailed analysis of this facet of inflammation in depression. 
These findings highlight the complex interplay between 
affective illness and medical illness that was discussed earlier 
(3, 73–75).

In further efforts to include as many relevant studies as were 
available, we chose not to exclude the results from the two studies 
that examined older adults exclusively (45, 48). All other retrieved 
studies limited participants to those of adult ages yet pioneering 
studies of glucocorticoid resistance in the depressed elderly 
provided early evidence that standard measures of glucocorticoid 
resistance are valid in a population of advanced age, even in 
the context of elevated levels of dementia and chronic medical 
conditions (76, 77). Indeed, glucocorticoid resistance measured 
using the DST has been validated by meta-analysis to be able to 
distinguish severely depressed, psychotic individuals from those 
with more mild disease (78); elderly depressed patients are more 
likely to experience psychotic symptoms than their younger 
counterparts. We believe that inclusion of studies that examined 
both elderly patients and those with medical co-morbidities 
served to more faithfully model real-world facets of depression 
and allowed us to include potential results that may represent 
medical illnesses priming the HPA axis for increased dysfunction 
in the context of concurrent depression.

Our conclusions are limited by the small number of study 
subjects included in this review. This directly impacted the 
precision of effect size estimates, as did the variations in 
individual study design. Our latter analyses (Figures 4–6) 
were particularly at risk of such bias given the need to pool 
cytokine results. To rule out this possibility, we conducted 
the same analysis using varied combinations of cytokines 
from those reported in Figures 4 and 5, finding that these 
ancillary analyses did not differ significantly from the results 
reported (data not shown). Nevertheless, there is a need for 
large studies specifically designed to examine the association 
between glucocorticoid resistance and cytokine production 

in depression. These studies should include multiple objective 
measures of glucocorticoid resistance including cortisol levels, 
the DST, GR expression, and possibly, in vitro measures of GR 
function. A comprehensive characterization of glucocorticoid 
resistance could then be paired with an analysis of at least 
plasma levels of the major cytokines reviewed in this work 
(e.g., IL-6 and TNF-α). Inclusion of medication-free patients 
may be an important aspect to consider in the design of 
these studies also as levels of both cortisol and cytokines 
are modulated by antidepressant treatment (13, 79, 80). The 
work of Cattaneo et al. (56), which is included in this paper, 
represents an ideal design template from which to draw upon 
in future work. Here, medication-free depressed patients and 
controls were recruited, and expression of multiple cytokines 
as well as the GR was taken as part of a larger study examining 
immune predictors of antidepressant response. Addition of 
a measurement of plasma cortisol and a DST in each subject 
would have created a study tailor-made to examine the 
questions that we have asked in this review.

Two smaller relevant studies have been conducted that may 
help to fill this gap temporarily. Vedder et al. (81) elegantly 
assessed the response of the immune system in real-time before 
and after exposure to LPS. Using concurrent dexamethasone 
challenge, the authors demonstrated that in depressed patients 
who were glucocorticoid resistant, increased IL-6 was produced 
in response to LPS. This contrasted with IL-6 levels produced 
by patients with lower levels of glucocorticoid resistance and 
controls. Therefore, glucocorticoid resistance in depressed patients 
facilitated IL-6 release. Heiser et al. (79) took an in vitro approach 
to examining the same process. They report that immune cells 
from depressed patients that were resistant to the anti-proliferative 
effects of glucocorticoids in vitro produced more TNF-α in 
response to a mitogen than controls. Together with our work, these 
studies suggest that when glucocorticoid resistance is thoroughly 
quantified, support for its association with the increased 
production of pro-inflammatory cytokines can be found.

How depressed patients manifest high levels of inflammation 
in the face of elevated serum glucocorticoids is a psychiatric 
paradox. Our work demonstrates that we are still in the 
throes of disentangling this complex relationship. We believe 
that glucocorticoid resistance in depressed patients may lead 
the immune system to escape from the normally restraining 
function(s) of glucocorticoids. The results we present here 
provide some support for our hypothesis, but also highlight 
the need for further work. We are excited to be part of this 
ongoing search.
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The dramatic fluctuations in energy demands by the rhythmic succession of night and day
on our planet has prompted a geophysical evolutionary need for biological temporal
organization across phylogeny. The intrinsic circadian timing system (CS) represents a
highly conserved and sophisticated internal “clock,” adjusted to the 24-h rotation period of
the earth, enabling a nyctohemeral coordination of numerous physiologic processes, from
gene expression to behavior. The human CS is tightly and bidirectionally interconnected to
the stress system (SS). Both systems are fundamental for survival and regulate each
other’s activity in order to prepare the organism for the anticipated cyclic challenges.
Thereby, the understanding of the temporal relationship between stressors and stress
responses is critical for the comprehension of the molecular basis of physiology and
pathogenesis of disease. A critical loss of the harmonious timed order at different
organizational levels may affect the fundamental properties of neuroendocrine, immune,
and autonomic systems, leading to a breakdown of biobehavioral adaptative mechanisms
with increased stress sensitivity and vulnerability. In this review, following an overview of
the functional components of the SS and CS, we present their multilevel interactions and
discuss how traumatic stress can alter the interplay between the two systems. Circadian
dysregulation after traumatic stress exposure may represent a core feature of trauma-
related disorders mediating enduring neurobiological correlates of trauma through
maladaptive stress regulation. Understanding the mechanisms susceptible to circadian
dysregulation and their role in stress-related disorders could provide new insights into
disease mechanisms, advancing psychochronobiological treatment possibilities and
preventive strategies in stress-exposed populations.

Keywords: circadian system, circadian clocks, stress, trauma, HPA axis, autonomic nervous system,
glucocorticoids, sleep
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INTRODUCTION

Living organisms consist of highly complex biological systems
with the ability to preserve a complex dynamic balance state with
a constant oscillation around an ideal homeostatic condition
(nonequilibrium homeodynamic state) (1, 2). To achieve this,
organisms have developed a highly sophisticated and multifaceted
biological system, the so-called stress system (SS), which serves
self-regulation and adaptability of the organism to ongoing
intrinsic or extrinsic, real or perceived (i.e., subject-dependent
value attribution), altering challenges or stimuli, defined as
stressors (3). When stressors surpass a manageable severity or
temporal verge, the initiated stress response redirects energy
depending on the present needs to restore homeostasis (4–8).
Thus, stress is defined as the state of threatened homeodynamic
balance of the organism (6, 9). Repeated, ephemeral, and
motivating stress states lead to adaptive responses and are fairly
beneficial, while inadequate, aversive, excessive, or prolonged
stress may surpass the natural regulatory capacity and adjustive
resources of the organism and majorly affect adaptive responses
leading to cacostasis (i.e., negatively altered homedynamic state,
dyshomeostasis), and accumulated cacostatic load (6).

The understanding of the temporal relationship between
stressors and physiological stress responses is crucial for the
comprehension of the molecular basis of physiology and
pathophysiology of disease. Biological processes always take
place in an appropriate order, in order to synchronize required
homeostatic mechanisms. As life on earth has evolved in the
context of the earth’s rotation around its own axis, there was a
geophysical evolutionary need for temporal organization and
adjustment of internal activity and physiological processes to the
dramatic fluctuations in energy demands by the constant
rhythmic succession of night and day. This need has generated
a highly conserved and sophisticated internal molecular “clock,”
creating endogenous rhythmicity with a period adjusted to the
24-h rotation of our planet throughout phylogeny (10–12).

This intrinsic circadian (lat. circa diem – about a day) timing
system (CS) creates an internal representation of the external
Zeitraum (germ. time-space) and helps living organisms keep
track of time from a centrally created circadian rhythm (13, 14).
By orchestrating a dynamic milieu that oscillates with a 24-h
rhythm, the CS coordinates physiological processes and rhythmic
changes, from gene expression to behavior and prepares living
organisms for the anticipated cyclic challenges, promoting
homeostasis and environmental adaptation and creating an
evolutionary advantage to optimize survival (15–18). In order to
achieve this, the CS upregulates the SS before the organism’s active
phase and turns it down again for the resting and restorative phases.

The CS and the SS are both fundamental for survival and
regulate each other’s activity, through intimate reciprocal
interactions with each other at multiple levels (19, 20). An
intact communication between the CS and the SS is important
for maintaining homeostasis and environmental adaptation (21–
23). The SS is undoubtedly at the heart of circadian biology,
mediating temporal signals and vice versa (24). Investigating the
interactions between the two systems is essential to understand
pathophysiological pathways mediating risk for disease, as
Frontiers in Psychiatry | www.frontiersin.org 2114
dysregulation in either of these systems may lead to similar
pathologic conditions (25).

In this review, following a general overview of the functional
elements of the two systems, we present their multilevel
interconnections, and discuss how excessive (i.e., traumatic)
stress can affect the harmonic central and peripheral interplay
between SS and CS.
THE HUMAN STRESS SYSTEM

The human SS consists of central and peripheral components.
The central, critically interconnected components of the SS are
mainly located in the hypothalamus and the brainstem, and
include: (a) the parvocellular neurons of corticotropine-
releasing-hormone (CRH), (b) the arginine-vasopressin (AVP)
neurons of the hypothalamic paraventricular nuclei (PVN), (c)
the CRH neurons of the paragigantocellular and parabranchial
nuclei of the medulla and the locus caeruleus (LC), (d) the
arcuate nucleus proopiomelanocortin-derived peptides alpha-
melanocyte–stimulating hormone (MSH) and beta-endorphin,
(e) other mostly noradrenergic (NE) cell groups in the medulla
and pons (LC/NE system), and (f) the central nuclei of the
autonomic nervous system (ANS) [cf. Figure 1]. These
neuroanatomical loci communicate with each other,
influencing their own activity, and interact with several other
brain subsystems, such as the mesocortical/mesolimbic
dopaminergic system, involved in reward and motivation and
the amygdala central nuclei, generating fear and anger (6, 9).

The peripheral components of the SS include: (a) the
hypothalamic-pituitary-adrenal (HPA) axis and (b) the ANS
comprised of (i) the sympathetic nervous system (SNS) and
sympatho-adrenomedullary (SAM) system and (ii) the
parasympathetic nervous system (PNS). The main terminal
peripheral effector molecules of the SS are the HPA axis-
regulated glucocorticoids (GCs; i.e., cortisol in humans), and
the SAM-regulated catecholamines (Cas; i.e., NE and
epinephrine). HPA axis and ANS have largely complementary
actions throughout the body and are increasingly studied
together (26), as integrated and interrelated components of an
internal neural regulation system. Findings suggest that the
appropriate regulation of the HPA-axis depends in part on
ANS, especially on vagal influences (27).

When stressors exceed a certain severity or temporal
threshold, stressor-related information initiates a complex stress
response to induce remarkably consistent acute, normally
adaptive, and time-limited microphysiologic, mesophysiologic,
and macrophysiologic compensatory responses throughout
several effector tissues (4–8, 28). Together, these responses
represent a well-orchestrated and fine-tuned answer to
challenge in both the central nervous system (CNS) and the
somatic periphery (29).

The Autonomic Nervous System
The ANS, although not under overt voluntary direction
(autonomous), plays a crucial role in the preservation of a
homeodynamic balance by providing a rapidly responding
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control system for a plethora of physiological reactions to
physical, emotional, and cognitive challenges (30, 31). It is
especially the precise regulation of organ and tissue functions
through fine-tuning of the ANS limbs that is crucial for optimal
stress reactivity, adaptive responses, and health.

The exact ANS activity is fine-tuned through central and
peripheral autonomic reflexes and feedback mechanisms (32).
The central autonomic modulation does not simply rely on a
monolithic network of brain regions, but is instead regulated by
the central autonomic network (CAN), an internal central
autonomic regulation system featuring certain task and
division specificity (33). The CAN is additionally characterized
by bilateral interconnections, parallel organization, state-
dependent activity, and neurochemical complexity (30, 31,
34, 35). It includes the insular cortex, central nucleus of the
amygdala, hypothalamus, periaqueductal gray matter,
parabrachial complex, nucleus of the solitary tract (NTS), and
ventrolateral medulla (VLM) (36, 37) [cf. Figure 2]. The insular
cortex and amygdala mediate high-order autonomic control
associated with cognitive perception and emotional responses
through hypothalamic-brainstem pathways (30). NTS, PVN,
and VLM contain a network of respiratory, cardiovagal,
and vasomotor neurons, receiving afferent vagal sensory input
from thoracic and abdominal viscera and other cranial nerves.
These structures accordingly modulate the activity of
preganglionic autonomic neurons. CAN dysregulation can be
critically involved in stress-related disorders, as it may affect
downstream autonomic centers, thereby altering peripheral ANS
activity and cardiac function. CAN dysregulation (35, 38, 39)
may affect downstream autonomic core centers, thereby altering
peripheral ANS activity (39–41).
Frontiers in Psychiatry | www.frontiersin.org 3115
Since the early 20th century, pragmatic and anatomic reasons
has led to a common division of the ANS into two, or sometimes
three peripheral tracts: the sympathetic, parasympathetic and,
the largest one, the enteric autonomic division, although they
practically mirror one larger control system (42, 43). Especially
the separation into SNS and PNS has led to enormous
misconceptions, the most serious being the view that the
two divisions are somehow in opposition to each other. On
the contrary, SNS and the PNS are rather in a dynamic
interdependent state and act on different time scales but in
concert and through numerous and multilevel, bidirectional
interactions to control the abovementioned autonomic
functions (44, 45), while autonomic dysregulation translates
into decreased dynamic adaptability, increased morbidity and
mortality (27, 30, 46, 47). In general, since both systems are
tonically active, the PNS can both assist and antagonize SNS
functions by withdrawing or increasing its activity (frequency of
neuronal discharge), respectively. This ANS characteristic is of
major importance and improves its ability to more precisely
regulate an effector’s function.

The Sympathetic Nervous System
The SNS originates in brainstem nuclei and gives rise to
preganglionic cholinergic (ACh) efferent fibers mostly projecting
to postganglionic sympathetic ganglia. The long postganglionic
neurons terminate outwards on effector tissues, mostly releasing
NE. Alternatively, preganglionic neurons may also directly
synapse with the modified postganglionic chromaffin cells of the
adrenal medulla. A sympathetic activation, thus, principally
releases NE (locally and to a lesser extent systematically from
the adrenal medulla) or adrenaline (systematically from the
FIGURE 1 | Basic anatomy of stress and circadian system related brain structures. AVP, arginine vasopressin; GABA, g-aminobutyric acid; DM SCN, dorsomedial
suprachiasmatic nucleus; IGL, thalamic intergeniculate leaflet; LC, locus caeruleus; RHT, retinohypothalamic tract; VIP, vasoactive intestinal peptide; VL SCN,
ventrolateral SCN.
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adrenal medulla) together with other neuropeptides in the body
(48). Sympathetic activation generally predominates during
emergency (fight-or-flight) situations and during exercise,
preparing the body for strenuous physical activity.

The Parasympathetic Nervous System
Whereas SNS activity depends on two peripheral branches
(neural and adrenal), parasympathetic activity is displayed only
by nerves. The preganglionic neurons of the PNS arise from
numerous brainstem nuclei and from the spinal sacral region
(S2–S4). The preganglionic ACh-axons are quite long and
synapse with short postganglionic neurons within terminal
ganglia close to or embedded to effector tissues. Accordingly,
PNS actions are mostly more discrete and localized compared to
the SNS, where a more diffuse and global discharge is probable.
The preganglionic neurons that arise from the brainstem exit the
CNS through the cranial nerves [N. occulomotorius (III); N.
facialis (VII); N. glossopharyngeus (IX); N. vagus (X)]. The vagus
nerve innervates the thoracic and abdominal viscera and has a
major physiological significance, as approximately ¾ of all
parasympathetic fibers originate from the vagus nerve (49).
The PNS stress response is mainly activated by the nucleus
ambiguus and the dorsal motor nucleus of the vagus nerve,
possibly after NTS stimulation. The PNS generally predominates
during resting conditions towards conserving and storing
energy or regulating basic body functions (e.g., digestion,
defecation, urination). Through its tonic properties, the PNS is
vital especially under resting conditions, and is, therefore,
Frontiers in Psychiatry | www.frontiersin.org 4116
particularly implicated in the development of cardiovascular
diseases and other comorbidities (27, 50).

The Hypothalamus-Pituitary-Adrenal Axis
The HPA axis consists of the PVN, the pituitary corticotrophs
and the zona fasciculata of the adrenal cortex, which,
respectively, employ corticotropin-releasing hormone (CRH)/
arginine vasopressin (AVP), adrenocorticotropic hormone
(ACTH), and glucocorticoids (GCs, i.e., cortisol in humans) as
their signalling effector molecules [cf. Figure 2]. CRH and AVP
are released from the PVN into the hypophyseal system in
response to stimulatory signals from higher regulatory centers
(e.g., PFC) and reach the pituitary gland to stimulate the
secretion of ACTH. ACTH reaches the cortex of the adrenal
glands through release in the systemic circulation and stimulates
both production and secretion of GCs. Systemically released
GCs, in turn, besides their major actions, close a negative
feedback loop by suppressing the activation of the PVN and
the pituitary gland (6, 51).

Glucocorticoid Receptors and Signaling
GCs influence a myriad of physiologic functions and are essential
for the activation, maintenance, and downregulation of the stress
response. GCs mainly exert their pleiotropic effects through
genomic, nongenomic, and mitochondrial actions of the
intracellular cognate GC and mineralocorticoid receptors (GR,
MR), which function as a ligand-activated transcription factors
(4–9, 52–56). GR and MR are evolutionarily close, showing large
FIGURE 2 | Central and peripheral circadian system and their interconnections. AC, adrenal cortex; ACh, acetylcholine; ACTH, adrenocorticotropic hormone;
AD, adrenalin; AM, adrenal medulla; ANS, autonomic nervous system; AP, anterior pituitary; CAN, central autonomic network; CRH, corticotropin releasing
hormone; DM SCN, dorsomedial SCN; DMH, dorsomedial hypothalamus; GCs, glucocorticoids; HPA axis, hypothalamic-pituitary-adrenal axis; InC, insular
cortex; IGL, thalamic intergeniculate leaflet; ipRGC, intrinsically photosensitive retinal ganglion cells; LC, locus caeruleus; MLT, melatonin; MPA, medial preoptic
area; NE, norepinephrine; NTS, nucleus of the solitary tract; OT, optic tract; PNS, parasympathetic nervous system; PGAN, preganglionic autonomic neurons;
PGL, pineal gland; PVN, paraventricular nucleus; R&C, rodes and cones; RHT, retinohypothalamic tract; SCN, suprachiasmatic nucleus; SCG, superior cervical
ganlia; SNS, sympathetic nervous system; subPVN, subparaventricular area; VL SCN, ventrolateral SCN; VLM, ventrolateral medulla.
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homologies at their DNA-binding domain and sharing
many responsive genes. Upon ligand-binding, the receptors
dissociate from the interacting proteins (i.e., shock proteins
and immunophillins), translocate to the nucleus, form homo-
or hetero-dimmers and bind to specific DNA response elements
located in the regulatory regions of thousands responsive genes,
leading to their transactivation or transrepression (8, 52, 54–57).
GR and MR have complementary actions with respect to HPA
axis activity and reactivity (58). Altered GC-signaling, through
dysregulations at different levels of the HPA axis, may greatly
negatively affect the organisms’ physiology and could influence
life expectancy, as seen in many complex behavioral and somatic
disorders (e.g., depression, posttraumatic stress disorder, sleep
disorders, chronic pain and fatigue syndromes, obesity, diabetes
Type II and the metabolic syndrome, essential hypertension,
atherosclerosis, osteoporosis, autoimmune inflammatory, and
allergic disorders) (55, 59).

In humans, the glucocorticoid receptor (hGR) is encoded by
the NR3C1 gene, which is located in the long arm of chromo-
some 5 and consists of 10 exons. The alternative usage of exon 9a
or 9b gives rise to the two main receptor isoforms, the classic
hGRa and the hGRb (8, 52, 54–57). Ubiquitarilly expressed in
every tissue except the suprachiasmatic nucleus (SCN) of the
hypothalamus, the hGRa is primarily localized in the cytoplasm
of glucocorticoid target cells (57, 60). hGRb, exclusively localized
in the nucleus of certain cells (e.g., endothelial cells), acts mainly
as negative regulator of hGRa transcriptional activity (61, 62).
A growing body of evidence suggests that hGRb has its
own, hGRa-independent transcriptional activity and plays an
important role in insulin signalling, inflammation, and
carcinogenesis (63). The MR is encoded by the NR3C2 gene, is
located on chromosome 4 and also consisting of 10 exons (64).
MR is peripherally expressed in several tissues (e.g., adipose
tissue, kidney, endothelium, macrophages) and exerts vital
regulatory functions through its main endogenous MR ligand
as part of the renin-angiotensin-aldosterone system, among
others, in cell growth, renal and cardiovascular function,
metabolism and immunity.

Of particular importance are the GR and MR effects in the
CNS. While GR are expressed throughout the brain, MR are
abundantly expressed in limbic brain structures involved in
emotional processing, arousal and memory (i.e., hippocampus,
amygdala, prefrontal cortex) thus exerting a basal inhibitory
tone on GC secretion (65, 66). Interestingly, the MRs show a
tenfold higher affinity to cortisol than GRs and are largely already
occupied under basal cortisol levels, while GRs become gradually
occupied through cortisol peak levels (e.g., circadian peak,
acute stress) (58, 67), resulting in a regulative, MR-associated
threshold for HPA axis activation and stress sensitivity
(68). Thus, depending on receptor type, cell topology, tissue-
specific expression, their specific ligands (e.g., aldosterone) or
relevant enzymes (e.g., cortisol-inactivating enzyme 11b-
hydroxysteroid dehydrogenase type 2, 11bHSD2), HPA axis
activation differentially regulates the expression of various
target genes with different transcriptional potencies in response
to cortisol.
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In addition, GC may also signal through protein-protein
interactions between receptors and other important
transcription factors, including the nuclear factor-kB (NF-kB),
the activator protein-1 (AP-1), and the signal transducers and
activators of transcription (STATs). However, perhaps even
more importantly, GC exert also rapid, nongenomic actions,
mediated by membrane-bound MRs and GRs that trigger the
activation of kinase signal transduction pathways (8, 52, 54–57,
69). Membrane-bound MRs and GRs show lower GC affinity
than intracellular receptors and are increasingly occupied only
through higher cortisol concentrations, thus mainly playing a
crucial role in translation of rapid GC pulses in the initial phase
of HPA axis activation (70–72).
THE HUMAN CIRCADIAN SYSTEM

Circadian molecular oscillations are independently generated in
virtually every cell of living organisms, thus influencing
molecular biological processes over the course of the day.
However, it is the orchestration of these innumerable,
diverging and tissue-specific peripheral oscillations into a main
rhythmic symphony that is of vital importance for the promotion
of homeostasis in higher organisms. The CS represents an
extensive network of time-keeping mechanisms that creates
and maintains this cellular and systemic rhythmicity, through
temporal organization and coordination of many physiological
and transcriptional oscillating processes throughout several
structural levels in the organism (17, 18). In order to stay
adjusted to the geophysical time, the CS receives continuously
input by behavioral, hormonal, and environmental signals, a
process called entrainment.

The mammalian CS is organized in a hierarchical manner
with a central, pacemaking, and light-sensitive “master clock”
in the CNS and a peripheral, subordinated multioscillator
component (“slave clocks”), showing both top-down and
bottom-up organization based on positive and negative
endocrine, autonomic, and transcriptional regulatory feedback
loops (15, 73–75). The CS has three main functions as
(a) pacemaker through intrinsic and self-sustainable rhythm
generation, (b) internal Zeitgeber (germ. time-giver) with a
distinct rhythm output for peripheral synchronization, and
(c) Zeitnehmer (germ. time-taker) continuously receiving
time-shifting signals from external/secondary Zeitgebers
(e.g, nutrition, light, sleep, social activity) for proper time
entrainment of the intrinsic period to the environmental
cycle (76).

The Central and Peripheral Circadian
System
The central mammalian CS includes specialized signal
transduction mechanisms in the retina, the retinohypothalamic
tract (RHT), the suprachiasmatic nucleus (SCN), the superior
cervical ganglia, the pineal gland (PGL), the thalamic
intergeniculate leaflet (IGL), and the raphe nuclei (18, 77, 78)
(cf. Figures 1 and 2). The SCN is a bilateral paired structure with
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high cell density, consisting of 50,000 neurons (in humans)
displaying a synchronised rhythmic metabolic and electrical
activity, and is located in the anterior hypothalamus directly
over of the optic chiasm, next to the third ventricle. The SCN is
the integrative “master clock” of the organism, by integrating its
distinct primary pacemaker activity through intrinsic neural
firing and all received environmental Zeitgeber cues to a main
circadian rhythm (17, 18, 79–81). The most important Zeitgeber
is light. The SCN receives photic input (photoentrainment) from
the rod/cone photoreceptors and particularly from other
nonimage-forming photosensitive cells in the retina, the
intrinsically photosensitive retinal ganglion cells (ipRGCs) (77).
These melanopsin-containing cells have been shown to be
sensitive to light wavelengths (460–480 nm, i.e. blue light)
different from the classical visual system (i.e., rod and cone
cells) and they react slowly and tonically to luminance changes
(77, 82–87). The photic input transmitted from the ipRGC
through the retinohypothalamic tract to the SCN (88) and
from there to the upper part of the thoracic spinal cord, the
superior cervical ganglia and the PGL gland (89). The NPY-
containing pathway from the IGL and the serotonergic pathway
from the median raphe represent the two other main afferent
projections to the SCN (78). Taken together, anatomical routes
directly involved with the SCN are numerous, with up to 15
efferent and 35 afferent projections (78).

The peripheral, subordinated multioscillator component of
the CS (“slave clocks”) show a similar, tissue-specific, self-
sustained, and cell-autonomous rhythm generation machinery,
regulating several functions of their residing tissues, with one
essential difference to the central CS: These peripheral “slave
clocks” do not exchange phase information and must therefore
kept synchronized by the main integrative SCN rhythm via
different pathways (16), which leads to a 4-h optimal phase
synchronization delay of peripheral with respect to the central
CS rhythm (90). This synchrony gets mostly lost without an
input from the SCN (91), although other Zeitgebers, such as
nutrient, temperature, and social cues, can also entrain
peripheral clocks (92).

The Molecular Clockwork
In the past decades, mounting evidence has evolved our
understanding from the first discovered clock gene (Period or
PER) conserved from fruit flies to humans (93) to a complex
molecular clockwork generated at the cellular level by molecular
oscillators in all nucleus-containing cells of an organism (15, 74,
94). The intrinsic circadian rhythmicity of the biological clock is
based on a core set of clock genes intertwined with an
autoregulatory, delayed, interlocking transcriptional/translational
feedback (TTFL) loop machinery, coupled to several auxiliary
mechanisms and leading to mutual transcriptional activation and
repression, ultimately maintaining an approximately 24-h
oscillation, thus, reinforcing robustness and stability of the clock
(14, 15, 74, 94–97).

Central among the core TTFL are the transcriptional activator
“circadian locomotor output cycle kaput” (CLOCK), its
heterodimer partner “brain-muscle-ARNT-like protein 1”
(BMAL1), and the essential negative regulating circadian genes
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“Period 1, 2, and 3” (PER1-3) and “Cryptochrome 1 and 2”
(CRY1/2) (98). The activated CLOCK/BMAL1 heterodimer
binds to the enhancer box (E-box) response elements located
in the promoter region and stimulates the transcription of PER1-
3 and CRY1/2 at circadian dawn (circadian time 0, CT0). PER1-3
and CRY1/2 mRNA gets translated into proteins, which
accumulate by the end of the circadian day (CT12). Over the
course of the circadian night (CT12–CT0), inhibitory complexes
of PER1-3 and CRY1/2 with the caseine kinase 1ϵ and d, are
phosphorylated and translocate from the cytoplasm into the
nucleus and repress the transcriptional activity of the CLOCK/
BMAL1 in the SCN, shutting down PER1-3/CRY1/2
transcription (99). After degradation of nuclear PER1-3/CRY1/
2 complexes the next morning (CT0), the inhibition on CLOCK/
BMAL1 transcriptional activity is released and thereby a new
cycle starts over after approximately 24 h (79) [cf. Figure 3].
During the circadian day, PER1-3 and CRY1/2 transcription is
high in the SCN, leading also to high SCN electrical activity.
Besides this core negative feedback loop, there are also auxiliary
feedback loops that stabilize the transcriptional activity of the
core regulatory loop (94, 100–102). CLOCK/BMAL1
upregulates, for example, the expression of other clock-related
proteins, such as the reverse viral erythroblastosis oncogene
product a and b (REV-ERBa/b) and the retinoic acid
receptor-related orphan receptor a (RORa), which, in turn,
regulate BMAL1 expression. Genetic polymorphisms in these
clock genes are responsible for a great distribution of entrained
phases (chronotypes) between individuals, ranging from “larks”
to “owls,” with most individuals falling between these
extremes (103).

The transcription factors of both principal and auxiliary
TTFLs can modulate the expression levels of many clock-
responsive genes in various tissues, influencing a broad
spectrum of physiologic functions, such as hormonal
fluctuations, sleep/wakefulness, feeding, immune activity,
thermoregulation, energy household, and glucose metabolism
(14). These regulatory loops, receive adjustive input from related
influencing systems. Besides the strongest circadian entrainment
by light, other biological cues, such as nutrition and temperature,
can also influence the activity of the clock system. For example,
peripheral clocks can be influenced by food-related signals
through adenosine monophosphate-activated protein kinase
(AMPK), a tissue sensor and master regulator of energy
balance, which phosphorylates Per1-3 and Cry1/2 leading to
their degradation (104, 105). Similarly, temperature decrease can
represent a strong circadian cue, as the cold-inducible RNA-
binding protein CRBP accumulates under lower body
temperature in peripheral clocks (but not in the SCN) and
influences circadian gene expression (106).

Circadian System Interconnections and
Effector Pathways
The superior robustness and resilience of the distinct intrinsic
activity rhythm of the SCN is mainly preserved by the
synchronization of SCN neurons through intercellular coupling
to its neighbour cells in an action-potential-dependent manner
(107). There are different kinds of SCN neurons containing
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different neuropeptides, such as arginin-vasopressin (AVP),
vasoactive intestinal peptide (VIP), g-amino-butyric-acid
(GABA), glutamate , gastr in-re leas ing peptide , and
somatostatin. This large variety of neuropeptides within the
SCN ensures a rich diversity in signalling properties to effector
targets (108). According to its neurocircuit topology, the SCN
can be functionally divided into two subregions. The
dorsomedial shell region primarily produces AVP and gets
mainly innervated by the hypothalamus, while the ventrolateral
core region primarily produces VIP and receives photic input [cf.
Figure 1]. SCN output projections target many different brain
regions and modulate the activity of downstream neurohumoral
pathways in a rhythmic manner, herewith influencing a plethora
of physiological processes (14, 16, 109). The most important
effector targets of the SCN include: (i) hypothalamic centers
associated with activity, temperature, and sleep regulation, such
as the subparaventricular area (subPVN) and the dorsomedial
nucleus of the hypothalamus (DMH) (110), (ii) preautonomic
hypothalamic neurons, affecting vagal and sympathetic
autonomic centers in brain stem and spinal cord and, thus,
exerting circadian control throughout the body via ANS activity
Frontiers in Psychiatry | www.frontiersin.org 7119
(80), and (iii) neuroendocrine hypothalamic centers responsible
for hormone secretion (e.g., CRH synthesizing PVN
parvocellular neurons) [cf. Figures 2 and 5]. The PVN is a
significant integrating center for energy homeostasis and
distribution center of circadian rhythmicity to the body, as its
parvocellular neurons project to the median eminence to control
the release of ACTH and thyroid-stimulating hormone (TSH) in
the anterior pituitary (i.e., hypothalamic-pituitary-adrenal axis,
HPA axis; hypothalamic-pituitary-thyroid axis, HPT axis), and
also innervates the sympathetic limb of the ANS (22).

In addition, the central CS, exerts its synchronizing effects
also through humoral (i.e., endocrine/paracrine) signals. The
main effector of the central CS and essential synchronizing
hormone is pineal melatonin (MLT) (111–114), whose
secretion is strictly modulated by the SCN and sympathetic
fibers originating from the superior cervical ganglia (112, 113,
115–117). Reversely, MLT is a direct modulator of the SCN
neuron electrical activity (118, 119), as SCN expresses a high
number of MLT receptors (MT) (120), while it also interacts with
“clock” gene TTFLs in the SCN, and so modulates circadian
rhythms and adjustment to environmental photoperiod changes
FIGURE 3 | Principal and auxiliary transcriptional/translational feedback loops of the circadian system. AMPK, adenosine monophosphate (AMP)-activated protein
kinase; BMAL1, brain-muscle-arnt-like protein 1; CHRONO, ChIP-derived repressor of network oscillator; CLOCK, circadian locomotor output cycle kaput; CRYs:
cryptochromes; Csnk1ϵ/d, casein kinase 1ϵ/d; P, phosphate residue on the phosphorylated molecules; PERs, periods; RORa, retinoic acid receptor-related orphan
nuclear receptor a. REV-ERBa, reverse viral erythroblastosis oncogene product alpha.
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(121). MLT modulates central and peripheral oscillators and
related secondary molecular pathways mainly by cell-specific
control through G-protein-coupled MLT membrane receptors
MT1 andMT2 (118) and GABAergic mechanisms (119, 122, 123)
[cf. Figure 4]. MT is broadly distributed in the body and are vital
for immunomodulation, endocrine, reproductive and
cardiovascular regulation, cancerogenesis, and aging.
Additionally, MLT interacts with cytoplasmic factors (i.e.
quinone-reductase-II/MT3 receptors, calmodulin) and nuclear
receptors (i.e. retinoid acid receptor related orphan and Z
receptors, ROR, RZR), while numerous other actions of MLT
are receptor independent (e.g., radical scavenging) (114, 124–
128). MLT concentration reaches high levels at night (plasma
peak between 0200 h and 0400 h), overlapping with decreases
in core body temperature, alertness, and performance (111,
113). The sharp elevation of nocturnal cerebrospinal fluid
(CSF) MLT exerts substantial protective effects and is
responsible for nocturnal tissue recovery after the daily free
radical brain damage due to high oxygen utilization (129).
Frontiers in Psychiatry | www.frontiersin.org 8120
These multifaceted chronobiotic regulatory actions have led to
the recognition of MLT as one of the most pleiotropic biological
signals in photoperiodic species (114, 130). On the other hand, it
is important to note that the majority of laboratory mouse strains
do not produce melatonin and thus challenge the importance of
MLT in related animal findings (131).

Finally, sleep acts restorative in concert with the CS, but also
independently, towards optimizing the internal temporal order
(132). Sleep propensity and sleep stage timing, regulated through
the subPVN and DMH, are bidirectionally associated with
circadian gene expression in the SCN (133), but also strongly
modulated by MLT levels (119, 134–138).
INTERACTIONS BETWEEN THE HUMAN
CIRCADIAN AND STRESS SYSTEM

The human CS and SS are closely and bidirectionally
interconnected at multiple central and peripheral functional
FIGURE 4 | Multilevel interactions between the circadian system and the hypothalamic-pituitary-adrenal (HPA) axis. AC, adrenal cortex; CRH, corticotropin releasing
hormone; GCs, glucocorticoids; ipRGC, intrinsically photosensitive retinal ganglion cells; MT, melatonin receptor; PVN, paraventricular nucleus; RHT,
retinohypothalamic tract; RNS, reactive nitrogen species; RORa, retinoic acid receptor-related orphan receptor a; ROS, radical oxygen species; RZRb, retinoid acid
receptor related Z receptor b; SCN, suprachiasmatic nucleus; SCG, superior cervical ganlia.
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levels (19, 22, 23, 139–148). The circadian properties of the HPA
axis are so distinct, that, along with MLT, GCs have been
established as a robust measure of CS output activity.
Additionally, MLT and GCs can also feedback at various levels
and influence the main circadian rhythm themselves.
Interestingly, the phase angle between CORT and MLT onset,
the two major hormonal output signals of the CS and the HPA
axis, has been identified as a potential useful biomarker in human
stress-related research (149).

Influence of the CS on SS Activity and
Reactivity
The HPA axis shows distinct circadian activity at rest with a
robust diurnal oscillation of circulating GCs (i.e., cortisol,
CORT) concentrations, rapidly rising in the middle of the
biological night and peaking in the early morning, reaching
their nadir before the habitual inactive phase onset (19, 141,
142, 150). SCN ablation completely abolishes the GC circadian
rhythm, suggesting that HPA axis activity is driven by the central
CS (151). In addition, the CS has a major influence on the ANS.
Major human cardiovascular markers, such as heart rate, blood
pressure, baroreflex, heart rate variability (vagal measure),
plasma epinephrine, and norepinephrine levels (sympathetic
measure) and their response to stressors exhibit robust
circadian variations with a distinct peak of sympathetic activity
Frontiers in Psychiatry | www.frontiersin.org 9121
and nadir of parasympathetic activity in the morning hours
(152–157). By doing so, the HPA axis and SNS activity are
believed to prepare the organism for the higher energetic
demand associated with typical external and internal stressors
of the waking phase (24).

Neurohumoral Interactions
The CS orchestrates the circadian activity and reactivity of the
HPA axis through both hormonal and neuronal pathways. There
are three main pathways of CS influence on the HPA axis: (i)
direct SCN influence on HPA axis at the hypothalamic level, (ii)
SCN innervation of the adrenal glands through indirect,
multisynaptic autonomic innervation, and (iii) peripheral
rhythms of local adrenal clocks, all three involved in the
steroidogenic pathway and the ACTH-dependent transduction
cascade in the zona glomerulosa and zona fasciculata of the
adrenal gland (158) [cf. Figures 2 and 5]. The first pathway
includes direct and indirect (through subPVN and DMH)
neuronal projections of the SCN to CRH/AVP containing
neurons of the medial parvocellular PVN modulating the
circadian secretion of CRH and AVP (108, 146, 159, 160).
Through the second pathway, the SCN transmits photic
information via multisynaptic autonomic innervation (i.e.,
preganglionic intermediolateral projections to the spinal cord
and splanchnic nerve innervation) to the adrenal medulla and
FIGURE 5 | Multilevel interactions between the circadian system and the hypothalamic-pituitary-adrenal (HPA) axis. ACTH, adrenocorticotropic hormone; APG,
anterior pituitary gland; AVP, arginine vasopressin; BMAL1, brain-muscle-arnt-like protein 1; CA, catecholamines; CLOCK, circadian locomotor output cycle kaput;
CRH, corticotropin releasing hormone; CRYs, cryptochromes; HSD, hydroxysteroid dehydrogenase; ipRGC, intrinsically photosensitive retinal ganglion cells; GCs,
glucocorticoids; GR, glucocorticoid receptor; PERs, periods; PVN, paraventricular nucleus; REV-ERBa, reverse viral erythroblastosis oncogene product alpha; RHT,
retinohypothalamic tract; RORa, retinoic acid receptor-related orphan nuclear receptor alpha SCN, suprachiasmatic nucleus.
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from there through catecholamines to the cortex (161), thus both
modulating the diurnal ACTH sensitivity of the adrenal cortex
and stimulating the GC circadian release in light exposure
conditions through an HPA axis-independent manner of direct
interaction with the own peripheral rhythm of the adrenal gland
(i.e., PER1 and StAR gene expression) (7, 140, 162–169).
Interestingly, SCN neurons display connections to SNS and
PNS, indicating that the SCN is not only essential for the
physiologic autonomic diurnal fluctuations seen in humans
(153, 155, 157), but also involved in both activation and
deactivation of neuronal innervation of the adrenal in a
circadian circle (80). The intrinsic circadian rhythm of adrenal
glands in metabolic activity and GC release even in culture has
been shown very early in literature (170), while clock genes
expression was repeatedly reported in the following years (140,
164, 165, 171, 172). However, additional adrenal-intrinsic
mechanisms depending on systemic cues, such as food-
entrainable oscillators of the gland, could influence the diurnal
rhythms of GC secretion (173, 174). Another very important
mechanism for shaping the GC circadian rhythm is their own
systemic levels, exerting a negative feedback regulation of ACTH
release (175). The sensitivity of this feedback mechanism is
highest during the trough point of the circadian glucocorticoid
rhythm depending only MR at this time, while both MR and GR
are involved at the GC peak-point lowest sensitivity (175).
Finally, MLT, apart from its direct modulating effect on the
SCN (176), has been also shown to directly influence GC
production and release by the adrenal gland, as well as
acetylation rhythms of GR, GR translocation to the nuclei and
transcriptional activity (125, 172, 177, 178). MLT has been found
to prevent adrenal response to ACTH (177, 179) and directly
inhibit CORT production through MT1 adrenal receptor
activation, possibly through their action on the Type II 3b-
HSD (3b-Hydroxysteroid-dehydrogenase/D5-4 isomerase)
enzyme activity, which catalyzes the biosynthesis of hormonal
steroids through the oxidation and isomerization of D5-3b-
hydroxysteroid precursors to D4-ketosteroids (180). Taken
together, this illustrates the multilevel circadian “gating”
control on the physiological GC secretion rhythm through
SCN, HPA axis and ANS activity, GC and MLT levels, feeding
and the robust intrinsic rhythm of the adrenal gland itself,
involving clock gene expression in the metabolism and
secretion of GCs (80, 140, 141).

In addition, MLT acts directly through MT1/MT2 on the
electrical activity in SCN neurons (118, 119) and interacts with
the “clock” gene (PER1/2, CRY1/2, CLOCK, BMAL1, etc.)
proteasome TTFL in the SCN, thus being crucial for circadian
entrainment in photoperiodic species (121).

Molecular Interactions
The neurohumoral interactions between CS and SS described
above, have further molecular underpinnings at the cellular level,
where the GR plays a fundamental role. For example, findings
suggest that the CLOCK/BMAL1 heterodimer behaves as a
reverse-phase negative regulator of hGRa in the periphery,
antagonizing the physiologic actions of diurnally fluctuating
Frontiers in Psychiatry | www.frontiersin.org 10122
GCs. Through a region enclosed in the C-terminal part of
the CLOCK protein, CLOCK/BMAL1 physically interacts
with the ligand-binding domain of hGRa and acetylates the
hGRa at multiple lysine residues, thereby reducing GR’s affinity
to its cognate glucocorticoid response elements (GREs) and,
thus, leading to decreased hGRa-induced transcriptional
activity of glucocorticoid-responsive genes (144, 181–184). GR
transactivational activity fluctuates in a circadian fashion and in
reverse phase with CLOCK/BMAL1 mRNA expression (182)
and leads to a higher hGRa acetylation and decreased tissue
glucocorticoid sensitivity in the morning, mirroring the circadian
pattern of serum CORT concentrations (183). In addition,
a CLOCK-mediated posttranslational modification of hGRa is
involved with the nuclear localization signal 1 (NL1), altering the
cytoplasm-to-nucleus translocation of the receptor
following ligand-induced activation, and indicates that the
hGRa acetylation by CLOCK is linked to several molecular
mechanisms (182). Moreover, Lamia and collaborators
demonstrated that CRY1/2 interacted with the carboxyterminal
domain of hGRa, thereby reducing the DNA-binding of the
receptor and its transcriptional activity (185). Interestingly, the
effect of a specific clock gene deletion on circulating GCs seems
to depend on the specific TTFL missing member, suggesting that
alteration of the positive or negative limb of the core clock
feedback loop may have opposing effects on stress regulation.
Accordingly, BMAL1 (TTFL positive limb gene) deletion leads to
low adrenal ACTH sensitivity throughout the circadian circle,
supporting constant low GC levels and insensitivity to acute
stress (186). Genetic deletion of CRY1/2 (TTFL negative limb
genes) leads to nonoscillating and elevated GC levels due to
impaired feedback inhibition (185, 187). In contradistinction, the
PER1/CRY1 complex reduces the maximal GR transactivation
but not the efficacy of the receptor (184). Furthermore,
CHRONO (ChIP-derived repressor of network oscillator),
which is encoded by a BMAL-target gene, interacted with
BMAL1, CRY2 and DEC2 and recruited the histone
deacetylase 1 (HDAC1) to the transcriptional machinery,
ultimately repressing the principal transcriptional loop (188).
CHRONO is also able to acetylate the hinge region lysine cluster
of GR, reducing its DNA-binding and thus indicating that this
protein might play a fundamental role in the interaction of the
CS with the SS (182, 188, 189). More recent in vitro and in vivo
studies also showed that REVERBa, in interaction with heat-
shock-protein (HSP) 90, influences the stability and nuclear
localization of GR in the liver and provides another link
between the CS, metabolism and glucocorticoid actions (190,
191). In addition, transcriptional cofactors of nuclear receptors
(e.g., PGC1a) has recently been also implicated in circadian clock
function (192), while interacting with the GR (193). Similarly,
HSP, forming a dynamic complex with the GR in the cytoplasm
(i.e., before GC binding and nuclear translocation), also display a
circadian regulation through systemic circadian temperature
changes, thus contributing to clock entrainment in peripheral
tissues (194, 195). Finally, FKBP5, a chaperone protein of
particular interest involved in directing activated GRs to the
nucleus and implicated in a number of stress related psychiatric
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disorders, is also rhythmically expressed in most tissues (196),
suggesting its involvement in circadian gating of GC signals.

Influence of the SS on the Central and
Peripheral CS
Apart from the influence on many important biological
processes, the rhythmic oscillations of the SS activity and
especially the HPA axis and GC rhythmicity exert a vital
synchronizing effect on the central and peripheral CS activity
(19, 23, 92). GCs, through binding to the hGRa, can efficiently
reset the activity of peripheral clocks (197–199), while they spare
the SCN, which maintains its master intrinsic circadian rhythm,
as it does not express GRs (158, 197). The attenuation of the
peripheral clocks by the phase-shifting effects of the GCs is then
normally restored by the influence of the SCN. However, the SS
has to directly influence the SCN through an alternative pathway,
as both stress exposure and exogenous GC application enhances
AVP and VIP mRNA expression and release in the SCN (200,
201), while acute stress exposure also leads to an upregulation of
Per1 and Per2 protein expression in the SCN (202). For example,
CORT and CRH are suggested to directly modulate PGL activity
and stimulate MLT synthesis, interfering in the daily adjustment
of the light/dark cycle (179, 203–206). In addition, GCs play an
important role in the adjustment of nutrition-related uncoupling
between the central and peripheral CS, as their high secretion
after feeding slows down the circadian uncoupling and restores
proper phasing (173, 207). GCs are, thus, not just a downstreal
hormonal output of central and peripheral clocks, but can also
influence the CS itself and interact with other clock outputs
toward a harmonious circadian regulation (141, 197), adding
another interaction level between the stress and the circadian
clock system. Alteration of the GC rhythm (e.g., through
exogenous GC administration) can, thus, attenuate the central
and peripheral circadian activity and vice versa (167, 208). Taken
together, the SS through its effectors efficiently adjusts the
circadian rhythm-linked output pathways of the body to
properly respond to stressors, providing resistance to stress
challenges in order to evade uncordinated circadian shifts (23).

Molecular Interactions
Diurnally circulating GCs vitally contribute to the development
of the CS activity by adjusting the phase of peripheral oscillators
(19, 148). GCs synchronizing effects mainly involve GR-related
phase shifting of peripheral circadian expression of several clock-
related genes (197, 209–216). All peripheral clocks express GR,
which translocate into the nucleus after activation and modulate
transcriptional activity of several clock genes (e.g., PER1/2) and
transrepressing genes expressing transcription factors of the
auxiliary TTFL (e.g., Rev-ERBa, RORa) through binding to
functional GREs in their promoter region (217–222). PER1
contains GRs in its regulatory sequences, while GRs influence
the expression of PER2 through binding to an intronic domain
(218). GCs lead herewith to upregulation of these genes, causing
a phase delay of peripheral clocks with respect to the SCN master
clock (218). A genetically, functionally (e.g., adrenalectomy) or
pharmacologically (i.e. externally administered corticosteroids)
attenuated GC diurnal rhythm has been shown to be associated
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with abolished or shifted circadian clock gene (e.g., PER1/2)
expression in several peripheral tissues (e.g., liver, preadipocytes,
kidney, bronchial epithelial cells, pancreas, bone tissue, cornea,
fibroblasts cardiac muscle tissue), despite the presence of an
intact molecular oscillator (167, 197, 208, 209, 215, 216, 223–
226). Even externally applied corticosteroids can entrain
molecular oscillation in peripheral clocks (215, 227) and have
been shown, for example, to speed up or slow down adaptation to
a new light-dark schedule after jetlag-induced circadian
desynchrony (198).

However, rhythmic GC signaling is also required for periodic
clock gene expression in certain brain regions outside the SCN,
suggesting an important role of the adrenal rhythm also for
higher brain functions in key stress-system-related regions (228).
Indeed, GR-mediated GC signaling is, for example, fundamental
for the rhythmic expression of PER2 in the amygdala (213, 229),
while adrenalectomy is shown to supress and extended GC
exposure to increase PER gene expression in the PVN, bed
nucleus of stria terminalis (BNST) and other limbic areas (219,
228, 230–232). GC-dependent circadian gene expression could
even be indirectly involved in a GC feedback pathway to the SCN
(233). For example, serotonergic projections of the raphe nucleus
to the SCN involved in light entrainment (234) show a GC-
dependent circadian transcription of tryptophan hydroxylase-2
(TH-2), an enzyme involved in serotonin synthesis (235).

Finally, the SAM/ANS constitutes another pathway in stress-
induced peripheral circadian entrainment. Administration of
adrenaline or noradrenaline has been shown to induce PER1/2
expression through the cAMP response element-binding protein
(CREB) signalling pathway (236–238). Furthermore, GR-related
GC effects and clock machinery also interact through a
modulation of catecholamine biosynthesis and degradation,
thus influencing time-of-day-dependent stress responses and
further reinforcing the interaction between the CS and the SS
(94, 239, 240). Catecholamine biosynthesis is both GC- and
clock-regulated, as TH (i.e., the main synthesis pacemaker
enzyme) is repressed by Rev-ERBa (241) and induced by
the GR-activated the nuclear orphan receptor NURR1
(NR4A2) (242). Similarly, catecholamine degradation depends
on the CLOCK/BMAL1-activated monoamine oxidase I
(MAO-A) and the GR-regulated catechol-O-methyltransferase
(COMT) (243).

Taken together, GC rhythms exert an accompanying
circadian signal which consitutes an additional level of security
to ensure proper circadian signalling input to the cell cycle
oscillating machinery, while, on the other hand, peripheral
clocks might gate this GR-specific input.
STRESS AND CIRCADIAN
MISALIGNMENT

Chronodisruption and Sleep Dysregulation
The human CS enables the nyctohemeral organization and
coordination of many temporal physiologic processes
promoting homeostasis and environmental adaptation (18). A
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misalignment of the human circadian rhythm is associated with a
critical loss of this harmonious biological timed order at different
organizational levels, which is defined as chronodisruption (244–
246). Chronodisruption-related cacostatic load with short- and
long-term pathophysiologic and epigenetic consequences (245–
247) can lead to a wide range of biological consequences in the
organism (246, 248–255). Chronodisruption may gradually
change the fundamental properties of brain systems regulating
neuroendocrine, immune, and autonomic function and denotes
a breakdown of appropriate biobehavioral adaptations to
challenges with increased stress sensitivity and vulnerability to
stress-related disorders (20, 256, 257).

In human research, chronodisruption has been tightly
associated with sleep deprivation/dysregulation (SD) or phase
shifting (i.e., jet-lag, swift-workers) (81, 132, 258). Sleep acts in
concert with the central CS, but also independently towards an
optimal internal temporal order (132). Specific sleep stages are
closely related with specific clock gene expression in the SCN and
are tightly ruled by the CS (81, 132, 258). SD has been associated
with circadian-related gene expression alterations in humans
(259–262). In addition, SD also relates to various HPA axis
dysregulations (e.g., flattened CORT rhythm amplitude, blunted
CORT awakening response (CAR), increased but also decreased
diurnal CORT levels, higher CRH levels) and altered endocrine
stress reactivity (e.g., attenuated pituitary ACTH reactivity,
increased adrenocortical ACTH sensitivity) (257, 263–269), as
well as to altered autonomic regulation with increased sympatho-
adrenal and reduced vagal activity and blunted cardiovascular
autonomic rhythmicity and autonomic reactivity (257, 270–273).
Accordingly, chronodisruption in humans has been associated
with increased risk for cardiovascular morbidity, metabolic
consequences, inflammation, immune dysregulation,
psychiatric disorders and even elevated cancer risk (226, 240,
274–280). Interestingly, even circadian gene polymorphisms
have been associated with some similar consequences (281, 282).

Stress and Chronodisruption
In addition to other crucial circadian cues that can dysregulate
circadian rhythms (e.g., SD, nutrition, light), stress can also lead
to acute/reversible or sustained chronodisruption. Normally,
after exposure to stressors, the SS can transiently override the
CS creating a transient uncoupling of the central and peripheral
circadian rhythm, through a hGR-related phase shift of
peripheral clock-related genes (182, 197, 207, 212, 217, 221,
283). Thereby, the SCN is only indirectly influenced (198) and is,
thus, able to maintain its master rhythm and restore its initial
main phase to the periphery after stress termination (283, 284).
Indeed, subacute stressors have been experimentally shown to
have only transient impact on SCN-regulated rhythms in animal
research (285, 286). However, the stability of the SCN clock
appears to fade away after extensive acute or chronic physical,
psychological, inflammatory, or metabolic stress (25). For
example, in a study comparing single versus chronic social
defeat across two weeks, single stress exposure advanced only
the adrenal peripheral clock, while chronic stress also clocks in
the CNS (287). Animal research provides additional evidence
that chronic mild stress disrupts the regulated gene expression of
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several clock genes in several peripheral (287, 288), but also CNS
tissues, including the hippocampus, amygdala, PFC (202, 286,
289, 290) and the SCN (283, 284, 291, 292). Chronic stress
exposure in mice has been shown to alter the circadian properties
of the HPA axis (293, 294), while extensive physical stress after
surgery in humans leads to disturbances in MLT, CORT and core
body temperature rhythms (295). In addition, numerous human
and animal studies suggest that acute extensive and chronic
stress can affect major sleep centers of the brain (202, 205, 288,
289, 293–296) and, thus, influence sleep physiology leading to
both immediate and long-lasting sleep disruption (297–299).

Circadian-Phase-Dependent Stressor
Effects
Apart from the physiological circadian activity of the SS, the
stress responsiveness also displays diurnal sensitivity changes,
probably through differential interference of the SCN to different
brain areas (146, 159, 300). For example, acute psychological
stress, involving higher brain areas and the limbic system, as well
as acute physical external stress (i.e., restraint/immobilization,
foot shock, shaking stress) exert the largest stress response
during the rest phase (301, 302), when the HPA axis is less
responsive, while acute physiological internal stress (i.e.,
oxidative stress, hypoglycaemia, hemorrhage), relayed to the
PVN and brainstem, at the beginning of the activity phase
(303, 304), when the HPA axis is most sensitive to stimulation
(175). This appears reasonable, as acute physiological internal
stress represents a greater threat during the active phase of
animals, while acute external physical stressors (e.g., predator
attack) during the inactive phase, while animals are asleep.

Interestingly, further experimental findings in animals
suggest that repeated external stress exposure (i.e., chronic
stress) has a more detrimental effect when applied during the
inactive phase, (284, 305–308), while chronic psychosocial stress
(i.e. social-defeat paradigm) shows inverse effects and exerts
more detrimental effects during the active phase (307, 309) in
animal research. These results jointly suggest that the effect of a
stressor depends not only on the circadian phase of exposure, but
also on the interaction of the circadian phase with the stressor
type, as well as with the chronicity of the stressor (25, 310). For
example, both physical and psychological stress at the beginning
of the light phase leads to a phase advance, while at the beginning
of the dark phase to a phase delay of PER2 expression in
mice (286).
CHRONODISRUPTION AND TRAUMATIC
STRESS

The stress-related effects on internal rhythms described above
have supported a recent research focus on the potential causal
role of SD and chronodisruption in the acute pathophysiology
and the development of long-term effects of traumatic
stress exposure, suggesting that chronodisruption may
represent a potential underlying neurobiologic link (311–315).
The association between sleep and circadian disruption and
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psychopathology was first officially noted by Emil Kreapelin in
1883 (316) and has evolved through the years by numerous
biological findings (317).

Traumatic stress exposure may cause both immediate and
long-lasting SD (297–299), which may represent a central
pathway mediating the enduring neurobiological correlates of
trauma (297, 311, 312, 318–320) [cf. Figure 6]. For example,
several human cohort studies have repeatedly suggested that
early-life traumatic stress exposure is related to adult SD years
later, including global (i.e., insomnia), but also other specific
sleep pathologies, such as prolonged sleep onset latency,
shortened total sleep time, decreased sleep efficiency,
nightmare related distress, increased number of awakenings,
sleep apnoea, and higher nocturnal activity (321–332). Such
sleep dysregulation could further enhance maladaptive stress
regulation and precipitate the neurobiological correlates of
traumatic stress through impaired homeodynamic balance,
resulting in the extensive symptomatology and comorbidity of
trauma-related disorders (314, 333–350).

Posttraumatic Stress Disorder: When Time
Stands Still
Posttraumatic stress disorder (PTSD) is classified in DSM-5 as a
trauma- and stress-related disorder following a psychologically
distressing event outside the range of usual human experience
(351). Evidence of circadian dysregulation in PTSD mostly
originates from sleep research findings. According to DSM-5,
SD represents prominent clinical feature of the disorder with
very high prevalence (312, 320, 351), and is often closely related
to severity of PTSD psychopathology (352, 353) and resistant to
first-line treatments (354–356).

SD in PTSD is associated with sleep-related arousal
dysregulation (357) and include sleep avoidance, insomnia,
nightmares, hyperarousal states, sleep terrors and nocturnal
anxiety attacks, body-movement and breathing-related sleep
disorders (311, 320, 358–362), with increased sympathovagal
tone during rapid-eye-movement (REM) sleep, fragmented REM
sleep patterns, and reduced REM theta activity (311–313, 318,
363–365). Similar findings have been in animal and human SD
studies (366, 367). Interestingly, REM sleep disruption in the
immediate aftermath of a trauma (311, 318, 319), as well as sleep
impairment prior to traumatic stress exposure could represent
risk factors for PTSD development (368, 369). SD prior to
trauma have been specifically shown to be associated with a
2.5-fold increased risk of fulfilling PTSD criteria 3 months after a
trauma in general population admitted to a hospital or after
deployment in active military troops respectively (368, 369). SD
after trauma thus represents a rather core than secondary feature
of PTSD (297, 311, 312, 318–320, 370) and may be both a
precipitating and perpetuating factor of the disorder (371–373).

Besides SD, traumatic stress also affects neural correlates of
memory formation (374–376). Memory processing, formation
and consolidation are directly influenced by sleep (377–387).
Sleep promotes memory consolidation, particularly for
emotionally salient information (383), while SD reduces the
connectivity between amygdala and PFC (388) thus disrupting
memory consolidation (389–393), as repeatedly shown in PTSD.
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In addition to SD studies in PTSD, additional CS-related
evidence on chronodisruption in PTSD originates from genetic,
neuroendocrine, autonomic, and immune findings. For example,
genome-wide association studies have also implicated to core
circadian genes as PTSD candidate risk genes: pituitary adenylate
cyclase-activating polypeptide (PACAP) and retinoid-related
orphan receptor alpha (RORA-a) gene. PACAP is involved in
phase resetting in response to light (394–396) and RORA-a is
rhythmically expressed and regulates BMAL activity (397, 398).
Furthermore, as immune system activity tightly follows circadian
rhythms imposed by the SCN synchronisation (205, 399–405),
our recent first report on the loss of the typical peripheral
biphasic rhythm of IL-6 in combat stress exposed individuals
(406), is of particular importance.

Further neuroendocrine findings in PTSD repeatedly show
increased central CRH levels, altered HPA axis reactivity with
enhanced negative feedback inhibition and blunted circadian
CORT rhythm and CAR, while some studies—but not all—have
shown decreased circulating concentrations of CORT (407–419).
Similarly, patients with PTSD exhibit increased autonomic
reactivity, elevated central and peripheral norepinephrine
concentrat ions , higher basal hear t rate , increased
sympathovagal balance, blunted salivary alpha-amylase
awakening response and, most importantly, blunted diurnal
autonomic differences (341, 417, 420–427), suggesting central
neuroautonomic dysregulation leading to higher cardiovascular
risk in PTSD (415, 428, 429). In addition, disrupted MLT levels
in the first 48 h after traumatic stress exposure were shown to be
associated with a higher PTSD development risk (430).

Finally, PTSD has been frequently related to several other
comorbidities, such as chronic fatigue syndrome (CFS) (431–
434), fibromyalgia (435–439), rheumatoid arthritis (348), which
all share a very similar underlying neuroendocrinological profile
to PTSD (e.g., hypocortisolism, blunted diurnal CORT rhythm
and HPA axis reactivity) (440–445) and have all been repeatedly
associated with sustained chronodisruption (446–456).
CHRONOTHERAPEUTIC IMPLICATIONS
FOR PTSD

Current evidence suggests that SD and CD may have a vital
predispositional role in PTSD development (314), while their
effective treatment could be associated with substantial
improvement of overall PTSD symptomology (312, 457–459).
Nevertheless, SD is still often clinically addressed as a secondary
symptom in PTSD. Careful assessment and treatment of SD and
CD should therefore be an integral part in PTSD management
(356, 364, 371–373). Cognitive-behavioral sleep management in
PTSD constitutes a widely acceptable and effective treatment
option with durable gains and beneficial effects (356, 460–462).
In addition, the antihypertensives a-1 adrenoreceptor antagonist
prazosin and a-2 adrenoreceptor agonist clonidine, the synthetic
cannabinoid receptor 1 and 2 agonist nabilone and the
multilemodal antidepressant trazodone (i.e., serotonin-reuptake
inhibitor, 5-HT2A receptor agonist, histamine H1 receptor
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FIGURE 6 | Schematic model of trauma-related chronodisruption as underlying biological pathway leading to posttraumatic stress disorder (PTSD) and PTSD-
related comorbidities.
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antagonist, a-1 and a-2 adrenoreceptor antagonist) have been all
shown to be effective pharmacological approaches for PTSD-
related sleep disturbances and trauma-specific nightmares (463–
467). Standard pharmacological sleep management in PTSD,
however, may treat sleep quantity sufficiently, but often fail to
improve daytime functioning and restore CD in PTSD (132, 468).
Therefore, development of chronopharmacological interventions
that would restore CS-related alterations and herethrough
counteract changes in PTSD-related neurocircuitry could
represent interesting novel therapeutic strategies (469–472).

Melatonergic Treatment
Recent experimental findings emphasize on a pleiotropic, but
crucial role of MLT in mechanisms of sleep, cognition and
memory, metabolism, pain, neuroimmunomodulation, stress
endocrinology and physiology, circadian gene expression,
oxidative stress, and epigenetics, thus suggesting a potentially
beneficiary effect of an add-on melatonergic treatment in PTSD
(374, 473). Numerous studies have repeatedly confirmed the
efficacy of melatonergic treatment on almost every aspect of sleep
disturbance, while preserving a benign side-effect profile and
safety in both short- and long-term administration, with no
efficacy wear-off, withdrawal effects or dependence risk (119,
474–480). MLT and melatonergic agonists, were found roboustly
associated with (i) reduced sleep onset latency and increased
sleep propensity, efficiency, quality, and total sleep duration in
patients with insomnia, (ii) increased REM sleep percentage and
continuity, normalization of sleep patterns, body-movement and
breathing-related pathologies and improvements in subjective
measures of daytime dysfunction in neuropsychiatric patients
and (iii) advanced sleep/wake rhythm phase adjustment and
sleep and wake-up propensity in healthy adults (119, 134, 135,
138, 474, 477, 478, 480–486). In addition, MLT is known to
adjust and reset amplitude and phase of CNS (e.g., SCN,
hippocampus, pituitary pars tuberalis) and peripheral (e.g.,
adrenal gland) circadian-related gene expression (172, 177,
178, 180, 487–489) and to moderate the circadian regulation of
GR function (140, 141, 144, 183, 490). MLT also decreases
hypothalamic CRH levels and inhibit the ACTH-stimulated
CORT production in the primate and human adrenal gland
(172, 177–180, 487–489), thus attenuating the adrenocortical
secretory response in acute and chronic stress models (491–494).
With respect to the ANS, MLT entrain disrupted autonomic
rhythmicity by inhibiting central sympatho-adreno-medullary
(SAM) outflow and shifting autonomic balance in favour of vagal
activity (154, 495–498). Interestingly, research findings suggest a
direct enhancing effect of melatonergic transmission in stimulus
processing, memory consolidation, and conditional cued fear
extinction, especially under stress (499–502). Finally, immediate
melatonergic treatment directly after exposure to stress,
normalizes the altered expression of Per 1 and Per 2 genes in
hippocampal regions of rats, thus suggesting a possible
immediate preventing properties (202). MLT has been shown
to protect these hippocampal neurons from oxidative stress, by
preventing GC-related toxicity through decrease of receptor
translocation to nuclei in models of sleep deprivation and
chronic stress (503–506). Taken together, MLT and
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melatonergic agents could therefore represent a promising
adjuvant contribution to the clinical treatment and perhaps
prevention of stress-related syndromes and comorbidities in
mental disorders in general and PTSD in particular (124, 314,
471, 507–509).

Other Potential Treatment Possibilities
Further options for a pharmacological or nonpharmacological
manipulation of the interplay between CS and SS in order to
interfere in the pathophysiology of trauma-related disorders are
of theoretical interest and deserve thorough further investigation
through preclinical research and clinical confirmation.
For example, exogenous application of GCs and GC-analogs in
a time-of-day dependent fashion (i.e., as in immune therapy),
could contribute to a reset of peripheral clocks (55, 144,
510) or even contribute to PTSD prevention if applied
immediately after trauma exposure (511). On the other hand,
pharmacological GR-antagonism has been found associated with
insomnia symptoms improvement (512) and could also
represent a potential approach.

As sleep promotes memory consolidation, particularly for
emotionally salient information, sleep deprivation in the
beginning of the resting phase directly after traumatic stress
exposure may also decrease the risk of PTSD development
(513), possibly through reduction of mPFC-amygdala
connectivity (388, 390, 392). Furthermore, first findings suggest
that casein kinase 1ϵ, a closely related clock components
implicated in period determination, could represent a novel
target of pharmacological inhibition, thus stabilizing the
circadian clock against phase shift (472). Finally, it is important
to mention, that selective serotonine reuptake inhibitors (SSRI),
as first-line treatment option for PTSD, have been shown to exert
additional, CS-related effects. In particular, fluoxetine treatment
was shown to modulate the CS via phase advances of SCN
neuronal firing (514) and also normalize disrupted circadian
locomotor activity and hippocampal clock gene expression in a
genetic mouse model of high trait anxiety and depression (515).
CONCLUSIONS

In Plato’s cosmology, as presented in the Timaeus, time is
suggested to depend on the periodic regularity of movement,
which is secured and defined by the planets (516). This periodic
movement of our planet has contributed to the evolution of the
internal time-keeping system, that creates and maintains cellular
and systemic rhythmicity, through temporal organization of
physiologic processes throughout several structural levels in
the organism, the CS. The intrinsic rhythmicity of this system
is based on a core set of clock genes involved with an
autoregulatory transcriptional/translational feedback loop
machinery. By rephrasing Plato’s words, we could, thus, state
that human time depends on the periodic regularity of
transcription, which is secured and defined by the clock genes.
The award of the 2017 Nobel Prize in Physiology or Medicine to
J.C. Hall, M. Rosbash and M. W. Young “for their discoveries of
molecular mechanisms controlling the circadian rhythm” (517)
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is a testament to the fundamental importance of circadian clocks
and the molecular complexity of behavior regulation.

However, over the past seven decades, modern society has
cultivated a new, round-the-clock lifestyle, which enhances
temporal misalignment between internal (i.e., central and
peripheral) and geophysical circadian cycles. Given the close
interconnection between the CS and the SS at various levels,
internal desynchrony could synergistically contribute to the
development of a higher stress sensitivity and vulnerability for
stress-related disorders. Understanding the mechanisms
susceptible to chronodisruption following toxic stress exposure
and their role in a chronically dysregulated circadian network in
stress-related disorders could provide new insights into disease
Frontiers in Psychiatry | www.frontiersin.org 16128
mechanisms, advancing psychochronobiological treatment
possibilities and enabling preventive strategies in stress-
exposed populations (74, 312, 518).
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