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Editorial on the Research Topic

Data Assimilation and Control: Theory and Applications in Life Sciences

The understanding of complex systems, such as insecticides or the mammalian heart, is a key
element to predict and control the system’s dynamics. To gain deeper insights into the underlying
actions of complex systems, today, more and more data of diverse types are analyzed that mirror
the systems dynamics, whereas system models are still hard to derive. Consequently, developing
techniques that permit the construction of models which are well-adapted to observed data is one of
the great challenges. Tomatch systemmodels with diverse experimental data, data assimilation and
control theory provide important techniques. They use a combination of observations and models
to achieve optimal fitting of model parameters, providing optimal forecast estimations or control
of the system’s dynamics to make the system perform a specific task. The present Research Topic
(and the corresponding e-book) brings together both recent theoretical work and applications in
life sciences.

Typical research in the life science aims to understand the complex system under study involving
diverse system models and observations. If a model of the system dynamics exists, it is insightful
to validate the model by comparing the model’s dynamical solutions with observations, either
quantitatively or qualitatively. For instance, one may consider the experimental setup of a control
experiment in a real-world system and simulate the experimental setup in the model framework
by computing the model system’s response to an equivalent external stimulation. Kasap and
van Opstal have chosen this approach and simulated the control of eye saccades by electric
stimulation. Their study shows good qualitative and quantitative agreement between the model
dynamics and observations, validating their model. Since their effective model describes well major
observation features, the successful model features can be interpreted as the major features in the
brain structure.

Another approach may aim to improve or extract a model by observations. For instance, in
psychology, the statistical ex-Gaussian distribution describes well the subjects’ reaction times. To
construct a statistical model of cognitive processes, it is important to estimate parameters of the
ex-Gaussian distribution in an efficient way. Moret-Tatay et al. have developed a software library
to efficiently estimate the coefficients of the ex-Gaussian distribution. Similarly, Shabbir et al. fit
statistical distributions to experimental gene data to understand better why the Asian corn borer
can develop resistance to genetically modified maize that is supposed to be toxic to the insect. Both
latter studies aim to understand complex behavior by identifying statistical models.
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Dynamical neural models that describe mathematically the
temporal evolution of neural populations play an important
role in neuroscience. Escuain-Poole et al. consider a dynamical
model of neural populations in the brain, that allows to explain
the electroencephalogram (EEG) measured on the scalp, i.e.,
outside of the brain. The work shows in several theoretical studies
how to estimate brain model parameters from synthetic EEG-
data that are observed on the head surface. This estimation is
done by the well-known Unscented Kalman filter. A similar
analysis approach is statistical data assimilation that allows
to estimate model parameters and system forecasts. Typically,
statistical data assimilation provides efficient tools to estimate
the posterior probability density function of model parameters.
In the article of Miller et al. the authors successfully performed
parameter estimations of an avian song model by statistical
data assimilation and predicted the evolution of optimal
model solutions.

Typical dynamical models are differential equation systems
whose parameters are estimated. In the last decades, more
and more of such differential equation models have been
extended or even replaced by methods borrowed from artificial
intelligence, such as artificial neural networks. Herzog et al. show
how to estimate an underlying chaotic dynamical model by a
combination of a convolutional neural network and a conditional
random network. The neural network is fit to synthetic data
generated from a heart tissue model. The authors show in
detail that the neural network allows to faithfully reproduce the
dynamics of single elements of the underlying model.

Parameter estimation is an important application of data
assimilation, as demonstrated in the contributions described
above. Beyond this, data assimilation techniques also provide
improved forecasts. For instance, in meteorology, the solution of
an atmospheric physical model represents a short-time forecast,
e.g., a spatial distribution of atmospheric state variables after
1 h. A subsequent data assimilation step transforms this spatial
distribution to a new spatial distribution (called analysis) that is
closer to observations. One of the major aims in atmospheric
data assimilation is to obtain free forecasts, i.e., long-time
model solutions with the analysis as initial condition, that
accurately predict the weather. Hence, in this context, data

assimilation provides optimal initial conditions for forecasts.
One of the limits of standard data assimilation techniques is
the condition that observations must be sufficiently dense in
reasonably long fixed intervals. Potthast and Welzbacher have
studied in detail a rapid data assimilation technique based on
an ensemble Kalman filter that considers observations in very
short time intervals. The authors show that the ultra-rapid
update of the analysis significantly improves forecasts. Possible
applications of the new technique range from meteorology
to neuroscience.

More generally, the prediction of neural activity has attracted
increasing attention over the last decade. Hutt and Potthast
have proposed to forecast the spectral power of forecast time
series in certain frequency bands, since it is well-known that
the brain encodes and decodes information by oscillations
in certain frequency ranges. To this end, the authors have
applied a data assimilation cycle utilizing an ensemble Kalman
filter and have computed ensemble forecasts and their time-
frequency power spectral distributions. It is shown by statistical
ensemble verification that these time-frequency distributions
of forecasts better explain underlying oscillatory content than
forecast time series.

Future research in the field may involve data assimilation of
non-local observations from a theoretical perspective and more
applications in biology and neuroscience.

AUTHOR CONTRIBUTIONS

AH wrote the Editorial and all authors re-read and edited
the manuscript.

Conflict of Interest Statement: The authors declare that the research was

conducted in the absence of any commercial or financial relationships that could

be construed as a potential conflict of interest.

Copyright © 2019 Hutt, Stannat and Potthast. This is an open-access article

distributed under the terms of the Creative Commons Attribution License (CC BY).

The use, distribution or reproduction in other forums is permitted, provided the

original author(s) and the copyright owner(s) are credited and that the original

publication in this journal is cited, in accordance with accepted academic practice.

No use, distribution or reproduction is permitted which does not comply with these

terms.

Frontiers in Applied Mathematics and Statistics | www.frontiersin.org May 2019 | Volume 5 | Article 255

https://doi.org/10.3389/fams.2018.00046
https://doi.org/10.3389/fams.2018.00053
https://doi.org/10.3389/fams.2018.00060
https://doi.org/10.3389/fams.2018.00045
https://doi.org/10.3389/fams.2018.00052
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#articles


ORIGINAL RESEARCH
published: 09 October 2018

doi: 10.3389/fams.2018.00047

Frontiers in Applied Mathematics and Statistics | www.frontiersin.org October 2018 | Volume 4 | Article 47

Edited by:

Axel Hutt,

German Meteorological Service,

Germany

Reviewed by:

Meysam Hashemi,

INSERM U1106 Institut de

Neurosciences des Systèmes, France

Jorge F. Mejias,

University of Amsterdam, Netherlands

*Correspondence:

A. John van Opstal

j.vanopstal@donders.ru.nl

Specialty section:

This article was submitted to

Dynamical Systems,

a section of the journal

Frontiers in Applied Mathematics and

Statistics

Received: 15 July 2018

Accepted: 18 September 2018

Published: 09 October 2018

Citation:

Kasap B and van Opstal AJ (2018)

Double Stimulation in a Spiking Neural

Network Model of the Midbrain

Superior Colliculus.

Front. Appl. Math. Stat. 4:47.

doi: 10.3389/fams.2018.00047

Double Stimulation in a Spiking
Neural Network Model of the
Midbrain Superior Colliculus

Bahadir Kasap and A. John van Opstal*

Department of Biophysics, Donders Institute for Brain, Cognition and Behavior, Radboud University, Nijmegen, Netherlands

The midbrain superior colliculus (SC) is a crucial sensorimotor interface in the generation

of rapid saccadic gaze shifts. For every saccade it recruits a large population of cells in its

vectorial motor map. Supra-threshold electrical microstimulation in the SC reveals that

the stimulated site produces the saccade vector specified by the motor map. Electrically

evoked saccades (E-saccades) have kinematic properties that strongly resemble natural,

visual-evoked saccades (V-saccades), with little influence of the stimulation parameters.

Moreover, synchronous stimulation at two sites yields eye movements that resemble a

weighted vector average of the individual stimulation effects. Single-unit recordings have

indicated that the SC population acts as a vectorial pulse generator by specifying the

instantaneous gaze-kinematics through dynamic summation of the movement effects

of all SC spike trains. But how to reconcile the a-specific stimulation pulses with these

intricate saccade properties? We recently developed a spiking neural network model of

the SC, in which microstimulation initially activates a relatively small set of (∼50) neurons

around the electrode tip, which subsequently sets up a large population response

(∼5,000 neurons) through lateral synaptic interactions. Single-site microstimulation in

this network thus produces the saccade properties and firing rate profiles as seen in

single-unit recording experiments. We here show that this mechanism also accounts

for many results of simultaneous double stimulation at different SC sites. The resulting

E-saccade trajectories resemble a weighted average of the single-site effects, in

which stimulus current strength of the electrode pulses serve as weighting factors.

We discuss under which conditions the network produces effects that deviate from

experimental results.

Keywords: saccades, motor map, spatial-temporal transformation, electrical stimulation, population coding,

vector averaging

INTRODUCTION

Superior Colliculus
Because high spatial resolution is limited to the central fovea, the primate visual system needs to
explore the environment through rapid and precise saccadic eye movements. Normal (human
and monkey) saccades display stereotyped “main sequence” characteristics, described by linear
amplitude-duration and nonlinear, saturating, amplitude-peak eye velocity relationships [1]. In
addition, the horizontal and vertical velocity profiles of oblique saccades are tightly coupled,
such that they are scaled versions of each other throughout the saccade, and saccade trajectories
are approximately straight in all directions [2]. These properties imply that the saccadic system
contains a nonlinear control stage [2–4].
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Previously, these main-sequence properties had been assumed
to arise at the brainstem level, possibly because of saturation of
the brainstem saccadic burst neurons [3].

Recent hypotheses have suggested, however, that the saccade
nonlinearity reflects a speed-accuracy trade-off, which optimally
deals with spatial uncertainty in the retinal periphery and internal
noise in sensorimotor pathways [5–8]. We have hypothesized
that the midbrain superior colliculus (SC) would be in an
excellent position to implement such a strategy [8].

The neural circuitry underlying saccade planning, selection,
and execution extends from the cerebral cortex to the cerebellum,
and the pons in the brainstem. The midbrain SC is the final
common terminal for all cortical and subcortical outputs, and it
is known to specify the vectorial eye-displacement command for
the brainstem oculomotor circuitry [9–11]. The SC contains an
eye-centered topographic map of visuomotor space, in which the
saccade amplitude is mapped logarithmically along the rostral-
caudal axis (u, in mm) and saccade direction roughly linearly
along the medial-lateral direction (v, in mm; [9]). The afferent
mapping (Equation 1a) and its efferent inverse (Equation 1b) are
well described by Ottes et al. [12]:

u = Bu ln

(√
(x+A)2+y2

A

)

v = Bv atan
(

y
x+A

)











(1a)

⇐⇒







x = A ·
(

exp
(

u
Bu

)

cos
(

v
Bv

)

− 1
)

y = A · exp
(

u
Bu

)

sin
(

v
Bv

) (1b)

with typical parameter values for the monkey SC given as
Bu≈1.4mm, Bv≈1.8 mm/rad, and A≈3 deg; see Figure 1).
Each saccade is associated with a translation-invariant Gaussian-
shaped population within this map, the center of which
corresponds (through Equation 1a) to the saccade vector, (x0,y0),
and a width σ pop≈0.5mm [12, 14, 15]. Thus, the activity of
neuron n in the motor map is described by:

Fn (un, vn) = Fmax · e
− 1

2 ·
(

(u0−un)
2+(v0−vn)

2

σ2pop

)

(2)

with Fmax the peak activity of the population, quantified by the
number of spikes in the saccade-related burst (e.g., Figures 1,
3A). It is generally assumed that each recruited neuron, n, in
the population encodes a vectorial movement contribution to
the saccade vector, which is determined by both its anatomical
location within the motor map, (un,vn), and its activity, Fn
[2, 11–13, 16–18].

However, the precise mechanism by which the cells contribute
to the saccade is still elusive. A major hypothesis in the literature
holds that the output of the population is determined by a
nonlinear center-of-gravity computation [17–21]. According to
this idea, the activity in the SC motor map only specifies the
saccade metrics (amplitude and direction of the saccade vector)
and is unrelated to the saccade kinematics. Yet, our single-
unit recordings demonstrated a strong (presumably causal)
relationship between the instantaneous firing patterns in the SC
and associated saccade trajectories [8, 13].

We therefore proposed and tested an extremely simple linear
summation model for the recruited population that explains the
encoding of spatial-temporal properties of saccade trajectories
through the firing properties of SC burst cells ([8, 13]); Figure 1.
According to this model, the saccade, S(t), is generated in the
following way:

S(t) =
N
∑

n =1

Kn<t
∑

k =1

δ(t − τn,k) ·mn (3)

with N the number of active cells in the population, Kn<t the
number of spikes in the burst of neuron n up to time t, and
mn = ζ·(xn,yn) the tiny site-specific spike vector emanating
from the motor map for each spike from each cell. This spike
vector is solely determined by the efferent mapping of SC site
(un,vn) (Equation 1b), where ζ is a fixed, small scaling constant
determined by the cell density in themap and the population size,
and δ(t-τk,n) is the k’th spike fired by neuron n at time τk,n.

Our linear dynamic ensemble-coding model is illustrated
in Figure 1. The SC provides a feedforward motor command
by the temporal integration of all spike trains of the total
population. The integrated signal represents the cumulative
desired displacement of the eye, whereas the population firing
rate represents the desired eye velocity (inset). The SC output
thus represents both a spatial (by the location of the population)
and a temporal (the instantaneous firing rates) neural code of
the eye movement. The SC signal is continuously compared
with an efference copy of the true eye velocity (with delay, 1T),
which is generated by the brainstem saccadic burst generator
(BG). Note that in our model the BG is taken as a simple no-
memory linear system (gain, B). The BG output is subsequently
fed through a parallel circuit, consisting of the eye-position
integrator and a static gain (TE). These signals combine at the
oculomotor neurons to produce the pulse-step innervation for
the oculomotor plant. The latter is usually modeled by a simple
first-order low-pass filter with time constant TE. We showed
that this entirely linear model resulted to account for the full
nonlinear kinematics of saccades. We therefore proposed that
the main-sequence properties should originate at the level of the
SC motor map [8, 13]. The neural mechanism underlying this
property was identified as a precise tuning of the peak firing rates
and burst durations in the SC as a function of their location in the
map, while keeping the number of spikes in the population fixed.
As a result, the instantaneous firing rates of the neurons together
encode all measured properties of saccadic velocity profiles [22].

Recently, we implemented a simple spiking neural network
model for the SC that can generate realistic saccades to
visual targets [23]. This minimalistic (one-dimensional) model
with lateral excitatory-inhibitory interactions among the SC
cells accounts for most of the experimentally observed firing
properties of saccade-related neurons in the motor map [8, 13],
and yields saccades with normal main-sequence properties. The
model takes a fixed Gaussian input from upstream sources (e.g.,
the cortical frontal eye fields, or FEF), and assumes precisely-
tuned biophysical properties of the SC network neurons, and
their interconnections.
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FIGURE 1 | Simplified schematic representation of our model of the saccadic system (after [13]). The SC motor map (Equation 1a) encodes the upcoming saccade by

recruiting a population of cells at the appropriate location (Equation 2), and setting up a firing rate profile (see inset) that specifies the desired trajectory and kinematics

of the eye. At the comparator, this dynamic signal is continuously compared with the ongoing true eye velocity (delay, 1T), and their integrated difference represents

the dynamic motor error, Eerr(t). The latter drives the brainstem burst generator, which is represented by a simple linear gain (B). The BG provides the velocity pulse for

the pulse-step generator, which drives the oculomotor plant. Note that the total model is entirely linear, and has only two free parameters (B and 1T). The equation

provides the Laplace transfer function between the SC output, 1E(s), and the eye movement response, E(s), with s the complex Laplace variable. Note that the

transfer is independent of the plant’s time constant. Yet, when driven by measured SC spike trains, the model produces the full nonlinear kinematics of saccades. As a

logical result of this observation, the nonlinearity has to reside in the encoding of the SC burst.

Microstimulation
Electrical stimulation at a particular site in the motor map
produces a saccadic gaze shift with metrics that correspond well
to the efferent mapping function (Equation 1b), and with normal
main-sequence kinematics [9, 15, 24, 25]. These studies have also
shown that the properties of electrically evoked (E-)saccades are
largely invariant to a wide range of stimulation parameters, which
might appear problematic for the linear ensemble-coding model
of Equation 3.

Note that two factors contribute to the neural responses
to electrical microstimulation: (1) direct (feedforward) current
activation of cell bodies and axons by the electric field
of the electrode, and (2) synaptic activation through lateral
(feedback) interactions among the neurons in the motor
map [26].

We recently argued that as current strength falls off rapidly
with distance from the electrode tip, only a small number
of SC neurons will be directly stimulated by the electrode’s
electric field (e.g., [27]). Thus, the major factor determining the
microstimulation effects would be synaptic transmission. Indeed,
several studies have suggested the existence of a functional
organization of lateral excitatory-inhibitory interactions within
the SC (anatomy: [28, 29]; electrophysiology: [30–32], and
pharmacology: [33]).

We thus extended our spiking model to account for single-
site microstimulation results over a wide range of stimulation

parameters [26]. The network was tuned such that, above a
threshold, the E-saccades were insensitive to changes in the
stimulation parameters. This result supports the idea that the
excitatory-inhibitory interactions effectively normalize the total
SC output. Under microstimulation, the network thus creates a
population that is virtually identical to the one elicited by a visual
stimulus. It may be expected that such intrinsic normalization
could ensure a behavior that resembles (nonlinear) weighted-
averaging without the need for a nonlinear, activation-dependent
weighting scheme that is implemented downstream from the
motor map.

Double Stimulation
In this paper, we further explored the predictions of our model
for synchronous and asynchronous electrical stimulation at
two different sites. Robinson [9] and Nota and Gnadt [34]
demonstrated that double stimulation in the SC produced eye
movements that resemble the weighted average of the individual
stimulation effects, with the stimulation current strengths and
relative timings acting as weighting factors. Similar weighting
effects occur when an electrical stimulus is combined with
a behaviorally relevant visual stimulus [35]. Results such as
these have prompted computational modelers to propose a
downstream vector-averaging mechanism that acts on the SC
output by explicitly calculating the center of gravity of the
population (see above; [17–21]; review in [36]). The neural
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mechanism that would implement such a neural computation,
however, remains unspecified.

Figure 2 illustrates two extreme outcomes for mechanisms
that would both calculate the center of gravity (CoG) of the
effects of the total activity: averaging at the level of the motor
map (Equation 4a), vs. averaging at the level of the brainstem
(Equation 4b), i.e.,:

−→
S

SC

CoG =
∑NPOP

n =1 Fn ·
−→w n

∑NPOP
n =1 Fn

with−→w n = (un, vn) (4a)

vs.
−→
S

DOWN

CoG =
∑NPOP

n =1 Fn ·
−→m n

∑NPOP
n =1 Fn

with−→m n =
(

xn, yn
)

(4b)

Note that in the former case (Figure 2A), the resulting saccade
is horizontal with a constant amplitude of 20 deg, regardless the
direction of the single-site responses. In the case of Equation
(4b), however, response amplitude varies with the angle, 8, of
the single-site stimulation response as RCoG = RSITE · cos8SITE

(Figure 2B).
In an earlier modeling study we had shown that lateral

excitatory/inhibitory synaptic interactions within the SC motor
map, in combination with the linear ensemble-coding scheme of
Van Gisbergen et al. [14], could account for saccade-averaging
effects to (synchronous) double stimulation [37, 38]. However,
the model’s output of that study only focused on the saccade-
vector endpoints, as it was not equipped to generate saccade
trajectories and their kinematics.

Here we employ the dynamic ensemble-coding scheme of
Equation (3) to our spiking collicular network to simulate two-
dimensional saccade trajectories under a variety of electrical
double-stimulation conditions. We show that linear dynamic
ensemble-coding with lateral excitatory-inhibitory interactions
in the motor map can account for most of the experimental
vector-averaging results to double stimulation [9, 20, 35], without
the need for additional computational nonlinearities, such as a
downstream population center-of-gravity computation [20, 21,
34], or a spike-counting cut-off threshold [13, 39, 40]. The results
of our model simulations suggest several interesting limiting
cases to the averaging behavior, which, to our knowledge, have so
far not been investigated in experimental studies. We also discuss
to what extent the model’s responses deviate from experimental
findings, and suggest some further refinements to the model.

METHODS

The Log-Polar Mapping
Without loss of generality, we simplified the afferent motor map
of Equation (1a) to the isotropic complex logarithmic function,
by setting Bu = Bv = 1, and A= 0:

u (R) = ln (R) and v (φ) = φ, with R =
√

x2 + y2 and

φ = atan
( y

x

)

(5a)

Thus, a single spike’s movement contribution to the saccade from
a cell at site (u,v) is determined by the simplified efferentmapping
relations:

mx(u, v) = ζ · exp (u) · cos (v) andmy(u, v) = ζ · exp (u) · sin (v)

(5b)

We modeled the spiking neural network by a rectangular grid
of 201 x 201 neurons, representing the gaze motor-map of the
right hemifield with 0 < u < 5 mm (i.e., up to R = 148
deg), and -π

2 < v < π
2 mm. Under single-site stimulation,

the center location of the recruited population determines the
direction and amplitude of the saccade, whereas the temporal
activity profile encodes the eye-movement kinematics through
Equation (3). As described in our previous studies [23, 26],
and briefly summarized below (Equations 13 and 14), the eye-
movement main-sequence kinematics result from the location-
dependent biophysical properties of the neurons, and their lateral
excitatory-inhibitory connectivity profiles.

The Adex Neuron Model
We studied the dynamics of the network through simulations
developed in C++/CUDA [41], by custom code that
implemented dynamic parallelism on a GPU [42], developed
and tested on a Tesla K40 with CUDA Toolkit 7.0, Linux
Ubuntu 16.04 LTS. Simulations ran with a time resolution of
0.01ms. Brute-force search and genetic algorithms were used for
parameter identification and network tuning since there exists
no analytical solutions for the system [23, 26]. Sample simulation
and analysis code can be found under https://bitbucket.org/
bkasap/sc_doublestimulation/.

Neurons were described by the adaptive exponential integrate-
and-fire (AdEx) model [43, 44], which is a conductance-based
model with an exponential membrane potential dependence.
The nonlinear temporal dynamics of neuron n are described by
two coupled differential equations that determine the two state
variables: the cell’s membrane potential, V, and the adaptation
current, q:

C
dVn

dt
= −gL (Vn − EL) + gLη exp

(

Vn − VT

η

)

− qn + Iinp,n (t) (6a)

τq,n
dqn

dt
= a (Vn − EL) − qn (6b)

C is the membrane capacitance, gL is the leak conductance, EL is
the leak reversal potential, η is a slope factor, VT determines the
neural spiking threshold, τq,n is the adaptation time constant, a is
the sub-threshold adaptation constant, and Iinp, n is the cell’s total
synaptic input current.

Once the membrane potential crosses VT , the exponential
term in Equation (6a) starts to dominate. To limit the membrane
potential, we incorporated a ceiling threshold atVpeak =−30mV
for spike generation. For each spiking event at time τ , the
membrane potential is reset to its resting potential, Vrst , and
the adaptation current, qn, is increased by b to implement the
spike-triggered neural adaptation:

Vn (τ ) → Vrst and qn (τ ) → qn (τ ) + b (7)
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FIGURE 2 | Geometrical consequences of center-of-gravity averaging at the SC level vs. downstream from the motor map. (A) Hypothetical double-stimulation

effects for two sites at eccentricity R = 20 deg, placed symmetrically around the horizontal meridian at Φ = 0 deg, with angular separation of 60, 100, and 160 deg,

respectively. Weighted averaging within the map (Equation 4a) would effectively lead to a horizontal movement corresponding to (R,8) = (20, 0) deg for all three

situations (black dot). (B) If this process occurs downstream from the motor map, the averaged movement (Equation 4b) would be horizontal, but with an amplitude

that systematically depends on the separation angle [colored dots; black dot: result of (A)]. (C) Predictions for the two different center-of-gravity mechanisms.

FIGURE 3 | (A) Population activity profile for a horizontal saccade with an amplitude of 7.4 deg. The cell in the center of the Gaussian population fires 20 spikes and is

located at (u0,v0) = (2,0) mm (cross hair); the population width is 0.5mm (Equations 2 and 4). (B) Excitatory-inhibitory lateral connectivity (in pS) for the cell in the

center of the population, according to Equations 12–14, and Table 1. The strongest lateral inhibition is exerted at about 1.1mm from the cell (light-blue dashed circle).

The red circle indicates the w = 0 pS contour, at about 0.6mm from the cell.

In our model, two biophysical parameters specify the firing
properties of the SC neurons: the adaptation time constant,
τq, n (taken to be location dependent; [23]), and the synaptic
input current, Iinp, n, which is partly determined by the intra-
collicular connections (see below). In our model, both depend
systematically on the rostral-causal location (u) of the cells within

the network. The remaining parameters, C, gL, EL, η, VT, and a,

were fixed and tuned such that the cells showed neural bursting

behavior (see Table 1 for the list and values of all parameters used
in the simulations, and [26], for example responses and phase

plots).

Current Spread
We applied electrical stimulation by the input current, centered
around site [uE,vE]. We assumed an exponential spatial decay of
the electric field from the tip of each stimulation electrode. For
stimulation at a single site at time t1:

IE(u, v, t) = I0 · exp
(

−λ ·
√

(u− uE)
2 + (v− vE)

2

)

· P(t − t1)

(8)

with λ (mm−1) a spatial decay constant, I0 the current intensity
at site (uE,vE) (in pA), and a rectangular stimulation pulse given
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TABLE 1 | List of all parameters used in the simulations.

MICROSTIMULATION PARAMETERS

λ 10 mm−1 Spatial decay constant

I0 150 (40–280) pA Intracellular current intensity

P(t) I0 (for 0 < t < Ds) Rectangular stimulus pulse

DS 100 (25 - 250) ms Stimulation duration

NEURAL PARAMETERS

C 600 pF Membrane capacitance

gL 20 nS Leak conductance

EL −53mV Leak reversal potential

η 2mV Spike slope factor

VT −50mV Exponential threshold

Vpeak −30mV Spiking threshold

Vrst −45mV Reset potential

a 0 nS Sub-threshold adaptation

b 120pA Spike-triggered adaptation

τq 100-30ms Location-dependent adaptation time

constant; varies with (un) (Equation 13)

ζ 5.087·10−5 Spike-vector scaling

SYNAPTIC PARAMETERS

Eexc 0mV Excitatory reversal potential

Einh −80mV Inhibitory reversal potential

τexc 5ms Excitatory conductance decay

τinh 10ms Inhibitory conductance decay

LATERAL CONNECTIVITY PARAMETERS

wexc 45 pS Excitatory scaling factor

σexc 0.4mm Range of excitatory synapses

winh 14 pS Inhibitory scaling factor

σinh 1.2mm Range of inhibitory synapses

sn 0.0113–0.0148 Location-dependent synaptic scaling

parameter; varies with (un, Equation 14).

by P(t) = 1 for 0 < t – t1 < DS, and 0 elsewhere. Thus, only a
small set of neurons around the stimulation site will be directly
activated with this input current (see [26]). In double-stimulation
trials, two stimuli were applied at different sites. The total current
is then given by:

IE(u, v, t) =
2
∑

n =1

I0,n · exp
(

−λ ·
√

(

u− uE,n
)2+

(

v− vE,n
)2
)

·

Pn(t − tn) (9)

In these simulations, stimulus amplitudes, sites, durations, and
their relative timings were systematically varied.

Synapse Dynamics and Lateral

Connections
The total input current for neuron n depends on the spiking
activity of its surrounding neurons through conductance-based
synaptic transmission, and external electric current inputs
(Equations 8 or 9):

Iinp, n (t) = gexcn (t) (Ee − Vn (t)) + ginhn (t) (Ei − Vn (t))

+IE (un, vn, t) (10)

where gexcn and ginhn are excitatory and inhibitory synaptic
conductances acting upon neuron n, Ee, and Ei are excitatory and
inhibitory reversal potentials, respectively. These conductances
increase instantaneously for each presynaptic spike by a
factor that is determined by the synaptic connection strength
between neurons, and they subsequently decay over time in an
exponential way:

τexc
dgexcn

dt
= − gexcn + τexc

Npop
∑

i

wexc
i, n

Ni
spks
∑

s

δ
(

t − τi,s
)

(11a)

τinh
dginhn

dt
= − ginhn + τinh

Npop
∑

i

winh
i, n

Ni
spks
∑

s

δ
(

t − τi,s
)

(11b)

with τexc and τinh, the excitatory and inhibitory time constants;
wexc
i, n and winh

i, n are the intracollicular excitatory and inhibitory
connection strengths between neurons i and n, respectively
(Equations 12a,b) and τi, s are the spike timings of all presynaptic
SC neurons projecting to neuron n.

We incorporated a Mexican hat-type lateral connection
scheme [45]:

wi,n = sn ·
(

wexc
i,n − winh

i,n

)

, with (12)

wexc
i,n = wexc exp

(

−
‖ui − un‖2

2σ 2
exc

)

(12a)

winh
i,n = winh exp

(

−
‖ui − un‖2

2σ 2
inh

)

(12b)

where wexc > winh and σ inh > σ exc, and sn is a location-
dependent synaptic scaling parameter, which accounts for the
location-dependent change in neuronal sensitivity that is related
to the variation in their adaptation time constants. Note, that
in our model each SC neuron exerts both excitatory and
inhibitory effects on the other neurons in the map, depending
on inter-neuron distance. Thus, for simplicity, the inhibitory
connections were not mediated by a separate class of inhibitory
interneurons.

Figure 1B exemplifies the connectivity profile for a single site.
The strong short-range excitatory and weak long-range

inhibitory synapses act as a dynamic soft winner-take-all (WTA)
mechanism: not just one neuron remains active, but the
“winner” affects the temporal activity patterns of the other active
neurons too. The central neuron thus governs the population
activity, since it usually is the most active one (but note
that under double-stimulation conditions this may change;
see section Results). As a result, all recruited neurons exhibit
similarly-shaped bursting profiles as the most active neuron,
leading to spike-train synchronization within the population
[8, 23, 26].

Network Tuning
The intrinsic biophysical properties of the neurons were enforced
by systematically varying the adaptation time constant, τq,n,
and the synaptic weight-scaling parameter, sn. Changes in the
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adaptive properties result in a varying susceptibility to synaptic
input, while the synaptic scaling corrects for the total input
activity. Following the brute-force genetic algorithm from our
recent paper [23, 26], the optimal location-dependent [τ q,n, sn]
value pairs for the neurons were fitted to ensure a systematic
negative rostral-caudal gradient of the peak firing rates (fpeak ∝
1√
R
) and a fixed number of spikes per neuron for its preferred

saccade (NSPK = 20) under a single-site microstimulation
condition with I0 = 150 pA and DS = 100ms.

In short, the algorithm optimized the network “fitness,”
by incorporating the scaled contributions of the cells’ peak
firing rates, their total spike counts, and an inter-cellular
synchronization index within the recruited population. As a
result, the adaptive time constant, τq, n, decreased linearly from
100 to 30ms with the anatomical rostral-caudal location of the
neuron, un, according to:

τq, n = 100− 14∗un ms, with un ∈ [0, 5]mm (13)

The optimal synaptic scaling factor for the lateral
excitatory/inhibitory connections (Equation 12) could be
fitted by a monotonically decreasing 5th-order polynomial in u n

(sin mm; [26]):

s (un) = 0.0148+
(

−2.52 · un + 1.6856 · u2n − 1.49 · u3n
+ 0.4318 · u4n − 0.04737 · u5n

)

· 10−4 (14)

Table 1 provides the model’s full parameter list.
Figure 3B illustrates the lateral connectivity profile for one

of the cells [at (u,v) = (2.0, 0.0) mm] in the motor map,
together with the Gaussian population activity around that
cell, associated with a small horizontal V-saccade of [R,Φ]
= [7.4, 0] deg (Figure 2A). Note that the lateral interaction
profiles are similar in shape and extent across all cells in the
motor map, but the absolute values of the excitatory peak and
inhibitory trough decrease in a systematic way with the rostral-
caudal coordinate, u, as s(0) = 0.0148 and s(5) = 0.0113, from
Equation (14).

RESULTS

Single-Site Stimulation
Figures 4A–C shows the recruited neural population at a rostral
stimulation site (R = 2 deg, 8 = 0 deg) for stimulation with
an amplitude of I0 = 150 pA and duration DS = 100ms. The
diameter of the circular population extends to about 1mm in
the motor map, with the cumulative spike count of the central
cells reaching∼20 spikes. Figure 4B provides the neuronal bursts
(top spike patterns) from 12 selected cells, together with their
calculated spike-density functions. The peak firing rate of the
central cells was close to 700 spikes/s and dropped in a regular
fashion with distance from the population center. Note also that
the cells near the edge of the population were recruited slightly
later than the central cells, but that their peak firing rates were
reached nearly simultaneously. Moreover, the bursts all appeared
to have the same shape. Figure 4C presents the saccade of 2 deg

(top: as function of time; bottom: as a spatial trajectory) encoded
by this population through Equation (3).

Figures 4D–F shows the results for stimulation at a more
caudal location in the motor map, yielding an oblique saccade
with R = 21 deg, 8 = 30 deg. The size of the evoked population
activity is very similar to that of the rostral population, and
also the number of spikes elicited by the cells is the same.
The peak firing rates of the neurons, however, were markedly
lower at the caudal site, reaching a maximum of about 450
spikes/s. As a result, the burst durations increased accordingly,
from about 35ms at the rostral site, to more than 70ms at the
caudal site. Note also that the horizontal and vertical position
and velocity temporal profiles are scaled versions of each other,
leading to a straight oblique saccade trajectory (Figure 4F, lower
panel).

Synchronous Stimulation at Nearby

Rostral-Caudal Sites
Figure 5 shows the network response to synchronous double
stimulation for two nearby sites, at R = 10 and R = 20 deg
(i.e., u = 2.3 and 3.0mm; Equation 5a) on the horizontal
meridian [i.e., Φ = 0 (v = 0mm), for both sites]. The
microstimulation parameters were taken the same at both
locations (I0 = 150 pA for DS = 100 ms). After about
30ms following population activity onset, the highest merged
population activity is observed, in which the most active neurons
are found between the two stimulation sites (Figures 5A,B).
The firing rates of the two neurons closest to the stimulation
electrodes are highlighted in Figure 5B. Note that the resulting
firing rates at these stimulation sites are markedly lower than
at the center of the total population. Note also that these
firing rates are highly similar. For single-site stimulation, these
firing rates would have been different, due to the tuning
properties of the neurons within the motor map (Equation
13). These interesting equilibrating population dynamics result
from the mutual excitatory/inhibitory interactions among
the neurons, as given by Equations (12, 14) (cf. with
Figure 3B).

Synchronous Stimulation at Widely

Separated Rostral-Caudal Sites
Figure 6 illustrates the network response to synchronous double
stimulation with the same intensity and duration as in Figure 5,
at two sites on the horizontal meridian that are separated by
nearly 3 mm: R = 2 deg and R = 35 deg, respectively (at
u = 0.7 and 3.6mm). About 30ms after activity onset, two
separated populations can be observed, in which the most active
neurons now coincide with the two stimulation sites (Figure 6A).
The firing rates of the two neurons closest to the stimulation
electrodes are again highlighted in Figure 6B. Note that the peak
firing rate at the small-amplitude stimulation site (green line) is
markedly lower (by almost 50%) and has a much longer duration
than for the single-site stimulation result (cf. Figure 4B). Both
populations appear to result in comparable firing dynamics,
which again is due to the mutual interactions among the neurons
across the motor map (cf. with Figure 3B). However, because
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FIGURE 4 | (A,D) Cumulative spike counts in the gaze-motor map in response to microstimulation at two single sites. (B,E) Temporal burst profiles of the recruited

neurons at 0.1mm intervals from the central neuron illustrate synchronized population activity. Peak firing rates of the cells decrease with distance from the population

center, which coincides with the location of the stimulation electrode. Burst durations increase for the larger saccade, but the total number of spikes in both

populations remains the same. (C,F) Top: Eye-displacement temporal profiles, generated by the linear dynamic ensemble-codg model (Equation 3). Horizontal (green),

vertical (yellow), and vectorial (purple) eye-displacement traces. Note the longer duration of the larger movement (main-sequence property), and synchronized

horizontal/vertical movement components (stretching). Bottom: 2D straight saccade trajectories.

FIGURE 5 | Synchronous double stimulation with the same current strengths (I0 = 150pA) at two nearby sites on the horizontal meridian, corresponding to R = 10

deg (at u = 2.3mm) and R = 20 deg (at u = 3.0mm), respectively. (A) The neural interactions produce a single population with its peak activity between the two sites.

(B) Temporal burst profiles of a set of neurons belonging to the active population. The two neurons closest to the stimulation sites reach similar peak firing rates

(highlighted profiles). (C) The resulting saccade (Equation 3) has an amplitude of 15 deg, which is at the weighted averaged position.

the strength of the interaction profiles is site-specific (Equations
12-14), the populations show different onset dynamics, with the
caudal site starting later than the rostral site.

The resulting horizontal saccade has an amplitude of 31 deg,
which differs from the linear summation of the two stimulation
effects (RSUM = 37 deg).
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FIGURE 6 | Synchronous double stimulation with the same current strengths at two separated sites on the horizontal meridian, corresponding to R = 2 deg (at u =
0.7mm) and R = 35 deg (at u = 3.6mm), respectively. Now, the two stimuli generate two separate populations that together produce a saccade of R = 31 deg. Note

that the peak firing rates and burst durations in both populations are similar, but differ markedly from the single-site stimulation rates (cf. with Figure 4).

FIGURE 7 | Spike counts of the activated neural populations when the input current at the caudal stimulation site at R = 35 deg is varied from I0,2 = 130, 150 and

170pA, with the stimulus strength at the rostral site (R = 20 deg) kept fixed at I0,1 = 150pA. Note that the center-of-gravity of the merged population shifts in the

direction of the stronger stimulation site.

Weighted Averaging for Rostral-Caudal

Sites
We next illustrate the effect of varying the relative current
strengths at two stimulation sites on the horizontal meridian (at
R= 20 deg and R= 35 deg, respectively) for synchronous double
stimulation. The stimulation amplitude at the rostral electrode
was kept constant at I0,1 = 150 pA, whereas the stimulus intensity
at the caudal site was varied systematically between I0,2 = 100
and 200 pA in 10 pA steps. Figure 7 illustrates three stimulus
situations: I0,2 = 130 pA, I0,2 = 150 pA, and I0,2 = 170 pA. In
all three cases a merged population is seen, in which the center-
of-gravity of the activity gradually shifts from the rostral to the
more caudal site.

Figure 8 shows the result of systematically varying the relative
stimulus intensities on the evoked saccade amplitudes (all
saccades were horizontal, like in Figures 4, 5). The individual
stimulation sites produced saccades of R = 20 and R = 35 deg,
respectively (red symbols). Synchronous stimulation at the two
sites, with I1,0 = 150 pA (fixed), resulted in eye-movements with
amplitudes that systematically varied as a function of I2,0 between
22.4 and 30 deg.

Double Stimulation at Medial-Lateral Sites
We next illustrate the effects of synchronous stimulation at two
sites that encode the same saccade amplitude (u = constant),
but different saccade directions (different v coordinates). In
Figure 9 the two stimulation electroes were placed at R =
20 deg and were separated by 18 = 60 deg around the
horizontal meridian (cf. Figure 2A). The resulting activity
shows a merged population with its most intensely firing
cells located on the horizontal meridian at R = 20 deg (u
= 3mm). In Figure 9B we show the SC bursts for a group
of selected cells, with the two sites corresponding to the up
and down electrode highlighted by the bold green and blue
lines, respectively. Note that the stimulation sites are markedly
less active than the cells near the horizontal meridian, and
also that their firing rates are much reduced (by more than
40%) with respect to the single-site stimulation effect (cf.
Figure 4D). The sites near the horizontal meridian, on the
other hand, display firing rates (>500 spikes/s) that significantly
exceed the peak firing rate (∼450 spikes/s) of the single-site
stimulation effect at the coordinate for a comparable saccade
amplitude.
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FIGURE 8 | Synchronous double stimulation with varying current strengths at

the caudal stimulation site. The input current at [R,8] = [35, 0] deg varied

between 100-200pA, while it was fixed to 150pA at [R,8] = [20, 0] deg (same

stimulus durations of 100ms). Varying the stimulation strengths shifted the

merged population’s center-of-gravity as in Figure 6. The resulting

eye-displacement vectors varied from 22.4 to 30 deg (slope of the linear

regression line: 7.8 deg/100pA).

The resulting saccade is horizontal and has an amplitude of
R = 13 deg. In other words, the amplitude is much smaller
than the saccade corresponding to the site of maximal activity,
which would be R = 20 deg. It is also somewhat smaller than the
projection of the saccade vectors onto the horizontal meridian,
which would correspond to an amplitude of RCoG = 20·cos(30)
= 17.3 deg (cf. Figure 2C).

Double Stimulation: Evoked Saccade

Amplitude Depends on Medial-Lateral

Separation
To appreciate the complex interactions between the neural
populations along the medial-lateral (v) axis in the motor map,
Figure 10 shows the results for the evoked saccade amplitude
(blue symbols) as function of the medial-lateral separation, 1v,
or, equivalently, as function of the angular separation between
the two single-site movements. The figure also indicates the
simple predictions from the pure center-of-gravity calculations
that would result from the motor map (R = 20 deg for all
sites), and from downstream averaging (the red line). It is clear
that the evoked saccades follow neither prediction. Although the
averaging effects are clearly due to the neural interactions with
the SC motor map (as we have not incorporated a downstream
center-of-gravity mechanism in our model, see Equation 3),
they clearly differ from the simple scheme of center-of-gravity
computation. Instead, the results reflect the intricate neural
dynamics as well as the influence of the lateral excitatory-
inhibitory interactions (see Figure 3B).

For example, for small spatial separations (up to about
0.7mm), the two populations strongly overlap (as in Figure 9).

As a result, they are partly dominated by the mutual excitatory
interactions, leading to a slight increase in the saccade amplitude
by about one deg. When the sites are separated by about 1mm,
both populations undergo mostly inhibitory influences, leading
to a reduced saccade amplitude. This effect increases up to about
1v = 1.4mm, where the evoked saccade (at these current levels)
reaches a minimum of 7.0 deg. In this region the inhibitory
interactions are the strongest (see Figure 3B). As the electrodes
are positioned further apart, the saccade amplitude is still small,
but slightly increases up to about 9 deg, because of the slightly
lower strength of the lateral inhibition.

Lateral-Medial Double Stimulation at

Different Current Strengths
Weighted saccade averaging can also occur when the electrodes
are positioned along the medial-lateral axis, but the effects
resulted to depend strongly on both the electrode separation
and on the strengths of the two currents. For example, when
one electrode was kept fixed at the supra-threshold stimulation
intensity of I0,1 = 150 pA, and the other electrode was varied
between I0,2 = 100–200 pA, the following pattern emerged for all
angular separation conditions:

(i) For currents below I0,2 = 150 pA, site 1 always fully
dominated, and all saccades were directed toward the first site.

(ii) Above I0,2 = 150 pA, site 2 dominated and saccades were
directed to the second site.

(iii) Only when the currents were equal, I0,1 = I0,2 = 150 pA,
averaging was obtained according to the relationship seen
in Figure 9. In other words, in these double-stimulation
conditions the saccade direction behaved as a bistable variable.
This response behavior is illustrated in Figure 11 for an
angular separation of 30 deg (1v= 0.52mm; black symbols).

True averaging of the saccade direction was only obtained
when (i) the fixed stimulation current at site 1 was lowered to
slightly above the threshold for evoking a saccade (e.g., to I0,1
= 120 pA), and (ii) the two sites were close together. Figure 11
shows the results of such weighted stimulation effects for the
same sites (blue symbols). The figure shows that from I0,2 =
130 pA onwards, a clear weighted averaging pattern was obtained,
in which the saccade direction varied systematically with the
difference in current strength. Note that for currents below about
I0,2 = 130 pA, also the saccade amplitude started to decrease, as
for these cases both currents were getting close to their saccade-
evoking thresholds.

Double Stimulation With Delay
In a similar way as observed for the interactions along themedial-
lateral coordinate (see sections Double Stimulation: Evoked
Saccade Amplitude Depends on Medial-Lateral Separation
and Lateral-Medial Double Stimulation at Different Current
Strengths), imposing a temporal delay between the two
supra-threshold electrode currents (when both at 150 pA)
produced different response behaviors, depending on the
electrode separations and current strengths. For supra-threshold
stimulation at both sites, a curved saccade trajectory would only
emerge when the delay was very short (typically, below 6ms),
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FIGURE 9 | Synchronous double stimulation at the same current strengths at two separated sites, corresponding to [R,8] = [20,+30] deg, and [R,8] = [20,−30] deg

respectively. The two stimuli yield a merged population, and a saccade of R = 13 deg, which is directed toward an average location of the two individual stimulation

effects.

FIGURE 10 | Saccade amplitude as function of electrode angular separation

18 for medial-lateral sites (separated by 1v mm) along the fixed R = 20 deg

radius (u = 3.0mm). Note that the stimulation-evoked saccade amplitudes

strongly depend on the medial-lateral distance, and that they vary in a very

different way than predicted from center-of-gravity computations (cf.

Figure 2C; Equation 4).

and the stimulation sites are separated in both the medial-lateral
and rostral-caudal dimensions of the motor map. An example
of such a stimulation condition is shown in Figure 12. The two
sites were at [R,8] = [5,−45] and [35,+45] deg, respectively,
and the current strengths were 150 pA at both sites, whereby
the stimulation pulse at the second site was delayed by 2ms.
Both electrodes set up a population response, leading to a curved
saccade trajectory with an overall amplitude of R = 19 deg and a
direction of about 8 = 40 deg, which is a weighted average of the
individual stimulus effects. When the delay was increased to 4ms
the initial direction of the saccade was horizontal curving toward
the final site location in midflight of the response (not shown).

At delays above 5ms, the saccade was invariably directed at
the endpoint of the first site, as the second site would be strongly

FIGURE 11 | Different double-stimulation response behaviors for the

conditions in which the electrode at site 1 (at (R,8) = (20,15) deg) was kept

fixed and slightly above the saccade threshold at I0,1 = 120pA (blue symbols),

or well above the threshold at I0,1 = 150pA (black symbols), while the current

at site 2 (at (R,8) = (20,−15) deg) was varied from I0,2 = 100 to 200pA in

10 pA steps. The former condition (blue) yielded clear weighted averaging

between the effects from the two sites, while the latter condition (black) shows

bistable response behavior. Red symbols: single-site evoked saccades at I0 =
150pA.

inhibited by the activated first population. As a result, the second
site would not be able to set up an appropriate population
response to produce a colliding saccadic on its own.

When the stimulation sites and current strengths, as well
as the delays were systematically varied, the occurrence of
curved saccade trajectories resulted to be quite rare. Instead,
we often obtained a bistable response behavior, in which a
small change in one of the stimulation parameters (e.g., the
current strength at the first electrode) could fully change the
saccadic response from being directed to the first site, toward the
second site.
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FIGURE 12 | Supra-threshold (150pA) double stimulation with a short inter-current delay. (A) Spike counts of the active populations at stimulation sites [R1,81] = [5,

−45] deg and at [R2,82] = [35,+45] deg, when the input current at the latter site was delayed by 2ms. (B) Firing rates of the cells in the active populations are plotted

in different colors (blue and green for the first and second population, respectively). (C) Resulting eye-displacement components as function of time (top) and the 2D

eye-movement trajectory (bottom). Note that the saccade trajectory is curved, as the initial and final directions of the movement are different.

An example of this bistable behavior on the stimulation
conditions is shown in Figure 13, where the two sites were
at [R1,81] = [20,+30] deg and [R2,82] = [40,−30] deg,
respectively, and the delay was 10ms. The stimulation current,
I0,2, was 150 pA in both cases, whereas I0,1 was either 140 pA,
or 130 pA. In the former condition, a straight saccade is directed
toward site 1, whereas in the latter case, a straight saccade is made
in the direction of site 2.

We systematically varied the inter-stimulus delay t2 from (2,
5, 10, 20, 50) ms and I0,1 from (200, 190, . . . ., 80) pA (I0,2
fixed at 150 pA), and obtained similar bistable results for many
cases. Note, however, that these two sites are separated by about
1.26mm, which falls in the strongest inhibitory range of the
lateral connectivity profile. In the situation of Figure 12 the
two sites are further apart, given weaker mutual inhibition and
allowing more excitatory interactions (see Figure 3B and section
Discussion).

DISCUSSION

Summary
Synchronous double stimulation in a spiking neural network
model of the SC with Gaussian excitatory-inhibitory interactions
results in saccade responses that display many of the features
that have been reported in electrophysiological studies [9, 25,
34]: when the electrodes were located on an iso-direction
line (v = constant) the resulting saccade amplitudes were a
weighted average of the individual stimulus effects, with the
current strengths acting as weighting parameters (Figures 5–
8). When the electrodes were positioned along iso-eccentricity
lines (u = constant), however, the response patterns appeared
to be more complex: weighted averaging was obtained for
low stimulation currents at nearby stimulation sites, but
when the electrodes were moved further apart and/or the
current levels increased, we obtained bistable response behavior
(Figures 9–11). When a delay was introduced between the first
and second stimulus pulse, the averaged saccade trajectories

could become curved, provided the delay was short (<6ms;
Figure 12). For longer delays, saccades were invariably directed
toward the site evoked by the first electrode when its
current intensity was above the normal saccade-initiation
threshold (150 pA). In other cases, we obtained bistable
response behavior, in which the saccade was directed either
to the first site, or to the second site, without averaging
(Figure 13).

The weighted averaging effects, which betray a nonlinearity in
the system, are entirely due to the neural dynamics (Equations 6–
7) and synaptic connectivity patterns (Equations 12–14) within
the SC motor map, as the downstream motor circuitry in
our model was taken entirely linear (Equation 3). Yet, the
averaging results of our simulations do not correspond at all
to the simple prediction of a center of gravity calculation at
the level of the motor map either (Equation 4a; Figure 2B), as
for iso-eccentricity stimulation the evoked saccade amplitudes
varied strongly with the electrode separation (Figure 10), in
a pattern that somewhat resemble the effect of downstream
averaging.Whether these predictions truly deviate from observed
experimental data on synchronous double stimulation is hard
to tell, as precise measurements and quantification of this
phenomenon are rare (e.g., 25, 34). The same may hold for the
exact paths followed by curved trajectories evoked by delayed
electrical double stimulation [25, 34, 39].

In what follows, we discuss these apparent discrepancies with
the experimental data.

Model Structure
The subtle different behaviors observed for iso-direction vs. iso-
eccentricity stimulation are likely caused by the differences in
neural organization for the u- and v-coordinates in our model.
The tuning parameters of the neuronal dynamics (the adaptive
time constant, Equation 13) and the lateral synaptic projection
strengths (the scaling parameter, Equation 14) both only vary
with the rostral-caudal coordinate (u), and are assumed constant
along iso-eccentricity lines.
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FIGURE 13 | Double stimulation with a 10ms delay, for two sites about 1.3mm apart, showing high sensitivity of the network to small changes in the stimulation

parameters. In (A–C) the current at the first electrode was I0,1 = 140pA, whereas in (D–F) it was only slightly lowered to I0,1 = 130pA. Yet, the resulting saccades

differed dramatically, in line with bistable response behavior.

These biophysical neural tunings were required to explain
the firing behavior of collicular neurons under single-site visual
stimulation conditions [8, 13, 23], and the nonlinear saccadic
main sequence kinematics (see Introduction). From our single-
unit recordings we noted that the peak firing rates of SC neurons
in the center of the population decreased systematically with the
saccade amplitude, meanwhile increasing their burst durations to
keep the number of spikes in the saccade-related burst invariant
across the motor map for slow, fast, small and large saccades.
As single-site microstimulation produces normal saccadic eye
movements, we argued that the same population activity would
emerge during electrical stimulation and for natural visual
stimulation. The neural population dynamics are then explained
by synaptic lateral interactions, and are hardly influenced by
the externally applied electrical stimulation current. We assumed
that the stimulation current directly activates only a small
subset of the neurons around the electrode. Indeed, under these
assumptions, most single-site microstimulation results could be
accounted for as well [26].

One discrepancy with experimental observations concerned
the near-threshold behavior of the network: around the
stimulation threshold, the network’s saccades become much
slower than main sequence (as evoked firing rates decrease),
but their size (determined by the total number of spikes in the
burst) remained unaffected. However, experiments have revealed

that near the threshold, saccades become both slower than main
sequence and smaller [15, 35]. This would suggest that near
threshold not only the firing rates are reduced, but also the
number of spikes. The current model does not incorporate this
possibility.

We here conjecture that the failure to produce different
numbers of spikes for near-threshold conditions may also
underlie the bistable character of our model to some of the
double-stimulation conditions, and its reluctance to readily
produce curved saccades. In double stimulation, the two
electrodes exert a mutual inhibitory influence, which brings the
weaker stimulation site to near- or below-threshold levels under
many conditions. Indeed, when the stimulation sites fall in each
other’s strongest inhibitory zones, the bistable effects are nearly
impossible to overcome (e.g., Figures 11, 13). On the other hand,
when the stimulation electrodes are placed along the u-direction
in the map, bi-stability is less common. This is probably due to
the decreasing strength of the lateral connectivity patterns along
this dimension, as dictated by Equation 14 (the most caudal sites
exert nearly 25% less influence than the most rostral sites).

One possibility to overcome this discrepancy is to introduce
variability (noise) in the neural population, e.g., at the level of the
synaptic conductances (Equation 11), and at the adaptive time
constants (Equation 13), that relies on the total input strength
to the neuron (multiplicative noise; [8]). This will affect the total
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number of spikes of the neuron, and therefore could potentially
lead to smaller saccades for effectively weak inputs.

Untested Predictions
The neural interactions, imposed by the two separated electrodes,
cause some interesting (and somewhat unexpected) behaviors of
the neural firing properties, which so far have not been tested
experimentally. Under single-site stimulation, the activity of the
central cell, which encodes the ensuing saccade amplitude and
direction, fully determines the firing-rate profile of all other
cells, as well as the saccade kinematics (neural synchronization;
e.g., Figure 4). Under double-stimulation at different nearby
sites, however, the most active cells are no longer found at
the stimulation electrodes, but at a location in between. The
firing rates of these most active cells now determine the full
saccade kinematics and the firing profiles of the other cells (e.g.,
Figures 6, 7, 9). Interestingly, the kinematics of the resulting
saccades (which are slower) and the firing rates of these most
active cells (which are higher) differ from the effects of single
stimulation at that most active site. Unfortunately, it is difficult
to test this prediction experimentally for the firing rates under
electrical double stimulation, because of the strong electrical
artifacts produced by the electrodes.

However, the effects of double stimulation on the emerging
eye-movement kinematics can be readily assessed. As far as
the main-sequence properties are concerned, averaging saccades
under double visual stimulation appear to be slower than
saccades of the same amplitude to a single visual stimulus, and
the associated firing rates in the SC are lower (e.g., [46]). To our
knowledge, the detailed velocity profiles under electrical double-
stimulation have so far not been quantified in experimental
studies.

Lateral Interactions
The simulations of electrical double stimulation made clear that
the shape of the Mexican-hat profile affects the activity profiles of
both active neuron populations and of the resulting saccades (e.g.,
Figure 11). The presence of lateral interactions within the SC
has been well established by both anatomical and physiological
evidence [28, 30, 33]. Modeling studies have suggested different
synaptic interaction profiles, such as local excitation and global
constant inhibition [37], or Mexican-hat type Gaussian profiles
[45]. In the present study, we fixed the ranges of the excitatory
and inhibitory interactions (σexc and σinh) for all cells and tuned
their synaptic strengths in line with the proposal of Trappenberg
et al. ([45]; Equation 14). Although it is conceivable that different
profiles with shorter ranges could generate similar population
activities (see below), anatomical studies so far do not allow to
quantify the connectivity profiles and ranges, except for recent
in-vitro studies [31, 32].

In contrast to the model of Van Opstal and Van Gisbergen
[38], in the present model the effective range of the electrical
current was assumed to be small (Equation 10; [26]). This
assumption was inspired by recent findings from stimulation
experiments with simultaneous calcium imaging in frontal

cortical tissue [27, 47]. In our model, the stimulation profile
is subsequently combined with the Mexican-hat interaction
function of Equations 12–14. We have shown earlier, using a
static population model of the SC, that a weak global constant
inhibition in combination with a delta function for the excitatory
profile (i.e., only self-excitation) could yield saccade-averaging
results if the current-spread function was a Gaussian with a much
broader extent as in the present study, and whereby its width
depended in a nonlinear way on the applied current strength [38].

Note that for network models such as these, including our
own, the overall spatial effect of the stimulation (ignoring
time) is in fact given by the convolution of the electrical
stimulation profile with the weighting kernel of the excitatory-
inhibitory interactions. Each cell’s membrane potential is thus
described by:

Vn (u, v) =
∫∫ (u,v)max

(u,v)min

wn (σ , τ) · IINP (u− σ , v− τ) · dσdτ

(15)
which constitutes one equation for the membrane potential of
neuron n, as a multiplicative combination of two functions. It is
therefore conceivable that many potential functions could fulfill
Equation 15. However, the nonlinear dynamics of the current
model (Equations 6–7) makes a simple analytical approach
to find the optimal solution that satisfies all experimental
constraints not feasible. Further study is therefore required to
analyze the effects of different profiles on the total network
behavior across a wide range of sensory and electrical stimulation
conditions.

As a final note, the electrical stimulation inputs were simply
taken as constant rectangular pulses, instead of trains of
short-duration stimulation pulses. In the latter case, which
is physiologically more realistic, also the pulse intervals
(stimulation frequency), pulse durations (stimulus train lengths),
pulse heights, pulse interleave times, and pulse polarity may
all play a role in the evoked E-saccades under single and
double stimulation paradigms [24, 25, 34]. Incorporating these
different stimulation parameter settings in our spiking neural-
network model will require some tedious retuning of the network
parameters, but may be worth the effort for its potential to
generate novel neural dynamics.
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The study of reaction times and their underlying cognitive processes is an important field

in Psychology. Reaction times are often modeled through the ex-Gaussian distribution,

because it provides a good fit tomultiple empirical data. The complexity of this distribution

makes the use of computational tools an essential element. Therefore, there is a strong

need for efficient and versatile computational tools for the research in this area. In this

manuscript we discuss some mathematical details of the ex-Gaussian distribution and

apply the ExGUtils package, a set of functions and numerical tools, programmed for

python, developed for numerical analysis of data involving the ex-Gaussian probability

density. In order to validate the package, we present an extensive analysis of fits obtained

with it, discuss advantages and differences between the least squares and maximum

likelihood methods and quantitatively evaluate the goodness of the obtained fits (which

is usually an overlooked point in most literature in the area). The analysis done allows one

to identify outliers in the empirical datasets and criteriously determine if there is a need

for data trimming and at which points it should be done.

Keywords: response times, response components, python, ex-Gaussian fit, significance testing

1. INTRODUCTION

The reaction time (RT) has become one of the most popular dependent variables in cognitive
psychology. Over the last few decades, much research has been carried out on problems focusing
exclusively on success or fail in trials during the performance of a task, emphasizing the
importance of RT variables and their relationship to underlying cognitive processes (Sternberg,
1966; Wickelgren, 1977; McVay and Kane, 2012; Ratcliff et al., 2012). However, RT has a potential
disadvantage: its skewed distribution. One should keep in mind that in order to perform data
analysis, it is preferable that the data follow a known distribution. If the distribution is not
symmetrical, it is possible to carry out some data transformation techniques (e.g., the Tukey
scale for correcting skewness distribution), or to apply some trimming techniques, but with these
techniques, statistics may be altered (in other words a high concentration of cases in a given range
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may be favored and as a result, statistics can appear biased).
Moreover, transformations can affect the absolute value of the
data or modify the relative distances between data. When
conducting trimming it is not easy to distinguish noisy data from
valid information, or in other words, to set the limits between
outliers and extreme data (Heathcote et al., 1991). Whether we
include or exclude outliers often depends on the reason why
they might occur, dealing with the decision to classify them
as variability in the measurement or as an experimental error.
Another option, for the analysis of skewed data, is to characterize
them with a known skewed distribution. This procedure allows
one to determine the probability of an event based on the
statistical model used to fit the data. A common problem with
this approach is to estimate the parameters that characterize
the distribution. In practice, when one wants to find out the
probability for an event numerically, a quantified probability
distribution is required.

Going back to the point on characterizing data with a
specific distribution, there is one distribution that has been
widely employed in the literature when fitting RT data: the
exponentially modified Gaussian distribution (West, 1999; Leth-
Steensen et al., 2000; West and Alain, 2000; Balota et al., 2004;
Hervey et al., 2006; Epstein et al., 2011; Gooch et al., 2012;
Navarro-Pardo et al., 2013). This distribution is characterized by
three parameters, µ, σ and τ . The first and second parameters
(µ and σ ), correspond to the average and standard deviation
of the Gaussian component, while the third parameter (τ ) is
the decay rate of the exponential component. This distribution
provides good fits to multiple empirical RT distributions (Luce,
1986; Lacouture and Cousineau, 2008; Ratcliff and McKoon,
2008), however there are currently no published statistical tables
available for significance testing with this distribution, though
there are softwares like S-PLUS (Heathcote, 2004) or PASTIS
(Cousineau and Larochelle, 1997) and programming language
packages available for R, MatLab or Methematica.

In this article we present a package, developed in Python, for
performing statistical and numerical analysis of data involving
the ex-Gaussian function. Python is a high-level interpreted
language. Python and R are undoubtedly two of the most
widespread languages, as both are practical options for building
data models with a lot of community support. However, the
literature seems to be rather scarce in terms of computations
with the ex-Gaussian function in Python. The package presented
here is called ExGUtils (from ex-Gaussian Utilities), it comprises
functions for different numerical analysis, many of them specific
for the ex-Gaussian probability density.

The article is organized as follows: in the next section
we present the ex-Gaussian distribution, its parameters and a
different way in which the distribution can be parameterized.
Following this, we discuss two fitting procedures usually
adopted to fit probability distributions: the least squares and
the maximum likelihood. In the third section we present the
ExGUtils module and we apply it in order to fit experimental
data, evaluate the goodness of the fits and discuss the main
differences in the two fitting methods. In the last section we
present a brief overview.

2. THE ex-GAUSSIAN DISTRIBUTION AND
ITS PROBABILITY DENSITY

Given a randomly distributed X variable that can assume values
between minus infinity and plus infinity with probability density
given by the gaussian distribution,

g(x) =
1

σ
√
2π

exp

(

−
1

2

(

x− µ

σ

)2
)

, (1)

and a second random Y variable that can assume values between
zero and plus infinity with probability density given by an
exponential distribution,

h(x) =
1

τ
e−

x
τ , (2)

let’s define the Z variable as the sum of the two previous random
variables: Z = X + Y .

The gaussian distribution has average µ and standard
deviation σ , while the average and standard deviation of the Y
variable will be both equal to τ . The Z variable will also be a
random variable, whose average will be given by the sum of the
averages of X and Y and whose variance will be equal to the sum
of the variances of X and Y :

M = µ + τ (3)

S2 = σ 2 + τ 2 (4)

Defined as such, the variable Z has a probability density with the
form (Grushka, 1972):

f (x) =
1

2τ
exp

(

1

2τ

(

2µ +
σ 2

τ
− 2x

))

erfc

(

µ + σ 2

τ
− x

√
2σ

)

(5)

which receives the name of ex-Gaussian distribution (from
exponential modified gaussian distribution). The erfc function
is the complementary error function. One must be careful, for
µ and σ are NOT the average and standard deviation for the
ex-Gaussian distribution, instead the average and variance of the
ex-Gaussian distribution is given by Equations (3)–(4): M =
µ + τ and S2 = σ 2 + τ 2. On the other hand, a calculation of
the skewness of this distribution results in:

K =
∫ ∞

−∞

(

x−M

S

)3

f (x)dx =
2τ 3

(σ 2 + τ 2)
3
2

, (6)

While the gaussian distribution has null skewness, the skewness
of the exponential distribution is exactly equal to two. As a result
the skewness of the ex-Gaussian has an upper bound equal to two
in the limit σ ≪ τ (when the exponential component dominates)
and a lower bound equal to zero in the limit σ ≫ τ (when the
gaussian component dominates).

Let’s parameterize the ex-Gaussian distribution in terms of its
average M, standard deviation S and a new skewness parameter
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λ = 3

√

K
2 . Defined in this way, the λ parameter can have values

between 0 and 1. Now, defining the standard coordinate z (z =
x−M
S ) one can have the ex-Gaussian distribution normalized for

average 0 and standard deviation 1 in terms of a single parameter,
its asymmetry λ:

fλ(z) =
1

2λ
exp

(

1

2λ2
(−2zλ − 3λ2 + 1)

)

erfc

(

−z + 1
λ
− 2λ

√
2
√
1− λ2

)

.

(7)

in this case, in terms of λ, the parametersµ, σ and τ are given by:

µ = −λ (8)

σ =
√

1− λ2 (9)

τ = λ. (10)

Thus, the ex-gaussian represents a family of distributions that can
be parametrized in terms of their assymmetry. Ranging from the

FIGURE 1 | ex-Gaussian distributions for different values of the λ asymmetry

parameter.

exponential (maximum assymmetry in the limit when λ = 1) to
a gaussian (symmetrical distribution in the limit when λ = 0).

In Figure 1, we show plots for the ex-Gaussian function for
different values of the parameter λ. We should note that for very
small values of λ (less than around 0.2), the ex-Gaussian is almost
identical to the gaussian function (see Figure 2)1.

Given a probability density, an important function that can
be calculated from it is its cumulative distribution (its left tail),
which is the result of the integral

F(z) =
∫ z

−∞
f (x)dx. (11)

The importance of this function is that given the cumulative
distribution one is able to calculate the probability of an event.
For the ex-gaussian, the expression for its cumulative distribution
is given by:

F(x) =
1

2
erfc

(

−
x− µ
√
2σ

)

−
1

2
exp

(

σ 2

τ 2
−

x− µ

τ

)

erfc

(

−
x−µ
σ

− σ
τ√

2

)

(12)

Let’s also define zα , the value of z for which the right tail of the
distribution has an area equal to α:

α =
∫ ∞

zα

f (x)dx. (13)

1− F(zα) = α (14)

so, solving the Equation (14), one is able to obtain the value of zα
for any given α.

1In this cases, the numerical evaluation of the ex-Gaussian distribution in Equation

(5) becomes unstable and one can without loss (to a precision of around one part

in a million) approximate the ex-Gaussian by a gaussian distribution.

FIGURE 2 | Differences between the ex-Gaussian distribution with λ = 0.2 and the gaussian distribution. Both curves plotted on the left and the difference on the right

(note this difference is less than 1%).
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3. FITTING THE PROBABILITY
DISTRIBUTION

We are interested in the following problem: given a dataset, to
estimate the parameters µ, σ and τ that, plugged into Equation
(5), best fit the data.

We must now define what it means to best fit the data.
Different approaches here will result in different values for the
parameters. The most trivial approach would be to say that the
best parameters are those that result in the fitted ex-Gaussian
distribution with the same statistical parameters: average (M),
standard deviation (S) and asymmetry (K or λ). So, one can take
the dataset, calculate M, S, and K and use the relations between
them and the parameters µ, σ and τ :

M = µ + τ (15)

S =
√

σ 2 + τ 2 (16)

λ = 3

√

K

2
=

τ
√

σ 2 + τ 2
(17)

µ = M − Sλ (18)

σ = S
√

1− λ2 (19)

τ = Sλ (20)

This method of evaluating the parameters from the statistic
(momenta) is know as the method of the moments as is usually
the worst possible approach given the resulting bias. For instance,
in some experiments, one finds the K parameter bigger than 2 (or
λ > 1) and from Equation (17) one sees that, in order to have
K > 2, σ cannot be a real number.

Another approach is to find the parameters that minimize the
sum of the squared differences between the observed distribution
and the theoretical one (least squares). In order to do that, one
must, from the dataset, construct its distribution (a histogram),
which requires some parametrization (dividing the whole range
of observations in fixed intervals). Since a potentially arbitrary
choice is made here, the results might be dependent on this
choice. When analyzing data, we will study this dependency and
come back to this point.

The last approach we will study is the maximum likelihood
method. The function in Equation (5) is a continuous probability
distribution for a random variable, which means that f (x)dx can
be interpreted as the probability that a observation of the random
variable will have the x value (with the infinitesimal uncertainty
dx). So, given a set ofN observations of the random variable, {xi},
with i = 1, 2, ..., N, the likelihood L is defined as the probability
of such a set, given by:

L =
N
∏

i=1

f (xi;µ, σ , τ ) (21)

lnL =
N
∑

i=1

ln
(

f (xi;µ, σ , τ )
)

(22)

The maximum likelihood method consists in finding the
parameters µ, σ and τ that maximize the likelihood L (or its

logarithm2 lnL). Note that in this approach, one directly uses
the observations (data) without the need of any parametrization
(histogram).

In both approaches, least squares and maximum likelihood,
one has to find the extreme (maximum or minimum) of a
function. The numerical algorithm implemented for this purpose
is the steepest descent/ascent (descent for the minimum and
ascent for the maximum). The algorithm consists in interactively
changing the parameters of the function by amounts given by the
gradient of the function in the parameter space until the gradient
falls to zero (to a certain precision). There are other optimization
methods, like the simplex (Van Zandt, 2000; Cousineau et al.,
2004), which also iteratively updates the parameters (in the case
of the simplex without the need to compute the gradients). We
chose to implement steepest ascent in order to gain in efficiency:
since one is able to evaluate the gradients, this greedy algorithm
should converge faster than the sample techniques used by
simplex. But in any case, both algorithms (steepest descent and
simplex) should give the same results, since both search the same
maximum or minimum.

4. THE EXGUTILS MODULE

ExGUtils is a python package with two modules in its 3.0 version:
one purely programmed in python (pyexg) and the other
programmed in C (uts). The advantage of having the functions
programmed in C is speed, stability and numerical precision.

As mentioned, the package has two modules: pyexg and
uts. The first one comprises all functions with source code
programed in python, some of which depend on the numpy,
scipy and random python packages. On the other hand, the
module uts contains functions with source code programmed
in C. In Table 1 one can find a complete list of all functions
contained in both modules and the ones particular to each one.
The source distribution of the ExGUtils module comes with a
manual which explains in more detail and with examples the
functions.

5. APPLICATIONS

We use here the ExGUtils package in order to analyze data from
the experiment in Navarro-Pardo et al. (2013). From this work,
we analyse the datasets obtained for the reaction times of different
groups of people in recognizing different sets of words in two
possible experiments (yes/no and go/nogo). In the Appendix B
we briefly explain the datasets analyzed here (which are provided
as Supplementary Material for download).

In our analysis, first each dataset is fitted to the ex-
Gaussian distribution through the three different approaches
aforementioned:

• moments → Estimating the parameters through the sample
statistics Equations (18–20).

2Note that, since the logarithm is an monotonically increasing function, the

maximal argument will result in the maximum value of the function as well.
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TABLE 1 | Functions present in the package modules.

Module Function Brief description

Present drand Returns a random number with

homogeneous distribution between 0 and 1

in exp_rvs Returns a random number with exponential

distribution between 0 and infinity

both gauss_rvs Returns a random number with gaussian

distribution between minus infinity and infinity

modules exg_rvs Returns a random number with ex-Gaussian

distribution between minus infinity and infinity

gauss_pdf Evaluates the gaussian distribution at a given

point

gauss_cdf Evaluates the gaussian cumulative

distribution at a given point

exg_pdf Evaluates the ex-Gaussian distribution at a

given point

exg_cdf Evaluates the ex-Gaussian cumulative

distribution at a given point

exg_lamb_pdf Evaluates the ex-Gaussian distribution

parameterized in terms of its asymmetry at a

given point

exg_lamb_cdf Evaluates the ex-Gaussian cumulative

distribution parameterized in terms of its

asymmetry at a given point

pars_to_stats Given the parameters µ, σ and τ , evaluates

the corresponding statistics M, S, and K

stats_to_pars Given the statistics M, S and K, evaluates the

corresponding parameters µ, σ and τ

histogram Given a set of observations, produces an

histogram

stats Given a set of observations, returns the

statistics M, S, and K

stats_his Given a set of observations, presented as a

histogram, returns the statistics M, S, and K

correlation Given a set of points, returns the linear

correlation coefficient for the points

minsquare Given a set of points, fits a polynomial to the

data using the least square method

exgLKHD Evaluates the likelihood and its gradient in the

parameter space for a dataset in a given

point of the parameter space

maxLKHD Evaluates the parameters µ, σ and τ that

maximize the likelihood for a given dataset

exgSQR Evaluates the sum of squared differences and

its gradient in the parameter space for an

histogram in a given point of the parameter

space

minSQR Evaluates the parameters µ, σ and τ that

minimize the sum of squared differences for a

given histogram

Only int_points_gauss Creates a point partition of an interval for

evaluating a

in gaussian integral

uts intsum Evaluates the gaussian integral for a function

calculated at the points in a gaussian partition

Only zero Finds the zero of an equation

in ANOVA Performs an ANOVA test

pyexg integral Evaluates an integral

In python type help(FUNC) (where FUNC should be the name of a given function), in

order to obtain the list of arguments that each function should receive and in which order.

• minSQR→ Estimation through least square method, using as
initial point in the steepest descent algorithm the µ, σ and τ

obtained from the method of moments above3.
• maxLKHD → Estimation through maximum likelihood

method, using as initial point in the steepest ascent algorithm
the µ, σ and τ obtained from the method of moments3.

In Table 2, one can see the estimated parameters and the
corresponding statistics for the different experiments. From the
table, one sees that in the case of the experiments performed
with young people, the value of the skewness, K, is bigger than
two. This happens because of a few atypical measurements far
beyond the bulk of the distribution. In fact, many researches opt
for trimming extreme data, by “arbitrarly” choosing a cutoff and
removing data points beyond this cutoff. One must, though, be
careful for the ex-Gaussian distribution does have a long right
tail, so we suggest a more criterious procedure:

Having the tools developed in ExGUtils, one can use the
parameters obtained in the fitting procedures (either minSQR
or maxLKHD) in order to estimate a point beyond which one
should find no more than, let’s say, 0.1% of the distribution. In
the Appendix A (Supplementary Material), the Listing 1 shows
a quick python command line in order to estimate this point
in the case of the young_gng experiment. The result informs
us that, in principle, one should not expect to have more than
0.1% measurements of reaction times bigger than 1472.84 ms
if the parameters of the distribution are the ones adjusted by
maxLKHD for the young_gng empirical data. In fact, in this
experiment, one has 2396 measurements of reaction times, from
those, 8 are bigger than 1472.8 ms (0.33%). If one now calculates
the statistics for the data, removing these 8 outliers, one obtains:

moments: M = 593.80 S = 154.30 K = 1.91 µ = 441.82

σ = 26.67 τ = 151.98

minSQR: M = 590.11 S = 142.44 K = 1.67 µ = 455.96

σ = 47.89 τ = 134.14

maxLKHD: M = 593.80 S = 148.44 K = 1.69 µ = 453.52

σ = 48.52 τ = 140.29

In Figure 3 one can see the histogram of data plotted along with
three ex-Gaussians resulting from the above parameters.

Now, one might ask, having these different fits for the same
experiment, how to decide which one is the best? Accepting the
parameters of a fit is the same as accepting the null hypothesis
that the data measurements come from a population with an
ex-Gaussian distribution with the parameters given by the ones
obtained from the fit. In Clauset et al. (2009) the authors suggest
a procedure in order to estimate a p-value for this hypothesis
when the distribution is a power-law. One can generalize the
procedure for any probability distribution, like the ex-Gaussian,
for example:

3In the cases where K was bigger than 2, the inicial parameters were calculated as

if K = 1.9. Note that the final result of the search should not depend on the inicial

search point if it starts close to the local maximum/minimum.
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FIGURE 3 | Data for the young_gng experiment trimmed for outliers with three

fitted ex-Gaussians.

• Take a measure that quantifies the distance between the data
and the fitted theoretical distribution. One could use lnL or
χ2, but, as our fitting procedures maximize or minimize these
measures, as the authors in Clauset et al. (2009) suggest, in
order to avoid any possible bias, we evaluate the Kolmogorov-
Smirnov statistic, which can be calculated for reaction-time
data without the need of any parametrization.

• Randomly generate many data samples of the same size as
the empirical one using the theoretical distribution with the
parameters obtained from the fit to the empirical data.

• Fit each randomly generated data sample to the theoretical
distribution using the same fit procedure used in the case of
the empirical data.

• Evaluate the Kolmogorov-Smirnov statistic between the
random sample and its fitted theoretical distribution.

Following this procedure, one can evaluate the probability that a
random data sample, obtained from the fitted distribution, has a
bigger distance to the theoretical curve than the distance between
the empirical data and its fitted distribution. If this probability
is higher than the confidence level one is willing to work with,
one can accept the null hypothesis knowing that the probability
that one is committing a type I error if one rejects the null
hypothesis is p.

In the Appendix A (Supplementary Material) we provide
listings with the implementation, in python via the ExGUtils
package, of the functions that evaluate this p probability and the
Kolmogorov-Smirnov statistic. In Table 3 we provide the values
of p obtained for the experiments, using minSQR and maxLKHD
approaches (p1 and p2, respectively).

We can see that there are some discrepancies in Table 3.
Sometimes minSQR seems to perform better, sometimes
maxLKHD. One might now remember that the minSQR method
depends on a parametrization of the data. In order to perform the
fit, one needs to construct a histogram of the data, and there is an
arbitrary choice in the number of intervals one divides the data
into. In the fits performed till now, this number is set to be the

TABLE 3 | Probabilities p1 and p2 for the fits.

Experiment minSQR maxLKHD

KS p2 (K̄S ± sd) KS p1 (K̄S ± sd)

elder_gng 64.52 0.001 (29.47 ± 8.12) 38.89 0.096 (29.96 ± 12.54)

elder_hfgng 44.32 0.001 (20.85 ± 5.73) 49.61 0.003 (21.33 ± 5.86)

elder_hfyn 34.10 0.019 (20.10 ± 5.35) 35.30 0.021 (20.44 ± 7.49)

elder_lfgng 42.83 0.005 (21.73 ± 5.98) 31.70 0.043 (20.96 ± 5.94)

elder_lfyn 17.25 0.634 (19.76 ± 5.18) 29.00 0.028 (19.15 ± 5.63)

elder_pseudo 62.79 0.000 (26.12 ± 6.81) 53.10 0.009 (25.69 ± 10.41)

elder_yn 32.87 0.258 (28.77 ± 7.42) 62.72 0.012 (29.00 ± 14.16)

young_gng 35.92 0.136 (28.60 ± 7.39) 69.38 0.003 (28.66 ± 8.36)

young_hfgng 21.33 0.305 (19.70 ± 4.99) 34.11 0.016 (20.13 ± 6.16)

young_hfyn 29.75 0.049 (19.59 ± 5.04) 45.20 0.009 (19.83 ± 7.03)

young_lf 22.06 0.318 (20.39 ± 5.81) 37.78 0.015 (20.67 ± 7.82)

young_lfgng 22.06 0.299 (20.08 ± 5.25) 37.78 0.012 (20.27 ± 6.52)

young_lfyn 23.62 0.182 (19.66 ± 5.03) 17.66 0.542 (19.56 ± 7.43)

young_pseudo 20.35 0.867 (27.86 ± 7.20) 28.48 0.386 (28.44 ± 10.87)

young_yn 38.34 0.097 (28.07 ± 7.03) 54.20 0.003 (28.13 ± 8.66)

KS is the Kolmogorov-Smirnov statistic calculated between the data and its fitted ex-

Gaussian. In columns p1 and p2, one finds the probabilities that a randomly generated

dataset has a bigger KS statistic than the empirical data. In parenthesis, the average KS

statistic and standard deviation for the generated random samples.

default in the histogram function of the ExGUtils package,
namely two times the square root of the number ofmeasurements
in the data.

In order to study the effect of the number of intervals in
the values for the parameters and of p2, we performed the
procedure of fitting the data through minSQR after constructing
the histogram with different number of intervals. In Figure 4 we
show the evolution of the p2 probability, along with the values for
µ, σ , and τ obtained by minSQR for the histograms constructed
with a different number of intervals for the young_hfgng
experiment.

From the figure one sees that while the number of intervals
is unreasonably small compared to the size of the empirical
dataset, the values for the fitted ex-Gaussian parameters fluctuate,
while the p probability is very small, but, once the number of
intervals reaches a reasonable value, around 40, the values for the
parameters stabilize and the value of p also gets more stable. So
the question remains, why the values for the probability obtained
withmaxLKHDmethod is so small in the case of this experiment?
The fact is that the likelihood of the dataset is very sensible to
outliers. For the value of the probability [f (x) in Equation 5] gets
very small for the extreme values. Therefore, in these cases, it
might be reasonable to make some criterious data trimming. So
we proceed as follows: Given a dataset, we first perform a pre-
fitting bymaxLKHD.Using the parameters obtained in this fit, we
estimate the points where the distribution has a left and right tails
of 0.1% and remove measurements beyond these points. With
the trimmed dataset, removed of outliers, we perform fits again
and evaluate the p1 and p2 probabilities. In Table 4, we show the
results for this new round of fitting and probability evaluations.
In more than half of the experiments where one could see a big
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FIGURE 4 | Fitting results obtained with the minSQR method varying the number of intervals in the histogram for the young_hfgng experiment. The horizontal line

shows the value obtained with the maxLKHD method. (Upper left) Evolution of the p probability. (Upper right) Evolution of µ. (Bottom left) Evolution of σ . (Bottom

right) Evolution of τ .

TABLE 4 | The p1 and p2 probabilities for the fits.

Experiment N N′ (%) minSQR maxLKHD

KS p2 (K̄S ± sd) KS p1 (K̄S ± sd)

elder_gng 2,348 2 (0.09) 66.58 0.000 (28.92 ± 7.32) 50.24 0.040 (30.98 ± 17.55)

elder_hfgng 1,174 8 (0.68) 34.20 0.040 (20.67 ± 5.70) 32.64 0.010 (20.66 ± 5.83)

elder_hfyn 1,175 2 (0.17) 32.09 0.040 (20.01 ± 4.86) 24.76 0.090 (19.22 ± 6.69)

elder_lfgng 1,174 1 (0.09) 43.49 0.000 (21.47 ± 5.83) 33.22 0.030 (20.57 ± 6.90)

elder_lfyn 1,139 4 (0.35) 19.97 0.550 (20.55 ± 6.37) 19.71 0.620 (19.97 ± 6.11)

elder_pseudo 1,910 5 (0.26) 57.26 0.000 (26.91 ± 6.64) 57.11 0.010 (26.61 ± 10.06)

elder_yn 2,314 5 (0.22) 36.83 0.240 (28.57 ± 7.46) 29.72 0.230 (30.54 ± 14.33)

young_gng 2,396 10 (0.42) 38.93 0.250 (27.82 ± 6.32) 43.11 0.020 (30.19 ± 17.07)

young_hfgng 1,200 8 (0.67) 23.28 0.780 (19.25 ± 4.39) 17.82 0.430 (18.07 ± 4.13)

young_hfyn 1,180 9 (0.76) 27.97 0.050 (19.68 ± 4.91) 28.93 0.010 (20.74 ± 7.71)

young_lf 1,196 5 (0.42) 25.11 0.310 (20.09 ± 5.21) 25.32 0.020 (19.69 ± 4.29)

young_lfgng 1,196 5 (0.42) 25.11 0.280 (20.51 ± 5.08) 25.32 0.080 (20.55 ± 5.05)

young_lfyn 1,132 3 (0.27) 25.20 0.230 (19.42 ± 5.40) 16.60 0.780 (20.72 ± 8.53)

young_pseudo 2,326 10 (0.43) 23.33 0.940 (27.59 ± 7.05) 25.85 0.870 (28.45 ± 12.48)

young_yn 2,312 12 (0.52) 46.10 0.130 (27.80 ± 7.87) 28.58 0.210 (31.21 ± 19.74)

KS is the Kolmogorov-Smirnov statistic calculated between the data and its fitted ex-Gaussian. N is the number of data points in each empirical dataset, N′ in the number of points

removed by the trimming and in brackets next to it its proportion in relation to the total data. In columns p1 and p2, one finds the probabilities that a randomly generated dataset has a

bigger KS statistic than the empirical data. In parenthesis, the average KS statistic and standard deviation for the generated random samples.

discrepancy between p1 and p2 in Table 3, the trimmed data
do show better results. For some datasets, the trimming had
no impact on the discrepancy. In any case, one might wonder

about the impact of the trimming in the obtained parameters.
Therefore, in Table 5, we show the results obtained with different
trimming criteria.

Frontiers in Psychology | www.frontiersin.org May 2018 | Volume 9 | Article 61229

https://www.frontiersin.org/journals/psychology
https://www.frontiersin.org
https://www.frontiersin.org/journals/psychology#articles


Moret-Tatay et al. An ex-Gaussian Approach in Python

TABLE 5 | Results for different trimming on the data.

Experiment % minSQR maxLKHD

µ σ τ p2 µ σ τ p1

elder_gng 0.1 513.52 73.00 329.54 0.001 518.71 75.02 313.04 0.026

elder_gng 0.5 516.62 76.61 319.50 0.002 521.83 70.31 299.00 0.011

elder_gng 1.0 516.04 76.80 317.93 0.000 523.84 66.32 291.17 0.014

elder_hfgng 0.1 509.10 84.96 285.05 0.043 504.96 65.26 297.06 0.012

elder_hfgng 0.5 509.39 89.51 277.28 0.020 511.19 65.09 277.33 0.020

elder_hfgng 1.0 508.40 83.49 279.35 0.016 512.79 59.89 272.67 0.005

elder_hfyn 0.1 564.82 82.19 246.63 0.052 558.93 71.17 266.45 0.148

elder_hfyn 0.5 565.70 83.88 242.73 0.036 559.98 68.60 261.73 0.143

elder_hfyn 1.0 566.73 87.05 235.38 0.006 561.88 65.77 255.95 0.094

elder_lfgng 0.1 521.64 62.39 368.34 0.006 530.64 68.95 333.51 0.041

elder_lfgng 0.5 523.29 67.46 359.50 0.006 530.25 60.81 329.35 0.011

elder_lfgng 1.0 523.37 67.70 356.20 0.002 533.09 59.45 318.33 0.008

elder_lfyn 0.1 583.03 84.58 301.15 0.562 581.72 76.56 305.56 0.577

elder_lfyn 0.5 584.32 86.07 296.15 0.524 584.60 78.19 296.28 0.329

elder_lfyn 1.0 586.72 85.93 287.48 0.470 589.73 77.85 278.47 0.027

elder_pseudo 0.1 735.04 133.55 498.90 0.001 755.81 134.79 436.48 0.012

elder_pseudo 0.5 733.65 135.57 499.00 0.001 754.68 132.25 438.02 0.017

elder_pseudo 1.0 732.54 135.87 498.14 0.000 752.31 124.65 442.19 0.014

elder_yn 0.1 572.16 81.99 275.26 0.251 567.87 73.30 288.63 0.280

elder_yn 0.5 573.64 84.34 270.01 0.373 570.72 72.30 278.01 0.378

elder_yn 1.0 573.82 84.87 266.60 0.246 573.48 72.59 268.80 0.159

young_gng 0.1 456.35 48.59 133.40 0.292 453.37 47.60 140.66 0.013

young_gng 0.5 456.95 47.02 132.15 0.177 456.29 43.54 134.00 0.167

young_gng 1.0 457.70 46.28 130.55 0.096 457.63 40.37 131.00 0.013

young_hfgng 0.1 449.79 45.31 105.15 0.707 448.42 44.89 109.02 0.565

young_hfgng 0.5 450.77 44.72 103.91 0.500 449.62 40.74 107.45 0.704

young_hfgng 1.0 451.94 44.75 101.09 0.208 451.50 37.51 103.23 0.226

young_hfyn 0.1 493.66 50.92 116.16 0.032 487.17 51.93 126.49 0.009

young_hfyn 0.5 494.62 50.74 114.27 0.054 488.97 51.00 122.73 0.025

young_hfyn 1.0 495.77 50.10 111.55 0.083 493.08 49.40 114.69 0.170

young_lf 0.1 473.36 54.44 151.84 0.287 471.09 54.85 157.76 0.037

young_lf 0.5 474.18 55.22 148.96 0.207 474.72 51.93 148.93 0.117

young_lf 1.0 475.03 54.10 147.35 0.067 475.22 45.69 148.46 0.019

young_lfgng 0.1 473.36 54.44 151.84 0.290 471.09 54.85 157.76 0.054

young_lfgng 0.5 474.18 55.22 148.96 0.201 474.72 51.93 148.93 0.119

young_lfgng 1.0 475.03 54.10 147.35 0.068 475.22 45.69 148.46 0.021

young_lfyn 0.1 508.16 61.53 151.83 0.228 503.17 57.27 162.27 0.776

young_lfyn 0.5 508.79 62.11 148.82 0.306 506.82 56.33 153.58 0.713

young_lfyn 1.0 508.92 59.52 148.67 0.278 508.72 51.89 151.43 0.545

young_pseudo 0.1 555.42 63.03 161.81 0.951 555.36 60.57 162.27 0.858

young_pseudo 0.5 556.11 63.54 159.16 0.364 556.92 57.17 158.77 0.194

young_pseudo 1.0 557.18 62.50 157.25 0.096 559.57 54.06 153.59 0.021

young_yn 0.1 497.56 54.59 136.65 0.141 492.23 53.69 146.70 0.144

young_yn 0.5 498.05 54.18 135.23 0.374 495.25 52.33 139.85 0.605

young_yn 1.0 498.17 53.86 134.10 0.556 496.97 50.70 136.71 0.494

The column % indicates the amount of tail trimmed to the left and right of the data.
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Now, having the full picture, one can realize that some
values of p are indeed small, indicating that either the ex-
Gaussian distribution is not that good a model in order to
fit the empirical results, or there is still some systematic error
in the analysis of the experiments. Most of these empirical
datasets where one sees very low values of p are with elderly
people. These have the τ parameter much bigger than the σ

which indicates a very asymmetric distribution with a long
right tail. Indeed, a careful analysis of the histograms will show
that the tail in these empirical distributions seems to be cut
short at the extreme of the plots, so that the limit time in
the experiment should be bigger than 2,500 ms in order to
get the full distribution. One might argue that the trimming
actually was removing data, but most of the removed points
in the trimming of elderly data, was from the left tail and not
from the right. This issue will result in the wrong evaluation
of the KS statistics, since it assumes that one is dealing with
the full distribution. This kind of analysis might guide better
experimental designs.

6. OVERVIEW

The ex-Gaussian fit has turned into one of the preferable options
when dealing with positive skewed distributions. This technique
provides a good fit to multiple empirical data, such as reaction
times (a popular variable in Psychology due to its sensibility to
underlying cognitive processes). Thus, in this work we present
a python package for statistical analysis of data involving this
distribution.

This tool allows one to easily work with alternative strategies
(fitting procedures) to some traditional analysis like trimming.
This is an advantage given that an ex-Gaussian fit includes all data
while trimming may result in biased statistics because of the cuts.

Moreover, this tool is programmed as Python modules,
which allow the researcher to integrate them with any other
Python resource available. They are also open-source and free
software which allows one to develop new tools using these as
building blocks.

7. AVAILABILITY

ExGUtils may be downloaded from the Python Package index
(https://pypi.python.org/pypi/ExGUtils/3.0) for free along with
the source files and the manual with extended explanations on
the functions and examples.
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Alternation With Resistance to
Bacillus thuringiensis Cry1Ah Toxin
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Background: Asian corn borer (ACB), Ostrinia furnacalis can develop resistance to
transgenic Bacillus thuringiensis (Bt) maize expressing Cry1Ah-toxin. However, the
mechanisms that regulate the resistance of ACB to Cry1Ah-toxin are unknown.

Objective: In order to understand the molecular basis of the Cry1Ah-toxin resistance
in ACB, “omics” analyses were performed to examine the difference between
Cry1Ah-resistant (ACB-AhR) and susceptible (ACB-BtS) strains of ACB at both
transcriptional and translational levels.

Results: A total of 7,007 differentially expressed genes (DEGs) and 182 differentially
expressed proteins (DEPs) were identified between ACB-AhR and ACB-BtS and
90 genes had simultaneous transcription and translation profiles. Down-regulated
genes associated with Cry1Ah resistance included aminopeptidase N, ABCC3,
DIMBOA-induced cytochrome P450, alkaline phosphatase, glutathione S-transferase,
cadherin-like protein, and V-ATPase. Whereas, anti-stress genes, such as heat shock
protein 70 and carboxylesterase were up-regulated in ACB-AhR, displaying that a
higher proportion of genes/proteins related to resistance was down-regulated compared
to up-regulated. The Kyoto encyclopedia of genes and genomes (KEGG) analysis
mapped 578 and 29 DEGs and DEPs, to 27 and 10 pathways, respectively (P < 0.05).
Furthermore, real-time quantitative (qRT-PCR) results based on relative expression levels
of randomly selected genes confirmed the “omics” response.

Conclusion: Despite the previous studies, this is the first combination of a study
using RNA-Seq and iTRAQ approaches on Cry1Ah-toxin binding, which led to the
identification of longer length of unigenes in ACB. The DEGs and DEPs results are
valuable for further clarifying Cry1Ah-mediated resistance.

Keywords: Ostrinia furnacalis, Bacillus thuringiensis, Cry1Ah toxin, qRT-PCR, RNA-Seq, iTRAQ

INTRODUCTION

Maize (Zea mays L.) is the main crop in terms of production and planting area (Wang et al.,
2014). Asian corn borer (ACB), Ostrinia furnacalis (Guenée), is an economically important pest
of maize causing 20–80% yield losses (Nicolas et al., 2013) by attacking fresh whorl leaves, silks,
ears, and cobs, finally leading to devastation by boring into the stalk, ear shanks and cobs of corn
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(He et al., 2003). The potential of ACB having adaptation to many
host crops and higher fecundity are the key factors in developing
Bt resistance (Zhang et al., 2014). Genetically modified crops
produced by Bt are effective in controlling this endemic pest of
maize, likewise, the transgenic Bt maize, Cry1Ac, Cry1Ab, Cry1Ie,
and Cry1Ah which express transgenic insecticidal proteins are
assumed to show effectiveness against infestation of ACB (Zhang
et al., 2013; Shabbir et al., 2018). Although Bt transgenic crops are
likely to hold great promise to improve insect pest management,
the efficacy of Bt maize can be reduced by the evolution of
target insect resistance. The increased occurrence of functional
resistance in the pest populations is causing hazardous loss
to the continuing success of Cry proteins (Tabashnik et al.,
2003). Previously, evolution of potential resistance to various Bt
toxins Cry1Ac, Cry1Ie, and Cry1F has been observed in ACB in
laboratory selection (He et al., 2003; Wang et al., 2016), and now
one ACB-AhR strain had developed resistance to Cry1Ah, and
readily consumed Cry1Ah-Bt maize (Shabbir et al., 2018).

However, complete recognition of the mechanism of Bt
resistance is essential to delay the resistance evolution in target
insect pest. Currently, two different hypotheses for modes of
actions are directed for Cry toxin: the pore formation model
and signal transduction model (Soberón et al., 2009). The pore
formation model has been reported to propose that reduction
of Bt toxins in toxin binding sites in brush border membrane
vesicles (BBMVs) of insect midgut is the major factor of the
evolution of resistance in target insect pests (Daniel et al.,
2002). After the crystalline inclusions, toxins are ingested and
solubilized in the gut to the protoxin, which is cleaved by midgut
proteases and binds to activated toxins (Bravo and Soberon,
2008; Soberón et al., 2009). The interaction of toxins with
cadherin enables additional proteolytic cleavages that prompt
the toxin oligomerization. Subsequently, these oligomers bind
to secondary receptors, aminopeptidase N (APN) and alkaline
phosphatase (ALP), as they have a larger affinity to bind
these proteins as compared to the monomeric toxin. After
binding, these oligomers insert into the membrane and create
pores which make it more permeable. Finally, these pores
cause osmotic shock in the membrane, ultimately leading to
the death of cells (Soberón et al., 2009). According to the
signal transduction model, the binding of Cry1A to cadherin
is supposed to activate a cascade pathway involved in the
stimulation of a G protein and adenylate cyclase to increase
cAMP, causing activation of protein kinase A, and finally death
of the cell (Zhang et al., 2006). Previously, several studies
have reported binding receptors, including cadherin protein (Xu
et al., 2005), APN (Tiewsiri and Wang, 2011), ALP (Jurat-
Fuentes and Adang, 2007), membrane glycolipids (Griffitts and
Aroian, 2005), and ABCC2 of ABC transporters (Gahan et al.,
2010; Baxter et al., 2011). The differences in the sequences
of amino acids and expression of mRNA of four APN genes
have been observed between ACB-AbR and ACB-BtS strains
(Xu et al., 2014). In addition, V-type ATPase and HSP 70 kDa
proteins had been documented as Bt binding proteins in ACB
using a proteomic approach (Xu et al., 2013). However, the
studies describing the Bt resistance mechanism are still limited
in ACB.

Gene expression analysis is extensively used for studying
regulatory mechanisms that control cellular processes in
plants, animal, and microbes. Recent advancement in high-
throughput RNA sequencing (RNA-seq) technology and isobaric
tags for relative and absolute quantification (iTRAQ) gene
expression based on next generation sequencing technology
significantly has upgraded transcriptome analysis (Wang
et al., 2010; Chen et al., 2011). In the present study, we
compared midgut tissues of ACB-AhR and ACB-BtS strains
at transcriptome (RNA-seq) and proteome (iTRAQ) level to
determine the molecular mechanism of Bt Cry1Ah resistance
in ACB. The differentially expressed genes (DEGs) and
differentially expressed proteins (DEPs) were further validated by
quantitative real-time qRT-PCR analysis. These approaches are
valuable for the understanding of systemic differences between
susceptible and Bt resistant genotypes, and to identify the
genes/proteins that might be involved in conferring resistance to
Cry1Ah-toxin.

MATERIALS AND METHODS

Insects
The susceptible strain (ACB-BtS) and the Cry1Ah resistant
strain (ACB-AhR), as reported previously (Shabbir et al., 2018),
were used in the study. In our previous study, ACB-AhR had
developed 200-fold resistance to Cry1Ah after 48 generations of
selection (Shabbir et al., 2018). However, in the present study, the
ACB-AhR was selected to detect the Cry1Ah resistance-relative
genes in ACB. Four to five individual larvae from fifth instar
larvae were collected as one biological replicate for both ACB-BtS
and ACB-AhR. Three biological replicates for each sample were
collected and processed independently. Three replicates were
used in gene expression profile analysis, and Illumina sequencing,
as well as three biological replicates which were used for the
qRT-PCR analysis. All samples were stored at −80◦C until
assayed.

Library Preparation for Transcriptome
Sequencing
A total amount of 1.5 µg RNA from the fifth instars larvae
was used as input material for RNA sample preparation for
each of the ACB-AhR and ACB-BtS strains. Sequences libraries
were generated using NEBNext R© UltraTM RNA Library Prep Kit
for Illumina (NEB, United States) according to manufacturer’s
instructions and index codes were added to attribute sequences
to each sample. The mRNA was purified from total RNA using
poly-T oligo-attached magnetic beads and broken into short
fragments using divalent cations under elevated temperature
in NEBNext First Strand Synthesis Reaction Buffer (5X).
First-strand cDNA was synthesized using random hexamer
primer and M-MuLV Reverse Transcriptase (RNase H−).
Second-strand cDNA was subsequently performed using DNA
polymerase I and RNase H. Remaining overhangs were converted
into blunt ends via exonuclease/polymerase activities. After
adenylation of 3′ ends of DNA fragments, NEBNext Adaptor with
a hairpin loop structure was ligated to prepare for hybridization.

Frontiers in Physiology | www.frontiersin.org February 2019 | Volume 10 | Article 2735

https://www.frontiersin.org/journals/Physiology/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/Physiology#articles


fphys-10-00027 January 30, 2019 Time: 17:59 # 3

Shabbir et al. Omics Comparison in Cry1Ah-Resistant ACB

In order to select cDNA fragments of preferentially 250–300 bp
in length, the library fragments were purified with AMPure XP
system (Beckman Coulter, Beverly, MA, United States). Then
before PCR, 3 µl USER Enzyme (NEB, United States) was used
with size-selected, adopter-ligand cDNA at 37◦C for 15 min
followed by 5 min at 95◦C. PCR was performed with Phusion
High-Fidelity DNA polymerase, Universal PCR primers, and
Index (X) Primer. Finally, PCR products were purified (AMPure
XP system) and library quality was assessed on the Agilent
Bioanalyzer 2100 system. The RNA-seq data has been submitted
to SRA database and the accession ID is PRJNA508227.

Assembly and Functional Gene
Annotation
The reads containing ploy-N (<10%), and low quality reads
(q < 20) were removed from raw data. Q20, Q30, GC-content
and sequence duplication level of the clean data were also
assessed based on high quality clean data. Subsequently,
the clean reads were accomplished using Trinity software
(Grabherr et al., 2013). Gene functional annotation sequences
were searched using BLAST against NCBI NR database was
searched using BLAST against NCBI NR database1 with a cut-off
E-value of 10−5. Functional gene annotations were collected
for transcript sequences ≥150 bp using Blast2GO (Conesa
et al., 2005). DEGs were calculated in FPKM (fragments per
kilobase pair of exon model per million fragments mapped)
for comparing the expression of up- or down-regulated
transcripts in two groups. BLASTx algorithm was used to
assign gene ontology (GO) terms from the GO database2

and the DEGs were assigned into different pathways by the
Kyoto encyclopedia of genes and genomes (KEGG) pathways
databases.

Screening of Differentially Expressed
Genes Between ACB-AhR and ACB-BtS
The mapped reads of ACB-AhR and ACB-BtS groups were
assembled using the DESeq (2010) R package (1.10.1). DESeq
fetches statistical routines to regulate differential expression in
digital gene expression data using a model based on the negative
binomial distribution. The resulting P-values were adjusted
using the q-value. Genes with an adjusted P-value <0.05 found
by DESeq were assigned as differentially expressed. Then, the
FPKM value between the biological replications was analyzed for
each gene. The significance of digital gene expression profiles
was analyzed as described previously (Audic and Claverie,
1997). The fold change of each gene was then calculated
by the formula of log2 (ACB-AhR_FPKM/ACB-BtS_FPKM).
False discovery rate (FDR) method was used to determine
the threshold of P-value in differential gene expression tests.
“FDR” ≤ 0.05 and the absolute value of log2-ratio ≥ 1” was
the threshold to evaluate the significance level of differentiated
gene expression for comparing the gene expression between two
strains of ACB.

1https://www.ncbi.nlm.nih.gov/refseq/about/nonredundantproteins/
2http://www.geneontology.org/

Protein Quantification and Database
Search Using iTRAQ Labeling
The midgut tissues of ACB-AhR and ACB-BtS samples were
individually milled in liquid nitrogen then put into 1 ml of
lysis buffer (50 mM Tris buffer, 8 M urea, 1% SDS, pH 8), and
ultrasonic was used to extract the protein. The lysis solution
was centrifuged at 4◦C, 12,000 × g for 15 min to collect the
supernatant, then four volumes of precooling acetone (include
10 mM DTT) was added to a sample extract, and samples
were placed at 20◦C for 2 h. It was centrifuged again, and the
pellet was collected to wash twice with cold acetone. Finally, the
precipitation was dissolved by the dissolution buffer containing
Tris-base (pH 8) 8M Urea solution. The protein was determined
by using the Bradford method and analyzed on the SDS-PAGE
gel. After 100 ml protein from each sample was digested
with trypsin gold (Promega, Madison, WI, United States) at
37◦C for 16 h, and the resultant peptides were dried by
vacuum centrifugation. The peptides were reconstituted in 20
µl of 0.5 M TEAB (pH 8.5) and processed according to the
manufacturer’s protocol for 8-plex iTRAQ (AB Sciex, Foster City,
CA, United States) (Noirel et al., 2011). Then, pooled mixtures of
iTRAQ-labeled peptides were fractionated by XBridge BEHC18
column BEH C18 4.6 × 250 mm, 5 µm, (Waters, Milford, MA,
United States) on a Rigol L3000 HPLC operating at 1 ml/min.
Mobile phases A (2% acetonitrile, 20 mM NH4FA, adjusted pH to
10.0 using NH3·H2O) and B (98% acetonitrile, 20 mM NH4FA,
adjusted pH to 10.0 using NH3·H2O) were used to develop a
gradient elution. Collected fractions were pooled into 15 final
fractions and analyzed by Q-Exactive HF-X mass spectrometer
(Matrix Science Limited, Washington, DC, United States).

Peptides were identified separately by searching against a
specified database Proteome Discoverer 2.2 (PD 2.2, Thermo).
A peptide mass tolerance of 10 ppm and fragment mass
tolerance of 0.02 Da were acceptable for product ion scans.
When the Proteome Discoverer 2.2 software was used to search
the database, 5,900 proteins were identified at FDR less than
1.0%. Proteins comprising of similar peptides and could not be
distinguished based on MS/MS analysis were grouped separately
as protein groups. To analyze the differential expression ratios,
all identified peptides from a protein were used to find an
average protein ratio relative to the control label (i.e., fold
change). Mann–Whitney test was used to analyze the differential
expression of proteins between ACB-AhR and ACB-BtS larvae
midgut and the significant ratios, defined as P < 0.05 and
| log2FC| > ∗(ratio > ∗ or ratio < ∗[fold change, FC]), were used
to screen the DEPs.

GO Classification of Differentially
Expressed Genes and Proteins Pathway
Enrichment Analysis
Functional annotation of the genes and proteins which were
identified in ACB midgut sample was implemented using
GOseq R packages based Wallenius non-central hyper-geometric
distribution (Young et al., 2010), an integrated GO annotation
and mining tool that assigns gene ontology through BLAST
searches against nucleotide and protein databases. GO functional
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significance enrichment analysis gives GO functional entries that
are significantly enriched in DEGs compared to the genomic
background. The analysis first maps DEGs to each term in
the Gene Ontology database (see footnote 2), calculate the
number of genes for each term, and then find differences in
expression compared to the entire genomic background and then
used a hypergeometric test to find significantly enriched GO
terms for DEGs compared to the ACB transcriptome/proteome
background. In order to better study the function of differential
genes, we not only performed enrichment analysis (GO
enrichment, KEGG enrichment) for all the differential genes
in each combination but also separated differential genes
in each combination according to up- or down-regulation.
The differential expression of the genes was determined by
performing independent alignments of short reads count
obtained from analysis of gene expression levels. For samples
with biological replicates, the analysis was performed using
DESeq (Anders and Huber, 2010), and the screening threshold
was padj < 0.05. The P-value was checked by using the following
formula:

P=1−
m−1∑
i=0

(
M
i

)(
N −M
n− i

)
(
N
n

)
(1) N is the number of genes with pathway annotation in all
genes. (2) n is the number of DEGs in N. (3) M is the number
of genes annotated as a particular pathway in all genes. (4) m is
the number of DEGs annotated as a specific pathway. Pathway
with FDR ≤ 0.05 was defined as a pathway that was significantly
enriched in DEGs or proteins. All identified transcripts and
proteins were mapped to a pathway in the KEGG database.
Significantly enriched metabolic pathways containing DEGs and
DEPs were determined using the same formula as in GO analysis.
Here N means the number of all the genes/proteins with KEGG
annotation, n represents the number of DEGs or DEPs in N,
M is the number of all genes or proteins annotated to specific
pathways, and m is the number of DEGs or DEPs in M.

Relationship Between RNA-Seq and
iTRAQ
To evaluate the expression level of genes and proteins in
ACB-AhR and ACB-BtS, the relationship between transcriptomic
and proteomics levels was evaluated. The mRNA information
obtained from the transcriptome was integrated with the DEPs
information identified by the proteome and was searched for

the expression patterns of corresponding genes (P < 0.05). The
significance of the overlapping between the identified transcripts
and proteins was determined using Pearson’s chi-square test with
Yates’ continuity correction (Song et al., 2012).

RT-qPCR for Expression Analysis
The genes related to resistance selected from transcriptomic
and proteomic analysis were verified using qRT-PCR. Total
RNA was prepared from different tissues of ACB-AhR and
ACB-BtS strains, with three technical replicates performed for
each of three biological replicates. cDNAs were synthesized using
the One-Step gDNA Removal and cDNA Synthesis SuperMix
(TransGen Biotech Co., Ltd., Beijing, China) following the
kit manual. β-actin was used as a reference gene (accession
number-EU585777.1), and it was used to select the cDNA
templates on the PCR equipment. Primers (Supplementary
Table S9) were designed manually or using the Primer 5 tool3.
Individual qRT-PCR reactions were repeated four times; water
was used as the negative control. Before gene quantification,
the amplification efficiency between the target gene and the
reference gene were checked. qRT-PCR reactions were performed
on the Applied Bio System 7500 Real-Time PCR System (Applied
Biosystems, Foster City, CA, United States) using SYBR Green
(TAKARA Bio Inc., Japan) The cycling program consists of initial
incubation at 95◦C for 10 min, followed by 40 cycles at 95◦C for
15 s, 60◦C for 45 s, and a final step at 95◦C for 15 s and reactions
were performed in a final volume of 25 µl. The threshold cycle
(CT) was collected from each reaction, and the relative expression
of normalized data was calculated by the comparative 2−11CT

method (Livak and Schmittgen, 2001; Zhang et al., 2017).

RESULTS

RNA-Seq and Sequence Assembly
The results of RNA sequencing from ACB-AhR and ACB-BtS
were ranged from 41,703,706 to 62,099,678 (Table 1). The clean
sequences per library were ranged from 40,607,798 to 59,909,406
reads. Moreover, GC contents were ranged from 48.01 to 51.02%.
The number of the reads ranged from 40.09 to 44.83%, were
mapped to the trinity spliced transcriptomes. A total of 73,229
unigenes assembled from cDNA libraries of both resistant and
susceptible strains with an average length of 844 bp and N50
length of 1,018 bp (Table 2).

3http://frodo.wi.mit.edu/primer5/

TABLE 1 | Summary of reads in Cry1Ah-resistant strain (ACB-AhR) and susceptible strain (ACB-BtS) of Ostrinia furnacalis transcriptomes.

Samples Raw reads Clean reads Total mapped Q30 (%) GC (%)

ACB-BtS_1 54,874,002 53,134,612 21,299,364 (40.09%) 90.90 50.55

ACB-BtS_2 41,970,856 40,607,798 16,906,344 (41.63%) 91.55 51.02

ACB-BtS_3 54,469,658 52,770,170 21,864,498 (41.43%) 91.50 50.40

ACB-AhR_1 41,703,706 40,498,994 17,492,734 (43.19%) 91.81 48.11

ACB-AhR_2 62,099,678 59,909,406 24,716,016 (41.26%) 91.19 50.71

ACB-AhR_3 47,695,548 46,435,464 20,817,278 (44.83%) 92.06 48.01
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TABLE 2 | Summary of RNA-seq metrics from Ostrinia furnacalis midgut
transcriptomes.

Metrics Number

Number of genes 73,229
∗N50 1,018

Maximum length 29,484

Minimum length 201

Average length 844

Total assembled bases 132,050,968

∗N50 is the 50% length of all genes.

The total numbers of sequences detected by mass
spectrometry of ACB proteome were 585,828, which represented
29,314 peptide spectra and 5,900 proteins were matched
(Table 3). The total DEPs between ACB-AhR and ACB-BtS
were 182.

Differentially Expressed Genes Between
Cry1Ah-Resistant and Susceptible
Strains of ACB
A total of 4,209 down-regulated and 2,798 up-regulated genes
were differentially expressed (P < 0.05 and | log2−ratio ≥ 1)
(Figure 1A) in both ACB-AhR and ACB-BtS strains. These
comparison results revealed that most of the genes were
significantly down-regulated compared to up-regulated including
APN, ALP, and member of the ABC the transporter family
(Supplementary Table S1). Furthermore, genes significantly
down-regulated in the high severity in ACB-AhR strain with
threshold group (q-value <1 and log2 (fold-change) ≤−2),
several genes were annotated as previously known Bt resistance
genes including members of the APN gene family, apn3 paralogs
and apn8, an ABC transporter in subgroup G, abcg, and
serine protease genes. The up-regulated genes (q-value <1 and
log2 (fold-change) ≥2) were significantly smaller in number
for ACB-AhR strain compared to down-regulated genes. The
up-regulated genes in ACB-AhR strain included heat shock
proteins and carboxylesterase genes (Supplementary Table S1).

Supplementary Table S2 shows the GO classification of
genes that were differentially expressed between ACB-AhR and
ACB-BtS midgut tissues (≥2-fold change, FDR ≤ 0.001).
With Blast2Go, 7,007 DEGs were assigned to 51 GO
classes (Figure 2A), which cover three domains: biological
process, cellular components, and molecular functions. In
terms of biological process mostly genes are assigned to
oxidation–reduction process and DNA integration. In case of

TABLE 3 | Summary of iTRAQ metrics from the Cry1Ah-resistant strain
(ACB-AhR) and susceptible strain (ACB-BtS) of Ostrinia furnacalis proteomes.

Metrics Number

Total spectra 585,828

Unique spectra 29,314

Matched proteins 5,900

Differentially expressed proteins 182

oxidation reduction reaction, 277 DEGs were associated, where
162 were down-regulated and 115 DEGs were up-regulated
in ACB-AhR (Supplementary Table S2). In case of cellular
components terms, mostly fatty acid synthesis complex, and
cytosolic part represented most of the genes. In the molecular
function category, oxidoreductase activity, peptidase activity, and
dehydrogenase activity were the most abundant (Supplementary
Table S2).

In the KEGG database, 27 pathways were substantially
enriched (P ≤ 0.05), including “Valine, leucine and isoleucine
degradation” and “Galactose metabolism” (Figure 3 and
Supplementary Table S3). Specifically, 51 genes encoding
enzymes involved in fatty acid elongation and metabolism
of xenobiotics by cytochrome P450 pathways were highly
enriched, including dehydrogenase, glutathione S-transferase
(GSTs), and nicotinamide adenine dinucleotide phosphate
(NADPHs) (Supplementary Table S4). The up-regulated
genes included acetyltransferase, dehydrogenase, GST, and
carbonyl reductase NADPH. Whereas, down-regulated genes
enriched in galactose metabolism pathways, included steroid
dehydrogenase and UDP-glucosyltransferase (Supplementary
Table S4).

Cry1Ah-Induced Differentially Expressed
Proteins Between ACB-AhR and
ACB-BtS Strains
After Cry1Ah-treatment, 182 DEPs (P ≤ 0.05) were identified
between ACB-AhR and ACB-BtS strains of ACB (Figure 1B).
Among them, 111 proteins were down-regulated (≤0.8-fold,
P≤ 0.05) and 71 proteins were up-regulated (≥1.2-fold, P≤ 0.05)
(Supplementary Table S5). Following in-gel digestion by trypsin,
proteins were identified by liquid chromatography-electrospray
ionization multistage mass spectrometry (LC-ESI-MS/MS).
APN and ABCC proteins which are involved in Bt resistance
were down-regulated by −0.45- and −0.51-fold, respectively,
in ACB-AhR strain relative to the ACB-BtS strain. Others
down-regulated proteins in resistance included trypsin
(−1.41-fold), which are considered the main proteases involved
in Bt protoxin activation and detoxification, GST (−0.67-fold),
and DIMBOA-induced cytochrome P450 (−0.46-fold). The
proteins that were up-regulated in Cry1Ah-resistant insects
of ACB are fatty acid binding protein 1 (0.41-fold), aldose
1-epimerase (0.50-fold) involved in carbohydrate metabolic
process, lipase (0.58-fold), plays an essential role in the digestion,
transport and metabolism and UDP-glycosyltransferase (0.42-
fold), involved in inactivation and excretion of endogenous and
exogenous compounds. Additionally, proteins related to energy
regulations, transportation of proteins, oxidation–reduction
process, binding, and metabolism were also differentially
expressed between ACB-AhR and ACB-BtS strains of ACB
(Supplementary Table S5).

The relationship of correlation between the DEGs and
DEPs showed that there were only 90 genes/proteins
related to resistance that were either up-regulated or
down-regulated identified in RNA-seq and iTRAQ
techniques (Figure 4 and Supplementary Table S6). Among
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FIGURE 1 | Differentially expressed genes (DEGs) and proteins (DEPs) between Cry1Ah-resistant and susceptible Ostrinia furnacalis. (A) The distribution of DEGs.
The scatter in the figure represents each gene, green genes are down-regulated, red genes are up-regulated, and blue genes are not differentially expressed. (B) The
distribution of differentially expressed proteins (DEPs). The vertical axis indicates the P-value (–log10 value), black indicates the protein with no significant difference,
red indicates the up-regulated proteins (≥1.2-fold, P ≤ 0.05), and green indicates the down-regulated proteins (≤0.8-fold, P ≤ 0.05).

them 63 genes/proteins were with same trend and 27
genes/proteins showed opposite trend either up-regulated
or down-regulated in both analyses (Supplementary
Table S6).

Gene Ontology and Pathway Enrichment
Among the 182 DEPs, 34 were subcategorized into 15
hierarchically structured GO classes, including 3 biological
processes, 3 cellular components, and 9 molecular functions
(Figure 2B). Specifically, “oxidation–reduction process” and
single-organism metabolic process were highly represented in
“Biological process”. While extracellular space was the most
common categories in “Cellular components”. Likewise, iron ion
binding, heme binding, and transition metal ion binding were the
most top categories in “Molecular function”.

Fifty-nine DEPs were allocated to reference pathways in
KEGG when exposed to Cry1Ah toxin. As a result, 10 pathways
were enriched P ≤ 0.05, Supplementary Table S7), including
“glycine, serine, and threonine metabolism” and “galactose
metabolism” which have the lowest P-value. The top 20 highly
enriched pathways are shown in Figure 5.

Correlation of the enriched pathways for DEGs and DEPs
showed that there were four mainly identical pathways related
to metabolic process playing a role in resistance, including
determining, galactose metabolism, glycerolipid metabolism,
metabolism of xenobiotics by cytochrome P450 and glycine,
serine, and threonine metabolism (Figures 3, 5). KEGG pathway
analysis also revealed that the most enriched peptides, including
phosphoglycerate dehydrogenase, N-acetylglactosaminidase,
NADPH, and UDP-glycosyltransferase were involved in glycine,

serine, and threonine metabolism, galactose metabolism, and
metabolism of xenobiotics by cytochrome P450 (Supplementary
Table S8).

Validation of Differentially Expressed
Genes by qRT-PCR
According to fold-change calculations by qRT-PCR analyses, the
results supported the differentially expressed on gene level. All
the tested genes were in the same trend with the omics results
except the chitin synthase which presented the down-regulation
in Cry1Ah-resistant (ACB-AhR) strain compared to susceptible
strain (ACB-BtS). However, the higher expression level was
observed in ACB-AhR by qRT-PCR analysis (Figure 6). Most of
the selected genes were down-regulated in ACB-AhR; only HSP
70 showed higher expression in ACB-AhR compared to ACB-BtS
(Figure 6).

DISCUSSION

Insect resistance to Bacillus thuringiensis (Bt) is a significant
threat to the enduring success of most extensively used genetically
modified crops (Tabashnik et al., 2003, 2013). To counter the
threat of resistance, it is important to understand the molecular
mechanism of resistance of ACB to Bt toxins. In this study,
ACB-AhR and ACB-BtS were sequenced for the transcriptomics
and proteomics analyses, and we obtained a total of 73,229 genes
with an average length of 844 bp from the transcriptome analysis.
The average length of the genes was longer than those observed
in ACB (Xu et al., 2015; Zhang et al., 2016; Cui et al., 2017),
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FIGURE 2 | Gene ontological classifications of differentially expressed genes and proteins between ACB-AhR and ACB-BtS. The differentially expressed genes or
proteins are grouped into three hierarchically stretched GO terms, biological process, cellular components, and molecular functions. The Y-axis indicates the number
of genes or proteins in each GO term. (A) Differentially expressed genes identified by RNA-seq. (B) Differentially expressed proteins identified by iTRAQ.

and Plutella xylostella (Lin et al., 2013). The genes length may be
correlated to sequence techniques and the application of assembly
tools. Mostly, assembled genes were not significantly matched
with available databases due to their short sequences or because
they characterized significantly novel genes. Comparatively, a low
number of the genes had been annotated previously as compared
to our findings. Therefore our Illumina sequencing and analysis
described improvements over earlier studies (Xiang et al., 2010;
Li et al., 2013).

Particularly, comparative analysis of midgut transcripts and
proteins between ACB-AhR and ACB-BtS strains discovered
a distinctive set of genes/proteins differentially expressed.
Both transcriptomic and proteomic sequences showed more
down-regulation of genes/proteins than up-regulations in ACB-
AhR strain (Figure 1). Specifically, our results are in agreement
with a previous transcriptomic analysis showing down-regulation
of genes in resistant strains using a digital gene expression tag
profiling (DGETP) approach (Paris et al., 2012; Tetreau et al.,
2012). Similarly, significant alteration of the ACB transcriptome
was observed in a Cry1Ab resistant strain (ACB-AbR) including,

3,157 genes being down-regulated and 636 were up-regulated
after exposure to Cry1Ab toxin (Xu et al., 2015). Moreover, in
a previous study, an analysis of DEGs directed that 1,026 DEGs
were down-regulated and 189 were up-regulated, expressed
between resistant and susceptible strains of P. xylostella (Lin
et al., 2013). However, a study of transcriptome response to
Cry1Ac toxin indicated more up-regulated genes as compared to
down-regulated genes in a Cry1Ac-resistant strain of P. xylostella
(Lei et al., 2014). The observation of different trends among
experiments was possibly due to the technical differences and the
variations in the materials examined, as a whole body of target
insects at various developmental stages was used in susceptible
and Cry1Ab-resistant strains of P. xylostella (Lin et al., 2013).
However, midgut tissue was used from Cry1Ac-resistant and
susceptible strains of P. xylostella (Lei et al., 2014). These results
suggest that mechanisms of resistance to Cry toxins can be
conferred by deficient activation of protoxins or reduced binding
of toxins to the membrane (Griffitts and Aroian, 2005).

A correlation analysis of DEGs and DEPs from the
larval midgut displayed the same trend of a subset of genes
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FIGURE 3 | KEGG pathway enrichment scatter plot. The vertical axis represents the path name, and the horizontal axis represents the path factor corresponding to
the Rich factor. The size of the q-value is represented by the color of the point. The smaller the q-value, the closer the color is to the red color. The number of
differential genes included in each pathway are expressed by the size of the point. (Top 20 enriched pathways are represented in scatter plot).

FIGURE 4 | Venn diagram showing relationship between the differentially expressed proteins and genes. The values in each circle represents the quantity of genes or
proteins, including identified genes and proteins and genes and proteins related to resistance, respectively, genes/proteins related to resistance together. The cut-off
value of log2 fold changes for up-regulated and down-regulated gene/protein was +1/–1.
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FIGURE 5 | KEGG pathway enrichment bubble plot. The ratio of the number of different proteins in the corresponding pathways to the total number of proteins
identified in the graph is greater, indicating the higher difference in protein concentration in the pathway. The size of the dots represents the number of different
proteins in the corresponding pathway and the greater the difference in the pathway represents the greater number of proteins.

and proteins (Supplementary Table S6). Genes including
ABC transporter C2, DIMBOA-induced cytochrome P450,
cadherin-like protein, and chymotrypsin-like serine protease
were down-regulated, whereas aldehyde dehydrogenase
and N-acetylglactosaminidase were up-regulated at both
transcriptional and translational levels (Supplementary
Table S6). Likewise, physiologically similar responses were
documented in Sarcophaga crassipalpis, Drosophila melanogaster,
and Caenorhabditis elegans transcriptomes (Ragland et al., 2010).
However, we found some genes with the opposite trends, like
the trypsin-like serine protease and NADH dehydrogenase were
up-regulated at the transcriptional level and down-regulated
at the translational level. This effect could be attributed to the
difference in expression time (Ragland et al., 2010). Moreover,
expression profiles of mRNA and protein levels do not always

correlate (Nie et al., 2006), and differences in directional changes
between proteomic and transcriptome are possibly due to the
single sampling time-point and changes in protein versus genes
in vivo are rarely studied (Popesku et al., 2010). Similarly,
the difference between differentially expressed transcripts and
proteins will most likely be the normal rather than exception,
without a fully sequenced ACB genome.

In the present study, several transcripts which are
down-regulated in the ACB-AhR strain were previously
documented as important candidate Bt resistance genes/proteins
or other genes involved in insecticide resistance in numerous
insects including APN, ABCC3, V-ATPase, trypsin-like serine
protease, DIMBOA-induced cytochrome P450, ALP, GST,
chymotrypsin-like serine protease family members and
chitin synthase (Supplementary Table S1). The significant
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FIGURE 6 | The qRT-PCR analysis of differentially expressed genes to confirm expression patterns indicated by sequencing. The DEGs were randomly selected for
qRT-PCR. Three technical replicates were performed for each of the three biological replicates. The height of each bar chart represents the mean average of
sample-specific 2−11Ct values.

correlation between transcriptome/proteomic and qRT-PCR
results further verified the gene expression data, providing
assurance in the reliability of our data (Figure 6). Different
isoforms of APNs and CAD together with ALP have been
reported as Cry toxin receptors (Pigott and Ellar, 2007). The
same phenomenon of down-regulation of cadherin as a Cry
toxin receptor was previously described in ACB-AbR, and
AcR strains in both microarrays and qRT-PCR results (Zhang
et al., 2017), supporting the results of a prior study which
indicated the down-regulation of Ofcad gene in Cry1Ac-resistant
strain (Jin et al., 2014). Down-regulation of APN transcripts
in resistant strains has been shown to be involved in the Bt
mode of action and mechanisms of the resistance are reported
through proteomics and molecular analyses to different Cry
toxins (Nanoth et al., 2015; Zhang et al., 2017). Interestingly,
we also found dozens of genes annotated to APN were
over-expressed in ACB-AhR strain. GO, and up-regulation (2.47
to 5.65-times) of APN1 (ABQ51393.1), APN2 (ACF34999.1),
APN3 (AEO12689.1), and APN4 (ACF34998.2) of APN in
Cry1Ab resistance in ACB-AbR (Xu et al., 2015). It was also
reported that APN encoded by the Unigenes59183-mk was
significantly up-regulated in a Cry1Ac-resistant strain of
P. xylostella (Lei et al., 2014), and AAEL012774 annotated to
APN were over-expressed found by proteomic approaches in
LiTOX strain (Tetreau et al., 2012). According to pore formation
model, the expression of Bt receptors genes like cadherin should
be down-regulated in the resistant insects (Peng et al., 2010;
Vachon et al., 2012). However, the current findings were not
always consistent with this approach. Based on our observations,
along with previous studies, we speculated that APN and
cadherin-like protein should have a significant role in Cry1Ah
resistance of ACB, and resistance might be associated with
the expression of multiple receptors between ACB-AhR and

ACB-BtS strains. In this study, the GPI-anchored metabolic
pathway was detected in GO annotation, and KEGG pathway
analysis and GPI-anchored proteins like ALP were identified
as Cry-toxin receptors. ALP expression was under-expressed in
H. virescens population in a laboratory experiment (Jurat-fuentes
et al., 2003). The identification of ALP has been described as
Cry-toxin receptors for Cry1Ac (Chen et al., 2015; Jin et al.,
2015), Cry11Aa (Fernandez et al., 2006), and Cry4Ba toxins
(Moonsom et al., 2007). Generally, the Bt resistance confers
changes in the structure of Cry toxin receptors rather than in
their expression (Griffitts and Aroian, 2005). These changes in
the expression of Cry receptors are likely the result of different
genetic mechanisms involving mutations in regulatory regions
or genome rearrangements which cause rapid adaptations to new
environmental pressure such as an insecticide treatment.

Moreover, GO function and KEGG pathway enrichment
were analyzed for DEGs of ACB-AhR and ACB-BtS to find
other Cry1Ah-resistance related genes in ACB, as these pathway
analyses provide a valuable understanding of the biological
process, cellular components and molecular functions of target
sites (Ji et al., 2012). The results revealed that the majority
of these DEGs were down-regulated in ACB-AhR both from
RNA-seq and iTRAQ analyses. These results are in agreement
with the Cry1Ab resistance study which showed down-regulation
(85.8%) of DEGs in the ACB-AbR strain (Xu et al., 2015).
However, the majority of DEGs was significantly up-regulated in
a Cry1Ac-resistant strain of P. xylostella (Lei et al., 2014). These
findings proposed that Cry1Ah-resistance mechanism in ACB
can differ from P. xylostella, or expression level of up-regulation
of genes could be compensated for the loss of other catalytic
genes to reduce the fitness costs of Cry toxin resistance. In the
present study, expression of mostly genes annotated to GSTs,
ATPase, ABCC3, trypsin, and P450 was lower in ACB-AhR.
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In previous studies, GSTs and P450 genes were reported to confer
resistance and were involved in detoxifications of xenobiotic (Xu
et al., 2015; Pavlidi et al., 2018), as well as trypsin, which is
considered the main proteinase involved in Bt toxin activation
and detoxification (Liu et al., 2014). The ABC proteins are
membrane bound transporters associated with the movement
of solutes across the lipid membranes and have been linked
to Bt toxin resistance in the midgut of Cry1Ac and Cry1Ab
resistant larvae (Dermauw and Van, 2014; Tabashnik, 2015). In
this study, differentially expressed ABC transporters between
ACB-BtS and ACB-AhR strains included ABCC1, ABCC2,
ABCC3, ABCC4, and Abcc10 and the majority of them were
down-regulated. Previously, ABCC2 has been reported to be
involved in Cry1Ac resistance in three lepidopterans (Gahan
et al., 2010; Baxter et al., 2011). Additionally, eight genes
annotated to ABCC2 were detected in Cry1Ac resistance strain of
P. xylostella, and the majority of them were down-regulated (Lei
et al., 2014). Nevertheless, ABCC2 can function as Cry1A toxin
receptors (Degen, 2004), and further investigations are required
to elucidate the role of genes within Bt resistance mechanisms.

Generally, Cyt toxins identified in the case of previously
documented Cry1Ah toxin as receptors of Cry toxins (Perez et al.,
2005), possibly contribute to overcoming receptor alterations
in ACB-AhR strain. As previously reported in several Bt
resistant insects, Cry-toxin resistance might be linked with
multiple receptors, and there is a possibility that Cry1Ah
resistance is associated with differential expression of Bt toxin
receptors between ACB-AhR and ACB-BtS strains. In conclusion,
this is the first combination of a study using RNA-Seq

and iTRAQ approaches on Cry1Ah-toxin binding, which led
to the identification of a longer length of genes in ACB.
Besides, Cry1Ah-resistance in ACB is involved in metabolic
and catalytic pathways. DEGs and DEPs would be used for
further studies on the membrane receptors which are associated
with Cry1Ah-resistance and could lead to the analysis of
genetic differences between Bt resistant and susceptible strains
of ACB.
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Data assimilation, defined as the fusion of data with preexisting knowledge, is particularly

suited to elucidating underlying phenomena from noisy/insufficient observations.

Although this approach has been widely used in diverse fields, only recently have efforts

been directed to problems in neuroscience, using mainly intracranial data and thus

limiting its applicability to invasive measurements involving electrode implants. Here

we intend to apply data assimilation to non-invasive electroencephalography (EEG)

measurements to infer brain states and their characteristics. For this purpose, we use

Kalman filtering to combine synthetic EEG data with a coupled neural-mass model

together with Ary’s model of the head, which projects intracranial signals onto the

scalp. Our results show that using several extracranial electrodes allows to successfully

estimate the state and a specific parameter of the model, whereas one single electrode

provides only a very partial and insufficient view of the system. The superiority of using

multiple extracranial electrodes over using only one, be it intra- or extra-cranial, is

shown in different dynamical behaviours. Our results show potential toward future clinical

applications of the method.

Keywords: Unscented Kalman filter, data assimilation, EEG, neural mass model, parameter estimation

1. INTRODUCTION

After several decades studying its morphology and dynamics [1], the basic mechanisms that
describe the functioning of the brain are still far from being completely understood. There are
different reasons that explain this arduous route toward understanding this organ. First, the
neurons that form the brain are very diverse morphologically [2] and dynamically [3]. Second,
these neurons are connected to each other in extremely large numbers and forming very complex
networks [4], whose structural characteristics are still mostly unknown. And third, brain dynamics
are very irregular and complex [5, 6]. The opposed views of an essentially noisy brain and
a deterministic brain exhibiting chaotic activity have been often contrasted. On the one hand
there is multiple evidence, both theoretical and experimental, that justifies a stochastic view of
the brain [7, 8]. On the other hand, other studies reveal deterministic, or rather reproducible,
dynamical behaviour [9, 10] both at the microscopic scale [11] and at the mesoscale recorded by
electroencephalograms (EEG) or magnetoencephalograms (MEG) [12]. The reality is probably a
combination of the two views. The fact that the brain receives continuous external inputs from the
sensory system also makes its dynamical and experimental interpretation more complex because,
even though experiments are designed to minimise uncontrolled inputs, they cannot completely
rule them out. Another important limitation for studying the brain is that experimental recordings
(such as EEG or fRMI) are almost always indirect reflections of the underlying neural activity [13].
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A way of facing the complexities described above is by
systematically comparing the experimental observations of brain
activity with mathematical models based on specific hypotheses,
which can thereby be validated or disproven. Modelling cerebral
activity has been attempted both with top-down and bottom-
up approaches [14–18]. Many of these theoretical models
are simplifications that capture the basic ingredients of brain
dynamics, while others are detailed accounts of the dynamics
of neurons that necessarily forgo the description of the whole
brain. In that context, a more feasible scale of study is the
mesoscopic scale [19–25]. Many of the modern experimental
techniques record information coming from populations of
neurons working together. Neural mass models describe the
activity of these populations mathematically using reasonably
simple equations [26, 27]. These models can describe both the
intrinsic oscillatory behaviour recorded at the mesoscale or
event-related responses [28, 29] with morphologically plausible
assumptions for their construction.

In all modelling strategies, however, identifying realistic values
for the parameters of the model is a challenging task. One
way to address this problem is by integrating experimental
information into the models using Bayesian inference [30–35].
This strategy has started to be pursued by using Kalman filtering
to integrate experimental data at both the microscopic scale of
neuronal networks [36–38] and the mesoscopic scale of neural
mass models [39–42]. This data assimilation approach aims to
tackle the high level of noise in neuronal activity, and allows
to estimate both the state and the parameters of the theoretical
model using the experimental data available. The method has
been used to estimate, for example, the effective connectivity that
characterises epileptic seizures on a patient-specific basis (see [43]
and references therein). Kalman filtering has also been used to
analyse the suppression of epileptic seizures in coupled neural
mass models [40, 44], and the induction of the anesthetized state
by drugs [45]. But these studies use mainly invasive intracranial
signals, and it would be desirable to extend them to non-invasive
extracranial measurements such as EEG. Intracranial signals can
be translated into EEG signals in a forward manner [46, 47],
and, in the opposite direction, solving the inverse problem allows
to infer intracranial signals from EEG recordings [48–50]. In
this paper we advance the applications of Kalman filtering in
neuroscience by extending the current procedures with a model
of the head, exploring the possibilities of using non-invasive scalp
measurements.

2. METHODS

To obtain a reliable estimation of the state and the dynamics of
the brain, we require a biologically inspired mathematical model
of its dynamics, experimental data (as non-invasive as possible),
and the means of fusing both sources of information together.
In this paper, for the purpose of providing a proof-of-concept of
our proposed data assimilation approach, we use in silico data,
instead of real experimental observations, generated by Jansen
and Rit’s model [26, 51], as a way to represent the dynamical
evolution of the cortical structures. We then use the unscented

Kalman filter as our data assimilation algorithm to estimate the
state and a specific parameter of the model jointly [52–54].

2.1. Mesoscopic Neural Mass Model
Jansen and Rit’s model [26, 51] describes the mesoscopic
activity of a population of neurons [55, 56], providing a good
compromise between physiological realism and computational
simplicity. This model reduces the neuronal diversity of a cortical
column to three interacting populations: pyramidal neurons,
excitatory interneurons, and inhibitory interneurons. The larger
pyramidal population excites both groups of interneurons, which
in turn feed back into the pyramidal cells. In our approximation,
the pyramidal population is also driven by neighbouring columns
and by excitatory noise representing the input from distant areas
of the brain. The model is given by the following set of coupled
second-order differential equations [26, 57]:

ẍi0(t)+ 2aẋi0(t)+ a2xi0(t) = Aa Sigm[xi1(t)− xi2(t)], (1)

ẍi1(t)+ 2aẋi1(t)+ a2xi1(t) = Aa
(

pi(t)+ k

Nd
∑

j=1

K ij Sigm(x
j
1(t − τ ij)

−x
j
2(t − τ ij))+ C2 Sigm[C1x

i
0(t)]

)

, (2)

ẍi2(t)+ 2bẋi2(t)+ b2xi2(t) = Bb
(

C4 Sigm[C3x
i
0(t)]

)

, (3)

where x0 is the average excitatory postsynaptic potential (PSP)
coming to the two interneuron populations, and x1 (x2) is the
average excitatory (inhibitory) PSP which inputs to the pyramidal
population. The superindex i = 1 · · ·Nd runs over all the coupled
cortical columns (dipole sources) of the model. The quantity
x1 − x2 is the net PSP of the pyramidal neurons, which produces
the signal detected by extracranial electrodes, and is therefore
our observable. The sigmoid function Sigm(v) converts the net
average PSP of a population, v, into an average firing rate:

Sigm(v) =
2e0

1+ eγ (v0−v)
, (4)

where e0 is the maximum firing rate of the population, γ controls
the slope of the sigmoid, and v0 is the post-synaptic potential for
which a 50% firing rate is obtained. The resulting firing rate is
then transformed back into an average PSP by the second-order
differential Equations 1–3.

The parameters A and B in the right-hand side of
Equations 1–3 are the amplitudes of the excitatory and
inhibitory post-synaptic potentials, and a and b are the lumped
representations of the sums of the reciprocal of the time constant
of the passive membrane, and all other spatially distributed
delays in the dendritic network. The parameters C1 to C4 are
connectivity constants that govern the interactions between
populations, pi(t) is a stochastic external input that adds dynamic
noise to the system, and the summation term represents the
input from other coupled cortical columns. The strength of the
coupling is modulated by k, with K denoting the adjacency
matrix. When generating the in silico data we consider that
column i receives the signal of column j with a delay τ ij [58].
This is because we want to generate data, in a controlled way,
with a model as complex and rich in dynamics as possible
to mimic real data. However, Kalman filtering, as defined
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TABLE 1 | Description and default values of the parameters for the system of

neural masses.

Param. Description Value

A EPSP amplitude 3.25 mV

B IPSP amplitude 22.00 mV

a Rate constant for the excitatory population* 100 s−1

b Rate constant for the inhibitory population* 50 s−1

C1 Strength of synaptic connections from PC to EI 135

C2 Strength of synaptic connections from II to PC 108

C3 Strength of synaptic connections from PC to II 33.75

C4 Strength of synaptic connections from EI to PC 33.75

e0 Maximum firing rate of the population 2.5 s−1

v0 Mean threshold of the population 6 mV

γ Steepness of the sigmoidal transformation 0.56 mV−1

k Coupling constant 5 or 10

according to

the experiment

K Adjacency matrix Kij = 1, i 6= j

Ki,j = 0, i = j

τ Delay Between 15

and 21ms,

according to

distance [58]

p0 External input 200 s−1

ǫ Intensity of the noise 100 s−1

*Lumped representation of the sum of the reciprocal of the time constant of passive

membrane and all other spatially distributed delays. See the Results section for details

of the configuration of each numerical experiment. Here, PC refers to pyramidal cells, EI

to excitatory interneurons, II to inhibitory interneurons, EPSP to excitatory post-synaptic

potential, and IPSP to inhibitory post-synaptic potential.

in Equations 10–11 below, does not include temporal delays.
Therefore, for simplicity, the model used during the filtering
does not consider delays. Table 1 provides the descriptions and
values of these parameters. The electrical activity detected by the
electrodes on the scalp is originated by the weighted sum of the
averaged membrane potential of the pyramidal cells of all the
cortical columns, xi(t) = xi1(t) − xi2(t) [59], using a head model
as described below.

2.2. Head Model
The main contribution of this paper is the use of multichannel
extracranial data to obtain information about the neuronal
populations inside the brain using data assimilation. To
accomplish this, we use synthetic EEG data generated in silico
using Jansen and Rit’s model and Ary’s head model. To that
end, we transform the output x(t) of the neural masses to EEG
signals z(t) in the electrodes (see Figure 1). This transformation
is mediated by a lead field matrix [47], which builds on the
basic idea of calculating the electric potential caused by a dipole
source [13] on a three-layer isotropic hemisphere of radius
1 [46, 60] that represents the three main tissues that impact brain
activity readings (brain, skull, and scalp). The lead field matrix
also contains information about the geometry of the problem
(e.g., locations of cortical columns and electrodes) and about the

electrophysiology of the head (e.g., conductivities of the different
tissues). The following equations show the potential Ve,i on an

electrode e, located at re
e [61], caused by the dipole qi(t) = xi(t)q̂i

generated by the cortical column i, located at rq
i and oriented as

q̂
i. In these equations, e = 1, . . . ,Ne, whereNe is the total number

of electrodes, and i = 1, . . . ,Nd, where Nd is the total number of
dipoles. Vectors are typeset in bold and modules are in regular
type.

Ve,i(ree; r
i
q, q

i) ≅ v1(ree;µ1r
i
q, ρ1q

i)+ v2(ree;µ2r
i
q, ρ2q

i)

+v3(ree;µ3r
i
q, ρ3q

i), (5)

v1(ree; r
i
q, q

i) =
(

(ce,i,11 − ce,i,12 (ree · r
i
q))r

i
q+

ce,i,12 (riq)
2ree

)

· qi, (6)

v2(ree; r
i
q, q

i) =
(

(ce,i,21 − ce,i,22 (ree · r
i
q))r

i
q

+ce,i,22 (riq)
2ree

)

· qi, (7)

v3(ree; r
i
q, q

i) =
(

(ce,i,31 − ce,i,32 (ree · r
i
q))r

i
q

+ce,i,32 (riq)
2ree

)

· qi. (8)

In these expressions,

ce,i,s1 =
1

4πσ s(riq)
2

(

2
de,i · rqi

(de,i)3
+

1

de,i
−

1

ree

)

,

ce,i,s2 =
1

4πσ s(riq)
2

(

2

(de,i)3
+

de,i + ree
reŴ(ree, rqi)

)

, (9)

Ŵ(re
e, rq

i) = de,i
(

reed
e,i + (ree)

2 − (rq
i · ree)

)

.

The tangential conductivity of each layer is represented by σ s [60]
and ρs and µs are the Berg parameters relative to it [62] (see
Table 2). The parameter de,i = re

e − rq
i is the relative position of

the electrode e under consideration with respect to the position
of the dipole i.

2.3. The Unscented Kalman Filter for Data
Assimilation
The Unscented Kalman Filter (UKF) is our algorithm of choice to
bring together the dynamical state of the model and the in silico
data. It is a standard tool in the field of systems and control
engineering, and has been shown to be both computationally
efficient and robust even when dealing with stochastic nonlinear
systems [63]. In our case, the computational burden—O(n3),
where n is the size of the state—is acceptable for a biologically
reasonable number of sources. In order to simultaneously
estimate the state and parameters of the model described by
Equations (1)–(3), we regard it as a discrete-time state-space
dynamical system of the following form:

xk+1 = F (xk) + vk (10)

zk = H (xk) + wk (11)

where x = (x10, x
1
1, x

1
2, x

2
0, . . . , x

Nd

2 , θ1, . . . , θNp ) ∈ R
nx is the state

vector (related to the variables and parameters of themodel), with
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FIGURE 1 | Extracranial data generation and illustration of Ary’s model of the head. The light and dark red arrows indicate dipole sources, and the electrodes are

shown as gray and black rectangles. The elements in the cartoon illustrate how all the signals produced by the cortical columns (represented with the solid red line in

the top left panel) are transformed into an electrode reading (shown in black dots in the top right panel) through the lead field matrix. In this drawing, as in

Equations (5–9), rq is the distance from the origin to the cortical column under consideration; re is the distance from the origin to the electrode; and d is the distance

from the cortical column to the electrode. The placement of the arrows here is for illustration purposes only; in our study, the cortical columns are placed on the

surface of the brain, close to the skull.

θp being the parameters to estimate, which obey the equations
θ̇p = 0. (In our joint estimation of the parameters, these are
included in the state vector together with the system variables).
The vector z ∈ R

nz is the measurement vector (our in silico
EEG readings). The vectors v and w are uncertainty terms that
account for process noise and measurement noise, respectively,
with Gaussian distributions p(v)∼ N(0,Q) and p(w)∼ N(0,R),
respectively. The process transition F is obtained with a
numerical implementation of Equations (1)–(3), as described
below. Finally, H relates the state to measurement space, which
is either Ve,i (in the case of simulated EEG), or xi (in the case
of simulated electrocorticography). Interestingly, where EEG is
concerned, this basic part of the Kalman filter is in our case
implemented by the skull, the effect of which is represented by
the lead field matrix, based on Ary’s head model and introduced
above.

The UKF is a recursive predictor-corrector-type algorithm
that aims to minimise the mean square error of the estimated
states and parameters over time. For each time step it calculates
a prediction of the state and parameters of the system, which
is corrected when the information from a measurement is
incorporated. The amount of confidence given to the model
and measurement is quantified by the Kalman gain K , which

TABLE 2 | Values of the Berg parameters for the three layers [60, 62].

Parameter Layer 1 Layer 2 Layer 3

Tangential conductivity σ s 1.0 0.0125 1.0

Berg parameter ρs 0.9901 0.7687 0.4421

Berg parameter µs 0.0659 0.2389 0.3561

is calculated at each time step based on prediction covariances
as well as model and measurement error covariances (Q and
R, respectively). For more details on the implementation of the
filter, the reader is referred to the Appendix and to Kalman [54],
Merwe andWan [52], Julier andUhlmann [53], and Solonen et al.
[64].

2.4. Generation of in silico Datasets
For this paper three different in silico datasets were generated.
We consider both simulated electrocorticography (ECoG,
intracortical) and electroencephalography (EEG, extracranial)
readings (using Ary’s model in the latter case). We chose to
use three sources because this provides a considerable spatial
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FIGURE 2 | The two cortical column motifs used in this paper. Unidirectionally

coupled cortical columns have no backflow (A), and bidirectionally coupled

columns are coupled all-to-all (B). See Table 3.

TABLE 3 | Cartesian coordinates of the dipoles used throughout the study.

x y z

dipole 1 0.1688 0.2242 0.2597

dipole 2 0.3766 –0.8520 0.2597

dipole 3 0.6622 –0.2242 –0.1948

The origin of coordinates is the centre of the perimeter of the head.

and temporal richness in the resulting signals, while keeping the
system reasonably simple and still biologically plausible [65, 66].

The presence of additional dipoles in the brain, and its
influence on the sources of study, is accounted for in the
stochastic external input to the sources (p(t), see Equation 2):

p(t) = p0 + ξ (t), (12)

where p0 = 200 s−1 and ξ (t) is Gaussian white noise [67] of
zero mean and correlation 〈ξ (t)ξ (t′)〉 = 2ǫδ(t − t′) [68]. At
the extracranial level, the other sources also affect the final EEG
signal, as well as the different tissues (brain, skull, scalp, and even
hair). This is modelled by adding Gaussian noise with zero mean
and standard deviation 100 mV (unless otherwise stated) to the
simulated EEG.

All datasets used the same locations for the cortical
columns [66]. The electrodes were placed using a subset of
the equidistant layout, a standard layout for EEG [69] (roughly
illustrated in Figures 6–8). The strength of the coupling was set
at a medium value so that the cortical columns have a visible
effect on one another without fully synchronising behaviours
and locking their dynamics (between k = 5 and k = 10), and
the configurations of the couplings are as shown in Figure 2.
Table 1 shows representative values for the parameters used in
all analyses unless otherwise specified. In this paper we focus on
estimating the amplitudes A of the EPSPs of the different cortical
columns, and therefore we choose values for these amplitudes
that produce signals that reflect various dynamic regimes that we

wish to explore. (The rest of the parameters were fixed to their
standard values [26, 51], as described in Table 1).

The numerical solver used to generate the in silico time series
was the Heun algorithm [70] with a time step of 1t = 1 ms. The
length of the data is 100 s in all cases. Using the Heun algorithm
together with Equations 1– 3 to update the state variables and the
lead field matrix (in order to get the potential in the electrodes
of the scalp in Equations 5– 9), we generate the required map
to apply Kalman filtering in Equations 10 and 11. The following
equations implement the stochastic Heun algorithm used to
update xk:

xk+1 = xk +
1

2

(

F (xk) + F
(

x̃k
))

1t

+
1

2

∑

(

g (xk) + g
(

x̃k
))

X, (13)

x̃k = xk + F (xk) 1t + g (xk)X. (14)

Where g(...), together with Equation 12, introduces the noise
term in Equation 2 and is zero for Equations 1 and 3. In X =√
2ǫ1tγ , γ are gaussianly distributed random numbers with

zero mean and unit variance. At different instants of time, these
random numbers are independent from one another.

2.4.1. Three Unidirectionally Coupled Cortical

Columns
For the first study the cortical columns were coupled
unidirectionally (Figure 2A), as described in Liu and Gao [71].
The parameters were set to standard values [26] for the three
cortical columns (see Table 1), except for the first column,
in which A1 was set to 3.58 mV to make it hyperexcitable.
Additionally, the three cortical columns had p0 = 90 s−1 and
ǫ = 2 s−1. This first hyperexcitable column causes a spiking
cascade in the other two columns. With this experiment, we
aimed to compare how extra- and intra-cranial electrodes
perform in the case of a behaviour being induced by an
input from another column, and not by the column’s own
parameter configuration. The resulting data can be found in
the Data Sheets 1, 2 in Supplementary Material. Please, see the
README file (Data Sheet 6) for more information.

2.4.2. Three Bidirectionally Coupled Cortical

Columns: Coarse Parameter Estimation
The three cortical columns are located as in the previous
section, but coupled bidirectionally (Figure 2B). Additionally,
the maximum amplitudes of the excitatory PSPs were set to A1

= 4.25 mV, A2 = 10.00 mV, and A3 = 3.25 mV. These values
were chosen to cause the three cortical columns to be in very
different dynamical regimes: cortical column 1 operates in a
spiking regime; cortical column 2 oscillates with alpha frequency
but with an amplitude similar to that of the spikes; and cortical
column 3 oscillates in a more standard regime, as described
in [26]. Also, the external input p(t) for each of the three cortical
columns was set using p0 = 200 s−1 and ǫ = 100 s−1. Our aim
here was to study how the filter performs in an extreme situation,
in which the dynamics of the columns are widely different from
one another. We intended to explore the outcome of estimating
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FIGURE 3 | Intracranial and extracranial fittings with propagated excitation along unidirectionally coupled cortical columns. The upper panels show the estimation of

parameter A, and the lower panels show the estimations of the observed states. The lines show the averages of the 50 realisations of the estimation, and the

shadowed areas indicate the standard deviation. The actual values of the A parameters are A1 = 3.58 mV, A2 = 3.25 mV, and A3 = 3.25 mV, the other parameters

being set to standard values (Table 1). All three cortical columns received an external input, p(t), with p0 = 90 s−1 and ǫ = 2 s−1. The coupling constant was set to

k = 10. The measurements were corrupted with Gaussian noise of mean 0 and standard deviation 100 mV for extracranial measurements and standard deviation

5 mV for intracortical measurements. Except for cortical column 1, with intracortical data the filter converges to a much higher value than the target, whereas with

extracranial data the filter converges to a value which is accurate. In the lower panels it is shown that extracranial estimations of the state are also accurate, whereas

intracortical estimations fail to reproduce the spikes correctly.

with single extracranial electrodes as well as the complete set, and
to compare with intracranial estimation (Data Sheets 3, 4).

2.4.3. Three Bidirectionally Coupled Cortical

Columns: Fine Parameter Estimation
In the previous section, the value of A of one of the cortical
columns was much larger than the other two. We now consider
the same coupling motif, but with values of the A parameter that
are much closer together in value: A1 = 3.58 mV, A2 = 3.25 mV,
and A3 = 3.10 mV. (The values defining the external input p(t)
remain the same as in the previous experiment). Our goal was to
check if the filter can discriminate between the values when they
are closer together (Data Sheet 5).

2.5. Filtering
For each of the experiments we conducted 50 realisations of each
estimation for the complete state vector, with different initial
conditions; all the figures show averages of the 50 estimations,
unless otherwise specified. The initial conditions for state and
parameter estimations were randomly generated with a normal
distribution of zero mean and unit variance; the parameters,
however, were constrained to deviate no more than 90% of their
actual value as an initial assumption.

The noise covariances Q and R were chosen according to the
best knowledge of the system and of the noise corrupting the
data. Therefore, Q was set to contemplate the incoming noise to
each dipole, i.e., it was set to a null matrix except for the term
corresponding to the equation that contains the input p(t) (see
Equation 2 and [68]). The matrix R was set to 1000I mV2. (In
practice, in most applications of the Kalman filter, the matrix
R is fairly easy to set with the knowledge of the measurement
precision as a starting point, but Q is often set by trial and error).

2.6. Ethics Statement
All data used in this manuscript come from numerical
simulations of a mathematical model. No human or animal data
have therefore been used, and ethics approval was not necessary.

3. RESULTS

In order to compare the performance of the extra- and intra-
cranial approaches to Kalman filtering, we have analysed three
different cortical column configurations, each using one of the
two motifs shown in Figure 2. Where relevant, two different
types of estimations have been used: intracranial and extracranial.
Intracranial estimation uses simulated data that would have
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FIGURE 4 | Intracranial and extracranial fittings for coarse parameter estimation in the case of bidirectional coupling. As in the previous figure, the upper panels show

the estimation of A for each cortical column and the lower show the estimations of the observed states. The results are shown here without averaging. The actual

values of the amplitudes of the EPSPs are A1 = 4.25 mV, A2 = 10.00 mV, and A3 = 3.25 mV; the rest of the parameters were set to standard values (Table 1). The

external input p(t) for the three cortical columns had p0 = 200 s−1 and ǫ = 100 s−1. The coupling constant was set to k = 5. The intracortical measurements were

corrupted with Gaussian noise of mean 0 and standard deviation 5 mV, while the noise in the extracranial measurements has standard deviation 100 mV. Extracranial

estimations of the parameters are both faster and more accurate than intracortical estimations; this applies also to the state, whose dynamics are more faithfully

reproduced using multi-electrode extracranial estimation (as shown in the lower panels).

hypothetically been obtained from electrocorticography, that is,
using a single intracortical electrode, and is estimated with the
data provided by a single location—in other words, the direct
output of Jansen and Rit’s model. Extracranial estimation, on
the other hand, employs simulated data originated from EEG
recordings, using several electrodes placed on the skull, and
is implemented here with the projection on the head of the
model output. We now discuss the results for the three different
situations that we have considered.

3.1. Three Unidirectionally Coupled
Cortical Columns
In this case, information flows unidirectionally because of the
way the cortical columns are coupled [71]. As can be seen in the
lower panels of Figure 3, the first cortical column has a random
spiking activity, due to the increased value of A and the presence
of noise [20]. Due to the architecture of the coupling, cortical
column 1 causes cortical columns 2 and 3 to spike also, when
otherwise they would have simply fluctuated around their resting
level.

The upper panels of Figure 3 show the intracortical and
extracranial estimations of A for the three cortical columns. The

estimation for A1 of the first column converges to its correct
value, with both the intra- and extracortical approaches. This was
to be expected, since the first cortical column receives no inputs
from other elements of the system. In contrast, the intracortical
estimations for cortical columns 2 and 3 converge to values
significantly higher than their actual value of 3.25 mV. We
conjecture that this is caused by the spiking of these two cortical

columns, which as mentioned above is due to the influence of
cortical column 1. Multi-channel extracranial information, in
contrast, allows to see the complete picture of the coupled cortical

columns and treat them as a single composed system, contrary
to the partial picture obtained from the information provided by

the single intracranial recordings. Therefore, estimation is better
when using extracranial information with several electrodes, as
shown in the upper panels of the figure. The lower panels of
Figure 3 show the estimation of the state. The UKF shows great

efficacy when the estimation is extracranial, but performs poorly
in the case of intracortical estimation (with the exception of

cortical column 1, because it has no input from other cortical
columns). This highlights the value of extracranial estimation,

in which it is possible to take the whole brain into account in a

non-invasive manner.
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FIGURE 5 | Intracranial and extracranial fittings for coarse parameter estimation, with a higher amount of intracortical measurement noise. The upper panels show

the estimation of the EPSPs for each cortical column and the lower panels show the estimations of the observed states. The results are shown here without

averaging. The actual values of the amplitudes of the EPSPs are A1 = 4.25 mV, A2 = 10.00 mV, and A3 = 3.25 mV; the rest of the parameters were set to standard

values (Table 1). The external input p(t) for the three cortical columns had p0 = 200 s−1 and ǫ = 100 s−1. The coupling constant was set to k = 5. The intracortical

measurements were corrupted with Gaussian noise of mean 0 and standard deviation 100 mV—about an order of magnitude higher than the noise in the previous

graph—, while the noise in the extracranial measurements has standard deviation 100 mV. Extracranial estimations of the parameters are also faster and more

accurate than intracortical estimations, more markedly so in this case; as to the state, in this more extreme case, the intracortical estimation does not mimic the

evolution of the system in any way.

3.2. Three Bidirectionally Coupled Cortical
Columns: Coarse Parameter Estimation
The second experiment aims to explore the possibilities of the
filter in more extreme situations, as the parameters were chosen
to reflect more diverse dynamical regimes. The following sections
describe the results of single- and multichannel estimations.

3.2.1. Moderate Intracortical Measurement Noise
Figure 4 shows again the performance obtained using the
simulated data from a set of extracranial electrodes compared to
using individual intracortical electrodes for each cortical column.
In this case we show the 50 realisations of each filtering, without
showing the average. The extracranial data for this experiment
were corrupted with a measurement Gaussian noise of zero
mean and standard deviation 100 mV; the intracortical data were
corrupted with a measurement noise of standard deviation 5 mV
in order to maintain similar levels of signal-to-noise ratio.

As shown in Figure 4, the intracortical parameter estimations
do not approximate the target value very well. In particular, the
estimations of A for cortical column 2 converge to three different
values depending on the initial conditions. The state estimation

follows the actual state of the system closely only for cortical
column 1. The situation is very different when with extracranial
electrodes, where all 50 realisations of the estimations converge
with much more precision to the correct values for both state
and parameters (with the exception of A2, which still tends to
lower values in a very small quantity of the realisations). Again,
extracranial performance is better, in general, to intracortical.

3.2.2. High Intracortical Measurement Noise
The difference between intracranial and extracranial estimation
is even larger for higher measurement noise (Figure 5). In this
case, the amount of noise in the intracortical data was set to the
same value as the noise in the extracranial data. The value of R
was tuned to reflect the increase in measurement noise, but the
intracortical estimations failed to obtain the correct values for the
parameters and reproduce the state.

3.2.3. Using One Single Extracranial Electrode
Using the same dataset, we aimed to investigate the outcome of
using each extracranial electrode individually [43], as opposed to
using the complete subset as until now. Therefore, we used each
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FIGURE 6 | Distribution of 50 realisations of A estimations from a single

electrode for cortical column 1 (solid red circle). The histograms are placed at

the location of the corresponding measuring electrode, and the location of the

three cortical columns generating the activity are shown with coloured circles

(with the full circle corresponding to the column whose value of A is being

estimated in this figure). Vertical lines with the same colours as the circles mark

the corresponding actual A values. The distributions tend to be narrowest in

the vicinities of cortical column 1. Nevertheless, they do not group around the

target value of A1 = 4.25 mV (vertical red line), as they should, but around that

of A3 = 3.25 mV (vertical blue line).

electrode separately to estimate the state and parameters of the
complete system, with 50 realisations of the estimation for each
electrode. By doing so, we show that the quality of the estimations
is strongly dependent on the relative positions of sources and
electrodes.

In Figures 6–8 we present the results for the estimation of
parameter A of each of the three cortical columns separately. The
histograms show the distribution of the 50 estimations of A using
each electrode, placed in the respective position of the electrode
in question. Vertical coloured lines in the histograms mark the
value of the three A parameters being estimated (one in each
figure). The histograms show a strong dependence on space of
the quality of the estimations. As a general trait, the estimations
are better when the electrodes are near the cortical column whose
value ofA is being estimated, whereas the more distant electrodes
show a wider distribution of final values for the parameter.

In Figure 6 the distribution of the estimations of A1 are
shown. The distributions tend to be narrowest in the vicinities of
the cortical column whoseA value is being estimated. However, it
is noteworthy that the histograms obtained from the observations
in distant electrodes tend to group not around the actual value of
A1 = 4.25 mV (red vertical line), but of A3 = 3.25 mV (blue
vertical line). This result suggests that the algorithm is unable

FIGURE 7 | Distribution of 50 realisations of A estimations from a single

electrode for cortical column 2 (solid green circle). The distributions here are

wider than for A1 and A3, although they still tend to be more accurate near the

cortical column (solid green circle) and group around the target value of

A2 = 10.00 mV (vertical green line).

to distinguish the origin of the EEG activity when sources and
electrodes are distant from each other.

Figure 7 shows the results of the estimation of A2 (actual
value shown by vertical green lines), revealing wider distributions
in general, which indicates a stronger dependence on initial
conditions. Although it is true that the electrodes near cortical
column 2 perform better in estimating A for that column, the
difference with more distant electrodes is not as large as for the
estimates of A for cortical columns 1 and 3.

Finally, Figure 8 shows the performance of each electrode
when A3 is being estimated (actual value shown by vertical blue
lines in the figure). Interestingly, even the electrodes located at
the far left of the figure lead to a good estimate of A, comparable
to that coming from the electrodes in the far right, which are
closer to column 3 and could therefore be expected to provide
a much more accurate estimation.

While the estimations arising from single electrodes are
reasonably accurate in some cases, using the complete set of
15 electrodes invariably yields better results. This is because, in
Kalman filtering, combining many sources of information always
improves the final estimation, even if some of the sources are
inaccurate or incomplete [72].

3.3. Three Bidirectionally Coupled Cortical
Columns: Fine Parameter Estimation
In the previous section, the aim was to generate widely different
dynamics in each column. We now consider the results of
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FIGURE 8 | Distribution of 50 realisations of A estimations from a single

electrode for cortical column 3 (solid blue circle). As in the two previous figures,

the distributions for the electrodes closest to the source (solid blue circle) are

narrow, grouping around the correct value (A3 = 3.25 mV, vertical blue line).

Surprisingly, the electrodes in the far left also give rise to narrow distributions.

estimating parameters which are much closer to one another.
The purpose of this test was to ascertain whether the filter
could differentiate between parameters with smaller differences
in value. This ability is very important if we expect to use the
technique in clinical applications. Figure 9 shows the extracranial
estimation of the A parameters using the complete subset of 15
electrodes. The estimations converge to the actual values with
enough accuracy as to give hopes of using the filter in a clinical
setting.

4. DISCUSSION

The most important limitation of current data assimilation
processes in neuroscience is that the appropriate experimental
recordings are usually intracranial. Despite this fact, using
Kalman filtering to fit these data to neural mass models shows
promise in several contexts and applications. In this study we
have modified this type of approach by extending it with a head
model, with the aim of integrating non-invasive experimental
recordings taken from the scalp (EEG). By increasing the range
of recordings in this way, the application of the data assimilation
protocols opens up to the large set of situations in which scalp
recordings are used. We keep the exploration of the technique
using real EEG experimental data in mind, but here we have
explored the limitations and advantages of our model using
in silico data in very well controlled conditions.

Our main goal in this paper has been to show that data
assimilation employing multiple non-invasive EEG electrodes

FIGURE 9 | Extracranial fit with parameters close together in value. The

estimations of the amplitude of the EPSPs of the three cortical columns are

shown after averaging over 50 realisations (solid lines); the shadowed areas

indicate the standard deviation. The actual values of the amplitudes of the

EPSPs are A1 = 3.58 mV, A2 = 3.25 mV, and A3 = 3.10 mV; the rest of the

parameters were set to standard values (Table 1). The external input p(t) for

the three cortical columns had p0 = 200 s−1 and ǫ = 100 s−1. The coupling

constant was set to k = 5. The Gaussian noise in the extracranial

measurements has standard deviation 100 mV. The estimation of the

parameters is fairly accurate.

(as coming from scalp EEG measurements) provides a better
estimate of the brain’s dynamical state than using a single
invasive (intracranial) EEG electrode. In particular, we have
aimed at contrasting our results with existing work using the
latter approach, which has employed a filtering method, namely
the unscented Kalman filter [39]. Filtering methods have been
so far the method of choice in data assimilation problem in
neuroscience [37, 38, 40–43], with variational methods having
been used very sparsely [73]. We thus chose to work with
a filtering algorithm, the UKF, that is already relatively well
characterized in neural model, and which we could therefore use
as a benchmark.

We have considered a system comprised of three cortical
columns, modelled according to Jansen and Rit’s equations and
coupled following two different motifs. The cortical columns are
all driven by a noisy input coming from the columns of the rest
of the brain and sensory stimuli. The signal from the cortical
columns is then transferred to the skull, after which it is corrupted
with Gaussian noise to simulate electrode readings from EEG.
These are then used to estimate the amplitude of the excitatory
post-synaptic potentials.

Even though the quality of the experimental measurements
at the scalp might be, in general, worse than the intracranial
recordings, EEG can always be measured from several positions.
This allows to obtain measurements for patients without
intracranial implants and also to compensate the potentially
low quality of the data by having many recordings at the same
time. Besides, the spatial distribution of the electrodes on the
scalp allows the information arriving from the whole cortex
to be available during the assimilation process. In order to
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address these strengths and weaknesses of the scalp recordings
with respect to intracranial measurements, we have analysed
situations where assimilation with only intracortical recordings
may be wanting, where diverse dynamical regimes coexist due to
large differences in control parameters in the cortical columns,
or where fine changes of the parameters make the discrimination
difficult.

The first study considered here involves three columns
that are coupled unidirectionally with no backflow. The first
cortical column is made hyperexcitable by increasing the
excitatory post-synaptic potential to A1 = 3.58 mV; this cortical
column causes the second cortical column and, indirectly, the
third, to modify their behaviour by inducing spiking. For the
intracranial estimations, single intracortical electrodes measured
the evolution of the three cortical columns independently; for
the extracranial estimations, 15 extracranial electrodes were used
simultaneously. Applying the Kalman filter to the extracranial
data provided a good estimation of the A parameters and of the
dynamical state of the model; the intracortical measurements,
however, yielded mixed results. The estimation for cortical
column 1 was accurate, whereas for cortical columns 2 and
3 the estimation of A was above the target value and very
close to the estimation for cortical column 1 (see orange
dashed lines in Figure 3). The estimation of the dynamical
state of cortical columns 2 and 3 was also worse than the
estimation for cortical column 1. We attribute this to the
fact that columns 2 and 3 are excited by column 1, which
spikes due to a higher value of A. As a consequence, when
independently evaluated using the intracranial information, the
estimation is higher than the actual value. Therefore we suggest
that one intracranial electrode provides only a partial view
of the system, and thus cannot capture the behaviours of all
three cortical columns and the interactions between them; the
use of many electrodes provides a more complete view of the
system.

Next we considered a situation in which the dipoles were
coupled bidirectionally in an all-to-all configuration. The A
parameters were chosen such as to cause different dynamic
behaviours in the cortical columns. Three types of fitting
via Kalman filtering were performed, using (i) independent
intracortical recordings of single cortical columns, (ii) the
complete subset of 15 extracranial electrodes, and (iii) single
extracranial electrodes. The intracortical data were corrupted
with two different levels (medium and high) of measurement
noise. For both cases, the multi-electrode extracranial estimation
surpasses the intracortical results in both speed of convergence
and quality; the difference, however, is more marked in the
presence of higher measurement noise in the intracortical
recordings. In all these cases, the representation of the dynamical
state of the three cortical columns using the complete set of 15
extracranial electrodes nicely matched the actual dynamical state,
contrary to the limited match obtained using single intracranial
or extracranial recordings. The results for the single electrodes
show a significant influence of space on the quality of the
estimations, in the sense that estimations of electrodes close to
the source are relatively accurate, and electrodes further away
from the source might not allow to discriminate the source of the

information correctly, or might completely fail to represent the
system.

Finally, we considered the situation of an identical cortical
column configuration—in terms of situation and coupling—,
except for the values of the EPSPs of the cortical columns.
This dataset was filtered only extracranially, with the purpose
of evaluating the filter’s ability to discriminate parameter values
within narrower ranges. The results in this case were also
reasonably good, even though the real values of the parameter
were much closer to one another, which makes data assimilation
more challenging.

Even though the results shown here are better when
considering extracranial electrodes, the method has, of course,
limitations. For instance, the head model introduces new
parameters which should be realistic. The use of Jansen’s model,
while being a very standard choice in the field, is not mandatory
and could be substituted by others. There several alternatives to
Ary’s head model too. The succesful application of the method
with different combinations of these models will, for sure, guide
researchers to choose which models are more suitable for the
theoretical description of themesoscale in the brain. Even though
the exploration of the dynamics for the different neural mass
models or of the different head models might be worth exploring
in future works, it lays outside of the scope of this work.

Applications of the method presented here will certainly
appear in the field of brain-machine interface, long-term tracking
for early diagnosis of degenerative diseases, or short-term
tracking during rehabilitation of traumas and strokes. However,
the succesful application of the method in each of these fields will
require further research.

Taken as a whole, our results show that, independently of
the need to explore more realistic situations, extracranial EEG
recordings constitute a good candidate to be used together with
neural mass models and Kalman filters, provided the method is
extended with a head model. With its management of the noise
in the system and of the inherent simplifications in neurological
models, the Kalman filter is an appropriate tool for tackling
the challenges of brain data processing. Using non-invasive
techniques in these processes widens the applications of Kalman-
based data assimilation methods in neuroscience.
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APPENDIX: THE UNSCENTED KALMAN
FILTER (UKF) ALGORITHM

UKF is a predictor-corrector algorithm that estimates the state
and parameters at a given time step k in two phases. The first
one predicts the state based solely on the dynamical information
of the system, i.e., the model. The second incorporates a
measurement with which to correct the first estimation. Table A1
presents the symbols used in this paper for the variables of the
Kalman filter.

The first step of the algorithm involves computing the
expectation of the state and of the state covariance at time instant
k + 1, known as the a priori estimation. For this we use a
numerical implementation (using Heun’s solver) of Jansen and
Rit’s model of a cortical column [26, 51], as described in the
section 2.2.

The nature of the nonlinearities of this model prevents us
from using a simple linearisation approach to propagating the
statistics of the state variables across the transformation, as would
be the case if we used the extended Kalman filter, for example.
Therefore, we incorporate the unscented transform (UT) in our
formulation of the Kalman filter, which, instead of attempting
to propagate a distribution through the nonlinearity, first
propagates a series of deterministically chosen points through the
nonlinearity and then recovers the statistical information of the
distribution from these.

TABLE A1 | Variables of the Unscented Kalman Filter.

Parameter Description

x̂ State estimate

x̂− a priori state estimate

6 Sigma points

X∗ Transformed sigma points

X Redrawn sigma points [52]

ϒ Sigma points projected to measurement space

y− Estimated measurement

z Measurement

f Model of the system

H Observation model

n State size

λ Scaling parameter

α Primary scaling factor

β Secondary scaling factor

κ Tertiary scaling factor

Wm Weight vector for the mean

Wcov Weight vector for the covariance

P State covariance estimate

P− a priori state covariance estimate

Pyy Predicted measurement covariance

Pxy State-measurement cross-covariance

Q State error covariance*

R Measurement error covariance*

K Kalman gain

Therefore, the a priori estimation of the state, x̂−

k , is
obtained as follows, beginning with the calculation and
projection of the 2n + 1 (where n is the state size) sigma
points,

6k−1,0 = x̂k−1

6k−1,i = x̂k−1 +
(

√

(n+ λ)Pk−1

)

i
, i = 1, ..., n (A1)

6k−1,i = x̂k−1 −
(

√

(n+ λ)Pk−1

)

i−n
, i = n+ 1, ..., 2n

where Pk−1 is the estimated state covariance matrix for the
previous time step. The square root of this matrix is well-
defined, and can be calculated efficiently via a Cholesky
decomposition [52]. This continues with the condensation
of the projected sigma points into the a priori state
estimate:

X∗

k|k−1 = f (6k−1) (A2)

x̂−

k =
2L
∑

i=0

Wm
i X∗

i,k|k−1 (A3)

P−

k =
2L
∑

i=0

Wcov
i [X∗

i,k|k−1 − x̂−

k ][X
∗

i,k|k−1 − x̂−

k ]
T + Q

(A4)

where Q is the state error covariance and Wm and Wcov are the
weight vectors, defined as

Wm
0 =

λ

n+ λ

Wcov
0 =

λ

n+ λ
+ 1− α2 + β (A5)

Wm
i = Wcov

i =
1

2(n+ λ)
, i = 1, ..., 2n

In Equations A1 and A5, α, β and κ are scaling factors,
and λ, which is crucial to guarantee a positive semi-definite
covariance matrix P, is calculated as λ = α2(n + κ) − n.
The primary scaling factor α determines the spread of the
sigma points around the mean and is set at 0.001, it being
usually set between 0.001 and 1 [63] and chosen according to
the quality of the resulting estimation. The secondary scaling
factor β contains prior information about the distribution of
x; for Gaussian distributions, its optimal value is 2. Finally,
κ , the tertiary scaling parameter, is set to 0, as is a usual
practice [63].

We now use a measurement to correct the state estimation,
which implies the mapping of the a priori estimate onto
the measurement space for comparison. In our case, this
transformation is a linear matrix H that relates the state of the
cortical columns to an EEG reading (see section 2.2 for details).
The sigma points 6k|k−1 are projected into the measurement
space [52]

ϒk|k−1 = H[6k|k−1] , (A6)
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from which the estimation of the measurement, ŷ−

k , is calculated:

ŷ−

k =
2L
∑

i=0

Wm
i ϒi,k|k−1 (A7)

The second step of the algorithm corrects the a priori estimation

of state and covariance by using the information available from
the most recent measurement (in our case, an EEG reading).
The impact of the measurement is determined by the Kalman
gain Kk, which essentially expresses the level of confidence
on the accuracy of the model and the level of noise in the
data.

Pykyk =
2L
∑

i=0

Wcov
i [ϒi,k|k−1 − ŷ−

k ][ϒi,k|k−1 − ŷ−

k ]
T + R (A8)

Pxkyk =
2L
∑

i=0

Wcov
i [Xi,k|k−1 − x̂−

k ][ϒi,k|k−1 − ŷ−

k ]
T (A9)

Kk = Pxkyk Pykyk
−1 (A10)

x̂k = x̂−

k + Kk(zk − ŷ−

k ) (A11)

Pk = P−

k − Kk Pykyk Kk
T (A12)

where Pykyk is the predicted measurement covariance, Pxkyk is the
state-measurement cross-covariance, R is the measurement error
covariance, and zk is the measurement for the current time step.
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For the Research Topic Data Assimilation and Control: Theory and Applications in Life

Sciences we first review the formulation of statistical data assimilation (SDA) and discuss

algorithms for exploring variational approximations to the conditional expected values of

biophysical aspects of functional neural circuits. Then we report on the application of

SDA to (1) the exploration of properties of individual neurons in the HVC nucleus of the

avian song system, and (2) characterizing individual neurons formulated as very large

scale integration (VLSI) analog circuits with a goal of building functional, biophysically

realistic, VLSI representations of functional nervous systems. Networks of neurons pose

a substantially greater challenge, and we comment on formulating experiments to probe

the properties, especially the functional connectivity, in song command circuits within

HVC.

Keywords: data assimilation, neuronal dynamics, HVC, ion channel properties, variational annealing,

neuromorphic, VLSI

1. INTRODUCTION

A broad class of “inverse” problems presents itself in many scientific and engineering inquiries.
The overall question addressed by these is how to transfer information from laboratory and field
observations to candidate models of the processes underlying those observations.

The existence of large, information rich, well curated data sets from increasingly sophisticated
observations on complicated nonlinear systems has set new challenges to the information transfer
task. Assisting with this challenge are new substantial computational capabilities.

Together they have provided an arena in which principled formulation of this information
transfer along with algorithms to effect the transfer have come to play an essential role. This paper
reports on some efforts to meet this class of challenge within neuroscience. Many of the ideas are
applicable much more broadly than our focus, and we hope the reader will find this helpful in their
own inquiries.

In this special issue entitled Data Assimilation and Control: Theory and Applications in Life
Sciences, of the journal Frontiers in Applied Mathematics and Statistics–Dynamical Systems, we
participate in the broader quantitative setting for this information transfer. The procedures are
called “data assimilation” following its use in the effort to develop realistic numerical weather
prediction models [1, 2] over many decades. We prefer the term “statistical data assimilation”
(SDA) to emphasize that key ingredients in the procedures involved in the transfer rest on noisy
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data and on recognizing errors in the models to which
information in the noisy data is to be transferred.

This article begins with a formulation of SDA with some
additional clarity beyond the discussion in Abarbanel [3].
We also discuss some algorithms helpful for implementing
the information transfer, testing model compatibility with
the available data, and quantitatively identifying how much
information in the data can be represented in the model
selected by the SDA user. Using SDA will also remind us that
data assimilation efforts are well cast as problems in statistical
physics [4].

After the discussion of SDA, we turn to some working ideas
on how to perform the high dimensional integrals involved in
SDA. In particular we address the “standard model” of SDA
where data is contaminated by Gaussian noise and model errors
are represented by Gaussian noise, though the integrals to be
performed are, of course, not Gaussian. The topics include the
approximation of Laplace [5] and Monte Carlo methods.

With these tools in hand, we turn to neurobiological questions
that arise in the analysis of individual neurons and, in planning,
for network components of the avian song production pathway.
These questions are nicely formulated in the general framework,
and we dwell on specifics of SDA in a realistic biological
context. The penultimate topic we address is the use of SDA to
calibrate VLSI analog chips designed and built as components
of a developing instantiation of the full songbird song command
network, called HVC. Lastly, we discuss the potential utlization
of SDA for exploring biological networks.

At the outset of this article we may expect that our readers
from Physics and Applied Mathematics along with our readers
from Neurobiology may find the conjunction of the two “strange
bedfellows” to be incongruous. For the opportunity to illuminate
the natural melding of the facets of both kinds of questions, we
thank the editors of this special issue.

2. MATERIALS AND METHODS

2.1. General Overview of Data Assimilation
We will provide a structure within which we will frame our
discussion of transfer of information from data to a model of the
underlying processes producing the data.

We start with an observation window in time [t0, tF]
within which we make a set of measurements at times
t = {τ1, τ2, ..., τk, ..., τF}; t0 ≤ τk ≤ tF . At each of
these measurement times, we observe L quantities y(τk) =
{y1(τk), y2(τk), ..., yL(τk)}. The number L of observations at each
measurement time τk is typically less, often much less, than the
number of degrees of freedom D in the observed system; D≫ L.

These are views into the dynamical processes of a system we
wish to characterize. The quantitative characterization is through
a model we choose. It describes the interactions among the states
of the observed system. If we are observing the time course
of a neuron, for example, we might measure the membrane
voltage y1(τk) = Vm(τk) and the intracellular Ca

2+ concentration
y2(τk) = [Ca2+](τk). From these data we want to estimate the
unmeasured states of the model as a function of time as well as
estimate biophysical parameters in the model.

The processes characterizing the state of the system (neuron)
we call xa(t); a = 1, 2, ...,D ≥ L, and they are selected by the user
to describe the dynamical behavior of the observations through a
set of equations in continuous time

dxa(t)

dt
= Fa(x(t), q), (1)

or in discrete time tn = t0 + n1t; n = 0, 1, ...,N; tN = tF via

xa(tn+1) = xa(n+ 1) = fa(x(tn), q) = fa(x(n), q), (2)

where q is a set of fixed parameters associated with the model.
f(x(n), q) is related to F(x(t), q) through the choice the usermakes
for solving the continuous time flow for x(t) through a numerical
solution method of choice [6].

Considering neuronal activity, Equation 1 could be coupled
Hodgkin-Huxley (HH) Equations [7, 8] for voltage, ion
channel gating variables, constituent concentrations, and other
ingredients. If the neuron is isolated in vitro, such as by using
drugs to block synaptic transmission, then there would be no
synaptic input to the cell to describe. While if it is coupled to
a network of neurons, their functional connectivity would be
described in F(x(t), q) or f(x(n), q). Typical parameters might be
maximal conductances of the ion channels, reversal potentials,
and other time-independent numbers describing the kinetics of
the gating variables. In many experiments L is only 1, namely, the
voltage across the cell membrane, while Dmay be on the order of
100; Hence D≫ L.

As we proceed from the initiation of the observation window
at t0 we must move our model equation variables x(0), Equation
2, from t0 to τ1 where a measurement is made. Then using the
model dynamics we move along to τ2 and so forth until we reach
the last measurement time τF and finally move the model from
x(τF) to x(tF). In each stepping of the model equations (Equation
2) we may make many steps of 1t in time to achieve accuracy
in the representation of the model dynamics. The full set of
times tn at which we evaluate the model x(tn) we collect into
the path of the state of the model through D-dimensional space:
X = {x(0), x(1), ..., x(n), ..., x(N) = x(F)}. The dimension of the
path is (N + 1)D + Nq, where Nq is the number of parameters q
in our model.

It is worth a pause here to note that we have now collected
two of the needed three ingredients to effect our transfer
of the information in the collection of all measurements
Y = {y(τ1), y(τ2), ..., y(τF)} to the model f(x(n), q) along the
path X through the observation window [t0, tF]: (1) data Y and
(2) a model of the processes in Y, devised by our experience
and knowledge of those processes. The notation and a visual
presentation of this is found in Figure 1.

The third ingredient, comprised of methods to generate the
transfer from Y to properties of the model, will command our
attention throughout most of this paper. If the transfer methods
are successful and, according to some metric of success, we
arrange matters so that at the measurement times τk, the Lmodel
variables x(t) associated with y(τk) are such that xl(τk) ≈ yl(τk),
we are not finished. We have then only demonstrated that the
model is consistent with the known data Y. We must use the
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FIGURE 1 | A visual representation of the window t0 ≤ t ≤ tF in time during which L-dimensional observations y(τk ) are performed at observation times

t = τk; k = 1, ..., F. This also shows times at which the D-dimensional model developed by the user x(n+ 1) = f (x(n),q) is used to move forward from time n to time

n+ 1: tn = t0 + n1t; n = 0, 1, ...,N. D ≥ L. The path of the model X = {x(0), x(1), ..., x(n), ..., x(N) = x(F )} and the collection Y of L-dimensional observations at each

observation time τk , Y = {y(τ1), y(τ2), ..., y(τk ), ..., y(τF } (y = {y1, y2, ..., yL}) is also indicated.

model, completed by the estimates of q and the state of the model
at tF , x(tF), to predict forward for t > tF , and we should succeed
in comparison with measurements for y(τr) for τr > tF . As the
measure of success of predictions, we may use the same metric as
utilized in the observation window.

As a small aside, the same overall setup applies to supervised
machine learning networks [9] where the observation window is
called the training set; the prediction window is called the test set,
and prediction is called generalization.

2.1.1. The Data Are Noisy; The Model Has Errors
Inevitably, the data we collect is noisy, and equally the model we
select to describe the production of those data has errors. This
means we must, at the outset, address a conditional probability
distribution P(X|Y) as our goal in the data assimilation transfer
from Y to the model. In Abarbanel [3] we describe how to use the
Markov nature of the model x(n) → x(n + 1) = f(x(n), q) and
the definition of conditional probabilities to derive the recursion
relation:

P(X(n+ 1)|Y(n+ 1)) =
P(y(n+ 1), x(n+ 1),X(n)|Y(n))

P(y(n+ 1)|Y(n))P(x(n+ 1),X(n)|Y(n))
•

P(x(n+ 1)|x(n))P(X(n)|Y(n))
= exp[CMI(y(n+ 1), x(n+ 1),X(n)|Y(n))] •

P(x(n+ 1)|x(n))P(X(n)|Y(n)), (3)

where we have identified CMI(a, b|c) = log
[

P(a,b|c)
P(a|c)P(b|c)

]

. This

is Shannon’s conditional mutual information [10] telling us
how many bits (for log2) we know about a when observing b
conditioned on c. For us a = {y(n+1)}, b = {x(n+1),X(n)}, c =
{Y(n)}. We can simplify this further with the assumption that an
observation at any time depends only on the state of the system.

P(X(n+ 1)|Y(n+ 1)) = P(y(n+ 1)|X(n+ 1))P(x(n+ 1)

|x(n))P(X(n)|Y(n)) (4)

Using this recursion relation to move backwards through
the observation window from tF = t0 + N1t through the

measurements at times τk to the start of the window at t0, we may
write, up to factors independent of X

P(X|Y) =
{ F
∏

k=1

P(y(τk)|X(τk))
N−1
∏

n=0

P(x(n+ 1)|x(n))
}

P(x(0)).

(5)
If we now write P(X|Y) ∝ exp[−A(X)] where A(X), the negative
of the log likelihood, we call the action, then conditional expected
values for functions along the path X are defined by

E[G(X)|Y] = 〈G(X)〉 =
∫

dXG(X)e−A(X)

∫

dX e−A(X)
, (6)

dX =
∏N

n=0 dDx(n), and all factors in the action independent of
X cancel out here. The action takes the convenient expression

A(X) = −
{ F
∑

k=1

log[P(y(τk)|X(τk)]+
N−1
∑

n=0

log[P(x(n+ 1)|x(n))]
}

− log[P(x(0))], (7)

which is the sum of the terms which modify the conditional
probability distribution when an observation is made at t =
τk and the sum of the stochastic version of x(n) → x(n +
1) − f(x(n), q) and finally the distribution when the observation
window opens at t0.

What quantities G(X) are of interest? One natural one is the
path G(X) = Xµ;µ = {a, n} itself; another is the covariance
around that mean 〈Xµ〉 = X̄µ = 〈Xµ〉 :〈(Xµ − X̄µ)(Xν −
X̄ν)〉. Other moments are of interest, of course. If one has an
anticipated form for the distribution at large X, then G(X) may
be chosen as a parametrized version of that form and those
parameters determined near the maximum of P(X|Y).

The action simplifies to what we call the “standard model”
of data assimilation when (1) observations y are related to their
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model counterparts via Gaussian noise with zero mean and
diagonal precisionmatrixRm, and (2)model errors are associated
with Gaussian errors of mean zero and diagonal precision matrix
Rf :

A(X) =
F

∑

k=1

L
∑

l=1

Rm(k)

2
(xl(τk)− yl(τk))

2 +
N−1
∑

n=0

D
∑

a=1

Rf (a)

2

(xa(n+ 1)− fa(x(n), q))
2. (8)

If we have knowledge of the distribution P(x(0)) at t0 we may
add it to this action. If we have no knowledge of P(x(0)), we may
take its distribution to be uniform over the dynamic range of the
model variables, then it, as here, is absent, canceling numerator
and denominator in Equation (6).

Our challenge is to perform integrals such as Equation (6).
One should anticipate that the dominant contribution to the
expected value comes from themaxima of P(X|Y) or, equivalently
the minima of A(X). At such minima, the two contributions to
the action, the measurement error and the model error, balance
each other to accomplish the explicit transfer of information from
the former to the latter.

We note, as before, that when f(x(n), q) is nonlinear in X, as
it always is in interesting examples, the expected value integral
Equation (6) is not Gaussian. So, some thinking is in order to
approximate this high dimensional integral. We turn to that now.
After consideration of methods to do the integral, we will return
to a variety of examples taken from neuroscience.

The two generally useful methods available for evaluating this
kind of high dimensional integral are Laplace’s method [5] and
Monte Carlo techniques [6, 11, 12]. We address them in order.
We also add our own new and useful versions of the methods.

2.1.2. Laplace’s Method
To locate the minima of the action A(X) = − log[P(X|Y)] we
must seek paths X(j); j = 0, 1, ... such that ∂A(X)/∂X|

X(j) = 0,

and then check that the second derivative at X(j), the Hessian, is a
positive definite matrix in path coordinates. The vanishing of the
derivative is a necessary condition.

Laplace’s method [5] expands the action around the X(j)

seeking the path X(0) with the smallest value of A(X). The
contribution of X(0) to the integral Equation (6) is approximately
exp[A(X(1))− A(X(0))] bigger than that of the path with the next
smallest action.

This soundsmore or less straightforward; however, finding the
global minimum of a nonlinear function such as A(X) is an NP-
complete problem [13]. In a practical sense one cannot expect
to succeed with such problems. However there is an attractive
feature of the form of A(X) that permits us to accomplish more.

We now discuss two algorithmic approaches to implementing
Laplace’s method.

2.1.3. Precision Annealing for Laplace’s Method
Looking at Equation (8) we see that if the precision of the model
is zero, Rf = 0, the action is quadratic in the L measured
variables xl(n) and independent of the remaining states. The
global minimum of such an action comes with xl(τk) = yl(τk)

and any choice for the remaining states and parameters. Choose
the path with these values of x(τk) and values from a uniform
distribution of the other state variables and parameters covering
the expected dynamic range of those, and call it path Xinit.
In practice, we recognize that the global minimum of A(X) is
degenerate at Rf = 0, so we select many initial paths. We choose
NI of them, and initialize whatever numerical optimization
program we have selected, to run on each of them. We continue
to call the collection of NI paths Xinit.

• Nowwe increase Rf from Rf = 0 to a small value Rf 0. Use each
of the NI paths in Xinit as initial conditions for our numerical
optimization program chosen to find the minima of A(X), and
we arrive at NI paths X0. Evaluate A(X0) on all NI paths X0.

• We increase Rf = Rf 0 → Rf 0α; α > 1, and now use
the NI paths X0 as the initial conditions for our numerical
optimization program chosen to find the minima of A(X), we
arrive at NI paths X1. Evaluate A(X1) on all NI paths X1.

• We increase Rf = Rf 0α → Rf 0α
2. Now use the NI paths X1 as

the initial conditions for our numerical optimization program
chosen to find the minima of A(X), we arrive at NI paths X2.
Evaluate A(X2) on all NI paths X2.

• Continue in this manner increasing Rf to Rf = Rf 0α
β; β =

0, 1, ..., then using the selected numerical optimization
program to arrive at NI paths Xβ . Evaluate A(Xβ ) on all NI

paths Xβ .

• As a function of logα

[

Rf
Rf 0

]

display all NI values of A(Xβ ) vs. β

for all β = 0, 1, 2, ...βmax.

We call this method precision annealing (PA) [14–17]. It
slowly turns up the precision of themodel collecting paths at each
Rf that emerged from the degenerate global minimum at Rf = 0.
In practice it is able to track NI possible minima of A(X) at each
Rf . When not enough information is presented to the model, that
is L is too small, there are many local minima at all Rf . This is
a manifestation of the NP-completeness of the minimization of
A(X) problem. None of the minima may dominate the expected
value integral of interest.

As L increases, and enough information is transmitted to the
model, for large Rf one minimum appears to stand out as the
global minimum, and the paths associated with that smallest
minimum yields good predictions. We note that there are always
paths, not just a single path, as we have a distribution of paths,NI

of which are sampled in the PA procedure, within a variation of
size 1/

√
Rm. A clear example of this is seen in Shirman [18] in a

small, illustrative model.
In the even that the chosen model is inconsistent with the

data, or there is too much noise in the model error term, a single
minimum of the action will not appear for large Rf . As in the case
of too fewmeasurements, there will be multiple local minima. An
example of this can be seen in Ye et al. [14].

2.1.4. “Nudging” Within Laplace’s Method
Inmeteorology one approach to data assimilation is to add a term
to the deterministic dynamics which move the state of a model
toward the observations [19]

xa(n+ 1) = fa(x(n), q)+ u(n)(yl(n)− xl(n))δal, (9)

Frontiers in Applied Mathematics and Statistics | www.frontiersin.org November 2018 | Volume 4 | Article 5365

https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#articles


Miller et al. Statistical Data Assimilation in Neurobiology

where u(n) > 0 and vanishes except where a measurement is
available. This is referred to as “nudging.” It appears in an ad hoc,
but quite useful, manner.

Within the structure we have developed, one may see that
the “nudging term” arises through the balance between the
measurement error term and the model error term in the action.
This is easy to see when we look at the continuous time version
of the data assimilation standard model

A(x(t), ẋ(t)) =
∫ tF

t0

dt

{ L
∑

l=1

Rm(t, l)

2
(xl(t)− yl(t))

2

+
D

∑

a=1

Rf (a)

2
(ẋa(t)− Fa(x(t), q))

2

}

. (10)

The extremum of this action is given by the Euler-Lagrange
equations for the variational problem [20]

[

δab
d

dt
+

∂Fb(x(t)

∂xa(t)

][

ẋb(t)− Fb(x(t))

]

=
Rm(a, t)

Rf (a)
δal(xl(t)− yl(t)), (11)

in which the right hand side is the “nudging” term appearing in a

natural manner. Approximating the operator δab
d
dt
+ ∂Fb(x(t)

∂xa(t)
we

can rewrite this Euler-Lagrange equation in “nudging” form

dxa(t)

dt
= Fa(x(t))+ u(t)δal(xl(t)− yl(t)). (12)

We will use both the full variation of the action, in discrete
time, as well as its nudging form in our examples below.

2.1.5. Monte Carlo Methods
Monte Carlo methods [6, 11, 17, 21] are well covered in the
literature. We have not used them in the examples in this paper.
However, the development of a precision annealing version of
Monte Carlo techniques promises to address the difficulties
with large matrices for the Jacobian and Hessians required in
variational principles (Wong et al., unpublished). When one
comes to network problems, about which we comment later, this
method may be essential.

3. RESULTS

3.1. Using SDA to Analyze the Avian Song
System
We take our examples of the use of SDA in neurobiology
from experiments on the avian song system. These have been
performed in the University of Chicago laboratory of Daniel
Margoliash, and we do not plan to describe in any detail the
experiments nor the avian song production pathways in the avian
brain. We give the essentials of the experiments and direct the
reader to our references to develop the full biologically oriented
idea why this system is enormously interesting.

Essentially, however, the manner in which songbirds learn
and produce their functional vocalization—song—is an elegant

non-human example of a behavior that is cultural: the song is
determined both by a genetic substrate and, interestingly, by
refinement on top of that substrate by juveniles learning the
song from their (male) elders. The analogs to learning speech in
humans [22] are striking.

Our avian singer is a zebra finch. They, as do most other
songbirds, learn vocal expression through auditory feedback [22–
26]. This makes the study of the song system a good model for
learning complex behavior [25, 27, 28]. Parts of the song system
are analogous to the mammalian basal ganglia and regions of
the frontal cortex [25, 29, 30]. Zebra finch in particular have the
attractive property of singing only a single learned song, and with
high precision, throughout their adult life.

Beyond the auditory pathways themselves, two neural
pathways are principally responsible for song acquisition and
production in zebra finch. The first is the Anterior Forebrain
Pathway (AFP) which modulates learning. The second is a
posterior pathway responsible for directing song production: the
SongMotor Pathway (SMP) [24, 26, 31]. The HVC nucleus in the
avian brain uniquely contributes to both of these [26].

There are two principal classes of projection neurons which
extend from HVC: neurons which project to the robust nucleus
of the arcopallium (HVCRA), and neurons which project to
Area X (HVCX). HVCRA neurons extend to the SMP pathway
and HVCX neurons extend to the AFP [26, 32]. These two
classes of projection neurons combined with classes of HVC
interneurons, make up the three broad classes of neurons within
HVC. Figure 2 [33] displays these structures in the avian brain.

In vitro observations of each HVC cell type have been
obtained through patch-clamp techniques making intracellular
voltage measurements in a reduced, brain slice preparation [23].
In this configuration, the electrode can simultaneously inject
current into the neuron while measuring the whole cell voltage
response [34]. From these data, one can establish the physical
parameters of the system [23]. Traditionally this is done using
neurochemicals to block selected ion channels and measuring
the response properties of others [35]. Single current behavior is
recorded and parameters are found through mathematical fits of
the data. This procedure has its drawbacks, of course. There are
various technical problems with the choice of channel blockers.
Many of even the modern channel blockers are not subtype
specific [36] and may only partially block channels [37]. A deeper
conceptual problem is that is difficult to know what channels one
may have missed altogether. Perhaps there are channels which
express themselves only outside the bounds of the experimental
conditions.

Our solution to such problems is the utilization of
statistical data assimilation (SDA). This a method developed
by meteorologists and others as computational models of
increasingly large dynamical systems have been desired. Data
assimilation has been described in our earlier sections.

In this paper, we focus on the song learning pathway,
reporting on experiments involving the HVCX neuron. The
methods are generally applicable to the other neurons in HVC,
and actually, to neurons seen as dynamical systems in general.

We start with a discussion about the neuron model. First
we demonstrate the utility of our precision annealing methods
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FIGURE 2 | A drawing of the Song Production Pathway and the Anterior Forebrain Pathway of avian songbirds. Parts of the auditory pathways are shown in gray.

Pathways from the brainstem that ultimately return to HVC are not shown. The HVC network image is taken from Brainard and Doupe [33]. Reprinted by permission

from Copyright Clearance Center: Springer Nature.

through the use of twin experiments. These are numerical
experiments in which “data” is generated through a knownmodel
(of HVCX), then analyzed via precision annealing. In a twin
experiment, we know everything, so we can verify the SDA
method by looking at predictions after a observation window
in which the model is trained, and we may also compare the
estimations of unobserved state variables and parameters to the
ingredients and output of the model.

Twin experiments are meant to mirror the circumstances of
the real experiment. We start by taking the model that we think
describes our physical system. Initial points for the state variables
and parameters are chosen at random from a uniform distrubtion
within the state/parameter bounds, which are used along with the
model to numerically integrate forward in time. This leaves us
with complete information about the system. Noise is added to a
subset of the state variables to emulate the data to be collected in a
lab experiment. We then perform PA on these simulated data, as
if they were real data. The results of these numerical experiments
can be used to inform laboratory experiments, and indeed help
design them, by identifying the necessary measurements and
stimulus needed to accurately electrophysiologically characterize
a neuron.

The second set of SDA analyses we report on using “nudging,”
as described above, to estimate some key biophysical properties
of HVCX neurons from laboratory data. This SDA procedure is
applied to HVCX neurons in two different birds. The results show
that though each bird is capable of normal vocalization, their
complement of ion channel strengths is apparently different. We
report on a suggestive example of this, leaving a full discussion
to Daou and Margoliash (in review).

In order to obtain good estimation results, we must choose a
forcing or stimulus with the model in mind: the dynamical range
of the neuron must be thoroughly explored. This suggests a few
key properties of the stimulus:

• The current waveform of Iinjected(t) must have sufficient
amplitudes (±) and must be applied sufficiently long in time
that it explores the full range of the neuron variation.

• The frequency content of the stimulus current must be a low
enough that it does not exceed the low-pass cutoff frequency
associated with the RC time constant of the neuron. This cutoff
is typically in the neighborhood of 50–100 Hz.

• The current must explore all time scales expressed in the
neuron’s behavior.

3.2. Analysis of HVCX Data
Themodel for an HVCX neuron is substantially taken fromDaou
et al. [23] and described in Supplementary Data Sheet 1. We
now use this model in a “twin experiment” in which PA is utilized,
and then using “nudging” we present the analysis of experimental
data on two Zebra Finch.

3.2.1. Twin Experiment on HVCX Neuron Model
A twin experiment is a synthetic numerical experiment meant to
mirror the conditions of a laboratory experiment. We use our
mathematical model with some informed parameter choices in
order to generate numerical data. Noise is added to observable
variables in themodel, hereV(t). These data are then put through
our SDA procedure to estimate parameters and unobserved states
of the model. The neuron model is now calibrated or completed.

Using the parameters and the full state of the model at the end
tF of an observation window [t0, tF], we take a current waveform
Iinjected(t ≥ tF) to drive the model neuron and predict the
time course of all dynamical variables in the prediction window
[tF , ...]. This validation of the model is the critical test of our
SDA procedure, here PA. In a laboratory experiment we have
no specific knowledge of the parameters in the model and, by
definition, cannot observe the unobserved state variables; here we
can do that. So, “fitting” the observed data within the observation
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window [t0, tF] is not enough, we must reproduce all states for
t ≥ tF to test our SDA methods.

We use the model laid out in the
Supplementary Data Sheet 1. We assume that the neuron
has a resting potential of −70 mV and set the initial values for
the voltage and each gating variable accordingly. We assume that
the internal calcium concentration of the cell is Cin = 0.1 µM.
We use an integration time step of 0.02 ms and integrate forward
in time using an adaptive Runge-Kutta method [6]. Noise is
added to the voltage time course by sampling from a Gaussian
distributionN (0, 2) in units of mV.

The waveform of the injected current was chosen to have three
key attributes: (1) It is strong enough to cause spiking in the
neuron, (2) it dwells a long time in a hyperpolarizing region, and
(3) its overall frequency content is low enough to not be filtered
out by the neuron’s RC time constant. On this last point, a neuron
behaves like an RC circuit, it has a cut off frequency limited by
the time constant of the system. Any input current which has
a frequency higher than that of the cut off frequency won’t be
“seen” by the neuron. The time constant is taken to be the time it
takes to spike and return back to 37% above its resting voltage.
We chose a current where the majority of the power spectral
density exists below 50 Hz.

The first two seconds of our chosen current waveform is a
varying hyperpolarizing current. In order to characterize Ih(t)
and ICaT(t), it is necessary to thoroughly explore the region
where the current is active. Ih(t) is only activated when the
neuron is hyperpolarized. The activation of Ih(t) deinactivates
ICaT(t), thereby allowing its dynamics to be explored. In order
to characterize INa(t) and IK(t), it is necessary to cause spiking in
the neuron. The depolarizing current must be strong enough to
hit the threshold potential for spike activation.

The parameters used to generate the data used in the twin
experiment are in Table 1, and the injection current data and the
membrane voltage response may be seen in Figures 3A,B.

The numbers chosen for the data assimilation procedure in
this paper are α = 1.4 and β ranging from 1 to 100. Rf ,0,V = 10−4

for voltage and Rf ,0,j = 1 for all gating variables. These numbers
are chosen because the voltage range is 100 times large than the
gating variable range. Choosing a single Rf ,0 value would result in
the gating variable equations being less enforced than the voltage
equation by a factor of 104. The α and β numbers are chosen

because we seek to make
Rf
Rf 0

sufficiently large. The α and β values

chosen allow
Rf
Rf 0

to reach 1015.

During estimation we instructed our methods to estimate the
inverse capacitance and estimate the ratio g′ = g

Cm
instead of g

andCm independently. That separation can present a challenge to
numerical procedures. We also estimated the reversal potentials
as a check on the SDA method.

Within our computational capability we can reasonably
perform estimates on 50,000 data points. This captures a second
of data when 1t = 0.02ms. However, there are time constants in
the model neuron which are on order 1 second. In order for us
to estimate the behavior of these parameters accurately, we need
to see multiple instances of the full response. We need a window
on the order of 2–3 s. We can obtain this by downsampling the

TABLE 1 | Parameter values used to numerically generate the HVCX data. The

source of these values comes from Daou et al. [23]. Data was generated using an

adaptive Runge-Kutta method, and can be seen in Figures 3A,B.

Parameter Value Parameter Value Parameter Value

gNa 450 nS gL 2 nS kf 0.3

ENa 50 mV EL -70 mV θmp -40 mV

gK 50 nS gNap 1 nS σmp -6 mV

EK -90 mV gCaL 19 nS θs -20 mV

gCaT 2.65 nS θm -35 mV σs -0.05 mV

gSK 6 nS σm -5 mV θhp -48 mV

gH 4 nS θn -30 mV σhp 6 mV

EH -30 mV σn -5 mV τ̄hp 1000 ms

Cm 100 pF τ̄n 10 ms θe -60 mV

θa -20 mV θrf -105 mV σe 5 mV

σa -10 mV σrf 5 mV τe 20 ms

θrs -105 mV θaR -65 mV θb 0.4 mV

σrs 25 mV σaT -7.8 mV σb -0.1 mV

θrT -67 mV θrrT 68 mV f 0.1

σrT 2 mV σrrT 2.2 mV ǫ 0.0015 µM
pA·ms

τr0 200 ms τr1 87.5 ms prf 100

kCa 0.3 ms−1 bCa 0.1 µM ks 0.5 µM

data. We know from previous results that downsampling can
lead to better estimations [38]. We take every ith data point,
depending on the level of downsampling we want to do. In
this data assimilation run, we downsampled by a factor of 4 to
incorporate 4 s of data in the estimation window.

We look at a plot of the action as a function of β ; that is,
log[Rf /Rf 0]. We expect to see a leveling off of the action [16] as
a function of Rf . If the action becomes independent of Rf , we
can then explore how well our parameter estimations perform
when integrating them forward as predictions of the calibrated
model. Looking at the action plot in Figure 4, we can see there
is a region in which the action appears to level off, around
β = 40. It is in this region where we look for our parameter
estimates.

We examine all solutions around this region of β and utilize
their parameter estimates in our predictions. We compare our
numerical prediction to the “real" data from our synthetic
experiment. We evaluate good predictions by finding the
correlation coefficient between these two curves. This metric is
chosen instead of a simple root mean square error because slight
variations in spike timings yield a high amount of error even if
the general spiking pattern is correct. The prediction plot and
parameters for the best prediction can be seen in Figure 5 and
Table 2. The voltage trace in red is the estimated voltage after
data assimilation is completed. It is overlayed on the synthetic
input data in black. The blue time course is a prediction, starting
at the last time point of the red estimatedV(t) trace and using the
parameter estimates for t ≤ 4, 000ms.

The red curve matches the computed voltage trace quite well.
There is no significant deviation in the frequency of spikes, spike
amplitudes, or the hyperpolarized region of the cell. Looking at
the prediction window, we can see that there is some deviation
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FIGURE 3 | (A) Stimulating current Iinjected (t) presented to the HVCX model. (B) Response of the HVCX model membrane voltage to the selected Iinjected (t). The

displayed time course V (t) has no added noise.

FIGURE 4 | Action Levels of the standard model action for the HVCX neuron

model discussed in the text. We see that the action rises to a “plateau” where

it becomes quite independent of Rf . The calculation of the action uses PA with

α = 1.4 and Rf0 = Rm. NI = 100 initial choices for the path Xinit were used in

this calculation. For small Rf one can see the slight differences in action level

associated with local minima of A(X).

in the hyperpolarized voltage trace after 7,000 ms. Our our
predicted voltage does not become nearly as hyperpolarized as
the real data. This is an indication that our parameter estimates
for currents activated in this region are not entirely correct.
Comparing parameters in Table 2, we can see that Eh is estimated
as lower than its actual value. Despite that, we still are able to
reproduce neuron behavior fairly well.

3.2.2. Analysis of Biophysical Parameters From HVCX

Neurons in Two Zebra Finch
Our next use of SDA employs the “nudging” method described
in Eq. (9). In this section we used some of the data [Daou and

TABLE 2 | Parameter Estimates from the Best Predictions.

Parameter Bounds Best estimate Actual value Units

g′
Na

0.1, 10 4.98 4.5 nS/pF

ENa 1, 100 43.2 50 mV

g′
K

0.01, 5 0.907 0.5 nS/pF

EK -140, -10 -127.4 -90 mV

g′
CaT

0.001, 1 0.0326 0.0265 nS/pF

g′
SK

0.001, 1 0.0373 0.06 nS/pF

g′
h

0.001, 1 0.0432 0.04 nS/pF

Eh -100, -1 -44.1 -30 mV

Cinv 0.001, 0.5 0.011 0.01 pF−1

The best prediction is chosen by finding the highest correlation coefficient between the

predicted voltage and “real” voltage. This comparison can be made on experimental data.

It represents an attractive alternative to the familiar least squares metric commonly used.

That metric is very sensitive to spike times in data with action potentials: small errors in

spike times may result in large errors in a least squares metric.

Margoliash (in review)] taken in experiments on multiple HVCX

neurons from different zebra finches. The questions we asked was
whether we could, using SDA, identify differences in biophysical
characteristics of the birds. This question is motivated by prior
biological observations [Daou and Margoliash (in review)].

Using the same HVCX model as before, we estimated the
maximal conductances {gNa, gK , gCaT , gSK , gh} holding fixed other
kinetic parameters and the Nernst/Reversal potentials. The
baseline characteristics of an ion channel are set by the properties
of the cell membrane and the complex proteins penetrating
the membrane forming the physical channel. Differences among
birds would then come from the density or numbers of various
channels as characterized by the maximal conductances. If
such differences were identified, it would promote further
investigation of the biologically exciting proposition that these
differences arise in relation to some aspect of the song learning
experience of the birds [Daou and Margoliash (in review)].
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FIGURE 5 | Results of the “twin experiment” using the model HVCX neuron

described in the Supplementary Data Sheet 1. Noise was added to data

developed by solving the dynamical equations. The noisy V (t) was presented

to the precision annealing SDA calculation along with the Iinjected (t) in the

observation window t0 = 0ms, tF = 4000ms. The noisy model voltage data is

shown in black, and the estimated voltage is shown in red. For t ≥ 4, 000ms

we show the predicted membrane voltage, in blue, generated by solving the

HVCX model equations using the parameters estimated during SDA within the

observation window.

In Figures 6A,B we display the stimulating current and
membrane voltage response from one of 9 neurons in our
large sample. The analysis using SDA was of four neurons
from one bird and seven neurons from another. The results
for {gCaT , gNa, gSK} is displayed in Figure 7. The maximal
conductances from one bird are shown in blue and from the
other bird, in red. There is a striking difference between the
distributions of maximal conductances.

We do not propose here to delve into the biological
implications of these results. Nevertheless, we note that the
neurons from each bird occupy a small but distinct region of
the parameter space (Figure 7). This result and its implications
for birdsong learning, and more broadly for neuroscience, are
described in Daou andMargoliash (in review). Here, however, we
display this result as an example of the power of SDA to address
a biologically important question in a systematic, principled
manner beyond what is normally achieved in analyses of such
data.

To fully embrace the utility of SDA for these experiments,
however, further work is needed. A limitation of the present
result is that the SDA estimates for gSK for a subset of the
neurons/observations for Bird One reach the bounds of the
observation window (Figure 7). Addressing such issues would be
prelude to the exciting possibility of estimating more parameters
than just the principle ion currents in the Hodgkin-Huxley
equations. This could use SDA numerical techniques to calculate,
over hours or days, estimates of parameters that could require
months or years of work to measure with traditional biological
and biophysical approaches, in some cases requiring specialized
equipment beyond that available for most in vitro recording set

ups. In contrast, applying SDA to such data sets requires only a
computer.

3.3. Analysis of Neuromorphic VLSI
Instantiations of Neurons
An ambitious effort in neuroscience is the creation of low
power consumption analog neural-emulating VLSI circuitry.
The goals for this effort range from the challenge itself to
the development of fast, reconfigurable circuitry on which to
incorporate information revealed in biological experiments for
use in

• creating model neural circuits of “healthy” performance to be
compared to subsequent observations on the same circuitry
informed by “unhealthy” performances. If the comparison can
be made rapidly and accurately, the actual instantiations in
the VLSI circuitry could be used to diagnose the changes in
neuron properties and circuit connectivity perhaps leading to
directions for cures, and

• in creating VLSI realizations of neural circuits with desired
functions–say, learning syntax in interesting sequences–might
allow those functions to be performed at many times increased
speed than seen in the biological manifestation. If those
functionalities are of engineering utility, the speed up could
be critical in applications.

One of the curious roadblocks in achieving critical steps of
these goals is that after the circuitry is designed andmanufactured
into VLSI chips, what comes back from a fabrication plant is not
precisely what we designed. This is due to the realities of the
manufacturing processes and not inadequacies of the designers.

To overcome this barrier in using the VLSI devices in
networks, we need an algorithmic tool to determine just what
did return from the factory, so we know how the nodes of a
silicon network are constituted. As each chip is an electronic
device built on a model design, and the flaws in manufacuring
are imperfections in the realization of design parameters, we can
use data from the actual chip and SDA to estimate the actual
parameters on the chip.

SDA has an advantageous position here. If we present to the
chip input signals with much the same design as we prepared
for the neruobiological experimets discussed in the previous
section, we can measure everything about each output from the
chip and use SDA to estimate the actual parameters produced
in manufacturing. Of course, we do not know those paramters
a priori so after estimating the parameters, thus “calibrating”
the chip, we must use those estimated parameters to predict
the response of the chip to a new stimulating currents. That
will validate (or not) the completion of the model of the actual
circuitry on the chip and permit confidence in using it in building
interesting networks.

We have done this on chips produced in the laboratory of Gert
Cauwenberghs at UCSD using PA [38, 39] and using “nudging”
as we now report.

The chip we worked with was designed to produce the
simplest spiking neuron, namely one having just Na, K, and leak
channels [7, 8] as in the original HH experiments. This neuron
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FIGURE 6 | (A) One of the library of stimuli used in exciting voltage response activity in an HVCX neuron. The cell was prepared in vitro, and a single patch clamp

electrode injected Iinjected (t) (this waveform) and recorded the membrane potential. (B) The voltage response. One of the library of stimuli used in exciting voltage

response activity in an HVCX neuron. The cell was prepared in vitro, and a single patch clamp electrode injected Iinjected (t) (this waveform) and recorded the

membrane potential.

has four state variables {V(t),m(t), h(t), n(t)}:

C
dV(t)

dt
= gNam

3(t)h(t)(ENa − V(t))+ gKn
4(t)(EK − V(t))

+gL(EL − V(t))+ Iinjected(t)

in which the gating variables w(t) = {m(t), h(t), n(t)} satisfy
dw(t)

dt
=

(w∞(V(t))− w(t))

τw(V(t))
, (13)

and the functions w∞(V) are discussed in depth in Johnston and
Wu [7] and Sterratt et al. [8].

In our experiments on a “NaKL” chip we used the stimulating
current displayed in Figure 8,

and measured all the neural responses {V(t),m(t), h(t), n(t)}.
These observations were presented to the designed model within
SDA to estimate the parameters in the model.

We then tested/validated the estimations by using the
calibrated model to predict how the VLSI chip would respond
to a different injected current. In Figure 9 we show the observed
Vdata(t) in black, the estimation of the voltage through SDA in
red, and the prediction of V(t) in blue for times after the end of
the observation window.

While one can be pleased with the outcome of these
procedures, for our purposes we see that the use of our
SDA algorithms gives the user substantial confidence in the
functioning characteristics of the VLSI chips one wishes to use
at the nodes of a large, perhaps even very large, realization of
a desired neural circuit in VLSI. We are not unaware of the
software developments to allow efficient calibration of very large
numbers of manufactured silicon neurons. A possible worry
about also determining the connectivity, both the links and their
strength and time constants, may be alleviated by realizing these
links through a high bandwidth bi-directional connection of
the massive array of chips and the designation of connectivity
characteristics on an off-chip computer.

FIGURE 7 | A three dimensional plot of three of the maximal conductances

estimated from HVCX cells using the stimulating current shown in Figure 6A.

Membrane voltage responses from five neurons from one bird were recorded

many times, and membrane voltage responses from four neurons from a

second bird were recorded many times. One set of maximal conductances

{gNa,gCaT , gSK } are shown. The estimates from Bird 1 are in red-like colors,

and the estimates from Bird 2 are in blue-like colors. This is just one out of a

large number of examples discussed in detail in Daou and Margoliash (in

review).

Part of the same analysis is the ability to observe, estimate and
predict the experimentally unobservable gating variables. This
serves, in this context, as a check on the SDA calculations. The Na
inactivation variable h(t) is shown in Figure 10 as its measured
time course hdata(t) in black, its estimated time course hest(t) in
red, and its predicted time course hpred(t) in blue.
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FIGURE 8 | This waveform for Iinjected (t) was used to drive the VLSI NaKL

neuron after receipt from the fabrication facility.

FIGURE 9 | The NaKL VLSI neuron was driven by the waveform for Iinjected (t)

seen in Figure 8. The four state variables {V (t),m(t), h(t), n(t)} for the NaKL

model were recorded and used in an SDA “nudging” protocol to estimate the

parameters of the model actually realized at the manufacturing facility. Here we

display the membrane voltages: {Vdata(t),Vest (t),Vpred (t)}–the observed

membrane voltage response when Iinjected (t) was used, the estimated voltage

response using SDA, and finally the predicted voltage response Vpred (t) from

the calibrated model actually on the VLSI chip. In a laboratory experiment, only

this attribute of a neuron would be observable.

4. DISCUSSION

Our review of the general formulation of statistical data
assimilation (SDA) started our remarks. Many details can be
found in Abarbanel [3] and subsequent papers by the authors.
Recognizing that the core problem is to perform, approximately
of course, the integral in Equation (6) is the essential take away
message. This task requires well “curated” data and a model of
the processes producing the data. In the context of experiments in
life sciences or, say, aquisition of data from earth system sensors,

FIGURE 10 | The NaKL VLSI neuron was driven by the waveform for Iinjected (t)

seen in Figure 8. The four state variables {V (t),m(t), h(t), n(t)} for the NaKL

model were recorded and used in an SDA “nudging” protocol to estimate the

parameters of the model actually realized at the manufacturing facility. Here we

display the Na inactivation variable h(t): {hdata(t), hest (t), hpred (t)}–the observed

h(t) time course when Iinjected (t) was used, the estimated h(t) time course using

SDA, and finally the predicted h(t) time course from the calibrated model

actually on the VLSI chip. In a laboratory experiment, this attribute of a neuron

would be unobservable. Note we have rescaled the gating variable from its

natural range 0 ≤ h(t) ≤ 1) to the range within the VLSI chip. The message of

this Figure is in the very good accuracy and prediction of an experimentally

unobservable time course.

curation includes an assessment of errors and the properties of
the instruments as well.

One we have the data and a model, we still need a set of
procedures to transfer the information from the data to the
model, then test/validate the model on data not used to train the
model. The techniques we covered are general. Their application
to examples from neuroscience comprise the second part of this
paper.

In the second part we first address properties of the
avian songbird song production pathway and a neural control
pathway modulating the learning and production of functional
vocalization–song. We focus our attention on one class of
neurons, HVCX , but have also demonstrated the utility of SDA
to describe the response properties of other classes of neurons
in HVC, such as HVCRA [40] and HVCI [41]. Indeed, the SDA
approach is generally applicable wherever there is insight to relate
biophysical properties of neurons to their dynamics through
Hodgkin Huxely equations.

Our SDA methods considered variational algorithms that
seek the highest conditional probability distributions of the
model states and parameters conditioned on the collection
of observations over a measurement window in time. Other
approaches, especially Monte Carlo algorithms were not
discussed here, but are equally attractive.

We discussed methods of testing models of HVCX neurons
using “twin experiments" in which a model of the individual
neuron produces synthetic data to which we add noise with a
selected signal-to-noise-ratio. Some state variable time courses
from the library of these model produced data, for us the voltage
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FIGURE 11 | A cartoon-like idea of an experiment to probe the HVC network. In this graphic three neuron populations of {HVCX ,HVCI,HVCRA} neurons are

stimulated by auditory signals P(t) presented to the bird in vivo. This drives the auditory pathway from the ear to HVC, and the network activity is recorded from a

calibrated, living HVCX neuron, used here as a sensor for network activity. While the experiment is now possible, the construction of a model HVC network will

proceed in steps of complexity using simple then more biophysiclly realistic neuron models and connections among the nodes (neurons) of the network. From libraries

of time courses of P(t), chosen by the user, and responses of V (t) in the “sensor” HVCX neuron, we will use SDA to estimate properties of the network.

across the cell membrane, is then part of the action Equation (8),
specifically in the measurement error term. Errors in the model
are represented in the model error term of the action.

Using a precision annealing protocol to identify and track the
global minimum of the action, the successful twin experiment
gives us confidence in this SDA method from information trans
from data to the model.

We then introduced a “nudging” method as an approximation
to the Euler-Lagrange equations derived from the numerical
optimization of the action Equation (8)–this is Laplace’s method
in our SDA context. The nudging method, introduced in
meteorology some time ago, was used to distinguish between two
different members of the Zebra Finch collection. We showed, in
a quite preliminary manner, that the two, unrelated birds of the
same species, express different HVC network properties as seen
in a critical set of maximal conductances for the ion channels in
their dynamics.

Finally we turned to a consideration of the challenge of
implementing in VLSI technology the neurons in HVC toward
the goal of building a silicon-HVC network. The challenge at the
design and fabrication stages of this effort where illuminated by
our use of SDA to determine what was actually returned from the
manufacturing process for our analog neurons.

4.1. Moving Forward to Network Analysis
Finally, we have a few comments associated with the next stage
of analysis of HVC. In this, and previous papers, we analyzed
individual neurons in HVC. These analyses were assisted by
our using SDA, through twin experiments, to design laboratory
experiments though the selection of effective stimulilaing injected
currents.

Having characterized the electrophysiology of an individual
neuron within the framework of Hodgkin-Huxley (HH) models,
wemay now proceed beyond the study of individual neurons [42]
in vitro. Once we have characterized an HVC neuron through a
biophysical HH model, we may then use it in vivo as a sensor
of the activity of the HVC network where it is connected to
HVCRA, HVCI , and other HVCX neurons. The schema for this

kind of experiment is displayed in Figure 11. These experiments
require the capability to performmeasurements onHVCneurons
in the living bird. That capability is available, and experiments as
suggested in our graphic are feasible, if challenging.

The schematic indicates that the stimulating input to the
experiments is auditory signals, chosen by the user, presented to
the bird’s ear and reaching HVC through the auditory pathway.
The stimuli from this signal is then distributed in a manner to
be deduced from experiment and then produces activity in the
HVC network that we must model. The goal is, at least initially,
to establish, again within the models we develop, the connectivity
of HVC neuron classes as it manifests itself in the function of
the network. We have some information about this [43, 44],
and these results will guide the development of the HVC model
used in these whole-network experiments. An important point to
address is what changes to the in vitromodel might be necessary
to render it a model for in vivo activity.
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Spatio-temporal chaotic dynamics in a two-dimensional excitable medium is (cross-)

estimated using a machine learning method based on a convolutional neural network

combined with a conditional random field. The performance of this approach is

demonstrated using the four variables of the Bueno-Orovio-Fenton-Cherry model

describing electrical excitation waves in cardiac tissue. Using temporal sequences of

two-dimensional fields representing the values of one or more of the model variables

as input the network successfully cross-estimates all variables and provides excellent

forecasts when applied iteratively.

Keywords: deep learning, conditional random fields, artificial neural network, cross-estimation, spatio-temporal

chaos, excitable media, cardiac arrhythmias, non-linear observer

1. INTRODUCTION

In life sciences mathematical models based on first principles are scarce and often a variety
of approximate models of different complexity exists for describing the given (experimental)
dynamical process. For example, electrical excitation waves in cardiac tissue can be described using
partial differential equations (PDEs) with 2 to more than 60 variables, covering the range from
simple qualitative models [1, 2] to detailed ionic cell models including not only cell membrane
voltage but also different ionic currents and gating variables [3, 4]. While there are several
modalities for measuring membrane voltage (electrical sensors, fluorescent dyes [5]) it is in general
much more difficult and expensive (if not impossible) to directly measure the other variables of
the mathematical model, such as ionic currents or gating variables. In such cases it is desirable to
(cross) estimate variables, which are difficult to assess from those that can be easily measured. In
control theory this task is addressed by constructing an observer based on a given mathematical
model describing the process of interest. Once all state variables of the model have been estimated,
the model (e.g., a PDE) can be used to simulate and forecast the future evolution of the dynamical
process. This combination of cross estimation and prediction of dynamical variables is the core of
all data assimilation methods [6–10] where again the model equations are involved and have to be
known. In this contribution, we present amachine learningmethod for estimating all state variables
and forecasting their evolution from limited observations. This “black-box model" consists of a
convolutional neural network (CNN) combined with a conditional random field (CRF) and will be
introduced in section 2. For training and evaluating the network two dimensional spatio-temporal
time series are used, which were generated by the Bueno-Orovio-Fenton-Cherry (BOCF) model
[11] describing complex electrical excitation waves in cardiac tissue. This model is introduced in
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section 3. As modeling tasks we consider cross estimation
of variables, forecasting dynamics using an iterative feedback
scheme, and a combination of forecasting and cross estimation
providing future values of not measured variables. These results
are presented in section 4. A summary and a brief discussion of
potential future developments are given in section 5.

2. DATA DRIVEN MODELING

In data driven modeling mathematical models are not based
on first principles (e.g., Newton’s laws, Maxwell’s equations, ...)
but are directly derived from experimental measurement data
or other physical observations. The model should describe the
experiment as precisely as possible but it also should possess a
high level of generalizability, i.e., the ability to provide a suitable
and good description for data from a very similar experiment.
Therefore, overfitting has to be avoided and all irrelevant aspects
that are not necessary to describe the desired effect should
be discarded when generating the model (without employing
human expert knowledge). Many approaches for generating
(dynamical) models from (training) data have been devised
including autoregressive models [12], evolutionary algorithms in
particular genetic algorithms [13], local modeling [14], reservoir
computing [15–19], symbolic regression [20], or adaptive fuzzy
rule-based models [21]. Furthermore, Monte Carlo techniques
may be used for assessing uncertainty in model parameters [22].
In this work we present a modeling ansatz which combines deep
convolutional neural networks [23] for feature extraction and
dimension reduction with conditional random fields (CRFs) [24]
for modeling the properties of temporal sequences.

2.1. Artificial Neural Network
Artificial neural networks (ANNs) [25–27] are parameterizable
models for approximating a (unknown) function F implicitly
given by the data. The actual function provided by the ANN:

f :RO 7→ R
P, (1)

should be a good approximation of F, i.e., f ≃ F. Here O ∈ N

and P ∈ N denote the dimension of the input and the output of f ,
respectively. A widely used type of ANN are feed-forward neural
networks (FNN) where, in general, f is given by

f (X) = ψ(WX + b), (2)

with a non-linear function ψ applied component-wise, an input
vector X ∈ R

O, a weight matrix W ∈ R
P×O, and a bias b ∈ R

P.
Equation (2) is called a one-layer FNN. By recursively applying
the output of one layer as input to the next layer, a multi-layer
FNN can be constructed:

f (X) = f L(. . . f 2(f 1(X;W1, b1);W2, b2) . . . ;WL, bL). (3)

Equation (3) describes a multi-layer FNN with L ∈ N layers.
In the following an input with several variables is considered
and the input is given by X ∈ R

h×w×d, with h ∈ N rows and
w ∈ N columns of the input field, and the number of variables

d. To improve the approximation properties of the network
Equation (3), FNNs may contain additional convolutional layers
leading to state-of-the-art models for data classification, so-called
convolutional neural networks (CNNs) [23].

2.2. Network Architecture
The network used in the following for prediction of multivariate
time series is built based on the architecture of a convolutional
autoencoder [28], with residual connections [29] consisting of an
encoding path (left half of the network, from 512×512 to 64×64)
to retrieve the features of interest and a symmetric decoding path
(right half of the network, from 64 × 64 back to 512 × 512). As
illustrated in Figure 1 each encoding/decoding path consists of
multiple levels, i.e., resolutions, for feature extraction on different
scales and noise reduction. The conditional random field block
has a special role: Based on the selected feature, the CRF should
map a sequence of features of a previous time step t to the next
time step t +1t. The other four components of the network are
basic building blocks, like regular convolutional layers followed
by rectified linear unit activation and batch normalization (these
blocks are omitted in Figure 1 for simplicity). Each residual
layer consists of three convolutional blocks and a residual
skip connection. A maxpooling layer is located between levels
in the encoding path to perform downsampling for feature
compression. The deconvolutional layer [30] is located between
levels in the decoding path to up-sample the input data using
learnable interpolations. The input for the network are all four
system variables of the BOCF model which will be introduced
in section 3.1 or a sequence of the four system variables as
introduced in section 4.1. The output of the network always
consists of four system variables.

2.3. Convolution Layer
Convolutional neural networks [23, 26, 27] receive a training
data set X = {X1,X2, . . . ,Xm}, where Xα ∈ R

h×w×d. The data
processing through the network is described layer-wise i.e., in
the l-th convolutional layer the input X(l) will be transformed to
the raw output o(l), which is in turn the input to the next layer
l + 1, where the dimension changes depending on the number
and size of convolutions, padding and stride of the layers as
illustrated in Figure 1. The padding parameter P(l) ∈ N, for layer
l, describes the number of zeros at the edges of a field by which
the field is extended. This is necessary since every convolution
being larger than 1 × 1 will decrease the output size. The stride
parameter S(l) ∈ N is the parameter determining how much the
kernel is shifted in each step to compute the next spatial position
(x, y). This specifies the overlap between individual output pixels,
and it is here set to 1. Each layer l is specified by its number

of kernels K(l) = {K(l,1),K(l,2), . . .K(l,d(l))}, where d(l) ∈ N is
the number of kernels in layer l, and its additive bias terms

b(l) = {b(l,1), b(l,2), . . . , b(l,d(l))} with b(l,d) ∈ R. Note that the input

X(l,d) ∈ R
h(l)×w(l)

in the l-th layer with size h(l) × w(l), kernel k,
and depth d(l) is processed by a set of kernels {K(l,d)}. For each
kernel K(l,d) ∈ R

h
(l)
K ×w

(l)
K with size h

(l)
K × w

(l)
K and d ∈ {1, . . . , d(l)},

the raw output o(l) ∈ R

h(l)−h
(l)
K −1+P(l)

S(l)
×

w(l)−w
(l)
K −1+P(l)

S(l) is computed
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FIGURE 1 | The proposed architecture for forecasting and cross-estimation consisting of a splitted autoencoder and a conditional random field (CRF, orange block) in

the middle, with residual blocks (cyan blocks), convolutional layers (turquoise blocks), maxpooling and downsampling layers (yellow blocks), and deconvolutional

layers (pink blocks).

element by element as:

o(l,d)x,y = b(l,d) +
(

K(l,d) ∗ X(l,d)
)

x,y

= b(l,d) +
d(l)
∑

k=1

h
(l)
K

∑

i=1

w
(l)
K

∑

j=1

K
(l,d)
i,j · X(l,k)

x+i−1,y+j−1. (4)

The result is clipped by an activation function ψ to obtain the

activation ψ(o
(l,d)
x,y ) of each unit in layer l:

ψ

(

o(l,d)x,y

)

= max
{

0, o(l,d)x,y

}

. (5)

To obtain o(l) = {o(l,1), . . . , o(l,d(l))}, Equation (5) needs to be
calculated ∀d = 1, . . . , d(l) and ∀(x, y). Each spatial calculation

of o
(l,d)
x,y is considered as a unit and ψ(o

(l,d)
x,y ) as the feedforward

activation of the unit. The value of an element of a kernel
(K

(l,d)
i,j ) between two units is the weight of the feedforward

connection. Such systems are well-suited for feature extraction
[28], but their linear structure does not allow a direct modeling
of temporal changes or the possibility to process a sequence
of data. To enable temporal modeling, we employ linear-chain
conditional random fields [31] that will be introduced in the next
section.

2.4. Linear-Chain Conditional Random
Fields
To implement a probabilistic forecasting block we consider
the output of the convolutional layer o and the corresponding
forecast q as random variables O and Q, respectively. Both
random variables O and Q are jointly distributed and in a
predictive framework we aim at constructing a conditional model
P(Q|O) from paired observation and forecast sequences. Let G =

(V ,E) be a undirected graph such that Q = (Qv)v∈V , where
Q is indexed by the vertices of G. Each vertex in G represents
a state, a history or a forecast. Then (O,Q) is a conditional
random field (CRF), if conditioned on O the random variables
Qv obey the Markov property [24]. A linear-chain conditional
random field, where o is a sequence of historical extracted
features and q a corresponding forecasted feature in the future, is
given by:

P(q | o, θ) =
∑

h∈H
P(q, h | o, θ)

=
∑

h∈H exp(9(q, h, o; θ))
∑

q′∈Q
∑

h∈H exp(9(q′, h, o; θ))
, (6)

where q ∈ Q, Q is a set of future events, h ∈ H, H is the set
of layers of the CRF where each element hi of h represents a
historical state of an event at time t. θ is the set of parameters.
9(q, h, o; θ) is a so called potential function (also called local or
compatibility function) which measures the compatibility (i.e.,
high probability) between a forecast, a set of observed features,
and a configuration of historical states, such that:

9(q, h, o; θ) =
n

∑

j=1

φj(o,ω) · θh[hj]

+
n

∑

j=1

θy[y, hj]+
∑

(i,j)∈ǫ

θǫ[q, hj, hk]+
φ(o,ω) · θp[q]

k
, (7)

Here n is the number of historical states and φj(o,ω) is a
vector that can include any feature of the observation specific
for a specific time window ω, and θ = [θh, θq, θǫ , θp] are
model parameters. To restrict the search space for possible
parametrizations only sine, cosine, and a linear interpolation
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function are allowed to be used as feature functions. θh[hj] is the
parameter that corresponds to the state hj. The function θq[q, hj]
indicates the parameters that corresponds to the forecast q and
the state hj. θǫ[q, hi, hk] refers to parameters that describe the
dependency relation between the nodes hi and hk. θp[q] defines
the parameters for q given the features over the past, while the
dot product φj(o,ω) · θn[hj] measures the compatibility between
the observed features and the state at time j. In contrast to this
φ(o,ω) · θp[q] measures the compatibility between observation
and the forecast. h consists of k = 1, 024 elements and the last
term in Equation (7) captures the influence of the past features
on the forecast. For training the following likelihood function
is defined:

L(θ) =
n

∑

i=1

P(qi | oi, θ)−
1

2σ 2
‖θ‖2, (8)

where n is the number of training examples. By maximizing
the likelihood for the forecasted training data the optimal
parameter set θ∗ is determined. To find θ∗ Equation (8) can be
evaluated by the same gradient descent method which is used
for optimizing/training the autoencoder. To forecast the input
sequence with a linear-chain CRF it is necessary to compute the
q sequence that maximizes the following equation:

q̂ = argmax
q

P(q | o; θ∗) (9)

The sequence maximizing this is then used by the
deconvolutional part of the network to map the features
back to the desired system variables at t +1t.

3. MODELING EXCITABLE MEDIA

Excitable systems are non-linear dynamical systems with a stable
fixed point. Small perturbations of the stable equilibrium decay,
but stronger perturbations above some characteristic threshold
lead to a high amplitude excursion in state space until the
trajectory returns to the stable fixed point. In neural or cardiac
cells this response leads to a so-called action potential. After such
a strong response a so-called refractory period has to pass until the
next excitation can be initialized by perturbing the system again.
An excitable medium consists of excitable systems (e.g., cells),
which are spatially coupled. Electric coupling of neighboring
cardiac cells, for example, can be modeled by means of a
diffusion term for local currents. The resulting partial differential
equations (PDEs) describe the propagation of undamped solitary
excitation waves. Due to the refractory time of local excitations
spiral or scroll waves are very common and typical hallmarks
of excitable media, which can lead to stable periodically rotating
wave patterns or may break-up forming complex chaotic wave
dynamics. From the large selection of different PDE models
describing excitable media we have chosen the Bueno-Orovio-
Cherry-Fenton (BOCF) model which was devised as an efficient
model for cardiac tissue [11].

3.1. Bueno-Orovio-Cherry-Fenton Model
The Bueno-Orovio-Cherry-Fenton (BOCF) model [11] provides
a compact description of excitable cardiac dynamics. We use this
model as a benchmark to validate our approach for forecasting
and cross-estimation of complex wave patterns in excitable
media. The evolution of the four system variables of the BOCF
model is given by four PDEs

∂u

∂t
= D · ∇2u− (Jsi + Jfi + Jso)

∂v

∂t
=

1

τ−v

(

1−H(u− θv)
)

(v∞ − v)−
1

τ+v
H(u− θv)v

∂w

∂t
=

1

τ−w
(1−H(u− θw))(w∞ − w)−

1

τ+w
H(u− θw)w

∂s

∂t
=

1

2τs
((1+ tanh(ks(u− us)))− 2s),

(10)

where u represents the membrane voltage and H(·) denotes the
Heaviside function. The three currents Jsi, Jfi and Jso are given by
the equations

Jsi = −
1

τsi
H(u− θw)ws

Jfi = −
1

τfi
vH(u− θv)(u− θv)(uu − u)

Jso =
1

τo
(u− uo)(1−H(u− θw))+

1

τso
H(u− θw).

(11)

Furthermore, seven voltage dependent variables

τ−v = (1−H(u− θ−v ))τ−v1 +H(u− θ−v )τ−v2

τ−w = τ−w1 +
1

2
(τ−w2 − τ

−
w1)(1+ tanh(k−w (u− u−w )))

τ−so = τso1 +
1

2
(τso2 − τso1)(1+ tanh(kso(u− uso)))

τs = (1−H(u− θw))τs1 +H(u− θw)τs2
τo = (1−H(u− θo))τo1 +H(u− θo)τo2

v∞ =

{

1, if u ≤ θ−v
0, if u ≥ θ−v

w∞ = (1−H(u− θo))(1−
u

τw∞
)+H(u− θo)w∗

∞

(12)

are required. The characteristic model dynamics is determined
through 28 parameters. In our simulations we used a
set of parameters [11] given in Table 1 for which the
BOCF model exhibits chaotic excitation wave dynamics
similar to the Ten Tusscher-Noble-Noble-Panfilov (TNNP)
model [32].

The spatio-temporal chaotic dynamics of this system is
actually transient chaos whose lifetime grows exponentially
with system size [33, 34]. To obtain chaotic dynamics
with a sufficiently long lifetime the system has been
simulated on a domain of 512 × 512 grid points with a
grid constant of 1x = 1.0 space units and a diffusion
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TABLE 1 | TNNP model parameter values for the BOCF model [11].

uo 0 τ
−
v2 1150 τfi 0.11 τs1 2.7342

uu 1.58 τ
+
v 1.4506 τo1 6 τs2 3

θv 0.3 τ
−
w1 70 τo2 6 ks 2.0994

θw 0.015 τ
−
w2 20 τso1 43 us 0.9087

θ
−
v 0.015 k−w 65 τso2 0.2 τsi 2.8723

θo 0.006 u−w 0.03 kso 2 τw∞ 0.07

τ
−
v1 60 τ

+
w 280 uso 0.65 w∗

∞ 0.94

FIGURE 2 | Snapshots from the BOCF model at t = 100 of (A) the u variable, (B) the v variable, (C) the w variable, and (D) the s variable.

constant D = 0.2. Furthermore, an explicit Euler stepping
in time with 1t = 0.1 time units1, a 5 point approximation
of the Laplace operator, and no-flux boundary conditions
were used. Figure 2 shows typical snapshots of the
dynamics.

4. RESULTS

The proposed network model was trained with simulated data
generated by the BOCF model with parameter values given
in Table 1. Ten trajectories with different initial conditions for
the variables u, v,w, and s were generated by simulating the
BOCF model for a time series of 50,000 samples spanning a
period of time of 5 s. Five of these data sets randomly chosen,
were used to train the network, while the other solutions were
used for validation. For training the Adam optimizer [35] was
used, with a learning rate lr = 0.0001 and β1 = 0.9,
β2 = 0.999.

In order to quantify the performance of the estimation and
predictionmethods the similarity of target fields and output fields
of the network has to be quantified. For this purpose we use
the Jensen-Shannon divergence (JSD) [36] applied to normalized
fields of the variables of the BOCFmodel. The JSD of two discrete
probability distributions A and B is defined as

JSD(A‖B) =
1

2
DKL(A‖M)+

1

2
DKL(B‖M), (13)

1We consider all variables and parameters of the BOCF model as dimensionless.

The parameter values given in Table 1 are, however, consistent with the choice

of a time unit equalling 1ms. In this case all t-values given in this article would

correspond to milli seconds.

where M = 1
2 (A + B) and DKL(A‖M) is the Kullback-Leibler

divergence [37]:

DKL(A‖M) = −
∑

i

P(i) log

(

A(i)

M(i)

)

. (14)

During training the JSD was used as objective function to be
minimized (for a GPU implementation of the JSD see [38]).
The JSD is bounded by 0 and 1 and a value below 0.02 was
considered to indicate no discernible differences between the two
distributions (fields). An alternative for quantifying the deviation
would be the Fractions Brier Score [39]. For training the network,
for each trajectory at each time step, sequences of lengths up to
m = 10 were used as input.

The input of the network consisted of fields of variables that
were assumed to be measured and random fields representing
variables that were considered to be not available.

4.1. Forecast
For forecasting the input of the network consisted of sequences
of length m = 10 of u, v,w, and s given by {ut−m+1, . . . , ut},
{vt−m+1, . . . , vt}, {wt−m+1, . . . ,wt}, and {st−m+1, . . . , st}. The
desired output of the network is then ut+1t , vt+1t ,wt+1t and
st+1t . By using the output of the network as a new input the
system can be run iteratively in a closed loop for long term
prediction. The development of the JSDs of u, v,w, s through
time are shown in Figure 3A. Since the u and the s fields look
quite similar (see Figures 2A,D) their JSD-values are almost the
same. Thew-field (Figure 2C) exhibits relatively high values at all
spatial locations and therefore the JSD of two such fields is rather
low. On the other hand, the v field (Figure 2B) possesses only
very localized structures with high values and this leads to rather
high values of the JSD for (slightly) different fields. Figure 3B
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FIGURE 3 | Temporal development of (A) the Jensen-Shannon divergence (JSD) and (B) the root normalized mean squared error (RNMSE) for all variables u, v,w, s

showing the deviation of the iterative network prediction (in a feedback mode) from the reference orbit obtained with the BOCF model. During the period [0− 1000] the

predicted and the true fields agree very well as indicated by very small values of the JSD. In the time interval (1000− 3000] the JSD values increase until they saturate

and the forecasts become very poor and useless. The RNMSE values show a similar increase in time but turn out to be more sensitive to minor deviations during the

initial phase [0− 1000] of the forecast. The solid curves show median values of JSD and RNMSE obtained from ten different initial values of u, v,w, s. The transparent

areas visualize the 0.25/0.75 percentile.

FIGURE 4 | Temporal development of the sum of the root normalized mean squared errors (RNMSE) of all variables u, v,w, s. (A) shows the NMSE for t ∈ [1, 100] and

(B) shows the NMSE for t ∈ [1, 1000]. The orange curve describes the deviation of the trajectory generated by the network from the reference orbit simulated with the

BOCF model. For comparison the blue curve shows the distance between the reference orbit and a second solution of the BOCF model obtained by perturbing the

initial conditions where each variable was perturbed at every spatial location using Gaussian random noise (µ = 0, σ2 = 10−11). The error dynamics of ten perturbed

trajectories was analyzed. These orbits were obtained by perturbing the reference orbit at different times [0, 1000), [1000, 2000), . . . [9000, 10000). The blue curve

shows the median and the 0.25/0.75 percentile is visualized by the transparent areas. The dotted black line (A) denotes the slope the linear part of the log(NMSE) vs. t

curve which provides an estimate of the largest Lyapunov exponent [40] λ1 ≈ 0.25 (with respect to the natural logarithm).

shows for comparison the root normalized mean squared errors
(RNMSE) of all variables u, v,w, s which is given by

RNMSE(v) =

√

MSE(v)

MSE(v̄)
(15)

where

MSE(v) =
1

M2

M
∑

i=1

M
∑

j=1

(

vBOCFij (t)− vij(t)
)2

. (16)

Here v̄ denotes the temporal and spatial mean values of the BOCF
sequence of length TF, M

2 = 512 · 512 is the number of grid
points of the domain and vBOCFij denotes the value of variable v at

grid point (i, j) for the reference solution generated by the BOCF
model. As can be seen in Figure 3A all four curves possess very
similar values and indicate an increase of the error already during
the initial period for t ∈ [0, 1000].

Figure 4 shows a comparison of the error dynamics of
the forecast obtained with the iterated network with feedback
(orange curve) and the dynamics of a BOCF model starting from
slightly perturbed initial conditions (blue curve). Both curves
give the root normalized mean squared error (RNMSE) with
respect to the same reference orbit generated by the BOCFmodel.
The perturbation of the initial condition of the second BOCF
solution with respect to the initial condition of the reference
orbits was chosen to be very small. Therefore, during the initial
phase the deviation still remains so small that (with semi-
logarithmic axes) a linear segment of the error curve occurs that
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FIGURE 5 | Snapshots of u at different time steps. (A–D) Show the (reference) values from the BOCF simulation, while (E–H) display the values forcasted by the

network. The diagrams (I–L) show the absolute deviation of the forecasted values from the reference values. At t = 500 the patterns (A,E) are still (almost)

indistinguishable, and for t = 1, 500 still only minor differences between (B,F) are noticeable.

FIGURE 6 | Jensen-Shannon-Divergence (JSD) of true and estimated fields for different cross estimation tasks. In cases where more than one variable is estimated

the mean value of the JSDs of the estimated variables is given. (A) Cross estimation for the cases (vt,wt, st → ut ), (wt, st → ut, vt ), (ut, vt → wt, st ), (ut → vt,wt, st ),

and (wt → ut, vt, st ), based on the input from the BOCF simulation. (B) Cross estimation of future values of not measured variables for the cases

(vt∗ ,wt∗ , st∗ → uτ ), (wt∗ , st∗ → uτ , vτ ), (ut∗ , vt∗ → wτ , sτ ), (ut∗ → vτ ,wτ , sτ ), and (wt∗ → uτ , vτ , sτ ) based on the forecast of the data driven model for a period of

τ = 1, 000, where t∗ denotes 10 successive snapshots at times 0, 0.1, . . . , 0.9 constituting the input . In both diagrams the orange line is the median value for each

case, the box extends from the lower to upper quartile values. The whiskers extend from the box to show the range of the data. Flier points are those past the end of

the whiskers.
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FIGURE 7 | (A–H): Cross estimation of u, v, s at t = 100 based on the input w at t = 0 where (A,B,D) is the random noise input for the system variables u, v and s, (C)

is the snapshot input of w at t = 0 (estimation). (E–H) show the output of the data-driven model for the system variables u, v,w, s at time t = 100. (I–P): Cross

estimation of v,w, s at t = 100 based on the input u at t = 0 where (I) shows the snapshot input of u at t = 0. (J,K,L) show the random noise input for the system

variables v,w and s, (M–P) is the output of the data-driven model for the system variables u, v,w, s at time t = 100 (prediction). (Q–U): Reference data from the BOCF

model for time t = 100, where (Q–U) are the snapshots for the system variables u, v,w, and s.

can be used to estimate the largest Lyapunov exponent [40]. Once
the error of the perturbed BOCF orbit (blue curve) reaches the
level of the network prediction error (orange curve) both error
curves continue to increase in the same way indicating that the
network almost perfectly learned the true dynamics of the BOCF
model.

To illustrate the deviation between the u field forecasted by
the network and the (true) u field provided by the simulation
of the BOCF PDE Figure 5 shows snapshots at times t = 500,
t = 1, 500, t = 3, 000, and t = 5, 000. While at t = 500 original
(A) and forecast (E) are almost indistinguishable the snapshots
at t = 1, 500 exhibit minor differences (Figures 5B,F). At time
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t = 3, 000 only rough structures agree (Figures 5C,G) until at t =
5, 000 forecast and simulation appear completely decorrelated
(Figures 5D,H). The full evolution of the forecast compared
to the original dynamics generated with the BOCF model is
also available as a movie (Supplemental Data). Compared to
a typical spiral rotation period of approximately Tsp = 350
good forecasting results can be obtained for about five spiral
rotations corresponding to 5*350 / 4 = 437 Lyapunov times TL =
1/λ1 ≈ 4 given by the largest Lyapunov exponent λ1 ≈ 0.25 (see
Figure 4).

4.2. Cross-Estimation
For cross-estimation only a part of the system variables are
considered as being directly observable or measurable. Based
on these available variables the other not measurable variables
have to be estimated (a task also called cross prediction). In
the context of the BOCF model we shall, for example, estimate
vt ,wt , st from observations of ut , only. Since the network expects
all system variables as input the not observed variables were
replaced by uniform noise in the range of 0 − 0.3. For this
purpose for every t ∈ [0, 1000] the data of the BOCF model
were used as single time step input for the network and the
cases (vt ,wt , st → ut), (wt , st → ut , vt), (ut , vt → wt , st), (ut →
vt ,wt , st), and (wt → ut , vt , st) were considered as estimation
tasks. Figure 6 shows the JSD statistics for all these cases. The
low JSD values for (vt ,wt , st → ut) indicated that the variable
u can be very well estimated by the variables v,w, s, which
could be expected because the variable u is part of the PDEs
of the other variables. Similarly good estimation results are
obtained for (ut → vt ,wt , st) which is remarkable, because the
membrane potential u is the variable, which can be measured
most easily in experiments and the result shows that this
information is sufficient to recover the other variables v, w,
and s of the BOCF model. The worst performance is achieved
if only w is used to cross estimate all other system variables.
These cross estimation results are in very good agreement with
the performance of an Echo State Network applied to similar
data [19].

4.3. Forecast and Cross-Estimation
This investigation represents a combination of the two previous
ones. In this case, however, not for every time step the data
from the BOCF model were used, but only ten time steps

from the BOCF model were used to initialize the forecast of
the network. Depending on the case which variable should be

estimated the BOCF variables for initialization were replaced

by uniform noise, as before. Figure 6B shows the JSD statistics
for the four estimation cases considered and in Figure 7

snapshots of the input and the true and estimated fields are
presented illustrating the very good performance at time t =
100.

5. DISCUSSION

Spatio-temporal non-linear dynamical systems like extended
systems (described by PDEs) or networks of interacting

oscillators may exhibit very high dimensional chaotic dynamics.
A typical example are complex wave pattern occurring in some
excitable media. As a representative of this class of systems
we used the BOCF model describing electrical excitation waves
in cardiac tissue where chaotic dynamics is associated with
cardiac arrhythmias. For future applications like monitoring and
predicting the dynamical state of the heart or the impact of
interventions, mathematical models are required describing the
temporal evolution or the relation between different (physical)
variables. As an alternative to the large number of simple
qualitative or detailed (ionic) models (incorporating many
biophysical details and corresponding variables) we presented
a machine learning approach for data driven modeling of
the spatio-temporal dynamics. A convolutional neural network
combined with a linear-chain of conditional random fields was
trained and validated with data generated by a simulation of
the BOCF model. To mimic experimental limitations when
measuring cardiac dynamics we considered different cases where
only some of the variables of the BOCF model were assumed
to be available as input of the generated model and the not
measurable variables were replace by random numbers. Running
the trained network in a closed loop (feedback) configuration
iterated prediction provided forecasts of the complex dynamics
that turned out to follow the true (chaotic!) evolution of the
BOCF simulation for about five periods of the intrinsic spiral
rotations. These results clearly show that machine learning
methods like those employed here provide faithful models of
the underlying complex dynamics of excitable media that, when
suitably trained can provide powerful tools for predicting the
spatio-temporal evolution and for cross-estimating not directly
observed variables.
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The goal of this work is to analyse and study an ultra-rapid data assimilation (URDA)

method for adapting a given ensemble forecast for some particular variable of a

dynamical system to given observation data which become available after the standard

data assimilation and forecasting steps. Initial ideas have been suggested and tested by

Etherthon 2006 and Madaus and Hakim 2015 in the framework of numerical weather

prediction. The methods are, however, much more universally applicable to general

non-linear dynamical systems as they arise in neuroscience, biology and medicine as

well as numerical weather prediction. Here we provide a full analysis in the linear case,

we formulate and analyse an ultra-rapid ensemble smoother and test the ideas on the

Lorentz 63 dynamical system. In particular, we study the assimilation and preemptive

forecasting step of an ultra-rapid data assimilation in comparison to a full ensemble data

assimilation step as calculated by an ensemble Kalman square root filter. We show that

for linear systems and observation operators, the ultra-rapid assimilation and forecasting

is equivalent to a full ensemble Kalman filter step. For non-linear systems this is no

longer the case. However, we show that we obtain good results even when rather

strong nonlinearities are part of the time interval [t0, tn] under consideration. Then, an

ultra-rapid ensemble Kalman smoother is formulated and numerically tested. We show

that when the numerical model under consideration is different from the true model,

used to generate the nature run and observations, errors in the correlations will also

lead to errors in the smoother analysis. The numerical study is based on the popular

Lorenz 1963 model system used in geophysics and life sciences. We investigate both

the situation where the full system forecast is calculated and the situation important to

practical applications where we study reduced data, when only one or two variables are

known to the URDA scheme.

Keywords: data assimilation (DA), ensemble filter, preemtive forecast, Lorenz 1963 system, rapid update

1. INTRODUCTION

Data assimilation is concerned with the use of observation data to control or determine the state of
some dynamical system [1–3]. Data assimilationmethods are indispensable ingredients to calculate
forecasts of some system, with universal applicability ranging from neuroscience [4, 5] to weather
forecasting [6–8], from systems engineering like traffic flow [9–11] to geophysical applications
[12, 13].

Over time several generations of data assimilation methods have been developed, for example
optimal interpolation in the 70th, variational methods in the 80 and 90th and ensemble data
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assimilation since about 1995, with very intense research
activities since about 2000 (e.g., [1–3, 14]). Today, ensemble
data assimilation methods for example for numerical weather
prediction are run daily on modern supercomputers by
operational centers such as Deutscher Wetterdienst (DWD,
Germany), European Center for Medium Range Weather
Forecast (ECMWF, Reading, UK), or the MetOffice in
the UK.

Usually, data assimilation takes observations y and combines
themwith first guessmodel states x(b) (also called the background)
to estimate a best possible analysis x(a). Usually, the estimation
of the analysis state is performed in turns with short-range
forecasting, i.e., within a given temporal framework assimilations
are carried out at times tk for k = 1, 2, 3, .... Short range

forecasts calculate the state x
(b)
k

= M(x
(a)
k−1

) by applying the

model dynamics M to the initial state given by the analysis x
(a)
k−1

at time tk−1. Then, the core analysis step is carried out at time
tk, based on observations which are available either at tk or in
the interval [tk−1, tk]. Alternating short-range forecasts and core
analysis steps leads to the classical data assimilation cycle. Often,
forecasts are then calculated based on selected analysis states and
analysis times.

Today, many forecasting systems have moved away from pure
deterministic forecasting and employ ensemble prediction systems
(EPS), where several forecasts with different initial conditions
(and sometimes different physical or stochastical parameters) are
calculated. Based on an ensemble of states, the uncertainty of
the forecast can be estimated. Further, the ensemble allows to
determine dynamical spatial and temporal correlations, which
help to improve the analysis itself and can serve as input for
probabilistic diagnostics.

Often, for large-scale realistic systems, the model forecast as
well as the analysis step needs huge computational resources.
They limit the temporal resolution of the data assimilation
cycle. Further restrictions are given by the availability of
observations, which need to be measured and distributed to
reach operational centers. For example, to run an assimilation
cycle of 1 h for convection permitting high-resolution numerical
weather models, top-500 supercomputers are needed to achieve
a sufficient resolution and spatial extension of the model fields
under consideration [8].

The core task addressed in this work is the problem of ultra-
rapid data assimilation (URDA), in the case where standard data
assimilation cycles have clear limits with respect to speed and
flexibility. We assume that a classical data assimilation cycle is
available, such that we can calculate an ensemble of forecasts
for some time interval [t0, tN]. The next classical analysis is
calculated for time tN , such that a similar ensemble forecast
will be available for a subsequent interval [tN , tN+1]. Here,
we limit our interest in the ultra-rapid data assimilation for
observations yk which are available at points in time tk with
t0 < t1 < t2 < ... ≤ tN . The task is to provide an update
of the ensemble forecast with high speed without using the
full numerical model or a full-grown data assimilation system.
In particular when we are interested only in the forecast of
some layer or part of the state space, this is of high practical
interest.

Usually, the classical forecast cycle in operational centers is
based on a data assimilation cycle with frequency tN of several
hours. The term rapid update cycle (RUC) is used when cycling
and forecasting is carried out hourly or subhourly. The term
ultra-rapid update cycle is used when we go to a cycling interval
which is much smaller, e.g., 5 min. Further, to achieve this speed
we cannot initialize the full model in each step. The approach of
ultra-rapid data assimilation—though embedded into a RUC or
classical cycle—does not use the classical setup of cycling model
and assimilation step any more for its updates. Further, it works
with a subset of model variables only. The speed-up is achieved
by the conceptional changes within the full cycle, not alone within
the data assimilation step itself.

We will base ultra-rapid data assimilation on the ensemble
transformation matrix given by the ensemble Kalman filter
(EnKF) or ensemble Kalman square root filter (SRF), compare
[15–19]. The basic idea of ultra-rapid data assimilation is to
employ a reduced version of the state variables which are
made available to the system. Measurements of some of these
variables can be employed to calculate an ensemble Kalman
transformation matrix1. This Matrix is used to update both the
analysis ensemble as well as the forecast ensemble. For linear
model systems and linear observation operators, we will see that
the forecasts based on the analysis ensemble and the transformed
forecast ensemble are identical. This is true both for the full
analysis and forecasting as well as for the case where we base our
analysis and forecasting transformation on a reduced set ofmodel
variables or diagnostic ensemble output.

To study the quality of ultra-rapid data assimilation we apply
the basic ideas to the Lorenz 1963 model [[20], see also for
example [21–24] and [3] Chapter 6]. Here, we generate some
truth by running the model with a particular setup. Observations
are simulated and drawn with random perturbations. Then,
a model with a different setup is used to assimilate the
observations either with the ultra-rapid assimilation scheme and
for comparison by running a full ensemble Kalman filter for each
of the time-steps tk, k = 1, ...,N. We study the case of reduced
variables and provide diagnostic results for the ensemble Kalman
smoother over the full time interval [t0, tN].

The approach discussed here was first suggested in the work
of Etherton [25], where the term preemptive forecast was coined
and the method was tested for a barotropic model. The ideas have
been picked up by Madaus and Hakim [26], where the authors
applied the approach to ensemble forecasts of numerical weather
models, obtaining a so-called ensemble forecast adjustment. In
the latter work the advantage of the method, that rapid updates
of (subspaces of) model predictions without rerunning a full
dynamical model again, are highlighted. They focused on global
scales and corresponding time scales and observables for a
particular application. Here, we provide additional contributions
to the mathematical analysis for linear systems. Further, we
formulate and investigate the ultra-rapid ensemble smoother
and extensively study the non-linear Lorentz 63 system, which

1Note that the calculation of this transform matrix takes place in ensemble space

and is only a very small part of the total cost of the assimilation cycle and

forecasting.
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serves as a very popular reference system for geophysics and life
sciences.

In section 2 we introduce our notation and basic results
from ensemble data assimilation. In particular, we introduce the
ensemble Kalman filter in the notation of Hunt et al. [16] and
Nakamura and Potthast [3]. We also discuss the role of reduced
variables for the ensemble Kalman square root filter. Section 3
serves to introduce and investigate details of the ultra-rapid data
assimilation, with the data assimilation analysis and forecasting
in section 3.1 and the ultra-rapid ensemble smoother in section
3.2. Numerical examples are shown in section 4, with generic
results on the assimilation and forecasting in section 4.1 and the
study of reduced variables in section 4.2. Conclusions are given
in section 5.

2. ENSEMBLE DATA ASSIMILATION

This section serves to collect notation and basic results on the
ensemble Kalman square root filter (SRF) following the notation
of Hunt et al. [16] and Nakamura and Potthast [3]. The SRF is
our reference for full-scale forecasting and it provides the core
ingredients of our ultra-rapid data assimilation algorithms as
described in section 3.

We consider a state space Rn, an observation space Rm with
n,m ∈ N, states x ∈ R

n and observations y ∈ R
m. The basic idea

of the ensemble Kalman filter type methods such as the SRF is to
approximate the covariance matrix B ∈ R

n×n of the system based
on some ensemble xb,(ℓ), ℓ = 1, ..., L of L ∈ N states in the form

Bb = Qb
(

Qb
)T

, (1)

where

Qb =
1

√
L− 1

(

xb,(1) − x̄b, . . . , xb,(L) − x̄b
)

, (2)

is the matrix Qb ∈ R
n×L of centered differences (sometimes

its columns are called the centered ensemble) with the ensemble
mean

x̄b =
1

L

L
∑

ℓ=1

xb,(ℓ) . (3)

Note, by construction the space spanned by the member of the
centered ensemble has dimension L − 1 and one can define the
full ensemble matrix

Qb
full =

(

xb,(1), . . . , xb,(L)
)

, (4)

= x̄b +
√
L− 1 Qb .

In order to assimilate observation data the model equivalents
yb,(ℓ) of the ensemble member are required, which are obtained
by applying the observation operator H :R

n → R
m to the

corresponding ensemble member

yb,(ℓ) = H
(

xb,(ℓ)
)

, ȳb =
1

L

L
∑

ℓ=1

yb,(ℓ) . (5)

With these quantities the matrix Tb ∈ R
m×L can be defined

analogously to Qb

Tb
:=

1
√
L− 1

(

yb,(1) − ȳb, ..., yb,(L) − ȳb
)

, (6)

which one also denotes as Tb = HQb assuming a linear
operator H.

In the following, + between a vector and a matrix indicates a
column-wise summation a + A = (a + a1, ..., a + aL) with the
columns aℓ, ℓ = 1, ..., L of the matrix A, such that we can add
column vectors and matrices in one joint notation. The generic
update equation for an ensemble type data assimilation can be
written in different forms, in particular

Qa
full = x̄a +

√
L− 1 Qa , (7)

= x̄a +
√
L− 1 QbS , (8)

= x̄b + Qb s̄+
√
L− 1 QbS , (9)

= x̄b + Qb(s̄+
√
L− 1S) , (10)

= x̄b + QbW , (11)

= Qb
fullWfull , (12)

with the transformation matrices S,Wfull,W ∈ R
L×L computed

in ensemble space and s̄ ∈ R
L, depending on the vectors

and matrices x̄b,Qb, ȳb,Tb and the observation error correlation
matrix R ∈ R

m×m. We quickly review the different versions
as follows. An analysis update of the centered ensemble (see
Equation 4) given by

Qa = QbS , (13)

leading to Equation(8). In Equation (9) we have used an update
of the ensemble mean

x̄a − x̄b = Qb s̄ , (14)

with s̄ ∈ R
L, which is naturally defined by the Ensemble Kalman

Filter – details will be given below. Equation (10) just collects the
increment in terms of Qb. The definition of the transformation
matrix

W = s̄+
√
L− 1 S , (15)

leads to the update Equation (11). For the full transform matrix
Wfull we obtain

Wfull =
s̄

√
L− 1

+ S , (16)

based on

(1, ..., 1)
︸ ︷︷ ︸

L times

(
s̄

√
L− 1

+ S) = 1 , (17)
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and by

Qb
fullWfull = (xb +

√
L− 1Qb)(

s̄
√
L− 1

+ S) ,

= (xb, ..., xb)
︸ ︷︷ ︸

L times

(
s̄

√
L− 1

+ S)+ Qb s̄+ QbS ,

= xb + Qb s̄+ QbS. (18)

Different notations have been used over time, depending on
whether you want to keep your equations close to the classical
Kalman filter equations or for a more practical focus. The
quantities defined in Equations (2, 6) differ from the definitions
of Xb and Yb of Hunt et al., c.f. Equations (12, 18), by the
normalization factors. The relations are

Xb =
√
L− 1 Qb , (19)

Yb =
√
L− 1 Tb .

The full ensemble matrix has different letters Qb
full

= Xb
full

, we

also note the identity Wa = S between Hunt et al. [16] and
Nakamura and Potthast [3]. Some equations are modified. For
example Equation (4) changes to

Xb
full =

(

xb,(1), . . . , xb,(L)
)

, (20)

= x̄b + Xb ,

the update of the mean Equation (14) rewrites as

x̄a − x̄b = Xbwm , (21)

with wm = s̄/
√
L− 1 and Equations (8, 10) are written as

Xa = XbWa , (22)

⇔ Xa
full

= x̄a + XbWa , (23)

= x̄b + Xb
(

wm +Wa
)

, (24)

= x̄b + XbWX . (25)

The transformation matrix in the sense of Equation (25), giving
us the increment in ensemble space, is now given by

WX = wm +Wa. (26)

2.1. Ensemble Kalman Square Root Filter
The ensemble Kalman filter combines the above introduced
notion of an ensemble of model states to describe spatial and
temporal correlations with the well-known Kalman Filter [27].
The pending task of generating an analysis ensemble obeying
an obtained analysis correlation matrix can be completed by a
square root filter (SRF), originating from the Kalman filter update
for the correlation matrix applied to the ensemble representation

Ba = (I − KH)Bb , (27)

Qa
(

Qa
)T = (I − KH)Qb

(

Qb
)T

,

= QbU
(

Qb
)T

,

= QbS
(

QbS
)T

,

with the Kalman gain matrix

K = Qb
(

HQb
)T

(

R+HQ
(

HQb
)T

)−1

, (28)

and the transformation matrix S given by

S (S)T = U . (29)

Taking the square root of the symmetric matrix U results in

S =
√

I −
(

HQb
)T

(

R+HQb
(

HQb
)T

)−1
HQb , (30)

which is the transformation matrix of the update for the centered
ensemble in Equation (8). Note, the notation in Equations (2, 6) is
the one used by Nakamura and Potthast [3] and differs from the
one introduced by Hunt et al. [16] (see Equation 19). However,
by multiplying S in Equation (30) with the inverse ofWa defined
by Hunt et al, the identityWa = S can be easily shown.

The update of the mean is obtained along the lines of the
classical Kalman filter by

x̄a − x̄b = K(y0 − ȳb) , (31)

with K given in Equation (28). Comparing Equation (14, 31) leads
to

s̄ =
(

HQb
)T

(

R+HQb
(

HQb
)T

)−1

(y0 − ȳb) , (32)

in case of the SRF. The update for the full ensemble using the
ensemble Kalman square root filter is therefore given by applying
Equations (30, 31) to Equation (11, 15).

Here, we can now confirm the validity of Equation (17). From
the definition ofQb we know that the sum of the rows ofQ is zero,
such that the sum of the column of s̄ = (Qb)TA with any matrix
A ∈ R

n×L is zero, and the sum of the columns of I − (Qb)TA
is one. If I − (Qb)TA is symmetric, this means that the vector
equal to 1 in each component is an eigenvector of I − (Qb)TA
with eigenvalue 1. But then it will also be an eigenvector with
eigenvalue 1 for each power of I − (Qb)TA, such that (17) is
satisfied.

2.2. Ensemble Data Assimilation With
Reduced Data
Before we investigate ultra-rapid data assimilation based on
reduced data, we need to recall how a standard ensemble Kalman
square root filter will react when we base our analysis on a
reduced set of model variables. Let us study the calculation of the
ensemble analysis for the ensemble Kalman filter with reduced
data. The basic formula for the ensemble Kalman filter can be
expressed asW = S+ s̄ with S and s̄ given in Equations (30, 32)

Now, assume we observe y ∈ R
m which depends on some

subset x1, ..., xñ of the full set of variables x1, ..., xn only. Given
these reduced spaces the operator H will be of the form

H =







H1,1 . . . H1,ñ 0 . . . 0
...

...
...

...
Hm,1 . . . Hm,ñ 0 . . . 0






. (33)
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In this case, the terms HQb ∈ R
m×L and

(

HQb
)T

∈ R
L×m will

be a linear combination of the variables 1, ..., ñ of the ensemble
members. If we are given the variables x1, ..., xñ of the ensemble
members only, the matrix W will not change. Also, y − Hxb will
depend only on the variables xb1, ..., x

b
ñ of x

b. The solution z ∈ R
m

of
(

R+HQb
(

HQb
)T

)

z = y−Hxb , (34)

is calculated based on the variables x1, ..., xñ of Qb and xb1, ..., x
b
ñ

of xb only. We summarize the result of these arguments in the
following lemma.

LEMMA 2.1. If we have observations y dependent only on the
variables x1, ..., xñ for ñ ∈ {1, ..., n} of the full state x ∈ R

n of the
state space of our dynamical system, the transformation matrix W
of the ensemble Kalman square root filter update xa − xb depends
on these variables of the centered ensemble Q and the mean first
guess x̄b only.

A consequence of the above Lemma 2.1 is that, if we have
reduced observations, the ensemble Kalman square root filter will
give us an update matrixW which depends only on the variables
under consideration.

But we need to pay attention to the update and propagation
step. The update Equation (11) clearly updates all variables,
since W ∈ R

L×L, and thus all variables of x are updated
by the ensemble Kalman filter. If the model M is based on
all variables, in general we expect model propagation to be
dependent on all variables as well. In general, an update based
on the transformation matrix W will change all variables of
the initial state. This means that the first guess of the next
assimilation step highly depends on the application of the matrix
W to all variables, not only to the variables x1, ..., xñ.

Clearly, in general we cannot run the full ensemble Kalman
filter on a reduced set of variables, just because you need all
prognostic variables to run the numerical model. We will see
later, that this limitation does no longer apply when we are in
the framework of ultra-rapid data assimilation.

3. THE ULTRA-RAPID DATA ASSIMILATION
AND FORECASTING STEP

This section serves to develop the main ideas of ultra-rapid
analysis, forecasting and smoothing. We will first describe the idea
of ultra-rapid analysis when observations yk are given at point of
time tk, k = 1, ...,N throughout a time interval [t0, tN] for which
we are not able to employ a full data assimilation functionality.
We assume that we have been able to perform some ensemble
data assimilation scheme prior to the time t1 at time t0 and that a
forecast ensemble has been calculated, such that

x
f ,(ℓ)
0,ξ , ξ = 0, ...,N, ℓ = 1, ..., L , (35)

is available at the points in time tξ , ξ = 0, ...,N and for the

ensemble index ℓ ∈ {1, ..., L}. Note that x
f ,(ℓ)
0,0 corresponds to

the analysis of the full ensemble data assimilation. We are now
successively at times t1, t2, ... receive observations y1, y2, ... The
goal is to provide ultra-rapid updates for estimation of our state
at times t1, t2, ... When we are at time tk, we would like to update
the forecasts at the times tξ for ξ = k, ...,N and obtain the best
possible estimate in an ultra-rapid forecasting step.

Note, the assimilation of observations at some point in
time exhibits information about the past as well. This is called
smoothing. We will describe an ultra-rapid ensemble smoother in
a second step. We focus on the analysis and forecasting in section
3.1 and discuss smoothing in section 3.2.

3.1. Ultra-Rapid Analysis and Forecasting
Assume that we are given some ensemble x

a,(1)
k

, . . . , x
a,(L)
k

of L
states of our dynamical system at time tk ∈ R, which could be
an analysis or a first guess from somewhere. Further, we assume
that we have applied our modelM to calculate forecasts based on

x
a,(ℓ)
k

at times tk+1, ..., tN for N > k. The corresponding forecasts

are denoted by x
f ,(ℓ)

k,ξ
for ξ = k+ 1, . . . ,N, analogous to (35).

We employ the following matrix notation. The matrix F is the
matrix of the full forecast ensemble members in its columns, i.e.,

Fk,ξ =
(

x
f ,(1)

k,ξ
, . . . , x

f ,(L)

k,ξ

)

, (36)

of forecasts x
f ,(ℓ)

k,ξ
from tk to tξ . The matrix W(k) is the matrix

of linear ensemble transform coefficients calculated based on the
observations yk at time tk and the first guess ensemble at time tk,
i.e.,

W(k) =
(

Wk
j,ℓ

)

j,ℓ=1,...,L
. (37)

When the analysis ensemble at time tk is given by a generic
ensemble data assimilation approach, we know that

x
a,(ℓ)
k

=
L

∑

j=1

x
b,(j)

k
W

(k)
j,ℓ , ℓ = 1, ..., L , (38)

with the matrix W
(k)
j,ℓ , j, ℓ = 1, ..., L given by Equation (16) with

the two quantities s̄ and S being dictated by the specific ensemble
data assimilation system (e.g., Equations 30, 32), where the time
index k refers to the analysis time tk for whichWj,ℓ is calculated.

Also, we note that the background x
b,(ℓ)
k

is given by

x
b,(ℓ)
k

= Mk−1,k

(

x
a,(ℓ)
k−1

)

, ℓ = 1, ..., L . (39)

LEMMA 3.1. Here, we assume that the model M is a linear model

M. In this case, the forecast ensemble x
f ,(ℓ)

k,ξ
at time tξ when

observations at time k are assimilated by a linear data assimilation
method as in Equation (12), the forecast ensemble can be calculated
by

x
f ,(ℓ)

k,ξ
=

L
∑

j=1

x
f ,(j)

k−1,ξ
W

(k)
j,ℓ (40)
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Proof. In this case we have

x
f ,(ℓ)

k,ξ
= Mk,ξx

a,(ℓ)
k

,

= Mk,ξ

L
∑

j=1

x
b,(j)

k
W

(k)
j,ℓ ,

=
L

∑

j=1

(

Mk,ξx
b,(j)

k

)

W
(k)
j,ℓ ,

=
L

∑

j=1

(

Mk,ξMk−1,kx
a,(j)

k−1

)

W
(k)
j,ℓ ,

=
L

∑

j=1

x
f ,(j)

k−1,ξ
W

(k)
j,ℓ , (41)

for ℓ = 1, ..., L and ξ ∈ {1, ...,N}, where we used Mk−1,ξ =
Mk,ξMk−1,k. 2

Before we continue with our introduction of ultra-rapid data
assimilation, we would like to study the reduced variable case in
the above Lemma 3.1. Clearly, to apply Mk,ξ to a state x(a) or

x(b), we need to know the full state. If only a part of the state x
is available, starting the model is no longer possible. However,
the Equation (40) is still valid for each of its components, i.e., if

W is known, the variable x
f ,(ℓ)

k,ξ ,i
of x

f ,(ℓ)

k,ξ
can be calculated from

the knowledge of x
f ,(ℓ)

k−1,ξ ,i
for all ℓ = 1, ..., L, representing the i-th

variable of the state vector of the l-th ensemble member obtained
by a forecast from time tk−1 to time tξ .

COROLLARY 3.2 (REDUCED SET OF MODEL VARIABLES). If the
observation operator H depends on the variables x1, ..., xñ of
the state x only, then the transformation matrix W(k) for the
assimilation of yk can be calculated from a) the first guess ensemble

data x
(b)
1 , ..., x

(b)
ñ and b) the observation yk. For a linear model M,

for the variables with index i we have

x
f ,(ℓ)

k,ξ ,i
=

L
∑

j=1

x
f ,(j)

k−1,ξ ,i
W

(k)
j,ℓ , (42)

for i = 1, ..., ñ, i.e., the formula (40) is valid and the ensemble
forecast based on the analysis with observation yk can be calculated
from the knowledge of the reduced set of variables only.

The consequence of Equation (41) is that for linear models we
can calculate the forecast based on the analysis at time tk by a
superposition of the forecast from time tk−1. The weight matrix

W
(k)
ℓ,j is calculated from the ensemble analysis at time tk given by

the linear ensemble data assimilation scheme. We can also use
Equation (41) recursively, which is formulated in the following
Theorem.

THEOREM 3.3. We assume we are given observations yj, j =
1, ..., k at times t1, . . . , tk. The goal is to calculate the forecasts

x
f ,(ℓ)

k,ξ
at time tξ based on the observations from t1 to tk and the

initial ensemble x
a,(ℓ)
0 at time t0 with an ensemble data assimilation

method as in Equation (11). If the model M is linear, we obtain

Fk,ξ = F0,ξW
(1) · · ·W(k) , (43)

for ξ = k+ 1, ...,N.

Proof. For a linear model, the generic step is given by Equation

(41). Then, the same equation is applied to x
f ,(j)

k−1,ξ
, which leads to

x
f ,(ℓ)

k,ξ
=

L
∑

j1=1

x
f ,(j1)

k−1,ξ
W

(k)
j1 ,ℓ

,

=
L

∑

j1=1





L
∑

j2=1

x
f ,(j2)

k−2,ξ
W

(k−1)
j2,j1



W
(k)
j1 ,ℓ

, (44)

and by the same step η times to

x
f ,(ℓ)

k,ξ
=

L
∑

j1 ,...,jη=1

x
f ,(jη)

k−η,ξ
W

(k−(η−1))
jη ,jη−1

· · · · ·W(k)
j1,ℓ

, (45)

for η ≤ k assimilation steps. In matrix notation and for η = k
this is Equation (43). 2

Note that the recursive application of Equation (41) implies
that any transformation matrix W(i) is obtained using the
observation yi and the full ensemble Fi−1,ξ .

The results for reduced data are also valid for the core formula
(43). We collect the relevant statements into the following
corollary. The matrix Fk,ξ contains the different state variables
in its rows and the columns represent the ensemble under
consideration. We employ the notation (Fk,ξ )i=1,...,ñ for the rows
with the variable indices i = 1, ..., ñ.

COROLLARY 3.4 (REDUCED SET OF MODEL VARIABLES). If the
observation operator H depends on the variables x1, ..., xñ of
the state x only, then the transformation matrix W(k) for the
assimilation of yk can be calculated from a) the first guess ensemble
data (F0,k)i=1,...,ñ , b) the observation yk and c) the previous
transformation matrices W(1) · · ·W(k−1) which depend on the
corresponding observations y1 · · · yk−1. For a linear model M, for
the variables with index i we have

(Fk,ξ )i=1,...,ñ = (F0,ξ )i=1,...,ñW
(1) · · ·W(k), ξ = k+ 1, ...,N, (46)

i.e., the formula (43) is valid and the ensemble forecast based on the
analysis with observation yk can be calculated from the knowledge
of the reduced set of variables only.

3.2. Ultra-Rapid Smoother Functionality
Smoothers are schemes which employ information from the
future to improve the estimate about some present state.
Alternatively, you could say that they use information now to
update past states.

When we consider the scenario of ultra-rapid data
assimilation, for the interval [t0, tN] we are given an ensemble of
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original states (35) over the full interval. When an observation is
arriving at time tk (ignoring delay usually needed for observation
processing and transfer), we can employ the same techniques
which are used for updating the analysis and forecast to the past
interval [t0, tk].

DEFINITION 3.5 (ULTRA-RAPID ENSEMBLE SMOOTHER).
Given the original first guess ensemble F0,ξ for ξ = 0, ...,N on

the time interval [t0, tN] we define the ensemble analysis given
the data y1, ..., yk by

F
(a)
k,ξ

:= F0,ξW
(1) · · ·W(k), ξ = 0, ...,N. (47)

This analysis ensemble is defined for the full time interval.

FIGURE 1 | We show the simulation of some trajectory by the Lorenz model in black, the first 8 cycles in (A), then 40 cycles in (B). The observations, which are

calculated by adding some Gaussian random error to the true observations, are shown as black dots. Here, we assume that we observe all three variables of the

model. The first guess trajectory as a blue curve. The first guess states for the observation time steps are shown as blue dots.

FIGURE 2 | We show the results of the ultra rapid data assimilation in comparison with the ensemble Kalman square root filter for the Lorenz 1963 model for N = 8

assimilation steps. In (A), the black curve is the original, black dots are the observations. The mean of the analysis ensemble of the ultra rapid data assimilation URDA

after k = 8 assimilation steps is shown in pink, where we need to note that here the information of the data is used to update the full curve at all points (i.e., the

estimate of the past is updated as well. The red curve shows the analysis ensemble mean of the sequential ensemble Kalman square root filter. (B–D) show the

sequential error curves of the analysis error, pink for URDA, red for the ensemble Kalman square root filter.
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In general, a convergence analysis of an ensemble Kalman
smoother and its comparison to a four-dimensional variational
data assimilation (4D-VAR) scheme over the time window [t0, tn]
can be found in Theorem 5.4.7 of Nakamura and Potthast [3].
For linear models and observation operators, the full Kalman
smoother and 4D-VAR are equivalent.

Clearly, if we replace the full model M by the ensemble, this
equivalence is no longer true. Also, if the numerical model M
used to calculate the ensemble is different from the true model
Mtrue, the temporal correlations, which are implicitly used when
we employ the analysis matrix W(k) to update the ensemble in
the past or in the future, may not be correct with respect to the
true ensemble correlations. In this case, the information yk in the
future of t0 may not improve the state estimate at time t0, but lead
to additional errors in this state estimate. We will demonstrate
this phenomenon in our numerical examples in section 4.

4. NUMERICAL EXAMPLES

The goal of this section is to study the ultra rapid data
assimilation for simple generic examples. We want to show that
the assimilation step can be carried out in a stable way and
that the ultra-rapid forecasts indeed show an advantage over
the ensemble forecasts without this step. Also, we would like
to understand the range of skill which we can achieve when

we compare it with the full standard data assimilation and
forecasting approaches.

4.1. Studying URDA for the Lorenz 63
Model System
Here, we start our study with the Lorenz 63 model Lorenz [20]. It
is a very well-known chaotic ODE system with three unknowns,
compare for example Nakamura and Potthast [3].

The Lorenz 1963 model is a system of three non-linear
ordinary differential equations

�

x = σ (y− x) , (48)

�

y = x(ρ − z)− y , (49)

�

z = xy− βz , (50)

with constants σ , ρ,β known as Prandtl number, the Rayleigh
number and a non-dimensional wave number. Here, for the
constants we take the classical values σ = 10, β = 8/3 and
ρ = 28. The implementation of the system is usually carried out
by a higher-order integration scheme such as 4th-order Runge-
Kutta, which we have employed for our numerical testing. The
setup for our case study is shown in Figure 1A with 8 cycles for
better visibility and Figure 1B with 40 cycles for studying the
error evolution.

FIGURE 3 | Studying the results of the ultra-rapid ensemble smoother over N = 32 assimilation steps. (A) shows the original data and the first guess of the Kalman

filter analysis cycle. The corresponding first guess error is compared in (B). (C,D) show the error of the full ultra-rapid ensemble analysis for the full time-scale between

t0 and tN for N = 32 time steps. In (D) we display the error for the curves t1, t4, t7, ..., t31, starting with a thin blue curve and ending with a thick red curve.
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Here, we want to test the feasibility of ultra rapid data
assimilation. The original curve is shown in black in Figure 1.
The measurements are calculated by adding a random Gaussian
error to this curve at the measurement times t1, t2, ..., tk with
1t = ti+1 − ti = 0.1 (without units). For the original, we have
used the above ODE systemwith σ = 10 to generate the truth. To
test data assimilation we have employed a modified system where
σ = 12 was chosen. Themean of the original first guess ensemble
for the full time period under consideration is shown in Figure 1

as a blue curve, with blue dots as the original first guess.
We have now followed two tracks. First, we have implemented

an ensemble Kalman square root filter. We start with a first
guess ensemble, which is generated at time t0 by adding random
Gaussian errors to the starting point of the original curve.
Then we assimilate the observations (the black dots) using the
Ensemble Kalman square root filter.

Second, the ultra-rapid data assimilation and forecasting cycle
has been implemented. The ultra rapid data assimilation has
been set up by first calculating the full first guess ensemble for
the whole time interval under consideration. Then, a modified
ensemble is calculated step by step following (43). We study N
time steps (showing results for N = 8 and N = 40). In more
detail, we have calculated the transformation matrix W(k) based
on the observations yk at time tk, k = 1, ...,N and the transformed

first guess ensemble x
b,(ℓ)
k−1,ξ

. Here, ξ is the time index of the

ensemble, i.e., ξ = 1, ...,N. We carry out the assimilation for all
time steps, changing the ensemble in the past as well as in the full
future over the time interval under consideration.

The result of N time steps is shown in Figure 2. First, the
example with N = 8 time steps is shown in Figure 2A,B, the
first guess errors for N = 25 and N = 40 time steps in
Figure 2C,D. Here, initially the ultra-rapid update is quite good,
approximating well the full ensemble Kalman square root filter
over 10 or 15 assimilation steps. Then, when the first guess
ensemble and the true trajectory diverge further, the assimilation
looses track and we obtain very large errors over time, as can be
seen by the peak of the pink curve in Figure 2D at about tk with
k = 34.

Here, we also investigate the ultra rapid data assimilation tool

as a smoother. We calculate the analysis ensemble F
(a)
k

defined in
(47) based on the original first guess ensemble F0.

In Figure 3 we study the filter and smoother results for a case
with N = 32. For the latter we update both the future and the
past. Errors of this with respect to the true curve are displayed in
Figure 3C,D . Here, we need to note that we simulate a realistic
setup in the sense that the true model Mtrue is different from
the model M used to calculate the first guess ensemble. That
has severe consequences for the convergence of the smoother.
With the errors in the model, we obtain errors in the first guess
ensemble and with this errors in the correlations and covariances

FIGURE 4 | We show the results of the mean-error of the ultra rapid data assimilation in comparison with the original first guess (no data assimilated) and the

ensemble Kalman square root filter for the Lorenz 1963 model. We used Nstat = 250 different initializations of the random number generator to obtain different

distributions for the observations and the initial ensemble. After assimilation of all data the mean error at each time step on the trajectory from the truth is counted. In

(A,B) we used L = 5 and N = 25 to obtain histograms showing in (A) the ratio of the mean-error of URDA divided by the mean-error of the model forecast without

data assimilation. For L = 5 in (B) the mean-error of the SRF divided by the one of URDA is displayed for N = 25 while the same is shown for N = 8 in (C). The ratio of

the mean-error of URDA divided by the initial forecast for N = 25 and L = 25 in (D).
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which are exploited by the ultra-rapid Kalman filter forecast and
the update of the past in the ensemble Kalman smoother.

Studying Figure 3C we see that the error is smallest on the
diagonal, i.e., for the analysis and short-term forecast based on
the ultra-rapid ensemble Kalman analysis. The errors for the
analysis or forecast increase with distance to the current point
in time. We expect that the errors are large for larger lead times.
But in general we do not expect that the errors in the past, i.e., at
the beginning of the interval [t0, tN] increase when we assimilate
more and more data. When the ensemble reflects the correct
correlations between the future and the past, the error should
decrease. However, with a numerical model which is different
from the true model, we also inherit errors into the temporal
correlations. As a consequence we observe that the error at t1
increases when we assimilate further data yk for k in the second
part of the interval [t0, tN].

In Figure 4 we evaluate the performance of URDA in a
statistical manner by using different initialisations for the applied
random number generator, which affects the observations drawn
from a Gaussian distribution as well as the construction of the
ensemble, and use different values of the starting point x0 =
x(t0), which is used to obtain the truth as well as the ensemble.
We evaluate differences of the corresponding mean from the
truth and take appropriate ratios. In Figure 4A the mean-error
of URDA is divided by the mean error of the free forecast (no
data assimilation, also abbreviated by no-DA) for L = 5 ensemble
member andN = 25 time steps on the trajectory. A clear positive
impact is visible with only very few cases where the free forecast

is better than URDA. Figure 4B shows the mean-error of the SRF
divided by the one of URDA. As expected, the evaluation shows
that in many cases the full SRF performs better compared to
URDA. However, comparing with the results shown in Figure 3C
this is what we expect due to the deviations after about N = 8
time steps. To test this, we show the result for the first 8 time steps
of the runwithN = 8 in Figure 4C and observe, that for a smaller
N these compete indeed much better with the SRF. Figure 4D
shows the result of the mean-error of URDA divided by the initial
forecast with no data assimilation for L = 25 ensemble member
and N = 25 time steps. We observe, that the improvement of
URDA with L = 25 compared to L = 5 is not significant. This
is no surprise since we deal with three prognostic variables where
an ensemble of L = 5 is already sufficient to describe the relevant
spread.

At the end of this section we highlight the impact of the time
step in the model, which translates to the time the forecast from
one point on the trajectory is performed. Note, this does not
affect the performance of the Runge-Kutta-Scheme where the
time step of the integration is kept fixed. We evaluate the ratio
of the deviations from the mean error from the SRF to URDA.
In Figure 5 we show results for different sizes of the time step
dt. Again we used Nstat = 250 and the total number of time
steps N = 25 with the number of ensemble members L = 5.
We observe, that for 1/4 of the standard time step size dt = 0.100
the SRF andURDA perform almost equally.With increasing time
step size we find more cases where the SRF outperforms URDA,
which is still moderate for the standard time step size. For three

FIGURE 5 | We show the ratio of the mean-error of the SRF divided by the one of URDA for different step sizes in time. Specifically, in (A) we used dt = 0.025, in (B)

dt = 0.050, in (C) the standard value dt = 0.100 and in (D) dt = 0.300.
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times this step size we see a clear benefit for the SRF. Note, since
we keep N = 25 fixed, the total length of the trajectory differs for
the different time step sizes dt.

4.2. URDA for Reduced Model Dynamics
In the second part of our numerical study we would like to
understand how ultra-rapid ensemble data assimilation can be
applied to the case where only a reduced set of variables is passed
down from the standard ensemble data assimilation framework.

In the framework of the Lorenz model, we have carried out a
study the use of the observation operators

H3 =





1 0 0
0 1 0
0 0 1



 , H2 =
(

1 0 0
0 1 0

)

, H1 =
(

1 0 0
)

, (51)

and study assimilation of observations of either the full state x,
the first two variables of the state or the first variable of the state
only.

We note that HQ will employ the corresponding selection
of variables depending on the cases H1, H2 or H3, i.e., H1Q
can be calculated from the knowledge of the first variable x1 of
x = (x1, x2, x3)

T only. Similarly, H2Q can be calculated based on
the knowledge of (x1, x2) of x = (x1, x2, x3)

T .
Here, we focus on the results for the use of H2 in

Figure 6. The effects are similar to the three-dimensional

version. Figure 6A displays the first 8 steps, and we see that
the SRF analysis and the URDA analysis are very close to
each other. The error is shown in Figure 6B, here only for
the two variables under consideration. Figure 6C,D display 30
assimilation setups. After 20 and 25 steps we observe first cases
where URDA is worse than no-DA. In all other cases it is
a big increase from the no-DA case and its quality becomes
close to the quality of the full square-root filter with subsequent
forecast.

5. CONCLUSIONS

We analyse and investigate a ultra-rapid data assimilation scheme
based on an ensemble square-root Kalman filter. Here, we have
studied the analysis cycle, a preemptive forecasting step and also
an ultra-rapid ensemble smoother.

For linear systems we have shown that the ultra-rapid data
assimilation is equivalent to the full ensemble square-root filter.
For non-linear systems, the Lorentz 63 system serves as a
standard test case which is widely used within geophysics or the
life sciences. We have carried out numerical tests of the URDA
scheme, which shows highly encouraging results. For a significant
number of assimilation and forecasting steps the URDA scheme
shows a similar forecasting skill as the square-root filter with full
model forecasts.

FIGURE 6 | We show the results of the ultra rapid data assimilation in comparison with the ensemble Kalman square root filter for the Lorenz 1963 model for N = 8

assimilation steps and the reduced data case with observation operator H2. In (A,C), the black curve is the original, black dots are the observations. The mean of the

analysis ensemble of the ultra rapid data assimilation URDA after k = 8 assimilation steps is shown in pink, where we need to note that here the information of the

data is used to update the full curve at all points (i.e., the estimate of the past is updated as well. The red curve shows the analysis ensemble mean of the sequential

ensemble Kalman square root filter. (B,D) show the sequential error curves of the analysis error for the two observed variables only, pink for URDA, red for the

ensemble Kalman square root filter.
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In particular, we have analyzed and tested the assimilation
of observations which are influenced by a selection of state
variables only, where the URDA scheme provides the possibility
to touch only the variables of interest for the assimilation and
preemptive forecasting or smoothing steps. This has very-high
potential for many applications, where high-frequency analysis
and/or forecasts need to be calculated, e.g., in the area of
brain surgery in neuroscience or in nowcasting in geophysical
applications.

This work aims to provide the basic theoretical inside and
study a standard non-linear system of wide interest, the Lorenz
63 system. Initial tests on a real-world system in geophysics have
been carried out in Etherton [25] and Madaus and Hakim[26].
Further work on error estimates for non-linear systems and the
application of the method in neuroscience, biological systems or
weather forecasting is still pending and will be our goal for the
near future.
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Data assimilation permits to compute optimal forecasts in high-dimensional systems as,

e.g., in weather forecasting. Typically such forecasts are spatially distributed time series of

system variables. We hypothesize that such forecasts are not optimal if the major interest

does not lie in the temporal evolution of system variables but in time series composites

or features. For instance, in neuroscience spectral features of neural activity are the

primary functional elements. The present work proposes a data assimilation framework

for forecasts of time-frequency distributions. The framework comprises the ensemble

Kalman filter and a detailed statistical ensemble verification. The performance of the

framework is evaluated for a simulated FitzHugh-Nagumo model, various measurement

noise levels and for in situ-, nonlocal and speed observations. We discover a resonance

effect in forecast errors between forecast time and frequencies in observations.

Keywords: Kalman filter, neural activity, prediction, dynamical system, verification

1. INTRODUCTION

Understanding the dynamics of natural complex systems is one of the great challenges in
science. Various research domains have developed optimized analytical methods, computational
techniques or conceptual frameworks to gain deeper insight into the underlying mechanisms
of complex systems. In the last decades, more and more interdisciplinary research attracted
attention building bridges between research domains by applying methodologies outside of
domains. These cross-disciplinary techniques fertilize research domains and shed new light on
their underlying properties. A prominent example is the mathematical domain of dynamical
systems theory that traditionally is applied in physics and engineering and that has been applied
very successfully in biology and neuroscience. For instance, taking a closer look at the spatio-
temporal nonlinear dynamics of neural populations has allowed to identify epilepsy as a so-called
dynamical disease [1]. This approach explains epileptic seizures as spatio-temporal instabilities
hypothesizing that epileptic seizures emerge by phase transitions well-studied in physics. Another
example is control theory that is well-established in electric engineering, e.g., in the cruise-control
in automobiles or the flight control of airplanes. Similar control engineering techniques have been
applied in neuroscience for some years now, e.g., to optimize electric deep brain stimulation in
Parkinson disease [2, 3].

Weather forecasts are an everyday service provided by national and regional weather services
that allows to plan business processes as well as private activity and serves as a warning system
for extreme weather situations, such as floods or thunderstorms. Weather forecast is also an
important research domain in meteorology that has been developed successfully in the last decades
improving the forecasts for both global phenomena and local weather situations. In detail, todays
weather services employ highly tuned and optimized meteorological models and data processing
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techniques to compute reliable forecasts. Specifically the
combination of an efficient model and measured meteorological
data enables researchers to provide various types of predictions,
such as the probability of rain or the expected temperature in
certain local regions. This optimal combination of model and
data is achieved by data assimilation [4] and yields corresponding
optimal forecasts.

In other research domains, prediction methods are rare
but highly requested. For instance, the prediction of epileptic
seizures [5] would dramatically improve the life of epilepsy
patients and spare some of them health-critical drug treatments.
The typical approach of seizure prediction classifies measured
neural activity [6, 7] into seizure-no seizure data, what however
does not provide forecasts of neural activity. Although such
forecasts are made possible by data assimilation techniques,
until today research in neuroscience does apply data assimilation
rarely. In recent years, data assimilation methods have been
applied in neuroscience for model parameter identification
primarily [3, 8–12]. The present work extends these studies
by a framework to both compute and validate forecasts in
neural problems. Although large parts of the methodology
presented is well-established in meteorological forecasts [4],
we extend the techniques by a focus on spectral features
in measurement data. Such spectral data features play an
important role in neuroscience since there is almost-proofed
evidence that neural information processing is encoded in
rhythmic activity. For instance, mammalian visual perception
is achieved by synchronization in the frequency range [30
Hz; 60 Hz] [13] and unconsciousness and sleep is reflected in
increased activity in the frequency range [0.5 Hz; 4 Hz] [14].
Moreover, epileptic seizures exhibit strong rhythmic patterns [1].
Consequently, we aim to forecast spectral distributions over
time. To our best knowledge the present work is one of
the first to predict spectral distributions optimally by data
assimilation.

Most recent data assimilation studies apply the unscented
Kalman filter [3, 10] that performs well for low-dimensional
models. The present work considers the ensemble Kalman
filter [15, 16] that has been shown to outperform the unscented
Kalman filter and still performs well for high-dimensional
models [17]. One of the major differences to previous studies
is that the data assimilation cycle applied here does not
estimate system parameters but providing reasonable forecasts.
We provide a detailed description of the data assimilation
elements and its extension to spectral feature forecasts. The
additional verification of the ensemble forecasts gives insights
into the power and weakness of spectral feature forecasts.
For instance, we find a resonance effect between forecast
time and the oscillation frequency of observations that yields
improved verification metrics although forecasts are not
improved.

The work is structured as follows. The Methods section
introduces the model, simulated observations, the ensemble
Kalman filter and the verification metrics applied. The
subsequent section shows obtained results for in situ-, nonlocal,
and speed observations and various measurement noise levels. A
final discussion closes the work.

2. MATERIALS AND METHODS

2.1. The Model
Single biological neurons may exhibit various types of activity,
such as no spike discharge, discharge of single spikes, regular
spike discharge, or spike burst discharges. These activity modes
can be described by high-dimensional dynamical models. Amore
simple model is the FitzHugh-Nagumomodel [18, 19] describing
spike discharges by two coupled nonlinear ordinary differential
equations

dV

dt
= V −

1

3
V3 − w+ I (1a)

τ
dw

dt
= (V + a− bw) (1b)

with membrane potential V , recovery variable w and
corresponding time scale τ , external input I, and physiological
constants a = 0.1, b = −0.15. In our study, we consider two
models. The nature model is non-homogeneous and time scales
and input vary according to

τn(t) = 10+
10t

T
, 0 ≤ t ≤ T (2a)

In(t) = 0.35+
0.95t

T
, 0 ≤ t ≤ T (2b)

with maximum time T. This model is supposed to describe the
true dynamics in the system under study and typically that one
does not know. The change of τn and In over time results in a
shift of oscillation frequency of the system, i.e., from larger to
smaller frequencies. Such a non-homogeneous temporal rhythm
is well-known in neuroscience, e.g., in the presence of anesthetic
drugs [20, 21]. The false model is not complete and represents
just an estimate of the system under study. This is the model with
which one describes systems and, typically, it is not correct. We
assume that we do not know the non-homogeneous nature of the
true model and assume temporally constant time scale and input

τf = 20, If = 1.3 (3)

leading to a single oscillation frequency. We point out that
τn(T) = τf and In(T) = If and both models converge to each
other for t → T.

The model integration over time uses a time step of 0.01 and
every 50 steps a sample is written out running the integration
over 5 · 104 steps in total. Initial conditions are x(t = 0) =
(1.0, 0.2)t . After numerical integration, we re-scaled the unit-less
time by αt → t with α = 0.002s rendering the sample time to
1t = 1 ms and the maximum time to tmax = 1s. This sets the
number of data points to N = 1,000.

To reveal non-stationary cyclic dynamics, we analyze the
time-frequency distribution of data with spectral density
S(tk, νm), k = 1, . . . ,K, m = 1, . . . ,M for number of time points
K and number of frequenciesM. The Morlet wavelet transform

W[y](t, ν) =
∫ ∞

−∞
y(t′)9∗

(

t′ − t

a(ν)

)

dt′
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FIGURE 1 | Noise-free dynamics of the Fitzhugh-Nagumo model and corresponding observations. (A) The model trajectory in phase space for non-stationary (black)

and stationary (red) dynamics. (B) The time series of corresponding observations H[x] for non-stationary and stationary dynamics. (C) The time-frequency evolution of

observations for non-stationary dynamics in the true model with Equation (2). (D) The time-frequency evolution of observations for the stationary dynamics with

Equation (3).

applied uses a mother wavelet 9 with central frequency fc = 8
and the time-frequency distribution has a frequency resolution
of 1ν = 0.5 Hz in the range ν ∈ [5 Hz; 20 Hz]. The parameter
a = fc/ν is the scale that depends on the pseudo-frequency ν.
By the choice of the central frequency fc, the mother wavelet has
a width of 4 periods of the respective frequency. This aspect is
important to re-call while interpreting temporal borders of time-
frequency distributions. For instance, at a frequency of 15 Hz
border disturbances occur in a window of 0.26 s from the initial
and final time instant.

Figure 1A presents the phase space dynamics of the true
model (black) and the false model (red) and one observes
nonlinear cyclic dynamics. For illustration, Figure 1B shows the
potential V . Oscillations of the true model (black) decelerate
with time while the false model dynamics (red) is a stationary
limit cycle. This can be seen even better in the time-frequency
distribution shown in Figures 1C,D of the corresponding
observations.

2.2. Observations
To relate model variables to observations, data assimilation
introduces the notion of a measurement operator H :X ∈ M →
Y ∈ O. This operator maps system variables x ∈ M in model
spaceM to observable variables y ∈ O in observation spaceO.

The system dynamics can be observed in various ways and the
observation operator is chosen correspondingly. Measurements
directly in the system are called in-situ observations and,
typically, the measured observable is proportional to a model
variable. In this case, the operator is proportional to the
identity. Examples for such observables are temperature or
humidity in meteorology and intra-cellular potentials or Local
Field Potentials in neurophysiology. Conversely, measurements
outside the system are called nonlocal observations capturing
the integral of activity from the system. Examples for such
observations are satellite radiances or radar reflectivities in
meteorology and encephalographic data and the BOLD response
in functional Magnetic Resonance Imaging in neurophysiology.

The present study considers scalar in-situ observations,
nonlocal observations and temporal derivatives and in-situ
observations. We begin with in-situ observations y(t) disturbed
by measurement noise

y(t) = V(t)+ κξ (t), (4)

where ξ (t) are Gaussian distributed uncorrelated random
numbers with 〈ξ (t)〉 = 0, 〈ξ (t)ξ (t′)〉 = δ(t − t′), 〈·〉 denotes
the ensemble average and V(t) is the membrane potential from
model (1). The noise level κ is chosen to κ = 0 (no noise), κ =
0.5 (medium noise), and κ = 0.8 (large noise). Figure 2 shows
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FIGURE 2 | Noisy in-situ observations. (A) Time series for medium noise level κ = 0.5. (B) Time series for large noise level κ = 0.8. (C) Time-frequency distribution for

medium noise level κ = 0.5. (D) Time-frequency distribution for large noise level κ = 0.8.

the noisy observations under study. The oscillation frequency
decreases corresponding to the non-homogeneous dynamics (2).

From Equation (4), one reads off the observation operator

H =
(

1 0
)

∈ ℜ1×2

with y = Hx, x = (V ,w)t ∈ ℜ2.
For comparison, we also consider nonlocal observations with

the observation operator

H =
(

1 1
)

∈ ℜ1×2

yielding

y(t) = V(t)+ w(t)+ κξ (t), (5)

for the same noise levels κ as above. Figure 3A shows time series
and corresponding time-frequency distributions. The frequency
of the oscillation decreases over time similar to the in-situ
observations.

As already stated, the aim of the present work is to introduce
the idea to forecast temporal features. As a further step in
this direction, let us consider temporal changes of the signal
evolution, i.e., the speed of the system. To this end the definition
of the observation operatorH is extended to

y(t) = Hx(t)

with

H =
(

d
dt

0
)

∈ ℜ1×2 (6)

yielding

y(t) =
dV(t)

dt
+ κξ (t),

for two noise levels κ = 0.0 and κ = 0.02. Numerically, the
derivative dV(t)/dt is implemented as V(tn) − V(tn−1) at time
instance tn. Figure 3B shows the corresponding time series. We
recognize the short time scale of the spike activity in in-situ
observations as couples of sharp positive and negative spikes.

2.3. Ensemble Transform Kalman Filter
One of the major aims of data assimilation techniques is the
optimal fit of model dynamics to observed data. Here, we
introduce the major idea with a focus on the 2-dimensional
model (1) and the scalar observation. Observations y(t) evolve in
the 1-dimensional observation space, while the model solutions
are embedded in the 2−dimensional model phase space.

2.3.1. Analysis Ensemble
To merge observation y(t) and model background state xb(t) at
time t optimally, the best new model state xa minimizes the cost
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FIGURE 3 | Nonlocal and speed observations at various measurement noise levels κ. (A) Time series and time-frequency distributions of nonlocal observations

(B) time series of speed observations.

function

C(xa) = (xa − xb)
tB−1(xa − xb)+ (y−Hxa)

t(y−Hxa)/R

= min!, (7)

i.e., the solution is the minimum of the cost function C. Here,
H is the observation operator, xa is called the analysis, B is
the model error covariance matrix and R the observation error.
If the assumed dynamical model and the assumed observation
operator used in the data assimilation procedure are the true
model and operator, respectively, then the assumed observation
error is identical to the true error, i.e., R = κ2. However, typically,
one does not know the true observation error κ and R can just be
estimated. This is the case we consider in the present work. In
the present implementation R = 1.5. For given matrix B and the

scalar R, the optimal new model state is

xa = xb +
1

R+HBHt BH
t(y−Hxb). (8)

This is the major result of the 3DVar technique for scalar
observations [10].

Conversely, if the covariance error matrix B is not known,
it can be estimated from the model. To this end, one considers
an ensemble of model states {xl

b
}, l = 1, . . . , L of L ensemble

members and estimates B by

B ≈
1

L− 1

L
∑

l= 1

(

xlb − x̄b

) (

xlb − x̄b

)t
(9)

=
1

L− 1
XXt (10)
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with the ensemble mean x̄b =
∑L

l= 1 x
l
b
/L and Xkl = (xl

b
)k.

In applications, we choose L = 10 if not stated differently.
Introducing the equivalent of X in observation space Y = HX,
Equation (8) reads in model space

xa − xb =
1

(L− 1)R+ YYtXY
t(y−Hxb) (11)

and in observation space

ya − yb =
YYt

(L− 1)R+ YYt (y− yb) (12)

with ya,b = Hxa,b. Since YY
t and R are positive-definite scalars,

0 <
ya − yb

y− yb
< 1 (13)

stating that the analysis equivalent in observation space ya is
always closer to the observation as the background equivalent in
observation space yb.

The ensemble transform Kalman filter (ETKF) [22] optimizes
observation and background ensemble members {xl

b
} to gain

an analysis ensemble {xla} in the ensemble space. This space is
L-dimensional and is spanned by the ensemble members

xb = x̄b + Xw

with the ensemble space coordinates w ∈ ℜL. Re-considering the
optimization scheme (7) in this space

w̄ = PYt(y− ȳb)/R, P =
(

(L− 1)I+ YtY/R
)−1 ∈ ℜL×L

with ȳb = Hx̄b and the identity matrix I ∈ ℜL×L. Then the
analysis ensemble mean x̄a and its covariance Pa reads

x̄a = x̄b + Xw̄ (14)

Pa = XPXt . (15)

The analysis ensemble members can be calculated by

xla = x̄b + Xwl
a, (16)

with wl
a ∈ ℜL, l = 1, . . . , L. Let us define the deviations from the

analysis mean

Wl = wl
a − w̄, l = 1, . . . , L (17)

Pa =
1

L− 1
XaX

t
a (18)

corresponding to (10) and with Wl ∈ ℜL. Defining the matrix
W ∈ ℜL×L with columns Wl, the ansatz P = WWt , and
Equation (15) yields Xa =

√
L− 1XW. With the singular value

decomposition P = UDUt , the orthogonal matrix U and the
diagonal matrixD, essentially we gain

W = UD1/2U
t
,

where D
1/2
kk

=
√
Dkk. This is the square-root filter

implementation of the ETKF [23].
Equation (7) implies that all states, observations, covariances

and operators are instantaneous. Extensions of this formulation
are known, e.g., as the 4D-ENKF or the 4DVar [24–26]. Most
of these previous extensions imply an instantaneous observation
operator H. In the previous section, we considered the speed
of observations as the observations under study implying the
temporal derivative of observed signals. This derivative is
nonlocal in time and hence non-instantaneous. Here, we argue
that the system evolves on a time scale that is much larger than
the sampling time or, in other words, the sampling rate is high
enough that the temporal derivative can be considered as being
local in time. Consequently, Equation (7) may still hold in a good
approximation.

2.3.2. Inflation
In each analysis step, the analysis equivalent in observation
space ya moves away from the model background state yb
closer to the observation y, cf. discussion of Equation (13).
This assumes that observations reflect the true state. Of course,
observations usually are errorneous due to measurement errors
or errors in the observation operator. This is taken care of by
the model error covariance matrix R. The uncertainty of the
model state in observation space is described by the covariance
estimator YY t . However, the model has errors which are not
completely reflected by the state estimate error covariance matrix
YY t , since this is calculated based on an ensemble of model
forecasts with the same simulated model equations. To take
care of the model error and draw the analysis closer to the
background state, typically one enhances the ensemble spread by
inflation.

For in situ- and nonlocal observations we have implemented
constant multiplicative inflation by scaling wl

a in Equation (16)
by a factor wl

a → 1.4 · wl
a. In addition, we employed additive

covariance inflation by B → B+ 0.15I in Equation (10) with the
2×2 unity matrix I. For speed observations, we have reduced the
multiplicative inflation factor to 1.05 and the additive covariance
inflation factor to 0.05.

2.4. Data Assimilation Cycling
Putting together models and data assimilation, the model
evolution is controlled by observed data optimizing the initial
state of the model iteration. Our data assimilation cycle starts
with initial conditions from which the model evolves during the
sampling interval. The model state after one sampling interval
1t is the background state or first guess xb. The subsequent data
assimilation step estimates the analysis state xa that represents
the initial state for the next model evolution step. In other
words, data assimilation tunes the initial state for the model
evolution after each sampling interval. Using the ETKF, this
cycling is applied for all ensemble members which obey the
model evolution and whose analysis state is computed in each
data assimilation step. Initial ensemble member model states
were xl(0) = (η1, η2)

t , l = 1, . . . , L with random uniformly
distributed numbers η1, η2 in the range η1, η2 ∈ [0; 1].
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2.5. Ensemble Prediction and Verification
The aim of the present work is to show how optimal forecasting
can be done. Free ensemble forecasts are model evolutions over a
time typically longer than the sampling time. This forecast time
is called lead time. The initial state of the free forecasts are the
analysis model states determined by data assimilation.

In the present work, we are interested in forecasts at every
sample time instant. To this end we compute the model activity
at a certain lead time. This forecast is computed for all ensemble
members what renders it an ensemble prediction. The forecasts
are solutions of the model xf (t; ta) at time t ≥ ta with initial
analysis state xa at time t = ta and lead time T = t −
ta. To compare them to observations, forecasts are mapped to
observation space yielding model equivalents

yf (t; ta) = Hxf (t; ta).

Later sections show free forecasts yf (t; t−T) with fixed lead time.
In the following, model forecasts with the sampling time as lead
time T = 1t are called first guess.

Naturally, one expects that the forecasts diverge from
observations with longer lead times but the question is which
forecasts can still be trusted, i.e., are realistic. Essentially we ask
the question how one can verify the forecasts. To this end, various
metrics and scores have been developed [27]. Sincemost forecasts
are validated against observations, metrics are based on model
forecast equivalents in the observation space.

2.5.1. First Guess Departure Statistics

To estimate the deviation of forecast ensemblemembers y
f (l)
n with

forecast ensemble means ȳ
f
n =

∑L
l= 1 y

f (l)
n , n = 1, . . . ,N from

observations yn, n = 1, . . . ,N of number N, we compute the
mean error (bias)

bias =
1

N

N
∑

n= 1

yn − ȳ
f
n,

the root-mean square error

rmse =

√

√

√

√

1

N

N
∑

n= 1

(yn − ȳ
f
n)2

and the ensemble spread

spread =
1

N

N
∑

n= 1

√

√

√

√

1

L− 1

L
∑

l= 1

(y
f (l)
n − ȳ

f
n)2.

For scalar observations and corresponding forecasts, i.e.,

temporal time series, y
f
n = yf (tn; tn − T), n = 1, . . . ,N and

N is the number of time points. Conversely, for time-frequency
distributions S(t, ν) computed from the observation time series
by a wavelet transform (cf. section 2.1) with K time points andM

frequencies, y
f
n = S(tk, νm), k = 1, . . . ,K, m = 1, . . . ,M, n =

(m − 1)K + k and N = KM is the number of all time-frequency
elements.

The time-frequency distribution represents the spectral power
distribution S at various time instances. Since spectral power is
a positive-definite measure, the distance of two time-frequency
distributions could be computed differently as a rootmean square
error. We can interpret the rmse as the Euclidean distance
in high-dimensional signal space. However, the spectral power
lies on a manifold in signal space and hence the distance
between spectral power values is a Riemannian distance [28, 29].
Alternatively, the distance between time-frequency distributions
may represent the temporal average of distances between two
instantaneous power spectra S1(tk, ν), S2(tk, ν) at time instance
tk. A corresponding well-known distance measures is the time-
averaged Itakura-Saito distance (ISD) [29, 30]

ISDk =
1

M

M
∑

m= 1

Sobs(tk, νm)

Sfc(tk, νm)
− ln

Sobs(tk, νm)

Sfc(tk, νm)
− 1,

ISD =
1

K

K
∑

k= 1

ISDk.

This distance measure is not symmetric in the spectral
distributions and hence not a metric. As an alternative, one may
also consider the log-spectral distance (LSD) [29, 31]

LSDk =

√

√

√

√

1

M

M
∑

m= 1

[

10 log10
Sobs(tk, νm)

Sfc(tk, νm)

]2

, LSD =
1

K

K
∑

k= 1

LSDk

which has the advantage that it is symmetric in the distributions.
In both latter measures Sobs and Sfc are the power spectra of
observations and forecasts, respectively.

As pointed out above, we hypothesize that spectral features
extracted from forecasts can be predicted in a better or more
precise way than forecasts themselves. Since measurement noise
plays an important role in experimental data, we evaluate
predictions for medium and large noise levels κ compared to
κ = 0. The skill score [32]

SS(κ) = 1−
rmse(κ)

rmse(κ = 0)
, κ = 0.5, 0.8

reflects the deviation of forecast errors at medium and large
noise levels from noiseless forecasts. For SS = 0, forecasts have
identical rmse and SS < 0 (SS > 0 ) reflects larger (smaller) rmse,
i.e., worse (better) forecasts. The skill score SS is less sensitive
to the bias as the rmse, and that also plays an important role in
the evaluation of forecasts (similarly to the standard deviation).
However, for small bias SS > 0 is a strong indication of improved
forecasts.

According to Equation (10), the ensemble is supposed to
describe well the model error. The ensemble spread represents
the variability of the model and an optimal ensemble stipulates
spread = rmse [33]. The spread-skill relation [34]

SSR =
spread

rmse
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quantifies this relation. If SSR > 1, the ensemble spread is too
large yielding bad estimates of the analysis ensemble and free
forecasts, whereas SSR < 1 reflects a too small spread giving
observations too much weight and yielding bad estimates of
analysis ensemble and forecasts as well.

2.5.2. Ensemble Distribution Statistics
A representative forecast ensemble has the same distribution
as the observations. This can be quantified by computing the
rank of an observation in a forecast ensemble [35, 36]. If
this rank is uniformly distributed, then the ensemble describes
well the variability of the observations. Conversely, if the
rank distribution has an U-shape (inverse U-shape) then most
observations lie outside (inside) the range of the ensemble and
the forecast ensemble is not representative. To estimate the shape
of the rank distribution, we parameterize it by a beta-function

f (x) =
Ŵ(α + β)

Ŵ(α)Ŵ(β)
xα−1(1− x)β−1, x ∈ [0, 1]

with the gamma-function Ŵ(x) and two parameters α, β > 0.
For a uniform distribution α = β = 1, and U-shape (inverse
U-shape) distributions have α,β < 1 (α,β > 1). Computing the
sample of ranks r ∈ [0, L] from the set of forecast ensembles and
observations, their mean µ and variance σ 2 permits to estimate
the function parameters by

α̂ =
µ

L

(

µ(L− µ)

σ 2
− 1

)

β̂ =
(

1−
µ

L

)

(

µ(L− µ)

σ 2
− 1

)

.

The derived β−score [35]

βc = 1− 1/

√

α̂β̂

equals 0 for a uniform distribution and βc > 0 (βc < 0) reflects
the ensemble overestimation (underestimation) of the model
uncertainty for an inverse U-shaped (U-shaped) distribution. In
addition, the β-bias [35]

βb = β̂ − α̂

quantifies the skewness of the rank distribution and βb = 0
reflects symmetric distributions. β−bias values βb > 0 (βb <

0) reflect a weight to lower (higher) ranks and the majority of
ensemble members is larger (smaller) than observations.

3. RESULTS

At first, we consider in-situ observations and evaluate the
data assimilation cycle to illustrate some properties of the
ETKF. Subsequently, we present forecasts for in-situ observations
as time series and time-frequency distributions and evaluate
the corresponding ensemble forecasts by statistical metrics
well-known from verification in meteorology. To understand
the specific nature of in-situ observations, subsequently we

also consider nonlocal observations and speed observations
and present corresponding verification results. Eventually, we
compute advanced statistical estimates specific for spectral power
distributions and verify corresponding forecasts.

3.1. Data Assimilation Cycle—in-situ

Observations
To start, we consider in-situ observations. Figure 4 shows
observations, the ensemble mean of first guess and analysis
equivalents in observations space. We observe that the analysis
(red) is always closer to the observation (black) than the first
guess (blue). This validates Equation (13). Moreover, visual
inspection tells that higher noise levels yields worse fits of the first
guess and the analysis to observation. This will be quantified in
more detail in later section 3.3 .

To illustrate the ensemble evolution, Figure 5 shows
observations and the ensemble mean (blue solid line) and the
single ensemble members (blue dots) of the first guess in an
initial and final time interval. We observe that the ensemble
starts with a narrow distribution while it diverges rapidly after
several time steps. The ensemble spread about the ensemble
mean reached after the initial transient phase remains rather
constant over time.

3.2. Forecast—in-situ Observations
Now let us turn to the forecasts. In the data assimilation cycle,
after one model step and hence one sampling time interval, the
analysis is computed and initializes the phase space trajectory
of the model evolution for the subsequent model step. In free
forecasts yf (t; ta), the model is integrated over a certain lead
time T = t − ta initialized by the analysis at each time
instant ta. Figures 6A–C shows time series of observations and
forecast ensemble mean equivalents for two lead times. For the
short lead time T = 10 ms the first guess equivalent follows
rather closely the observation, whereas it is phase-shifted to the
observation for large lead time 40 ms. This holds true for all noise
levels.

The time-frequency distribution of the observations and
forecast equivalents is shown in Figures 6D–F. The time-
frequency distribution of forecasts at short lead time resembles
well the time-frequency distribution of observations, whereas
prominent differences between large lead time-forecasts and
observations occur, especially at the temporal borders.

3.3. Verification—in-situ Observations
To quantify the differences between forecasts and observations
detected by visual inspection in section 3.2, we compute the
forecast departure statistics subject to the lead time. Figure 7A
shows that rmse of time-frequency data increases monotonically
with lead time and it increases and finally decreases when based
on time series data. The periodicity of rmse results from the
increasing forecast-observation delay that increases with the lead
time. Hence at a phase lag of π when the lead time is half the
mean oscillation period the rmse is maximum. This explains why
the two rmse minima have a temporal distance of ∼ 70 ms what
corresponds to one period of the mean system frequency of 14
Hz. Moreover, the bias decreases monotonically with the lead
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FIGURE 4 | In-situ observations y, ensemble mean of first guess H[x̄b] and ensemble mean of analysis H[x̄a] in observation space for no noise κ = 0 (A), medium

noise level κ = 0.5 (B), and large noise level κ = 0.8 (C). In (A) the right panel zooms in a signal part illustrating that the analysis mean (in observation space, red

color) is closer to the observations (black color) than the first guess mean (in observation space, blue color) in accordance to theory, see section 2. In all panels,

observations are color-coded in black, first guess equivalents in observation space in blue and analysis equivalents in observation space in red.

FIGURE 5 | Illustration of the temporal evolution of ensemble spread in observation space. (A) κ = 0, (B) κ = 0.5, (C) κ = 0.8. Observations are color-coded in black,

the ensemble mean of the first guess is color-coded in blue and solid line and the single ensemble members are color-coded in blue and single dots.
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FIGURE 6 | In-situ time series and time-frequency distributions of free ensemble forecasts for two lead times T and different noise levels. (A–C) Time series,

observations are color-coded in black, the ensemble mean of first guess equivalents in observation space H[x̄f ] is color-coded in blue. (D–F) Time-frequency

distributions. The forecasts shown are ensemble means of first guess equivalents in observation space H[x̄f ]. It is important to re-call that disturbances occur in a

window of 4/f from the left and right temporal borders where f is the corresponding frequency, cf. section 2. (A,D) κ = 0, (B,E) κ = 0.5, and (C,F) κ = 0.8.

time for time series and increases for time-frequency data. To
summarize these findings, we compute the skill score SS. Since
the rmse for different noise levels approach each other for large

lead times the skill score approaches SS = 0 (Figure 7B). We
observe that the skill score of time-frequency data exceeds SS of
time series data.
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FIGURE 7 | Ensemble verification metrices and scores with respect to lead times. (A) rmse (solid line) and bias (dashed line) based on time series and time-frequency

distributions. (B) Skill score SS(κ ) = 1−rmse(κ )/rmse(0). (C) rmse (solid line) and spread (dashed line) based on time series and time-frequency distributions.

(D) Spread-skill ratio SSR =spread/rmse. (E) Features of ensemble rank histogram β-score and β-bias with respect to lead times. Colors in (A,C,D,E) encode κ = 0

(orange), κ = 0.5 (black), and κ = 0.8 (red), line types in (B,D,E) encode time series data (dashed-dotted) and time-frequency distributions (solid). The estimates

bias, rmse, and spread are averages over N = 1,000 observations for each lead time.

The ensemble spread decreases with lead time in both time
series data and time-frequency data to values smaller than the
rmse. This yields a decreasing spread-skill relation where SSR
is well below SSR = 1 for both time series data and time-
frequency distribution data. We note that SSR falls faster to lower
values for time-frequency distribution data. Since one expects of
good filters that the ensemble variations (spread) explain well the
error (rmse), here the forecast ensemble of time series explains
better the observations than time-frequency data since their SSR
is closer to SSR = 1.

The reliability of the ensemble forecasts can be evaluated by
rank histograms, i.e., the β−score βc and β−bias βb. Figure 7E

shows that βc decreases from positive to negative values both
for time series and time-frequency distribution data. This reveals
an underestimation of the model uncertainty. The β−bias
remains positive-definite for time series data whereas βb of time-
frequency distribution data decreases from positive to negative
values. This result reveals that the majority of ensemble members
are larger than the time series observations and smaller than the
time-frequency spectral power observations.

To understand better why the ensemble spread shrinks at
large lead time, Figure 8 compares the ensemble mean of the
model forecasts in phase space with the true phase space data.
The forecasts exceed the true data at lead time T = 1 ms.
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FIGURE 8 | Phase space dynamics for short and long lead times. The ensemble mean of forecasts and the true data are color-coded in red and black, respectively.

The blue-coded points represent the false model data.

Conversely the forecast spread is much smaller than the true data
at T = 80 ms since the forecasts obey the false model dynamics
that evolves on a smaller phase space regime. Consequently the
spread shrinkage with the lead time results from the smaller phase
space regime of the false model.

3.4. Nonlocal Observations
To understand how specific the gained results from in-
situ observations are, we compare them to statistics of
other data type. Now let us consider nonlocal observations
subjected to various noise levels. Figures 9B–D shows the
time-frequency distributions for three noise levels and three
lead times T. Forecasts at medium lead time T differ
clearly to observations and forecasts at short and long lead
time.

To understand this, we take a closer look at the forecast
time series at T = 40 and compare it to the observations,
cf. Figure 9A. Re-call that the analysis sets the initial condition
for forecasts. For a lead time T = 40 ms the forecasts
are in a fixed phase relation to an observation oscillations
with ν0 = 12.5 Hz since then T = 1/ν0 is exactly
one period of this oscillation. This fixed phase relation is
observed in Figure 9A at ∼0.5 s. Before and after that time,
the observation frequency is larger and smaller, respectively, see
also Figure 6, and the forecasts are out of phase. In addition, in
the beginning and end the forecasts do not evolve rhythmically
yielding missing spectral power, cf. Figures 9B–D. Summarizing,
forecasts may resonate with oscillatory observations at frequency
ν0 = 1/T.

The departure statistics between forecasts and observations
resembles the findings for in-situ observations, cf. Figure 10A.
Time-frequency distributions have almost optimal skill score
SS for medium and large lead times, however with too small
ensemble spread (SSR is very small). Conversely, time series data
yield worse skill score but larger ensemble spread. Moreover,
the rmse and bias have a maximum at about T = 25 ms and
a minimum at about T = 45 ms. The minimum is explained

above as a resonance between forecast time and observation
frequency.

These results are in good accordance to the rank histogram
features βc and βb seen in Figure 10B. Very short lead times
yield βc > 0 reflecting an overestimation of the spread, otherwise
βc < 0 reflecting a too small ensemble spread. This holds true
for all data types and all noise levels. The β−bias is similar to
Figure 7 and shows that the majority of the ensemble members
is larger than the time series observations and smaller than the
spectral power values.

Summarizing, the ensemble varies much with the lead time
what indicates a fundamental problem in the ensemble forecast.

3.5. Speed Observations
Spectral power takes into account data at several time instances.
Since to our knowledge Kalman filters have not been developed
yet for observation operators nonlocal in time, we take a first
step and consider speed observations subjected to two noise
levels. Figure 11A compares observations, first guess and analysis
in data assimilation cycling for the same number of ensemble
members as in the previous assimilation examples. We observe
that the first guess and analysis do not fit at all to the observations
and hence the assimilation performs badly.

To improve the assimilation cycle, we diminish the
observation error to R = 0.01 drawing the analysis closer
to the observations. In addition, a larger ensemble improves the
estimation of the model covariance inflation and we increase
the number of ensemble members to L = 50 while decreasing
the inflation factors to 1.05 (multiplicative inflation) and
0.05 (additive inflation). Figure 11B demonstrates that these
modifications well improve the assimilation cycle. Now the
first guess and analysis fit much better to the observations. An
increased noise level renders the first guess and analysis less
accurate.

The forecasts in Figure 12 show that the assimilation cycle
captures the upper observation spikes for T = 40 ms whereas
forecasts at larger lead times are worse.
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FIGURE 9 | Time series and time-frequency distributions of free ensemble mean forecasts compared to nonlocal observations. (A) Forecast for T = 40ms (blue) and

noise-free observations (black). (B–D) Forecasts for two lead times T and observations at different noise levels. (B) κ = 0, (C) κ = 0.5, and (D) κ = 0.8.

This can be quantified by departure statistics metrics as shown
in Figure 13. The rmse increases slightly with lead time, i.e., the
forecast error is larger for larger forecast times, while the bias
is rather lead-time independent. Moreover, we observe that the
spread is much smaller than the rmse. Since reliable ensemble
forecasts should have a unity spread-skill ratio, this too small
spread reflects a too small analysis inflation factor.

These results are in good accordance to the rank histogram
features βc and βb seen in Figure 14. The negative values of βc

for all lead times reflects the underestimation of the spread and
the β−bias βb ≈ 0 indicates that this underestimation is present
for all forecast values. This holds true for both noise levels.

3.6. Advanced Statistical Measures
Since the rmse is not an optimal measure to quantify the
difference between time-frequency distributions, we compute
more advanced measures specific for power spectra. The Itakura-
Saito distance (ISD) and the log-spectral distance (LSD) increase
with the lead time for in-situ observations with a light local
maximum at about T = 40 ms, cf. Figure 15A. A closer look
at Figure 6 reveals that the forecast spectral power at T = 40
is much smaller than the observation spectral power explaining
this local increase of distance. The time-frequency distribution
distances are rather similar in all noise levels. Moreover,
spectral distances between nonlocal observations and forecasts
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FIGURE 10 | The departure metrics Bias, rmse and spread of forecasts of nonlocal observations, the corresponding skill score SS and spread-skill ratio SSR (A) and

the rank statistics βc and βb (B). The color- and line-coding is identical to the Figure 7. The estimates Bias, rmse, and spread are averages over N = 1,000

observations for each lead time.

exhibit a strongly non-monotonic dependence of the lead time.
This is in good accordance to the results with the rmse in
Figure 10.

Time frequency distributions appear to represent instant-
aneous spectral power. However, the spectral power distributions
at subsequent time instances are strongly correlated dependent
on the frequency. The correlation length is τ = 4/f leading
to distortions at the temporal borders. Since the major spectral
power occurs in the frequency interval [11 Hz; 15 Hz], i.e., for
correlation times 0.27 ≤ τ ≤ 0.36, we define distorted time
intervals with width 0.3 s and estimate improved time-frequency
distribution distances neglecting the distorted initial and final
time interval. Figure 15B shows the corresponding results. We
observe that rmse, ISD and LSD depend similarly on the lead

time for both data types. Moreover, ISD and LSD are slightly
smaller than their equivalents for the full time interval shown in
Figure 15A.

4. DISCUSSION

The present work applies well-established techniques known
in meteorology to find out whether they can be useful to
forecast spectral features in other science domains where spectral
dynamics plays an important role, such as in neuroscience. For
in situ- and nonlocal observations, the assimilation of spectral
features is indirect since the features are computed after the
computation of conventional forecasts, i.e., in time series. We
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FIGURE 11 | Observations, first guess and analysis for speed data. (A) Noise-free observations and low number of ensemble members L = 10. (B) Two

measurement noise levels and the modified assimilation parameters R = 0.01, L = 50, and the modified inflation factors.

FIGURE 12 | Time series of observations and forecasts (model equivalent in observation space) at two lead times and two noise levels. (A) κ = 0.0 (B) κ = 0.05.

Observations are color-coded in black and forecasts in blue. Parameters are identical to parameters in Figure 11.

show that they strongly improve skill scores (Figures 7, 10)
for large lead times, whereas their spread is worse than for
conventional forecasts for large lead times. This holds true for all
measurement noise levels under study. In general, the ensemble
forecast verification points to problems with the ensemble spread
in all data types. This may result from a poor estimation of the

model error covariance B by too few ensemble members and a
non-optimal choice of the inflation factor.

Since time-frequency distributions show time-variant spectral
power, it is necessary to verify forecasts by spectral power-
specific measures and take care of spectral power-specific
artifacts, cf. Figure 15. The conventional estimate rmse and the
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FIGURE 13 | The departure metrics bias, rmse, and spread of forecasts to speed observations and the corresponding skill score SS and spread-skill ratio SSR.

Comparison of (A) bias and rmse and (B) spread and rmse. The skill score relates the rmse at both noise levels. The colors encode the noise level κ = 0 (orange) and

κ = 0.05 (black). Parameters are identical to parameters in Figure 11.

FIGURE 14 | Rank statistics βc and βb for the ensemble in the presence of speed observations. The color-coding is identical to Figure 13. Parameters are identical

to parameters in Figure 11.

spectral-power specific estimates ISD and LSD behave similarly
with respect to the lead time. Small differences between rmse and
both ISD and LSD originates from the fact that ISD and LSD
are time-averages over instantaneous spectral distance measures,
whereas rmse averages over all frequencies and time instances
and hence smoothes differences. Consequently ISD and LSD
appear to be better verification measures of time-frequency
distributions. Since LSD is a metric but ISD is not, future work
will derive score measures based on LSD equivalent to the skill
score SS. Moreover, we find that the border artifacts introduced
by the wavelet transform do not affect our results qualitatively.
Nevertheless, we recommend to exclude these artifacts in future
work.

Conversely, speed observations consider the dynamical
evolution of the system and are a very first approximation to
a direct spectral feature. This is true since speed observations
do not take into account the system state and observation
at a single time instance only. Future work will extend this
approach to a larger time window what allows to compute the
power spectrum that can be mapped to a single time instance.
Since generalizations or differential operators are integral

operators [37], future work will consider integral observation
operators.

Since spectral feature forecasts are sensitive to certain
frequencies, they are sensitive to lead time-observation frequency
resonances. Such resonances seem to improve the forecast
although these resonances are artifacts. To our best knowledge,
the current work is the first to uncover these resonances that may
play an important role in the interpretation of forecasts.

The ensemble data assimilation cycle involves several modern
techniques, such as multiplicative and additive covariance
inflation that well improves the forecasts. As a disadvantage, the
spread for short lead times is too large . Future work will improve
the ensemble statistics by adaptive inflation factors [38] and
quality control methods, e.g., first guess checks [39] to remove
outliers in every data assimilation step. This will surely contribute
to improve ensemble forecasts.

The ensemble Kalman filter applied is one possible technique
to gain forecasts. Other modern powerful techniques are
the variational methods 3D- and 4D-Var [40], hybrids of
ensemble and variational techniques like the EnVar [41] and
particle filters [42, 43]. These techniques have been applied
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FIGURE 15 | Improved verification statistics of in-situ and non-local observations. (A) Itakura-Saito distance (ISD) and log-spectral distance (LSD) between forecasts

and in-situ observations (left panel) and between forecasts and non-local observations (right panel) at various lead times. The distance measures are averages over

the full time interval. (B) rmse, Itakura-Saito distance (ISD), and log-spectral distance (LSD). Here, the distance measures are averages over the constraint time interval

[0.3 s;0.7 s] to take care of the border effects generated the wavelet transform.

successfully in meteorological services world-wide and future
work will investigate their performance in forecasting of power
spectra.

Eventually, the present study considers a specific model
system that exhibits a single time scale due to a single oscillation
frequency. However, natural complex systems exhibit multiple
time scales what may render the Kalman filter less effective and
the superiority of the time-frequency data less obvious. In the
future, it will be an important task to extend the present work
to multi-scale Kalman filters [44, 45].
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