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Schizophrenia is characterized by positive and negative symptoms and cognitive dys-
function. The glutamate hypothesis of schizophrenia has been hypothesized to explain 
the negative symptoms and cognitive deficits better than the dopamine hypothesis alone. 
Therefore, we aimed to evaluate whether glutamatergic variants such as d-amino acid 
oxidase (DAO), DAO activator (DAOA)/G72, and neuregulin 1 (NRG1) single-nucleotide 
polymorphisms (SNPs) and their mRNA levels predicted (i) transition to schizophrenia 
spectrum disorders and (ii) research domain criteria (RDoC) domains, mainly negative 
valence and cognitive systems. In a 3-year prospective study cohort of 185 individuals 
(age: 13–35 years) at high risk and ultra-high risk (UHR) for psychosis, we assessed 
DAO (rs3918347, rs4623951), DAOA (rs778293, rs3916971, rs746187), and NRG1 
(rs10503929) SNPs and their mRNA expression. Furthermore, we investigated their 
association with RDoC domains, mainly negative valence (e.g., anxiety, hopelessness) 
and cognitive (e.g., perception disturbances, disorganized symptoms) systems. NRG1 
rs10503929 CC + CT versus TT genotype carriers experienced significantly more disor-
ganized symptoms. DAOA rs746187 CC versus CT + TT genotype, DAOA rs3916971 
TT versus TC  +  CC genotype, and DAO rs3918347 GA  +  AA versus GG genotype 
carriers experienced nominally more hopelessness, visual perception disturbances, and 
auditory perception disturbances, respectively. The schizophrenia risk G-allele of DAO 
rs3918347 nominally increased risk for those UHR individuals with attenuated positive 
symptoms syndrome. No association between DAO, DAOA, NRG1 SNPs, and conver-
sion to schizophrenia spectrum disorders was observed. Our findings suggest that DAO, 
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DAOA, and NRG1 polymorphisms might influence both RDoC negative valence and 
cognitive systems, but not transition to schizophrenia spectrum disorders.

Keywords: d-amino acid oxidase/DAO/DAAO, d-amino acid oxidase activator/G72/DAOA, neuregulin 1/NRG1, 
attenuated positive symptoms syndrome/APSS, single-nucleotide polymorphism/SNP, research domain criteria/
RDoC

glutamatergic system is an attractive therapeutic target (18). Meta-
analyses have reported that addition of NMDA receptor agonist 
d-serine and glycine transporter type 1 inhibitor sarcosine as an 
adjunct to antipsychotics reduce total and negative symptoms 
(19, 20). Based on these observations, the glutamate hypothesis 
is thought to describe the pathophysiology underlying nega-
tive symptoms and cognitive deficits better than the dopamine 
hypothesis (21–23). NMDA receptor hypofunction might lead to 
decreased dopamine activity in the mesocortical pathway, which 
may manifest as negative symptoms and cognitive dysfunction 
in schizophrenia (24). The NMDA receptor hypofunction theory 
proposed in schizophrenia might be partly explained by increased 
DAO activity modulated by DAOA leading to decreased d-serine, 
a co-agonist of NMDA receptors (25). The function of NRG1 is 
mediated by binding to receptor tyrosine kinases called ErbB 
(ErbB3 and ErbB4), and an altered NRG1/ErbB4 signaling is 
thought to result in NMDA receptor hypofunction (26, 27). These 
studies highlight the potential pathogenic link between NMDA 
receptor hypofunction and dysregulation of DAO, DAOA, and 
NRG1 genes.

The National Institute of Mental Health started the research 
domain criteria (RDoC) initiative to guide and organize research 
in psychiatric disorders beyond the typical diagnostic classifica-
tion approach (28). This initiative provides a non-disease-based 
structured conceptual framework to understand the dimensional 
range of human behavior from normal to abnormal by integrating 
multiple levels of information (from genomics to self-reports). 
The RDoC represents a paradigm shift from Diagnostic and 
Statistical Manual of Mental Disorders (DSM)/International 
Classification of Diseases (ICD) to dimensional approaches with 
an aim to integrate basic research and psychopathology (29).

In this study, we aimed (1) to identify predictive glutamatergic 
genetic polymorphisms in at-risk individuals for transition to 
schizophrenia spectrum disorders, (2) to identify endopheno-
types potentially linked to the glutamatergic system in at-risk 
individuals using RDoC constructs, and (3) to evaluate differ-
ences in DAO, DAOA, and NRG1 mRNA levels across clinical 
and RDoC domains.

MATERIALS AND METHODS

Study Population
Participants were recruited by the “Early Recognition and 
Intervention Program for Psychosis and Bipolar Disorder” pro-
ject as part of the Zurich Program for Sustainable Development 
of Mental Health Services (ZInEP)1 in the Canton of Zurich, 

1 http://www.zinep.ch.

INTRODUCTION

Schizophrenia is a chronic and debilitating disorder, preceded by 
a broad range of symptoms. The emergence of psychotic features 
in schizophrenia is typically between the late teens and mid-30s 
(1). Early recognition of individuals at-risk for psychosis and 
the provision of early intervention is likely to be associated with 
improved outcomes (2). Individuals at clinical risk for psychosis 
are identified by two complementary approaches: the high risk 
(HR) and the ultra-high risk (UHR) criteria. The HR concept is 
based on basic symptoms and comprises two partially overlap-
ping risk constellations, the cognitive-perceptive (COPER) basic 
symptoms and the cognitive disturbances (COGDIS) (3, 4). The 
UHR criteria comprise attenuated positive symptoms syndrome 
(APSS), brief limited intermittent psychotic symptoms (BLIPS), 
and a combination of a risk factor for psychosis and a recent func-
tional decline (5). A meta-analysis of 27 studies showed that 18, 
21, 27, and 32% of individuals at-risk for psychosis (HR + UHR) 
transitioned to psychotic disorders at 6, 12, 24, and 36 months 
of follow-up, respectively (6). This meta-analysis also showed 
that the mean transition risk was 49, 28, and 22% using the HR 
approach, UHR approach, and when combining both HR and 
UHR approaches, respectively (6). One study reported that about 
one-third of individuals at UHR for psychosis transitioned to 
psychosis (7). Our recent study, using a multivariable prediction 
model, demonstrated that as expected, UHR criteria predicted 
conversion to psychosis but combining HR and UHR criteria 
in this help-seeking at-risk population did not improve the 
predictive accuracy of UHR alone (8). Therefore, it is important 
to optimize the identification of individuals at HR/UHR for 
psychosis by minimizing the false positive rate and improving 
the true positive prediction rate of conversion to psychosis.

The estimated heritability in schizophrenia is around 
60–80% (9). Studies have demonstrated an association between 
schizophrenia and d-amino acid oxidase (DAO), DAO activa-
tor (DAOA)/G72, and neuregulin 1 (NRG1) single-nucleotide 
polymorphisms (SNPs) (10, 11). DAOA and NRG1 polymor-
phisms were shown to predict the transition to schizophrenia in 
individuals at HR/UHR for psychosis (12–14). Genetic studies 
in schizophrenia have shown the association of neurocognitive 
endophenotypes with several glutamatergic gene polymorphisms 
including NRG1 (15–17). These studies suggest that genetic vari-
ations and neurocognitive endophenotypes may help to improve 
the prediction accuracy of clinical symptoms and HR/UHR 
criteria for transition in an at-risk population.

The glutamate hypothesis of schizophrenia originated from 
the observation that N-methyl-d-aspartate (NMDA) receptor 
blockers like ketamine induced schizophrenia-like symptoms. 
As antipsychotics (dopamine D2 receptor antagonists) have 
little effect on negative symptoms and cognitive deficits, the 
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Switzerland. The detailed design, inclusion, and exclusion crite-
ria of the study were described in our previous studies (30, 31).  
A total of 185 individuals aged 13–35 years at HR/UHR for psy-
chosis were assessed at baseline and were subsequently followed-
up at 6, 12, 24, and 36 months for the transition to schizophrenia. 
At 36  months follow-up, 50% of individuals (n =  93) dropped 
out of the study. The dropouts were due to refusal to participate 
in the study in most of the cases and due to non-response after 
contacting in few cases. However, we are unable to give exact 
numbers of individuals who refused to participate or who did 
not respond due to missing information in several study par-
ticipants. Individuals at HR for psychosis were assessed using the 
Schizophrenia Proneness Instrument-Child and Youth version 
(SPI-CY) (age < 18 years) (32, 33) or Schizophrenia Proneness 
Instrument-Adult version (SPI-A) (age ≥ 18 years) (34) and were 
included when they had one COPER basic symptom or at least 
two COGDIS. Individuals at UHR for psychosis were assessed 
using the Structured Interview for Prodromal Syndromes (SIPS) 
(35, 36) and were included when they met criteria for the APSS 
or the BLIPS or the state-trait criteria (>30% reduction in global 
assessment of functioning in the past year plus either schizotypal 
personality disorder or a first-degree relative with psychosis). 
The transition to schizophrenia was defined according to ICD-
10 criteria (37). The severity of positive and negative symptoms 
was assessed using the Positive and Negative Syndrome Scale 
(PANSS) (38), severity of depressive symptoms with the Calgary 
Depression Rating scale for Schizophrenia (CDSS) (39), and anxi-
ety symptoms with the Beck Anxiety Inventory (BAI) (40). The 
demographic and diagnostic characteristics of the study popula-
tion are shown in Table S1 in Supplementary Material. This study 
was approved by the Cantonal Ethics Commission of Zurich (Ref. 
Nr. EK: E-63/2009) and complies with the Declaration of Helsinki. 
Informed written consent was obtained from adult participants 
and legal guardians of minors, and written assent was obtained 
from minors.

Phenotypic Domains
The participants were grouped into clinical phenotypes (cases 
versus controls) namely, converters to schizophrenia spectrum 
disorders (n = 27), i.e., schizophrenia, schizophreniform disor-
der, and acute psychotic disorder, versus non-converters (n = 65) 
at 36 months follow-up [dropouts (n = 93)], and APSS (n = 98) 
group versus all other help-seeking individuals (BLIPS, state-trait 
criteria, COGDIS, COPER; n  =  87) at baseline. The transition 
to schizophrenia was defined according to ICD-10 criteria (37).

First, we grouped our cohort as per the factor structure of the 
PANSS, concentrating on negative symptoms and general psy-
chopathology (38). As we did not find any significant differences 
in negative symptoms (sum score of negative (N1–N7) PANSS 
subscale) and general psychopathology (sum score of general psy-
chopathology (G1–G16) PANSS subscale) across DAO, DAOA, 
and NRG1 SNPs, we then decided to use an exploratory approach 
by focusing on subgroups of psychopathology constructs defined 
according to the RDoC domains. The RDoC framework consists 
of five domains namely, negative valence systems, positive 
valence systems, cognitive systems, systems for social process, 
and arousal/regulatory systems (41). In this study, we decided to 

concentrate on two RDoC domains: negative valence systems and 
cognitive systems, due to the potential role of DAO, DAOA, and 
NRG1 polymorphisms in the glutamate hypothesis of schizophre-
nia, as it appears to explain the pathogenesis of negative symp-
toms and cognitive deficits better than the dopamine hypothesis  
(22, 23, 42) and unavailability of relevant neuropsychological 
scales in our study to create the positive valence domain. Negative 
valence systems focus on responses to aversive situations, such as 
fear, anxiety, and loss. Cognitive systems concentrate on various 
cognitive processes, such as perception, language, memory, and 
cognitive control. Within negative valence systems, we focused 
on the constructs of threat (acute and sustained) and loss. The 
negative valence system construct of threat was assessed by the 
total score of BAI with higher BAI scores pointing to increased 
severity of anxiety (40). The negative valence system construct 
loss was assessed by the response to the CDSS item 2 “hopeless-
ness,” which can be scored as 0 (absent), 1 (mild), 2 (moderate), or 
3 (severe) (39). Within cognitive systems, we chose the constructs 
of perception (visual and auditory) and cognitive control. The 
cognitive system construct visual perception was assessed by 
summing the following four SPI-A (and equivalent SPI-CY) items 
O4 (other visual perception disturbances), F1 (hypersensitivity to 
light), F2 (photopsia), and F3 (micropsia/macropsia), with higher 
scores pointing to more frequent disturbances in visual percep-
tion. The cognitive system construct of auditory perception was 
assessed by summing the following three SPI-A (and equivalent 
SPI-CY) items O5 (other acoustic perception disturbances), F4 
(hypersensitivity to sounds/noise), and F5 (changed intensity/
quality of acoustic stimuli), with higher scores pointing to more 
frequent disturbances in auditory perception. The cognitive 
system construct of cognitive control was obtained by summing 
the following four SIPS disorganization items D1, D2, D3, and D4 
(35, 36), with higher scores indicating more severe disturbance in 
disorganized symptoms.

The above-mentioned scales used to tap into RDoC domains 
were assessed at baseline and last-available follow-up until 
36  months. As there was a dropout rate of 50% at 36  months, 
if there were no data available at 36 months, we took the scores 
from the last follow-up that the individual attended (i.e., 6 or 12 
or 24 months).

TaqMan SNP Genotyping
The study population was genotyped for DAO (rs3918347, 
rs4623951), DAOA (rs778293, rs3916971, rs746187), and NRG1 
(rs10503929) SNPs. These SNPs were selected based on previ-
ously reported significant association with schizophrenia (10, 
43). In our recent meta-analysis, we found a significant associa-
tion of DAO rs4623951 [odds ratio (OR) = 0.88; minor allele: C], 
DAOA rs778293 (OR = 1.17; minor allele: G), DAOA rs3916971 
(OR = 0.84; minor allele: T), and NRG1 rs10503929 (OR = 0.89; 
minor allele: C) with schizophrenia (11). In this study, the carriers 
of the risk allele of DAO, DAOA, and NRG1 SNPs were anticipated 
to have worse psychopathology scores in RDoC-negative valence 
and cognitive system constructs. DNA was isolated from whole 
blood ethylenediaminetetraacetic acid tubes collected from the 
study population using QIAamp DNA Blood Maxi Kit (Qiagen) 
as per manufacturer’s protocol. A spectrophotometer (NanoVue 
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Plus, GE) was used to measure DNA concentrations, A260/A280, 
and A260/A230 ratios. The study population was genotyped for 
DAO (rs3918347 assay number: C_27937201_10, rs4623951 assay 
number: C_32177440_10, both from Applied Biosystems, USA), 
DAOA (rs778293 assay number: C_8704507_10, rs3916971 
assay number: C_27495752_10, rs746187 assay number: 
C_1925241_10, all from Applied Biosystems, USA), and NRG1 
(rs10503929, assay number: C_2870393_10, Applied Biosystems, 
USA) SNPs (44). DNA (10 ng/µl); TaqMan® Genotyping Master 
Mix (Applied Biosystems, USA); and above-mentioned DAO, 
DAOA, and NRG1 SNP Genotyping Assays (Applied Biosystems, 
USA) were combined in a 384-well plate. Real-time polymerase 
chain reaction (PCR) was performed in a C1000™CFX384TM 
Thermal cycler (Bio-Rad) using TaqMan® SNP Genotyping Assay 
PCR standard protocol. The allelic discrimination program of 
Bio-Rad CFX Manager™ Software version 2.1 was used to deter-
mine genotypes (44). Samples were run in duplicates to ensure 
correct results. In case of ambiguity in duplicates, genotyping was 
repeated in a separate run to ensure correct results. No-template 
controls were included in every run to exclude impurities.

Quantification of NRG1, DAO, and DAOA 
mRNA Levels Using Quantitative Real-
time Reverse Transcription-Polymerase 
Chain Reaction (qRT-PCR)
RNA was isolated from whole blood collected from the study 
population using PAXgene Blood RNA Kit (Qiagen) according 
to manufacturer’s protocol. A spectrophotometer (NanoVue Plus, 
GE) was used to measure RNA concentrations, A260/A280, and 
A260/A230 ratios. RNA integrity was analyzed using Experion 
automated electrophoresis system (Bio-Rad) in a subset of 
samples to ensure RNA integrity number/RNA quality indica-
tor >7. RNA (500  ng) was reverse transcribed using iScript™ 
cDNA Synthesis Kit (Bio-Rad) as per manufacturer’s protocol. 
In a subset of samples, negative controls were prepared with 
RNA using iScript™ cDNA Synthesis Kit (Bio-Rad) without 
reverse transcriptase enzyme as per manufacturer’s protocol. 
qRT-PCR was performed using cDNA, QuantiFast SYBR Green 
PCR kit (Qiagen), 1 µM NRG1 primer (QT00061964, Qiagen), 
and reference genes [β-actin (ACTB) (QT01680476), aminole-
vulinate synthetase (ALAS1) (QT00073122), ribosomal protein 
L13a (RPL13A) (QT00089915), alanyl-tRNA synthetase (AARS) 
(QT00054747), glyceraldehyde-3-phosphate dehydrogenase 
(GAPDH) (QT01192646), peptidyl prolyl isomerase A (PPIA) 
(QT00866137), and X-prolyl aminopeptidase1 (XPNPEP1) 
(QT00051471); all from Qiagen]. NRG1 mRNA levels were 
normalized to the references genes (44). PCR efficiencies were 
calculated using LinReg PCR program (45), and mean PCR effi-
ciencies for all studied amplicons were found to be between 91 
and 93%. Normalized NRG1 mRNA levels were quantified using 
qBASE plus software (Biogazelle), which utilizes gene-specific 
amplification efficiencies and allows normalization with multiple 
reference genes (46).

We performed qRT-PCR to detect DAO mRNA using 
DAO primers described by Verrall et  al. (47) and predesigned 
primers [qHsaCID0011122 and qHsaCEP0058247 (Bio-Rad), 

Hs.PT.58.3248433 and Hs.PT.58.45768871 (IDT)]. We per-
formed qRT-PCR to detect DAOA mRNA using primers for 
DAOA gene described by Benzel et al. (48), Cheng et al. (49), and 
pre-designed primers [QT00058863 (Qiagen), Hs.PT.58.555086 
(IDT), 4331182 (ThermoFisher scientific), qHsaCEP0024792 
(Bio-Rad)]. QuantiTect Whole Transcriptome Kit (207043, 
Qiagen) followed by qRT-PCR was also used to detect DAO and 
DAOA mRNA levels (44). However, we were unable to quantify 
DAO and DAOA mRNA with the aforementioned methods in the 
whole blood as either no signal was observed or genomic DNA 
was amplified concomitantly.

Statistical Analysis
The results from SNP genotyping was analyzed using PLINK 
software (50). The minor allele frequency (MAF) and deviation 
from Hardy-Weinberg Equilibrium (HWE) was computed using 
PLINK software, and p  <  0.05 was considered as statistically 
significant. The DAO (rs3918347), DAOA (rs3916971, rs778293, 
rs746187), and NRG1 (rs10503929) SNPs were in HWE (p > 0.05), 
and the MAF of DAO, DAOA, and NRG1 SNPs were similar to 
HapMap CEU MAF (Table S5 in Supplementary Material). The 
DAO rs4623951 SNP deviated from the HWE (p < 0.05; Table 
S4 in Supplementary Material). The differences in allele and 
genotype frequencies across clinical phenotypes (cases versus 
controls) were assessed using Chi-square test, and p < 0.05 was 
considered as statistically significant. The OR, 95% CI, and p value 
for SNP models (allelic, dominant, and recessive) across clinical 
phenotypes were calculated from allele/genotype frequencies 
using an online OR calculator,2 and p value was adjusted based on 
the number of analyzed SNPs (Bonferroni correction, p < 0.008). 
The post hoc power analyses for association of DAO, DAOA, and 
NRG1 SNPs with converters to schizophrenia spectrum disorders 
versus non-converters (Table S5 in Supplementary Material) and 
APSS versus all other help-seeking group were conducted using 
Fisher’s exact test of independence in G*Power software (51), the 
calculated OR was used, and the alpha level was set at 0.05.

IBM® SPSS® Statistics (version 21) software was used for 
statistical analysis. Shapiro–Wilk test with Lilliefors significance 
correction was used to assess the normality of the distribution 
of NRG1 gene expression and clinical scales (BAI, CDSS, SPI-A/
SPI-CY, SIPS, and PANSS). NRG1 gene expression and clinical 
scales showed both normal and non-normal distribution. We 
used non-parametric tests even for normally distributed data to 
maintain consistency between statistical evaluations. The differ-
ences in RDoC domains (negative valence and cognitive systems) 
across models (genotypic, dominant, recessive) were assessed 
using Mann–Whitney test (for two groups) or Kruskal–Wallis test 
(for >2 groups), and p values were adjusted based on the number 
of constructs analyzed (Bonferroni correction, p <  0.008). The 
differences in NRG1 mRNA levels across clinical phenotypes 
were assessed using Mann–Whitney test, and p < 0.05 was set as 
statistically significant. The post hoc power analyses for RDoC-
negative valence and cognitive systems across DAO, DAOA, and 

2 https://www.medcalc.org/calc/odds_ratio.php.
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Figure 1 | Differences in research domain criteria (RDoC) negative valence system loss across d-amino acid oxidase activator (DAOA) rs746187 genotypes. 
Differences in Calgary Depression Scale for Schizophrenia (CDSS) item 2: hopelessness scale across DAOA rs746187 genotypes in genotype (A), dominant  
(B), and recessive (C) model at baseline and last-available follow-up time point until 36 months. Data are presented as mean ± SEM; #0.008 < p < 0.05 (significant 
without Bonferroni correction).
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NRG1 SNPs were conducted using analysis of variance test for 
three groups or t-test for two groups in G*Power software (51), 
the effect sizes were determined from means of neuropsychologi-
cal scales used in RDoC-negative valence and cognitive systems, 
and the alpha level was set at 0.05 (Table S7 in Supplementary 
Material). The differences in NRG1 mRNA levels across NRG1 
rs10503929 SNP genotypes was assessed using Kruskal–Wallis 
test, and across dominant (CC + CT, TT) and recessive models 
(CC, CT + TT) were assessed using Mann–Whitney test, with 
p  <  0.05 being set as statistically significant. The correlation 
between NRG1 gene expression and RDoC domains (negative 
valence and cognitive systems) was assessed using Spearman’s 
rank correlation test, and p  <  0.05 was considered statistically 
significant.

RESULTS

The DAO (rs3918347), DAOA (rs3916971, rs778293, rs746187), 
and NRG1 (rs10503929) SNPs were in HWE (p > 0.05), and the 
MAF of DAO, DAOA, and NRG1 SNPs were similar to HapMap 
CEU MAF (Table S2 in Supplementary Material).

DAO, DAOA, and NRG1 Polymorphisms 
across Clinical Phenotypes
There were no significant associations between DAO, DAOA, and 
NRG1 SNPs with converters to schizophrenia spectrum disorders 
compared to non-converters at 36  months follow-up (power 
range: 0.05–0.31; Table S3 in Supplementary Material). However, 
there was a nominal association (p > 0.008) of DAO rs3918347 
with APSS compared to all other help-seeking group at baseline, 
and the G-allele had a tendency to be a risk allele for APSS 
(OR = 1.84, 95% CI = 1.13–3.01, p = 0.01), with a power of 0.76 
(Table S4 in Supplementary Material). There were no significant 
associations between the rest of the DAO, DAOA, NRG1 SNPs 

and APSS (power range: 0.05–0.89; Table S4 in Supplementary 
Material).

DAO, DAOA, and NRG1 Polymorphisms 
across RDoC Domains
d-amino acid oxidase activator rs746187 recessive (CC) geno-
type carriers experienced nominally more hopelessness (higher 
item 2 score, CDSS) than CT + TT genotype carriers at the last-
available follow-up time point (LA) until 36 months (p = 0.04) 
analyzed by Mann–Whitney test (RDoC-negative valence sys-
tem: loss; Figures 1A–C; power = 0.62; effect size = 0.55; Table 
S8 in Supplementary Material). DAOA rs3916971 recessive (TT) 
genotype carriers experienced nominally more disturbances in 
visual perception (higher sum of O4 + F1 + F2 + F3, SPI-A) than 
TC + CC genotype carriers at LA until 36 months (p = 0.009) 
analyzed by Mann–Whitney test (RDoC cognitive system: visual 
perception; Figures  2A–C; power  =  0.28; effect size  =  0.34; 
Table S8 in Supplementary Material). Individuals with DAOA 
rs3916971 TC  +  CC versus TT genotype improved and had 
fewer visual perceptual disturbances at LA until 36  months 
compared to baseline, but at LA until 36 months versus base-
line, they continued to have less visual perceptual disturbances 
than individuals with TT genotype (Figure  2C). There were 
no significant differences in negative valence (threat; Table S5 
in Supplementary Material; power range: 0.05–0.72, Table S8 
in Supplementary Material), auditory perception disturbances 
(Table S6 in Supplementary Material; power range: 0.05– 
0.56, Table S8 in Supplementary Material), and cognitive control 
(Table S7 in Supplementary Material; power range: 0.05–0.31, 
Table S8 in Supplementary Material) in individuals with DAOA 
SNP genotypes (rs3916971, rs778293, rs746187).
d-amino acid oxidase rs3918347 GA  +  AA genotype carriers 
experienced nominally (p  =  0.04) more disturbances in audi-
tory perception (higher sum of O5 + F4 + F5, SPI-A) than GG 
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Figure 3 | Differences in research domain criteria (RDoC) cognitive system auditory perception across d-amino acid oxidase activator (DAO) rs3918347 genotypes. 
Differences in Schizophrenia Proneness Instrument-Adult version (SPI-A) O5 + F4 + F5 sum score across DAO rs3918347 genotypes in genotype (A), dominant  
(B), and recessive (C) model at baseline and last-available follow-up time point until 36 months. Data are presented as mean ± SEM; #0.008 < p < 0.05 (significant 
without Bonferroni correction).

Figure 2 | Differences in research domain criteria (RDoC) cognitive system visual perception across d-amino acid oxidase activator (DAOA) rs3916971  
genotypes. Differences in Schizophrenia Proneness Instrument-Adult version (SPI-A) O4 + F1 + F2 + F3 sum score across DAOA rs3916971 genotypes in  
genotype (A), dominant (B), and recessive (C) model at baseline and last-available follow-up time point until 36 months. Data are presented as mean ± SEM; 
#0.008 < p < 0.05 (significant without Bonferroni correction).
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genotype carriers at baseline analyzed by Mann–Whitney test 
(RDoC cognitive system: auditory perception; Figures  3A–C; 
power  =  0.41; effect size  =  0.44; Table S8 in Supplementary 
Material). Individuals with DAO rs3918347 GA + AA versus GG 
genotype improved and had lesser auditory perceptual distur-
bances at LA until 36 months compared to baseline, but at LA 
until 36  months versus baseline, they continued to experience 
more auditory perceptual disturbances than individuals with CC 
genotype (Figure 3C). We did not find significant differences in 
negative valence systems (anxiousness and hopelessness; Table S5 
in Supplementary Material; power range: 0.05–0.92, Table S8 in 
Supplementary Material), visual perception disturbances (Table 
S6 in Supplementary Material; power range: 0.05–0.57, Table 

S8 in Supplementary Material), and cognitive control (Table S7 
in Supplementary Material; power range: 0.05–0.22, Table S8 in 
Supplementary Material) in individuals with DAO (rs3918347, 
rs4623951) SNP genotypes.

Neuregulin 1 rs10503929 CC + CT genotype carriers had sig-
nificantly (p = 0.001) more disorganized symptoms (higher sum 
of the D1–D4 score, SIPS) than TT genotype carriers at baseline 
analyzed by Mann–Whitney test (RDoC cognitive system: cogni-
tive control; Figures 4A–C; power = 0.99; effect size = 0.59; Table 
S8 in Supplementary Material). There were no significant differ-
ences in negative valence systems (anxiousness and hopelessness; 
Table S5 in Supplementary Material; power range: 0.07–0.51, 
Table S8 in Supplementary Material) and visual and auditory 
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Figure 4 | Differences in research domain criteria (RDoC) cognitive system cognitive control across neuregulin 1 (NRG1) rs10503929 genotypes. Differences in 
Structured Interview for Prodromal Syndromes (SIPS) sum score of D1-D4 across NRG1 rs10503929 genotypes in genotype (A), dominant (B), and recessive  
(C) model at baseline and last-available follow-up time point until 36 months. Data are presented as mean ± SEM; *p < 0.008 (significant with Bonferroni correction).
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perception disturbances (Table S6 in Supplementary Material; 
power range: 0.05–0.36, Table S8 in Supplementary Material) in 
individuals with NRG1 (rs10503929) SNP genotypes.

To analyze the effect of age on RDoC domains across DAO, 
DAOA, and NRG1 SNPs, we performed an analysis of covariance 
with age as a covariate after transformation of not normally dis-
tributed BAI, SPI-A, and SIPS data, as described previously (52). 
We did not find a significant effect of age on differences in RDoC 
domains across DAO, DAOA, and NRG1 SNPs (data not shown).

NRG1, DAO, and DAOA mRNA Expression 
across RDoC and Clinical Domains
There was a significant positive correlation between increased 
NRG1 mRNA levels and higher scores on the RDoC-negative 
valence system loss at LA until 36 months (Table S9 in Supple
mentary Material). Apart from this, there were no significant 
correlations between NRG1 mRNA levels and RDoC domains at 
baseline and at LA until 36 months (Table S9 in Supplementary 
Material). There were no statistically significant differences in 
NRG1 mRNA levels across clinical phenotypes (Table S10 in 
Supplementary Material). We did not find significant differences 
in NRG1 mRNA levels across NRG1 rs10503929 SNP genotypes, 
dominant, and recessive models analyzed by Mann–Whitney and 
Kruskal–Wallis tests (Table S11 in Supplementary Material). We 
were unable to quantify DAO and DAOA mRNA levels in the 
whole blood of at-risk population.

DISCUSSION

In this 3-year follow-up study of 185 at-risk individuals, NRG1 
rs10503929 CC + CT versus TT genotype carriers experienced 
significantly more disorganized symptoms, DAOA rs746187 CC 
versus CT + TT genotype, DAOA rs3916971 TT versus TC + CC 
genotype, and DAO rs3918347 GA +  AA versus GG genotype 

carriers experienced nominally more hopelessness, visual percep-
tion disturbances, and auditory perception disturbances, respec-
tively. Moreover, we found no significant association between 
DAO, DAOA, NRG1 SNPs, and conversion to schizophrenia 
spectrum disorders; however, we did find a nominally increased 
risk for APSS with the G-allele of DAO rs3918347 carriers.

The DAO, DAOA, and NRG1 SNPs did not predict conversion 
to schizophrenia spectrum disorders at 36  months follow-up. 
This lack of association may be due to a low conversion rate of 
14.6%, a high dropout rate of 50% at 36 months follow-up, and 
that the comparison group of non-converters was not a healthy 
control group but rather a heterogeneous group of HR and UHR 
individuals. In this heterogeneous at-risk population, individuals 
are likely to be on different developmental trajectories of/toward 
various neuropsychiatric disorders, which might have further 
complicated the genetic prediction of transition to schizophre-
nia in our study. Furthermore, our conversion group not only 
contained patients with schizophrenia but also patients with 
other schizophrenia spectrum disorders. Thus, recruiting a more 
homogeneous at-risk population has been more appropriate  
(53, 54). In contrast to previous meta-analyses showing conver-
sion rates of 29–32% at 36 months follow-up (4, 6), our study had 
a low conversion rate of 14.6%. A study of 82 UHR individuals 
showed that 100% of the DAOA rs1341402 CC genotype carriers 
(n = 4) compared to 50% of the DAOA rs778294 AA genotype 
carriers (n = 10; A-allele protective against schizophrenia) pro-
gressed to psychosis within 24 months (13). However, a recent 
study with 225 UHR individuals did not replicate these findings 
(14). Furthermore, another study of 67 UHR individuals showed 
that 100% of TT genotype carriers (n = 25) of NRG1 rs62510682 
developed psychosis within 12-months (12), but this finding 
was not replicated in the aforementioned study with 225 UHR 
individuals (14). About 46% of the NRG1 rs4281084 AA genotype 
UHR carriers (n  =  13) and 44% of the T-allele UHR carriers 
(n  =  45) transitioned to psychosis within a 15-year follow-up 
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period (14). Thus, there is ambiguity regarding the association 
of DAOA and NRG1 polymorphisms with the transition to psy-
chosis. We did not assess the aforementioned DAOA and NRG1 
SNPs in this study as we only focused on the SNPs associated with 
schizophrenia (10, 43).

Our finding that NRG1 rs10503929 TT genotype carriers 
had significantly less disorganized symptoms than the dominant 
(CC + CT) genotype carriers at baseline (RDoC cognitive control) 
is consistent with previous finding of a significant association of 
NRG1 rs10503929 with cognitive domains (abstraction and men-
tal flexibility, attention, and verbal memory) in schizophrenia 
patients, in which the C-allele (protective against schizophrenia) 
was associated with decreased cognitive performance (55). We 
found that NRG1 rs10503929 (CT  +  TT) versus CC genotype 
carriers had nominally more auditory perception disturbances. 
To our knowledge, there are no previous studies on associations 
between the NRG1 rs10503929 (exon 8/9/10) and perceptual 
disturbances. However, a study in adolescents demonstrated 
that NRG1 rs3924999 (exon 2) was associated with perceptual 
disturbances (56).

The nominal associations between DAOA rs746187 and the 
RDoC-negative valence system: loss, and that between DAOA 
rs3916971 and the RDoC cognitive system: visual perception, 
points to the possible role of DAOA variations in modulating 
endophenotypes underlying psychosis risk. A recent study found 
a nominal association of DAOA rs3916971 with a psychotic disor-
der (57). Another study conducted in healthy male controls found 
that DAOA rs3916971 schizophrenia risk C-allele carriers had 
worse visual-spatial skills (58, 59). In our study, DAO rs3918347 
GA + AA genotype carriers experienced nominally more audi-
tory perception disturbances than GG genotype carriers at base-
line (RDoC cognitive system). Another study found a negative 
association of DAO rs3918346 with neurocognitive functioning 
in schizophrenia patients (60). Therefore, the association of DAO 
and DAOA SNPs with hopelessness and perception disturbances 
of our study needs further confirmation.

We further found that NRG1 mRNA levels increased with 
higher CDSS hopelessness scores. Previous postmortem studies 
have shown increased NRG1 mRNA levels in the hippocampus 
(61) and prefrontal cortex (62, 63) of schizophrenia patients com-
pared to that of healthy controls. Moreover, studies have shown 
dysfunctions in these regions might lead to hopelessness (64–66).

We examined associations of DAO, DAOA, and NRG1 SNPs 
with risk profiles in individuals at risk for psychosis. For the sake 
of higher homogeneity, we also focused on the APSS subsample, 
a classification that the DSM-5 working group included under 
“conditions for further study” (67). We found that the schizo-
phrenia risk G-allele of DAO rs3918347 had a tendency to be 
a risk allele for APSS compared to the remaining help-seeking 
group. This result has to be interpreted cautiously because the 
help-seeking group is not a healthy control group, but a mixed 
group of BLIPS, state-trait risk criterion, and HR.

We did not find any significant differences in NRG1 mRNA 
levels between converters to schizophrenia spectrum disorders 
versus non-converters, and APSS versus all other help-seeking 
non-converters, which might be due to small subsample size 
leading to modest power (Tables S3 and S4 in Supplementary 

Material) and heterogeneous subgroups. Our results are in con-
trast to a study, which showed that NRG1 (type I and II isoforms) 
mRNA expression was significantly lower in blood of UHR indi-
viduals who transitioned to psychosis (n = 31) compared to non-
converters (n = 66) and controls (n = 50) (68). The discrepancy in 
the results of our study and the aforementioned study might also 
be due to the differences in isolation method, number of reference 
genes, stability of the reference genes, and normalization method 
used to normalize NRG1 mRNA levels to reference genes. A study 
conducted on immortalized lymphocytes showed that there was 
no difference in NRG1 mRNA levels between schizophrenia 
patients and healthy controls (69).

We were unable to detect DAO and DAOA mRNA using 
qRT-PCR in the whole blood of individuals at-risk for psychosis, 
which is in line with a study that used RNA sequencing to detect 
DAO and DAOA mRNA in healthy participants (70). As qRT-
PCR can detect low copy number genes (71), undetectable DAO 
and DAOA mRNA levels might suggest either very low expression 
below the detection limit of qRT-PCR or extremely localized 
expression (44). The reasons for very low or no expression of 
DAO and DAOA mRNA in blood might be highly methylated 
(75–90%) Illumina CpG sites of DAO and DAOA genes in healthy 
individuals (72). Another reason for this low or no expression 
might be the expression of these genes specifically in the brain 
(47, 73) because of their role in glutamatergic neurotransmission 
via NMDA receptors (25).

In our study, DAO rs4623951 genotype data showed that the 
study population deviated from the HWE. Since we controlled 
for genotyping errors, this deviation from HWE might be due to 
the observed excess of CT heterozygotes (54%). This excess het-
erozygosity might be caused by “selection favoring heterozygotes, 
outbreeding, and negative assortative mating” (74). As deviation 
from the HWE creates bias in the associations reported (75), the 
association results of DAO rs4623951 SNP should be interpreted 
with caution. As this study did not have all the instruments sug-
gested by RDoC for negative valence and cognitive systems, we 
used an exploratory approach, using the instruments available in 
this study to create the respective constructs. Thus, future studies 
are needed to confirm our RDoC findings.

Our study has several limitations, which must be acknowl-
edged. Although a total of 185 individuals at risk for psychosis 
were recruited, sample sizes within genotypes across clinical 
and RDoC domains were small and the power of the study was 
modest. In this study, only a small percentage (14.6%) of at-risk 
individuals converted to schizophrenia at 36 months follow-up, 
50% of individuals dropped out of the study before 36 months, 
and there was no healthy control group. The conversion status of 
the dropouts is unknown, and thus, it is not possible to reliably 
determine the conversion rate. The group of all other help seeking 
individuals was at heterogeneous risk (BLIPS, state-trait criteria, 
COPER, COGDIS). The sample size at 36-month follow-up for 
different psychopathology scales was small because of the high 
dropout rate. To circumvent this problem, we used the last 
psychopathology assessment available from each individual. 
Therefore, the results of LA until 36  months should be inter-
preted with caution, as they are not based on a homogeneous 
36-month follow-up score. We studied only few genes (three 
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genes) and a relatively small number of their polymorphisms 
(six SNPs), which might be the reason for not finding markers 
for predicting conversion to schizophrenia spectrum disorders. 
However, these genes and their polymorphisms are still of inter-
est due to their importance in glutamatergic neurotransmission. 
This study also has strengths, which needs to be highlighted. 
We recruited individuals from a broad age range (13–35 years) 
and used age-specific scales (e.g., SPI-A/SPI-CY). Most of the 
published literature in at-risk population has focused on clinical 
phenotypes. This study used both clinical phenotypes and RDoC 
domains, especially negative valence and cognitive systems, due 
to the role of the studied genes in the glutamate hypothesis of 
schizophrenia.

In summary, although DAO, DAOA, and NRG1 SNPs did not 
emerge as predictive markers for conversion to schizophrenia 
spectrum disorders, future association studies with larger cohorts, 
and longer follow-ups are needed to confirm the role of these 
genes in transition to schizophrenia spectrum disorders in the 
at-risk population. We also identified an association between the 
studied glutamatergic variants and RDoC-negative valence and 
cognitive systems, which indirectly implicates the role of these 
genetic variants in the glutamate hypothesis of schizophrenia. 
Future studies using RDoC domains might help to determine 
specific endophenotypes within at-risk populations. This might 
provide clinically useful, genetically informed risk prediction for 
dimensional and categorical outcomes among populations who 
maybe at-risk for developing psychosis.
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Disrupted-in-schizophrenia 1 (DISC1) is a key protein involved in behavioral processes
and various mental disorders, including schizophrenia and major depression.
A transgenic rat overexpressing non-mutant human DISC1, modeling aberrant
proteostasis of the DISC1 protein, displays behavioral, biochemical and anatomical
deficits consistent with aspects of mental disorders, including changes in the dorsal
striatum, an anatomical region critical in the development of behavioral disorders.
Herein, dorsal striatum of 10 transgenic DISC1 (tgDISC1) and 10 wild type (WT)
littermate control rats was used for synaptosomal preparations and for performing liquid
chromatography-tandem mass spectrometry (LC-MS)-based quantitative proteomics,
using isobaric labeling (TMT10plex). Functional enrichment analysis was generated
from proteins with level changes. The increase in DISC1 expression leads to changes
in proteins and synaptic-associated processes including membrane trafficking, ion
transport, synaptic organization and neurodevelopment. Canonical pathway analysis
assigned proteins with level changes to actin cytoskeleton, Gαq, Rho family GTPase
and Rho GDI, axonal guidance, ephrin receptor and dopamine-DARPP32 feedback in
cAMP signaling. DISC1-regulated proteins proposed in the current study are also highly
associated with neurodevelopmental and mental disorders. Bioinformatics analyses
from the current study predicted that the following biological processes may be
activated by overexpression of DISC1, i.e., regulation of cell quantities, neuronal and
axonal extension and long term potentiation. Our findings demonstrate that the effects
of overexpression of non-mutant DISC1 or its misassembly has profound consequences
on protein networks essential for behavioral control. These results are also relevant for
the interpretation of previous as well as for the design of future studies on DISC1.

Keywords: DISC1, proteomics, synapses, animal model, dopaminergic system, axon guidance, striatum
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INTRODUCTION

Disrupted-in-schizophrenia 1 (DISC1) is a gene originally
identified as a translocation mutation in an extended Scottish
pedigree where carriers suffered from diverse mental disorders
comprising schizophrenia and affective disorders (Millar et al.,
2000). Similarly, the DISC1 haplotype was associated with
schizophrenia in a Finnish cohort (Hennah et al., 2003).
A second family was later identified with a missense mutation
and associated diverse clinical phenotypes (Sachs et al., 2005),
and genetic association studies have supported association of
DISC1 with mental disorders (Chubb et al., 2008). A role of the
DISC1 gene for adaptive behavior was also suggested by various
animal studies (Brandon and Sawa, 2011; Dahoun et al., 2017).

The DISC1 protein has features of a scaffold protein
(Yerabham et al., 2013) and several subdomains have
an intrinsic tendency to form high molecular multimers
(Yerabham et al., 2017). Insoluble DISC1 protein has been
identified in human post mortem brains with mental disorders
(Leliveld et al., 2008), indicating that the DISC1 protein can
be subject to aberrant proteostasis in vivo. For modeling
the effects of aberrant proteostasis in vivo, a transgenic
rat model overexpressing (approximately 11-fold) the full
length, non-mutant human DISC1 gene (transgenic DISC1,
tgDISC1 rat) was generated that exhibited perinuclear aggregates
throughout the brain, accentuated in dopamine-rich regions
such as in the striatum (Trossbach et al., 2016). The tgDISC1 rat
exhibited phenotypes such as amphetamine supersensitivity,
an increase in D2Rhigh receptors, and dopamine transporter
mislocalization and dysfunction consistent with phenotypes
observed in schizophrenia (Trossbach et al., 2016). Also,
at the neuroanatomical level fewer dopaminergic neurons
and projections into the dorsal striatum, as well as aberrant
interneuron positioning was observed indicating subtle
neurodevelopmental disturbance (Hamburg et al., 2016).

These findings, induced by aberrant proteostasis of the
DISC1 protein, leading to its misassembly and perinuclear
deposition, suggest an important role of the DISC1 protein and
its correct assembly for protein networks involved in adaptive
behavior. Such protein networks have been described both, at
the protein and the genetic level. At the genetic level, Teng et al.
(2017) carried out targeted sequencing of 59 DISC1 interactome
genes and 154 regulome genes in psychiatric patients, identifying
altered regulation of schizophrenia candidate genes by DISC1.
In an attempt to dissect DISC1 function through protein-
protein interactions based upon a yeast two-hybrid system
along with bioinformatic methods, a comprehensive network
around DISC1 was generated (Camargo et al., 2007). Using this
iterative yeast two-hybrid system, a framework was provided
to explore the function of DISC1, and interrogation of the
proposed interactome has shown DISC1 to have protein-
protein interactions consistent with that of an essential synaptic
protein (Camargo et al., 2007). Current evidence suggests
that DISC1 functions as a neuronal intracellular trafficking
regulator that includes transport of neurotransmitter receptors,
vesicles, mitochondria andmRNA, rendering synaptic regulation
vulnerable to DISC1 dysfunction (Devine et al., 2016).

The objective of this study was to identify the proteomic
signatures of the tgDISC1 rat model vs. its littermate wild
type (WT) control to gain insights onto the DISC1-regulated
proteins and downstream synaptic processes and to identify
molecular circuitry regulated by relatively modest changes in
expression level leading to DISC1 misassembly. Identification of
changes in protein networks relevant for behavioral processes
would raise the possibility for the DISC1 protein to represent
a non-genetic interface with exogenous influences for mental
disorders.

There is mounting evidence for a focal role of the
DISC1 protein in striatal functions, and particularly on
dopamine homeostasis in relation to behavioral changes
(Trossbach et al., 2016; Wang et al., 2017). Therefore we chose
to select proteins from the synapse-enriched membrane
fractions (synaptosomes) from the dorsal striatum for
this study. Differential proteomics by isobaric labeling
(TMT10plex) enable multiplexed protein identification and
quantitative analysis by liquid chromatography-tandem mass
spectrometry (LC-MS/MS). This allows the unbiased analyses
of approximately 6000 proteins and targets synaptic proteins
including receptors, transporters and channels that have been
implicated in psychiatric disorders. Combining proteomics
and bioinformatics approaches enabled a comprehensive view
on the in vivo protein changes and the biological functions of
DISC1.

MATERIALS AND METHODS

Animals
Previously described tgDISC1 Sprague-Dawley rats and WTs
were used in this study (Trossbach et al., 2016). Briefly,
full-length, non-mutant human DISC1 as transgene with the
polymorphisms F607 and C704 were integrated into the
pronuclei of Sprague Dawley rats. Ten male tgDISC1 rats and
10 male WT littermate control rats, aged 14–15 months (ZETT,
Heinrich Heine University, Düsseldorf, Germany) were used.
One WT rat and one tgDISC1 rat were derived from each pair
of parents. The study was carried out in accordance with the
‘‘Principles of laboratory animal care’’ (NIH publication No.
86-23, revised 1985), and the German Law on the Protection of
Animals. It was approved by the Landesamt für Natur, Umwelt
und Verbraucherschutz (LANUV) NRW.

Preparation of Synaptosomal Fractions
Dorsal striata from fresh brains were dissected and stored
at −80◦C. Synaptosomal fractions from bilateral regions
were prepared for individual animals (for tgDISC1 and WT;
n = 10 each), using a microscale discontinuous sucrose gradient
modified from previous protocols (Hahn et al., 2009; Sialana
et al., 2016). Collected synaptosomes from 1.25/1.0 M sucrose
interface were diluted with 10 mM HEPES, divided into two and
pelleted at 15,000× g for 30 min. Pelleted synaptosomal samples
were reconstituted in urea buffer (7 M urea, 2 M thiourea,
4% CHAPS, 100 mM DTT, 50 mM TEAB supplemented
with protease inhibitors) for LCMS analyses and SDS buffer
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(1.5% SDS, 100 mM NaCl, 20 mM Tris supplemented with
protease inhibitors) for WB analyses and were sonicated for 1 h.
Protein amounts were estimated using the Pierce 660 protein
assay or BCA protein assay (ThermoFisher Scientific).

Proteolytic Digestion and Isobaric Labeling
Fifty micrograms of samples were digested with a Trypsin-LysC
enzyme mixture (1:100 w/w, Promega) using the filter-aided
sample preparation (FASP), as previously described, with
minor modifications (Wisniewski et al., 2009). The resulting
peptide samples were purified with reversed-phase C18 and
labeled with TMT 10-plex according to the instructions
supplied by the manufacturer. Two TMT-10plex experiments
were performed, with each experiment consisting of five
tgDISC1 and five WT animals (n = 10 biological replicates
per group). For each TMT experiment, ten isobarically labeled
peptide samples were pooled, the peptides separated by high
pH reversed-phase LC into 100 time-based fractions and
pooled into 25 samples (Gilar et al., 2005). The peptides
were vacuum concentrated and reconstituted in 5% formic
acid. Details of the procedure are essentially as described
previously (Sialana et al., 2016) and in the Supplementary
Figure S1.

Liquid Chromatography and Tandem Mass
Spectrometry
Samples were injected onto a Dionex Ultimate 3000 system
(ThermoFisher Scientific) coupled to a Q-Exactive Plus mass
spectrometer (ThermoFisher Scientific, Schwerte, Germany).
Software versions used for the data acquisition and operation
of the Q-Exactive were Tune 2.8.1.2806 and Xcalibur 4.
HPLC solvents were as follows: solvent A consisted of 0.1%
formic acid in water and solvent B consisted of 0.1% formic
acid in 80% acetonitrile. From a thermostated autosampler,
10 µL that correspond to 1 µg of the peptide mixture were
automatically loaded onto a trap column (PM100-C18 3 µm,
75 µm × 20 mm, ThermoFisher Scientific, Austria) with a
binary pump at a flow rate of 5 µL/min using 2% acetonitrile
in 0.1% TFA for loading and washing the pre-column. After
washing, the peptides were eluted by forward-flushing onto a
50 cm analytical column with an inner diameter of 75 µm
packed with 2 µm-C18 reversed phase material (PepMap-C18
2 µm, 75 µm × 500 mm, ThermoFisher Scientific, Austria).
For label free quantification (LFQ), the LCMS analyses was
performed using a single-shot LCMS approach with 4-h gradient
with LCMS parameters as described previously (Stojanovic et al.,
2017).

The fractionated TMT10plex labeled peptides were eluted
from the analytical column with a 120 min gradient ranging
from 5% to 37.5% solvent B, followed by a 10 min gradient
from 37.5% to 50% solvent B and finally, to 90% solvent B for
5 min before re-equilibration to 5% solvent B at a constant
flow rate of 300 nL/min. The LTQ Velos ESI positive ion
calibration solution (Pierce, IL, USA) was used to externally
calibrate the instrument prior to sample analysis and an internal
calibration was performed on the polysiloxane ion signal at m/z
445.120024 from ambient air. MS1 scans were performed from

m/z 375–1400 at a resolution of 70,000. Using a data-dependent
acquisition mode, the 15 most intense precursor ions of all
precursor ions with +2 to +7 charge were isolated within a
1.2 m/z window and fragmented to obtain the corresponding
MS/MS spectra. The fragment ions were generated in a higher-
energy collisional dissociation (HCD) cell at 32% normalized
collision energy with a fixed first mass at 100 m/z and detected
in an Orbitrap mass analyzer at a resolution of 35,000. The
dynamic exclusion for the selected ions was 30 s. Maximal ion
accumulation time allowed in MS and MS2 mode was 50 and
100 ms, respectively. Automatic gain control was used to prevent
overfilling of the ion trap and was set to 3 × 106 ions and
1 × 105 ions for a full Fourier transform MS and MS2 scan,
respectively.

Protein Identification and Quantification
All MS-MS2 spectra were searched against UniProtKB/Swiss-
Prot rat protein database version v 2016.04.14 (27,815 sequences,
including isoforms). In addition, sequences of the human
DISC1 protein and 11 isoforms produced by alternative splicing
with the polymorphisms F607 and C704 were appended to
the rat database. All spectra files were processed in Proteome
Discoverer 2.1 (Thermo Scientific, Germany) platform with
Mascot using mass tolerances of ±10 ppm and ±0.02 Da for
precursor and fragment ions. One missed tryptic cleavage
site was allowed. Oxidation of methionine was set as variable
modification, whilst carbamidomethylation of cysteine residues,
TMT 10-plex labeling of peptide N-termini and lysine residues
were set as fixed modification. Thresholds were determined
via the target-decoy approach using a reversed protein
database as the decoy by imposing 1% false discovery rate
(FDR). Label-free quantitation was implemented using the
Minora feature of Proteome Discoverer 2.2. The following
parameters are used: maximum retention time alignment
of 10 min with minimum of S/N of 5 for feature linking
mapping. Abundance were based precursor/peptide area
intensities. Normalization was performed such that the total
sum of the abundance is the same for all sample channels.
Imputation was performed by replacing the missing values
with random values from the lower 5% of the detected values.
For TMT 10-plex labeled samples, relative abundances of
proteins were determined from the TMT reporter ions without
imputation. Protein abundance ratios were calculated based
on unique and razor peptides. Relative protein levels were
determined from the sum of the reporter ion intensities per
quantitative channel that correspond to each biological animal
replicate.

The MS proteomics data have been deposited to the
ProteomeXchange Consortium via the PRIDE (Vizcaíno et al.,
2014) partner repository with the dataset identifier PXD008123.

Bioinformatics
Quantitative data were analyzed using Perseus statistical package
(version 1.5.1.6; Tyanova et al., 2016). Statistical significance of
differences in protein levels between the groups were evaluated
using a two-sided T-test with P < 0.05 (either Student’s or
Welch’s as required). Enrichment of GO annotations were
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FIGURE 1 | Proteomic profile of the transgenic DISC1 (tgDISC1) fractions. (A) Protein levels of representative proteins for the following biochemical fractions of the
dorsal striatum: nuclear/debris, cytosolic, detergent-soluble synaptosomal preparation (DSS), postsynaptic density (PSD) preparation. Protein levels of representative
synaptic markers were estimated from label-free LCMS analyses. Protein levels of the nuclear (H3), presynaptic (VGLU1) and postsynaptic (GRIN1) protein markers
are enriched in nuclear/debris, DSS and PSD preparations, respectively. The majority of the human Disrupted-in-schizophrenia 1 (DISC1) protein was enriched in the
PSD preparations. The level of overexpression is approximately 10-fold higher than the endogenous DISC1 protein in the whole synaptosomes (B).

performed on the significant proteins using GOA database
(v30.08.2017) using the ClueGO via the Cytoscape platform
(Bindea et al., 2009; Huntley et al., 2015). To reduce
redundancy of GO terms the fusion option was selected.
Enriched GO terms (Benjamini–Hochberg P-value < 0.05)
are functionally grouped into networks linked by their kappa
score level (≥0.40). Functionally related groups partially
overlap and only the most significant terms per group are
labeled. Pathway analyses on the significant proteins were
performed through the use of IPA (Ingenuityr Systems1).
The differentially expressed genes were categorized to related
canonical pathways. Only those experimentally observed or
highly predicted molecules and/or relationships from tissues
and cells from the nervous system were considered. The top
enriched categories of canonical pathways with a P-value < 10−3

as well as representative differentially expressed proteins in
each canonical pathway is reported. Curated gene-disease
annotations were obtained from Comparative Toxigenomics
database (Davis et al., 2015). The IPA regulation z-score
algorithm was used to predict biological functions that are
expected to be activated (z-score ≥ 2; P ≤ 0.05). The z-scores
take into account the directional effect of one protein on
a process and the direction of change of molecules in the
dataset.

Immunoblotting
The following antibodies were used according to the instructions
supplied by the manufacturer: mouse anti-PSD95 (124011,
Synaptic Systems), mouse anti-SYP (sc-55507, Santa Cruz
Biotechnology), rabbit anti-NMDAR1 (ab32915, Abcam), mouse
anti-VGLUT1 (135311, Synaptic Systems), rabbit anti-GAPDH
(ab9485, Abcam), rabbit anti-DAT1 (ab111468, Abcam) and
mouse anti-huDISC1 (3D4, Korth lab; Ottis et al., 2011).
Immunoblot data were normalized to corresponding whole-lane
densitometric volumes of protein-stained membranes (Welinder
and Ekblad, 2011). Immunoblotting conditions were as

1www.ingenuity.com

previously described (Sialana et al., 2016) and antibody dilutions
are provided in the Supplementary Table S1.

RESULTS

In the current study, a high-throughput proteomic approach
was employed to generate a comprehensive view of the
in vivo protein changes in striatal synaptosomes of the
tgDISC1 rat model (experimental workflow, Supplementary
Figure S1). Methodologically, tissue fractionation was
initially performed on the dorsal striatum of tgDISC1 rats
to determine the subcellular expression of tgDISC1 and
which enrichment steps would be employed in this study
(Phillips et al., 2001; Sialana et al., 2016). Dorsal striata of
tgDISC1 rats were fractionated into nuclear/debris, cytosolic,
detergent soluble synaptosome (DSS) and postsynaptic density
(PSD) preparations. LCMS-based proteomic analyses of the
biochemical fractions resulted in the identification and LFQ
of 5002 protein groups (Supplementary Data 1). Distribution
of the nuclear (H3), presynaptic (VGLU1) and postsynaptic
(GRIN1) protein markers enriched in nuclear/debris, DSS
and PSD preparations is given in Figure 1A. Although
DISC1 was observed in all preparations, the majority of
the human DISC1 protein was enriched in the Triton-
X100-resistant PSD fractions. This is in agreement with
previous immunoblotting studies of DISC1 in adult rats
(Hayashi-Takagi et al., 2010). We have previously shown that
dopaminergic pathways are modulated in the striatum of the
tgDISC1 rat (Trossbach et al., 2016). Taking into account
that dopamine receptor 1 and the dopamine transporter were
highly enriched in the DSS preparations (Figure 1A), it was
decided to study the whole synaptosome for quantitative
proteomics experiments. Immunoblots of postsynaptic
(GRIN1 and PSD95) and presynaptic (VGLU1 and SYP)
proteins show enrichment of synaptosomal proteins on
the biochemical fraction (Supplementary Figure S2). The
level of overexpression is approximately 10-fold higher than
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FIGURE 2 | (A) Biological processes regulated by DISC1. Enriched GO terms (P-value < 10−3) are functionally grouped. The synaptic components terms as well as
membrane trafficking, ion transport, synaptic organization and neurodevelopment processes are well represented. (B) Comparison of the DISC1-regulated proteins
and the previously reported interacting proteins. In the current study ion transport, projections and synaptic organization were novel findings. Developmental
processes from previous studies were confirmed (gray GO enrichment analyses was performed using ClueGO. Enriched GO terms (Benjamini–Hochberg
P-value < 10−3) are functionally grouped into networks linked by their kappa score level (≥0.40). Functionally related groups partially overlap and only the most
significant terms per group are labeled.

the endogenous DISC1 protein in the whole synaptosomes
(Figure 1B).

DISC1 Regulated Proteins—Proteomic
Profiling of Striatal Synaptosomes
An expression proteomics experiment was performed to identify
the proteins potentially regulated by DISC1. Synaptosomal
fractions of bilateral dorsal striata of 10 wt and 10 tgDISC1 rats
using TMT10plex were analyzed in two separate 10-plex
experiments (5 tgDISC1 and 5 WT). In total, 7227 protein
groups were identified (Supplementary Data 2) including
252 receptors and 672 transporters/channels. Out of the
6153 quantifiable protein groups, 213 proteins were statistically
different between the tgDISC1 and WT rats (Supplementary
Table S2, Supplementary Data 3). Protein levels were considered
statistically different between groups when P ≤ 0.05 using a
two-sided T-test (either Student’s or Welch’s as required). Given
the large number of comparisons made and the possibility of
Type 1 error, the p values given cannot be interpreted in terms
of ‘‘significance’’, but rather as ‘‘measures of effect’’.

As we used a good number of biological replicates
for TMT-based proteomics (10 animals per group), we
opted to use T-test that performs ‘‘individual proteins-
based’’ hypotheses test (T-test) rather than a background
‘‘all-proteins-based’’ hypothesis test (FDR). TMT-based
proteomics experiments are sensitive and precise but
quantification is known to undergo ratio compression
(Ow et al., 2011). The values from FDR corrections
depend on effect size; smaller differences yield higher
P-corrected (q-values); thus only two proteins passed the
corrected thresholds. An additional filter is applied when
enrichment analyses (GO annotation, IPA) is employed. Slight
differences in the levels of multiple proteins should cluster
relevant processes and the proteins from the top enriched
processes/pathways are of higher emphasis (Pascovici et al.,
2016).

Immunoblotting analyses of DAT1, GRIN1 and DISC1 of
WT and tgDISC1 indicated that the direction of fold
differences measured by TMT-proteomics and western blotting
(Supplementary Figure S3) was consistent.
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FIGURE 3 | Pathways regulated by DISC1. Significantly enriched canonical pathways (Fishers’ exact test, P < 10−3, IPA) of the proteins altered in by tgDISC1 rats in
the dorsal striatum (A). Representative proteins from the dopaminergic (B) and axonal guidance signaling pathway (C) are shown. Values represent ∗p < 0.05,
∗∗p < 0.01, ∗∗∗p < 0.001 compared using two-sided T-tests.

Functional Classification of Proteins
Modulated in tgDISC Rats
The biological functions of the 213 proteins with highly different
protein level changes between wildtype and tgDISC1 rats were
explored using GO enrichment analyses. Enrichment of synaptic
components such as axons, dendritic spines, membrane rafts,
neuron projection membrane, and the ion channel complex were
revealed (Supplementary Table S3, Supplementary Figure S4).
The voltage gated ion channels were the major protein classes
represented (Supplementary Table S4). The results suggest

that the modest overexpression of the full-length human
DISC1 alters proteins linked to synaptic processes including
membrane trafficking, ion transport, synaptic organization and
neurodevelopment (Figure 2A).

Functional Comparison of the
DISC1 Regulated Proteins to Known
Interacting Proteins
To determine the biological functions unique to DISC1 regulated
proteins, we performed enrichment analyses for the
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FIGURE 4 | Predicted biological functions of the tgDISC1 regulated proteins as evaluated by IPA. The IPA regulation z-score algorithm was used to predict the
activation of biological functions in tgDISC1 rats relative to wild type (WT) according to our proteomics data. The network displays functional interactions between
proteins (z-score ≥ 2 and p-value ≤ 0.05). Dashed lines indicate direct or indirect interactions. Proteins up-regulated in tgDISC1 rats are colored in shades of red;
proteins down/regulated are colored in green.

DISC1 regulated proteins in comparison to previously
reported interacting proteins (Camargo et al., 2007; Boxall
et al., 2011; Bradshaw and Porteous, 2012; Thomson et al.,
2013) as compiled by a recent study (Teng et al., 2017). Using
ClueGO, 36 biological processes with strong enrichment
(P < 10–6) were revealed (Figure 2B; Supplementary
Figure S5). The clusters of biological processes exclusive
to the proteins regulated by DISC1 include: ‘‘regulation of
neuron projection development’’, ‘‘positive regulation of
axonogenesis’’, ‘‘action potential/potassium ion transport and
synapse organization’’. Terms associated with microtubule
development and neuronal transport were highly represented
in the DISC1-interacting proteins. Biological processes such
as ‘‘CNS differentiation’’ and ‘‘telencephalon development’’
were enriched in both, DISC1 regulated and interacting protein
data sets.

Prediction of Canonical Pathways and
Biological Function
To investigate the molecular mechanisms modulated by
DISC1, data were analyzed through the use of Ingenuity
Pathway analysis (IPA; Ingenuityr Systems2). The differentially
expressed proteins were categorized to related canonical
pathways. Canonical pathway analysis assigned proteins with

2www.ingenuity.com

level changes to actin cytoskeleton, Gαq, Rho family GTPase
and Rho GDI-, axonal guidance, ephrin receptor and dopamine-
DARPP32 feedback in cAMP signaling (Fisher’s exact test,
P < 10−3, Figure 3A, Supplementary Figure S6). Only
robustly predicted or experimentally observed molecules and/or
relationships from tissues and cells from the nervous system
were considered. Receptors from the axonal guidance signaling
and the dopamine-DARPP32 feedback from the cAMP signaling
canonical pathway are illustrated in Figures 3B,C).

The IPA regulation z-score algorithm was used to predict
biological functions that are expected to be activated in
tgDISC1 rats rather than in wildtype (positive z-score) according
to own proteomics data (z-score ≥ 2; P ≤ 0.05). The z-scores
take into account the directional effect of one protein on a
process and the direction of change of molecules in the dataset.
From the expression data of the regulated proteins, the following
processes are predicted to be activated: ‘‘activation regulation
of cell quantities’’, ‘‘neuronal and axonal extension’’, ‘‘long
term potentiation’’ and ‘‘apoptosis’’ (Figure 4, Supplementary
Table S5).

Annotation of the DISC1 altered protein levels revealed
that 54 proteins are associated with mental disorders
and/or nervous system diseases as implemented by the
Comparative Toxicogenomics Database (CTD; Davis et al.,
2015). Disease-gene associations were based on genomic,
transcriptomic and proteomic studies on the sequence variation
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and expression changes associated with brain diseases and
disorders. Over-represented disease-protein associations
(Fishers’ exact test, P < 0.05) include: neurodevelopmental
disorders, autistic disorders, schizophrenia spectrum, anxiety
disorders, substance-related disorders (e.g., cocaine) and
intellectual disability (Table 1). In particular, the schizophrenia-
associated proteins including dopamine transporter 1 (SLC6A3),
receptor tyrosine-protein kinase erbB-4 (ERBB4), glutamate
ionotropic receptor NMDA type subunit 1 (GRIN1), membrane
associated guanylate kinase WW and PDZ domain containing
2 (MAGI2) and regulator of G-protein signaling 12 (RGS12)
were also regulated by DISC1 (Mateos et al., 2006; Silberberg
et al., 2006; Xu et al., 2011; Koide et al., 2012; Guipponi
et al., 2014; Jaros et al., 2015; Zhang et al., 2015; Li et al.,
2017).

DISCUSSION

By the use of quantitative proteomics of synapse-enriched
membrane (synaptosome) fractions of the dorsal striatum of
the tgDISC1 rat, we have identified novel protein networks
and signaling pathways regulated by an increase of non-mutant
DISC1 expression or DISC1 misassembly. These results suggest
that the DISC1 protein and its disturbed proteostasis can
have an effect on mental disorder-relevant protein networks
independent of genetic mutations. Likely, multiple exogenous or
endogenous factors other than overexpression could lead to a
failure of DISC1 proteostasis, such as exposure to high dosages of
dopamine or other oxidants, making DISC1 protein an oxidation
‘‘sensor’’ (Atkin et al., 2012; Trossbach et al., 2016).

In the tgDISC1 rat, an about 11-fold overexpression,
leading to DISC1 misassembly, changed proteins and synaptic-
associated processes including membrane trafficking, ion
transport, synaptic organization and neurodevelopment is
observed. Furthermore, dysregulation of DISC1 potentially
modulates pathways including actin cytoskeleton, Gαq, Rho
family GTPase and Rho GDI-, axonal guidance, ephrin receptor
and dopamine-DARPP32 feedback in cAMP signaling associated
with the synaptic pathologies. DISC1-regulated proteins are also

highly associated with neurodevelopmental disorders, autistic
disorder, schizophrenia spectrum, anxiety disorders, substance-
related disorders and intellectual disability (Figure 5).

Previously known DISC1-protein interactors have been
reported to modulate synaptic processes. The current study
revealed that DISC1 regulates an array of synaptic proteins
and processes that complements previous protein interaction
results (Supplementary Figure S7). Proteins that were previously
reported to interact with DISC1 (Millar et al., 2003; Camargo
et al., 2007) were also modified in the current study in the
tgDISC1 rat. These include microtubule proteins pericentrin
(PCNT), GRIP1 associated protein 1 (GRIPAP1), microtubule
associated protein 1A (MAP1A), nudE neurodevelopment
protein 1 (NDEL1) and microtubule-actin crosslinking
factor 1 (MACF1) that are involved in neuronal cytoskeleton
organization and membrane transport processes.

Dysregulation of DISC1 was reported to modulate
glutamatergic and dopaminergic systems as previously reviewed
(Hayashi-Takagi et al., 2010; Ramsey et al., 2011; Dahoun et al.,
2017). Own results herein show that NMDAR1 is increased
in the striatum of the tgDISC1 rat. A relationship between
NMDAR1 and DISC1 has been shown, as knockdown and
antagonists of NMDAR1 reduced numbers of synapses and
synaptic DISC1 mainly in the striatum (Ramsey et al., 2011).
Further, the DISC1 interactor GRIPAP1 is increased in the
tgDISC1 rat. GRIPAP1 controls the AMPA receptors/GRIP-
complex transport to the synapse by NMDA receptor activation
(Ye et al., 2000).

As shown by MS, dopamine transporter levels were highly
increased in the tgDISC1 rats, consistent with own previous
studies by immunoblotting (Trossbach et al., 2016). Whereas
levels of dopamine receptors 1 and 2 were not significantly
altered, pathway enrichment analyses (Figure 3C) suggest
that proteins (e.g., ADCY3, GNAS) from the dopamine-
DARPP32 feedback of the cAMP signaling canonical
pathway, may be involved in modulation of the known
dopaminergic deficits in tgDISC1. Adenylate cyclase ADCY3 as
a downstream effector of dopaminergic pathways catalyzes
the formation of cAMP in response to G-protein signaling.

TABLE 1 | Disease-protein association of the DISC1 regulated proteins.

Disease name P-value Proteins

Neurodevelopmental disorders 1.02E-07 ANK3, ASIC2, CADM1, CTTNBP2, DISC1, GJA1, GNAS, GRIN1, KCNA2, KCNMA1,
RIMS1, ROBO2, SCN2A, SLC4A4, SLC6A3, STAMBP, TCN2

Mental disorders 5.11E-07 ANK3, ASIC2, CADM1, CTTNBP2, DISC1, GC, GJA1, GNAS, GRIN1, KCNA2,
KCNMA1, KLHL5, LINGO2, MAGI2, RGS12, RIMS1, ROBO2, SCN2A, SLC4A4,
SLC6A3, STAMBP, TCN2

Autistic disorder 3.40E-05 ASIC2, CADM1, DISC1, GJA1, KCNMA1, RIMS1, ROBO2, TCN2
Schizophrenia spectrum and other psychotic disorders 4.10E-04 DISC1, GC, GRIN1, MAGI2, RGS12, SLC6A3
Anxiety disorders 2.53E-02 MAGI2, SLC6A3
Cocaine-related disorders 1.74E-02 GRIN1, KLHL5, SLC6A3
Intellectual disability 2.52E-02 ANK3, DISC1, GNAS, GRIN1, KCNA2, SLC4A4
Psychotic disorders 1.13E-02 GRIN1, SLC6A3
Schizophrenia 1.62E-03 DISC1, GC, MAGI2, RGS12, SLC6A3
Substance-related disorders 3.98E-02 GNAS, GRIN1, KLHL5, LINGO2, SLC6A3

Gene-disease associations on the DISC1 regulated proteins were implemented in the Comparative Toxicogenomics Database, CTD. Fifty-four DISC1-regulated proteins
are associated with mental disorders and/or nervous system disease disorders. Over-represented disease-protein associations (Fishers’ exact test, P < 0.05) are
illustrated.
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FIGURE 5 | Potential relationship between the DISC1 regulated proteins and synaptic processes. Proteins regulated in tgDISC1 rats from this study are marked in
gray boxes.

The protein level changes of this enzyme along with the
corresponding G-protein GNAS observed herein supports
previous studies proposing dysregulation of cAMP signaling
by DISC1 (Millar et al., 2005; Kvajo et al., 2011; Crabtree et al.,
2017).

In a mouse Disc1 mutant model, functional reduction of
Kv1.1/KCNA1 was proposed to contribute to alterations in
neuronal excitability and short-term plasticity. Reduction of
this channel was accompanied by reduced phosphodiesterase
4 activity and elevated cAMP levels in the PFC of Disc1
mutant mice (Crabtree et al., 2017). Interestingly, in our
DISC1 overexpressing transgenic model, we found an
increase of this and several proteins in the voltage-gated
potassium channel complex suggesting potential dyregulation
of electrophysiological synaptic functions (Supplementary
Figure S8).

Current data also revealed that proteins associated with
axonal guidance pathways were altered byDISC1 overexpression:
the axonal guidance receptors semaphorin 7A (SEMA7A),
EPH receptor A6 (EPHA6), roundabout receptor 2 (ROBO2),
fibroblast growth factor receptor 3 (FGFR3) and integrin subunit
alpha 3/very late activation protein 3 receptor, alpha-3 subunit
(ITGA3) were shown to be modulated by DISC1 (Figure 3B).
The leading edge of the axons contains receptors that sense
guidance cues and aid in the navigation and migration of
axons. The attraction or repulsion of cues promotes or decreases
active actin polymerization, resulting in axonal extension or
retraction by triggering the actin cytoskeleton signaling and
Rho-GTPase pathways, as also proposed in the current pathway
enrichment analysis (reviewed in Dent et al., 2011; Spillane

and Gallo, 2014; Van Battum et al., 2015). The receptor
SEMA7A stimulates axonal growth through integrins andMAPK
signaling (Pasterkamp et al., 2003). The roundabout receptor
2, ROBO2 is the main receptor from the Slit-Robo pathway,
that is involved in axon guidance and which is also associated
with DISC1-interacting proteins SRGAP2 and 3 (Camargo et al.,
2007). The Ephrin receptor signaling pathway, predicted to
be regulated by DISC1, is critical for embryonic development
and known as a mediator of axon guidance (Kvajo et al.,
2011).

In perspective, alterations of these developmental pathways
and processes could explain the subtle neurodevelopmental
phenotypes in the tgDISC1, where the substantia nigra
(SN) contains fewer dopaminergic neurons (DA), fewer
projections into dorsal striatum, and a shift in the
parvalbumin-positive interneurons (Hamburg et al., 2016).
DA homeostasis deficiency and the proposed disturbed
dopaminergic signaling could explain the observed decrease
of DA neurons in the SN. The disturbed axonal guidance
signaling could lead to the reduction of the projections
into the dorsal striatum and the shift of the parvalbumin-
positive interneurons. As protein profiles were obtained from
adult tgDISC1 rats, it would be interesting to follow up by
studying the profiles in the developing brain to reveal the
etiopathology effects of DISC1 which exceeds the scope of
this study.

Bioinformatics analyses from the current study predicted
that the following biological processes were activated by
overexpression of DISC1, i.e., regulation of cell quantities,
neuronal and axonal extension and long term potentiation
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(Figure 4). These results may be relevant for interpretation of
previous as well as for the design of future studies on DISC1.

CONCLUSION

Our results suggest that overexpression and/or aberrant
DISC1 proteostasis can lead to profound changes in protein
networks relevant for mental disorders or endophenotypes and
may signify a role for the DISC1 protein alone—in the absence
of mutations—in behavioral and neural processes and disorders.
DISC1 expression levels likely have to be controlled in a narrow
expression window in order to execute adaptive behavior. These
findings make the DISC1 protein and its posttranslational
modifications a molecular convergence point or sensor for
environmental interactions such as oxidative stress. The findings
also strongly support the earlier literature indicating involvement
of the dopaminergic systems, particularly in the dorsal striatum
in functional properties of the DISC1 protein.
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Telomerase, a specialized ribonucleoprotein enzyme complex, maintains telomere
length at the 3′ end of chromosomes, and functions importantly in stem cells, cancer
and aging. Telomerase exists in neural stem cells (NSCs) and neural progenitor cells
(NPCs), at a high level in the developing and adult brains of humans and rodents.
Increasing studies have demonstrated that telomerase in NSCs/NPCs plays important
roles in cell proliferation, neuronal differentiation, neuronal survival and neuritogenesis.
In addition, recent works have shown that telomerase reverse transcriptase (TERT)
can protect newborn neurons from apoptosis and excitotoxicity. However, to date,
the link between telomerase and diseases in the central nervous system (CNS) is not
well reviewed. Here, we analyze the evidence and summarize the important roles of
telomerase in the CNS. Understanding the roles of telomerase in the nervous system
is not only important to gain further insight into the process of the neural cell life
cycle but would also provide novel therapeutic applications in CNS diseases such as
neurodegenerative condition, mood disorders, aging and other ailments.

Keywords: telomerase, central nervous system, proliferation, differentiation, apoptosis

INTRODUCTION

Telomeres are simple repeat sequences at the physical 3′ end of chromosomes (TTAGGG for
human and mouse; Greider, 1996). Since 1989 when it was discovered that the maintenance of
telomeric length was mediated by telomerase (Blackburn et al., 1989; Greider and Blackburn, 1989),
a large number of studies have focused on the function of telomerase in stem cells. The structure
of telomerase was revealed as a specialized ribonucleoprotein complex, consisting of a protein
component telomerase reverse transcriptase (TERT) that serves as catalytic subunit (Counter et al.,
1997; Harrington et al., 1997; Meyerson et al., 1997; Nakamura et al., 1997; Greenberg et al., 1998),
and an essential telomerase RNA component (also known as TERC or RT). The TERC serves as a
template for the elongation of a telomere catalyzed by TERT (Blackburn, 2001).

Neural stem cells (NSCs), like other types of stem cells, are self-renewing andmultipotent (Gage,
2000). In the adult rodent brain, NSCs are mainly present in two specific regions: the subgranular
zone (SGZ) in the dentate gyrus (DG) of the hippocampus and the subventricular zone (SVZ) of the
lateral ventricles. In the SGZ, new dentate granule cells are produced from NSCs daily. In the SVZ,
new neurons are also born every day andmigrate through the rostral migratory stream (RMS) to the
olfactory bulb to become interneurons (Gage, 2000; Goh et al., 2003; Alvarez-Buylla and Lim, 2004;
Ma et al., 2005; Zhao et al., 2008; Ming and Song, 2011). TERT is present at high levels in NSCs and
NPCs in the developing brain (Klapper et al., 2001; Cai et al., 2002) and adult (Caporaso et al., 2003),
but then declines rapidly when stem/progenitor cells differentiate or die. Moreover, telomerase has
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an influence on several steps of the cell life cycle including
proliferation, differentiation, survival, development and
apoptosis (Mattson et al., 2008; Ferrón et al., 2009). Studies
also show that telomerase has been closely associated
with NSCs-/NPCs-related diseases in the central nervous
system (CNS) including brain tumorigenesis (Kheirollahi
et al., 2013), ischemia (Zhao et al., 2010; Li et al., 2011),
neurodegenerative illness (Franco et al., 2006), affective
disorders (Lee et al., 2010; Zhou et al., 2011) and schizophrenia
(Kao et al., 2008; Porton et al., 2008). Here we will review
published literature focusing on the relationship between
telomerase, NSCs and other nerve cells in the CNS, as well as
cellular proliferation, differentiation, survival, development,
apoptosis and their applications and emerging relevance to CNS
diseases.

STRUCTURE AND FUNCTION

The telomerase is composed of TERT and TERC in all species
(Feng et al., 1995; Harrington et al., 1997). TERC acts as a
template for the addition of TTAGGG at the end of telomeric
DNA in humans (Feng et al., 1995; Harrington et al., 1997).
Telomerase expression and activity is repressed in normal human
somatic cells in adulthood (Meyerson et al., 1997; Masutomi
et al., 2003). In contrast, it actives only in a small subset of
adult cells, including stem cells and progenitor cells in renewal
tissues, germline cells, mesenchymal stem cells and activated
lymphocytes (Broccoli et al., 1995; Chiu et al., 1996; Wright et al.,
1996; Martens et al., 2002; Serakinci et al., 2008). Accumulating
evidence indicates that telomere shortening represents a marker
and a mechanism of biological aging (Aubert and Lansdorp,
2008). Telomerase is implicated in this process as it contributes
to DNA damage accumulation in ASCs (Epel, 2009; Wang et al.,
2009; Sahin and Depinho, 2010). Moreover, mutational analysis
and knockdown experiments showed that telomerase deficiency
led to telomere loss and uncapping, causing progressive atrophy
of renewal tissues, gradual depletion of stem cells and eventual
failure of organ systems (Jaskelioff et al., 2011; Bär and Blasco,
2016). Above all, telomerase may play a critical role in cellular
and organismal aging, and could be a potential target for
anti-aging therapy (Bernardes de Jesus et al., 2012; Shay, 2016).

After numerous cycles of cell division, stem/progenitor cells
in the adult body lacking telomerase stop proliferating and
enter into a state of growth arrest called replicative senescence
(Newbold, 1997). However, elevated telomerase expression is
almost universal in human tumors which make it a hallmark
of cancer cells (Kim et al., 1994). As telomerase counteracts
telomere shortening during rounds of cellular proliferation
by synthesizing new repeats (TTAGGG) for maintaining the
telomeric length at the chromosomal termini, cancer cells are
able to maintain their telomere to proliferate continuously
without limits, making telomerase a promising target for cancer
treatment (Collins and Mitchell, 2002). Accordingly, several
telomerase-based strategies have been developed by scientists for
cancer therapy and many are in advanced clinical trials (Kim
et al., 1994; Vonderheide, 2002; Shay and Keith, 2008; Liu et al.,
2010).

SPECIES DIFFERENCE

Although the telomere is composed of TTAGGG repeats in all
vertebrates, the length differs significantly in different species
(Calado and Dumitriu, 2013). On average, the telomere in
humans is about 5–15 kb long, while much longer telomere
(50–100 kb) is detected in laboratorial mice (Calado and
Dumitriu, 2013). Consistently, in marked contrast to humans,
mice have higher levels of telomerase expression and activity
(Prowse and Greider, 1995; Burger et al., 1997; Wright and Shay,
2000). The expression of telomerase declines dramatically upon
differentiation of stem cells in humans; therefore, it is difficult to
detect telomerase in somatic human cells. However, robust levels
of telomerase activity are detected in a wide range of somatic
tissues and cells in mice (Horikawa et al., 2005).

Horikawa et al. (2005) found that the activity of the mouse
TERT promoter is 5.4–16 folds higher than that of the human
TERT promoter, in which a non-conserved GC-Box functions
critically. Studies investigating site-directed mutations revealed
that a GC-box (CCCCGCCC) located at −31 to −24 and a
putative E2F site (GCGCG) located at −13 to −9 in the human
TERT promoter contribute to the repression of the activity of
the human TERT promoter (Horikawa et al., 2005). Nonetheless,
the molecular mechanisms of these differences remain largely
obscure and need more research focus. The species difference
of telomerase implies that it requires a humanized mouse model
for deeply studying the role of telomerase in aging and cancer
and more attention should be paid when studying the function of
telomerase in the brain using regular laboratorial mice.

EXPRESSION OF TELOMERASE IN
THE CNS

Telomerase highly exists in the brain at embryonic stages and
declines gradually after birth except in adult stem cells (ASCs;
Wright et al., 1996; Greenberg et al., 1998; Martín-Rivera et al.,
1998; Armstrong et al., 2005). Particularly, TERT expression
and activity are confirmed in adult brain tissues including the
hippocampus, olfactory bulb and SVZ, possibly due to the rich
of NPCs in these places (Martín-Rivera et al., 1998; Caporaso
et al., 2003; Zhou et al., 2011). Interestingly, ectopic telomerase in
neurons and glial cells are also detected under special conditions
(Iannilli et al., 2013). Elucidating the distribution of telomerase is
important for understanding its specialized functions in the CNS.

Expression of Telomerase in NSCs
During embryonic development, most of the cells in different
tissues display telomerase expression and activities both in
humans and rodents (Wright et al., 1996; Greenberg et al.,
1998; Armstrong et al., 2005). High levels of telomerase activity
have been observed throughout embryonic brain development
(Fu et al., 2000). The activity level reaches a peak point at
embryonic day 13 and then declines notably from embryonic
day 13–18. The activity remains at a low level until postnatal day
3 when it decreases remarkably (Klapper et al., 2001;Mattson and
Klapper, 2001). This expression pattern indicates that telomerase
is present in the brain during embryonic development, which is
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supported by its elevated expression in embryonic neuronal stem
or progenitor cells (Mattson and Klapper, 2001). Additionally,
NSCs lose telomerase activity upon differentiating into astrocytes
or neurons (Kruk et al., 1996; Miura et al., 2001; Caporaso
et al., 2003; Cheng et al., 2007). It remains unclear how
exactly telomerase activity decreases in differentiating cells.
Sporadic research suggests that histone deacetylation and DNA
methylation is involved in the silencing of the TERT gene,
correlated with the decreased level of telomerase activity in
differentiating cells (Lopatina et al., 2003; Hiyama and Hiyama,
2007; Würth et al., 2014).

Adult NSCs (ANSCs) populations are maintained during the
adult lifetime in the SVZ and the SGZ in the lateral ventricle
and the hippocampal DG (Gage, 2000; Arnold and Hagg, 2012).
It is shown that telomerase activity contributes to the viability
and self-renewal potential of ASCs including ANSCs (Ostenfeld
et al., 2000; Allsopp et al., 2003; Liu et al., 2004; Choi et al., 2008).
Indeed, telomerase activities and expression can be detected in
the olfactory bulbs, SVZ and hippocampus (Caporaso et al.,
2003).

Although the TERT level is significantly lower in the human
brain compared to the mouse brain, it is still detectable
(Horikawa et al., 2005). Remarkably, increased expression of
human TERT is observed with activity in human neural
progenitor cells (NPCs; Ostenfeld et al., 2000; Bai et al., 2004).
Several human cells such as the teratocarcinoma NTera2 and
human neuroblastoma (SK-N-SH) cell lines are generally
used for investigating neuronal function (Jain et al., 2007).
Abundant telomerase activity is enriched and inhibits neuronal
differentiation in these cell lines (Jain et al., 2007; Richardson
et al., 2007). Together, these studies display evidence of
telomerase existence in both embryonic and adult NSCs.

Ectopic Existence of Telomerase in
Neurons and Glial Cells
Although it is believed that telomerase activity is restricted
to areas containing stem cells in the brain (Caporaso et al.,
2003), ectopic expression of the TERT protein has been
shown in post-mitotic neurons without proliferating abilities
(Iannilli et al., 2013). In contrast to the claim of Kang et al.
(2004), that TERT is not detectable in the adult mouse brain
using fluorescent in situ hybridization histochemistry, Spilsbury
et al. (2015) presented evidence that TERT was expressed
in cultured mouse neurons and microglia in vitro, which is
consistent with a study by Fu et al. (2000). More interestingly,
it is found that TERT was detected in the cytoplasm of
mature human hippocampal neurons in vivo (Spilsbury et al.,
2015). Additionally, TERT presents in activated microglia but
is absent from astrocytes (Spilsbury et al., 2015). Various
insults including ischemia, amyloid peptide administration, and
glutamate or NMDA-induced excitotoxicity, substantially induce
the expression of TERT in rodent neurons (Fu et al., 2000;
Klapper et al., 2001; Zhu et al., 2001; Kang et al., 2004; Lee et al.,
2010). Although telomerase levels are low in mature neurons,
telomere repeat-binding factor 2 (TRF2) expression is high.
Relative deficiency of TERT in newmature neurons during brain
development may partially determine their vulnerability to DNA

damage (Cheng et al., 2007). In addition, TERT is expressed in
microglial cells in the hilus of hippocampus after administration
of kainic acid in adult mice (Fu et al., 2002). The evidence of
the existence of telomerase in neurons and glial cells implies a
potential novel function in these cells, which warrants further
investigation.

ROLES FOR TELOMERASE IN BRAIN
DEVELOPMENT

Besides the roles of TERT in embryonic stem cells (ESCs),
post-transcriptional regulation of TERT is implicated in the
survival, self-renewal and differentiation of ASCs (Mattson et al.,
2001; Marión and Blasco, 2010; Maeda et al., 2011; Cheng G.
et al., 2013; Radan et al., 2014). This function is mediated by
telomeric length stability or extra-telomeric telomerase isoforms
(Radan et al., 2014; Zeng et al., 2014). In particular, telomerase
deficiency impairs normal brain function inmice (Lee et al., 2010;
Zhou et al., 2016, 2017). In the brain, telomerase in ASCs plays a
critical role in the proliferation of NSCs, neuronal differentiation
and development, and neuronal survival, which are involved in
CNS diseases (Mattson and Klapper, 2001).

Roles for Telomerase in Proliferation of
NSCs
Telomerase is critical for stem cell proliferation. Using 3′-azido-
2′,3′–dideoxythymidine (AZT), a type of telomerase activity
inhibitor, Haïk et al. (2000) showed that telomerase activity was
required for brain organogenesis. Additionally, cell proliferation
of NPCs in the SGZ and olfactory bulb is severely decreased in
the forebrain of TERC-knockout mice (Ferrón et al., 2009). We
have also showed that AZT disrupted neurogenesis in the SGZ
of the hippocampal DG both in vivo and in vitro (Zhou et al.,
2011). In contrast, overexpression of telomerase by recombinant
adenoviral vector expressing mouse TERT (Ad-mTERT-GFP)
stimulates the proliferation of NSC both in vitro and in vivo
(Zhou et al., 2011; Liu et al., 2012). Transduction with human
TERT gene also results in increased proliferation in mouse NSCs
(Smith et al., 2003).

Roles for Telomerase in Neuronal
Differentiation
NSCs possess the capability to self-renew and differentiate
into mature nerve cells including neurons, astrocytes and
oligodendrocytes (Miura et al., 2001; Ming and Song, 2011;
Würth et al., 2014). The activity of telomerase rapidly decreases
when NSCs stop dividing and differentiate into nerve cells
(Kruk et al., 1996; Klapper et al., 2001). Therefore, the
potential relationship between the decrease in telomerase
activity and neuronal differentiation was examined. Indeed,
overexpression of telomerase can inhibit neuronal differentiation
in NPCs (Richardson et al., 2007). Inhibition of the telomerase
activity by treatment of cells with telomerase antisense
accelerates differentiation, suggesting that telomerase activity
may contribute to the blockade of the onset of cell differentiation
(Kondo et al., 1998). Moreover, overexpressing TERT in
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neuroepithelial precursors caused continuous cell division, but
led to disaggregation and cell death, showing that TERT itself
is not sufficient to cause termination of differentiation of neural
precursors in vitro (Richardson et al., 2007). The telomere length
regulated by telomerase activity may mediate the control of cell
differentiation (Sharpless and DePinho, 2004).

However, a markedly different role for telomerase was
reported in NCS differentiation. Schwob et al. (2008)
demonstrated that overexpressing TERT in primary ESCs
produced markers of neuronal precursors and mature neurons,
with a heightened efficiency of neuroectodermal differentiation.
It is also reported that TERT promotes neuronal survival and
differentiation via reducing excitotoxicity in the CNS (Fu et al.,
2002; Kang et al., 2004). Thus, telomerase activity and TERT
expression may have different functions in regulation of cellular
differentiation. A sharp reduction of telomerase activity during
the development of the brain may be a useful signal for cells to
begin the process of exiting the cell cycle, thereby differentiating
into nerve cells including neurons and glial cells (Mattson
et al., 2001). Studies have shown that decreasing telomerase
activity was correlated with the differentiation of neural cell
lines (Fu et al., 1999) including primary neurons (Fu et al.,
2000), supporting such a mechanism. Telomerase-deficient
mice reveal impaired neuronal differentiation, which is caused
by the expression of RhoA effectors, Rock1 and Rock2, in
parallel with the Notch pathway dependent on the modulation
of p53 expression, supporting an opposing role of TERT in
cell differentiation based on activity (Ferrón et al., 2009). In
addition, abnormal telomerase expression significantly inhibited
neuronal differentiation of NT2 cells, a model of human NPCs
(Mattson et al., 2001). It is also unclear why only a subset of cells
in neuronal-inducing conditions are able to attain or sustain
terminal differentiation. Research investigating telomerase
throughout human neuronal cell differentiation is needed to
further answer these questions (Richardson et al., 2007). The
different roles of telomerase expression and activity may be
involved.

Although the roles of telomerase in neuronal differentiation
are unsettled, it is certain that telomerase has important
roles in the transition between pluripotent stem cells and
committed neuronal cell fate in both NSC and ES cells
(Schwob et al., 2008). Therefore, telomerase is a potential
target for manipulating NSCs/NPCs, increasing the possibility
for autologous cell replacement therapy for CNS illnesses
including neurodegenerative diseases, psychiatric disorders,
brain ischemia, aging and traumatic injury (Mattson et al., 2001;
Sanai et al., 2005). More studies are necessary to determine the
exact function of telomeres in neuronal differentiation.

Roles for Telomerase in Neuronal
Development
Brain-derived neurotrophic factor (BDNF) is an important
molecule for neuronal development. It is found that telomerase
is a key mediator of cell survival induced by BDNF in
developing neurons (Fu et al., 2002). The high expression of
TERT in neurons throughout embryonic and early postnatal
development support an important role of telomerase in

neuronal development (Mattson et al., 2001). Age-induced
impairment of neurogenesis and neuritogenesis are correlated
with the telomere length shortening in adult NPCs in the SVZ
(Ferrón et al., 2009). The neurons matured from TERC-deficient
NSCs fail to acquire a fully mature neuritic arbor (Ferrón et al.,
2009). Our recent study found that TERT gene deletion caused
a disruption in neuronal development, which was reversed by
TERT reactivation (Zhou et al., 2017). The role of telomerase
dysfunction in neuronal development may be involved in CNS
diseases such as anxiety andmemory deficiencies (Lee et al., 2010;
Zhou et al., 2017).

Roles for Telomerase in Neuronal Survival
Studies have provided evidence that telomerase may be involved
in the regulation of the survival of cells including developing
neurons (Fu et al., 2000; Klapper et al., 2001; Lu et al., 2001).
Using antisense technology, Fu et al. (2000) demonstrated
that suppression of TERT in cultured embryonic neurons
induced apoptosis. The mechanisms by which TERT and/or
telomerase are involved in survival-promoting activity may
involve an interaction with neurotropic factors such as fiber
growth factor (FGF), which can induce TERT expression (Haïk
et al., 2000). Aside from FGF, Akt kinase, another neurotropic
factor, affects TERT function. Phosphorylated TERT with
enhanced enzymatic activity induced by Akt account for the
neuronal survival-promoting actions of Akt (Mattson et al.,
2001). Interestingly, temporary ectopic expression of TERT in
neurons following brain ischemia protects hypoxic neurons
from excitotoxicity, promoting neuronal survival (Kang et al.,
2004; Li et al., 2011; Qu et al., 2011). In addition, TERT also
mediates the neuronal survival-promoting actions of brain-
derived neurotropic factor (BDNF), counteracting the adverse
function of amyloid precursor protein in cultured hippocampal
neurons during development (Zhu et al., 2001; Fu et al., 2002).
Together, TERT activation is a common pathway for neurotropic
factors including FGF, Akt, and BDNF, the well-established
mediators of neuronal survival. Hence, the TERT subunit of
telomerase in the embryonic brain may safeguard neuronal
development, and the ectopic expression of TERT may act on
post-mitotic cells to protect neurons from impairment.

Programmed cell death (apoptosis) is an important biological
process (Shlezinger et al., 2017). Embryonic NSCs (ENSCs)
play a critical role in the complex processes of the CNS
formation during embryonic development and apoptosis of
ENSCs contribute crucially to the appropriate formation of
various biological structures and function of the brain (Gökhan
and Mehler, 2001). The establishment of TERC knockout
embryos led to a failure of closing the neural tube, which is
crucially associated with telomere shortening (Herrera et al.,
1999, 2000). TERC knockout mice also display a phenotype of
enhanced apoptosis (Phelan et al., 1997). Consistently, reduction
in TERT expression in ENSCs in vitro forces neurons to undergo
apoptosis (Fu et al., 2000). These findings advocate both TERT
and TERC as cell survival-promoting factors in neurons.

Most somatic cells enter a non-dividing state called
cellular senescence after undergoing cell division
(Wright and Shay, 1992). Cell cycle arrest frequently precedes
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activation of the molecular cascades of apoptosis, causing
morphological changes and death in cells including neurons
(Krantic et al., 2005). Interestingly, it is reported that telomerase
activity cannot be detected and TERT expression is suppressed
during growth arrest and cellular senescence (Wright et al.,
1996). Once telomere length activates its checkpoint, cellular
senescence is triggered, cell division is suspended and the cell
eventually dies (Gilley et al., 2008). Since the well-established
function of telomerase is maintaining the telomere length, it
is reasonable to consider the involvement of telomerase in
an anti-apoptotic role through prevention of DNA damage
in a telomere-dependent manner (Rhyu, 1995; Liu, 1999).
After differentiation from NSCs/NPCs, the somatic cells
have extremely low levels of telomerase, leaving telomeres
significantly damaged and cells vulnerable to stress, inducing
apoptosis (Kondo et al., 1998). More direct evidence is shown
in experiments suppressing TERT expression. In developing
neurons, antisense-mediated silencing of TERT gene expression
causes them to undergo apoptosis more frequently (Fu et al.,
2000). In contrast, overexpression of TERT in human cells
prevents cellular senescence and extends the lifespan (Bodnar
et al., 1998; Yang et al., 1999). More importantly TERT can
protect cultured neurons from apoptosis in experimental cell
models relevant to ischemia and Alzheimer’s disease (AD;
Zhu et al., 1999; Fu et al., 2000). It has been demonstrated
that telomerase is associated with DNA repair and promotes
cell survival (Peterson et al., 2001). One possible mechanism
underling the role of TERT in apoptosis of NSCs is that TERT
may suppress DNA damage and the activation of the associated
pathways, which aids in the stabilization of chromosome ends
(Holt et al., 1999). Collectively, both TERC and TERT may
account for the action of telomerase in the modulation of
apoptosis of NSCs at different stages, contributing to the balance
of brain function.

TELOMERASE AND DISEASES IN THE
CENTRAL NERVOUS SYSTEM

Since telomerase appears to have a significant role in the
different stages of development of NSCs and NPCs, it may be
involved in a variety of CNS diseases. Besides its well-studied
role in brain cancer (Kheirollahi et al., 2013), telomerase also
contributes to CNS impairment, including ischemic brain injury
(Zhao et al., 2010; Li et al., 2011), neurodegenerative disease
(Franco et al., 2006), mood disorders (Lee et al., 2010; Zhou
et al., 2011) and schizophrenia (Kao et al., 2008; Porton et al.,
2008).

Brain Tumors
More than 85% of the tumor cells show telomerase activation for
preventing progressive shortening of the telomere as excessive
divisions (Harley, 1991). Tumors that originate in the brain
are known as primary brain tumors, including astrocytomas,
oligodendrogliomas and ependymomas. High telomerase activity
was observed in astrocytoma including glioblastoma (GBM,
grade IV astrocytoma), the most common type of malignant

primary tumors in adults (Cheng L. et al., 2013). Hakin-
Smith et al. (2003) found that alternative-lengthening-of-
telomere is a prognostic indicator for patients with GBM
(Lötsch et al., 2013). Consistently, Tchirkov et al. (2003)
reported hTERT mRNA levels may represent a prognostic and
diagnostic indicator for GBM patients. Mechanistically, two
somatic mutations, C228T (–124 bp) and C250T (–146 bp)
located upstream of the ATG start site confer enhanced
TERT promoter activity in the GBM (Mosrati et al., 2015).
These TERT promoter mutations are associated with shorter
overall survival (Mosrati et al., 2015). In addition, the SNP
of rs1006969, in the promoter regions, and rs2736100, in the
intron 2, were reported to be associated with an increased
risk of developing GBM (Mosrati et al., 2015). Interestingly,
TERT promoter mutations led to a significant increase in
TERT mRNA and enhanced activity of telomerase in tumors.
Based on these findings, Marión and Blasco (2010) used a
telomerase antagonist, imetelstat, to target glioblastoma tumor-
initiating cells efficiently for decreasing proliferation and tumor
growth (Ferrandon et al., 2015). However, using telomerase-
based drugs for cancer treatment should be conducted with
caution, as these therapies may have adverse effects normal
tissues.

Following the findings of elevated levels of telomerase in
tumors, new anticancer methods targeting telomerase have
been highly anticipated. In 1995, the first attempt to use an
antisense vector against TERC was reported (Feng et al., 1995).
To date, a number of different approaches including antisense,
natural compounds, hormones, vaccines, and small molecules
have been developed to inhibit telomerase activity in cancer
cells (Saretzki, 2003; Shay and Wright, 2006). However, no
company has declared success in developing compounds for
cancer treatment. Several factors account for this lack of progress.
It takes a long time for telomerase inhibition to be clinically
effective, which may cause toxicity in normal proliferative
cells (Harley, 2008). Another factor is the pharmaceutical
industry arguing that telomerase is not a practical drug target
(Man et al., 2016). Many efforts are being made to continue
investigating novel methods, including oncolytic viral strategies
and immunotherapy, to target telomerase (Olaussen et al.,
2006). Despite significant progress, issues must be addressed
before applying telomerase-based therapies for treating cancer
including brain tumors.

Aging Brain
Telomeres play a central role in aging. Shortening of telomeres
has been linked to the mechanisms responsible for the aging
of cells (López-Otín et al., 2013). Telomerase, preventing the
telomere from being too short, thus acts as an anti-aging enzyme,
proposing a ‘‘telomere theory of aging’’, a prominent concept
in research (Jaskelioff et al., 2011). Since the secret of ‘‘the
end replication problem’’ was uncovered owing to the finding
of telomerase, its role in cellular aging was predicted and
revealed (Greider and Blackburn, 2004). TERT gene knockout
studies provide direct evidence that TERT loss provoked tissue
degeneration including progressive atrophy of tissues, depletion
of stem cells, failure of organ systems and impairment of tissue

Frontiers in Molecular Neuroscience | www.frontiersin.org 5 May 2018 | Volume 11 | Article 16031

https://www.frontiersin.org/journals/molecular-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/molecular-neuroscience#articles


Liu et al. Telomerase Implicates in Neurological Diseases

response to injuries throughout the whole body including the
brain (Jaskelioff et al., 2011). Strikingly, 4 weeks of reactivating
telomerase reversed the aging process in the brain, including
NSCs proliferation and differentiation, brain size and olfactory
function (Jaskelioff et al., 2011). Overexpression of TERT in
NSCs or neurons is beneficial for the adult brain by increasing
resistance to neurodegenerative changes with aging (Mattson
et al., 2001). Clinical evidence also suggests a correlation
between telomerase activity in human leukocytes and the volume
of the hippocampus in early stages of aging (Jacobs et al.,
2014). As noted, the aging brain is associated with extensive
accumulation of DNA damage. Telomerase gene therapy in
adult and old mice has been shown to delay aging and
increase longevity without causing cancer via DNA damage
repair (Bernardes de Jesus et al., 2012). Thus, telomerase could
be a serious intervention to inhibit degeneration in the aging
brain.

AD, with two discrete pathologies including Amyloid-β (Aβ)
and tau (p-tau) aggregation, is a common neurodegenerative
disorder in elderly patients, and has aging characteristics
featured with cell senescence and oxidative stress (Smith et al.,
1995; Spilsbury et al., 2015). It is shown that the length of
neuronal telomeres are remarkably shorter in hippocampal
neurons in patients with AD (Franco et al., 2006). TERT
exhibits neuronal protective properties against tau pathology in
experimental models of AD (Kota et al., 2015; Spilsbury et al.,
2015). Additionally, ROS generation and oxidative damage in
neurons, the mediators of pathological tau, are relieved in TERT
knockout mice (Spilsbury et al., 2015). In accordance with this
evidence, Aβ oligomers-induced cytotoxicity is shown to be
potentially mediated by telomerase activity inhibition (Wang
et al., 2015). However, TERC knockout mice with AD present
with telomere shortening which slows down the progression of
Aβ pathology (Rolyan et al., 2011). The inconsistency of telomere
in AD pathology may be due to different processes, provoking
microglial activation with extreme telomere shortening (Rolyan
et al., 2011). Therefore, telomerase may play different roles
in the tau and amyloid pathology via multiple mechanisms.
Furthermore, leukocyte telomere length is altered in other
neurodegenerative disorders including Huntington’s disease and
dementia, indicating that change in telomere length is a shared
characteristic of neurodegenerative disorders (Kota et al., 2015).
Thus, the modification of telomerase together with telomere
could be a marker of aging-related conditions (López-Otín et al.,
2013).

Parkinson’s Disease
Parkinson’s disease (PD) is an aging-associated long-term
degenerative disorder (Singleton and Hardy, 2016). Contrary to
short telomeres observed in the aging brain, the relationship
between telomere and PD remains unclear. An analysis of
131 PD patients and 115 healthy controls performed by Eerola
et al. (2010) found no difference in telomere length between
PD patients and healthy controls. Consistently, a case-control
study from Wang et al. (2008) reported that shorter telomeres
are not associated with a higher risk of PD. Moreover, a large
nested case-control study also found that telomere shortening

was associated with reduced PD risk (Schürks et al., 2014). To
date there is no evidence showing abnormalities of telomerase or
telomere in the CNS tissues of PD patients.

Amyotrophic Lateral Sclerosis
Amyotrophic lateral sclerosis (ALS) is another type of
progressive neurodegenerative disease, characterized by the
death and dysfunction of nerve cells in the CNS (Boillée et al.,
2006; Eitan et al., 2012). Motor neurons in the spinal cord,
the cerebral cortex, and brain stem gradually break down and
die, causing muscle weakness and atrophy. An investigation on
the telomere length in blood leukocytes revealed accelerated
telomere attrition and lower levels of telomerase in patients
with ALS (De Felice et al., 2014). More importantly, human
TERT expression in the spinal cord of ALS patients is extremely
low compared to healthy controls (De Felice et al., 2014). A
controlled and transient increase in telomerase expression and
activity in the brain using a telomerase-increasing compound
delayed the onset and progression of ALS (Eitan et al., 2012). This
compound increased the survival of motor neurons in the spinal
cord by 60% (Eitan et al., 2012). Telomerase-related DNA repair
and transcription regulation may contribute to the survival of
motor neurons in ALS (Singh et al., 2017). Surprisingly, Linkus
et al. (2016) found a trend of longer telomeres in microglia from
human post-mortem brain tissue with ALS. However, knocking
out telomerase in mice accelerated the ALS phenotype (Linkus
et al., 2016). The longer telomeres in microglial cells may play a
role in microglial proliferation, which contributes to ALS disease
progression (Linkus et al., 2016). Therefore, the contribution of
telomerase in different neural cells in the development of ALS
may have distinct mechanisms.

Brain Ischemia
Normally, TERT expression and telomerase activity are at a
very low level and undetectable in post-mitotic cells including
neurons in the brain. After ischemic injury, ectopic expression
of TERT was detected in neurons (Kang et al., 2004). Transgenic
overexpression of TERT showed a significant resistance to
injury. Induction of TERT in injured neurons protects against
NMDA excitotoxicity, ameliorating ischemic neuronal cell
death (Kang et al., 2004). Aside from neurons, astrocytes
appear to have a role in TERT-related neuronal protection.
Baek et al. (2004) show TERT co-localization with glial
fibrillary acidic protein (GFAP), a marker of astrocyte, in
the neonatal brain 3 days after stroke. Consistently, it was
reported that TERT mRNA and protein were up-regulated
in neurons 2 days after hypoxia-ischemia but shifted to
astrocytes at day 3 (Qu et al., 2011). The distribution of
temporary ectopic expression of TERT supports the concept
that both promotion of neuronal survival and attenuation of
astrocyte proliferation in the developing brain contribute to a
TERT-based neuroprotective mechanism of hypoxia–ischemia
(Qu et al., 2011). Additionally, a shift of the cytosolic free
Ca2+ into the mitochondria is important for TERT to inhibit
apoptosis and excitotoxicity, decrease angiogenesis and promote
neuronal survival (Li et al., 2011). Reduction of telomerase
activity leads to an intensified neuroinflammatory response
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and blood-brain barrier disruption after experimental stroke
(Zhang et al., 2010). Decreasing ROS generation and increasing
mitochondrial membrane potential were also reported as
TERT’s neuroprotective mechanisms (Li et al., 2013). Better
understanding these novel mechanisms may assist in the
development of more effective neuroprotective strategies in the
treatment of ischemic brain injury.

Mood Disorders
The World Health Organization ranks mood disorders as
the leading causes of years (Murray and Lopez, 1996).
Brain structural and functional abnormalities mediate
the pathophysiology of mood disorders, including major
depressive disorder (MDD), bipolar disorder (BD), and
anxiety. Increasing studies suggest a strong causal link
between impaired neurogenesis and etiology of mood
illnesses. Considering the function of telomerase in stem
cells, especially ANSCs/ANPCs, it is highly expected that
telomerase plays an important role in the modulation of
mood disorders (Monroy-Jaramillo et al., 2017). Epidemiologic
studies reveal a close association between telomere length
and psychiatry illness (Darrow et al., 2016). Dysfunctional
telomeres in peripheral leukocytes have been observed in several
psychiatric conditions (O’Donovan et al., 2011; Lindqvist
et al., 2015). A pilot study found that 16 un-medicated
subjects with MDD had increased basal telomerase activity
in comparison with healthy controls in males (Wolkowitz
et al., 2012) but not females (Simon et al., 2015). Post-mortem
research shows a significant reduction in telomere length
across brain regions, especially in the hippocampus, of
patients with MDD (Mamdani et al., 2016). Repression of
telomere-associated genes leads to microglial senescence, a
mechanism of neuropsychiatric diseases (Kronenberg et al.,
2017).

Life stress is the main environmental factor causing MDD.
Accelerated telomere shortening and decreased telomerase
activity has also been reported in response to chronic stress (Epel
et al., 2004, 2010). Chronic mild stress lowered hippocampal
TERT protein levels and telomerase activity was reversed
by fluoxetine treatment (Zhou et al., 2011). In addition,
a low level of TERT and its activity was detected in the
hippocampus in a rat model of MDD (Wei et al., 2015).
Both overexpression of TERT and TERT activity inhibition or
knockout demonstrated that hippocampal telomerase played an
essential role in modulating depressive and aggressive behaviors
(Zhou et al., 2011, 2016).

Deficiencies in telomerase can also be associated with other
mood disorders. Telomerase expression is correlated with anxiety
(Perna et al., 2016). Brain structural and functional changes
of aging were more pronounced in subjects with anxiety
than controls, including reduced gray matter density, white
matter alterations, and impaired functional connectivity of large-
scale brain networks. Moreover, molecular correlates of brain
aging such as telomere shortening, Aβ accumulations, and
oxidative/nitrosative stress, were overrepresented in anxious
subjects (Perna et al., 2016). Both rodent and human findings
showed an association between anxiety and telomere shortening.

TERT-deficient mice displayed significantly higher anxiety-like
behaviors (Lee et al., 2010). Consistently, deficiency of telomerase
resulted in increased anxiety-like behavior in aged transgenic
mice (Lee et al., 2011). In non-psychiatric human brain samples,
associations were found between exposure to chronic stress
(e.g., childhood adverse experiences/stressful caregiving status)
or high phobic anxiety and accelerated telomere shortening,
which may be related to dysregulation of inflammatory markers,
HPA axis, and autonomic system function (Surtees et al., 2011;
Okereke et al., 2012; Wolkowitz et al., 2012; Révész et al.,
2014).

Schizophrenia
Generally, schizophrenia is not regarded as an aging-related
disorder. However, pathology of aging may be a component
of this disorder, since there are similar structural brain
abnormalities (Buchsbaum and Hazlett, 1997; DeLisi, 1997;
Surtees et al., 2011; Okereke et al., 2012; Wolkowitz et al.,
2012; Révész et al., 2014). Research shows the average length of
telomeres in peripheral blood lymphocytes from individuals with
schizophrenia is markedly shortened (Kao et al., 2008; López-
Otín et al., 2013). A recent study also demonstrated shorter
telomere length among patients with schizophrenia (Galletly
et al., 2017). In line with this finding, a significant decrease was
reported in telomerase activity in peripheral blood lymphocytes
taken from individuals with schizophrenia (Porton et al., 2008).
While these studies provide exciting correlative results, further
research is needed to determine the exact role of telomerase in
schizophrenia.

Summary
More and more evidence displays a correlation between changes
in TERT activity or telomere length and CNS diseases besides
brain tumors. Therefore, it is possible that additional applications
of TERT manipulation may be useful in the treatment of
various CNS disorders. Due to potential adverse effects on
normal cells, treatments based on TERT manipulation must be
carefully planned and should exclude patients with conditions
such as tumorigenesis. Regardless, this is an exciting new
avenue for research and translational medicine, as scientists are
making breakthroughs in telomerase gene therapy (Bernardes
de Jesus et al., 2012). Bernardes de Jesus et al. (2012) show
that administration of TERT to aged mice, using an adeno-
associated virus, reduced the incidence of glucose intolerance and
osteoporosis, and improved the function of the neuromuscular
junction. More notably, they found this gene therapy strategy
improved the ability of memory formation without increasing
tumorigenesis (Bernardes de Jesus et al., 2012). While these
new studies are encouraging, there is still much research
needed before telomerase therapy can be translated into clinical
application for the treatment of CNS disorders.

CONCLUSION AND PERSPECTIVES

In this review article, we have presented the existence of
telomerase in the CNS and its roles in the developing and
adult brain, including proliferation, differentiation, maturation
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and apoptosis of nerve cells, as well as CNS diseases. The
mechanisms whereby telomerase acts within these processes are
becoming more clear, however its exact role and mechanisms
remain unknown (Harley, 1991). Small molecules screened
and tested for telomerase inhibition targeting telomerase
activity are anticipated for drug discovery of cancers, although
they are not yet approved (Harley, 2008). Understanding
the precise functions of TERT and other telomere-associated
proteins in the CNS may be helpful for recruiting them as
novel targets for treatment of brain tumor, neurodegenerative
diseases, and mood disorders. Hence, knowing the role of
telomerase in the nervous system is not only important to
gain further insight into the process of the neural cell cycle,
but also provides a novel therapeutic application for the
treatment of nervous system diseases. Although failure of
developing telomerase therapeutics for clinical use is possible,

the manipulation of the telomere/telomerase system is still
a promising and novel approach for therapeutic purpose.
The knowledge of this system, reviewed here, may be vital
in the development of future treatments of neurological
dysfunction.
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Background: Schizophrenia is currently considered a neurodevelopmental disorder

of connectivity. Still few studies have investigated how brain networks develop in

children and adolescents who are at risk for developing psychosis. 22q11.2 Deletion

Syndrome (22q11DS) offers a unique opportunity to investigate the pathogenesis of

schizophrenia from a neurodevelopmental perspective. Structural covariance (SC) is

a powerful approach to explore morphometric relations between brain regions that

can furthermore detect biomarkers of psychosis, both in 22q11DS and in the general

population.

Methods: Here we implement a state-of-the-art sliding-window approach to

characterize maturation of SC network architecture in a large longitudinal cohort of

patients with 22q11DS (110 with 221 visits) and healthy controls (117 with 211 visits).

We furthermore propose a new clustering-based approach to group regions according

to trajectories of structural connectivity maturation. We correlate measures of SC with

development of working memory, a core executive function that is highly affected in both

idiopathic psychosis and 22q11DS. Finally, in 22q11DS we explore correlations between

SC dysconnectivity and severity of internalizing psychopathology.

Results: In HCs network architecture underwent a quadratic developmental

trajectory maturing up to mid-adolescence. Late-childhood maturation was particularly

evident for fronto-parietal cortices, while Default-Mode-Network-related regions

showed a more protracted linear development. Working memory performance was

positively correlated with network segregation and fronto-parietal connectivity. In

22q11DS, we demonstrate aberrant maturation of SC with disturbed architecture

selectively emerging during adolescence and correlating more severe internalizing

psychopathology. Patients also presented a lack of typical network development

during late-childhood, that was particularly prominent for frontal connectivity.
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Conclusions: Our results suggest that SC maturation may underlie critical cognitive

development occurring during late-childhood in healthy controls. Aberrant trajectories

of SC maturation may reflect core developmental features of 22q11DS, including

disturbed cognitive maturation during childhood and predisposition to internalizing

psychopathology and psychosis during adolescence.

Keywords: schizophrenia, graph theory, connectome, synaptic stabilization, cortical development, executive

functions, structural covariance

INTRODUCTION

Mounting evidence has suggested that schizophrenia arises from
a disorder of brain development (Feinberg, 1982; Weinberger,
1987; Crow et al., 1989; Murray et al., 1991; Insel, 2010; Rapoport
et al., 2012). Indeed, psychosis typically emerges when critical
brain maturation is still underway, during late-adolescence
and early-adulthood. Moreover, recent work has highlighted
that cognitive deficits, which represent a core dimension of
schizophrenia, can manifest as early as childhood (Kremen et al.,
2010; Gur et al., 2014) and help predict subsequent emergence
of psychosis (Riecher-Rössler et al., 2009; Seidman et al., 2016).
The neurodevelopmental model carries at least two critical
implications. Firstly, it predicts that, for therapeutic interventions
to be truly effective, they should target neurodevelopmental
events that precede clinical manifestations (Marín, 2016; Millan
et al., 2016). Secondly, it implies that biomarkers of vulnerability
to psychosis can potentially manifest earlier than disease onset,
in form of atypical neurodevelopmental trajectories (Weinberger,
1987; Insel, 2010; Rapoport et al., 2012). An improved
characterization of such neurodevelopmental biomarkers could
prove critical for informing future therapeutic interventions
(Millan et al., 2016).

In the field of schizophrenia, converging evidence has pointed
to the role of disturbed structural and functional connectivity
(Stephan et al., 2009; van den Heuvel and Fornito, 2014) in the
pathogenesis of the disease. At the most basic anatomical scale,
neuropathological studies have consistently reported synaptic
alterations, particularly in prefrontal regions (Garey et al., 1998;
Glantz and Lewis, 2000; Rosoklija et al., 2000; Black et al.,
2004; Glausier and Lewis, 2013) that are thought to arise
from excessive synaptic pruning during adolescence (Feinberg,
1982; Sekar et al., 2016). Neuroimaging allows to investigate
brain connectivity in-vivo and at a higher anatomical scale.
For instance, using diffusion-weighted MRI it is possible to
investigate white-matter connectivity non-invasively throughout
the entire brain (Beaulieu and Allen, 1994; Basser and Pierpaoli,
1996; Mori and Barker, 1999; Basser et al., 2000; Mori and
van Zijl, 2002), while functional MRI and EEG allow to
explore patterns of synchronized activity underlying functional
communication between brain regions (Vértes and Bullmore,
2015). Connectomics analysis can then characterize non-trivial
aspects of network architecture with tools from graph theory
(Sporns et al., 2005; Hagmann et al., 2007; Bullmore and
Sporns, 2009; Rubinov and Sporns, 2010). Such an approach
has demonstrated that healthy structural and functional brain

networks find a balance between the local segregation of sub-
communities of densely connected regions and the overall
integration of multiple sub-networks (Sporns, 2013). This
optimal organization, also known as community structure (van
den Heuvel et al., 2009; Park and Friston, 2013) has shown
to underlie higher cognitive performance in healthy controls
(HCs) (Langer et al., 2012; Hilger et al., 2017). In patients with
psychosis, on the contrary, this optimal balance is altered, with
insufficient architectural integration and excessive segregation
(van den Heuvel and Fornito, 2014). Moreover insufficient brain
network integration might at least partially account for cognitive
symptoms of schizophrenia (Langer et al., 2012; Alloza et al.,
2017). So far however, little is known about how network
architecture matures in children and adolescents who are at
risk for developing psychosis. The characterization of such
developmental trajectories could prove informative, particularly
in the context of the neurodevelopmental model of schizophrenia
(Insel, 2010; Rapoport et al., 2012; Marín, 2016).

22q11.2 Deletion Syndrome (22q11DS) is a powerful
model to investigate the pathogenesis of psychosis from a
neurodevelopmental perspective (Jonas et al., 2014). Indeed,
patients with 22q11DS are at a very high risk for psychosis, with
up to 30% of patients developing schizophrenia by adulthood
and up to 80% presenting prodromal psychotic symptoms,
typically during adolescence (Schneider et al., 2014a; Tang et al.,
2014). Furthermore, compared to idiopathic psychosis, patients
are typically diagnosed prior to psychiatric manifestations
due to a complex somatic phenotype (McDonald-McGinn
et al., 2015). 22q11DS offers therefore a unique opportunity
to investigate connectivity development in young patients at
risk for psychosis. 22q11DS is also characterized by insufficient
maturation of executive functions, starting during childhood
(Maeder et al., 2016) and recapitulating deficits in executive
functions observed in idiopathic psychosis (Seidman et al.,
2016). Moreover cognitive decline during childhood can predict
subsequent emergence of psychosis in 22q11DS (Vorstman
et al., 2015). However the relationship between brain network
development and cognitive dysmaturation has not yet been
investigated in 22q11DS.

Structural covariance (SC) is a powerful morphometric
approach to investigate brain connectivity (Alexander-Bloch
et al., 2013). This technique measures how the morphology of
different brain regions is correlated across populations, based on
the observation that regions connected, either functionally or by
white-matter tracts, also tend to co-vary in their morphology
(Alexander-Bloch et al., 2013). Several mechanisms are thought
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to contribute to this phenomenon (Alexander-Bloch et al., 2013),
including the mutually trophic effect of axonal connections
(Burgoyne et al., 1993; Gong et al., 2012), coordinated activity
induced plasticity (Draganski et al., 2004; Driemeyer et al., 2008;
Dehaene et al., 2010) or common genetic influences (Pezawas
et al., 2005; Schmitt et al., 2008, 2009, 2010). The emergence of
SC networks has moreover shown to be functionally relevant,
given that the optimal organization of SC network architecture
was associated with higher cognitive performance in healthy and
clinical pediatric populations (Bonilha et al., 2014; Khundrakpam
et al., 2016). Importantly, networks reconstructed using SC are
altered in patients suffering from psychosis, with insufficient
architectural integration and excessive segregation (Bassett et al.,
2008; Zhang et al., 2012). Similar architectural disturbances of SC
networks have been recently replicated in 22q11DS, with specific
alterations affecting patients with psychotic symptoms (Sandini
et al., 2017). However, so far, little is known about how SC
network architecture matures in children and adolescents with
22q11DS and how this relates to cognitive maturation.

Methods to investigate the development of SC have to date
mostly consisted of comparisons between age bins (Zielinski
et al., 2010; Khundrakpam et al., 2013; Nie et al., 2013).
Indeed, SC inherently relies on a group of subjects and
thus cannot be retrieved at an individual level (Alexander-
Bloch et al., 2013). Age-bin comparisons have contributed
significantly to understanding the development of SC in HCs,
highlighting for example differential maturation across cortical
regions (Zielinski et al., 2010) and significant late-childhood
architectural reorganization (Khundrakpam et al., 2013). This
technique however presents several methodological limitations.
Firstly, age-bin definition is arbitrary, potentially leading to
inconsistencies across studies (Richmond et al., 2016). Secondly,
temporal resolution is generally insufficient to truly characterize
developmental trajectories. In an effort to overcome these
limitations recent work has implemented a sliding-window
approach, originally developed to investigate dynamics of
functional connectivity, to study the development of structural
covariance (Váša et al., 2018). The higher temporal resolution
offered by such approach demonstrated non-linear maturation
of SC networks during adolescence (Váša et al., 2018). This study
was however constrained by its cross-sectional nature and in that
it did not cover the childhood age range. Indeed particularly
late childhood was previously shown to be a critical period
for the maturation of both SCNs (Khundrakpam et al., 2013)
and cognitive performance (Chelune and Baer, 1986; Anderson,
2002; Crone et al., 2006). Moreover no link with behavioral
development was made.

Here we employ a sliding-window technique to investigate
structural covariance network (SCN) development in a large
longitudinal cohort of children and adolescents with 22q11DS
and HCs. We propose a novel approach to cluster regions
according to developmental trajectories of structural connectivity
strength. Furthermore we correlate maturation of SCNs with
development of working memory (WM), a core executive
function that is highly affected in idiopathic psychosis. Finally
in 22q11DS we explore correlations between SC dysconnectivity
and severity of internalizing symptoms. Indeed high internalizing

psychopathology represents a hallmark of the psychiatric
phenotype of 22q11DS (Shashi et al., 2012; Klaassen et al.,
2013, 2015) and higher internalizing symptoms such as anxiety
represent a risk factor for psychosis in 22q11DS (Gothelf et al.,
2007, 2013).

We hypothesized that in HCs SCNs would undergo non-linear
maturation with critical reorganization during late childhood
and progressive fine-tuning during adolescence, recapitulating
previous findings in general population (Khundrakpam
et al., 2013; Váša et al., 2018). We hypothesized that network
architecture and particularly fronto-parietal connectivity
maturation would be associated with WM performance.
In patients we expected to observe aberrant developmental
trajectories of particularly frontal connectivity given previous
reports of frontal dysmaturation in 22q11DS (Schaer et al.,
2009) and idiopathic psychosis (Wood et al., 2008). We expected
that previously reported disturbed network architecture would
emerge during adolescence, since adolescence is a critical
period of vulnerability to psychosis in the general population
(Insel, 2010) and in 22q11DS (Schneider et al., 2014a,b). We
hypothesize that SC dysconnectivity would be associated with
higher internalizing psychopathology.

METHODS

Participants
All participants with 22q11DS were recruited at the Geneva
School of Medicine in the context of a prospective longitudinal
study [details about recruitment can be found in (Schaer et al.,
2009; Maeder et al., 2016)].

For the present work our cohort consisted of 110 patients
with 22q11DS, followed up for an average of 2 time-points
(varying from 1 to 4) amounting to 221 visits. Prior to
selecting our cohort structural brain scans were visually
inspected to screen for the presence of gross morphological
abnormalities, leading to the exclusion of two patients with
22q11DS presenting with polymicrogyria. Additionally, we
recruited 117 (M/F = 58/59) HCs that were followed for an
average of 1.8 time-points (varying from 1 to 4), amounting to
211 visits. Groups did not differ in terms of mean age (p = 0.1),
time between visits, (p = 0.35), gender (p = 0.63) or handedness
(p = 0.61). Only full-scale IQ was significantly lower in patients
compared to controls (p < 0.001). For demographic details
see Supplementary Table 1 and Supplementary Figure 1.
Prevalence of main psychiatric and neurological diagnoses are
reported in Supplementary Table 2. Written informed consent
was obtained for all participants, and the study was approved by
the Institutional Review Board of the Geneva University School
of Medicine.

Image Acquisition and Processing
T1-weighted images were acquired with a three-dimensional
volumetric pulse sequence with a Philips 1.5T Intera scanner
(sequence parameters: TR = 35ms, TE = 6ms, flip angle = 45◦,
NEX = 1, matrix size = 256 × 192, field of view = 24 cm2, slice
thickness = 1.5mm, 124 slices) and Siemens Trio or Prisma 3T
scanners (sequence parameters for 3T scanners: TR = 2,500ms,
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TE = 3ms, flip angle=8◦, acquisition matrix = 256 × 256, field
of view= 22 cm, slice thickness= 1.1mm, and 192 slices). A test-
retest approach has previously demonstrated high consistency
for morphological measures across scanners (Mutlu et al., 2013).
Furthermore scanner type did not differ significantly across
populations (p = 0.14 see demographic table) and any potential
effects of scanner were rigorously accounted for during statistical
analysis.

Images were imported in FreeSurfer software package (http://
surfer.nmr.mgh.harvard.edu/fswiki) for a precise and semi-
automatic reconstruction of the internal and external cortical
surfaces (Fischl and Dale, 2000). The mean cortical thickness
of 148 brain regions was then computed for each scan using
the Destrieux parcellation, implemented in FreeSurfer (Destrieux
et al., 2010).

Definition of Age-Bins Through
Sliding-Window Approach
Visits were ordered according to age separately for HCs and
patients. Subsequently, a window of 35 visits was progressively
slid across the two cohorts, starting for the 35 visits of the
youngest subjects, and proceeding with one visit at a time (See
Figure 1, Step 1). Definition of window-width is an inherently
arbitrary step of sliding-window approaches and implies a
trade of between higher statistical power and lower temporal
resolution with increasing window-width (Preti et al., 2016). We
opted for a window-width of 35 subjects given that 30 data-points
are generally considered sufficient for the estimation of reliable
correlations (Hogg et al., 2007). Moreover a window-width of 35
subjects was associated with a mean age-range in each window
of 2.86 ± 0.72 years in 22q11DS and 2.83 ± 0.72 in HCs that
was only slightly inferior to the mean time between longitudinal
visits of 3.8 and 3.6 years in 22q11DS and HCs respectively.
This guaranteed that subjects were generally not included twice,
at different time-points in a single window. Age-windows that
included two repeated visits of the same subject were excluded
(37 and 43 age-window in 22q11DS and HCs respectively). This
yielded a total of 148 and 132 partially overlapping age-windows,
of progressively increasing mean age, in 22q11DS and HCs,
respectively. In the subsequent steps, SC was estimated in every
age-window.

Structural Covariance Estimation
Before computing SC we accounted for the effects of nuisance
variables. Specifically, we controlled for the effects of scanner
and gender in two steps: at the level of the entire cohort, and
then again in each individual age-window. In each window, we
additionally controlled for the effects of age and overall cortical
thickness as commonly described in SC literature (Alexander-
Bloch et al., 2013).

Subsequently, we computed SCNs using Pearson correlations
of cortical thickness across subjects between each couple of brain
regions, yielding a symmetrical 148 × 148 covariance matrix for
each age-window.

We computed several measures to characterize SCNs after
thresholding to consider only positive correlations (Figure 1,
Step 3a). Mean R Coefficient across all connections was

computed as an index of mean connectivity strength (MCS).
MCS was also computed for each local region. We employed
graph theory to quantify features of network architecture using
functions implemented in the Brain Connectivity Toolbox for
MATLAB (TheMathWorks, Inc., Natick,MA; http://www.brain-
connectivity-toolbox.net/). As graph-theoretical measures are
influenced by overall network connectivity, we normalized for
this by dividing each correlation for the mean of all R-coefficients
(Rubinov and Sporns, 2010; van Wijk et al., 2010).

We quantified Mean Clustering Coefficient (MCC) as an
architectural measure of local segregation. MCC measures the
proportion of neighbors of a node that are also neighbors to
each other (Rubinov and Sporns, 2010) and quantifies how
efficiently information is transferred within segregated clusters of
regions. We also quantified Network Efficiency (NE). NE gauges
how efficiently connections are distributed to limit the distance
separating each couple of regions of a network (Rubinov and
Sporns, 2010).

Extraction of SC Developmental Trajectory
and Analysis
We firstly tested the age-relationship of SC measures in both
populations separately. Specifically, models of increasing order
(from constant to cubic age-relationship) were fit to each
measure of SC and a Bayesian information criterion (BIC) based
approach was used to select the optimal model order (Mutlu
et al., 2013; Figure 1, Step 4). Subsequently visits included in
each age-window were randomly resampled for 900 leave-one-
out-substitution Bootstrap Samples (BSs) (Figure 1, Step 2).
Covariance matrices were re-computed at each BS, yielding a
distribution of SC measures in each age-window. Model fitting
was then repeated at each bootstrap iteration and correlation
with age was considered significant if a model of non-zero order
could be fit to at least 95% of the BSs. For each population
we additionally computed confidence intervals (CIs) of curve
parameters (such as CI of ages of peak maturation).

Subsequently we employed K-means clustering to identify
clusters of regions showing common maturation (Figure 1,
Step 3b.2).Indeed K-means clustering allows to group together
variables (i.e., brain regions) that are similar throughout multiple
dimensions (i.e., connectivity at different ages) (Bair, 2013).
See Figure 1, Step 3b.2 for a graphical representation of K-
means clustering approach. Here, the algorithm yielded clusters
of regions whose connectivity strength was similar throughout
multiple age-windows, indicating a common developmental
trajectory. We tested several cluster solutions (from k = 2 to
k = 7) and employed a silhouette approach to identify the
optimal number of clusters (Rousseeuw, 1987). We subsequently
averaged connectivity strength across regions within each cluster
and employed bootstrapping to define CIs at each age-window.
We then fit models of increasing order to the bootstrapped data
to test and characterize developmental trajectories of each cluster.

Lastly we tested for between-group differences in
developmental trajectories of SC measures. Specifically group
differences were defined when either models of different
order were fit to the two populations, or when the CI of
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FIGURE 1 | Sliding-Window Methodological Protocol: Step 1: Scans are ordered according to age. Subsequently a window of 35 subjects is progressively slid across

the cohort starting for the 35 youngest scans at advancing by of one scan at a time. The procedure yields partially overlapping age-windows of progressively

increasing mean age. Step 2: Covariance matrices are computed in each partially overlapping age-window. Subsequently scans included in each age-window are

resampled for 900 leave-one-out substitution bootstrapped samples (BSs). Step 3a: The global architecture of covariance matrices computed in each age-window

and each BS are characterized with Graph Theory measures, obtaining a distribution of each measure at each age-window. Step 3b.1: Local connectivity strength is

computed for each region and each age-window yielding a matrix of regions by age. Step 3b.2: K-means clustering is then employed to identify clusters of regions

showing common maturation. Connectivity strength is averaged within each cluster at each age-window. Step 4: Models of increasing order are fit to measures of SC

and BIC are employed to select model order. The process is repeated for 900 BSs to define confidence intervals of developmental trajectories.

peak-maturation age did not overlap. To test for quantitative
differences in SC measures we identified the 120 couples of
windows that were closest in terms of mean-age. We then
computed p-values for each measure as the proportion of
overlap in bootstrapping-derived distributions, between the 2
populations.

Correlation With Trajectories of
Working-Memory
Working-Memory (WM) performance was measured using the
Wechsler Digit Span subtest, backward part, considering raw-
scores (Wechsler, 1991, 1997). In this task, participants were
asked to repeat backward a gradually increasing set of numbers.
WM was tested at each scanning session and WM scores
were available for 206/211 visits in HCs and 216/221 visits
in 22q11DS.

To characterize developmental trajectories of WM we
firstly employed mixed model linear regression at the level of
individual subjects in the two populations. Detailed description
of the specific algorithm employed is available in previous
work (Kremen et al., 2010). Briefly models of increasing order
(from constant to cubic) were fit to WM scores and a BIC
based approach was used to select optimal model order. Hence
a likelihood ratio test was employed to test differences in
both curve shape, also known as an interactions effect, and in
curve intercept, also known as group effect. To qualitatively

characterize differences in curve shape, we furthermore plotted
the derivatives of mean developmental curves that express
the rate of WM maturation as a function of age in the two
populations.

To allow a direct comparison with SC, mean WM scores
were furthermore computed in each window using the previously
described sliding window approach. Mean WM was then
correlated with measures of SC computed in each window using
Pearson’s correlation. Finally to define CIs, correlations between
WM and SC were recomputed for 900 BSs. Correlations were
considered significant if the null hypothesis could be rejected
at p < 0.05 in at least 95% BSs. Moreover to exclude that age
was not exclusively responsible for correlations between WM
performance and SC, we repeated correlations after accounting
for the effect of age.

Correlation With Severity of Internalizing
Psychopathology in 22q11DS
Severity of internalizing psychopathology was measured with the
Child Behavior Checklist (CBCL) (Achenbach, 1991), filled out
by parents of patients with 22q11DS younger than 18 years of age.
Patients with 22q11DS older than 18 filled out the Adult Behavior
Checklist (ABCL) (Achenbach and Rescorla, 2003). To account
for systematic inconsistencies across the two instruments values
obtained from CBCL and ABCL were separately z-scored prior
to being merged. Subsequently the same statistical procedure
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adopted for WM scores was employed to describe developmental
trajectories of internalizing psychopathology, using both mixed
models linear regression and the sliding-window approach.
Finally, as described for WM, internalizing symptom scores
computed from the sliding window approach were correlated
with measures of SC for each of 900 BSs, before and after
accounting for the effect of age. Correlations were considered
significant if the null hypothesis could be rejected at p < 0.05 in
at least 95% BSs.

RESULTS

Developmental Trajectories of Mean
Connectivity Strength
Mean network connectivity strength in HCs showed a significant
quadratic developmental curve with peak maturation occurring

at [15.1–16.5] Years of Age (YoA). In 22q11DS, MCS showed
an altered cubic development with a first negative peak at [10.9–
11.2] YoA, followed by a second positive peak at [17.7–17.9] YoA.
Overlapping developmental curves between patients and controls
revealed a significantly higher mean connectivity in 22q11DS for
29 age-windows, mostly (23/29) located between 14.8 and 18.1
YoA (See Figure 2).

Developmental Trajectories of Network
Architecture
MCC in HCs showed a quadratic trajectory of development
peaking at [15.2–17.3] YoA. In 22q11DS, MCC showed a deviant
cubic development with a first negative peak at [10.35–10.78]
YoA, followed by a positive peak at [17.5–17.71] YoA. Direct
comparison of two curves revealed a significantly higher MCC in

FIGURE 2 | Developmental trajectories of network architecture in HC (A) and 22q11DS (B). Dashed lines indicate 95% confidence intervals of ages of peak

maturation. (C) displays the overlap in developmental trajectories between the two populations. Lack of overlap in 95% confidence intervals indicates a statistically

significant difference at p < 0.05. Precise p- values are computed as the proportion of overlap in bootstrapped derived distributions and are displayed in

Supplementary Figure 3.
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22q11DS for 22 age-windows spanning between 14.8 and 18.15
YoA (See Figure 1).

In HCs, NE showed a linear decrease throughout the age
range. In 22q11DS, maturation of NE was altered and was
best captured by a cubic trajectory with a first negative peak
at [10.69–10.99] YoA, followed by a positive peak at [17.25–
17.42] YoA. Overlapping the two curves revealed that NE
was significantly lower in 22q11DS (p < 0.05) for 30 age-
windows mostly (25 out of 30) located between 14.9 and 18 YoA
(See Figure 1).

Clustering of Regions According to
Developmental Trajectories of Connectivity
Strength
The silhouette approach identified K = 2 and K = 3 as
the two best cluster solutions for both populations. Here we
describe results for the 3-cluster solution, that best characterized
differences between populations (See Figure 3). Results for the
2-cluster solution are reported in Supplementary Figure 2.

In HCs, a first dominant cluster presented a cubic
developmental trajectory, with a first positive peak at [12.34–
12.73] YoA, followed by a negative peak at [17.12–18.25].
This first cluster encompassed mostly bilateral fronto-
parietal regions including bilateral middle and superior
frontal gyri and pre-central gyrus, inferior and superior
parietal gyrus, the precuneus, cunes, and superior occipital
gyrus.

A second cluster of regions showed a more retarded and
protracted linear maturation and included the bilateral middle
and inferior temporal gyri, fusiform cortices, anterior cingulate
cortex (ACC), orbito-frontal cortex (OFC), sub-parietal sulcus,
and left inferior parietal lobule.

A third cluster of regions, that was characterized by the
weakest connectivity strength, encompassed bilateral insular
cortices, parahippocampal giri, posterior cingulate gyri and
pericallous gyrus and presented a subtle quadratic development
with a negative peaking at [13.98–14.83] YoA.

In 22q11DS, the 3-cluster solution revealed a strikingly
different developmental pattern.

A first cluster showed a cubic development with a first positive
peak at [13.63–14.28] YoA, followed by a second negative peak at
[17.41–18.26] YoA. This trajectory is similar to the one observed
in HCs. However, this first cluster included exclusively parietal
and occipital regions such as bilateral middle and superior
occipital gyri, occipital poles, cuneus, inferior and superior
parietal gyri and post-central gyri.

Frontal regions, on the other hand, were grouped with a
second cluster that showed a more postponed and protracted
linear development. This second cluster encompassed the
bilateral middle and superior frontal gyri, precentral gyrus,
along with several regions that showed a comparable
developmental trajectory in HCs, such as the middle and
inferior temporal gyri, fusiform cortex, OFC, parietal lobule and
right ACC.

Lastly, a third cluster of regions was characterized by weaker
connectivity strength along with a subtle quadratic development

throughout the age range. This last cluster encompassed
the insular cortex, inferior frontal gyrus, gyrus rectus, para-
hippocampal gyrus, left anterior and posterior cingulate cortex
and left superior temporal gyrus.

Developmental Trajectories of Working
Memory Performance
Overall WM performance was significantly lower in 22q11DS
compared to HCs, as estimated by a significant group effect
(p < 0.0001). WM underwent a quadratic developmental
trajectory in both populations with the strongest increase
occurring in late childhood and early adolescence (See
Figure 4). However the shape of the trajectory was significantly
different in 22q11DS (p of interaction = 0.01). Inspection
of the derivatives of mean developmental trajectories
revealed that rate of WM development was significantly
reduced in 22q11DS particularly during late childhood
and early adolescence. By late-adolescence/early adulthood
rate of WM development was similar across the two
populations. A similar picture was depicted when estimating
developmental trajectories with the sliding-widow approach (See
Figure 4).

Correlation of Working Memory and
Network Architecture
In HCs before accounting for the effect of age, WM performance
was positively correlated with MCC (r = [0.73/0.62] p < 0.001)
and MCS (r = [0.73/0.62], p < 0.001) whereas it was negatively
correlated with NE (r = [−0.43/−0.27], p = [<0.0001/0.001]).
After accounting for the effect of age, WM remained positively
correlated withMCC (r = [0.43/0.23], p= [<0.0001/0.006]) and
MCS (r = [0.42/0.25], p = [<0.0001/0.003]) whereas correlation
with NE became positive and non-significant (r = [0.33/0.12],
p= [0.0001/0.135]) (See Figure 5).

In 22q11DS MCC (r = [0.64/0.56] p < 0.0001) and MCS

(r = [0.62/0.53] p < 0.0001) were positively correlated while
NE was negatively correlated (r = [−0.5/−0.4] p < 0.0001)
with WM before accounting for the effect of age. However
after accounting for the effect of age WM was not significantly
correlated with either MCC (r = [−0.08/0.08] p = [0.28/0.97),
MCS (r = [−0.16/0.01] p= [0.04/0.94]) or NE (r = [0.14/−0.01]
p= [0.07/0.97]) in 22q11DS.

Correlation of Working Memory and Local
Connectivity Strength
As pertains to local connectivity strength in HCs, connectivity
of the (blue) fronto-parietal cluster (R = [0.64/0.57] p < 0.0001)
and the (green) ACC-OFC cluster (R = [0.8/0.74] p < 0.0001)
were positively correlated with WM whereas connectivity
of the yellow cluster was negatively correlated with WM
(R = [−0.39/−0.25] p = [<0.0001/0.0027]) (See Figure 6).
However after accounting for the effect of age only the blue
fronto-parietal cluster remained positively correlated with WM
(R = [0.73/0.63] p < 0.0001) while no correlation was observed
for the green cluster (R = [0.11/−0.06] p = [0.98/0.1858])
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FIGURE 3 | Clustering of regions according to developmental trajectories of connectivity strength in HCs and patients. Color-coding (green, blue, and yellow)

indicates correspondence between cluster and developmental trajectory. Regions are shaded according to Z-score of mean Euclidian distance from cluster centroid

computed over 900 bootstrapped samples, which is indicative of how closely maturation of each region is reflected in that of the corresponding cluster.

and a negative correlation was observed for the yellow cluster
(R= [−0.47/−0.31] p= [<0.0001/0.00).

In 22q11DS connectivity of the blue (R = [0.55/0.44]
p < 0.0001) and the green (R = [0.65/0.58] p < 0.0001)
clusters were positively correlated with WM whereas no
significant correlation was observed for the yellow cluster
(R = [0.09/0.22] p = [0.22/0.005]). After accounting for the
effect of age only the blue parito-occipital cluster remained
positively correlated with WM (R = [0.48/0.33] p < 0.0001)
whereas no significant correlation was observed for the green
cluster (R = [−0.19/−0.04] p = [0.01/0.55]) and a negative
correlation was observed for the yellow cluster (R= [−0.41/0.25]
p= [<0.001/0.002]).

Correlation of SC and Severity of
Internalizing Symptoms in 22q11DS
According to mixed linear regression severity of internalizing
symptoms remained stable with age in 22q11DS. However
the sliding window approach revealed a more complex
pattern with reduced symptom severity during childhood
and a transient increase in internalizing symptom
severity during mid to late adolescence (See Figure 7,
Column A).

Before accounting for the effect of age severity of
internalizing symptoms was negatively correlated with
MCC (r = [−0.28/−0.18], p = [0.0004/0.02]) whereas no
significant correlation was observed for NE (r = [0.18/0.08],
p= [0.02/0.3]) or forMCS (r= [−0.24/−0.13], p= [0.001/0.09]).
However after accounting for the effect of age severity of
internalizing symptoms was positively correlated with both
MCC (r = [0.34/0.21], p = [<0.0001/0.007]) and MCS

(r = [0.41/0.28], p = [<0.0001/0.004]) and negatively correlated
with NE (r = [−0.31–/0.20], p = [<0.0001/0.01]) (See Figure 7,
Column B,C).

As pertains to local connectivity strength, before accounting
for the effect of age, internalizing symptom severity was
negatively correlated with connectivity of both the blue parieto-
occipital cluster (r = [−0.58/−0.48], p < 0.0001) and green
cluster (r = [−0.25/−0.17], p = [0.001/0.03]) whereas no
significant correlation was observed for the yellow cluster
(r = [0.18/0.05], p = [0.02/0.47]). However after accounting
for the effect of age internalizing symptom severity remained
negatively correlated with connectivity of the blue parieto-
occipital cluster (r = [−0.48/−0.35], p<0.0001) but was
positively correlated with connectivity of both the green
(r = [0.46/0.37], p < 0.0001) and yellow (r = [0.45/0.31],
p < 0.0001) clusters (See Figure 7, ColumnD).
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FIGURE 4 | (A.1) Developmental trajectories of working memory (WM) described using mixed-model linear regression for HCs in blue and 22q11DS in red. WM is on

average lower in 22q11DS (p-val group effect < 0.0001) and undergoes aberrant development with age (p-val interaction = 0.01). (A.2) Derivatives of WM

developmental curves, express mean rate of WM maturation as a function of age for HCs in blue and 22q11DS in red. Strongest differences in rate of WM

development are observable at the youngest ages, during late-childhood and early adolescence while by late adolescence rate WM maturation is similar between the

two populations. (B) Developmental trajectories WM are estimated using the same sliding-window approach used to compute structural covariance. Error-bars (HCs

in blue and 22q11DS in red) indicate mean ± standard deviation of WM scores in each window.

DISCUSSION

In this work, we implement a state-of-the are sliding
window approach to investigate developmental trajectories
of SC networks in a large cohort of patients with 22q11DS
and HCs.

We will first discuss findings in HCs, in relation to typical
trajectories of cognitive maturation and offering hypotheses on
the neurobiological processes underlying SC maturation. We
will then discuss how this development deviates in patients
with 22q11DS. We advance that disturbed SC maturation may
contribute to core developmental features of the syndrome,
including disturbed cognitive maturation during childhood

and internalizing psychopathology and psychosis predisposition
during adolescence.

Maturation of Structural Covariance
Network Architecture in Healthy Controls
Our results in HCs point to late-childhood and early-adolescence
as critical periods for the maturation of SCNs. Indeed, until
early-adolescence, networks underwent a significant increase
in mean correlation strength along with a prominent increase
of MCC, indicative of a more segregated and less random
organization. Architectural maturation was also reflected by a
decrease in NE, that was however more gradual throughout
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FIGURE 5 | Correlation between structural covariance network architecture and working memory. Method: Mean WM scores and measures of SC network

architecture are computed in each window and correlated using Pearson’s correlation. The process is repeated for 900 BSs in each window to define confidence

intervals of correlations. Correlations are furthermore repeated after controlling for the effect of age. (A) Correlations in HCs before controlling for age. (B) Correlations

in HCs after controlling for age. (C) Correlations in 22q11DS before controlling for age. (D) Correlations in 22q11DS after controlling for age.

the examined age range. Late-childhood re-organization of SCN
architecture was previously reported in a large cross-sectional
cohort (Khundrakpam et al., 2013). Our results firstly replicate
this finding in a longitudinal sample, furthermore allowing a
more precise characterization of developmental trajectories.

From the perspective of cortical development, the period
of late-childhood has until recently been relatively overlooked,
mainly due to histological studies reporting little changes in
neuronal or synaptic organization during this time period
(Huttenlocher, 1979; Rakic et al., 1986; Huttenlocher and
Dabholkar, 1997; Petanjek et al., 2011). Indeed synaptogenesis
is completed by early-childhood while most synaptic pruning
occurs after the onset of adolescence (Huttenlocher, 1979;
Rakic et al., 1986; Huttenlocher and Dabholkar, 1997; Petanjek
et al., 2011). However, late-childhood is a period of important
maturation for multiple cognitive domains, including verbal and
non-verbal intelligence, attentional performance and executive
functions (Chelune and Baer, 1986; Anderson, 2002; Crone
et al., 2006). A possible interpretation for this discrepancy is
that late-childhood may be a critical period for synaptic fine-
tuning (Changeux and Danchin, 1976). During synaptic fine-
tuning, functionally relevant synapses are stabilized in order
to be protected from subsequent pruning during adolescence.
Interestingly, it was proposed that late-childhood maturation

of SCNs could capture this process of synaptic fine-tuning
(Khundrakpam et al., 2013), which is critical for cognitive
maturation.

An alternative interpretation is that the reorganization
of SCNs is reflecting white matter maturation. Indeed,
developmental trajectories of white matter from childhood
to adulthood are best described by quadratic curves, with most
of the development occurring precociously, during childhood
and early adolescence (Lebel and Beaulieu, 2011; Lebel et al.,
2012). Furthermore SC has shown considerable overlap with
white matter connectivity (Sui et al., 2014).

Importantly SC network architecture was correlated with
WM performance suggesting a potential functional relevance of
SC maturation. A more segregated and organized SC network
architecture has been previously associated with higher cognitive
performance in childhood and adolescence (Khundrakpam et al.,
2016). When considering that in HCs network segregation
significantly increases during childhood and early adolescence,
correlation between MCC and WM suggests that maturation of
network architecture could contribute to cognitive development
during this critical developmental period. On the other hand
NE underwent a linear decrease with age, but showed a non-
significant positive correlation with WM when the effect age was
accounted for. Recent findings pointed to a positive correlation
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FIGURE 6 | Correlation between structural covariance local connectivity strength and working memory. Method: Mean connectivity strength in each cluster and mean

WM scores are computed in each window and are correlated using Pearson’s correlation. The process is repeated for 900 BSs in each window to define confidence

intervals of correlations. Correlations are furthermore repeated after controlling for the effect of age. (A) Correlations in HCs before controlling for age. (B) Correlations

in HCs after controlling for age. (C) Correlations in 22q11DS before controlling for age. (D) Correlations in 22q11DS after controlling for age.

between cognitive performance and SC NE (Khundrakpam et al.,
2016). Our results, albeit at trend level, tend to confirm that
higher SC NE is associated with better WM irrespective of
age. However, when considering developmental trajectories, our
results suggest that maturation of NE is not strongly implicated
in development of WM, at least in the examined age range.

Deviant Maturation of Structural
Covariance Network Architecture in
22q11DS
Trajectories of SC network architecture were altered in 22q11DS
with a lack of development during childhood, followed
by a prominent reorganization during adolescence. Network
development was not only postponed, but also aberrant with
patients presenting increased connectivity strength coupled with
excessive segregation and insufficient integration, for several
age-windows, during mid-to-late adolescence.

In a previous cross-sectional investigation of SC in 22q11DS,
we reported increased correlation strength, coupled with
decreased architectural integration and increased segregation,

that selectively affected patients presenting prodromal psychotic
symptoms both compared to HCs and non-psychotic patients
(Sandini et al., 2017). Several studies investigating SC in
patients suffering from psychotic symptoms have also reported
increased correlation strength (Wible et al., 1995, 2001; Buchanan
et al., 2004; Mitelman et al., 2005a,b, 2006; Modinos et al.,
2009; Zugman et al., 2015), along with increased architectural
segregation and decreased integration (Bassett et al., 2008;
Zhang et al., 2012). Increased segregation and decreased
integration are furthermore consistent with reports of white-
matter dysconnectivity in idiopathic psychosis (van den Heuvel
and Fornito, 2014) and in 22q11DS (Ottet et al., 2013b; Váša
et al., 2016) as well as with findings of increasingly segregated
functional networks in 22q11DS (Scariati et al., 2016b).

Here disturbed network architecture was correlated with
higher internalizing symptoms after accounting for the effect
of age. High internalizing psychopathology, including anxiety,
depression, social withdraw, and thought disorders represents
a hallmark of psychiatric phenotype of 22q11DS (Shashi et al.,
2012; Klaassen et al., 2013, 2015). Moreover internalizing
symptoms such as anxiety, exert a prominent negative impact
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FIGURE 7 | Correlation of structural covariance and internalizing psychopathology in 22q11DS. (A) Developmental trajectories of internalizing symptoms as quantified

from the CBCL/ABCL subscale. Measures obtained from the two instruments are separately z-scored prior to being merged. (A1) Mixed models linear regression

approach (A2) Sliding Window Approach. (B) Correlation of internalizing psychopathology and network architecture before accounting for the effect of age (B1) MCS,

(B2) MCC, (B3) MCS. (C) Correlation of internalizing psychopathology and network architecture after accounting for the effect of age (C1) MCS, (C2) MCC, (C3)

MCS. (D) Correlation of structural covariance local connectivity strength and internalizing psychopathology (D1) Before accounting for the effect of age (D2) After

accounting for the effect of age.

on overall functioning (Angkustsiri et al., 2012) and represent a
strong risk factor for the subsequent development of psychosis
in 22q11DS (Gothelf et al., 2007, 2013). Internalizing symptoms
have furthermore been shown to increase in prevalence during
adolescence in 22q11DS (Duijff et al., 2013). Our finding
suggest that the development of disturbed network architecture,
with insufficient integration and excessive segregation, could
contribute to the emergence of internalizing symptoms and
potentially to increased vulnerability to psychosis during
adolescence in 22q11DS. Indeed disturbed architecture could
lead to an insufficient integration of signals originating from
functionally specialized sub-networks, which could in turn
predispose to the emergence of the syndrome’s psychiatric
phenotype (Sandini et al., 2017).

A second observation is that the aberrant development of
network architecture during adolescence is preceded by a lack
of typical maturation during late-childhood. As discussed in the
previous section, late-childhood is the critical period for the
maturation of SCNs in HCs (Khundrakpam et al., 2013) and
development of particularly MCC could contribute to improved
WM in this period. The lack of architectural development during
childhood in 22q11DS could therefore contribute to the blunted

WMmaturation observed in this population. However measures
of SC network architecture were not significantly correlated with
WM performance in 22q11DS, after accounting for the effect of
age.

From the perspective of the underlying neurobiology, if
SCNs maturation were indeed capturing a process of synaptic
stabilization (Changeux and Danchin, 1976), insufficient late-
childhood network maturation in 22q11DS could reflect
impairments in this process. Interestingly, synaptic instability
has been reported in LGDel± mouse models of 22q11DS
(Moutin et al., 2016). A similar deficit of synaptic stabilization
might therefore also be affecting patients with 22q11DS, and
manifest with a lack of network reorganization observed
during late-childhood. Synaptic instability could then potentially
predispose to aberrant SC development and vulnerability to
internalizing psychopathology and psychosis during adolescence.
Indeed, recent neuro-pathological evidence has suggested that
synaptic deficits, that are highly replicable in schizophrenia
(Garey et al., 1998; Glantz and Lewis, 2000; Rosoklija et al.,
2000; Black et al., 2004; Glausier and Lewis, 2013), might be
linked to insufficient synaptic stabilization (MacDonald et al.,
2017).
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Moreover disturbed SC maturation during late-childhood
could also be reflective of deficient white-matter maturation, that
might contribute to typical development of SC in HCs. Although
several cross-sectional investigations have consistently reported
white matter dysconnectivity in 22q11DS (Ottet et al., 2013a,b;
Scariati et al., 2016a; Váša et al., 2016) so far no longitudinal
studies have been conducted. Our results could suggest that
developmental trajectories of white-matter connectivity start to
diverge during late-childhood potentially inducing vulnerability
to the emergence of psychosis during adolescence.

Developmental Trajectories of Local
Connectivity Strength in Healthy Controls
In HCs, a first set of regions displayed a precocious cubic
maturation, with increase in connectivity up to late-childhood,
followed by a more subtle pruning during adolescence and
a stabilization by early adulthood. Recent work, employing
a similar sliding window approach, reported comparable
trajectories for SC connectivity maturation for regions
corresponding to this first cluster, albeit limited to the age
range between late adolescence to early adulthood. From a
functional perspective this first cluster was mainly composed
of frontal-parietal regions, strongly resembling the Central
Executive Network (CEN) (Seeley et al., 2007; Menon, 2011).
The CEN is critical for goal-directed cognitive processes also
known as executive functions (EFs) (Wager and Smith, 2003;
Fan et al., 2005; Müller and Knight, 2006; Markett et al., 2014;
McKenna et al., 2017). EFs, and particularly (WM), undergo
dramatic improvements during late-childhood as described both
in our cohort (See Figure 4) and previous literature (Chelune and
Baer, 1986; Crone et al., 2006; Tamnes et al., 2013; Ullman et al.,
2014). Moreover morphological and connectivity maturation of
the CEN have been specifically correlated with the development
of WM (Crone et al., 2006; Tamnes et al., 2013; Ullman et al.,
2014). In accord with these findings, we observe a significant
positive correlation between SC connectivity of the CEN and
WM performance, even when accounting for the effect of age.
When considering developmental trajectories, our findings
suggest that SC maturation of the CEN might contribute to the
critical WM improvements observed during late-childhood in
HCs.

A second bilateral group of regions showed a more postponed
and protracted linear maturation. Connectivity of this cluster
was not significantly correlated with WM performance after
accounting for the effect of age. However, ACC and OFC,
included in this cluster, are critical for cognitive processes
underlying decision-making (Wallis and Kennerley, 2011; Khani
et al., 2015) that continue to mature into early-adulthood
(Blakemore and Robbins, 2012). Furthermore the inferior
temporal cortices together with the ACC, sub-parietal sulcus,
and inferior parietal lobule are key nodes of the default-mode-
network (DMN) (Lee et al., 2013). The DMN is involved in self-
referential cognitive processes (Raichle, 2015) that also continue
to mature throughout adolescence (Dumontheil et al., 2010).
Moreover white-matter tracts connecting most of these regions
such as the cingulate bundle, or the uncinate fasciculus, continue

to mature until early-adulthood (Lebel and Beaulieu, 2011),
potentially explaining the delayed development of SC.

On the other hand the Salience Network, involved in the
attributing subjective salience to internal and external events
and classically encompassing the dorsal anterior cingulate cortex
(dACC) and anterior insula (AI)(Uddin, 2015), did not appear to
display a coherent developmental trajectory in HCs. Indeed while
the dACC displayed a linear increase in connectivity strength,
together with other DMN related regions, the AI presented a
different and more subtle negative quadratic development.

Deviant Developmental Trajectories of
Local Connectivity Strength in 22q11DS
Developmental trajectories of local connectivity strength were
altered in 22q11DS. Indeed, compared to controls, the cluster
showing a more precocious maturation included exclusively
bilateral parietal and occipital regions. Frontal regions, on the
contrary, were mostly included in a second cluster showing no
maturation during childhood followed by increased connectivity
strength during mid-to-late adolescence.

Frontal cortical dysmaturation was previously reported by
our group in 22q11DS (Schaer et al., 2009). Indeed individuals
with 22q11DS were found to undergo a lack of typical cortical
maturation during childhood, leading to excessive cortical
thickness, which was followed by accelerated cortical thinning
during adolescence (Schaer et al., 2009). This pattern was
particularly striking at the level of the pre-frontal cortex (Schaer
et al., 2009). Our findings are therefore consistent with notion of
frontal dysmaturation in 22q11DS, but expand it to consider also
frontal connectivity.

As discussed in the previous section, morphological and
connectivity maturation of the CEN sustain improvements in
EFs and WM, which are particularly important during late-
childhood (Crone et al., 2006; Tamnes et al., 2013; Ullman et al.,
2014). Disturbed frontal connectivity maturationmight therefore
contribute to retarded maturation of EFs and WM, occurring
during late-childhood in 22q11DS (Maeder et al., 2016).

Moreover in 22q11DS WM was positively correlated
selectively with parieto-occipital connectivity, after accounting
for the effect of age. This could suggest that in 22q11DS, parieto-
occipital connectivity maturation might sustain development
of WM during childhood, and at least partially compensate
for blunted frontal maturation. Indeed two studies suggested
that children and adolescents with 22q11DS might rely on
more parietal-dependent cognitive strategies, with a conserved
parietal activation compared to reduced frontal activation during
a similar n-back non-spatial WM task (Kates et al., 2007).
Moreover adolescents with 22q11DS were found to present an
excessive parietal activation during an arithmetical-reasoning
task compared to healthy controls (Eliez et al., 2001). However
conflicting evidence has also been reported with children and
adolescents presenting reduced parietal activation during a
visuo-spatial WM task (Azuma et al., 2009).

A further consideration is that the prominent increase
of frontal connectivity during mid to late adolescence,
coincides with the emergence of disturbed network
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architecture. Connectivity the green fronto-temporal cluster
was also positively correlated with severity of internalizing
psychopathology. The increase in frontal-temporal connectivity
could therefore contribute to the development of architectural
disturbances, and corresponding emergence of internalizing
psychopathology and vulnerability to psychosis during
adolescence. Indeed several regions displaying a postponed
maturation, such as the right superior frontal gyrus and right
ACC were previously found to presented aberrant connectivity,
selectively in patients with 22q11DS with psychotic symptoms
(Sandini et al., 2017).

Moreover severity of internalizing symptoms was also
positively correlated with connectivity of the yellow cluster
encompassing bilateral dACC, AI and fronto-opercular cortex,
that represent key regions of the Salience Network (SN) (Uddin,
2015). Disturbances in the process of salience attribution,
critically governed by the SN, have been highly implicated in
the pathogenesis of psychosis (Kapur, 2003). Moreover recent
evidence suggests that increased connectivity of the SN might
also be correlated with higher internalizing psychopathology in
the peripubertal age-range (Ordaz et al., 2017). Our findings
would suggest that higher connectivity of the SN might
indeed contribute to increased vulnerability to internalizing
psychopathology in 22q11DS, possibly as a consequence of
aberrant salience attribution.

Lastly it could be tentatively hypothesized that the lack
of frontal maturation during late-childhood might predispose
to the subsequent aberrant frontal maturation and emergence
of internalizing psychopathology and psychosis vulnerability
during adolescence. Indirect support comes from the observation
that a decline of frontally mediated cognitive performance,
occurring as early as childhood (Kremen et al., 2010; Gur et al.,
2014), is a well-documented predictor of psychosis both in
22q11DS (Vorstman et al., 2015) and in the general populations
(Riecher-Rössler et al., 2009; Seidman et al., 2016).

CONCLUSIONS

Our findings highlight critical late-childhood maturation of
SCNs in HCs that could be instrumental to the significant
cognitive maturation occurring during this developmental phase.

In 22q11DS, we observe disturbed development of SCNs
with aberrant architecture emerging during adolescence and
being preceded by a lack of typical late-childhood maturation.
Disturbed development was furthermore particularly striking
for frontal lobe connectivity. These results are the first to
demonstrate aberrant longitudinal connectivity maturation in
22q11DS, reinforcing the hypothesis that psychosis originates
from a neurodevelopmental disorder of connectivity.

LIMITATIONS

The present work comes with one main limitation. Indeed,
SC is an inherently population based measure that cannot be

computed at the individual level. This consideration strongly
limits direct correlations with individual cognitive and clinical
variables. More advanced analysis will be required to confirm the
functional relevance of our findings at level of individual subjects.
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In vivo optical imaging is a powerful tool for revealing brain structure and function at both
the circuit and cellular levels. Here, we provide a systematic review of findings obtained
from in vivo imaging studies of mouse models of neurodevelopmental disorders,
including the monogenic disorders fragile X syndrome, Rett syndrome, and Angelman
syndrome, which are caused by genetic abnormalities of FMR1, MECP2, and UBE3A,
as well as disorders caused by copy number variations (15q11-13 duplication and
22q11.2 deletion) and BTBR mice as an inbred strain model of autism spectrum disorder
(ASD). Most studies visualize the structural and functional responsiveness of cerebral
cortical neurons to sensory stimuli and the developmental and experience-dependent
changes in these responses as a model of brain functions affected by these disorders.
The optical imaging techniques include two-photon microscopy of fluorescently labeled
dendritic spines or neurons loaded with fluorescent calcium indicators and macroscopic
imaging of cortical activity using calcium indicators, voltage-sensitive dyes or intrinsic
optical signals. Studies have revealed alterations in the density, stability, and turnover of
dendritic spines, aberrant cortical sensory responses, impaired inhibitory function, and
concomitant failure of circuit maturation as common causes for neurological deficits.
Mechanistic hypotheses derived from in vivo imaging also provide new directions for
therapeutic interventions. For instance, it was recently demonstrated that early postnatal
administration of a selective serotonin reuptake inhibitor (SSRI) restores impaired cortical
inhibitory function and ameliorates the aberrant social behaviors in a mouse model of
ASD. We discuss the potential use of SSRIs for treating ASDs in light of these findings.

Keywords: two-photon imaging, calcium imaging, autism spectrum disorders (ASDs), dendritic spines,
excitatory-inhibitory balance, serotonin
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INTRODUCTION

Neurodevelopmental disorders (NDDs), such as autism
spectrum disorders (ASDs) and other genetic syndromes, are an
etiologically heterogeneous group of neuropsychiatric conditions
that manifest very early in life due to the rapid development of
brain circuitry during this period (Rutter et al., 2008). While
demonstrating many specific symptoms, these disorders often
share common deficits such as intellectual disability, epilepsy,
sleep disturbances, and abnormal sensory processing. Despite
these pronounced deficits, gross brain anatomy often appears
largely normal, suggesting that the abnormalities result from
relatively subtle changes in connectivity and communication
among neurons. The pathogenesis of these disorders thus
should be sought at the level of neural circuits and, more
specifically, in how neural circuits are initially constructed
during development, subsequently refined by experience, and
operate when they subserve various cognitive and motor
functions. Proper formation, stabilization, function, and
remodeling of synapses, each of which is achieved by complex
molecular machineries, are essential to ensure the function of
these processes.

Neurodevelopmental disorders are caused by various genetic
abnormalities and non-genetic factors, such as exposure to toxins
and pathogens. To facilitate research, many mouse models that
recapitulate the genetic abnormalities known to cause relevant
disorders in humans have been established. These genetic mouse
models often display phenotypes similar to the symptoms
found in individuals with the relevant disorders. Discovering
potential targets for effective therapies requires a thorough
understanding of these disorders at the molecular, cellular,
and neuronal network levels. However, methodologies used to
examine the structure and function of the human brain, such
as magnetic resonance imaging (MRI), electroencephalography
(EEG), and sensory-evoked potentials, do not yet have sufficient
spatiotemporal resolution or specificity to distinguish the
underlying abnormalities at the cellular level. Alternatively,
in vivo optical imaging using various microscopic techniques
combined with different labeling methods in mice can visualize
circuit structure and function in living animals, with cellular
and subcellular resolution. This technology is thus well suited
for studies that aim to reveal basic pathogenic mechanisms
and guide clinical research. In fact, these techniques have been
applied successfully to investigate structural and functional
abnormalities in several mouse models of NDDs. In this review,
we discuss the findings obtained by these studies and explore their
implications for a better understanding of the corresponding
human disorders.

METHODOLOGIES FOR IN VIVO
OPTICAL IMAGING

Human postmortem studies have revealed changes in the density
and morphology of dendritic spines, while electrophysiological,
psychophysical and neuroimaging analyses indicate abnormal
sensory processing and dysfunctional activity in a variety of

otherwise etiologically distinct NDDs. However, postmortem
studies are limited by uncontrolled tissue changes after
death and cannot elucidate changes in spine dynamics,
while the aforementioned diagnostic techniques lack the
resolution to reveal changes at the single-cell and microcircuit
levels. Thus, many in vivo optical imaging studies of mouse
models have examined the structural dynamics of dendritic
spines on cortical neurons and the responsiveness of cortical
neuronal populations to sensory stimuli. These experiments
are often conducted by acquiring images of the same set
of fluorescently labeled spines over time, using two-photon
microscopy. Alternatively, circuit function can be revealed by
imaging changes in signals of fluorescent indicators of neural
activity (e.g., calcium- or voltage-sensitive indicators) or intrinsic
optical signals from brain tissues during sensory stimulation
(Figure 1).

Dendritic spines are tiny (∼1 µm) protrusions on dendrites
on which synapses form, primarily excitatory glutamatergic
synapses. Historically, the density and shape of spines were
examined by Golgi’s impregnation method, which can reveal
the detailed morphology of a subset of neurons in fixed brain
tissues. However, these images provide only a “snapshot” of
highly dynamic spines, so the information provided by these
images may be misleading. For example, normal spine density
may be a consequence of abnormally enhanced (or reduced)
spine formation and concomitantly increased (or decreased)
elimination occurring at balanced rates. Thus, in vivo time-
lapse imaging is a powerful method to determine whether
model mice exhibit abnormalities in spine density, shape, and
turnover by tracking the fate of individual spines over time.
The spines to be imaged in vivo are usually labeled with
fluorescent marker proteins expressed by means of transfection
using viral vectors or in utero electroporation (Cruz-Martín
et al., 2010; Isshiki et al., 2014) or by crossing the model
mouse with a transgenic reporter mouse line (Pan et al.,
2010; Landi et al., 2011; Padmashri et al., 2013; Reiner and
Dunaevsky, 2015; Kim et al., 2016; Hodges et al., 2017).
Labeled spines can then be imaged by two-photon excitation
laser scanning fluorescence microscopy, which can efficiently
excite fluorescent molecules within otherwise opaque brain
tissues via highly penetrating near-infrared pulsed laser light
(Denk and Svoboda, 1997). However, the best resolution is
still usually obtained from the superficial spines located in
layer (L) 1, within ∼100 µm of the cortical surface, which
are nonetheless on apical dendrites of pyramidal neurons in
L2–5. Imaged spines are classified into different morphological
categories, such as thin (immature), stubby, and mushroom
(mature), and their appearance, persistence, and disappearance
are analyzed in multiple images acquired at intervals of hours,
days, and even weeks. In young adolescent mice, over the
course of 2 weeks, approximately 10% of spines imaged on
L5 pyramidal neurons are eliminated, while 5-8% of them
are formed (Zuo et al., 2005). These rates become smaller
in adult mice, showing that 3-5% of imaged spines are
eliminated or newly formed. Images of spine dynamics have been
acquired from multiple cortical areas, including somatosensory
(Cruz-Martín et al., 2010; Pan et al., 2010; Landi et al., 2011;
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FIGURE 1 | In vivo optical imaging in mouse models of NDDs. (A) Macroscopic imaging of cortical activity visualizes intrinsic optical signals from brain tissues or the
fluorescence of exogenously introduced calcium or voltage indicators, all of which reflect localized brain activity. Studies are designed to identify abnormalities of
cortical sensory responses in mouse models of NDDs compared to normal mice. (B) Two-photon microscopy at subcellular and cellular resolution images the
morphological dynamics of dendritic spines labeled by fluorescent proteins (upper right) or the activity of a population of neurons labeled by fluorescent calcium
indicators (lower right).

Isshiki et al., 2014), visual (Kim et al., 2016), motor (Padmashri
et al., 2013; Reiner and Dunaevsky, 2015; Hodges et al., 2017)
and frontal (Isshiki et al., 2014) cortices, during area-specific
postnatal developmental periods. Spine dynamics in the cortex
are known to be influenced by sensory experience and learning
through the effects of neuronal activity on molecular machinery
in spines, and this reorganization of synaptic connections
is thought to underlie adaptive changes in circuit functions
(Holtmaat and Svoboda, 2009). The effects of sensory input
can be examined through various experimental manipulations,
such as whisker trimming to alter the degree and topology of
somatosensory input (Pan et al., 2010; Isshiki et al., 2014), visual
deprivation by eyelid suture or rearing animals in darkness
(Kim et al., 2016), or training mice to acquire new motor skills
(Padmashri et al., 2013; Reiner and Dunaevsky, 2015; Hodges
et al., 2017).

There are also multiple techniques to image neural circuit
activity in the living mouse brain. Intrinsic-signal optical

imaging visualizes the area and intensity of cortical activity
by extracting optical signals intrinsic to brain tissues, such
as subtle changes in red light reflectance, that are correlated
with local brain activity (Kalatsky and Stryker, 2003; Tropea
et al., 2009; Sato and Stryker, 2010; Arnett et al., 2014;
Castro et al., 2014; Gogolla et al., 2014; Banerjee et al.,
2016). This technique enables the measurement of sensory-
evoked activity in neuronal populations, particularly from
superficial cortical layers, without the application of exogenous
indicator molecules. However, the temporal resolution of this
modality is limited to the order of seconds. In contrast, fast
spatiotemporal dynamics of cortical electrical activity can be
measured at millisecond resolution with voltage-sensitive dyes
(VSDs) that change fluorescence in a membrane potential-
dependent manner (Zhang et al., 2014; Connor et al., 2016;
Lee L.J. et al., 2017). Alternatively, changes in intracellular
calcium ion concentrations associated with neuronal activity can
be measured with high spatiotemporal resolution using synthetic
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calcium-sensitive dyes or genetically encoded calcium indicators
(GECIs) introduced into the living brain (Nakai et al., 2001;
Looger and Griesbeck, 2012). To label neuronal populations, cell-
permeable analogs of synthetic dyes are microinjected locally
into the target brain area (Gonçalves et al., 2013; Banerjee
et al., 2016). Alternatively, GECIs are expressed by viral vectors
(He et al., 2017; Zaremba et al., 2017) or by crossing disorder
model mice with transgenic mice expressing the GECI (Nakai
et al., 2017). These GECIs are often under the control of
promoters specific to certain cell types. In vivo calcium imaging
can be performed using two-photon microscopy to achieve
cellular resolution (Gonçalves et al., 2013; Banerjee et al.,
2016; He et al., 2017; Zaremba et al., 2017) or by single-
photon excitation macroscopy using charge-coupled device or
complementary metal-oxide-semiconductor cameras for wide-
field imaging (Nakai et al., 2017). In sum, these techniques
allow for a variety of experimental measurements, ranging from
imaging spontaneous network activity (Gonçalves et al., 2013;
Connor et al., 2016) to sensory encoding (Arnett et al., 2014;
Zhang et al., 2014; Banerjee et al., 2016; He et al., 2017; Lee L.J.
et al., 2017; Nakai et al., 2017) and neuroplastic changes elicited
by altered experience (Tropea et al., 2009; Sato and Stryker,
2010; Castro et al., 2014; Banerjee et al., 2016; Zaremba et al.,
2017).

Although it is beyond the scope of this review to discuss all
currently available imaging methodologies, in vivo brain imaging
in mice includes not only optical but also other techniques
such as MRI. In particular, resting-state functional MRI (rsfMRI)
of the mouse brain is an emerging technique that enables
mapping of both local and long-range functional connectivity
between distinct brain areas by visualizing anatomical patterns
of the low-frequency oscillatory blood-oxygen-level dependent
(BOLD) signals associated with spontaneous correlated activity
(Gozzi and Schwarz, 2016; Liska and Gozzi, 2016). Although
the spatial resolution of this technique is not as high as the
above-mentioned optical imaging and its application so far
is primarily limited to mapping of intrinsic functional brain
networks in anesthetized or sedated animals, it has a great
advantage over the optical methods in that it can examine
the functional connectivity at the whole-brain scale, including
deep subcortical areas that are difficult to access optically.
This technique should complement optical methods in future
studies such that functional connectivity defects identified
by rsfMRI are subsequently examined more closely via two-
photon microscopy. A few initial studies using rsfMRI have
revealed impaired functional connectivity in mouse models of
ASD (Haberl et al., 2015; Sforazzini et al., 2016; Liska et al.,
2018).

In the following sections, we review studies on mouse models
of NDDs using these in vivo optical imaging techniques. Our
comprehensive literature searches that covered 35 NDDs (Bishop,
2010) were conducted according to the PRISMA guidelines
for systematic reviews (Moher et al., 2009) and identified a
total of 22 in vivo optical imaging studies in mouse models
of fragile X syndrome (FXS), Rett syndrome (RTT), Angelman
syndrome (AS), ASDs (including 15q duplication syndrome) and
22q11.2 deletion syndrome (22q11.2DS). The studies selected

are summarized in Table 1, and the details of the searches are
described in the appended footnote.

IN VIVO OPTICAL IMAGING OF FXS
MODEL MICE

Fragile X syndrome is the most common inherited mental
impairment and also the most common known single genetic
cause of ASD, with a total frequency of approximately 1 in 4,000
males and 1 in 8,000 females (Riley et al., 2017). Individuals
with FXS exhibit a broad range of symptoms, including
intellectual disabilities, autism, macroorchidism, seizures,
sensory hypersensitivity, and facial abnormalities such as a long
face and large ears (Garber et al., 2008). In almost all cases, FXS
is caused by a CGG repeat expansion in the 5′ untranslated
region of the fragile X mental retardation 1 gene (FMR1) and
hypermethylation of its promoter region on the X chromosome,
which results in FMR1 transcriptional silencing and absence of
the fragile X mental retardation protein (FMRP) encoded by this
gene (Santoro et al., 2012).

Fragile X mental retardation protein is a polyribosome-
associated RNA-binding protein localized in the soma and
nucleus as well as the dendrites and spines of neurons
(Feng et al., 1997). FMRP is also expressed in astrocytes
of the developing brain (Pacey and Doering, 2007). It
regulates the trafficking and local translation of mRNAs for
numerous genes important for synaptic growth, function,
and plasticity (Bagni and Greenough, 2005; Darnell and
Klann, 2013; Contractor et al., 2015). Fmr1 knockout (KO)
mice, including the often-used male hemizygous Fmr1-null
(Fmr1−/y) mice, lack FMRP expression and recapitulate
many behavioral features observed in FXS (Bernardet and
Crusio, 2006). Golgi impregnation of cerebral cortical autopsy
materials from individuals with FXS has revealed higher
spine density and greater numbers of long, thin, immature-
looking spines on L3 and L5 pyramidal neurons of parieto-
occipital neocortex (Rudelli et al., 1985; Hinton et al.,
1991) and on L5 pyramidal neurons of temporal and visual
cortices (Irwin et al., 2001). Adult Fmr1 KO mice exhibited
similar morphological defects of spines on visual cortical
L5 pyramidal neurons when examined by Golgi staining of
fixed tissues (Comery et al., 1997). These spine abnormalities
appear to be age-dependent because the aberrantly high
spine density and greater spine lengths observed on green
fluorescent protein (GFP)-transfected L5 pyramidal neurons of
somatosensory barrel cortex during the early postnatal period
(1 week of age; Nimchinsky et al., 2001) and on Golgi-
stained L5 pyramidal neurons during adulthood (postnatal
day 73-75 of age (P73-75); Galvez and Greenough, 2005)
were less apparent in juvenile mice at approximately 4 weeks
of age (Nimchinsky et al., 2001; Galvez and Greenough,
2005).

Fmr1 KO mice are among the most extensively studied
NDD models, and cortical defects are relatively well described
at both the molecular and circuit levels (Contractor et al.,
2015). In vivo two-photon time-lapse imaging of Fmr1 KO mice
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TABLE 1 | In vivo optical imaging studies of mouse models of NDDs.

Imaging
modality

Disorder Mouse
model

Labeling
method

Imaging
method

Imaged area Age Findings Reference

Spine FXS Fmr1 KO In utero
electroporation

Two-
photon

Somatosensory
cortex, L2/3
neurons

P7-24 Normal spine density and length.
Delayed downregulation of spine
turnover and transition from
immature to mature spines at
P10-12.

Cruz-Martín
et al., 2010

FXS Fmr1−/y Tg mice
(YFP-H)

Two-
photon

Somatosensory
cortex, L5
neurons

3 w.o.
-adult

Normal spine density. Enhanced
formation and elimination of
spines. Increased fraction of
transient (immature) spines.
Reduced sensitivity of spine
formation and elimination to
altered sensory experience.

Pan et al.,
2010

FXS Fmr1−/y Tg mice
(YFP-H)

Two-
photon

Motor cortex,
L5 neurons

5 w.o. Impaired motor learning. Normal
density of total spines and
filopodia. Enhanced baseline
spine formation and elimination.
Lack of training-induced
increases in spine density and
formation.

Padmashri
et al., 2013

FXS Fmr1−/y Tg mice
(YFP-H)

Two-
photon

Motor cortex,
L5 neurons

P35-42 Lack of clustering but normal
stabilization of new spines formed
after motor skill training.

Reiner and
Dunaevsky,
2015

FXS Astrocyte-
specific
Fmr1−/y

Tg mice
(YFP-H)

Two-
photon

Motor cortex,
L5 neurons

4 w.o.
-adult

Normal spine density, normal
motor learning, and enhanced
basal spine formation in young
mice. Increased density of total
and thin (immature) spines,
impaired motor learning, and lack
of enhanced spine formation and
elimination during training in adult
mice.

Hodges
et al., 2017

FXS Fmr1−/y Tg mice
(GFP-M)

Two-
photon

Visual cortex,
L5 neurons

2-6
m.o.

Enhanced gain and loss of
spines. No increased spine
turnover was observed in the
enriched environment. Rescue of
enhanced spine turnover by
MMP-9 inhibition.

Nagaoka
et al., 2016

RTT Mecp2−/y Tg mice
(GFP-M)

Two-
photon

Somatosensory
cortex, L5
neurons

P25-40 Reduced spine and filopodia
density and reduced short-term
changes in spine length and head
volume at P25–26. Rescue of
short-term spine dynamics
defects but not reduced spine
density by IGF-1. Reduced spine
density and normal short-term
spine dynamics at P40.

Landi et al.,
2011

AS Ube3am−/p+ Tg mice
(GFP-O)

Two-
photon

Visual cortex,
L5 neurons

P14-38 Decreased spine density. Normal
spine formation and increased
spine elimination. Increased
fraction of thin spines.

Kim et al.,
2016

ASD 15q dup (also
Neuroligin-3
R451C)

In utero
electroporation

Two-
photon

Somatosensory
cortex and
anterior frontal
cortex, L2/3
neurons

2-8
w.o.

Normal spine density. Enhanced
gain and loss of PSD-95
containing spines. Reduced
sensitivity of spine formation to
altered sensory experience.

Isshiki et al.,
2014

Activity FXS Fmr1 KO Synthetic
calcium
indicator
injection

Calcium
imaging
(two-
photon)

Somatosensory
cortex, L2/3
neurons
(anesthetized
and awake)

P9-40 Higher synchrony of spontaneous
ensemble activity. Higher
proportion of neurons
participating in the synchrony.
Higher synchrony during sleep.

Gonçalves
et al., 2013

(Continued)
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TABLE 1 | Continued

Imaging
modality

Disorder Mouse
model

Labeling
method

Imaging
method

Imaged area Age Findings Reference

Lack of synchrony modulation by
anesthesia.

FXS Fmr1−/y No labeling Intrinsic-
signal

Somatosensory
cortex

12-14
w.o.

Increased area of response to
tactile stimulation.

Arnett et al.,
2014

optical
imaging

(anesthetized)

FXS Fmr1−/y Synthetic VSD
application

VSD
imaging

A large cortical
area including
somatosensory
and motor
cortices
(anesthetized)

10-16
w.o.

Accelerated spread of
tactile-evoked cortical activity.

Zhang et al.,
2014

FXS Fmr1 KO AAV vector-
mediated
GCaMP6s
expression

Calcium
imaging
(two-
photon)

Somatosensory
cortex, L2/3
neurons
(awake)

P14-
adult

Increased avoidance behavior to
tactile stimulation and reduced
fraction of cells responding to
tactile stimulation in young mice.
Impaired neuronal adaptation to
repetitive tactile stimulation in
young and adult mice.

He et al.,
2017

RTT Mecp2−/+ No labeling Intrinsic-
signal
optical
imaging

Visual cortex
(anesthetized)

P28-60 Abnormally prolonged plasticity at
P60 in response to altered visual
experience and rescue by a
tripeptide form of IGF-1 or
full-length IGF-1

Tropea et al.,
2009; Castro
et al., 2014

RTT Mecp2−/y

and PV+- or
SOM+-
interneuron
specific
Mecp2−/y

Synthetic
calcium
indicator
injection and no
labeling

Calcium
imaging
(two-
photon)
and
intrinsic-
signal
optical
imaging

Visual cortex
(anesthetized
and awake),
L2/3 neurons

P28-60 Reduced response rate, reliability,
selectivity and signal-to-noise
ratio of pyramidal neurons to
visual stimuli in Mecp2−/y mice.
Recapitulation of visual response
defects in PV+- but not
SOM+-specific Mecp2−/y mice.
Improvement of visual response
defects by IGF-1. Abnormally
prolonged plasticity of
PV+-specific Mecp2−/y mice at
P60.

Banerjee
et al., 2016

RTT Mecp2−/y Synthetic VSD
application

VSD
imaging

Somatosensory
cortex
(anesthetized)

1-2
m.o.

Weaker and more diffuse
tactile-evoked responses.

Lee L.J.
et al., 2017

AS Ube3am−/p+ No labeling Intrinsic-
signal
optical
imaging

Visual cortex
(binocular zone)
(anesthetized)

P21-37 Lack of rapid plasticity in
response to altered visual
experience in P25-28 mice.
Abnormally immature form of
plasticity in P33-37 mice.

Sato and
Stryker, 2010

ASD 15q dup Tg mice (GLT-
1-G-CaMP7)

Calcium
imaging
(macro-
scopic)

Somatosensory
cortex
(anesthetized)

7-8
w.o.

Reduced magnitude, slower
decay and broader area of
response to tactile stimulation.

Nakai et al.,
2017

ASD BTBR T+tf/J
(also Shank3
KO and
Mecp2 KO)

No labeling Intrinsic-
signal
optical
imaging

Insular cortex
(anesthetized)

P16-
adult

Impaired multisensory integration
and its maturation. Increased
area of auditory response.
Rescue of impaired integration in
the adult by enhanced inhibition
early in life.

Gogolla et al.,
2014

ASD Mdga2+/− Synthetic VSD
application

VSD
imaging

Nearly entire
dorsal cortex of
one
hemisphere
(anesthetized)

Adult
(6-10
w.o.)

Enhanced spontaneous cortical
activity in motor and retrosplenial
cortices. Functional
hyperconnectivity in lateral
cortical areas.

Connor et al.,
2016

(Continued)
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TABLE 1 | Continued

Imaging
modality

Disorder Mouse
model

Labeling
method

Imaging
method

Imaged area Age Findings Reference

22q11.2DS Df(16)A+/− AAV vector-
mediated
GCaMP6f
expression

Calcium
imaging
(two-
photon)

Hippocampal
CA1 neurons
(awake)

8-12
w.o.

Impaired goal-oriented learning.
Reduced place cell map stability.
Absence of goal-directed
reorganization of place cell maps.

Zaremba
et al., 2017

FXS, fragile X syndrome; RTT, Rett syndrome; AS, Angelman syndrome; ASD, autism spectrum disorder; 22q11.2DS, 22q11.2 deletion syndrome; Fmr1−/y, male
hemizygous Fmr1-null mice; Mecp2−/y, male hemizygous Mecp2-null mice; Mecp2−/+, female heterozygous Mecp2-null mice; Ube3am-/p+, maternal Ube3a-deficient
mice; 15q dup, paternal 15q duplication mice; Mdga2+/−, heterozygous Mdga2-null mice; Df(16)A+/−, mice carrying a hemizygous deletion of the syntenic region of
mouse chromosome 16; w.o., weeks old; m.o., months old. We comprehensively searched the PubMed database of the U.S. National Library of Medicine (https://
www.ncbi.nlm.nih.gov/pubmed/) as of early April 2018 using the keywords “imaging” and “mice” in combination with each of 35 NDDs that were identified from Rutter’s
Textbook of Child and Adolescent Psychiatry, 5th Edition by Bishop (Rutter et al., 2008; see Table 1 of Bishop, 2010). The number of studies retrieved for each NDD
ranged from 0 to 178. We further selected from these studies the ones that conducted cellular, subcellular or macroscopic-resolution optical imaging of brain function or
structure in living animals, after which 8, 3, 2, 2 and 1 remained for mouse models of FXS, RTT, AS, ASD and 22q11.2DS. Finally, we added two FXS studies (Padmashri
et al., 2013; Nagaoka et al., 2016), two RTT studies (Tropea et al., 2009; Castro et al., 2014) and two ASD studies (Gogolla et al., 2014; Nakai et al., 2017), which are
relevant but did not appear in the initial database searches, probably because some keywords were not included in the searchable part of the literature.

revealed elevated spine turnover (i.e., greater spine formation
and elimination) along apical dendritic tufts of L2/3 (Cruz-
Martín et al., 2010) and L5 (Pan et al., 2010) pyramidal
neurons in the barrel cortex and on L5 pyramidal neurons
in the motor cortex (Padmashri et al., 2013) at different ages.
Although the overall spine density in these studies appeared
surprisingly normal, larger populations of short-lived small
spines were observed in Fmr1 KO mice (Cruz-Martín et al.,
2010; Pan et al., 2010). Another study using astrocyte-specific
Fmr1 KO mice reported normal spine density but increased
spine formation in young mice as well as higher densities
of total and thin spines on the apical dendritic tufts of L5
motor cortex pyramidal neurons in adult mice (Hodges et al.,
2017), demonstrating a significant contribution of astrocytic
FMRP to the neuronal wiring defects in global Fmr1 KO
mice. Further, these mice demonstrate reduced sensitivity of
spine turnover to altered sensory experience (Pan et al.,
2010) and motor learning (Padmashri et al., 2013; Hodges
et al., 2017). For instance, trimming all whiskers reduced
the spine elimination rate of L5 pyramidal neurons in the
contralateral barrel cortex in wild-type mice but not in Fmr1
KO mice, while trimming alternate whiskers in a chessboard-
like pattern increased the spine formation rate in wild-type
mice but not in Fmr1 KO mice (Pan et al., 2010). Moreover,
training wild-type mice on a forearm-reaching task increased
total spine numbers on L5 pyramidal neurons of the motor
cortex contralateral to the trained arm through an increase in
spine formation rate. Conversely, in Fmr1 KO mice, motor-
skill learning was impaired, and spine number and formation
rate were not altered (Padmashri et al., 2013). A follow-
up study by the same group reported that the new spines
formed after motor skill training in Fmr1 KO mice lacked
clustering on dendrites but exhibited a degree of stabilization
similar to that in wild-type mice (Reiner and Dunaevsky, 2015).
Impaired motor-skill learning and lack of training-induced
increases in spine formation and elimination rates were also
observed in adult astrocyte-specific Fmr1 KO mice trained
on a similar task, although learning appeared normal when
these mice were trained during adolescence (Hodges et al.,
2017).

A recent study reproduced the elevated basal spine turnover
and the lack of experience-dependent enhancement in L5 visual
cortical pyramidal neurons of Fmr1 KO mice (Nagaoka et al.,
2016) and further reported that the abnormal baseline spine
turnover can be rescued by pharmacological inhibition of matrix
metalloproteinase-9 (MMP-9). The transport and translation of
mRNAs encoding MMP-9 are regulated by FMRP at synapses
(Janusz et al., 2013), and pharmacological inhibition and genetic
deletion of MMP-9 rescued the dendritic spine and behavioral
abnormalities in Fmr1 KO mice (Bilousova et al., 2009; Sidhu
et al., 2014). Moreover, a clinical trial of the antibiotic MMP-
9 inhibitor minocycline demonstrated some global benefits to
children and adolescents with FXS (Leigh et al., 2013). Together,
the findings from these in vivo imaging studies demonstrate
that the absence of FMRP reduces baseline synaptic stability
and impairs experience-dependent and learning-induced spine
remodeling in the cortex. These defects support the idea that
developing synaptic circuits may not be properly shaped by
sensory stimuli and learning in FXS.

Individuals with FXS and Fmr1 KO mice are also known
to display features of hyperexcitability at both neurological and
behavioral levels (Bernardet and Crusio, 2006; Garber et al., 2008;
Contractor et al., 2015). Functional imaging studies of Fmr1
KO mice have shed light on potential neural circuit bases for
such symptoms. In one study, two-photon calcium imaging of
somatosensory cortical networks in early postnatal Fmr1 KO
mice demonstrated greater and more widespread synchrony
of spontaneous ensemble activity during both wakefulness
and sleep and a delay in the developmental decorrelation of
this synchrony (Gonçalves et al., 2013). In adult Fmr1 KO
somatosensory cortex, tactile stimulation evoked larger response
regions than in wild-type mice, as revealed by intrinsic-signal
optical imaging (Arnett et al., 2014), and accelerated spread
of cortical activity, as evidenced by VSD imaging (Zhang
et al., 2014). Subsequent electrophysiological recordings revealed
that this hyperexcitability can be partly attributed to defects
in neuronal dendritic h-channels and BKCa channels (Zhang
et al., 2014). Collectively, these findings suggest that similar
circuit and molecular defects in the human brain may underlie
FXS symptoms associated with neuronal hyperexcitability, such
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as hyperarousal, high susceptibility to seizures, and sensory
hypersensitivity. A recent two-photon calcium imaging study
of somatosensory cortex in head-fixed behaving Fmr1 KO
mice reported that increased avoidance to tactile stimulation,
analogous to the FXS symptom known as tactile defensiveness,
was associated with a reduced fraction of cells responding to the
stimuli in young mice and with impaired neuronal adaptation to
repetitive tactile stimulation in young and adult mice (He et al.,
2017).

IN VIVO OPTICAL IMAGING OF RTT
MODEL MICE

Rett syndrome is a severe postnatal neurological disorder
named after the Austrian pediatrician Andreas Rett, who
first described this condition in 1966 (Hagberg et al., 1983).
RTT is caused by loss-of-function mutations of the methyl-
CpG binding protein 2 gene (MECP2), which is located on
the X chromosome and encodes a chromatin protein that
is involved in epigenetic transcriptional regulation of many
genes (Chahrour and Zoghbi, 2007; Lyst and Bird, 2015).
MECP2 is expressed broadly throughout the body but most
abundantly in mature neurons. RTT is an X-linked dominant
disorder and almost exclusively affects females because males
hemizygous for MECP2-null mutations usually display severe
early postnatal encephalopathy and do not survive infancy. RTT
affects approximately 1 in 10,000–15,000 girls (Hagberg, 1985),
and the vast majority of cases are sporadic. Typical RTT is
characterized by apparently normal development during the
first 6–18 months of life, followed by a period of regression
and then recovery or stabilization of various symptoms,
including loss of acquired purposeful hand skills, loss of
acquired spoken language, gait abnormalities, and stereotypic
hand movements such as wringing, clapping, mouthing and
washing (Neul et al., 2010). Individuals with RTT often
display a variety of other symptoms, including slowing of the
rate of head growth, breathing abnormalities, impaired sleep
patterns, and seizures. Some individuals eventually diagnosed
with RTT are diagnosed initially with autism, and autistic
features such as social withdrawal are more common in less
severely affected individuals or those with milder, atypical
variants of RTT in which speech is preserved (Neul, 2012).
Mecp2-null mutant mice, as a mouse model of RTT, largely
recapitulate the phenotypes and gender differences in severity
observed in individuals with RTT (Lombardi et al., 2015).
Female mice heterozygous for a Mecp2-null allele (Mecp2−/+)
display a delayed onset of neurological and behavioral deficits
at approximately 4 months of age or older, whereas male
mice hemizygous for the null allele (Mecp2−/y) are more
severely affected, with more rapid regression at approximately
3–4 weeks of age and approximately 50% dying by 8–10 weeks
of age.

Studies on postmortem samples from RTT individuals
and fixed brains of RTT model mice reported lower
spine density of pyramidal neurons in the cortex and
hippocampus (Belichenko et al., 1994; Chapleau et al., 2009;

Xu et al., 2014). An in vivo time-lapse two-photon imaging study
revealed defects in short-term spine dynamics in Mecp2−/y

mice (Landi et al., 2011). Densities of spines and filopodia
were reduced, and changes in spine length and head volume
measured at 5 min intervals for 1 h were smaller in the
apical dendrites of L5 pyramidal neurons in somatosensory
cortex at P25–26, when the neurological deficits in these mice
begin to emerge. In contrast, the short-term spine motility
of Mecp2−/y mice was not different from wild-type mice
at P40 or older, when the connectivity within the primary
somatosensory cortex was considered mature, although the
reduced spine density persisted. A subcutaneous injection of
insulin-like growth factor-1 (IGF-1) 24 h prior to the imaging
rescued the defects in short-term spine dynamics without
ameliorating the reduced spine density. These results indicate
that the deficits in structural plasticity of dendritic spines are
present at the onset of neurological abnormalities and suggest
that pharmacological treatment with IGF-1 during a certain
time window in postnatal development may be beneficial for
treating RTT.

Although MECP2 is expressed in both principal neurons
and interneurons, the excitatory and inhibitory synaptic
pathophysiology and circuit dysfunction resulting from loss of
MECP2 in vivo are poorly understood. Two-photon calcium
imaging of the visual cortex of Mecp2−/y mice has revealed that
reduced visually driven excitatory and inhibitory conductances
of pyramidal neurons lead to circuit-wide reductions in
response reliability, selectivity and signal-to-noise ratios in
these cells under both anesthetized and awake conditions
(Banerjee et al., 2016). Such cortical processing deficits were
recapitulated by Mecp2 deletion specific to parvalbumin-
expressing (PV+) interneurons but not somatostatin-expressing
(SOM+) interneurons and were ameliorated by 2 weeks of daily
systemic injections of IGF-1. Moreover, intrinsic-signal optical
imaging revealed a role of MECP2 in PV+ interneurons in
cortical plasticity. Ocular dominance (OD) plasticity, the change
in responsiveness of the binocular visual cortex to the eyes
after brief monocular deprivation of vision, is a form of visual
cortical plasticity whose sensitivity is greatest at approximately
4 weeks of age in mice (Sato and Stryker, 2008). Female mice with
heterozygous PV+ interneuron-specific Mecp2 deletion exhibit
abnormally prolonged adult OD plasticity, which is a hallmark
of reduced firing of PV+ interneurons (Kuhlman et al., 2013).
This is similar to the previous findings by the same group that
female symptomatic Mecp2−/+ mice exhibited prolonged adult
OD plasticity at P60, and this abnormal plasticity was corrected
by daily systemic injections of the active tripeptide fragment
of IGF-1 or of full-length IGF-1 (Tropea et al., 2009; Castro
et al., 2014). Banerjee et al. (2016) further demonstrated that
Mecp2−/y mice exhibit reduced expression of the cation-chloride
cotransporter KCC2 and altered GABA reversal potential in
pyramidal neurons. Moreover, IGF-1 treatment of these mice
restored KCC2 expression in addition to PV+ interneuron
and pyramidal neuron responses, providing a mechanistic basis
for the action of IGF-1. Together, these results demonstrate
that loss of MECP2 in the brain alters both excitation and
inhibition via multiple mechanisms, and MECP2 deletion in a
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specific cell type critically contributes to circuit-wide deficits
in RTT.

IGF-1 is a growth factor important for brain development
and activates multiple intracellular signaling pathways, such as
the phosphoinositide 3-kinase (PI3K)-Akt and mitogen-activated
protein kinase (MAPK) pathways. IGF-1 mRNA expression is
decreased in the cerebellum of Mecp2−/y mice (Mellios et al.,
2014), and IGF-1 protein levels are reduced in the serum of
Mecp2−/y and Mecp2−/+ mice (Castro et al., 2014; Mellios
et al., 2014). Systemically administered IGF-1 or its tripeptide
fragment crosses the blood-brain barrier and improves a wide
range of behavioral and cellular phenotypes in Mecp2−/y and
Mecp2−/+ mice (Tropea et al., 2009; Castro et al., 2014). IGF-1
treatment also increases the number of glutamatergic synapses
in neurons derived from induced pluripotent stem cells from
individuals with RTT (Marchetto et al., 2010). An open-label
phase I clinical trial of recombinant human IGF-1 (mecasermin)
in girls with RTT indicated good tolerance and improvement of
certain breathing and behavioral abnormalities (Khwaja et al.,
2014).

A recent study using VSD for imaging of the primary
somatosensory cortex of Mecp2−/y mice revealed weaker and
more diffuse whisker-evoked responses at 1–2 months of age
(Lee L.J. et al., 2017). This functional deficit was accompanied
by reduced complexity of thalamocortical axon terminals at P7
as well as reduced dendritic complexity and spine density of L4
spiny stellate neurons at P30–45, as examined in fixed sections.
These findings suggest that similar functional and anatomical
defects may underlie sensorimotor behavioral abnormalities in
RTT, such as hand-to-mouth stereotypies.

IN VIVO OPTICAL IMAGING OF AS
MODEL MICE

Angelman syndrome is a relatively rare NDD, afflicting only
1 in 10,000-40,000 people (Clayton-Smith and Laan, 2003),
and was first documented by the British pediatrician Harry
Angelman (Angelman, 1965). Individuals with AS display a
wide variety of symptoms, including severe developmental delay,
speech impairment, ataxia, seizures and abnormal EEG, and
behavioral uniqueness, such as frequent laughter and hand
flapping (Williams et al., 2006). This disorder is caused by genetic
abnormalities affecting the maternal expression of the ubiquitin
E3 ligase gene UBE3A, resulting in marked loss of function in
the brain because the expression of this gene on the paternal
chromosome is silenced by genomic imprinting (Sato, 2017).
Consistent with a causal role for AS, maternal Ube3a-deficient
(Ube3am−/p+) mice exhibit behavioral deficits analogous to those
of human AS. UBE3A reportedly ubiquitinates several substrate
proteins (Sell and Margolis, 2015), but none of them has been
directly linked to symptoms observed in individuals with AS.

Although AS is reported to have a high comorbidity with
ASD, this must be interpreted with caution because fulfillment
of diagnostic criteria for ASD by children with AS could be
better explained by severe developmental delay and language
impairment in AS rather than by the specific deficits in social

and communicative skills typically seen in ASD (Trillingsgaard
and Østergaard, 2004; Hogart et al., 2010). Instead, accumulating
evidence suggests that while loss of UBE3A in the brain leads
to AS, abnormally elevated expression levels or activity of
UBE3A may contribute to the pathogenesis of ASD. Maternal
duplication or triplication of the chromosomal region 15q11–13,
which encompasses UBE3A, is one of the most frequent genetic
causes of ASD (Takumi and Tamada, 2018; see also the next
section). Mice carrying a triple dose of Ube3a display an ASD-
like phenotype (Smith et al., 2011; Krishnan et al., 2017). In
addition, an ASD-linked mutation of UBE3A leads to enhanced
UBE3A activity through disruption of protein kinase A-mediated
phosphorylation control (Yi et al., 2015). These findings suggest a
dual role of UBE3A in the pathogenesis of AS and ASD in a gene
dosage- and ubiquitin ligase activity-dependent manner.

A postmortem histological study of individuals with AS
demonstrated reduced dendritic spine density on L3 and L5
pyramidal neurons of the visual cortex (Jay et al., 1991). AS model
mice exhibited reduced dendritic spine density not only on basal
dendrites of L5 pyramidal neurons in binocular visual cortex
(Sato and Stryker, 2010) but also on L2/3 pyramidal neurons
in visual cortex (Yashiro et al., 2009) and on secondary apical
dendrites of L3–5 cortical pyramidal neurons (Dindot et al.,
2008). To elucidate the mechanisms behind this reduced spine
density, GFP-labeled spines on L5 pyramidal neurons in the
visual cortex of AS model mice were imaged by in vivo time-
lapse two-photon microscopy (Kim et al., 2016). This study found
that in juveniles, spine formation was normal but elimination
was enhanced. Moreover, when AS mice were raised in darkness,
spine density and turnover were indistinguishable from those in
wild-type mice. Thus, the absence of UBE3A function appears to
impair experience-driven spine maintenance, which may explain
the decreased excitatory synaptic connectivity in this AS mouse
model (Wallace et al., 2012).

To elucidate specific functions of UBE3A in brain
development and maturation, intrinsic-signal optical imaging
was used to examine experience-dependent plasticity of the
visual cortex in juvenile and mature AS model mice (Sato and
Stryker, 2010). OD plasticity was impaired in juvenile AS mice
(P25-28) compared to age-matched wild-type mice. Moreover,
while monocular visual deprivation in mature AS mice (P33-37)
elicited plasticity of a magnitude similar to that in wild-type mice,
the nature of the plasticity was reminiscent of that during the
juvenile period (i.e., weakening of the deprived-eye response).
In contrast, mature wild-type mice exhibited strengthening of
the non-deprived-eye response. Thus, this functional imaging
study reveals that UBE3A is indispensable for adaptability and
maturation of neuronal circuits in the cortex.

IN VIVO OPTICAL IMAGING OF ASD
MODEL MICE

Autism spectrum disorders are etiologically heterogeneous early-
onset neuropsychiatric disorders but nonetheless typically exhibit
three core symptoms: social deficits, language impairment, and
restricted and repetitive patterns of behavior. In most cases,
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ASD is accompanied by various co-morbid symptoms, such as
seizures, sleep disorders, hyperactivity, and anxiety. Abnormal
responses to sensory stimuli are also common in ASD. ASD
is approximately four times more frequent in males, with a
reported frequency of 1 in 42 compared to only 1 in 189
females (Christensen et al., 2016). Although the causes are
unknown for the majority of cases, a genetic contribution to
ASD susceptibility is strongly supported by family and twin
studies. While many single genes have been associated with ASD,
symptom heterogeneity suggests multiple genetic abnormalities.
Indeed, copy number variants (CNVs) ranging from kilobases
to megabases (Mb) and produced by deletion or duplication
of chromosomal fragments have recently been implicated in a
variety of disorders, including ASD (Takumi and Tamada, 2018).
Recent studies report that 10-20% of ASD cases can be ascribed
to CNVs, whereas only 5-10% of cases may be due to coding-
sequence mutations in genes expressed in the brain (Huguet et al.,
2013). Among several CNVs associated with ASD, the 15q11-13
duplication, which causes an NDD often called 15q duplication
syndrome, is one of the most frequent, found in 0.25% of
ASD cases (Pinto et al., 2014). Several CNV mouse models
have been generated by chromosome engineering (Takumi and
Tamada, 2018), and collectively, these models are thought to
better reflect the genetic and phenotypic heterogeneity of ASD
than single-gene KO mouse models. For instance, mice that
mimic the paternally inherited 15q11-13 duplication by 6.3-Mb
duplication of the syntenic region of mouse chromosome 7 (15q
dup mice) display ASD-like behavioral phenotypes, including
impaired social interaction, abnormal ultrasonic vocalization,
and behavioral inflexibility (Nakatani et al., 2009).

Postmortem studies of individuals with non-syndromic ASD
have so far mostly focused on global changes in neuronal
cytoarchitecture and number, while relatively few have examined
spine abnormalities (Martínez-Cerdeño, 2017; Varghese et al.,
2017). An early qualitative study documented reduced spine
density on apical dendrites of cortical pyramidal neurons
(Williams et al., 1980). A more recent quantitative Golgi-
impregnation study on the superficial and deep cortical layers
of the frontal, temporal, and parietal lobes found greater spine
densities, primarily on L2 pyramidal neurons of each cortical area
and L5 pyramidal neurons of the temporal lobe, in individuals
with ASD (but without FXS) compared to age-matched controls
(Hutsler and Zhang, 2010). In younger ASD cases, increased
spine density was also reported on basal dendrites of L5
pyramidal neurons of the temporal lobe (Tang et al., 2014) and
on dendrites of principal neurons in the lateral nucleus of the
amygdala (Weir et al., 2018).

The spine dynamics of 15q dup mice were examined by
in vivo two-photon time-lapse imaging (Isshiki et al., 2014). This
study specifically labeled subsets of excitatory and inhibitory
postsynaptic spines on L2/3 cortical pyramidal neurons by
expressing the GFP-tagged postsynaptic marker proteins PSD-
95-GFP and gephyrin-GFP, respectively, while dendrites and
all spines were filled with the red fluorescent protein DsRed2.
These 15q dup mice showed normal spine density but enhanced
turnover rates of PSD-95-GFP-labeled spines in somatosensory
and anterior frontal cortices. In contrast, gephyrin-GFP-labeled

spines were unaffected. Furthermore, altered sensory experience
did not alter the elevated basal spine formation rate in the
somatosensory cortex of 15q dup mice. Chessboard-like whisker
trimming, which increased the formation rate but not the
elimination rate of gephyrin-GFP-negative spines in wild-type
mice, did not affect the formation rate in 15q dup mice, as
it was already comparable to the enhanced spine formation of
wild-type mice after whisker trimming. These results indicate
that the basal spine turnover rate is constantly high even in the
absence of sensory alterations and suggest that the neurons in 15q
dup mice lack the capacity to remodel neuronal connectivity in
response to new sensory experience. Similar overall spine defects
were also observed in another ASD mouse model, neuroligin-
3 R451C point mutant mice. These results suggest that ASD
is associated with selective impairments of reorganization of
PSD-95-containing excitatory synapses receiving intracortical
afferents.

Interestingly, the dynamics of gephyrin-GFP clusters on
spines remained unchanged, but those on dendritic shafts showed
enhanced dynamics in 15q dup mice. Dynamic inhibitory
synapses and remodeled spines are clustered close to each
other on dendrites, and the occurrence of clustered changes is
influenced by sensory experience (Chen et al., 2012; Wefelmeyer
et al., 2016). Further, blockade of GABAA receptors elicits
increased spine elimination (Chen, 2014), suggesting that altered
GABA inhibition may underlie the enhanced spine turnover in
15q dup mice.

Given that 15q dup mice show high spine turnover rates
regardless of alterations in sensory experience, this may reflect
that sensory-evoked activity is abnormal in the cortex of these
mice. A macroscopic calcium imaging study reported that 15q
dup mice exhibited broader whisker-evoked response areas
in the primary somatosensory cortex (Nakai et al., 2017).
Further anatomical and electrophysiological analyses revealed
fewer inhibitory synapses and concomitant hyperexcitability
of pyramidal neurons, suggesting that the impaired sensory
tuning is a consequence of reduced cortical inhibition, since
inhibition is known to sharpen the whisker-evoked response
by suppressing the responses of the surrounding areas (Foeller
et al., 2005; Isaacson and Scanziani, 2011). Although the full
mechanisms linking the enhanced spine turnover and the altered
sensory circuit function remain to be understood, subsequent
analyses revealed that serotonin is a key molecule in the
pathophysiology of ASD. The 15q dup mice show reduced
brain serotonin levels and decreased size, excitatory drive,
and glucose metabolism of the dorsal raphe nucleus, which
contains a large proportion of serotonin neurons innervating
the cortical forebrain (Tamada et al., 2010; Ellegood et al.,
2015; Nakai et al., 2017). Consistent with hypofunction of the
serotonergic system in ASD, restoration of brain serotonin levels
during the early postnatal period by administration of the
selective serotonin reuptake inhibitor (SSRI) fluoxetine alleviated
impaired inhibitory synaptic function at 2-3 weeks of age
by reinstating the normal mIPSC frequency without affecting
amplitude, implying that restoration of inhibition was mediated
by an increased number of inhibitory synapses rather than by
enhanced strength of individual synapses (Nakai et al., 2017).
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Moreover, fluoxetine improved a subset of social behavioral
defects in both young and adult 15q dup mice. While rescue by
fluoxetine is encouraging, it remains to be elucidated whether
reduced serotonin also contributes to the ethology of other
ASD mouse models. In humans, maternal 15q duplication is a
more frequent cause of ASD than paternal duplication. However,
ASD-like behavior and reduced brain serotonin are observed
in paternal but not maternal 15q duplication mice, implying
that susceptibility to serotonergic hypofunction is determined by
species- and parent-of-origin-specific genetic mechanisms.

The BTBR T+tf/J inbred mouse strain is considered a
robust mouse model of idiopathic ASD, displaying impaired
social interactions, communication deficits, and repetitive self-
grooming compared to the commonly used C57BL/6 inbred
strain (McFarlane et al., 2008; Scattoni et al., 2008). The
insular cortex serves to combine sensory, emotional, and
cognitive inputs from other brain networks, and aberrant insular
connectivity and activation have been reported in ASD (Di
Martino et al., 2009; Uddin and Menon, 2009; Ebisch et al., 2011).
Intrinsic-signal optical imaging of the insular cortex revealed
impaired multisensory integration in the BTBR T+tf/J mouse
model (Gogolla et al., 2014). Specifically, these mice exhibited
exaggerated auditory responses and lacked enhancement of
insular responses to concurrent audio-tactile stimuli. The
impaired postnatal maturation of integrated responses reflected
weakened cortical GABA circuits. Consistent with deficient
GABA inhibition in insular circuit dysfunction, transient
pharmacological enhancement of inhibition by diazepam early in
life rescued these deficits in the adult. Moreover, impaired insular
multisensory integration has been observed across different
monogenic ASD mouse models, including Shank3 KO mice and
Mecp2 KO mice. These models also exhibit altered excitatory-
inhibitory (E/I) balance, suggesting that optimal E/I balance
is indispensable for proper maturation of circuits mediating
multisensory integration.

Several genes associated with ASD, such as those encoding
neuroligins, neurexins, and Shanks, are involved in the formation
and function of synapses (Huguet et al., 2013). MDGA2 (MAM
domain-containing glycosylphosphatidylinositol anchor 2) is
a recently identified ASD susceptibility gene that encodes a
protein that negatively regulates the synaptogenic activity of
neuroligins by suppressing their interaction with neurexins
(Bucan et al., 2009; Connor et al., 2016). Mdga2 haploinsufficient
(Mdga2+/−) mice exhibit an ASD-like behavioral phenotype
and increased excitatory synaptic number and function
(Connor et al., 2016). VSD imaging of resting-state cortical
activity of Mdga2+/− mice revealed widespread increases
in cortical spontaneous activity, notably in the posterior
secondary motor cortex, retrosplenial cortex and primary
motor cortex for whiskers and forelimbs (Connor et al., 2016).
This technique also demonstrated intrahemispheric cortical
functional hyperconnectivity, particularly in lateral cortical
areas involving secondary somatosensory cortices and primary
auditory cortex (Connor et al., 2016). Functional connectivity
analysis using VSD imaging could be comparable to the rsfMRI
described above, although VSD imaging is an optical method
and can only image the superficial cerebral cortex. The midline

cortical regions that displayed enhanced activity in Mdga2+/−

mice are considered part of a putative mouse equivalent of the
so-called default-mode network (Gozzi and Schwarz, 2016), a
distributed intrinsic resting-state brain network implicated in
various cognitive processes and brain disorders (Raichle, 2015).
Indeed, functional brain hyper- or hypoconnectivity has also
been observed in fMRI of ASD children (Ecker et al., 2015).

IN VIVO OPTICAL IMAGING OF
22q11.2DS MODEL MICE

22q11.2DS (also known as vero-cardio-facial syndrome or
DiGeorge syndrome) is a complex neurogenetic disorder caused
by a hemizygous microdeletion of 1.5–3 Mb on chromosome
22 and is one of the most common CNVs with a frequency
of approximately 1 in 2,000–4,000 live births (Kobrynski and
Sullivan, 2007; Karayiorgou et al., 2010). The clinical features
of this disorder include cleft palate, hypocalcemia, cardiac
defects, immune dysfunction, short stature and developmental
delays. 22q11.2 deletion is associated with an increased risk
for neuropsychiatric disorders. Strikingly, up to one-third of
individuals with 22q11.2 deletion develop schizophrenia (SZ),
and this accounts for 1–2% of sporadic SZ in the general
population (Karayiorgou et al., 2010). In addition, 22q11.2
deletion carriers often meet diagnostic criteria for other disorders
such as attention-deficit/hyperactivity disorder (ADHD), anxiety
disorder, mood disorder and ASD over their lifetimes, although it
remains controversial whether neuropsychiatric diagnoses other
than SZ represent non-specific deficits in brain development and
function or true genetic pleiotropy of this deletion (Jonas et al.,
2014). A mouse model carrying a hemizygous 1.3 Mb-deletion
of the syntenic region of mouse orthologous chromosome 16
[Df(16)+/−] shows reduced dendritic complexity and decreased
density of mushroom-shaped spines and excitatory synapses
in fixed sections of the hippocampal CA1 area (Mukai et al.,
2008). Multiple mouse models of 22q11.2 deletion, including
Df(16)+/−, exhibit SZ-related behavioral phenotypes, including
deficits in sensory-motor gating, working memory, and fear
memory (Stark et al., 2008; Drew et al., 2011). In addition,
Df(16)+/− mice exhibit impaired social cognition, a symptom
commonly observed in SZ and ASD (Piskorowski et al., 2016).

A recent calcium imaging study sought a neural substrate
of cognitive deficits by examining hippocampal neural circuit
dynamics of awake, behaving Df(16)+/− mice (Zaremba et al.,
2017). Hippocampal pyramidal cells are known to exhibit place
cell activity; they are active when an animal visits specific
locations within an environment. In this study, head-fixed
Df(16)+/− mice under a two-photon microscope were trained
to find a reward on a sensory cue-rich treadmill belt, and
their hippocampal CA1 neurons labeled by adeno-associated
virus (AAV) vector-mediated GCaMP6f expression were imaged
though a window implanted after surgical removal of the
overlying cortex. Df(16)+/− mice showed a significant deficit
in goal-oriented learning when the environmental context or
the reward location was changed, along with reduced day-to-
day stability of place cell maps compared to wild-type mice. In
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addition, they lacked reorganization of place cell maps toward
the goal location. These results demonstrate that hippocampal
neuronal ensemble dynamics that support cognitive flexibility are
impaired in a mouse model of 22q11.2 DS.

SEROTONIN-MEDIATED E/I
REBALANCING AS A POTENTIAL
THERAPEUTIC TARGET FOR ASD

An E/I imbalance as a key factor in ASD etiology was proposed
more than a decade ago (Rubenstein and Merzenich, 2003), and
since then, substantial evidence has accumulated in support of
this hypothesis. Postmortem studies of individuals with ASD
demonstrate downregulation of markers for GABA inhibition
(Oblak et al., 2009; Blatt and Fatemi, 2011), and many ASD
mouse models display altered E/I balance through multiple
mechanisms (Lee E. et al., 2017; Bozzi et al., 2018). Moreover,
pharmacological compounds that modulate the GABA system
have been tested for therapeutic efficacy in mouse models, and
clinical trials are currently ongoing (Braat and Kooy, 2015).
However, a recent theoretical study proposed that a simple
unidimensional E/I imbalance model cannot fully account for
the aberrant neural circuit activity in Fmr1 KO mice (Gonçalves
et al., 2013; O’Donnell et al., 2017), implying that restoration of
E/I balance by direct modulation of GABA signaling alone may
be insufficient for some symptoms or forms of ASD.

The serotonin system plays multiple roles in brain
development and function (Lesch and Waider, 2012). Positron
emission tomography studies revealed that the serotonin
synthesis capacity is reduced in the brains of children with
ASD (Chugani et al., 1999; Chandana et al., 2005). Moreover,
elevated whole-blood serotonin, which may reflect increased
platelet serotonin uptake as shown in mice harboring an ASD-
associated gain-of-function mutation in the gene encoding
serotonin transporter (SERT Ala56 mice; Veenstra-VanderWeele
et al., 2012), is found in more than 25% of affected children,
suggesting hyperserotonemia as a biomarker for ASD (Muller
et al., 2016). Although a concomitant increase in brain serotonin
clearance in SERT Ala56 mice may lead to decreased synaptic
serotonin availability and compensatory serotonin receptor
hypersensitivity (Veenstra-VanderWeele et al., 2012), it remains
to be investigated whether hyperserotonemia is correlated with
reduced brain serotonin levels in ASD. SERT Ala56 mice also
show behavioral deficits in multisensory processing (Siemann
et al., 2017), implying that abnormal serotonin levels may be
involved in altered multisensory processing in ASD. Serotonin
modulates the strengths of excitatory and/or inhibitory synapses
in a serotonin receptor subtype-specific manner (Ciranna, 2006;
Lesch and Waider, 2012) and enhances sensory representation
and discrimination by adjusting the relative strengths of distinct
input pathways (Stutzmann et al., 1998; Kapoor et al., 2016; Tang
and Trussell, 2017). Serotonergic modulation has therefore been
proposed to be a suitable target for restoring E/I balance and
sensory processing that are altered in ASD.

In light of this putative role of serotonin in the
pathophysiology of ASD, several clinical studies have

investigated the therapeutic effects of SSRIs, particularly on
repetitive behaviors, as SSRIs are the established first-line
treatment for obsessive–compulsive disorder (OCD) (Kellner,
2010). However, the results thus far are inconsistent, and
there is currently no positive consensus on their efficacy
according to recent systematic reviews (McPheeters et al.,
2011; Doyle and McDougle, 2012; Williams et al., 2013).
There have been several published placebo-controlled SSRI
studies (McDougle et al., 1996; Hollander et al., 2005, 2012;
Sugie et al., 2005; King et al., 2009). Among them, a single-
site double-blind placebo-controlled 8-week crossover study
of 39 children and adolescents (5-16 years old; 90% ASD
and 10% Asperger) found that fluoxetine (2.4-20 mg/d)
was superior to placebo in decreasing repetitive behaviors,
with no significant difference in occurrence of adverse
effects (Hollander et al., 2005). Similarly, a double-blind
placebo-controlled 12-week parallel study of 37 adults [18-
60 years old; 65% Asperger, 32% ASD and 3% pervasive
developmental disorder not otherwise specified (PDD-NOS)]
found a significantly greater reduction in repetitive behaviors
in the fluoxetine-treated group (10-80 mg/d) than in the
placebo-treated group, with only mild and moderate side
effects (Hollander et al., 2012). However, preliminary results
from a larger, multi-site, double-blind placebo-controlled
study of 158 children (5-7 years old) have found that a novel
fluoxetine formulation is no more effective than placebo
for the treatment of repetitive behaviors (Autism Speaks,
2009). In addition, another multi-site, double-blind placebo-
controlled study of the SSRI citalopram (2.5-20 mg/d), including
149 children and adolescence (5-17 years old; including
ASD, Asperger and PDD-NOS with unknown percentages),
reported no significant difference between citalopram and
placebo groups in measures of repetitive behavior (King
et al., 2009). Moreover, adverse events, including increased
energy, impulsiveness, decreased concentration, hyperactivity,
stereotypy, diarrhea, insomnia, and itchy dry skin (pruritus),
were significantly more frequent in the citalopram group (King
et al., 2009).

These discordant results may be due to the varying degrees of
selectivity for the serotonin transporter over other actions and
the different pharmacokinetic and pharmacodynamic profiles
of SSRIs used. Furthermore, the pharmacological properties of
a single SSRI can also change during development. Currently
available SSRIs may not be effective for ASD in general because
of the extreme heterogeneity of ASD etiology and the diversity
of serotonin signaling systems. It is possible, however, that SSRIs
may benefit certain forms of ASD. This outcome highlights
the necessity of personalized medicine for ASD treatment, a
strategy considered routine for cancer treatment. As discussed
above, 15q11-13 duplication is a relatively common genetic
abnormality in ASD, but the absolute frequency is rather low.
In addition, administration of SSRIs to ASD individuals without
reduced brain serotonin levels will not only be ineffective but
also will likely cause adverse effects. Pre-treatment genotyping
and assessment of brain serotonin synthesis capacity are thus
recommended to identify cases potentially treatable with SSRIs.
Serotonin receptors include several classes and numerous
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FIGURE 2 | Defects of spine dynamics and circuit function as common pathophysiological underpinnings of NDDs. Multiple NDD model mice and postmortem
brains from individuals with NDDs exhibit reduced (e.g., RTT and AS) or increased spine density (e.g., FXS), which is a hallmark of abnormal neuronal connectivity.
Evidence from in vivo optical imaging of NDD mouse models suggests that altered spine turnover (i.e., formation and elimination) and impaired
experience-dependent remodeling are putative common phenotypes across NDDs. At the local circuit level, in vivo optical imaging has revealed abnormal sensory
responses and plasticity and defects of circuit maturation in common, although causal links between observed aberrant neuronal connectivity and impaired local
circuit function at the gross level remain to be elucidated. In vivo optical imaging has recently demonstrated altered functional connectivity between different brain
areas at the global circuit level. Findings obtained using in vivo optical imaging at multiple levels thus greatly advance the understanding of the neural circuit bases for
neurological and behavioral symptoms of NDDs.

subtypes, and these subtypes are differentially expressed among
neuronal types and brain regions, making it difficult to predict
the effects of SSRI-mediated serotonin increases in individuals
with ASD. Indeed, while postnatal fluoxetine treatment improved
impaired social behavior in 15q dup mice, the same treatment
increased anxiety-like behavior in these mice and even impaired
reversal spatial learning and exploratory behavior in wild-
type mice (Nakai et al., 2017). These observations imply
that despite the relatively well-established safety of SSRIs
as antidepressants in adults, late-emerging adverse effects
of postnatal SSRI treatment require further investigation by
longitudinal assessment. Administration of SSRIs to depressed
women during pregnancy or after delivery is known to increase
serotonin levels in the fetus via the placenta or in newborns via
breast milk. Although still controversial, accumulating evidence
suggests that such perinatal SSRI exposure is a potential risk
for a wide range of symptoms, including ASD, and placental
and lactational transfer of SSRIs leads to abnormal behavior
and various structural and functional alterations of the brain
in rodents (Kinast et al., 2013). Furthermore, SSRIs are less
well tolerated in children than adults, and the FDA has not
approved SSRIs for OCD in children younger than 6-8 years
(Williams et al., 2013). In sum, there are many issues to be
resolved before safe and effective pharmacological interventions
for restoration of brain serotonin levels in children with ASD
are possible. Further elucidation of developmental changes in
serotonin subsystems and downstream mechanisms underlying
different ASD symptom domains is needed for the development
of more-specific pharmacological therapies.

CONCLUSION AND OUTLOOK:
LESSONS FROM IN VIVO OPTICAL
IMAGING

In vivo optical imaging is a powerful technique for investigating
brain structure and function in living animals at the circuit,
cellular, and synaptic levels, and it will thus continue to be
widely applied to new NDD mouse models, since the range of its
application has so far been limited to several currently available
mouse models among many NDDs. Further, the spatiotemporal
resolution and modality of in vivo optical imaging are expected
to increase with new developments in optics, microscopes, and
fluorescent indicators. These findings and implications lead us to
the following conclusions.

(1) In vivo time-lapse imaging of dendritic spines of NDD
mouse models can illuminate dynamic turnover processes
that cannot be revealed by examination of fixed brains. In
most cases, spine density imaged in vivo is consistent with
observations in fixed tissues, but it can also differ depending
on factors such as age, genetic background, species, cortical
area, cortical layer, cell type, labeling technique, and
imaging method. Technically, in vivo imaging can better
visualize dendrites close to the brain surface, such as apical
dendritic tufts in L1, so the results accumulated thus far
are not necessarily applicable to deeper cortical layers and
other brain areas. Studies have also demonstrated that
the direction of spine density change differs according
to the disorder model, with different models exhibiting
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increased (FXS), reduced (RTT and AS), or unchanged (15q
dup) spine density. However, altered spine turnover rate
and impaired experience-dependent remodeling appear to
be common phenotypes across multiple disorder models
(Figure 2).

(2) In vivo functional imaging has revealed that multiple NDD
model mice exhibit abnormal cortical sensory responses,
such as broader, fast-spreading, or undifferentiated cortical
responses, suggesting abnormal cortical representations of
external stimuli. Neuronal hyperexcitability and associated
behavioral phenotypes such as seizures in some mouse
models suggest that altered E/I balance underlies these
abnormal sensory responses. In vivo calcium imaging
can simultaneously record the activity of a large, dense
population of neurons. The large datasets obtained with
this technique are useful for testing the validity of
theoretical models, and such a combined optical and
theoretical approach may yield alternative theoretical
models regarding the etiology of disorders (O’Donnell et al.,
2017).

(3) In vivo optical imaging can also guide the development
of new pharmacological interventions for NDDs (Tropea
et al., 2009; Landi et al., 2011; Castro et al., 2014; Gogolla
et al., 2014; Zhang et al., 2014; Banerjee et al., 2016; Nagaoka
et al., 2016; Nakai et al., 2017). In vivo optical imaging is
particularly useful for identifying and validating potential
therapeutic targets when combined with anatomical,
molecular, electrophysiological, and behavioral analyses.
The findings obtained from such studies are expected
to provide foundational support for clinical studies on
improved therapeutic strategies.

(4) One of the strengths of in vivo optical imaging is the ability
to visualize specific subtypes of neurons and synapses
through differential labeling (Isshiki et al., 2014). However,
this strategy has not yet been fully exploited in studies
on mouse models of NDDs, so substantial advances in
our understanding of cell- and synapse-specific defects
are expected in the years to come. This approach is also
very important to fill the gap between spine defects and
abnormal circuit function because circuit functions emerge

from complex neuronal networks that contain different
types of synapses, including those made by local excitatory
and inhibitory neurons as well as long-range connections
from distant areas (Figure 2).

(5) Due to optical limitations, most in vivo imaging studies
have focused on the cerebral cortex. However, subcortical
brain areas should also be imaged in future studies
because NDDs affect these deep brain regions as well
(Zaremba et al., 2017). Recent advances in deep brain
imaging techniques, such as targeted cortical excavation
and microendoscopy using gradient refractive-index lenses
(Ji et al., 2016; Sato et al., 2016, 2017b), may allow such
applications. In addition, most experiments discussed here
imaged sensory responses under anesthesia. The use of
awake head-fixed animals (Banerjee et al., 2016; He et al.,
2017; Sato et al., 2017a; Zaremba et al., 2017) and miniature
head-mounted fluorescence microscopes attached to freely
moving animals (Ghosh et al., 2011; Cai et al., 2016) will
enable imaging of neural circuit activity while mice perform
cognitive tasks relevant to the disorder of interest.

Pathophysiological changes at the molecular and circuit levels
are complex even for monogenic NDDs, so non-syndromic and
idiopathic conditions present enormous challenges. However,
elucidating such changes is a necessary step toward the
development of safe and effective therapies for these lifelong
conditions. In vivo optical imaging of mouse models of NDDs will
continue to contribute to this endeavor by providing evidence for
dysfunction in the living brain.
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Trichloroethylene (TCE) is a common volatile organic solvent which is considered as an
ubiquitous environmental pollutant. It is claimed to be a developmental neurotoxicant.
Our group evaluated previously its impact on three-dimensional neurospheres in vitro.
The current work aims to investigate the neurotoxic effects of a lower concentration
of TCE on the same system. To perform the experiment, neural progenitor cells were
obtained from the brains of nine newborn rats. Afterward, these cells were cultured in
both growth and differentiation media to get the neurospheres. Cell cultures were divided
into two groups: group 1 (control), group 2 (exposed to 0.25 µM TCE). Neurospheres
were photographed at different durations and assessment of the morphological changes
such as proliferation and differentiation of neurospheres was done. In addition, cell
viability, apoptosis, and necrosis were analyzed using flow cytometry to clarify the
mechanism of involved cytotoxicity. The results revealed that TCE-treated neurospheres
showed significantly decreased proliferation on days 7 and 14. These cells failed to
show the neurogenic differentiation seen in the neurospheres of the control group.
Furthermore, a highly significant decrease in viability and a significant increase in the
number of apoptotic cells were observed in the treated cells in comparison to the control
group. The present work confirmed that TCE, at very low doses relevant to daily life
exposure in humans, caused neurotoxic effects in 3D neurosphere model through the
affection of neural proliferation and differentiation as well as disturbance of cell viability
and apoptosis.

Keywords: trichloroethylene, neurotoxicity, neurospheres, in vitro, developmental

INTRODUCTION

There is a strong evidence indicating that environmental exposure to various chemicals at critical
developmental stages affects the behavioral and neurological development in children (De Felice
et al., 2015). It is hypothesized that developmental neurotoxicity (DNT) results from disturbance
of some biological processes, such as differentiation, proliferation, apoptosis, and neurite growth
(Bal-Price et al., 2012; Kadereit et al., 2012).
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Trichloroethylene (TCE) is a common volatile organic solvent
that has been widely used in industrial applications and consumer
or commercial products such as a cleaning and degreasing agent
in ink and varnishes. It is also a common environmental pollutant
usually found in air, soil, and water. Many studies have shown
that TCE is associated with serious health hazards as well as
neurodevelopmental abnormalities due to gestational exposure to
this chemical (Environmental Protection Agency [EPA], 2014).

Accordingly, TCE is highly suggested to be classified as a
developmental neurotoxicant. However, this claim needs to be
validated by more detailed DNT testing such as the three-
dimensional (3D) neurosphere system. This model represents
an in vivo-like microenvironment which could reflect the basic
developmental processes of the growing brain and improved the
ability to verify the neurotoxic effects of chemicals during early
life exposure (Choi et al., 2013; Dingle et al., 2015).

The mechanism by which developmental exposure to TCE
induces neurotoxicity is still unclear (Blossom et al., 2017). In
a previous work, our group tested the neurotoxicity of a higher
dose of TCE (1 µM) which is claimed to be safe in human
(Abdraboh et al., 2017). In the present work, we investigate the
neurotoxic effects of a much lower dose of TCE (0.25 µM) on the
same system of 3D neurospheres.

MATERIALS AND METHODS

The present work was approved by the Institutional Review
Board, Faculty of Medicine, Mansoura University (code MS/896).
Nine newborn rats (1 day after birth), Sprague Dawley strain,
regardless of sex, were obtained from the animal house of
Medical Experimental Research Center (MERC). All chemicals
and reagents were purchased from Sigma-Aldrich Company, St.
Louis, MO, United States unless declared otherwise.

Cell culture media included the following: (a) Growth
medium: Dulbecco’s modified Eagle medium and Ham’s F-12
(1:1 MIX) (Lonza, cat. no. BE12-719F, Basel, Switzerland)
supplemented with 10% Fetal bovine serum “FBS” (Hyclone,
San Angelo, TX, United States), 1% L-glutamine (Gibco,
Carlsbad, CA, United States) and 1% Penicillin–streptomycin–
Amphotericin B Mixture (Lonza, cat. no. 17-745E, Basel,
Switzerland). (b) Differentiation medium: [Dulbecco’s
modified Eagle medium and Ham’s F12 (3:1) enriched
with neural growth factors 1% B27, 1% N2 supplement,
20 ng/mL Recombinant human Fibroblast growth factor basic
(Invitrogen/Gibco, Carlsbad, CA, United States), 2–5% FBS and
1% Penicillin–streptomycin–Amphotericin B Mixture].

Preparation of Neurospheres
Neurospheres were obtained as described previously (Abdraboh
et al., 2017) by aseptically dissecting out the cortices from the
brains of nine newborn rats and isolating rat neural progenitor
cells. In brief, the cortices were chopped into very tiny pieces
on separate sterilized Petri dishes. Then, 10 ml trypsin EDTA
solution were added to each tissue and incubated for 45 min
at 37◦C with constant shaking. To inactivate trypsin, 10 ml
of growth media were added to each sample, and pipetted up

and down 10 more times. Then, the brain tissues were filtered
using sterilized mesh filter. Cell suspensions (1 × 106 cells)
were transferred to disposable conical tubes and centrifuged at
2000 RPM for 10 min to precipitate the pellets. Each pellet was
resuspended in 15 ml growth medium and transferred into a
tissue culture flask in humidified 5% CO2 incubator at 37◦C for
24–48 h (Iwamaru et al., 2013; Louis et al., 2013).

Trichloroethylene Exposure
Trichloroethylene (cat. no. 79-01-6): (density: 1.463 g/mL, purity:
≥99%, Technical grade) was obtained. Thereafter, the nine
tissue culture flasks containing the neurospheres were randomly
divided into two groups; Group 1: neurospheres served as a
control group and received no treatment. Group 2: neurospheres
were treated with 0.25 µM trichloroethylene (Environmental
Protection Agency [EPA], 2014).

Assessment of the Effects of TCE on
Neurospheres
It was performed by 40× objective through evaluation of three
neurospheres per field in eight randomly distributed visual
fields per culture well in at least three biological replicates per
concentration in a blind manner.

Cell Proliferation
The neurospheres were photographed at different durations (0,
3, 7, and 14 days). Then, each sphere size was determined by
software analyses (Cell Profiler, version 2.1; Broad Institute, freely
downloaded from http://www.cellprofiler.org). The diameter of
each neurosphere was measured in µm and exported to excel file
further to statistical analysis.

Cell Differentiation
Images of the plated neurospheres were evaluated regarding
distinct neuronal morphology with fasciculation of neurites
that radiate from the central aggregation of neuronal
perikarya. In addition, the cell capacity to differentiate into
dopaminergic neurons was challenged. It was then assessed
through immunostaining against anti-tyrosine hydroxylase
(TH) antibody (Novus Biologicals, United States, 1:200 dilution:
Cat.No. #NB300–109).

Detection of Cell Viability, Necrosis, and Apoptosis by
Flow Cytometry (Wlodkowic et al., 2010)
• Initially, cell viability was estimated using Trypan Blue

Exclusion test. Thereafter, to evaluate the aforementioned
parameters more precisely, Annexin V kit, Propidium
Iodide and 1X Binding Buffer (cat. No. 556547 BD
Pharmingen FITC “fluorescein isothiocyanate” apoptosis
Kit, Princeton, NJ, United States) were used.
• The cells were washed twice with cold PBS and then

resuspended in 1X Binding Buffer. Five µl Annexin V
(FITC label) and 5 µl Propidium Iodide (PI) were added.
Gently, the cells were mixed using vortex and incubated
for 15 min at room temperature (25◦C) in the dark. 200 µl
of 1X Binding Buffer was added. The cells were evaluated
for the cell cycle by Flow Cytometer (BD AccuriTM C6,
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Piscataway, NJ, United States) within 1 h. The intact
membrane of living cells excludes cationic dyes, such as
PI which can stain the nucleus in case of lost membrane
integrity while Annexin V (apoptotic marker) can bind to
the phosphatidylserine present on the surface of apoptotic
cells. In early apoptosis, phosphatidyl serine is exposed on
the cell surface which is detected by Annexin V. Due to
their extensive membrane damage; necrotic cells are quickly
and brightly stained with PI and will appear as a peak at
very high fluorescence values. Apoptotic cells will be dimly
stained and show a much lower uptake of PI than that seen
with necrotic cells.
• Cell death was evaluated as follows: dot plots were

generated and divided into four quadrants (UR, upper
right; UL, upper left; LR, lower right; LL, lower left). The
LL quadrant represented the living non-apoptotic cells
(negative for both annexin V and PI). The living early
apoptotic cells were shown in the LR quadrant (annexin
V positive cells but negative for PI). The UL quadrant
demonstrated the necrotic cells (negative to annexin V
and positive for PI). Whereas, the late apoptotic cells were
shown in the UR quadrant (both annexin V and PI positive
cells).

Statistical Analysis
Data were assessed for normality using Shapiro–Wilk test, then
statistical analyses were performed. Differences between mean
values were assessed for statistical significance using a two-
tailed Student’s t-test (GraphPad Prism 5.0 software, La Jolla,
CA, United States). For all tests, P-value 0.05 was deemed
significant.

RESULTS AND DISCUSSION

In the present work, we assessed how the rat neural progenitor
cells were affected by TCE in a minimal dose (0.25 µM)
at different timelines. The morphological changes such as
proliferation and differentiation of neurospheres were evaluated
to validate the neurotoxic effects of TCE. In addition, to clarify the
mechanism of involved cytotoxicity, the cell viability, apoptosis,
and necrosis were analyzed using flow cytometry.

Noteworthy, we utilized a higher concentration of TCE
(1 µM) in a previous report (Abdraboh et al., 2017). This dose
was proved to cause a significant time-dependent reduction in
the proliferative capacity of neurospheres, failure of the cells
to differentiate into astrocytes as well as a significant decrease
of cell viability at 1 and 2 weeks duration. These findings
could be extrapolated to the human population as the minimal
occupational exposure among degreasing workers was found
to be about (131 mg/m3) which is equivalent to 1 µM TCE
(Environmental Protection Agency [EPA], 2014). Also, this
concentration is the representative dose of the environmental
concentration of TCE on surface water (1 µg/L) according to
United States Environmental Protection Agency report (Agency
for Toxic Substances and Disease Registry [ATSDR], 2016).

In the present study, we tried to assess the neurotoxic effect
of a much lower dose of TCE than the previously investigated
(Abdraboh et al., 2017). Based on a preliminary pilot study,
we chose a TCE concentration of 0.25 µM that is equivalent
to the average daily life human exposure occurring through
inhalation and ingestion which is suggested to be 33 µg per day
(Environmental Protection Agency [EPA], 2014).

Neurospheres were obtained by the same protocol described
in our previously published work (Abdraboh et al., 2017).
Figure 1 shows the growing 3D neurospheres after 3 days.
Then, the effects of TCE on the proliferation of neurospheres
were evaluated through measurement of the cell diameter and
assessment of the sequence of its increase as well as their size
variation with the progress of time in the culture medium as
illustrated in Table 1. The present findings reveal a normal
pattern of proliferation and progressive increase in the diameter
of the cells in the control group throughout the study period
(from day 0 till day 14). Whereas, TCE-exposed neurospheres
show reduced proliferation as evidenced by the decreased cell
diameter.

More or less similar, those results reported by Wang et al.
(2001) who tested the vaporous toxicity of TCE (20–80 µl)
on Chinese hamster ovarian (CHO-K1) cells (Wang et al.,
2001). They found that there was a dose-dependent decrease in
cellular proliferation. They suggested that proliferation arrest was
dependent on GSH metabolism.

Interestingly, neurite outgrowth is relevant to study the DNT
of chemicals as it is a critical process occurring during the
development of the nervous system, which when disrupted,
this may lead to serious adverse neurodevelopmental disorders

FIGURE 1 | Image illustrating the growing neurospheres after 3 days of the
study using low (A) and high (B) magnification.

TABLE 1 | Neurospheres diameter (proliferation) in the studied groups.

Groups���
Day

Group 1 (control) Group 2 (TCE-treated
group) (TCE: 0.25 µM)

0 161 ± 22.3 165 ± 30.1

3 299 ± 26.5 281 ± 39.7

7 642 ± 18.9 418 ± 27.7∗

14 812 ± 27.8 402 ± 23.5∗

N.B. TCE, trichloroethylene. All values were expressed as Mean ± SD. ∗Statistically
significant at P < 0.05 (between control and test groups).
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(Harrill et al., 2013; Krug et al., 2013). Hence, neurite
outgrowth could serve as a preliminary assessment tool for
neuronal differentiation (Ryan et al., 2016). In addition, for
more distinctive assessment of neurosphere differentiation, the
capacity of the cells to differentiate into dopaminergic neurons
was investigated.

In this context, the present work revealed that neurospheres
in the control group have distinct neuronal morphology with
fasciculation of neurites that radiate from the central aggregation
of neuronal perikarya. Paralleled to those morphological clues
of differentiation, control cells demonstrate their ability to
differentiate into dopaminergic neurons (15% of cells) as seen in
Figure 2. On the other hand, TCE treated cells failed to show this
differentiation capacity.

The increased size of the neurospheres in the control group is
likely due to the differentiation of the cortical neural progenitor
cells into mature nerve cells, which then extend axons and
dendrites leading to the increased diameter of the neurospheres
with the progress of time (Choi et al., 2013). This was again
confirmed by differentiation of 15% of cells into dopaminergic
neurons compared to the TCE treated cells which fail to
differentiate.

Several mechanisms of TCE-induced neurotoxicity are
suggested. For instance, Grandjean and Landrigan (2014)
explained the arrest of proliferation and failure of neurogenic
differentiation by decreased neurotrophic factors (Grandjean
and Landrigan, 2014) which are important mediators for these
processes and disturbance of these factors is claimed to be
involved in neurodevelopmental disorders of the CNS (Sajdel-
Sulkowska et al., 2011).

In addition, Blossom et al. (2013) observed that the abnormal
behavior and neurotoxic effects in mice exposed to TCE at doses
of 0.01 and 0.1 mg/ml in water could be due to oxidative stress
with global DNA hypomethylation (Blossom et al., 2013).

Our second objective in the present work is to assess
cytotoxicity in the neuroprogenitor cell culture exposed to TCE.
It is documented that flow cytometry is the technique of choice
to assess viability, apoptosis, and/or necrosis on a single cell
basis (Galluzzi et al., 2015). Generally, the scatter analysis of

FIGURE 2 | Image showing differentiation of neurospheres as evidenced
morphologically (A) and through staining by Tyrosine Hydroxylase (B) to show
the ability to derive dopaminergic neurons from the rat progenitor cells.

the cell population allows a sufficient distinction between viable
and non-viable cells. Additionally, staining by Annexin V and
propidium iodide (PI) which is a DNA-binding dye that does
not penetrate the intact cell membrane could be beneficially
combined with the scatter method to recognize various types of
cells. Annexin-V-positive and PI-negative cells are considered as
early apoptotic while the double positive cells are classified as late
apoptotic while the necrotic cells are Annexin negative and PI
positive (Wlodkowic et al., 2010; Stepanek et al., 2011).

Figure 3 and Table 2 demonstrate the results of flow
cytometric analysis of the cultured neurospheres. It is observed
that cell viability (both Annexin V and PI negative) is significantly
lower in the neurospheres exposed to TCE (0.25 µM) than that
of the control cells. This finding is supported by the report of
Zhu et al. (2005) who found that the normal human epidermal
keratinocytes (NHEK) treated with various concentrations (0.01–
31.6 mM) of TCE revealed a dose-dependent decrease in cell
viability.

One of the important parameters studied in the present
research is apoptosis (programmed cell death) which is a crucial
process for neurodevelopment. It prevents redundant and unused
neurons from disarrangement and cluttering of the developing
brain (Creeley and Basavarajappa, 2016). On the other hand,
necrosis had been claimed to be an unregulated mode of cell
death but recently the term “necroptosis” has been used to
describe a programmed, caspase-independent cell death with
necrotic morphology. Its mechanism is suggested to be due to
activation of the same receptors involved in apoptosis (Karch and
Molkentin, 2015).

In this regard, our results reveal increased early apoptosis
although it was statistically insignificant whereas late apoptosis
and necrosis are significantly increased in the TCE-treated
neurospheres (0.25 µM) when compared to the control cells.
Accordingly, these findings observed during cell cycle analyses
indicate an evident toxic effect of the examined low dose of TCE
(0.25 µM) on neurospheres through induction of different types
of cell death (Figure 3 and Table 2).

In harmony with the present findings, an occupational study
was done in lock industry workers who were exposed to
TCE and its metabolites. The authors reported a significant
increase of apoptosis in the collected blood samples in
association with a significant up-regulation of pro-apoptotic
P53 and Bax (Varshney et al., 2015). In addition, TCE
exposure remarkably interferes with mitochondrial signaling
through activation of caspase-dependent apoptotic cell death
(McDermott and Heffron, 2013) which supports the current
findings.

Furthermore, our results are in accordance with those
reported by Ali et al. (2016) who studied the cytotoxic effect
of low doses of TCE (0.5–32 µM) in human epidermal
keratinocytes. The authors observed a significant increase in
the number of cells undergoing apoptosis in the TCE-exposed
groups. The findings supported the results of the present work
concerning apoptosis; however, the probability of necrosis is
excluded.

It is worth mentioning that apoptosis and necrosis represent
two pivotal types of cell death. Apoptosis is an active process
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FIGURE 3 | Histograms showing flowcytometric analysis of the neuronal cell cultures in control and test groups. (A) A histogram showing that most of the
neurospheres are viable in the control group. (B) A histogram showing decreased cellular viability, increased necrosis, early and late apoptosis in neurospheres
exposed to trichloroethylene (TCE) 0.25 µM [viable cells in the lower left quadrant (LL), early apoptotic cells in the lower right (LR) quadrant, late apoptosis is seen in
the upper right (UR) while necrosis is shown in the upper left (UL) quadrants].

consisting of highly organized molecular events whereas necrosis
is a passive uncontrolled cell rupture mediated by extremely
exogenous damage. Early apoptotic cells preserve the integrity
of plasma membrane to prevent the release of the potentially
harmful cellular contents outside. Late apoptosis (or secondary
necrosis) occurs if the early apoptotic cells are not taken up
by phagocytes, which does not happen in vitro. Loss of the
membrane integrity is a gradual process. First, the membrane
of a late apoptotic cell becomes permeable for small molecules
(e.g., PI) and subsequently opens also for macromolecules
(Patel et al., 2006; Stepanek et al., 2011; Galluzzi et al., 2015).
Accordingly, early apoptosis is insignificant at the start of the

TABLE 2 | Comparison between the studied groups regarding viability, necrosis,
and apoptosis in neurospheres by flowcytometry.

Group���
Parameter

Group 1
(control)

Group 2 (TCE -treated
group) (TCE: 0.25 µM)

P-value

Viable cells 95.47± 0.45 57.17 ± 1.26 0.0005∗∗

Early
apoptosis

0.36± 0.23 1.60 ± 1 0.2

Late
apoptosis

1.5± 1.57 19.06 ± 1.29 0.001∗∗

Necrosis 2.67± 1.29 22.17 ± 1.04 0.00001∗∗

N.B. TCE, trichloroethylene. All values were expressed as Mean ± SD.
Double negative cells for Annexin V and Propidium iodide (PI) = viable cells, no
plasma membrane rupture, Annexin V + , but negative for PI = early apoptotic
cells, Double positive cells for both Annexin V and PI = late apoptosis, Positive for
PI, but negative for annexin V = necrotic cells (plasma membrane rupture).
P-value: ∗∗highly significant < 0.001.

experiment but with cumulative exposure to TCE, the apoptotic
process is gradually increased and the cells suffer from late
apoptosis and/or necrosis due to ultimate damage of the cell
membrane.

Moreover, the occurrence of necrosis in the neurospheres
exposed to TCE in our work could be explained by the
fact that apoptotic cells ultimately shut down metabolism
after a long period of in vitro culture (Riss and Moravec,
2004) and exhibit some morphological forms associated
with necrosis. These cells became secondary necrotic in
the absence of phagocytosis and could develop features of
primary necrosis (VandenBerghe et al., 2013). Additionally,
numerous cell culture models and diverse study designs
could also contribute to the controversial findings in various
studies.

Interestingly, extrapolation of the current observations to
humans exposed to TCE could be problematic. It is worth to
mention that previous studies estimating serum TCE levels in
human beings were highly variable due to different populations,
occupational versus non-occupational exposure and various
measurement methodologies. For example, in an occupational
study in the United States, TCE has been estimated in the blood of
157 metal workers who had an average concentration of 2.5 µg/L
(range: 0–22 µg/L) (Pfaffenberger et al., 1984). On the other hand,
analysis of TCE levels in samples taken from 290 subjects revealed
that the mean concentration was 0.013 µg/L besides that 88% of
samples were found to be below the limit of detection (Jia et al.,
2012).

As previously mentioned, pharmacokinetic modeling of
TCE exhibits complicated conversion of in vivo to in vitro
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concentrations (U.S. Environmental Protection Agency [U.S.
EPA], 2011). We used a much lower TCE concentration in
the present study compared to our previously published work
(Abdraboh et al., 2017), however, the used dose (0.25 µM which is
equivalent to 32.85 µg/L) is still higher than the reported human
serum concentrations (Pfaffenberger et al., 1984; Jia et al., 2012).

CONCLUSION

The present work confirmed the potential neurotoxic effects of
a very low dose of TCE (0.25 µM) in 3D neurosphere model
through the affection of neural proliferation, neurite outgrowth,
and differentiation in addition to disturbance of cell viability
and induction of apoptosis and necrosis. The neurotoxicity of
this dose of TCE which is relevant to the daily life exposure of
humans to this ubiquitous pollutant is alarming and necessitates

more detailed research on much lower concentrations than that
investigated in the current study.
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The Wingless (Wnt)-mediated signals are involved in many important aspects of
development of the mammalian cerebral cortex. How Wnts interact with their
modulators in cortical development is still unclear. Here, we show that Wnt7a and
secreted frizzled-related protein 1 (Sfrp1), a soluble modulator of Wnts, are co-
expressed in mouse embryonic cortical neural progenitors (NPs). Knockout of Wnt7a
in mice causes microcephaly due to reduced NP population and neurogenesis, and
Sfrp1 has an opposing effect compared to Wnt7a. Similar to Dkk1, Sfrp1 decreases
the Wnt1 and Wnt7a activity in vitro. Our results suggest that Wnt7a and Sfrp1 play
opposite roles to ensure proper NP progeny in the developing cortex.

Keywords: Wnt7a, Sfrp1, cerebral cortex, neural progenitors, antagonist

INTRODUCTION

During development of the mammalian CNS, billions of neurons are produced from proliferating
NPs (Rakic, 2009). In the cerebral cortex, NPs are expanded through symmetric and asymmetric
division at the VZ and SVZ (Haubensak et al., 2004; Gotz and Huttner, 2005; Homem et al., 2015).
The proper control of proliferation, survival and differentiation of NPs is the key step for normal
cortical formation (Rakic, 2007, 2009; Zhao et al., 2008; Sun and Hevner, 2014).

A number of signaling pathways that regulate the switch and balance between proliferation
and differentiation of NPs have been defined, including the Notch, Sonic hedgehog, fibroblast
growth factor, TGF-β/Smads, and Wnt pathways (Chenn and Walsh, 1999; Rowitch et al.,
1999; Hirabayashi et al., 2004; Joksimovic et al., 2009; Aguirre et al., 2010; Menendez et al.,
2011; Rash et al., 2011). Wnt signaling pathways play crucial roles in neurogenesis (Kuwabara
et al., 2009; Durak et al., 2016). For example, the canonical Wnt/β-catenin pathway is
required for NP self-renewal and differentiation (Chenn and Walsh, 2003; Kalani et al., 2008;

Abbreviations: CNS, central nervous system; CP, cortical plate; CRD, cysteine-rich domain; E0.5, embryonic day 0.5; Fz,
frizzled; IP, intermediate progenitor; ISH, in situ hybridization; IUE, in utero electroporation; NP, neural progenitor; P0,
postnatal day 0; PFA, paraformaldehyde; qRT-PCR, quantitative real-time PCR; RNAi, RNA interference; RT-PCR, reverse
transcription-PCR; Sfrp1, secreted frizzled-related protein 1; shRNA, short hairpin RNA; SVZ, subventricular zone; TGF-β,
transforming growth factor-β; VZ, ventricular zone.
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Bengoa-Vergniory et al., 2014; Delaunay et al., 2014; Bengoa-
Vergniory and Kypta, 2015; Garriock et al., 2015). Among
the Wnt signaling molecules, Wnt7a has been shown to be
critical in axonal remodeling, guidance, synaptogenesis and
neurotransmitter release in the hippocampus (Hall et al., 2000;
Cerpa et al., 2008; Ciani et al., 2011, 2015). Wnt7a controls
neurogenesis through regulating genes involved in both cell cycle
control and neuronal differentiation (Qu et al., 2013; Long et al.,
2016).

Furthermore, three distinct receptor families have been
reported to mediate the Wnt signaling: Fz, RoR, and Ryk
(van Amerongen et al., 2008; Angers and Moon, 2009). In
the nervous system, Fzs regulate a range of functions from
neuronal differentiation to cell polarity, axon guidance, and cell
survival (Van Raay et al., 2005; Prasad and Clark, 2006; Liu
et al., 2008; Kilander et al., 2014; Zhou and Nathans, 2014;
Morello et al., 2015; Chailangkarn et al., 2016). Moreover, Sfrps
are a family of secreted factors that modulate Wnt-induced
β-catenin pathway through selectively sequestering specific Wnts
in different neurons by possessing the Wnt-binding frizzled
CRD (Dann et al., 2001; Bovolenta et al., 2008; Nathan and
Tzahor, 2009; Lavergne et al., 2011). For example, both Sfrp1
and Sfrp2 can be the dominant negative inhibitors of Wnt3a
to inhibit proliferation in the developing chick neural tube
(Galli et al., 2006), and Sfrp2 can negatively regulate the Wnt
signaling in the CNS of Pax6 mutant mice via inhibiting Wnt7b
(Kim et al., 2001a). Sfrp1 knockout mice display abnormal
cortical morphogenesis (Esteve et al., 2018). However, the precise
regulation of Wnts and their antagonist Sfrps in mammalian
cortical neurogenesis is still unclear.

In this study, we show that Wnt7a and Sfrp1 are co-expressed
in the VZ of mouse embryonic cerebral cortices. Knockout of
Wnt7a causes microcephaly due to reduced numbers of NPs
and decreased neurogenesis. Sfrp1 showed overexpression leads
to a decrease in the NP population. Similar to the known Wnt
antagonist Dkk1, Sfrp1 directly blocks the Wnt1 and Wnt7a
activity in vitro. Our results indicate that opposite effects of
Wnt7a and Sfrp1 play an important role in expansion of
cortical NPs.

MATERIALS AND METHODS

Animals and Genotyping
The Wnt7a knockout mice (Wnt7a KO, Wnt7a−/−) were
generated by mating female Wnt7a heterozygous mice
(Wnt7a+/−) with male Wnt7a heterozygous mice (Wnt7a+/−).
Mice that only have the mutant allele (Wnt7a−/−) were Wnt7a
KO mice, wild-type (WT) mice were used as controls. To achieve
knockout of Wnt7a, a double-selection gene-replacement
construct was designed to insert a neo gene into a Nael site in
the second exon of the Wnt7a gene (Parr and McMahon, 1995;
Ashrafi et al., 2012).

For staging of embryos, midday of the day of vaginal-plug
formation was considered as E0.5; the first 24 h after birth
were defined as P0. Animal use was overseen by the Animal
Facility at Weill Cornell Medical College (Protocol number

#2011-0062), and was performed according to the institutional
ethical guidelines for animal experiments.

Mouse tail-tip biopsies were used for genotyping by
PCR reactions using the following primers: for Wnt7a KO,
forward: 5-CTCTTCGGTGGTAGCTCTGG-3 and reverse-1:
5-TCACGTCCTGCACGACGCGAGCTG-3 (product size: 350
bp); for WT, reverse-2: 5-TCCTTCCCGAAGACAGTACG-3
(product sizes: 560 bp).

RNA Sequencing (RNA-Seq)
Total RNAs for RNA-seq were extracted from three individual
E12.5 mouse cerebral cortices using TRIzol (Invitrogen,
United States) according to manufacturer’s instructions. The
ribosome RNA (rRNA) removal, generation of cDNA library
and high-throughput sequencing were performed on the
Ion proton platform (Life Technologies, United States) from
the NovelBio Bio-Pharm Technology Company (Shanghai,
China). Three sets of raw reads were obtained, and data were
deposited in Gene Expression Omnibus (GEO1) under the
series number GSE116056. After removing contaminated
and low-quality sequences, all reads were mapped onto the
Ensembl mouse reference genome. Gene expression level were
calculated by RPKM (reads per kilo-bases per million mapped
reads).

In Situ Hybridization
In situ hybridization was performed as described: following
fixation with 4% PFA, acetylation with acetylation buffer (1.3%
triethanolamine, 0.25% acetic anhydride, 20 mM HCl), treatment
with proteinase K (5 µg/ml, IBI Scientific) and pre-hybridization
(1 × SSC, 50% formamide, 0.1 mg/ml Salmon Sperm DNA
Solution, 1 × Denhart, 5 mM EDTA, pH 7.5), brain sections
were hybridized with DIG-labeled LNA probes at Tm −22◦C
overnight. After washing with pre-cooled wash buffer (1 × SSC,
50% formamide, 0.1% Tween-20) and 1 × MABT, sections
were blocked with blocking buffer (1 × MABT, 2% blocking
solution, 20% heat-inactived sheep serum) and incubated with
anti-DIG antibody (1:1, 500, Roche) at 4◦C overnight. Brain
sections were washed with 1 × MABT and Staining buffer (0.1
M NaCl, 50 mM MgCl2, 0.1 M Tris-HCl, pH 9.5), stained
with BM purple (Roche) at room temperature until ideal
intensity was reached. The antisense RNA probe (Sfrp1, Wnt7a,
Wnt7b, Pax6, Ngn2, and Hes5) was labeled using the DIG RNA
labeling Kit (Roche, Switzerland) following the manufacturer’s
instructions.

Nissl Staining and Measuring Brain Size
Brain sections (14 µm) were processed through incubation in the
subsequent solutions in the following order: ethanol/chloroform
(1:1, overnight), 100% ethanol (30 s), 95% ethanol (30 s),
distilled water (30 s, twice), cresyl violet (3–5 min), distilled
water (2 min, three times), 50% ethanol (2 min), 95% ethanol
(5–30 min), 100% ethanol (5 min, twice), xylene (3 min, twice).
Thereafter, the sections were mounted with a coverslip.

1http://www.ncbi.nlm.nih.gov/geo/
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The Wnt7a KO and WT brain images were captured in one
picture, and the thickness of the cortex and CP was measured
separately. The relative thickness of the cortex and CP in the KO
was normalized from dividing the mean length of KO by that of
the WT groups. At least three brains, and two chosen areas in
each brain section were measured and averaged in each group.
All data are presented as mean ± SEM. P-values were calculated
using unpaired Student’s t-test.

RNA and qRT-PCR
The RNAs for RT-PCR from five stages of samples (E12.5, E13.5,
E14.5, E15.5, and E17.5), were extracted by TRIzol (Invitrogen,
United States), with three mouse cerebral cortices from each
age group. Experimental protocols of embryo treatment used
here were approved by Weill Cornell Medical College’s animal
care and use committee. The procedures were carried out in
accordance with the approved guidelines. After RNA extraction,
the cDNA for RT-PCR was synthesized using high-capacity
cDNA Reverse Transcription kit (Applied Biosystems). The
qRT-PCR reactions were carried out in the Bio-Rad CFX-384
system, using the reaction mixture SYBR Green Mix (Bio-Rad,
United States) with the aforementioned cDNA samples.

β-Actin was used as an internal control, and was used to
normalize the relative mRNA expression level. Each group had
three biological repetitions, and all experiments were performed
in triplicate, and each experiment was repeated at least twice.
The qRT-PCR primers are: Wnt7a, forward: 5′-CCGAAATGG
CCGTTGG-3′ and reverse: 5′-CGATGCCGTAGCGGATGT-3′
(PCR product: 251 bp); Sfrp1, forward: 5′-CAACGTGGGCT
ACAAGAAGAT-3′ and reverse: 5′-GGCCAGTAGAAGCCGA
AG AAC-3′ (product size: 249 bp); β-actin, forward: 5′-GGCT
GTATTCCCCTCCATCG-3′ and reverse: 5′-CCAGTTGGTAA
CAATGCCATGT-3′ (product size: 245 bp). All data are
presented as mean ± SEM. P-values were calculated using
unpaired Student’s t-test.

Tissue Preparation,
Immunohistochemistry, and Analysis
Immunohistochemistry was performed as described: mouse
brains were fixed in 4% PFA in phosphate-buffered saline (PBS)
over night, incubated in 25–30% sucrose in PBS, embedded
in OCT and stored at −80◦C until use. Brains were sectioned
(14–16 µm) using a cryostat. For antigen recovery, sections were
incubated in heated (95–100◦C) antigen recovery solution (1
mM EDTA, 5 mM Tris, pH 8.0) for 15–20 min, and cooled
down for 20–30 min. Before applying antibodies, sections were
blocked in 10% normal goat serum (NGS) in PBS with 0.1%
Tween-20 (PBT) for 1 h. Sections were incubated with primary
antibodies at 4◦C overnight and visualized using goat anti-rabbit
IgG–Alexa-Fluor-488 and/or goat anti-mouse IgG–Alexa-Fluor-
546 (1:300, Molecular Probes) for 1.5 h at room temperature.
Images were captured using a Leica digital camera under a
fluorescent microscope (Leica DMI6000B) or a Zeiss confocal
microscope.

The following antibodies were used: bromodeoxyuridine
(BrdU) (1:50, DSHB), Ki67 (1:500, Abcam), Pax6 (1:30, DSHB),

Tbr1 (1:2500, Abcam), Tbr2 (1:2000, kindly provided by Robert
Hevner, University of Washington, Seattle, WA, United States),
Ctip2 (1:1000, Abcam), Satb2 (1:1000, Abcam), GFP (1:600,
DAKO), Neun (1:300, Chemicon), Wnt7a (1:1000, Abcam) and
Sfrp1(1:1000, Abcam).

Cell counting in the mouse brain sections was performed
on a fixed width (200 µm bin) of a representative column
in the cortical wall. All sections analyzed were selected from
a similar medial point on the anterior-posterior axis. Cell
counting was performed in minimal three chosen areas in each
brain, and at least three brains were analyzed in each group.
Cell counting in each chosen area was repeated at least three
times and a mean was obtained. All data are presented as
mean ± SEM. P-values were calculated using unpaired Student’s
t-test.

Plasmid DNA Constructs
To clone Sfrp1, Dkk1 and Wnt7a coding sequences into pCAGIG
for IUE, Sfrp1, Dkk1 and Wnt7a coding sequences from pGEM-T
was attached to d2EGFP, a destabilized variant of the wild-type
GFP, and then subcloned d2EGFP-Sfrp1, -Dkk1 and -Wnt7a
coding sequence fragments into pCAGIG.

Full length coding sequences (CDSs) for Sfrp1, Dkk1
and Wnt7a were cloned using the following primers: Sfrp1,
forward: 5′-ATTCCGCTCGAGCGGGTCGCCGAGCAACATG
GGCGTC-3′ and reverse: 5′-ATTCCTTAAGGCCTTCCCCAG
TCCGCCCCAG-3′ (PCR product: 954 bp); Wnt7a, forward:
5′-GCACTCGAGCAGCGGGGACTATGACCCGGAAAGCGC-
3′ and reverse: 5′-CATTCACTTGCACGTATACATCTCCG
TG-3′ (PCR product: 1,053 bp); DKK1, forward: 5′-CGGAATTC
GGAGATGATGGTTGTGTGTGC-3′ and reverse: 5′-GGTTT
AGTGTCTCTG GCAGGTGTG-3′ (PCR product: 826 bp).

The Sfrp1, Dkk1 coding sequences were subcloned into
the pcDNA3.1 vector for the TOPflash and FOPflash luciferase
reporter (Promega, United States) assay.

RNA Interference Design and Efficiency
Analysis
To knockdown Sfrp1, 4 different Sfrp1 specific short hairpin
RNA (Sfrp1-shRNA) were designed and cloned into the pSilencer
vector, separately. To analyze interference efficiency, Neuro2A
cells were plated into 6-well plates in triplicate, and were
transfected with four Sfrp1-shRNA using Lipofectamine 3000
(Invitrogen, United States). Cells were cultured for 2 days and
the endogenous Sfrp1 knockdown efficiency was verified by qRT-
PCR. The shRNA with the highest knockdown efficiency was
selected to perform further IUE in cerebral cortices.

The following oligos were used to clone Sfrp1-shRNA:
Sfrp1-shRNA1, 5′-CACCGCTACAAGAAGATGGTGCTGC
TTCAAGAGAGCAGCACCATCTTCTGGTAGCTTTTTTG-3′
(Target site: GCTACAAGAAGATGGTGCTGC, 498–519); Sfrp1-
shRNA2, 5′-CACCGCCACAACTTTCTCATCATGGTTCAAG
AGACCATGATGAGAAAGTTGTGGCTTTTTTG-3′ (Target
site: GCCACAACTTTCTCATCATGG, 1,077–1,098); Sfrp1-
shRNA3, 5′-CACCGCCATTCACAAGTGGGACAAGTTCAAG
AGACTTGTCCCACTTGTCCCACTTGTGAATGGCTTTTTT
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G-3′ (Target site: GCCACAACTTTCTCATCATGG, 1,130–
1,151); Sfrp1-shRNA4, 5′-CACCGCAGTTCTTCGGCTTCTA
CTGTTCAAGAGACAGTAGAAGCCGAAGAACTGCTTTTTT
G-3′ (Target site: GCAGTTCTTCGGCTTCTACTG, 715–736);
for negative control, 5′-CACCGTTCTCCGAACGTGTCACG
TTTCAAGAGAACGTGACACGTTCGGAGAATTTTTTG-3′.

In Utero Electroporation
In utero electroporation was performed in E12.5 embryos
according to the published protocol (Saito and Nakatsuji,
2001; Saito, 2006; Ito et al., 2014). Briefly, plasmid DNA
was prepared using the EndoFree Plasmid Maxi Kit (Qiagen)
according to manufacturer’s instructions, and diluted to 2 µg/µl.
DNA solution was injected into the lateral ventricle of the
cerebral cortex, and electroporated with five 50-ms pulses at
35V using an ECM830 electro square porator (BTX). Embryos
were allowed to develop to E13.5. Animals with their brains
electroporated, as detected by the GFP fluorescence under a
fluorescent dissection scope (Leica, MZ16F), were selected for
further analyses. Cell counting was performed in minimal three
chosen areas in each brain, and at least three electroporated
brains for each construct were analyzed. Cell counting in each
chosen area was repeated at least three times and a mean was
obtained.

TOPflash and FOPflash Luciferase
Reporter Assay
The coding sequences of the Wnt7a and Wnt1 were amplified
by PCR from mouse cDNA. Reporter genes were cloned
into TOPflash and FOPflash vector (Promega, United States).
For transfections, mouse Neuro2A cells were suspended in
DMEM and plated into 24-well plates in triplicate at 1.5 × 10
4cells/100 mL. Adherent cells were co-transfected with 100
ng/mL luciferase reporter containing the reporter gene and
60 ng/mL vector (pcDNA3.1 blank vector, pcDNA3.1-Dkk1
and pcDNA3.1-Sfrp1) using Lipofectamine 3000 (Invitrogen,
United States). After 48 h, cells were harvested and luciferase
activity was measured using the luciferase reporter assay
system (Cat. #E1910, Promega, United States) according to the
manufacturer’s protocol.

The relative luciferase activity was normalized from the
mean of pcDNA3.1 blank vector, separately. Each group had
three biological repetitions, and experiments were performed in
triplicate and each sample was repeated at least three times. All
results are presented as mean ± SEM. P-values were calculated
using unpaired Student’s t-test.

Statistical Analysis
All experiments using cultured cells and mouse embryos were
repeated at least with three biological replicates. All results are
presented as mean± standard error of the mean (SEM). P-values
were determined by unpaired Student’s t-test for assessing the
significance of differences between two treatments (See each
figure for details). P-values <0.05 were considered significant.
Significant differences were denoted as ∗P-values < 0.05, ∗∗P-
values < 0.01, ∗∗∗P-values < 0.001.

RESULTS

Wnt7a and Sfrp1 Are Co-expressed in
NPs in the VZ
To screen genes that are highly expressed in the mouse E12.5
cerebral cortices, RNA sequencing (RNA-seq) was performed.
30,827,078 and 29,345,746 and 32,038,052 raw sequencing
reads, and 28,547,544 and 27,289,172 and 29,753,653 clean
reads, respectively, were obtained from three individual E12.5
cortices (Supplementary Table S1). The mapping rates of clean
reads are 92.2%, 93.4%, and 92.6% (Supplementary Table S2).
Among these genes, Wnt7a, Wnt7b, and Sfrp1 showed high
expression (RPKM >500) (Supplementary Figure S1A and
Supplementary Table S4). Moreover, Wnt7b, Wnt7a, and Wnt5a
displayed higher abundant expression levels than other Wnt
genes (Supplementary Tables S3, S4).

To verify the RNA-seq data, we examined expression patterns
of Wnt7a, Wnt7b, and Sfrp1, and compared them with those of
NP markers such as Pax6, Ngn2, and Hes5, and other Sfrps such
as Sfrp2, Sfrp4, and Sfrp5 in the mouse cortex at E12.5 using
ISH (Figure 1A and Supplementary Figure S1B). We found that
both Wnt7a and Sfrp1 are expressed in the VZ of the E12.5
cortex (Figure 1A). Moreover, expression of Wnt7a and Sfrp1
was co-localized with that of Pax6, Ngn2 and Hes5, suggesting
that Wnt7a and Sfrp1 are largely expressed in NPs (Figure 1A).
Conversely, Wnt7b was highly expressed in newborn neurons,
and other Sfrps such as Sfrp2 displayed low expression in the
cortex (Figure 1A and Supplementary Figure S1B).

Next, we investigated whether expression levels of Wnt7a
and Sfrp1 progressively change over embryonic stages at E12.5,
E13.5, E14.5, E15.5, and E17.5 using qRT-PCR. Wnt7a displayed
ascending expression from E12.5 to E15.5 (Figure 1B). Sfrp1
expression showed a gradual decline from E12.5 to E17.5
(Figure 1C). Compared to Wnt7a, Sfrp1 displays overlapping
expression with Wnt7a in the VZ and opposite expression
levels, implying distinct roles of Wnt7a and Sfrp1 in cortical
development.

Wnt7a Positively Regulates Proliferation
of NPs and Promotes Neurogenesis
Because of Wnt7a expression in the cortical VZ, we investigated
whether Wnt7a regulates NP proliferation by analyzing cortical
development in Wnt7a knockout mice (Wnt7a KO). The
body size of Wnt7a KO was indistinguishable from that of
WT mice. The cortical size and brain size were measured
at P0, P5, and P20 (Figures 2A–C and Supplementary
Figure S2). Compared to WT, the cortical size and brain
size of Wnt7a KO mice were greatly reduced from P0 to P20,
suggesting a progressive brain deterioration (Figures 2A–C
and Supplementary Figure S2). Moreover, the thickness of the
cortical wall was significantly reduced in the brain sections with
Nissl staining in Wnt7a KO mice (Figures 2B,C). Interestingly,
the ratios of cortical size versus brain size were similar
between WT and KO, suggesting that the overall brain size is
reduced in Wnt7a KO mice (Figure 2C and Supplementary
Figure S2).
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FIGURE 1 | Wnt7a and Sfrp1 are co-expressed in neural progenitors and show opposite expression trends. (A) In coronal sections of mouse E12.5 cerebral
cortices, Wnt7a, Sfrp1, Pax6, Ngn2, and Hes5 were expressed in the ventricular zone (arrowheads). Conversely, Wnt7b was expressed in newborn neurons. Red
boxes show high power views. (B) qRT-PCR analysis of Wnt7a and Sfrp1 expression levels at different embryonic stages (E12.5, E13.5, E14.5, E15.5, and E17.5).
All comparisons were made with that of values at E12.5. Values of histogram represent mean ± SEM, and each dot represents a data point in each biology repeat
(n = 3, ∗P < 0.05; ∗∗P < 0.01; unpaired Student’s t-test). (C) Opposite expression trends between Wnt7a and Sfrp1 at different embryonic stages (from E12.5 to
E17.5) measured by qRT-PCR.

We then examined whether the NP population was changed
in E13.5 Wnt7a KO mice using immunohistochemistry. NPs
can be detected by labeling cells in the G1, S, G2, and M
phases using the anti-Ki67 antibody. The number of Ki67+
cells was significantly decreased in the E13.5 Wnt7a KO
cortex, compared to the control (Figures 2D,E). The numbers
of Sox2+ and Pax6+ radial glial cells (RGCs), and Tbr2+
IPs were also reduced, suggesting an early reduction of NPs
(Figures 2F–K). Moreover, because Pax6+/Tbr2+ cells are under
transition from RGCs to IPs, we quantified the number of
Pax6+/Tbr2+ cells. While a significant decrease in the number
of Pax6+/Tbr2+ cells was detected in E13.5 Wnt7a KO cortex,
the percentages of Pax6+/Tbr2+ cells versus total Pax6+ cells
and Pax6+/Tbr2+ cells versus total Tbr2+ cells were unchanged,
indicating that Wnt7a deletion doesn’t affect transition of RGCs
to IPs (Supplementary Figures S3A–D). In addition, even though
the total number of Tbr2+ cells was reduced, the percentage
of Tbr2+ cells versus total DAPI+ cells remained the same
in WT and Wnt7a KO cortices, suggesting that reduction in
IPs is in proportion with that of total cells (Supplementary
Figures S3E,F).

Next, we examined whether the early loss of NP population
is maintained at E15.5. Compared to the controls, the numbers
of BrdU+, Ki67+, Sox2+, Tbr1+, Pax6+, and Tbr2+ cells were
greatly reduced in E15.5 Wnt7a KO cortices, suggesting that the
deletion of Wnt7a causes a progressive loss of NPs (Figures 3A–F
and Supplementary Figures S4A,B).

Because the overall organization of cortical layers is becoming
clear, and neuronal production is evident at P0, P0 pups were

collected to analyze brain phenotypes without sacrifice of the
mother. We examined the expression of Tbr1 (layer VI), Ctip2
(layer V) and Satb2 (layer II, III, and IV) in P0 Wnt7a KO and
control cortices (Molyneaux et al., 2007). The relative positioning
of layer markers in the CP was similar to that of the WT,
suggesting that overall cortical layer organization is not greatly
affected by Wnt7a deletion (Figures 3G,I). Despite concordance
of the position of layer markers, each layer examined was
thinner in the Wnt7a KO cortex than that in the control,
with significantly fewer mature NeuN+ neurons found, and
great reductions in the number of Tbr1+ and Satb2+ neurons
(Figures 3G–J). The Citp2+ neurons showed no appreciable
decrease in Wnt7a KO mice (Figures 3I,J). Moreover, the
percentages of Tbr1+ and Satb2+ cells versus DAPI+ cells were
unchanged in WT and KO cortices, indicating that the reduction
in newborn neurons is in proportion with that of total cells
(Supplementary Figure S4C).

Taken together, our results indicate that knockout of Wnt7a
causes reduced NPs and production of newborn neurons.

Sfrp1 Negatively Regulates Proliferation
of NPs
We next examined whether altering Sfrp1 expression in the cortex
has a similar or an opposite effect on NPs as deleting Wnt7a
expression. The full length cDNA for Sfrp1 was cloned (pCAGIG-
Sfrp1) and was ectopically expressed in E12.5 cortices by using
IUE, and embryos were analyzed after 24 h. Overexpression of
Sfrp1 resulted in a decreased number of GFP+ NPs that are
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FIGURE 2 | Wnt7a positively regulates brain size and proliferation of NPs. (A) The cortex of P0 Wnt7a knockout (KO) mice was greatly reduced compared to wild
type (WT) controls. The arrowheads show the most rostral and caudal regions in the cortex. “L1” represent the cortical length, and “L2” represent the brain length.
(B) The cortical wall in P0 Wnt7a KO mice were thinner than that in WT mice, detected by Nissl staining. CP: cortical plate. (C) The relative thickness of the cortex
and cortical plate in the KO was normalized from dividing the mean length of Wnt7a KO by that of the WT groups. Values of histogram represent mean ± SEM, and
each dot represents a data point of the relative thickness in each section or length in the brain images. n = 3 brains, at least two sections from each brain.
∗P < 0.05;∗∗∗P < 0.001; ns, non-significant; unpaired Student’s t-test. (D–K) The numbers of Pax6+ and Tbr2+ neural progenitors were greatly reduced in the
E13.5 Wnt7a KO cortex. Values of histogram represent mean ± SEM, and each dot represents a data point of the counting number in each section (200 µm bin).
n = 3 brains, at least four sections from each brain. ∗∗P < 0.01; ∗∗∗P < 0.001; unpaired Student’s t-test). Scale bar: 50 µm.

double-positive for BrdU+, Pax6+, Sox2+ and Tbr2+, compared
to those of electroporation of the control (pCAGIG) in E13.5
cortices, suggesting a decrease of NPs after Sfrp1 overexpression
(Figure 4).

To test whether the endogenous Sfrp1 limits the NP numbers
in vivo, we used shRNA designed to outcompete endogenous
Sfrp1 transcripts. The Sfrp1 knockdown efficiency were verified

in mouse Neuro2A cell by qRT-PCR (Supplementary Figure S5).
The construct of shRNA (Sfrp1-sh4) that shows the highest
knockdown efficiency among four tested shRNAs was used
to perform IUE. Greater proportions of GFP+ NPs expressed
BrdU, Pax6 and Sox2 were found in the VZ/SVZ following
electroporation of the Sfrp1-sh4 (Supplementary Figures S6A–F).
Tbr2+ NPs displayed no appreciable increase (Supplementary
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FIGURE 3 | Wnt7a promotes neurogenesis at E15.5 and P0. (A–F) Compared to controls (WT), Wnt7a knockout (KO) cortices at E15.5 displayed a reduction in the
numbers of BrdU+, Ki67+, Sox2+, Tbr1+, Pax6+, and Tbr2+ cells. The dashed box represents the cell counting area. Values of histogram represent mean ± SEM,
and each dot represents a data point of the counting number in each section (200 µm bin). n = 3, at least four sections from each brain. ∗P < 0.05; unpaired
Student’s t-test. (G–J) In P0 Wnt7a KO cortices, the numbers of Tbr1+ and Stab2+ neurons were greatly reduced. NeuN+ neurons but not Citp2+ neurons were
also reduced. The dashed box represents the cell counting area. Values of histogram represent mean ± SEM, and each dot represents a data point of the counting
number in each section (200 µm bin). n = 3, at least five sections from each brain. ∗P < 0.05; ∗∗P < 0.01; ns, non-significant; unpaired Student’s t-test. Scale bar:
100 µm.

Figures S6G,H). These results indicate that Sfrp1 negatively
modulates NP proliferation.

Sfrp1 Has an Opposite Role of Wnt7a in
Regulating NP Proliferation
Based on opposite effect of Wnt7a and Sfrp1 on NP development,
we suspected that Wnt7a might be regulated by its antagonists

during cortical development. Previous studies have shown that
Dkk1 is an antagonist of Wnt7a (Fortress et al., 2013). To examine
how the Wnt7a antagonist may regulate NP development in
the cortex, we over-expressed both Wnt7a and Dkk1 in the
VZ of cortex using IUE. While Wnt7a promoted expansion of
NPs, as shown by an increased number of BrdU+ and Pax6+
cells, over-expression of Dkk1 and Wnt7a in the VZ dampened
Wnt7a effects, suggesting an antagonistic regulation of Dkk1

Frontiers in Molecular Neuroscience | www.frontiersin.org 7 July 2018 | Volume 11 | Article 24788

https://www.frontiersin.org/journals/molecular-neuroscience/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/molecular-neuroscience#articles


fnmol-11-00247 July 14, 2018 Time: 16:1 # 8

Miao et al. Wnt7a/Sfrp1 in Cerebral Cortex

FIGURE 4 | Sfrp1 negatively regulates proliferation of NPs at E13.5. (A,C,E,G) Overexpression of Sfrp1 in E12.5 cortices using in utero electroporation, analyzed at
E13.5, caused the reduction of BrdU+/GFP+, Pax6+/GFP+, Sox2+/GFP+, and Tbr2+/GFP+ neural progenitors. (B,D,F,H) The proportion of cells labeled with
individual progenitor markers and GFP versus cells labeled with GFP was quantified. Values represent mean ± SEM, and each dot represents a data point of the
marker+ GFP+/GFP+ % in each section (200 µm × 200 µm). n = 3, at least two sections from each brain. ∗∗P < 0.01; ∗∗∗P < 0.001; unpaired Student’s t-test.
Scale bar: 50 µm.

(Supplementary Figure S7). Moreover, increasing Dkk1 dosage
caused a greater decrease in the number of BrdU+ and Pax6+
cells, suggesting a dosage-dependent antagonistic regulation of
Dkk1 on Wnt7a (Supplementary Figure S7).

If Sfrp1 also has the functions as a Wnt7a antagonist, it should
have a similar effect to Dkk1 in NP development. With this in
mind, Wnt7a and Sfrp1 were both overexpressed in the cortex
using IUE. Similar to Dkk1, Wnt7a-Sfrp1 overexpressed in the
VZ caused a reduction of BrdU+ and Pax6+ cells (Figure 5).
Moreover, increasing the dosage of Sfrp1 had a more profound
activity in suppressing Wnt7a effect on NP expansion (Figure 5).

Our results suggest that similar to Dkk1, Sfrp1 acts as an
antagonist of Wnt7a and negatively regulates expansion of NPs.

Sfrp1 Inhibits Wnt7a Activity in TOPflash
Luciferase Reporter Assay
Based on the dosage-dependent regulation of Sfrp1 on Wnt7a, we
tested whether Sfrp1 could down-regulate the Wnt7a activity. To
validate Sfrp1-Wnt7a interaction, we used the TOPflash luciferase
reporter assay containing the active TCF/LEF binding sites,
which is the classical method to identify canonical Wnt/β-catenin

activity (Figure 6A) (Veeman et al., 2003). If the canonical Wnt
signaling is activated, the β-catenin will be associated with the
TCF/LEF transcription factors to promote the Firefly luciferase
activity. The mutant TCF/LEF binding site of FOPflash was used
as the control (Figure 6A).

Wnt1 is a known molecule of the Wnt signaling and is
crucial for early development of the CNS (Leal et al., 2011; Cai
et al., 2013). As the positive control, we first tested whether
Dkk1 and Sfrp1 can block Wnt1 in Neuro2A cells. Compared
to the FOPflash group, the luciferase activity of Wnt1 in Dkk1
overexpression treatment was significantly decreased in the
TOPflash group (Figure 6B). Agreed with Dkk1, the luciferase
activity of Sfrp1 overexpression showed a similar decrease
(Figure 6B).

Next, we tested whether Sfrp1 can inhibit Wnt7a in a
similar fashion to how Wnt1 is negatively regulated in the
aforementioned experiment. We found that the luciferase activity
of Wn7a was decreased appreciably in both Sfrp1 and Dkk1 over-
expression treatment, suggesting that Sfrp1 acts like the known
antagonist Dkk1, and blocks the Wnt7a signal (Figure 6C).

In summary, Sfrp1 has an attenuating role in Wnt signaling by
blocking Wnt1 and Wnt7a in vitro.
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FIGURE 5 | Sfrp1 suppresses Wnt7a activity in neural progenitor proliferation dosage-dependent manner. (A,B) Co-expression of Sfrp1 and Wnt7a dampened the
effect of Wnt7a in expanding neural progenitors at E13.5. (C,D) The numbers in BrdU+/GFP+ and Pax6+/GFP+ neural progenitors showed a decreasing trend with
a proportional increase of Sfrp1 (Wnt7a:Sfrp1 = 1:1 vs. Wnt7a:Sfrp1 = 1:2). Values represent mean ± SEM, and each dot represents a data point of the marker+

GFP+/GFP+ % in each section (200 µm × 200 µm). n = 3, at least two sections from each brain. ∗∗P < 0.01; ∗∗∗P < 0.001; unpaired Student’s t-test. Scale
bar = 50 µm.

DISCUSSION

The maintenance of normal cortical formation and size is
essential for brain function. The Wnt signaling plays critical roles
to regulate cell cycle control, neuronal differentiation and tissue
repair (Chenn and Walsh, 2003; Kalani et al., 2008; Piccin and
Morshead, 2011; Delaunay et al., 2014). The precise antagonistic
regulation of Wnt members by Wnt modulators also controls
cortical neurogenesis. Our study shows that Wnt7a and Sfrp1 are
co-expressed in cortical NPs and their opposite role is essential
for controlling NP expansion and neuronal production.

Among the many signals known to influence the CNS
development, the Wnt signal has attracted great attention.
Wnt/β-catenin signaling acts upstream of a complex and dynamic

temporal network to control progenitor fate (Draganova et al.,
2015): long-term overexpression of Wnt3a leads to cortical
dysplasia by inducing early differentiation of IPs into neurons and
the heterotopias of these newborn neurons (Munji et al., 2011).
Studies have shown the role of Wnt7a in axon development
and guidance, as well as synapse formation and maintenance
(Hall et al., 2000; Cerpa et al., 2008; Ciani et al., 2011, 2015).
Investigations of Wnt7 in the early step of neurogenesis in the
cerebral cortex have just begun (Qu et al., 2013; Long et al.,
2016). Transcriptome sequencing data from us and others have
shown that Wnt7b, Wnt7a, and Wnt5a are the most abundant
Wnt factors in the E12.5, E16.5, and E17.5 cortices (Wang
et al., 2016; Nguyen et al., 2018). Moreover, we have found
that Wnt7a is highly expressed in the VZ and Wnt7b in the
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FIGURE 6 | Sfrp1 inhibits Wnt7a activity in the TOPflash luciferase reporter assay. (A) TOPflash is a luciferase reporter of β-catenin-mediated transcriptional
activation with active TCF/LEF binding sites, which affect the firefly luciferase expression. The control plasmid is FOPflash, which contains mutant TCF/LEF binding
sites. (B,C) After transfection of the pcDNA3.1-Sfrp1 and pcDNA3.1-Dkk1, a statistically significant decrease in luciferase activity of Wnt1 and Wnt7a was observed
in comparison with controls. Values represent mean ± SEM. n = 3, ∗∗P < 0.01; ∗∗∗P < 0.001; unpaired Student’s t-test.

intermediate zone and CP, which is consistent with the RNA-
seq results from isolating specific cellular zones and layers in
E14.5 and E15.5 cortices (Ayoub et al., 2011; Belgard et al., 2011;
Aprea et al., 2013; Liu et al., 2016). How distinct expression
patterns of different Wnts are established in developing cortices
remains unclear. Differential expression of Wnt7a and Wnt7b
in the cortical layers may determine their different roles in
cortical neurogenesis (Stenman et al., 2008; Durak et al., 2016):
Wnt7a promotes neurogenesis by regulating genes involved
in cell cycle control and neuronal differentiation (Qu et al.,
2013); the increased Wnt7b modulates neuronal differentiation
by regulating T-domain transcription factors Tbr1 and Tbr2
(Papachristou et al., 2014).

Moreover, we have shown that the deletion of Wnt7a
expression causes microcephaly by reducing the population of
NPs and newborn neurons. These data are consistent with
previous reports demonstrating that Wnt7a positively regulates

NPs and neurogenesis (Qu et al., 2013; Long et al., 2016; Wang
et al., 2016). Recent research has shown that Wnt7a regulates
the asymmetry of spindles in neuroepithelial cells in the VZ,
which is linked to asymmetric cell division (Delaunay et al.,
2014). The embryonic ventral midbrain of Wnt7a KO mice
displays reduced Sox2+ progenitors (Fernando et al., 2014).
We have also found that Sox2+ progenitors are decreased in
the cerebral cortex at E13.5. Decreased expansion of cortical
NPs is likely a major cause of microcephaly in Wnt7a KO
mice. Among Wnt molecules, Wnt7a is a known regulator
in the beta-catenin signal pathway (mmu04310) functioning
in different biological processes (Daneman et al., 2009; Ciani
et al., 2011; Qu et al., 2013; King et al., 2015). Wnt molecules
are associated with Hippo signaling pathway, Integrin signaling
and Notch signaling (Qu et al., 2013; Ciani et al., 2015; Wang
et al., 2016). These pathways likely cooperate to regulate cortical
development.
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Sfrps are a family of receptors known to possess a Wnt-
binding frizzled CRD, and abnormal expression of Sfrp1 leads
to CNS functional disorders (Esteve et al., 2011, 2018). Sfrp1
is a key member of the Sfrp family that can bind directly to
Wnts via their regions of homology to Fz. In the CNS, Sfrp1 can
block dopamine neuron development, dendritic development
and hippocampus formation (Rosso et al., 2005; Miquelajauregui
et al., 2007; Kele et al., 2012). In this study, we have found
that Sfrp1 is expressed in the VZ of the mouse embryonic
cerebral cortex, which is consistent with the observation of
its expression restricted to the proliferative zone in the CNS
(Augustine et al., 2001). Similar to the known antagonist Dkk1,
we have found that overexpression of Sfrp1 reduces the NP
population, and Sfrp1 significantly decreases the number of NPs
in a dosage-dependent manner, suggesting an opposite role of
Sfrp1 in cortical development compare to Wnt7a (Adamska et al.,
2004; Kim et al., 2008; Osada et al., 2010). In the recent study
of Sfrp1 knockout mice, the authors observed an increase in
the number of BrdU+/Tbr2+ cells in E12.5 Sfrp1−/− cortex
(Esteve et al., 2018). We think that the reason we did not detect
an increase of Tbr2+ cells when Sfrp1 is knocked down, it is
likely due to the efficiency of shRNA of Sfrp1, compared to the
gene knockout. Moreover, recent studies have shown that Sfrps
interact with the Wnt signaling, Hedgehog signaling, BMP and
Notch signaling (Katoh and Katoh, 2006; Mii and Taira, 2009;
Misra and Matise, 2010; Esteve et al., 2011, 2018). It is likely a
combined effort of Sfrp1 with other signals contributes to cortical
development.

Sfrps is a physiological Wnt-signaling scavenger that binds
directly to Wnts due to their similarity to the receptor Frizzled,
thus, it is capable of regulating the availability of Wnt proteins
(Finch et al., 1997; Rattner et al., 1997; Baarsma et al., 2013;
Cruciat and Niehrs, 2013). The exclusive repression of the Wnt
pathway is possible by selective Sfrps in cortical development
(Mikels and Nusse, 2006; Lacour et al., 2017). Sfrp1 and Sfrp3
are expressed in opposing anterolateral to caudomedial gradients,
and regulate normal temporal advancement of neuronal birth
and maturation in anterior and lateral cortical regions by
selectively modulating Wnts (Kim et al., 2001b). Previous studies
have shown that Dkks inhibit the canonical Wnt pathway by
internalizing LRP5/6, whereas Sfrps inhibit both the canonical
and non-canonical pathways by binding Wnt ligands or Frizzled
(Dees et al., 2014; Majchrzak-Celinska et al., 2016). The future

study will be to investigate whether Sfrp1 directly binds to Wnt7a
or through other mechanisms in the cortex.

The reciprocal control of Wnt7a and Sfrp1 may be a
dosage-dependent compensatory mechanism to maintain normal
cortical formation during early development. Our study reveals
that an optimal expression level of Wnt7a and Sfrp1 is critical for
proper establishment of the NP population. Further work will be
dedicated to explore the precise regulation of how different Sfrps
mediate canonical Wnt signaling pathway in NP proliferation
and differentiation during embryonic cortical development. Our
findings suggest that dysregulation of the Wnt signaling can lead
to developmental defects similar to human cortical malformation
disorders such as microcephaly.
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Zebrafish are increasingly being utilized as a model system to investigate the function
of the growing list of risk genes associated with neurodevelopmental disorders. This is
due in large part to the unique features of zebrafish that make them an optimal system
for this purpose, including rapid, external development of transparent embryos, which
enable the direct visualization of the developing nervous system during early stages,
large progenies, which provide considerable tractability for performing high-throughput
pharmacological screens to identify small molecule suppressors of simple behavioral
phenotypes, and ease of genetic manipulation, which has been greatly facilitated by
the advent of CRISPR/Cas9 gene editing technologies. This review article focuses on
studies that have harnessed these advantages of the zebrafish system for the functional
analysis of genes that are strongly associated with the following neurodevelopmental
disorders: autism spectrum disorders (ASD), epilepsy, intellectual disability (ID) and
schizophrenia. We focus primarily on studies describing early morphological and
behavioral phenotypes during embryonic and larval stages resulting from loss of risk
gene function. We highlight insights into basic mechanisms of risk gene function gained
from these studies as well as limitations of studies to date. Finally, we discuss advances
in in vivo neural circuit imaging in zebrafish, which promise to transform research using
the zebrafish model by illuminating novel circuit-level mechanisms with relevance to
neurodevelopmental disorders.

Keywords: zebrafish, neurodevelopmental disorders, autism spectrum disorders, epilepsy, schizophrenia, model
system, genetics, neural circuits

INTRODUCTION

In recent years, there has been growing interest in the use of zebrafish as a model system for the
functional analysis of genes in neurodevelopmental disorders, which are a group of disorders
characterized by alterations in behavior, cognition, communication, and/or motor function during
development (American Psychiatric Association, 2013). This is due in large part to the unique
features of this system, which offer distinct advantages over more traditional model systems
(McCammon and Sive, 2015; Ijaz and Hoffman, 2016; Kozol et al., 2016). For example, zebrafish
have transparent embryos that develop externally and rapidly, allowing for the direct visualization
of neurodevelopmental processes and neural activity in an intact, functioning nervous system. In
addition, zebrafish are highly tractable and produce large progenies, which facilitate the conduct of
high-throughput pharmacological screens at a scale that would not be feasible in rodent models.

Frontiers in Molecular Neuroscience | www.frontiersin.org 1 August 2018 | Volume 11 | Article 29496

https://www.frontiersin.org/journals/molecular-neuroscience
https://www.frontiersin.org/journals/molecular-neuroscience#editorial-board
https://www.frontiersin.org/journals/molecular-neuroscience#editorial-board
https://doi.org/10.3389/fnmol.2018.00294
http://crossmark.crossref.org/dialog/?doi=10.3389/fnmol.2018.00294&domain=pdf&date_stamp=2018-08-29
https://www.frontiersin.org/articles/10.3389/fnmol.2018.00294/full
https://www.frontiersin.org/articles/10.3389/fnmol.2018.00294/full
https://www.frontiersin.org/articles/10.3389/fnmol.2018.00294/full
https://loop.frontiersin.org/people/558498/overview
https://loop.frontiersin.org/people/562250/overview
https://loop.frontiersin.org/people/49208/overview
https://creativecommons.org/licenses/by/4.0/
mailto:ellen.hoffman@yale.edu
https://doi.org/10.3389/fnmol.2018.00294
https://www.frontiersin.org/journals/molecular-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/molecular-neuroscience#articles


Sakai et al. Zebrafish Models of Neurodevelopmental Disorders

Further, with advances in CRISPR/Cas9 gene-editing techniques
in zebrafish (Hwang et al., 2013; Moreno-Mateos et al., 2015),
it is now possible to generate zebrafish mutants carrying loss-
of-function mutations in a gene of interest relatively rapidly and
at a low cost. Given this ease of genetic manipulation, zebrafish
are emerging as an optimal system for modeling the growing
list of risk genes in neurodevelopmental disorders, keeping
pace with the rapid rate of gene discovery in these disorders
(Allen et al., 2013; Purcell et al., 2014; Sanders et al., 2015).
Therefore, zebrafish have considerable potential for advancing
our understanding of the roles of risk genes in the developing
brain and elucidating basic biological mechanisms underlying
neurodevelopmental disorders.

Despite the limitations of modeling human disorders in
zebrafish, given their evolutionary divergence, several lines
of evidence point to a remarkable degree of conservation,
suggesting that studies in zebrafish are likely to have translational
relevance to humans. First, at a structural level, zebrafish
have the same major subdivisions of a vertebrate brain as
mammals—forebrain, midbrain, hindbrain and spinal cord
(Guo, 2009) While there are notable structural differences,
such as the development of the telencephalon, which forms
by a different process in zebrafish (eversion) than mammals
(invagination), many brain regions in zebrafish and mammals,
including the thalamus, optic tectum and cerebellum, display
structural homology and are reviewed in detail in Kozol
et al. (2016). In addition, early developmental genes share
similar expression patterns in the brains of zebrafish and
mammals, and the major neurotransmitter systems in the
mammalian brain, including GABA, glutamate, dopamine,
norepinephrine, serotonin, histamine and acetylcholine, are
present in zebrafish (Guo, 2009). Second, there is evidence
for conservation of pharmacological pathways (Burgess and
Granato, 2007b; Renier et al., 2007; Rihel et al., 2010). For
example, a large-scale screen of psychoactive compounds found
that drugs targeting conserved neurotransmitter systems elicit
similar effects on sleep in zebrafish and mammals (Rihel et al.,
2010). Third, approximately 80% of risk genes associated with
human disorders have an orthologous version in zebrafish,
revealing considerable genetic conservation (Howe et al., 2013).
Fourth, there is evidence that the neural circuits underlying
basic behaviors, such as acoustic startle, prepulse inhibition,
sleep and arousal, are conserved, suggesting that findings in
zebrafish are likely to be relevant to our understanding of
related circuits in mammals (Prober et al., 2006; Burgess
and Granato, 2007a,b; Schoonheim et al., 2010; Lovett-Barron
et al., 2017). These studies highlight the potential of zebrafish,
with their optical transparency and amenability to whole-
brain, in vivo imaging, for elucidating the roles of risk
genes in neurodevelopmental processes and neural circuit
function.

In this review article, we will focus on genetic models of
the following neurodevelopmental disorders: autism spectrum
disorders (ASD), intellectual disability (ID), epilepsy and
schizophrenia, in zebrafish. Specifically, we will focus on early
phenotypes (morphological and behavioral), rather than adult
behaviors, which have been addressed in detail in other reviews

(Meshalkina et al., 2018; Shams et al., 2018). We will highlight
insights into basic mechanisms of risk gene function and
potential drug candidates identified in zebrafish models, as well
as the limitations of studies to date. Finally, we will discuss
advances in functional imaging of zebrafish brain activity, which
has the potential to illuminate new roles for risk genes in
conserved neural circuits.

ADVANCES IN GENE TARGETING
METHODS IN ZEBRAFISH

Zebrafish first emerged as an optimal model system for studying
vertebrate development through their use in large-scale forward
genetics screens, leading to the discovery of hundreds of
genes involved in early developmental processes (Granato and
Nusslein-Volhard, 1996). Until recently, one of the challenges of
using zebrafish as a model for reverse genetics was the limited
availability of methods for generating mutants in a gene of
interest. While mouse ‘‘knockouts’’ are generated by isolating
embryonic stem cells, related methods are more challenging in
zebrafish. For this reason, generating zebrafish mutants relied
for a long time on Targeted Induced Local Lesions in Genomes
(TILLING), which involves screening thousands of zebrafish
carrying random mutations induced by the chemical N-ethyl
N-nitrosourea (ENU) to identify a damaging mutation in a target
gene (Moens et al., 2008). Limitations of TILLING include the
time-consuming process of screening zebrafish libraries and the
relatively low likelihood of identifying the desired mutation,
though more recent large-scale ENU and retroviral mutagenesis
projects using next-generation sequencing have improved the
efficiency of this approach (Kettleborough et al., 2013; Varshney
et al., 2013; Pan et al., 2015). Because zebrafish have a duplicated
genome with at least two orthologs of many human risk genes
that display sub-functionalization (Kozol et al., 2016), the lack
of methods for rapidly generating targeted mutations greatly
restricted the use of zebrafish as a genetic model.

However, the introduction of targeted nuclease technologies,
including zinc finger nucleases (ZFN) and transcription
activator-like effector nucleases (TALEN), transformed the field,
enabling the rapid induction of damaging, heritable mutations
in a gene of interest in zebrafish (Doyon et al., 2008; Meng
et al., 2008; Sander et al., 2011; Dahlem et al., 2012). ZFNs
and TALENs are chimeric fusion proteins designed to bind
to a target site within a gene and produce double-stranded
breaks that are repaired inefficiently by non-homologous end
joining, resulting in insertion-deletion mutations. Despite their
advantages over TILLING, a number of limitations prevented
their widespread use, including challenges in predicting the
efficiency of gene disruption and identifying a target site within
an early exon of a gene of interest, along with the high cost of
commercially available ZFNs. While TALENs improved upon
many of these features, offering increased flexibility and lower
cost, both methods were soon supplanted by CRISPRs.

Clustered regularly interspaced short palindromic repeats
(CRISPRs) hijack an adaptive immune mechanism used by
bacteria for protection against viruses (Jinek et al., 2012).
To generate zebrafish mutants, a single guide RNA (sgRNA)
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recognizing a target genomic sequence is introduced into
zebrafish embryos along with mRNA encoding the enzyme, Cas9
(Hwang et al., 2013). Following sgRNA-directed cleavage of
DNA by Cas9, inefficient non-homologous end joining leads to
insertion-deletionmutations, as with ZFNs and TALENs, though
CRISPRs offer superior flexibility and efficiency over these earlier
gene-editing methods (Hwang et al., 2013). Further, their low
cost and ease of use have made this technology accessible to
most laboratories, facilitating the rapid generation of zebrafish
mutants and leading to a paradigm-shift in the use of zebrafish
as a reverse genetics tool. While a limited number of studies to
date have used ZFNs or TALENs to generate zebrafishmutants of
genes associated with neurodevelopmental disorders, it is likely
that a growing number of studies will harness CRISPRs for this
purpose in the near future.

In contrast, the majority of zebrafish studies of
neurodevelopmental disorder-associated genes to date have used
morpholinos, which are modified antisense oligonucleotides
that cause a transient ‘‘knockdown’’ of target gene expression
by blocking mRNA splicing or translation (Nasevicius and
Ekker, 2000; Draper et al., 2001). Given their low cost, ease of
use, and until recently, the limited availability of methods for
rapidly generating genetic mutants, morpholinos have been a
commonly used method for analyzing gene function in early
development in zebrafish. However, morpholinos have several
notable drawbacks, including their transient effects, which limit
the ability to investigate gene function beyond early stages, as
well as their tendency to induce off-target effects (Eisen and
Smith, 2008). For example, some morpholinos activate p53 via
an unknown mechanism, resulting in widespread apoptosis,
which may lead to nonspecific phenotypes, such as changes in
head size or brain structure (Robu et al., 2007; Eisen and Smith,
2008). In addition, a growing number of studies are finding a
lack of concordance between the phenotypes of genetic mutants
and morpholino-induced knockdowns of the same gene, which
in most cases are due to the off-target effects of morpholinos
(Kok et al., 2015; Lawson, 2016). Therefore, morpholino-induced
phenotypes must be interpreted with caution.

Given these limitations, early guidelines were established for
confirming the specificity of morpholino-induced phenotypes,
including: (i) using two morpholinos targeting distinct sites;
and (ii) demonstrating rescue of the phenotype by introducing
mRNA lacking the morpholino target site (Eisen and Smith,
2008). With the careful use of these controls, morpholinos have
been used successfully to investigate the early developmental
roles of genes in zebrafish (Eisen and Smith, 2008). However,
many experiments fail to follow these guidelines (Lawson, 2016).
Further, studies have found discrepancies between morphant
and mutant phenotypes even when these guidelines have been
followed (Stainier et al., 2017).

To address these issues, a group of leaders in the zebrafish
scientific community recently established new guidelines for
the use of morpholinos, requiring that all morpholino-induced
phenotypes be confirmed in genetic mutants where possible,
which is now feasible due to CRISPRs (Stainier et al., 2017).
These guidelines further state that morpholinos may continue
to be used for rapid gene ‘‘knockdown’’ only in cases where

the phenotype under investigation has been recapitulated in
a mutant (Stainier et al., 2017). While there are cases where
genetic compensation has been shown to occur in mutants
(Rossi et al., 2015; El-Brolosy and Stainier, 2017), the current
guidelines require demonstrating the absence of the morpholino-
induced phenotype in the mutant background as evidence for
compensation (Stainier et al., 2017). Moving forward, following
these guidelines will be critical, particularly for the interpretation
of phenotypes in zebrafish models of neurodevelopmental
disorders, given that morpholinos alone can induce nonspecific
neural effects (Shams et al., 2018). At the same time, as mutants
become the ‘‘gold standard’’ for reverse genetics studies in
zebrafish, it will be equally important to confirm that germline
mutations result in loss-of-function (Shams et al., 2018).

ZEBRAFISH MODELS OF
NEURODEVELOPMENTAL DISORDERS

Here, we discuss findings from studies that used zebrafish to
investigate the function of genes that are strongly associated
with ASD, epilepsy, ID and schizophrenia, or to screen for
the functionality of newly identified risk genes or variants
(Tables 1–4). Importantly, the genetics of these disorders
is complex, likely involving hundreds of risk genes, and is
characterized by considerable pleiotropy, with the same genes
or genomic regions conferring risk to a range of disorders
(State and Šestan, 2012). For clarity, we have categorized
genes in Tables 1–4 by the disorder to which they are
most closely associated in the literature, noting overlapping
associations where applicable, though studies of the biological
functions of these genes are likely to be relevant across
diagnostic boundaries. While zebrafish have also been used to
study other neurodevelopmental disorders, including attention-
deficit/hyperactivity disorder (ADHD; Lange et al., 2012a,b),
Bardet-Biedl syndrome (BBS; Zaghloul et al., 2010; Heon et al.,
2016; Lindstrand et al., 2016), and maple syrup urine disease
(MSUD; Friedrich et al., 2012), we focus on ASD, epilepsy, ID
and schizophrenia, which have been the subject of most zebrafish
studies to date and highlight the advantages of this system for the
functional analysis of risk genes. Moreover, while an increasing
number of studies are investigating complex behaviors in adult
zebrafish, such as social behaviors, it is important to observe that
there are limitations of face validity, such that it is not possible to
recapitulate fully the symptoms of neurodevelopmental disorders
in zebrafish (or any animal model), and this is not a prerequisite
for demonstrating the relevance of the model. Therefore, in
this review article, we focus our discussion on embryonic and
larval phenotypes, which highlight the unique strengths of the
zebrafish system for illuminating conserved roles of risk genes
in basic biological pathways and brain circuits underlying simple
behaviors, which are likely to have translational relevance.

Autism Spectrum Disorder
ASDs are a devastating group of neurodevelopmental disorders
characterized by marked impairments in social behavior and
communication, and by the presence of restricted, repetitive
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behaviors (American Psychiatric Association, 2013). In recent
years, large-scale, whole-exome sequencing studies have led
to a rapidly expanding list of reliable, ‘‘high confidence’’
ASD risk genes, which are beginning to reveal common
biological mechanisms (Willsey et al., 2013; De Rubeis et al.,
2014; Iossifov et al., 2014; Sanders et al., 2015). Despite this
progress, how the disruption of these genes leads to the
alteration of specific cell types and neural pathways during
early stages of brain development remains poorly understood.
A growing number of studies have used zebrafish models to
investigate the function of ‘‘high confidence’’ ASD risk genes
and genes linked to ASD-associated syndromes, such as Fragile
X syndrome, tuberous sclerosis complex, Rett syndrome, and
CHARGE syndrome (Table 1), as well as genes found in the
16p11.2 chromosomal interval (Table 2), where copy number
variants (CNVs) have been associated with ASD, ID and
schizophrenia (Kumar et al., 2008; Marshall et al., 2008; Weiss
et al., 2008; McCarthy et al., 2009).

Recent studies of zebrafish models of ASD risk genes are
beginning to shed light on relevant neurobiological mechanisms.
For example, because excitatory-inhibitory imbalance has been
implicated as a potential mechanism underlying ASD (and
epilepsy; Rubenstein and Merzenich, 2003), some studies have
investigated the extent to which disruption of ASD risk
genes alters inhibitory GABAergic and excitatory glutamatergic
neurons during early brain development using transgenic lines
that label these cell populations. For example, Kozol et al.
(2015) found that knockdown of two of the zebrafish orthologs
of the ASD-associated genes, SHANK3 and SYNGAP1, led to
fewer GABAergic neurons in the midbrain (and hindbrain
for shank3a) and glutamatergic neurons in the hindbrain. In
addition, our group found that zebrafish mutants of both
orthologs of the ASD- and epilepsy-linked gene, CNTNAP2,
display deficits in forebrain GABAergic neurons, but lack
regional deficits in glutamatergic neurons (Hoffman et al.,
2016). Interestingly, GABAergic deficits were also found in
mouse knockouts of Cntnap2 (Penagarikano et al., 2011),
suggesting that this gene affects conserved pathways in fish and
mice.

In addition, given that differences in head and brain size,
particularly macrocephaly, and changes in neuron number
or organization have been described in ASDs (Courchesne
et al., 2011; Stoner et al., 2014), a number of morpholino-
based studies have examined the effects of decreased ASD
risk gene expression on related phenotypes. For example,
reduced expression of most zebrafish orthologs of genes in
the 16p11.2 chromosomal interval led to structural brain
abnormalities at 24 h post fertilization (hpf), including smaller
brain ventricles, altered midbrain-hindbrain boundary, or
a straight midbrain (Blaker-Lee et al., 2012). In addition,
reduced expression of shank3a and syngap1b, led to alterations
in the midbrain-hindbrain boundary, ventricle size, and
microcephaly (Kozol et al., 2015). Further, knockdown of
the ‘‘high confidence’’ ASD risk gene, CHD8, was associated
with macrocephaly and increased cell proliferation in the
brain (Bernier et al., 2014; Sugathan et al., 2014). However,
because morpholinos themselves can cause nonspecific neural

Frontiers in Molecular Neuroscience | www.frontiersin.org 6 August 2018 | Volume 11 | Article 294101

https://www.frontiersin.org/journals/molecular-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/molecular-neuroscience#articles


Sakai et al. Zebrafish Models of Neurodevelopmental Disorders

TA
B

LE
2

|Z
eb

ra
fis

h
m

od
el

s
of

ge
ne

s
in

16
p1

1.
2

in
te

rv
al

.

H
um

an
Z

eb
ra

fi
sh

D
is

o
rd

er
∗

M
et

ho
d
∗
∗

P
he

no
ty

p
e(

s)
R

es
cu

e
R

ef
er

en
ce

G
en

e(
s)

G
en

e(
s)

21
g

en
es

#
22

o
rt

ho
lo

g
s#

A
S

D
M

O
•

B
ra

in
or

ey
e

ab
no

rm
al

iti
es

at
24

hp
f(

20
/2

2
ge

ne
s)

H
um

an
or

B
la

ke
r-

Le
e

et
al

.(
20

12
)

S
C

Z
•

M
us

cl
e

an
d

ta
il

ab
no

rm
al

iti
es

at
24

hp
ff

or
m

os
tg

en
es

ze
br

afi
sh

m
R

N
A

ID
•

D
ec

re
as

ed
sp

on
ta

ne
ou

s
m

ov
em

en
ta

t2
4

hp
f(

7
ge

ne
s)

,t
ou

ch
re

sp
on

se
at

48
hp

f(
14

ge
ne

s)
re

sc
ue

ph
en

ot
yp

es
fo

r
al

l
•

A
bn

or
m

al
ax

on
tr

ac
td

ev
el

op
m

en
ta

t3
6

hp
f(

6
ge

ne
s)

;a
lte

re
d

pi
gm

en
ta

tio
n

(8
ge

ne
s)

ge
ne

s
(e

xc
ep

tm
vp

)

29
g

en
es

##
kc

td
13

A
S

D
O

E
(H

um
an

•
K

C
TD

13
is

on
ly

hu
m

an
m

R
N

A
w

he
re

O
E

ca
us

es
he

ad
si

ze
P

T
H

um
an

m
R

N
A

+
G

ol
zi

o
et

al
.(

20
12

)
S

C
Z

m
R

N
A

in
•

H
u

m
an

K
C

T
D

13
m

R
N

A
O

E
in

ze
b

ra
fi

sh
:

kc
dt

13
M

O
ID

ze
br

afi
sh

);
-

M
ic

ro
ce

ph
al

y;
fe

w
er

ne
ur

on
s

in
te

le
nc

ep
ha

lo
n

(4
.5

dp
f)

re
sc

ue
he

ad
si

ze
M

O
(k

ct
d1

3)
-

In
cr

ea
se

d
ap

op
to

si
s

in
br

ai
n

(3
dp

f)
ph

en
ot

yp
es

-
D

ec
re

as
ed

ce
ll

pr
ol

ife
ra

tio
n

in
br

ai
n

(2
dp

f)
•

kc
td

13
M

O
:

-
M

ac
ro

ce
ph

al
y;

in
cr

ea
se

d
ne

ur
on

s
in

te
le

nc
ep

ha
lo

n
(4

.5
dp

f)
-

In
cr

ea
se

d
ce

ll
pr

ol
ife

ra
tio

n
in

br
ai

n
(2

dp
f)

•
M

ou
se

K
ct

d1
3

kn
oc

kd
ow

n
in

vi
tr

o/
in

vi
vo

:I
nc

re
as

ed
ce

ll
pr

ol
ife

ra
tio

n

K
C

T
D

13
kc

td
13

−
C

R
IS

P
R

•
Z

eb
ra

fi
sh

an
d

m
ou

se
K

C
T

D
13

m
u

ta
n

ts
:

R
ho

A
in

hi
bi

to
r

E
sc

am
illa

et
al

.(
20

17
)

M
ut

an
t

-
N

o
ch

an
ge

s
in

he
ad

si
ze

or
ce

ll
pr

ol
ife

ra
tio

n
(4

.5
dp

f)
re

sc
ue

s
sy

na
pt

ic
-

In
cr

ea
se

d
R

ho
A

in
br

ai
n

(a
du

lt
ze

br
afi

sh
;m

ic
e

≥
P

18
)

tr
an

sm
is

si
on

•
D

ec
re

as
ed

sy
na

pt
ic

tr
an

sm
is

si
on

in
m

ic
e

de
fe

ct
s

in
m

ic
e

D
O

C
2A

d
oc

2a
−

M
O

;
•

G
en

et
ic

in
te

ra
ct

io
ns

be
tw

ee
n

16
pa

irs
of

ge
ne

s
in

16
p1

1.
2

in
te

rv
al

,i
nc

lu
di

ng
fa

m
57

ba
Va

lp
ro

ic
ac

id
an

d
M

cC
am

m
on

et
al

.(
20

17
)

FA
M

57
B

fa
m

57
b

a
TA

LE
N

an
d

do
c2

a,
in

M
O

sc
re

en
fo

r
br

ai
n/

ve
nt

ric
le

m
or

ph
ol

og
y

ph
en

ot
yp

es
at

24
hp

f
ca

rb
am

az
ep

in
e

M
ut

an
t

•
d

oc
2a
+

/
−

fa
m

57
b

a+
/
−

:
re

sc
ue

dr
ug

-
-

H
yp

er
ac

tiv
ity

an
d

se
iz

ur
e

se
ns

iti
vi

ty
(7

dp
f)

in
du

ce
d

se
iz

ur
es

-
In

cr
ea

se
d

bo
dy

le
ng

th
an

d
so

m
e

he
ad

si
ze

di
m

en
si

on
s

(1
2

dp
f)

•
fa

m
57

b
a−

/
−

:
-

H
yp

er
ac

tiv
ity

an
d

se
iz

ur
e

se
ns

iti
vi

ty
(7

dp
f),

le
ss

th
an

in
do

ub
le

he
te

ro
zy

go
te

s
-

S
tr

on
g

in
cr

ea
se

in
bo

dy
le

ng
th

an
d

he
ad

si
ze

(1
2

dp
f)

-
In

cr
ea

se
d

lip
id

co
nt

en
t

K
ey

:h
pf

,h
ou

rs
po

st
fe

rt
iliz

at
io

n;
dp

f,
da

ys
po

st
fe

rt
iliz

at
io

n;
∗
D

is
or

d
er

:A
S

D
,a

ut
is

m
sp

ec
tr

um
di

so
rd

er
;E

P,
Ep

ile
ps

y;
ID

,i
nt

el
le

ct
ua

ld
is

ab
ilit

y;
S

C
Z,

sc
hi

zo
ph

re
ni

a;
∗
∗
M

et
h

od
s

of
R

is
k

G
en

e
D

is
ru

p
ti

on
:C

R
IS

P
R

,c
lu

st
er

ed
re

gu
la

rly
in

te
rs

pa
ce

d
sh

or
t

pa
lin

dr
om

ic
re

pe
at

s;
M

O
,

M
or

ph
ol

in
o;

O
E,

ov
er

ex
pr

es
si

on
;

TA
LE

N
,

tr
an

sc
rip

tio
n

ac
tiv

at
or

-li
ke

ef
fe

ct
or

nu
cl

ea
se

;
# H

u
m

an
G

en
es

in
16

p
11

.2
in

te
rv

al
in

B
la

ke
r-

Le
e

et
al

.
(2

01
2)

:
A

LD
O

A
,

A
S

P
H

D
1,

C
16

or
f5

3,
C

D
IP

T,
C

O
R

O
1A

,
D

O
C

2A
,

FA
M

57
B

,
G

D
P

D
3,

H
IR

IP
3,

IN
O

80
E,

K
C

TD
13

,
K

IF
22

,
M

A
P

K
3,

M
A

Z,
M

V
P,

P
P

P
4C

,
P

R
R

T2
,

S
EZ

6L
2,

TA
O

K
2,

TB
X6

,
YP

EL
3;

Z
eb

ra
fi

sh
O

rt
h

ol
og

s:
al

do
aa

,
as

ph
d1

,
c1

6o
rf5

3,
cd

ip
t,

co
ro

1a
,

do
c2

a,
fa

m
57

ba
,

gd
pd

3,
hi

rip
3,

in
o8

0e
,

kc
td

13
,

ki
f2

2,
m

ap
k3

,
m

az
,

m
vp

,
pp

p4
ca

,
pr

rt
2,

se
z6

l2
,

ta
ok

2a
,

ta
ok

2b
,

tb
x2

4,
yp

el
3;

##
H

u
m

an
G

en
es

in
16

p
11

.2
in

te
rv

al
in

G
ol

zi
o

et
al

.
(2

01
2)

:
A

LD
O

A
,

A
S

P
H

D
1,

B
O

LA
2,

C
16

or
f5

3,
C

16
or

f5
4,

C
16

or
f9

2,
C

D
IP

T,
C

O
R

O
1A

,
D

O
C

2A
,

FA
M

57
B

,
G

D
P

D
3,

H
IR

IP
3,

IN
O

80
E,

G
IY

D
2,

K
C

TD
13

,
M

A
P

K
3,

M
A

Z,
M

V
P,

P
P

P
4C

,
P

R
R

T2
,

Q
P

R
T,

S
EZ

6L
2,

S
P

N
,

S
U

LT
1A

3,
S

U
LT

1A
4,

TA
O

K
2,

TB
X6

,T
M

EM
21

9,
YP

EL
3.

Frontiers in Molecular Neuroscience | www.frontiersin.org 7 August 2018 | Volume 11 | Article 294102

https://www.frontiersin.org/journals/molecular-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/molecular-neuroscience#articles


Sakai et al. Zebrafish Models of Neurodevelopmental Disorders

phenotypes, confirmation of these phenotypes in germline
mutants is a critical next step.

Several studies have also investigated behavioral phenotypes
in zebrafish larvae as a means of elucidating how risk
gene disruption leads to alterations in simple behaviors. For
example, zebrafish mutants of MECP2, the gene responsible for
Rett syndrome, display decreased locomotor activity, reduced
thigmotaxis (wall preference), and longer touch-evoked escape
responses, indicating that loss of mecp2 affects embryonic and
larval behaviors (Pietri et al., 2013). In addition, shank3a and
syngap1b morphant larvae display abnormal escape responses
(Kozol et al., 2015), while shank3b mutant larvae (lacking the
function of the other zebrafish ortholog of SHANK3) exhibit
reduced locomotor activity (Liu et al., 2018). Mutant larvae of
scn1lab, an ortholog of the ASD- and epilepsy-associated genes,
SCN1A and SCN2A, exhibit spontaneous seizures (discussed in
the ‘‘Epilepsy’’ section), as well as nighttime hyperactivity and
increased thigmotaxis (Grone et al., 2017). cntnap2ab mutants
also display nighttime hyperactivity and increased sensitivity to
drug-induced seizures (Hoffman et al., 2016). Further, double
heterozygous mutants of two genes in the 16p11.2 interval, doc2a
and fam57ba, show greater hyperactivity and drug-induced
seizure sensitivity than single homozygous mutants of each gene,
suggesting a genetic interaction (McCammon et al., 2017).

An important advantage of studying larval behavioral
phenotypes is their amenability to high-throughput quantitative
assays and small molecule screens (Prober et al., 2006; Kokel
et al., 2010; Rihel et al., 2010). We capitalized on this approach
to investigate rest-wake activity in zebrafish cntnap2ab mutants,
which display nighttime hyperactivity (Hoffman et al., 2016). By
comparing the behavioral ‘‘fingerprint’’ of cntnap2ab mutants
across a range of rest-wake behavioral parameters with a database
of the responses of wild-type fish to over 550 psychoactive
compounds (Rihel et al., 2010), we predicted compounds that
might rescue the mutant behavioral phenotype and tested
a select group of these compounds to identify suppressors
(Hoffman et al., 2016). Intriguingly, we found that estrogenic
compounds selectively suppress nighttime hyperactivity in
cntnap2ab mutants, revealing a new neurochemical pathway
not previously associated with this gene (Hoffman et al., 2016).
In this way, pharmaco-behavioral profiling of zebrafish ASD
risk gene mutants represent a promising first-pass screening
approach to identify potential pharmacological candidates for
further investigation.

Zebrafish mutants also provide an opportunity to investigate
risk gene function over the course of development from
embryonic stages through adulthood. This is particularly relevant
for ASD, where many risk genes are highly expressed in the
human brain during embryonic and fetal stages (State and Šestan,
2012). Interestingly, two recent studies found that zebrafish
mutants of ASD risk genes display distinct phenotypes at
different developmental stages. First, zebrafish mutants of one
ortholog of DYRK1A, a ‘‘high confidence’’ ASD risk gene located
in the Down syndrome critical region, developed normally
with no gross morphological or locomotor abnormalities during
embryonic and larval stages, yet displayed increased apoptosis
in the brain at 3 weeks old, and microcephaly and behavioral

abnormalities in adulthood (Kim et al., 2017). Second, mutants
of shank3b, the second ortholog of SHANK3, exhibited transient
developmental delay at 24 hpf and fewer CNS neurons at
24–72 hpf, yet this difference diminished over time (Liu et al.,
2018). In contrast, adult shank3b mutants display increased
brain size and behavioral deficits (Liu et al., 2018). These
studies highlight the importance of assessing phenotypes along
a developmental trajectory.

With regard to ASD-associated syndromes, several studies
have investigated signaling pathways in zebrafish models of
Rett syndrome. For example, one study found that mecp2
knockdown led to increased proliferation of neural precursors
and decreased neuronal differentiation, which were reversed
by simultaneously knocking down id1 or her2, implicating
Id1-HER2 signaling as a downstream pathway (Gao et al.,
2015). Another study tracked inflammatory phenotypes inmecp2
mutants over the course of development, finding decreased
expression of the proinflammatory cytokine, tnfa, as early
as 6 hpf, while differences in other cytokines emerge later
(van der Vaart et al., 2017). This study further highlights
the relevance of assessing phenotypes along a developmental
trajectory. Reduction of mecp2 expression was also associated
with abnormalities in both sensory and motor axon outgrowth
(Leong et al., 2015; Nozawa et al., 2017). In addition, (Leong
et al., 2015) found that the axon guidance molecules, sema5b and
robo2, are downregulated inmecp2morphants and mutants, and
that co-expression of these genes in morphants rescues decreased
trigeminal neurite length and delayed touch responses. Of note,
the structural and gene expression phenotypes were more severe
in morphants than mutants, but were not worsened by the
introduction of the morpholino in mutant embryos, suggesting
theremay be compensation (Leong et al., 2015). This underscores
the importance of directly comparing mutant and morphant
phenotypes.

However, zebrafish models of Fragile X syndrome provide a
cautionary tale regarding the off-target effects of morpholinos.
That is, morpholino-induced knockdown of fmr1 was associated
with multiple neurodevelopmental phenotypes, including
alterations in the midbrain-hindbrain boundary, abnormal
neurite branching, and craniofacial abnormalities (Tucker et al.,
2006). However, none of these phenotypes was replicated in
two lines of fmr1 mutants, which lacked Fmr protein expression
by western blot (den Broeder et al., 2009). KCTD13 offers
another example where morphant phenotypes did not replicate
in a mutant. KCTD13 is found in the 16p11.2 chromosomal
interval, where deletions are associated with macrocephaly,
ASD and ID, and duplications with microcephaly, ASD and
schizophrenia. Consistent with this association, Golzio et al.
(2012) found that morpholino-induced kctd13 knockdown
and overexpression of human KCTD13 led to reciprocal
phenotypes of macrocephaly and microcephaly, respectively,
as well as related changes in cell proliferation in the brains
of zebrafish larvae, implicating this gene as a potential driver
of head size phenotypes (Golzio et al., 2012). However, a
recent study did not identify differences in head size or cell
proliferation in zebrafish (or mouse) mutants of KCTD13
(Escamilla et al., 2017). These studies underscore the importance
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of validating morpholino-induced phenotypes in genetic
mutants.

Zebrafish models of ASD-associated syndromes also provide
evidence for the conservation of molecular pathways. For
example, both mutants and morphants of CHD7, the gene
that is associated with most cases of CHARGE syndrome,
display pericardial edema and cardiac abnormalities, consistent
with cardiac abnormalities found in affected individuals (Patten
et al., 2012; Balow et al., 2013; Cloney et al., 2018). In
addition, chd7 mutants (and morphants) display decreased GI
emptying (Cloney et al., 2018), while chd8 morphants showed
reduced GI motility (Bernier et al., 2014), which may be
relevant to GI symptoms in individuals carrying mutations in
these genes. Further, zebrafish models of tuberous sclerosis
complex, including tsc1a morphants and tsc2 mutants, display
increased TORC activity (DiBella et al., 2009; Kim et al.,
2011). Consistent with findings in mammals, rapamycin reverses
elevated TORC1 activity in tsc2 mutants (Kim et al., 2011).
Interestingly, by transplanting cells from tsc2 to wild-type
embryos at the blastula stage, Kim et al. (2011) showed that
increased TORC1 activity is cell autonomous, but that mutant
cells also induce non-cell autonomous effects, leading to the
ectopic localization of wild-type cells in the white matter.
Transplanted mutant cells were also found in abnormal clusters
at the gray-white matter boundary in adult brains, suggestive of
brain hamartomas found in individuals with this disorder (Kim
et al., 2011). Together, these studies highlight the potential of
zebrafish models of ASD risk genes to reveal conserved pathways
with translational relevance to mammals.

Epilepsy
Epilepsy is a common neurological condition characterized by
recurrent seizures (Myers and Mefford, 2015). There has been
considerable progress in risk gene discovery in epilepsy from
studies of Mendelian syndromes in large family pedigrees, as well
as through the identification of de novo single nucleotide variants
and CNVs in affected individuals (Hildebrand et al., 2013).
Here, we highlight studies using zebrafish models of genetic
epilepsy syndromes (Table 3). Zebrafish offer several advantages
in this regard. First, zebrafish larvae display robust, seizure-like
behaviors, including rapid burst-like and circling movements,
following exposure to the GABA-A antagonist, pentylenetetrazol
(PTZ; Baraban et al., 2005), providing a quantifiable readout
of seizure susceptibility. That is, increased sensitivity to
PTZ-induced seizures has been shown in zebrafish models of
epilepsy and ASD (Mei et al., 2013; Hoffman et al., 2016;
McCammon et al., 2017). Second, zebrafish mutants of epilepsy-
associated genes have been shown to exhibit spontaneous
seizures as larvae (Baraban et al., 2013; Grone et al., 2016).
Third, both drug-induced and spontaneous locomotor seizures
are associated with electrographic seizures (Baraban et al., 2005,
2013), and are readily quantifiable in high-throughput assays
(Baraban et al., 2013; Hong et al., 2016; Fuller et al., 2018),
making zebrafish an optimalmodel for drug discovery in epilepsy
syndromes.

In particular, zebrafish mutants of scn1lab have been used as a
model of Dravet syndrome, a severe, intractable form of epilepsy,
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which in most cases is caused by mutations in SCN1A (Baraban
et al., 2013). Homozygous scn1lab mutants display spontaneous
seizures beginning at 4 days post fertilization (dpf), as well as
electrographic seizures in forebrain extracellular field recordings,
which worsen from 3–7 dpf (Baraban et al., 2013). Interestingly,
scn1lab mutants were first identified in a forward genetic screen
of ENU-mutagenized fish due to their inability to sustain
saccadic eye movements during the optokinetic response (OKR;
Schoonheim et al., 2010). These mutants have an abnormal
pigmentation pattern and die by 14 dpf (Schoonheim et al.,
2010). Using these mutants, Baraban et al. (2013) performed
a high-throughput screen of 320 compounds, and identified
clemizole, a U.S. Food and Drug Administration-approved
drug and antihistamine, as a suppressor of both seizure-like
behaviors and electrographic seizures. A subsequent study found
that clemizole has activity at 5-HT2A and 5-HT2B receptors
in a radioligand binding assay, suggesting that a serotonergic
mechanism may be responsible for its anti-epileptic activity
(Griffin et al., 2017). Interestingly, fenfluramine, an inducer
of serotonin (5-hydroxytrypamine, 5-HT) release, which was
found to have some efficacy in improving seizures in individuals
with Dravet syndrome (Ceulemans et al., 2012), also reduced
seizure activity in zebrafish scn1lab mutants and morphants,
suggesting conservation of pharmacological pathways (Dinday
and Baraban, 2015; Zhang et al., 2015; Sourbron et al.,
2016).

Based on the serotonergic mechanism of fenfluramine,
(Sourbron et al., 2016) tested selective 5-HT receptor agonists in
scn1lab mutants and found that 5-HT1D, 5-HT2C, and 5-HT2A
agonists reverse electrographic seizure activity. Also, Griffin
et al. (2017) screened a library of 5-HT-modulating compounds
and found that lorcaserin and trazodone rescued seizure
activity. Through a compassionate use program, lorcaserin was
subsequently prescribed to five patients with Dravet syndrome
with intractable seizures. While these patients experienced
an initial decrease in seizure frequency, seizures returned
to baseline after 3 months in most patients (Griffin et al.,
2017). Clearly, larger, double-blind, placebo-controlled trials are
needed to fully assess the efficacy of this medication. Another
important consideration is how to accurately translate effective
dosages between systems. Nonetheless, these studies highlight
the strengths of zebrafish as a first-pass screening approach for
identifying potential anti-epileptic drug candidates. Indeed, as
more epilepsy-associated genes are identified in human studies,
it is likely that zebrafish models will continue to be instrumental
in this regard. For example, zebrafish mutants of stxbp1b,
an ortholog of STXBP1, which is associated with epileptic
encephalopathy syndromes, display electrographic seizures at
baseline, suggesting this may be a useful model for these
syndromes (Grone et al., 2016).

Screening Risk Genes Associated With
Epilepsy and Intellectual Disability
Zebrafish have also been used a genetic tool for rapidly
screening the functionality of novel genes and rare variants
identified in human genetics studies of epilepsy, ID and
other neurodevelopmental disorders (Table 3, Bassuk et al.,

2008; Gauthier et al., 2010; Suls et al., 2013; Schubert
et al., 2014; Kury et al., 2017; Reijnders et al., 2017; Marin-
Valencia et al., 2018). These studies assess the extent to
which wild-type mRNA or mRNA carrying rare variants
identified in affected individuals reverses morpholino-induced
or CRISPR F0 phenotypes, providing an in vivo readout of
the effect of the mutation on gene function. For example,
morpholino-induced knockdown of STX1B, which was identified
by linkage analysis in large pedigrees as carrying damaging
mutations in individuals with epilepsy, caused electrographic
seizures (Schubert et al., 2014). These seizures were reduced
by CNS-specific expression of human STX1B mRNA, but not
mRNA carrying a patient mutation, demonstrating that this
variant represents a loss-of-function. In addition, morpholino-
induced knockdown of TRAPPC6B, which was identified as
a risk gene by linkage analysis and homozygosity mapping
in individuals with epilepsy, microcephaly, and ASD from
consanguineous families, led to increased baseline neural activity
and sensitivity to PTZ-induced seizures in zebrafish larvae
(Marin-Valencia et al., 2018).

Another approach to assess the functionality of newly
identified human genes or rare variants is overexpression in
zebrafish embryos. For example, overexpression of wild-type
pk1a, the zebrafish ortholog of PK1A, caused a more severe
phenotype than overexpressing mRNA carrying a mutation
identified in individuals with progressive myoclonic epilepsy,
suggesting that the mutation alters the in vivo function of
this gene (Bassuk et al., 2008). In addition, overexpression
of mRNA encoding human RHEB and versions of the gene
containing two missense mutations identified in individuals with
ID and macrocephaly, caused macrocephaly in zebrafish larvae,
while F0 CRISPR mosaics of this gene displayed microcephaly,
suggesting these variants may represent a gain-of-function
(Reijnders et al., 2017).

There are several points to consider in the use of zebrafish
for screening variants identified in human genetics studies.
First, while in vivo rescue or overexpression screens may be
informative regarding the biological function of an identified
variant, the identification of nonspecific neural phenotypes,
particularly morpholino-based phenotypes, are not sufficient
to establish causation of an identified gene or variant and
should not be used a substitute for strong evidence from human
genetic studies. Second, while the presence of a phenotype in
CRISPR F0 mosaics provides additional support for specificity,
it is important to demonstrate in a stable mutant line that the
phenotype results from loss of gene function and not nonspecific
effects in F0-injected embryos. Third, with advances in CRISPR
technology (Auer et al., 2014; Kimura et al., 2014), it will be
increasingly feasible to rapidly generate not only loss-of-function
mutations in a gene of interest, but ‘‘knock-in’’ models of specific
patient mutations, which will be particularly informative given
the pleiotropy of genes associated with neurodevelopmental
disorders.

Schizophrenia
Schizophrenia is a psychotic disorder characterized by
hallucinations, delusions and disorganized thought processes or
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behavior, as well as diminished affect, energy and motivation,
which severely impacts overall functioning (American
Psychiatric Association, 2013). The genetics of schizophrenia
are complex, with over 100 common variants identified by
genome-wide association studies (GWAS; Schizophrenia
Working Group of the Psychiatric Genomics Consortium,
2014), and rare damaging variants and CNVs contributing to
risk according to a polygenic model (Walsh et al., 2008; Purcell
et al., 2014). This genetic architecture complicates the functional
analysis of risk variants in schizophrenia (Fromer et al., 2016).
Here, we discuss several studies that used zebrafish to analyze
the function of schizophrenia-associated genes (Table 4).

While schizophrenia is highly polygenic, DISC1 is an
example of a rare schizophrenia-associated gene, which was
discovered in a large Scottish family where a balanced
chromosomal translocation segregated with schizophrenia and
other psychiatric disorders (schizoaffective disorder, bipolar
disorder, major depressive disorder; Millar et al., 2000). Some
studies have used zebrafish to investigate DISC1 function.
For example, De Rienzo et al. (2011) found that disc1
mutants and morphants display abnormal brain morphology
at early developmental stages, including small brain ventricles.
Full-length human DISC1 mRNA rescued structural brain
phenotypes in morphants, while DISC1 lacking the GSK3β
binding domain did not, suggesting that that loss of Wnt
signaling is responsible for these phenotypes. In a subsequent
study, Singh et al. (2011) showed that two common variants in
DISC1 identified in individuals with schizophrenia and bipolar
disorder that lacked Wnt signaling activity in an in vitro
assay were unable to rescue structural brain phenotypes in
disc1 morphants, further implicating Wnt signaling as an
important pathway downstream of DISC1. Another study found
evidence for altered hypothalamic development as well as stress
responses in zebrafish disc1 mutants (Eachus et al., 2017).
Interestingly, this study found variable phenotypes in two
disc1 mutant lines, such as differences in the time course of
expression changes in markers of hypothalamic precursors,
even though both lines carry mutations that induce early
premature stop codons. This suggests that the specific location
of a mutation may alter the expression of a phenotype
in mutants. Also, while this study used one of the same
mutants as the previous study, no morphological defects
were identified in disc1 homozygous mutants, suggesting that
background variation may alter the expression of phenotypes in
genetic mutants (Eachus et al., 2017). Together, these studies
highlight insights into DISC1 function gained from zebrafish
models.

Additional studies have used zebrafish to rapidly assess the
effect of changes in the expression of schizophrenia candidate
genes implicated in human genetics studies. By comparing
risk variants identified by GWAS with RNA sequencing
data from post-mortem brain samples from individuals with
schizophrenia, Fromer et al. (2016) identified genomic loci
where risk variants might contribute to observed changes
in gene expression. By altering the expression of three
implicated genes in zebrafish in the same direction as
the RNA sequencing result from human brain tissue, this

study found that morpholino-induced knockdown of the
downregulated gene, furina, led to microcephaly and decreased
cell proliferation, which was rescued by introducing human
FURIN mRNA, while overexpression of the upregulated genes,
tsnare and cntn4, led to microcephaly and increased cell
proliferation (Fromer et al., 2016). Another study combining
GWAS and human gene expression data identified MAPK3,
which is found in the 16p11.2 interval, as a schizophrenia
susceptibility gene. Morpholino-induced knockdown of mapk3
caused microcephaly, which was reversed by overexpression of
human KCTD13, another gene in the 16p11.2 interval (Gusev
et al., 2018). As discussed earlier, while nonspecific neural
phenotypes induced bymorpholinos, overexpression, or CRISPR
F0 mosaics, may be suggestive of a functional effect, replication
of these findings in a stable mutant line is necessary for
validation.

FUTURE DIRECTIONS: FUNCTIONAL
IMAGING OF NEURAL CIRCUITS

Most studies of zebrafish models of neurodevelopmental
disorders to date have focused primarily on early morphological
and simple behavioral phenotypes. However, recent advances
in functional imaging are likely to transform these studies
in the near future, allowing for the assessment of circuit-
level phenotypes resulting from risk gene disruption. Progress
in brain imaging is due in large part to the development
of genetically-encoded calcium indicators (GECIs), such as
GCaMP, which provide a rapid readout of activity at the level
of a single neuron (Chen et al., 2013). GCaMP can be expressed
transgenically in a subset of neurons or throughout the brain
of larval zebrafish, which is an ideal system for monitoring
neural activity. By harnessing advances in imaging technologies,
including two-photon and light-sheet microscopy, a number of
studies are beginning to dissect neural circuit mechanisms in
the developing zebrafish brain (Ahrens et al., 2013; Portugues
et al., 2014; Bianco and Engert, 2015; Dunn et al., 2016; Filosa
et al., 2016; Naumann et al., 2016; Thompson et al., 2016).
Together with the transparency and relative simplicity of the
larval zebrafish brain, these technologies are likely to have
considerable translational potential for revealing mechanisms by
which the disruption of risk genes leads to alterations in signaling
networks in the developing vertebrate brain, resulting in simple
behavioral phenotypes.

For example, several studies have used two-photon
microscopy to record brain activity in response to visually-
evoked stimuli. Two-photon microscopy is a point-scanning
method that provides excellent spatial resolution, but is more
limited in its imaging speed (Keller and Ahrens, 2015). To
image brain activity, zebrafish are immobilized in agarose,
while visual stimuli are projected onto a screen to the side
or below the fish while brain activity is recorded. Portugues
et al. (2014) used this approach to investigate the circuitry
underlying the OKR, a reflexive series of eye movements induced
by a rotating drum of alternating light and dark stripes. By
simultaneously recording brain activity, eye and tail movements
during stimulus exposure, this study identified a stereotyped
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pattern of brain activity that occurs during the OKR, and found
that activity in specific brain regions correlates with sensory or
motor signals. In addition, Filosa et al. (2016) used two-photon
imaging to interrogate the neural circuitry governing feeding
behavior. Interestingly, this study showed that hunger not
only makes zebrafish more likely to pursue visual stimuli that
resemble their food, but increases the responsiveness of specific
cells in the optic tectum to these food-like stimuli, providing
a neural correlate for the observed behavior. Other studies
have also used two-photon microscopy to examine behavioral
circuits, such as those involved in prey capture, predator
responses, responses to visual and olfactory stimuli, and the
optomotor response, a reflexive behavior that occurs following
a perceived change in whole-field motion (Dreosti et al., 2014;
Bianco and Engert, 2015; Dunn et al., 2016; Naumann et al.,
2016).

In addition, a growing number of studies have used light-sheet
fluorescence microscopy for functional imaging of the zebrafish
brain. Light-sheet microscopy, which uses a thin ‘‘sheet’’ of light
to illuminate samples, offers superior speed over two-photon
microscopy (Keller and Ahrens, 2015). For example, this method
was used to successfully image over 80% of the neurons in
the larval zebrafish brain in approximately 1.3 s (Ahrens et al.,
2013). Given its speed, light-sheet imaging was used to perform
continuous whole-brain activity recordings at baseline, revealing
functional networks of correlated activity in the zebrafish brain
(Ahrens et al., 2013). Light-sheet imaging has also been used to
study brain activity following exposure to various stimuli. For
example, Thompson et al. (2016) found that distinct clusters
of neurons in the optic tectum respond to visual, auditory
and water flow stimuli, and provide evidence for integration
in the processing of these stimuli. One drawback of light-sheet
imaging is the potential for retinal activation by the light ‘‘sheet’’
itself (Keller and Ahrens, 2015). Two-photon imaging offers
an alternative in this regard, because it provides stimulation
outside of the visible range of zebrafish. Another approach is to
position multiple light sheets to avoid direct retinal stimulation
(Vladimirov et al., 2014). Further, functional imaging in general
generates considerably large datasets, which may be difficult to
analyze, though computational algorithms have been developed
to address this challenge (Keller and Ahrens, 2015).

At the same time, these functional imaging techniques are
technically challenging, not high-throughput, and often require
immobilizing the fish. To address these limitations, Randlett et al.
(2015) developed a technique called mitogen-activated protein
kinase (MAP)-mapping, in which fixed brain tissue is stained for
phosphorylated extracellular-signaling-regulated kinase (pERK),
a marker of active neurons, and then imaged using confocal
microscopy. To identify regions of differential activity, images
are mapped onto a zebrafish brain atlas (Z-Brain). This approach
can be used to obtain a readout of whole-brain activity in
freely moving zebrafish either at baseline or in response to
a stimulus or drug (Randlett et al., 2015). Another method,
developed by Lovett-Barron et al. (2017), called MultiMAP,
combines two-photon imaging of zebrafish during exposure
to visual stimuli with immunostaining for neuronal cell types.
By integrating the functional imaging and immunostained

datasets, this method allows for the identification of the
specific cell types that were active during a behavioral task.
Intriguingly, using this approach, (Lovett-Barron et al., 2017)
identified the neuromodulatory cell types controlling alertness
in zebrafish, and found that manipulation of related cell types
in mice induces similar behavioral effects, providing remarkable
evidence for conservation of behavioral circuits in fish and
mammals (Lovett-Barron et al., 2017). Therefore, findings in
zebrafish models of neurodevelopmental disorders are likely to
have translational relevance for understanding related circuits
in mammals. Together, these technologies offer considerable
promise for illuminating circuit-level mechanisms in zebrafish
models of neurodevelopmental disorders.

CONCLUSION

Zebrafish have critical advantages as a model system
for investigating the function of genes associated with
neurodevelopmental disorders. A growing number of studies
are beginning to capitalize on their unique features to illuminate
neurobiological and pharmacological pathways underlying
ASD, epilepsy, ID and schizophrenia. These studies have
utilized the transparency, tractability and throughout of the
zebrafish model to identify the effects of loss of risk gene
function on the development of specific neuron populations,
molecular pathways, and simple behaviors, all of which can
be leveraged to screen for novel small molecule suppressors.
While many studies to date have used morpholino knockdown
technology, which is prone to off-target effects and should
not be used as a ‘‘standalone tool’’ (Lawson, 2016), it is
important moving forward that the field commit to using
genetic mutants to confirm morpolino-induced phenotypes,
which is particularly essential for neural phenotypes. While the
advent of CRISPR technology has made this goal increasingly
feasible, confirming that CRISPR-generated mutants result in
loss of function is equally critical. Because splice-site mutations
may lead to alternative transcripts that reverse deleterious
mutations (Anderson et al., 2017), targeting CRISPRs within a
conserved exon, removing most of a target gene using multiple
CRISPRs, and demonstrating loss of protein by western blot are
recommended steps.

At the same time, one of the challenges in analyzing the
function of the growing list of risk genes associated with
neurodevelopmental disorders is determining which phenotypes
are likely to be relevant to the pathophysiology of these
disorders (State and Šestan, 2012). Assessing phenotypes over a
developmental time course from embryonic to adult stages will
likely provide key insights into when and where risk genes play
important roles. In addition, investigating the effect of specific
mutations identified in affected individuals by introducing
or ‘‘knocking in’’ these mutations using CRISPR will also
be instrumental in elucidating how particular variants affect
neural development. Moreover, future studies capitalizing on the
strengths of zebrafish as a first-pass, high-throughput screening
approach have the potential to reveal novel pharmacological
candidates for further investigation in these disorders. Given the
evidence for conservation of pharmacological and circuit-level
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pathways in zebrafish and mammals (Rihel et al., 2010; Lovett-
Barron et al., 2017), it is likely that these studies will have
translational relevance, though testing compounds identified
in zebrafish in rodent models will be an important next step
prior to clinical trials in humans. Furthermore, advances in
in vivo calcium imaging in zebrafish represent an exciting new
avenue for investigating the circuit-level roles of risk genes with
translational relevance. Taken together, zebrafish represent a
promising model system for the discovery of novel biological
pathways, pharmacological candidates, and circuit mechanisms
with relevance to neurodevelopmental disorders.
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Autism Spectrum Disorder (ASD) is a neurodevelopmental disorder (NDD) defined by
impairments in social communication and social interactions, accompanied by repetitive
behavior and restricted interests. ASD is characterized by its clinical and etiological
heterogeneity, which makes it difficult to elucidate the neurobiological mechanisms
underlying its pathogenesis. Recently, de novo mutations (DNMs) have been recognized
as strong source of genetic causality. Here, we review different aspects of the DNMs
associated with ASD, including their functional annotation and classification. In addition,
we also focus on the most recent advances in this area, such as the detection of
PZMs (post-zygotic mutations), and we outline the main bioinformatics tools commonly
employed to study these. Some of these approaches available allow DNMs to be
analyzed in the context of gene networks and pathways, helping to shed light on the
biological processes underlying ASD. To end this review, a brief insight into the future
perspectives for genetic studies into ASD will be provided.

Keywords: Autism Spectrum Disorder, genetics, post-zygotic mutations, neurodevelopmental disorders, de novo
mutations, gene networks, pathway analysis, whole exome sequencing

INTRODUCTION

Autism Spectrum Disorder (ASD) includes a range of NDDs that are characterized by deficits
in social communication and interactions, as well as by repetitive behaviors and restrictive
interests, with onset in early development (American Psychiatric Association, 2013). The estimated
prevalence of ASD in the general population stands at approximately 1%, with males being about
three times more likely than females to be affected (Fombonne, 2009; Loomes et al., 2017).

Abbreviations: AAF, alternate allele frequency; ASC, Autism Sequencing Consortium; ASD, Autism Spectrum Disorder; BF,
Bayes factor; CADD, combined annotation dependent depletion; CHD, chromodomain helicase DNA-binding family; CNV,
copy number variation; DAPPLE, Disease Association Protein–Protein Link Evaluator; DAVID, Database for Annotation,
Visualization and Integrated Discovery; DAWN, Detecting Association with Networks; DNM, de novo mutation; DZ,
dizygotic; FDR, false discovery rate; GCNs, gene co-expression networks; GERP, genomic evolutionary rate profiling;
GO, gene ontology; GSEA, gene set enrichment analysis; GWAS, genome-wide association study; ID, intellectual disability;
LoF, loss of function; MAF, minor allele frequency; MAGI, merging affected genes into integrated networks; MPC, Missense
badness, Polyphen-2 and constraint; MsigDB, molecular signatures database; MZ, monozygotic; NDD, neurodevelopmental
disorder; NETBAG, NETwork-based analysis of genomic variation; NGS, next generation sequencing; PCA, principal
component analysis; PGC, Psychiatric Genomic Consortium; pLI, prob of being LoF intolerant; PPI, protein–protein
interaction; PZM, post-zygotic mutation; RR, relative risk; RVIS, Residual Variation Intolerance Score; SFARI, Simons
Foundation Autism Research Initiative; SNP, single nucleotide polymorphism; SNV, single nucleotide variations; SSC, Simons
Simplex Collection; SV, structural variant; TADA, transmission and de novo association test; WES, whole exome sequencing;
WGCNA, weighted correlation network analysis; WGS, whole genome sequencing.
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Twin and family studies have demonstrated a genetic
contribution to ASD etiology. Indeed, early reports showed
a concordance in ASD diagnosis in monozygotic (MZ, 70–
90%) and DZ twins (10%), which indicates a heritability of
about 90% (Steffeneburg, 1989; Bailey et al., 1995). A recent
analysis more precisely estimated heritability to be 83%, which
is slightly lower than that reported in the earlier twin studies
(Sandin et al., 2017). Moreover, the risk of ASD increases for
a child when he has an older affected sibling and as such,
the overall risk of recurrence in siblings has been estimated
to be around 6.9–18% depending on the study design. This
range is also influenced by whether half or full siblings are
considered (Ozonoff et al., 2011; Gronborg et al., 2013; Risch
et al., 2014).

A substantial fraction of this heritability can be explained
by SNPs. The contribution of these common variants to ASD
etiology stands at around 50% when it is additively considered
(Gaugler et al., 2014). However, early GWAS failed to detect
strong signals, in part due to the need for larger samples (Weiss
et al., 2009; Anney et al., 2010; Ma et al., 2010). However,
subsequent large-scale GWAS identified 12 novel ASD loci,
some of them identified as plausible common risk variants in
earlier studies (Autism Spectrum Disorders Working Group of
The Psychiatric Genomics Consortium, 2017). Moreover, the
latest GWAS meta-analysis conducted by the PGC not only
represented an incredible effort to increase sample size up to
tens of thousands of cases and controls but also, it developed
a well-defined quality control and imputation pipeline. For the
first time, the results of this ASD GWAS meta-analysis led to
the identification of 93 significant genome-wide markers, of
which 53 were replicated in independent cohorts (Grove et al.,
2017).

Despite the evidence of a significant role for common variants
in ASD risk, rare genetic variation (MAF<1%) confers higher
individual risk (Table 1). Rare variation can be found as small
insertions and deletions (indels), CNVs or SNVs. Moreover, these
can be inherited from a paternal and/or maternal origin or they
may appear de novo in the affected subject (De Rubeis et al., 2014).
Such DNMs, are mutations identified in the proband that are not
found in the genomes of the biological parents. The importance
of DNMs in ASD genetics is strongly related to the role of natural
selection and allele frequency. Therefore, rare risk alleles tend to
be eliminated by purifying selection while common ones show
signs of positive selection (Polimanti and Gelernter, 2017). These
facts mean that DNMs are most likely to have a strong effect
and thus, the discovery of DNMs allows ASD risk genes to be
identified. Indeed, exons expressed in the brain that are subject
to purifying selection were enriched for DNMs in ASD (Uddin
et al., 2014).

The different types of genetic variants, combined with their
distinct pattern of inheritance or their de novo origin, define the
potential genetic risk for ASD. For example, carrying a de novo
SNV and a specific non-sense mutation in the coding sequence
confers around five times more individual risk than carrying a
transmitted CNV (Stein et al., 2013). Moreover, children with
severe ASD symptoms along with ID are thought to carry
more harmful DNMs (Robinson et al., 2014). Hence, there is

TABLE 1 | Genetic architecture of ASD.

% Liability due to different
classes of mutations

% Of different classes of mutations
harbored by ASD probands

Common variation 49.4%

De novo variation 3% De novo CNVs 4–7%

De novo SNVs 7%

Rare inherited variation 3% Rare variants AR 3%

X-linked variants 2%

Total 55% Total 16–19%

The liability in ASD according to the different classes of mutation and the different
types of mutations harbored by ASD individuals. Data taken from Gaugler et al.
(2014).

now considerable interest in identifying novel DNMs associated
with ASD.

DNMs IN ASD GENETICS

Identification of DNMs
Trio genetic association studies (parents and affected proband)
have been used since 2007 to study DNMs and to find mutations
in the proband that were not present in either parent. By
performing such studies on large cohorts of patients and controls,
and by analyzing the characteristics of the DNMs identified, it
is possible to characterize previously unrecognized ASD genes,
the main goal of such studies. In the first studies to detect CNVs
using high-resolution microarrays, de novo CNVs were more
frequent in cases than controls (Marshall et al., 2008; Pinto et al.,
2010; Sebat et al., 2010; Levy et al., 2011; Sanders et al., 2011)
and also more frequent in simplex rather than multiplex families
(Marshall et al., 2008; Sebat et al., 2010).

However, the large size of CNVs presents a problem when
attempting to detect ASD candidate genes. Indeed, genes
disrupted by CNVs may contribute to a moderate risk of ASD,
whereas SNVs are more likely to directly indicate genes associated
with a high susceptibility for ASD (Sanders et al., 2015).
Accordingly, large scale parallel sequencing and specifically, WES
has been employed widely to unravel the genetic architecture of
ASD (Betancur, 2011; Buxbaum et al., 2013; Sener et al., 2016).
Indeed, the vast majority of DNM studies have employed this
technology, in conjunction with large sample sizes (thousands
of samples) collected from many families (normally trios but
also quads) (Neale et al., 2012; De Rubeis et al., 2014; Merico
et al., 2017). By comparing DNA sequences obtained from
affected children to those from their parents, it is possible to
identify DNMs after filtering out sequencing artifacts (Iossifov
et al., 2014). This variant calling process requires a detailed
bioinformatics pipeline that involves the application of different
thresholds to filter for each quality parameter (Patel et al.,
2014). This process could be performed following different
approaches and accordingly, we can find a more or less restrictive
filtering depending on the study. Nevertheless, each single DNM
will finally be re-sequenced by other methods, usually Sanger
sequencing, to check the accuracy of the findings. We should take
into account, that the average rate of DNMs in a set of whole
exome data is estimated to be in 1.2 × 10−8 per nucleotide per
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generation, and normally ASD studies have observed a similar or
slightly higher rate (Conrad et al., 2011).

After this first step, all DNMs located in the coding sequence
should be functionally annotated according to the impact that
the predicted amino acid substitution has on protein structure
and function. Thus, we can find missense DNMs and non-sense
DNMs, also referred to as LoF mutations, which can in turn be
classified into different subtypes: frameshift, splice site, and stop-
gain. It is important to note that although LoF DNMs might
be the object of greater attention, the importance of missense
DNMs in ASD was recently highlighted. Therefore, such variants
may produce a gain of function effect and genes carrying two
or more mutations of this type were seen to be more likely to
be pathogenic in ASD (Geisheker et al., 2017). Moreover, some
studies have reported an overall enrichment of LoF mutations
in individuals with ASD compared to their healthy relatives. In
particular, heterozygous LoF mutations are present in 20% of
probands but in only 10% of unaffected siblings (O’Roak et al.,
2011; Neale et al., 2012; Sanders et al., 2012; Ronemus et al., 2014).
Missense mutations were also more common in probands than in
their siblings when larger cohorts were considered and therefore,
it was calculated that missense mutations contribute to at least
10% of ASD diagnosis (Iossifov et al., 2014).

Methods to Assess DNM Pathogenicity
Several tools can be used as functional predictors to assess
DNM pathogenicity, such as Polyphen2, SIFT, CADD, and GERP
(Cooper et al., 2005; Kumar et al., 2009; Adzhubei et al., 2010;
Kircher, 2014). Polyphen2 is without doubt the most widely
employed of these, although more recent trends prefer not
to focus on just a single method but rather, to consider a
combination of several in silico scores in order to establish criteria
to classify benign and deleterious mutations (Lim et al., 2017).
Indeed, an integrative approach was described not long ago
that relied on a new functional genome annotation tool called
Eigen. This tool provides a meta-score calculated by unifying
the information obtained through several annotation methods.
Therefore, Eigen provides a better discriminatory ability than
other scores like CADD, SIFT, or GERP. As such, Eigen is
a powerful and novel annotation tool that was successfully
employed on a set of DNMs previously described in ASD and
also in other psychiatric disorders like schizophrenia (Ionita-Laza
et al., 2016). More recently, other measures of the deleterious
nature of mutations have been developed to redefine the impact
of DNMs. One of these novel scores is called, MPC (for Missense
badness, Polyphen-2 and Constraint), which specifically enables
the deleterious effect of missense variants to be predicted.
Through the use of MPC, some missense DNMs were shown
to have a similar effect as LoF mutations in NDDs, information
that will be extremely useful for future ASD sequencing studies
(Samocha et al., 2017).

DNMs: Relative Risk, Tolerant, and
Intolerant Genes
The contribution of DNMs to the risk of ASD depends on the
impact that the amino acid change in the protein coding sequence

has on the protein’s behavior. Thus, the RR entailed by LoF
DNMs will always be larger than that associated with missense
DNMs. Moreover, both variants will provide a greater RR when
they are considered jointly rather than an inherited LoF mutation
alone, for example. This allows a RR to be established for each
gene as a function of the class of DNM (De Rubeis et al., 2014).
Moreover, some studies also consider the location of the DNM
and it was shown that DNMs are more likely to occur in genome
locations with a higher rate of mutation that are located close to
CNVs (Merico et al., 2017). Another factor that must be taken
into account when DNMs are analyzed is that there are genes that
are mutation tolerant and intolerant. This means that over the
entire human genome some genes are more likely to carry more
functional mutations than those expected by chance (tolerant
genes), while other (intolerant) genes carry fewer such mutations.
Thus, DNMs found in tolerant genes are less likely to influence
the development of ASD. A gene-based score RVIS has been
developed that allows genes to be ranked depending on their
tolerance or intolerance score (Petrovski et al., 2013; Ronemus
et al., 2014). Similarly, additional information can be provided
by the pLI score (prob of being LoF intolerant). Therefore, a gene
with pLI > 0.9 is considered to be extremely LoF intolerant,
and this is particularly useful when there is more than one LoF
mutation in an exome and there is a need to prioritize these
causal DNMs (Lek et al., 2016). The interest in this score was
successfully confirmed using genetic data from NDDs, including
ASD cases (Kosmicki et al., 2017).

As we can see, the discovery, identification and prioritization
of DNMs and their respective ASD risk genes, requires a complex
workflow. It involves several technical variables that need to be
considered in order to identify the DNMs that truly influence
ASD risk and to distinguish them from those that are artifacts
or that are not pathogenic DNMs.

BIOINFORMATICS APPROACHES
EMPLOYED IN THE STUDY OF DNMs

The main aim of the bioinformatics approaches discussed in
this section is to start from the genetic information obtained
from the genes carrying DNMs, achieving a global vision of the
related biological processes that underlie the pathogenesis of ASD
(Table 2). As detailed below, these tools aim to integrate different
sources of genetic and biological information in order to identify
the biological processes underlying ASD, as well as new target
genes.

Prioritizing Novel ASD Risk Genes
Carrying DNMs
The analysis of DNMs has without doubt been a step forward in
the discovery of new ASD risk genes. Technically speaking, this
type of analysis can only be performed on DNMs. However, it
was recently shown that a more robust way to interpret WES
data is to analyze DNMs together with inherited variants, given
the high heritability of ASD. Therefore, other genetic variants
can be added, such as SNPs from case-control studies. This
approach came into use when it was seen that the proportion of
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TABLE 2 | Bioinformatics approaches that allow WES data (genes carrying DNMs and other genetic information) to be integrated in different pathway and network
analyses categorized by the input data necessary, the type of algorithm and the output results.

Input information Algorithm Analysis result Publications

TADA DNMs (LoF > missense) +
transmitted + case-control variants

Bayesian gene-based likelihood model Prioritized list of genes depending on the
impact of the mutations

De Rubeis et al., 2014
Sanders et al., 2015
Ji et al., 2016

NETBAG Input data Likelihood approach including a
Bayesian integration of PPIs.

Identifies functional gene networks and
phenotype networks

Gilman et al., 2011
Chang et al., 2014

DAWN List of ASD genes obtained from
WES studies scored by TADA

Algorithm based on the “screen and
clean” principle (hidden Markov random
field + FDR procedure)

Identifies gene networks that are “hot spots”
within a co-expression network (RNA-seq data)

Liu et al., 2014

DAPPLE List of ASD candidate genes Algorithm based on permutations Test PPIs across the genes hit by a functional
DNM. Allow to redefine a huge list of putative
ASD genes in a reduced but most relevant list

Neale et al., 2012
Poultney et al., 2013
Sanders et al., 2015
Parikshak et al., 2013

MAGI List of ASD genes obtained in WES
and case-control studies

Combinatorial optimization algorithm.
Maximizes mutations in modules
considering gene length and where
DNMs are located (LoF and missense)

Creates gene clusters considering the
information from PPIs and co-expression
networks together

Hormozdiari et al., 2015

Moreover, the most relevant publications employing each of them to study ASD genetics are indicated.

ASD cases that could be explained by considering only DNMs
and not other types of genetic variation was really quite small.
Moreover, despite analyzing thousands of ASD cases, only tens
of LoF DNMs were detected. Therefore, this combined analysis,
called TADA, opened the door to expanding the list of ASD
candidate genes and it made the analysis of WES data more
robust (He et al., 2013; Sanders et al., 2015). This approach has
been successfully employed on genetic data from the SSC and the
ASC (De Rubeis et al., 2014). TADA uses a Bayesian gene-based
likelihood model that weights mutations by type and mode of
inheritance in this order: de novo LoF > de novo Mis3 (missense
variants predicted to be damaging by Polyphen) >transmitted
LoF. In this way, each DNM is given a predicted impact on the
protein function. Moreover, the corresponding gene mutation
rate is also considered and these categories can be extended as
required for the desired analysis (He et al., 2013). Furthermore,
it is possible to obtain expanded or restricted gene lists that
consider the load of DNMs by gene and their predicted functional
impact. This is possible because TADA generates a gene-level
BF that quantifies association and its correspondence to a given
FDR or q-value. Thus, TADA allows a prioritized list of genes
to be obtained, which is perfect to use as an input for other
bioinformatics tools that are optimized to create gene-networks
and to unravel new related biological pathways in ASD. Recently,
the TADA algorithm was modified (TADAext) allowing data
from multiple populations to be employed and related NDDs to
be considered together in order to discover common risk genes.
As such, TADA helps define and prioritize a list of genes that can
be employed as an input for additional analyses, as will be seen
below (Nguyen et al., 2017).

Gene-Network and Pathway Analysis
Tools
Once gene lists are established and prioritized, several tools can
be used to generate gene networks and pathways. NETBAG is

one of the latest algorithms that can be successfully employed
to create risk gene networks starting from information about
DNMs (Gilman et al., 2011). This computational approach was
also used in ASD sequencing studies to not only consider data
from DNMs (SNVs and CNVs) but also, to combine this with
information from other associated genomic regions identified
in GWAS studies. As such, NETBAG has been successfully
employed with ASD and schizophrenia data (Gilman et al., 2012).
Specifically, this tool serves to establish gene clusters that identify
distinct biological networks of genes, for example networks that
are related to synapse development and/or neuron motility but
relying on a previously described phenotype network (Gilman
et al., 2011; Pinto et al., 2014). This phenotype network is
based on the integration of various protein-function descriptors
using Bayesian methods. The network edges will be constructed
considering the likelihood that two genes participate in the
same genetic phenotype (for example, ASD and/or ID). Among
a list of provided genes (from each genetic study), NETBAG
will create clusters of strongly connected genes by phenotype
depending on the calculated likelihood (Chang et al., 2014).
Therefore, the most important characteristic of NETBAG is that
the underlying network is created by sets of genes previously
associated with ASD and/or ID phenotypes. Once these clusters
are formed, specific biological processes related to each one can
be added integrating GO, KEGG, and PPI descriptors. Another
algorithm that could be very helpful in the search for ASD
risk genes and that helps to integrate DNM information, is
DAWN. DAWN works in conjunction with a network analysis
tool like TADA that sets a score for each gene, and it can
identify hotspots (clusters of strong scores) among the complex
gene networks that can be established when the whole set
of TADA genes is considered. This algorithm works through
a hidden Markov random field, a generalization of a hidden
Markov model that is widely employed when modeling biological
processes. The particular strength of DAWN is that it relies
on another type of information to build these new clusters,
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integrating transcriptomic data (RNA-seq) analyzed using a
WGCNA approach (a method that will be discussed later in
more detail). Once the large co-expression network is created,
DAWN will help to identify clusters of strongly correlated genes.
Therefore, using the TADA scores obtained previously, DAWN
will identify ASD risk genes, always performing a multiple testing
correction (FDR). DAWN can also incorporate any additional
variables as transcription targets if one or more key transcription
factor were meaningful to the analysis (Liu et al., 2014, 2015).
Therefore, DAWN works in conjunction with TADA but while
it is TADA that prioritizes genes carrying DNMs, DAWN moves
a step forward by creating gene networks and subnetworks that
help to detect novel genes that would not be revealed by using
TADA alone. Indeed, DAWN uses TADA scores for different
sets of previously published genes. For example, GRIN2B is an
ASD risk gene reported to be a carrier of multiple LoF mutations
(TADA q-value 0–0.0025). Consequently, DAWN can establish
ACTN2, DLG1, CBL, AP2A1, and DLG4 among others as novel
GRIN2B connectors, assigning them to a cluster of receptor
signaling and protein scaffolding genes (O’Roak et al., 2011; Liu
et al., 2014).

Another two complementary strategies that are commonly
used in these types of studies are enrichment analysis and PPI
networks. GSEA serves to classify genes that are over-represented
in a large dataset, identifying those groups significantly enriched
or depleted according to another source of external information
(e.g., GO terms, KEGG terms, expression data...) and thereby
helping to identify a variety of biological signatures among
them (Wen et al., 2016). There are several tools and databases
that allow GSEA analysis to be run, and one of the most
commonly employed is that provided by the Broad Institute
website in cooperation with MSigDB. This specific GSEA tool
was successfully run in large gene sets like those reported
by SFARI, an evolving online database which contains up-to-
date information of genes associated to ASD1. In addition,
hypergeometric distribution can be employed to examine how
SFARI genes and other gene sets (GO terms, KEGG) overlap.
This tool has led to the characterization of several pathways
functionally associated in ASD, such as calcium and MAPK
signaling pathways (Wen et al., 2016).

Another GSEA tool is DAVID, an enrichment analysis tool
that was employed in ASD genetic studies (Dennis et al., 2003).
DAVID is commonly used to consider how informative a gene
list obtained from genetic studies is about ASD etiology (Pinto
et al., 2014). Thus, DAVID can discover groups of functional-
related genes by using different libraries (GO terms for example)
to help identify the enrichment of different biological processes
from an extended gene list (Huang et al., 2008, 2009; Sanders
et al., 2015). Therefore, DAVID and GSEA both allow enriched
functionally related gene groups to be discovered and thus, both
tools are applied indistinctly for the purpose of ascribing general
biological functions to genes. However, DAVID also features
some additional options, and it is able to highlight functional
protein domains and motifs in those relevant genes.

1https://gene.sfari.org/

Another GSEA tool is Enrichr, currently one of the most
comprehensive tools that not only includes GO ontologies but
also, new gene libraries like target microRNAs, LINCS libraries
and even epigenetic data from the RoadMap Epigenomics
Project. Moreover, Enrichr also allows the GSEA results to be
exported, whether networks, tables or bar graphs, which can be
sorted by p-values, q-values or z-scores for the different terms
analyzed (Wen et al., 2016).

The use of PPIs is another strategy that helps to integrate
additional information from a different biological hierarchy.
PPI data are crucial to define how proteins interact in cellular
processes and also, to identify others that could be connected in
order to construct an interaction map (McDowall et al., 2009).
There are several PPI databases available like BioGRID, STRING,
MINT, KEGG, DIP, HPRD, or IntACt (Lehne and Schlitt, 2009).
Therefore, ASD genes of interest can be mapped against these
PPI networks, identifying connected genes that have not been
found previously, or highlighting previously weakly associated
ASD genes. Moreover, this approach allows gene sub-networks
to be redefined whose involvement in ASD has previously been
reported (Corominas et al., 2014). The ultimate aim would be to
organize this information to create gene clusters, each of them
characterized by cellular processes (Liu et al., 2014). DAPPLE
is an algorithm frequently employed in genetic studies of ASD
that works using PPI networks. Specifically, DAPPLE searches
significant physical interactions between proteins encoded by
genes associated with ASD. Moreover, it allows additional genes
that have been reported in other independent studies to be
introduced in order to expand the interaction network. The
perfect strategy is to seed together the interaction network
built by DAPPLE with data obtained from several available PPI
databases, expanding the known information with new nodes and
connectors (Rossin et al., 2011; Neale et al., 2012; Poultney et al.,
2013).

Therefore, GSEA allows gene sets to be functionally annotated
with their corresponding biological terms and significantly
enriched or depleted groups of genes to be identified. However,
PPIs represent another source of biological information that can
be integrated into bioinformatics tools like DAPPLE, expanding
the interaction network to include novel genes.

Characterization of the Biological
Processes Underlying ASD Pathogenesis
As explained before, ASD is an extremely heterogeneous disorder,
characterized by its genetic variability. It is expected that around
1,000 genes are involved in ASD, meaning that no one gene
is likely to explain more than 1% of cases (De Rubeis et al.,
2014), which makes functional studies difficult and complicates
the identification of high value targets for treatments. One
possible solution to help resolve this problem is to look for the
common biological mechanisms that could be disrupted in a
recurrent manner through the use of integrative systems biology
approaches, such as those described in the previous section
(Parikshak et al., 2015).

Initial studies focused on testing if the genes disrupted by
truncating mutations converge and are related to previously
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reported ASD genes. Therefore, it is expected that those genes
that interact significantly also share common functions and
are probably involved in the same biological pathways (Uetz
et al., 2000). A PPI network was constructed based on the data
collected by GeneMANIA, considering a list of genes carrying
severe mutations (Mostafavi et al., 2008; O’Roak et al., 2012). As
such, it was demonstrated that 39% of genes carrying truncating
mutations directly interact in this network. This physical
interaction between genes is an indicator of their implication
in some common biological mechanisms that could underlie
ASD pathogenesis. Therefore, those genes carrying truncating
mutations are ranked higher. This study is a perfect example
of how information about DNMs can be used to identify other
potential ASD risk genes using the correct tools and methods,
helping to map those interconnected genes in the corresponding
biological processes. In this case, the main biological network
revealed was a β-catenin/chromatin remodeling protein network
(O’Roak et al., 2012).

We performed a similar analysis but choosing only those ASD
risk genes carrying DNMs from previous studies and collected in
the SFARI database with scores of 1 and 2 (high-confidence and
strong candidate genes) (Supplementary Table 1). Therefore,
54 genes were used as input in GeneMANIA, revealing 20
related genes and 681 links between them (Figure 1). In order
to create this network, GeneMANIA employs data from co-
expression experiments but also physical interactions, shared
protein domains, co-localization and previously reported genetic
interactions. Each gene–gene interaction is given a weight and
assigned to a corresponding network group (Supplementary
Table 2). The biological functions of these genes and their
corresponding FDRs are also obtained (Supplementary Table 3),
revealing them to be: neuron cell–cell adhesion, vocalization
behavior, glutamate receptor signaling pathway, cognition, and
neuron projection.

It should be noted that methodological improvements have
allowed genes affected by DNMs and de novo CNVs to be
included in the same study, leading to the consideration of a
higher percentage of ASD heritability. Therefore, these genes
cluster together in networks enriched in different biological
functions, such as synaptic function, neuronal signaling, channel
activity, and chromatin modification (Gilman et al., 2012;
Pinto et al., 2014). The same pathways were also identified
in subsequent studies, confirming the important role of these
processes in ASD neurobiology (De Rubeis et al., 2014; Krishnan
et al., 2016).

Accordingly, many of the ASD genes characterized are
synaptic genes, including NLGN3 and NLGN4X (Jamain et al.,
2003), SHANK3 (Durand et al., 2006), NRXN1 (Autism Genome
Project Consortium et al., 2007) and CNTNAP2 (Arking et al.,
2008). Therefore, both the development and maintenance
of synaptic contacts appear to be a key factor in ASD
pathogenesis. Conversely, chromatin regulation also influences
neural development and during this process, many events
must be precisely orchestrated and mis-regulation can result
in cognitive deficits. The modification of chromatin structure
controls cell fate and function (van Bokhoven, 2011; Jakovcevski
and Akbarian, 2013; Ronan et al., 2013) and dozens of chromatin

remodelers have been implicated in ASD and other neurological
diseases, including Coffin-Siris syndrome (Tsurusaki et al.,
2012), Nicolaides-Baraitser syndrome (Van Houdt et al., 2012),
CHARGE syndrome (Vissers et al., 2004), or Rubinstein-Taybi
syndrome (Roelfsema et al., 2005). Some of the best studied
genes belongs to the CHD. Indeed, functional studies in
mice have shown that CHD5 and CHD8 haploinsufficiency
causes morphological changes in the brain and behavioral
symptoms consistent with ASD (Pisansky et al., 2017; Platt et al.,
2017).

A representation of this vast list of ASD genes discovered
through the identification of DNMs and those biological
processes in which they are involved (see Supplementary
Table 1) provides a representative gene-list taken from the SFARI
database as well as useful additional information.

Another important group of genes overrepresented in ASD
networks are FMRP targets, which are defined as gene encoding
transcripts that bind to FMRP (Iossifov et al., 2012). This set of
genes includes NLGN1, NRNK1, SHANK 3, PTEN, TSC2, and
NF1, and it overlaps with the list of candidate ASD genes from the
SFARI database (Darnell et al., 2011) that mainly encode synaptic
proteins, transcription factors and chromatin modifiers (Korb
et al., 2017).

CORRELATION OF DNMs WITH GENE
EXPRESSION IN CO-EXPRESSION
NETWORKS

Gene co-expression networks (GCNs) represent another tool
commonly used in ASD studies. The key point of this approach is
to construct gene networks considering not only the genetic data
obtained in WES studies but also, to correlate this information
with expression data from RNA-seq experiments. Thus, these
gene networks allow different temporal-spatial modules to be
identified based on expression at different developmental stages
and in different brain areas (van Dam et al., 2017). As such,
it is possible to achieve the ultimate goal of understanding the
genetic causes of ASD and to relate this to gene regulation at
different levels. Such information permits the role of DNMs
in the pathogenesis of ASD to be better understood, helping
to define the molecular pathways and the neural circuits
that affect cognition and behavior. Therefore, this complex
analytical approach will ultimately construct a spatiotemporal
co-expression network of ASD genes.

The generation of co-expression networks involves the
application of different statistical approaches, although two main
steps are critical and always considered by the corresponding
algorithms: calculation of a measure of co-expression (for
which different mathematical methods could be used); and the
establishment of a significance threshold (Song et al., 2012).

WGCNA constructs networks by using the default Pearson
correlation. WGCNA find modules of expression of highly
correlated genes and it identifies eigengenes for each module. For
this, WGCNA employs a PCA to extract the most representative
part of the expression data. Therefore, each module (given by
an expression value) corresponds to an eigengene and these
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FIGURE 1 | GeneMANIA network created from 54 SFARI genes with scores 1 or 2. The following genes were used as the input: SPAST, CUL3, KMT2C, NCKAP1,
RIMS1, SRCAP, TCF20, TNRC6B, INTS6, BCKDK, MET, MED13, KMT5B, ERBIN, KAT2B, ASH1L, SRSF11, KDM5B, PHF3, IRF2BPL, MED13L, SCN2A, TBR1,
SMARCC2, ILF2, CNTN4, ANK2, KDM6A, DIP2C, GRIA1, GRIP1, SLC6A1, CACNA1D, CACNA2D3, UBN2, SHANK2, WDFY3, NAA15, PTCHD1, GABRB3,
KATNAL2, SCN9A, CTNND2, DSCAM, TBL1XR1, NRXN1, MYT1L, USP7, RELN, NLGN3, CACNA1H, GIGYF2, RANBP17, and GRIN2B. These genes are indicated
with stripes. Moreover, another 20 strongly connected genes that were detected by GeneMANIA are also represented.

eigengenes can be employed to construct the related biological
networks.

In addition to WGCNA, other methods were recently
employed to analyze ASD genomic data, such as MAGI, which
represents a further step-forward in the use of this type of tool
(Table 2). MAGI not only allows expression data (RNA-seq)
to be integrated with genetic information (from missense or
LoF mutations to case-control studies) but also, representative
biological information from PPIs can also be added (Leiserson
et al., 2015). This data integration was successfully employed with
WES data from ASD and ID, facilitating the identification of
two differentiated modules of genes during brain development,
one expressed from 8–14 weeks post-conception, which includes
genes related to the Wnt pathway, and another that contains
genes related to synaptic function and that is more strongly
expressed in postnatal stages (Hormozdiari et al., 2015). The

vast majority of ASD co-expression networks have employed the
data available at BrainSpan2, which includes RNA-seq data from
sixteen targeted cortical and subcortical structures at different
stages of human brain development (prenatal and postnatal
development) (Kang et al., 2011).

Expression in brain tissues has been analyzed in different
studies, integrating this data with that obtained in genetic studies
to identify at which developmental stages and in which brain
areas both sources of information overlap. Post-mortem brain
tissue samples (cases and controls) were analyzed to identify
which ASD genes are altered in specific regions. WGCNA was
applied to these data to integrate the differences in expression
between cases and controls in a systems biology context. Two
network modules were enriched in genes highly correlated with

2http://www.brainspan.org
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ASD: one for genes down-regulated in ASD patients, showing
functional enrichment for some GO terms like synaptic function,
vesicular transport and neuronal projection; the other containing
up-regulated genes with an enrichment of the immune and
inflammatory GO categories. The integration of genetics data
with co-expression modules has shown that the former may
identify potential causes of ASD, while the latter suggests the
biological response (Voineagu et al., 2011). Subsequently, a RNA-
seq study was performed on a larger ASD cohort, demonstrating
similar results. Therefore, altered neural activity and an enhanced
microglial response was proposed in ASD brains, highlighting the
role of the immune system and synapses in ASD (Gupta et al.,
2014). However, the largest cohort of brain samples analyzed to
date identified 24 co-expression modules after WGCNA analysis
with RNA-seq data. Six modules were associated with ASD, three
down-regulated and three up-regulated. Synaptic and neuronal
genes were found among the down-regulated modules, while
glial function and biological pathways related to inflammatory
processes were enriched in the up-regulated modules. Moreover,
one of the 24 modules was enriched in DNMs previously
associated with ID, while another module was enriched for
lncRNAs (Parikshak et al., 2016).

Co-expression networks constructed from publicly available
datasets have revealed how ASD genes are differentially expressed
during early, mid and late fetal development, indicating that
they are directly involved in the development of the prefrontal,
temporal, and cerebellar cortex (Willsey et al., 2013; Chang et al.,
2014; Krishnan et al., 2016). In particular, strongly associated
ASD genes converge in glutamatergic projection neurons located
in layers 5 and 6 of human mid-fetal prefrontal and primary
motor somatosensory cortex (Willsey et al., 2013). A WGCNA
analysis employing an enrichment strategy produced a list
of genes from SFARI that mapped into different expression
modules (Parikshak et al., 2013). This allowed these genes to
be traced to specific neurodevelopmental stages and neuronal
cell types. Therefore, the integration of expression data allows
ASD risk genes carrying DNMs (and/or other genetic variants)
to be correlated with a superior hierarchical level of biological
information, expanding our understanding of ASD pathogenesis.
Through such studies at the circuit level, ASD genes have been
seen to be enriched in glutamatergic neurons in upper cortical
layers. It is worth noting that this result is different from the
findings obtained in the previous study in which ASD genes
converged in layer 5/6 cortical projection neurons. Therefore,
these genes converged in modules associated with biological
functions like early synaptic development and transcriptional
regulation. Interestingly, both modules were enriched in targets
of the FMRP gene, indicating that translational regulation
could be a link between molecular pathways that are co-
expressed during fetal cortical development (Parikshak et al.,
2013). Alternatively, a spatial analysis revealed that the activity
of ASD genes is widely distributed throughout the brain, which
is consistent with the broad spectrum of symptoms associated
with ASD. However, some specific areas were apparently more
strongly linked to ASD, such as the cerebellum, striatum,
amygdala, and thalamus (Chang et al., 2014; Krishnan et al.,
2016).

A recent study using co-expression networks and enrichment
approaches allowed different types of DNMs to be studied
(Shohat et al., 2017). Moreover, different patterns of expression
were described in the brain for genes associated with different
neuropsychiatric disorders. Enrichment analysis of protein
coding genes mapped to those previously described WGCNA
modules (Parikshak et al., 2013) in different brain areas and at
distinct neurodevelopmental stages. In addition to ASD genes,
genes carrying mutations associated with schizophrenia and ID
were also tested. Accordingly, genes carrying LoF DNMs in ASD
and ID were found to be preferentially expressed in the fetal
brain (cortex) and they were related to chromatin organization.
However, genes carrying missense DNMs were associated with
schizophrenia and they were active in the young adult cortex
during adolescence (Parikshak et al., 2013). Therefore, these
approaches appear to be able differentiate distinct biological
pathways that are associated with ASD, schizophrenia and ID
(Shohat et al., 2017).

PATERNAL AGE AND DNMs

A relationship between advanced paternal age and increased ASD
risk has been established in different studies (de Kluiver et al.,
2016; Janecka et al., 2017). Multiple biological mechanisms can
explain this relationship, not only DNMs but also epigenetic
changes associated with aging (Atsem et al., 2016). DNMs are
typically present in the sperm or egg of one parent and they
are then transmitted to the embryo. Thus, these mutations
are present in all cells within the offspring. Interestingly, WES
data enables the paternal or maternal origin of DNMs to be
determined, identifying which parental haplotype carries the
same mutation as that found in the proband. Interestingly, it was
noted that most of DNMs originate in the father (Iossifov et al.,
2012; O’Roak et al., 2012), which may perhaps not be surprising
given the ratio in the number of spermatozoa to eggs produced.
In addition, the number of DNMs is positively correlated with
paternal age and it has been calculated that each additional
year of paternal age at the moment of conception results in
two extra DNMs in the proband. Conversely, the number of
mutations transmitted maternally remains relatively constant
over the years (Kong et al., 2012). The number of cell divisions
that male germ cells continuously suffer could possibly explain
these findings, while female eggs do not actively divide during the
female’s reproductive years (Crow, 2000). Together, these results
are consistent with a hypothesis in which a higher paternal age
entails an increased ASD risk in probands due to the higher rate
of mutations.

Nevertheless, although the biological hypothesis plausibly
explains the relationship between paternal age and ASD risk, it
is unlikely to reveal more than a modest genetic risk fraction
(10–20%; Gratten et al., 2016). Therefore, there are additional
mechanisms to be considered, especially taking into account that
offspring of younger parents are also at risk of some mental
disorders (McGrath et al., 2014). One alternative hypothesis
suggests that delayed fatherhood is correlated with a tendency
toward neuropsychiatric illnesses. Therefore, genetic risk factors
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for psychiatric disorders that are highly heritable may be shared
by older fathers and their offspring (Gratten et al., 2016). Both
hypotheses are not mutually exclusive and they reflect how the
relationship between risk and paternal age is probably due to
a complex interrelated matrix of epidemiological and genetic
factors.

POST-ZYGOTIC MUTATIONS (PZMs)
AND MOSAICISM IN ASD

PZMs are another type of DNMs that are beginning to generate
much interest in ASD genetic studies. PZMs occur during the
mitotic cell divisions that generate the embryo after fertilization
and as a result, a mosaic individual is created in which a variable
number of cells carry the mutation (Figure 2; Biesecker and
Spinner, 2013). As such, the developmental timing and cell
lineages affected will probably determine the severity of the
symptoms in these disorders. PZMs are implicated in several
brain disorders, including epilepsy, cortical malformations, or
RASopathies (Kurek et al., 2012; Lee et al., 2012; Poduri et al.,
2013; Jamuar et al., 2014). Indeed, it was shown that some PZMs
carried by the X-Linked methyl CpG binding protein 2 (MECP2)
gene cause Rett’s Syndrome. Rett’s syndrome is usually lethal
in males and dominant in females but in some cases, mosaic
mutations have been reported that are compatible with male
viability (Pieras et al., 2012).

The detection of PZMs has been a challenge because they are
tissue-specific and ASD brain tissue is almost never available.
In order to solve this problem, sensitive genotyping techniques
are necessary, such as SNP microarrays, NGS and WES studies.
The success of these technologies relies on the ability to analyze
a large number of cells at once, which helps to increase the
probability of detecting mutations in a mosaic state. SNP
arrays can detect mosaics when at least 5% of the cells of an
individual are carrying the mutation (Conlin et al., 2010), while
NGS can also detect mosaic mutations based on the fraction
of unusual alleles calculated through the AAF. NGS provides
deep sequencing coverage that allows for the observation of a
sufficient number of reads with reference and alternate alleles
to accurately calculate AAF. In this context, PZMs have been
reported when the AAF ≤ 40%, shifting from the 50:50 ratio
expected for heterozygous germline mutations. Therefore, the
deep sequencing coverage of panels of candidate genes allow
mutations to be detected that are present in at least 5% of the
reads, meaning that 10% of the cells in the individual carry the
variant (Jamuar et al., 2014). WES is also sensitive enough to
detect PZMs when the AAF is at least 15%, which means that
mutations are present in about 25–30% of the cells (Pagnamenta
et al., 2012; Genovese et al., 2014).

Despite the potential role of PZMs in the etiology of ASD,
the common variant calling pipelines employed in WES lose
this valuable source of information due to the application of
strict filters to avoid artifacts. Reanalysis of the SSC using novel
calling approaches to specifically characterize SNVs that are likely
to be PZMs led to a higher proportion of mosaic SNVs (22%)
than those reported previously (Krupp et al., 2017). Elsewhere,

when WES data was recalled from the same cohort, about 80%
of the PZMs detected had not been published before (Lim
et al., 2017). Indeed, those variants were validated using three
different techniques, proving that PZMs can be better detected
by modifying the current pipelines (Table 3). In addition, these
studies identified PZMs in high-confidence NDD risk genes, such
as SCN2A, CTNNB1, SYNGAP1, and HNRNPU, evidence that at
least a proportion of PZMs predispose to ASD. Moreover, new
candidate genes were significantly enriched in PZMs, such as
KLF16 and MSANTD2 (Figure 2).

Detailed analysis of these variants, especially the truncating
mutations, revealed novel and uncharacterized pathways and
cellular processes that may possibly be involved in ASD
pathogenesis (Lim et al., 2017). Surprisingly, an increased
burden of synonymous PZMs in probands has been reported,
with synonymous mutations enriched in splice sites, indicating
that splicing regulation could contribute to ASD pathogenesis.
Moreover, around 2.3% of ASD simplex cases harbor a
synonymous PZM related to ASD risk. However, missense and
LoF PZMs were also associated with ASD, most of them affecting
genes expressed in the brain and other high confidence ASD
risk genes. Thus, it was estimated that PZMs contribute about
4% to the overall architecture of ASD (Krupp et al., 2017; Lim
et al., 2017). The spatiotemporal distribution of these mutations
has also been reported, pointing to the amygdala as a brain
area of interest that merits further attention in terms of ASD
pathogenesis.

In conclusion, preliminary studies have produced strong
evidence of the importance of considering PZMs in ASD
genetic studies. Therefore, it is necessary to elucidate how PZMs
contribute to ASD (and other NDDs), determining the genetic
risk that could be explained by them. Thus, different analytical
approaches and study designs need to be developed, involving
larger cohorts than those analyzed previously and developing
improved variant detection pipelines for PZMs.

CAVEATS AND FUTURE PERSPECTIVES
IN THE STUDY OF DNMs AND ASD
GENETICS

Despite the important advances made in the study of ASD
genetics over recent years, some caveats still exist regarding
the detection of DNMs, which will hopefully be resolved by
future studies. The study of PZMs carried out by the ASC

TABLE 3 | Results of the two main studies analyzing PZMs in ASD cohorts.

Study Krupp et al., 2017 Lim et al., 2017

Number of families analyzed 2264 5947

% Of PZMs detected applying
new bioinformatics pipelines

22% 9.7%

% Of mutations not previously
published

70.64% 83.3%

Both of them reanalyzed previously published data but applying different
bioinformatics pipelines in order to detect PZMs involved in ASD.
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FIGURE 2 | Post-zygotic mutation (PZMs) are acquired after the zygote forms, as opposed to germline mutations that are inherited from the parents. Therefore,
PZMs are not present in every cell of the organism, which is therefore a mosaic individual. It was recently demonstrated that PZMs contribute significantly to ASD
risk. The most relevant studies focusing on the detection of PZMs are represented along with the genes seen to carry different PZMs.

has helped establish an emergent type of genetic variation that
had been dismissed until now (Lim et al., 2017). Subsequently,
other studies have focused on this interesting and informative
type of DNM (Krupp et al., 2017), although the filtering and
variant calling processes used in these studies are quite different,
highlighting the need for a single, optimized and unified pipeline.
This is without doubt one of the future areas that will benefit
from further research. In relation to this, a proportion of de novo
CNVs are also expected to be postzygotic, yet the repercussion
of this type of post-zygotic structural variation in ASD genetic
architecture has still to be studied in detail. This will require the
implementation of suitable and valid bioinformatics pipelines.
Likewise, huge public repositories should be reanalyzed following
different pipelines in order to detect PZMs that may have been
missed until now, for example the SSC that currently contains
8975 whole genomes. Such efforts will help to highlight new
genetic factors involved in ASD pathogenesis.

Another relevant area of study involves the proportion
of DNMs in children that are parental mosaic mutations,
asymptomatic in the parents yet transmitted to the offspring. The
existence of this biological phenomenon was well documented in
other genetic diseases and in fact, a genetic test to detect parental
mosaicism is included in some routine diagnostic tests (Campbell
et al., 2014; Frederiksen et al., 2015). In terms of ASD genetics,

the overall incidence of parental somatic mosaicism reported to
date is extremely low (6.8% of all DNMs), yet not inexistent
(Dou et al., 2017; Krupp et al., 2017). Therefore, future studies
on the largest possible number of families, employing different
variant detection methods, will be decisive to elucidate the exact
role of parental mosaic DNMs in ASD. The identification of
genes carrying PZMs and the development of a genetic diagnosis
through a simple blood test in parents will also require further
research.

There is another type of genetic variation that will require the
development of new detection methods for indels (De Rubeis
et al., 2014; Brandler et al., 2016). De novo indels were previously
associated with ASD (KMT2E and RIMS1) but the systematic
analysis of disrupting indels will require the development of
robust and more accurate methods (Dong et al., 2014). Therefore,
it was demonstrated that the detection of indels could be
enhanced by using new algorithms that allow the assembly of
DNA sequences to be redefined in order to detect them more
accurately. Indeed, through the analysis of samples from the SSC
it was demonstrated that disrupting de novo indels plays a major
role in ASD genetics (Narzisi et al., 2014).

De novo mutations in non-coding regions have become of
interest in recent years. Previous WES studies were unable
to detect these variants due to the lack of coverage and

Frontiers in Genetics | www.frontiersin.org 10 September 2018 | Volume 9 | Article 406123

https://www.frontiersin.org/journals/genetics/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


fgene-09-00406 September 19, 2018 Time: 19:33 # 11

Alonso-Gonzalez et al. DNMs in Autism: Pathways and Gene-Networks

sequencing depth across non-coding regions (promoter and
regulatory regions). However, there is evidence that ASD genes
harbor hotspots of hypermutability in non-coding regions and
besides, deleterious mutations across them are subjected to
strong negative selection just like the LoF mutations located
in the coding region (Michaelson et al., 2012; Warr et al.,
2015). Studying non-coding regions demonstrated that promoter
regions with in vivo enhancer activity in the central nervous
system are enriched in DNMs (Turner et al., 2017). The
important role of DNMs in NDDs was also demonstrated by
targeted sequencing of some selected types of promoter regions,
showing that around 1–3% of patients with no genetic diagnosis
carry pathogenic DNMs in some of these regions (Short et al.,
2018). Another recent study reported rare SVs located in cis-
regulatory elements of intolerant genes and their inheritance
from parents may contribute to ASD in about 0.77% of cases
(Brandler et al., 2018). Moreover, when the role of de novo
SVs (∼5.1%) was assessed, the importance of these variants for
future studies was evident. Recently, novel analytic pipelines
were developed to integrate DNM information from non-coding
and coding regions to characterize the broad spectrum of ASD
genetic variability, with non-coding de novo indels giving more
significant results than those expected by chance (Werling et al.,
2018).

These data highlight the current need to perform ASD genetic
studies using WGS instead of traditional exome studies. As such,
the effort of the SSC in bringing together almost 8975 whole
genomes for genetic analysis, including fathers, mothers, affected
and unaffected siblings, is noteworthy (Ku et al., 2012; Lelieveld
et al., 2015).

Regarding the integration of DNM information into higher
biological hierarchies using gene and protein networks, it
is also expected that new bioinformatics approaches will
shortly allow the implementation of integrative analysis
frameworks adapted to ASD biology. These integrative analyses
will not only take into account high-throughput data from
gene expression and PPI networks but also epigenetic data,
information on microRNA regulation, splicing events and

even quantitative trait loci when gene information from SNPs
is considered together with DNM data. This huge amount
of biological information will help define a more detailed
and valid map of the neurobiological pathways involved in
ASD.

CONCLUSION

Studies into ASD genetics and specifically, DNMs have come a
long way in the last few years. However, there are still some gaps
to be filled that will require further analysis and the development
of novel bioinformatics approaches to tackle them in sufficient
detail. The ultimate goal will be to obtain the most complete
and detailed biological map of ASD described to date, a map
integrating genetic information with other complementary omics
data, in order to unravel the complex gene networks and cellular
pathways involved in ASD.
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Tuberous sclerosis complex (TSC) is an autosomal dominant neurogenetic disorder

affecting the brain and other vital organs. Neurological symptoms include epilepsy,

intellectual disability, and autism. TSC is caused by a loss-of-function mutation in the

TSC1 or TSC2 gene. These gene products form a protein complex and normally

suppress mammalian target of rapamycin (mTOR) activity. mTOR inhibitors have been

used to treat subependymal glioma (SEGA) that is a brain tumor characteristic of TSC.

However, neuropathology of TSC also involves dysregulated cortical circuit formation

including neuronal migration, axodendritic differentiation, and synapse formation. It is

currently unknown to what extent mTOR signaling inhibitors correct an alteration in

neuronal morphology that have already formed prior to the treatment. Here, we address

the efficacy of rapamycin treatment on neuronal migration and dendrite formation.

Using in utero electroporation, we suppressed Tsc1 expression in a fraction of neuronal

progenitor cells during the fetal period. In embryonic brain slices, we found that more

Tsc1-suppressed cells remainedwithin the periventricular zone, and rapamycin treatment

facilitated neuronal migration. Postnatally, Tsc1-suppressed pyramidal neurons showed

more complex branching of basal dendrites and a higher spine density at postnatal day

(P) 28. Aberrant arborization was normalized by rapamycin administration every other

day between P1 and P13 but not P15 and P27. In contrast, abnormal spine maturation

improved by rapamycin treatment between P15 and P27 but not P1 and P13. Our

results indicate that there are multiple critical windows for correcting different aspects

of structural abnormalities in TSC, and the responses depend on the stage of neuronal

circuit formation. These data warrant a search for an additional therapeutic target to treat

neurological symptoms of TSC.

Keywords: tuberous sclerosis complex, neuronal migration, synapse formation, critical period, rapamycin
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INTRODUCTION

Tuberous sclerosis complex (TSC) is an autosomal dominant
genetic disorder that involves multiple organs including brain,
kidney, lung, and heart (Crino et al., 2006). Neurological
symptoms of TSC include epilepsy, intellectual disabilities, and
autistic behaviors. TSC is caused by loss-of-functionmutations in
either TSC1 or TSC2 (Kandt et al., 1992; European Chromosome
16 Tuberous Sclerosis Consortium, 1993; van Slegtenhorst et al.,
1997). The TSC-1/TSC-2 protein complex (Plank et al., 1998;
van Slegtenhorst et al., 1998) negatively regulates the mammalian
target of rapamycin (mTOR) pathway, which is triggered by
growth factors as well as nutrients and regulates protein
synthesis, autophagy, transcription cell growth, cell proliferation,
cell motility (Hay and Sonenberg, 2004; Sarbassov et al., 2005).

Neuropathological features of TSC include cortical tubers,
subependymal nodules, glioradial fibers, subependymal giant
astrocytoma (SEGA). Cortical tubers are hamartomatous tissues
and are thought to be a migrational defect of neuronal
progenitors (Crino, 2004; Marcotte and Crino, 2006). Neuronal
migration has been studied in mouse models of TSC, such as
two Nestin-promoter driven conditional Tsc1 knockout mice
targeting pyramidal cells, interneurons and glial cells. These
models successfully recapitulated pathological features such as
subependymal nodule-like lesion (Zhou et al., 2011) or cortical
tuber giant cells (Goto et al., 2011).

A recent postmortem study in humans examined non-
tuber cortical areas and identified “dyslamination” characterized
by an altered radial orientation of pyramidal cells, blurring
of laminar boundaries, and disruption of cortical columnar
architecture, isolated balloon cells and heterotopic neurons
inside subcortical white matter (Marcotte et al., 2012). Indeed,
Emx1-Cre x Tsc1loxp/loxp mice, which show Tsc1-deletion in
forebrain pyramidal neurons starting from an early embryonic
age, appear to lose cortical lamination without tubers or
other obvious focal lesions (Magri et al., 2011; Carson et al.,
2012). These findings suggest that TSC brains have diffuse and
more subtle abnormalities outside of tubers than previously
thought. Furthermore, there are also pathological findings
that involve postmitotic neurons or precursor cells at the
microscopic level. Specifically, animalmodels of TSC also showed
abnormal axonal growth (Choi et al., 2008; Nie et al., 2010),
and dendritic spine pruning (Tang et al., 2014). The mTOR
pathway also plays critical roles in synaptic function (Hoeffer
and Klann, 2010; Yoshii and Constantine-Paton, 2010). For
example,Tsc2 heterozygousmutantmice have impaired late long-
term potentiation (L-LTP) and long-term memory (Ehninger
et al., 2008). Tsc1-suppressed neurons have impaired α-amino-3-
hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPAR)
currents (Tavazoie et al., 2005) and long-term depression (LTD)
(Bateup et al., 2011). These microscopic structural changes and
functional alterations underlie neurological disabilities in TSC.

Mutations in TSC genes result in overactivation of mTOR.
Therefore, mTOR suppression by rapamycin or its derivatives
corrects TSC pathophysiology and othermTOR-related disorders
(Lipton and Sahin, 2014). For example, everolimus, a rapamycin
derivative, reduced the size of SEGA and improved seizure

control (Krueger et al., 2010; French et al., 2016). Neuronal circuit
formation is a sequence of distinct developmental processes
which include neurogenesis axonal growth, dendritogenesis, and
synaptogenesis. In the rodent cortex, neurogenesis starts around
E11 and ends around E17 (Takahashi et al., 1996; Caviness et al.,
2009; Greig et al., 2013), and dendritic arborization occur in
the first 2 weeks (Cline, 2001; Wong and Ghosh, 2002). Spine
formation and pruning are maximal during the critical period,
which starts P16 peaks at P28 and decline from P33 (Hensch,
2005). It is likely that the response to rapamycin is maximal while
the abnormalmorphology is formed. However, it remains unclear
whether each of these cellular processes has a sensitive period to
respond to the mTOR inhibitor treatment.

Here, we address the efficacy of rapamycin treatment on
neuronal migration, the formation of dendrites and spines.
Using in utero electroporation, we transferred a DNA construct
encoding Cre recombinase tagged with green fluorescent protein
(Cre-GFP) into E 15.5 neuronal progenitor cells in a Tsc1fl/fl

mouse fetal brain and suppressed the gene expression in a group
of cells that are born around the same time. In embryonic brain
slices, we found that more Tsc1-suppressed cells remained within
the periventricular zone and that rapamycin treatment facilitated
neuronal migration. Postnatally, the lamination pattern of Tsc1-
suppressed neurons was widened and scattered more than WT
cells. Further, Tsc1-suppressed pyramidal neurons showed more
complex branching of basal dendrites, which was normalized
by rapamycin administrations between postnatal day (P) 1 and
P13 but not between P15 and P27. In contrast, abnormal spine
maturation improved with rapamycin between P15 and P27 but
not between P1 and P13. These results suggest that there is a
critical time window during neuronal circuit formation to correct
abnormal neuronal morphology in TSC.

MATERIALS AND METHODS

Animal
This study was carried out in accordance with the principles
of the Basel Declaration and recommendations of MIT, UIC,
and NIH guidelines on the humane care of animals. The
protocol was approved by the MIT- and UIC-IACUC. All animal
manipulations were approved by the MIT- and UIC-IACUC and
were performed in accord with its guidelines. Tsc1loxp/loxp mice
(Jackson Laboratory, #005680) were kept under 12 h light/dark
cycle. Rapamycin was injected every other day (6 mg/kg/dose)
(Meikle et al., 2008).

In utero Electroporation
Timed pregnant mothers were anesthetized with 2–3% isoflurane
and oxygen. Following laparotomy, the uterus was externalized
and the lateral ventricle of E15.5 embryos was injected with 1–2
µg Cre-GFP alone or in combination with 0.1–0.2 µg DiO-YFP.
Using an ECM 830 apparatus (Harvard Apparatus, Holliston
MA), brains were electroporated with five 30V, 50-ms pulses at
intervals of 950ms. After recovery, pregnancies continued, and
pups were delivered normally.
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Organotypic Slice Cultures
Mouse embryos were electroporated at embryonic day 15 (E15),
and acute coronal brain slices (240µm)were prepared at E17 and
E18. Occipital slices were transferred onto slice culture inserts
(Millicell) in cell culture dishes (35 × 10mm; Corning) with
Neurobasal medium (Invitrogen) containing the following: B27
(1%), glutamine (1%), penicillin/streptomycin (1%), horse serum
(5%), and N2 (1%). Slices were used for imaging (1–2 h after
slicing) or for pharmacological treatments (incubated at 37◦C in
5% CO2, for 1 day). A subset of slices was incubated with the
medium containing rapamycin (100µM).

Time-Lapse Imaging
Cre-GFP- andmCherry-positive cells were imaged on an inverted
Nikon microscope (TE 2000-S) with a 20× objective lens
[numerical aperture (NA) 0.45]. mCherry was added to ensure
fluorescent signal detection during serial imaging. During the
time-lapse imaging, slices were kept in an acrylic chamber at 37◦C
in 5% CO2. We captured time-lapse images with a Cool SNAP EZ
camera (Roper Scientific) using NIS-Elements software (Nikon).

ANALYSIS OF NEURONAL MIGRATION
VELOCITY

The neuronal migration velocity was measured using a plugin
for ImageJ (Mouse Tracker, programmed by P. Malatesta, IST
Genova) that allows tracking the cell position over time. Using
the coordinates obtained with ImageJ, the velocity was calculated
with Excel (Microsoft) (de Anda et al., 2010).

Immunohistochemistry and Confocal
Microscopy
Following transcardiac perfusion with 4% paraformaldehyde
in phosphate buffered saline (pH7.4), brains are post-fixed,
trimmed, embedded in 2% low temperature-melt agarose with
PBS and 7% sucrose, and sectioned on a vibratome in the
coronal plane at 50µm for immunohistochemistry and100µm
for Sholl and spine analyses. A cryostat was used for thinner
sections of fetal brains. Sections are permeabilized in PBS/4%
donkey serum/1% Triton X100 at room temperature 10min.
After rinsing in PBS for 15min three times, sections are
reacted overnight with primary antibodies in PBS/4% donkey
serum/0.5%Ttriton X100 at room temp. The following primary
antibodies were used; TSC1 (Cell Signaling Technology, #4906);
phosphorylated S6 (Cell Signaling Technology, #4858); and Brn2
(Cell Signaling Technology, #12137). After rinsing with PBS
(15min, three times), sections were incubated in an Alexa 568-
conjugated secondary antibody overnight at room temp and
finally rinsed in PBS (15min, three times). Images were captured
using a 40 x objective lens under identical settings with a
Nikon PCM 2000 confocal microscope. The visual cortex was
identified on coronal sections using the Paxinos atlas. The Z-
series of optical sections taken at intervals of 0.5µm were
reconstructed using the same setting. ImageJ was used tomeasure
pixel intensity of the immunolabels in the cytosol. The regions
of interest (ROIs) were selected using freehand line tool, then

signals in neclei were subtracted. An example of the cytosol
is selected with a white box in Figure 1C and magnified at
the bottom. Averaged pixel intensity was calculated by dividing
total pixel intensities with the pixel area of cytosol. Similarly,
averaged intensity of Cre-GFP signal was measured. A cell
was considered Cre-GFP positive when its averaged Cre-GFP
intensity in the nucleus was above 100. Immunolabels of TSC1
and phosphorylated S6 were compared between neurons with
and without Cre-GFP.

To measure mTOR activity, immunostaining was performed
using an antibody to phosphorylated serine 240/244 of the S6
ribosomal pro- tein (pS6). Serial Z-stacks were acquired under
the same settings for the ipsilateral and contralateral hemispheres
of coronal sections. Because layer 2/3 cortical neurons project
to the contralateral hemisphere, mRFP+ axons were followed
to measure pS6 levels in cells of the non-electroporated region.
ROIs were generated using an elliptical selection tool, and average
intensi- ties for each ROI were determined. The ROI did not
include the nucleus that had low pS6 staining. For both cell size
and pS6 staining measurement, 3 sections per mouse and 38–111
cells per section were analyzed.

Morphological Analysis
Neurons with a strong signal whose cell body was entirely
contained within the slice were selected for morphological
analyses in the brains of P28 animals. Z-stacks were stitched
together in the XY plane such that the full span of the neurons
projections were included in the composite image. Neurolucida
8 software (MBF Bioscience) was used for quantitative analyses
of neuronal morphology, including Sholl analysis of apical
and basal dendrites, and largest cell body area (Yoshii et al.,
2011). Neurons were blindly traced and analyzed based on
spherical shells concentric with the somal centroid and spaced
at a 5µm interval. The number of intersections and nodes
were counted from the soma to the distal end of dendritic
branches. For spine density, basal dendritic branches within
the interval between 15–40µm and number of spines were
counted to calculate the spine density (number of spines
per µm).

Statistics
For immunohistochemical analysis, Wilcoxon Rank sum test
was used. For neuronal migration and neuronal morphological
analyses, a Student’s t-test was used for comparison of two
groups. One-way ANOVA with post-hoc Tukey tests was used for
comparisons of more than two groups. P < 0.05 were considered
significant and indicated as

∗

in graphs. P < 0.01 and p < 0.001
are indicated as ∗∗ and

∗∗∗

. Numeric data are presented as average
± s.d. in the Results section. Error bars in Figures 1–6 represent
s.e.m. In other figures, sidebars represent the range of data set.

RESULTS

To examine the migration of Tsc1-suppressed neuronal
progenitor cells, we combined a Cre-lox recombination system
and in utero electroporation. Specifically, we used a Tsc1fl/fl

mouse which has exon 17 and 18 flanked with Lox sequences
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FIGURE 1 | Immunohistochemistry of Tsc1 and p-S6. (A,B) In Tsc1fl/fl mouse brains, neurons expressing Cre-GFP (indicated with a dotted circle) shows suppression

of Tsc1 protein as compared with neurons without Cre-GFP. (C,D) Immunohistochemistry of p-S6 protein shows increases in neurons expressing Cre-GFP (labeled

with a dotted circle), indicating overactivation of mTOR signaling. A magnification of the neuron encircled by a white box is shown at the bottom and depicts the

cytosol (a space between two yellow dashed lines), which is defined as ROI to measure immunolabels. In (A,C), scale bars indicate 50µm. In (B,D), ***P < 0.001, and

sidebars show the range of data set.

and electroporated a DNA construct encoding Cre-GFP into
wild-type (WT) or mutant fetuses at embryonic day 15.5 (E
15.5).

We performed Immunohistochemistry in both WT and
mutant brains at P28 and confirmed that Cre-GFP expressing
neurons in the mutant showed suppression of the TSC1
protein (Figures 1A,B) and increased phosphorylation of
ribosomal protein S6 (p-S6) (Figures 1C,D), indicating an
enhanced mTOR signaling as a result of suppressed TSC1
function.

Cortical Lamination Is Disorganized in TSC
Next, we examined the distribution of Cre-GFP positive
neurons. In WT, Cre-GFP positive neurons were localized in
cortical layer 2/3 when the DNA construct was electroporated

in E 15.5. Remarkably, mutant brains showed a scattered
distribution of Cre-GFP positive neurons (Figure 2A) as
compared to normal layer 2/3 distribution in WT (Figure 2B).
A minority of cells remained in deeper layers or the junction
of layer 6 and the white matter (see arrowheads in Figure 2A)
as previously reported (Feliciano et al., 2011). We further
analyzed depth ratio by dividing the distance of each cell
from the cortical surface with the cortical thickness. Tsc-
1-suppressed cells showed significantly deeper distribution
than WT (Figure 2C: p < 0.001, N = 300 cells each
from three WT and five Tsc1fl/fl animals). Some Tsc-1-
suppressed cells were localized in a deeper layer even
though they express Brn2, a marker protein for layer 2/3
cortical neurons (Figure 2A, see cells indicated by arrows
in the Tsc1fl/fl panel). This observation is consistent with

Frontiers in Molecular Neuroscience | www.frontiersin.org 4 November 2018 | Volume 11 | Article 409131

https://www.frontiersin.org/journals/molecular-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/molecular-neuroscience#articles


Cox et al. Critical Period for Rapamycin in TSC

FIGURE 2 | Tsc1-suppressed neurons show a scattered distribution and some cells are mislocalized outside of layer 2/3. (A) In Tsc1fl/fl mouse brains, the distribution

of Cre-GFP (+) neurons is scattered. Arrowheads indicate mislocalized cells and some of them are positive for the layer 2/3 marker Brn2. An example of 10 segments

is shown. (B) In WT brains, the distribution of neurons that were electroporated with Cre-GFP at E15.5 is consistent with layer 2/3. (C) The graph shows averaged

percentage of Cre-GFP (+) cell in 10 segments as shown in (A). Cre-GFP (+) neurons in Tsc1fl/fl mouse brains is more widely distributed than those in WT.

*P < 0.05.**P < 0.01.***P < 0.001. In (A,B), dashed lines indicate the superficial and ventricular surface of the visual cortex. Scale bar, 50µm.

Frontiers in Molecular Neuroscience | www.frontiersin.org 5 November 2018 | Volume 11 | Article 409132

https://www.frontiersin.org/journals/molecular-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/molecular-neuroscience#articles


Cox et al. Critical Period for Rapamycin in TSC

disorganized cortical layer formation that is observed in
other Tsc-1 knockout mouse models and postmortem
brains of patients with TSC (Magri et al., 2011; Carson et al.,
2012).

To further study the neuronal migration defect in the cortex
of TSC, we performed live cell imaging of fetal cortical slices.
We electroporated a DNA construct encoding Cre-GFP into the
Tsc1fl/fl fetal cortices at embryonic day 15.5 (E 15.5). We made
cortical slices at E17.5 and incubated them with medium with
or without 100µM rapamycin for 24 h. Then, we fixed the slices
and imaged them using a confocal microscope (Figures 3A,B).
We divided the cortical plate into 10 segments and quantified
the distribution of migrating neurons (Figure 3C). In WT slices,
Cre-GFP positive neurons migrated to the cortical plate at
E18.5 in vitro (Figures 3A,C). Rapamycin treatment did not
substantially affect migration of WT neurons. In contrast, ∼70%
(see Bin 9 and 10 in Figure 3C) of Tsc1-suppressed neurons
were still localized in the ventricular or intermediate zones
at E18.5 (Figures 3B,C). Importantly, the mispositioning of
neurons at E18.5 can be improved by rapamycin treatment
although fewer Tsc1-suppressed cells migrated to the superficial
region of the cortical plate than WT neurons (see Bin 1 and

3 in Figure 3C). We also performed live imaging of slices
prepared from E17.5 to measure migration velocities. While the
majority of Tsc1-suppressed neurons remained in the ventricular
or intermediate zones, ∼20–30% of Tsc1-suppressed neurons
were migrating. We measured velocity of the migrating neurons
and found that averaged speed was comparable between WT
and Tsc1-suppressed cells (Figure 3D, Videos 1, 2). These results
indicate that Tsc1-suppressed post-mitotic neurons remain in
the ventricular zone/intermediate zone longer than WT neurons
and that rapamycin normalizes the departure timing. However,
once neurons leave the ventricular zone/intermediate zone, they
migrate properly.

Previous studies show that prenatal rapamycin treatment
improves the migrational defect in Tsc-1 and -2 conditional
knockout mouse models (Anderl et al., 2011; Way et al.,
2012). Consequently, we asked whether postnatal administration
of rapamycin corrects disrupted mispositioning of layer 2/3
neurons. We injected rapamycin intraperitoneally every other
day (6mg /kg/dose) starting from P1 till P 27 and examined at
P28. However, this treatment did not correct mispositioning of
Tsc1- suppressed neurons, which remained broadly distributed
(Figure 4). Collectively, these results suggest that the optimal

FIGURE 3 | Rapamycin treatment of the fetal brain slice corrected migration of Tsc1-suppressed neuronal progenitors. (A) Fetal cortical slices that were prepared at

E18.5. An example of 10 segments is shown. Scale bar, 50µm. (B) In Tsc1fl/fl slice, Cre-GFP (+) cells without rapamycin treatment appear to be balloon cells

(arrowheads in the magnified image) and stay within the ventricular zone. (C) In WT slice with or without rapamycin treatment, rapamycin treatment resulted in subtle

distribution changes. In Tsc1fl/fl slice treated with rapamycin (100µM), Cre-GFP (+) cells migrate to the cortical plate and are similar to progenitor cells in WT (except

for Bin 1 and 3). Approximately 70% of Tsc1-suppressed cells without rapamycin treatment is localized in Bin 9 and 10. (D) The velocity of migrating cells is

comparable between Tsc1fl/fl and WT brains. In (C), *P < 0.05. **P < 0.01. ***P < 0.001.
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timing to treat the dyslamination defect in the TSC1 cortex is
prenatal when the majority of newborn neurons are migrating
toward the cortical plate.

Neuronal Morphology of Postnatal
Pyramidal Neurons
We examined the neuronal morphology of WT and Tsc1-
suppressed neurons in the occipital cortex at P28. In agreement
with previous studies, Tsc1-suppressed neurons showed larger
soma size (389.74 ± 70.84 µm2 in Tsc1f /fl and 194.91 ± 45.6
µm2 in WT; p < 0.01 n= 9 from three brains in each genotype).
Using Sholl Analysis, we examined both apical and basal dendrite
of layer 2/3 pyramidal neurons at P28 (10 neurons from three
brains in each condition). In apical dendrites, there were no
significant differences in both numbers of intersections and
nodes between the two genotypes except for one node at 100µm,

where the average number of intersections measured in the
100µm shell is significantly different between the two conditions
(Figure 5A). We were unable to analyze distal segments of apical
(tuft) dendrites, which were often cut off in 100µm sections.
In comparison, the Sholl analysis of basal dendritic branches
indicates that there were more intersections in the dendritic
segments of Tsc1fl/fl neurons than in WT neurons between 15 to
40µm from the somal centroid (Figures 5B,C and Table 1).

Next, we asked whether rapamycin corrects aberrant dendritic
morphology of layer 2/3 pyramidal neurons. We administered
rapamycin intraperitoneally every other day (6mg /kg/dose) in
two different duration: P1 to P13 and P15 to P27. Exuberant
branching of proximal basal dendrites was normalized by
rapamycin treatment between P1 to P13 but not between P15
and P27 (Figure 5C). Finally, we also measured spine density
of proximal basal dendrites (10 cells from three brains in each

FIGURE 4 | Postnatal administration of rapamycin does not correct the aberrant migration pattern of Tsc1-suppressed neurons. (A) Representative images of the

visual cortices collected from a Tsc1fl/fl mouse with postnatal rapamycin treatment and a WT animal. An example of 10 segments is shown. (B) In Tsc1fl/fl animals

that treated with rapamycin postnatally, the distribution of neurons electroporated with Cre-GFP at 15.5 is wider than that in WT cortex. *P < 0.05. **P < 0.01.

***P < 0.001.
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FIGURE 5 | Sholl analysis of electroporated pyramidal neurons. (A) There was no significant difference between Tsc1-suppressed and WT neurons in numbers of

intersections throughout the apical dendrite. (B) WT and Tsc1-suppressed neurons with and without rapamycin treatment. Dashed boxes are magnified in Figure 6A.

Scale bar, 10µm. (C) Basal dendrites of Tsc1-suppressed neuron had higher intersection numbers than WT cells between 15 and 40µm from the soma. In

Tsc1-suppressed neurons, rapamycin treatment between P1 and P13 but not between P 15 and 27 reduced the basal dendrite arborization. ***P < 0.001 Error bars

represent s.e.m.

group), which is defined as the number of dendritic spines per
µm, and found that it was significantly higher in Tsc1-suppressed
neurons thanWT (Figure 6A and Table 1). The increase in spine
density was normalized by rapamycin treatment between P15 to
P27 but not between P1 and P13 (Figures 6A,B).

These results indicate that the rapamycin effect to normalize
abnormal dendritic morphology depends on the timing of
developmental maturation. Specifically, exuberant dendritic
branching responds to rapamycin treatment within the first two

postnatal weeks when dendritic arborization occurs, and aberrant
dendritic spine maturation is treatable between P15-27 when
spine formation and pruning peaks during the critical period in
the visual cortex (Hensch, 2005; Stryker and Stryker, 2012).

DISCUSSION

Neurological symptoms of TSC include epilepsy, developmental
delays, and autistic behavior. Classic neuropathological features
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FIGURE 6 | Spine density of basal dendrites in electroporated pyramidal neurons. (A) Basal dendritic segments that are encircled with dashed boxes in Figure 5B.

The signal density of each image is inverted for an improved visualization. Arrows indicate spines. Scale bar, 5µm. (B) Tsc1-suppressed neurons have a higher spine

density than WT cells at P28. Rapamycin treatment between P15 and P27 reduced spine density in Tsc1-suppressed neurons while neurons treated between P1 and

P13 did not show a change in spine density. *P < 0.05;**P < 0.01.

are cortical tubers with giant cells, subependymal nodules,
subependymal giant cell astrocytoma, and white matter radial
migration lines (Crino et al., 2006). Recent studies also show
structural abnormalities and functional deficits at cellular and
synaptic levels (Tavazoie et al., 2005; Meikle et al., 2007; Choi
et al., 2008; Nie et al., 2010; Goto et al., 2011; Magri et al.,
2011; Zhou et al., 2011; Carson et al., 2012; Tang et al.,
2014). In the present study, we have systematically analyzed
neuronal morphology in TSC and assessed rapamycin effect on
neurogenesis, dendritogenesis, and spinogenesis. Using in utero
electroporation, we suppressed Tsc-1 expression in a fraction
of neuronal progenitor cells. In a mouse brain, neurogenesis
starts around E11 and ends around E17 (Takahashi et al., 1996;
Caviness et al., 2009; Greig et al., 2013). WT neuroblasts born
at E15.5 are properly located in cortical layer 2/3. However, Tsc-
1-suppressed progenitor cells make a delayed departure from
ventricular zone and become scattered postnatally. These Tsc-
1-suppressed cells also express a marker protein for layer 2/3
despite their malpositioning to a deeper layer. Postnatally, Tsc1-
suppressed neurons have more complex dendritic arborization
and a higher spine density than WT. Importantly, each of these
developmental abnormalities that are caused by enhanced mTOR
pathway has a specific window of opportunity to respond to
rapamycin. Namely, dyslamination must be corrected during
neurogenesis, and postnatal rapamycin treatment will not correct
the cortical malformation. Similarly, exuberant branching of
basal dendrites is rectifiable only during the first 2 weeks
postnatally while an increase in spine density responds to

rapamycin treatment thereafter. These results suggest that there
are multiple critical periods to correct morphological defects in
TSC during neuronal circuit formation. Notably, Tsc2-hGFAP
mouse also exhibits time-sensitive responses to rapamycin: in
utreo treatment corrects abnormal neuronal migration that
results from radial glia dysfunction and postnatal rapamycin
administration is necessary to rescue myeliniation defects (Way
et al., 2012).

Migration Defect in TSC
Cortical tubers are demarcated hamartomatous tissues that
contain dysplastic abnormal and large neurons, including balloon
cells. Tubers are thought to be a product of migrational defect.
Perhaps the most significant and disabling feature of patients
with TSC is chronic and progressive seizures. There is an ongoing
controversy concerning how the number or size of cortical tubers
(often referred to as “tuber burden”) is linked to the severity
of neurological disabilities of TSC. There is evidence that a
higher cortical tuber count is associated with lower intelligence
and increased incidence of infantile spasms (Doherty et al.,
2005). Also, EEG discharges highly correlate with tuber locations
in magnetic resonance imaging (MRI), and surgical resection
of tubers often reduces seizure episodes (Koh et al., 2000).
Another study showed an altered expression pattern of glutamate
receptors in human cortical tubers (Talos et al., 2008).

While some of the tubersmay be epileptogenic, it is not known
if this is true of all cortical tubers or dependent on the tuber
size, location or disrupted morphology. In fact, other studies

Frontiers in Molecular Neuroscience | www.frontiersin.org 9 November 2018 | Volume 11 | Article 409136

https://www.frontiersin.org/journals/molecular-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/molecular-neuroscience#articles


Cox et al. Critical Period for Rapamycin in TSC

TABLE 1 | Summary of ANOVA analyses.

Source Degree of

freedom

Sum of

square

Mean

square

F P-value

Figure 5

15µm Between groups 3 218.075 72.692 97.2825 0.0006

Within groups 36 26.9 0.747

Total 39 244.975

20µm Between groups 3 380.675 126.892 122.4692 0.0009

Within groups 36 37.3 1.036

Total 39 417.975

25µm Between groups 3 453.9 151.3 172.3671 0.0015

Within groups 36 31.6 0.878

Total 39 485.5

30µm Between groups 3 486.5 162.167 278 0.0031

Within groups 36 21 0.583

Total 39 507.5

35µm Between groups 3 467.275 155.758 247.0176 0.0026

Within groups 36 22.7 0.631

Total 39 489.975

40µm Between groups 3 413.3 137.767 124.6131 0.0009

Within groups 36 39.8 1.106

Total 39 453.1

FIGURE 6

Between groups 3 9.139 3.046 21.9933 0.0001

Within groups 36 4.986 0.139

Total 39 14.125

have observed no solid correlation between tuber burden and the
degree or kind of the neurological phenotype: severity of seizures,
cognitive disability, or autism (Wong and Khong, 2006). One
issue that complicates the clinical view of TSC is that differences
may exist depending upon components of the tuber burden
(e.g., not only number but also size, location, or morphology
of the tubers) (Marcotte et al., 2012) and the severity or type
of neurological phenotype. Furthermore, several disabilities may
coexist and influence with each other. For example, frequent
seizures can exacerbate cognitive and behavioral functions.
Consequently, TSC can present with a broad spectrum of
symptoms despite apparently comparable “tuber burdens.” The
biological bases for this range remain controversial. In fact, there
is increasing evidence that non-tuberous TSC brain regions can
also have dysregulated synaptic functions and play a critical role
in the generation of abnormal electrical activity and epilepsy.
For example, neuroimaging data indicate that cortical excitability
can originate in regions near but not within cortical tubers in

some TSC patients (Asano et al., 2000, 2004). Further, a recent
postmortem study in humans examined non-tuber cortical areas
and identified “dyslamination” characterized by an altered radial
orientation of pyramidal cells, blurring of laminar boundaries,
and disruption of cortical columnar architecture, isolated balloon
cells and heterotopic neurons inside subcortical white matter
(Marcotte et al., 2012). Taken, together, cortical tubers alone
may not be sufficient to explain neurological symptoms, and
microscopic abnormalities outside a tuber result in impaired
circuit formation.

Two Nestin-promoter driven conditional Tsc1 knockout mice
targeting pyramidal cells, interneurons and glial cells successfully
recapitulated pathological features such as subependymal
nodule-like lesion (Zhou et al., 2011) or cortical tuber giant cells
(Goto et al., 2011). On the other hand, Emx1-Cre x Tsc1loxp/loxp

mice, which show Tsc1-deletion in forebrain pyramidal neurons
starting from an early embryonic age, appear to lose cortical
lamination without tubers or other obvious focal lesions (Magri
et al., 2011; Carson et al., 2012).

Using in utero electroporation and live cell imaging, we
find a scattered distribution of Tsc1-suppressed neurons.
Dyslamination results from the delayed departure of the mutant
progenitors from the ventricular zone and is correctable with
rapamycin treatment during neurogenesis. However, postnatal
administration of rapamycin did not correct malpositioning
of Tsc1-suppressed neurons. Our results indicate that mTOR
inhibitor can correct the cortical lamination defect if it is
given during corticogenesis. While the result suggests cortical
tubers and dyslamination are potentially treatable with a mTOR
inhibitor, the treatment is currently not feasible in a human
embryo due to a concern for teratogenicity.

Dendritic Branching in TSC
mTOR signaling pathway plays a critical role in dendritogenesis.
Inhibition of phosphatidylinositol-4,5-bisphosphate 3-kinase
(PI3K)-Akt pathway, which is upstream of mTOR, reduces
dendritic arborization (Jaworski, 2005). In contrast, phosphatase
and tensin homolog (PTEN) is a negative regulator of the PI3K-
Akt-mTOR pathway by increasing phosphatidyl 3- inositol. Thus,
loss-of-function PTEN mutations cause upregulation of mTOR
and are associated with autism, macrocephaly, and epilepsy
(Butler et al., 2005; Herman et al., 2007; Hoeffer andKlann, 2010).
Hippocampal CA1 pyramidal neurons of the Pten KO mouse
exhibits exuberant arborization (Kwon et al., 2006). Pten-deleted
pyramidal neurons in the layer 2/3 visual cortex of adult mouse
showed an extension of apical dendrite length (Chow et al., 2009).
We have limited Sholl analysis to proximal segments of apical
dendrites since distal segments were often cut off in the 100µm
sections. However, the difference of apical vs. basal dendrites may
also reflect the distinct roles between PTEN and TSC1 proteins.
Aberrant dendritic branching has also been reported in Tsc-1 and
-2 RNA interference model in hippocampal neurons although
they show tortuous but not exuberant dendritic arbors (Tavazoie
et al., 2005). Neurons in different brain regions and ages have
different local connectivity, which is also likely to contribute to
the interpretation. Nevertheless, abnormally elaborate dendritic

Frontiers in Molecular Neuroscience | www.frontiersin.org 10 November 2018 | Volume 11 | Article 409137

https://www.frontiersin.org/journals/molecular-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/molecular-neuroscience#articles


Cox et al. Critical Period for Rapamycin in TSC

arborization occur in response to up-regulation of mTOR
signaling pathway.

Recent evidence suggests that each dendritic arbor process
distinct information. For example, in a pyramidal neuron of the
mouse visual cortex, each dendritic branch is tuned to a different
orientation, and they are summated in the soma (Hausser, 2000;
Jia et al., 2010; Grienberger et al., 2015). Further study is needed
to address whether dendritic integration and sensory processing
are dysregulated in Tsc1-suppressed neurons.

In mice, the final morphology of the dendritic tree is formed
in the first 2 weeks of postnatal development during a period
of maximum afferent innervation and synapse formation (Cline,
2001; Wong and Ghosh, 2002), then the large-scale dendritic
structures become markedly stable (Trachtenberg et al., 2002;
Holtmaat et al., 2006; Lee et al., 2006).We observe that rapamycin
treatment is effective in correcting exuberant branching of
proximal basal dendrites when it is administered between P1 to
P13 but not between P15 and P27 (Figure 5). Our results indicate
that there is a critical period for rapamycin response to normalize
exuberant dendritic branching of Tsc-1-suppressed neurons that
correspond to the first 2 weeks of postnatal life. Collectively,
mTOR pathway is responsible for dendritic arborization in an
early postnatal period before spine maturation occurs.

Dendritic Spine Defect in TSC
In the rodent central visual system, experience-dependent
synapse formation starts after eye-opening at P13, the onset
of patterned vision (Yoshii et al., 2003, 2011; Yoshii and
Constantine-Paton, 2007). Spine formation and pruning are
maximal during the critical period, which starts P16 peaks at
P28 and decline from P33 (Hensch, 2005). We find that Tsc-
1 suppressed neurons in the visual cortex have an increase in
dendric spine density. Our observation is in line with a previous
study showing pruning defect in TSC (Tang et al., 2014). We
also find that the rapamycin effect on aberrant spine formation is
optimal between P15 and P27 when activity-dependent synapse
formation is at its peak.

Important questions that need to be addressed in the future
are whether disorganized lamination and neuronal morphology
also disrupt local and long-range connections, and whether
mTOR inhibitor treatment can correct them. The balance
between excitation and inhibition undergoes complex regulation
within the local cortical circuitry. A recent study in WT mouse
somatosensory cortex using optogenetics and electrophysiology
showed that horizontal projections originating from layer 2/3
pyramidal cells suppress activities of adjacent cortical regions
within the same layer by lateral inhibition while facilitating layer
5 neuron activity (Adesnik and Scanziani, 2010). It is likely that
an excitatory-inhibitory balance in the horizontal and vertical
circuits is altered in TSC. Another critical question is whether

the dyslaminated cortex can still establish normal long-range
connectivity (Normand and Rasband, 2015).

CONCLUSION

Our study suggests that Tsc-1 suppressed cortical neurons show
alterations in cellular organization and differentiation and that
each process has a distinct critical period in which rapamycin
corrects the abnormal cellular process. Clinical studies have
documented encouraging observations that rapamycin derivative
such as everolimus is effective for not only controlling SEGA
growth but also improves the overall outcome of seizure
frequency (Krueger et al., 2010; French et al., 2016). Ideally,
mTOR inhibitor should be started as soon as the diagnosis
is made. However, even if the treatment is initiated shortly
after birth, migration and dendritogenesis defects that have
already occurred may be irreversible, and they may lead to a
secondary effect during circuit formation. For example, proper
lamination is essential for sensory processing (Adesnik et al.,
2012). While rapamycin treatment is effective in correcting
dendritic spine formation, our results suggest that there may
be a limit in compensating for the structural changes preceding
mTOR inhibition. Therefore, further studies are needed to
understand whether there is an additional therapeutic target to
further improve neuronal connectivity.
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Among the monoaminergic modulatory neurotransmitters, norepinephrine is involved in
task orienting, hence noradrenergic genetic variants have been studied in connection
to attentional processes. The role of this catecholamine system is also highlighted by
the selective norepinephrine transporter blocking atomoxetine, which has proved to
be effective in the pharmacological treatment of Attention Deficit Hyperactivity Disorder
(ADHD). In the present genetic association study three single nucleotide polymorphisms
(rs28386840, rs2242446, rs3785143 SNPs) were analyzed from the 5′ region of the
norepinephrine transporter (NET, SLC6A2) gene, which have been linked to ADHD
previously. Attention problems scores of the mother-rated Child Behavior Checklist
(CBCL) were used in separate analyses of 88 preschoolers (59.1% male, 6 years
of age) recruited from the general population and 120 child psychiatry patients with
ADHD diagnosis (85.8% male, age: 9.8 ± 2.9). The NET SNPs showed associations
with attention problems, but the direction was different in the two groups. Regarding
the promoter variant rs28386840, which showed the most consistent association,
the T-allele-carrier patients with ADHD had lower CBCL attention problems scores
compared to patients with AA genotype (p = 0.023), whereas T-allele-carriers in the
community sample had more attention problems (p = 0.042). Based on previous
reports of lower NE levels in ADHD children and the inverted-U shape effect of NE on
cognitive functions, we propose that rs28386840 (-3081) T-allele, which is associated
with lower NET expression (and potentially higher synaptic NE level) would support
attention processes among ADHD patients (similarly as atomoxetine increases NE
levels), whereas it would hinder cortical functions in healthy children.

Keywords: catecholamine, noradrenaline, SLC6A2 (solute carrier family 6, member 2), ADHD (attention deficit
hyperactivity disorder), inattention
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INTRODUCTION

Attention problems have gained increasing interest during the
last decades, as the proportion of children with attention deficit
hyperactivity disorder (ADHD) diagnosis has risen dramatically
in many countries, creating social and scientific debates (Singh,
2008). Although the prevalence of ADHD increased in Western
societies, the worldwide prevalence seems to be a stable 5–6%
among school-age children (Polanczyk et al., 2014). Therefore,
identifying potential risk and protective factors at an early age
could help developing preventive strategies. Since both ADHD
diagnosis and attention problems show substantial genetic
background with complex inheritance, searching for genetic
markers has been in the center of many studies.

Importantly, heritability estimates of complex traits vary
widely from childhood to adulthood (Polderman et al., 2015).
Twin studies of children using parent or teacher ratings reported
high heritability estimates (h2

∼ 0.7) for attention problems
(Chang et al., 2013; Kan et al., 2013). Heritability estimates of
attention problems based on self-report questionnaires decrease
in adolescents and adults (h2

∼ 0.4–0.5, Kan et al., 2013).
Clearly, there is a substantial effect of the assessment method
(see examples listed by Faraone and Larsson, 2018), but the
underlying mechanisms may also change during development
(Chang et al., 2013). Therefore, our aim was to identify genetic
factor(s) of attention problems using a mother-rated symptom
scale in a community sample of children in addition to child
psychiatry patients, because childhood is potentially the most
sensitive period to detect genetic effects.

Attention is often modeled as separate networks responsible
for alerting, orienting, and executive control, which are linked
to specific neurotransmitter systems (Raz and Buhle, 2006). The
norepinephrine (NE) system projects to various cortical areas and
functions mostly in alerting, whereas the mesocortical dopamine
system is involved in executive control. For optimal cognitive
functioning appropriate levels of catecholamine (dopamine and
NE) transmitters were proposed, since both lower and higher
tone of catecholamines in the prefrontal cortex (PFC) can
worsen performance (Berridge and Arnsten, 2013), resulting in
inverted-U shaped modulatory effects of these catecholamines.
Therefore, association studies trying to identify genetic variations
of attention phenotypes have been focusing on catecholamine
neurotransmitter systems.

Recently, we have reported genetic associations of single
nucleotide polymorphisms (SNPs) of the norepinephrine
transporter gene (NET, SLC6A2) with ADHD symptom severity
but not with ADHD diagnosis per se (Angyal et al., 2018). In
the present study, we wanted to test if this genetic association
could be extended to a non-clinical range of inattention.
Therefore, we assessed attention problems with a widely used
parent-rated symptom list in both clinical and community
samples. Polymorphisms from the 5′ end of the NET gene were
chosen based on their previous associations with ADHD-related
phenotypes in different ethnic groups (Joung et al., 2010;
Sengupta et al., 2012; Hohmann et al., 2015). Importantly,
these SNPs were in high (but not complete) linkage in the
previously studied Hungarian population (Angyal et al., 2018).

The promoter SNPs rs28386840 (-3081 A/T) and rs2242446
(-182 T/C) can potentially influence gene expression (Zill et al.,
2002; Kim et al., 2006; Sigurdardottir et al., 2016), hence can
have functional consequences. A recent brain imaging study
showed differential genetic effects of these NET promoter
variants on transporter density in ADHD patients and controls
(Sigurdardottir et al., 2016). Therefore, we conducted the
symptom-scale based genetic association analyses separately in
the clinical and community samples. Case-control analyses were
not run for these samples, because larger ADHD and control
groups were compared earlier in our meta-analysis of NET
polymorphisms (Angyal et al., 2018).

METHODS

The study was designed in compliance with the Helsinki
Declaration and was approved by the Local Scientific and
Research Ethics Committee of the Hungarian Medical Research
Council. The participating parents (mostly mothers) provided
written informed consent. The two samples and genotyping
methods are described in details by Angyal et al. (2018) and
Birkas et al. (2006). Briefly, DNA was isolated from buccal
swabs, and NET SNPs were genotyped with pre-designed
TaqMan probes (rs28386840: C__60398891_10, rs2242446:
C__26354911_10, rs3785143: C__27481932_10) on 7300
Real-Time PCR System (Applied BioSystem). No significant
deviations from Hardy–Weinberg equilibrium (p > 0.1) were
detected for the NET polymorphisms in any of the tested
samples. Both the clinical and the community samples were
ethnically homogeneous Caucasian origin and consisted of
unrelated individuals.

For psychiatric symptom assessment, the Hungarian version
of the Child Behavior Checklist (CBCL, Achenbach, 1991;
Gadoros, 1996) was used, applying the standardized T-scores,
as these were corrected for sex and age differences. CBCL
was available for 88 children in the community sample (mean
age: 6.3 ± 0.2 years, 59.1% boys). In the clinical sample,
120 patients (mean age: 9.8 ± 2.9 years, 85.8% boys) had
ADHD according to DSM-IV criteria (American Psychiatric
Association, 1994) either as primary or secondary diagnosis.
Additional 72 patients diagnosed with tic-disorders (but not
with ADHD) had CBCL data, yielding a total number of
192 patients comprising an extended child psychiatry patient
sample (mean age: 10.0 ± 3.2 years, 81.3% boys). Comorbid
conditions were assessed by the Hungarian child version of
the Mini-International Neuropsychiatric Interview (MINI-Kid;
Balazs et al., 2004). Among the 120 patients with ADHD, 30% had
Tourette syndrome, 14.2% obsessive compulsive disorder, 27.5%
learning disorder, 23.3% conduct disorder, and 14.2% anxiety
disorder. In the extended child psychiatry sample, 62.5% had
ADHD, 35.4% Tourette syndrome, 34.4% obsessive compulsive
disorder, 19.3% learning disorder, 16.1% conduct disorder, and
26.0% anxiety disorder.

Statistical analyses were carried out with SPSS 20 for
Windows, using the T-score of the CBCL attention problems
scale as dependent variable and the genotype categories (main
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allele homozygotes vs. minor allele carriers) as independent
variable, with sex and age covariates in univariate analysis
of variance in the clinical samples. Whereas CBCL T-scores
were compared between the two genotype groups by Mann–
Whitney U-tests in the community sample. Quantitative analyses
of estimated haplotypes were performed with the THESIAS
program (Tregouet and Garelle, 2007).

RESULTS

Genetic associations of the CBCL attention problems were tested
separately in the community and the patient samples (Table 1). In
these quantitative analyses the rare homozygote and heterozygote
genotypes were grouped together to increase statistical power.
In the community sample, the promoter rs28386840 and the
intronic rs3785143 showed nominally significant associations
with attention problems (Z = –2.03, p = 0.042, and Z = –1.97,
p = 0.049, respectively). Among patients with ADHD, the two
promoter SNPs showed associations with attention problems
(rs28386840: F(1,116) = 5.33, p = 0.023, η2 = 0.04, observed
power: 0.63; rs2242446: F(1,116) = 5.53, p = 0.020, η2 = 0.05,
observed power: 0.64). Similar associations (with higher power)
were detected in the extended child psychiatry patient sample:
rs28386840: F(1,188) = 11.55, p = 0.001, η2 = 0.06, observed
power: 0.92; rs2242446: F(1,188) = 9.40, p = 0.002, η2 = 0.05,
observed power: 0.86). Importantly, the means of the genotype
groups showed different patterns in the clinical and community
samples (Table 1).

Using all three NET SNPs in the estimation of haplotype effect,
the rs28386840-T∼rs2242446-C∼rs3785143-T (abbreviated as
T-C-T) haplotype group showed significantly higher attention
problems scores in the community sample than the most frequent
A-T-C haplotype group (p = 0.031, see 95% CI error bars above
the baseline on Figure 1A). For patients with ADHD, there
were no significant differences between the three most frequent
haplotype groups, however, in the extended child psychiatry
patient sample, both the T-C-C and the T-C-T haplotype
groups showed significantly lower attention problems scores
compared to the A-T-C haplotype group (T-C-C: p = 0.031,
T-C-T: p = 0.005), indicating the importance of the promoter
polymorphisms.

DISCUSSION

The involvement of the NE system in attentional networks and
in ADHD pathogenesis has long been demonstrated (Ehlers
and Todd, 2017; Faraone and Larsson, 2018). For example, the
effectiveness of the selective norepinephrine transporter inhibitor
atomoxetine was shown in ADHD treatment (Hazell et al., 2011).
Furthermore, since the availability of dopamine transporter is
low in the cortex, but NET is relatively abundant and can take
up extracellular dopamine (Moron et al., 2002), imbalances in
NET expression may contribute to attention problems due to
suboptimal cortical catecholamine (both dopamine and NE)
functioning.

Previously, we reported genetic associations between NET
gene polymorphisms and inattention symptom severity on the
ADHD-Rating Scale among ADHD patients (intronic rs3785143-
T and promoter rs2242446-C allele carriers showed lower
inattention scores, Angyal et al., 2018). Our haplotype analyses
indicated that a combination of three SNPs from the 5′
end of the NET gene, namely the rs28386840-T∼rs2242446-
C∼rs3785143-T haplotype group had significantly different
score compared to the most common A-T-C haplotype group.
These associations were now supported in the same group of
ADHD patients using different, mother-reported questionnaire
data (Table 1). In order to test genetic markers in the full
range of attention (dis)functioning, we extended our analyses
to healthy preschoolers recruited from the general population.
The associations observed in this community sample, however,
were in the opposite direction (Table 1), indicating that the
underlying mechanisms may be more complex. Since other
quantitative analyses of NET polymorphisms and attention
problem scores reported mostly non-significant differences
among ADHD patients (Joung et al., 2010; Park et al., 2012;
Sengupta et al., 2012) and in a community sample (Hohmann
et al., 2015), it remains to be seen if our genetic findings could
be supported by replication studies.

Based on the inverted-U shape effect of NE (first described
by Gold and van Buskirk, 1978, for more details see Arnsten,
2009), we propose that the NET rs28386840-T∼rs2242446-
C∼rs3785143-T haplotype and/or the functional rs28386840
(−3081) T-allele have differential effects on attentional
performance (Figure 1B). The −3081 T-allele showed reduced
transcriptional efficiency in vitro (Kim et al., 2006), potentially
resulting in relatively higher catecholamine levels in cortical
areas. However, we have to note that an in vivo study using
positron emission tomography to measure subcortical NET
levels in adult ADHD patients and controls showed opposite
effect of the -3081 T-allele in the thalamus of control subjects
(no difference in NET density was observed among ADHD
patients by the NET promoter genotypes, Sigurdardottir et al.,
2016). Unfortunately, cortical areas could not be measured in
this study, leaving the question open if either SNP could affect
NET expression in the cortex.

We acknowledge that attention problems have multiple
components, and genetic variants contributing to cortical
NET expression would represent only a small part in attention
processes. Since genetic factors potentially interact with
each other and with environmental factors, the differential
susceptibility model was tested (for more details on the
model, see Belsky and Pluess, 2009). According to this model,
the NET promoter polymorphism(s) could act as plasticity
allele(s), resulting in opposite effects in positive and negative
environments (reflecting that psychiatry patients have more
stressful life events). In order to test this hypothesis, interaction
analyses were performed in the community sample, where
(mother-reported) stressful life events data was available.
Since no significant interaction of life stress and genotype was
observed, we rejected this model.

In conclusion, our results showed opposite genetic effects
of NET promoter polymorphisms on attentional problems in a
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TABLE 1 | CBCL attention problems scores according to the NET genotypes in the community and clinical samples.

Community sample N = 88 Patients with ADHD N = 120 Child psychiatry patients N = 192

N Mean ± SD N Mean ± SD N Mean ± SD

rs28386840 (−3081 A/T)

AA 40 55.80 ± 6.32 71 72.72 ± 8.38 106 70.61 ± 9.31

AT 39 59.10 ± 8.31 43 69.49 ± 7.78 75 66.16 ± 9.16

TT 9 59.00 ± 7.43 6 67.33 ± 9.61 11 66.0 ± 10.95

AT + TT 48 59.08 ± 8.08 49 69.22 ± 7.94 86 66.14 ± 9.33

p-value 0.042 0.023 0.001

rs2242446 (−182 T/C)

TT 40 56.05 ± 6.75 68 72.74 ± 8.55 100 70.45 ± 9.46

CT 39 58.85 ± 8.05 43 70.19 ± 7.50 77 66.90 ± 9.28

CC 9 59.00 ± 7.43 9 65.67 ± 8.38 15 65.13 ± 9.64

CT + CC 48 58.88 ± 7.86 52 69.40 ± 7.77 92 66.61 ± 9.31

p-value 0.064 0.020 0.002

rs3785143 (intronic C/T)∗

CC 66 56.71 ± 7.02 102 71.65 ± 8.18 158 69.27 ± 9.10

CT 22 60.23 ± 8.30 18 69.28 ± 9.26 34 65.53 ± 11.11

p-value 0.049 0.209 0.030

In the clinical sample 120 patients had ADHD as primary or secondary diagnosis. With further 72 patients diagnosed with tic-disorders (but not with ADHD) an extended
sample of 192 child psychiatry patients was also tested in a separate analysis of variance (with sex and age covariates). ∗At the intronic SNP only 2 children had TT
genotype in the larger patient group (N = 192), who were grouped together with CT heterozygotes. Where three genotype groups were present, the minor allele carrier
group was compared to the main allele homozygote group (shown in bold).

FIGURE 1 | Effect of NET gene variants on attention processes. (A) Difference scores of CBCL attention problems at the NET haplotype groups in the community
and the extended child psychiatry patient samples. Haplotypes are constructed from rs28386840, rs2242446, rs3785143 alleles. The differences in attention
problems scores are presented with 95% CI of the estimated rs28386840-T ∼ rs2242446-C ∼ rs3785143-T haplotype (dark symbols, T-C-T) and T-C-C haplotype
(shaded symbols) compared to the most frequent A-T-C haplotype (open circle), based on THESIAS calculations. (B) Proposed mechanism of the differential genetic
effect of the rs28386840 (-3081) A/T SNP. The T+ group represents both AT and TT genotypes. Groups of child psychiatry patients are indicated in red.

community sample of children compared to patients recruited
at a child psychiatry clinic. The inverted-U shape modulatory
effect can explain the observed contradictions if lower baseline
cortical catecholamine levels are assumed in ADHD patients
(see Figure 1B). According to earlier reports, disturbance of
both dopamine and NE can be hypothesized in the background
of ADHD (Oades, 2002). For example, measures of blood
and urinary NE metabolite 3-methoxy-4-hydroxyphenylglycol
indicated lower NE functioning in ADHD children (Hanna et al.,
1996; Halperin et al., 1997; Llorente et al., 2006), although

comorbid conditions can change the ratio of dopamine/NE
(Halperin et al., 1997; Oades and Müller, 1997). Therefore,
further studies are required to reveal the exact nature of
neurotransmitter imbalances in ADHD in order to draw a more
precise model for our NET genetic findings.

Limitations of our study include the relatively small sample
size, which did not allow testing gene-gene interactions, and the
high comorbidity rates in the clinical sample, thus it cannot be
regarded as a purely ADHD patient sample. In addition, due to
potential rater bias and cultural effects on the attention problems
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scale of the CBCL (Crijnen et al., 1999), our findings should be
replicated in other cultural settings and/or with teacher- or self-
report data. Future studies should also test adult patients and
control subjects to see if this differential noradrenergic genetic
effect is stable over time.
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The human specific cognitive shift starts around the age of 2 years with the onset of

self-awareness, and continues with extraordinary increase in cognitive capacities during

early childhood. Diffuse changes in functional connectivity in children aged 2–6 years

indicate an increase in the capacity of cortical network. Interestingly, structural network

complexity does not increase during this time and, thus, it is likely to be induced by

selective maturation of a specific neuronal subclass. Here, we provide an overview

of a subclass of cortico-cortical neurons, the associative layer IIIC pyramids of the

human prefrontal cortex. Their local axonal collaterals are in control of the prefrontal

cortico-cortical output, while their long projections modulate inter-areal processing. In

this way, layer IIIC pyramids are the major integrative element of cortical processing,

and changes in their connectivity patterns will affect global cortical functioning. Layer IIIC

neurons have a unique pattern of dendritic maturation. In contrast to other classes of

principal neurons, they undergo an additional phase of extensive dendritic growth during

early childhood, and show characteristic molecular changes. Taken together, circuits

associated with layer IIIC neurons have the most protracted period of developmental

plasticity. This unique feature is advanced but also provides a window of opportunity for

pathological events to disrupt normal formation of cognitive circuits involving layer IIIC

neurons. In this manuscript, we discuss how disrupted dendritic and axonal maturation

of layer IIIC neurons may lead into global cortical disconnectivity, affecting development

of complex communication and social abilities. We also propose a model that

developmentally dictated incorporation of layer IIIC neurons into maturing cortico-cortical

circuits between 2 to 6 years will reveal a previous (perinatal) lesion affecting other

classes of principal neurons. This “disclosure” of pre-existing functionally silent lesions

of other neuronal classes induced by development of layer IIIC associative neurons, or
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their direct alteration, could be found in different forms of autism spectrum disorders.

Understanding the gene-environment interaction in shaping cognitive microcircuitries

may be fundamental for developing rehabilitation and prevention strategies in autism

spectrum and other cognitive disorders.

Keywords: cerebral cortex, theory of mind, cortico-cortical neurons, dendritic development, schizophrenia,

excitatory transmission, glutamate

QUANTITATIVE EXPANSION OF THE
CEREBRAL CORTEX AND
MICROCIRCUITRY CHANGES: ROLE IN
THE APPEARANCE OF COMPLEX
HUMAN-SPECIFIC COGNITION

Increase in brain size, particularly an increase in the
number of neuronal columns of the cerebral cortex, is the
prerequisite enabling humans to achieve tremendous mental
capabilities such as self-awareness, consciousness, language,
abstract thinking, cognitive flexibility, mathematical abilities, as
well as representational memory and complex social cognition
(1–6). These abilities are not only species-specific features; the
cognitive state achieved by humans represents a new qualitative
level in mental functioning (7–9). It is correct that some animal
species, in particular apes, are able to achieve a rudimentary
level of some of these mental abilities (10–12). However,
complex neuropsychiatric disorders as autism, schizophrenia or
psychopathy are not present in any other species (13–17), which
sets humans apart regarding cognitive and emotional features
and capacities.

One of themost important human-specific abilities is complex
social cognition, which includes processing, storing, and applying
information about other people and social situations (18).
Social cognition is the base for complex personal competencies,
which are altered in the above mentioned diseases. From a
neurobiological point of view, it is interesting that fundamental
cognitive shift, which sets up human-specific cognitive abilities,
the ability to understand the mental state of oneself or others
(mentalization, i.e., “theory of mind”), appears in the period
of transition from infancy to childhood (19–21). Humans and
great apes (as our closest relatives) share roughly the same
course of psychological development during the first 18 months
of life (22). Around this age in both species, the brain nearly
achieves adult neuronal composition, and even overall size (23–
25). Nevertheless, in humans, intensive and diffuse changes
in functional connectivity continue throughout the rest of
childhood (26–31), while apes do not exhibit further important
progress in cognitive capacities after the second postnatal
year (22).

How did this unmatched shift in mental functioning between
apes and humans appear without a robust quantitative increase
in overall brain structure, i.e., overall increase in complexity of
dendrites, or formation of new pathways and connections on
most of the neurons? It should be noted, that a tremendous
increase in the number of cortical neurons and connections, is
a biological prerequisite to enabling high cognitive functioning

(32–37). But at a certain point further quantitative expansion
is not enough to initiate a more complex functional outcome,
since the present pattern of organization does not allow
proper integration inside numerically expanded circuitries.
To make such an expanding system function properly, new
microcircuitries that provide novel integrative properties are
needed (31, 38–42). As such, the enhanced integration across
cortical areas, along with an increase in network processing
capacities, could come as a result of structural changes inside few
selective microcircuitries (43–48).

It is possible that such changes are focused onto specific
cortical areas. For example, the prefrontal cortex has abundant
connections to most of the remaining cortical areas (49–53).
Therefore, changes in functional properties of prefrontal cortex
output (Figure 1) change the information processing throughout
the whole brain (54). To produce considerable functional changes
to the output, structural changes within the prefrontal cortex
do not need to be “robust,” i.e., they do not need to include
dendritic growth of a wide range of neurons. Even fine changes,
e.g., growth focused on selective neuronal populations that have
rich local connectivity, may cause dramatic changes in functional
properties of the prefrontal cortex. Based on previous work by
our and other research groups, we suggest that deep located large
layer III(C) pyramidal neurons (L3N) of the human prefrontal
cortex could perform such a role.

The L3N have a unique developmental pattern during early
childhood (55, 56) that correlates with the appearance and boost
in the maturation of cognitive abilities, such as self-awareness
and complex social cognition.With a detailed overview ofmature
connectivity patterns, here we present a possible integrative role
of L3N in cortico-cortical network processing. Their selective
alteration in pathological conditions could produce immense
changes in mental capacities, due to the failure of proper
integration (57, 58). Therefore, we suggest that alterations in
mentalization and communication abilities found in the autism
spectrum and social communication disorder are a result of
disrupted development of circuitries established by L3N (59).

MOLECULAR FEATURES AND
CYTOARCHITECTURE OF HUMAN
PREFRONTAL CORTEX: THE ROLE OF
ASSOCIATIVE NEURONS IN INTER-AREAL
AND INTER-COLUMNAR CONNECTIVITY

Evolution of the human brain (Figures 2A,B) is characterized
by a sharp linear increase in the number of cortical neurons
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FIGURE 1 | Schematic representation of two main subdivisions of the

prefrontal cortex and general organization of their afferent and efferent

connections. Dorsolateral prefrontal cortex establishes rich connections with

all neocortical areas, except primary regions, whereas orbitomedial prefrontal

cortex is mainly connected with hippocampus and cortical regions processing

visceral information. Note that dorsolateral and orbitomedial prefrontal cortex

are densely interconnected. Figure is based on Groenewegen and Uylings (49).

DOP, dopamine; NA, noradrenaline; 5HT, serotonin.

(67–69), but also with an exponential increase in the number
of cortico-cortical projecting neurons (50, 67, 68). This leads
to increased thickness of upper cortical layers (Figures 2C–E)
which contain more neurons than lower layers populated
by subcortically projecting neurons (3, 4, 39, 65, 66, 70, 71).
So, the primate neocortex is characterized by a tremendous
increase in the number of columns and changes to their
internal neuronal composition (Figure 2F). Last but
not least is the increase in width inside and between
columns. The increase in width of columns is a result of
increase in dendritic complexity of principal cells (72),
i.e., more “space” between columns is a result of increased
interconnectivity (73).

These changes are present in a majority of cortical areas,
but are most prominent in several prefrontal cortex areas
and related with their important integrative function inside
cortico-cortical network (52, 53, 74, 75). The connectivity
pattern of human prefrontal cortex (Figure 1), particularly its
highly expanded dorso-lateral part, is characterized by massive

reciprocal projections to both, multimodal and unimodal-
parasensory associative areas (44, 76). This allows the prefrontal
cortex to have a major role in regulating synchronous and
coordinated activity between cortical areas. Experimental studies
in monkeys and functional studies in humans have confirmed
that the prefrontal cortex is functionally the highest associative
region of the primate brain (38, 49, 51).

In humans, some areas of the prefrontal cortex show a
specific cytoarchitecture, the magnopyramidality of layer III
(77), i.e., deep located large layer III neurons exceed the
size of large layer V pyramids. When compared to other
populations of cortico-cortical projecting neurons, the L3N
show strong acetylcholinesterase (AChE) (78–80) and SMI32
(antibody against phosphorylated protein H) reactivity (81–
83) as a result of higher metabolic rate and prominent
axonal tree. The density of SMI32/AChE reactive L3N,
as well as their size and intensity of staining, is higher
in human associative areas than in monkeys. In lower
mammals, SMI32/AChE reactivity in deep layer III was not
found (84).

The L3N are a subset of cortico-cortical neurons with
long ipsi- and contra-lateral projections (Figure 2G)
(40, 60, 61, 85). Individual L3N establish projections to
several different areas suggesting a major role in inter-areal
integration that grants them the title “associative” neurons
(86). They are characterized by an astonishing number of
intracortical axonal collaterals (Figure 2H), that extend
around the cell, having dense columnar distribution of
their terminal ramification through layers II and III (62–
64). Thus, L3N are playing the major role in intercolumnar
connectivity within a particular cortical area. In monkeys,
L3N are indeed the key element for processing working
memory and other prefrontal cortex-dependent high cognitive
functions (87–90).

Above mentioned features of connectivity, functional
properties and evolutionary expansion support the idea that L3N
underlie the highly efficient network integration throughout
the human cerebral cortex. We propose that selective structural
and molecular changes of associative L3N in the human
prefrontal cortex around the age of 2 and several upcoming
years (55, 56), change the properties of the whole prefrontal
cortex output, and have a pivotal role in cognitive maturation
characterizing the preschool period. Developmental changes
selectively related to this neuron class may be crucial for the
appearance of cognitive abilities needed for the understanding of
higher levels of inter-personal interaction, and to lay foundation
for a further increase in cognitive capacity observed later
throughout the childhood and adolescence, that ultimately
leads to socio-emotional maturity. Selective alterations of the
L3N were described in neuropathological states characterized
by intense and global changes in the efficiency of the cortical
network (91–96). We propose that selective alterations of
associative L3N have a pivotal role in the “dis-connectivity” of
prefrontal cortex found in autism spectrum disorder (97, 98),
but also in other prefrontal cortex-associated disorders,
like schizophrenia (90, 99, 100). These two disorders share
similarities in cognitive pathology, and are characterized by
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global cortical dysfunction, without concurrent structural
alterations and specific structural pathology identified so far
(16, 17).

UNDERSTANDING THE MENTAL STATES
OF ONESELF OR OTHERS: NEURONAL
DEVELOPMENT OF PREFRONTAL
CORTEX DURING EARLY CHILDHOOD
AND FOCAL DISCONNECTIVITY
IN AUTISM

The capacity to attribute mental states (mentalization) remains
one of the quintessential abilities that makes us human and is
defined as the “theory-of-mind” (ToM) (20, 21, 101, 102). This
ability appears during the second year of life and subsequently
sophisticates through childhood with cognitive spurts at specific
time points (103). Following temporal pattern at which various
levels of ToM have been achieved is important since it
reflects changes inside cortical circuitries which allow shifts in
mental capacities.

Most data marks the infant to child transition as a point
when first ToM abilities appear, i.e., during the second year of
life. Infants around 12–15 months of age display behaviors that
are prerequisites to ToM development (104–106). Nevertheless,
it is difficult to talk about internalization of mental abilities
before 18 months of age (107, 108). By the age of 2, children
are clearly aware that there is a difference between thoughts in
their mind, and things in their surroundings (109). An average
3-year-old knows that the brain has a set of mental functions,
such as dreaming, wanting, thinking, and that different persons
may want, like and feel different things. Further important
cognitive twists occur around the age of 4, when children realize
that thoughts might not be true (110). Also, a 4-year-old can
remember that their own belief has changed which is not the case
with a 3-year-old (111). By the end of early childhood (ages 5 to
6), children realize that people talk and act on the basis how they
think the world is, even when it does not reflect the reality of the
situation. They can keep secrets and understand that sometimes
a person may believe something that is not true, and that what a
person does or says, can be based on a false belief (112, 113).

The cortical areas related to ToM tasks typically activate
the frontal lobe. In particular, neuroimaging studies of ToM
showed activations in the dorsal prefrontal cortex (Brodmann
area 9). However, other frontal regions were also involved in
understanding and controlling oneself, as well as in interaction
of thoughts about oneself and others (112, 114–117). Therefore,
the prefrontal cortex can be considered as a region with a key role
in social cognition, and it is assumed that pathological substrates
in states characterized by disrupted social cognition, such as
psychopathy personality (14) and autism spectrum disorder (59,
118), must be located within.

In autism spectrum disorder (ASD) and related social
(pragmatic) communication disorders, social interactions are
affected (119) due to difficulties in the aptitude for inferring

other people’s states of mind, such as intentions, beliefs, desires
and wishes (120). When a false-belief test is applied to children
with ASD, most of them fail even at the age of 11, in contrast
to typically developed children who pass the test by the age of
4 (121). In a modified (122) and simplified (123) form of the
false belief task, typically developing children show ToM abilities
latest by the age of 2.5, while many of them show it already
at the age of 1.5 years (107, 124). These abilities are lacking in
ASD subjects, showing that deficiency in the ability to reflect
on the contents of one’s own and other’s minds (101, 125) is
a core cognitive feature of ASD. This lack is a consequence of
a disturbed cognitive development at some point during the
period of early childhood (1.5–6 years) (126–128). In search
for neurobiological correlations, it is important to recognize
that cognitive impairment in ASD is specific and different from
learning difficulties of blind or deaf people (129–131).

Neuroimaging data show that dorsolateral and medial
prefrontal cortex in ASD are hyperconnected during the second
year of life (132–137). In parallel with hyperconnectivity,
many of ASD individuals undergo brain overgrowth that is
particularly pronounced in the frontal lobes (138–141). The
hyperconnectivity later on changes to hypoconnectivity (142–
144). Therefore, it is still debated if ASD should be considered as a
disorder characterized by hyper- or hypoconnectivity (145, 146).

Nevertheless, the concept of hypo- or hyperconnectivity
seems to be oversimplified. Neuroimaging data are in line
with the view that ASD symptomatology is the result of
disconnection in areas involved in the processing of language,
executive and socioemotional reaction as well as in abstract
and conceptual thinking. Furthermore, there is a disconnection
in cortical regions that are highly evolved in humans and
involve higher-order associative processing along with the
prefrontal cortex (147–151). Alteration in ASD was also found
in many regions of the temporal lobe and in adjoining
parts of the occipital and parietal lobes, including the insula
and regions important for ToM processing (117, 125, 152,
153). However, the majority of functional and structural
connectivity studies in ASD suggest that the key disconnection
must be between the frontal lobe and other higher order
association cortices (154–160), and that the frontotemporal,
frontolimbic, frontoparietal, and interhemispheric connections
are altered. In addition, alterations in synaptic organization
related to specific deficits were found (161–166). The type and
range of cognitive pathology in ASD suggests that structural
alterations are focused, as well as delicate, but present even
among highly-functional adults with ASD (122, 167–169).
Preservation (or even enhancement) of other mental functions
(170, 171) suggests that development of certain circuitries
is spared, supporting the model of “focal disconnections”
which appear during development. Therefore, ASD should
be considered as a form of “developmental disconnection
syndrome” (172–174).

In conclusion, structural and functional data in ASD suggest
that development of specific micro-circuitries is disrupted during
the ToM acquiring stage of infant to child transition (second
year of life), or in milder ASD forms during the upcoming
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FIGURE 2 | Macroscopic and microscopic features of the adult human brain, including schematic organization of extrinsic and intrinsic cortical projections of

associative layer IIIC neurons. (A) In the adult human brain frontal granular cortex occupies 80% of the frontal lobe, and almost one third (red) of the total cortical

surface. (B) Around the age of two, the brain is very close to its adult size (23). Microphotography of Golgi Cox (C–E) and rapid Golgi (F) impregnated sections of the

associative areas in the human (C,D,F), and mice neocortex (E). (G) Large layer IIIC neurons are considered to be associative neurons, connecting several higher

order areas in the ipsi- and contralateral hemisphere, with the columnar pattern of axon ramification (60, 61). Ipsilateral collaterals are much more numerous (H), and

around 80% of synapses are established within the area of origin. Local axon branches are forming numerous terminal ramifications which have columnar distribution

through layers II and III, and extend several millimeters around the cell body (62–64). The figure is a compilation of figures published by Hladnik et al. (65) (A,B) and

Džaja et al. (66) (C–E). Scale bar 200µm (C) and 100µm (D–F).

years (118, 120, 175, 176). The role of distinct neuron classes
in the prefrontal cortex for processing ToM and complex social
cognition is not yet defined, and therefore the neuronal correlates
of ASD pathology remain unknown (177).

Based on connectivity patterns, as well as the
pattern of their development and maturation, selective

changes of associative L3N microcircuits in the
prefrontal cortex could represent one of the major
biological substrates for normal cognitive development
during early childhood. Consequently, abnormal L3N
development could be associated with appearance of
ASD symptomatology.
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FIGURE 3 | Changes in dendritic morphology of rapid-Golgi impregnated pyramidal neurons in the dorsolateral part of the prefrontal cortex during the second half of

gestation (A–D) and first postnatal month (E,F). Microphotography of rapid Golgi impregnated sections in the human fetal prospective dorsolateral prefrontal cortex at

21 (A,B), and 32 postconceptional weeks (C,D), newborn (E) and one month old infant (F). Scale bar 10µm (A,B) and 100µm (C–F). (a,b) are (A,B) shown at the

same magnification as (C–F).
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FIGURE 4 | Graphical presentation of quantitative data from the basal dendritic tree of large layer III and V pyramidal neurons in the human dorsolateral prefrontal

cortex, impregnated by a rapid Golgi method, in a period of rapid growth between 18 postconceptional weeks, and third postnatal month, compared to adult values.

An outgrowth of primary basal dendrites (A) started earlier on layer V pyramidal neurons, during the middle trimester of gestation prior to layer III, but not later on

(B). The number of basal dendritic segments (indicating frequency of bifurcation) shows a clear inside-out gradient until birth (C). A constant, slow outgrowth of new

segments is present, for both classes, during the middle trimester of gestation, followed by rapid increase in period 26–32 PCW for layer V pyramidal neurons (D). The

major outgrowth of new segments occurred for layer III pyramids during the first postnatal month. No additional segment outgrowth is observed after first postnatal

month. Despite rapid segment outgrowth up to the 32 postconceptional weeks, the increase in total length for layer V pyramids (E) was rather slow. Most of the

elongation occurred later, during the last 2 months of gestation and first postnatal month (F). At the same time, opposite to layer V, a considerable increase in length

occurred for layer III during the period of rapid segment outgrowth. At the 3rd postnatal month, layer III rapid Golgi impregnated neurons have just exceeded 50%,

whereas layer V pyramidal neurons exceed 80% of their adult length (dashed lines). Data shown here were extrapolated from the studies of Mrzljak et al. (190) and

Petanjek et al. (55).
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SEQUENTIAL DIFFERENTIATION OF
PRINCIPAL NEURONS IN THE
PREFRONTAL CORTEX AND EARLY
DEVELOPMENT OF
CORTICO-CORTICAL MICROCIRCUITRY

Mechanism of Dendritic Growth
Development of dendrites is one of the essential processes
in differentiation and maturation of neuronal circuitry (178–
182). Developmental changes in dendritic size and complexity
will define the total neuronal receptive field. Since dendritic
development occurs in parallel with rapid synaptogenesis (183)
and axon growth (184, 185), it will affect both the neuronal
functional response to the input and the neuronal output (186).
Dendritic development typically undergoes three phases:

The first phase of dendritic growth starts after the neuron
arrives to its final position within the cortical plate (37, 187, 188).
This phase is characterized by the protrusion of primary basal
dendrites and apical dendrite, which arise from the cell body,
including appearance of oblique dendrites which grow out on
the proximal site of the apical dendrite (189). No significant
outgrowth of additional branches on primary oblique and basal
dendrites occurred during this phase (Figure 3).

The second phase is characterized by extensive and rapid
growth of the dendritic tree. Initially, new segments grow
out on the, during first phase formed primary basal and
oblique dendrites (Figures 4A,B). This is followed by an increase
in the size of the dendritic tree achieved mainly through
elongation of present branches. Importantly, the appearance
of functional glutamate receptors is crucial for inducement
of rapid dendritic growth (183, 191–195). This strongly
supports the view that ingrowth of glutamatergic thalamo-
cortical and cortico-cortical afferents during the fetal and
perinatal period, triggers the rapid dendritic growth of principal
neurons (196).

The final stage of dendritic growth (once up to 20%
of total dendritic length is established) is characterized by
significant, but much slower elongation of dendrites than
during the second phase. Many connections established on
developing dendrites are functional at the beginning of
this stage, making dendritic development more sensitive to
environmental influences (“nurture”). In contrast to the second
phase, glutamatergic activity during the third phase stabilizes
the dendritic tree instead of promoting its growth (199–201). As
such, the last stage of dendritic development is the longest and is
characterized by a slighter increase in the length of the dendritic
tree (202, 203).

Intensive Perinatal Dendritic Growth of
Associative Neurons Results in Early
Functional Microcircuitries
Dendritic development and synaptic rearrangement of principal
neurons have been extensively studied in the monkey and
human prefrontal cortex (189, 190, 197, 199, 204–221). In
the human fetal prefrontal cortex, intensive dendritic growth
(second phase) of both deep layer III and V principal neurons,

starts 12–15 weeks after they arrived into the cortical plate.
However, beginning of the second phase differs between these
two subpopulations of principal neurons. For the large layer V
pyramidal neurons it coincides with the ingrowth of thalamo-
cortical fibers into the cortical plate by the end of the
middle trimester of gestation (188, 196, 222, 223). In contrast,
intensive growth of the L3N begins with ingrowth of cortico-
cortical fibers by the end of the last trimester of gestation
(224, 225). Thus, for the two main classes of large pyramidal
neurons in the human prefrontal cortex there is an inside-
out gradient of differentiation during the prenatal period, and
intensive growth seems to be induced by the arrival of specific
glutamatergic afferents.

At birth, large layer V principal neurons have already
attained their adult dendritic complexity (branching pattern),
while L3N are not well developed (190), suggesting that the
cortico-cortical network is not highly functional at that time
(226–228). Indeed, the most intensive dendritic development
of the L3N is the first postnatal month, when around
60% of basal dendritic segments appear (Figures 4C,D), and

FIGURE 5 | Golgi Cox impregnated pyramidal neurons in human Brodmann

area 9 at 7 postnatal months and changes in basal dendritic tree between 7

and 12 months. Microphotography of Golgi Cox impregnated large pyramidal

neurons in deep layer III (A) and layer V (B) at 7 postnatal months at higher

magnification. Schematic drawings (C) indicating changes in length and

complexity of dendritic tree of Golgi-Cox impregnated neurons between 7 and

12 months, showing that major dendritic growth for those two populations of

neurons, occurred during the second half of the first postnatal year. A total

number of segments is approximated on the basis of neuronal reconstructions

(197), and percentage of segments cut at a particular dendritic order (198).

Frontiers in Psychiatry | www.frontiersin.org 8 March 2019 | Volume 10 | Article 122154

https://www.frontiersin.org/journals/psychiatry
https://www.frontiersin.org
https://www.frontiersin.org/journals/psychiatry#articles


Petanjek et al. Layer IIIC Pyramidal Neurons in Autism

almost half of the total size is achieved (Figures 4E,F). Thus,
the L3N dendritic tree “catch-up” large layer V pyramidal
neurons in absolute values of their length and complexity
soon after birth. By the third postnatal month both classes
are equal in total dendritic tree length, and have achieved
not only adult complexity, but also, adult-like overall dendritic
three shape.

The maturity level of layer V principal cells reached
soon after birth is not surprising, as these cells are key
neuronal elements for processing early executive functions of
the prefrontal cortex (43, 229–231). However, the maturity level
of L3N reached between first and third postnatal month is
somewhat surprising (55, 56), as these cells are believed to
be the key elements involved in sophisticated, evolutionarily
recent, and human-specific cognitive functions that develop
later on (232, 233). Such an early functioning cortico-
cortical neuronal network centered on L3N may represent a
neurobiological basis for cognitive functions present already
in the first months after birth (234–238). Behavioral and
functional studies found that the perinatal period (32 week
of gestation−3 months postnatal) is characterized by rapid
transformation and disappearance of fetal patterns of behavior,
but also with concomitant appearance of certain aspects of
cognitive functions, which will intensively develop through
infancy (124, 239–246).

Sequential Development of
Microcircuitries in the Human Prefrontal
Cortex During the First Postnatal Year
Not all classes of principal neurons in the prefrontal cortex
undergo intensive dendritic growth during the prenatal and
perinatal period as observed for large pyramidal neurons
impregnated with the rapid Golgi method. Subpopulations of
pyramidal neurons impregnated by the Golgi Cox method
(197, 207) undergo a major dendritic growth after birth,
mainly during the second half of the first postnatal year
(Figure 5). Different modification of Golgi methods have a
selective affinity to stain different neuronal subpopulations,
i.e., the rapid Golgi method is more prone to impregnate
large pyramidal cells. These differences in timing of intensive
dendritic growth between different subclasses of principal
neurons (247, 248) suggest that there is a different gradient of
maturation for different subclasses of neurons, even within the
same layer.

In our recent work, by using rapid Golgi method and
encompassing broader population of the layer III impregnated
principal neurons (Figure 6), we showed significant differences
in the level of dendritic differentiation during the first
postnatal month within frontal lobe, that includes dorsolateral
part and Broca’s region as well as primary motor and
premotor cortices (249). The populations of L3N attained a
highly developed dendritic tree in all analyzed areas, whereas
dendrites of other principal neurons in layer III were less
differentiated. Such findings show an asynchronous maturation
of different microcircuitries throughout the cortico-cortical
network: some of them reach functional level soon after birth,

while others are still very immature (47, 250–252). This is
in contrast to the traditional view of hierarchical neuronal
development across the cerebral cortex, which suggests a
sequential gradient of maturation from lower to higher order
areas. We propose that there is a sequential maturation of
distinct elements, forming cortico-cortical circuitries across
all frontal areas (88). Such a pattern of development may
represent a neurobiological basis for the sequential development
of cognitive functions during the first and second postnatal
year (124, 235, 253–256). Also, rapid dendritic growth is
related with maturity of glutamatergic and GABA-ergic receptors
(257, 258), making dendritic differentiation more prone to
environmental influences. As such, for the development of
early maturing neurons, as is the case for L3N, already during
the perinatal and early postnatal period, the environment
has an important role in regulating their morphological
differentiation (259–263).

SELECTIVE MATURATION OF THE
ASSOCIATIVE LARGE LAYER IIIC
NEURONS DURING EARLY CHILDHOOD
AND PROTRACTED DEVELOPMENT OF
“COGNITIVE” MICROCIRCUITRY
THROUGH ADOLESCENCE

Unique Pattern of Dendritic Growth of
Associative Neurons in Human
Prefrontal Cortex
For most subpopulations of principal neurons in the prefrontal
(197, 207, 208, 218, 219, 221, 264, 265), and other regions of
the human cerebral cortex (266–276) major postnatal dendritic
growth occurs during the first year in parallel with massive
synaptogenesis (185, 205, 206, 226, 277–284).

An important exception from the typical temporal pattern of
dendritic growth (see previous chapter) are associative L3N in
the prefrontal cortex (Figures 7, 8). The L3N do not undergo
the typical third stage of dendritic development like large layer
V pyramidal neurons (55, 56). The layer V neurons attain
more than 80% of their adult dendritic length by the third
postnatal month. They then continue with further elongation
during the third stage of dendritic development for roughly 1
year, and reach adult values around 15months of age. In contrast,
by the third postnatal month dendritic size of the L3N has
reached only half of their adult values (Figures 7A–C, 8A,C,D).
In addition, basal and oblique dendrites of the L3N have no
significant growth (“dormant” period) until the middle of the
second year (Figures 7A,C,D, 8A,D,E). Between 16 months and
2.5 years, length of L3N basal and oblique dendrites almost
doubled, with growth rate higher than expected for the third stage
(Figures 7A,D,E, 8A,E,F). To the best of our knowledge, this
second L3N dendritic growth spurt represents an undescribed
developmental feature for any class of cortical neurons. In the
following period from 2 to 5 years, there is a further increase
in synaptic spine density (285) at L3N dendrites, accompanied
with molecular changes of this class of neurons. The L3N start to
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FIGURE 6 | Asynchronous maturation of pyramidal neurons in layer IIIC during first postnatal month. (A) Rapid Golgi impregnated deep layer III pyramidal neurons in

Brodmann area 9 of a 1-month-old infant in the prefrontal cortex show different stages of differentiation. Quantitative analysis of newborn and 1-month-old infant

reveals large differences in total length (B), and number of segments (C) in basal dendritic tree of deep layer III pyramidal neurons, across different areas of the human

frontal cortex. Each symbol represents mean values per individual neurons.

express strong AChE (78, 79) and SMI-32 (82, 265, 286) reactivity
in their bodies and proximal apical and basal dendrites. This
unique expression sets them apart from other classes of cortical
neurons (Figure 9). Additionally, by the age of 5, the L3N show
intensive Nissl staining paralleling transient somatic overgrowth
(Figure 8B) (287–290).

Thus, the L3N acquire a significant portion of their maturity
after infancy. We suggest that morphological and molecular
changes on dendrites of the L3N in the period from 2 to 6
years are related to the growth and synaptogenesis of their
own local intracortical projections, which establish very dense
innervation on all cortico-cortical projecting neurons (62–64).
Thus, changes in L3N intracortical projections will affect function
of all prefrontal cortex neurons that project to other cortical
areas. Consequently, L3N changes will be reflected on network
processing throughout the whole cerebral cortex. Intracortical
projections in experimental studies on rhesus monkey were
found to be the last maturing part of the cortical excitatory
network (209), whereas basic architecture for cortico-cortical

projections is established earlier during infancy (41, 124, 243,
291–294). This leads us to conclude that large scale functional
changes in the cerebral cortex, starting around the age of 2, are
related with maturation of excitatory intracortical connections.
Still, further maturation of cortico-cortical projections could not
be excluded (116).

Protracted and Environmentally Driven
Synaptic Pruning of
Associative Microcircuitries
Structural changes through the cortical network are not finished
by the age of 5–6 years, while the circuitry reorganization
continues throughout the rest of childhood and adolescence
(28, 33, 36, 76, 90, 205, 216, 283, 295–317). Molecular tuning of
synaptic strength during development, when synaptic numbers
exceed adult values, is proposed to be a major mechanism
for the environmental effect on circuitry reorganization. The
period of overproduction and elimination of supernumerary
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FIGURE 7 | Postnatal development of rapid Golgi impregnated large layer IIIC pyramidal neurons in the magnopyramidal area 9 of the human prefrontal cortex.

Three-dimensional reconstructions of basal and apical dendritic trees of rapid Golgi impregnated pyramidal cells in layer IIIC, projected onto the coronal plane

(A). Orientation toward the pia is indicated by the arrow. Oblique dendrites originate from the apical dendrite, and are represented by dashed lines. All layer IIIC

pyramidal cells are represented at the same magnification (scale bar 100µm) and at the following ages: newborn, 1-month-old, 2.5-months-old, 15-months-old

infants, 2.5-year-old child, and 28-year-old adult. Dendritic trees of layer IIIC pyramidal cells increased between 16 months and 2.5 years of age. Note that there are

no obvious differences between layer IIIC pyramidal cells of 2.5-month-old and 16-month-old infants (dormant stage), as well as 2.5-year-old and 28-year-old

subjects. Microphotographs showing changes in morphology of rapid Golgi impregnated layer IIIC pyramidal cells of the Brodmann area 9 between: newborn (B),

infants aged 1 (C) and 16 (D) months, 2.5-year-old child (E), 19-year-old (F), and 73-year-old (G) adults (the magnification is same for all microphotographs; scale bar

–20µm). Even in these high-power microphotographs, the increase in dendritic complexity (an outgrowth of new segments) between newborn (B), and 1-month-old

infant (C) is obvious. The figure is taken from Petanjek et al. (55) with permission.
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FIGURE 8 | Graphical and schematic presentation of quantitative morphological data from basal dendritic tree of deep layer III and layer V pyramidal neurons, in

magnopyramidal area 9 of the human dorsolateral prefrontal cortex impregnated by the Golgi method during postnatal development. Changes in terminal segment

length (A) and soma size (B), from birth until 91 years of age on layer III pyramidal neurons impregnated with rapid Golgi (full marks—red line), and Golgi Cox method

(open marks—blue line). Data about terminal segment length (A) are shown here as they participate with 90% in the total length of dendrites. Data from rapid Golgi

stained slides, regarding terminal segment length confirm, that the period between 3 and 16 months, is a dormant stage in basal dendritic growth for layer III

pyramidal neurons, and that further growth occurs between 16 months and 2.5 years (at least 1/3 of total length). Large temporal overgrowth in cell body size was

present in subjects 5 to 6 years old (B). Data shown here were extrapolated from Koenderink et al. (197) and Petanjek et al. (55) studies. Squares represent males and

circles represent females. The age is shown in postnatal years on a logarithmic scale. Puberty is marked by a shaded bar. Schematic drawings (C–F) of changes in

length and complexity of dendritic tree of deep layer III and layer V pyramidal neurons, illustrate changes occurring in the cytoarchitecture and overall neuronal

morphology. Total number of segments is estimated on neuronal reconstructions (based on real data) (55, 197) and values of missing dendrites were calculated by

formula (198). Red represents rapid-Golgi impregnated neurons, and blue Golgi Cox impregnated pyramidal neurons. Illustrations for Golgi Cox neurons at newborn

(C) and 3-months-old infant (D) stage are prediction based on dendrite growth pattern in the period 7–15 months. By the 15 months (E) most of the neurons have

achieved an adult level of dendritic size, except large layer IIIC pyramidal cells impregnated by the rapid Golgi method (F).

synaptic spines corresponds to the developmental stage when
principal neurons have the highest magnitude of plasticity
(185, 201, 260, 277, 304, 318–326). In the prefrontal cortex,
the stage of developmental plasticity is highly prolonged and

extends even up to the third decade of life (Figure 10).
Concomitantly, there is a prolonged peak in expression of genes
regulating neuronal development, including those associated
with schizophrenia (298, 307, 327, 328). The comparative
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FIGURE 9 | Neurofilament staining (SMI32) in Brodmann area 9 of child and

adult human cortex. Microphotography of SMI32 (non-phosphorylated filament

H) stained sections in Brodmann area 9 of the human prefrontal cortex at the

age of 3 (A,C) and 38 years (B,D). The deep part of layer III and layer V are

sub-laminas most densely populated with reactive neurons. There are no

differences in staining intensity of layer V neurons at both ages, however in the

adult subject layer III, the amount of intensely stained pyramidal neurons with

clearly visible dendrites has increased. Accumulation of neurofilaments in

dendrites is corresponding to the length and complexity of axon, suggesting

that pyramidal neurons located deeper in layer III continue with axon growth

after the age of 3. Scale bar at 100µm (A–D).

analysis of mRNA expression in the prefrontal cortex shows
that in the human brain, relative to non-human primates,
the dramatic changes in transcriptome profiles are delayed
(283, 304, 307, 329, 330). So, extraordinary protracted circuitry
reorganization is a specific feature of human higher-order
associative areas.

It is possible however, that distinct types of microcircuitries
may have different rates of synaptic formation and elimination.
The pruning of supernumerary dendritic spines during the
third decade of life is most pronounced and protracted on
the L3N. It starts earlier on segments that are targeted by
thalamo-cortical, rather than on those targeted by cortico-
cortical projections (285). Studies obtained in monkeys and
humans show somewhat higher synaptic overproduction

in supragranular (including L3N and cortico-cortical
projecting neurons) vs. infragranular (including layer V
and subcortical projecting neurons) layers (205, 226). Regional
differences in the number of grown and pruned spines on
the layer III neurons have been described in the monkey
and human cortex, with highest spine overproduction in the
prefrontal cortex and lowest in the primary sensory regions
(208, 221, 250, 279, 282, 331). The level and duration of
synaptic overproduction, and consequently the level and
duration of developmental plasticity (332), increases within
increasing functional hierarchy of distinct microcircuits.
Thus, microcircuits that are processing the highest cognitive
functions, such as social abilities, are subject to the highest
developmental remodeling induced by psycho-social and
emotional environment (32, 39, 250, 252, 260, 305, 333, 334).

THE DEVELOPMENT OF PREFRONTAL
CORTEX ASSOCIATIVE NEURONS IN
AUTISM: A MODEL OF SELECTIVE
NEURONAL VULNERABILITY IN GLOBAL
CORTICAL NETWORK DISCONNECTIVITY

Based on the above, we suggest that selective disruption of L3N
could cause global cortical network disconnectivity, underlying
ASD cognitive symptomatology. The protracted and biphasic
pattern of L3N dendritic growth, coupled to the intensive
molecular maturation after infancy, is not described for any other
population of principal neurons. This developmental timing
overlaps with the period when specific ASD symptomatology
becomes evident.

Thus, alteration of the specific neuronal population with
“strategic” position inside cortical circuitry, like L3N, could
lead to global cortical network dysfunction. The timing of
appearance and severity of symptoms in ASD might depend
on the affected level of structural and molecular maturation
of associative neurons during early childhood (2–6 years). For
example, if development of the L3N is affected during the
second year of life, it is most likely that the elongation of
dendrites would be altered. This possible reduction in dendritic
size would result in abnormal input on the L3N, and would
change their functional properties. Consequently, as the L3N
densely innervate all layer II/III cortico-cortical neurons, a robust
alteration in dendritic morphology and consequently possible
out-growth of intracortical projections of L3N, would lead to
disrupted inter-columnar processing (335). We would expect
such changes in subjects with a more serious form of ASD,
where cognitive pathology already emerged during the second
year of life.

In some ASD cases, specific cognitive symptoms are not
apparent during the second, and even third year of life. Those
subjects only show a subtle deflection of ToM, with no signs
of any other neurological or psychiatric comorbidity, like in
Asperger’s syndrome (122, 167, 168). We hypothesize that in
these forms of disorder the L3N alterations are not as robust.
Here, the development of the L3N is probably affected later,
after the age of 2.5 years, when further molecular maturation of
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the L3N occurs. Cognitive pathology is in such cases related to
synaptic network architecture or/and fine molecular deflection at
the level of individual synapse, without any dendritic and axonal
changes that can be defined as pathological.

However, complex cognitive processing is disturbed in most
cases of ASD at earlier stages of development (336, 337).
Neurological and cognitive pathology is frequently present
during the first year, sometimes even at birth (338, 339).
In the most serious cases, there is ASD comorbidity with
the intellectual developmental disorder (340) or/and epilepsy
(341). In cases with absent comorbidity, many parents report
a concern about socio-emotional interactions during the first
year of life (342–345). Neuroimaging further revealed network
inefficiencies during the first year of life (337, 346, 347). However,
although specific ASD symptoms are not seen before the age of
two, epidemiological and genetic studies support the idea, that
alterations of neuronal development occur during the prenatal or
perinatal time (348–355).

Thus, the “uniquely biphasic” pattern of dendritic growth
of the L3N, with delayed structural and molecular maturation
during the post-infant period (after 1.5 years), indicates that
this neuronal class is particularly vulnerable during the perinatal
period, when harmful events related to ASD are expected to
occur. Pathological alterations induced at that stage may not
be severe enough to affect functional demands of the L3N at
the early postnatal period. However, the perinatal lesion could
manifest after the second year, since the role of L3N, in now
much complex microcircuitries, becomes more demanding at
this time. In this view, the earlier “perinatal lesion” becomes
visible as notable functional impairments after the second
year (327, 356).

Most ASD cases will be diagnosed earliest by the age of 18
months (103). However, social cognition is often altered earlier,
even in infants that do not show neither neurological, nor
intellectual impairment. Retrospective studies have shown that
ASD affected children clearly have different behavior related to
social responses by 12 months, like gazing in a single direction
and the way how they respond to their name (357). On functional
magnetic resonance imaging (fMRI) altered connectivity in ASD
was found by the 6 months (127, 346) and EEG signal was
found to be altered by the 3 months (358). Above mentioned
behavioral and functional aberrations present at early stages of
infancy (337), further suggest that ASD symptoms are related
with structural alterations from the early postnatal period.
Interestingly, EEG pathology of ASD is first observed in the
left temporal electrode (T7), and the frontal lobe starts to differ
between 15 and 18 months of age, which corresponds to the
beginning of the second L3N growth spurt. The developmental
(“biphasic”) pattern of L3N, with intensive perinatal dendritic
growth (suggesting high vulnerability), and second growth spurt
around the age of 2, corresponds to the timing of alterations
in cortical functioning and appearance of symptoms in infants
with ASD. Understanding relations between L3N development
and functional changes of cortical activity is important in
early detection of ASD and might help to develop algorithms
as combination of functional imaging methods and focused
behavioral testing.

GENE-ENVIRONMENT INTERACTION
DURING POSTNATAL DEVELOPMENT
AFFECTS ASSOCIATIVE CIRCUITRY
ARCHITECTURE AND MAY CONTRIBUTE
TO AUTISTIC TRAITS

Architecture of the mature cortical network is determined
through complex gene-environment interactions during
intricate developmental steps (1, 260, 330, 359–365). Given the
unimaginable number of possible interactions between genes and
environment, there are large interindividual differences in the
size of particular areas, and even in internal cytoarchiteconics,
particularly within the prefrontal cortex (77, 366–368). Large
interindividual differences were found among the dendritic
structure of cortico-cortical projecting neurons in high
associative areas of the human brain, correlating with the level of
education (369). All mentioned interindividual differences point
to a strong environmental impact on cortical development.

The mechanism of developmental plasticity leading to
interindividual differences in cytoarchitectonics and neuron
morphology is related to synaptic overproduction. By activity-
dependent molecular tuning of synaptic spines, it is determined
which synapse will remain and which will be removed from
the network during the pruning process (370, 371). This
model is defined as selective stabilization hypothesis (318)
and proposes that through synaptic tuning the environment
is shaping the architecture of the neural network. The highest
degree and longest period of synaptic overproduction are so far
described for the L3N in the prefrontal cortex, particularly at
dendritic compartments (distal side branches of apical dendrite)
targeted by cortico-cortical and intra-cortical projections (285).
Altogether, psychological, educational, social and emotional
milieu has a predominant influence in reshaping circuitries which
are involved in processing the most complex cognitive functions
(29, 76, 226, 309, 332, 372–379).

Taken together, these findings suggest that human-specific
cognitive functions and circuitry specializations (1) have
foundation in interactions between genes (25, 380–382) and
environment (242, 363, 383, 384) during the period of synaptic
overproduction and pruning. In humans, the period of synaptic
overproduction and pruning is the period of the highest
magnitude of acquisitions of new knowledge. It might look
paradoxical that this occurs with a decrease in the number of
synapses, but the final functional outcome of pruning leads to
increased connectivity of the cortical network. Therefore, this
process allows humans to acquire the highest level of cognition,
but it also prolongs the vulnerability period, increasing the
chance for the formation of abnormal circuitry (296, 306, 327,
364, 385–387).

Such developmental reshaping could be an important factor
in the development of ASD, particularly in subjects with a
mild form of the autism spectrum phenotype. Recognition
that ToM deficit is a core psycho-pathological substrate of
ASD, has allowed better diagnosing of both patients with
mild impairment and individuals with atypical symptoms or
personality traits associated with ASD, which fall under the broad
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FIGURE 10 | Changes in dendritic synaptic spine density on rapid Golgi impregnated large layer IIIC and layer V pyramidal neurons in magnopyramidal area 9 of the

human prefrontal cortex from birth until 86 years of age. (A) Representative low magnification photographs of the rapid Golgi-impregnated layer IIIC and V pyramidal

cells in the dorsolateral prefrontal cortex of a 16-year-old subject. (B) Neurolucida reconstruction of layer IIIC pyramidal neuron of a 49-year-old subject, illustrating

dendrites selected for counting spines. (C) Representative high power magnification images of layer IIIC pyramidal neuron dendrites. (D) Graphs represent changes in

spine numbers per 50µm of dendritic length. The age is presented in postnatal years on a logarithmic scale. Puberty is marked by a shaded bar. Squares represent

males, circles females. P, puberty; B, birth (fourth postnatal day); m, months; y, years. Figure published by Petanjek et al. (285).

autism phenotype (388–390). It is possible that the “pathological”
substrate can be found only in the circuitry architecture, without
any structural or molecular impairment of neurons and their
pathways. In line with this possibility is a higher incidence of
ASD in school rather than preschool children (391), suggesting
that in some cases, “autistic” circuitry architecture is established
through late childhood, or even adolescence (103, 392, 393).
So, the broad or subthreshold autism spectrum conditions,
could be used as a model to understand trajectories of “nature-
nurture” interactions, guiding neurodevelopment toward, or
away from ASD.

We propose that in such individuals, the emotional and
psycho-social environment during infancy and childhood is
crucial for the appearance of ASD or autistic traits (387, 394,
395). Vice versa, in individuals with genetic backgrounds to
develop ASD or autistic traits, this opens a huge window of
opportunity for cognitive rehabilitation, particularly considering
the highly extended period of circuitry reorganization in the
human prefrontal cortex. At an epidemiological level, mild and
atypical cases should be far more numerous then serious cases of
ASD, and are therefore of much higher societal impact. Second,
enhanced emotional and psychological interaction in infants
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and children, have been shown to have a stimulating effect
on the development of ToM (396, 397), suggesting that those
with mild symptomatology and subtle alterations in circuitry
organization have a greater chance for a positive outcome of early
intervention (398).

OVERVIEW OF REPORTED CORTICAL
NEURONAL PATHOLOGY IN AUTISM

Despite pathological changes observed in the cerebellum,
amygdala and brainstem (399–402), imaging data and studies
on post-mortem material are implying that cerebral cortex
circuitries are the most plausible candidate to produce core
deficits of autism. However, specific cortical neuronal alterations
are yet to be described and present data are often contradictory.
Some ASD cases have reduced neuronal cell body size but
increased number of minicolumns and increased neuronal
density (403, 404). These findings suggest an increased number of
neurons in frontal, temporal and parietal regions of ASD cortices
(405, 406). In other ASD cases, neuron numbers and density were
unchanged (407), while some have a reduction in the number
of neurons (408). Cellular patches were found in prefrontal and
temporal cortices of ASD patients, while again no change in in
neuron density was described (409).

Cell body size was unaltered in the dorsolateral medial
prefrontal cortex (405), superior temporal gyrus (407), anterior
cingulate cortex (410), hippocampus (411), and amygdala (412).
Smaller cell size was found in cortical regions with identified
minicolumnar pathologies in ASD, i.e., frontal regions (403, 406,
413), as well as primary motor, sensory and visual cortices (414).
In the fusiform gyrus (415), hippocampus (416) and portions
of the anterior cingulate cortex (417, 418), smaller neuron cell
bodies of varying types have also been reported. These changes in
cell body size are considered to be present in preadolescent stages
between ASD and controls, and this effect becomes diminished
later on (400, 410). Importantly, changes in cell body size are
usually related with changes in dendritic morphology. However,
Golgi studies on ASD neocortices, showed that there is no
dendritic pathology in neocortical pyramidal and non-pyramidal
neurons (411, 419), but increased density of dendritic spines was
found in layer II of temporal, parietal and frontal region (420).
Higher spine density suggests impaired synaptic pruning, and is
correlated to decreased brain weight and lower levels of cognitive
functioning in ASD (164, 421–424).

Reduction in neuronal size and loss of neurons in ASD
suggests a bias in connectional abnormalities present in multiple
areas of the association cortex, specifically within layers that are
involved in long-range connectivity (406, 414). The alteration of
neuronal classes essential to these circuitries is expected to be
the main correlate of altered cognitive processing. In line with
that, it was suggested that the total number of a special neuronal
subtypes found only in species with highly developed social
cognition, von Economo spindle cells, is decreased in autism, but
stereological analysis in the frontal part of the insula could not
confirm that assumption (425).

Based on the level of gene expression, a reduced number
of distinct cell subtypes in layers IV and V, the calbindin and
parvalbumin neurons, was suggested (426, 427). So far the
only neuron-specific pathology documented histologically in
ASD is a decreased number of parvalbumin interneurons in
medial prefrontal cortex (428). Parvalbumin expressing cortical
neurons provide inhibitory input to cortico-cortical projecting
principal cells (429–431). The temporal pattern of change in axon
terminals of parvalbumin interneurons parallels the changes in
dendritic spine density on layer III principal cells (206, 432).
The chandelier subpopulation of parvalbumin neurons, which
is projecting to axon initial segment of principal neurons, is
found to be affected in prefrontal cortex of ASD subjects (433).
Therefore, decreased number of parvalbumin neurons in ASD
may be related to alterations of postnatal refinements in cortical
circuitry related with associative pyramidal neurons.

In conclusion, despite no direct evidence of L3N pathology in
ASD being found, already mentioned findings that in ASD there
is a higher spine density in layer II (420), could suggest an altered
synaptic pruning of projections arising from associative L3N.

DISCLOSURE OF PRE-EXISTING LESION
THROUGH LATE MATURATION OF
ASSOCIATIVE NEURONS IN AUTISM

In this manuscript we present an interesting observation
about neuron pathology of an ASD case from Zagreb’s
Neuroembryological Collection (434–436), and evaluate the
possibility that appearance of ASD symptoms is correlated
with maturation of associative L3N during early childhood, but
without disruption of their development.

We performed an in depth analysis of brain tissue from a 23-
year-old female with ASD (based on DSM-III-R criteria) (437),
with mild intellectual disability and epilepsy. We did not observe
changes in the brain’s gross morphology, cytoarchitectonic
structure, nor expression of non-phosphorylated-neurofilament
H (SMI32) which is highly expressed in L3N (Figure 11).
Unchanged intensity of neurofilament staining (81, 438)
suggests normal axonal development of associative neurons.
On rapid Golgi impregnated sections of prefrontal cortex
(Brodmann area 9), primary motor cortex (Brodmann area
4) and primary visual cortex (Brodmann area 17), we did
not observe changes in dendritic size or in spine density of
L3N or other classes of principal neurons. However, a small
fraction of neurons in the layer II and upper part of layer
III in the analyzed areas exhibited abnormalities of dendritic
morphology (Figure 12).

Alongside well developed and regularly oriented principal
neurons, a subset of neurons in layers II/IIIA had spiny
dendrites, whose morphology resembled those of immature
principal cells (Figure 13A). Such dendritic morphology with
low spine density is characteristic for developing principal
neurons at initial stages of their dendritic differentiation.
Developing neurons with similar morphology are found
in the neocortex of healthy neonates (Figure 13B), but
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FIGURE 11 | Neurofilament staining (SMI32) in neocortex of adult female with autism. Pattern of SMI32 immunostaining counterstained with Giemsa in the prefrontal

area 9 (A), primary motor area 4 (B) and primary visual area 17 (C), in a 21-year-old autistic female with a comorbidity in the form of epilepsy and intellectual disability

(according to DSMIII classification). The analyzed material is a part of Zagreb’s Neuroembryiological Collection (434–436). The distribution, density and level of

neurofilament (SMI32) expression did not differ from normative control (81, 438), and no obvious disruption of cytoarchitecture was observed (68, 266). SMI32 stained

sections were compared to normative control specimens obtained from the Zagreb Neuroembryological Collection, which includes 29 specimens, with an age span of

19 to 57 years.

not later on. Since only part of the neurons had the
immature dendritic morphology (Figures 13C,D) (204, 439,
440), we concluded that in the analyzed subject a selective
fraction of cortico-cortically projecting neurons is affected.
In particular, layer II and upper part of layer III contain
cortico-cortical neurons that have relatively short axons, and
participated in local microcircuits between neighboring areas
(44, 74, 441–445).

Thus, their abnormal development in ASD may be a result of
harmful events (including those induced genetically) occurring

during the perinatal period. In this manner, development of
microcircuitries established by short cortico-cortical neurons
would be stalled at the neonatal stage. Importantly, this
neuron class is not expected to go through distinct structural
complexification after the first year. Therefore, we hypothesed
that they will achieve adult structure by the age of 1, but
full functional capacity will be achieved through maturation
of associative neurons and related circuitries during early
childhood (2–6 years). By having subtle alterations of the
short cortico-cortical network, first symptoms, in general,
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FIGURE 12 | Reconstructions of rapid Golgi impregnated principal neurons in the neocortex of an adult female with autism. Neurons are marked in order of their

laminar position: atypical pyramid-like cells (A–C) and typical pyramidal cells in analyzed neocortices were shown: layer II (D), layer IIIA/B pyramidal cells (E), layer IIIC

pyramidal cells in prefrontal cortex (F), giant Betz pyramidal cells in layer V of motor cortex (G), small pyramidal cells of layer V (H) and large Meynert pyramidal cells of

layer V/VI in area striata (I). Atypical pyramid-like cells (A–C) were mainly located in the layer II, and some in the layer IIIA, but not in any other layers. They have oval

cell bodies with bipolar orientation of dendrites, low spine density, and axons directed toward white matter. Such cell types were not observed in Golgi sections of a

normal, adult human cerebral cortex. Golgi sections from this case were compared to 29 rapid Golgi stained specimens, with an age span of 19 to 57 years. No other

qualitative signs of dendritic, nor spine pathology and density could be found on rapid Golgi slices, and morphology, cell body size, dendritic extent, and complexity

(D–I) corresponded to pyramidal neurons of the same laminar position in an aged-matched controls.

would not appear before final maturation of local intracortical
connections which occur later during childhood. It means
that development of L3N and their projections in ASD
could take a fully regular course, but may trigger appearance
of symptoms.

Neurodevelopmental model with early structural lesions
and a delayed appearance of symptoms is already established
for schizophrenia (385, 446). Typical schizophrenia symptoms
occur predominantly during late adolescence or early adulthood.

Such timing is linked to massive synaptic pruning in the
prefrontal cortex that occurs as part of normal development.
So, in schizophrenia the appearance of symptoms is not a result
of disrupted development at that time (90, 99, 447, 448).
In fact, events occurring through the course of regular
development are a trigger which may cause an already
present, but for a long time asymptomatic impairment, to
become eminent. Direct evidence for such a hypothesis
comes from patients with metachromatic leukodystrophy,

Frontiers in Psychiatry | www.frontiersin.org 18 March 2019 | Volume 10 | Article 122164

https://www.frontiersin.org/journals/psychiatry
https://www.frontiersin.org
https://www.frontiersin.org/journals/psychiatry#articles


Petanjek et al. Layer IIIC Pyramidal Neurons in Autism

FIGURE 13 | Microphotography of rapid Golgi sections in the prefrontal cortex of an adult female with autism, compared to a normal 1-month-old infant. On low

power microphotography of layer II/IIIA in the prefrontal cortex of a 21-year-old autistic female, numerous bipolar—pyramid-like cells were found (A). In the prefrontal

cortex of a normal 1-month old infant (B), numerous neurons with similar morphology were found in the same position (arrows). High power microphotography shows

layer II bipolar-pyramid like cells in the analyzed subject (C). Note that dendrites had spines, but their density was low. Upper dendrites were directed to the layer I,

resembling apical dendrite morphology. On the other pole, two dendrites resembled basal dendrite morphology. An axon arose from one of those dendrites and was

directed to the white matter. In the prefrontal cortex of a newborn infant, immature pyramidal neurons with similar morphology are found (D). In the adult autistic

subject neuron morphology of spiny bipolar neurons regarding cell body shape, and dendritic complexity is similar only larger when compared to healthy neonate. The

presented material is a part of Zagreb’s Neuroembryological Collection, which also includes normative control specimens of 31 rapid Golgi specimens, lifespan from

infant to adolescent. Scale bar indicates 100µm (A,B) and 20µm (C,D).

a disorder characterized by demyelination present at birth.
The lesion remains without exacerbation up until late
adolescence, when a schizophrenia-like psychosis will emerge
(449, 450). So, a fixed “lesion” from earlier in development
has been silent for decades, and interacts with normal brain
maturational events that manifest much later in life. Despite
the causative process not being obvious, it is still present
long before the symptoms appear and any diagnosis is made
(327, 360, 451–454).

DEVELOPMENT OF ASSOCIATIVE
NEURONS DURING CHILDHOOD AND
RELATION TO ASD SYMPTOMS: ALTERED
DEVELOPMENT OR TRIGGER FOR
PRE-EXISTING LESION?

In this manuscript, we hypothesize that selective alteration of a
specific subset of principal neurons could lead to global changes
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FIGURE 14 | Proposed developmental models of cortico-cortical neuron alterations in autism: schematic representation of changes in dendritic morphology of layer III

in the human prefrontal cortex during the early postnatal period (newborn–3 months) and around the second year (16–30 months). (A) In a typically developing infant,

associative neurons undergo intensive dendritic differentiation during the first 3 postnatal months, whereas other classes of cortico-cortical projecting neurons,

undergo major dendritic growth later during their first postnatal year. A late, second growth spurt, with large dendritic elongation in the period from 18–30 months, is

so far described only in associative neurons. We propose that maturation of associative neurons during early childhood (1.5–6 years), plays a major role in global,

functional changes of the cortical network, related with tremendous cognitive development. (B) Disrupted development of associative neurons (red), around age of 2,

does not allow enhancement in inter-columnar and inter-areal connectivity, leading to cortical network impairment. Development of associative neurons does not have

to be disrupted (C,D). There might be a preexisting (perinatal) alteration, in a subset of short cortico-cortical neurons (red) that would become evident around the age

of 2, during typical maturation of intra-cortical connections established by associative neurons. (C) In the case of mild perinatal disruption of short cortico-cortical

neurons, the lesion would remain functionally silent until late differentiation of associative neurons, whereas in (D) cases where alterations are more robust,

comorbidities in form of neurological, and intellectual impairment, manifest earlier. We suggest that alteration can be present in various forms thus creating many

phenotypes of ASD.

in cortical network connectivity. We applied this model to the
ASD and social (pragmatic) communication disorders, which
include disrupted social and communication functioning, with
more or less severe global disconnectivity.

We propose that contrary to normally developing children
(Figure 14A), there might be a disrupted development of
inter-collumnar connectivity within the prefrontal cortex
of ASD patients, as these microciruitries undergo intensive
maturation in the period between 2 and 6 years when ASD
manifests. Associative L3N, which are the main source
of local excitatory cortico-cortical connections, and are
thus responsible for inter-columnar connectivity, undergo
intensive structural and molecular changes during the same
time (Figure 14B). Disrupted maturation of intracortical
connectivity may then consequently alter outputs from

the prefrontal cortex. The severity of this pathology would
depend on the extent and timing of disruption within
those microcircuitries.

Lacking evidence for structural pathology of the L3N in
ASD both in our reported case and overall in the literature,
opens the possibility that differentiation of this neuron class
takes a regular course. Thus, their developmental incorporation
into maturing circuits during childhood will reveal a pre-
existing (perinatal) lesion in other neuronal classes and
microciruitries. Despite regular development of intracortical
connections during the second year, and throughout the rest
of early childhood, the cortical network will not be able
to reach a new/higher level of information processing, as
there is a pre-existing alteration in other classes of projection
neurons, e.g., a subset of cortico-cortical neurons with short
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projections. We propose that in the case of a more subtle
disruption of neurons, which are a source of short cortico-
cortical circuitries, the lesion remains fully silent until the
age of 2 (Figure 14C), whereas in the case of more robust
alteration, neurological, and intellectual comorbidity may appear
earlier (Figure 14D).

These two proposed models are also not mutually exclusive.
Direct alteration of L3N or “disclosure” of pre-existing lesions
on other neuronal classes during differentiation of associative
neurons around the age of 2, could be present in different
phenotypes of ASD, or even act at the same time (455, 456).

The important concept in understanding the mechanism
of ASD is gene-environment interaction in shaping the
architecture of the developing neuronal network (457, 458).
The environmental factor may induce or prevent appearance of
the ASD pathological functioning, like infection, malnutrition,
toxins, or vascular insult (227, 354, 356, 459–462).

While not specifically recognized yet, structural andmolecular
alteration of mirocircuitry is clearly related with ASD, but in
the subthreshold autism phenotype there might be “autistic
architecture” of the cortical network, without evident structural
or molecular pathology. It is intriguing that in such conditions,
psychosocial ambience is exclusively related with appearance
of autistic traits, particularly taking into consideration that
associative and intracortical circuitries have the highest rate,
and most protracted period of synaptic overproduction. Finally,
the protracted period of highly plastic circuits involved in ASD
pathology opens a new potential in rehabilitation strategies,
particularly if early clinical detection approaches are applied
(348, 351, 358, 463–472).
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Schizophrenia is a severe neuropsychiatric disorder with persistence of symptoms
throughout adult life in most of the affected patients. This unfavorable course is
associated with multiple episodes and residual symptoms, mainly negative symptoms
and cognitive deficits. The neural diathesis-stress model proposes that psychosocial
stress acts on a pre-existing vulnerability and thus triggers the symptoms of
schizophrenia. Childhood trauma is a severe form of stress that renders individuals
more vulnerable to developing schizophrenia; neurobiological effects of such trauma on
the endocrine system and epigenetic mechanisms are discussed. Childhood trauma
is associated with impaired working memory, executive function, verbal learning,
and attention in schizophrenia patients, including those at ultra-high risk to develop
psychosis. In these patients, higher levels of childhood trauma were correlated with
higher levels of attenuated positive symptoms, general symptoms, and depressive
symptoms; lower levels of global functioning; and poorer cognitive performance in
visual episodic memory end executive functions. In this review, we discuss effects of
specific gene variants that interact with childhood trauma in patients with schizophrenia
and describe new findings on the brain structural and functional level. Additive effects
between childhood trauma and brain-derived neurotrophic factor methionine carriers on
volume loss of the hippocampal subregions cornu ammonis (CA)4/dentate gyrus and
CA2/3 have been reported in schizophrenia patients. A functional magnetic resonance
imaging study showed that childhood trauma exposure resulted in aberrant function
of parietal areas involved in working memory and of visual cortical areas involved in
attention. In a theory of mind task reflecting social cognition, childhood trauma was
associated with activation of the posterior cingulate gyrus, precuneus, and dorsomedial
prefrontal cortex in patients with schizophrenia. In addition, decreased connectivity was
shown between the posterior cingulate/precuneus region and the amygdala in patients
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with high levels of physical neglect and sexual abuse during childhood, suggesting that
disturbances in specific brain networks underlie cognitive abilities. Finally, we discuss
some of the questionnaires that are commonly used to assess childhood trauma and
outline possibilities to use recent biostatistical methods, such as machine learning, to
analyze the resulting datasets.

Keywords: neurodevelopment, childhood trauma, diagnostic tools, schizophrenia, machine learning

INTRODUCTION

Schizophrenia is a severe neuropsychiatric disorder that affects
about 1% of the population (Jablensky, 1995). It is particularly
prevalent in young adults between 20 and 30 years of age and
leads to disability in about half of the patients (Murray and
Lopez, 1996). The disorder is among the leading cause of years
lived with disability worldwide (Whiteford et al., 2013), and,
among all mental illnesses, schizophrenia is associated with the
highest socioeconomic costs (Gustavsson et al., 2011). This high
disorder burden is due to the early onset of schizophrenia in
late adolescence and early adulthood and the persistence of
symptoms throughout adult life in over 90% of affected patients
despite meeting remission criteria (Häfner and an der Heiden,
2007; Schennach et al., 2015). Symptom improvement has been
measured as “therapeutic response,” which was defined by, e.g.,
a 20% symptom reduction after 4 weeks of treatment (Kane
et al., 1984). Subsequently, the term “remission” was introduced,
requiring a simultaneous reduction of all diagnosis-specific core
symptoms (positive and negative symptoms) to a level of “mild
or less” on established questionnaires (Positive and Negative
Syndrome Scale, Brief Psychiatric Rating Scale, Scale for the
Assessment of Positive Symptoms, Scale for the Assessment of
Negative Symptoms) for a minimum of 6 months (Andreasen
et al., 2005). However, since only a small portion of schizophrenia
patients can achieve this, the new definition of “recovery” was
conceived, which takes into account not only a reduction of
clinical symptoms, but also an improvement in occupational,
social and adaptive functioning (Chan et al., 2018). However,
only 20% of people with schizophrenia are able to work in
the primary labor market, and only about 30% are able to
maintain a stable relationship (Häfner and an der Heiden, 2007).
The unfavorable disorder course is associated with multiple
episodes and residual symptoms, mainly negative symptoms and
cognitive deficits (McGrath et al., 2008). Cognitive deficits as
a core feature of the disorder are present in domains such
as episodic memory, executive function, social cognition, and
attention (Green, 1996; Hoff et al., 2005). These deficits may lead
to memory decline, social withdrawal, and ultimately impaired
social and role functioning as measured by the Global Assessment
of Functioning (GAF) scale (Green et al., 2015a). Several studies
have operationalized the term “recovery” by using the GAF scale
to investigate the long-term outcome and its relevant influencing
factors in psychosis patients (Scott et al., 2013; Amminger et al.,
2015; Koutsouleris et al., 2016; Jagannath et al., 2018; Lho
et al., 2019). While childhood trauma has been repeatedly shown
to negatively impact “recovery” among schizophrenia patients
(Alameda et al., 2015, 2017; Trauelsen et al., 2016), some of

these findings were only partially replicated (Trotta et al., 2016;
Ajnakina et al., 2018), hereby leading to a rather heterogeneous
body of evidence and consequently emphasizing the need for
further research into the neurobiological underpinnings of
this association.

RISK FACTORS FOR SCHIZOPHRENIA
AND THE NEURODEVELOPMENTAL
HYPOTHESIS

Twin studies found a heritability of about 60–80% for
schizophrenia (Sullivan et al., 2003), and new genome-wide
association studies (GWASs) revealed a total of 145 genetic
risk loci, the single nucleotide polymorphisms (SNPs), each
with only a weak effect (Pardinas et al., 2018). GWAS-based
schizophrenia polygenic risk scores showed associations with
social and cognitive impairments during early childhood, which
were interpreted as being possible early manifestations of genetic
liability (Riglin et al., 2017). In schizophrenia, however, about
8,300 SNPs have been estimated to contribute to a common risk
of only 32% (Ripke et al., 2013), suggesting that—in addition to
the genetic background—environmental factors may be the basis
of pathophysiological processes (Manolio et al., 2009).

Schizophrenia has been regarded as a neurodevelopmental
disorder in which defective genes and environmental
factors interact and induce symptoms of the disorder. The
neurodevelopmental hypothesis proposes that schizophrenia
is related to adverse conditions, such as genetic background
and environmental factors, which lead to abnormal brain
development. Disorder onset and first symptoms occur in early
adulthood, after synaptic pruning (Weinberger, 1996; Fatemi
and Folsom, 2009). In the two-hit model, a neurodevelopmental
disturbance during the perinatal period may lead to dysfunction
of neuronal circuits and vulnerability to stress during vulnerable
brain periods, and later psychosocial stress or drug abuse, for
example, may then trigger the disorder (Schmitt et al., 2014).
Today, researchers propose that several hits in the form of
genetic and environmental risk factors may interact in a complex
way during key periods of neurodevelopment and cumulate
in the expression of the disorder state (Figure 1); these risk
factors are hypothesized to be common across neuropsychiatric
disorders such as schizophrenia, bipolar disorder, and major
depression (Davis et al., 2016). The neural diathesis-stress
model proposes that psychosocial stress acts upon a pre-existing
vulnerability and triggers the symptoms of schizophrenia
(Walker and Diforio, 1997). Specific stress factors have been
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FIGURE 1 | The figure contains a general outline of the three main pathophysiological pathways between childhood trauma and schizophrenic symptoms. These
pathways are meant to illustrate the pathological cascade ranging from molecular and (epi-) genetic abnormalities to neuroanatomical changes and eventually to the
development of disorder-related symptoms. HPA, hypothalamic–pituitary–adrenal axis; BDNF, brain-derived neurotrophic factor; COMT,
catechol-O-methyltransferase; FKBP5, FK506 binding protein 5; 5-HTTLPR, serotonin-transporter-linked polymorphic region; HDAC1, histone deacetylase 1; TOM,
theory of mind.

identified that trigger or worsen symptoms of the disorder,
such as perceived uncontrollable threats to important goals
and socio-evaluative threats (Jones and Fernyhough, 2007). In
addition, schizophrenia patients are more emotionally reactive
than non-psychiatric controls to stressors such as higher arousal
and anxiety (Docherty et al., 2009).

NEUROBIOLOGICAL EFFECTS OF
STRESS

Stress sensitization may play a role in schizophrenia by lowering
the vulnerability threshold for the disorder. The neurobiological
consequence of stress sensitization involves dysregulation of the
hypothalamus-pituitary-adrenal (HPA) axis, which is the major
stress neuroendocrine system of the body and is involved in
the production of the stress hormone cortisol by the adrenal
glands (Holtzman et al., 2013; Schmitt et al., 2014). A stress-
induced activation of the HPA axis contributes to dopamine
sensitization in mesolimbic areas and increases stress-induced
striatal dopamine release (van Winkel et al., 2008). These effects
are important because increased dopamine neurotransmission
with overstimulation of the D2 receptors in several brain regions
has been hypothesized in the pathophysiology of schizophrenia,
a hypothesis that is supported by the antipsychotic effects of
dopamine receptor antagonists (Falkai et al., 2011).

In animal models, acute or chronic stress decreased brain-
derived neurotrophic factor (BDNF) levels in the hippocampus,
which is involved in synaptogenesis (Neto et al., 2011). In

accordance with these findings, stress was found to reduce
hippocampal dendrites (Magarinos et al., 2011). Additionally,
application of glucocorticoids reduced hippocampal BDNF
levels, mimicking the stress reaction (Neto et al., 2011).
Animal models have shown that chronic stress or repeated
administration of glucocorticoids results in degeneration of
hippocampal neurons, with decreased soma size and atrophy
of dendrites (Sapolsky et al., 1990; Watanabe et al., 1992). This
stress-induced glucocorticoid neurotoxicity (Arango et al., 2001;
Frodl and O’Keane, 2013) may contribute to a volume loss in
vulnerable brain regions such as the hippocampus; hippocampal
volume reduction has been reported for schizophrenia even
in early disorder stages (Adriano et al., 2012). Moreover,
elevated glucocorticoids can suppress myelination and may affect
calcium channels (Damsted et al., 2011). Both mechanisms are
related to the pathophysiology of schizophrenia and result in
impaired macro- and microconnectivity (Berger and Bartsch,
2014; Cassoli et al., 2015).

In rodents, juvenile social isolation and maternal separation
are models of childhood stress, and these animal models
have shown lasting effects on the HPA axis along with
deficits in hippocampus-dependent learning and memory
(Bremne and Vermetten, 2001). The mouse model of juvenile
social isolation builds on social isolation immediately after
weaning: social isolation leads to schizophrenia-related
behavior, such as deficits in prepulse inhibition of the
acoustic startle response (PPI) and working memory and
decreased social exploration. Furthermore, deficits in
oligodendrocyte morphology, reduced myelin thickness,
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and decreased myelin basic protein and myelin-associated
glycoprotein expression have been detected in brain regions
(Varty et al., 2006; Makinodan et al., 2012) and resemble the
deficit of myelination and oligodendrocytes in schizophrenia
(Cassoli et al., 2015). Importantly, in contrast with the
effects of adult social isolation this early-induced phenotype
cannot be rescued by later social re-integration (Makinodan
et al., 2012), implicating impaired recovery, such as in
schizophrenia (Table 1).

STRESS RESPONSE IN PATIENTS WITH
SCHIZOPHRENIA AND INDIVIDUALS AT
ULTRA-HIGH RISK OF DEVELOPING
PSYCHOSIS

An increased release of glucocorticoids has been proposed to play
a role in the pathophysiology of schizophrenia (Corcoran et al.,
2003), and the stress-diathesis model proposes that schizophrenia
is associated with elevated baseline and challenge-induced HPA
activity (Walker et al., 2008). In addition, cortisol treatment
can induce psychotic symptoms (Walker et al., 2008). This
model is supported by reports of increased levels of blood
cortisol (Ryan et al., 2004) and a blunted cortisol response to
stress (Mondelli et al., 2010); the latter was suggested to reflect
impaired responsiveness of a desensitized system. Indeed, a
meta-analysis on stress-moderating effects of baseline cortisol
levels revealed that schizophrenia patients have lower cortisol
levels than controls during anticipation of social stress and
after exposure to it (Ciufolini et al., 2014). A reduced ability
of these patients to appropriately contextualize past experiences
has been hypothesized to underlie the missing cortisol response
in these experiments (Ciufolini et al., 2014). A blunted cortisol

TABLE 1 | Major animal models of early life stress corresponding to
childhood trauma.

Study Stress
paradigm

Effects on behavior Effects on brain
biology

Bahari-
Javan
et al., 2017

Maternal
separation

Short-term memory↓
Prepulse inhibition↓

Novel object
recognition learning↓

HDAC inhibitor MS-274
rescues ELS induced
impairment in PPI and
improves novel object
recognition learning

Hdac1 mRNA↑

HDAC1 protein↑

DNA-methylation of the
Hdac1 gene at the
glucocorticoid receptor
(GR-) binding site↓

Makinodan
et al., 2012

Juvenile
social
isolation

Social interaction↓

Working memory↓
No reversed behavior
by reintroduction to a
social environment

Oligodendrocytes with
simpler morphology
Myelin Basic Protein
mRNA↓

Myelin Associated
Glycoprotein mRNA↓

Myelin thickness↓
Neuregulin1 type III
mRNA↓

Varty et al.,
2006

Isolation
rearing

Prepulse inhibition↓

stress reactivity in schizophrenia patients was again reported
in a more recent meta-analysis by Zorn et al. (2017), who also
pointed toward a possible publication bias as well as an overall
small number of studies with properly standardized cortisol
protocols as limiting factors for the interpretation of these
findings. Moreover, treatment with antipsychotics may have
influenced the results (Walker et al., 2008). However, the HPA
axis response was also impaired in medication-naïve patients
with first-episode schizophrenia, i.e., the cortisol response
was flattened, indicating impairments in stress processing
(van Venrooij et al., 2012).

According to the neurodevelopmental hypothesis, prodromal
and psychotic symptoms occur for the first time in adolescence.
In adolescents at ultra-high risk of psychosis (UHR), increased
resting cortisol levels have been reported and associated
with higher rates of critical statements from relatives and
negative self-concept (Carol and Mittal, 2015), indicating that
a dysfunction of the HPA axis is related to environmental
characteristics. The cortisol level after awakening, which reflects
HPA regulation, was also increased in this patient group
compared with healthy controls (Nordholm et al., 2018).
Additionally, in UHR adolescents a reduced stress responsivity
of the HPA axis was correlated with smaller gray matter
volumes of the hippocampus and prefrontal, temporal, and
parietal cortices, which may represent the neural components
in the stress vulnerability model (Valli et al., 2016) (Figure 1).
Interestingly, those individuals who subsequently developed
psychosis showed a significant blunting of the HPA stress
response (Valli et al., 2016).

EFFECTS OF CHILDHOOD
MALTREATMENT ON EPIGENETIC
PROCESSES

In addition to effects on the hormone system, environmental
factors, such as childhood trauma, may contribute to genome–
environment interactions; these interactions are mediated
by epigenetic processes, such as DNA methylation and
histone modifications (Fischer, 2014). Hypomethylation of
DNA repetitive sequences has been detected in first-episode
schizophrenia patients with a history of childhood trauma
(Misiak et al., 2015). Inhibitors of histone deacetylases (HDAC)
have been suggested to improve cognitive function and
ameliorate disorder pathogenesis in neuropsychiatric disorders
such as schizophrenia (Nestler et al., 2016). In schizophrenia
patients, we found that the experience of childhood trauma
was related to increased HDAC1 levels in blood samples
(Bahari-Javan et al., 2017). This corresponds with recent findings
that HDAC1 levels are increased in the prefrontal cortex and
hippocampus of patients with schizophrenia (Benes et al.,
2007; Sharma et al., 2008; Bahari-Javan et al., 2017) (Figure 1).
Interestingly, in mice with early life stress as a model of childhood
trauma HDAC1 expression is increased in the prefrontal cortex
and hippocampus, and these mice display schizophrenia-like
behavioral phenotypes, such as deficits in PPI, working memory,
and synaptic plasticity (Bahari-Javan et al., 2017) (Table 1).
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The effects of childhood trauma on epigenetic mechanisms
and the relationship with cognition and disorder symptoms
should be investigated in more detail in larger studies in
schizophrenia patients.

CHILDHOOD TRAUMA IN
SCHIZOPHRENIA: EVIDENCE FROM
HUMAN STUDIES

Childhood trauma can be assumed to be a severe form of
stress that renders individuals more vulnerable to developing
schizophrenia. In a meta-analysis of 18 case-control studies
(including 2048 patients with psychosis and 1856 non-
psychiatric controls), 10 prospective studies (including 41,803
participants), and 8 population-based cross-sectional studies
(35,546 participants), Varese et al. (2012) found that adverse
experiences in childhood significantly increased the risk to
develop psychosis and schizophrenia. The group showed a
significant association between childhood adversity, including
trauma, and psychosis: the odds ratio was between 2.72 and
2.99, indicating a strong association between childhood adversity
and psychosis, including schizophrenia. Epidemiological studies
show that exposure to early stress in the form of abuse and neglect
in childhood increases the risk to later develop schizophrenia
(Bonoldi et al., 2013). In schizophrenia patients, the most
frequent subtype of trauma was emotional neglect, but rates
of physical abuse and physical neglect were also significantly
increased (Larsson et al., 2013). Childhood abuse and neglect
are known to have a negative influence on cognition in patients
with schizophrenia and bipolar disorder (Shannon et al., 2011).
In first-episode schizophrenia patients, exposure to childhood
neglect was a predictor for impairment in social cognition
and poorer verbal learning, whereas abuse was not (Kilian
et al., 2017). A study in Chinese patients with schizophrenia
reported that physical neglect was negatively correlated with
delayed memory and attention and with the total cognition
score (Li et al., 2017). A large study assessed 406 patients with
schizophrenia spectrum disorders with the Childhood Trauma
Questionnaire and found that physical abuse, sexual abuse,
and physical neglect were significantly associated with reduced
scores in working memory, executive function, and verbal tasks
(Aas et al., 2012b). In another study, metacognitive capacity was
lower in patients with childhood emotional abuse (Aydin et al.,
2016). Female patients who reported childhood physical abuse
had more psychotic and depressive symptoms than both women
without this history and men with or without a trauma history
(Kelly et al., 2016).

UHR individuals more frequently had a history of childhood
trauma, such as emotional and sexual abuse as well as emotional
and physical neglect, while emotional neglect in particular was
associated with paranoid symptoms (Appiah-Kusi et al., 2017).
Even in UHR individuals, a history of childhood maltreatment
predicted poorer functioning at follow-up in both those who had
transitioned to psychosis and those who had not (Yung et al.,
2015). Childhood trauma did not predict transition to psychosis,
but after a 2-year follow-up UHR individuals with higher levels

of childhood trauma had higher levels of attenuated positive
symptoms, general symptoms, and depressive symptoms and
lower levels of global functioning (Kraan et al., 2015). In children
born to parents with major psychoses, those who were exposed
to abuse or neglect had lower IQ and GAF scores and displayed
poorer cognitive performance in visual episodic memory end
executive functions (Berthelot et al., 2015).

INTERACTION OF CHILDHOOD TRAUMA
WITH GENETIC FACTORS

Gene–environment interactions have been suggested to play
a role in the pathophysiology of schizophrenia (Figure 1).
In 429 patients with schizophrenia or schizoaffective disorder,
the catechol-O-methyltransferase (COMT) genotype moderated
the effects of childhood trauma on cognition and symptoms
in methionine (met) carriers with a history of childhood
physical abuse and more severe positive symptoms; Met
carriers with a history of emotional neglect had more severe
negative symptoms (Green et al., 2014). In another study,
a variant of the FK506 binding protein 5 (FKBP5) gene
interacted with childhood trauma and affected attention in
both schizophrenia patients and healthy controls (Green et al.,
2015b). In patients with schizophrenia and affective disorders,
an interaction between a variant in the serotonin transporter
gene 5-HTTLPR and childhood trauma was observed in the
California Verbal Learning Test (Aas et al., 2012a). A variant
of BDNF Val66Met polymorphism was shown to moderate
the impact of childhood adversity on later expression of
affective symptoms in schizophrenia patients (Sahu et al.,
2016). In 249 patients with schizophrenia spectrum disorder,
carriers of the met allele of the BDNF gene exposed to high
levels of childhood physical and emotional abuse demonstrated
poorer cognitive functioning than monozygotic valine carriers.
Moreover, Met carriers exposed to childhood sexual abuse
showed reduced right hippocampus volume (Aas et al., 2013),
suggesting negative effects on neuroplasticity in the brain. On
an epigenetic level, a recent review concluded that childhood
trauma was associated with global DNA hypomethylation
and reduced BDNF gene-expression in first-episode psychosis
subjects (Tomassi and Tosato, 2017). However, the literature
on gene–environment relationship in the etiology of psychosis
is rather heterogeneous as the results from candidate gene
studies could quite frequently not be replicated (Zwicker et al.,
2018). Thus, epidemiological studies investigating the interplay
between familial and environmental factors in the development
of psychosis within large cohorts are another valuable resource
for further insight. Using these epidemiological approaches, it
was found that environmental risk factors, such as childhood
adversity, and a family history of affective and psychotic disorders
additively impact the psychosis risk across a multidimensional
spectrum of positive, negative, cognitive and affective symptoms
(Binbay et al., 2012; Pries et al., 2018; Radhakrishnan et al., 2018).
Moreover, studies repeatedly showed that childhood adversity
and familial liability increased the risk predominantly for positive
symptoms of psychosis, such as delusions and hallucinations, as
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well as affective symptoms (Jeppesen et al., 2015; Smeets et al.,
2015; Veling et al., 2016). Therefore, the connection between
childhood trauma, familial liability and the onset of psychosis is
increasingly being labeled as one of the key mechanisms of the
proposed “affective pathway” to psychosis (Isvoranu et al., 2017).

BRAIN STRUCTURAL AND FUNCTIONAL
CORRELATES OF CHILDHOOD TRAUMA

Emotional neglect in patients with schizophrenia was negatively
associated with total gray matter volume and specifically with
the density and volume of the dorsolateral prefrontal cortex,
which in turn predicted disorganization (Cancel et al., 2015).
Interestingly, additive effects of childhood trauma and being
a BDNF met carrier on volume loss in the hippocampal
subregions cornu ammonis (CA)4/dentate gyrus and CA2/3 have
been reported in schizophrenia (Aas et al., 2014). Childhood
maltreatment has been associated with reduced hippocampal
volume as well as amygdala hyperreactivity and was shown to
predict poor treatment outcome (Teicher and Samson, 2013).
A functional magnetic resonance imaging study showed that
childhood trauma exposure resulted in aberrant function of
parietal areas involved in working memory and of visual cortical
areas involved in attention. On the basis of these data, the authors
hypothesized that childhood trauma in psychosis contributes to
alterations in attention during performance of working memory
tasks (Quide et al., 2017a). During a theory-of-mind task that
reflected social cognition, childhood trauma was associated
with activation of the posterior cingulate gyrus, precuneus, and
dorsomedial prefrontal cortex in patients with schizophrenia
(Quide et al., 2017b). In addition, decreased connectivity between
the posterior cingulate/precuneus region and the amygdala was
shown in patients with high levels of physical neglect and
sexual abuse during childhood (Cancel et al., 2017) (Figure 1).
Finally, an fMRI study showed an increased brain response
to emotionally negative faces compared with the response to
positive faces in patients with psychosis and high childhood
trauma, as assessed by the Childhood Trauma questionnaire (Aas
et al., 2017). Overall, findings from MRI, genetic, and large-
scale gene expression and epigenetic studies often were not
reproducible and need to be replicated in larger samples before
final conclusions can be drawn.

LACK OF SPECIFICITY OF FINDINGS
FOR SCHIZOPHRENIA

It must be noted that effects of childhood trauma are not
specific for schizophrenia. In childhood-maltreatment related
post-traumatic stress disorder (PTSD), a recent meta-analysis
clearly showed bilateral reduction of hippocampal and amygdala
volumes in the PTSD group compared to healthy controls
(Ahmed-Leitao et al., 2016). In addition, cognitive deficits
in different domains such as general intelligence, language,
information processing, learning and memory and executive
skills have been observed in trauma-exposed children with PTSD

compared to controls. Trauma-exposed children with PTSD
had poorer general intelligence and visuospatial skills compared
with trauma-exposed children who did not develop PTSD
(Malarbi et al., 2017). Dysfunction of the HPA axis in PTSD has
been reported, particularly hypersensitivity of the glucocorticoid
receptor (GR). Single-nucleotide polymorphisms (SNPs) in the
GR and FKBP5 gene were associated with PTSD risk and
the FKBP5 gene SNP interacted with childhood adversity to
moderate PTSD risk (Binder et al., 2008; Castro-Vale et al., 2016).
Other neurochemical markers for PTSD include neurotrophic
factors such as BDNF (Bandelow et al., 2017). Regarding
epigenetic factors, DNA methylation is so far the best studied in
PTSD and could be responsible for long-lasting effects of gene–
environmental interactions (Rampp et al., 2014). Furthermore,
effects of parental trauma could be transmitted to the next
generation by epigenetic marks (Ramo-Fernandez et al., 2015).

A meta-analysis showed that childhood psychological abuse
and neglect were strongly associated with depression (Infurna
et al., 2016). Other factors of childhood maltreatment related to
adult depression were emotional abuse, sexual abuse, domestic
violence and physical abuse (Mandelli et al., 2015). Regarding
genetic factors, the corticotropin-releasing hormone receptor
1 (CRHR1) gene may moderate the effects of childhood
trauma on depression (Heim et al., 2009; Ressler et al., 2010).
BDNF gene methylation level was correlated with depression
(Chen et al., 2017).

TOOLS TO ASSESS CHILDHOOD
TRAUMA

In the field of childhood trauma research, it is not uncommon to
investigate early stress by clinically assessing whether some form
of maltreatment took place in the individual’s childhood without
applying standardized trauma or maltreatment questionnaires
(Choi and Sikkema, 2016; Green et al., 2017). However, in
the context of clinical studies and to further both the validity
and the reliability of the observed effects in childhood trauma
studies, standardized instruments should be used. Below, we
present a representative selection of the most commonly used
questionnaires because it would be beyond the scope of this
article to include all the available ones.

Overall, questionnaires on childhood trauma can be
categorized into instruments to diagnose PTSD and more
specialized assessment tools, whose goal is to assess childhood
maltreatment in depth rather than to validate a DSM or ICD
diagnosis. A vast number of PTSD-specific questionnaires
are available, but we will give an overview of three structured
interviews and one self-report measure. The Structured Clinical
Interview for DSM-IV (SCID) and the Composite International
Diagnostic Interview (CIDI) are structured interviews that cover
the entire spectrum of mental disorders and can be applied by
both trained professionals and trained lay interviewers. Both
interviews have a specific section on PTSD, are frequently used in
epidemiological studies and can be used to validate a suspected
diagnosis of PTSD (Kessler et al., 2007; Stein et al., 2014; Guina
et al., 2016). Another instrument that has also been extensively
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reviewed and is regarded by some as the gold standard in
diagnosing PTSD is the Clinician-Administered PTSD Scale
(CAPS). The CAPS is a 30-item structured interview that should
ideally be administered by clinicians and clinical researchers with
a working knowledge of PTSD (Weathers et al., 2001, 2018). In
addition to these structured interviews, the PTSD Checklist for
DSM-5 (PCL-5), a 20-item self-report measure that assesses the
20 DSM-5 symptoms of PTSD, can be used to solidify a PTSD
diagnosis (Franklin et al., 2018).

Besides these PTSD-specific diagnostic instruments, a large
group of questionnaires focuses on distinct types of childhood
maltreatment that do not automatically have to fulfill the PTSD
criteria. Childhood maltreatment is usually assessed along the
domains of abuse (physical, sexual, emotional/psychological) and
neglect (emotional/psychological, physical) (Hovdestad et al.,
2015). The most commonly used childhood maltreatment self-
reports and semi-structured interviews are described here.
The Childhood Trauma Questionnaire (CTQ, Bernstein et al.,
1997) is one of the most frequently used self-reports in
the current literature (Viola et al., 2016). It has a total of
28 items and measures the above mentioned five types of
maltreatment, i.e., emotional, physical, and sexual abuse, and
emotional and physical neglect. It also includes a three-item

minimization/denial scale to assess the potential underreporting
of maltreatment. Another common self-report tool is the
Personal Safety Questionnaire (PSQ), which is based on the
Conflicts Tactics Scales (Straus and Douglas, 2004). The PSQ
queries the occurrence of specific incidents and mainly focuses
on physical or sexual abuse; it can be used to sequentially assess
incidents that occur in childhood, adolescence, or adulthood.
This feature allows researchers to examine both the type (physical
or sexual) and timing of abuse over life periods (Rich-Edwards
et al., 2011). A questionnaire that specifically focuses on sexual
abuse in childhood is the Child Sexual Assaults Scale (CSAS,
Koss et al., 1987). This instrument assesses sexual abuse along
five subscales: demographic variables subscale, PTSD symptom
subscale, center for epidemiologic studies depression subscale,
traumatic events questionnaire, and childhood sexual experiences
subscale (Yampolsky et al., 2010). An advantage of the CSAS
is that it not only assesses possible traumatizing sexual events,
but it also checks for PTSD and affective symptoms, therefore
mirroring the complex nature of this kind of childhood trauma.
Because large multi-center studies have become more important
in today’s psychiatry, the Early Trauma Inventory Self Report
(ETI-SR) represents a powerful assessment tool that has the
advantage of being validated many languages (German, French,

FIGURE 2 | The graph depicts the different workflows in traditional statistics compared with machine learning approaches. In traditional statistics, one approaches a
dataset with predefined assumptions, reduces the entire dataset according to those assumptions and then tests a certain hypothesis for significance. In contrast,
unbiased machine learning approaches split the dataset into training and test data and let an algorithm learn from the training data in an unbiased and
hypothesis-free manner. The evaluation of the analysis then depends on how well the model performs when applied to the test data. These two approaches can
yield quite different results.
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Chinese, Spanish, Portuguese, Plaza et al., 2012). The ETI-SR
is a 56-item inventory that assesses the presence of childhood
trauma with a series of “yes or no” questions and includes
specific items for physical (9 items), emotional (7 items), and
sexual abuse (15 items) and general trauma (31 items). It also
assesses the frequency of trauma, age at trauma, perpetrator,
and other variables before age 18 (Bremner et al., 2007; Plaza
et al., 2011). The Traumatic Life Events Questionnaire (TLEQ)
can be a viable alternative if a broader perspective on possible
traumatic or adverse life events is desired. This tool assesses
exposure to 16 types of potentially traumatic events, including
natural disasters, exposure to warfare, unexpected death of a
loved one, severe physical assault, different forms of sexual abuse,
and experiences of stalking, and also accounts for the frequency
and severity of the named traumatic experiences (Kubany et al.,
2000). A rather brief self-report questionnaire is the Adverse
Childhood Experiences (ACE) questionnaire (Felitti et al., 1998).
In a total of 17 questions, this questionnaire assesses childhood
abuse within the domains of psychological, physical, and sexual
abuse. Additionally, it sets itself apart from many other self-
reports because it also includes four categories of childhood
exposure to household dysfunction, i.e., substance abuse, mental
illness, violent treatment of mother or stepmother, and criminal
behavior in the household.

With regards to semi-structured interviews, two more
questionnaires are of interest because they both have specific
advantages and can be useful in clinical studies: The Early
Trauma Inventory and the Children’s Life Events Scale (CLES).

The former instrument is a semi-structured interview that
assesses four domains of traumatic experiences (physical,
emotional, and sexual abuse and general traumatic experience)
and then addresses the most serious trauma in an additional
question (Bremner et al., 2000). This additional question can be
very useful in clinical settings because of the potential need for
an extended conversation about the most burdensome issue. The
CLES, which is an expansion of The Source of Stress Inventory
(Chandler, 1981), is a checklist composed of 50 moderate-to-
major stressful childhood events that covers categories such
as negative emotional feedback, family deaths, maltreatment,
failure in school, and family dysfunction (Crossfield et al., 2002;
Grandin et al., 2007).

When selecting a questionnaire, equally important to the
frequency of use is the analysis of the resulting dataset. Therefore,
in the next section we critically discuss current analysis methods
and give an outlook on advanced mathematical analysis methods.

NOVEL APPROACHES FOR ASSESSING
AND ANALYZING CHILDHOOD
MALTREATMENT

Childhood trauma poses several challenges when it comes to
data integration and data analysis, mainly with regards to the
temporal resolution and the reciprocity and interdependency
of the observed phenotypes. The temporal problem arises
because most adverse events, which presumably occurred

FIGURE 3 | The figure depicts the most widely used supervised and unsupervised learning algorithms. NN, neural network; DBSCAN, Density-Based Spatial
Clustering of Applications with Noise; OPTICS, ordering points to identify the clustering structure; PCA, principal component analysis; ICA, independent component
analysis; PLS, partial least squares.
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in childhood, can only be assessed retrospectively and are
therefore prone to a certain recollection bias (MacDonald et al.,
2015). Furthermore, the sequence in which adverse events
in childhood were experienced and psychiatric symptoms
developed is often unclear. Another issue lies in the reductionist
steps that most studies take during “preprocessing” of the
data on adverse experiences or events. In the first step, the
data are categorized into specific overarching domains, such
as physical or emotional abuse (Morgan and Fisher, 2007),
which removes a great amount of the detailed information
given by the individual. The next quite common reductionist
step is to build sum scores for these domains or, in some cases,
a total score for all domains (Hovdestad et al., 2015). In this
second step, information given by patients is summarized
into nominal or ordinal categories, for example “childhood
trauma present” versus “childhood trauma absent” or “high
childhood trauma,” “medium childhood trauma,” and “low
childhood trauma” (Daruy-Filho et al., 2011; Agnew-Blais and
Danese, 2016). This step removes a great amount of variance
and heterogeneity within the dataset that could be important
for future analyses. Overall, these preprocessing steps take the
interdependency and reciprocity of these adversary factors and
their association with the observed psychopathology out of
the equation. The possible interactive effects between various
kinds of adverse experiences, psychopathological symptoms,
and organic features (i.e., structural and functional MRI,
DNA variants, gene expression, or epigenetic mechanisms)
of the affected individual are largely removed. Thus, most
current studies in the field of childhood trauma research are
trying to investigate a highly dynamic phenomenon, in which
various risk and protective factors interact with each other
and produce complex clinical and organic phenotypes, with
simplified models that use ordinal and nominal grouping
and univariate statistics (Figure 2). At the same time, age
and sex are mostly controlled for, even though age- and
sex-specific effects are found in various psychiatric disorders
(Cascio et al., 2012; Gur and Gur, 2016). Based on these
methodological issues, the potential advantage of using unbiased
and explorative machine learning and multivariate analysis
techniques becomes evident (Dwyer et al., 2018b; Jollans
and Whelan, 2018). While supervised learning algorithms
such as neural networks, tree-based algorithms and vector
machines can deliver insights into psychiatric disorders
through classification and regression of labeled training data
(Bzdok et al., 2018), unsupervised learning algorithms are
able to complement this by uncovering latent structures
within an unlabeled training dataset (Figure 3). Hence, latent
variable models based on factor analysis or singular value
decomposition (i.e., principal component analysis, non-
negative matrix factorization, partial least squares) might
be used to explore associative effects between variables of
interest (Jessen et al., 2018; Stein-O’Brien et al., 2018). In
this context, these associative effects could then be used
to further explore causal links between different kinds of
childhood adversity, psychopathology, and organic features,
e.g., MRI images or DNA expression profiles (Krakauer
et al., 2017). Other unsupervised techniques like hierarchical

clustering or self-organizing maps could be employed to find
mathematically sound clusters of adverse childhood effects
or certain phenotypical or organic patterns of childhood
trauma, that would be lost if one kept to the overly restrictive
approach of using DMS diagnoses or categorical/nominal
grouping of childhood trauma loading (Dwyer et al., 2018a).
Another interesting topic for analysis with multivariate tools
is the timeline of each individual, which is defined by specific
childhood trauma experiences and onset and development of
certain symptoms.

The effect of childhood trauma on psychopathology and
organic variables, such as brain structure and DNA variants
(see above), cannot be reduced to a static observation,
and we need to consider longitudinal data, the course of
disorder, and the biography of each individual. Therefore,
mixture models involving (Hidden) Markov Models, Directed
Graphical Models, and Bayesian Networks, would help to model,
predict and consequently explain the connection and evolution
of childhood trauma, psychopathology, and, if desired, its
organic correlates (Orphanou et al., 2014; Ryali et al., 2016;
Seltman et al., 2016). Some of these approaches have already
been undertaken in the field of PTSD research (Galatzer-
Levy et al., 2014; Karstoft et al., 2015); however, to our
knowledge in the field of childhood trauma and psychosis
research no studies have yet been published on machine
learning techniques (Figure 1). Therefore, this still unexplored
field of unbiased, data-driven childhood trauma research has
exciting potential and should be one of the priorities for
future research.
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Early life adversity (ELA)- including childhood physical, emotional, and sexual
abuse, as well as childhood neglect- is an important predictive factor for negative
psychopathology, including Major Depressive Disorder (MDD). ELA can epigenetically
regulate key emotional and behavioral systems in ways that can stably persist into
adulthood and contribute to the development of MDD and other psychopathology. DNA
methylation has been one of the most investigated forms of epigenetic regulation in ELA
to MDD pathway. From these studies, genes and sites associated with ELA/MDD have
been identified and should be further investigated in order to identify potential avenues
for intervention.

Keywords: epigenetics, major depressive disorder, early life adversity, DNA methylation, biomarkers,
antidepressant therapies

INTRODUCTION

Early life adversity (ELA)- which includes forms of child maltreatment such as physical abuse,
sexual abuse, psychological and emotional abuse, and childhood neglect- remains a major public
health and welfare issue in high income countries (Krugers et al., 2017). It is defined as any act that is
either actively conducted, or neglected to be conducted, by a parent or caregiver that either harms or
has potential to harm a child, regardless of intent. These acts include physical abuse such as hitting,
punching, beating, strangling, and shaking, sexual abuse such as penetration, sexual contact, and
exposure to sexual activity, emotional and psychological abuse such as terrorizing, intimidating,
and belittling, and forms of neglect such as failure to provide clothing, food, shelter, or neglect in
seeking medical care for a child (Leeb et al., 2008). Overall, the various forms of ELA are estimated
to affect approximately 10–15% of children (typically categorized as individuals under the age of
18). Specifically, between 4 and 16% of children experience physical abuse, and approximately 15%
of children are subjected to sexual abuse annually (Fergusson et al., 2000; Woodman et al., 2008;
Gilbert et al., 2009).

In the United States, approximately 80% of substantiated ELA cases are found to be
perpetuated by either one or both parents, with 77% of physical abuse, 26% of sexual abuse,
81% of emotional/psychological abuse, and 87% of neglect cases being perpetrated by a
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parent (US Department of Health and Human Services, 2008;
Jonson-Reid et al., 2012; Nemeroff, 2016). Additionally, 29%
of sexual abuse cases are perpetrated by a non-parent relative
(Fergusson et al., 2000). It is worth noting that these estimates
reflect only officially reported and substantiated cases, and that
the actual burden of ELA likely exceeds these estimates.

This substantial phenomenon of ELA is of particular
importance as a public health issue considering that repeated
exposure to ELA, as well as exposure to multiple types
of ELA, has the potential to inflict severe and lasting
physical and psychological consequences that represent serious
public healthcare and legal costs, as well as increased risk
of mortality (Gilbert et al., 2009). ELA has been shown
to contribute significantly to the risk of criminal behavior,
childhood/adolescent behavioral problems, general physical
heath, obesity, promiscuity, prostitution and sex trading,
substance use, attempted suicide, and various psychopathologies
such as post-traumatic stress disorder (PTSD), and Major
Depressive Disorder (MDD), bipolar disorder, and conduct
disorder (Thomas et al., 2008; Gilbert et al., 2009; Weder et al.,
2014; Nemeroff, 2016; Krugers et al., 2017).

The role of ELA in the development of MDD is of particular
interest with regard to public health and welfare, as MDD is
the leading cause of global disability, affecting over 300 million
people worldwide (World Health Organization [WHO], 2017). It
is characterized by persistent depressed mood and loss of interest
and pleasure, and may also include symptoms such as weight loss
or gain, insomnia or hypersomnia, fatigue, loss of motivation or
concentration, recurring thoughts of death, and suicidal ideation
(Zajecka et al., 2013).

It is believed that exposure to repeated ELA may increase
risk for MDD by cumulating in a hostile and unstable early
environment that may trigger adaptive responses in the brain
in crucial response systems (such as stress and emotional
regulation). There is evidence that these regulatory changes can
stably and radically impact aspects of personality development
and cognitive functioning in ways that can increase the risk
for MDD and associated psychopathologies (Saavedra et al.,
2016). The etiology underlying the pathophysiology of MDD
is a complex and often varied interplay between genetic,
epigenetic, environmental, clinical, and social factors. Research
suggests that one of these factors-ELA-can trigger epigenetic
alterations (through events such as DNA methylation) in
neural systems and genes associated with increased stress
response [such as the in the hypothalamic pituitary adrenal
axis (HPA)] as a survival mechanism. The persistence of these
epigenetic changes often become maladaptive as the early life
environment changes, but the altered function of the stress
systems does not. While it is not fully understood how these
alterations contribute specifically to MDD symptomology, DNA
methylation events in these systems in individuals who have
experienced ELA have been associated with MDD (Saavedra et al.,
2016; Pishva et al., 2017).

It is worth noting that ELA itself is a complex set
of phenomena that increases the complexity of MDD
pathophysiology, and includes different severities and
consequences. There is evidence of a dose-response relationship

between ELA and psychopathologies such as MDD, wherein
a higher severity of childhood adversity has been linked to
increased incidence of psychopathology, higher comorbidity
among psychiatric diagnoses, and more severe symptoms
within diagnoses (Edwards et al., 2003; Chapman et al.,
2004; Heim and Binder, 2012).

With respect to MDD specifically, ELA has been shown to
correspond to a more severe course of depression, particularly in
terms of increased chronicity, resistance to psychopharmacology
and psychotherapy, and greater presentation of atypical
symptoms (such as hypersomnia, increased appetite, and
increased sensitivity to rejection) (Withers et al., 2013).

There is evidence that certain factors, such as microstructural
differences in white matter, as measured by fractional anisotropy,
and increased neural fiber connectivity, may be protective against
the development of MDD in individuals who experienced ELA.
Fractional anisotropy measures the anisotropic movement of
water molecules (thought to be important in extrasynaptic
communication) associated with fiber bundles (Morgan et al.,
2013). One study found that unaffected first degree relatives
of individuals with MDD, who also experienced ELA, had
significantly increase fractional anisotropy in the right frontal
and orbitofrontal lobes, corpus callosum, inferior fronto-occipital
fasciculus (IFO), left superior longitudinal fasciculus (SLF) and
right fornix (Frodl et al., 2012).

However, resilience is a complex topic in ELA and
MDD research, and personal coping mechanisms, behavioral
factors, and the presence of positive interpersonal influences
concurrent with the ELA were not examined in this study.
Epigenetic regulation related to the growth factor brain-derived
neurotrophic factor (BDNF) may also play a role in conferring
resilience to MDD in these circumstances, and deserves further
investigation (Krishnan et al., 2007). Due to all of these
intersecting factors, resilience from MDD in the presence of ELA
is therefore difficult to study and adequately quantify. Regardless,
while certain biological and environmental factors may act as
protective factors against MDD development in individuals who
have experienced ELA in ways that are not yet fully understood,
it remains true that ELA is one of the greatest risk factors for the
development of MDD (Saavedra et al., 2016).

Considering the prominent role that severe ELA plays in
the development of MDD, and the overall prevalence of MDD,
these figures indicate that ELA imposes a substantial social,
economic, and public health cost upon society. Due to this,
research identifying the mechanisms of action in the ELA to
MDD pathway could prove to be a great asset in the development
of clinical treatments of MDD. One mechanism by which ELA
has been shown to influence emotional and stress regulation
systems is epigenetic regulation, such as DNA methylation
(Cecil et al., 2016). Although other forms of ELA have been
examined with respect to the ELA to MDD pathway, DNA
methylation remains one of the most predominately studied,
and will serve as the focus of this review. Here, we will
first explore how DNA methylation has been implicated in
ELA and MDD, and then examine how DNA methylation
also has the potential to impact clinical research into MDD
diagnosis and treatment.
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DNA METHYLATION IN ELA/MDD

Epigenetic regulation describes any regulatory event which
causes alterations in gene expression without changes to
the original DNA sequence. Various forms of epigenetic
regulation have been extensively studied as causal factors
in the depression endophenotype in individuals who have
experienced ELA, including DNA methylation, histone
modifications, and microRNA.

DNA methylation is one of the most well-investigated forms
of epigenetic regulation and has been studied as a causal factor in
the development of MDD in both candidate gene and genome
wide studies (Lutz et al., 2015). During DNA methylation, the
DNA is covalently modified via addition of a methyl group to a
cytosine nucleotide. This phenomenon is particularly common
in cytosine-guanine dinucleotides (CpGs) (Jin et al., 2011).
The methylation status of the nucleotide is read by methyl
CpG-binding domain (MBD) proteins- such as MeCP2 and
MBD1-4- which interact with histone deactylases and DNA-
methyltransferases that induce chromatin condensation (Chen
et al., 2003; Chahrour et al., 2008; Guy et al., 2011). When
methylation is found in promoter regions, it can interfere
with transcription factor binding and lead to gene silencing.
Conversely, site specific dissociation of the MBDs – specifically
MeCP2- have been associated with demethylation, and have been
implicated to play a major role in maintaining DNA methylation
status (Martinowich et al., 2003).

During prenatal development, DNA methylation patterns are
crucial to the process of cell differentiation. However, changes in
DNA methylation occur beyond this period, as a mechanism that
helps the genome adapt to external signals in the environment.
This form of DNA methylation allows the genome to adjust its
function through diverse -yet stable- changes. This is one possible
mechanism by which environmental stressors such as ELA may
trigger epigenetic changes that could ultimately contribute to
psychopathology such as MDD (Turecki, 2014).

GENOME-WIDE AND MULTIPLE LOCI
STUDIES

Human Post Mortem Brain Tissue
Studies
In addition to approaches based on the investigation of candidate
genes, the role of DNA Methylation in ELA/MDD has also
been examined using larger-scale, genome-wide studies. One of
the earliest studies examined hippocampal tissue from French
Canadian men with a history of severe childhood abuse (who
also died by suicide) using meDIP, an antibody targeting
methylated cytosines, coupled with an tiled array containing gene
promoters. Differential DNA methylation indicated that 248 sites
were hypermethylated and 114 were hypomethylated (Labonté
et al., 2012). Significant differences involved genes implicated
in cellular or neural plasticity, and some of these findings
included histone cluster 2 H2ab (HIST2H2AB), nuclear receptor
subfamily 1, group D, member 1 (NR1D1); and amyotrophic

lateral sclerosis 2 (ALS2). Specifically, in vitro analysis of
ALS2 methylation levels indicated functional effects on gene
expression- supporting the hypothesis that ELA contributes to
cell-type specific reprogramming of the epigenome in ways
that may influence emotional and behavioral dysregulation
(Lutz et al., 2015).

In another region of the brain that is hypothesized to
be implicated in ELA/MDD- the anterior cingulate cortex
(ACC) – genome-wide DNA methylation was assessed using
reduced representation bisulfite sequencing (RRBS) in human
post mortem brain tissue of depressed suicides who experienced
ELA (Table 1) (Lutz et al., 2017b). In this study, the most
significantly differentially methylated genes were those related
to myelin and oligodendrocytes. Specifically, the three most
differentially methylated genes were LINGO3 (which codes
for LINGO proteins that are implicated in myelination),
POU3F1 (a transcription factor that controls myelination),
and ITGB1 (an integrin that mediates oligodendrocyte and
axonal interactions). These findings suggested that ELA may
lead to myelin alterations, a conclusion also supported by
both transcriptomic and morphological changes observed in
this study using other techniques (Table 1) (Lutz et al.,
2017b), and consistent with pre-clinical studies indicating that
a critical period in the early social environment regulates
myelination that in turn is essential for normal cognitive function
(Makinodan et al., 2012).

Peripheral Tissue Studies
Other studies evaluated DNA methylation changes associated
with ELA, using peripheral samples. A study investigating
methylation in the promoter region of over 20 000 genes,
including 489 coding for miRNAs, in the blood DNA of males in
the 1958 British Birth Cohort found 997 differentially methylated
gene promoters associated with ELA (311 hypermethylated
and 686 hypomethylated), which were enriched for genes
involved in processes such as transcriptional regulation and
development. Additionally, they observed ELA associated
methylation in thirty-one miRNA genes, six of which showed
hypermethylation consistent with hypomethylation observed
in their downstream gene targets (Suderman et al., 2015).
Another genome wide study by Weder et al. (2014) used the
Illumina 450K BeadChip array to determine potential sites of
differential methylation that could predict depression in saliva
samples collected from maltreated children compared to non-
traumatized. Three genes emerged as predictors of depression
in combination with ELA: DNA-Binding Protein Inhibitor
ID–3 (ID3); and Tubulin Polymerization Promoting Protein
(TPPP) (Weder et al., 2014); and the neurotransmitter gene
glutamate receptor, ionotropic N-methyl-D-aspartate 1 (GRIN1)
(Weder et al., 2014).

More recently, the Illumina 450K BeadChip array was used
by the same group in another study of ELA and MDD that
sought to predict differential DNA methylation in maltreated
children. In this study (Kaufman et al., 2018), methylation of the
Orthodenticle homeobox 2 (OTX2) gene significantly predicted
depression in saliva samples of maltreated children compared to
controls (Table 1) (Kaufman et al., 2018).
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TABLE 1 | Summary of studies investigating clinical applications of ELA and MDD research involving- or related to – DNA methylation in ELA and MDD.

Reference Sample
Size∗

Adversity Group Sample Purpose Methodology Data

Fuchikami et al., 2011 38 (20+18) MDD Blood Diagnostic
biomarker

Bisulphite sequencing DNA methylation in
BDNF

Lopez et al., 2013 25 Treatment naïve
MDD

Blood Antidepressant
efficacy biomarker

qRT-PCR BDNF concentration

Perroud et al., 2013 167
(52+115)

BPD and ELA Blood Psychotherpay
efficacy biomarker

High-resolution melt
assay

DNA methylation in
BDNF

Mundorf et al., 2018 60 MDD and ELA Buccal cells Diagnostic
biomarker

Bisulfite sequencing
(with EpiTect Kit)

DNA methylation in
MORC1

Covington et al., 2009 Mouse
model

Chronic social
defeat

Mouse NaC
tissue

Antidepressant
efficacy biomarker

Gene expression arrays Expression levels of 12
genes in the NAc

Melas et al., 2012 Mouse
model

Flinders sensitive
line (FSL) genetic
rodent model of
depression

Mouse
prefrontal
cortex
tissue

Antidepressant
efficacy biomarker

Pyrosequencing DNA methylation in P11

Lutz et al., 2017b 78 (52+26) MDD/suicide +ELA
and MDD/suicide
without ELA

Human
post
mortem
ACC Tissue

Quantifying
myelination
alterations in MDD

bisulfite sequencing/
RNA sequencing/
stereology and
coherent anti-Stokes
Raman scattering
microscopy.

Methylation and
expressionlevels of
myelin related genes,
and imaging of
oligodendrocytes and
myelinated axons

Kaufman et al., 2018 157 Children who
experienced ELA

Saliva and
neuroimaging
data

Predicting
depression in
children who
experienced ELA

Illumina 450?K
beadchip/fMRI

DNA methylation in
OTX2 and functional
connectivity between
the ventromedial
prefrontal cortex and
structures of the medial
frontal cortex

Sacchet and Gotlib,
2017

80 (40 +40) MDD Neuroimaging
data

Quantifying
myleination
alterations in MDD

qMRI Whole brain, Nac,
lateral PFC myelin levels

∗sample size: total (adversity group+ control cohort).

Neuroimaging
Imaging data revealed that methylation of OTX2 is associated
with increased functional connectivity between the ventromedial
prefrontal cortex and structures of the medial frontal
cortex that have been implicated in MDD- such as the
paracingulate gyrus, frontal pole, and subcallosal gyrus (Table 1)
(Kaufman et al., 2018).

CANDIDATE GENES

HPA Axis
Numerous candidate gene studies have also investigated the
relationship between ELA, depressive symptoms, and DNA
methylation. The majority of these studies have been performed
in peripheral samples such as blood and saliva. However, studies
utilizing brain and CNS related tissues and systems have also
been widely performed in both animal models and human post
mortem tissue studies. One biological system in particular, the
hypothalamic-pituitary-adrenal (HPA) axis has been the focus of
many of these studies.

The HPA axis is a primary stress response system in
mammals that has been extensively studied for its role in various
psychopathologies including MDD, bipolar disorder, hypersexual

disorder, and behaviors like habitual smoking (Rohleder and
Kirschbaum, 2006; Chatzittofis et al., 2016; Murri et al., 2016).
The HPA response begins in neurons in the paraventricular
nucleus (PVN) of the hypothalamus, where the neurohormones
CRF and arginine vasopressin (AVP) are released into blood
vessels between the hypothalamus and pituitary gland. The
pituitary gland is then stimulated to secrete adrenocorticotropic
hormone (ACTH) into the circulation to induce the synthesis
and secretion of glucocorticoids like cortisol from the adrenal
glands (Pariante and Lightman, 2008; Perroud et al., 2011;
Keller et al., 2016).

Studies have demonstrated that ELA can foster HPA axis
dysfunction in ways that increase susceptibility to depression.
Specifically, this dysfunction may result from disturbances to
the negative feedback system of the HPA axis, which is partially
controlled by the expression of the glucocorticoid receptor
(GR/NR3C1) in the hippocampus, expression of the CRF gene, or
changes in FKBP5 expression- a gene responsible for stabilizing
the conformation of the GR (Pariante and Lightman, 2008;
Keller et al., 2016).

Animal Models
Animal models of maternal care have provided a substantial
contribution to the understanding of the relationship between
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the early environment and functioning of the HPA axis. Rats
who receive decreased maternal attention in the form of low
licking-grooming (LG) behavior in the first week of life have been
found to show increased HPA stress responses and hypothalamic
corticotrophin releasing factor (CRF) expression, and decreased
GR expression and glucocorticoid feedback sensitivity compared
to high LG rats. This is due in large part to differential
methylation of the GR/NR3C1 gene which is downregulated in
low LG rats, with increased DNA methylation being observed in
the promoter region (exon 17) of NR3C1 in the hippocampus,
which persists into adulthood (Weaver et al., 2007, 2014).

In addition to NR3C1, hypothalamic corticotrophin releasing
factor (CRF), also plays a key role in this feedback system and
exerts control over the HPA axis and other stress responses in the
brain. Mice subjected to chronic social defeat display decreased
DNA methylation in the CRF gene, leading to sustained
upregulation of CRF in neurons of the paraventricular nucleus
(PVN) in the hypothalamus (Elliott et al., 2010). This ELA model
leads to stress-induced phosphorylation of MeCP2, which results
in MeCP2 being dissociated from the inhibitory complex of
methylated CpG sites in the CRF promotor region, resulting in
increased transcription. This mechanism of CRF upregulation is
supported by the observation that mice with MeCP2 knockouts
in the PVN present with abnormal physiological stress responses
(Fyffe et al., 2008). Conversely, a rat model of chronic mild stress
actually demonstrated increased DNA methylation of the CRF
promoter in the PVN, indicating that sex-specific and/or dose-
dependent effects may play a role in altered HPA axis activity
(Sterrenburg et al., 2011).

Human Post Mortem Brain Tissue
Studies
Human post mortem brain tissue studies have also demonstrated
ELA-associated epigenetic changes in the HPA axis, as
hippocampal tissue obtained from individuals who died by
suicide and experienced ELA (particularly severe childhood
abuse) displayed an increase in NR3C1 methylation,
and decreased NR3C1 expression (McGowan et al., 2009;
Suderman et al., 2012).

Finally, in the neurons of the hypothalamic paraventricular
nucleus, increased arginine vasopressin (AVP) release
accompanied by HPA axis hypersensitivity has also been linked to
hypomethylation in reduced maternal care animals, in a similar
mechanism to CRF hypomethylation (Murgatroyd et al., 2009).

Peripheral Tissue Studies
The GR regulating gene, FKBP5, has also been the subject of
several studies investigating differential methylation in peripheral
tissue. Certain polymorphisms of FKBP5 (rs1360780, rs9296158,
rs3800373, and rs9470080) interact with ELA to predict MDD
and suicide attempts (Roy et al., 2010; Appel et al., 2011). One
study by Klengel et al. (2012) examined FKBP5 methylation levels
in the blood of individuals with a history of ELA and found
hypomethylation in intron seven. Another study collected saliva
samples from children who had experienced ELA, and assessed
them for DNA methylation levels at two CpG sites in intron

seven of FKBP5 (Tyrka et al., 2015). Once again, hypomethylation
was found at both sites in intron seven. It was hypothesized
that increased cortisol release following ELA in FKBP5 risk
allele carriers would signal differential methylation in FKBP5
and disrupt the feedback loop responsible for FKBP5 and GR
activity, leading to stress response dysregulation and increased
susceptibility to MDD (Tyrka et al., 2015).

NEUROTRANSMITTERS

DNA methylation in neurotransmitter genes has also been
explored in CNS and peripheral human samples, as well as animal
studies, with respect to the ELA to MDD pathway. In addition
to the previous discussed Weder et al. study that implicated the
neurotransmitter gene glutamate receptor, ionotropic N-methyl-
D-aspartate 1 (GRIN1) in ELA/MDD, one gene, 5-HT2A, has
been explored in the prefrontal cortex (PFC) for its potential
contribution to ELA related MDD and suicide (Du et al.,
2000, 2001; De Luca et al., 2007, 2009). One particular 5-
HT2A polymorphism, the C allele (C102T), has been associated
with depression and suicide, and has been found to be more
abundant in the PFC of suicides. Although non-significant
hypomethylation differences were found in the C allele in
suicides, hypermethylation was reported in suicide ideators,
indicating potential differential methylation patterns between
these two groups (De Luca et al., 2009).

In the anterior insula, downregulation of the kappa opioid
receptor (Kappa) and decreased DNA methylation in the
second intron of the Kappa gene has been found in depressed
suicides who experienced ELA. This intron serves as a genomic
enhancer in GR binding regulated Kappa expression; indicating
a mechanism by which endogenous opioids act on stress systems
(Lutz et al., 2017a).

Numerous studies have investigated the serotonin transporter
gene SLC6A4, which facilitates neurotransmitter reuptake at
serotonergic synapses. Hypermethylation has been demonstrated
at various CpG sites in ELA cohorts depending on sex, ELA
magnitude, and type of ELA experienced (ex. physical versus
sexual abuse) (Vijayendran et al., 2012; Alexander et al.,
2014; Booij et al., 2015; Frodl et al., 2015). ELA related
SLC6A4 promoter DNA methylation status was also found
to be significantly associated with more severe pre-treatment
presentation of depressive symptoms, elevated stress, and higher
family history of psychopathology (Menke et al., 2012).

GROWTH FACTORS

Growth factors, such as brain derived neurotrophic factor
(BDNF) and glial cell-derived neurotrophic factor (GDNF), also
show differences in expression and DNA methylation related to
ELA and MDD. In particular, BDNF has been the subject of
significant basic and clinical research with regards to ELA/MDD,
as it has been the subject of candidate gene studies, and shows
promise as a biomarker and target for epigenome targeted
antidepressant therapy.
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In the nucleus accumbens (NAc), glial cell-derived
neurotrophic factor (GDNF) expression appears to be reduced in
chronic early life stressed mice with anxiety- and depressive-like
behaviors. This reduction appears to be due to increased DNA
methylation related to increased MeCP2 binding (Chahrour
et al., 2008; Uchida et al., 2011).

The brain derived neurotrophic factor (BDNF) gene is
expressed in the adult PFC, and plays a critical role in
neural and behavioral plasticity, and the development of
psychiatric disorders such as depression, bipolar disorder, and
schizophrenia when coupled with ELA (Kundakovic et al., 2014).
Hypomethylation of BDNF has been observed in both human
PFC tissue in individuals who have experienced ELA, as well as
in the PFC of rats exposed to early life stress (Roth et al., 2009;
Roth and Sweatt, 2011).

With a significant amount of research substantiating the
biological relevance of genes such as BDNF in the development
of ELA related MDD, reliable estimates of methylation at this
locus could potentially be used as a diagnostic tool (Table 1)
(Fuchikami et al., 2011; Kundakovic et al., 2014).

Taken in context with the established ELA related behavioral
vulnerabilities that BDNF methylation alterations represent,
blood BDNF expression and methylation levels could potentially
be of clinical use as a tool in clinical care of psychopathologies
such as MDD, when coupled with the presentation of symptoms
and a reported history of ELA (Shonkoff et al., 2009).

One study examined two BDNF CpG islands (I and IV) as
potential diagnostic biomarkers of MDD. Examining methylation
levels at CpG islands I and IV in human cohorts of MDD patients
and healthy controls, it was found that CpG 1, but not IV, levels
could accurately discriminate controls from the MDD cohort.
While this study utilized a relatively small sample size (20 MDD
vs. 18 control individuals), it indicated that DNA methylation
levels have the potential to be a valuable resource in clinical
diagnosis as a biomarker (Table 1) (Fuchikami et al., 2011).

Clinical research focused on the epigenetic effects of ELA
has the potential to not only create new diagnostic procedures,
but also to create novel antidepressant therapies that target
the epigenome or use the epigenome as a means to evaluate
antidepressant efficacy (Qiu et al., 2017). BDNF in particular
appears to be influenced by antidepressant treatment (Fuchikami
et al., 2016). Notably, in several preclinical animal models,
treatment with the histone deacetylase (HDAC) inhibitor
sodium butyrate has yielded reduced depressive and manic-like
behaviors, as well as reversed decreased expression in BDNF and
other neurotrophic factors in chronically stressed animal models
(Moretti et al., 2011; Resende et al., 2013). Similarly, animal
models treated with the antidepressant imipramine present with
reversed behavioral consequences of early life stress in the BDNF
promoter region (Tsankova et al., 2006; Hollis et al., 2010, 2011;
Covington et al., 2011).

It has been suggested that effective antidepressant treatment
should correspond to an increase in peripheral BDNF, and
that a sustained lack of increase in BDNF over the first week
of treatment likely predicts treatment resistance (Tadić et al.,
2011). This finding is based on BDNF exon IV promoter
methylation data from an MDD cohort being treated with

several antidepressants. This effect was mirrored by findings
showing that citalopram treatment in MDD patients increased
BDNF expression in treatment responders, and significantly
reduced H3K27me3 levels at the BDNF IV promoter (Table 1)
(Lopez et al., 2013).

ANIMAL MODELS OF OTX2

In an elegant study, Peña et al. (2017) described that juvenile
knockdown of the transcription factor orthodenticle homeobox
2 (Otx2) in the ventral tegmental area (VTA) – a brain
reward region- increases stress susceptibility similarly to early
life stress. This knockdown of Otx2 was also associated with
downregulation of several target genes, many of which play a
role in brain development. Animals in this model also exhibited
depressive-like behaviors following a second exposure to stress in
adulthood. Based on these findings, the researchers proposed that
a “two-hit” stress model may be in effect, wherein ELA increases
stress susceptibility in the VTA via Otx2 mediation, contributing
to a depression-like state and sustained transcriptional alterations
in adults following adult social defeat. As the association between
ELA/MDD and OTX2 has been also reported in humans
(Kaufman et al., 2018), continued investigation into how Otx2
mediates sustained stress susceptibility is warranted.

STRUCTURAL STUDIES OF
MYELINATION

The role of myelination in ELA/MDD may also be of potential
clinical interest. Myelination is essential in developing and
maintaining complex cognitive and behavioral functions, as it
increases action potential transmission per unit time, thereby
increasing the connectivity and information processing capacity
of the human brain (Grydeland et al., 2013). Myelination occurs
when oligodendrocytes cells generate myelin, which insulates
the neuronal axons and facilitates electrical signal propagation,
helping maintain the circuitry of neural networks (such as the
axon segments within the cortex), which are crucial to optimizing
basic cognitive and behavioral functions (Haroutunian et al.,
2014; Long and Corfas, 2014). Due to this, reductions in cortical
oligodendrocytes and deficits in myelin gene expression have
been associated with cognitive and behavioral dysregulations
which include- but are not limited to- schizophrenia, bipolar
disorder, and MDD (Uranova et al., 2004). Intracortical myelin
abnormalities vary across psychopathologies, with deficits in
white matter volume and myelination being more prominent
in bipolar disorder and MDD (Mosebach et al., 2013). With
respect to MDD specifically, quantitative magnetic resonance
imaging (qMRI) analysis has revealed reduced myelin levels
in the white matter of brain regions such as the nucleus
accumbens (NAcc) and lateral prefrontal cortex (LPFC) (Table 1)
(Sacchet and Gotlib, 2017).

Structural alterations in white matter have also been associated
with ELA in MRI studies, with more recent MRI strategies being
able to more effectively investigate white matter myelin content
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to the level of bundles with hundreds or thousands of axons
(Stikov et al., 2015). Although oligodendrocytes and myelin were
long thought to be static, these imaging studies, as well as animal
studies, have demonstrated that various forms of learning, as well
as social and environmental conditions, correlate with structural
changes to white matter. This suggests an important role for
myelination in brain plasticity (Long and Corfas, 2014).

In the previously summarized recent study by Lutz et al.
(2017b), state of the art microscopy methods were utilized to
more precisely measure microstructural changes to white matter
myelin that are associated with ELA. They discovered that in
post mortem brain tissue from adults who experienced ELA and
died by suicide, axonal integrity and myelination of individual
fibers was disrupted, particularly in small-diameter axons which
may be related to cortico-cortical projections. These structural
alterations were found in conjunction with cell type-specific
differences in DNA methylation of oligodendrocyte genes such as
POU3F1 and LINGO3 in oligodendrocytes (but not neurons), and
global decreased expression of a large collection of myelin related
genes in the cingulate cortex. These results suggest that ELA may
contribute to a neurobiological vulnerability that increases the
risk of psychopathology throughout life in affected individuals
(Table 1) (Lutz et al., 2017b). These findings may prove of future
clinical significance, although further research into the brain
region-specific effects of ELA/MDD on myelin is needed before
any potential antidepressant therapies or diagnostic procedures
related to myelination can be explored further.

ADDITIONAL DNA METHYLATION
STUDIES OF CLINICAL INTEREST

BDNF is not the only gene that has potential as a biomarker
for MDD in individuals who have experienced ELA. The
MORC family CW-type zinc finger 1 (MORC1) gene, has been
found to be hypermethylated in buccal cells of individuals who
experienced ELA and scored high on the Beck Depression
Inventory. Researchers have suggested that MORC1 could reliably
be used as a non-invasive diagnostic biomarker for MDD
in individuals who have been affected by ELA (Table 1)
(Mundorf et al., 2018).

Other genes implicated in social defeat models of ELA may
also serve as promising targets for the future development of
novel antidepressant treatments. One mouse model of ELA that
presented with altered gene expression in 12 genes in the NAc,
including genes coding for actin cytoskeleton reorganization
machinery, transcription factors, signaling molecules, and

neurotransmitter receptors, that was reversed by treatment with
the antidepressant MS-275 (Table 1) (Covington et al., 2009).

In the prefrontal cortex, DNA methylation of the P11
promoter was reduced in MDD patients via administration of
escitalopram, increasing P11 and decreasing the presence of DNA
methyltransferases (Table 1) (Melas et al., 2012). The epigenetic
changes detailed in these studies represent both potential targets
for antidepressant therapy, as well as potential biomarkers
of drug efficacy.

While there has been an ample amount of basic research
on the ELA to MDD pipeline examining regions and genes
that are differentially methylated in ELA/MDD, clinical research
expanding on these findings has been less bountiful. Further
clinical studies that examine expression levels of key genes
in peripheral tissue (such as buccal swabs or blood) before,
during, and after antidepressant treatment in ELA/MDD
subjects could feasibly be undertaken to help evaluate the
efficacy of many antidepressant treatments, whether they be
pharmacological, psychotherapeutic, or through methods such
as brain stimulation- the last two of which (to the authors’
knowledge) – remain to be explored.

CONCLUSION

The studies described herein have contributed to our
understanding of how ELA can epigenetically regulate
behavioral and emotional response systems in the brain in
ways that contribute to- and increase the vulnerability to-
psychopathologies such as MDD. The research indicates that
genes that code for the HPA axis, neurotransmitters, growth
factors such as BDNF, transcription factors such as OTX2,
and myelination/oligodendrocytes may all play a role in this
pathway, demonstrating how diverse and complex the epigenetic
alterations associated with ELA likely are. Due to this complexity,
it is perhaps not surprising that clinical progress-such as the
development of biomarkers for ELA/MD and antidepressant
therapies that target the epigenome-has thus far been limited
and preliminary. This is why further studies will be necessary
before the full potential clinical significance of the basic research
into the ELA/MDD pathway can be determined.
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Obsessive-compulsive disorder (OCD) causes severe distress and is therefore counted
by the World Health Organisation (WHO) as one of the 10 most impairing illnesses.
There is evidence for a strong genetic underpinning especially in early onset OCD
(eoOCD). Though several genes involved in neurotransmission have been reported as
candidates, there is still a need to identify new pathways. In this study, we focussed on
genetic variants of the Neuropeptide Y (NPY) system. NPY is one of the most abundant
neuropeptides in the human brain with emerging evidence of capacity to modulate stress
response, which is of high relevance in OCD. We focussed on tag-SNPs of NPY and its
receptor gene NPY1R in a family-based approach. The sample comprised 86 patients
(children and adolescents) with eoOCD with both their biological parents. However, this
first study on genetic variants of the NPY-system could not confirm the association
between the investigated SNPs and eoOCD. Based on the small sample size results have
to be interpreted as preliminary and should be replicated in larger samples. However, also
in an additional GWAS analysis in a large sample, we could not observe an associations
between NPY and OCD. Overall, these preliminary results point to a minor role of NPY
on the stress response of OCD.

Keywords: NPY, obsessive-compulsive, children, anxiety, neuropeptide

INTRODUCTION

Obsessive-compulsive disorder (OCD) has a life-time prevalence of 2%–3.3%, both in adults and
children and has its peaks of onset around 12 years (early onset OCD, eoOCD) and in early
adulthood (late onset). The occurring obsessions/compulsions are interfering significantly with
the patients’ everyday life and cause severe distress and anxiety. Additionally, 75% of the patients
have at least one comorbidity. In eoOCD these are in particular attention deficit hyperactivity
disorder, major depression and anxiety disorders (Fireman et al., 2001). OCD is the fourth most
psychiatric disorder and due to its frequently severe impact on affected patients’ lives, the World
Health Organisation (WHO) counts OCD to the 10 most impairing illnesses (Karno et al., 1988;
Weissman et al., 1994; Lopez and Murray, 1998).
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Evidence for a strong genetic component in the development
of OCD derives from twin and family genetic studies as well
as segregation analyses. Prevalence in first-degree relatives of
OCD patients is about four times increased and even about
eight times higher in eoOCD patients (Pauls et al., 1995;
Alsobrook et al., 1999; Hanna et al., 2005). A higher familial
load of eoOCD was observed in general, suggesting a greater
importance of genetic factors (Pauls et al., 1995; Nestadt et al.,
2000). In the search for genetic underpinnings in OCD, mainly
genes of the serotonergic system were focussed, driven by
the pharmacological effectivity of selective serotonin reuptake
inhibitors (SSRIs). Several studies aimed at the gene encoding
the serotonin-transporter (Bengel et al., 1999). Nonetheless,
study results are heterogeneous and replications and a recent
meta-analysis revealed a rather low effect size for the serotonin
transporter (Walitza et al., 2014). Further, evidence emerged that
the glutamate system is involved inOCD andmight be a potential
alternative pharmacological treatment target, especially since the
association with the glutamate receptor gene SLC1A1 has been
replicated in several studies (Wendland et al., 2009; Stewart et al.,
2013; Grados et al., 2015). However, variance explained by the
known candidates is still rather small and given the clinical
complexity of OCD there is an understanding that many genes
are involved in the disease’s pathogenesis.

In the search for further neuronal messengers involved,
the Neuropeptide Y (NPY) is a highly interesting candidate
(Tatemoto et al., 1982). It is one of the most abundant
neuropeptides in the human brain and has multiple
regulating effects in the nervous system. NPY, long known
as a neuropeptide modulating feeding behavior and energy
homeostasis (Morton and Schwartz, 2001), has been reported
influencing neuronal processes relevant in psychiatric disorders.
For instance, there is a rising evidence that the NPY-system
including the NPY-receptors is involved in the development of
alcohol and drug dependency (NPY1R), stress coping (NPY1R,
NPY2R, NPY5R) and anxiolysis (NPY1R, NPY2R; Gerald
et al., 1996; Movafagh et al., 2006; Hirsch and Zukowska, 2012;
Pedragosa-Badia et al., 2013). Especially regulation of stress
and anxiety levels are crucial elements in the development
and maintenance of OCD. Patients affected by OCD suffer
fear and simultaneously triggered stress when they experience
the feeling ‘‘something is not in order.’’ NPY is released
in many brain areas that participate in stress response.
These are, for example, the adrenergic and noradrenergic
(NA) neurons of the brainstem, the corticotropin-releasing
factor (CRF)-neurons of the nucleus paraventricularis, the
amygdala and the hypothalamus as well as an impact on the
hypothalamic-pituitary-adrenal (HPA)-axis (Heilig, 2004;
Alldredge, 2010). The NPY1R-receptor was shown to modulate
anxious behavior and stress which can be reversed by NPY
administration (Kormos and Gaszner, 2013). Interestingly,
there is also an interaction of NPY and the serotonergic
system (Diksic and Young, 2001; Pittenger and Bloch, 2014).
SSRI administration leads to a higher NPY release in stressed
depressive mice and a mediating role of NPY on SSRI effects
is discussed (Caberlotto et al., 1998; Redrobe et al., 2005;
Christiansen et al., 2011). This interplay of SSRI and NPY

showed for depression might be of relevance in OCD as well,
especially due to the high comorbidity rate of the two illnesses
(Torres et al., 2016).

Therefore, in this molecular genetic study, we aimed at the
NPY-system as a messenger system with potential influence on
the pathogenesis of eoOCD. Due to their previously reported
functions in the regulation of anxiety and stress, we focussed on
NPY and its receptorNPY1R in a family-based approach. Genetic
variants ofNPY andNPY1Rwere genotyped in a German family-
based sample. The present study is the first investigating genes of
the NPY-system in eoOCD.

MATERIALS AND METHODS

Subjects
All patients were recruited at the Department of Child and
Adolescent Psychiatry, Psychosomatics and Psychotherapy,
University Hospital Würzburg, Germany. Patients and parents
were all of Caucasian descent and agreed to participate in the
study. All participants and, in the case of minors, their parents,
gave written informed consent. The study was approved by the
Ethics Committees of the University of Würzburg.

Patients were included in the study after they had fulfilled the
diagnostic criteria for eoOCD according to DSM-IV (American
Psychiatric Association, 2000), which was valid at the time
of recruitment, and ICD-10 (Dilling, 2015). Patients and
parents were interviewed separately for childrens’ psychiatric
disorders with the German semi-structured clinical ‘‘Diagnostic
Interview for Psychiatric Disorders in Children and Adolescents’’
(DIPS; Schneider et al., 1995). Subsequently, the severity of
symptoms was assessed by the Childrens’ Yale-Brown Obsessive
Compulsive Scale (cY-BOCS; Goodman et al., 1989; Scahill
et al., 1997). Subjects with comorbid disorders were only
included when OCD was the main psychiatric diagnosis.
Senior clinicians or psychologists performed all interviews
and ratings.

Exclusion criteria were a lifetime history of psychotic
disorders, Tourette’s syndrome, autism spectrum disorders,
alcohol dependence or mental retardation (IQ ≤ 70).

The sample comprised 86 patients (children and adolescents)
with eoOCD and their parents. Fifty-one children were female,
35 were male. The patients’ mean age was 10.7 years (SD = 2.8) at
the onset of disease in a range from 3 to 15 years. In 32 patients
onset was earlier than the age of 10 years. Eleven patients
had tic-disorders as comorbidities. Further comorbidities as
depression, ADHD or anorexia nervosa existed frequently in
the patients’ medical histories but were not clinically relevant
at the time of study inclusion. The sample was part of previous
genetic analyses and described further in previous publications
(e.g., Walitza et al., 2008).

Based on a power analysis with alpha 0.05 and beta 0.80
(according to Neumann et al., 2014) a sample size of at least
N = 105 would have been required to unravel significant effects.
Therefore, we additionally analyzed associations of NPY and
OCD with the recent GWAS by Arnold et al. (2018).

To enlarge the sample size of OCD patients we used
the data of the most recent GWAS meta-analysis on OCD
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FIGURE 1 | Gene loci of Neuropetide Y (NPY, A) and NPY-receptor (NPY1R, B).

including 2,688 individuals affected by OCD and 7,037 controls
by the Psychiatric Genomics Consortium, and searched the
results for each of the SNPs investigated in our study. The
GWAS by the Psychiatric Genomics Consortium comprised
2,688 individuals affected by OCD and 7,037 controls.
The meta-analysis comprised children as well as adults
(Arnold et al., 2018).

Gene Loci
NPY and NPY1R SNPs chosen for this study were tag-SNPs
and previously published SNPs with reported influence on
psychiatric disorders. The latter were studied with regard
to stress-related diseases, as OCD is postulated to be, like
depression, ADHD and obesity (Peterson et al., 2001; Tiwari
et al., 2013). Tag-SNPs were determined using HaploViewr to
cover both genes completely on the basis of SNP data provided
by the International HapMap-Project (International HapMap
Consortium, 2003; Barrett et al., 2005; Figure 1). Tagger settings
included aminor allele frequency>0.1 and r2 = 0.9. Additionally,
SNPs known from previously published studies pertaining to
other disorders were included in the tagging process. For NPY,
SNPs rs5574, rs16124, rs16139, rs16147 were determined, and
SNPs rs9764, rs4691075, rs7687423 and rs10033119 were found
for NPY1R.

Genotyping
Genomic DNA was extracted from whole blood following
standard protocols. DNA was amplified by standard PCR using
specific reverse- and forward-primers for each of the eight SNPs.
After amplification genotypes were determined by enzymatic
digestion and gel-electrophoresis. Further detailed information
on primers and procedures is available upon request.

Statistics
Association between the included markers of NPY and NPY1R
and eoOCD was tested by the Transmission Disequilibrium
Test (TDT; Spielman et al., 1993). TDT was performed for all
eight SNPs using the software FamHAPr (Herold and Becker,
2008). A p-value < 0.05 was defined as the significance level.
Each of the trios was tested for the hypothesis that their tested
gene variants of either: (1) NPY or (2) NPY1R are associated
with eoOCD. The examination pattern used for this analysis
was a genotype-wise model considering every heterozygous
parental genotype separately and corresponds to a test of the
global null-hypothesis of transmission equilibrium of both alleles
in every parental genotype. All eight SNPs were checked for
Mendelian Errors which were exclusion criteria. Moreover, all
parental genotype distributions were tested for Hardy-Weinberg
equilibrium (HWI).
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RESULTS

In one of the NPY1R-SNPs, rs4691074, occurred a deviation
from the HWI (p = 0.04). The remaining seven SNPs were
unremarkable (p > 0.05). No transmission disequilibrium was
observed for the NPY-SNPs. The p-values exceeded the defined
significance level α (Table 1). For rs5574, 34 heterogeneous
parental couples could be examined (χ2

(1) = 1.058; p = 0.303), for
rs16124, 85 (χ2

(1) = 0.576; p = 0.448), for rs16139, 12 (χ2
(1) = 0.333;

p = 0.564) and for rs16147, 76 (χ2
(1) = 0.842; p = 0.359). Moreover,

no transmission disequilibrium could be assessed for theNPY1R-
SNPs. For rs9764, 72 heterogeneous parental couples could be
analyzed (χ2

(1) = 0.000; p = 1.000), for rs4691075, 33 (χ2
(1) = 1.485;

p = 0.223), for rs7687423, 89 (χ2
(1) = 0.101; p = 0.75) and for

rs10033119, 14 (χ2
(1) = 0.000; p = 1.000).

The GWAS meta-analysis also showed no association of any
NPY- nor NPY1R-SNPs with regard to the development of OCD
(Table 2).

DISCUSSION

This is the first molecular genetic study on potential functional
variants of the candidate gene NPY and its receptor NPY1R in

eoOCD. In this study, association was not detected. Thus, we
could not confirm a major role of the NPY system in OCD with
childhood onset.

As our number of trios was smaller than postulated by the
power-analysis, the negative outcome might foremost be due
to the sample size. That is why we used the data of the most
recent and aforementioned GWASmeta-analysis on OCD by the
Psychiatric Genomics Consortium, and searched the results for
the investigated SNPs. Though our sample was part of this meta-
analysis, a potential effect over a large sample including different
ages of onset might have been observable. However, also this
meta-analysis showed no association of any NPY- nor NPY1R-
SNPs (Arnold et al., 2018). Our study had been designed as a
family-based study to avoid stratification effects, nonetheless, a
case-control study, which had not been performed so far with
regard to the studied gene loci, would be highly interesting.

However, the NPY system, which is involved in stress
response, might still be of relevance in OCD subgroups, although
undetected due to the study design. The selected SNPs were
either already known from earlier studies to other stress-related
psychiatric disorders or tag-SNPs that were selected out of the
HapMap data with the help of the programme Haploviewr

(Barrett et al., 2005) in order to cover NPY and NPY1R.

TABLE 1 | Transmission Disequilibrium Test (TDT) results.

SNP Gene Allele T NT χ2
(1) pTDT

rs5574 NPY 2 20 14 1.059 0.303
4 14 20

rs16124 NPY 3 39 46 0.576 0.448
4 46 39

rs16139 NPY 2 7 5 0.333 0.564
4 5 7

rs16147 NPY 2 34 42 0.842 0.359
4 42 34

rs9764 NPY1R 1 36 36 0.000 1.000
3 36 36

rs4691075 NPY1R 1 20 13 1.485 0.223
3 13 20

rs7687423 NPY1R 2 46 43 0.101 0.750
4 43 46

rs10033119 NPY1R 2 7 7 0.000 1.000
4 7 7

Note: Column 1 lists the SNP names, column 2 the correspondent gene, column 3 shows the present allele: 1 equal to adenine, 2 equal to cytosine, 3 equal to guanine, 4 equal to
thymine. Column 4 shows the number of transmissions (T) for each gene, column 5 shows the number of non-transmitted (NT) alleles. Column 6 represents the chi square value,
column 7 the p-value.

TABLE 2 | Meta-analysis results.

Chr. SNP bp A1 A2 Info OR SE p

7 rs5574 24329133 T C 0.9750 0.967152 0.0949 0.7248
7 rs16124 24331799 T G 0.9735 1.00944 0.0335 0.7802
7 rs16139 24324879 T C 0.9737 0.983144 0.0335 0.6112
7 rs16147 24323410 T C 0.9720 1.01572 0.0335 0.6421
4 rs9764 164245405 T C 1.0030 1.03345 0.0382 0.3881
4 rs4691075 164249485 T C 0.9948 0.937255 0.0504 0.1991
4 rs7687423 164250797 A G 0.9800 1.001 0.0347 0.9766
4 rs10033119 164245854 A G 0.8709 0.962809 0.0851 0.6562

Note: Column 1 lists the respective chromosomes (hg 19), column 2 the correspondent marker name, column 3 shows the base pair location (hg 19), column 4 shows the reference
allele for OR (may or may not be minor allele), column 5 the alternative allele. Column 6 represents the imputation information score, column 7 the Odds ratio for the effect of the
A1 allele, column 8 the standard error of the log(OR) and column 9 the p-value for the association test in the meta-analysis.
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Nonetheless, the selected SNPs are infrequent in the population,
thus statistically evaluable transmissions in the sample were
rather small.

Reflecting the NPY-system, other effectors like the
Y2-receptor and the Y5-receptor might also be valuable targets
in OCD. The Y1-receptor was the first choice for this study due
to its various anxiolytic and stress-reducing effects and its wide
spread dissemination in stress regulating brain regions. Anxious
behavior and stress can be reversed with NPY administration
(Kormos and Gaszner, 2013). Nevertheless, the influence of the
remaining receptors should not be excluded a priori. Especially
the Y5-receptor shares a similar effect spectrum with the tested
Y1 (Kormos and Gaszner, 2013). Even though its role is not
fully understood yet, an effect on the fear and stress system
seems to be obvious and further research worthwhile. The
Y2-receptor, however, could indirectly influence the delicate
equilibrium of neurotransmission with its impact on the release
of other neurotransmitters (Upadhya et al., 2009; Kormos and
Gaszner, 2013). A reduced inhibition of glutamate release,
for example, could be a correlate for the increased thalamic
and striatal glutamate activity in untreated OCD-children
and could explain the upregulation of Y2-receptors in a
state of anxiety in the mouse model (Leckman et al., 1997;
Upadhya et al., 2009).

Our sample consists of children and adolescents only,
resembling an OCD subgroup with early onset and a significant
number of children with an onset before the age of 10 years.
A stronger impact of genetic factors is reported for eoOCD
and our sample might differ from adult samples regarding
genetic underpinnings and impact of life-events (Nestadt et al.,
2000; Walitza et al., 2008). The responsivity of the NPY system
after stress exposure during the development has been shown
in animal models and could be of higher relevance in failed
coping and development of OCD in adults (Serova et al., 2017;
Yam et al., 2017).

Moreover, comorbidities as e.g., ADHD or depression were
accepted in this study. Nonetheless, comorbidities in OCD
might indicate distinct neurobiological OCD subgroups with
divergent etiologies (Taurines et al., 2010). An analysis reflecting
the comorbidities was not applicable due to the sample size.
Especially an analysis regarding comorbidity with depression
would be of interest (Caberlotto et al., 1998; Redrobe et al., 2005;
Christiansen et al., 2011).

Due to the sample size, we were not able to examine an
influence of gender, which was reported for other candidate
genes in previous studies. In the meta-analyses of the glutamate
transporter gene SLC1A1, the SNP rs12682807 was found
associated only in male probands (Thiele et al., 1998; Arnold
et al., 2006; Wendland et al., 2009). Other genetic publications
also stated gender differences (Thiele et al., 1998; Dickel et al.,

2006; Canals et al., 2012). Gender differences are also found
in the clinical perspective with the prevalence of subclinical
OCD-symptoms twice as high in boys than in girls (Canals
et al., 2012). Furthermore, the two sexes differ in the clinical
manifestation which comprises an earlier age of onset as well
as a higher prevalence of symptoms belonging to the entity of
symmetry and ordering among males and increased symptoms
of cleanliness and washing among females (Bogetto et al., 1999;
Stewart et al., 2007).

Though the sample size was rather small for a genetic study,
regarding eoOCD it has a considerable size. Since the sample was
collected in one facility, it provides a clear stringency regarding a
precisely defined phenotype and restrictive exclusion of severe
comorbid disorders to assure the predominance of definite
OCD in contrast to obsessive-compulsive symptoms in other
psychiatric disorders.

In conclusion, our family-based study on genetic variants
of NPY and NPY1R could not confirm association with OCD
with childhood onset correlating with the outcomes for adult
NPY and OCD by Altemus et al. (1999). Unfortunately, there
is overall a paucity of studies on NPY and OCD and we
can only add another hint for non-existing significant effects.
We only know so far that NPY is involved in stress and
other anxiety disorders. Therefore, we hope that we could
deliver with our study a contribution to the question about
an association of NPY with OCD. The major impact of our
study is that we could show in our sample—and comprehending
the forementioned GWAS-data—that NPY effects on OCD
should be very small or not present. The very impact of
our study is a sample consisting of early onset patients and
therefore of fundamental impact on the database in this
specific subgroup. Moreover, the outcome has a meaning for
the understanding of the stress response in OCD in general
which might be different from other anxiety disorders with
an association to NPY. Indeed, in DSM V OCD is no
longer listed under anxiety disorders. If our null finding is
replicated in larger studies, we might conclude that NPY
has no effect on the stress response in OCD and probably
might also be a less valuable target for pharmacological
research in OCD.
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Background: Adverse childhood experiences (ACEs) have been associated with poor

mental and somatic health. Accumulating evidence indicates that accelerated biological

aging—indexed by altered telomere-related markers—may contribute to associations

between ACEs and negative long-term health outcomes. Telomeres are repeated,

non-coding deoxyribonucleic acid (DNA) sequences at the end of chromosomes.

Telomeres shorten during repeated cell divisions over time and are being used as a

marker of biological aging.

Objectives: The aim of the current paper is to review the literature on the relationship

between ACEs and telomere length (TL), with a specific focus on how the heterogeneity

of sample and ACEs characteristics lead to varying associations between ACEs and TL.

Methods: Multiple databases were searched for relevant English peer-reviewed articles.

Thirty-eight papers were found to be eligible for inclusion in the current review.

Results: Overall, the studies indicated a negative association between ACEs and TL,

although many papers presented mixed findings and about a quarter of eligible studies

found no association. Studies with smaller sample sizes more often reported significant

associations than studies with larger samples. Also, studies reporting on non-clinical

and younger samples more often found associations between ACEs and TL compared

to studies with clinical and older samples. Reviewing the included studies based on the

“Stressor Exposure Characteristics” recently proposed by Epel et al. (2018) revealed a

lack of detailed information regarding ACEs characteristics in many studies.

Conclusion: Overall, it is difficult to achieve firm conclusions about associations of ACEs

with TL due to the heterogeneity of study and ACE characteristics and the heterogeneity

in reported findings. The field would benefit from more detailed descriptions of study

samples and measurement of ACEs.

Keywords: early adversity, adverse childhood experiences, stress, childhood trauma, accelerated aging,

telomeres, telomere length
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INTRODUCTION

Adverse childhood experiences (ACEs) (e.g., physical abuse,
sexual abuse, emotional neglect, loss of a close family member)
are a large societal problem, often with long-lasting health
consequences. Previous research has shown that ACEs are highly
prevalent. In the general population, more than half of people
retrospectively report at least one, and more than a quarter
two or more, types of ACEs (Felitti et al., 1998; Dube et al.,
2001). In addition, ACEs are found to be related to poor
health outcomes, including various mental health problems
(e.g., depression, anxiety, post-traumatic stress disorder [PTSD],
suicidal ideation), substance abuse problems, self-reported
illness, obesity, and overall morbidity (Felitti et al., 1998; Widom,
1999; Dube et al., 2001, 2003; Anda et al., 2006, 2010; Widom
et al., 2007; Brown et al., 2009; Green et al., 2010; Heim et al.,
2010; Kessler et al., 2010; Heim and Binder, 2012; Moffitt and
the Klaus-Grawe Think Tank, 2013). ACEs have also been found
to be associated with increased risk for many somatic diseases,
especially with diseases of aging including cancer, autoimmune,
cardiovascular diseases and early mortality (Felitti et al., 1998;
Brown et al., 2009; Rich-Edwards et al., 2012; Kelly-Irving et al.,
2013; Tomasdottir et al., 2015). Although it is largely accepted
that ACEs increase risk for poor health outcomes, mechanisms
of the association are still not fully understood (Moffitt and the
Klaus-Grawe Think Tank, 2013).

Following a pioneering study by Epel et al. (2004), research
on the association of stress and telomere-related processes
has rapidly emerged. Accelerated cell aging—indexed by
altered telomere maintenance—might be one mechanism that
partially explains the association between ACEs and long-
term health complaints. Telomeres are repeated non-coding
deoxyribonucleic acid (DNA) sequences—TTAGGG nucleotide
tandem repeats – at the end of chromosomes, protecting
the coded sequences (Blackburn, 1991). Telomeres shorten
during cell division, caused by an incomplete replication of the
chromosome ends (Blackburn, 2000, 2001). When telomeres
are critically short, cells become genomically unstable and can
malfunction in cell-specific ways (Blackburn, 2000). Telomeres
tend to shorten with age, which makes telomere length (TL)
an interesting marker of biological aging (Cawthon et al., 2003;
Blackburn, 2005; Aubert and Lansdorp, 2008; Takubo et al.,
2010). Interestingly, shorter telomeres are correlated with several
psychiatric disorders (Lindqvist et al., 2015; Schutte and Malouff,
2015; Darrow et al., 2016; Ridout et al., 2016; Li et al., 2017a; Epel
and Prather, 2018), somatic diseases (Honig et al., 2006; Willeit
et al., 2010), and early mortality (Cawthon et al., 2003).

A fast-growing body of research describes the association
between ACEs and TL over the life course. Various reviews in
the broader context of the association between stress and TL
have recently been published focusing in detail on early life
stress and telomeres (Shalev, 2012; Price et al., 2013; Ridout
et al., 2015), perceived stress and TL (Schutte and Malouff,
2014; Mathur et al., 2016), childhood exposure to violence and
TL (Moffitt and the Klaus-Grawe Think Tank, 2013), violence
and telomeres (Oliveira et al., 2016), caregiving experiences and
telomeres (Blaze et al., 2015), and psychosocial factors and TL

(Starkweather et al., 2014). Additionally, recent meta-analyses
describe the association between early life adversity and TL
(Ridout et al., 2017), childhood trauma and accelerated telomere
erosion (Li et al., 2017b) and childhood psychosocial stressors
and TL (Hanssen et al., 2017). Overall, these analyses reported
negative associations between ACEs and TL with aggregated
small effect sizes [Ridout et al. (2017) Cohen’s d = −0.35;
Hanssen et al. (2017) r=−0.082; and Li et al. (2017b) r=−0.05].
Epel and Prather (2018) summarized the current empirical
evidence, concluding that “these meta-analyses demonstrate the
robustness of the association [childhood stressors and telomere
length] across published studies” (p. 5). However, all three meta-
analyses reported a high between-study heterogeneity of effects,
which they tried to explain in further moderator analyses. In
their moderator analyses Ridout et al. (2017) showed “that
differences in developmental timing of adversity exposure and
comorbidities likely contributed to the heterogeneity” (p. 12),
Li et al. (2017b) concluded that “the heterogeneous feature of
childhood trauma may be one of the major potential sources
of heterogeneity in outcomes” (p. 68), and Hanssen et al.
(2017) found greater effect sizes for categorical compared to
continuous measures of stressors, and for shorter durations
between stressor and TL measures. Hence, a possible explanation
for the observed heterogeneity in findings are attributes related
to the characteristics and measurement of stressors. A deeper
understanding about the different aspects of ACEs might help to
explain the diversity in reported associations.

Epel and Lithgow (2014) stated that research must form a
“common knowledge base and taxonomy for describing stressors
and stress responses” (p. 11) to bridge the gap between basic
and clinical research on aging and stress. Epel et al. (2018)
further pointed out that “a large but disjointed literature shows
that stress affects slow-acting biological processes in the brain
and body, accelerating diseases of aging” (p. 146), but that
despite this agreement one major barrier that prevents research
progress is the “lack of consistency and thoroughness in stress
measurement”(p. 146). This lack of a common knowledge base,
consistency and thoroughness in stress measures can also be
seen in the field of early life stressors and childhood adversities.
Specifically, these conceptual issues lead to a large heterogeneity
of reported prevalence and incidence rates of early traumatic
stressors and ACEs (Heim and Binder, 2012; Moffitt and the
Klaus-Grawe Think Tank, 2013). It can also be seen in the
reviews and meta-analyses discussed here that use varying stress
-frameworks but overall overlap to a great degree in their
included studies.

In search of a common knowledge base and taxonomy, Epel
et al. (2018) proposed a working model focusing on stress as “an
emergent process that involves interactions between individual
and environmental factors, historical and current events,
allostatic states, and psychological and physiological reactivity”
(p. 146). This model comprises different research perspectives
on stress and introduces a more precise language for describing
stress measures. Within this framework, stress consists of an
exposure within in a specific context that elicits a stress-related
response. Stressor exposure characteristics (SECs) are defined
along different dimensions: timescale for stress measurements
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(acute, event-based, daily, chronic), developmental life stages
of stress exposures, stress assessment windows (measurement
timeframe; proximity of assessment to the stressor in years), and
stressor attributes (duration, severity, controllability, life domain,
target of stressor, potential of the stressor to elicit harmful
response). However, it is unknown to what extend the proposed
SECs can be applied to a diverse body of literature focused on
ACEs and TL.

Therefore, the main aim of the current paper is to review
the fast-growing body of literature on the associations between
ACEs and TL order to find explanations for the heterogeneity in
findings. The included sample of studies will be reviewed based
on important study design characteristics and the SECs proposed
by Epel et al. (2018). This will help us to better understand the
complex relationship between ACEs and TL.

METHODS

To be included in the current review, studies had to report on
ACEs, assessed by means of a questionnaire or interview, on TL,
and on a statistical measure of association between these two.
Hereinafter, ACEs are defined as the broad array of harmful,
perceived traumatic stressors during a child’s development before
the age of 18. This includes childhood traumatic experiences, all
forms of childhood maltreatment including abuse and neglect,
and childhood exposure to violence, and the combination of
these factors with further potentially harmful circumstances.
Multiple search methods were used to avoid biased retrieval
of studies (Rosenthal, 1995). First, a computerized search of
relevant databases was conducted: PubMed, PsycInfo, Web of
Science, and Google Scholar up to the 26th of April 2018.
The following key words were used in varying combinations:
“childhood adversit∗,” “early life stress” or “childhood trauma”
and “telomere length.” Second, the combination of several
instruments reported in the papers to assess ACEs with “telomere
length” was examined: Childhood Trauma Questionnaire [CTQ]
(Bernstein et al., 1994, 2003); Childhood Trauma Interview [CTI]
(Foote and Lovejoy, 1995); Adverse Childhood Experiences
[ACE] Questionnaire (Felitti et al., 1998); and the Early Trauma
Inventory [ETI] (Bremner et al., 2000). Third, reference lists
from relevant reviews on the association between ACEs and TL
(Shalev, 2012; Price et al., 2013; Ridout et al., 2015, 2017; Oliveira
et al., 2016; Epel and Prather, 2018) were examined for possible
additional studies. Finally, reference lists of all included papers
were checked for potentially relevant additional articles. One
eligible paper by Schaakxs et al. (2015) was excluded, because
another paper from the same research group (Schaakxs et al.,
2016) used the same sample.

A total of 38 studies were eligible for inclusion in this
review. First, we collected information on the following
sample characteristics: sample size, sex, age (of the sample),
sample origin, study design (cross-sectional [case-control],
longitudinal), sample composition, telomere assay approach,
and covariates. Additionally, we collected the following ACEs
characteristics: questionnaire (specific instrument [e.g., CTQ],
modified specific instrument, item, score, total score), and

age at adversity exposure. Further, ACEs characteristics were
assessed using the proposed SECs defined by Epel et al. (2018).
This included: timescale of the used stress measurement (i.e.,
acute, event-based, daily, chronic); developmental life stages (i.e.,
childhood only, adolescence only, childhood and adolescence);
stress assessment window (i.e., measurement timeframe [e.g.,
retrospective or prospective]; proximity of assessment to the
stressor in years [i.e., duration in years between exposure
and assessment]); and stressor attributes (duration, severity,
controllability, life domain, target of stressor, potential of the
stressor to elicit harmful response). For a detailed definition of
the SECs, please refer to Appendix A. “Stress typology for stress
measurement” within the model proposed by Epel et al. (2018)
(p.163). Moreover, main findings of the ACEs-TL association
were summarized and coded (shorter, none, longer, mixed). In
a second step, studies were grouped into categories: sample size
(<400, >400), age (<25, 25–45, >45), sex (male, female) and
population (clinical vs. non-clinical) and reviewed regarding
their overall findings.

Information regarding sample characteristics, ACEs
characteristics and main findings are presented in Table 1.
Further information regarding main and sub-findings are
presented in Table 2. Additional supplementary characteristics
including the type of adversity and nature of the ACEs-TL
association are provided in the supplementary materials
(Supplementary Table 1). Information was extracted and coded
by the first author (DB) and double checked by one of the
co-authors (Dd’H). Differences in extracted information and
coding were solved by further discussing these issues.

RESULTS

Study Characteristics
A total of 38 studies were included in this review based on
the criteria of eligibility defined in the method section (for an
overview see Table 1). Sample sizes of included studies ranged
from 31 (Tyrka et al., 2010) to 11,670 (Cai et al., 2015). Most
studies (N = 27) reported on TL in bothmales and females, seven
studies examined only females (Surtees et al., 2011; Malan-Müller
et al., 2013; Cai et al., 2015; Mason et al., 2015; Levandowski
et al., 2016; Oliveira et al., 2017; Mitchell et al., 2018), and three
studies examined only males (Mitchell et al., 2014; Boks et al.,
2015; Bersani et al., 2016; Osler et al., 2016). The included studies
covered a wide age range of study participants at TL assessment
from 5 years (Shalev et al., 2013; Drury et al., 2014) to 93 years
of age (Schaakxs et al., 2016). Almost all of the included studies
(N = 32) are of North-American or European origin, except for
six studies that were conducted in Brazil (Levandowski et al.,
2016; Oliveira et al., 2017), China (Cai et al., 2015), South-Africa
(Malan-Müller et al., 2013), and New Zealand (Jodczyk et al.,
2014; Shalev et al., 2014).

Reviewing the design of the studies, all studies, as
defined within the inclusion criteria, had to report on TL
at a minimum of one time point, and thus were able to
associate ACEs and TL cross-sectionally. Of the 38 studies, 14
used a cross-sectional (case-control) approach to investigate
differences in TL between groups (e.g., abused vs. non abused)
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(Glass et al., 2010; Kananen et al., 2010; Tyrka et al., 2010, 2016;
O’Donovan et al., 2011; Malan-Müller et al., 2013; Chen et al.,
2014; Mitchell et al., 2014; Blom et al., 2015; Bersani et al., 2016;
Kuffer et al., 2016; Levandowski et al., 2016; Liu et al., 2017;
Riley et al., 2018). Five studies measured TL at more than one
time point and were therefore able to examine TL longitudinally
(Shalev et al., 2013, 2014; Boks et al., 2015; van Ockenburg
et al., 2015; Revesz et al., 2016). The type of samples and the
sample composition of the included papers varied widely. Some
studies examined general population samples, such as birth
cohorts (Jodczyk et al., 2014; van Ockenburg et al., 2015; Osler
et al., 2016), whereas others had a focus on specific clinical
populations, such as on depressed patients (Chen et al., 2014;
Blom et al., 2015; Cai et al., 2015; Liu et al., 2017; Vincent et al.,
2017), patients with anxiety disorders (Kananen et al., 2010),
patients with post-traumatic stress disorder (PTSD) (O’Donovan
et al., 2011; Boks et al., 2015; Kuffer et al., 2016), or patients with
substance use disorders (Levandowski et al., 2016).

Because there are different ways to measure telomere length
(Montpetit et al., 2014), information on the telomere assay
method was collected. In our sample of eligible papers, almost all
studies (N = 36) investigated TL using a quantitative polymerase
chain reaction (qPCR). Only two papers used a southern blot
analysis as TL assay method (Glass et al., 2010; Kiecolt-Glaser
et al., 2011). TL was examined in different cell types: six papers
reported that DNA was extracted from saliva samples (Kiecolt-
Glaser et al., 2011; Mitchell et al., 2014; Blom et al., 2015; Cai
et al., 2015; Puterman et al., 2016; Liu et al., 2017; Guarneri-White
et al., 2018), and four studies used epithelial buccal cells (Shalev
et al., 2013; Drury et al., 2014; Kuffer et al., 2016; Dagan et al.,
2017). The other studies (N= 28) extracted DNA from peripheral
blood samples. Most of these studies assayed leukocyte DNA for
TL (N = 22), four studies extracted DNA from peripheral blood
monocular cells (PBMCs) (Kiecolt-Glaser et al., 2011; Malan-
Müller et al., 2013; Zalli et al., 2014; Mitchell et al., 2018), and two
studies extracted DNA from lymphocytes (Surtees et al., 2011;
Riley et al., 2018). Although a wide variety of covariates were
included across the studies, almost all studies controlled for age,
sex, body mass index (BMI) and smoking.

ACEs Characteristics
Assessments of ACEs varied substantially across studies (see
Table 1). Studies examined various age ranges: 18 studies
included ACEs before the age of 18 (Tyrka et al., 2010, 2016;
Kiecolt-Glaser et al., 2011; Malan-Müller et al., 2013; Chen
et al., 2014; Boks et al., 2015; Mason et al., 2015; Bersani et al.,
2016; Kuffer et al., 2016; Levandowski et al., 2016; Osler et al.,
2016; Puterman et al., 2016; Dagan et al., 2017; Liu et al., 2017;
McFarland et al., 2017; Vincent et al., 2017; Mitchell et al., 2018;
Riley et al., 2018), one study reported on ACEs before the age of
17 (Surtees et al., 2011), eight studies investigated ACEs before
the age of 16 (Kananen et al., 2010; Jodczyk et al., 2014; Zalli
et al., 2014; Cai et al., 2015; Verhoeven et al., 2015; Revesz et al.,
2016; Schaakxs et al., 2016; Oliveira et al., 2017), one study
before the age of 15 (O’Donovan et al., 2011) and two studies
before the age of 12 (Shalev et al., 2014; van Ockenburg et al.,
2015). Additionally, six studies assessed ACEs up till the time

TABLE 2 | Overview results.

Shorter None Longer Mixed

Total association

ACEs and TL (N = 38) 18 9 2 9

ACEs and 1TL (N = 5) 2 3 – –

Sub-findings

Sample size (N = 38)

<400 (N = 23) 13 4 2 4

>400 (N = 15) 5 5 – 5

Sex (N = 37)

Only male (N = 3) 2 1 – –

Only female (N = 7) 3 2 1 1

Both (N = 27) 13 5 1 8

Age (N = 36)

<25 (N = 7) 5 1 – 1

25–45 (N = 13) 5 6 – 2

>45 (N = 16) 7 1 2 6

Sample Composition (N = 38)

Clinical (N = 16) 6 5 1 4

Non-clinical (N = 22) 12 4 1 5

1TL, telomere attrition or within subject TL change.

of assessment (Shalev et al., 2013; Drury et al., 2014; Mitchell
et al., 2014; Blom et al., 2015; Robles et al., 2016; Guarneri-White
et al., 2018). Furthermore, the eligible papers used different ACEs
assessments. About half of the studies (N= 20) used standardized
validated questionnaires or interviews to assess adversities. The
most commonly used questionnaire was the retrospective, self-
report CTQ (Bernstein et al., 1994) that was used in 10 studies
(Tyrka et al., 2010, 2016; Kiecolt-Glaser et al., 2011; Malan-
Müller et al., 2013; Blom et al., 2015; Verhoeven et al., 2015;
Kuffer et al., 2016; Levandowski et al., 2016; Vincent et al., 2017;
Mitchell et al., 2018). The other studies (N = 18) used modified
versions of other questionnaires or interviews or used novel
items to create adversity scores (see Table 1, column assessment;
Supplementary Material, column type of adversity).

With the SECs in mind, it was shown that almost all studies (N
= 37) either had an event-based, or event-based/chronic stress
measurement timescale. The only exception was Robles et al.
(2016), who based their adversity score on current ratings of
daily emotions to family conflict. Regarding the developmental
life stage, all papers reported on ACEs before the age of 18. Most
studies did not differentiate between childhood and adolescence.
However, certain studies only included ACEs in childhood or did
differentiate between childhood and adolescence (Shalev et al.,
2013; Drury et al., 2014; Mitchell et al., 2014; Blom et al., 2015;
Robles et al., 2016; Guarneri-White et al., 2018). Some studies
used smaller age ranges (Shalev et al., 2014) or built subcategories
of their larger ranges (Savolainen et al., 2014; van Ockenburg
et al., 2015). Looking at the stress assessment window—in
particular the measurement timeframe of ACEs assessments—
most studies (N = 34) assessed ACEs retrospectively. Some
studies used combined retrospective and prospective assessments
(Shalev et al., 2013, 2014), a combination of retrospective
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self-reports and archive information (Savolainen et al., 2014), or
an adversity score based on daily ratings (Robles et al., 2016).
In terms of the time between the ACEs exposure and the age
at ACEs assessment, the duration varied between 0 and 56
years. Aggregating all durationmeasures across studies, the mean
time between the end of the ACEs measure and age at ACEs
assessment was approximately 23 years.

Regarding the six reviewed stressor attributes, almost no
information is included and specified in the included sample of
studies. First, only one study reported on the duration of ACEs
(the duration of being separated from their parents) (Savolainen
et al., 2014). Second, four studies reported on the severity of
ACEs on a continuous scale (Blom et al., 2015; Mason et al.,
2015; Kuffer et al., 2016; Riley et al., 2018). Most studies (N =

34), however, did not report on the severity of the stressor on a
continuous measure. Instead, they reported exposure categories,
defined by using self-developed items or certain cut-off scores
on continuous measures. Third, none of the studies explicitly
measured controllability on a continuous scale. Fourth, looking
at specific life-domains, no study reported on ACEs from a
specific life-domain. However, many ACEs in childhood are of
interpersonal and interpersonal-intimate nature, resulting from
multiple life domains, mainly family, peers and school. Fifth, no
study explicitly reported on the attribute “target of the stressor,”
though, most studies assessed ACEs that targeted participants
themselves, or close others. Last, focusing on the attribute
“potential of the stressor to elicit potential harmful responses,”
none of the study described in detail the qualities inherent to the
adversities that were measured.

Overall, the eligible studies reported on stressors from a
broad range of potentially harmful experiences. However, a lot
of information is unknown, missing or not specified. Therefore,
more research using a common language and taxonomy to
describe certain characteristics of stressors—in particular with
regard to ACEs—is needed.

Main Findings: ACEs and TL
In total, 18 paper reported a negative association between ACEs
and TL or higher odds for shortened TL among individuals
reporting exposure to ACEs compared to those who were less
or non-exposed (Kananen et al., 2010; Tyrka et al., 2010, 2016;
Kiecolt-Glaser et al., 2011; O’Donovan et al., 2011; Surtees et al.,
2011; Shalev et al., 2013; Drury et al., 2014; Mitchell et al.,
2014; Zalli et al., 2014; Cai et al., 2015; Bersani et al., 2016;
Levandowski et al., 2016; Osler et al., 2016; Puterman et al., 2016;
Robles et al., 2016; McFarland et al., 2017; Guarneri-White et al.,
2018). Additionally, nine papers showed no association between
ACEs and TL (Glass et al., 2010; Malan-Müller et al., 2013;
Jodczyk et al., 2014; Shalev et al., 2014; Blom et al., 2015; Boks
et al., 2015; van Ockenburg et al., 2015; Verhoeven et al., 2015;
Mitchell et al., 2018). Furthermore, two studies even reported
a trend toward longer telomeres among individuals reporting
more ACEs (Kuffer et al., 2016; Oliveira et al., 2017). Finally,
nine papers reported mixed findings, with studies reporting some
associations within their data, but no conclusive association
within their total sample (Chen et al., 2014; Savolainen et al.,
2014; Mason et al., 2015; Revesz et al., 2016; Schaakxs et al.,

2016; Dagan et al., 2017; Liu et al., 2017; Vincent et al., 2017;
Riley et al., 2018).

Beyond that, five studies have examined TL at more than
one time point (Shalev et al., 2013, 2014; Boks et al., 2015; van
Ockenburg et al., 2015; Revesz et al., 2016). Hence, these studies
were able to assess telomere attrition, which is the change in
telomere length within a subject. Two of these studies showed
ACEs to be associated with TL change (Shalev et al., 2013;
Revesz et al., 2016), whereas three papers reported no association
between ACEs and TL change (Shalev et al., 2014; Boks et al.,
2015; van Ockenburg et al., 2015).

Possible Moderators
To attempt to explain the variety in findings, comparisons were
made based on sample size, age, sample composition, and sex
of study samples. First, focusing on the study characteristics,
the results of studies with more than 400 participants (N = 15)
seemed to be less conclusive than studies with <400 participants
(N = 23). Of these studies with larger samples, five papers
reported a cross-sectional association between early adversity
and TL (Kananen et al., 2010; Surtees et al., 2011; Cai et al.,
2015; Puterman et al., 2016; McFarland et al., 2017), five studies
reported mixed results (Savolainen et al., 2014; Mason et al.,
2015; Revesz et al., 2016; Schaakxs et al., 2016; Liu et al., 2017),
and five reported no associations (Glass et al., 2010; Jodczyk
et al., 2014; Shalev et al., 2014; van Ockenburg et al., 2015;
Verhoeven et al., 2015). Second, subdividing the age of study
samples indicated that studies investigating TL during childhood,
adolescence or emerging adulthood (N = 7) more often find
associations of ACEs and shorter TL (Shalev et al., 2013; Drury
et al., 2014; Mitchell et al., 2014; Blom et al., 2015; Robles et al.,
2016; Dagan et al., 2017; Guarneri-White et al., 2018). Findings
in older samples are more inconclusive. Third, considering the
sample composition, comparing clinical (with mental disorders)
(N = 16) and non-clinical samples (without mental disorders)
(N = 22) indicated that studies in non-clinical samples more
often find negative associations between ACEs and TL than
do studies in clinical populations. Fourth, with regard to the
sex of participants, there were no observable differences in
reported results.

DISCUSSION

The aim of the current review was to review the literature on the
associations betweenACEs and TL in an attempt to highlight how
heterogeneity in sample and stressor characteristics contributes
to findings. Overall, the sample of studies we reviewed indicates
a negative association between ACEs and TL, although many
papers presented mixed findings and a quarter of eligible studies
found no relationship between ACEs and TL. These findings are
consistent with recently published meta-analyses investigating
the association between early adversity, childhood trauma and
childhood psychosocial stressors and TL. All three studies
showed significant small negative associations with TL (Hanssen
et al., 2017; Li et al., 2017b; Ridout et al., 2017). These meta-
analyses further reported high between-study heterogeneity of
effects. Considering possible moderators within our sample of
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studies indicates that results of larger samples seem to be less
conclusive than results of smaller samples. In addition, studies
investigating participants younger than 25 more often find ACEs
to be negatively associated with TL compared to older samples.
Furthermore, results from studies of non-clinical samples more
often report negative associations between ACEs and TL than
do studies of clinical samples. Using the SECs proposed by Epel
et al. (2018) to examine characteristics of the included ACEs
shows a lack of detailed information on SECs in many studies.
At least four findings (sample size, age, psychopathology, and
ACEs characteristics) need to be discussed in more detail to
find explanations for the heterogeneity and inconclusiveness of
reported findings.

First, with regard to sample size, we observed that findings
of larger samples are less conclusive compared to findings of
smaller samples. This might be explained by the fact that larger
samples can control for more additional variables and potential
confounds. These additional factors might moderate, mediate,
conceal or suppress the direct, independent impact of ACEs,
as many of these variables in larger models are inter-correlated
(e.g., adversities, mental health problems, negative life-styles, and
smoking status).

Second, we observed that studies with younger participants
more often find negative associations than studies with older
participants. This is in line with Ridout et al. (2017) who
reported in their moderator analyses that the smaller the duration
between ACEs exposure and age at TL assessment, the larger
the magnitude of effect sizes. They explained this finding by
pointing to the fact that studies of children assume no smoking
amongst participants, and that adversities early in childhood
tend to be associated with larger effects (Ridout et al., 2017).
Similar results were found by Hanssen et al. (2017). Another
potential explanation, according to the healthy survivor effect,
might be that participants within older samples drop out due
to morbidity or early mortality, which is in turn associated
with shorter telomeres (Mather et al., 2011; Kuffer et al., 2016;
Schaakxs et al., 2016; Oliveira et al., 2017). Moreover, Schaakxs
et al. (2016) argued that “a possible explanation for these null
findings in older adults may be that older adults have been
exposed to numerous competing causes for shortened TL, such
as somatic diseases or an unhealthy lifestyle over the life span.
These other TL-damaging factors may suppress the independent
impact of psychosocial stressors.” (p. 441).

Third, the sample composition of included studies varied
strongly. Some of the studies focused on specific clinical
populations and the impact of psychiatric disorders on TL.
These studies included ACEs in their models as control
variables. In contrast, other studies focused on the impact
of ACEs on TL controlling for psychiatric conditions. We
observed that studies with non-clinical populations more
often report negative associations between ACEs and TL.
This is in line with Ridout et al. (2017), who found
effect sizes of smaller magnitude regarding the association
of ACEs and TL in their moderator analyses, when looking
at studies that included subjects with mental disorders. Epel
and Prather (2018) recently proposed a triad model of stress
exposures, psychopathology and telomere biology combining

the meta-analytic evidence between the associations of stress
and telomeres, stress and psychopathology, and psychopathology
and telomeres. Having this triad in mind, when approaching
TL from a psychopathological perspective, studies have to
acknowledge that “expression of psychopathology may be
strongly influenced by exposure to maltreatment” (Teicher and
Samson, 2013, p. 1,114). This distinctive phenotypical expression
of a psychiatric disorder (with vs. without maltreatment)
might reveal distinct subtypes of disorders that are important
to account for when determining the biological bases of
these mental disorders (Teicher and Samson, 2013; Teicher
et al., 2016). Moreover, possible direct associations of ACEs
on TL might be mediated by the later development of
mental disorders. Assuming that early adversities often precede
psychopathology, psychiatric disorders might mediate the
association of ACEs and TL. Hence, research on TL should
acknowledge both perspectives: distinct subtypes of psychiatric
disorders (with vs. without maltreatment) within clinical samples
and the potential mediating effect of psychopathology in non-
clinical samples.

Fourth, the current study further examined ACEs using the
SECs recently proposed by Epel et al. (2018). Results showed
an overall lack of details and lots of missing information. This
makes it indeed very difficult to understand the adverse nature
of these experiences with important characteristics and attributes
not beingmeasured or articulated. Differentiating between event-
based and chronic exposures, the target of the exposure, and the
duration, for instance, is very important in the context of trauma
research as many childhood adversities are interpersonal and
traumatic in nature (e.g., abuse and neglect, interpersonal loss,
interpersonal conflict, interpersonal violence) and are targeted
at either participants themselves or at close others (e.g., siblings
or family members) (Widom et al., 2008; Moffitt and the Klaus-
Grawe Think Tank, 2013). Chronic-occurring interpersonal
events are often followed by a broad range of trauma-associated
psychopathologies that are not captured within the classical
framework of PTSD (Cook et al., 2005). These harmful responses
can lead to diverse behavioral and emotional alterations, often
referred to as complex trauma symptoms, as for example affective
dysregulation, attentional and behavioral problems, self and
relational deregulation (Briere et al., 2008; Greeson et al., 2011;
Schmid et al., 2013). For this reasonmany experts emphasized the
need for a more developmentally sensitive diagnostic system that
takes account of the heterogeneity of psychopathology following
early trauma (Cloitre et al., 2009; van der Kolk et al., 2009;
D’Andrea et al., 2012; Schmid et al., 2013). This led to the
inclusion of complex trauma symptoms within the PTSD section
in the Diagnostic and Statistical Manual of Mental Disorders—
Fifth Edition (DSM-5) and the inclusion of a complex PTSD
disorder in the International Classification of Diseases 11th
Revision (ICD-11). These complex trauma symptoms contain
symptoms of affect dysregulation, negative self-concepts and
interpersonal problems that are related to the traumatic exposure
(Cloitre et al., 2013). Overall, the adversities included are all of a
stressful, adverse, and traumatic nature. Most of these stressors
have the potential to elicit harmful emotional responses (e.g.,
social threat, loss of control, shame) and behavioral alterations
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(e.g., role-change, impulsivity), but detailed and differentiating
information is missing.

Limitations
The current review needs to be seen in light of some
limitations. First, this review is not a systematic review as
defined by PRISMA or Cochrane guidelines. The narrative
approach, however, allowed us to discuss the complexity of
exposure characteristics in an overall heterogenous sample of
studies and adds to recently published systematic meta-analyses.
Second, most studies assessed ACEs retrospectively with self-
reported questionnaires, sometimes with several decades between
adversity and assessment of adversity, which leads to recall
biases. Hardt and Rutter (2004) extensively discussed biases of
retrospective self-reports and concluded that they easily lead
to an underreporting of events and that the validity of details
assessed retrospectively might be low, but false-positive reports
are rare. In contrast, a recently published meta-analysis reported
only weak associations between prospective and retrospective
measures of adversity concluding that these measures identify
different groups of individuals (Baldwin et al., 2019). This
should be taken into account in future studies. Third, this
review focused on the ACEs part of the ACEs-TL association.
Besides that, methodological issues with regard to the TL
measurement approach are also of high interest and might
explain some of the heterogeneity in findings. These issues
are extensively reviewed and discussed elsewhere and beyond
the scope of this review (Montpetit et al., 2014; Lai et al.,
2018). Fourth, publication bias is likely to occur because we
only included papers that were published in peer-reviewed
journals. Last and most important, as described in the method
section, studies were included that measured ACEs before
the age of 18 by means of a questionnaire or an interview.
Studies reporting on early adversities solely based on high-risk
status, on low socio-economic status (SES), on neglectful, non-
supportive parenting styles, on maternal depression, and on
maternal stressors during pregnancy, were not included due
to their lack of direct measurement of adverse experiences.
Being at risk for ACEs is highly correlated with incidence
of ACEs but not all at-risk individuals are exposed. This
approach was used because the focus of this review was on the
harmful long-term consequences of experiencing ACEs. Still,
as a substantial overlap between different operationalization’s
of stressors exist, it is therefore very difficult to draw
clear boundaries.

Implications
Future research might benefit from a differentiated look
into ACEs, articulating multiple domains of stressors such
as in the SECs (Epel et al., 2018). This will help to improve
our understanding of the adverse nature of these exposures

and uncover different exposure-related emotional and
behavioral responses that mediate the association between
ACEs and long-term health outcomes. This might help to
further our understanding of the complex associations of
stress and TL, beyond what can be explained by simply
summing potentially harmful incidents in childhood.
In addition, resilience factors that protect children and
adolescents from sustained physiological consequences need
further investigation.

CONCLUSION

Overall, the included sample of studies indicates a negative
association between ACEs and TL, but the diversity in sample
and stressor characteristics makes it difficult to achieve a final
and confident conclusion. From a developmental perspective, a
more comprehensive evaluation of adversities using a common
language and dimensional approaches to SECs might help to
improve understanding of the complex associations between
(early) stressors and health outcomes. Individuals are exposed
to numerous competing and interacting exposures that might
shorten TL over the life course. A focus on developmental
trajectories combining early adversities, psychopathology and
protective factors might help to develop enhanced approaches to
reduce the stress-related health burden of our societies.
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