Research Topic

Functional Hybrid Nanostructures in Theranostics

About this Research Topic

It has been frequently said that chemotherapeutic drugs are more responsible for major side effects, and in some cases lead to cancer patients’ death. Often, tumor cells develop resistance to chemotherapeutic drugs, leading to inefficient or ineffectual action of the drug on cancer cells—and unregulated action on normal cells.

Several nanoscale drug delivery systems and therapies have recently been developed to tackle this resistance problem, including polymeric nano-micelles (PM), inorganic nanoparticles, and carbon-based nanoparticles. While promising to be particularly capable agents in detecting, diagnosing, and treating cancer, each of these nanomaterials also pose disadvantages, such as toxicity and aggregate formation.

A newly developed, promising strategy to overcome these disadvantages, and to produce perfect theranostics systems for drugs or diagnostic agents, is to make hybrid systems containing all of these nanomaterials: "hybrid nanostructures."

Hybrid nanostructures involve organic-inorganic interfaces such as polymer, protein-functionalized gold, magnetic, superparamagnetic, platinum, carbon and silver nanoparticles. These hybrid nanostructures are the most promising materials for drug loading, drug delivery, cancer imaging (such as MRI, CT, PET), therapy (such as magnetic hyperthermia), and photodynamic therapy against cancer. Hence, the development of hybrid nanostructures opens the way for nanomedicines for various diseases such as cancer, pathogenic infections, neurodegenerative diseases, and many more.

This Research Topic seeks to explore new synthetic routes for the preparation of hybrid nanostructures: their bioconjugation, functionalization, and targeting in cancer theranostics. Along with synthesis, this Research Topic will focus on new outcomes in the field of hybrid nanostructures geared toward tackling cancer and overcoming the limitations of currently used nanomedicines in cancer.

Article themes may include, but are not limited to:

 1. Functionalized gold, silver, magnetic, polymer, carbon nanotubes, graphene, lipid, and micellar nanoparticles in cancer drug delivery
 2. Magnetic hybrid nanostructures in cancer hyperthermia therapy
 3. Hybrid nanostructures and their cellular interactions
 4. In vivo implications of hybrid nanostructures
 5. Plasmonic hybrid nanostructures (gold, silver) for photodynamic cancer therapy
 6. Magneto-plasmonic hybrid nanostructures for multimodal cancer therapy
 7. Functional superparamagnetic nanostructures for dual modal magnetic resonance
imaging
 8. Bioconjugation of hybrid nanostructures in targeted drug delivery
 9. Multimodal imaging with functional hybrid nanostructures
 10. Hybrid and polymer nanostructures in the Blood Brain Barrier (BBB)
 11. Creating hybrid nanostructures with different shapes and sizes through the novel synthesis method and their use in cancer theranostics


Keywords: cancer, functional nanomaterials, magnetic materials, polymers, multimodal imaging


Important Note: All contributions to this Research Topic must be within the scope of the section and journal to which they are submitted, as defined in their mission statements. Frontiers reserves the right to guide an out-of-scope manuscript to a more suitable section or journal at any stage of peer review.

It has been frequently said that chemotherapeutic drugs are more responsible for major side effects, and in some cases lead to cancer patients’ death. Often, tumor cells develop resistance to chemotherapeutic drugs, leading to inefficient or ineffectual action of the drug on cancer cells—and unregulated action on normal cells.

Several nanoscale drug delivery systems and therapies have recently been developed to tackle this resistance problem, including polymeric nano-micelles (PM), inorganic nanoparticles, and carbon-based nanoparticles. While promising to be particularly capable agents in detecting, diagnosing, and treating cancer, each of these nanomaterials also pose disadvantages, such as toxicity and aggregate formation.

A newly developed, promising strategy to overcome these disadvantages, and to produce perfect theranostics systems for drugs or diagnostic agents, is to make hybrid systems containing all of these nanomaterials: "hybrid nanostructures."

Hybrid nanostructures involve organic-inorganic interfaces such as polymer, protein-functionalized gold, magnetic, superparamagnetic, platinum, carbon and silver nanoparticles. These hybrid nanostructures are the most promising materials for drug loading, drug delivery, cancer imaging (such as MRI, CT, PET), therapy (such as magnetic hyperthermia), and photodynamic therapy against cancer. Hence, the development of hybrid nanostructures opens the way for nanomedicines for various diseases such as cancer, pathogenic infections, neurodegenerative diseases, and many more.

This Research Topic seeks to explore new synthetic routes for the preparation of hybrid nanostructures: their bioconjugation, functionalization, and targeting in cancer theranostics. Along with synthesis, this Research Topic will focus on new outcomes in the field of hybrid nanostructures geared toward tackling cancer and overcoming the limitations of currently used nanomedicines in cancer.

Article themes may include, but are not limited to:

 1. Functionalized gold, silver, magnetic, polymer, carbon nanotubes, graphene, lipid, and micellar nanoparticles in cancer drug delivery
 2. Magnetic hybrid nanostructures in cancer hyperthermia therapy
 3. Hybrid nanostructures and their cellular interactions
 4. In vivo implications of hybrid nanostructures
 5. Plasmonic hybrid nanostructures (gold, silver) for photodynamic cancer therapy
 6. Magneto-plasmonic hybrid nanostructures for multimodal cancer therapy
 7. Functional superparamagnetic nanostructures for dual modal magnetic resonance
imaging
 8. Bioconjugation of hybrid nanostructures in targeted drug delivery
 9. Multimodal imaging with functional hybrid nanostructures
 10. Hybrid and polymer nanostructures in the Blood Brain Barrier (BBB)
 11. Creating hybrid nanostructures with different shapes and sizes through the novel synthesis method and their use in cancer theranostics


Keywords: cancer, functional nanomaterials, magnetic materials, polymers, multimodal imaging


Important Note: All contributions to this Research Topic must be within the scope of the section and journal to which they are submitted, as defined in their mission statements. Frontiers reserves the right to guide an out-of-scope manuscript to a more suitable section or journal at any stage of peer review.

About Frontiers Research Topics

With their unique mixes of varied contributions from Original Research to Review Articles, Research Topics unify the most influential researchers, the latest key findings and historical advances in a hot research area! Find out more on how to host your own Frontiers Research Topic or contribute to one as an author.

Topic Editors

Loading..

Submission Deadlines

17 February 2018 Manuscript

Participating Journals

Manuscripts can be submitted to this Research Topic via the following journals:

Loading..

Topic Editors

Loading..

Submission Deadlines

17 February 2018 Manuscript

Participating Journals

Manuscripts can be submitted to this Research Topic via the following journals:

Loading..
Loading..

total views article views article downloads topic views

}
 
Top countries
Top referring sites
Loading..

Comments

Loading..

Add a comment

Add comment
Back to top