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Genome-wide association (GWA) studies, as a prototype of large-scale OMICs 
studies, have advanced our understanding of the genetic basis of many common 
diseases. With respect to coronary artery disease (CAD) and cardiovascular risk factors, 
like lipids, blood pressure or BMI, they have identified hundreds of chromosomal 
loci that modulate disease risk. Despite their scientific success, GWA studies have 
been criticized for having failed so far in delivering diagnostically or therapeutically 
relevant products. However, the ability to achieve such goals has been strengthened 
recently by further layers of OMICs-based data, including large-scale transcriptomics 
data, and better annotation of regulatory sequences and epigenetic changes in the 
genome (e.g. through the ENCODE project), as well as novel tools for bioinformatics 
analysis, allowing a systems medicine based approach to be applied. All in all, the last 
decade with its “gold rush of genomic discovery” led to the identification of known 
and novel pathways involved in the pathogenesis of cardiovascular diseases and 
point to novel treatment targets. This Research Topic has gathered contributions 
from scientists working in the field of cardiovascular genetics who have common 
interests in understanding the pathomechanisms linking genetic association findings 
and disease to finally translate the findings from large-scale genetic studies into 
novel treatment options.
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evaluation of 71 coronary artery 
Disease risk Variants in a Multiethnic 
cohort
Wangjing Ke 1, Kristin A. Rand 2, David V. Conti 1, Veronica W. Setiawan 1, Daniel O. Stram 1, 
Lynne Wilkens 3, Loic Le Marchand 3, Themistocles L. Assimes 4,5 and 
Christopher A. Haiman 1*

1 Department of Preventive Medicine, Keck School of Medicine of USC, Los Angeles, CA, United States, 2 Ancestry, San 
Francisco, CA , United States, 3 Epidemiology Program, University of Hawaii Cancer Center, Honolulu, HI, United States, 
4 Department of Medicine, Stanford University School of Medicine, Stanford, CA, United States, 5 Cardiovascular Institute, 
Stanford University School of Medicine, Stanford, CA, United States

Background: Coronary heart disease (CHD) is the most common cause of death 
worldwide. Previous studies have identified numerous common CHD susceptibility loci, 
with the vast majority identified in populations of European ancestry. How well these 
findings transfer to other racial/ethnic populations remains unclear.
Methods and Results: We examined the generalizability of the associations with 71 
known CHD loci in African American, Latino and Japanese men and women in the 
Multiethnic Cohort (6,035 cases and 11,251 controls). In the combined multiethnic 
sample, 78% of the loci demonstrated odds ratios that were directionally consistent 
with those previously reported (p = 2 × 10−6), with this fraction ranging from 59% in 
Japanese to 70% in Latinos. The number of nominally significant associations across all 
susceptibility regions ranged from only 1 in Japanese to 11 in African Americans with the 
most statistically significant association observed through locus fine-mapping noted for 
rs3832016 (OR = 1.16, p = 2.5×10−5) in the SORT1 region on chromosome 1p13. Lastly, 
we examined the cumulative predictive effect of CHD SNPs across populations with 
improved power by creating genetic risk scores (GRSs) that summarize an individual’s 
aggregated exposure to risk variants. We found the GRSs to be significantly associated 
with risk in African Americans (OR = 1.03 per allele; p = 4.1×10−5) and Latinos (OR = 
1.03; p = 2.2 × 10−8), but not in Japanese (OR = 1.01; p = 0.11).
Conclusions: While a sizable fraction of the known CHD loci appear to generalize in 
these populations, larger fine-mapping studies will be needed to localize the functional 
alleles and better define their contribution to CHD risk in these populations.

Keywords: coronary heart disease, genome wide association study (gWas), multi-ethnic, african americans, 
latino american, Japanese americans, SORT1

intrODuctiOn

Coronary heart disease (CHD) is the most common, chronic, life-threatening illness in the United States, 
affecting more than 11 million people (1). A study with twins has estimated the genetic contribution to 
the variation in CHD mortality to be 0.57 and 0.38 in males and females, respectively (2). Genome-wide 
association studies (GWAS) have been conducted primarily in populations of European ancestry and 
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have identified ~65 regions associated with CHD risk (3–11). Many 
of the CHD loci were identified in a large study of 22,233 case and 
64,762 control of European ancestry in the CARDIoGRAMplusC4D 
consortium, which reported 46 genome-wide significant variants with 
odds ratios ranging from 1.01 to 2.08 and effect allele frequencies of 
0.06–0.91 (9). More recently, 10 additional loci were reported from 
the same consortium in a genome-wide association study involving 
61,289 cases and 126,310 controls subjects following imputation to 
the 1,000 Genomes Project reference panel (12). Genome-wide scans 
have also revealed 7 CHD risk loci in Asian populations (13–17). 
The known genetic risk variants for CHD are estimated to explain 
only 10–11% of the heritability of CHD (9, 12), suggesting that many 
additional genetic susceptibility loci remain to be discovered.

Several studies in Asian populations have reported successful 
replication of known CHD regions (17–20), with a reproducible 
disease association consistently noted with the 9p21 region. A 
limited number studies have been performed to investigate 
risk associated with CHD variants in minority groups such as 
African Americans or Latinos (21–28). In 2011, a GWAS in 
African Americans found a SNP, rs1859023, located at 7q21 
near the PFTK1 gene to be significantly associated with CHD 
(22), however this finding has never been replicated in African 
Americans or any other racial/ethnic group. In a study of 8,090 
African Americans (~700 CHD cases) that examined known 
CHD risk regions, only 9p21 was found to be associated with 
CHD (25). In a study of 8,201 African Americans (~550 CHD 
cases) (26), investigators found consistent direction of effects 
compared to studies of European ancestry for 23 of 44 (binomial 
p = 0.52) known loci with two nominally statistically significant 
(rs599839 at 1p13/SORT1 and rs579459 at 4p23/ABO). Genetic 
studies of CHD in Latino populations have been extremely 
limited. In a Costa Rican study that examined only 14 CHD SNPs 
in 1,898 cases with MI and 2,096 controls, 7 variants at 3 regions 
(SORT1, CXCL12, and 9p21) were found to be significantly 
associated with risk (29). Thus, additional studies are needed 
to understand the generalizability and relevance of the known 
CHD risk loci in populations of non-European ancestry.

In this context, the objective of this study was threefold. First, 
we wished to determine whether associations involving 71 known 
susceptibility variants of CHD from 65 independent regions generalize 
across African-American, Latino and Japanese men and women in 
the Multiethnic Cohort, a study that includes over 6,000 cases and 
11,000 controls. Second, we evaluated common genetic variation 
across each susceptibility region in an attempt to identify variation 
that might better define the risk associations compared to the index 
variants in the multiethnic sample. Lastly, we constructed genetic 
risk scores (GRS) summarizing one’s degree of exposure to high risk 
alleles of CHD and evaluated to what degree this GRS contributes to 
population differences in CHD risk.

MethODs

study Population
The Multiethnic Cohort study (MEC) is a large prospective 
cohort study that was established between 1993 and 1996. The 
MEC includes primarily African Americans, Japanese American, 

Native Hawaiians, Latinos and European Americans living in 
Hawaii and California. Cohort members were recruited through 
Department of Motor Vehicle license files and supplemented by 
voter registration and Health Care Financing Administration 
(Medicare) files. Participating individuals were between 45 and 
75 years of age, and completed a 26-page self-administered, detailed 
questionnaire at cohort entry (baseline data, 1993–1996). The 
questionnaire included basic demographic factors (including race/
ethnicity and education), lifestyle factors (e.g., diet, medication 
use and smoking history), and chronic medical conditions. 
Follow-up questionnaires were also administered in years 1999 
and 2003 which contained updates on participant’s CHD status and  
lifestyle factors.

Several nested case-control studies have been assembled in the 
MEC for GWAS of a number of cancer and non-cancer traits (30–
32) including breast cancer, prostate cancer, and type-2 diabetes, 
mainly in populations of non-European ancestry. In the current 
study, we identified CHD cases and non-cases within these nested 
studies for the genetic analysis of CHD risk SNPs.

The MEC study obtained written informed consent from study 
participants for genetic analysis, approval from the Health Science 
Review Board (HSIRB) at the University of Southern California, 
and IRB certification permitting data sharing in accordance with 
the NIH Policy for Sharing of Data Obtained in NIH Supported 
or Conducted Genome-Wide Association Studies (GWAS). 
Genetic data for the MEC is available on dbGAP (phs000517.
v3.p1, phs000851.v1.p1, phs000356.v2.p1, phs000306.v4.p1,  
phs000683.v1.p1)

chD case/cOntrOl DefinitiOns

CHD cases were identified through linkage of the MEC to the 
California Hospital Discharge Data (1990–2012) (CHDD) and 
the Centers for Medicare and Medicaid Services (CMS) claim 
files (MedPAR, outpatient) (1999–2011). Hospital discharge 
information was not available for the subjects from Hawaii which 
included 76.6% of the Japanese men and women. A CHD case was 
defined as having ischemic heart disease under ICD-9 codes (DX 
410–414), by the principal or first diagnosis code and the principal 
or first procedure code. We also included cases with a primary 
cause of death due to myocardial infarction (ICD-9 DX410, ICD-10 
I21), or other CHD conditions (ICD-9 DX411–414, ICD-10 I20, 
I22–25). Both prevalent and incident CHD cases were included in 
this study. Of the 6,035 CHD cases identified, 1,146 were identified 
from their baseline questionnaires at the time of enrollment in the 
MEC study, and a majority of these prevalent cases (1,122, 97.9%) 
were also identified from CHDD or Medicare.

Controls in this study were subjects with no history of heart attack 
or angina based on the baseline questionnaire or all subsequent 
follow-up questionnaires. Those taking nitrates at blood draw in 
subsequent examinations were also excluded. Individuals with non-
primary CHD diagnosis codes (i.e., 2–24) from the CHDD and 
Medicare data were excluded from being either a case or control. 
A total of 11,251 controls were selected, of which 8,307 had at 
least one previous Medicare or CHDD claim (and thus would have 
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been identified as a case). A sensitivity analysis using controls with 
definite claim information was performed.

genOtyPing anD Quality cOntrOl

We utilized genetic data generated from case-control studies in the 
MEC of breast cancer, prostate cancer, and type 2 diabetes in African 
Americans (2,976 males and 3,539 females), Japanese Americans 
(2,530 males and 2,132 females), and Latinos (3,340 males and 
2,769 females). Genotyping was conducted using the Illumina 
platform with different arrays, including the Human 1M-Duo 
v3.0 BeadChip (31, 32), HumanOmni2.5-Quad BeadChip (33), 
Human 660W-Quad BeadChip (34), and the Cardio-MetaboChip 
(35) (Table S1). We used the following exclusion criteria to remove 
samples whose genetic or phenotypic data were questionable: (1) 
unknown replicates across studies, (2) call rates < 95%, (3) samples 
with mismatched gender, such as male samples with >10% mean 
heterozygosity of SNPs on the X chromosome and/or <10% mean 
intensity of the Y chromosome; or female samples with <15% mean 
heterozygosity of SNPs on the X chromosome and/or similar 
mean allele intensities of SNPs on the X and Y chromosomes, (4) 
ancestry outliers (>4 standard deviations from the mean of the 
first or second principal component), and (5) first degree relatives.

A subset of 2,717 African Americans (879 CHD cases and 1,838 
controls) and 1,184 Japanese Americans (302 CHD cases and 882 
controls) genotyped with the Cardio-MetaboChip were missing 
data for 20 of the 71 SNPs; these subjects were excluded from the 
risk score analysis.

snP iMPutatiOn anD PrinciPal 
cOMPOnents analysis

All samples except for the African-American and Japanese samples 
genotyped with the Metabochip were imputed using the software 
IMPUTE2, based on build 37 (hg19) coordinates, to the 1000 
Genome Project data phase 1 v3. Principal components were 
calculated by study in smartpca from EIGENSOFT (36) using a 
random selection of 10,000 SNPs across the genome (MAF >5% 
and call rate >95%).

statistical analysis

The log-additive effect of each SNP on CHD risk was estimated 
in PLINK using unconditional logistic regression adjusted for 
age, sex, BMI and the first 10 principal components to account 
for potential population stratification (37). All analyses were 
stratified by ethnicity, disease status (i.e., breast cancer, prostate 
cancer, or type 2 diabetes disease status). METAL was used 
to combine the results within and across populations, which 
included 18 case-control strata in the overall meta-analysis of all 
populations. For SNPs that were imputed, all were imputed with 
an IMPUTE2 INFO score >0.8 in each study and population. 
SNPs rs11752643 and rs3782886 in African Americans, rs180803 

in Latinos, and rs6544713, rs4252120, rs2023938, rs3918226, 
rs3184504, and rs9982601 in Japanese had a minor allele 
frequency less than 1% and were not included in the ethnic-
specific analysis. The cross-ethnic meta-analysis was performed 
on SNPs observed in at least two ethnic groups.

In addition to testing of the index SNP, we examined regional 
replication of the signal through testing SNPs in linkage 
disequilibrium (LD) with the index SNP in European ancestry 
groups (r2 ≥0.4 in EUR 1000 Genomes Project). Haploview (38) 
was used to assess pairwise tag SNPs among bins of markers in 
the AFR population [tagging r2 ≥0.8 for SNPs with a MAF >1% 
based on 1000 Genomes Project data (39)]. For each region, 
an alpha threshold of significance was set at 0.05 divided by 
the number of tag SNPs in AFR. We considered evidence of 
replication to be present in a region when one or more SNPs 
in LD with the index SNP had a p-value that was lower than 
the region-defined alpha threshold. For imputed SNPs, only 
those imputed with high quality (IMPUTE2 INFO score 
>0.8) were included in the regional replication testing. The 
regional association plots were generated with the LocusZoom  
program (40).

We also examined the aggregate effect of the CHD risk 
loci. Three genetic risk scores (GRS) were calculated for each 
individual: (1) An unweighted GRS comprised of risk-associated 
alleles from the 71 CHD SNPs, (2) a modified unweighted GRS 
(I) that substitutes the index SNP with the lead SNP reaching 
region-wide significance within a specific race/ethnic group of 
each known CHD locus, and (3) a modified unweighted GRS 
(II) similar to I but substituting index SNPs with the leading 
SNPs in each region from our cross-ethnic meta-analysis. The 
risk alleles for the substitution SNPs were determined based on 
their observed effects in our study. As outlined above, subjects 
genotyped with the non-GWAS Metabochip were excluded 
from the risk score analysis because of missing data on 20 
SNPs. The risk score distributions across ethnic groups were 
compared using a two-sided t-test. The association of genetic 
risk scores with CHD were evaluated within each ethnicity in 
a logistic regression model adjusted for age, sex, BMI, and the 
first 10 principal components. Of the 71 SNPs selected, only 
one pair (rs16986953 and rs2123536) from TTC32-WDR35 was 
correlated. Since the association between rs2123536 and CHD 
was only observed in a Chinese population (16), both SNPs were 
kept in the GRS analysis.

Within each population, statistical power for each SNP was 
calculated in the R package “gap,” (41) using the allele frequency 
in each racial/ethnic group, and the documented OR from the 
literature. The allele frequency for the multiethnic sample was 
weighted by the sample size of each ethnic group. The power for 
detecting rare and common alleles within each ethnic group was 
calculated using QUANTO (42).

results

Descriptive characteristics of the 6,035 CHD cases and 11,251 
controls stratified by sex and race/ethnicity are presented in 
Table 1. We analyzed a total of 2,376 African-American cases and 
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4,139 controls, 2,291 Latino cases and 3,818 controls, and 1,368 
Japanese cases and 2,294 controls. In general, compared to controls, 
CHD cases were slightly older at cohort entrance, were heavier in 
all three ethnic groups and were more likely to have ever smoked 
than controls in all three ethnic groups (Table 1). The associations 
of BMI and smoking with CHD were similar when further stratified 
by prevalent conditions, including prostate cancer, breast cancer, 
and diabetes (Table S2).

We had a priori greater than 80% power to detect reported per 
allele effect sizes for 6 out of 71 SNPs in African Americans, 9 out 
of 71 SNPs in Latinos, and 9 out of 71 SNPs in Japanese Americans 
and 16 out of 71 SNPs when combining samples from all three 
ethnic groups (Figure S1). Given the sample size in each ethnic 
group, we had 28.5% power to detect an OR of 1.12 (mean OR from 
the selected index SNPs) for a rare (MAF = 0.05) allele and 71.6% 
power to detect the same OR for a common (MAF = 0.20) allele 
in African Americans; we had 27.3% power to detect OR of 1.12 
for a rare allele and 69.3% power for a common allele in Latinos; 
and 20% power for a rare allele and 52.7% power for a common 
allele in Japanese Americans.

We examined evidence of replication for 71 CHD variants 
from 65 regions (Table S3). Among these variants, 69 in African 
Americans, 70 in Latinos, and 65 in Japanese Americans had a 
MAF >1% and were included in the analysis. Compared to the null 
expectation that one-half of the examined SNPs show consistent 
direction of effects as previously reported, 65.2% (45 of 69, binomial 
p = 0.008) SNPs in African Americans, 70.0% (49 of 70, binomial 
p = 5.5 × 10−4) in Latinos, 58.5% (38 of 65, binomial p = 0.11) in 
Japanese, and 77.5% (55 of 71, binomial p = 2.0 × 10−6) in the 
combined multiethnic sample had the same direction of association 
as previously reported. In African Americans, nominally statistically 
significant associations (p < 0.05) and consistent directional effects 
were observed for 11 index SNPs in PPAP2B, SORT1, IL6R, REST-
NOA1, BTN2A1, SLC22A3-LPAL2-LPA, 9p21, CXCL12, SH2B3, 

and KCNE2. In Latinos, nominal evidence of association (p < 0.05) 
and consistent directional effects were observed with 8 index SNPs 
at SORT1, APOB, NOS3, LPL, ZHF259-APOA5-APOA1, MFGE8-
ABHD2, FURIN-FES, and BCAS3. In Japanese, only 1 index SNP 
at 9p21 was nominally significant and directionally consistent. 
In the combined multiethnic sample, 10 index SNPs at PPAP2B, 
SORT1, IL6R, REST-NOA1, EDNRA, PHACTR1, BTN2A1, NOS3, 
9p21, and CXCL12 were directionally consistent and nominally 
statistically significant.

We observed evidence of regional replication for 6 regions in 
African Americans, 3 in Latinos, 1 in Japanese Americans, and 10 
in the combined sample when examining SNPs correlated with the 
index SNPs (Table S4; see Methods). The previously reported index 
SNP in four of the 10 regions was not significant at the 0.05 level, 
but correlated SNPs with p-values smaller than the region specific 
significance levels were detected in these four regions: SLC22A4-
SLC22A5 and RAI1-PEMT-RASD1 in African Americans, TTC32-
WDR35 in the multiethnic analysis, and APOE-APOC1 in Latinos 
and the multiethnic sample.

The most statistically significant association was observed at the 
SORT1 locus (Figure 1). Two index SNPs in complete LD (rs602633 
and rs599839) were initially reported from GWAS in European 
ancestry populations. The index SNP rs602633 was associated 
with risk in African Americans (OR = 1.13; p = 0.004), Latinos 
(OR = 1.11; p = 0.04), and in the cross-ethnic meta-analysis (OR 
= 1.11; p = 7.8×10−4), but not in Japanese Americans (OR = 1.01, 
p = 0.88). The most significant association in the region was with 
variant rs3832016 (OR = 1.16; p = 2.5×10−5 in the multiethnic 
sample), an INDEL (−/T) in high LD with rs602633 in EUR (r2 
= 0.96) and with a MAF of 0.35 in African Americans, 0.20 in 
Latinos, and 0.07 in Japanese Americans. A previous fine-mapping 
study of the SORT1 region at 1p13 implicated a nearby non-coding 
polymorphism (rs12740374) to be the likely functional variant and 
to affect lipoprotein metabolism (43). SNP rs12740374 is in high 

table 1 |  Descriptive Characteristics of CHD Cases and Controls

study Population (total N = 17,286, chD case N = 6,035, chD control N = 11251)

         african americans (N = 6,515)
Male (N = 2,976) female (N = 3,539)

chD cases (N = 1,234) chD controls (N = 1,742) chD cases (N = 1,142) chD controls (N = 2,397)
Ever smoked* Yes (%) 936 (75.85) 1205 (69.17) 654 (57.27) 1120 (46.73)

No (%) 289 (23.42) 524 (30.08) 470 (41.15) 1257 (52.44)
BMI Mean (SD) 27.60 (4.29) 27.42 (4.24) 30.06 (6.10) 28.71 (5.76)
Age at cohort entry Mean (SD) 63.90 (7.22) 60.16 (8.64) 62.30 (8.05) 57.29 (8.71)

latinos (N = 6,109)
Male (N = 3,340) female (N = 2,769)

chD cases (N = 1,364) chD controls (N = 1,976) chD cases (N = 927) chD controls (N = 1,842)
Ever Smoked* Yes (%) 976 (71.56) 1306 (66.09) 336 (36.25) 599 (32.52)

No (%) 357 (26.17) 638 (32.29) 554 (59.76) 1173 (63.68)
BMI Mean (SD) 27.72 (4.01) 27.43 (3.78) 29.37 (5.96) 27.81 (5.19)
Age at cohort entry Mean (SD) 62.67 (6.31) 59.62 (6.98) 61.25 (6.49) 57.71 (7.16)

Japanese americans (N = 4,662)
Male (N = 2,530) female (N = 2,132)

chD cases (N = 930) chD controls (N = 1,600) chD cases (N = 438) chD controls (N = 1,694)
Ever Smoked* Yes (%) 664 (71.40) 1050 (65.63) 138 (31.51) 515 (30.40)

No (%) 262 (28.17) 541 (33.81) 296 (67.58) 1170 (69.07)
BMI Mean (SD) 25.50 (3.18) 25.56 (3.53) 24.40 (4.31) 24.25 (4.11)
Age at cohort entry Mean (SD) 64.30 (6.94) 59.71 (8.76) 62.26 (7.09) 57.20 (8.24)

*Numbers don’t total to 100% due to missing data.
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LD not only with the index SNP rs602633 (r2 = 0.90 in EUR) but 
also with rs3832016 (r2 = 0.94 in EUR). Variant rs12740374 was 
less strongly associated with risk in the current study (p = 0.008 
in African Americans with MAF = 0.25, p = 0.08 in Latinos with 
MAF = 0.20, p = 0.93 in Japanese Americans with MAF = 0.07, 
and p = 0.003 in the combined multiethnic analysis).

Other regions where evidence of regional replication was observed 
in African Americans include PPAP2B (rs72664341, p = 0.00018), 
SLC22A4-SLC22A5 (rs17689550, p = 0.006), SLC22A3-LPAL2-LPA 
(rs4709431, p = 0.0077), SH2B3 (rs10774625, p = 0.0047) and RAI1-
PEMT-RASD1 (rs9899364, p = 4.5 × 10−4). In Latinos, evidence for 
regional replication was observed at MFGE8-ABHD2 (rs8037001,  
p = 0.0017), FURIN-FES (rs8182016, p = 1.1 × 10−4), and APOE-
APOC1 (rs7412, p = 0.0043). In the Japanese, regional replication 
was only observed at 9p21 (rs10811656, p = 0.0015). Five of the 
10 regions that replicated in the multiethnic analysis were also 
significant in ethnic-specific analyses, whereas the remaining 5 
regions were detected with significant regional associations in one 
or more of the ethnic-specific populations alone (TTC32-WDR35, 
APOB, EDNRA, PHACTR1 and BCAS3; Table S4).

Genetic risk scores (GRSs) were used to compare the distribution 
of genetic risk between populations. Japanese Americans carried, on 
average, more risk alleles (70.26 ± 4.61, mean ± SD) in comparison 
to African Americans and Latinos (67.03 ± 4.73 and 68.37 ± 5.11, 
respectively) (Table 2; Table S5). The greater number of risk alleles 
resulted in the distribution of the GRS to be shifted to the right in 
Japanese Americans compared to African Americans and Latinos 
(Figure 2). The distribution of the GRS was slightly higher in cases 
than in controls for every group (two-sided t-test, AA p = 4.4 × 
10−5, LA p = 4.5 × 10−7, and JA p = 0.28). Only minor changes in 
the distribution of the GRS were noted when we included regionally 
significant leading SNPs from each ancestry (modified risk score 
I), or from the cross-ethnic meta-analysis (modified risk score II) 
(Table S5). The average risk scores remained highest in Japanese 
Americans whereas differences between African Americans and 
Latinos were reduced, especially when comparing CHD cases from 
these two ethnic groups (modified risk score II, p = 0.14).

The unweighted risk scores were statistically significantly 
associated with CHD risk in African Americans (per allele  
OR = 1.03, p = 4.1  ×  10−5) and Latinos OR = 1.03, (p = 2.2 × 

figure 1 |  Results for the SORT1 region on chromosome 1p13 from the multiethnic meta-analysis. The r2 shown is for the EUR group in the 1000 Genomes 
Project relative to the index SNP rs602633. The stronger signal, rs3832016, is also highlighted. This regional association plot was generated with the LocusZoom 
plot (40).
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10−8), but only weakly associated with CHD risk in Japanese 
Americans (OR = 1.01, p = 0.11) (Table  2). When comparing 
individuals within GRSs in the top quartile to individuals in the 
bottom quartile, we found both African Americans (OR = 1.40) 
and Latinos (OR = 1.39) to have a statistically significant ~40% 
increase in risk (Table 2). The analogous risk was lower (~10%) 
and not significant in Japanese-Americans (OR = 1.09). Results 
were similar for the modified risk scores (Table 2).

To evaluate the effect of existing conditions on the results, we 
repeated the analysis excluding cancer or diabetes cases; the ORs 
were comparable to those observed in each ethnic group and in 
the entire sample (Table S6).

A sensitivity analysis was also performed on the selected index 
SNPs using controls refined to those with medical claims from 
Medicare or CHDD. Despite the loss of statistical power due to 
smaller sample size, the effect sizes were comparable to those 
observed when using the entire control sample (Table S7).

DiscussiOn

We evaluated 71 SNPs associated with CHD risk within 65 risk 
regions in a large multi-ethnic sample of African Americans, 
Latinos, and Japanese Americans and found that a statistically 
significant proportion of SNPs exhibited consistent directions 
of effect beyond the 50% expected by chance. However, only a 
subset of 11, 8, and 1 of these SNPs were found to be nominally 
statistically significant in African Americans, Latinos, and Japanese 
Americans, respectively. Exploration of common genetic variation 
in these CHD-associated regions provided additional support for 

association at 10 regions, with different ethnic-specific or cross-
ethnic leading SNPs. These replication results provide additional 
evidence for shared common genetic effects across ethnicities, with 
previous studies only replicating signals at 9p21 (21, 24–26), SORT1 
(26), and ABO (26) in African Americans, and SORT1, CXCL12, 
and 9p21 in Latinos (29). This is the first report of BTN2A1, a region 
initially reported in Japanese, replicating in African Americans.

Japanese Americans had a higher GRS on average when compared 
to African Americans and Latinos. However, the GRS was more 
strongly associated with CHD in African Americans and Latinos 
compared to the Japanese Americans. We note that the genetic 
markers reported from previous discovery efforts are unlikely to 
be the functional alleles. The correlation between the index and 
functional SNPs may vary depending on the LD structure of each 
ancestral group, which may contribute to the difference in the ethnic-
specific odds ratios. In addition to having limited statistical power 
to replicate associations with index SNPs within and across these 
populations, differences in LD may serve as an alternative explanation 
for the lack of replication. In an attempt to address such issues, we 
conducted regional association testing and constructed modified risk 
scores incorporating regional association results. When substituting 
the index SNPs with leading SNPs from the regional analyses, the 
differences in the modified risk score distributions and per-allele 
aggregate effects were only modified slightly, but differences were still 
noted, particularly between the Japanese and the other populations. 
The reasons for these differences are unclear. Our findings may reflect 
the severity of subclinical coronary atherosclerosis among Japanese 
participants in the MEC that is on average greater than the severity 
observed in Africans and Hispanics (44). Although our analyses are 

table 2 |  Associations of the genetic risk score with CHD by ethnicity

african americans  latinos    Japanese americans  

chD risk score
(Mean ± sD, p)

case = 67.67 ± 4.63
control = 67.03 ± 4.73

p* = 4.4 × 10−5  

case = 69.05 ± 5.13
control = 68.37 ± 5.11

p* = 4.5 × 10−7     

case = 70.44 ± 4.60
control = 70.26 ± 4.61

p* = 0.28  

Unweighted risk 
score

Or† p† Or† p† Or† p†

Continuous 1.031 4.09E-5 1.031 2.23E-8 1.014 0.11

Quartile 1 Reference  Reference Reference 

Quartile 2 1.084 0.42 1.048 0.55 1.001 0.99

Quartile 3 1.132 0.21 1.190 0.03 1.288 0.02

Quartile 4 1.397 6.39E-4 1.393 1.98E-5 1.093 0.42

Modified risk score I‡

Continuous 1.028 2.12E-4 1.022 5.27E-5 1.009 0.29

Quartile 1 Reference Reference Reference 

Quartile 2 1.033 0.75 1.085 0.30 1.107 0.36

Quartile 3 1.252 0.02 1.205 0.02 1.214 0.08

Quartile 4 1.285 0.01 1.263 0.003 1.081 0.48

Modified risk score II§

Continuous 1.018 1.71E-3 1.028 9.06E-8 1.016 0.045

Quartile 1 Reference Reference Reference 

Quartile 2 0.976 0.81 1.066 0.42 1.062 0.59

Quartile 3 1.278 0.01 1.182 0.03 1.342 0.007

Quartile 4 1.280 0.01 1.393 2.0E-5 1.175 0.15

*Two-sided t-test
†Logistic regression model adjusted for age, gender, BMI, and the first 10 principal components
‡Risk score that includes ethnic-specific regional leading SNPs
§Risk score that includes cross-ethnic regional leading SNPs
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preliminary, we deem it unlikely that these known risk alleles are major 
contributors to race/ethnic differences in the incidence of CHD, as 
the incidence of CHD in Japanese is lower than that in the other two 
groups (45). Given that Japanese had a higher average GRS compared 
to other ethnic groups, but their population risk is lower, it is possible 
that functional variants within CHD susceptibility genes not included 
in our GRS disproportionally affect non-Japanese race/ethnic groups. 
Alternatively, environmental risk factors such as suboptimal diet and 
smoking may be less prevalent in Japanese and primarily responsible 
for the lower rates of CHD despite the higher genetic risk. It is difficult 
to directly compare the GRS distribution reported in this study to 
those in studies in European ancestry populations as the methods 
and number of selected SNPs vary (46–53). The vast majority of 
studies in European ancestry populations have observed statistically 
significant per allele relative risks of 1.02–1.12 and relative risks of 
1.5–1.9 in comparing the highest versus lowest quintile or quartile of 
the GRS. Our findings in African Americans and Latinos are generally 
consistent with these reports albeit smaller effect sizes were noted, 
perhaps due to differences in LD between the index and functional 
SNPs.

Our study has a number of limitations. First, the information 
used to define CHD cases and controls was based on a combination 
of health care claims data as well as self-report on questionnaires. 
Some of the Japanese cases from Hawaii may have been missed due 
to the lack of CHDD records. Of the 1,089 Japanese participants 
whose CHDD records were available (in California), 426 CHD 
cases were identified, with 103 classified as cases based solely on 
CHDD records. Given the same ratio, about 338 Japanese CHD 
cases from Hawaii where CHDD was not available, may have 
been misclassified as controls. Assuming an equal distribution of 
genotypes in these missed cases compared to recognized cases, 
this misclassification would result in effects being biased towards 
the null and a reduced power to detect associations. Similar 
misclassification may apply as Medicare or CHDD data were not 
available for all controls. In the sensitivity analysis, limiting controls 
to those with claims data, fewer SNPs reached nominal statistical 
significance (0.05) however effect sizes were relatively comparable 
to those observed in the entire control sample. In an attempt to 
increase specificity when using Medicare and CHDD claims, we 
only included CHD cases identified from the primary and the first 

figure 2 |  A comparison of the aggregate allele count risk score for cases and controls in each race/ethnic group.
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High blood pressure or hypertension is an established risk factor for a myriad of 
cardiovascular diseases. Genome-wide association studies have successfully found over 
nine hundred loci that contribute to blood pressure. However, the mechanisms through 
which these loci contribute to disease are still relatively undetermined as less than 10% 
of hypertension-associated variants are located in coding regions. Phenotypic cell-type 
specificity analyses and expression quantitative trait loci show predominant vascular and 
cardiac tissue involvement for blood pressure-associated variants. Maps of chromosomal 
conformation and expression quantitative trait loci (eQTL) in critical tissues identified 
2,424 genes interacting with blood pressure-associated loci, of which 517 are druggable. 
Integrating genome, regulome and transcriptome information in relevant cell-types could 
help to functionally annotate blood pressure associated loci and identify drug targets.

Keywords: hypertension, blood pressure, epigenetic regulation, GwAS, data integration, functional annotation, 
drug target identification.

inTRoDucTion

Elevated blood pressure (BP) or hypertension is a heritable chronic disorder (1–3), considered the 
single largest contributing risk factor in disease burden and premature mortality (4). High systolic 
and/or diastolic BP reflects a higher risk of cardiovascular diseases (4). Genome-wide association 
studies (GWAS) have found association of 905 loci to BP traits (systolic - SBP, diastolic - DBP and 
pulse pressure -PP) to date (Table S1) (5–33). The use of larger sample sizes has helped to identify 
additional variants, as demonstrated by the most recent study including over 1 million people that 
has identified 535 novel BP loci (33). Still, this collective effort thus far has not entirely elucidated the 
complete genetic contribution to BP, estimated to be approximately 50–60% (34).

To add to this complexity, 90.7% of the 905 BP-associated index variants are located in intronic 
or intergenic regions (Table S1). Causal variants are also difficult to pinpoint because of linkage 
disequilibrium (LD) (35). There is now vast evidence that non-coding variants associated with 
disease interrupt the action of regulatory elements crucial in relevant tissues for that particular 
disease (36). BP loci are not only linked to cardiovascular disease but also to other diseases 
(Figure 1), suggesting that BP-associated variants can result in a wide range of phenotypes. Tissue 
specificity of genetic loci may be relevant for organ specific disease progression. For example, 
variants altering expression in heart may more likely affect disease progression through heart-
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mediated processes rather than kidney-mediated processes, and 
some patients may suffer of left ventricular hypertrophy while 
others may develop nephropathy. Thus, investigating the influence 
of BP variants in critical cell-types is essential in understanding 
disease risk and biology, and assessing the possible translation 
of an associated locus into a drug target. The public availability 

of regulatory annotations in several tissues by projects such as 
ENCODE (39), Roadmap (40) and GTEx (41, 42) has enabled 
integration of epigenetic modifications, expression quantitative 
trait loci (eQTLs) and –omics information with GWAS data. 
Integrative approaches are useful for prioritizing genes from 
known GWAS loci for functional follow-up, detecting novel 

FiGuRe 1 |  Circos plot showing the 10 traits from the GWAS catalog (37) with the largest number of loci also associated to BP, as identified by PhenoScanner 
(38) at p < 0.05 (Supplemental Methods). The outer ring represents the genomic/chromosomal location (hg19). The following inner rings show the associations to 
different traits. Beige: body measurements (height, body mass index (BMI), weight, waist/hip ratio, hip circumference, waist circumference. N = 358). Red: lipids 
(high-density lipoprotein (HDL), low-density lipoprotein (LDL), triglycerides, total cholesterol. N = 226). Yellow: coronary artery disease (CAD)/myocardial infarction 
(MI) (N = 206). Blue: schizophrenia (N = 135). Orange: years of education attendance (N = 101). Light green: creatinine (N = 88). Light pink: rheumatoid arthritis (N = 
78). Purple: type II diabetes (N = 73). Light turquoise: neuroticism (N = 69). Light grey: Crohn’s disease (N = 67).
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gene-trait associations, inferring the directions of associations, 
and potential druggability (43–46).

Here we summarize the advances made in recent years towards 
unraveling the mechanisms of non-coding BP variants in disease 
progression with the resources mentioned above. We focus on 
integrative approaches that aim to prioritize BP-associated SNPs 
located in regulatory regions of the genome for follow-up studies 
(Figure 2). Genetic and molecular aspects of hypertension have 
been reviewed previously by others (47, 48).

inTeGRATive AppRoAcHeS uSinG –
oMicS DATA

Remarkable advances have been made recently towards a better 
comprehension of BP genetics, the biology of disease and translation 
towards new therapeutics, boosted by the widespread application of 
high-throughput genotyping technologies. At the same time, most 
BP-associated variants are non-coding, making the conversion of 
statistical associations into target genes a great challenge. SIFT 
(49, 50), PROVEAN (51), PolyPhen (52), CONDEL (53) and 
more recently CADD (54) are scoring algorithms developed for 

predicting the effect of amino acid changes. Only 98 out of the 
905 lead BP-associated SNPs reflect a CADD score above 12.37 
(Table S2), a threshold suggested by Kicher et al. as deleterious (54). 
However, the causal variant inside the locus might reflect a different 
CADD score than the lead SNP, and pinpointing the mechanisms 
disturbed by the variation remains a challenge. 

New strategies that make use of regulatory annotations in 
disease-relevant tissues have greatly expanded our ability to 
investigate the processes involved in BP. In particular, annotation 
of histone modifications and regions of open chromatin allow 
the identification of active transcription in specific-cell types. 
Similarly, maps of DNA variants affecting expression in a cell-
type specific manner will be integral in BP loci interpretation. A 
list of cardiovascular-related cell-types researched by the ENCODE 
Project is presented by Munroe et al. (55). Such data can be 
integrated with GWAS results using bioinformatics tools (56–58). 
For instance, FUMA provides extensive functional annotation 
for all SNPs in associated loci and annotates the identified genes 
in biological context (57). FunciSNP investigates functional 
SNPs in regulatory regions of interest (58). Ensemble's Variant 
Effect Predictor (VEP) determines the effect of variants on genes, 
transcripts, and protein sequence, as well as regulatory regions, 

FiGuRe 2 |  Diagram of analytical steps that can be followed for variant prioritization and translation of association to a potential drug target. Each step is 
accompanied by examples of publicly available data (green boxes on the left) and tools (yellow boxes on the right) that can be used.
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also outputting SIFT, Polyphen and CADD scores for each variant, 
among other information (59). Although such integrative tools 
are useful for variant prioritization and interpretation, not all 
take into consideration tissue specificity aspects. RegulomeDB, 
for example, is a database that annotates SNPs with known and 
predicted regulatory elements in the intergenic regions of the 
human genome, calculating a score that reflects its evidence for 
regulatory potential (60). However, the scoring procedure can 
only be performed across all available tissue types. In addition, 
several databases containing a broad range of tissues were made 
publicly available since the last update of RegulomeDB, that could 
be included in the tool. Together, these resources have been useful 
in prioritizing genes and variants in associated loci for functional 
follow-up experiments in many post-GWAS analyses, and can be 
implemented in interpretation of BP-associated loci.

Transcription Regulation: Histone 
Modifications and open chromatin
As genomic coordinates of active regulatory elements may be 
mapped using unique functions of chromatin, the characterization 
of chromatin changes in the genome in specific cell-types can be 
used to identify DNA variants disturbing active regulatory elements. 
The four core chromatin histones, H2A, H2B, H3 and H4, can suffer 
posttranslational modifications, such as acetylation or methylation 
(61). These histone modifications indicate active (euchromatin) 

or repressed (heterochromatin) chromatin structure, defining 
regulation and gene transcription (62, 63). Acetylation of histones 
H3 and H4, and H3 methylation at Lys4 (H3K4me3), for instance, 
correlate with gene transcription, whereas methylation at Lys9 
correlates with gene silencing (62, 64). These modifications provide 
a robust readout of active regulatory positions in the genome, and 
have been employed for annotation in several studies (23). Histone 
modifications influencing arterial pressure have been observed in 
many tissues, including vascular smooth muscle (65). An updated 
phenotypic cell-type specificity analysis of the 905 BP loci using 
H3K4me3 mark in 125 tissues is shown in Figure 3. The most 
significant cell-types are cardiovascular-related (Supplemental 
Methods, Table S3). Other tissues with high rank in specificity are 
smooth muscle, fetal adrenal gland, embryonic kidney cells, CD34 
and stem-cell derived CD56 +mesoderm cultured cells. These 
results are consistent with analyses using DNase I hypersensitivity 
sites (DHSs), which indicate likely binding sites of transcription 
factors. These results add more evidence that BP loci are enriched 
on regions of open chromatin (19, 20, 23, 33) (Figure S1), regulating 
transcription in a broad range of tissues.

Methylation
In addition to histone modifications that promote transcription, 
BP loci have also been studied for their enrichment on DNA 
methylation, known to have the opposite regulatory effect. The 

FiGuRe 3 |  Ranked tissues after phenotypic cell-type specificity analysis of 905 BP SNPs using 125 H3K4me3 datasets on human tissue (Supplemental 
Methods, Table S3).
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methylation of CpG sites, presented by CpG islands in promoters, 
affects binding of transcription factors, resulting in gene silencing 
(66, 67). Abnormal CpG methylation is found in hypertension 
(68–70), and in many other complex diseases (71, 72). Recently, 
Kato et al. identified a ~2 fold enrichment associating BP variants 
and local DNA methylation (19). The study also demonstrates that 
DNA methylation in blood correlates with methylation in several 
other tissues. These observations add to previous indications on 
the function of DNA methylation in regulating BP.

Measuring the impact of Bp Risk Alleles 
on Gene expression: eQTLs
Expression quantitative trait loci (eQTL) are regions harbouring 
nucleotides correlating with alterations in gene expression (73). 
Linking transcription levels to complex traits has been a follow-up 
step adopted by many studies (43, 74–76), driven by the increase in 
available data of expression patterns across tissues and populations 
(33, 46, 77–81). Warren et al. found that 55.1% of their identified 
BP-associated loci have SNPs with eQTLs in at least one tissue from 
GTex repository (41), with arterial tissue most frequently observed 
(29.9% of loci had eQTL in aorta and/or tibial artery) (21). A great 
enrichment of eQTLs in artery was also observed by Evangelou et 
al., who identified 92 novel loci with eQTL enrichment in arterial 
tissue and 48 in adrenal tissue (33). In summary, these studies also 
suggest that BP loci exert a regulatory effect mostly in vascular 
and cardiac tissues.

Finding the Targets: chromosome 
confirmation capture Techniques
Mapping variation to target genes is one of the greatest challenges in 
the post-GWAS era, and different strategies have been developed to 

this end (82). One approach is the use of chromosome confirmation 
capture [3C (83), 4C (84, 85), Hi-C (86, 87)]. These techniques 
capture chromosome interactions (88), resulting in networks of 
interacting genetic loci (84, 85).

Warren et al. made use of this resource to investigate the target 
genes of non-coding SNPs, using Hi-C data from endothelial cells 
(HUVECs). Distal potential genes were found on 21 loci, and 
these genes were enriched for regulators of cardiac hypertrophy 
in pathway analysis (20). Kraja et al. also explored long-range 
chromatin interactions using endothelial precursor cell Hi-C 
data (89, 90), finding the link between an associated loci and a 
gene known to affect cell growth and death (91). More recently, 
Evangelou et al. used chromatin interaction Hi-C data from 
HUVECs (92), neural progenitor cells (NPC), mesenchymal 
stem cells (MSC) and tissue from the aorta and adrenal gland (93) 
to identify distal affected genes. They found 498 novel loci that 
contained a potential regulatory SNP, and in 484 loci long-range 
interactions were found in at least one cell-type (33).

A list of human HiC data available on BP relevant tissues is 
presented in Table S4. An updated version of variant to gene 
mapping making use of this chromatin conformation data is shown in  
Table S5. Promoter regions of 1,941 genes were found to interact with 
the 27,649 candidate SNPs (905 BP associated SNPs and vicinity) 
(Supplemental Methods,  Figure  4). Integration with eQTL data 
on relevant tissues confirmed 209 of the genes mapped, and added 
additional 483 genes. One main goal of understanding biological 
mechanisms of GWAS associations and affected genes is to be able 
to therapeutically target them. Assessment of the druggability of a 
BP-associated locus depends on several factors, but overlap of these 
results with a recent effort on druggability suggests that 517 of these 
2,424 genes are druggable (94), and 35 mapped genes are also predicted 
to interact with common drugs for treatment of hypertension  
(Table S2, Figure 4, Supplemental Methods). Interestingly, 1,774 of 
the genes mapped are physically located outside BP-associated loci. 
These results support the hypothesis that BP GWAS loci act on tissue 
specific regulatory gene networks. Importantly, they also show that 
the use of long range chromatin interaction maps can reliably identify 
target genes even outside the risk locus.

DiScuSSion AnD concLuSionS

GWAS have pinpointed over 900 loci associated with BP, and 
increasing sample size has shown to be crucial to identify more 
signals (33). However, efforts are needed to translate these results 
into biological inferences on causal mechanisms and understanding 
of disease biology. The integration of data beyond the DNA 
sequence is crucial to identify genes involved in BP regulated by 
epigenetic mechanisms.

BP variants show eQTL, histone modification and open 
chromatin enrichment in a broad range of tissues, mostly vascular 
and cardiac-related. As the interplay of regulatory elements is highly 
cell-type specific, the study of changes that influence chromatin 
structure and accessibility needs to be extended to a broad range 
of tissues and conditions, including disease and its stages. Rosa-
Garrido et al. observed chromatin structural abnormalities when 
comparing healthy and diseased cardiac myocytes, concluding 

FiGuRe 4 |  Diagram illustrating the results of our integrative approach.
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Periodontitis (PD) is a common gingival infectious disease caused by an over-aggressive 
inflammatory reaction to dysbiosis of the oral microbiome. The disease induces a 
profound systemic inflammatory host response, that triggers endothelial dysfunction 
and pro-thrombosis and thus may aggravate atherosclerotic vascular disease and its 
clinical complications. Recently, a risk haplotype at the ANRIL/CDKN2B-AS1 locus 
on chromosome 9p21.3, that is not only associated with coronary artery disease / 
myocardial infarction (CAD/MI) but also with PD, could be identified by genome-wide 
association studies. The locus encodes ANRIL - a long non-coding RNA (lncRNA) 
which, like other lncRNAs, regulates genome methylation via interacting with specific 
DNA sequences and proteins, such as DNA methyltranferases and polycomb proteins, 
thereby affecting expression of multiple genes by cis and trans mechanisms. Here, we 
describe ANRIL regulated genes and metabolic pathways and discuss implications of 
the findings for target identification of drugs with potentially anti-inflammatory activity 
in general.

Keywords: periodontitis, inflammation, AnRiL, 9p21.3, drug target, anti-inflammatory agents, coronary artery 
disease, CDKn2B-AS1

inTRoDuCTion

Periodontitis (PD) is an inflammatory disease that involves the osseous, connective, and epithelial, 
tissues surrounding the teeth (1). Bacteria attached to the teeth along the gingival margin form a 
biofilm, which may trigger an immune response in the adjacent gingival tissue. If the biofilm is not 
removed and persists, it can induce gingivitis characterized by swelling, redness and bleeding (2). 
If the bacterial biofilm and the accompanying inflammatory reaction migrate apically along the 
root surface and penetrate into the tooth supporting structures the gingival inflammation becomes 
PD (3), which exists in two forms, chronic periodontitis (CP) and a more severe, early onset form 
called aggressive periodontitis (AgP) (4). In the US almost 50% of adults aged 30 years or above 
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have CP, including 30% with moderate and 8.5% with severe PD 
(5). Compared with CP, AgP is less frequent (prevalence: <0.1%). 
PD is a complex inflammatory disease, which is influenced 
considerably by interactions between environmental, lifestyle 
and genetic factors. Some individuals develop PD at young age, 
although they have similar lifestyle habits and environmental 
context compared to individuals who do not develop the disease. 
Therefore, it is considered that early-age of disease onset often 
indicates a genetic predisposition (6). The genetic susceptibility 
to PD has been examined extensively by GWAS (7–10) and 
seven common variants were identified, three of which met 
the genome-wide significance thresholds. Of the latter three, 
one (GLT6D1, glycosyltransferase 6 domain containing 1) is 
specific for AgP, whereas the other two (SIGLEC5, sialic acid 
binding Ig like lectin 5; DEFA1A3, defensin alpha 1/alpha 3) are 
associated with both AgP and CP (8, 10, 11). However, to date 
no associations that met the genome-wide significance threshold 
for common and rare alleles could be identified for CP alone. 
It is considered that these not signnificant findings are caused 
by the small sample sizes that were employed. Yet, some loci 
give suggestive evidence for association with PD. This evidence 
is based on independent replication in samples of the same 
disease phenotype with sufficient statistical power, independent 
validation of the associations in samples of different disease 
manifestations, like AgP and CP, and independent identification 
through different unbiased systematic approaches. According to 
these criteria, the following loci in addition to GLT6D1, SIGLEC5 
and DEFA1A3 may currently be considered to be associated 
with CP and/or AgP: ANRIL (antisense noncoding RNA in the 
INK4 locus), NPY (neuropeptide Y), PF4 (platelet factor 4), PLG 
(plasminogen), VAMP3 (vesicle associated membrane protein 
3) (10, 12–20).

Results obtained from longitudinal epidemiological studies 
support that CAD and CP are associated with each other (21), 
although the causative relationship between CAD and CP has 
remained ambiguous (22). Interestingly, variants at ANRIL, PLG 
and VAMP3 were reported to be associated with periodontal 
phenotypes and also with CAD [recently reviewed in ref. (23)]. 
Of these, ANRIL is the most significant risk locus of CAD and 
the association of ANRIL with PD was replicated repeatedly. In 
this narrative review, we summarize recent publications on the 
impact of this locus on chronic inflammation and to discuss 
potential approaches and strategies to identify new drug targets 
related to anti-inflammatory therapies in general.

The ChR.9p21.3 RiSK Region iS 
ShAReD BeTween peRioDonTiTiS AnD 
CAD/Mi AnD AffeCTS gene 
expReSSion of MuLTipLe geneS in 
DiffeRenT CeLL TypeS

The 9p21.3 risk haplotype at ANRIL/CDKN2B-AS1 had initially 
been identified by GWAS of CAD (24), and was shortly later 
identified by Schaefer et al. as one of the first genetic risk factors 
of AgP (17, 25–27) [see  (Table  1)  for a comparison of the 
association statistics of the relevant 9p21.3 lead SNPs related to 
AgP and coronary heart disease].

The core risk haplotype of ~50 kb, that is shared between CAD/
MI and PD encodes the 3’end of a long ncRNA called “antisense 
non-coding RNA in the INK4 locus (ANRIL)” (also designated 
CDKN2BAS) (17, 25). Its sequence is oriented antisense relative 
to cyclin-dependent kinase inhibitor 2B (CDKN2B), which is 
located adjacent to the core CAD/PD region. Together with 
CDKN2A, which is located further upstream of ANRIL, this 
region harbors a hotspot for multiple complex human diseases 
and traits (28). Adjacent is a tightly linked locus for diabetes 
(29) which is neither associated with CAD (29) nor PD (17).

Given the extended region of high linkage disequilibrium 
at the 9p21.3 locus and the large number of transcriptional 
regulatory elements that are present in the CAD risk region, 
it is currently not entirely clear whether the risk of CAD and 
PD is mediated solely by ANRIL or whether its neighbors, 
CDKN2B and CDKN2A - two well-known tumor suppressor 
genes involved in cell cycle arrest and malignant transformation 
in certain cancers (30) - contribute to the mechanism. Knockout 
mice lacking CDKN2B do not only develop a cancer-related 
phenotype but also advanced aneurysms, accelerated smooth 
muscle cell apoptosis and medial arterial thinning (31), suggesting 
a potential involvement of CDKN2B not only in cancer but also 
in vascular disease. CAD risk SNP rs1537373 affects CDKN2B 
expression in human coronary artery smooth muscle cells, 
aorta and the mammary artery (32), and CDKN2B has been 
shown to regulate inflammatory cytokine production and the 
clearance of smooth muscle cell-derived apoptotic bodies during 
atherosclerosis (33). Miller et al. (32) recently investigated the 
role of SNP rs1537373 in the expression of ANRIL. This variant 
resides in a large haplotype block of linked variants including 
the highly replicated CAD SNP, rs4977574 and the CAD and 
PD lead SNP rs1333049 (17, 34). Although rs1537373 does not 
affect a known transcription factor binding motif, it is located at 

TABLe 1 |  Summary of the Chromosome 9p21.3 Locus Associated with Coronary Artery Disease and Periodontitis.

Snp oR (Agp) oR (ChD) p (Agp) p (ChD) Ci 95% (Agp) Ci 95% (ChD) n (Agp) n (ChD)

rs2891168 1.44 1.42 4.4 E-3 1.1 E-6 1.12–1.86 1.23–1.64

159/736 1,104/736 rs1333042 1.44 1.42 4.8 E-3 1.2 E-6 1.12–1.85 1.23–1.64

rs1333048 1.48 1.39 2.5 E-3 7.6 E-6 1.15–1.92 1.20–1.60

Association statistics of tree haplotype tagging SNPs at the relevant chromosome 9p21.3 risk region, multiplicative model adjusted for smoking, diabetes, and gender in a logistic 
regression model. AgP: aggressive periodontitis (generalized), CHD, coronary heart disease (disease onset <55 years), OR: odds ratio, CI: confidence interval, P: P-value obtained 
from a Wald test, N: number of cases/controls. Data extracted from ref. (17).
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a site of accessible chromatin. Allele-specific transcription factor 
binding and histone H3 lysine 27 acetylation around rs1537373 
indicated that the native chromatin structure may be affected by 
the genotype, which was consistent with the observed cis eQTL 
affecting CDKN2B rather than ANRIL in aortic tissues (32). 
It appears noteworthy in this context that SNP rs1537373 was 
earlier demonstrated to be also strongly associated with coronary 
artery calcification (35). If bone marrow lacking murine Cdkn2a 
was transplanted to the atherosclerosis prone Ldlr(-/-) mouse 
model, the Cdkn2a-deficient recipients exhibited accelerated 
atherosclerosis, a higher number of pro-inflammatory monocytes, 
and increased monocyte/macrophage proliferation compared to 
controls (36). Thus besides CDKN2B, also CDKN2A has some 
plausibility for being involved in the pathogenesis of vascular 
inflammation [see the review by Hannou et al. (37) for further 
information].

The location of the core risk haplotype of CAD/MI and PD at 
the 3’end of ANRIL implies that the encoded long ncRNA is a prime 
functional candidate involved in the risk mediating mechanism(s). 
ANRIL is a lowly expressed gene consisting of 20 exons whose 
transcripts could be detected in a wide variety of cell-types and 
tissues, including smooth muscle cells, endothelial cells, and cells of 
the immune system that are known to be involved in atherogenesis 
(29, 38, 39). Originally, two splice variants were demonstrated in 
normal human testis and signals using PCR with primers derived 
from exons 14–16 were also obtained in a range of other tissues 
(40). Subsequently, many additional splice variants could be 
identified in various cell-types (38, 41, 42). ANRIL is subject to 
a complex pathway of alternative splicing which may differ from 
tissue to tissue and which may be influenced by the presence of 
SNPs interfering with the function of splice signals.

ANRIL expression was reported to be tightly linked to the 
ANRIL genotype due to disruption of an inhibitory STAT1 
binding site in risk allele carriers (43), which would be expected 
to impair the IFNγ signaling response. However, results published 
by Almontashiri et al. argued against an involvement of IFNγ in 
the mechanism underlying the association of the 9p21.3 genotype 
with CAD risk (44). The CAD risk allele of SNP rs564398, which is 
one of the SNPs most strongly correlated with ANRIL expression, 
was predicted to disrupt a Ras Responsive Element Binding protein 
(RREB) 1 binding site in the 9p21.3 locus (45, 46). RREB may be 
involved in up-regulating CDKN2B in a Ras-dependent manner by 
down-regulating ANRIL. Besides stimulating VSMC senescence, 
Ras has also been implicated to contribute to atherogenesis 
by affecting vascular inflammation (47). The local functional 
influence of variants in the 9p21.3 region on gene expression 
has been examined by many other studies in a variety of tissues 
and cells (41, 45, 48–52). The results confirmed that the CAD 
risk variants in the 9p21.3 region are strongly associated with 
ANRIL expression and also with expression of the adjacent loci 
(CDKN2A, CDKN2B), albeit much more moderately. However, 
there is some inconsistency concerning the direction of the effect. 
Earlier studies suggested associations between CAD risk variants 
and lower ANRIL expression in vascular smooth muscle cells, 
whole blood cells and purified peripheral blood T-cells (49, 53, 
54). In contrast, the study by Holdt et al. (51), in which specifically 
the long ANRIL transcript (ENST00000428597) was measured, 

demonstrated that the CAD risk haplotype was associated with 
higher ANRIL expression in whole blood cells and peripheral blood 
mononuclear cells. Also Zhao et al. found higher expression of 
this transcript in transformed beta-lymphocytes collected from 
genotyped donors who carried the CAD risk variant rs7865618 
(55). In the latter study, all CAD risk variants assayed in the study 
were associated with the same directions of the effects.

In addition to the linear form of ANRIL, there also exists a 
circular ANRIL RNA form (38). Recently, Holdt et al. (56) showed 
that circular ANRIL may be athero-protective by regulating rRNA 
maturation. In their model, pescadillo homologue 1 (PES1, a 
60S-preribosomal assembly factor) binds to circular ANRIL, which 
impairs ribosome biogenesis and exonuclease-mediated pre-rRNA 
processing. The resulting nucleolar stress induces activation of 
p53, which triggers apoptosis and inhibits proliferation, thereby 
preventing the accumulation of vascular smooth muscle cells and 
foam cells at the sites of the atherosclerotic lesion. The balance 
between atherogenic linear and athero-protective circular ANRIL 
may be critical for the impact of ANRIL on disease progression. 
Conversely, a recently published study came to the opposite 
conclusion, namely that circular ANRIL may be pro-atherogenic 
(57). In this study, circular antisense ANRIL was used to investigate 
the inflammatory response of vascular endothelial cells in vivo 
in a rat model of coronary atherosclerosis which was established 
by injecting rats on a high fat diet with vitamin D3 (57). Circular 
antisense ANRIL lowered circular ANRIL in vascular endothelial 
cells along with the levels of several pro-atherogenic markers 
(serum cholesterol, triglycerides, LDL, IL-1, IL-6, MMP-9, CRP, 
cANRIL, Bax, caspase-3) and the rates of endothelial cell apoptosis, 
while HDL levels and bcl-2 expression were increased. In contrast, 
induction of circular ANRIL expression promoted atherosclerosis 
by increasing pro-inflammatory properties in vascular endothelial 
cells and by raising serum lipid and pro-inflammatory cytokine 
levels. These results were consistent with the hypothesis, that 
inhibiting circular ANRIL expression would be anti-inflammatory 
and would reduce vascular endothelial cell apoptosis, which in 
turn would protect against atherosclerosis in this animal model.

In earlier studies, it could be demonstrated that the epigenetic 
silencer polycomb repressive complexes 1 and 2 (PRC1 and PRC2) 
and PRC-associated activating proteins RYBP and YY1 can bind to 
ANRIL (58, 59), suggesting that ANRIL may be able to modulate 
epigenetic regulation of target gene expression in cis and trans. It 
could be demonstrated in vitro by inducible knock-down approaches 
in T-Rex 293 HEK cells that silencing of two proximal ANRIL 
transcripts altered expression of ADIPOR1, VAMP3 and TMEM258 
(60) (see Table 2 for a list of genes regulated by ANRIL). ADIPOR1 is 
a high-affinity receptor for globular adiponectin, which is involved, 
amongst others, in PPARα (peroxisome proliferator activated 
receptor alpha) and AMPK (AMP-activated protein kinase) 
signaling (62). PPARα activation could prevent experimentally 
induced bone-loss in animal studies (63). AMPK and PPARα act 
as key regulators of glucose and fatty acid metabolism in the liver. 
Adiponectin levels are inversely correlated with BMI, body fat and 
severity of CAD (64). Globular adiponectin also increases insulin 
sensitivity by stimulating cellular glucose uptake via increasing 
recruitment of glucose transporter 4 (GLUT4) to the plasma 
membrane and inducing GLUT4 expression (65). Besides these 
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metabolic roles, adiponectin also has anti-inflammatory activity 
by activating tissue inhibitors of metalloproteinases, IL-10, and 
by suppressing lipopolysaccharide-activated TNF (tumor necrosis 
factor) expression and phagocytic activity (66, 67). The effect of 
ANRIL on VAMP3 expression (Table 2) may be important, because 
VAMP3 belongs to the VAMP/synaptobrevin family involved 
in phagocytosis and trafficking of TNF-α-containing secretory 
vesicles to the cell surface required for TNF-α secretion (68).

Genome-wide cis and trans effects of the variants in the 9p21.3 
region on gene expression were recently studied by Zhao et al. 
(55), who employed the SNP-set (Sequence) Kernel Association 
Test [SKAT, (69)] on genotyped transformed beta-lymphocytes 
collected from 801 participants from the Genetic Epidemiology 
Network of Arteriopathy (GENOA) study. The results demonstrated 
a significant association between the CAD and PD risk variants in 
the region with the expression of the long linear ANRIL transcript 
containing the coding information of all 20 exons except exon 
13. In addition to this cis-regulatory effect, several trans eQTLs 
could also be identified (Table 2). The affected genes were DUT 
(Deoxyuridine Triphosphatase also known as UTPase), EIF1AY 
(Eukaryotic Translation Initiation Factor 1A, Y-Linked), CASP14 

(Caspase 14), ABCA1 (ATP-binding cassette transporter A1), and 
DHRS9 (Dehydrogenase/Reductase 9) (Table 2) (55).

The DUT gene product is an essential enzyme of nucleotide 
metabolism, which is required for the hydrolysis of dUTP into 
dUMP and inorganic pyrophosphate. The enzyme plays an 
important role in controlling the relative cellular levels of dUTP/
dTTP (70). Lack or inhibition of dUTPase result in elevated levels 
of uracil in the DNA, which triggers DNA repair and may induce 
the formation of DNA double strand breaks, somatic mutations, 
and apoptosis (71).

CASP14 is involved in cell apoptosis and is over-expressed in 
skin, the oral epithelium, bone, heart, and epithelial tumors (72). 
EIF1AY encodes a translation initiation factor which seems to be 
required for maximal rate of protein biosynthesis (73) and DHRS9 
is involved in retinol and steroid metabolism (74). ABCA1 plays 
a well-known role in atherosclerosis (75); but its contribution to 
PD is unclear. It was proposed that LPS from P. gingivalis, which 
is the most important pathogen involved in PD, may suppress 
ABCA1 expression during periodontitis via miRNA-mediated 
mechanisms (76). To further investigate the potential biological 
implications of the trans-effected genes, Zhao et al. (55) performed 

TABLe 2 |  ANRIL-Regulated Genes

gene Mode gene description Tissue / cell type Disease Ref.

ANRIL cis ANRIL, long ncRNA
PBMC, atherosclerotic 
plaque CAD, PD (39)

CDKN2A cis

Cyclin-dependent kinase 
Inhibitor 2A, tumor 
suppressor

ANRIL knock-down in 
VSMC Cancer (45)

CDKN2B cis

Cyclin-dependent kinase 
Inhibitor 2B, tumor 
suppressor

ANRIL knock-down in 
VSMC Cancer (45)

ADIPOR1 trans
Adiponectin receptor 1, 
glucose, lipid metabolism

inducible ANRIL knock-
down in T-Rex 293 HEK 
cells Diabetes, CVD (13)

VAMP3 trans

Vesicle-associated 
membrane protein 3,
IL-6, TNFα secretion

inducible ANRIL knock-
down in T-Rex 293 HEK 
cells Inflammation / cancer (13)

C11ORF10 trans
TMEM258,
N-glycosylation

inducible ANRIL knock-
down in T-Rex 293 HEK 
cells Unknown (13)

DUT trans

Deoxyuridine 
Triphosphatase, nucleotide 
metabolism Transformed B cells Unknown (55)

EIF1AY trans

Eukaryotic translation 
initiation factor 1A (Y-chr.), 
mRNA Translation Transformed B cells Unknown (55)

CASP14 trans
Caspase-14,
Inflammation, apoptosis Transformed B cells Psoriasis (55)

ABCA1 trans

ATP binding cassette 
transporter A1, sterol 
transport Transformed B cells CAD/MI (55)

DHRS9 trans
Dehydrogenase reductase 
9, retinol metabolism Transformed B cells Unknown (55)

CARD8 trans
Caspase recruitment 
domain 8, inflammasome

ANRIL knock-down / over-
expression in HUVEC, 
HepG2 cells Inflammation (61)

CAD, coronary artery disease; CVD, cardiovascular disease; HUVEC, human umbilical vein endothelial cells; IL, interleukin; PBMC, peripheral blood mononuclear cells; VSMC, 
vascular smooth muscle cells
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gene enrichment analysis on basis of the KEGG Pathway databank. 
The enriched pathways included “retinol metabolism”, “TGF-β 
signaling”, and “N-glycan biosynthesis”. Retinol metabolism was 
at the top of the list of enriched pathways, in which LRAT (lecithin 
retinol acyltransferase), ADH1 (alcohol dehydrogenase 1), DHRS9, 
DHRS4L2 (dehydrogenase/reductase 9 and 4 like 2), and CYP26B1 
(cytochrome P450 retinoid metabolizing protein) were significantly 
associated. The importance of TGF-β signaling in the pathogenesis 
of PD is well-known, since anti-TGF-β antibodies can inhibit the 
recruitment of leukocytes and the destruction of cartilage and bone 
at the periodontal lesion sites during periodontitis (77). Another 
reported downstream target regulated by ANRIL is CARD8 
(caspase recruitment domain-containing protein 8) (Table  2) 
(61). The CARD8 SNP rs2043211 is significantly associated with 
ischemic stroke; but its involvement in PD is unclear. The CARD8 

gene product is a component of the inflammasome together with 
other proteins. ANRIL is induced by pro-inflammatory factors, 
such as TNFα and IFN-γ, via activation of NF-κB (Figure 1) (78). 
The transcription factor Yin yang 1 (YY1) can bind to ANRIL and 
the ANRIL-YY1 complex interacts with the promoter of IL6/8 to 
activate IL6 and IL8 expression, two cytokines with well established 
roles in CAD/MI and PD.

Taken together, these findings seem to suggest that ANRIL exerts 
its effects through epigenetic regulation of a great variety of target 
genes. The common theme seems to be its involvement in expression 
regulation of genes that play important roles in inflammation, 
immunity, cell apoptosis and survival, cell proliferation, and 
metabolism. Many of the reported trans regulated genes clearly 
have plausible roles in CAD and PD as well. Nevertheless, at this 
stage, we find it premature to formulate a unifying theory that 

figuRe 1 |  Hypothetical roles of linear and circular ANRIL lncRNA in regulating inflammation and cell survival in human vascular endothelial cells and potential 
drug targets. TNF-α triggers NF-κB activation, which induces ANRIL transcription (66). Linear ANRIL can be converted to circular ANRIL (38). Linear ANRIL interacts 
with the transcription factor yin yang-1 (YY1) to form a functional complex that binds to and regulates expression of target genes such as IL-6/8. Circular ANRIL 
interacts with pescadillo homologue 1 (PES1) to form a complex with the pre-ribosomal assembly complex, that impairs ribosome biogenesis, leading to activation 
of p53 and a subsequent increase in apoptosis and decrease in the proliferative rate (41). This pathway may promote atheroprotection by eliminating over-
proliferating cells in atherosclerotic plaques. Neither TNFα nor NF-κB antagonists do seem suitable for wide-spread use in anti-inflammatory therapies of PD or 
CAD, because of their serious side effects. Since ANRIL is located downstream of TNFα and NF-κB, ANRIL or its downstream targets may be better suited as drug 
targets to inhibit the pro-inflammatory activities linked to this signaling pathway [modified according to ref. (78)].
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iMpLiCATionS of The ChR.9p21.3 ANRIL 
LoCuS foR DRug TARgeT 
iDenTifiCATion

Zhou et al. (78) showed that ANRIL expression is up-regulated via 
the TNFα/NF-κB signaling pathway under inflammatory stress 
conditions (Figure 1). Since endothelial cell-specific inhibition of 
NF-κB protects mice from atherosclerosis (80), and since ANRIL is 
a downstream target of TNFα/NF-κB signaling, targeting TNFα or 
NF-κB may theoretically be considered to be athero-protective via 
inhibiting ANRIL-YY1-mediated IL-6/8 production. Several TNFα 
receptor antagonists (mostly antibodies) have been tested for safety 
and efficiency for modulating pro-inflammatory cytokine release 
in the treatment of rheumatoid arthritis (81). However, clinical 
trials have shown that these receptor antagonists are associated 
with increased risks of malignancies and serious infections (81). 
Since ANRIL is located downstream of TNFα and NF-κB, it may 

be better suited as drug target. However, given the important role 
of ANRIL transcripts in controlling cell growth, its expression is 
likely precisely regulated. Possibly, putative drug targeting options 
may come to mind from a better understanding of the precise 
downstream effects of the linear and circular ANRIL lncRNAs on 
expression of genes involved in chronic inflammatory pathways, 
suggesting that such work has potential to identify new drug targets 
for anti-inflammatory intervention.
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Mendelian randomization (MR) is a framework for assessing causal inference using cross-
sectional data in combination with genetic information. This paper summarizes statistical 
methods commonly applied and strait forward to use for conducting MR analyses 
including those taking advantage of the rich dataset of SNP-trait associations that 
were revealed in the last decade through large-scale genome-wide association studies. 
Using these data, powerful MR studies are possible. However, the causal estimate may 
be biased in case the assumptions of MR are violated. The source and the type of this 
bias are described while providing a summary of the mathematical formulas that should 
help estimating the magnitude and direction of the potential bias depending on the 
specific research setting. Finally, methods for relaxing the assumptions and for conducting 
sensitivity analyses are discussed. Future researches in the field of MR include the 
assessment of non-linear causal effects, and automatic detection of invalid instruments.

Keywords: mendelian randomization, causal inference, GwAS, bias, statistical methods

intRoduCtion

Observational epidemiological studies made important contributions to our understanding of 
common diseases by identifying important risk factors. Although causal inference is of major interest 
as it builds a basis for intervention and prevention, it is difficult to perform using observational data 
from cross-sectional studies. Supposed causality was often revised e.g., by randomized controlled 
trials (RCTs) (1). Possible reasons for these contradicting findings include unobserved confounding, 
reverse causation and selection bias in the observational studies (2–4).

On the other hand, RCTs are often subject to long duration and ethical problems. Furthermore, 
confounding and selection bias is still a problem after the initiation of a RCT. This includes compliance 
problems or missing of follow-up information depending on treatment effect which may induce 
missing not at random problems.

During the last decade, huge efforts were undertaken searching for genetic risk factors underlying 
common traits and diseases. Genome-wide association studies (GWAS) revealed thousands of genetic 
associations predominantly based on single nucleotide polymorphisms (SNPs) including more than 
950 related to cardiovascular diseases and measurements (by April 2018) and were made publically 
available (5). The effect sizes of these associations were often quite small (6–8), and thus their direct 
clinical relevance might be questioned. However, these genetic associations may help drawing causal 
inferences. This approach in which SNPs are used as instrumental variables (IVs) for specific exposures 
is called Mendelian randomization (MR) (9). By the Mendelian laws, alleles of SNPs segregate and are 
randomly inherited from parents to offspring. This principle can be seen analogously to the randomized 
treatment assignment in a RCT resulting in an unconfounded exposure-outcome relationship. Within 
an MR approach, the exposure represents a continuous or dichotomous risk factor of a disease, and 
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the outcome is the disease or a disease-related trait. These traits 
may e.g., be blood pressure defining hypertension, or estimated 
glomerular filtration rate (eGFR) defining the status of chronic 
kidney disease. Using the MR approach, causality between exposure 
and outcome can be tested. During recent years, the number of MR 
studies to assess causality increased substantially which includes 
also the field of cardiovascular diseases and nephrology (10–14). 
Furthermore, MR analyses revealed causal effects of blood lipids 
on coronary heart disease (15) as well as of alcohol consumption 
on cardiovascular traits (16). However, given the number of 
potential genetic instruments and statistical methods available 
nowadays, there is potential for assessing causality of many more 
traits by conducting successful MR analyses. Nevertheless, some 
important assumptions have to be fulfilled to be able to estimate 
an unconfounded and unbiased exposure-outcome relationship 
thus allowing drawing causal inference. This review describes the 
assumptions of MR and potential biases caused by violation of 
these assumptions, and provides an overview of commonly applied 
statistical methods for conducting MR analyses using individual 
level data as well as using GWAS meta-analyses results.

estimation of the Causal effect
The general aim of the MR approach is the estimation of a causal 
effect of an exposure X on an outcome Y using (one or more) 
genetic instruments Z for X (Figure 1). Basically, the causal effect 
will be obtained by two sequential steps. First, the exposure is 
estimated from its instruments. By using valid instruments, the 
estimated exposure will be independent of any confounders. 
In the second step, the outcome is regressed on this estimated 
exposure thus obtaining an unconfounded and therefore causal 

effect estimate. The instrument Z is usually coded by 0, 1 and 2 
per individual according to its number of coding (e.g., exposure 
increasing) alleles.

2-Stage Least Squares estimator
Given a continuous outcome Y and assuming linear effects between 
X and Y without interaction, the causal estimate of the exposure 
X on Y can be estimated through a 2-stage least squares (2SLS) 
regression. This method performs both steps described before 
implicitly. In the first step, the exposure X̂   which is independent of 
the confounders is estimated via the genotypes of the instruments 
by calculating the fitted values from the regression of X on Z. In the 
second step, the causal effect estimate  βX̂Y   is obtained by regressing 
Y on X̂  . As both steps are performed in a single model instead of 
two separate regressions, the variation of both Z and X̂   is taken 
into account which is required for obtaining correct standard 
errors (SE) of  βX̂Y   (17). The 2SLS regression can be calculated by 
standard methods in statistical software packages like R (18) using 
the function tsls of the package SEM, or by the STATA software 
(https://www. stata. com/) using the command ivregress. The 2SLS 
was included in an MR of testosterone with cardiometabolic risk 
factors, but the single study analysis limited the statistical power 
substantially (19).

Ratio estimator
Alternatively, the causal effect can be estimated by triangulation 
without the need of calculating  βX̂Y   from the exposure-outcome 
association directly. The principle of this method is illustrated 
through Figure  1: the standard approach (including 2SLS) for 

FiGuRe 1 |  Directed acyclic graph showing the effects  β of the genetic instrument Z, the exposure X, the outcome Y and the (unobserved) confounder U for 
illustrating the Mendelian randomization (MR). The dashed line represents the estimated causal effect  βX̂Y   using the instrumented exposure. The dotted lines show 
violations of the MR assumptions 2 (lower line) and 3 (upper line), and are marked by a red cross. The  αZY   represents the effect of the instrument that affects the 
outcome not via the exposure in case of violating the exclusion restriction assumption. In contrast to  αZY  , the gray line illustrates the SNP-outcome association 
with its effect  βZY   that is used to calculate the two-sample MR given a valid instrument.
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obtaining the causal effect  βX̂Y   follows the path from the instrument 
Z via X to Y. In this case, the direct effect  βZY   of the instrument on 
the outcome Y equals the product of effects underlying the path 
mediated by the exposure, i.e., βZY = βZX · βX̂Y  . By rearranging 
this equation, the causal effect can be estimated through dividing 
the effect of the IV on the outcome ( βZY  ) by the effect of the IV on 
the exposure ( βZX  ): βX̂Y = βZY/βZX  . As the triangulation approach 
calculates the causal effect (and its SE for testing significant deviation 
from null) by the ratio of the two IV based effect estimates, it is 
also known as ratio estimate or Wald estimate. It is important for 
the computation that both IV based effect estimates refer to the 
same allele of the IV. Furthermore, the same requirements as for 
the 2SLS apply. The SE of  βX̂Y   has to be estimated via the delta-
method which is based on a Taylor series expansion, and can be 
approximated as (20):
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= var
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var
(
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, where  cov

(
βZY,βZX

)
  is the covariance 

of the two effect estimates. This term will vanish if the effect estimates 

are obtained from distinct samples. That concise approximation 
can be easily implemented for significance testing in statistical 
software packages like R or STATA.

In contrast to the 2SLS which has to be performed using data 
of a single sample (one-sample MR), different sample sets can be 
used for conducting the triangulation: the effect estimates of the 
IV on exposure X and outcome Y can be obtained from genetic 
association studies with either disjunct or overlapping samples 
(two-sample MR). By this means, genetic associations revealed 
through large-scale GWAS meta-analyses can be used as  βZX   
and  βZY  . These association results are often publically available 
for a variety of traits.

The triangulation method can also be applied if the outcome Y 
is dichotomous, i.e., an indicator of a disease status. In this case, 
log-linear effects without interaction on Y and an approximately 
normal distribution of X are required. Causal effect estimates 
on the odds ratio (OR) scale can be calculated by performing a 
logistic regression analysis using the disease as outcome. This 
model was also applied in most GWAS. To estimate causal OR 
using triangulation, the rare disease assumption (i.e., prevalence 
<10%) has to be fulfilled. Alternatively, estimates of a causal risk 
ratio may be calculated using a log-linear model instead of a logistic 
regression (21). The SE of the  βX̂Y   (i.e., the log causal OR) will be 
estimated by the same formula as applied in the case of a continuous 
outcome. An application of the ratio estimator is provided by the 
MR on cystatin c and cardiovascular disease (22).

Control Function estimator
Another method for estimating the causal effect on a dichotomous 
outcome is provided through the control function estimator (21) 
which is a two-step approach. In the first step, the exposure X is 
regressed on the instruments Z. The residuals of the regression 

correspond to the non-instrumented part of the exposure and 
may therefore correlate with a (unobserved) confounder U of 
the exposure-outcome association. In the second step, a logistic 
regression of the outcome Y on X is performed, adding the residuals 
of the first step as a covariate to the model. By adding the residuals of 
the first step into the model, the effects of U on Y will be controlled. 
Thus, the effect of X on Y of the second regression corresponds to 
the causal effect estimate. In case a linear regression is conducted 
in the second step (i.e., for a continuous outcome), the control 
function estimator is equivalent to the 2SLS estimator (21). This 
type of MR was conducted for assessing the causal effect of blood 
lipids on coronary heart disease (15).

Assumptions of the instrumental variables
SNPs have several properties predisposing them for instruments 
of the exposure. The inherited alleles are not changed by a disease 
or trait and thus also do not change over time. The random 
inheritance of the SNP alleles makes the genotype distribution 
mostly independent from socio-economic and lifestyle factors (1, 
23). Nevertheless, specific assumptions still need to be fulfilled to 
ensure the validity of the genetic variant as an instrument. There 
are three core assumptions for MR (24–26):

1. The genetic variant is associated with the exposure
2. The genetic variant is independent of the outcome given the 

exposure and all confounders (measured and unmeasured) of the 
exposure-outcome association

3. The genetic variant is independent of factors (measured and 
unmeasured) that confound the exposure-outcome relationship

The first condition is required because within the MR the 
(unconfounded) exposure will be estimated using the allele 
distribution of the IVs. This assumption can be easily tested, and 
is considered as fulfilled if the SNP-exposure association has an 
F-statistic >10 (21, 27).

The second assumption, which is also known as exclusion 
restriction, is equivalent to the condition that an IV does not have an 
effect on the outcome when the exposure remains fixed. In general, 
this assumption is hard to validate as there may be pleiotropic effects 
of SNPs or SNPs in linkage disequilibrium correlated with genes 
that have effects on the outcome independently of the exposure. 
Even without considering the linkage disequilibrium, using SNPs of 
the pleiotropic gene GCKR exemplarily as instruments for kidney 
function to assess a causal effect on blood pressure would result 
in an invalid IV as there are effects of GCKR on blood pressure 
likely that are independent of kidney function, e.g., by the known 
associations of GCKR with serum lipid levels. Another violation 
would occur if the sample consists of a population substructure 
with different allele distributions, and which is also associated with 
the outcome. In this case, the substructure would be a common 
cause of both SNP and outcome opening a pathway from SNP 
to outcome not mediated by the exposure. Several examples of 
different scenarios violating the exclusion restriction are provided 
in the work of Glymour et al. (24).

The third assumption is also hard to validate. Similar problems 
due to pleiotropy and population substructure as described in the 
exclusion restriction may occur but affecting confounders of the 
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exposure-outcome relationship instead of the outcome directly. 
In an example of assessing causality of kidney function with heart 
disease, using GCKR as an instrument would violate the third 
assumption because these SNPs are also associated with blood 
pressure being a confounder of the association of kidney function 
and heart disease.

weak instrument Bias
Until today, more than 50,000 SNP-trait associations were 
revealed by GWAS and are usually accessible through public 
repositories like the GWASCatalog (5). These SNPs can be 
considered as potential instruments for MR analyses. Because 
the majority of these SNPs explain only a small proportion (i.e. 
<1%) of the phenotypic variance, GWAS with sample sizes of 
more than 10,000 or 100,000 individuals were required to unravel 
these associations at the level of genome-wide significance. 
However, the small effect sizes of the SNPs on the exposure 
result in weak instruments when using smaller sample sizes 
(28). Weak instruments tend to lead estimated causal effects 
towards the observational association (27). The reason for this 
bias is originated in using finite sample sizes. Although the IVs 
are asymptotically independent of confounders, there might be 
still an association by chance in finite samples. Increasing the 
sample size or the strength of the instruments will reduce the 
weak instrument bias. To illustrate the origin and the effect of the 
bias, let  βUX   and  βUY   be the effects of the confounder U on the 
exposure and the outcome, respectively (Figure 1). Furthermore, 
let  ∆U   be the (by chance) difference in U depending on the 
instrument Z. The estimated causal effect  βX̂Y   can then be 
computed by the following sum of effects (27):

 βX̂Y = βcausal +
βUY∆U

βZX+βUX∆U  , where  as  βcausal   is the true 
causal effect, and the mean( ∆U  ) =0 because Z is an instrument 
(assumption 3). This leads the bias term towards zero with 
increasing sample size resulting in βX̂Y = βcausal  . The estimated 
causal effect is also close to the true causal effect in case the effect 
of the IV on the exposure  βZX   is relatively large compared to the 
by-chance difference in U on the exposure ( βUX∆U  ). However, if 
 βZX   is small compared to  βUX∆U   (in case of a weak instrument), 
the estimated causal effect will be biased towards the ratio of the 
effect of the confounder on the outcome and the effect of the 
confounder on the exposure, i.e., 

βUY
βUX  .

Multiple instruments Approach
Using multiple valid instruments will help to address the 
weak instrument bias. Adding multiple uncorrelated (linkage 
equilibrium) SNPs into a 2SLS model can increase the statistical 
power but might also increase the relative bias if weak instruments 
are added (28).

Alternatively, an allele score can be generated from 
the instruments and included as a single variable in the 
association model. This allele score Z is calculated per 
individual as the weighted or unweighted sum of the number 
of risk or trait increasing alleles Zi of each SNP i, whereas 
the effect  βZiX   of each SNP on the exposure X is used as  
weight: Z = βZ1XZ1 + βZ2XZ2 + · · · + βZkXZk . In case of an 

unweighted score where all  βZiX   are set to 1, the allele score of 
an individual simplifies to the sum of its risk alleles. By using 
an allele score, the F-statistics increases because of the smaller 
degrees of freedom in the model. However, it has been shown 
that the unweighted score has lower power than adding multiple 
IVs into the 2SLS, but using an appropriately weighted allele 
score performs similarly. The causal effect is a little less biased 
when using a weighted allele score but might have a slightly 
lesser precision (and power) compared to the multiple IV 2SLS 
estimator. In general, effects obtained from external studies 
should be used as weights (28).

A third method for taking advantage of multiple IVs is to 
combine ratio estimates (triangulation) of single instruments 
using inverse variance weighting (29, 30). The method for 
combing the results is the same as used for meta-analyses, and is 
for example implemented in the R package metafor. Alternatively, 
the following simplification of this calculation can be used 
(31–33):

 
βX̂Y =

∑
βZXβZYvar

(
βZY

)−1

∑
β2ZXvar

(
βZY

)−1
  

with its approximated 
 
SE

(
βX̂Y

)
=
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1∑
β2
ZXvar

(
βZY

)−1
 
, where 

the sum runs over the SNP specific estimates. This method is 
implemented in the R package gtx.

However, it is crucial that the effects of all IVs used in the 
calculation are corresponding to the allele referring to the same 
effect direction on the exposure (e.g., the trait increasing allele). 
In theory, problems of missing data may occur especially when 
using multiple IVs. Nowadays well established methods for 
imputing missing genotypes based on the linkage disequilibrium 
structure of the human genome are available to circumvent this 
problem (34–36).

Bias by violation of the Assumptions  
2 and 3
Importantly, valid instruments need to be included in the MR 
analyses. In case the assumptions are not fulfilled, different 
types of bias can occur leading to invalid causal effect estimates. 
Violation of the second assumption (the exclusion restriction) 
implies that there is at least a partial effect of the instrument on the 
outcome not mediated by the exposure, i.e.  αZY ̸= 0  (Figure 1). 
Depending on the direction and strength of these pleiotropic 
effects, the causal effect will be over- or underestimated. As 
shown within the principle of triangulation, the estimated 
causal effect  βX̂Y   is the sum of the true causal effect  βcausal   and 
a bias term:  βX̂Y = βcausal +

αZY
βZX   (26). The bias increases due 

to larger pleiotropy (larger absolute  αZY   in the nominator) or 
weaker instruments (smaller absolute  βZX   in the denominator). 
Violation of assumption 3 leads to a bias similar to the weak 
instrument bias. In this case, the effect of the confounder U on 
exposure and outcome will not vary by chance but systematically 
because of the non-zero effect of the instrument Z on U. Thus, 
an increasing sample size will not remove the bias because  
mean( ∆U  ) ≠ 0.
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inSide Condition and egger MR
Pleiotropic effects  αZY   of each IV will also be included in the 
model when applying the multiple instruments approach. 
However, in this scenario it is possible to substitute the exclusion 
restriction by a weaker assumption as explained below. If 
the ratio estimates of multiple instruments are combined via 
2SLS or inverse variance weighting, equation (1) will result in 

 
βX̂Y = βcausal +

∑
βZXαZYvar

(
βZY

)−1
∑

β2
ZXvar

(
βZY

)−1
 
 , where  βcausal  equals the 

right side of (1) and 
 

∑
βZXαZYvar

(
βZY

)−1
∑

β2
ZXvar

(
βZY

)−1
 
 is a bias depending on 

 αZY   and  βZX  . Thus, an unbiased causal effect will be obtained if 
the assumption 2 is true, i.e., all direct effects  αZY   of each IV on the 
outcome Y are zero. However, it will be sufficient for the bias term 
to equal zero if all pleiotropic effects  αZY   of all genetic IV cancel 
out. As shown below, this cancellation is sufficiently fulfilled if the 
correlation between direct genetic effects  αZY   on the outcome and 
their effects  βZX   on the exposure X (i.e., the strength of the IV) 
is zero. This independence between the genetic effects  αZY   and 
 βZX   is called InSIDE condition (Instrument Strength Independent 
of Direct Effect). If the InSIDE condition holds together with 
assumptions 1 and 3, an adaption of the Egger regression can be 
used to obtain a consistent causal estimate even for specific cases 
in which the exclusion restriction criteria is violated. The Egger 
regression for MR is an implementation of the meta-regression 
where the (total) SNP-outcome effect  Γ = βZXβcausal + αZY   for each 
SNP is regressed on the corresponding SNP-exposure effect  βZX  : 
 Γ ∼ β0E + βEβZX   where the slope  βE  is the bias-reduced causal 
estimate (Figure 2). The principle behind this regression is that 

Γ is proportional to the strength of the instrument  βZX   with the 
intercept  β0E = 0  for valid instruments, whereas under the InSIDE 
condition (i.e.,  αZY  and  βZX   are uncorrelated) stronger instruments 
are expected to have a relatively small bias and thus are on average 
closer to the true causal effect than weak instruments. As the slope 
of the Egger MR can be calculated by the least squares estimator 

 
βE = cov

(
Γ,βZX

)
var

(
βZX

) = βcausal +
cov

(
βZX,αZY

)
var

(
βZX

)
 
 , the bias term will be 

zero if  αZY   and  βZX   are uncorrelated, which is the case under the 
InSIDE assumption. A non-zero intercept  β0E  indicates an overall 
directional pleiotropy of the IVs (26).

Considering Statistical Power
The statistical power of an MR strongly depends on the 
proportion of variance of the exposure that is explained by the 
IV. The use of multiple IVs, either by direct inclusion or as an 
allele score in the model, may therefore increase the power as 
more variance of the exposure is explained. However, the validity 
of these instruments has to be ensured (37). Two-sample MR 
additionally provide a possibility to increase statistical power if 
published GWAS meta-analyses of both the exposure and the 
outcome are available. In this case, effect estimates based on large 
sample sizes of independent studies can be used to estimate the 
causal effect. Formulas for performing power calculations of MR 
using single instruments or allele scores are provided in the study 
of Burgess (37). Brion et al. (38) discusses the statistical power 
in case of single IV and continuous outcomes for 2SLS MR, and 
provide an online power calculator for both continuous and 
binary outcomes which is available at http:// cnsgenomics. com/ 
shiny/ mRnd/. A tool for estimating statistical power of complex 
MR settings based on simulations is MR_predictor (39), whereas 
the PERL scripts required to run the estimator are available via 
GitHub.

Measurement unit of the Causal effect 
estimates
When conducting two-sample MR, the causal effect corresponds 
to the unit of the outcome on a per unit change of the exposure 
that was used in the respective genetic association study of the 
IV with the corresponding trait (32). Some GWAS were meta-
analyzed using the sample-size weighted z-score method (40) 
and thus do not provide effect estimates that can be directly 
included in a two-sample MR. However, it is possible to estimate 
the effect  ̂β  for each SNP in Hardy-Weinberg equilibrium using 
its minor allele frequency MAF, its (large) GWAS sample size N, 
and its z-statistics z (which can be calculated from the inverse of 
the standard normal distribution using the association p-value 
and the corresponding effect direction) through the formula 
(41): 

 
β̂ ≈ z · σ√

N·2·MAF·
(
1−MAF

)
 
, whereas the corresponding 

 
SE

(
β̂
)
= β̂

z  
. The SD σ of the trait can be set to 1 for standardizing 

the phenotype (i.e., the effect corresponds to a change of one SD of 
the trait unit). If the outcome is a binary trait, e.g., a disease with 
prevalence p in the sample, then  σ =

√
p ·

(
1− p

)
 .

FiGuRe 2 |  Plot of the SNP-outcome (Γ ) on the y-axis vs. the SNP-
exposure ( βZX  ) regression coefficients of potential genetic instruments (i.e., 
SNPs) of a Mendelian randomization analysis on the x-axis. The true causal 
effect represented by the slope  βcausal  is shown by a dotted line, the inverse 
variance weighted (IVW) causal estimate  βX̂Y   by a red line, and the MR Egger 
regression estimate  βE  by a dark blue line. The total SNP-outcome effect Γ is 
proportional to  βZX   for valid instruments. In case of invalid instruments but 
when the InSIDE assumption holds, stronger instruments are on average 
expected to be closer to the true causal effect (i) than weak instruments (ii). 
The intercept  β0E  represents the overall directional pleiotropy of the 
instruments. The figure was adapted from the publication of Bowden et al., 
Int J Epidemiol. 2015;44(2):512–525 (26) (Creative Commons CC BY license). 
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diSCuSSion

MR provides a method for testing causality of different traits using 
cross-sectional data and genetics. Although large sample sizes are 
required to achieve sufficient statistical power for revealing causal 
effects, it is often possible to overcome this limitation by using 
the publically available genetic association results of large GWAS 
meta-analyses conducted during the last decade.

The statistical methods needed for conducting MR analyses 
are implemented in common statistical software frameworks. 
Additionally, the MRbase platform provides a possibility to 
conduct two-sample MR analyses both online and via the R 
package TwoSampleMR, including the methods discussed in this 
article (42). A detailed overview of different statistical methods 
for calculating MR is provided in the review of Burgess et al. (17).

However, it is important that the genetic associations that are 
used as instruments fulfil the MR assumptions to avoid calculation 
of biased or spurious causal estimates resulting in false causal 
inferences. Other than the required strong association of the 
genetic variant with the exposure, the remaining two assumptions 
are in general hard to validate.

This review emphasizes the bias that may occur by using invalid 
instruments, whereas the presented formulas should help estimating 
the magnitude and direction of this bias depending on the specific 
MR study that needs to be conducted. Using multiple instruments 
can help to test the violation of the MR assumptions which may 
occur due to pleiotropy and via SNPs in linkage disequilibrium 
(but not for a violation due to population stratification) (28), 
or to conduct sensitivity analyses (25). A strategy for assessing 
pleiotropy and population substructure specifically to MR analyses 
is discussed for example in the work of Lawler et al. (9). The 
Egger regression can be used as a multiple IV approach to relax 
the exclusion restriction criteria, and as a sensitivity analysis to 
test the robustness of the causal association (26). However, if the 
Egger MR-specific InSIDE assumption is violated, a biased causal 
estimate and an increased Type I error rate may occur (43). Thus, 
seeking for genetic variants that are valid IV should be performed 
as far as possible. Knowledge of the physiology or the biological 
pathways of the SNPs and their causal genes might be useful for 
selecting instruments.

The methods summarized in this review assume linear 
effects between exposure and outcome (or log-linear in case 
of a binary outcome) without effect modifications by the 
variables. Addressing these limitations is subject to future 
research. A method for successfully revealing non-linear 
causal effects was provided in an example for alcohol intake 
on cardiovascular traits, but this approach is restricted to 
additional assumptions and limitations (16). With respect to 
the presence of effect modifications, other statistical methods 
for conducting binary outcome MR like structural mean models 
or generalized method of moments make weaker assumptions 
but still not solve this issue completely (21). Finally, methods 
for automatically detecting invalid instruments (i.e., due to 
pleiotropy) are under development (44). Selection of valid 
instruments still remains a main challenge for automated causal  
inference.
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The success of genome-wide association studies (GWAS) has significantly advanced 
our understanding of the etiology of coronary artery disease (CAD) and opens new 
opportunities to reinvigorate the stalling CAD drug development. However, there exists 
remarkable disconnection between the CAD GWAS findings and commercialized drugs. 
While this could implicate major untapped translational and therapeutic potentials in CAD 
GWAS, it also brings forward extensive technical challenges. In this review we summarize 
the motivation to leverage GWAS for drug discovery, outline the critical bottlenecks in 
the field, and highlight several promising strategies such as functional genomics and 
network-based approaches to enhance the translational value of CAD GWAS findings 
in driving novel therapeutics

Keywords: genome-wide association study, coronary artery disease, drug targets, multi-omics, functional 
genomics, networks

inTRoDuCTion

Coronary artery disease (CAD) is a leading cause of mortality worldwide (1). CAD is well recognized 
as a complex disease with both genetic and environmental contributions (2). The heritability of CAD 
is estimated to be 40–50% (3), and the genetics of CAD plays an indispensable role in unraveling the 
pathogenic processes and ultimately facilitating the discovery of novel therapeutics. In the past decade, 
our understanding of the genetic architecture and mechanistic underpinnings for CAD has been 
substantially accelerated and broadened, primarily attributable to the successful global collaborative 
efforts in large-scale human genome-wide association studies (GWAS). These efforts have helped 
reveal hundreds of novel genetic variants demonstrating significant associations with CAD.

In contrast to the gratifying successes of GWAS, the development of CAD drugs has stagnated 
over the past decades, especially when compared to other therapeutic areas (4). What is particularly 
concerning is the fact that the drug development effort has been primarily concentrated on correcting 
previously established CAD risk factors such as lipid levels, coagulation factors, and hypertension, 
instead of targeting novel pathways revealed from recent studies (Figure 1). This decoupling between 
mechanistic discovery studies and drug development is striking. Therefore, it is of critical importance 
to form strategies that leverage the recent genetic discoveries from GWAS and other relevant efforts 
such as multi-dimensional data integration and systems genetics to allow for efficient identification 
of novel and reliable CAD drug targets. In this review, we summarize the state of CAD GWAS 
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discovery, delineate the significant challenges of translating GWAS 
to drug targets, discuss successful examples of GWAS driven CAD 
drug target discovery, and outline promising strategies to further 
catalyze the translation of CAD GWAS into novel therapeutic 
options.

GwAS DiSCoveRy FoR CAD AnD iTS 
iMpliCATionS FoR DRuG TARGeT 
DiSCoveRy

The completion of the human genome project, the rapid declining 
cost of genome sequencing, the rising feasibility of global multi-
group collaborations, and the increasing accessibility of shared 
data repositories have collectively fueled the explosion of genetic 
studies of CAD, particularly GWAS. GWAS were typically designed 
to profile common known variants, often defined as variants 
with allele frequency ≥ 0.5% (5), on pre-designed microarrays 
containing primarily single nucleotide polymorphisms (SNPs). 
Since the first CAD GWAS in 2007 (6), over 18 GWAS studies 
have been carried out in the past decade, with the most recent 
and largest study involving 34,541 cases and 261,984 controls (7). 
These studies revealed a total of 163 genetic loci linked to CAD 
(8) (Figure 1), explaining 30–40% of CAD heritability (7, 9, 10). 
The swift pace of GWAS has greatly facilitated the comprehensive 

construction of the CAD genetic landscape, and has led to rapid 
accumulation of potential causal variants and genes.

Overall, GWAS have played a key role in not only confirming 
classic CAD risk factors such as LDL cholesterol, hypertension, 
and coagulation, but also highlighting the causal roles of cellular 
proliferation and adhesion, extracellular matrix, and inflammation 
(Figure  1), which are processes related to the endothelial and 
smooth muscle cells in the vascular wall and the immune system 
(3, 11). Unfortunately, to date no novel CAD GWAS genes beyond 
a few involved in classic risk factors have been established as viable 
drug targets for CAD, a pattern that resonates for GWAS of most 
complex traits (Figure 1) (12). The disconnection between CAD 
GWAS findings and treatment targets is disappointing and has been 
criticized, but could also implicate major untapped opportunities 
(13). In particular, the causal variants and genes involved in the new 
causal pathways informed by GWAS have been encouraging early 
stage advances in uncovering novel therapeutic options targeting 
the vascular wall components, cell proliferation, and inflammation. 
For example, the ADAMTS7 loci, coding for a metalloproteinase 
with thrombospondin motifs 7, was implicated for atherosclerotic 
progression through smooth muscle cell migration, a mechanism 
independent of classic CAD risk factors (14). Upon confirmation 
of its causal role in affecting atherosclerosis occurrence in vivo (15), 
development of the ADAMTS7 pharmacophore has progressed 
towards establishing inhibitors via virtual screening (16). 

FiGuRe 1 |  Summary of the reported CAD GWAS loci and important CAD drug discoveries. Candidate genes under GWAS loci identified to date were retrieved 
from the reported genes column in GWAS Catalog, organized by year. Only one candidate gene per locus was shown. GWAS loci that overlap with the targets of 
commercialized drugs were shown in red.
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Tocilizumab, an anti-inflammatory agent blocking interleukin-6, 
was found to improve endothelial function (17). Antibodies 
targeting CD47, a key anti-phagocytic and tumorigenic molecule, 
were also shown to ameliorate atherosclerosis by stimulating 
efferocytosis (18).

Despite the potential promises, several factors could have 
complicated the extraction of therapeutic value from GWAS. First, 
the functional regulatory circuits from most variants to disease 
outcomes remain elusive. This is reflected by both the difficulty 
in pinpointing the causal variants and the corresponding target 
genes, especially for variants located in non-coding regions. 
In fact, the exact effector genes and functions for over 50% of 
the CAD GWAS loci are unclear. For example, the 9p21 locus 
was the strongest CAD locus but is located in a gene desert 
(6, 19, 20). Multiple follow-up studies have suggested several 
effectors for this locus, including the non-coding RNA ANRIL 
(21), CDKN2A/CDKN2B (22, 23), and interferon-gamma 
signaling (24). However, the detailed mechanism is still under 
debate after a decade of research (25). Moreover, even if a CAD 
variant is located within a gene-rich region, the most adjacent 
gene(s) may not be the functional candidate (26). Second, even 
if the candidate genes can be unequivocally determined, the 
functions of the genes are not necessarily well established, and 
extensive functional studies are required to derive a mechanistic 
understanding of how the candidate genes lead to CAD risks. 
Third, most common variants only confer weak to moderate 
CAD risk (<20% change in risk), most likely due to evolutionary 
pressure which selects against non-synonymous SNPs in disease 
genes involved in key physiological processes (12, 27–30). The 
prevalence of moderate/weak effect sizes of CAD risk variants 
makes prioritization of drug targets difficult. Lastly, it has 
been suspected that the top CAD risk variants identified so far 
predominantly inform on genes active in the early and slow phase 
of CAD development, whereas variants affecting late and rapid 
CAD phases tend to be missed by GWAS as these are likely more 
dependent on specific contexts such as particular environmental 
exposures or inflammatory states that are poorly controlled in 
most GWAS (31). Indeed, a recent study of Crohn’s disease that 
focuses on disease course or prognosis using a within-cases 
design revealed loci that are completely different from those 
derived from case-control studies (32). This is also  likely the 
case for CAD. Therefore, drug targets derived from CAD GWAS 
findings may not carry the expected efficacy to counteract CAD 
progression.

STRATeGieS To FAST-FoRwARD The 
TRAnSlATion oF GwAS To TReATMenT 
TARGeTS

To bypass the challenges facing the translation of GWAS findings 
to therapeutic targets as outlined above, a number of strategies 
have been designed and attempted. These efforts mainly focus 
on integrating GWAS hits with other data types that help inform 
on the functions of candidate genes, pathways, and networks, 
narrow down and prioritize the causal candidates, and leverage 

the matching patterns between disease mechanisms and molecular 
patterns of drugs (Figure 2).

use of Rare variant Association Studies to 
prioritize Targets
As discussed above, common variants uncovered from GWAS 
studies are numerous in number while carrying weak to subtle 
effect sizes, making it challenging to prioritize viable targets. 
Rare genetic variants (frequencies lower than 0.5%) that are 
associated with diseases, on the other hand, usually exhibit 
stronger perturbations in gene functions and are under stronger 
evolutionary pressure. Therefore, rare variants, especially 
those leading to loss-of-function, provide a natural setting 
mimicking human knockout cases to assess phenotypic and 
clinical consequences of variants, and their power in informing 
causal disease genes and drug targets has been long recognized 
(Figure 2A) (33, 34). Aggregation of rare mutations in 10 genes, 
including APOA5 (35), APOC3 (36), ASGR1 (37), ANGPTL3 
(38), ANGPTL4 (39), LPA (40), LDLR (35), LPL (41), NPC1L1 
(42), and PCSK9 (43), has been linked to CAD risk through 
whole exome or whole genome sequencing-based studies. Out 
of the 10 genes, 5 (ANGPTL4, APOC3, LPA, NPC1L1, PCSK9) 
have been explored as drug targets for CAD (3). To date, the 
main success of this approach lies in the approval of PCSK9 
antibodies by the FDA. Carriers with inactivating mutations 
on PCSK9 were found to have markedly lower LDL cholesterol 
level and CAD risk, which led to the discovery of two FDA-
approved monoclonal antibodies, Alirocumab and Evolucumab. 
However, the potential of drug discovery using CAD rare 
variants is also limited by both the small number of robust rare 
variants found so far, and their low cumulative contribution 
to CAD risk in the general population (9). Additionally, most 
of them are involved in the previously established pathways 
rather than novel mechanisms. Nevertheless, these rare variants 
provide compelling causal inference of the downstream genes 
and pathways in CAD pathogenesis, and they are more likely to 
be specific to a disease (broad effects could be detrimental in 
human knockouts) and have safer profiles, key components for 
success as drug targets. Future GWAS will likely evolve from 
SNP array design to whole genome sequencing to profile both 
common and rare variants (44), thus further expanding the pool 
of loss-of-function variants for drug target selection. Some of 
the novel rare variants may inform on novel causal mechanisms 
not captured by common variants, or converge on genes and 
pathways already informed by common variants thus serving to 
enhance the causal inference at a more functional level.

Functional Genomics to identify and 
prioritize Causal GwAS Genes
In contrast to rare coding mutations whose target genes and 
downstream mechanisms can be more readily uncovered 
through traditional functional studies, identifying the causal 
genes that are responsible for the observed link between GWAS 
risk variants and CAD is not an easy task. It is estimated that 
two thirds of the predicted target genes of GWAS locus are not 
the closest by proximity (45, 46), thus traditional proximity-
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FiGuRe 2 |  Strategies to translate CAD GWAS into drug targets. (A) Identification of CAD causal genes as candidate drug targets by incorporating functional 
genomics, rare variants and Mendelian randomization. Loss-of-function rare variants can be linked to downstream genes. The connection between common 
variants and causal genes usually requires integration of functional genomics data. Mendelian randomization can further filter the drug target selection pool by 
incorporating causal intermediate traits. (B) A “target-less” approach to reposition existing drug compounds for CAD by evaluating the existence of opposite 
patterns between drug molecular profiles and GWAS imputed molecular profiles of disease. (C) Network-based approaches that model CAD GWAS data along with 
other omics data from CAD relevant tissues or cell types in the context of gene networks, which have the power to pinpoint key network regulators as candidate 
drug targets with more potent effects.
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based locus mapping could introduce false interpretations that 
bias drug target selection. This challenge can be substantially 
alleviated by functional genomics tools that explore potential 
mechanisms linking causal variants to biological phenotypes 
(Figure  2A) (44). Supported by next-generation sequencing, 
typical functional molecular traits that may be characterized 
include expression quantitative trait locus (eQTL), non-coding 
RNA, transcription factor binding sites, epigenetic modification 
and chromatin interaction (26). The advance of gene editing 
technologies such as CRISPR/Cas has also significantly improved 
the efficiency of validation experiments (47). Recent functional 
genomics studies have substantially refined the candidate causal 
genes for CAD loci such as SORT1 (48), TRIB1 (49), ADAMTS7 
(15, 50), and TCF21 (51, 52). Noteworthy, there have also been 
integrative functional genomics studies that combined genomics, 
epigenomics and transcriptomics profiling to prioritize causal 
variants and affected genes (7, 46, 53). For example, Miller 
et al. integrated Assay for Transposase Accessible Chromatin 
(ATAC-seq) and chromatin immunoprecipitation-sequencing 
(ChIP-seq) to unravel the cis-regulatory mechanisms in human 
coronary artery smooth muscle cells, and prioritized 64 variants 
over 7 candidate CAD loci including 9p21.3, SMAD3, PDGFD, 
IL6R, BMP1, CCDC97/TGFB1 and LMOD1 (53). Haitjema et 
al. also leveraged circular chromosome conformation capture 
sequencing (4C-seq) with RNA-seq and eQTL to identify 294 
novel candidate CAD genes (54). These studies greatly contribute 
to the accumulation of viable treatment targets for follow-up 
drug development efforts.

Encouragingly, functional studies following GWAS are being 
further catalyzed by large-scale community efforts in establishing 
multi-cell or multi-tissue mapping of regulatory annotations. 
The advent of publicly available depositories such as GTEx 
(55), ENCODE (56) and Epigenome Roadmap (57) is gradually 
removing the hurdle to acquire multi-dimensional data resources 
necessary for the investigation of complex traits like CAD.

Mendelian Randomization (MR) to 
Facilitate Drug Target Selection
Previous successes in drug development for CAD have testified 
to the effectiveness of modulating intermediate causal risk factors 
such as circulating cholesterol levels and blood pressure in lowering 
CAD risk. Therefore, knowing the causal relationship between 
an intermediate phenotype that correlates with CAD status is of 
monumental importance as it can help prioritize biomarkers as 
intervention targets for CAD therapeutics (58, 59) (Figure 2A). The 
investigation of causal intermediate traits for CAD can be facilitated 
by MR, which utilizes genetic variants as instrumental variables 
to assess the causal relationship between exposure (e.g., LDL 
cholesterol, HDL cholesterol, weight-hip ratio) and outcome (CAD 
occurrence) (60). We are seeing both successful and ongoing efforts 
in developing drugs modulating LDL cholesterol, triglyceride-rich 
lipoproteins and lipoprotein (a) (3), whose causal relationships with 
CAD have been robustly verified in MR studies (61–63). On the 
contrary, MR studies revealed inconsistent relationship between 
HDL cholesterol and CAD (64–66). In concordance with this lack 
of robust support for the causality of HDL in CAD, substantial 

obstacles have been met during the development of inhibitors for 
CETP (cholesteryl ester transfer protein), a gene harboring several 
loci associated with HDL cholesterol level (67). Three commercial 
CETP inhibitors, Dalcetrapib, Obicetrapib and Anacetrapib, all 
failed to achieve clinical efficacy during phase III clinical trials 
and were discontinued (68).

In addition to the well explored causal pathways such as 
cholesterol and blood pressure regulation, MR studies have 
informed several additional causal intermediate phenotypes, such 
as inflammation (69), uric acid (70), and iron status (71), that could 
serve as targets for future CAD drug development. By utilizing both 
summary-level GWAS statistics and UK Biobank data, a recent MR 
study demonstrated the causal association of waist-to-hip ratio 
adjusted for body mass index with coronary heart disease, thus 
providing new opportunities of intervening CAD risk by reducing 
abdominal obesity (72).

GwAS-Based “Target-Free” Drug 
Repositioning
Drug repurposing approaches could leverage known drugs used 
for other diseases that target the newly uncovered CAD causal 
genes and pathways to counteract CAD. For example, better 
understanding of CAD pathways involved in inflammation 
and cell cycle has promoted the repurposing of drugs targeting 
diseases such as rheumatoid arthritis (17) and cancer (18). On 
the other hand, given the challenging nature of identifying both 
the causal genes from GWAS and matching it with the target of 
drug compounds, “target-free” approaches have been developed 
which require no prior knowledge of targets for either drugs or 
GWAS variants and can simultaneously take many genetic loci 
into consideration (73) (Figure 2B). The fundamental concept 
behind these approaches is to impute gene expression profiles 
from GWAS summary statistics, compare the expression patterns 
against gene expression profiles of drugs, then prioritize top drug 
candidates whose profiles show reverse patterns compared with 
GWAS-imputed signatures. This approach is especially useful 
for repositioning existing drugs whose chemical properties 
and molecular responses have been well characterized and 
made accessible from public data repositories such as CMap 
(74) and its successor, the L1000 platform (75), as well as other 
chemoinformatic resources (76, 77).

To facilitate such efforts, the work by Gamazon et al. represents 
one of the first transcriptome imputation pipelines where disease 
relevant gene expression is estimated from a tissue-dependent model 
trained with personal genotype data and reference transcriptome 
(78). Gusev et al. and So et al. further developed summary GWAS 
statistics based transcriptome imputation methods, which relieved 
the requirement for individual genotype data (73, 79). In addition, 
inferring gene expression changes from GWAS enables researchers 
to assess transcriptome-wide associations with CAD that could yield 
novel candidate genes for functional and therapeutic investigation 
(45, 79). Although direct application of the “target-free” approaches 
for CAD is still under-explored, a computational framework has 
been developed to reposition existing drugs for psychiatry (73). 
The framework, built on a GWAS-based transcriptome imputation 
pipeline named MetaXcan (80), first imputed the gene expression 
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profiles of 10 brain regions for 7 psychiatric disorders based on 
GWAS and reference transcriptome data from GTEx (55). This 
disease transcriptome information was then used to match with 
drug-induced gene expression profiles from the CMap database (74) 
to prioritize drugs that showed opposite gene expression patterns 
compared to the disease patterns. These platforms are potentially 
translatable to CAD.

network-Based Drug Discovery 
Approaches
The success of GWAS-driven drug target identification heavily 
relies on the fundamental assumption of how genetic risk variants 
eventually contribute to disease phenotype. An “omnigenic” model 
for the genetics of complex traits has been recently proposed (30). 
This provocative model objects the common belief that risk variants 
drive disease etiology through functional clustering in biological 
pathways, and emphasizes that all genes in disease-relevant cells 
could affect core disease processes through the coordination of 
gene regulatory networks.

Motivated by the gene network hypothesis, the CAD field has 
been actively investing on the development and application of 
systems genetics frameworks that integrate genetics and other 
data dimensions in the context of network topology to help 
prioritize candidate CAD genes (Figure  2C) (27–29, 81–84). 
The implementation of network-based target identification 
strategies poses several unique advantages over other methods. 
First, gene networks have the potential to comprehensively 
map the regulatory circuits under physiological or pathological 
conditions, thus improving the biological relevance of predicted 
targets. Second, gene networks serve as a natural platform for 
data integration, where GWAS and information from other 
omics space can be collectively leveraged to pinpoint network 
hotspots where key perturbation events likely happen. Third, 
gene networks enable the identification of essential disease genes, 
which is unlikely to tolerate high frequency loss-of-function 
variation at the population level and to be discovered by GWAS 
(85). Several methods have been developed to find network 
essential genes, or key drivers, by considering both network 
topology and external disease signatures (27, 81, 86). The validity 
of the predicted key drivers in driving CAD relevant traits has 
been well supported (27, 29, 82), and the key drivers have the 
potential to serve as novel drug targets with strong therapeutic 
effects due to their central importance in regulating the disease 
networks. For instance, Zhao et al. recently prioritized CAD 
key drivers and proposed plausible targets using network 
approaches (28). Extensive in vitro and in vivo gene perturbation 
experiments are required to evaluate the feasibility of using key 
driver genes as drug targets. If proven valid, network-based 
discoveries could provide exciting opportunities to formulate 
more focused and data-informed hypotheses for downstream 
therapeutic investigation. Nevertheless, it is important to caution 
that modulation of network key drivers may result in a lack of 
specificity and increase the risks for side effects due to their 
broad impact on numerous network genes.

One critical challenge for network-based CAD drug discovery 
is the availability of high-quality gene networks from CAD 

relevant cells, tissues, and subjects. Many existing networks are 
literature-based and lack tissue/cell specificity. Even for data-
driven networks, data collection bias exists. For example, human 
network construction usually requires large numbers of clinical 
samples that are difficult to acquire, especially for samples from 
internal tissues. A major breakthrough is the establishment of 
the STARNET networks involving tissue-specific data from 
~600 CAD patients (87). This resource, in combination with 
other networks generated from mouse models or non-disease 
human subjects, is invaluable for future CAD network studies. 
Coordinated efforts by the research community are needed 
to enhance the coverage of data-driven networks from CAD 
relevant tissues and cell types.

ConCluSionS AnD FuTuRe 
DiReCTionS

GWAS has been highly successful in elucidating the genetic 
architecture of CAD and driving the discovery of novel biology. 
While confirming the genes and pathways targeted by classic 
CAD treatments, GWAS opens doors to a vast number of 
under-recognized candidates where future CAD drugs could 
originate. The field of GWAS-driven drug discovery is still 
at its infancy, and significant challenges remain. However, it 
is encouraging that numerous methodological advances have 
been made to address the bottlenecks, and application of these 
approaches is expected to facilitate future translational research  
in CAD.

Here we anticipate the following future directions that will 
help further advance the field. First, there is a need for broader 
collaboration to conduct large-scale functional genomics studies 
in human tissues and cell types that implement cutting-edge 
high-throughput profiling technologies over multiple omics to 
map the tissue- and cell-type specific regulatory circuit of GWAS 
loci. In particular, application of cell-type specific analyses at 
multi-omics levels will help address the functional heterogeneity 
in CAD relevant tissues, which will lead to refined understanding 
of disease etiology and lay a solid foundation for more accurate 
prediction of drugs that can counteract the specific pathogenic 
processes in the right cell types and tissues (88). The recent 
launch of the Human Cell Atlas project represents one of the 
first stepping stones towards this direction (89). Second, more 
efficient platforms are needed to facilitate sharing of summary-
level GWAS data as well as databases and data repositories that 
curate multi-omics functional information. For example, in 
the neurological disorder field, there are emerging efforts like 
CommonMind (http:// commonmind. org), PsychENCODE 
(90) and BrainSeq (91). Similar coordinated efforts by the CAD 
community will accelerate identification of CAD drug targets. 
Third, the translational value of GWAS data can be better 
exploited by the development of novel analytical pipelines that 
integrate multi-dimensional data from animals, humans, and 
chemoinformatic databases. Some of the recently developed 
analytical pipelines can integrate GWAS and functional genomics 
data for target prediction, and are directly applicable to CAD 
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Cardiovascular disease (CVD) is still the leading cause of death in all western

world countries and genetic predisposition in combination with traditional risk factors

frequently mediates their manifestation. Genome-wide association (GWA) studies

revealed numerous potentially disease modifying genetic loci often including several

SNPs and associated genes. However, pure genetic association does not prove

direct or indirect relevance of the modifier region on pathogenesis, nor does it define

within the associated region the exact genetic driver of the disease. Therefore, the

relevance of the identified genetic disease associations needs to be confirmed either

in monogenic traits or in experimental in vivo model system by functional genomic

studies. In this review, we focus on the use of functional genomic approaches such

as gene knock-down or CRISPR/Cas9-mediated genome editing in the zebrafish

model to validate disease-associated genomic loci and to identify novel cardiovascular

disease genes. We summarize the benefits of the zebrafish for cardiovascular research

and highlight examples demonstrating the successful combination of GWA studies

and functional genomics in zebrafish to broaden our knowledge on the genetic and

molecular underpinnings of cardiovascular diseases.

Keywords: genome-wide association study, zebrafish, functional genomics, CRISPR/Cas9, heart disease

INTRODUCTION

Cardiovascular disease (CVD) is the leading cause of mortality worldwide. CVD describes a class
of diseases affecting the heart and blood vessels, such as cardiomyopathies, coronary artery disease,
heart failure or arrhythmias. A variety of risk factors, such as smoking, obesity, hypertension or high
cholesterol can be causative for CVD, however, it is understood that these traditional risk factors
only contribute to a fraction of disease cases (1). Therefore, researchers also focus on the definition
of the genetic basis of CVD to identify disease mechanisms independent of environmental risk
factors. Recent advances in next-generation sequencing (NGS) techniques enable now an unbiased,
whole-genome analysis of patients to identify disease-associated genetic alterations. One of these
approaches comprises genome-wide association (GWA) studies (GWAS) that have emerged as
a powerful tool to identify disease-related loci and have become a valuable candidate resource
for disease causing genes and variants. A GWA study is a hypothesis-free approach utilizing the
information of hundreds of thousands of genetic variants across the genome, so-called SNPs (single
nucleotide polymorphisms), in large population samples. In this context, GWAS findings are purely
genetic, but significant associations between SNPs and the disease are therefore excellent starting-
points for detailed follow-up studies. More than 10,000 of such significant associations with
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disorders and genomic traits were reported by GWA studies
resulting in new insights into biology and molecular mechanisms
of various diseases (2). Online platforms like the GWAS catalog
provide researchers collected data of published GWA studies and
enable the open-access view into these genome-wide analyses (3).
The GWAS catalog comprises studies on a variety of diseases
ranging from neurological disorders, various cancer types to
cardiac diseases, such as cardiomyopathies or arrhythmias. All
GWA studies rely on the exact definition of the disease phenotype
in patients to obtain an as specific cohort as possible. The
influence of a mixed cohort, secondary disease mechanisms
or environmental variations might lead to non-significant or
underestimated results. This could be particularly observed for
GWA studies focusing on heart failuremechanisms (4). Although
well-designed, some GWA studies still lack the clinical relevance
due to missing causality of the candidate genes. In order to
get a fast and reliable validation of GWAS hits, an adequate
experimental model in follow-up studies is fundamental. Several
model systems are available, ranging from cell culture to animal
models and each model has its pros and cons depending on
the respective disease mechanism. During the last decades, the
zebrafish (Danio rerio) has emerged rapidly as a model organism
in cardiovascular research. In this review, we will focus on
the use of the zebrafish to investigate the pathomechanisms of
heart diseases and discuss its suitability as an experimental tool
to validate the disease-association of genes identified by GWA
studies.

THE ZEBRAFISH: SMALL FISH, BIG
IMPACT

Zebrafish possess a variety of features that are advantageous for
the use as experimental model organism. Due to their small
size (2–4 cm), zebrafish are easy to handle and one female
can produce around 200 eggs per week. Zebrafish embryos
develop externally and very rapidly to freely swimming and
fed larvae within 5 days (5, 6). The zebrafish is an excellent
system for microscopic applications as embryos are transparent
and numerous transgenic fluorescent reporter lines are available
or can easily be produced (7). Such reporter lines are widely
used to image organ development and morphology as well
as physiological parameters like membrane voltage or calcium
transients (8, 9). Because of their suitability for imaging
applications, zebrafish are also highly interesting for high-
throughput small compound screens. This is enabled by already
existing and continuously improving screening platforms e.g., for
the automated detection of heartbeat, heartrate and fractional
shortening in embryos or isolated hearts of adult zebrafish (10–
13). Such set-ups facilitate rapid and high-throughput preclinical
tests of large numbers of small molecules and help to identify
novel therapeutic strategies (14–17).

Beside the mentioned general advantages, zebrafish
exhibit characteristics making them appropriate to study
heart development and disease (16, 18–21). Zebrafish heart
development proceeds fast and results in a differentiated two-
chambered heart within 48 hpf (22). In addition, zebrafish

embryos, in contrast to mammalian or avian embryos, are able to
cover their oxygen demand by diffusion during the first days of
development and are not dependent on blood circulation. This
enables the investigation of gene knockouts or knockdowns, even
if they lead to severe defects of the cardiovascular system (23).

On a genetic basis, humans and zebrafish share a 70%
sequence similarity and 84% of human disease-causing
genes can also be found in the zebrafish genome (24, 25).
However, regarding the cardiovascular system, there are basic
morphological differences as the zebrafish heart consists of only
two heart chambers, one atrium and one ventricle. This is on the
one hand advantageous as it displays a simplified experimental
model, on the other hand, these anatomical difference may
limit the translation of findings into the mammalian system
(21). Unlike mammals, which develop a coronary system during
embryogenesis, zebrafish show a vasculature on the heart surface
starting at 1–2 month post hatching (26). This restricts the study
of coronary artery disease (CAD) to adult zebrafish, although
it is possible to analyze basic mechanisms of atherosclerotic
lesion development also in the vasculature of zebrafish embryos
(27). There are also several parameters of the zebrafish heart
that are closer to the human situation than mammalian model
organisms, such as the mouse (17). For example, the zebrafish
heart rate of 120–180 bpm (beats per min) is comparable to
the 60–100 bpm of the human heart, whereas the mouse heart
beats 5 times faster. Furthermore, zebrafish ECG parameters are
very similar to human values enabling a direct comparison and
translation of experimental findings (20, 28).

In addition to the great benefits of the zebrafish in regard
to organ development, physiology, handling and imaging, its
suitability for genetic manipulation is another big advantage
of the system (Figure 1). Here, we will give a compressed
overview on the repertoire of zebrafish genetic tools and highlight
examples, where they have been used to demonstrate the causality
of genes or loci identified by GWAS.

ZEBRAFISH GENETIC SCREENS: A
(SWIMMING) POOL OF DISEASE GENES

Before GWAS data became more and more accessible, candidate
driven approaches have been very successful in identifying
disease-associated mutations. Here, known molecular players
and/or regulators of a specific disease-related pathway are
screened in a cohort or hereditary trait to find an association with
the pathological outcome. Forward genetic screens in zebrafish
contributed a lot to these studies as a variety of genes responsible
for cardiovascular defects were identified by zebrafish mutant
lines arising from mutagenesis screens (18, 29). These screens,
comparable to GWAS, have the advantage to be hypothesis-
free approaches that identify genetic mutations via a randomly
induced phenotype. The most prominent mutagenesis screens
are based on alkylating agents like N-ethyl-N-nitrosurea (ENU),
which give rise to point mutations leading to nonsense or
missense mutations that affect the regulatory and coding region
of genes (30–32).
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FIGURE 1 | GWAS and zebrafish: a powerful combination for cardiovascular research. The benefits of the zebrafish as an experimental system can enormously help

to validate the functional relevance of candidate genes identified by GWA studies. In addition, the system enables the in vivo analysis of underlying pathomechanisms

and is highly suitable for high throughput screening applications. In summary, the combination of GWAS and the zebrafish experimental system has the potential to

lead to improved and specific therapeutic approaches.

Although mainly recessive and single inherited mutations can
be analyzed in such mutagenesis screens, the combination of
zebrafish forward genetics followed by human genome analysis
led to the identification of several disease-related genes. One
example is the zebrafish mutant main squeeze (msq), which

harbors a mutation in the gene encoding ILK (Integrin-linked
kinase). Msq mutants display progressive loss of ventricular
contractility leading to heart failure (33). Another ILK mutant
line, lost contact (loc), also displays a cardiomyopathy phenotype
(34). After identifying ILK mutations as causative for the loc
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mutant phenotype, Knöll et al. performed a mutation screen in
the ILK gene of human cardiomyopathy patients. This screen
revealed an ILKmutation that was associated with the disease and
its disease causing effect could be again validated in loc mutants.
These examples show that zebrafish can serve as (I) a resource
for new candidate genes in heart failure through forward genetic
screens as well as (II) a model organism to validate potential
disease-causing mutations in reverse genetic analyses.

REVERSE GENETIC APPROACHES IN
ZEBRAFISH

Reverse genetics can be regarded as targeted investigation of
a gene of interest by increasing, reducing or silencing its
expression. A diversity of reverse genetic tools can be applied
in zebrafish, however, several characteristics of zebrafish genetics
have to be kept in mind. Zebrafish underwent a whole-genome
duplication event with the consequence that for many genes
a partially redundant paralog is present (24, 35). In addition,
there often exist several transcripts of the same gene and the
knockdown or knockout of several genes might be necessary
to model the loss-of-function phenotype of a human ortholog.
Another aspect that needs to be considered is the genetic
variation between and within zebrafish strains that might have
an impact on the phenotype and the conclusion drawn from
functional analyses (36).

An important and helpful resource for reverse genetic
investigations is the zebrafish mutant project that provides a
growing list of fish lines with a defined mutation in a specific
gene (25). Thesemutations are induced by chemical mutagenesis,
similar to the one used in forward genetic screens, and
identified by high-throughput DNA genotyping, an approach
called TILLING (targeting induced local lesions in genomes)
(37, 38). If a desired and appropriate mutation is available, this
open source platform might give scientists a fast access to a
loss-of-function model that can be directly used for functional
studies. The reverse genetic tools that can be applied in zebrafish
are mainly (A) mRNA overexpression and (B) transgenesis, (C)
Morpholino-modified antisense oligonucleotide (MO) mediated
knockdown or (D) genome editing techniques such as ZFNs (zinc
finger nucleases), TALENs (transcription activator-like effector
nucleases) or the CRISPR/Cas9 system (clustered regulatory
interspaced short palindromic repeats).

mRNA Overexpression
Injecting synthetic capped mRNA encoding the protein of
interest into early embryonic stages is commonly used as a
standard method to induce transient overexpression of genes or
gene variants (e.g., SNPs/variants identified in GWAS or next-
generation sequencing) for gain-of-function or loss-of-function
studies. Thus, mRNA overexpression in zebrafish was used for
example to analyze mutations in the NEXN (Nexilin) gene
that were identified in human DCM (dilated cardiomyopathy)
patients (39). When overexpressed in zebrafish embryos, these
mutant NEXN variants induced a severe DCM phenotype
showing the suitability of the method for fast and effective

testing of the impact of putative mutations. Even though mRNA
overexpression is an effective way to elucidate functions of
specific genes, its use is restricted to focus on early organ
development and function because of limited stability of the
injected mRNA.

Transgenesis
Transgenesis in zebrafish involves the insertion of foreign DNA
into the genome and is often used to create reporter lines, in
which a fluorescent reporter gene under the control of a specific
promoter is used to label a particular tissue, organ or cell type.
The most commonly used system to insert a transgene in the
zebrafish germline is the Tol2 system derived from medaka fish.
This autonomously active Tol2 element harbors a gene that
encodes for a transposase mediating the transposition of the
Tol2 element into the genome (40). For transgenesis of zebrafish,
the sequence or gene of interest needs to be flanked by 150–
200 bp ends of the Tol2 element. Injection of this construct
together with in vitro transcribed transposase mRNA leads to
the highly efficient generation of transgenic F1 offspring (41,
42). For zebrafish heart development and function a variety of
transgenic lines are present, such as cmlc2- (myosin light chain
7, myl7) promoter driven reporter lines that specifically label
cardiomyocytes of both heart chambers (43, 44). In addition,
random insertional transgenesis of EGFP, so called enhancer
trap, was shown to result in various reporter lines specifically
labeling cardiac structures (45). A powerful combination is
the use of transgenic lines in cell transplantation experiments
that are widely-used in zebrafish embryos to investigate cell-
autonomous mechanisms. With this approach, Sawamiphak and
colleagues could, for example, analyze fusion events between
cardiomyocytes during heart development that enable exchange
of mRNA or proteins between individual cells (46).

Furthermore, stable transgenic expression of gene variants
associated with heart diseases can serve as an appropriate
in vivo model to study the underlying pathology. Huttner and
coworkers, for example, showed that transgenic expression of
the D1275N mutation of the human cardiac sodium channel
(SCN5A), which is associated with cardiac abnormalities in
humans, also leads to bradycardia and defects of the cardiac
conduction-system in zebrafish (47). Further developments
of transgenesis techniques in regard to tissue specificity or
inducibility will broaden the possibilities for transgenesis in
zebrafish and help to create improved experimental systems for
cardiac research (48, 49).

Morpholino-Mediated Knockdown
Morpholinos (MO) are knockdown reagents that are very stable,
resistant to nucleases and can be injected into 1-cell stage
zebrafish embryos. Thus, they became a standard approach
for gene knockdown in zebrafish (50, 51). In a variety of
cardiovascular research studies, MO-mediated knockdowns were
performed to analyze the disease association of a particular gene
and/or to model specific pathological features. For example,
knockdown of genes that are associated with DCMprogression in
humans also results in cardiomyopathy in the zebrafish (39, 52).
However, phenotypes induced by MOs may be more severe than
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those of the corresponding mutants. This discrepancy can be a
result of genetic compensation in the mutant or due to off-target
effects of the used MO (53–55). Therefore, proper control of
MO specificity, efficiency and toxicity should be performed in all
applications (51).

Genome Editing Techniques
Genome editing has evolved as a major strategy to disrupt the
coding sequence of genes of interest leading to a loss-of function.
During recent years, various CRISPR/Cas9, ZFN and TALEN
approaches were developed and applied in zebrafish research
to create gene knockouts. The detailed technical aspects are
not the focus of this review, but are reviewed elsewhere (56,
57). ZFNs and TALEN approaches were successfully applied in
zebrafish cardiovascular research studies (58, 59). For instance,
ZFN-mediated knockout of GATA2 results in severe defects in
vascular organization highlighting the importance of this gene for
cardiovascular development (60).

The discovery of CRISPR/Cas9 as a genome editing method
declared a new era of reverse genetics (61, 62). The CRISPR/Cas9
system is the most efficient genome editing method for reverse
genetics in zebrafish and exhibits, due to its simplicity and
applicability, many advantages compared to ZFN and TALENs
(63). The CRISPR/Cas9 system is a two-component complex
composed of the Cas9 endonuclease, which induces DSBs
(double-strand break) and a guide RNA (gRNA) recognizing
specific DNA sequences (62). CRISPR/Cas9 is remarkably simple
and adaptable due to its unique mechanism and therefore,
is chosen as a major genome-editing tool among all the
technologies present in the zebrafish field (64). Its suitability
for reverse genetics in zebrafish, in regard to cardiovascular
research, could be shown for example by a knockout of the
large transcript pr130 of the Protein Phosphatase 2 Regulatory
subunit Bα (PPP2R3A) (65). Here, two pr130 knockout lines
demonstrated the importance of pr130 for cardiac development
and function and provide a suitable genetic model to study
the underlying pathomechanisms. An aspect that needs to be
considered in all genome editing approaches is the possible
presence of off-target effects. Unbiased whole genome analyses of
CRISPR/Cas9 off-target effects are still missing and researchers
are most often restricted to the analysis of off-target genes
that are predicted by computational approaches (66). By careful
design and selection of gRNA sequences and the use of nuclease
variants with high specificity the risk for off-target effects can be
minimized. Additionally, continuous outcrossing of themutation
and the comparison of at least two independently produced
knockout lines help to prevent misinterpretations of a genotype-
phenotype connection.

Recently, a variety of improvements and new applications
of the CRISPR/Cas9 system evolved contributing to the fast
implementation of the method in many zebrafish laboratories.
The classical targeted knock-out strategy involves the injection of
gRNA andCas9 (mRNA or protein) into 1-cell stage embryos and
the screening for germline mutations in subsequent generations
(67). Another strategy uses e.g., a catalytically dead Cas9
protein (dCas) lacking endonuclease activity to generate a DNA
recognition complex that can specifically perturb transcriptional

elongation, RNA polymerase binding, or transcription factor
binding (68). CRISPR/Cas9 can also be used to generate defined
knock-in fish lines with integrated SNPs, stop codons, HA tags,
loxP sites or fluorescent proteins (69, 70). The CRISPR/Cas9
toolbox is continuously growing and recent progress is achieved
by using this method for tissue-specific blockage of gene function
(71, 72) or by combining the strategy with optogenetic tools to
have temporal control over Cas9 activity (73). In the context of
cardiovascular research, these improvements will help to obtain
heart-specific knockouts and to mimic the late onset and slow
progression of many cardiomyopathy subtypes.

GWA STUDIES AND FUNCTIONAL
GENOMICS IN ZEBRAFISH: A POWERFUL
COMBINATION

The zebrafish functional genomics toolbox enables a defined
analysis of theoretically any gene of interest in vivo. This
makes the zebrafish a valuable experimental platform to validate
putative disease causing genes that are identified by GWA
studies. Indeed, a variety of genome-wide surveys, focusing
on heart diseases, already used zebrafish to prove their initial
findings. Table 1 summarizes selected examples of genome-
wide studies, for which the resulting candidate genes could be
confirmed by zebrafish reverse genetics. An early GWA study
in 2008 identified three co-segregating genes (HBEGF, IK, and
SRA1) associated with DCM (87). For Heparin-binding EGF-like
growth factor (HBEGF), the linkage to DCM progression was
already known from mouse knockout studies (88). The DCM-
association for the cytokine IK and the steroid receptor RNA
activator1 SRA1 is a new connection arising from this study. The
disease-relevance of these candidate genes could be verified in
zebrafish embryos. The MO-mediated knockdown of all three
genes, HBEGF, SRA1 and IK resulted in severe pericardial
edema, accompanied by reduced fractional shortening (FS) of
the ventricular chamber (87). Another study focused on the
genetic basis of CAID (Chronic atrial and intestinal dysrhythmia)
and found a linkage to the SGOL1 gene (Shugosin-like 1)
(86). The authors could show that SGOL1 is expressed in the
sinoatrial region and atrioventricular valves of the adult zebrafish
heart. Consistent with its expression pattern, the knockdown of
SGOL1 in zebrafish embryos resulted in bradycardia confirming
the involvement of SGOL1 in heart rhythm control (86).
KCNIP1 (potassium voltage-gated channel interacting protein
1) is another example of a gene that could be linked by whole
genome analysis to heart disease, here atrial fibrillation (AF)
(82). Interestingly, the reported mutation does not lead to a
loss of function, but is suggested to increase KCNIP1 levels.
The authors modeled this by the overexpression of KCNIP1
in zebrafish and could show that increased KCNIP1 levels can
result in transient atrial tachycardia and AF during high-rate
pacing (82). Norton et al. (79) identified BAG3 (Bcl-2 associated
anthanogene 3) as a DCM-associated gene and could confirm
its disease relevance by knocking-down BAG3 in zebrafish
embryos. BAG3-deficient fish showed severe pericardial edemas
and a decreased fractional shortening as well as a reduced peak
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TABLE 1 | Genome-Wide Studies using the zebrafish model to validate the causality of candidate genes.

Genome-wide study Disease Gene(s) Zebrafish genetic tool Zebrafish phenotype References

(74): GWAS in 1,910 patients/3,630

controls

DCM HSPB7 MO knockdown

TALEN knockout

Heart looping defects

Increased susceptibility to

cardiomyopathy

(75, 76)

(77): GWAS in 1,590 patients/577

controls

HF HSPB7

(78): GWAS in 1,179 patients/1,108

controls

DCM BAG3 MO knockdown Cardiac and skeletal myopathy (79, 80)

(79): WES in one multigeneration

family

DCM BAG3

(81): WES in three multigeneration

families

DCM FLNC MO knockdown Abnormal cardiac function and

structure

Same study (80)

(82): WES on three unrelated

probands

AF KCNIP1 Overexpression

MO knockdown

Overexpression promotes AF Same study

(83): Combined genetic and

proteomic GWAS of 4 cohorts with

17,692 samples

LQTS VCL MO knockdown

Gene-Trap CRISPR/Cas9

Defective cardiac repolarization

Myocardial contractile dysfunction

Same study (84, 85)

(86): WES on three cases CAID SGOL1 MO knockdown Bradycardia Same study

(87): GWAS in 590 patients/732

controls

DCM HBEGF,

IK, SRA1

MO knockdown Myocardial contractile dysfunction Same study

Mentioned here are examples found by manual database analysis. The list might not be exhaustive.

AF, atrial fibrillation; CAID, Chronic atrial and intestinal dysrhythmia; DCM, dilated cardiomyopathy; GWAS, genome-wide association study; HF, heart failure; LQTS, long QT syndrome;

MO, morpholino; WES, whole exon sequencing.

blood cell flow velocity (79). A second study independently
identified also BAG3 as a potential DCM-causing gene (78).
In addition, the functional requirement of BAG3 for heart
as well as skeletal muscle function was also confirmed by an
independent MO-based analysis of several myopathy-related
genes (80). Another gene linked to DCM that was identified by
a whole genome study is Filamin C (FLNC) (81). The authors
of this study also used MO-knockdown experiments to validate
their findings. FLNCmorphants exhibited dysmorphic or dilated
heart chambers as well as impaired heart looping confirming
the importance of FLNC for heart function and development
(81). Lundby et al. (83) used a GWA approach combined with
tissue-specific proteomics to analyze genes associated with LQTS
(Long QT Syndrome) (83). They could identify Vinculin (VCL)
as a disease-associated gene and could confirm its relevance
by using a VCL-knockdown approach in zebrafish. In these
experiments, the authors measured cardiac repolarization in
isolated embryonic hearts using fluorescent probes and could
observe an impaired repolarization response upon loss of VCL
(83). Additionally, by using a gene-trap mutant zebrafish line
as well as a CRISPR/Cas9 knockout line of VCLb, Cheng
et al. could confirm its disease-relevance (85) and a MO-
based knockdown of VCL in zebrafish in another independent
approach also validated the role of Vinculin in heart function and
structure (84).

Other studies did not use the zebrafish to validate their
candidate genes, however, independent follow-up studies could
confirm the disease-causing potential of some of them. For
example, two independent GWA studies on DCM and heart
failure identified SNPs near the HSPB7 (Heat Shock Protein
Family B Member 7) gene to be associated with the disease

(74, 77). Three years later, Rosenfeld et al. could confirm the
requirement of HSPB7 in heart function and structure by MO-
based knockdown experiments. HSPB7 depletion led to impaired
cardiac morphogenesis due to defects in ventricular size, but
also due to an early block of heart tube formation (75). By
using a TALEN-mediated knockout of HSPB7, the same group
recently showed that loss of HSPB7 increases the susceptibility
of adult mutant zebrafish for cardiomyopathy due to impaired
protein homeostasis serving as another proof of the initial GWAS
findings (76). In addition, this zebrafish study and most of the
above mentioned, are not only validating candidate genes from
GWA studies, they also allow a more detailed investigation of
the underlying pathomechanisms and help to identify novel
disease-associated pathways and protein networks.

CONCLUSION AND FUTURE
PERSPECTIVES

The zebrafish has a variety of advantages to be combined with
GWAS. Zebrafish are easy to keep, to handle and to image, show
many physiological and genetic similarities to humans and are
highly suitable for genetic manipulations. These features help to
establish valid disease models and allow a plethora of follow-up
studies.

Due to obvious differences in morphology and living
environment, it should be clear that a simple translation of
findings from the zebrafish system to humans is not always
possible. In addition, the probably biggest difference and, also
peculiarity of the zebrafish heart compared to mammals is the
ability to regenerate injury (89). This may result in drawbacks
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and limitations when comparing pathomechanisms in fish and
humans, but also makes the zebrafish a highly interesting model
to study the underlying mechanisms of regeneration (90, 91). It
is important to mention that a disease-association of a particular
gene that cannot be confirmed in zebrafish doesn’t necessarily
mean that it is not causative for the phenotype. Mechanisms
like intrinsic repair processes or genetic compensation may
hide a causative effect of a gene mutation. In such situations,
other experimental models, like rodents or patient-derived
iPSC (induced pluripotent stem cells) might lead to clearer
results (92, 93). Nevertheless, all mentioned benefits make
the zebrafish a valid and highly suitable model to investigate
cardiovascular pathologies and to prove findings from GWAS.
Many SNPs identified in GWA studies are located in non-coding
regions of the genome and might affect for example enhancer
or repressor binding, microRNA binding sites or chromatin
structure. Also for these kinds of mutations, the zebrafish
system can help to identify their in vivo relevance, biological
role and the underlying pathomechanisms. Madelaine et al.
(94), for example, could very recently confirm human disease-
associated SNPs in CNEs (conserved non-exonic elements) by

using CRISPR/Cas9-mediated deletion of the respective non-
coding locus (94).

We are sure that the fruitful synergism between GWAS and
zebrafish in cardiac research will expand in the future and will
lead to the identification of novel disease-causing genes and
variants and help to screen for possible therapeutic strategies.
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Genetic variants at hundreds of loci associated with cardiovascular phenotypes have

been identified by genome wide association studies. Most of these variants are located

in intronic or intergenic regions rendering the functional and mechanistic follow up

difficult. These non-protein-coding regions harbor regulatory sequences. Thus the study

of genetic variants associated with transcription—so called expression quantitative trait

loci—has emerged as a promising approach to identify regulatory sequence variants. The

genes and pathways they control constitute candidate causal drivers at cardiovascular

risk loci. This review provides an overview of the expression quantitative trait loci

resources available for cardiovascular genetics research and the most commonly used

approaches for candidate gene identification.

Keywords: eQTL, expression quantitative trait loci, genomewide association study, GWAS, cardiovascular disease

BACKGROUND

The ultimate goal of any genetic association analysis is to identify genetic variation linked to
variation of a phenotype and to elucidate the molecular mechanisms, which are altered by
the sequence variation. Genome wide association studies have been tremendously successful
in identifying thousands of disease-associated loci as documented by the steady growth of the
continuously updated GWAS catalog (1). This progress has also highlighted hundreds of loci
associated with cardiovascular phenotypes: the current GWAS catalog (2) lists 249 distinct
chromosomal regions associated with coronary artery disease with candidate genes and pathways
at many loci summarized in Klarin et al. (3), 138/115 with diastolic/systolic blood pressure, 109
with QT interval, to name just the top three cardiovascular phenotypes. Follow up analysis of
these loci aim to establish the causal mechanisms underlying the statistical associations. In classical
family based linkage studies typically identifying rare variants with very large effect sizes, the causal
variants are typically located in the protein sequence and have a strong impact on protein function
(4), for instance truncatingmutations in the sarcomeric protein TTN cause dilated cardiomyopathy
(5–8). In GWAS however, the identification of causal variants proved to be very challenging, since
the vast majority of these disease-associated variants is located either in introns of genes or in
intergenic regions (2). Therefore the classical approach of identifying the variant with strongest
impact on protein function, such as gained stop codons is not sufficient.

Recent large-scale efforts have annotated a plethora of functional regulatory elements such as
enhancers residing in the non-protein-coding part of the genome (9, 10). Therefore an alternative
mechanism might be that disease-associated regulatory variants alter the sequence and function of
such regulatory elements. Indeed a systematic analysis of the location of disease-associated variants
showed that they preferentially reside in regulatory elements (11, 12). Since regulatory elements
are highly tissue specific, this information can even be used to identify the disease-relevant
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tissues (11, 12). These results from localization analysis are
highly suggestive that disease-associated variants alter regulatory
elements. It now remains to be shown that they indeed are altered
and to identify the respective target gene whose transcription is
controlled by the regulatory element.

Integrated analysis of the genetics of gene expression provides
an elegant way of directly assessing the consequences of putative
regulatory sequence variants on transcription. In this study
design (13), a population cohort is characterized for their
genome wide patterns of genetic variation and also for genome
wide gene expression. Gene expression levels are treated as
quantitative traits and systematically tested for associations
between sequence variants and gene expression. Significant
associations are called expression quantitative trait loci (eQTL).
These eQTL not only identify putative regulatory variants,
but also their target genes as the gene whose expression is
associated with the variant (14, 15). Biological information
processing and regulation is not limited to transcription, so this
approach has also been generalized toward other intermediate
molecular traits such as DNA methylation (16, 17), open
chromatin (18), histone modifications (19–21), gene, exon and
transcript expression levels (22–26) translation and protein
levels (27) as well as metabolites (28, 29). In particular the
information from the epigenome can be used to identify
regulatory variants, and to characterize their role in disease
(11, 18, 21, 27).

eQTL RESOURCES FOR
CARDIOVASCULAR GENETICS

Regulatory elements and also the effects of variants on those
elements can be highly tissue specific, therefore it is key to
investigate the tissue relevant for the disease (11, 12, 25,
30). Because biopsies of tissues relevant for cardiovascular
diseases, in particular of the heart are very difficult to obtain
from humans, it is not surprising, that early applications of
eQTL analysis to identify candidate genes for cardiovascular
phenotypes were reported in animal models (31). To understand
the regulatory impact of sequence variants in humans, samples
of disease relevant tissues are often obtained during surgery,
from organ donors or from post-mortem sections. As a
consequence of these practical considerations, the transcriptome
data might be confounded by differences in tissue composition
(32) or ischemic time of post-mortem samples (25). Therefore
additional care has to be taken in data analysis accounting
for observed and hidden confounders (33). Current reviews
provide an overview of recent human eQTL studies (15,
34). The most comprehensive study to date is the Genotype
tissue expression (GTEx) project, which aims to characterize
regulatory sequence variants across 44 distinct tissues from
post-mortem sections (26). This includes cardiac tissues: left
ventricle, atrial appendage; vascular tissues: aorta, tibial artery,
coronary artery; as well as metabolic tissues: liver, subcutaneous
and viscelar adipose tissue (Table 1). In terms of sample size
and coverage of tissues of interest, the eQTL data generated in
the STARNET consortium is currently the most comprehensive

TABLE 1 | Recent cardiovascular eQTL resources.

References Tissue Sample

size

Population

(35) Left Atrial wall 62 European

(32) Left Ventricle 205 European

(36) Left Atria 329 European/African

American

(37) Left Ventricle 129 European

(26) Atrial Appendage 264 European/African

American

(26) Left Ventricle 272 European/African

American

(26) Aorta 267 European/African

American

(26) Tibial artery 388 European/African

American

(26) Coronary artery 152 European/African

American

(26) Adipose—Subcutaneous 385 European/African

American

(26) Adipose—Visceral 313 European/African

American

(26) Liver 153 European/African

American

(38) Mammary artery 600 European

(38) Atherosclerotic aortic root 600 European

(38) Visceral abdominal fat 600 European

(38) Skeletal muscle 600 European

(38) Liver 600 European

resource (38). It focuses on vascular and metabolic tissues
in patients with coronary artery disease. It has been shown
that eQTL are sometimes dependent on the disease context
(32). This observation is also supported by the finding that
more eQTLs associated with disease SNP can be found in
diseased populations (38). Formation of atherosclerotic plaques
is an inflammatory process, therefore also immune cells such
as monocytes or macrophages are considered disease relevant
tissues and have been extensively profiled (39). Since the disease
relevant tissues are not always known a priori efforts are currently
underway to establish cohorts of induced pluripotent stem cell
that can potentially be differentiated into any cell type for
genetic mapping (40). These eQTL projects are complemented
by large scale projects aimed at creating a reference map of
regulatory elements across an exhaustive set of 111 human
cell types and tissues (10) by annotation with epigenetic
markers of regulatory elements and recent developments of
sequencing based methods (e.g., Hi-C) to study chromosomal
architecture (41) in a wide variety of human tissues (42)
including heart, liver and aorta. These techniques can identify
promoter—enhancer interactions and have already been used
successfully to identify IRX3 as the causal gene underlying
an obesity GWAS hit located in the intron of the FTO gene
(43).
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CANDIDATE IDENTIFICATION STRATEGIES

cis eQTL Candidate Genes
Overlapping eQTL and GWAS SNPs is the most straightforward
approach to identify candidate genes for GWAS hits. If a GWAS
SNP is also an eQTL for a close by gene or in tight LD with an
eQTL, it is conceivable that the SNP indeed affects a regulatory
element controlling the expression the respective gene. These
genes are typically called cis-eQTL when the distance between
gene and variant is not further than 500 kb−1Mb, as opposed
to trans-eQTL, where the distances are greater or the variant
and gene are located on different chromosomes. Cardiovascular
candidate genes such as SORT1 (44) and LIPA (45) have been
identified as cis-eQTL. It has been demonstrated that these
candidate genes frequently are not the genes located closest
to the GWAS SNP for heart related traits (32) and also more
generally for any GWAS trait (25, 26). Nowadays, this candidate
annotation approach is becoming a standard analysis included in
many GWAS papers and can be performed conveniently using
the online software FUMA (46). For instance a recent GWAS on
CAD (47) identified eQTL for 196 genes at 97 of the 161 CAD
loci found in the analysis from GTEx and other eQTL data bases.
This result already demonstrates one caveat of the approach:
several candidate genes might emerge for a locus and might
be inconsistent between tissues or GWAS variants might also
associate with eQTL by chance (26). In this particular example
36 loci have unique candidate genes and additional 24 loci have
candidate genes detected consistently across tissues, so 60 loci can
be annotated confidently. Overall a highly significant enrichment
of trait associated SNPs can be observed among eQTLs as
demonstrated for heart related traits (32). Less frequently also
trans-eQTL are considered for the annotation of GWAS SNPs,
as they do not readily provide a clear mechanistic explanation.
Nevertheless, it has been shown in a systematic analysis of GWAS
variants, that they frequently also associate with expression levels
of genes distant to the GWAS locus (48).

An important limitation of the overlap-based strategy is
that it cannot be used to establish causality. Strictly speaking
the experimental design does only allow inferring causality
in a statistical sense. In genetic associations the direction of
causality is always fixed (Figure 1A). To establish a causal
chain between genetic variation, gene expression and the disease
phenotype in the strict sense, an interventional experiment
would be required, where all other confounding factors that
could determine the phenotype are fixed and only the gene
expression level would be manipulated to test an effect on
the phenotype. If gene expression is indeed causal for the
phenotype, any change of the gene expression necessarily
would cause a change in the phenotype. In the concept of
Mendelian randomization (MR) one is considering a genetic
variant as instrumental variable controlling the levels of gene
expression and observes its effect on the phenotypic outcome
(49). In analogy to randomized control trials, individuals
get assigned to a group based on their genotype. Because
the direction of causality between genetic variant and gene
expression is fixed and the genetic variant is robustly associated
with expression levels, one group will receive a higher

dose of gene expression. Assuming that the genotype is
independent of confounding factors (Figure 1A) changes in
phenotypic outcome can be attributed to the changes in gene
expression.

Classically,MR and similar approaches to statistically establish
causality (50, 51) require to measure all variables in the
same population (Figure 1B). This is often not feasible, as
gene expression profiling in each and every disease cohort is
prohibitively expensive. In practice GWAS SNPs and eQTLs
are identified in separate populations. Because of data privacy
regulations, often a researcher only has access to the full
individual level data of one population and the summary
statistics of the other population. Depending on which full
data set is available there exist several methods allowing to
directly integrate the measured data with summary statistics (52–
55). A Bayesian co-localization approach based on summary
statistics (56) is testing whether the co-localization of two
association signals is compatible with a common underlying
causal variant and has been successfully applied to blood lipid
traits and liver eQTL. An alternative approach is to impute
gene expression levels (57) into a GWAS population (54,
58) using eQTL summary statistics from an eQTL reference
population. Subsequently the imputed gene expression can
be correlated to the disease phenotype to identify candidate
genes (54, 58). Alternatively the transcriptome wide association
study (TWAS) method (54) and other methods (Barbeira et
al. in review) can also work completely without individual
level data by indirectly associating expression and phenotype
using eQTL and GWAS summary statistics and the LD
structure between SNPs. The TWAS approach showed superior
power compared to colocalization analysis and simple overlap
based analysis in cases where the causal variants are not
directly observed, or when multiple causal variants affecting
expression and phenotype exist. Consistent with other candidate
identification strategies, analysis of obesity related traits with
TWAS showed that 66% of identified trait associated genes
were not the closest gene (54). Summary data-based Mendelian
Randomization (SMR) is a method that can be used if
only summary statistics are available from both eQTL and
GWAS results. The method makes use of standard two-
sample MR (59) to identify causal or pleiotropic effects
of sequence variants on gene expression and phenotypes
and distinguishes this situation from overlapping independent
causal variants in LD using a test on multiple SNPs (55).
Similar to results from TWAS analyses, the application of
this method to five common diseases showed that only 60%
of the identified candidate genes are the closest gene to the
GWAS SNP.

Network Based Analysis
Genes are not acting in isolation, but rather form functionally
related pathways and networks. Pathways are usually defined
based on curated prior knowledge about well-studied processes
such as biochemical reactions and signaling pathways (KEGG,
Reactome, GO). Pathways can be represented as sets of genes
of the same process or as networks preserving the topological
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FIGURE 1 | Using eQTL data to identify causal candidate genes at GWAS loci. Integration of eQTL and GWAS data allows for the identification of candidate causal

genes, where the effect of the genetic variant (SNP) on the complex trait is mediated by expression levels of an RNA encoded at the locus (A). Overlapping

associations of gene expression and clinical trait at the same locus are however not sufficient to infer causality, as they might also be explained as independent

pleiotropic effects (A). Depending on the availability of overlapping individual level data sets of genotypes, gene expression and clinical traits there exist several

statistical methods to perform causal inference from the data (B).

information which genes are connected to one another, for
instance by catalyzing adjacent steps in a metabolic pathway.
Alternatively, networks can be derived from high-throughput
experiments such as transcriptome profiling (co-expression
network) or protein-protein interaction (PPI) screening (PPI
network). Pathways and networks defined either from prior
knowledge or from data can subsequently be used for the
interpretation of disease associations derived from GWAS.
Representing pathways as sets of genes, one can ask, whether
a set of genes shows higher evidence of association to disease
than random gene sets of the same size. Because GWAS
test individual SNPs and not genes, a mapping between
SNPs and genes is required, for instance based on genomic
positions. Methods such as SNP set enrichment analysis (60,
61) can then be used to test the statistical significance of
the association between gene sets and the GWAS results by
comparing the distribution of GWAS P-values of SNPs within
the pathway to a background distribution. These methods
have been applied to show the association between CAD
and pathways for lipid metabolism, coagulation, immunity
(62).

Since eQTL experiments require transcriptome profiling in
large cohorts, it is natural to use this data to define data
driven gene co-expression networks and gene sets, so called
co-expression modules. These gene sets are then annotated
according to their gene function or cell type specificity and
then related to disease via GWAS results using SNP set
enrichment analysis. The link between genes and SNPs can
naturally be established via cis-eQTLs of the genes of a co-
expression module. This approach was also used in the CAD
study mentioned above (62). It is important to note that
co-expression modules are not necessarily fully overlapping

with biochemical pathways although they might represent the
same disease process. For instance the modules might contain
transcriptional regulators and parts of a biochemical process that
they control.

Network topology of co-expression networks is often used
to prioritize candidate genes based on the assumption, that
genes with many network connections (so called hubs) are more
important (38, 62–65). A study investigating shared molecular
networks and their drivers between cardiovascular diseases and
type 2 Diabetes applied this strategy (64). Knockout mice for
selected key driver genes show indeed metabolic phenotypes and
gene expression changes in the network neighborhood of the key
drivers. Similarly several studies on CAD identified key driver
genes and provided evidence for their functional implication in
mouse (65) and in vitro studies (62, 65).

CONCLUSIONS

eQTL data provides first leads toward uncovering the
mechanisms underlying the statistical associations observed
between genetic loci and common cardiovascular diseases.
Major challenges for a broad applicability of this approach
need to be overcome. First, regulatory elements and therefore
also the regulatory impact of sequence variation is highly cell
type specific. The GTEx project is addressing this challenge by
providing a large scale cross tissue eQTL data base. However,
not all conceivable tissues and cell types can be systematically
analyzed. In particular transient developmental stages might
leave a lasting phenotypic footprint. Induced pluripotent stem
cells from cohorts offer an elegant solution (40) as they can
potentially be differentiated into any cell type or developmental
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stage (Nguyen et al. in review) and studied for eQTLs. A
second challenge is posed by variability of the genetic effects on
expression between different cells making up a tissue and even
between cells of the same cell type. eQTL mapping based on
single cell transcriptomic data is becoming feasible (66) and can
be used to quantify and map the genetic determinants of cell to
cell variability of gene expression. Lastly the grand challenge is
to move from correlation or co-localization toward causation.
Clearly this is the most difficult task and requires on top of
rigorous statistical approaches such as MR also experimental
validation.
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Longitudinal, well phenotyped, population-based cohort studies offer unique research 
opportunities in the context of genome-wide association studies (GWAS), including GWAS 
for new-onset (incident) cardiovascular disease (CVD) events, the assessment of gene x 
lifestyle interactions, and evaluating the incremental predictive utility of genetic information 
in apparently healthy individuals. Furthermore, comprehensively phenotyped community-
dwelling samples have contributed to GWAS of numerous traits that reflect normal organ 
function (e.g., cardiac structure and systolic and diastolic function) and for many traits along 
the CVD continuum (e.g., risk factors, circulating biomarkers, and subclinical disease traits). 
These GWAS have heretofore identified many genetic loci implicated in normal organ function 
and different stages of the CVD continuum. Finally, population-based cohort studies have 
made important contributions to Mendelian Randomization analyses, a statistical approach 
that uses genetic information to assess observed associations between cardiovascular traits 
and clinical CVD outcomes for potential causality.

Keywords: GwAS (genome-wide association study), population, genetic variation, genetic predisposition to 
disease, risk prediction

whAt ARe Key FeAtuReS oF PoPulAtion-BASed CohoRt 
StudieS?

As a brief introduction, we would like to highlight important design features of population-based 
studies. As opposed to hospital-based referral samples, population-based epidemiological studies 
examine community-dwelling or random samples from the general population. As such, study 
participants are not selected based on a given disease, but rather to represent the general population 
of the areas sampled, so that observations from such a sample are generalizable to the underlying 
source population. It has to be kept in mind, though, that the response rate of some landmark cohort 
studies is rather low [e.g., 5,5% for the UK Biobank (1)], which increases the potential for selection bias 
(2). Furthermore, most population-based studies are longitudinal studies that are re-examining their 
participants every few years so that repeated measures of several traits are available and trajectories 
over time (and their genetic underpinning) can be assessed, as opposed to analyses of single occasion 
measurements of select traits in typical referral samples. Thus, population-based cohort studies include 
many individuals free of the disease of interest at the beginning of the study, but who might develop the 
condition of interest over the course of the study. Therefore, population-based cohort studies are ideal 
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to study risk factors and intermediate traits for the development 
of chronic disease conditions and to estimate measures of disease 
incidence (3, 4).

Third, many population-based cohort studies perform deep 
physiological/clinical and molecular phenotyping of their study 
participants (5). For example, comprehensive physiological, 
biochemical, subclinical, and clinical measurements are 
obtained on the participants using highly standardized methods. 
Similarly, clinical endpoints are adjudicated in a comprehensive 
and highly standardized process, which enhances the accuracy 
and validity of endpoint data from population-based cohort 
studies. The molecular characterization may include the 
assessment of common and rare genetic variation and other 
OMICs measurements, such as epigenomics, transcriptomics, 
lipidomics, proteomics, and metabolomics (5). These key features 
of population-based studies allow specific research questions 
to be addressed in the context of genome-wide association 
studies (GWAS). For example, the detailed phenotyping allows 
comprehensive adjustments and mediation analyses in order to 
delineate whether an observed association between a genetic 
variant and cardiovascular outcomes is independent of traditional 
risk factors and whether traditional risk factors or biomarkers 
might mediate the observed association. Overall, population-
based studies have made a substantial contribution to scientific 
discoveries in the GWAS era. A few illustrative highlights of such 
findings from cohort studies are described below.

ReFeRenCe SAmPle FoR GenetiC-
ePidemioloGiCAl AnAlySeS

Since many community-dwelling samples are representative of the 
general population, population-based studies have served as reference 
(“control”) samples for many genetic case-control analyses. In essence, 
genetic case-control studies compare allelic frequencies of genetic 
variants in prevalent cases (patients who have the disease of interest 
when they are sampled) and controls. Ideally, the control sample 
captures the distribution of the exposure (in this case, the allele 
frequencies of putative genetic variants) in the source population from 
which the cases were derived (6). Therefore, population-based studies 
have provided controls for genetic case-control studies of a broad 
spectrum of traits, including myocardial infarction (MI)/coronary 
artery disease (CAD) (7), stroke  (8, 9), and dilated cardiomyopathy 
(10). Importantly, as detailed below, GWAS might reveal different 
results depending on whether prevalent or incident cases are being 
analyzed.

GwAS AnAlySeS FoR A BRoAd 
SPeCtRum oF PhenotyPiC tRAitS 
And BiomARKeRS AlonG the 
CARdiovASCulAR diSeASe 
Continuum

The broad and highly standardized phenotyping of their 
study participants has allowed many different contributions of 

population-based cohort studies to GWAS. Specifically, researchers 
from population-based studies have performed and contributed 
to numerous GWAS for traits along the cardiovascular disease 
continuum, including traditional CVD risk factors [e.g., lipids 
(11), blood pressure (12, 13), and glycemic traits (14)], circulating 
cardiovascular biomarkers [e.g., B-type natriuretic peptide (BNP) 
(15), C-reactive protein (16), troponin (17), aldosterone, renin 
concentration, renin activity (18), adipokines (19), and fibrinogen 
levels (20)], and subclinical cardiovascular disease traits [such as 
indices of left ventricular structure and function (21, 22), carotid 
intima media thickness [IMT] (23), and coronary artery calcification 
(24)]. Of note, cardiac function can be assessed by different 
modalities, including e.g., ECG, echocardiography, MRI/CT and 
circulating biomarkers; and genome-wide genetic analyses have 
been conducted for various of these traits, including ECG parameters 
(25), echocardiographic traits (21, 22) and MRI measures of cardiac 
structure and function (26), as well as relevant biomarkers (15). 

It is important to keep in mind that community-based samples (as 
opposed to clinical samples with established disease) include many 
individuals free of CVD at the time of inclusion in the study so that 
population-based cohort studies offer great opportunities to study 
the development of cardiovascular disease conditions over the adult 
life course (27), including very early (clinically asymptomatic) stages 
of the disease process and the genetic underpinning of these early 
stages. Thus, the above-mentioned GWAS have described to what 
extent different stages along the CVD continuum are associated with 
genetic variation and which genes might be involved.

Furthermore, given the large proportion of apparently healthy 
individuals in population-based cohort studies (as opposed 
to clinical samples), these studies conducted GWAS of many 
traits that reflect relatively normal organ function, including 
biomarkers of cardiac structure and systolic and diastolic 
function (21, 22). These studies provided important insights how 
physiological organ function is influenced by genetic variation, 
and how organ dysfunction might contribute to different disease 
processes (21, 22).

ASSeSSment oF Gene X liFeStyle 
inteRACtionS

It is an important and growing area of research to quantify the 
contribution of genes and of different lifestyle factors (and their 
interactions) to inter-individual variation in cardiovascular risk factor 
levels and disease risk. Since well phenotyped cohort studies usually 
have comprehensive genetic data and detailed lifestyle information 
available, population-based studies represent an ideal setting to study 
gene x lifestyle interactions. The interaction of a genetic risk score 
(based on 50 SNPs) and a lifestyle score (including information on 
smoking, obesity, physical activity, and diet) on the incidence of 
CAD has been analyzed in several large community-based cohorts 
(28). Key observations from these analyses were that (i) both scores, 
the genetic risk score and the lifestyle score, were independently 
associated with the risk of incident CVD and that (ii) a favorable 
lifestyle was associated with an almost 50% reduction in the relative 
risk for CAD, as compared to those with an unfavorable lifestyle 
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profile (28). This reduction in the relative risk of CAD by a favorable 
lifestyle was observed in individuals with high genetic risk, but also 
in individuals with low and intermediate genetic risk (28). Very 
similar observations were made in more than 270.000 participants 
of the UK Biobank, when a polygenic risk score, representing 
314 BP-associated loci, as well as a slightly different lifestyle score 
(including information on body mass index, healthy diet, sedentary 
lifestyle, alcohol consumption, smoking, and urinary sodium 
excretion levels) were related to different BP traits and to incident 
CVD (29). Both, the genetic risk score as well as the lifestyle score were 
associated with BP traits and incident CVD. Importantly, a favorable 
lifestyle as compared to an unfavorable lifestyle was associated with 
substantially lower average BP values in all categories of genetic risk 
(low, intermediate, high) and with an about 30% lower relative risk 
for incident CVD (29). 

The same lifestyle score as in Reference (28) was used in a sample 
of young women (aged 25 to 40 years) from the Dutch Lifelines cohort 
to assess the contribution of rare and common genetic variation and 
of lifestyle factors to very low (≤1st age- and sex-specific percentile) 
and very high (≥99% age- and sex-specific percentile) levels of LDL-C. 
The study revealed that about two thirds of the women with very low 
LDL-C levels had a likely genetic cause (either a relevant mutation 
in an established gene for monogenic hypocholesterolemia or a very 
low polygenic risk score), whereas the lifestyle score (28) was not 
statistically significantly associated with low LDL-C concentrations 
(30). In cases with hypercholesterolemia, however, an unfavorable 
lifestyle seems to be more relevant. Only about 40% of the women 
had a genetic cause (relevant mutations in genes for monogenic 
familial hypercholesterolemia) or predisposition (high polygenic 
risk score) for high LDL-C; and of the women without genetic cause 
for hypercholesterolemia, more than half of women displayed an 
unfavorable lifestyle profile (30).

Community-based studies have also been involved in studying 
uncommon loss-of-function variants that may offer insights into 
function of variants. For example, (gain-of-function) mutations in the 
PCSK9 (proprotein convertase subtilisin/kexin type 9) serine protease 
gene were initially identified in families with autosomal dominant 
hypercholesterolemia (31). Subsequently, loss-of-function mutations 
were reported in individuals with low circulating low-density 
lipoprotein (LDL) cholesterol levels (32). Analyses in population-
based studies revealed that low-frequency sequence variants in the 
PCSK9 gene and a PCSK9 genetic score were associated with lower 
circulating LDL cholesterol levels and reduced risk of cardiovascular 
events in the general population (33, 34). Recently, PCSK9 inhibitors 
have been tested in randomized controlled trials (35).

the GenetiC undeRPinninG oF 
ChAnGe in CARdiovASCulAR tRAitS 
oveR the liFe CouRSe

Due to the availability of repeated measures over time, cohort studies 
are also suitable to explore the genetic underpinning of changes 
in cardiovascular risk factors over time, and of the progression of 
subclinical CVD traits longitudinally. For example, a GWAS for 
carotid IMT measured at different time points over a 10-year period 

has recently been published (36). Furthermore, several researchers 
assessed the association of risk factor-associated genetic variants 
with trajectories of the respective risk factor over the life course. 
For example, BMI-associated genetic variants have been related 
to repeated measures of BMI over time (37). Interestingly, BMI 
in childhood and adulthood were associated with different sets of 
single nucleotide polymorphisms (SNPs) (37), respectively, consistent 
with the concept that genetic effects on risk factors might be age-
dependent. In line with this concept, genetic linkage analyses for BMI 
provided evidence for age-dependent effects of select genetic loci (38).

On a parallel note, a genetic risk score consisting of 29 SNPs was 
not only associated with blood pressure and hypertension prevalence 
at baseline, but also with new-onset hypertension and change in blood 
pressure over the life course in a large Swedish cohort study (39).

GwAS FoR inCident diSeASe 
ConditionS

The longitudinal character of population-based cohort studies allows 
genetic variation to be studied in relation to disease incidence. For 
example, population-based cohort studies have facilitated GWAS 
for incident heart failure (40), incident stroke (41) and incident MI/
coronary heart disease (CHD) (3). Interestingly, GWAS for incident 
MI/CHD (3) reported partially discrepant results as compared to 
GWAS using prevalent CAD cases (7). As an example, the chromosome 
9p21 locus – consistently replicated in case-control GWAS for CAD/
MI (7, 42) – provided only modest evidence for association in a GWAS 
for incident MI/CHD within the CHARGE consortium (3). Of note, 
the CHARGE consortium (Cohorts for Heart and Aging Research 
in Genomic Epidemiology) was founded to coordinate joint GWAS 
analyses of several traits in large population-based cohort studies and 
to provide opportunities for mutual replication efforts (43).

It is well known that analyses based on prevalent disease cases 
and those based on incident cases might reveal different results if 
the association between an exposure and the disease outcome differs 
by disease severity or disease duration (a phenomenon referred to 
as prevalence-incidence bias) (44). In order to be included in a case-
control study as prevalent MI/CAD case, MI patients have to survive 
the acute event until they are sampled. Given that MI is still associated 
with substantial case fatality (45, 46), case-control studies are likely 
enriched for MI/CAD survivors with rather long survival (3). Thus, 
alleles associated with prevalent CAD in case-control analyses could 
be related to the risk of developing the CAD event, but could also be 
related to the chances of surviving the acute CAD event. In line with 
this concept, the CAD risk allele at the 9p21 locus was associated 
with longer survival after MI in several population-based cohorts 
within CHARGE (3).

imPACt oF GenetiC vARiAtion on RiSK 
PRediCtion

Furthermore, community-based prospective cohorts allow assessing 
whether genetic information improves risk prediction models beyond 
traditional risk factors. It was, indeed, one of the main motivations 
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of the human genome project to use genetic information to predict 
disease risks in healthy individuals and to predict the response 
to a given therapy among patients. Several analyses conducted in 
various population-based cohorts assessed whether genetic variation 
– e.g., in an aggregated form as risk scores – improved performance 
measures of risk prediction models for a first CVD event, including 
discrimination, calibration, and reclassification (47–50). Although 
the results from individual studies vary, in most cases, the genetic risk 
scores displayed clear statistically significant associations with CVD 
endpoints, but improvements in discrimination (e.g., C-statistics; 
integrated discrimination improvement) and reclassification (e.g., net 
reclassification index) were more modest (47, 48) and some studies 
did not provide evidence for improvement in these performance 
metrices beyond traditional risk factors (49, 50).

mendeliAn RAndomizAtion AnAlySeS 
FoR CARdiovASCulAR tRAitS

Genetic information in population-based cohort studies has also 
been used to assess causality between cardiovascular risk factors or 
circulating biomarkers and cardiovascular outcomes (incident CVD 
events) using instrumental variable analyses, a statistical approach 
referred to as Mendelian Randomization (MR) (51–53). This term, 
MR, refers to the random assortment of alleles of a given locus at 
meiosis (51, 52). Thus, if a genetic locus (or a genetic risk score) 
is strongly associated with circulating biomarker levels or with risk 
factor levels, individuals are “randomized” to genetically determined 
high or low biomarker/risk factor levels (51, 52, 54). If the biomarker/
risk factor is causally related to CVD, this difference in genetically 
determined higher or lower biomarker/risk factor levels should 
translate into corresponding quantitative differences in disease risk 
(51, 52, 54). Therefore, in addition to the association between the 
genetic variant and the risk factor/biomarker of interest, MR analyses 
also assess the associations between the risk factor/biomarker and 
incident CVD as well as between the genetic variant and incident 
CVD (52); the two latter analyses are facilitated by population-based 
cohort studies. By using genetic information as instrumental variable 
for the biomarker/risk factor of interest, MR analyses try to avoid 
two important limitations of observational studies, reverse causality 
and confounding (54, 55). Using MR analyses in population-based 

samples, several traits along the CVD continuum and biomarkers 
have been tested for potentially causal relations with incident CVD, 
including high-density lipoprotein (HDL) cholesterol (53), C-reactive 
protein (56), lipoprotein(a) (57), and many others. It has to be kept 
in mind, though, that instrumental variable analyses can be affected 
by different types of selection bias. For example, such analyses might 
be biased, if a genetic variant is related to mortality, and MR analyses 
are conducted in an elderly sample (58, 59).

ConCluSion

Population-based studies have substantially improved our 
understanding of the genetic architecture of normal and abnormal 
organ function, CVD risk factors, circulating biomarkers, subclinical 
disease, and overt CVD traits over the life course. Furthermore, 
they were essential in exploring gene x lifestyle interactions and 
in evaluating genetic variation in the context of risk prediction 
models for incident CVD. In addition, population-based cohort 
studies provided great opportunities to conduct GWAS for incident 
CVD events, such as MI, stroke and heart failure, and thereby, to 
overcome classic limitations of case-control GWAS including 
prevalence-incidence bias. Finally, population-based cohort studies 
used genetic information as instrumental variables to assess whether 
cardiovascular risk factors or biomarkers are causally related to 
clinical CVD (Mendelian Randomization analyses).
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Coronary artery disease (CAD) is the leading cause of mortality worldwide and poses

a considerable public health burden. Recent genome-wide association studies (GWAS)

have revealed >100 genetic loci associated with CAD susceptibility in humans. While

a number of these loci harbor gene targets of currently approved therapies, such as

statins and PCSK9 inhibitors, the majority of the annotated genes at these loci encode for

proteins involved in vessel wall function with no known drugs available. Importantly many

of the associated genes linked to vascular (smoothmuscle, endothelial, andmacrophage)

cell processes are now organized into distinct functional pathways, e.g., vasodilation,

growth factor responses, extracellular matrix and plaque remodeling, and inflammation.

In this mini-review, we highlight the most recently identified loci that have predicted roles

in the vessel wall and provide genetic context for pre-existing therapies as well as new

drug targets informed from GWAS. With the development of new modalities to target

these pathways, (e.g., antisense oligonucleotides, CRISPR/Cas9, and RNA interference)

as well as the computational frameworks to prioritize or reposition therapeutics, there is

great opportunity to close the gap from initial genetic discovery to clinical translation for

many patients affected by this common disease.

Keywords: genome-wide association study (GWAS), coronary artery disease (CAD), drug targets, smooth muscle

cells, vascular wall

INTRODUCTION

Coronary artery disease (CAD) is a maladaptive inflammatory disease of the coronary artery
vessel wall that remains one of the leading causes of death worldwide. It involves numerous cell
types (smooth muscle cells, endothelial cells, and macrophages) and often manifests in myocardial
infarction. Development of CAD is due to a combination of genetic and environmental factors.
Early twin studies indicated CAD heritability was ∼40-60% (1, 2). Linkage and family-based
studies identified genes with now well-established roles in disease pathogenesis, such as the LDL
receptor (LDLR) (3), apolipoprotein B (apoB) (4), and proprotein convertase subtilisin/kexin type
9 (PCSK9) (5).
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In 2007 the first genome-wide association studies (GWAS)
of CAD published the association of the 9p21 locus with both
CAD and myocardial infarction (MI) (6–8). The 9p21 locus
remains the most robust locus in the genome with respect to
CAD association. Many more CAD loci have been discovered in
subsequent GWAS over the past decade, leading to the formation
of the CARDIoGRAM (9) and C4D (10) consortia and resulting
meta-analyses (11–15). Themost recent GWASmeta-analysis for
CAD has ∼300,000 combined cases and controls and identified
almost 100 independent loci reaching genome-wide significance
(p < 5 × 10−8), and over 300 loci significant at a 5% false
discovery rate.

Despite the discovery of many new loci associated with CAD,
the current challenges are to validate the causal genes and
pathways at CAD loci and to translate this knowledge into
new therapies. In this mini-review, we highlight recent GWAS
identified non-lipid genes and pathways (with an emphasis on
vessel wall pathways) that have the potential to accelerate new
treatments for CAD (Figure 1). In addition, we provide some
genetic perspective on currently approved and future therapies,
as well as the use of genetic risk scores (GRS) to identify high
risk patients who may require these novel treatments to augment
traditional lipid-lowering therapy.

CAD GWAS GENES AND PATHWAYS

Vessel Wall Signaling
Once atherogenic lipoproteins have crossed the endothelium
and are taken up by macrophage-derived foam cells, there
is a subsequent cascade of complex signaling events in the
vessel wall. This involves a tightly orchestrated interplay of
vascular smooth muscle cells, endothelial cells, macrophages,
cytokines, and extracellular matrix proteins. Reactome pathway
gene-set enrichment analysis carried out by the CARDIoGRAM
consortium indicated that CAD genes were enriched for
pathways involved in NO/cGMP signaling, TGFβ/SMAD
signaling, PDGF signaling, extracellular matrix (ECM)
integrity/organization, and innate immunity (16). Further
integrative analyses of CARDIoGRAM summary data, tissue-
specific regulatory networks and gene expression data have
revealed interactions across CAD-relevant pathways as well as
potential druggable targets such as LUM and STAT3, which serve
as key regulators of vessel wall biology (17). Assuming that the
genes in these pathways are the most likely causal genes at the
associated loci, these results argue that vascular wall pathways
have comparable associations to the well-established lipid and
lipoprotein mediated pathways (16). In fact up to 75% of the 95
CAD loci (15) appear to be associated independently of classical
risk factors. This observation suggests that these risk factors are
intrinsic to dysregulated processes in the vessel wall.

NO/cGMP Signaling
NO/cGMP signaling is fundamental to diverse cardiovascular
physiological responses and emerging evidence suggests that
activation of this pathway is defective in the setting of
atherosclerosis and CAD. Nitric oxide (NO) is an important gas
that is synthesized by endothelial nitric oxide synthase (eNOS),

which upon activation results in paracrine signaling through the
myoendothelial junction to smooth muscle cells, subsequent
activation of soluble guanylate cyclase, cGMP production,
and cGMP-dependent protein kinase (protein kinase G; PKG)
mediated phosphorylation of downstream targets involved in
vasodilation. The 1000 Genomes based CARDIoGRAMplusC4D
(12) and recent UK Biobank-CARDIoGRAMplusC4D meta-
analysis (15) identified an association for rs3918226 at NOS3,
the gene which encodes eNOS, implicating a role in endothelial
dysfunction. An intronic variant rs7692387 in GUCY1A3,
encoding the alpha1-subunit of sGC, was associated with CAD
(11), while another variant rs13139571 was associated with
systolic (SBP) and diastolic (DBP) blood pressure (18). Recent
functional studies identified a mechanism by which the non-risk
allele at rs7692387 preferentially binds the ZEB1 transcription
factor leading to increased GUCY1A3 expression and sGC levels,
which correlated with reduced atherosclerosis severity in mice
(19). Other members of this pathway that have been linked
to CAD include recently identified PDE5A (rs7678555) (15)
and PDE3A, previously associated at 5% FDR (11), suggesting
alterations in vascular wall signaling could be rescued with
existing therapies (e.g., sildenafil, ciloztasol).

TGFβ and PDGF Signaling
The CARDIoGRAM GWAS studies have implicated several
components of the transforming growth factor beta (TGFβ)
signaling pathway in CAD. Activated TGFβ receptor I
phosphorylates receptor-regulated SMAD proteins (SMAD3
or SMAD2). These are transcriptional mediators of TGFβ
signaling that along with SMAD4 translocate to the nucleus to
regulate transcription of TGFβ target genes. The TGFβ1 and
SMAD3 genes are both associated with CAD in addition to
bone morphogenic protein 1 (BMP1), a member of the TGF
beta superfamily (20). Mechanistic studies have implicated a
functional intronic SNP in SMAD3 (rs17293632) that disrupts
binding of the AP-1 transcription factor complex underlying
this association (21, 22). The genetic association of rs36096196
at the SKI locus suggests a role for SKI, a co-repressor of
SMAD3/SMAD2 signaling in CAD (23).

The rs150512726 SNP [proxy for the recently reported SNP
rs142695226 (15)] results in a 3 amino acid deletion in the
integrin beta 5 (ITGB5) protein. ITGB5 has been shown to play
a role in activation of the latent TGFβ precursor protein outside
the cell (24). The TGFβ pathway also regulates gene expression
at the 9p21 locus. SNPs at this locus disrupt TEAD factor binding
and the TEAD3-dependent TGF beta induction of p16 in human
aortic smooth muscle cells (25).

The CARDIoGRAM studies have also identified SNPs at the
platelet-derived growth factor D (PDGFD) locus associated with
CAD at genome-wide significance. This PDGFmediated pathway
may involve many other risk-associated genes. Preliminary work
by our group has provided evidence of cross-talk with smooth
muscle cell enriched pathways using genome-wide profiling of
these cells. For example, the expression of TCF21, a transcription
factor which determines the fate of epicardial progenitor cells
during development, is increased in individuals carrying the
risk alleles, rs121902987 and rs12524865 (26). Its expression
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FIGURE 1 | Coronary artery disease loci harboring genes linked to vessel wall functions. Manhattan plot depicting genome-wide significant loci identified from the

Nelson et al. (15) meta-analysis for CAD based on a 5% false discovery rate using the pilot UK Biobank data. Loci were annotated through a combination of gene

expression, epigenomic features, eQTL, and literature based searches. Vessel wall gene symbols are shown above associations in red, with dotted orange line

representing P = 5.0 × 10−8. Pink gene symbols represent loci with either approved or evaluated treatments for CAD.

was positively regulated by PDGF-BB-PDGFRB stimulation
in human coronary artery smooth muscle cells (26). TCF21
dysregulation likely increases CAD risk by altering coronary
artery smooth muscle cell responses to vascular injury during
plaque remodeling (27, 28). Another vessel wall gene, LMOD1,
an actin filament nucleator, was shown to be downregulated in
vascular smooth muscle cells in response to PDGF treatment
and serves as a potent marker of smooth muscle cell phenotypic
modulation (29).

Extracellular Matrix Remodeling Pathways
The CARDIoGRAM consortium has highlighted numerous
extracellular matrix and basement membrane genes involved in
the pathogenesis of atherosclerosis, including COL4A1/COL4A2,
ITGB5, and FN1. A COL4A2 variant, rs4773144, was associated
with both COL4A1 and COL4A2 expression, as well as smooth
muscle cell survival, and plaque stability (30). The authors

suggest type IV collagen levels affect SMC proliferation,
migration, extracellular matrix remodeling, apoptosis, and
infiltration of immune cells through plaque remodeling. The
CAD locus MIA3 is involved in the endoplasmic reticulum
export of large cargo such as pre-chylomicrons/VLDL (31)
and collagens (including Col4a1 and Col4a2 in mice) (32).
The CAD locus SERPINH1 encodes heat-shock protein 47
(Hsp47) (33), a molecular chaperone involved in the collagen
secretion pathway. FN1 encodes fibronectin, a glycoprotein
with established roles in cell adhesion, migration, growth, and
differentiation. Though increased in atherosclerotic regions, the
role of fibronectin in development of CAD remains unclear,
with postulated roles in atherogenic lipoprotein retention,
direct adverse effects on endothelial cell function, or roles in
plaque stability (34). The TNS1 gene encodes for the tensin-1
protein that attaches the plasma membrane to the extracellular
matrix and positively regulates the small Rho GTPase, RhoA

Frontiers in Cardiovascular Medicine | www.frontiersin.org June 2018 | Volume 5 | Article 7270

https://www.frontiersin.org/journals/cardiovascular-medicine
https://www.frontiersin.org
https://www.frontiersin.org/journals/cardiovascular-medicine#articles


Turner et al. GWAS and Vessel Wall Pathways

(35). The RHOA gene itself was identified as a genome-wide
significant locus in the latest CARDIoGRAMplusC4D meta-
analysis (15) and is predicted to interact with several other
CAD genes/pathways in smooth muscle cells and endothelial
cells including TGFβ/SMAD3 and ECM proteins, such as
collagens and fibronectin (36). RhoA also cooperates with
Rac1 and cadherin to regulate barrier function in mural
and endothelial cells (37). RhoA activation coincides with
endothelial cell inflammation, permeability, and disturbed flow
as a result of reduced PPAP2B (itself associated with CAD and
ischemic stroke) (38). Lastly, the ADAMTS7 gene, encoding a
metalloproteinase, is proatherogenic based on mouse studies,
with a direction of effect consistent with the human genetic
association data (39). In the context of its association with CAD,
it has been proposed that ADAMTS7 alters smooth muscle cell
migration and extracellular matrix composition (40).

Inflammation and Immune Pathways
The role of inflammation in CAD pathogenesis is now well-
established, yet the number of inflammatory genes mapping
to CAD-associated loci is under-represented. One of the main
CAD loci involved in inflammation is the interleukin 6 receptor
(IL6R), which binds the pro-inflammatory cytokine IL-6 and its
pathways have been causally linked to CAD using Mendelian
randomization analyses (41). Another example is the CAD-
associated CXCL12 gene, which encodes an anti-inflammatory
cytokine (also known as stromal derived factor 1; SDF-1)
that binds the chemokine (C-X-C motif) receptor CXCR4, a
G-protein coupled receptor. Given that CXCL12 is induced
immediately after vessel injury and specifically expressed in
atherosclerotic lesions, this gene has potential to serve as
a biomarker for early detection (42). The CAD-associated
SH2B3 gene encoding an adapter protein known as LNK is
involved in hematopoiesis and suppression of cytokines and
thrombopoietin signaling (43). In mice, loss of Sh2b3 was shown
to promote both atherosclerosis and thrombosis only under the
setting of hypercholesterolemia, suggesting an involvement in
platelet/leukocyte activation during atherogenesis (44). It may
also serve as an inflammatory link between vascular endothelial
cells and immune cells and therapeutic target for hypertension
and end-organ inflammation (45). Finally, the ligand VEGFA
and the VEGF receptor (FLT1) loci both associate with CAD;
inflammatory conditions in the plaque promote the release
of angiogenic factors that result in neovascularization, plaque
remodeling, and plaque instability (46).

CURRENT THERAPIES FOR CAD

Current therapies for CAD primarily focus on alleviating the
symptoms of ischemic events as well as preventing thrombosis
from ruptured plaque. Here we review the current treatments
for CAD and also provide a genetically informed perspective on
these drug targets (Table 1).

Statins
Statins represent the first line of treatment for elevated LDL-
cholesterol levels associated with hyperlipidemia and CAD. By

inhibiting HMG-coA (hydroxy-3-methylglutaryl-coenzyme A)
reductase, statins decrease the production of cholesterol in the
liver, thereby reducing its concentration in the circulation. Statins
exhibit a pleiotropic effect by attenuating other risk factors
for CAD (64). Genetic studies have identified variations in the
HMGCR gene (rs12916) consistently associated with both blood
lipids and LDL-cholesterol (52, 53), while an intergenic variant
near HMGCR is also associated with CAD in the combined
CARDIoGRAMplusC4D and UK Biobank analysis (20).

Anti-Platelet Therapies
As a prophylactic measure against thrombosis, antiplatelet drugs
are utilized to reduce the risk of myocardial infarction. Two of
the more popular antiplatelet drugs are acetylsalicylic acid (ASA)
and clopidogrel. ASA is a COX inhibitor that prevents platelet
activation by inhibiting the synthesis of thromboxane A2. On the
other hand, clopidogrel is an ADP receptor (P2Y12) antagonist
that prevents platelet aggregation and further amplification of
the activation signal through the downregulation of glycoprotein
IIb/IIIa receptor on its surface (65). While the gene targets
of these drugs (PTSG2 and P2Y12) do not harbor variants
specifically associated with CAD, some of the effector signaling
molecules in the pathway (RHOA, ITGB5, and SH2B3) indeed
have CAD associations, as described above. This may represent
an opportunity to understand some of the heterogeneity in
responses to these commonly used agents by using a pathway
approach.

ACE Inhibitors and Beta Blockers
Two classes of drugs, angiotensin converting enzymes (ACE)
inhibitors and beta blockers both function in the maintenance
of normal blood pressure. In the endothelium, ACE catalyzes the
conversion of angiotensin I to angiotensin II where the latter is
a potent vasoconstrictor. Additionally, ACE upregulation results
in the degradation of bradykinin, a vasodilatory factor involved
in the upregulation of nitric oxide and prostaglandins (66).
Given the numerous CAD associations within the NO/cGMP
pathway, the efficacy or toxicity profile of these drugs may
be influenced by individual genetic variation. Beta blockers
exert their cardioprotective effects by intervening in the
adrenergic nervous system as competitive antagonists in both
the myocardium and vasculature, depending on their selectivity
for beta1 or beta2-adrenergic receptors. Clinically, reduced
catecholamine stimulation results in decreased cardiac stress
leading to decreased heart rate and blood pressure (67, 68).
The third generation of beta blockers were shown to have
more potent blood pressure lowering effects. Although it may
be reasonable to speculate that NO mediated signaling is
involved, it was recently demonstrated that nebivolol (compared
to metoprolol) suppresses ET-1 mediated vasoconstriction to
lower BP (69). This is important given that variation at the ET-
1 gene EDN1 (rs1629862) and the ET-1 receptor type A gene
EDNRA (rs6841581) were recently identified as CAD loci (20).

Anti-Inflammatory Therapies
Therapies targeting inflammatory pathways have been
extensively explored in cardiovascular disease. Two recent
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TABLE 1 | List of current target genes for management of coronary artery disease and their genetic associations.

Target (gene name) Genetic association

with CAD/lipid

trait/BP

Associated trait (lead SNP) Drug(s) Role Phase Administration

HMG-Coenzyme A reductase

(HMGCR)

Yes LDL-C (rs7703051) (47, 48)

Total cholesterol (rs10038095)

(49)

Plasma LDL-C response to

simvastatin (rs17244841) (50)

Lipid traits (rs10045497) (51)

Statins (various) Pharmacological

inhibitors

Available with

prescription

Oral

Cholesterol absorption in small

intestine

(gene unclear)

NA NA Ezetimibe (Zetia,

Ezetrol)

Pharmacological

inhibitor

Available with

prescription

Oral

ATP citrate lyase

(ACLY )

NA NA Bempedoic acid

(Esperion)

Pharmacological

inhibitor

Clinical trials

(phase 3)

Oral

ApoB-100

(APOB)

Yes LDL-C (rs1367117) (52–54)

Total cholesterol (rs1367117)

(52–54)

Lipid metabolism phenotypes

(rs1367117) (55)

Triglycerides (rs1042034) (53)

HDL-C (rs1042034) (53)

Oxidized LDL (rs676210) (56)

Lipid metabolism phenotypes

(rs676210) (55)

LDL-C (rs693) (47, 57–59)

Total cholesterol (rs693) (57)

Triglycerides (rs693) (48)

Mipomersen

(Kynamro)

Antisense

oligonucleotide

(targets mRNA)

Available with

prescription

Injection

PCSK9

(PCSK9)

Yes CAD (rs11591147) (15, 20)

LDL-C (rs11591147) (48, 49)

Repatha

(evalocumab)

Monoclonal

antibody

Available with

prescription

Injection

Praluent

(alirocumab)

Monoclonal

antibody

Available with

prescription

Injection

Bococizumab Monoclonal

antibody

Clinical trials Injection

Inclisiran Long acting small

interfering RNA

(siRNA)

Clinical trials

(phase 3)

Injection

Lipoprotein A

(Lp(a)) (LPA)

Yes CAD (rs10455872) (15)

CAD (rs186696265) (20)

LDL-C in response to statins

(rs10455872) (60)

AKCEA-Apo(a)-

LRx

Antisense

oligonucleotide

Clinical trials

(phase 2b)

Injection

ApoCIII

(APOC3)

Yes Triglyceride levels (rs76353203)

(80)

HDL-C (rs76353203) (80)

AKCEA-ApoCIII-

LRx

Antisense

oligonucleotide

Clinical trials

(phase 2b)

Injection

ANGPTL3

(ANGPTL3)

Yes Triglyceride levels (rs2131925)

(52, 53)

LDL-C (rs2131925) (52, 53)

Total cholesterol (rs2131925)

(52, 53)

AKCEA-

ANGPTL3-LRx

Antisense

oligonucleotide

Clinical trials

(phase 2)

Injection

Interleukin 1 beta (IL1B) NA NA Canakinumab Monoclonal

antibody

Clinical trials

(phase 3)

Injection

Cyclooxygenase-2 (COX-2)

(PTGS2)

NA NA Acetylsalicylic acid

(ASA, Aspirin)

Pharmacological

inhibitor (general

anti-inflammatory

effects)

Commercially

available

Oral

P2Y12 subunit of ADP receptor

(P2RY12)

NA NA Clopidogrel (Plavix) Pharmacological

inhibitor

Available with

prescription

Oral

(Continued)
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TABLE 1 | Continued

Target (gene name) Genetic association

with CAD/lipid

trait/BP

Associated trait (lead SNP) Drug(s) Role Phase Administration

Angiotensin converting enzyme

(ACE)

(ACE)

Yes Diastolic blood pressure (rs4308)

(61, 62)

ACE inhibitors Pharmacological

inhibitors

Available with

prescription

Oral

Beta adrenergic receptor(s)

(ADRB1, ADRB2, ADRB3)

NA NA Beta blockers Pharmacological

inhibitors

Available with

prescription

Oral

Rho kinase

(ROCK1, ROCK2)

NA CAD, sudden cardiac arrest

(rs6716724) (63)

Fasudil Pharmacological

inhibitor

Approved in China

and Japan

Oral

studies investigating the role of clonal expansion of
hematopoietic cells as a potential driver for age-related
onset of atherosclerosis have provided evidence that IL1β
secretion from TET2 deficient macrophages plays a role in
the acceleration of disease (70, 71). TET2 is an epigenetic
modifier that negatively regulates the expression of IL1β.
Thus, loss of function of TET2 results in the upregulation of
IL1β and IL-6 secretion from lesional macrophages (70). This
elevated level of proinflammatory cytokines was positively
correlated with increased plaque size in the aorta as well as
severity of coronary artery calcification in mice and human
patients, respectively(70, 71). Studies such as these underscore
the potential of targeting the IL1β pathway in slowing down
atherosclerosis progression.

The CANTOS (NCT01327846) clinical trial provided critical
evidence that targeting IL1β alone with the monoclonal antibody
canakinumab can reduce major cardiovascular events along
with proinflammatory cytokines (IL-6) and high sensitivity
C reactive protein in patients with atherosclerosis. Although
the intermediate dose (150mg) met the primary endpoint of
reducing nonfatal myocardial infarction, nonfatal stroke, or
cardiovascular death, a significant risk of fatal infection relative
to placebo was observed (72). In addition to the high pricing
and safety concerns, the marginal clinical benefits demand more
development in this area. Given that IL-6 is a causal risk factor
for CAD (73), anti-inflammatory therapies remain an attractive
therapeutic approach for patients that do not respond to standard
lipid lowering medication.

NEW CAD THERAPIES INFORMED FROM
GENETIC STUDIES

PCSK9 Inhibitors and Antisense
Oligonucleotides
One example of newly approved drug targets that have
origins in genetic studies is the development of monoclonal
antibodies against PCSK9. PCSK9 is a liver protease that
targets LDL receptors for lysosomal degradation. The therapeutic
potential of targeting PCSK9 was validated through Mendelian
randomization studies that correlated a deleterious mutation
in this gene with decreased risk (74). Large clinical trials
[e.g., FOURIER (NCT01764633), ODYSSEY (NCT01623115)]

demonstrated that inhibition of this enzyme reduced systemic
LDL levels to a greater extent than maximum statin therapy,
with the most recent ODYSSEY trial (NCT01663402) reporting
a reduction in both cardiovascular events and all-cause mortality
for the first time. In addition to monoclonal antibodies, antisense
oligonucleotides have also been developed against PCSK9, which
should be evaluated for clinical outcomes in the near future.

Lipoprotein A and APOC3 Antisense
Oligonucleotides
A high level of circulating lipoprotein A [Lp(a)] is considered a
risk factor for cardiovascular disease. Two SNPs, rs3798220 and
rs10455872, located within the lipoprotein A (LPA) gene correlate
with increased levels of Lp(a) and are associated with increased
risk for CAD. As one of the first therapies targeting lipoprotein
A, AKCEA-APO(a)-LRx is an antisense oligonucleotide that
binds LPA mRNA leading to its degradation. Phase 2 clinical
trial data has suggested that this approach is well tolerated
and significantly reduced Lp(a) plasma concentrations (65, 66).
Similarly, an antisense therapy was developed targeting APOC3,
a gene involved in regulating plasma triglyceride levels. The
antisense oligonucleotide therapy, volanesorsen was shown to
reduce cellular levels of APOC3 and led to an overall reduction
of triglyceride levels in phase 3 clinical trials (70, 71).

RhoA-ROCK Inhibition
The RhoA-Rock signaling pathway offers another avenue for
CAD therapeutic targets. Aberrant activation of this signaling
cascade has been implicated in vasoconstriction and endothelial
dysfunction. Given the recent CAD association (rs7623687) at
RHOA, further investigation is warranted to determine how to
specifically target this gene. One opportunity is to target the
downstream effectors, Rho-associated protein kinases (ROCK1,
ROCK2), which control actin cytoskeleton arrangement, cell
migration and contractility (75). In particular, a Rock2 inhibitor,
Fasudil, has already been tested in clinical trials as a possible
therapeutic for CAD as a vasodilatory agent through the
upregulation of nitric oxide. It is also noteworthy to mention
that Fasudil has been approved as a treatment option for cerebral
vasospasm in Japan and China (75).
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PERSPECTIVES AND FUTURE
DIRECTIONS

Genetic Risk Scores
Besides the 9p21 locus, most loci uncovered from GWAS of
CAD have small effects with odds ratios between 1.05 and 1.30.
Nonetheless, GWAS results can be utilized to generate genetic
risk scores for individuals based on the number of risk alleles
they harbor. Therefore, in addition to traditional drug treatments
such as statins, individuals that fall within the high CAD risk
range based on their genetic risk score can be selected for more
aggressive therapies and/or novel CAD treatments as mentioned
above. With more data from sources such as the UK Biobank, the
Million Veterans Project, and the NIH-funded All of Us project
on the horizon, genetic risk scores will have more clinically-
relevant predictive utility (76).

Feasible vs. Difficult Drug Targets
Since GWAS has highlighted the role of vessel wall genes
and signaling pathways in the pathogenesis of CAD, it will be
critical to apply this knowledge toward vessel wall therapeutic
development. Strategies include non-specific targeting of
the vessel wall (through upstream or downstream effector
molecules), specifically targeting plaque vasculature, or specific
cellular phenotypes (e.g., activated resident macrophages or
phenotypically modulated smooth muscle cells).

Target New Cell Types (e.g., Endothelial
Cells, Smooth Muscle Cells, Macrophages)
A CAD protective variant upstream of ADAMTS7 confers
greater protection against CAD for never-smokers compared
to those that have smoked 100 or more cigarettes in their
lifetime (77). This example highlights the importance of taking
into account environmental factors in managing treatments.
Other potential targets include the receptors for endothelin-1 on
smooth muscle cells. Many of these potential vessel wall target
proteins affect smooth muscle cell proliferation and migration,
originally believed to drive atherogenesis. The current view
suggests smooth muscle cell proliferation and migration could
be reparative and promote plaque stability (78). Once the roles
and timing of smooth muscle cell proliferation and migration
are clarified, the TGF beta and PDGF pathways may be attractive
targets due to their role in the regulation of smooth muscle cell
genes.

Machine Learning/Systems Approaches
While GWAS has uncovered invaluable insights into potential
therapies and validated existing ones, these associations require
extensive follow-up to pinpoint causal variants, genes, pathways.
More advanced algorithms such as machine learning can be
leveraged to prioritize targets with diverse data inputs such
as electronic health records, clinical notes, and -omics. These
approaches can help to systematically decrease noise, reduce
features, and identify gene sets of interest in addition to
common GWAS methods of odds ratios, p-value statistics,
and chi-square comparisons. Unsupervised learning algorithms
have the capability to provide researchers and clinicians with
an unbiased network of candidate genes that account for
the greatest variance in CAD related phenotypes. A specific
example is the use of machine learning for drug repurposing
based on finding patterns from multi-dimensional datasets.
Specific tools have been developed to provide an out-of-the-
box approach for understanding diverse text, biological, and
medical record data for non-data scientists. One such tool,
RepurposeDB, combines drug and disease information to create
a reference database for drug repositioning research (79). With
the rapidly growing costs of drug discovery/development, such
data-informed approaches can offer significant progress for the
field.

CONCLUDING REMARKS

In summary, in this brief review we bring attention to the
genetic loci discovered over the past decade which play critical
roles in the vessel wall. Many of these genes are organized into
distinct functional pathways, which will help redefine some of the
pathogenic mechanisms and prioritize those pathways for future
drug development or repurposing strategies.
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Coronary artery disease (CAD) and myocardial infarction (MI) remain among the leading

causes of mortality worldwide, urgently demanding a better understanding of disease

etiology, and more efficient therapeutic strategies. Genetic predisposition as well as

the environment and lifestyle are thought to contribute to disease risk. It is likely that

non-linear and complex interactions occur between these multiple factors, involving

simultaneous pathological changes in diverse cell types, tissues, and organs, at multiple

molecular levels. Recent technological advances have exponentially expanded the

breadth of available -omics data, from genome, epigenome, transcriptome, proteome,

metabolome to even the microbiome. Integration of multiple layers of information across

several -omics domains, i.e., the so-called multi-omics approach, currently holds the

promise as a path toward precision medicine. Indeed, a more meaningful interpretation

of genotype-phenotype relationships and the development of successful therapeutics

tailored to individual patients are urgently needed. In this review, we will summarize recent

findings and applications of integrative multi-omics in elucidating the etiology of CAD/MI;

with a special focus on established disease susceptibility loci sequentially identified in

genome-wide association studies (GWAS) over the last 10 years. Moreover, in addition

to the autosomal genome, we will also consider the genetic variation in our “second

genome”—the mitochondrial genome. Finally, we will summarize the current challenges

in the field and point to future research directions required in order to successfully and

effectively apply these approaches for precision medicine.

Keywords: cardiovascular disease, multi-omics, genomics, transcriptomics, metabolomics, gut microbiome

INTRODUCTION

In the current era of high-potency statin therapy it becomes increasingly clear that even
individuals with normal LDL-cholesterol levels without any conventional risk factors may develop
atherosclerosis (1). The most pertinent manifestation of atherosclerosis is coronary artery disease
(CAD), a highly complex disease, influenced by both multiple genetic risk variants and lifetime
exposure to an atherogenic environment (2). A better understanding of the etiology of CAD
and directions toward hitherto therapeutically not addressed disease mechanisms are urgently
demanded (3). During the last 10 years, the genetic risk has been thoroughly explored in numerous
genome-wide association studies (GWAS), leading to identification of >300 chromosomal loci
which all significantly affect the risk of CAD (4–15). More than 90% of these common disease
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risk variants are located outside the protein-coding regions
and have modest effect sizes (2, 16). Collectively they explain
only ∼25% of the overall disease heritability. This suggests that
genetic variation may contribute to disease risk in a non-linear,
interactive and complex way (17), leading to pathological changes
in diverse cell types, tissues, and organs, at multiple molecular
levels (18).

Recent technological advances have exponentially expanded
the breadth of available -omics data (17). High-throughput
monitoring of the abundance of various biological molecules and
determination of their variation between different conditions on
a global scale has become possible, promoting a paradigm shift
in the way we approach biomedical problems (19). At the same
time, it has been increasingly recognized that no single type of
data can fully capture the intricacy of most complex molecular
traits that manifest collectively as disease phenotypes (20–22).
Rather, it is the integration of multiple layers of information
across several -omics domains, i.e., the so-called multi-omics
approach [also referred to as integromics or panomics (19)], that
holds the promise for precision medicine (Figure 1) (19).

Of note, integrative analysis across multiple-omics layers can
be conducted in two ways (Figure 2): pair-wise data integration
and multi-dimensional i.e., network-based integration (22).
Furthermore, pair-wise integrations can be divided into genetic
and non-genetic correlations (22). In the first case, DNA variants
(i.e., allelic distributions of single-nucleotide polymorphisms;
SNPs) are tested for association with down-stream omics
markers such as transcriptomic alterations, protein, metabolite
or methylation levels or quantitative and qualitative measures
of microbiome, via the so called quantitative trait loci
(QTL) mapping. In the second scenario, one would explore
correlations between down-stream omics data, e.g., correlation
of CpG methylation levels to transcript expression or between
metabolome and gut microbiome, however it may be difficult
to infer causal relationships in such case (22). Considering
the largely unexplored role of the established CAD risk loci
from GWAS (23) and the central dogma that genetic variations
control the transcriptome, which in turn affects e.g., the proteome
(20), and metabolome (Figure 2, middle panel), our main
focus will be pair-wise integrations linking genetic variation
related to CAD risk to other down-stream omics layers such as
epigenome, transcriptome, proteome or metabolome. Although
multi-dimensional integrations have been widely used in the field
of cancer research, their application in the context of CAD has
so far been limited (22). Moreover, in addition to the autosomal
genome, we will also consider the genetic variation in our “second
genome”—the mitochondrial genome and its contribution to
CAD.

INTEGRATING GENETIC VARIATION AND
EPIGENOME

Epigenomic signatures reflect various DNA modifications and
may affect gene regulatory mechanisms that do not involve
changes in the DNA sequence per se. Thereby, epigenomics
may become a critical mediator of environmental influences

and risk factors acting on the genome (20, 24). Three
unique, but highly interrelated, epigenetic processes can be
distinguished: DNA methylation, histone modifications (e.g.,
methylation, acetylation, phosphorylation, DP-ribosylation, and
ubiquitination) and RNA-based mechanisms (e.g., microRNAs,
long non-coding RNAs or lncRNAs, small interfering RNAs)
(20, 24). Although, technically non-coding RNAs belong to the
epigenome (20), we will discuss them in the next section, as the
respective omics data are acquired via transcriptome profiling
(RNA-seq).

DNA methylation and histone modifications are the best
understood of the epigenetic mechanisms thus far and have been
widely suggested to regulate gene expression and affect CAD risk
factors including atherosclerosis, inflammation, hypertension
and diabetes (25). DNA methylation consists of the covalent
methylation of the C5 position of cytosine residues, when they
are followed by guanine residues (CpG dinucleotides). It is partly
heritable but it is also a dynamic process related to environmental
stimuli and life style factors (26). Hedman et al. (27) analyzed
epigenetic changes associated with lipid concentrations and
identified a number of meQTLs, enriched in signals from
GWAS on lipid levels and CAD. For example, genome-wide
significant variants (rs563290 and its proxies), associated with
LDL cholesterol and CAD at APOB, were meQTLs for a LDL
cholesterol-related differentially methylated locus (Table 1 and
Figure 3).

Furthermore, the CDH13 (T-cadherin) locus may present an
interesting example in the context of epigenetics and CAD. Putku
et al. (39) reported several genetic variants in the promoter of
CDH13 as meQTLs in hypertension patients (Table 1), several
of them being also associated with high molecular weight
adiponectin, a known ligand for CDH13, the binding of which
results in increased proliferation and migration of endothelial
cells (39). Moreover, recently Nelson et al. (13) identified a
genetic variant in the intron of CDH13, which affects expression
of this gene in vascular tissues, and is genome-wide significantly
associated with CAD (28) (Table 1). Interestingly, the expression
levels of CDH13 and lncRNAs from the same locus showed
positive correlations, suggesting a functional link, as lncRNAs
are known to display correlations with the expression of their
neighboring protein-coding target genes (48).

An exciting field of future research will be studies conducting
parallel profiling of genetic variation with histone modifications
and Hi-C and ChIA-PET-based chromatin contact maps to
uncover local and distal histone quantitative trait loci (hQTLs)
(49) in CAD patients.

Overall, considering the critical role of epigenetic
modifications as a critical mediator of environmental influences
on the genome (20, 24), we urgently need more investigations
studying DNA methylation and other epigenetic modifications
genome-wide and in large enough cohorts, ideally also
elucidating the differences between tissues and cells in healthy
vs. CAD patients. Moreover, this should be supplemented with
careful documentation of multiple environmental and lifestyle
factors over time, i.e., the envirome, as well as comprehensive
clinical information to draw a link between the environment and
CAD.
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FIGURE 1 | Multi-omics approach for precision medicine. Multi-omics (i.e., genome, epigenome, transcriptome, proteome, metabolome, microbiome, and envirome)

data are collected from patients and integrated to create their individual molecular signatures (i.e., complex biomarkers), which are then used to select an appropriate

drug for a particular patient, thus improving the treatment efficiency and reducing the possible side effects.

FIGURE 2 | Multi-omics (i.e., autosomal and mitochondrial genome, epigenome, transcriptome, proteome, metabolome, microbiome, and envirome) data integration

can be conducted in two ways: pair-wise integrations, which can be further divided into non-genetic (left panel) and genetic correlations (middle panel). In the first

case, one would examine the correlation patterns between the down-stream omics layers (e.g., metabolome and gut microbiome), whereas the second is achieved

via the so called quantitative trait loci (QTL) mapping, linking genetic variation to methylation levels (meQTLs) or histone modifications (hQTLs), transcriptome

(expression QTLs; eQTLs), protein (pQTLs), metabolite (mQTLs) or measures of microbiome (mbQTLs). Alternatively, multi-dimensional i.e., network-based integration

approaches (right panel) exist, however their application in the context of CAD has so far been limited (22).

INTEGRATING GENETIC VARIATION AND
TRANSCRIPTOME

Transcriptomics reflect genome-wide measures of RNA levels,
both protein-coding RNA as well as the non-coding RNAs
(i.e., microRNAs, lncRNAs, and small interfering RNAs) under
specific conditions or in a specific cell. Moreover, the transcript
levels are examined both qualitatively (i.e., which transcripts
are present, identification of novel transcripts, splice sites, and
RNA editing sites) and quantitatively (quantification of transcript
abundance) (21).

Protein-Coding RNAs
Parallel assessments of genetic variation and transcriptome
profiles across disease-relevant tissues, i.e., via mapping
expression quantitative trait loci (eQTLs) to identify

susceptibility genes (mainly protein-coding), has been the
most commonly applied approach (28, 29, 50–52). Björkegren
et al. have performed a number of integrative network
analysis, linking CAD risk variants and transcriptome data
in seven disease-relevant vascular and metabolic tissues,
collected from up to 600 CAD patients during coronary artery
bypass surgery (28, 29, 53, 54). From these investigations,
visceral abdominal fat has emerged as an important gene-
regulatory site for blood lipids. Several risk SNPs for
HDL-, LDL-, and total cholesterol levels, as well as for CAD
demonstrated significant eQTL effects in visceral abdominal fat
(28, 29).

Huan et al. (30) also used integrative analysis to investigate
the molecular mechanisms of blood pressure regulation and
identified a blood pressure associated SNP (rs3184504) in
SH2B3, also associated with the expression (eQTL) of several
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TABLE 1 | Genetic variation related to CAD/MI risk that has been associated with other down-stream omics layers such as transcriptome (mRNA, microRNAs and

lncRNAs), epigenome, proteome or metabolome.

Data type Tissue Phenotypic Trait SNP Omics-Marker Refernces

Transcriptome:

mRNAs

Visceral abdominal fat HDL cholesterol level rs4148008 ABCAB/ABCA5 Franzén et al. (28)

rs11869286 STARD3

Total cholesterol level rs751557 EVI5

rs174546 TMEM258

LDL cholesterol level rs12046679 PCSK9

CAD rs892006 G3BP1 Foroughi Asl et al. (29)

rs6908994 PSORSIC3

rs9930148 FLYWCH1

Internal mammary artery,

atherosclerotic aortic root

rs7500448 CDH13 Nelson et al. (13)

Blood Blood pressure Rs3184504 SH2B3,ALDH2,NAA25

(cis) and IL8,TAGAP (trans)

Huan et al. (30)

Transcriptome:

microRNAs

Circulating leukocytes,

human coronary artery

smooth muscle cells

(HCASMC)

CAD rs12190287 miR-224: TCF21 Miller et al. (31) Bastami

et al. (32)

The effect of diet on plasma

lipid levels

rs13702 miR-410:LPL Richardson et al. (33)

CAD rs989727(rs7808424) miR-202-5p:ASZ1 Bastami et al. (34)

rs41269915(rs2229238) miR-485-5p:UBE2Q1

rs15563 hsa-miR-130a-5p:UBE2Z Brænne et al. (16)

rs3088442 hsa-miR-130a-

5p:SLC22A3

rs2266788 hsa-miR-4722-5p:APOA5

rs72932707 hsa-miR-4722-5p:ICA1L

HDL,LDL, and total

cholesterol,triglycerides

rs2370747(rs7115089 miR-100-5p,miR-125b-5p
Huan et al. (35)

CAD rs11042699 (rs6578985) miR-483-3p-IGF2

Platelet count rs4905998 rs(7149242) miR-127-3P, miR-134,

miR-370, miR-376a-3p,

miR-382-5p, miR-431-5p,

miR-433, miR-329,

miR-409-3p, miR-494,

miR-411-3p, miR-654-5p,

miR-668, miR-543,

miR-323a-3p,

miR-337-3p

3p/5p ratio rs13064131 miR-28:LPP Civelek et al. (36)

Transcriptome:lnc

RNAs

Internal mammary artery,

atherosclerotic aortic root

CAD rs1333045 FPKM1_group_33469_

transcript_1

Ballantyne et al. (37)

MI rs1333049 FPKM1_group_33469_

transcript_2

T2D rs2383208 FPKM1_group_33469_

transcript_6

Early MI rs10757274 ANRIL McPherson et al. (38)

Epigenome:DNA

methylation

Hypertension rs113460564, rs12443878,

rs12444338, rs62040565,

rs8060301

CDH13 Putku et al. (39)

Diastolic blood

pressure,serum high-density

lipoprotein,high molecular

weight adiponectin

rs8060301 Cg09415485(CDH13)

(Continued)
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TABLE 1 | Continued

Data type Tissue Phenotypic Trait SNP Omics-Marker Refernces

High molecular weight

adiponectin

rs2239857, rs77068073 CDH13

Smoking(no assosciation) rs75509302 cg23576855(AHRR)

LDL cholesterol level rs563290 (rs515135,

rs562338)

Cg05337441(APOB) Hedman et al. (27)

Proteome Blood plasma CAD rs12740374 Granulin(CELSR2/SORT1) Chen et al. (40)

rs867186 Protein C (PROCR) Howson et al. (14)

rs1050362 apolipoprotein L1 (DHX38)

Metabolome Blood plasma CAD rs715 CPS1,urea cycle

metabolites,plasma

glycine

Hartiala et al. (41)

Blood plasma rs10450989(USP3),

rs2228513(HER-

C1)rs930491,rs11827377

(STIM1), rs3853422(SEL1L),

rs1869075(F-BXO25),

rs9591507,

rs17573278,

rs894840,

rs9285184(SUGT1)

Circulating short-chain di-

carboxylacylcarnitine(SC-

DA)

Kraus et al. (42)

Multi-OMICS Low HDL and inflammatory

pathways

rs241437 TAP2 Laurila et al. (43)

rs9272143 HLA-DRB1,HLA-DQA1

Mitochondrial

Genome

Blood Hypertension m.8701A>G MT-ATP6 Zhu et al. (44)

CAD Haplogroup T Kofler et al. (45)

m.16189T>C Mueller et al. (46)

m.15927G>A Jia et al. (47)

genes, including SH2B3, in the genetically inferred causal blood
pressure gene sets (Table 1 and Figure 4). Some of these genes
were also perturbed in Sh2b3−/− mice, demonstrating blood
pressure-related phenotype (30). Rs3184504 has been previously
also associated with CAD risk (9).

Much less investigated are non-coding RNA transcripts,
such as micro-RNAs (miRNAs) and long non-coding RNAs
(lncRNAs). Recent evidence suggests that at least some of these
may play a role in CAD (55–58). Although, technically non-
coding RNAs belong to the epigenome (20), we will discuss them
in this section, as the respective omics data are acquired via
transcriptome profiling (RNA-seq).

Micro RNAs
MiRNAs are involved in the transcriptional control of all
main cell types participating in atherosclerosis progression,
including endothelial cells, vascular smooth muscle cells, and
macrophages (32, 59). Several studies have investigated the
differential expression patterns of miRNAs in plasma/serum,
microparticles, whole blood, platelets, blood mononuclear
intimal, and endothelial progenitor cells in CAD vs. non-CAD
patients, as summarized by Malik et al. (60). In majority of
cases, up-regulation of different miRNA in CAD patients was
observed (60). Moreover, growing body of evidence suggests that
genetic variations in the miRNA targetome may lead to major

deleterious outcomes (61, 62). For example, Miller et al. (31)
have shown that an established CAD risk variant (rs12190287)
resides in the 3′ untranslated region of a transcription factor
TCF21 and alters the seed binding sequence for miR-224.
Moreover, allelic imbalance studies in circulating leukocytes and
human coronary artery smooth muscle cells have demonstrated
a significant imbalance of the TCF21 transcript levels, which
correlated with genotype at rs12190287, consistent with this
variant contributing to allele-specific expression differences (31).
Richardson et al. (33) have reported that a variant (rs13702)
in the 3’-UTR of lipoprotein lipase (LPL) disrupts the binding
of miR-410 and modulates the effect of diet on plasma lipid
levels (33). Recently, Bastami et al. (34) performed a more
systematic computational screening, by mapping the established
CAD risk variants to the miRNA targetome, identifying several
links between SNPs and miRNAs (Table 1; https://www.ebi.ac.
uk/gwas/). In a recent study from our group (16), we also
mapped CAD risk variants from the CARDIoGRAMplusC4D
GWAS meta-analyses (9), to 3′ UTR regions of genes to
assess their overlaps with predicted target miRNA binding sites.
Interestingly, the 3′ UTR region of MRAS was predicted to
be targeted by 29 miRNAs and 23 miRNAs were predicted to
bind more than one candidate CAD gene (Table 1). Thus far,
there have been relatively few studies investigating genome-
wide miRNA eQTLs (miR-eQTLs). Huan et al. (35) identified a
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FIGURE 3 | Hedman et al. (27) identified SNP (rs515135) in an intron of APOB

to be associated with LDL-C. Its proxy was also associated with CAD.

Interestingly, this SNP represents a cis-meQTL. Black arrows indicate

association findings. Red arrows indicate the presumed functional cascade

leading to CAD.

FIGURE 4 | Huan et al. (30) uncovered a blood pressure associated SNP

(rs3184504) in SH2B3, which also associates with the expression (eQTL) of

several genes, including SH2B3 itself, in the genetically inferred causal blood

pressure gene sets. Rs3184504 has been previously also associated with

CAD risk. (9) Black arrows indicate association findings. Red arrows indicate

the presumed functional cascade leading to CAD.

genetic variant (rs2370747) associated withmiR-100-5p andmiR-
125b-5p expression, a proxy SNP of which was also associated
with lipid traits (HDL-, LDL-, and total cholesterol as well
as triglycerides). Moreover, it was found that both miRNAs
were also differentially expressed in relation to HDL cholesterol
(35).

FIGURE 5 | Civelek et al. (36) demonstrated a significant association of the

SNP rs13064131 with the 3p/5p ratio of miR-28, encoded from the LPP gene.

The miRNA processing and strand selection was adapted from (65).

Civelek et al. (36) examined the genetic regulation of human
adipose miRNA expression and its consequences for metabolic
traits. Interestingly, this study showed, how genetic variation
might influence the processing of miRNAs, i.e., the ratio of
miRNA expression from the 3p and 5p arms. It is known that a
miRNA precursor can give rise to two mature miRNAs from the
3p and 5p arm, one of which usually having higher expression
than the other. The 3p/5p ratios of several miRNAs have been
shown to be significantly different among various healthy tissues
(63) and altered in pathological conditions compared with
healthy controls (64). Civelek et al. demonstrated a significant
association of the SNP rs13064131 with the 3p/5p ratio of
miR-28, encoded from the LPP gene (Figure 5) (36). However,
the SNP was not associated with the expression levels of the
LPP transcript itself or with the abundance of miR-28-3p or
miR-28-5p, suggesting that its effect on the 3p/5p ratio may
be independent of transcription, possibly via degradation or
stabilization mechanisms.

Long Non-Coding RNAs
The recent discovery of an extensive catalog of lncRNAs—
i.e., long RNA transcripts that do not code for proteins—has
opened a new perspective on the importance of the RNA-based
mechanisms in gene regulation (24). LncRNAs are emerging as
important regulators of various cellular processes, with many
possible implications in cardiovascular disease pathophysiology
(57, 58). In fact, the most prominent CAD risk locus at
Chr9p21 (66, 67) harbors the lncRNA—ANRIL (Antisense Non-
coding RNA in the INK4 Locus, CDKN2B antisense RNA).
From these, rs10757274 is the strongest genetic predictor of
early MI and is not associated with established CAD risk
factors such as lipoproteins or hypertension, making ANRIL
a key candidate (38). Interestingly, ANRIL is found both as
a linear lncRNA (linANRIL), the transcript levels of which
are known to positively correlate with disease severity (68),
and is also capable of forming RNA circles (circANRIL)
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FIGURE 6 | Recently, Holdt et al. (69) demonstrated that circANRIL regulates

the maturation of precursor ribosomal RNA (pre-rRNA), by this impairing

ribosome biogenesis and inducing nucleolar stress and apoptosis in vascular

smooth muscle cells and macrophages. Moreover, carriers of the

CAD-protective haplotype at 9p21 showed significantly increased expression

of circANRIL.

(69). Recently, Holdt et al. (69) demonstrated that circANRIL
regulates the maturation of precursor ribosomal RNA (pre-
rRNA), by this impairing ribosome biogenesis and inducing
nucleolar stress and apoptosis in vascular smooth muscle cells
and macrophages (Figure 6). Carriers of the CAD-protective
haplotype at 9p21 showed significantly increased expression of
circANRIL (69).

Currently, there have not been many large-scale studies on
lncRNAs in the context of CAD, though. Ballantyne et al.
(37) recently conducted a genome-wide interrogation of long
intergenic non-coding RNAs (lincRNAs) that associate with
cardiometabolic traits in GWAS, including CAD and also
identified a number of CAD/MI and type 2 diabetes associated
SNPs at Chr9p21 that overlapped lincRNA transcripts (Table 1)
(37). In STARNET (28), 5.4% of the identified cis-expression
quantitative trait loci (eQTLs) were related to the expression
of lncRNAs, however these have not been further explored, so
far. Overall, more studies focusing on non-coding RNAs in
different CAD relevant tissues in large enough cohorts will be
required to yield insights into the possible functional roles of
this portion of transcriptome and its genetic determinants, in
healthy and disease states. Moreover, considering that lncRNAs
are generally found to be more lowly-expressed, sufficient depth

of coverage for RNA-seq experiments will need to be guaranteed
(21).

INTEGRATING GENETIC VARIATION AND
PROTEOME

Proteomics uses high-throughput approaches (mainlyMS-based)
to quantify protein abundance, post-translational modifications
and interactions (e.g., using phage display and yeast two-hybrid
assays) in a tissue, cell or fluid compartment, such as plasma
or urine (21). Considering that the transcriptome is not linearly
proportional to proteome, that proteins are the biomolecules
that execute cellular functions, and that many human diseases
ultimately result from alterations in the proteome (70), such
studies are urgently needed to facilitate the explorations of CAD
etiology. However, proteome studies are still rare in relation to
CAD, mostly due to the complex methodology involved. There
have been some investigations in the past few years, aiming at
characterizing the proteomes of several CAD-related tissues and
cell types, including human arterial smooth muscle cells (71),
platelets (72), as well as body fluids such as urine (73).

Only few studies (14, 40) have analyzed genetic variants that
modify protein levels, i.e., the so-called protein quantitative
trait loci (pQTLs) (Table 1). Chen et al. (40) assayed a pre-
selected set of plasma proteins, identifying several pQTLs
that overlapped with CAD risk SNPs and also explained a
substantial proportion of inter-individual variation in protein
abundance. For example, rs12740374 at the CELSR2/SORT1
locus, a variant associated with lipids and CAD, explained
15% of inter-individual variation in plasma granulin levels
(Figure 7). Interestingly, progranulin binds to SORT1 and Sort1
knockout mice show markedly elevated levels of progranulin
(40). Recently, it was also demonstrated that progranulin is
involved in lysosomal homeostasis and lipid metabolism (74).

As the proteomics technologies improve over time (21),
more genome-wide investigations of CAD-related alterations in
proteome and also phosphorpoteome in increasing numbers
of disease relevant tissues are expected to be conducted in
the near future. However, as proteins are more sensitive to
their environment (21), caution will have to be taken during
sample preparation steps to obtain accurate and reproducible
results.

INTEGRATING GENETIC VARIATION AND
METABOLOME

An important additional functional layer in mutli-omics data
integration is the metabolome, as it represents an integrated
state of all genetic, epigenetic and environmental factors,
thus providing a link between genotype and phenotype (75).
Metabolomics is an omics field that systematically identifies and
quantifies multiple small molecule (typically <1,500 Daltons)
types, such as amino acids, fatty acids, carbohydrates and
biochemical intermediates, i.e., metabolites (21). A plethora of
metabolites in blood and urine have been associated with CAD
and subsequent cardiovascular events (76–79) and have been
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FIGURE 7 | rs12740374 at the CELSR2/SORT1 locus, (40) a variant

associated with lipids and CAD, was recently found to display pQTL effects on

plasma granulin levels, and pro-granulin is known to bind to SORT1. More

recently, it was also demonstrated that progranulin is involved in lysosomal

homeostasis and lipid metabolism (74).

demonstrated as promising biomarkers discriminating CAD
vs. non-CAD subjects (78), as well as between thrombotic
MI and stable CAD cases (80). Kraus et al. (42) recently
identified several genetic loci demonstrating associations with
blood plasma metabolites (i.e., metabolomic quantitative trait
loci; mQTLs), the strongest findings being for the circulating
short-chain dicarboxylacylcarnitine (SCDA) metabolite levels
with variants in genes that regulate components of endoplasmic
reticulum (ER) stress (Table 1 and Figure 8) (42).

Besides blood and urine, metabolomic profiles of vascular
and metabolomic tissues such as subcutaneous fat will need
to be generated, ideally in conjunction with other omics layer
data. Especially, gut microbiome would be of utmost interest,
considering the close link between the two (81).

However, of note, metabolic profiles are even more prone to
variability affected by sample preparation and storage conditions,
as well as by several other factors including patient heterogeneity
(21). Hence, the required sample size has to be carefully
considered, to inspire confidence in the generated results.

INTEGRATING GENETIC VARIATION AND
MICROBIOME

Microbiomics investigates all the microorganisms of a given
community, including bacteria, viruses, and fungi, collectively
known as the microbiota (and their genes constituting the
microbiome) (21). The human microbiome is enormously
complex and there are substantial variations in microbiota
composition between individuals resulting from seed during
birth and development, diet and other environmental factors,

FIGURE 8 | Kraus et al. (42) performed a pathway-level integrative analyses

and observed associations of circulating short-chain dicarboxylacylcarnitine

(SCDA) with variants in ER stress genes, whereof several genetic variants in

FBXO25 and SUGT1 genes also demonstrated evidence of cis-regulation in

expression quantitative trait loci (eQTL) analyses and independently predicted

CAD events.

drugs and age (21). Thousands of different bacterial species
make up the human microbiomes, from which there is a
small number of abundant species and a large number of rare
or low abundance species, the differential functions of which
remain poorly understood (82). Currently, several large scale
initiatives are emerging including the American Gut Project
http://americangut.org/ and the British Gut Project http://
britishgut.org/, which are expected to produce a rich collection
of anonymised human gut samples and lifestyle information for
medical researchers.

Gut microbiome has emerged as another rich source of
information and as a possible new player contributing to
the CAD/MI pathogenesis (82–84). It has long been known
that bacteria activate inflammatory pathways, and recent data
demonstrate that the gut microbiome may also affect lipid
metabolism and influences the development of obesity and
atherosclerosis (84), suggesting that gut microbiota could be used
as a diagnostic marker for CAD (85). The most investigated
is the association between gut microbiota and fasting plasma
trimethylamine N-oxide (TMAO) levels, a gut microbiota-
dependent metabolite, previously also associated with CAD
and stroke (81, 86). Org et al. (81) demonstrated that certain
blood plasma metabolites strongly correlated with gut microbial
community structure and that some of these correlations may
be specific for the pre-diabetic state. LeChatelier et al. (84)
used qunatitative gut microbiome information to distinguish
between individuals with “high bacterial richness” and “low
bacterial richness,” were the latter were characterized by increased
adiposity, insulin resistance and dyslipidemia in addition to a
more pronounced inflammatory phenotype. Le Chatelier Fu et al.
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(84) and Fu et al. (87) reported that gut microbiota richness
and diversity were negatively correlated with triglycerides and
positively correlated with HDL levels, however this effect was
independent of age, sex and host genetics. So far, genome-
wide mapping of the so-called microbiome quantitative trait
loci (mbQTLs) (88) in the context of CAD has not been
performed and is definitely next in line, ideally in conjunction
with comprehensive profiling of metabolome in several tissues
and body fluids in large enough cohorts.

INTEGRATING GENETIC VARIATION AND
MULTIPLE OMICS DATASETS

An integrative analysis of genetic variation and transcriptome
with additional high-throughput measurements may greatly
improve the predictive power of disease networks. Zhu et al.
(89) However, the number of studies conducting multi-omics
integrations in the context of CAD is limited so far. Miller et al.
(90) integrated genetic variation with investigations of chromatin
state, enhancer activity and TF binding in human coronary
artery smooth muscle cells and demonstrated, for example, that
one of the lead candidate variants, rs17293632, located within
an intergenic region of the SMAD3 gene, overlaps an open
chromatin region. Moreover, it was observed that the major risk
C allele was more associated with open chromatin and resided in
a canonical AP-1 motif, which was effectively destroyed by the
minor protective T allele. Preferential AP-1 binding to the risk
C allele was experimentally validated using allele-specific ChIP
analyses. Miller et al. (90) and Kraus et al. (42) performed a
pathway-level integrative analyses, linking genetics, epigenetics,
transcriptomics, and metabolomics profiles and implicating
the ubiquitin proteasome system in cardiovascular disease
pathogenesis. This study observed associations of circulating
short-chain dicarboxylacylcarnitine (SCDA) with variants in
ER stress genes, whereof several genetic variants (Table 1 and
Figure 8) in FBXO25 and SUGT1 genes also demonstrated
evidence of cis-regulation in expression quantitative trait loci
(eQTL) analyses and independently predicted CAD events
(42). Moreover, two other genes from the same ER stress
pathway—BRSK2 and HOOK2—were identified as differentially
methylated, when comparing individuals with high and low
SCDA levels. Subsequently, experimental validation using culture
of human kidney cells in the presence of levels of fatty acids
found in individuals with cardiometabolic disease, demonstrated
induced accumulation of SCDA metabolites in parallel with
increases in the ER stress marker BiP (42).

Shu et al. (20) investigated shared genetic regulatory
networks for CAD and type 2 diabetes (T2D) and their key
intervening drivers in multiple populations of diverse ethnicities
by performing an integrative analysis of five multi-ethnic
GWAS for CAD and T2D, eQTLs, ENCODE, as well as tissue-
specific gene network models (both co-expression and graphical
models) from disease-relevant tissues. This study identified
pathways regulating the metabolism of lipids, glucose and
branched-chain amino acids, as well as pathways governing
oxidation, extracellular matrix and immune response as shared

pathogenic processes for both diseases and identified 15 key
drivers including HMGCR, CAV1, IGF1, and PCOLCE, whose
network neighbors collectively accounted for ∼35% of known
GWAS hits for CAD and 22% for T2D (20). Laurila et al.
(43) applied a combined approach using both QTLs and
canonical pathway analysis to link genomics and transcriptome
analysis from the subcutaneous adipose tissue and plasma HDL
lipidomics profiling, highlighting change in HDL particle quality
toward putatively more inflammatory and less atheroprotective
phenotype in subjects with low HDL, due to their reduced
antioxidative capacity. Within the HLA region, this study found
two significant, dose-dependent cis-eQTL associations with low
HDL and inflammatory pathways: rs241437 in the intron of
TAP2 and rs9272143 between HLA-DRB1 and HLA-DQA1, the
latter also being associated with down-regulation of antioxidative
pathways in HDL particles (43).

The application of multi-omics integrations in the field of
CAD has so far been limited (22). Obviously, one of the main
reasons for this is the current lack of appropriate data in
large enough cohorts. However, considering the great promise
such studies hold for precision medicine, it is expected that
parallel measurements on multiple omics layers will be rapidly
collected during the next couple of years, allowing also a
comprehensive comparison, validation and improvement of the
existing computational integration methods.

MITOCHONDRIAL GENETIC VARIATION
AND DOWNSTREAM OMICS DATASETS

Dysfunction of mitochondria has been increasingly associated
with obesity-related cardiometabolic diseases and CAD (91).
Thus, genetic variation in the mitochondrial DNA (mtDNA),
which codes for the 37 OXPHOS genes as well as further >1000
nuclear-coded genes imported into mitochondria constituting
essential components for their proper functioning, needs
exploration for a better understanding of CAD genetics.
The mitochondrial haplogroup T (45) and mtDNA variants
m.16189T>C (46) and m.15927G>A (47) have been associated
with CAD in different ethnic groups. Another mitochondrial
variant, m.8701A>G, has been associated with hypertension (44).
This variant is located in MT-ATP6 (ATP synthase/complex V
F0 subunit 6) gene, which is part of the ATP synthase enzyme,
responsible for the final step of oxidative phosphorylation, and,
on the functional level, using transmitochondrial hybrid cells
(cybrids), it has been shown that it alters mitochondrial matrix
pH and intracellular calcium dynamics (Figure 9) (92).

Similarly, other mitochondria-related omics data
investigations could be of interest in the context of CAD, as
Baccarelli et al. (93) reported that ATP synthesis genes including
protein-encoding cytochrome c oxidase genes (MT-CO1, MT-
CO2, and MT-CO3) and MT-TL1 were hypermethylated in
platelets of CAD cases as compared to healthy controls (93).
Using eQTLs in seven CAD relevant vascular and metabolic
tissues (53) in conjunction with established CAD risk loci from
GWAS (9) and time-resolved transcriptome data in the aortic
arch in mice with reversible hypercholesterolemia (94, 95) we
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FIGURE 9 | Mitochondrial variant m.8701A>G is located in MT-ATP6 (ATP

synthase/complex V F0 subunit 6) gene, which is part of the ATP synthase

enzyme, responsible for the final step of oxidative phosphorylation and has

been associated with hypertension. (44) On the functional level, using

transmitochondrial hybrid cells (cybrids), it has been shown that it alters

mitochondrial matrix pH and intracellular calcium dynamics (92).

recently demonstrated a massive down-regulation of nuclear-
encoded mitochondrial genes (96), specifically at the time of
rapid atherosclerotic lesion expansion and foam cell formation,
which was largely reversible by genetically lowering plasma
cholesterol. Both mitochondrial signature genes were supported
as causal for CAD in humans, as eQTLs representing their genes
significantly overlapped with disease risk SNPs. In line with
this, the STARNET (28) study recently examined mitochondrial
(i.e., mtDNA-derived) gene expression and a markedly lower
expression of mitochondrial genes in the atherosclerotic aortic
arterial wall as compared to non-atherosclerotic arterial wall.

Furthermore, genetic variation of mitochondrial metabolome
has remained largely unexplored. Hartiala et al. (41) searched
for genetic factors associated with plasma betaine levels
and determined their effect on CAD risk. This resulted
in the identification of two significantly associated loci on
chromosomes 2q34 and 5q14.1. The lead variant on 2q24—
rs715—localized to carbamoyl-phosphate synthase 1 (CPS1),
which encodes a mitochondrial enzyme that catalyzes the first
committed reaction and rate-limiting step in the urea cycle.
Rs715 was also significantly associated with decreased levels
of urea cycle metabolites and increased plasma glycine levels.
Finally, rs715 yielded a strikingly significant and protective
association with decreased risk of CAD in women (41).

Finally, in recent years, it has become increasingly evident
that the gut microbiome produces metabolites that influence

mitochondrial function and biogenesis (97), hence the ancestral
gut microbiome-mitochondrion connection and its relation to
CAD might need to be explored in the near future, as well.

Resent progress in next-generation sequencing (NGS)
techniques has set a scene for a second “gold rush” in
mitochondrial genomics and mtDNAs are presently the
most sequenced type of eukaryotic chromosome (98). At the
same time, multi-omics investigations in mitochondria, mapping
the genomes, transcriptomes, proteomes, and metabolomes
in parallel, apart from yeast (99) have not been conducted
yet. Hence, although, mitochondrial dysfunction has been
associated with many human diseases, the respective proteins
and pathways are not well-characterized (99), presenting an
exciting future field of investigation, especially considering the
fact that mitochondria play a key role in plasticity and adaptation
to environmental change, including adaptation to physiological
stress (100).

CONCLUSIONS AND FUTURE
DIRECTIONS

Given that CAD like other common complex disorders develops
over time and involves both genetics and environment, full
mechanistic insight will require coordinated sets of several-
omics data at multiple time points, collected from many disease
relevant tissues and body fluids in large enough cohorts (20, 21).
Environmental risk factors can interact with the genome and
perturb the epigenome to further modulate the transcriptome
and proteome (20). Therefore, comprehensive monitoring and
careful documentation of multiple environmental and lifestyle
factors over time, i.e., the envirome, will be indispensable to yield
significant insights into the complex etiology of CAD. Moreover,
imaging and electronic health record data also will need to be
considered. As more-omics and other data are generated, novel
methods for efficient data integration, modeling, visualization
and interpretation will be urgently needed to efficiently cope
with this multi-dimensional data (101), and translate it into
actionable precision medicine tools. Although, there has been
major progresses in the development of multidimensional data
integration algorithms and tools, the field is still in its infancy and
the flexibility, effectiveness and robustness of data integration
to extract biological insights is still restricted, especially when
clinical outcomes (e.g., stable CAD vs. MI) need to be modeled
(22, 101). In addition we still face a number of technical
challenges related to patient sampling and profiling. For example,
as already recognized by Hasin et al. and others (20, 21)
human studies are often affected by various confounding factors,
which are difficult or even impossible to control for (e.g.,
diet and medications). Clearly, also the available sample size
will play an important role for the multi-omics approach to
produce meaningful insights into CAD (21) and allow the
generation of reliable prediction models for more efficient design
of therapeutics, tailored to individual needs. According to Hasin
et al. an underpowered study may not only miss true signals,
but is also more likely to produce false positive results (21).
Furthermore, already before and during data collection, careful
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attention has to be paid to data analysis requirements, e.g.,
sufficient depth of coverage for RNA-seq experiments (21).
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Background: Fabry disease (FD) is characterized by early development of vasculopathy

and endothelial dysfunction. However, it is unclear whether these findings also play a

pivotal role in cardiac manifestation. As Fabry cardiomyopathy (FC) is the leading cause

of death in FD, we aimed to gather a better insight in pathological mechanisms of the

disease.

Methods: Serum samples were obtained from 17 healthy controls, 15 FD patients

with and 7 without FC. FC was defined by LV wall thickening of >12mm in

cardiac magnetic resonance imaging and serum level of proBNP, high sensitive

Troponin T (hsT), and globotriaosylsphingosine (lyso-GB3) were obtained. A multiplex

ELISA-Assay for 23 different angiogenesis markers was performed in pooled samples.

Markers showing significant differences among groups were further analyzed in single

samples using specific Elisa antibody assays. L-homoarginine (hArg), L-arginine,

asymmetric (ADMA), and symmetric Dimethylarginine (SDMA) were quantified by liquid

chromatography—mass spectrometry.

Results: Angiostatin and matrix metalloproteinase 9 (MMP-9) were elevated in FD

patients compared to controls independently of the presence of FC (angiostatin: 98 ±

25 vs. 75 ± 15 ng/mL; p = 0.001; MMP-9: 8.0 ± 3.4 vs. 5.0 ± 2.4µg/mL; p = 0.002).

SDMA concentrations were highest in patients with FC (0.90 ± 0.64 µmol/l) compared

to patients without (0.57 ± 0.10 µmol/l; p = 0.027) and vs. controls (0.58 ± 0.12

µmol/l; p = 0.006) and was positively correlated with indexed LV-mass (r = 0.61;

p = 0.003), hsT (r = 0.56, p = 0.008), and lyso-Gb3 (r = 0.53, p = 0.013). Accordingly,

the ratio of L-homoarginine to SDMA (hArg/SDMA) was lowest in patients with FC

(2.63 ± 1.78) compared to controls (4.16 ± 1.44; p = 0.005). For L-arginine, hArg

and ADMA no significant differences among groups could be detected, although a

trend toward higher ADMA and lower hArg levels could be observed in the FC group.

Furthermore, a significant relationship between kidney and cardiac function could be

revealed (p = 0.045).
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Conclusion: Elevated MMP-9 and angiostatin levels suggest an increased

extracellular matrix turnover in FD patients. Furthermore, endothelial dysfunction

may also be involved in FC, as SDMA and hArg/SDMA are altered in these

patients.

Keywords: matrix metalloproteinase 9, angiostatins, SDMA, homoarginine, Fabry disease, Fabry cardiomyopathy,

vasculopathy, endothelial dysfunction

INTRODUCTION

Fabry disease (FD) is an X-linked recessive multi-systemic
storage disorder caused by a decreased activity of the lysosomal
enzyme alpha-Galactosidase A (GLA) (1, 2). Due to the
deposition of globotriaosylceramide (Gb3) in vascular lysosomes
neutral glycosphingolipids accumulate in plasma and various
tissues throughout the body (3). Typical manifestations of FD
are cardiac, neurological, renal, ocular, dermatological, and
gastrointestinal (4–6) with cardiovascular disease as the leading
cause of death in FD patients (7). Prognosis of cardiomyopathy is
particularly poor (8), thus, appropriate diagnosis and treatment
of Fabry associated cardiomyopathy (FC) is crucial. Enzyme
Replacement Therapy (ERT) has proven to significantly reduce
accumulation of Gb3, especially intracellular deposits in the
coronary endothelium (9, 10) and to halt or even partially reverse
FC. However, in advanced stages of FD with a severe cardiac
phenotype the effectiveness of ERT is profoundly diminished
and the disease can even progress (11–13). Therefore, a better
understanding of the underlying mechanisms contributing to the
development of FC is urgently needed to improve treatment and
outcome of FD patients.

Clinical studies provide evidence of increased intima-media
thickness (IMT) and impaired artery flow-mediated dilatation
in FD (14, 15) indicating an early onset of atherosclerosis
in these patients. Moreover, different studies suggest that
myocardial fibrosis, detected by cardiac magnetic resonance
imaging (cMRI), may contribute to left ventricular remodeling
in FD (16, 17). Myocardial fibrosis and subsequent remodeling
are caused by an altered extracellular matrix turnover, which
is catalyzed by Matrix Metalloproteinases (MMP) including
MMP-9 (18). This is in line with the detection of increased
serum MMP-9 level in Fabry patients compared to controls
(19). Matsunaga et al showed that the inhibition of NO
synthase resulted in increased MMP-9 and MMP-2 activities
suggesting a link between oxidative stress and extracellular
matrix turnover. Several clinical and experimental studies
demonstrated inflammatory activity and endothelial nitric oxide
synthase (eNOS) alterations in vascular cells of FD patients (20–
23). These findings support the hypothesis of early occurring
vasculopathy and endothelial dysfunction in FD. Whether these
findings play a pivotal role in cardiac manifestation has not yet
been sufficiently investigated. Accordingly, the aim of this study
was to gather an insight in underlying pathological mechanisms
by determining serum markers of endothelial dysfunction,
angiogenesis and cardiac function in FD patients with and
without FC.

METHODS

Study Population
Serum samples from 15 FD patients with FC, 7 without FC, and
17 healthy controls were collected between September 2014 and
December 2016. FD was confirmed by molecular genetic analysis
revealing the following mutations: 4x p.N215S, 2x p.E341K,
2x c.1277_1278delAA, 2x c.718_719delAA, p.N320l, p.A143T,
p.A230_I232del, p.Q327L, p.A389V, c.717delAA, p.I384N,
p.P205T, p.S247P, p.Q327L, p.R227Q. FC was defined by LV wall
thickening of >12mm assessed in cMRI. Furthermore, 11 FD
patients with FC and one patient without FC received ERT at the
time of blood sampling. The study was in line with the principles
outlined in the Declaration of Helsinki and approved by the local
ethics committee. All participants gave their written informed
consent for participation in the study.

Enzyme-Linked Immunosorbent Assays
Blood samples were centrifuged at 4000 × G for 10min
at room temperature and obtained serum was aliquoted
and stored at −80◦C until use. For the multiplex Enzyme-
Linked Immunosorbent Assay (ELISA) a Human Angiogenesis
Antibody Array Membrane (Abcam PLC, Cambridge, UK,
ab169808) was used. Aliquots of serum samples were pooled into
three groups: FD with FC (n = 15), FD without FC (n = 7), and
controls (n = 17). The assay allowed a simultaneous and semi-
quantitative analysis of 23 targets (Angiopoietin 1, Angiopoietin
2, Angiostatin, Endostatin, G-CSF, GM-CSF, I-309, IL-10, IL-
1 alpha, IL-1 beta, IL-2, IL-4, I-TAC, MCP-3, MCP-4, MMP-
1, MMP-9, PECAM-1, Tie-2, TNF alpha, suPAR, VEGFR2,
VEGFR3) and was performed in duplicates. Visualization of
membrane signals was performed by ChemiDocTM MP Imaging
System and the densitometry software Image LabTM.

Markers showing significant differences among groups in the
multiplex Elisa-Assay were further analyzed in single samples.
Specific ELISAs from Abcam were used for MMP-9, angiostatin,
soluble urokinase-type plasminogen activator receptor (suPAR),
and vascular endothelial growth factor (VEGF) quantification
according to the manufacturers’ instructions.

Liquid Chromatography—Tandem Mass
Spectrometry (LC-MS/MS) Measurements
L-Arginine, L-homoarginine (hArg), asymmetric (ADMA),
and symmetric Dimethylarginine (SDMA) were quantified as
described previously (24, 25). In brief, 25 µL of EDTA
plasma were diluted with 100 µL 2H7-arginine, 13C15

7 N4-
hArg, and 2H7-ADMA solved in methanol. Proteins were
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precipitated and residues were derivatised to their butylester
derivatives. Twenty microliter of reconstituted samples were
injected into the 1200 L Triple Quadrupole MS/MS system
(Agilent Technologies, Waldbronn, Germany) chromatography.
Analytes were separated on a Polaris C18-Ether column (Agilent
Technologies; 50 × 2.0mm) using an elution gradient of the
two mobile phases (A): 1 mL/L formic acid in water and (B)
acetonitrile-methanol (50/50, vol/vol) containing 1 mL/L formic
acid in water (0:00min 95/5 (A/B) – 0:30 95/5 – 2:00 50/50 – 2:01
95/5 – 4:00 95/5). The flow rate was 0.3 mL/min. Peak area ratios
were calculated with internal standards and external calibration
curves prepared in dialysed EDTA plasma. Intra- and interassay
coefficients of variation were below 15 % for all analyses.

Cardiac MRI
Cardiac MRI was performed with a 1.5 Tesla MRI scanner
(Achieva, Philips Medical Systems, Philips, Best, The
Netherlands). The examination contained a retrospectively gated
cine-MRI in cardiac short and long axis orientations using a
steady-state free precession (SSFP) sequence to quantify regional
and global left ventricular (LV) function and the LV-myocardial
mass. Ten minutes after bolus injection of 0.075 mmol/kg Gd-
BOPTA (MultiHance R©), end-diastolic late gadolinium enhanced
(LGE) images were acquired by phase-sensitive inversion
recovery (PSIR) sequences to quantify areas of myocardial
fibrosis. LGE images were obtained in the LV short-axis as
well as in two-, three-, and four-chamber views and quantified
using cvi42 R© software (Circle Cardiovascular Imaging Inc.,
Calgary, Alberta, Canada). All quantified parameters included
LV function, end-diastolic and end-systolic volumes, stroke
volume, ejection fraction, left ventricular mass, regional wall
thickness, and LGE. Left ventricular mass was indexed to the
body surface area calculated by DuBois & DuBois formula.

Statistical Analysis
Obtained data were analyzed using SPSS, version 23. Not
normally distributed variables were log transformed if
necessary. Assessment of group differences was performed
by analysis of variance (ANOVA) or analysis of covariance
(ANCOVA) when additionally adjusted for age, sex and
eGFR. Post-hoc group comparisons were analyzed if the global
differences were significant. Correlations were investigated by
Pearson’s correlation tests. Logistic regression was performed to
investigate the relationship between renal and cardiac function.
Concentrations are presented as mean ± standard deviation and
a p-value of <0.05 was set as statistically significant.

RESULTS

Baseline Characteristics
CardiacMRImeasurements revealed significantly higher indexed
left-ventricular masses of FD patients with FC compared to
controls and FD patients without FC as shown in Table 1.
Furthermore, similar results could be shown for septal thickness
and mean LGE size, which were significantly thicker/higher in
FD patients with FC. No differences among groups could be
detected for left ventricular ejection fraction and stroke volume.

Laboratory values revealed significantly higher levels of proBNP,
hsT, and lyso-Gb3 in the cardiomyopathy group. Moreover,
patients with FC showed elevated renal function parameters.

Quantification of Angiogenesis Markers by
Enzyme-Linked Immunosorbent Assays
The multiplex ELISA indicated differences among the pooled
groups for angiostatin, MMP-9 and suPAR. In Figure 1 the
MMP-9 and angiostatin levels from the ensuing ELISA assays are
demonstrated. MMP-9 concentrations were 1.51 times higher in
FD patients with FC and 2.07 times higher in FD patients without
FC compared to controls. The mean MMP-9 level of all FD
patients was 1.67 times higher compared to controls (Table 2).
Accordingly, angiostatin ELISA provided 1.33 times higher
angiostatin levels in FD patients with FC and 1.23 times higher
concentrations in FD patients without FC compared to controls.
The mean angiostatin level of all FD patients was 1.3 times
higher compared to controls (Table 2). However, no significant
differences between the two FD groups could be detected for
angiostatin and MMP-9. Moreover, neither suPAR nor VEGF
concentrations revealed a significant difference between FD
patients and healthy controls.

Quantification of Endothelial Dysfunction
Markers by LC-MS/MS Measurements
LC-MS/MS measurements revealed 1.4 times higher SDMA
concentrations in FD patients with vs. FD patients without
FC and equally 1.4 times higher concentrations compared to
controls, whereas no statistically significant difference could be
shown between FD patients without FC and controls (Table 2,
Figure 2). Accordingly, the ratio of L-homoarginine to SDMA
(hArg/SDMA) was 0.53 times lower in FD patients with FC
compared to controls. For L-arginine, hArg, ADMA and the ratio
of hArg/ADMAno significant differences among groups could be
detected, although a trend toward higher ADMA concentrations,
lower hArg levels and accordingly a lower ratio of hArg/ADMA
could be observed in the FD group with existing FC (Table 2).

Correlations of Biomarkers to
Anthropometric and Clinical Phenotypes
No statistically relevant age or sex dependencies for MMP-
9, angiostatin, SDMA, or hArg/SDMA could be observed. As
shown in Figure 3A, SDMA was positively correlated with
LV-mass, lyso-Gb3, and hsT and negatively correlated with
eGFR. Accordingly, as shown in Figure 3B, hArg/SDMA showed
a negative correlation to LV-mass, lyso-Gb3, and a positive
correlation with eGFR. Moreover, correlations of indexed LV-
mass with ADMA, hArg/ADMA, suPAR, lyso-Gb3, cardiac, and
renal parameters could be revealed (Table 3). For MMP-9 and
angiostatin no significant correlations to any of these variables
could be observed (data not shown).

Relationship of SDMA and HArg/SDMA to
Renal Function
Analysis of covariance with adjustment for eGFR diminished the
significant group differences. Therefore, SDMA and hArg/SDMA
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TABLE 1 | Baseline characteristics, cMRI measurements, and laboratory values.

Control (1) Fabry no FC (2) Fabry FC (3) p

(ANOVA)

p

(1 vs. 2)

p

(2 vs. 3)

p

(1 vs. 3)

n 17 7 15

Age (years) 30.4 ± 6.3 36.3 ± 10.1 47.5 ± 13.0

Male, n (%) 15 (88) 1 (14) 10 (67)

ERT, n (%) 0 (0) 1 (14) 11 (73)

MSSI – 5.6 ± 3.2 25.7 ± 7.5

cMRI-MEASUREMENTS

LVEF (%) 61.1 ± 3.7 70.0 ± 8.8 68.0 ± 14.0 0.224 – – –

SV (ml/m2 ) 114.2 ± 20.1 91.4 ± 13.0 100.8 ± 20.0 0.063 – – –

LVM indexed to BSA (g/m2) 73.1 ± 8.2 73.3 ± 29.9 107.1 ± 34.7 0.011 0.988 0.015 0.009

Septal thickness (mm) 8.9 ± 1.7 8.6 ± 1.1 15.5 ± 3.7 <0.001 0.817 <0.001 <0.001

LGE positive, n 0 1 10

LGE size LV mean (5th SD) (%) 0.0 0.014 ± 0.038 4.014 ± 3.970 <0.001 0.990 0.001 <0.001

LABORATORY VALUES

proBNP (pg/ml) 37.7 ± 35.2 67.6 ± 44.3 492.9 ± 634.0 <0.001 0.248 0.012 <0.001

hsT (pg/ml) 6.9 ± 8.8 3.7 ± 0.8 28.8 ± 25.2 0.001 0.672 0.003 0.001

eGFR (ml/min/1.73 m2) 104.2 ± 15.8 95.7 ± 19.6 71.9 ± 21.5 <0.001 0.321 0.009 <0.001

Creatinine (mg/dl) 0.94 ± 0.14 0.81 ± 0.14 1.46 ± 1.50 0.042 0.347 0.020 0.062

ACR (mg/g) – 30.2 ± 24.2 1534.6 ± 4314.0 – – 0.008 –

Lyso-Gb3 (ng/ml) – 3.7 ± 3.9 36.0 ± 32.9 – – 0.003 –

Data are presented as mean ± standard deviation. Significant p-values are marked in bold. Results of the analysis of variance (ANOVA) are shown. If ANOVA was significant post-hoc

group comparisons were performed. ACR, albumin-to-creatinine ratio; cMRI, cardiac magnetic resonance imaging; eGFR, estimated glomerular filtration rate using the Chronic Kidney

Disease Epidemiology Collaboration (CKD-EPI) formula; ERT, enzyme replacement therapy; Fabry no FC, Fabry patients without Fabry cardiomyopathy; hsT, high sensitive cardiac

Troponin T; LGE, late gadolinium enhancement; LGE size LV mean (5th SD), 5th standard deviation of left ventricular mean late gadolinium enhancement size; LVEF, left ventricular

ejection fraction; LVM indexed to BSA, left ventricular end-diastolic mass indexed to body surface area; lyso-Gb3, Globotriaosylsphingosine; MSSI, Mainz severity score index; proBNP,

prohormone of brain natriuretic peptide; SV, stroke volume.

FIGURE 1 | Box-plots of MMP9 (A) and angiostatin (B) concentration in 17 healthy controls, 7 FD patients without and 15 FD patients with FC. Box plots represent

median, 25th and 75th percentiles. Whiskers indicate minimum and maximum without outliers and extremes. On the Y-axis concentrations of the biomarkers are

presented (log scale). Brackets indicate p-values from the analysis of variance (ANOVA) with post-hoc group comparisons. MMP9, matrix metalloproteinase 9; n.s.,

not significant.

are probably dependent on kidney function. Furthermore, an
ensuing logistic regression of the eGFR and the two FD groups
with and without FC was performed to evaluate the relationship
between renal (eGFR) and cardiac function (existence of a
FC) in FD patients. This test showed a significant relationship
(p = 0.045). This finding is supported by the correlation of renal
parameters with the LV-mass (Table 3).

DISCUSSION

The aim of this study was to investigate the role of vasculopathy
and endothelial dysfunction in FD with special respect to
Fabry associated cardiomyopathy. In blood samples of FD
patients generally higher levels of MMP-9 and angiostatin could
be detected independently of an existing FC, supporting the
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TABLE 2 | Markers of endothelial dysfunction.

Control (1) Fabry no FC (2) Fabry FC (3) p

(ANOVA)

p

(1 vs. 2)

p

(2 vs. 3)

p

(1 vs. 3)

VEGF (pg/ml) 59.1 ± 51.7 70.1 ± 100.7 89.8 ± 58.6 0.127 – – –

suPAR (ng/ml) 1.6 ± 0.5 1.7 ± 0.7 3.2 ± 4.4 0.138 – – –

MMP-9 (µg/ml) 5.0 ± 2.4 9.6 ± 3.6 7.3 ± 3.1 0.004 0.002 0.163 0.021

- MMP-9 FD total 5.0 ± 2.4 8.0 ± 3.4* 0.002**

Angiostatin (ng/ml) 75.0 ± 15.2 92.9 ± 19.2 101.0 ± 27.3 0.002 0.038 0.468 0.001

- Angiostatin FD total 75.0 ± 15.2 98 ± 25* 0.001**

Arginine (µmol/l) 111.4 ± 30.1 114.4 ± 29.6 113.3 ± 31.0 0.944 – – –

L-homoarginine (µmol/l) 2.36 ± 0.82 2.24 ± 1.43 1.79 ± 0.79 0.133 – – –

ADMA (µmol/l) 0.63 ± 0.13 0.64 ± 0.09 0.77 ± 0.27 0.179 – – –

SDMA (µmol/l) 0.58 ± 0.12 0.57 ± 0.10 0.90 ± 0.64 0.012 0.959 0.027 0.006

hArg/ADMA 3.86 ± 1.54 3.48 ± 2.22 2.83 ± 2.14 0.061 – – –

hArg/SDMA 4.16 ± 1.44 4.17 ± 3.19 2.63 ± 1.78 0.017 0.629 0.078 0.005

Data are presented as mean ± standard deviation. Significant p-values are marked in bold. Results of the analysis of variance (ANOVA) are shown. If ANOVA was significant post-hoc

group comparisons were performed. ADMA, asymmetric dimethylarginine; FD total, both Fabry disease groups combined; hArg, L-homoarginine; MMP-9, matrix metalloproteinase 9;

SDMA, symmetric dimethylarginine; suPAR, soluble urokinase-type plasminogen activator receptor; VEGF, vascular endothelial growth factor. *Mean ± standard deviation of both FD

groups combined (2 + 3) **p-value of t-test: 2 + 3 vs. 1.

FIGURE 2 | Box-plots of SDMA concentrations (A) and the ratio of L-homoarginine and SDMA (B) in 17 healthy controls, 7 Fabry patients without and 15 Fabry

patients with FC. Box plots represent median, 25th and 75th percentiles. Whiskers indicate minimum and maximum without outliers and extremes. On the Y-axis

concentrations of the biomarkers are presented (log scale). Brackets indicate p-value from the analysis of variance (ANOVA) with post-hoc group comparisons. n.s. ,

not significant; SDMA, symmetric dimethylarginine.

hypothesis of an altered extracellular matrix (ECM) turnover in
FD.

In patients with FC higher concentrations of SDMA and
a decreased ratio of hArg/SDMA could be revealed compared
to healthy controls as well as to FD patients without overt
cardiomyopathy. These parameters correlate with the ventricular
mass as well as with cardiac and renal markers suggesting a
potential causal relationship of kidney function and cardiac
disease progress.

MMP-9, Angiostatin, and SuPAR
MMP-9 is part of a family of endogenous zinc-dependent
endopeptidases. In the myocardium MMPs play an important
role for structural integrity of the ECM (18). In patients with
familial hypertrophic cardiomyopathy (HCM) an association
of MMP-9 with gadolinium enhancement in cardiac MRI was

recently described and an important role of the MMP system
in cardiac remodeling and fibrosis was proposed (26). In this
context, Shah et al. identified significantly higher levels of
MMP-9 in 29 FD patients compared to 21 healthy controls
and hypothesized that MMP-9 plays an important role in the
pathogenesis of FC and might be a valuable surrogate marker for
the response to ERT (19). The findings from our study confirm
the higher levels ofMMP-9 in FD patients. However, a correlation
of MMP-9 levels and Fabry associated cardiomyopathy cannot be
confirmed.

MMP-9 cleaves matrix-bound plasminogen into angiostatin
(27) which is a potent inhibitor of angiogenesis and has
been shown to attenuate endothelial cell proliferation and
migration (28). In FD the role of angiostatin has not yet been
investigated. According to the elevated MMP-9 also Angiostatin
concentrations increased in FD compared to controls and
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FIGURE 3 | (A) Scatterplots of SDMA correlating with indexed left ventricular mass, lyso-Gb3, eGfR, and hsT. (B) Scatterplots of hArg/SDMA correlating with indexed

left ventricular mass, lyso-Gb3, and eGfR. SDMA concentrations and hArg/SDMA are presented on a log scale. Pearson correlation coefficient r and the

corresponding p-values are given in boxes. eGFR, estimated glomerular filtration rate using the CKD-EPI. Formula; hsT, high sensitive cardiac Troponin T; indexed

LV-mass, left ventricular mass indexed to body surface area; lyso-Gb3, Globotriaosylsphingosine; SDMA, symmetric dimethylarginine.

showed a trend toward higher concentrations in the FC group
compared to FD patients without FC.

Interestingly, a study fromMatsunaga et al. could demonstrate
that reduced NO production leads to an increase of MMP-
2 and MMP-9 activity and higher angiostatin concentrations
concluding that NOproduction influences coronary angiogenesis

(29). Furthermore, an experimental study from Takahashi
et al. revealed that angiostatin inhibits VEGF-stimulated NO
production in human umbilical vein endothelial cells (30). In this
context higher MMP-9 and angiostatin levels may contribute to
an alteration of NO synthesis in FD. Moreover, an experimental
animal study fromGivvimani et al. found a switch to higher levels
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TABLE 3 | Correlation to indexed left ventricular mass measured in cMRI.

p-Value r

SDMA (µmol/l) 0.003 0.61

ADMA (µmol/l) 0.031 0.47

hArg (µmol/l) 0.120 −0.35

hArg/SDMA 0.011 −0.54

hArg/ADMA 0.032 −0.47

suPAR (ng/ml) 0.002 0.64

hsT (pg/ml) <0.001 0.78

proBNP (pg/ml) 0.002 0.65

lyso-Gb3 (ng/ml) 0.026 0.50

eGFR (ml/min/1.73 m2) 0.037 −0.46

Creatinine (mg/dl) 0.014 0.53

ACR (mg/g) 0.018 0.51

Results from the correlation tests of laboratory values and markers of endothelial

dysfunction correlating with indexed left ventricular mass. ACR, albumin-to-creatinine

ratio; ADMA, asymmetric dimethylarginine; eGFR, estimated glomerular filtration rate using

the Chronic Kidney Disease Epidemiology Collaboration (CKD-EPI) formula; hArg, L-

homoarginine; hsT, high sensitive cardiac Troponin T; lyso-Gb3, Globotriaosylsphingosine;

proBNP, prohormone of brain natriuretic peptide; r, Pearson’s correlation coefficient;

SDMA, symmetric dimethylarginine; suPAR, soluble urokinase-type plasminogen activator

receptor.

ofMMP-9 and anti-angiogenic markers such as angiostatin in the
transition from compensatory hypertrophy to decompensated
heart failure (31). Both, the effect of MMP-9 and angiostatin
on NO synthesis and on a possible transition to decompensated
heart failure in FC should be addressed in future studies.

Soluble uPAR is an important regulator of ECM proteolysis
and is also involved in MMP activation by plasmin generation
(32). For suPAR only a trend toward higher concentrations in
FC could be determined, however, a positive correlation with the
LV-mass could be found, as shown in Table 3. Soluble uPAR was
shown to directly correlate with proteinuria (33). In this context a
strong correlation to renal parameters and especially proteinuria
(p < 0.001, r = 0.74) could be revealed.

Endothelial Dysfunction in Fabry
Associated Cardiomyopathy
ADMA, SDMA, and hArg are non-proteinogenic amino acids
structurally related to L-arginine. hArg has been shown to serve
as an alternative substrate for NOS and to inhibit arginase. Thus,
it is considered to increase NO formation (34, 35). In addition,
low circulating concentrations of hArg have been proposed as
a cardiovascular disease risk factor (36). ADMA on the other
hand is an endogenous inhibitor of NOS (37), whereas its
structural isomer SDMA does not directly interfere with NOS
(38). However, SDMA inhibits the tubular L-arginine absorption
in kidneys (39) and the y+ transporter, which mediates the
intracellular uptake of L-arginine (40). Therefore, SDMA has
an indirect effect on NOS. Both dimethylarginines, ADMA and
SDMA, are involved in endothelial dysfunction (41, 42), oxidative
stress (43, 44), and atherosclerosis (45). A recent meta-analysis
of prospective studies from Schlesinger et al. concluded that both
markers are independently associated with cardiovascular disease
and all-cause mortality (46).

In this context, the present study reveals a correlation of
hArg, ADMA, and the ratio hArg/ADMA with the LV mass.
Although group differences of ADMA and hArg showed a trend
toward altered concentrations in FC patients, the effect was not
significant. Moreover, the ratio of hArg/ADMA was superior
compared to the single markers, but it equally missed significance
in overall F-test of the analysis of variance with a p-value of 0.06.

However, in our cohort higher SDMA level in FC patients
correlated with LV-mass, hsT, and lyso-Gb3 concentrations
indicating the presence of endothelial dysfunction in these
patients. Furthermore, this reveals a new possible mechanism of
NO alteration in FD as this is the first study demonstrating higher
SDMA level in FC patients’ sera. Similar results are shown for the
hArg/SDMA ratio. Although the alteration of the hArg/SDMA
ratio was statistically not superior compared to the higher SDMA
concentrations in FC, group differences of this ratio show that
hArg might also contribute to a dysfunction of NO synthesis
in FC. Due to the antagonistic effects of hArg and SDMA in
arginine metabolism a further investigation of this ratio might
be reasonable.

The discrepancy between significantly higher SDMA levels
without ADMA group differences might be explained by their
disparate ways of excretion. SDMA elimination is exclusively
renal, whereas ADMA is also enzymatically excreted by the
dimethylarginine dimethylaminohydrolases (DDAHs). DDAH-
1 for example is highly expressed in the kidney and liver (47)
and as FD patients do not typically show liver dysfunction
enzymatic ADMA elimination might be sufficient, whereas
SDMA accumulates due to the typical early occurring renal
insufficiency in FD. In this regard, adjustment for eGFR showed
a significant dependency of SDMA and hArg/SDMA to kidney
function. Furthermore, an association of eGFR and FC could
be revealed. It is well known that diastolic dysfunction caused
by impaired LV relaxation may lead to congestive heart failure
and consequently to renal insufficiency. In our cohort only 4
patients with FC presented with mild (grade 1) and 1 patient
with moderate (grad 2) diastolic dysfunction. Thus, based on
these findings one might speculate that renal insufficiency
might rather contribute to FC due to an accumulation of
SDMA and its negative effect on NO synthesis in the vascular
system. However, a causal relationship between renal and
cardiac function in Fabry disease has to be proven in further
studies.

CONCLUSIONS

This study provides evidence for an altered ECM turnover
with higher levels of MMP-9 and angiostatin in FD patients
independent of an existing FC. Moreover, patients with FC
showed higher SDMA and hArg/SDMA level, which correlated
with LV mass, hsT, and lyso-Gb3 concentration but also with
impaired renal function. Renal and cardiac function showed
a relationship leading to the hypothesis that accumulation of
SDMA due to renal insufficiency in FD might contribute to the
development of endothelial dysfunction and subsequently lead
to FC.
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Limitations
A major limitation of this study is the small sample size of
22 investigated FD patients with only 7 patients without FC
compared to more than twice as much patients with FC. Another
limitation is the unequal distribution of male and female patients
in the FD groups and the fact that this study is a single center
study. Moreover, whether the relationship between kidney and
cardiac function is causal cannot be proven by this study design.

Perspectives
To validate these findings multicenter studies including
more patients to investigate the effects of MMP-9 and
angiostatin on endothelial dysfunction in FD and to clarify
the pathological impact of SDMA accumulation in Fabry
associated cardiomyopathy are required.
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Finding genetic variants that cause functional disruption or regulatory change among the

many implicated GWAs variants remains a key challenge to translating the findings from

GWAs to therapeutic treatments. Defining the causal mechanisms behind the variants

require functional screening experiments that can be complex and costly. Prioritizing

variants for functional characterization using techniques that capture important functional

and regulatory elements can assist this. The genetic architecture of complex traits

such as cardiovascular disease and type II diabetes comprise an enormously large

number of variants of small effect contributing to heritability and spread throughout

the genome. This makes it difficult to distinguish which variants or core genes are

most relevant for prioritization and how they contribute to the regulatory networks that

become dysregulated leading to disease. Despite these challenges, recent GWAs for

CAD prioritized genes associated with lipid metabolism, coagulation and adhesion along

with novel signals related to innate immunity, adipose tissue and, vascular function as

important core drivers of risk. We focus on three examples of novel signals associated

with CAD which affect risk through missense or UTR mutations indicating their potential

for therapeutic modification. These variants play roles in adipose tissue function vascular

function and innate immunity which form the cornerstones of immuno-metabolism. In

addition we have explored the putative, but potentially important interactions between

the environment, specifically food and nutrition, with respect to key processes.

Keywords: GWAS, immuno-metabolism, coronary artery disease, nutrition, omnigenic

INTRODUCTION

CVD is increasing and the distribution of risk factors is changing with increasing prevalence of
obesity and type II diabetes (T2D), particularly among young adults (aged 18–45) in developed
countries (1–3). The burden of CVD risk factors remains very high because of unhealthy
contemporary lifestyles, with dysregulated balance between energy intake and physical activity. In
addition, malnutrition, wherein excess energy is coupled by micronutrient deficiencies, amplifies
genetic risk (4). The major cardiovascular consequences of obesity and T2D predominantly derive
from dysregulated and inflamed adipose tissue, particularly perivascular or visceral fat surrounding
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the organs (5). Visceral fat has limited expandability and becomes
inflamed, with the resulting adipokine dysregulation adversely
affecting vascular biology by promoting vasoconstriction, medial
smoothmuscle cell proliferation and endothelial dysfunction and
is known as dysregulated immunometabolism (6). In the obese
state, immune cells become activated and infiltrate metabolic
tissues, chronic activation of inflammatory pathways in both
vascular and immune components trigger stress kinase activation
that impinge on the signaling of metabolic hormones such as
insulin leading to impaired glucose and lipid homeostasis (7).
Highly structured interactions between immune and metabolic
responses are evolutionarily conserved and disruption of these
interactions underlie many pathologies such as obesity and
diabetes. Therapeutic solutions to tackle obesity, T2D and
hypertension are drastically needed to reduce the overall burden
of cardiovascular disease. However, many drugs or interventions
have failed due to a lack of understanding of complex disease
architecture (8, 9).

GWAs provided unique insights into the genetic architecture
of complex diseases. Genetic architecture considers the overall
composition of variants influencing a trait in terms of number,
frequency and magnitude of effect and potential interactions,
and can vary over traits (10). With increasing size and scope
of GWAs, it has become clear that many complex traits are
driven by enormously large numbers of variants of small
effects. These variants are spread across the genome rather
than in disease related pathways, include many without obvious
connection to disease and/or related risk factors. These variants
are potentially capturing most regulatory variants that are active
in disease relevant tissues and the regulatory networks they
form, may be so interconnected they affect the functions of
core disease-related genes. This can be observed for variants
that are heavily concentrated in regions that are transcribed
or marked by active chromatin in disease-relevant tissues but
with little enrichment for cell-type specific regulatory elements
compared to broadly active regions. Boyle et al. (11) proposed
that this pattern could be explained through an Omnigenic
model of inheritance. This is an extension of RA Fischer’s
infinitesimal model of inheritance proposed nearly a century
ago (12). The Omnigenic model considers that gene regulatory
networks are so interconnected that all genes expressed in disease
relevant cells are able to affect the functions of core disease-
related genes. Most heritability is accounted for by effects of
genes in peripheral pathways, outside of core pathways, which
accounts for loci associated with multiple traits (pleiotrophy).
Therefore, disease risk may be largely driven by genes with no
direct relevance to disease and is propagated through regulatory
networks to a much smaller number of core genes with direct
effects.

In theory, the set of core genes must have a more pronounced
effect on disease traits and proteins derived from these genes will
drive pharmaceutical development and therapeutic strategies.
However, how this works at the cellular regulatory network is
incompletely understood. To understand the relevance of the
variants for therapeutic development, it is crucial to understand
their effect on protein level, activity or function. Even if a variant
has a small effect on protein level and disease risk this protein

may still be a suitable target for disease prevention if considered
in context with its disease architecture (10). For instance, the
SNP associated with (HMG-CoA reductase) explains 0.26% of
variance in LDL levels, manipulating this gene can reduce LDL
levels by 30–40% and reduce CAD risk (13). Even if the variants
affect protein level or function, there are numerous challenges to
drug development.

AN OMNIGENIC ARCHITECTURE FOR
CARDIOVASCULAR DISEASE?

GWAs has reproducibly associated over 160 variants with
cardiovascular disease (14–20). By combining data from UK
Biobank (34,541 cases and 261,984 non-cases) followed by
replication in CardiogramplusC4D (88,192 cases and 162,544
controls), an additional 64 novel loci were recently prioritized
(20). This identified a total of 163 loci associated with coronary
artery disease (CAD) (21). Consistent with the omnigenic
model for CAD genetic architecture, many novel candidate
genes did not have an obvious connection to CAD and the
genetic contribution was concentrated in regions transcribed or
marked by active chromatin in relevant tissues (blood vessels and
liver) but with little enrichment for cell-type specific regulatory
elements. While they reconstituted a larger number of gene
pathways/networks for CAD, increasing from 4 to 14%, overall
the variants were spread throughout the genome and only 14%
forming disease relevant pathways.

PRIORITIZING VARIANTS USING
INFORMATION FROM FUNCTIONAL AND
REGULATORY REGIONS

To prioritize core CAD-related genes, they fine mapped the
regions characterizing the functional, cellular and regulatory
contribution of the variants (22) and prioritized their significance
using probabilistic models (23) to derive a set of genes
with converging evidence of potential functional SNP-gene
mechanisms for functional follow up studies. The fine mapping
methods that they used are compared against related methods
summarized in Table 1, reviewed in Schaid et al. (30). Integrating
information from multiple omics approaches in this way
provides a more comprehensive understanding of the flow
of information from the disease driver to its functional
consequence or interactions.Methods can now test themediating
mechanism of these genetic variants on complex traits (31).
Their analysis prioritized 161 variants to candidate genes
based on proximity, expression quantitative loci data, DEPICT
analysis and long-range chromatin interactions of variants
with gene promotors for signals of regulation using stringent
conditions and identified 28 loci with convincing arguments
for causal variation, 22 known and 6 novel or 19 potential
core genes (with missense, intergenic, downstream or UTR
mutations). Among known genes; APOE, PCSK9, ANGPTL4
and SORT1 are implicated as core genes in lipid metabolism
(a key component of immunometabolism) and targeting the
effects of these genes can reduce CAD risk (32–34). Of the 6
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TABLE 1 | Summary of methods for fine mapping variants from GWAs.

Name Combines GWAs Data Details References

BIMBAM, GUESS GWA and

phenotype

Individual

level data

Stepwise conditional analysis on SNPs with lowest p-value

association until no additional SNPs reach preassigned threshold

for strength of association with phenotypic trait

(24, 25)

FINEMAP GWA and

phenotype

Summary

level data

Use GWAs summary statistics and SNP correlations to compute

Bayes factors for strength of association with trait. Uses a shotgun

stocastic search which allows more variants to be considered

simultaneously

(26)

CAVIARBF GWA and

phenotype

Summary

level data

CAVIAR differs from PAINTOR by modeling the uncertainty in the

observed association statistics. CAVIARBF has been reported to

be more accurate than PAINTOR in prioritizing variants when no

annotation information is available

(27)

GARFIELD (GWAS analysis

of regulatory and functional

information enrichment with

LD correction)

GWAs,

functional

annotation

and

phenotype

Summary or

individual level

data

Select SNPs from LD blocks to prioritize variants matched with

regulatory/functional annotation (of 1,005 specific regions selected

from ENCODE, GENCODE and Roadmap Epigenetics)

incorporating genic annotation, chromatin sites, histone

modifications, DNAse I hypersensitivity sites, transcription factor

binding sites from cell lines from ENCODE with their strength of

association with traits

(22)

PAINTOR (Probability

Annotation INTegratOR);

fastPAINTOR

GWAs,

functional

annotation

and

phenotype(s)

Summary or

individual level

data

Selects SNPs from LD blocks allowing for multiple causal variants

and matched with functional/regulatory annotation data

(ENCODE), PAINTOR up-weights variants in certain functional

annotations (e.g., transcription start sites) while downweighting

variants within annotations less relevant to the trait (e.g.,

intergenic) without making ad-hoc assumptions on which

tissue-specific annotations are relevant to the trait of interest.

fastPAINTOR updates previous method leveraging pleiotrophy

across correlated traits with a new sampling scheme to improve

efficiency, it integrates fine mapping across two (multiple) traits

assuming same variants impact both traits though allowing

potentially distinct effect sizes/opposite effects.

(23, 28)

SMR (summary data based

Mendelian randomization)

and HEIDI (heterogeneity in

dependent instruments)

GWAS, eQTL,

mQTLs

Summary or

individual level

data

Combines summary level multi-omics data to prioritize gene

targets and their regulatory elements in 3 steps, using association

tests, 1. map methylome QTL to genes (2MB), map expression

QTLs to trait, map trait to mQTL, if signals significant in all 3 steps

infers target genes functionalyl relevant, can incorporate info from

two independent studies.

(29)

novel signals, 3 are intergenic while 3 affect change through
missense mutation or occur in a UTR3 region; these are TRIM5,
FNDC3B, and CCM2 which are implicated in innate immunity,
adipogenesis and vascular function, respectively, and all require
functional follow up (Figure 1). Their study aimed to prioritize
the CAD associations and elucidate regulatory connections
that may influence the mechanism behind the associations,
but according to the omnigenic model, broader regulatory
connections between core genes must exist but are difficult to
elucidate.

Several major challenges stand in the way to understanding
how GWAs associations could become therapeutic targets. Most
GWAs associations lie within non-coding regions making it
difficult to predict their functions and identify targets/genes.
Loci can be linked to multiple genes and the likely causal
variant requires detailed investigation to elucidate the underlying
mechanism. Functional follow up of important GWAs candidate
loci now shows that multiple variants of small effect can
synergistically drive dysfunction in regulatory networks, for
example risk related to FTO (35), ANGPTL4 (17), GUCY1A3

(36), and SHROOM3 (37). To understand the mechanistic basis
of increased adiposity associated with FTO, layers of OMICS
data connecting epigenetic, gene co-expression and regulator
expression followed by validation with genome editing elucidated
the risk variant rs1421085 causes a loss of repression in AR1D5B
which enhances expression of IRX3 and IRX5 increasing fat
storage (35). Mining available OMIC data to gain insights
into the complex regulatory circuitry behind these association
signals has the potential to speed up functional follow-up by
identifying novel links. We consider the three novel signals
highlighted by van der Harst and Verweij for their strength of
evidence and their importance to these pathways contributing
to CAD risk or related traits such as adiposity and how these
signals fit with other evidence supporting their contribution
to disease risk. These may represent core genes but they may
be signals that are context or cell specific to CAD. We also
consider what the cell or tissue derived signals could offer
therapeutically if they validated in independent studies. To this
end, we explore a few examples wherein this paradigm may be
relevant.
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FIGURE 1 | Putative mechanisms for three novel GWAs signals with functional links to immuno-metabolism and coronary artery disease. TRIM5 released from

activated macrophages could increase proinflammatory cytokines NF-κB and shifts cellular energy from oxidative phosphorylation to lipolysis. CCM2 maintains

endothelial function, decreased CCM2 increases Rho_Rho kinase activity increasing vascular permeability increasing inflammation. FNDC3B potentially enhances

adipose tissue function by increasing adipogenesis and improving cellular energy efficiency by promoting oxidative phosphorylation and thermogenesis. This figure

was prepared using the Servier medical art website (www.servier.fr).

TRIM5, INNATE IMMUNE SIGNALING AND
CAD RISK

The variant rs11601507 causes a missense mutation in TRIM5
and increases CAD risk (p = 2.1 × 10−12, OR 1.09 (95% C.I.
1.06, 1.11). Chromatin interactions between this variant and
eQTLs in the promotors/enhancers of three other genes (TRIM6,
OR52S1, OR52B6) suggest these genes enhance the expression
of TRIM5. Chromatin interactions reveal relationships of
chromatin organization in 3D space that may indicate biological
function such as promotor-enhancer interactions. The evidence
used to support rs11601507 is from a range of Hi-C experimental
cell lines (20) (38). rs11601507 is a cis QTL for HBG2
(Hemoglobin) in whole blood (39) and shows significant tissue
specific enrichment in veins and blood vessels [DEPICT analysis,
(20)]. Ingenuity R© pathway analysis (IPA R©) prioritized TRIM5
and TRIM6 along with 14 other genes for association with
CVD. IPA R© considers upstream and downstream regulators
of gene expression based on large scale causal networks
(40).Interestingly, this same missense variant rs11601507 and
a 5′UTR variant rs3824949 in TRIM5 has previously been
associated with mean platelet volume (p = 6 × 10−19 and
p = 1 × 10−24, respectively) (41) which is an example of
pleiotrophy.

Given the enormous dimensionality of the phenome, it
is unlikely that functional variants exist without pleiotrophic
effects (42). Pleiotrophy can involve variants having effects

on two or more traits via independent pathways (e.g., effects
in different tissues) or effect of the variant in one trait
causally related to variation in another trait. The risk allele
of this variant has the same direction of effect for CAD and
mean platelet volume. Using rs11601507 and other variants
in a risk score, Astle et al. demonstrated a weak causal
relationship between mean platelet volume and CAD risk
using Mendelian randomization. Mean platelet volume is
associated with increased hemolysis or free hemoglobin in the
blood which is linked to increased inflammation. The TRIM5
association may be affecting both traits through inflammatory
pathways.

TRIM5 promotes Interferon γ (IFNG) in macrophages,
this forms part of the innate immune system (43). It has a
capsid specific restriction factor that prevents infection from
non-host adapted retroviruses. Interestingly, TRIM5 reciprocally
enhances ubiquitination leading to co-operative action of IFNG
and NF-κB pathways (44). There is a dynamic relationship
between the innate immune system and metabolism, where
re-configuration of energy metabolism between oxidative
phosphorylation vs. glycolysis can define the immune-phenotype
(45, 46). Fatty acids and other metabolites can influence
and define immune cell functionality and cause metabolic
reprogramming (45). It is hypothesized that this dynamic and
reciprocal regulatory relationship between metabolism and
inflammation plays a key role in metabolic disease including
CAD (7). Macrophages play a key role as innate immune
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cellular mediators of inflammation. Activated macrophages
can recruit other monocytes/macrophages to a developing
lesion and increase lipid uptake and instigate metabolic stress
and reprogramming in adipose tissue. Macrophages can
become “metabolically activated” in the presence of glucose,
insulin and palmitate. Metabolically activated macrophages
demonstrate similar effects to classically activated macrophages,
where both types activate the TLR4 and NF-κB pathways to
promote pro-inflammatory cytokine secretion. However, the
metabolically active macrophages also activate PPARγ, therefore
controlling inflammation by prompting lipid metabolism
(47). TRIM5 promotes IFNG and through a mechanism
of decreasing tryptophan metabolism (which viruses rely
on), IFNG inhibits the central metabolic regulator mTOR
and metabolically reprograms macrophages to switch from
glycolysis to oxidative phosphorylation and upregulates
inflammation. CVD is associated with changes in many immune
cell types at multiple sites of critical metabolic function with a
cumulative detrimental effect on cholesterol, lipid and glucose
homeostasis (7, 22).

OLFACTORY SIGNALING INFLUENCES
TRIM5 AND IS ALSO LINKED TO
ADIPOSITY

The genetic mechanism associated with the TRIM5 variant
suggests enhanced olfactory signaling enhances TRIM5 (innate
immune signaling) to reduce lipolysis which enhances adiposity
and increases risk of CAD. OR52B6, and OR52S1 are G-
protein coupled olfactory signaling receptors (ORs) (48). These
receptors interact with odorant molecules in the nose, to initiate
a neuronal response that triggers the perception of a smell.
OR52B6/OR52S1 have not been linked by GWAs signals as
important regulatory variants but other variants related to
olfaction have been have been significantly linked to obesity
development through GWAS (8). Olfactory signaling is highly
complex and can play a bidirectional role in controlling energy
homeostasis in response to sensory and hormonal signals from
the central nervous system (CNS) (49). Essentially the ORs may
alter the drive to eat a poor diet, leading to obesity, hence
elaborating an environmental insult. Reduced olfactory signaling
increases β-adrenergic receptors on white (WAT) and brown
adipose tissue (BAT) increasing lipolysis and fatty acid oxidation
reducing obesity in mice (49). Olfaction influences the loss of
function mutation in ADCY3 (50) gene and its interaction with
the major obesity gene MC4R which disrupts ciliary targeting
in neuronal cells critical for body weight regulation (35, 51).
Heterozygous or homozygous null mice for ADCY3 are unable
to smell (35).

In summary, innate immunity is important in the
pathogenesis of CVD, here the association between a variant
linked to innate immunity is reinforced and mediated through
a novel mechanism of olfaction. The immunosuppressant
drug cyclosporine is an antagonist for TRIM5 suggesting a
potential therapeutic intervention is available to explore for
functional relevance (20). More generally, targeting systemic

inflammation through interleukin 1β (e.g., Canakinumab)
has been shown to reduce CVD risk and by doing so has
validated the inflammatory hypothesis of atherothrombosis
(52). The variants TRIM5 and PROCR (p = 6.8 × 10−12)
reaching GWAs significance are related to inflammation,
which are relatively newly identified, show convergence
between biological and genetic determinants of CVD
and add to this inflammatory hypothesis (18, 20). An
alternative therapeutic paradigm to anti-inflammatory
modalities may be efforts to mimic the resolution of
inflammation using specialized lipid mediators and their
targets (53–55).

FNDC3B, ADIPOGENESIS AND CAD RISK

rs12897 is a common variant (MAF 0.41) showing a protective
association with CAD; OR 0.96 (95% C.I. 0.95, 0.97) (p = 1.9
× 10−10), this SNP is an eQTL for the protein coding gene
Fibronectin type III domain containing 3B (FNDC3B) (39)
occurring in the 3′ UTR region of the mRNA likely affecting
post-transcriptional regulation of gene expression. This SNP was
the 3rd top gene prioritized by DEPICT (p = 1 × 10−21) in the
overall analysis (20). IPA R© prioritized a functional association
between the protein of FNDC3B, TRIM5, TRIM6, VEGFA, and
12 other genes for association with CAD supporting a broader
connectivity among these.

Adipogenesis is a key regulatory process, which determines
adipose functionality, and its dysfunction is associated with
metabolic-inflammation, hypoxia and related risks including
insulin resistance (6) and deregulated cholesterol homeostasis
and lipid metabolism (56) all of which lead to greater T2D and
CVD risk (57). FNDC3B (alias FAD104) is a positive regulator of
adipogenesis (58); specifically at the early stages of adipogenesis
(59, 60). FNDC3B variant rs12897 was previously associated with
large scale GWAs on height (p = 3 × 10−39) (61), waist-to-hip
ratio (WHR) adjusted BMI (p = 8 × 10−10) and HIP adjusted
BMI (p = 3 × 10−12) (62) and heart rate (p = 1 × 10−9) (63).
Interestingly, intronic variants near FNDC3B strongly associated
with intra-ocular pressure p= 9 × 10−48 (64) and p = 5 ×

10−50 (65), however these variants are not in LD with rs12897.
Although intraocular pressure may reflect changes in heart rate,
this association may operate through a different, peripheral CAD
pathway.

GWAs on specific adiposity traits and fat distributions
(pericardial fat, visceral fat, WHRadjBMI, body fat percentage)
have shown distinct genetic components (66, 67). WHR adjusted
BMI and body fat percentage traits identified adipogenesis
candidate genes to play key roles in adiposity. These genes
included BMP2 (p = 3.3 × 10−14), CEBPA, PPARγ, HOXC-
mir196, TBX15, and PEMT but these variants had no apparent
regulatory links/eQTLs (62). While CEBPA and PPARγ are
essential for white adipose tissue differentiation and are master
regulators of adipogenesis, BMP2, like FNDC3B, is involved
in early stage adipogenesis. FNDC3B and BMP2 are both
involved in the early stage commitment of pre-adipocytes to
proliferate and differentiate. FNDC3B (and BMP2) specifically
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induce and/or regulate the differentiation of committed
progenitor cells toward adipogenesis or osteogenesis (68).
Adipocytes and in particular pre-adipocytes are now recognized
as more than fat-storing organelles having the capability
to secrete cytokines and adipokines thus contributing to
inflammation (69).

ADIPOGENESIS AS A THERAPEUTIC
MECHANISM TO REDUCE METABOLIC
RISK

Defining the effectors which control the fate of adipocytes
is of great interest to the therapeutic treatment of obesity.
Obese individuals have a smaller proportion of brown adipose
tissue (BAT) compared to white adipose tissue (WAT) which
expands in response to lipid excess by hypertrophy, hyperplasia
and inflammation and upon reaching a certain size become
dysfunctional and necrotic, promoting macrophage infiltration.
The conversion ofWAT to the more functional energy dispersing
BAT adipocytes would be a valuable approach to the treatment
of obesity and its metabolic complications and is becoming the
focus of anti-obesity research (9). Conversion of WAT to BAT
can occur by two processes; adipogenesis (i.e., de-novo-adipocyte
differentiation of precursor cells which FNDC3B may play
a role) or more commonly trans-differentiation (i.e., WAT
to beige/brite transition through molecular reprogramming,
increasing mitochondrial oxidative phosphorylation/lipolysis
requiring increased levels of uncoupling protein 1 (UCP-
1) and enervated with b-adrenoreceptors (9). BAT derived
from adipogenesis is more sensitive to stimuli from BMP7
(70) and BMP4 (71), irisin/FNDC5B (72), FGF21, and
others. Irisin/FNDC5B is a myokine/cytokine that induces
thermogenesis except in the obese state where it has a complex
adaptive response to counterbalance decreased insulin sensitivity
and other metabolic disorders associated with obesity (73)
and is a key molecular target to induce browning of WAT (9).
FNCD5B expression is highest at early stages of preadipocyte
differentiation sharing 53% homology with FNDC3B but their
relationship is unclear. While the eQTL affects the expression of
FNDC3B, it is not known if this regulation is specific to a CVD
relevant tissue or cell type. If regulation of FNDC3B is a key
step in increasing adipogenesis, modulation of this process could
enhance thermogenesis.

The strongest obesity variant associated to date, FTO, can
act through a complex regulatory network also affecting pre-
adipocyte differentiation highlighting the importance of this
pathway (35). Interestingly, this regulation ensures it is restricted
in a cell/tissue specific way to preadipocytes and mesenchymal
adipocyte progenitors, not in brain or 120 other cell types
(35). The causal variant associated with FTO disrupts AR1D5B
binding in the risk haplotype leading to a loss of repression,
this derepresses pre-adipocyte enhancer activity and increases
IRX3 and IRX5 expression which represses mitochondrial
thermogenesis and adipocyte browning making cells more likely
to store fat.

OTHER VARIANTS OF GENES
INFLUENCING TRANSDIFFERENTIATION
OF WAT TO BAT ARE ALSO LINKED TO
CAD RISK

In addition to FNDC3B, two other variants PRDM16 and
TWIST1 recently associated with CAD risk play key roles
in adipogenic transdifferentiation of WAT to BAT which
highlights this pathway as relevant to disease risk and therapeutic
exploration. From a biological perspective PRDM16 is one
of the most effective molecular targets to induce white-to-
brown adipocyte trans-differentiation (9) and an intronic variant
rs2493298 close to PRDM16 was recently identified to increase
CAD risk (20). The variant rs2493298 p = 1.9 × 10−9, near
PRDM16 occurs in an intronic region which physically interacts
(chromatin, Hi-C experiments) with the promotors of three
genes that act as enhancers (20) which have roles in metabolism
(9). PRDM16 is essential for normal BAT function, it interacts
with C/EBPβ and these are considered master regulators of BAT
function (74), and functions in a feedback loop with PPARy and
SIRT1. No pharmacological targets for PRDM16 are advanced
enough to explore in clinical trials (9). PPARy coactivator 1
alpha (PGC1a) is another important control point of the BAT
phenotype and it is repressed by TWIST1 which blocks target
genes associated with PGC1a activity leading to browning of
WAT (75). An eQTL rs21079595 intergenic to TWIST1 increases
risk of CAD 1.3 × 10−24 and was prioritized as a core CAD
related gene (20). Previously this variant had been linked to
HDAC9 gene through proximity, but expression data from the
Stockholm-Tartu Atherosclerosis Reverse Network Engineering
Task Study (STARNET) in two different tissues prioritized this
eQTL variant to TWIST1 (76). Manipulation of PGC1a can also
achieve reductions in inflammatory disease risk and enhance
adipogenesis through dietary fat modification (6).

In summary, several variants associated with adipogenesis
have been associated with CAD risk. Dysregulation of adipocyte
browning/thermogenesis, particularly in visceral fat surrounding
thoracic and aortic arch, is important in the pathogenesis
of CVD. FNDC3B is among several variants that impact
adipogenesis, while the regulatory networks among these still
need more complete understanding, manipulation of this
pathway at the preadipocyte stage could impact CVD risk.

CCM2, ENDOTHELIAL FUNCTION AND
CVD RISK

The variant rs2107732 causes a missense mutation in the CCM2
gene and is associated with reduced risk of CAD (OR 0.94 (95%
C.I. 0.93–0.96), p = 3.6 × 10−8 (20). A variant in the promotor
ofMYOG1 forms a chromatin interaction with the CCM2 variant
suggesting this regulates CCM2 (20). MYOG1 is a muscle specific
transcription factor that induces myogenesis (muscle formation).
Mutations in an orthologous mouse gene of CCM2 cause a
cardiovascular phenotype in mice and mutations in MYOG1
caused abnormalities in inflammation/white blood cells of mice
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(Mouse Genome Informatics database) (20). Inherited loss-of-
function mutations in CCM2 (and also CCM1 and CCM3 genes)
are implicated in abnormal vascular morphogenesis and can
cause vascular lesions called cerebral cavernous malformations
which develop in the human CNS (77). CCM2 is expressed in
the brain and heart and CCM genes (including CCM2, CCM1,
CCM3) are crucial regulators of heart and vessel formation and
integrity by restricting vascular permeability and maintaining
vascular homeostasis (78–80). These genes form complexes
but also have complex independent roles (81). CCM2 restricts
vascular permeability and maintain endothelial barrier function
(tight and adherens junctions) by inhibiting Rho A-Rho kinase
activity by enhancing Rho A proteasome degradation (79, 82). A
lack of CCM2 increases Rho A Rho kinase activity which disrupts
endothelial cell-cell contact causing permeability and stress fiber
formation„ which is the initial phase in many cardiovascular
diseases and characteristic of pathologically activated vascular
endothelium. The response of CCM2 may be different in the
inflammatory state and the MYOG1 transcription factor may
influence this under certain conditions. Endothelial dysfunction
reduces the ability of arteries to fully dilate, which stimulates
vasodilators from the endothelium like nitric oxide (NO),
decreased availability of NO or inactivation due to reactive
oxygen species increases dysfunction. An intronic variant in
NOS3 is also prioritized as a core causal variant of CAD alongside
CCM2 both being important to blood vessel morphology and
function (20) with several other rare and common variants
in GUCY1A3 PDE5A and PEDE3A (16, 20, 36, 83, 84)
highlighting the importance of the NO/cGMP signaling pathway
to atherosclerosis and CAD risk.

Increased vascular permeability correlates with neo-
angiogenesis (80). CCM proteins also control angiogenesis
via Rho-kinase and other signaling pathways (78), CCM2
inhibits angiogenesis, loss of CCM2 causes dramatic angiogenic
remodeling abnormalities (85). Adipose tissue is probably the
most highly vascularized tissue in the body, as each adipocyte
is encircled by capillaries, angiogenesis plays a key role in its
function (86). Angiogenesis is driven by a complex interplay of
angiogenic factors and inhibitors including vascular endothelial
growth factor A (VEGFA). VEGFA is among the top 64 novel
CAD loci increasing risk of CAD (OR 1.95 (95% C.I. 1.03–1.06),
p = 1.9 × 10−12) (20) and waist to hip ratio adjusted BMI p
= 3 × 10−27 (62). CCM proteins and particularly CCM3 can
regulate VEGFA expression (80) [typically CCM2 and CCM3
function as a complex, (81)]. Lipid accumulation in adipocytes
activates Rho Rho kinase signaling by breaking endothelial
cell barriers/stress fiber formation triggering inflammatory
changes (87). Vascular remodeling determines the flexibility
and metabolic rate of adipose tissue and the communication
between adipose and endothelial cells is crucial. Dysfunctional
communication in obese individuals contributes to development
and progression of T2D including impaired vasodilation,
hypoxia and inflammation. CCM2 and VEGFA play roles at
the interface of this cellular communication. A more complete
understanding of the regulatory networks connecting CCM2
(inhibits angiogenesis) and VEGFA (stimulates angiogenesis, of
which there are already targeted drugs), might synergistically

increase the resulting therapeutic efficacy to combat obesity and
CVD.

GWAS TARGETS WITH FUNCTIONAL
LINKS TO IMMUNO-METABOLISM AND
CORONARY ARTERY DISEASE

In summary, the three novel GWAs signals implicated in CAD
risk play putative roles in immuno-metabolism (Figure 1).
TRIM5 has potential to increase innate immunity, inflammation
and CAD risk via macrophage infiltration of adipose tissue
increasing metabolic stress. Activation of pro-inflammatory
immune cells requires a shift to move from energy efficient
oxidative phosphorylation to anaerobic glycolysis favoring
glucose as substrate. This break or shift occurs when
macrophages become polarized (M1) and is associated with
nitric oxide production; an M1 effector molecule triggered
by increasing oxidative stress. The mutation in CCM2 may
reduce oxidative stress to maintain endothelial function, control
angiogenesis and vascular remodeling of blood vessels including
those surrounding adipose tissue to reduce CAD risk. Inhibiting
glycolysis promotes the resolution of inflammation. FNDC3B
enhances adipose tissue function by increasing adipogenesis
and improving cellular energy efficiency by promoting oxidative
phosphorylation and thermogenesis, with PRDM16 and TWIST1
playing similar roles in modifying CAD risk (Figure 1).

DIETARY INTERVENTIONS CONNECTING
ADIPOGENESIS AND METABOLIC
INFLAMMATION AS THERAPEUTIC
MECHANISMS TO REDUCE METABOLIC
RISK

Since the recognition that fatty acids can modulate an
inflammatory response, e.g., via lipid induced re-programming
of macrophage metabolism and inflammation (88) or the
NLRP3 inflammasome (89, 90) they have been studied for their
immunomodulatory effect on insulin resistance and dysregulated
lipid metabolism pathways. Dietary manipulation and certain
nutrients have the potential to modulate inflammatory responses.
Obesity promotes adipose hypertrophy, with inflammation
interacting with the adipogenic process. Pro-inflammatory
cytokines IFNG, IL-1β and TNFα, inhibit adipogenesis by
downregulating PPARy and C/EBP (91–94) and several dietary
components can modulate this effect e.g., reservatrol, flavonoids
and polyphenols (95–97). Dietary fat modification to replace
saturated fatty acids (SFA) with monounsaturated fatty acids
(MUFA) and polyunsaturated fatty acids (PUFA) may provide
a potential strategy to lessen inflammation that enhances
adipogenesis to attenuate insulin resistance and dysregulated
lipid metabolism (6) but the impact of dietary fat modification
in humans has varied (98).

Efforts to explain this inter individual variability in response,
has focused on the interaction between the genes, metabolites
and diet. As diet is the exogenous source of many metabolites,
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as well as affecting the generation of endogenous metabolites,
interactions with the nutritional environment are plausible.
However, many putative gene/variant-diet associations have
failed to replicate in large studies (99) with various approaches
to enhance power (100). Some intriguing examples of specific
variant-metabolite interactions modulating disease risk exist
from small studies (101, 102). The variant, rs5082 of APOA2
interacts with SFA intake to influence risk of obesity (101).
This is modulated through an epigenetic effect on APOA2
regulatory region which promoted an APOA2 expression
difference between APOA2 genotypes on a high SFA diet.
This selectively dysregulated branched chain and tryptophan
metabolic pathways with possible implications for food
intake.

UNDERSTANDING THE REGULATORY
NETWORKS UNDERLYING METABOLIC
TRAITS

Attention is shifting to large scale studies integrating
transcriptomic and metabolomic data to understand the
interplay between genes and metabolites (103). To explore genes
playing key roles in immunometabolism more specifically, Nath
et al. integrated transcriptomics (focusing on immune networks)
and metabolomics using 2,168 individuals from two general
population cohorts (104). They identified significant expression
quantitative loci in 8 immune gene networks highlighting the
genetic foundations of these effects. For example, an eQTL in the
ARHGEF3 gene (rs1354034 p = 7 × 10−28) had trans regulatory
effects on several genes associated with platelet function and this
module had diverse effects on 55 metabolites. Other important
core immunometabolic associations related to neutrophil
activation and viral response. A subset of the cohort measured
repeatedly over 7 years, demonstrated the gene-metabolite effects
were temporally stable (104). As long-term OMICs data will be
collected on population cohorts over time, these signals are likely
to become more reliable.

Identifying the genetic basis to these interactions can
be useful therapeutically to modulate the variant itself for
individualized treatment or modulate the pathway the variant
functions in, which can have much wider implications for
population treatment e.g., PCSK9 inhibitors for individual
and population level treatment of hypercholesterolemia and
CVD risk (34). With better understanding of metabolite-
immune interactions, in vivo and interventional studies can
be developed to modulate these interactions through existing
lipid lowering medications, gut microbe effects or dietary
changes. In this way, the immune system itself can be
harnessed to reduce the burden of cardiovascular and metabolic
disorders (55, 71). With distinct lifestyle strategies now known
to differentially affect the way adipose tissue is stored and
utilized in the body (105), it is important to understand
where and how the drivers of these regulatory networks
are acting, which might be under specific situations or
locations.

CELLULAR SPECIFICITY OF REGULATORY
NETWORKS

Progress has been made to determine the tissues and cell
types underlying disease through the GTex consortium (106).
GTex, Roadmap Epigenomics and Functional Annotation of
Mammalian Genomes 5 (FANTOM5) provides reference sets
for multi-tissue gene expression and epigenomics consistently
evaluated on the same individuals with available tissues. Different
layers of regulation can exist from post-transcriptional, post-
translational, protein-protein interactions and intercellular
signaling, mediated through chromatin interactions and
expression quantitative trait loci. Assuming that most of the
regulation occurs through genes (linked by eQTLs), regulation
can occur at the tissue level, broad cell population level or
in very specific cell types (106–110). For CVD, multiple
cell types or highly specialized cell types may be involved
(e.g., vascular, liver, adipose) where cellular networks could
have variable expression across cell types (111). The effect
of particular variants would then be an average of its effect
size in each cell type weighted by cell type importance (11).
Mapping GWAs signals to promotors/enhancers measured
by cap analysis gene expression (CAGE) found regulation for
specific diseases could be turned on/off in similar complex
patterns across different cell types. For example, shared cell
type specific regulatory networks distinguishing two sub-
types of ulcerative colitis could be distinguished based on
regulatory signals guided by GWAs signals enriched in either
monocytes exposed to inflammatory signals or epithelial
cells (108).

To identify cell type specific gene regulation, grouped cell
types or deconvolutionmethods have been used, but the methods
tend to be biased to specific cell types or difficult-to-identify less
abundant cell types (112). It is possible to calculate the probability
a GWAs variant and eQTL tag the same functional effect and
infer the tissues where the effect for a trait is likely manifested
(113). Single cell RNAseq (scRNAseq) can identify cell-type or
context specific eQTLs, but the requirement for fresh tissue and
costs limits large scale screening. Mapping monogenic kidney
mutations or genome-wide variants associated with chronic
kidney disease to gene expression from scRNAseq of 57,979
mouse kidney cells, Park et al. inferred that these variants were
expressed in only one particular cell type (114). This suggests,
most genetic diseases of the kidney can be traced to single
cell types. Using intercellular variation from expression profiles
from 25,000 peripheral blood mononuclear cells from 45 donors,
scRNAseq identified cell type specific cis-eQTLs. Although
gene regulatory networks were highly personal, their approach
identifiedmore genes under genetic control or specific cell type in
which the effect is most prominent and found examples of SNPs
influencing the co-expression of 2 genes (115). scRNAseq has the
potential to group and examine the effects of cells along the cell
cycle, along a differentiation path (e.g., adipocyte differentiation)
or along a response to an environmental stimulus (e.g.,
inflammatory signaling) (116). With improved understanding
of how these genes impact cell types and tissues, more specific
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targeted interventions can be developed, for instance improved
drugs, mobilizing specific fat deposits (105) or nutritional
interventions (117).

CONCLUSIONS

We have highlighted three novel variants associated with CAD
risk which have been prioritized and annotated based on
systems genetics approaches including expression quantitative
trait analysis and network analysis to infer their functional
relevance. These core variants play roles in innate immunity,
adipogenesis and endothelial function which drive coronary
artery disease and principally in the role that obesity and T2D
shape the pathogenesis of CAD through immuno-metabolism.
Core variants representing these pathways provide a starting
point to potential mechanism that may lead to therapeutic
manipulation with further understanding of the regulatory
networks connecting these is needed. Given that CAD is a
multifactorial disease, it may be possible in the future to
develop individual treatment strategies based on these variants
or design relevant population level interventions based on the
pathways these variants highlight for subsets of people in the

population with subtypes of CAD risk related to obesity or
T2D.
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Ever since the first genome-wide association studies (GWAS) on coronary artery disease

(CAD), the Chr9p21 risk locus has emerged as a top signal in GWAS of atherosclerotic

cardiovascular disease, including stroke and peripheral artery disease. The CAD risk

SNPs on Chr9p21 lie within a stretch of 58 kilobases of non-protein-coding DNA,

containing the gene body of the long noncoding RNA (lncRNA) antisense non coding

RNA in the INK4 locus (ANRIL). How risk is affected by the Chr9p21 locus in molecular

detail is a matter of ongoing research. Here we will review recent advances in the

understanding that ANRIL serves as a key risk effector molecule of atherogenesis at

the locus. One focus of this review is the shift in understanding that genetic variation

at Chr9p21 not only affects the abundance of ANRIL, and in some cases expression

of the adjacent CDKN2A/B tumor suppressors, but also impacts ANRIL splicing, such

that 3′-5′-linked circular noncoding ANRIL RNA species are produced. We describe how

the balance of linear and circular ANRIL RNA, determined by the Chr9p21 genotype,

regulates molecular pathways and cellular functions involved in atherogenesis. We end

with an outlook on how manipulating circular ANRIL abundance may be exploited for

therapeutic purposes.

Keywords: lncRNA (long non-coding RNA), circRNA, GWAS (genome-wide association study), eQTL analysis,

transcription, splicing, tumor suppressor proteins, cardiovascular diseases

INTRODUCTION

Since publication of the first genome-wide association studies (GWAS) of coronary artery disease
(CAD) in 2007, Chr9p21 has emerged as themost significant risk locus associated with this frequent
disease (1–4). The region contains a number of strongly interlinked SNPs within a stretch of 58
kilobases (kb) of non-protein-coding DNA. Later, the same haplotype block has been associated
with other endpoints of atherosclerosis, such as stroke (5–11), peripheral artery disease (12–14),
and also with different types of aneurysms (2, 8, 15, 16). Due to the availability of large study
cohorts and the better resolution of genetic recombination in this region, it has now become
clear that associations with other phenotypes at Chr9p21 fall in distinct haplotype blocks not
overlapping with the CAD block (Figure 1A). Closely nearby, and proximal to the CAD locus,
GWAS found associations with cancer, such as melanoma, glioma, basal cell carcinoma, and acute
lymphoblastic leukemia [see (40) for review], and also with glaucoma, and diverse proliferative or
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inflammatory diseases, such as endometriosis of the reproductive
tract (41), periodontitis (42), and platelet reactivity (43). The
region located distally to the CAD region contains a distinct
haplotype block associated with type 2 diabetes (44, 45).

In the last 10 years, GWAS have been successfully used to
increase the number of genetic loci implicated in CAD risk
inheritance. The number of CAD risk loci in the genome rose
from 56 by 2013 (24, 46–52) to 80 by 2015 (53–56), to 243 by
2017 (17). Concerning the Chr9p21 locus in these studies, the
association rose steadily from p = 5.40 × 10−23 (rs4977575)
(57), over p = 4.68−101 (rs4977574) (17) to p = 8.8 × 10−223

(rs4977574) (58). In populations of European descent, the allele
frequency is very high (0.48), leading to the situation that
approximately one-fourth of people are homozygous for the
CAD risk alleles. CAD risk SNPs on Chr9p21 have recurrently
been shown to have one of the top-ranking effect sizes [allele-
specific odds ratio (OR) for CAD> 1.3] (3, 24). Despite the extent
of effects, the Chr9p21 risk is independent of classically known
CAD risk determinants, such as dyslipidemia, diabetes mellitus,
age, and sex.

The Chr9p21 region contains at least 5 genes, which are, in
part, tightly clustered and overlapping. These include the 3.8 kb
long ANRIL non-coding RNA, and the tumor suppressors
cyclin dependent kinase inhibitor CDKN2A/p16INK4A,
CDKN2A/p14ARF , CDKN2B/p15INK4B, and methylthioadenosine
phosphorylase (MTAP). ANRIL overlaps in antisense the full
length of the p15 gene body, while sharing a bidirectional
promoter with CDKN2A. Hence, it was also termed CDKN2B
antisense RNA (CDKN2B-AS1). Only recently, the picture got
even more complex: Advances in high-throughput sequencing
and adaptions in bioinformatics mapping of RNA reads to
reference genomes have revealed that thousands of genes in
our genome produce not only mature linear RNA but also
3′-5′ covalently linked circular RNAs (circRNAs) (59). So far,
two studies have shown that a number of circular ANRIL
(circANRIL) isoforms exist, comprised of different exons,
whereby a downstream exon is fused to an upstream exon by
the enzymatic activity of the spliceosome in a reaction termed
“backsplicing” [see (60, 61) for review]. Circularizing exons
in ANRIL stemmed mostly from middle parts of the lncRNA
(Figure 1A), which are in part also shared by the linear ANRIL
isoforms. CircANRIL was found not only in many different cell
lines, but also in many primary cell types, including vascular
smooth muscle cells (VSMCs) and macrophages, as well as in
heart and vascular tissue (22, 36).

A major focus in exploring how risk is effected by Chr9p21
has been on whether genetic variation affected expression of
genes at the locus in cis (Figure 1A) or whether it elicited
gene expression changes in trans. Top CAD-associated SNPs lie
within the distal parts of long linear ANRIL isoforms (Figure 1A)
and several studies have shown that they co-localize with
sequences marked by chromatin modifications, RNA polymerase
II transcription patterns and DNA motifs characteristic of bona-
fide transcriptional enhancers (19, 35, 62–65). Using expression
quantitative trait locus (eQTL) analyses in patient samples,
several groups have by now investigated if the risk alleles
at the locus were associated with the expression of specific

target genes in cis (cis-eQTLs). Whereas studies investigating
ANRIL expression have mostly used quantitative PCRs (qPCRs)
targeting different exons from the lncRNA, expression of p14,
p15, p16, or MTAP has either been investigated using genome-
wide expression arrays or isoform-specific qPCRs. Here, we focus
on studies investigating eQTLs in atherosclerosis cohorts but do
not cover studies related to other phenotypes, such as cancer,
which are reviewed elsewhere (66).

CIS-eQTLs AT Chr9p21

ANRIL expression at Chr9p21 is complex and at least 20 linear
isoforms as well as multiple circular isoforms have been reported
[www.ensembl.org, (22, 36, 39)]. In principal, linear and circular
isoforms can be distinguished by the fact that the latter derive
from a backsplice event, where splicing of a downstream exon
(e.g., exon 7) to an upstream exon (e.g., to exon 5) can be
detected. Backsplicing of ex7-5 was the most common event
observed in our own study in peripheral blood monocytes (36).
Concordantly, Burd and colleagues have reported dominant
backsplice isoforms spanning ex14-4 in peripheral blood T
lymphocytes (22). In both studies, exon 1 and exons 17-20
were not contained in circularized ANRIL (Table 1). Thus, for
classification reasons, results from studies targeting these exons
will be referred to as proximal linear isoforms (containing the
firstANRIL exons) and long linear isoforms (containing the distal
exons 17-20) (Table 1). Since both linear and circularANRILmay
contain exons from themiddle portion of the lncRNA (e.g., exons
4-16), a clear distinction as to whether linear or circular isoforms
were investigated cannot be made in cases where these exons
were targeted by qPCRs which were non-specific for backsplice
junctions (Table 1).

As one of the first studies on Chr9p21, Jarinova et al. have
shown that ANRIL expression was induced by the CAD risk
SNP rs1333049 in peripheral blood monocytes (PBMCs). No
significant effects on CDKN2A or on CDKN2B were recorded
in that study (19). Over the years, comparable quantifications
of these genes followed in whole blood, peripheral blood T
lymphocytes, lymphoblastoid cells lines, aortic smooth muscle
cells (SMCs) and in different tissue samples that are known
to have a role in atherosclerosis. For example, vascular tissues
such as carotid atherosclerotic plaque samples, samples from
aorta, mammary artery, and from the heart ventricles have been
analyzed, but also tissues like subcutaneous or omental fat have
been used (Table 1). Of the 23 cis-eQTL studies conducted in the
Chr9p21 CAD region to date, 16 investigated different isoforms
of ANRIL, out of which 10 used assays targeting proximal ANRIL
exons, 8 used assays targeting the middle region, 6 used assays
targeting downstream linear ANRIL exons, and two investigated
backsplices contained in circANRIL (Table 1). Complicating a
clear-cut interpretation, in the different studies, different risk
genotypes were used to indicate risk haplotypes. The expression
of CDKN2A and of CDKN2B was investigated in 18 studies and
MTAP in 10 studies (Table 1).

Overall, 80% of the studies investigating ANRIL expression
found an association with the Chr9p21 genotype. Here, a trend
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FIGURE 1 | ANRIL and the CAD risk locus at Chr9p21. (A) Genomic mapping of SNPs identified in a region ± 300 kb around the top-ranking sentinel SNP rs4977574

based on data of the most recent large CAD GWAS (17). Chromosome ideogram and zoom-in onto RefSeq transcripts for ANRIL, CDKN2A, CDKN2B, and MTAP

(Continued)
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FIGURE 1 | (top), regional association plot of CAD risk alleles and graph of recombination rate in the locus (middle), scaled linkage disequilibrium heatmap (D′) as

derived from the 1000Genomes Project dataset (Phase3V5, CEU) (bottom). The threshold for significance of GWAS hits is indicated as horizontal dotted line (p <

5E-8). Dots for SNPs described in Table 1 are marked in yellow. The suspected core CAD risk region, corresponding to the distal region of ANRIL, has been defined

experimentally through multiple CAD GWAS and is highlighted in red. The physical genomic map and the haplotype map are connected by oblique lines. Note that not

all RNA transcripts and isoforms are depicted, and that type 2 diabetes (T2D, highlighted blue) and cancer risk regions (highlighted gray) are shown in simplified forms.

(B) Model how the genotype at Chr9p21 controls the balance of linear and circular ANRIL RNA expression and potential molecular mechanisms of the different ANRIL

isoforms. Linear ANRIL upregulation regulates gene expression in trans and pro-adhesive, pro-proliferative, anti-apoptotic cell functions. High levels of circANRIL

inhibit over-proliferation of vascular cells by controlling rRNA maturation through impairing PES1 function in the PeBoW complex.

toward higher expression of the proximal and distal exons
contained in linear ANRIL in patients carrying the CAD-risk
allele was observed (7 of 10 and 3 of 6 studies). In contrast,
circular ANRIL was downregulated in the two published studies
in patients carrying the Chr9p21 risk haplotype. No clear
tendency was observed when assays targeting the middle region
of ANRIL were used (Table 1). This is likely explained by the
fact that these assays target both, linear and circular, ANRIL
isoforms, which seem to be inversely regulated. With respect to
the tumor suppressor genes contained at the Chr9p21 locus, 78
and 67% of the studies failed to find an association of CDKN2A
and CDKN2B with Chr9p21, respectively. When reporting an
association, specifically CDKN2B was down-regulated in the
majority of studies (94%), yet its expression was not always
anticorrelating with ANRIL expression (19, 21, 22, 29). MTAP
expression was not associated with the Chr9p21 genotype in any
of the published studies. Overall, the picture emerges that circular
ANRIL and CDKN2B tend to be down-regulated in patients
carrying the risk allele, whereas linear ANRIL isoforms tend to
be inversely regulated (Figure 1B). It is currently unclear, why
expression of p15 or of p14 and p16 were in many cases positively
correlated with ANRIL (19, 21, 22, 27, 29, 32, 34, 65). Also,
MTAP, which was not associated with Chr9p21 (Table 1), was in
some conditions anticorrelating to ANRIL, but not in all cases
or contexts (20, 34, 67). SNPs in ANRIL can hypothetically affect
enhancers in both directions, either by disrupting transcription
factor binding sites in open chromatin (68) or by increasing
enhancer activity through yet unknown primary effects (24, 65).

In summary, many studies document cis-eQTLs for ANRIL
or, separately, for CDKN2B (35). Throughout, from the existing
data, it can be concluded that these effects are cell-type specific
and combinatorial. Of note, many studies have investigated only
very small cohorts and those, simultaneously testing both ANRIL
and CDKN2B in larger cohorts (>1000 samples) identified
much stronger effects of Chr9p21 on ANRIL than on CDKN2B
(13, 33, 36). This observation might be explained by the
haplotype block structure of the region, where effects of CAD
lead SNPs are located within ANRIL but bleed through due
to linkage disequilibrium, resulting in more subtle concomitant
effects on CDKN2B expression. Another possibility is that the
Chr9p21 genotype impacts transcription enhancers at the locus
which contact and activate gene promoters affecting CAD.
The consequences of such contacts would not be expected to
be captured through traditional non-allelic RNA expression
analysis. In fact, when allelic expression control through 3D-
enhancer looping was specifically measured in a separate study
in human coronary aortic SMCs (64), physical contacts of CAD

variant-containing enhancers in the locus and the promoters of
CDKN2A, CDKN2B, and ANRIL were corroborated.

Taken together, these data suggest that genetic variationwithin
the core 9p21 CAD region relates to differential expression
not only of ANRIL, but in specific cells or conditions, also of
the CDKN2A/B tumor suppressors encoded in the locus. While
either of these factors could potentially increase cell proliferation,
or lead to unscheduled senescence, or elicit out of context
inflammatory signaling, as far as based on work with cells in vitro,
no study in humans or in mouse models has been able to
decisively implicate a downstream effector pathway in vivo.

TRANS-eQTLs AT Chr9p21 AND
MOLECULAR FUNCTIONS OF ANRIL IN
TRANSCRIPTIONAL REGULATION

As opposed to cis effects, two eQTL studies have so far detected
modest and tissue-selective differential expression of dozens
of genes associated with Chr9p21 genotype with genome-wide
significance (19, 27). Affected genes were from a broad range of
classes (AVPR2, PEAK1, FBLN1, KALRN, DAZL, STAU2, HLA-
DQA1, BTNL8, PLEKHA6, TDGF1) in whole blood (19) and
different, non-overlapping gene sets linked to tissue wounding,
cell migration and inflammatory response, when analyzing heart
tissue, plaques, aortas, and arteries (27).

Other, and in part, larger studies in vascular tissue (20),
peripheral blood mononuclear cells (PBMC, n = 2280) (33) and
in blood monocytes (n = 1490) (23) reported no significant
expression association.

Though not directly comparable, another study showed that
in macrophages cultured in vitro under stress-bearing IFNγ and
LPS stimulation, the CAD risk genotype led to differential up-
and downregulation of target genes outside the Chr9p21 locus
and yet distinct from the previously mentioned studies (IL1B,
IL12B, CASP5, CCL8, MT1A, MT1E, MUCL1, TNIP3, VCAN,
ENPP2, NDP, CD163) (30). Also ANRIL knockdown in cultured
cell lines (69–72) and overexpression of linearANRIL affected the
expression of non-overlapping gene sets in the genome in trans
(33, 36).

How ANRIL exerts trans-regulation is not known, and
despite a study that showed a physical interaction of ANRIL
with promoters of target genes (33), this role is likely not a
classical function as enhancer RNA [eRNA (73)], because it
involved both up-and down-regulated genes, and was suggested
to involve sequence homology (33). In the case of ANRIL,
trans-regulation of target genes was ascribed to an ALU motif
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in both ANRIL and the target gene promoters (33). Similarly,
an independent study found that ANRIL did not only silence
its targets, but unexpectedly also upregulated target genes: For
example, proinflammatory interleukins IL6/8 were found to be
co-stimulated by ANRIL and YY1, a transcription-regulating
factor that bound to the ANRIL RNA, especially in the context
of TNFα/NFκB signaling (70). Therefore, opposite to what
could have been expected from the reported physical interaction
of ANRIL with proteins from the repressive Polycomb group
complexes (74), ANRIL might be an activator, at least for some
trans-regulated genes (33, 70) (see chapter 4 for details). Whether
circANRIL, beyond regulating rRNA maturation, is involved
in primary transcriptional control, alone or via impacting
linear ANRIL’s function, is not known (36). Nevertheless, it is
interesting to note that circANRIL isoforms linked to CAD are
produced from exons located in the middle of the ANRIL gene
(22, 36), and as such do not include the ALU motif, which
is important for gene trans-regulation by linear ANRIL and
is located more distally in the gene (33). Thus, variation in
ANRIL RNA at the molecular level (linear vs. circular) might
impose a fundamental alteration in ANRIL effector function,
while not offering any explanation per se on how linear ANRIL
regulates genes, as scaffold for promoter-activating complexes, or
as decoy/inhibitor of repressive chromatin-modifying complexes.
Conservatively speaking, it seems possible that Chr9p21 CAD
risk genotypes affects genomic expression both in cis and in trans,
and linear ANRIL RNA may be one, but not the sole, important
effector molecule for how the Chr9p21 locus transduces such
effects (Figure 1B).

CORRELATION OF CHR9P21 GENES WITH
ATHEROSCLEROSIS SEVERITY IN
HUMANS AND MOUSE MODELS

Another piece of evidence for a functional role of ANRIL
in determining CAD risk stems from correlation analysis
with disease features in patient cohorts. Aside of the genetic
association, ANRIL levels were often increased in CAD patients,
and not only in atherosclerotic plaque tissue, but also in
circulating PBMCs or whole blood. Here, linear ANRIL levels
were positively correlated with the severity of atherosclerosis (13,
29, 75) whereas circANRIL was anticorrelated (36) (Figure 1B).
Thus, while the genotype of Chr9p21 determines the production
of atherogenic (linear) over antiatherogenic ANRIL RNA species
(circular), CAD and peripheral artery disease-dependent changes
may additionally feed into ANRIL regulation. For CDKN2B,
two studies reported a correlation of the expression with
atherosclerosis severity (34, 76), where the direction of the
correlation (downregulation in plaques) was consistent from
what could be expected from the association results. But another
study reported increased p16INK4A levels to positively correlate
with inflammation markers in plaques instead of anticorrelation
(25). Together, results from association as well as correlation
analyses have etablished ANRIL lncRNA as prime candidate at
the Chr9p21 locus.

MOLECULAR FUNCTION OF ANRIL AND
CDKN2A/B IN ATHEROGENESIS

ANRIL belongs to the group of long non-coding RNAs and
as such has been suggested to act as a molecular scaffold of
chromatin-modifying complexes that control gene expression
through modifying histone tails. Specifically, ANRIL was found
to physically interact with the CBX7 protein inside the PRC1
Polycomb complex, one of the major gene repression complexes
in cells (74). Knockdown of members of this Polycomb
group complex led to increased expression of the CDKN2A
and CDKN2B tumor suppressors in the Chr9p21 locus. Also,
ongoing RNA polymerase II transcription was important for
the association of the Polycomb proteins with the locus,
indicative of the importance of RNA for recruitment. It was
concluded that ANRIL’s function may be, at least in part, to
repress the CDKN2A and CDKN2B tumor suppressors. As a
consequence increased ANRIL levels are thought to promote
overproliferation and to be incompatible with senescence onset,
a major function of CDKN2A/B. As described in chapter 2, other
work has shown that recruitment of the Polycomb complexes
may account also for how ANRIL regulates genes in trans on
a genome-wide level: Overexpression of linear ANRIL isoforms
in cultured cells was found to promote pro-atherogenic cell
functions, such as proliferation and reduced apoptosis, and to
trigger the differential expression of hundreds of genes, in this
case without affecting CDKN2A/B suppressors. Results from
that study therefore questioned whether ANRIL regulated these
tumor suppressor genes in cis at all (36, 77).

How does circular ANRIL, whose abundances is reduced in
CAD patients, fit into this model? Both in human peripheral
blood T-lymphocytes, as well as in PBMCs, whole blood and
endatherectomy plaque tissue, circANRIL isoforms were found
to be downregulated in samples from CAD patients carrying the
Chr9p21 risk allele (22, 36). In an initial model, it was suggested
that the production of circANRIL from central ANRIL exons
would shorten the linear ANRIL lncRNA and, thereby, impaired
linear ANRIL’s function in epigenetic control of target genes (22).
In a second study, a more primary role was found for circANRIL
that was, furthermore, independent of linear ANRIL (36). Here,
circANRIL was found to be 10-fold more abundant than linear
ANRIL. Mass-spectrometric analysis of proteins interacting with
circANRIL showed that it bound to PES1 protein, a member
of the evolutionarily conserved PeBoW complex. This complex
is essential for proper rRNA-processing, that is the excision
of RNA spacer elements from pre-ribosomal rRNA precursors.
CircANRIL inhibited the activity of the PeBoW complex, as
deduced from the accumulation of unsufficiently processed (and
non-functional) 26S and 32S pre-rRNA intermediates when
circANRIL was overexpressed (36). A deficit in rRNAmaturation
caused nucleolar stress and p53 activation, culminating in
inhibition of cell proliferation and in an increase in apoptosis.
Notably, the observed functions of circANRIL were inverse to
that of linear ANRIL and, as shown by genomic knockout of
linear ANRIL exons, independent from the presence of these
lncRNA isoforms. Thus, experimental evidence from expression
analysis in vivo and from genetic experiments both indicated
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that circANRIL was anti-atherogenic. Together, linear ANRIL
confers overproliferation, and circular ANRIL protects from
overproliferation, suggesting that the genotype of Chr9p21 is
important to determine the balance of linear and circular ANRIL
levels in SMCs and macrophages, and that a dominance of linear
ANRIL in this ratio, even when small, over decades skews for
CAD (36) (Figure 1B).

Whether suppressing linearANRIL or boosting circularization
is sufficient to protect from atherosclerotic cues in vivo is
matter of ongoing research. The fact that ANRIL RNA is
not conserved beyond primates complicates the functional in
vivo analysis of the Chr9p21 locus. So far, insight on how
CAD is controlled by Chr9p21 through genetic modeling
in mouse mutants is fragmented. The genetic elements of
Chr9p21 and their relative positioning are overall syntenically
conserved in mouse chromosome 4. So far, only one study
has investigated, if deletion of a 70 kb long portion of mouse
Chr4 corresponding to the CAD haplotype block in humans
had an effect on atherosclerosis in vivo (78). This region
contains a multi-exon lncRNA, AK148321, which is, however,
likely not corresponding to human ANRIL. Mutant mice (78)
developed tumors, reminiscent of tumorigenesis associated with
mutation in the Chr9p21 region. But despite some metabolic
changes in the mutant mice and enhanced platelet activation,
no significant change in atherosclerotic fatty lesion formation
was observed (78), putting in question the validity of this mouse
model for studying ANRIL-driven atherogenesis. On the other
hand, the mutants did develop more vascular aneurysms (79),
supporting that some aspects of CAD were indeed contained in
the noncoding mouse sequence.

Overall, the picture is not yet fully clear. While the genetic
data from mice support the importance of individual noncoding
genetic elements and of some of the protein-coding tumor
suppressors for regulation of atherosclerosis and other CAD
entities, whether the lncRNA encoded in the locus regulates CAD
mechanistically via epigenetically regulating the neighboring
tumor suppressors in cis has not been determined. Nevertheless,
mouse genetics remains an interesting research avenue to explore
some aspects of Chr9p21 biology, at least relating to aneurysm,
cancer, and glaucoma formation.

SUMMARY

Starting from a GWAS signal for CAD in a “gene desert”
on Chr9p21 in 2007, research in the last decade has firmly
established this region as strongest genetic factor of human
atherosclerosis and has contributed to a better understanding of
the underlying pathophysiology. The picture has emerged that

one of the major routes how this locus controls atherosclerosis
risk is through regulating the expression of the lncRNA ANRIL
in cis, where the risk allele leads to high levels of linear ANRIL
but decreases circular ANRIL expression. Linear ANRIL has
been established as molecular scaffold guiding epigenetic protein
complexes and promoting pro-atherogentic cells functions. On
the contrary, circularization shifts ANRIL’s function toward
controlling ribosomal RNA processing and controlling protein
translation thereby promoting athero-protection (Figure 1B).
The molecular mechanisms of how the ratio of linear and
circular ANRIL is controlled by the genotype at the locus are
currently not resolved and it will be important to determine
which gene regulatory elements within the ANRIL gene are
disturbed by causal CAD risk SNPs. Experimentally exploring
details of the molecular effector mechanisms for linear ANRIL
and for circular ANRIL will be paramount, but this task will
not be trivial because linear and circular ANRIL isoforms
always co-exist and in part share the same sequence. Not last,
more nuanced relations between Chr9p21 genotype and gene
expression output can be expected to be found in the future if,
for example, analyses were to take into account cell type-specific
and context (stress, inflammation, senescence)-specific effects,
aspect that whole tissue expression profiling is currently missing.
Additionally, although it is early days, measuring the levels of
circANRIL/linear ANRIL, might offer a prognostic value and
help improve CAD risk stratification or allow to better monitor
treatment response or disease recurrence.Yet, since circANRIL
levels are reduced in plaque tissue, and since circANRIL has been
found to be anti-atherogenic with or without co-existing linear
ANRIL, increasing circANRIL abundance in patients could also
be of therapeutic relevance. Expressing circANRIL levels in the
cells of the vasculature in CAD disease models might, therefore,
be a promising next step to exploit the accumulated knowledge
on the Chr9p21 CAD risk locus.
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Genome-wide association studies (GWAS) have proven a fundamental tool to identify

common variants associated to complex traits, thus contributing to unveil the genetic

components of human disease. Besides, the advent of GWAS contributed to expose

unexpected findings that urged to redefine the framework of population genetics. First,

loci identified by GWAS had small effect sizes and could only explain a fraction of

the predicted heritability of the traits under study. Second, the majority of GWAS hits

mapped within non-coding regions (such as intergenic or intronic regions) where new

functional RNA species (such as lncRNAs or circRNAs) have started to emerge. Bigger

cohorts, meta-analysis and technical improvements in genotyping allowed identification

of an increased number of genetic variants associated to coronary artery disease

(CAD) and cardiometabolic traits. The challenge remains to infer causal mechanisms

by which these variants influence cardiovascular disease development. A tendency to

assign potential causal variants preferentially to coding genes close to lead variants

contributed to disregard the role of non-coding elements. In recent years, in parallel to

an increased knowledge of the non-coding genome, new studies started to characterize

disease-associated variants located within non-coding RNA regions. The upcoming

of databases integrating single-nucleotide polymorphisms (SNPs) and non-coding

RNAs together with novel technologies will hopefully facilitate the discovery of causal

non-coding variants associated to disease. This review attempts to summarize the

current knowledge of genetic variation within non-coding regions with a focus on long

non-coding RNAs that have widespread impact in cardiometabolic diseases.

Keywords: lncRNA, genetic variant, GWAS, coronary artery disease, cardiometabolic disorders

In the dawn of the millennium, the first draft of the human genome represented a major milestone
in the path to decipher the genetic component of human disease. Further refinement of the human
genome by the 1,000 Genomes Project mapped over 88 million variants from 26 populations
where ∼20 million correspond to common (frequency >0.5%) single-nucleotide polymorphisms
(SNPs), a coverage of >95% of all estimated human common SNPs (1, 2). Other consortia
such as Encyclopedia of DNA Elements (ENCODE) (3, 4) and Functional Annotation of the
Mammalian Genome (FANTOM) (5) contributed to the generation of a detailed atlas of DNA
functional elements and transcriptional units uncovering that more than 80–90% of the human
genome is transcribed and display some functionality (4). In this context, Genome-wide association
studies (GWAS) emerged as a fundamental tool to define single nucleotide polymorphisms (SNPs)
associated to complex human traits or diseases (6–10). With regard to cardiovascular disease,
GWAS studies identified up to 161 genetic risk loci associated to coronary artery disease (CAD)
(11–13).
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Despite the profound contributions of GWAS to the
understanding of human disease pathophysiology, some issues
forced to redefine the framework of GWAS studies. First, most
significant GWAS hits could only explain a small fraction of
genetic variance for a specific trait (14). In the case of CAD,
all 161 genome-wide significant loci account for 15.1% of the
predicted genetic contribution to the disease (15), which is
strikingly similar to the percentage of gene sets (13.9%) or
gene networks (14%) implicated on these 161 CAD-associated
loci (12). An emerging notion, known as omnigenic model,
states that cell regulatory networks are so deeply connected
that basically all genes expressed in disease-relevant cell types
conspire to influence the heritability of complex traits (16).
Therefore, this model assumes that thousands of loci with
small size effects contribute to the overall heritability of the
trait or disease by affecting the expression of a smaller set of
core genes (16). It seems that the common disease-common
variant (CD-CV) model that drove the first decade of GWAS
studies is shifting to a complex trait-complex genetics (CT-CG)
scenario, where a handful of relevant variants cannot fully explain
genetic variation in whole populations. The overall notion of a
widespread dispersion of genetic contributions to disease due to
the interconnectivity of biological systems seems to be widely
accepted. On the other hand, the concept of a set of core genes
driving the phenotype of complex diseases is still controversial
and as a result the choice of methodology to address the future of
the field (17).

Nearly 90% of all phenotype-associated SNPs identified by
GWAS lied within non-coding regions (18–20), which includes
a broad spectrum of locations including intronic or promoter
regions, small ncRNAs such as miRNAs, long ncRNAs, antisense,
and enhancer or insulator regions. Most non-coding variants are
concentrated in deoxyribonuclease I (DNase I) hypersensitive
sites that label regions with increased chromatin accessibility.
Currently, around 2,500miRNAs andmore than 50,000 lncRNAs
have been annotated in the human genome, practically doubling
the number of protein coding transcripts, highlighting the
important role of this part of the genome (21).

This review summarizes genetic variations within lncRNAs
associated to cardiovascular disease (CAD, MI) and to various
cardiometabolic risk factors for cardiovascular disease such as
lipoprotein metabolism, diabetes or hypertension (Table 1).

IMPACT OF GENETIC VARIANTS ON
LNCRNAS FUNCTIONALITY

One of the longest-standing challenges in human genetics is
to assign potential causality within a locus to every variant
in close linkage disequilibrium (LD) with the lead variant
(34). Despite the potential of lncRNAs as causal factors of
disease, GWAS studies had a tendency to explore genetic
variant causality preferentially in coding genes, mostly due
to our limited knowledge of ncRNAs genomic structure and
functionality. Additionally, lncRNAs overlapping coding genes
(such as antisense and intronic lncRNAs) are harder to dissociate
from neighboring coding genes when searching for potential

causal variants compared to intergenic lncRNA (lincRNA) which
do not overlap coding genes. Fortunately, interactive lncRNA
databases (LincSNP2.0) (35) together with established GWAS
catalogs like NHGRI-EBI (36) and GWASdb.v2 (37) have
started to integrate newly identified lncRNAs transcripts and
disease-associated genetic variants. The latest databases mapped
371,647 disease-associated SNPs to lncRNA what accounts
for approximately 45% of all disease-associated human SNPs
identified (35).

Recent approaches focused on lincRNAs by further exploring
loci previously associated to CAD (32, 38–41). For example, a
class-level testing framework, termed Genetic Class Association
Testing (GenCAT) allowed the identification of new trait-
associated variants within multiple lincRNAs contributing novel
insights into their role in cardiometabolic pathophysiology (42).
GenCAT approach includes SNPs directly within the lincRNA
but also the ones 500 kb up- or downstream of the lincRNA (38).

In a functional perspective, many lncRNAs reside in the
nucleus conducting key regulatory steps in gene transcription,
transcript splicing or chromatin structure. Cytoplasmic lncRNAs
affect cell homeostasis by modulating translation and stability
of mRNA through scaffolding multi-protein complexes that
accomplish these functions (43). Several lncRNA functions
depend on structural domains that generate binding sites
to interact with RNA binding proteins (RBPs) acting as
scaffolds for recruitment of proteins, RNA molecules and
DNA elements (44–46). Some genetic variants are predicted to
impact lncRNA secondary structure and thereby lncRNA–RBP
interactions which can dramatically affect their functionality.
Low evolutionary conservation of lncRNAs constitutes a
challenge to predict structural domains and consequently how
genetic variants induce functional modifications (47). Moreover,
analysis of variation frequencies suggested that functional
elements in lncRNAs have a much lower variation frequency
almost comparable to protein-coding exons (48). Alternative
splicing is an additional mechanism to generate functional
diversity of lncRNAs by differential arrangement of structural
domains (19).

Furthermore, SNPs may affect lncRNA transcriptional
expression by altering its promoter region but also may influence
expression of proximal or distal protein coding genes through
the action of enhancers (19). Modulation of distant genes by
trans-regulation is mediated by lncRNAs-enhancers but the
effect of induced chromatin structural changes must be also
considered. Chromatin structural loops link regulatory enhancer
elements to distant gene promoters and variants disrupting this
process broadly influence gene expression (49). Distal regulatory
elements (DRE) can regulate the transcription of lincRNA
through chromatin interactions, which can be influenced by
GWAS-identified SNPs and define disease association (50).

LONG NON-CODING RNAS ASSOCIATED
TO CARDIOMETABOLIC TRAITS

The first examples of SNP variants associated to increased risk
of CAD located within a lncRNA were identified in the locus
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chr9p21.3, which resulted to be the CAD risk locus with the
strongest effect found up to date. Locus chr9p21.3 contained
multiple SNP variants at the antisense noncoding RNA in the
INK4 locus (ANRIL), now referred to as CDKN2B-AS1 (51–
53). CDKN2B-AS1 spans 126.3 kb in a gene cluster next to
three tumor suppressor genes (p15/CDKN2B, p16/CDKN2A
and p14/ARF), partially overlapping CDKN2B (53–55). Several
CDKN2B-AS1 SNP variants also associated to other disease
traits such as ischemic stroke, aortic aneurysm, atherosclerosis,
specific carcinomas and type 2 diabetes (T2D) (22, 56–
58).

Most SNPs in the core risk region for CAD located within
CDKN2B-AS1 intronic areas (118 out of 131 variants) where
several enhancers were described (59). These enhancers mediated
cys-regulation of neighboring genes like CDKN2A/B or methyl-
thioadenosine phosphorylase (MTAP) but also trans-regulation
of genes such as interferon-α21 (IFNA21), one million base
pairs upstream (59). CDKN2B-AS1 trans-regulation of gene
expression increased cell adhesion and proliferation, both
atherogenic processes, in a process partially mediated by ALU
elements located in CDKN2B-AS1 (60). Interestingly, CDKN2B-
AS1 interacted with a component of the polycomb repressor
complex (PRC) 1 and 2, which control the epigenetic repression
of the CDKN2B gene (61, 62). In fact, risk variant rs10757278
located at enhancer ECAD9 inside CDKN2B-AS disrupted the
binding site of STAT1 transcription factor (59). In lymphoid cells,
this disruption of STAT1 binding implied a failure to recruit
the repressor machinery and resulted in increased CDKN2B-AS
expression, a mechanism that was confirmed by the silencing of
STAT1 (Figure 1A) (59).

Only five of the CAD candidate variants are located in exons
of CDKN2B-AS1 but none of them are located in conserved
elements, questioning the likeliness to affect functional domains
(59). However, numerous splice isoforms have been identified for
CDKN2B-AS1 (14 isoforms, Genbank; 21 isoforms, GENCODE)
highlighting a complex alternative splicing regulation that
potentially affects the structural domain organization of the
lncRNA leading to modulation of its functionality (64). Carriers
of risk haplotype presented increased expression of CDKN2B-
AS1 splice-isoforms EU741058 (short form) and NR_003529
(long form) but not DQ485454 (short form) which directly
correlated with the severity of atherosclerosis, suggesting distinct
roles for CDKN2B-AS1 splicing variants (65). Additionally,
splicing isoforms defined by their polyadenylation site in
proximal (exon 13) or distal (exon 19) showed trans-regulation
of different set of genes. Proximal CDKN2B-AS1 isoforms
modulated expression of glucose and lipid metabolism genes
(66) while distal isoforms regulated RBMS1 (RNA Binding
Motif Single Stranded Interacting Protein 1), a cell cycle
suppressor (67). Conversely, circularized CDKN2B-AS1, another
form of alternative splicing, showed an atheroprotective role via
interaction with pescadillo homolog 1 (PES1) which leads to

impaired ribosomal biogenesis (68). An SNP located in the 3
′

region of CDKN2B-AS1 associated with reduced expression of
CDKN2A, CDKN2B and CDKN2B-AS1 but also with increased
VSMC proliferation (69). Other CDKN2B-AS1 variants confer
increased myocardial infarction (MI) risk (70), supporting

previous findings, where the level of CDKN2B-AS1 significantly
increased in peripheral blood mononuclear cells after MI (71).
Despite great efforts, causal mechanisms of CDKN2B-AS1
variants have been elusive and not fully unravel yet. For further
detail, we refer the reader to other excellent recent reviews on the
topic (23, 53, 72, 73).

Myocardial infarction associated transcript (MIAT) was
identified as a susceptible locus for MI in a Japanese population
by large-scale case-control associated study (63). MIAT
expression upregulation in a MI mouse model concomitant
with increased cardiac interstitial fibrosis suggested a profibrotic
role with a prominent impact in the MI pathogenesis (74).
Furthermore, ex-vivo experiments with a diabetic rat model
identified a regulatory feedback loop between MIAT, vascular
endothelial growth factor (VEGF) and miR-150-5p. MIAT acts
as a sponge for miR-150-5p and represses degradation of VEGF
mediated by miR-150-5p (Figure 1B) (75). Expression of both
MIAT and CDKN2B-AS1 increased in human atherosclerotic
arteries suggesting a potential role of MIAT on atherosclerotic
plaque development (76).

The embryonic lincRNAH19was identified to be re-expressed
in human atherosclerotic plaques and in a rat model of carotid
artery injury (77, 78). Recently, a genotyping study of 4 SNPs in
H19 locus demonstrated significant association with CAD in a
Chinese population (26). Additional GWAS and meta-analysis
studies proved association of H19 variants with blood pressure,
a well-known risk factor for cardiovascular disease (24, 25).
Mechanistically, H19 was proposed to modulate availability of
several let-7miRNAs by acting as amolecular sponge (79). Highly
expressed in adult muscle tissue, H19 modulation of let-7 likely
controls timing of muscle differentiation since H19 depletion
accelerates in vitro muscle differentiation with a concomitant
overexpression of let-7 (79). Additionally, H19 was highly up-
regulated in two different mouse models of abdominal aortic
aneurism whereas specific H19 knock-down limited aneurism
growth by a mechanism involving decreased apoptosis of smooth
muscle cells (80). Other lncRNAs that contained genetic variants
associated to CAD have been identified by GWAS studies but
not studied further on their putative causal mechanisms such as
LOC400684 an uncharacterized antisense RNA in the Zinc Finger
Protein 507 (ZNF507) locus (12) or lncRNA LINC00310 which
variant rs28451064 is also associated to myocardial infarction
(13).

Genome-wide analysis also revealed multiple variants
associated to cardiometabolic traits such as cholesterol levels
or type 2 diabetes (T2D), both of them established risk factors
of cardiovascular disease. For example, genetic variant lying in
the lincRNA LOC157273 associated to lipid (HDL cholesterol)
(27) and glycemic (fasting insulin levels) (29) traits but also
to coronary artery calcification (28). Genetic variants at
LOC157273 associated to expression changes of the nearby
gene PPP1R3B, a phosphatase involved in hepatic regulation of
glucose (81). Another SNP (rs886424) located in the second exon
of LINC00243 associated with total cholesterol and triglyceride
levels (32). Expression quantitative trait loci (eQTL) analysis also
associated variant rs886424 with LINC00243 expression levels
of as well as numerous nearby immune-related genes including
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FIGURE 1 | (A) Change of ANRIL expression through a variant in an enhancer region. The CAD associated variant rs107577278 lies within the binding site for the

STAT1 transcription factor of enhancer region ECAD9. In lymphoid cells the binding of STAT1 to this region has been associated to decreased ANRIL expression,

whereas silencing of STAT1 lead to an enhanced expression of ANRIL. The risk variant of rs107577278 disrupts the binding of STAT1 and the repression of ANRIL

expression is abrogated. Increased expression of ANRIL promotes a downregulation of CDKN2B/p15 gene expression and underlines a proliferative effect which

presumably increases CVD susceptibility. (B) Potential regulatory mechanisms of MIAT expression through different variants. Ishii et al. (63) unraveled that various

variants are present in the lincRNA MIAT and associated them to myocardial infarction such as rs3132291. Some variants in Exon 5 have been associated to

increased MIAT expression. Yan et al. showed in their study that MIAT can bind miR150-5p in endothelial cells and does inhibiting the degradation of its direct target

VEGF. These data suggest that certain variants in the MIAT lincRNA can modify the structure of MIAT and thus leading to increased binding of miR-150-5p and

consequently inhibiting the degradation of its target genes such as VEGF.

immediate early response 3 (IER3) and several HLA forms (32).
IER3 was reported to inhibit pro-inflammatory cytokines but the
exact role of LINC00243 in immune-function and its putative

link to cardiometabolic diseases requires further evaluation. One
of the SNPs associated to T2D (rs231362) in the KCNQ1 locus
overlaps both KCNQ1OT1 lncRNA antisense and the intron 11
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of KCNQ1 (32). Several other polymorphisms in KCNQ1 locus
associated also with cardiovascular events (82) and some showed
protective effect against arrhythmic risk in long-QT syndrome
(83). Both KCNQ1OT1 and CDKN2B-AS1 were shown to be
valid predictors of left ventricle dysfunction after an MI (71).
KCNQ1OT1 is an imprinted gene that is expressed only from
the paternal allele and responsible to silence a proximal cluster
of genes (84). Mechanistically, KCNQ1OT1 acts as a scaffold
for the chromatin modifiers HMT G9a and PRC2 as well as
DNA methyltransferase Dnmt1 which exerts gene repression
by histone modifications and DNA methylation, respectively
(84).

Finally, the ARIC (Atherosclerosis Risk in Communities)
study intended to establish genetic loci associated to ECG global
electrical heterogeneity (GEH) and consequently changes in
QT measurements and one of the identified loci contained
the lncRNA LINC02137 (33). LINC02137 was highly expressed
in human heart atrial-appendage region and eQTL analysis
showed that variant rs4784934 significantly associated with the
expression of LINC02137 and gene NDRG4 in atrial tissue.
NDRG4 was reported to be necessary for sodium channel
trafficking in the nervous system but also associated with
cardiomyopathy (85).

FUTURE PERSPECTIVES OF LNCRNA
GENETIC VARIANTS

Determination of potential causality among genetic variants
associated with cardiovascular and cardiometabolic diseases
remains a challenging future task. In the case of the functional
analysis of lncRNAs it is important to consider their low
expression levels and high degree of tissue and cell type
specificity. For example, tissue-specific expression quantitative
trait loci (eQTL) analysis of lncRNAs is a strong tool to
associate certain variants to downstream effectors. Genotype-
Tissue Expression (GTEx) project provides the possibility to
study tissue-specific gene expression and regulation on large scale
with 44 various tissues in 449 individuals, which allowed to build
up a resourceful platform in order to identify genetic associations
both for local (cis eQTLs) and distal (trans eQTLs) effects (86).
Nonetheless, it is relevant to indicate some limitations inherent
to this analysis tool such as the inability to detect small size
effect eQTLs due to multiple test burden, or the fact that eQTL
effects are strongly tissue specific which hinders the inference of
functionality and therefore caution must be taken to extrapolate
conclusions to other tissues.

Novel lncRNA were localized near leukocyte enhancers
and close to GWAS identified risk variants for autoimmune
diseases suggesting alterations in enhancers or super enhancers
might be associated to changes in phenotype and disease risk
(87). SNP in close proximity or even in far distance (e.g., in
trans location to the variant), may help unravel the complex
regulatory events of cardiovascular disease including underlying
importance of enhancers or super-enhancers (88). Yet, the term
“super-enhancer” is under debate since a clear definition has
not been established and their functional properties do not

necessarily set them apart from regular enhancers (89). Another
task for future studies is to determine the role of lncRNAs
and their genetic variants in the maintenance and remodeling
of the chromatin structure that drives interactions between
enhancers and transcription initiation sites. Chromosome
Conformation Capture (C3) technologies such as HiC (90,
91) or chromatin interaction analysis by paired-end tag
sequencing (ChIA-PET) (92) will be useful as genome-wide
approaches to study chromatin structural changes and to
define the impact of genetic variants in long-range chromatin
interactomes.

The advent of new sequencing technologies that improve
current throughput, length of reads and cost will increase the
number of annotated lncRNAs and help to define their complex
transcript models. One of such technologies is capture long-
read sequencing (CLS), a technique that uses lncRNA capture
enrichment with nanopore technology, which allows sequencing
of longer fragments (∼1.5 kb) for characterizing the lncRNA
structure (93). This highly promising approach would greatly
improve the task of defining exon connectivity and therefore
splicing transcript models.

Another feature to improve is our ability to predict and
characterize lncRNA structural motifs and their underlying
functional domains. Computational analysis approaches are
able to predict the formation of loops and simple helices but
are not so successful to define more complex motifs (94).
New high-throughput techniques based on new generation
sequencing (NGS) technologies emerged to define new motifs
and validate computational predictions in a genome-wide scale
(94). These methods use diverse RNA nucleases (ssRNA or
dsRNA) or chemical probes in combination with NGS to analyze
full transcriptomes in techniques such as Parallel Analysis of
RNA Structure (PARS) (95), Fragmentation Sequencing (96) or
Selective 2′ hydroxyl acylation analyzed by primer extension
(SHAPE) (97, 98). For a detailed functional characterization of
lncRNAs, novel identify structural domains should be linked
to interactome information that can be obtained with novel
technologies such as ChIRP (99) and CHART (100). These
techniques allow the identification of specific lncRNA interacting
partners such as RBPs and can also delimit the interaction sites to
specific domains within the RNA molecule.

Lastly, it will be relevant to understand the potential
regulatory effects that genetic variants within lncRNA have on
regulation of CpG islands in cardiometabolic disorders (32). In
fact, an integrative analysis of 11 human data sets generated
a reference human epigenome as a framework to characterize
GWAS variants that alter the epigenomic profile during complex
human diseases (101), which can be also used to profile the
non-coding genome.

In summary, in the post-GWAS era many relevant factors
must be considered in order to study the effect of genetic
variation in lncRNA, some of which comprise differential tissue
expression, splicing isoforms models, RNA structural prediction
and functional domain identification, and identification
of lncRNA interacting partners such as RBPs. The high
proportion of disease-associated SNPs lying in non-coding
regions highlighted their functional relevance and prompted a
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better understanding of lncRNA biology as well as regulatory
regions such as enhancer to unravel their potential role in
cardiometabolic diseases. The expansion of the GWAS field
to explore the functionality of lncRNA but also other non-
coding RNAs will provide potential novel regulatory causal
mechanisms of cardiovascular disease. This research area
warrants interesting new insights into underlying mechanisms
that determine the genetic component of human disease
and will clear the path toward a personalized medicine
approach.
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