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Editorial on the Research Topic

Experience-Dependent Neuroplasticity Across the Lifespan: From Risk to Resilience

Throughout life, experiences can profoundly shape the structure and function of the brain. This
experience-dependent plasticity is observed in numerous cell types, brain regions, and circuits
and can contribute significantly to stress regulation, mood, cognition, addiction, etc. This e-book
highlights recent efforts in identifying experiences that may confer resilience to or pose a risk for the
development of neuropsychiatric disorders and associated alterations in structural plasticity within
the brain.

The importance of risk and resilience to long-term sequela of perturbations has been previously
reviewed with regard to synaptic plasticity (Hyer et al., 2018), immune function (Bekhbat and
Neigh, 2018a,b), and stress responsivity (Bourke et al., 2012; Bekhbat et al., 2017). The mechanisms
which underlie the manifestation of risk and resilience following stressor exposure are not fully
defined, but much progress has been made in individual disease states and conditions (Nemeth
et al., 2014, 2015; Hodes et al., 2016; Neigh and Ali, 2016; Valdez et al., 2016). The mini-review in
this e-book by Mukhara et al. focuses on the progress that has been made in terms of identification
of candidate molecular mediators in the context of addiction and sets the framework for potential
mechanistic studies. In addition to the importance of glucocorticoids and the dopaminergic system
in the generation of risk and resilience, inflammatory-sensitive mechanisms within the brain have
been identified as a key area of importance in the study of risk and resilience. The review by
Finnell andWood examines risk and resilience in the context of depression, and the authors further
highlight the role of individual differences, first introduced in this e-book by Murthy and Gould,
in the potential manifestation of risk vs. resilience with a focus on age, sex, and coping strategies.

Further, the authors review mechanisms by which inflammatory cytokines and chemokines can
alter function of neurons and glial cells precipitating changes in behavior.

Importantly, mechanistic drivers and the relative factors that produce risk and resilience are
sensitive to developmental timing and level of exposure. The original research reports highlighted
in this e-book span the developmental timeline and guide future inquiry into viable means by which
to mitigate risk and produce resilience.

Experiences with offspring greatly influence the parental brain (Leuner et al., 2010), while
parental care also influences offspring developmental (Rilling and Young, 2014; Bales and Saltzman,
2016). Traditional parenting-related plasticity is studied in the context of the dam and how
interactions with offspring shape their risk or resilience throughout life. Using the biparental
California mouse (Peromyscus californicus), Yohn et al. demonstrate that neuropeptide levels in
social areas of the brain, and gonadal steroid hormones in females, are influenced by the amount
of care provided by the father. These data contribute to a growing body of literature that suggests
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social behaviors, like paternal care, can program the developing
brain via lasting effects on the neuroendocrine system.

Conversely, when paternal care is necessary for offspring
survival and typical development, the lack of paternal care may
increase susceptibility to mood disorders-similar to maternal
models of early-life stress (Chen and Baram, 2016). Using
paternal deprivation as a model of early-life adversity, Glasper
et al. examined hippocampal plasticity of California mice during
adulthood. Lack of paternal care increased anxiety-like behavior
and behavioral despair in male and female offspring, however,
cell survival of adult born cells in the dentate gyrus of the
hippocampus was only reduced in paternally-deprived females.
This apparent sex-difference in hippocampal structural plasticity
following paternal deprivation contributes to our understanding
of early-life stress reprogramming of neural regions involved in
emotion (Chen and Baram, 2016) in a novel way, and along with
Yohn et al. adds to the growing literature on sex differences in
neural responsiveness to paternal care.

Adolescence is a time of great change in terms of the
structure and function of the nervous system, including
decreased cell proliferation and adult neurogenesis in the
dentate gyrus of the hippocampus. Adolescence may increase
susceptibility to stress-related perturbations during this time
of vast neurobiological change. Shome et al. demonstrate that
chronic treatment with exogenous glucocorticoids confers sex-
specific effects on dentate gyrus structural plasticity. Specifically,
chronic corticosterone treatment does not alter cell genesis or
cell survival in females, and the effects in males are limited
to immature neurons. This work suggests that adolescence-
induced reductions in cell genesis may increase resiliency at
a time of great environmental perturbations in a sex-specific
way.

Medical experiences and somatic illnesses can further
contribute to the manifestation of individual differences
in susceptibility to stress-related behaviors. Caulfield et al.
demonstrate the power of developmental asthma to alter both

lung function and induce profound and enduring changes in
the stress response system including altered gene expression
in the brain and changes in stress-related behaviors. Further,
this work demonstrates that individual differences prior to the
manifestation of developmental asthma influence the long-term
effects of developmental asthma and empirically highlight the
important role of individual differences introduced by Murthy
and Gould and Finnell and Wood.

Finally, environmental exposures are an important source of
individual variability that can drive the manifestation of later-
life somatic and mental health conditions. To this end, Pistoia
et al. demonstrate the powerful influence of being exposed
to the traumatic stress of a substantial earthquake during the
adolescent period. Individuals from earthquake-affected areas
exhibited an increase in anxiety and increased anticipation of
threats including a more vigilant awareness of facial expressions.
This inherent pattern of individual difference created in those
from earthquake-affected areas could drive a susceptibility to
future insults.

Collectively, the work presented in this e-book demonstrates
that the manifestation of and mechanisms by which individuals
respond to environmental stimuli, ranging from somatic
conditions to environmental stressors, is shaped by experiences
across the lifespan. These experience-induced changes shape the
neural and somatic response to new challenges and exposures.
This collection demonstrates that it is essential to consider
the collective experiences and exposures of an organism when
trying to predict risk vs. resilience. Furthermore, the salient
effects of environmental exposures on lasting neural and
somatic substrates should be considered when working to treat
somatic and neuropsychiatric disorders.
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Early life adversity is a known risk factor for mood and anxiety disorders in adult humans
(Heim et al., 2010; Huh et al., 2014; Rehan et al., 2017). Given the prevalence of both maltreatment
in childhood and mental illness in adulthood, understanding the neurobiological mechanisms of
this connection is important as it may suggest targets for new therapeutic interventions. Ethical
constraints on conducting studies with humans have highlighted the need for reliable and robust
animal models that researchers can utilize to identify relevant neurobiological processes (Guzman
et al., 2016). Since the work of Harlow and colleagues beginning in the 1940s, which involved raising
infant macaques with cloth and wire mothers (reviewed in van der Horst and van der Veer, 2008),
researchers have sought to develop useful animal models of early life adversity. These and other
more recent studies have shown obvious behavioral abnormalities inmonkeys subjected to early life
stress (ELS) (Schino et al., 2001; Corcoran et al., 2012; Howell et al., 2014). Despite the relevance
of these models to humans, nonhuman primates have practical and ethical limitations that are
obstacles for their use in high-throughput studies. By contrast, animal models of early life stress in
rodents, which were first used in the laboratory more than 50 years ago (Levine, 1957), have gained
in usage.

One of the most commonly used manipulations to produce a rodent model of ELS has been
maternal separation. Studies have shown that maternal separation in rats, as long as it is of

sufficient duration (typically 3 h/day during the first 2 postnatal weeks of life) increases anxiety- and
depressive-like behaviors in adulthood, suggesting that it has translational validity (Janus, 1987;
Huot et al., 2001; Kalinichev et al., 2002; Romeo et al., 2003; Daniels et al., 2004; Lee et al.,
2007; Wei et al., 2010; Masrour et al., 2018). However, other studies in both rats and mice have
shown considerable variability in behavioral results from maternal separation, with several reports
showing no behavioral effect (Lehmann et al., 1999; Eklund and Arborelius, 2006; Slotten et al.,
2006; Millstein and Holmes, 2007; Savignac et al., 2011). In addition to inconsistent behavioral
findings with this model, concerns have been raised about whether maternal separation mimics
neglect, abuse or a combination of both. It has been reported that after prolonged separation,
maternal behavior toward pups differs and these differences may be as important, if not more, than
the lack of contact with the mother (Boccia and Pedersen, 2001; Huot et al., 2004). Some reports
have also observed that dams increase maternal care post-separation possibly attenuating the
effects of the separation itself (Millstein and Holmes, 2007). The type of human maltreatment that
rodent maternal separation reflects might be important for establishing its translational validity,
since human studies have separated early adverse experiences into several categories, including
emotional abuse, emotional neglect, physical abuse, physical neglect and sexual abuse (Kendler
et al., 2004; vanHarmelen et al., 2010; Young andWidom, 2014; Rehan et al., 2017; Gallo et al., 2018)
and some studies suggest that the type of maltreatment may be important for the adult outcome in
terms of behavioral dysfunction (Huh et al., 2014; Young and Widom, 2014).

To address concerns about the unspecified nature of the maternal separation manipulation,
researchers have developed another way to impair maternal care with the limited bedding/nesting
model (Brunson et al., 2005; Cui et al., 2006; Ivy et al., 2008; Rice et al., 2008). The most extreme
version of this model involves housing dams in a wire mesh floored cage with no bedding and a
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scarcity of material with which to make a nest, while variations
involve just limiting nesting material (Walker et al., 2017). The
result is an increase in maternal anxiety and fractured caregiving
where behavior toward the pups might be interpreted as abusive
(Rice et al., 2008). As with the earlier investigations of the
maternal separationmodel, some studies using this manipulation
reported evidence for increased anxiety- and depressive-like
behavior in adulthood (Cui et al., 2006; Dalle Molle et al.,
2012; Raineki et al., 2012; Wang et al., 2012), supporting its
translational validity. However, other studies using this model
failed to find an increase in anxiety- or depressive-like behavior
(Brunson et al., 2005; Rice et al., 2008; van der Kooij et al., 2015;
Johnson et al., 2018) raising questions about reliability similar to
those observed with the maternal separation model.

Contradictory results of studies using both of these rodent
models are puzzling and may be attributable to differences in
experimental design. To fully understand these discrepancies,
many factors must be considered (Figure 1). First, the genetic
background of the experimental animal is important. Human
studies have clearly shown genetic predisposition to mood and
anxiety disorders and it follows that this factor should be
considered in studies using experimental animals to model the
human condition. Studies have shown varying effects of maternal
separation on anxiety- and depressive-like behaviors in different
strains of mice; the C57Bl/6 strain appears to be most resistant to
stress compared to other strains, such as the Balb/c strain, which
is inherently more anxious (Millstein and Holmes, 2007; Wei
et al., 2010; Savignac et al., 2011). However, different studies using
the same strain have reported conflicting results with seemingly
identical ELS manipulations, so genetic strain differences cannot

FIGURE 1 | Factors influencing variability in ELS animal models. Cartoon depicting the two most commonly used models of ELS and the different factors influencing

behavioral outcomes in adulthood. MS, Maternal separation stress; LB-LN, Limited bedding-Limited nesting.

account for all of the variance in the literature. It should be noted,
however, that individual subtler genetic differences within a
specific rodent strainmay be relevant to establishing vulnerability
to such manipulations. That is, ELS manipulations likely impact
some animals more than others and such variability may obscure
overall group differences in behavior. Second, the sex of the
animal should be considered. Somewhat paradoxically given that
women exhibit greater prevalence of mood/anxiety disorders
than do men (Altemus et al., 2014), several rodent studies have
shown that ELS produces either no effect or a reduction in
anxiety- and depressive-like behaviors in females (Lehmann et al.,
1999; McIntosh et al., 1999; Eklund and Arborelius, 2006; Slotten
et al., 2006). These unexpected results raise questions about
whether the standard laboratory tests of anxiety- and depressive-
like behavior, which were developed for use inmales and typically
involve measures of behavioral inhibition, are accurate measures
of these states in female rodents, given known estrous cycle
variations in behavioral activity levels. Clearly, the field would
benefit from new sensitive behavioral assays that are useful for
both sexes, particularly given the need to correct the under-
emphasis of research on females (Clayton and Collins, 2014).

The timing and duration of the stressful experience during
the postnatal period may also be important to consider. In
rodent studies, differential effects of early vs. late postnatal stress
exposure on depressive-like behaviors have been demonstrated
(van der Kooij et al., 2015; Peña et al., 2017). By contrast,
however, a recent human study concluded that data on the
link between childhood maltreatment and psychopathology do
not fit a sensitive period theoretical model (Dunn et al., 2018),
again raising questions about the direct translational validity of

Frontiers in Behavioral Neuroscience | www.frontiersin.org July 2018 | Volume 12 | Article 1578

https://www.frontiersin.org/journals/behavioral-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/behavioral-neuroscience#articles


Murthy and Gould Stress-Induced Illness vs. Resilience

some ELS models in rodents. It is likely relevant that the HPA
axis response to stress is attenuated in pups during the stress
hyporesponsive period, a phenomenon that serves a protective
effect on the developing brain (Sapolsky and Meaney, 1986). A
similar state has been reported in humans up until about 1 year
of age, but it does not extend throughout childhood when the
majority of reported maltreatment occurs (Gunnar and Donzella,
2002).

The duration of stress seems to be more definitively associated
with worse outcomes compared to the timing of stress, and
data from human studies support a cumulative and/or recency
model of stress effects on vulnerability to psychopathology (Dunn
et al., 2018). To address the issue about the duration of stress
as well as inconsistencies in the ELS literature, researchers have
developed “two-hit” models that incorporate maternal separation
followed by additional stress, either shortly thereafter or in
adulthood. The models are based on the assumption that the
first stressful period may create an internal vulnerability that
is alone insufficient to manifest itself behaviorally, but when
aggravated by subsequent stress, produces detectable behavioral
changes. One set of such studies used longer periods of separation
followed by early weaning of pups (George et al., 2010). Early
weaning by itself has been shown to increase anxiety-like
behavior in adulthood (Kikusui et al., 2004) and when combined
with maternal separation, it not only increases anxiety-like
behaviors but also results in hyperactivity, gene dysregulation and
neuroanatomical changes to the brain; some of which have been
observed in humans with a history of early life abuse. Another set
of such studies used maternal separation and/or limited bedding
followed by exposure to chronic stress in adulthood (Vargas et al.,
2016; Peña et al., 2017). Both of these approaches mimic the
“dose-response” or “cumulative” stress links to mental illness
that have been described in humans. However, like the other
rodent models of ELS, data from these two-hit models need to
be interpreted with caution as null effects have also been reported
(Santarelli et al., 2017; Tan et al., 2017).

Notwithstanding the potential importance of strain, sex,
timing, duration, type of stress experience and other factors
(Figure 1) across studies as reasons for variable results, it is
clear that variable results can emerge even in the face of
virtually identical experimental designs. What is the explanation
for these differences? While we do not know for certain,
there are some important points to consider. First, baseline
housing and testing conditions may vary across laboratories
in seemingly unspecified ways (Cavigelli et al., 2006; Sorge
et al., 2014), adding additional stress to both control and
experimental groups and potentially reducing the behavioral
differences between them. Second, evidence suggests that rodent
maternal behavior varies considerably even within control groups
(Francis and Meaney, 1999). In other words, some rat and
mouse dams may be more capable of compensating for the
effects of maternal separation or limited bedding than others.
This could be influenced by the early life experiences of the
dams themselves and the amount of stress they were exposed

to before entering breeding. This natural variation in maternal
behavior may introduce additional variability into ELS-induced
long-term behavioral outcomes. Third, perhaps related to the
second point, rodent populations likely display considerable
individual variability in response to ELS, such that depending
on the cohort examined, statistically significant differences in
anxiety- and depressive-like behavior may or may not be
detectable. Thus, reproducible significant differences may require
larger numbers of animals than are often used in such studies,
consistent with what has been the norm for human studies
(Collins and Tabak, 2014). In addition, these studies might be
more informative if the data from rodents subjected to ELS
manipulations were analyzed in ways that do not group them
together with the assumption that they comprise a homogenous
group. In searching for neurobiological mechanisms underlying
behavioral signs of mental illness, it may be more fruitful to
separate out the experimental animals that show robust ELS-
induced increases in anxiety- and depressive-like behavior. This
approach might reveal informative correlations between brain
changes and relevant behaviors. While this suggestion makes
experimental designs and statistical analyses more complicated
than commonly used methods of comparing means between
groups, it may produce more reliable results across laboratories.

Considering rodent populations as heterogeneous with regard
to their susceptibility to ELS-induced behavioral changes
would address an interesting parallel with humans. While
the connection between early life adversity and mood/anxiety
disorders in humans has been widely accepted, it is perhaps
less well-known that the majority of people subjected to
childhood maltreatment (>70%) do not show anxiety and
depression symptoms that are clinically significant (Rehan et al.,
2017). Thus, as with rodents, humans display a considerable
amount of resilience and resistance to early life adversity, a
phenomenon that deserves scientific attention as it may provide
clues about how to encourage these characteristics in the entire
population. Finally, it deserves mention that many people
develop anxiety and mood disorders that are not retrospectively
traceable to childhood maltreatment, so examining control
rodents that score as more anxious/depressed despite a lack
of prior stress manipulation may be informative as well. Here
again, looking at individual differences within groups may be
most informative and also help to reduce the inconsistency
across studies using rodent models of stress-induced mental
illness.
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The extant literature supports the role of stress in enhancing the susceptibility of drug
abuse progressing to a substance use disorder diagnosis. However, the molecular
mediators by which stress enhances the progression from cocaine abuse to cocaine
use disorder via the mesolimbic pathway remain elusive. In this mini-review article,
we highlight three mechanisms by which glucocorticoids (GCs) and the dopaminergic
system interact. First, GCs upregulate tyrosine hydroxylase (TH), the rate-limiting enzyme
in dopamine (DA) synthesis. Second, GCs downregulate monoamine-oxidase (MAO),
an enzyme responsible for DA removal. Lastly, GCs are hypothesized to decrease
DA reuptake, subsequently increasing synaptic DA. Based on these interactions, we
review preclinical literature highlighting how stress modulates the mesolimbic pathway,
including the ventral tegmental area (VTA) and nucleus accumbens (NAcs), to alter
cocaine abuse-related effects. Taken together, stress enhances cocaine’s abuse-related
effects at multiple points along the VTA mesolimbic projection, and uniquely in the
NAcs through a positive feedback type mechanism. Furthermore, we highlight future
directions to elucidate the interaction between the prefrontal cortex (PFC) and key
intermediaries including ∆FosB, cAMP response element binding protein (CREB) and
cyclin-dependent kinase 5 (CDK5) to highlight possible mechanisms that underlie stress-
induced acceleration of the progression to a cocaine use disorder diagnosis.

Keywords: stress, addiction, cocaine, VTA, NAc, drugs

INTRODUCTION

The Diagnostic and Statistical Manual of Mental Disorders (DSM)-V criteria for substance use
disorders is defined as ‘‘recurrent use of alcohol and/or other drugs causes clinically and functionally
significant impairment, such as health problems, disability and failure tomeetmajor responsibilities
at work, school, or home’’ (American Psychiatric Association, 2013). Substance use disorders may
range from mild-to-severe and include a variety of substances such as opiates, nicotine, alcohol,
cocaine and others, each of which has different mechanisms of action and protein targets. While
cocaine exposure does not always progress to a cocaine use disorder diagnosis, a subset of
individuals will progress to severe cocaine use disorder or what is referred to as cocaine ‘‘addiction’’
in the preclinical literature. Although epidemiological reports vary, cocaine use disorder is
estimated to have an incidence of 0.1% worldwide (Shield et al., 2018). Although the factors
that drive progression to substance use disorders are not fully defined, several lines of evidence
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suggest stress exacerbates susceptibility to the abuse-related
effects of drugs (Piazza and Le Moal, 1998; Sinha, 2001; Cleck
and Blendy, 2008). For example, neonatal stress selectively
enhances the acquisition of cocaine self-administration in
rats, but does not augment self-administration when the
reinforcer is food (Kosten et al., 2000). Social housing stress in
nonhuman primates enhances the reinforcing effects of cocaine
in subordinate monkeys (Morgan et al., 2002); however, early
life stress produced by maternal separation does not enhance the
abuse-related effects of cocaine in nonhuman primates (Ewing
Corcoran and Howell, 2010).

Moreover, cumulative adversity is significantly predictive of
drug abuse in a dose-dependent manner (Sinha, 2008). In fact,
the limbic-hypothalamic-pituitary-adrenal axis (LHPA) axis,
responsible for governing the stress response, has substantial
overlap with the mesolimbic ‘‘reward’’ pathway involved in
reward circuitry (Koob, 2009). The mesolimbic pathway involves
dopaminergic projections from the ventral tegmental area (VTA)
to the nucleus accumbens (NAcs) and olfactory tubercle in the
brain (Quintero, 2013). This pathway is hypothesized to have a
critical role in the perception of pleasure and is conceptualized
by Koob (2011) to have several key functions: associating
meaning to reward-related cues, motivating goal-oriented
behavior and general activation. In this mini-review article,
we will focus on the impact of stress on cocaine abuse-
related effects mediated through the mesolimbic dopamine (DA)
‘‘reward’’ pathway. Given the considerable evidence supporting
an impact of stress on substance use disorder susceptibility
and relapse, improved understanding of the mechanisms by
which stress alters the abuse-related effects of drugs may
provide insight into novel molecular targets for therapeutic
interventions.

Underlying Mechanisms of Cocaine Abuse
Cocaine nonselectively binds to all three monoamine
transporters (DA, norepinephrine, and serotonin) and prevents
the reuptake of these monoamines into the presynaptic
terminal thereby enhancing monoamine neurotransmission.
Cocaine inhibition of the DA transporter is thought to be the
primary mediator of the abuse-related effects of cocaine (Ritz
et al., 1987; Volkow et al., 1997). Despite the DA transporter
being the primary target for cocaine’s abuse-related effects,
repeated cocaine exposure does not alter presynaptic DA
transporter availability in either humans (Wang et al., 1997)
or nonhuman primates (Czoty et al., 2007). However, repeated
cocaine exposure has been shown to increase serotonin and
norepinephrine transporter densities in nonhuman primates
(Macey et al., 2003; Beveridge et al., 2005; Banks et al., 2008).
Furthermore, repeated cocaine exposure downregulates both
presynaptic and postsynaptic DA receptors in humans (Volkow
et al., 1990, 1993), nonhuman primates (Nader et al., 2006) and
rats (Laurier et al., 1994). These cocaine-induced decreases in
DA receptors on both pre- and post-synaptic terminals, and the
resulting reduced dopaminergic tone, are thought to contribute
to the depressive-like symptoms of cocaine withdrawal and
relapse of cocaine abuse (Volkow et al., 1993; Thomas et al.,
2001).

In substance use disorders, relapse can be triggered by
drug-related cues that function as discriminative stimuli
to signal contingencies of drug availability and promote
drug-taking behavior. For example, following drug-associated
cue presentation, the amygdala signals to dopaminergic cell
bodies in the VTA (Nestler and Carlezon, 2006; Cleck and
Blendy, 2008). These VTA dopaminergic neurons then signal
to the NAcs to release DA, which triggers increased gamma-
aminobutyric acid (GABA)-ergic input to the thalamus (Koob,
1992; Nestler and Carlezon, 2006). This GABAergic thalamic
input leads to hypoactivation of the prefrontal cortex (PFC),
impairing judgment and reasoning (Volkow and Morales,
2015). Thus, a combination of increased DA output in the
mesolimbic pathway and decreased PFC activation in cortical
pathways appear to result in increased drug-taking behavior.
Curiously, various types of stressors have been shown to promote
drug-taking behavior in preclinical models of drug relapse
(Mantsch et al., 2016; Dong et al., 2017), further highlighting the
interconnection between stress and reward pathways in the brain.

Mechanisms of Stress Response
The LHPA influences a variety of functions including the
digestive system, immune system, reproductive system,
mood and energy expenditure (Vázquez, 1998). The LHPA
undergoes self-regulation through feedback and modulates the
extrahypothalamic stress neurocircuit (Koob and Kreek, 2007).
In addition, the LHPA activates the brain reward circuit (Koob
and Kreek, 2007), bridging the interdependent relationship of
glucocorticoids (GCs) and the dopaminergic system.

The LHPA is activated following hypothalamic release
of corticotropin-releasing hormone (CRH) and vasopressin
through a hypophyseal portal system to the anterior
pituitary (Aguilera, 2011). CRH may be triggered by either
internal or external cues. Synergistically interacting with
vasopressin, CRH induces adrenocorticotrophic hormone
(ACTH) release by the anterior pituitary. ACTH then
acts on the adrenal gland inducing GC secretion into the
bloodstream. Cortisol, the primary GC in humans, binds
to the GC receptor (GR) in the brain and other end organ
tissues facilitating the stress response. The LHPA modulates
the stress response through negative feedback on the axis,
specifically through negative feedback on the anterior pituitary
and hypothalamus that inhibits ACTH and CRH release,
ultimately decreasing blood cortisol levels through reduced
release.

The GR is a transcription factor, and following translocation
to the nucleus, the GR can modulate 10%–20% of genes in
the human genome (Oakley and Cidlowski, 2013). While
unbound GR remains in the cytosol, in the presence of cortisol,
bound GR translocates to the nucleus and interacts with
GC response elements (GREs) to modulate transcription
(Chrousos et al., 2009). Moreover, GR interacts with other
transcription factors, including nuclear factor-κB (NF-
κB; Russo et al., 2007) and activator protein-1 (AP-1),
which have been implicated in the progression to severe
substance use disorder (Hope, 1998; Chrousos et al.,
2009).
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Interactions Between Glucocorticoids and
the Dopaminergic System
The interactions between LHPA-induced GC release and
the dopaminergic system are pivotal to understanding
interactions between stress and substance use disorders.
Both stressors and drugs of abuse have been shown to activate
the mesolimbic ‘‘reward’’ pathway. For example, both increase
glutamate receptor activation of VTA dopaminergic neurons
(Cleck and Blendy, 2008). In addition, the LHPA axis also
enhances glutamatergic plasticity in the VTA (Stelly et al.,
2016). Furthermore, Barrot et al. (2000) have shown that
adrenalectomy leading to decreased GC levels resulted in
decreased basal and cocaine-induced increase in NAcs shell
DA levels. Figure 1 shows three potential mechanisms by
which GCs are hypothesized to alter dopaminergic activity.
First, GCs increase DA biosynthesis by enhancing tyrosine
hydroxylase (TH) activity, the rate-limiting enzyme in
DA synthesis (Daubner et al., 2011). This is illustrated by
the observation that rats exposed to social isolation have
increased TH levels in the NAcs shell (Trainor, 2011). A
second mechanism by which GCs are hypothesized to alter
dopaminergic activity is through GC-induced reductions in
monoamine-oxidase (MAO) activity (Poletto et al., 2011). MAO

FIGURE 1 | Three mechanisms by which glucocorticoids (GCs) induce
dopamine (DA) release. First, GCs upregulate tyrosine hydroxylase (TH), the
rate-limiting enzyme in DA synthesis. Second, GCs downregulate
monoamine-oxidase (MAO), an enzyme responsible for DA removal. Lastly,
GCs are hypothesized to decrease DA reuptake, subsequently increasing
synaptic DA.

is another method, in addition to monoamine reuptake by
presynaptic transporters as described above, for terminating
monoamine neurotransmission. Decreased MAO activity
would increase synaptic DA levels and enhance dopaminergic
neurotransmission. Lastly, GCs acting at GRs have been
shown to regulate DA transporter expression under both
basal and cocaine-stimulated conditions (Wheeler et al.,
2017). These results are also consistent with reduced DA
transporters in rats that underwent early life stress (Meaney
et al., 2002). Overall, this literature supports a role of GC
regulation of the mesolimbic DA pathway at multiple levels
to alter both basal and cocaine-induced dopaminergic
neurotransmission.

VTA

Increased Glutamatergic Plasticity
Both stress and drugs of abuse have been shown to increase
glutamatergic plasticity in the VTA (Saal et al., 2003).
Furthermore, exposure to stressful events enhances VTA
glutamatergic plasticity that may further enhance the abuse-
related effects of cocaine (Fitzgerald et al., 1996; Kauer and
Malenka, 2007; Stelly et al., 2016). In a recent study by Stelly
et al. (2016), rats first underwent a resident-intruder social
defeat paradigm in conjunction with corticosterone injections,
and then cocaine rewarding effects were assessed using a
conditioned place preference (CPP) procedure. Repeated social
defeat selectively enhanced long-term potentiation (LTP) of
N-Methyl-D-aspartic acid receptors (NMDARs) in the VTA.
This LTP manifested as enhanced VTA dopaminergic neuron
firing in response to cocaine-associated cues during CPP only
in the stressed group. This additional dopaminergic burst was
interpreted as enhancing the conditioned stimulus-response
relationship between drug-associated cues and the abused drug
that may be involved in drug relapse (Stelly et al., 2016).
These results suggest stress-induced glutamatergic plasticity of
NMDAR and subsequent enhancement of cocaine abuse-related
effects may be attenuated in the VTA by a GC antagonist.
Deletion of nuclear receptor subfamily 3, group C, member 1
(nr3c1), a gene encoding a GR, blunted cocaine reinforcement
in a drug self-administration procedure and VTA dopaminergic
firing (Ambroggi et al., 2009; Barik et al., 2013). These results
provide further evidence that GRs modulate VTA dopaminergic
plasticity that directly impacts the abuse-related effects of
cocaine.

Accumulating evidence suggests one molecular mechanism
by which both stress and drugs of abuse impact glutamatergic
plasticity in the mesolimbic pathway is through extracellular
signal-regulated kinases (ERK). For example, stress exposure
increased inositol 1,4,5-trisphosphate receptors (IP3R)
sensitization that was mediated by protein kinase A (PKA),
an upstream activator in ERK pathway (Vanhoutte et al., 1999;
Stelly et al., 2016; Figure 2). Consistent with these previous
results, social-defeat stress increased ERK signaling in the
VTA (Yap et al., 2015). Moreover, ERK signaling appears to
rely on the relative ratio of α-amino-3-hydroxy-5-methyl-4-
isoxazolepropionic acid receptors (AMPARs) and NMDARs.
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FIGURE 2 | The general mechanism of the extracellular signal-regulated
kinase (ERK) pathway and key downstream products important in cocaine
addiction. Glutamate binding excites the N-Methyl-D-aspartic acid receptor
(NMDAR) and upregulates intracellular calcium. Excitation provokes a signaling
cascade, upregulating transcription factors Fos and Jun. Subsequently,
increased ∆FosB acts on activator protein-1 (AP-1) and upregulates
transcription and translation of cyclin-dependent kinase 5 (CDK5), GLUR2,
dynorphin (Dyn), synaptotagmin VII (Syt7), and neogenin. CDK5 mediates
localization and GLUR2-mediated plasticity in
α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPAR)
through phosphorylation of δ-Catenin (Poore et al., 2010). Increased
GLUR2 upregulates the ERK pathway in a positive-feedback type manner
through increased AMPAR in the nucleus accumbens (NAcs). Moreover,
increased D1 receptor activation upregulates protein kinase A (PKA),
phosphorylating the transcription factor cAMP response element binding
protein (CREB), leading to further increase in CDK5 and GLUR2 protein levels.

For example, stress exposure increases the AMPA/NMDA ratio
in the VTA (Saal et al., 2003; Dong et al., 2004). However,
inhibition of ERK activation has produced equivocal results on
the abuse-related effects of cocaine. Administration of SL327,
a mitogen-activated protein kinase (MEK) inhibitor used to
inhibit ERK, decreased both context and cocaine-induced CPP
(Valjent et al., 2000, 2006; Pan et al., 2011). This trend may
be indicative of neuroadaptive changes post ERK inhibition.
In contrast, administration of U0126, another MEK inhibitor,
directly into the VTA enhanced both context and cocaine
cue-induced reinstatement in non-stressed rats (Lu et al.,
2004, 2009). However, in rats undergoing social stress first,
U0126 directly into the VTA attenuated stress-enhanced cocaine
locomotor sensitization (Stelly et al., 2016). Taken together, the
role of ERK activation in cocaine’s abuse-related effects seems
fundamental to understanding downstream physiological and
behavioral alterations initiated in the VTA.

FIGURE 3 | Image of a potential mechanism for stress- and cocaine-induced
drug dependence via a feed-forward cycle in the NAcs. In the presence of
stress, ventral tegmental area (VTA) DA release is upregulated resulting in
increased D1 receptor activation. Cortisol is implicated in increasing DA
release through corticotropin-releasing factor acting at type 1 receptor
(CRF-R1) binding to gamma-aminobutyric acid (GABA)-B VTA neurons acting
on VTA DA neurons. Increased DA levels promote D1 activation leading to an
increase in ∆FosB, CREB and CDK5 levels in the NAcs. Moreover,
D1 activation is linked to decreased GABA-B activation in the NAcs, resulting
in greater long-term potentiation (LTP): long-term depression (LDP).
Attenuation of GABA projections from NAcs to the VTA is suggested to further
DA release; however, the particular projection (GABA-A/GABA-B) is currently
unknown. Furthermore, brain-derived neurotrophic factor (BDNF) is implicated
in contributing to LTP in the NAcs through activation of tropomyosin receptor
kinase B (TrkB) receptors.

CRF-R1 Modulation
Corticotropin-releasing factor acting at type 1 receptor (CRF-R1)
has also emerged as one potential molecular mechanism linking
stress and drug abuse. For example, intermittent social defeat
stress elicits CRF release in the VTA (Holly et al., 2016).
Furthermore, social defeat stress or intra-VTA CRF enhanced
the abuse-related effects of cocaine in rats (Boyson et al.,
2014; Leonard et al., 2017). Consistent with these previous
findings, administration of a CRF antagonist before each
social defeat stress attenuated both cocaine-induced locomotor
sensitization and escalated cocaine self-administration in rats
(Boyson et al., 2011). However, CRF antagonists also decrease
escalated cocaine self-administration in non-stressed rats (Specio
et al., 2008) suggesting the role of CRF on interactions between
social stress and cocaine abuse-related effects have not been
fully elucidated. Further complicating the role of CRF in
cocaine reinforcement are results from nonhuman primates
demonstrating a CRF antagonist does not attenuate cocaine
self-administration (Mello et al., 2006). In congruence with this
observation, the CRF antagonist verucerfont failed to attenuate
alcohol craving in anxious alcoholic women, despite blocking
HPA axis responsivity to dexamethasone (Schwandt et al.,
2016). Overall, in contrast to the preclinical reports using
rodents, nonhuman primate and clinical results do not provide
compelling evidence for a significant role of CRF in altering
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the abuse-related effects of abused drugs in either stress or
non-stressed research subjects.

NUCLEUS ACCUMBENS NAcs

Increased LTP From D1 Activation
In addition to drug-induced changes in the VTA, chronic
cocaine use and stress exposure can directly alter the NAcs
(Wolf and Ferrario, 2010; Koya and Hope, 2011). Preclinical
models show cocaine-induced morphological changes in
dendritic spine density and greater AMPAR/NMDAR firing in
the NAcs after administration alone (Wolf and Ferrario, 2010;
Koya and Hope, 2011). Furthermore, chronic stress may alter
relapse and self-administration via epigenetic modifications
to histone dimethyltransferase G9a in the NAcs (Anderson
et al., 2018). In addition to drug and stress induced changes
in the NAcs, chronic stress exposure may further substance
abuse via a feedback loop with the VTA. The D1 receptor
is a Gs-protein coupled post-synaptic receptor that is linked
to upregulation of FBJ murine osteosarcoma viral oncogene
homolog B (∆FosB), cAMP response element binding protein
(CREB), and cyclin-dependent kinase 5 (CDK5; Catalano
et al., 2009; Lebel et al., 2009; Zhang et al., 2002). Increased
D1 receptor activation leads to upregulated glutamatergic
receptors in the NAcs (Chao et al., 2002; Mangiavacchi and
Wolf, 2004). In addition, increased D1 activation attenuates
GABA-B, a metabotropic transmembrane receptor, inhibition
due to changes in adenosine levels after cocaine exposure in
the VTA (Bonci and Williams, 1996). Reduced inhibition by
GABA-B can subsequently increase LTP (Nicola et al., 2000)
and decrease long-term depression (LDP) leading to increased
synaptic plasticity in the NAcs (Bonci and Williams, 1996;
Nicola et al., 2000; Fourgeaud et al., 2004). NAcs inhibitory
neurons can project back to the VTA, resulting in a possible
feedback loop of increased neurogenic excitability and DA
release (Omelchenko and Sesack, 2009; Xia et al., 2011). The
increase in potentiation further excites DA cells, causing
DA release (Gonon and Sundstrom, 1996; Gonon, 1997).
This theory aligns with recent data suggesting increased DA
release after CGP55845 administration, a GABA-B antagonist
(Melchior et al., 2015). Subsequently, greater DA in the
synapse reduces D1 DA receptor availability in the ventral
striatum according to recent PET scans (Martinez et al.,
2009). Additional research is needed to support a pattern of a
positive feedback loop and greater VTA response to the drug.
Furthermore, stress-induced cocaine seeking is initiated by
GABA-B receptor-dependent CRF actions in the VTA (Blacktop
et al., 2016). Although this modulation by stress is carried
out in the VTA, effects of GABA-B and CRF interactions are
exerted in the postsynaptic membrane in the NAcs. Additional
evidence suggests brain-derived neurotrophic factor (BDNF)
may mediate neuronal excitability through activation of
tropomyosin receptor kinase B (TrkB) receptors in the NAcs
(Berton et al., 2006). Lobo et al. (2010) found a loss of TrkB
receptors, mimicked through upregulation of D2 neurons,
lead to decreased cocaine reward; in contrast, upregulation

of D1 excitability showed an increase in cocaine reward. In
addition to BDNF’s mediating role, stress is implicated in
facilitation of further synaptic adaptations in the NAcs. To
this end, Chaudhury et al. (2013) demonstrated that repeated
social defeat stress may induce VTA DA neuron phasic firing
to the NAcs in mice. These data suggest that stress-induced
phasic firing of the VTA may augment synaptic excitability
in the NAcs of cocaine-addicted brains (Chaudhury et al.,
2013).

The proposition that stress exerts effects through inhibition
of positive feedback is not fully supported in the extant
literature. For example, Sinha (2008), reported that chronic
stress inhibits DA synthesis in the NAcs. However, it is
well supported that GC concentrations directly correlate with
extracellular DA release (Brake et al., 2004; Sinha, 2008).
Although DA synthesis may be inhibited by chronic stress,
cocaine sensitization has been repeatedly shown to increase
by gene and protein regulators such as ∆FosB, CREB and
CDK5 (Kelz et al., 1999; Bibb et al., 2001; McClung and
Nestler, 2003; Mattson et al., 2005). Therefore, the combined
data leads us to conclude that stress increases drug addiction
susceptibility through increased sensitization in a positive
feedback manner (Figure 3). Furthermore, the literature suggests
that stress perpetuates drug dependence through allostasis by
reinforcement in an analogous feedback manner (Koob and
Le Moal, 2001; Ahmed et al., 2002). Taken together, the
available findings collectively suggest that stress may mediate
drug dependence at multiple levels, through positive feedback
mechanisms.

CONCLUSION AND FUTURE DIRECTIONS

Although this mini-review article has focused on the effects
of stress on the mesolimbic DA pathway, the effects of stress
on other brain regions implicated in substance use disorders
are important considerations beyond the capacity of this brief
synopsis. For example, GRs are highly expressed in the PFC. GCs
can act locally in the PFC to modulate cognitive impairments in
working memory due to acute stress (Butts et al., 2011). Similar
to GC effects on the mesolimbic DA pathway, corticosterone
administered directly into the PFC can increase DA efflux (Butts
et al., 2011). However, despite the relevant function of the
PFC in substance use disorders (Volkow et al., 2016), relatively
little research has been done to determine the extent to which
molecular intermediaries such as ∆FosB, CREB, or CDK5 are
involved in the PFC with regard to stress-induced enhancement
of cocaine abuse-related effects.

Collectively, this mini-review article details three potential
molecular mechanisms relating DA and GC interactions as they
relate to stress-induced enhancement of cocaine abuse-related
behaviors. In all three mechanisms, stress-induced GC release
and subsequent activation of GRs primes the mesolimbic DA
pathway. The overall net effect is enhanced abuse-related effects
of cocaine and enhanced susceptibility of progressing to a cocaine
use disorder diagnosis (Sinha, 2008). Thus, stress may serve as
a positive feedback mechanism in the NAcs for enhancing the
susceptibility to, or progression to, substance use disorder.
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It has been well recognized that exposure to stress can lead to the onset of psychosocial
disorders such as depression. While there are a number of antidepressant therapies
currently available and despite producing immediate neurochemical alterations, they
require weeks of continuous use in order to exhibit antidepressant efficacy. Moreover,
up to 30% of patients do not respond to typical antidepressants, suggesting that
our understanding of the pathophysiology underlying stress-induced depression is still
limited. In recent years inflammation has become a major focus in the study of depression
as several clinical and preclinical studies have demonstrated that peripheral and central
inflammatory mediators, including interleukin (IL)-1β, are elevated in depressed patients.
Moreover, it has been suggested that inflammation and particularly neuroinflammation
may be a direct and immediate link in the emergence of stress-induced depression
due to the broad neural and glial effects that are elicited by proinflammatory cytokines.
Importantly, individual differences in inflammatory reactivity may further explain why
certain individuals exhibit differing susceptibility to the consequences of stress. In this
review article, we discuss sources of individual differences such as age, sex and coping
mechanisms that are likely sources of distinct changes in stress-induced neuroimmune
factors and highlight putative sources of exaggerated neuroinflammation in susceptible
individuals. Furthermore, we review the current literature of specific neural and glial
mechanisms that are regulated by stress and inflammation including mitochondrial
function, oxidative stress and mechanisms of glutamate excitotoxicity. Taken together,
the impetus for this review is to move towards a better understanding of mechanisms
regulated by inflammatory cytokines and chemokines that are capable of contributing to
the emergence of depressive-like behaviors in susceptible individuals.

Keywords: stress susceptibility, neuroinflammation, depression, microglia, glutamate

INTRODUCTION

Depression is considered to be one of the most debilitating diseases in the United States
(Almeida, 2005) and has been globally recognized as a significant source of disability (Reddy,
2010). The prevalence of depression has been steadily increasing over the last 10 years from
6.6% to 7.3% in adults and 8.7%–12.7% in adolescents (Weinberger et al., 2017). While there
are a number of available antidepressant therapies, many like the selective serotonin re-uptake
inhibitor citalopram, are only 33% effective in producing full remission of depressive symptoms
(Trivedi et al., 2006). Moreover, up to 30% of depressed patients are resistant to traditional
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antidepressant therapies (Joffe et al., 1996; Al-Harbi, 2012).
These data strongly suggest that the pathophysiology underlying
the emergence of depression is variable between individuals
and is still largely unclear. It was first noted that activation
of the immune system impacted psychiatric functioning back
in 1927 when Julius Wagner-Jauregg won the Nobel Prize
for this seminal observation. Since this initial discovery, there
has been a striking increase in the number of publications
on the topic of inflammation related depression (Loftis
et al., 2010). These studies have demonstrated that certain
subpopulations of depressed patients exhibit greater levels
of interleukin (IL)-6 and C reactive protein (CRP) in the
plasma (Irwin and Miller, 2007) and cerebrospinal fluid
(Sasayama et al., 2013; Devorak et al., 2015). Importantly,
this vast body of literature has also established a causal link
between inflammation and depression. Several clinical studies
demonstrated that chronic administration of the cytokines
interferon (INF)-α and IL-2 as chemotherapeutics were capable
of inducing depression in a large number of patients (Denicoff
et al., 1987; Renault et al., 1987). Moreover, it should
be noted that individuals with inflammatory diseases such
as irritable bowel disease, allergic rhinitis and rheumatoid
arthritis (Cuffel et al., 1999; Stauder and Kovács, 2003; Katon
et al., 2004; Marrie et al., 2017) as well as cardiovascular
disease (Anda et al., 1993; Riba et al., 2011; Huffman
et al., 2013) are at increased risk of developing psychiatric
comorbidities.

Beyond immune diseases as a risk factor for psychiatric
disorders, it has been well established that exposure to stress
can also serve as an independent risk factor for the emergence
of psychosocial disorders. While there are many different types
of stress, social stressors such as bullying, abuse, isolation,
witnessing traumatic events, or taking care of a terminally ill
loved one are the most common types of stress encountered
by people (Almeida, 2005). Importantly, it has been shown
that exposure to social stress can not only produce increases
in markers of inflammatory activity (Slavich et al., 2010; Allen
et al., 2017) but can also augment underlying inflammatory
disorders including allergic responses (Sandberg et al., 2000; Liu
et al., 2002; Kiecolt-Glaser et al., 2008). However, preclinical and
clinical studies have shown that there is considerable individual
variability in the behavioral and inflammatory consequences
induced by stress exposure resulting in the emergence of resilient
and susceptible subpopulations. Specifically, it has been shown
that greater inflammatory responses to stress are associated
with greater negative affect in humans (Dickerson et al., 2009)
and promote the development of depressive-like behaviors in
rodents (Wohleb et al., 2013, 2014a,b; Hodes et al., 2014; Wood
et al., 2015; Finnell and Wood, 2016; Finnell et al., 2017a,b,
2018). These stress-induced inflammatory effects are known to
extend well beyond the immediate response to stress such that
late phase inflammatory responses are also enhanced following
social stress exposure (Kiecolt-Glaser et al., 2008; Deak et al.,
2017). These late phase inflammatory effects have been tied to
the emergence of chronic elevations of inflammatory factors
through the recruitment and sensitization of inflammatory
competent cell types including peripherally derived T cells

(Janeway et al., 2001; Hansen et al., 2004) and microglia (Badoer,
2010).

Activation or sensitization of microglia, the resident immune
cells of the brain, is of particular relevance to depression as a
recent clinical study showed for the first time that depressed
patients exhibit significant increases in translocator protein
density, a marker of activated microglia (Setiawan et al., 2015).
Under normal resting conditions, microglia exhibit a highly
ramified morphology that is associated with monitoring and
maintenance of the neural cell microenvironment (Nimmerjahn
et al., 2005; Kettenmann et al., 2011). In response to a stress
or immune challenge, these cell types take on an ameboid
morphology that is associated with a reactive inflammatory
state (Gemma and Bachstetter, 2013; Brites and Fernandes,
2015) resulting in the release of a number of different effectors
including cytokines and chemokines (Brites and Fernandes,
2015). In this way reactive microglia are known to propagate
inflammatory signals throughout the brain (Fruhbeis et al.,
2013). However, the discrete neural mechanisms that may
be impacted by the release of cytokines and chemokines
in susceptible individuals remains unclear. Therefore, the
focus of this review is to first provide an overview of the
sources of individual differences in stress and inflammatory
responses and second, to highlight discrete neural and glial
mechanisms that are regulated by inflammatory effectors that
may contribute to the emergence of behavioral dysfunction
associated with a depressive-like state. Great focus has been
placed on clinical and preclinical studies documenting the
effects of social stress. However, other modalities of stress are
discussed in instances where literature using social stress models
is lacking.

SOURCES OF INDIVIDUAL DIFFERENCES
IN INFLAMMATORY STRESS RESPONSES

Prior to beginning a discussion on the discrete neural
mechanisms that may underlie the emergence of inflammatory
related depressive-like behavior, it is critical to understand how
individual factors such as age, sex and inherent differences in
personality or coping may differentially impact the inflammatory
system thereby contributing to stress susceptibility or resiliency.

Age
Stress susceptibility is well known to change across the lifespan.
Importantly, life stages in which the brain is undergoing
significant alterations, such as neural development and
maturation in the young and senescence in the elderly (Graham
et al., 2006), are associated with heightened susceptibility to the
consequences of stress exposure. Much like stress susceptibility,
immune function is also known to change across the lifespan.
In general, innate and adaptive immune function decreases as
individuals age (Lord et al., 2001; Gomez et al., 2005), resulting
in dysregulated inflammatory responses to stress or immune
challenges (Lord et al., 2001). For example, studies in rodents
have indicated that aged rats do not develop inflammatory
tolerance to repeated lipopolysaccharide (LPS) injections as
is observed in younger rats (Li et al., 2009). Moreover, LPS
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inflammatory reactivity has also been shown to be greater
in middle-aged mice compared with young mice (Kohman
et al., 2010). This increase in inflammatory reactivity in aged
animals has also been demonstrated in the brain as a result
of natural microglial shifts towards a ‘‘primed’’ phenotype
(Barrientos et al., 2015). Heightened inflammatory sensitivity
in aging populations, termed inflammatory senescence, also
extends to the inflammatory response to stress. Specifically,
it has been shown that transient stressors more commonly
produce maladaptive inflammatory responses in the elderly
compared to younger individuals (Segerstrom and Miller,
2004). Moreover, exposure to stress can also accelerate the
process of inflammatory senescence. This assumption is
supported by a prospective clinical study which determined
that older adults serving as care givers exhibited a four-fold
faster elevation in resting plasma IL-6 over a 6-year period
compared to age-matched non-caregivers (Kiecolt-Glaser et al.,
2003). While clinical studies assessing stress responsivity in
aging populations are relatively limited, it is well recognized
that social stress and particularly social isolation is extremely
common especially for those living in retirement communities.
This is of particular importance as approximately 15% of
elderly individuals living in retirement communities exhibit
significant depressive symptomatology and are more likely to
exhibit suicidal tendencies (Fiske et al., 2009). Based on the
strong role that stress-induced inflammation is suggested to
play in the emergence of depressive-like behavioral states, it is
possible that inflammatory senescence may represent a putative
mechanism underlying the emergence of depression in aged
populations.

Younger populations on the other hand generally exhibit
greater resilience to immune challenges while simultaneously
exhibiting enhanced behavioral susceptibility to stress. At a
cursory glance these effects seem to be opposing. However, these
data do not consider the detrimental effects that inflammation
produces in the developing organism. Specifically, it has
been shown that stress (Bath et al., 2016) and inflammation
(Johnson and Kaffman, 2018) at early developmental stages can
significantly alter the function, maturation and proliferation
of neurons and glia. Moreover, exposure to early life stress
is known to promote shifts in the function of immune cells
that are resistant to alterations later in life (Lubach et al.,
1995), suggesting that early life stress results in long-term
reprogramming of the immune system. This assumption has
been verified by several studies demonstrating that early
life stress not only increases the susceptibility to developing
autoimmune deficiencies (Capitanio and Lerche, 1991) but
also produces sensitization to subsequent immune challenges
(Graham et al., 2006; Roque et al., 2014). Importantly, these
shifts in immune function are known to persist for several
years (Graham et al., 2006) and has the potential to persist
into adulthood (Harry and Kraft, 2012; Delpech et al., 2016).
This long-term reprogramming of the immune system has been
suggested to underlie the emergence of depressive episodes in
younger populations as subsequent stress exposures can produce
augmented and poorly regulated physiological responses (Brown
et al., 1977).

Sex
Over the last two decades special attention has been paid
to understanding the putative contribution of sex, and more
specifically gonadal hormones, to the consequences of stress
exposure. This research interest was facilitated by several clinical
reports that documented that women are more likely to be
diagnosed with depression compared with men (Weissman and
Klerman, 1992; Gallo et al., 1993; Kessler et al., 1993; Hankin
et al., 1998). This two-fold increased risk is known to emerge at
the onset of puberty, persists into adulthood (Kessler et al., 1993;
Hankin et al., 1998; Nolen-Hoeksema, 2001), and ends following
menopause (Kessler et al., 1993; Hankin et al., 1998) strongly
suggesting that ovarian hormones may mediate this enhanced
stress susceptibility in females. It is important to note that
under non-stress conditions, ovarian hormones have consistently
been suggested to confer protection because ovariectomy
increases depressive-like behaviors (Li et al., 2014). However,
when gonadally-intact and ovariectomized female mice are
exposed to repeated stress, ovariectomy confers protection
against stress-induced depressive-like behavior (LaPlant et al.,
2009). Ovarian hormones, like androgens in males, exert
control over a number of physiological systems including
inflammation (Villa et al., 2016). This is of particular importance
as women exhibit greater inflammatory-induced depressive
behaviors following an acute endotoxin challenge compared
to men (Moieni et al., 2015). Importantly, this ovarian
hormone mediated control over inflammatory systems has
also been reported in preclinical models demonstrating that
female mice exhibit a greater number of microglia that also
exhibit more reactive morphology in brain areas associated
with emotional regulation (Schwarz et al., 2012). Moreover,
when estrogen is administered in vivo and microglia are
subsequently cultured, microglia with prior estrogen treatment
are sensitized to LPS stimulation (Loram et al., 2012).
However, it should be noted that the effect of estrogen on
microglia have also been demonstrated to suppress cytokine
release, but only when estrogen is applied ex vivo to
microglial cells in culture (Dimayuga et al., 2005; Loram et al.,
2012).

One of the most common forms of social stress conducted
in the laboratory setting is the resident intruder paradigm
of social defeat originally developed by Miczek (1979). Social
defeat capitalizes on the protection and defense of territory.
This model of social stress has proven to be very effective
in males and readily produces anxiety- and depressive-like
behaviors in the intruder rats (Wood et al., 2010, 2013, 2015;
Chaijale et al., 2013; Patki et al., 2013; Finnell et al., 2017a).
However, running social defeat in female rats can be difficult
and requires either a lactating female resident (Jacobson-
Pick et al., 2013) or modification of the male resident with
DREADDs to induce heightened aggression via activation of the
ventromedial hypothalamus (Takahashi et al., 2017). Recently
a new modification to the resident intruder paradigm has also
been conducted in which aggression by the male resident was
induced following the application of male odorants to the
female intruders (Harris et al., 2018). Exposure to this particular
modality of social stress (i.e., defeat by a male resident) in
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female rats has produced incongruent results (Haller et al.,
1999; Huhman et al., 2003; Shimamoto et al., 2011; Trainor
et al., 2011; Holly et al., 2012; Greenberg et al., 2013, 2015;
Jacobson-Pick et al., 2013; Ver Hoeve et al., 2013; Takahashi
et al., 2017; Harris et al., 2018). In contrast, findings from
the Trainor lab have consistently demonstrated that female
California mice display greater sensitivity to the behavioral
and molecular consequences to social defeat stress compared
with males (Trainor et al., 2011; Greenberg et al., 2013,
2015; Duque-Wilckens et al., 2018). These species dependent
effects of social defeat stress in females may underscore the
ethological relevance of this stress modality. Unlike female
rats which demonstrate territorial aggression only during the
lactation period, female California mice inherently demonstrate
territorial aggression. These data suggest that the physical
interaction of social defeat may be more ethologically relevant
in female/male California mice and male rats compared with
female rats. This assumption is further validated by studies
demonstrating that female rats exhibit greater sensitivity to social
isolation/instability compared with social defeat (Haller et al.,
1999).

With this in mind, a new model of social stress has recently
emerged that combines the olfactory, auditory and visual
exposure of social defeat without requiring the physical
interaction of defeat. Using this vicarious witness stress model
originally developed for use in male mice by Warren et al.
(2013), we have shown that intact female rats demonstrate
greater sensitivity to the inflammatory, cardiovascular and
behavioral consequences of witness stress exposure compared
to ovariectomized female rats (Finnell et al., 2018). We have
further demonstrated that this enhanced and prolonged
behavioral and physiological sensitivity to the consequences
of witness stress is not exhibited to the same extent in male
rats (Finnell et al., 2017b). While this is still a relatively new
model of stress, others have also been able to demonstrate
similar behavioral sensitivity of intact female mice to this
vicarious witness stress exposure (Iniguez et al., 2018),
suggesting that female susceptibility to witness stress may
be conserved across species. In humans, bearing witness
to a major stressor is one type of event that can elicit post
traumatic stress disorder (PTSD). Therefore, it should be
noted that similar to findings in depressed patients, PTSD
in the clinical setting is also associated with a significant
shift in immune reactivity (reviewed in Segerstrom and
Miller, 2004). Interestingly, this immune reactivity differs
between men and women with men exhibiting a general
under-expression of inflammatory related genes of collected
CD14+ monocytes while women exhibit an upregulation of
pathways associated with inflammatory activation (Neylan
et al., 2011). Several comprehensive reviews have recently
been published regarding enhanced stress sensitivity and
increased risk of mood disorders in females (Goel and
Bale, 2009; Bangasser and Wicks, 2017; Bangasser and
Wiersielis, 2018; Wickens et al., 2018). Moving forward it
will be critical to further validate whether stress sensitive
mechanisms in females are mediated in part by inflammatory
processes.

Personality and Coping
It has long been recognized that there is wide variability in
the way people process and assess stressful situations (Lupien
et al., 2007). This may be driven by the individual’s cognitive
interpretation (Lupien et al., 2007; Nicolai et al., 2013) as
well as the behavioral coping mechanism that is adopted
during the stress exposure. In general, coping strategies are
broadly classified into two categories termed passive and active.
Passive coping strategies include avoidance, seeking excessive
reassurance, withdrawal and substance abuse (Cambron et al.,
2009; Cairns et al., 2014). In contrast, active coping strategies
include problem solving, seeking support, exercising and
engaging in adaptive processes (Cairns et al., 2014). It is
understood that the coping response adopted by an individual
will vary depending on the type and severity of the stress
exposure. However, it has been suggested that individuals who
more readily adopt active coping strategies are more likely to
be resilient to the behavioral and physiological consequences
of stress compared to those who more readily adopt passive
coping strategies (Kendler et al., 1991). Importantly, coping
responses have also been shown to play a large role in the
inflammatory outcomes of stress. For example, individuals who
more readily adopt passive coping strategies exhibit greater
plasma concentrations of IL-6 following a 3 min simulated
public speaking challenge compared with individuals that adopt
active coping strategies (Carroll et al., 2011). Additionally,
feelings of helplessness during stress exposure are associated
with sensitized immune responses to a common allergen
and promote greater release of IL-6 from stimulated primary
blood leucocytes (Kiecolt-Glaser et al., 2009). These data
suggest that feelings of helplessness or uncontrollability could
promote sensitization of inflammatory pathways that can be
amplified by stress exposure (Chen et al., 2009). Although
it is impossible to truly assess the emotional state of an
animal, a number of preclinical studies demonstrated that
both coping (Koolhaas et al., 1999, 2007; Sih et al., 2004;
Bell, 2007; Wood et al., 2015; Finnell and Wood, 2016) and
stressor controllability (Gray and Cooney, 1982; Frank et al.,
2007; Christianson et al., 2009; Arakawa et al., 2014) are
large factors in the susceptibility for developing stress-induced
behavioral and inflammatory dysfunction. Several recent reviews
have also been published on the topic of stress coping and
inflammatory outcomes (Maier and Watkins, 2005; Koolhaas
et al., 2007; Wood, 2014; Finnell and Wood, 2016; Wood et al.,
2017).

BRAIN AREAS ASSOCIATED WITH
STRESS SUSCEPTIBILITY AND
RESILIENCY

There are a number of brain regions that have been implicated
in the emergence of stress-induced behavioral dysfunction that
are discussed throughout this review. Several extensive reviews
have been published on this topic, for example (McEwen and
Gianaros, 2010). However, to highlight the importance of the
brain regions described herein, we have included a brief overview
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of the brain areas that are associated with social processing and
stress responses.

Prefrontal Cortex
The prefrontal cortex works to integrate the social, emotional
and cognitive aspects of behavior (Satpute and Lieberman,
2006). Dysfunction within the prefrontal cortex in humans has
been associated with the emergence of socially inappropriate
behaviors, apathy, inflexibility and isolation (Barrash et al., 2000).
In addition to producing overall shifts in social behavior, the
prefrontal cortex has also been implicated in stress-induced
coping strategies (Robinson et al., 2015). Similar associations
between prefrontal cortex activation and susceptibility to
the consequences of stress have also been demonstrated in
rodents. Utilizing chronic social defeat stress in mice, it
was shown that individual susceptibility to the behavioral
effects of chronic social defeat (i.e., social avoidance) was
directly associated with the activity of the prefrontal cortex
(Kumar et al., 2014). Moreover, Kumar et al. (2014) went
on to demonstrate that prefrontal cortex reactivity during a
pre-stress forced interaction test was predictive of individual
stress susceptibility following chronic social defeat. In the
context of emotional regulation and threat assessment, the
prefrontal cortex serves as a top down inhibitory regulator
of the amygdala and hypothalamus (Mujica-Parodi et al.,
2017). Several clinical and preclinical studies have consistently
reported that stress-induced behavioral deficits are often
associated with dendritic atrophy, loss of synapses, and altered
prefrontal cortex connectivity (Radley and Morrison, 2005;
Banasr et al., 2007; Drevets et al., 2008; Radley et al., 2008;
Ota et al., 2014). These morphological and physiological
alterations of prefrontal cortex neurons may therefore result
in disinhibition of downstream signaling targets including the
amygdala.

Hippocampus
Although largely known for its role in declarative memory, the
hippocampus has also been implicated in social and emotional
episodic memories (Dolcos et al., 2017). Through its connectivity
and bottom-up signaling with the amygdala, the hippocampus is
responsible for the encoding and retrieval of emotionally laden
memories (Dolcos et al., 2017). In addition, the hippocampus
is also critical for the re-encoding and extinction of these
memories. Exposure to chronic unpredictable restraint stress was
shown to produce reductions in several hippocampal sub regions
including CA1, CA3 and the dentage gyrus (Schoenfeld et al.,
2017). Reductions of hippocampal volume in response to stress
have been associated with both dendritic atrophy (Watanabe
et al., 1992; Wood et al., 2004; Eiland and McEwen, 2012)
and reduced neurogenesis (Simon et al., 2005; Jayatissa et al.,
2006; Mitra et al., 2006; Schoenfeld et al., 2017). Interestingly,
preclinical studies using social defeat in mice have indicated
that defeat-induced reductions of neurogenesis within the
hippocampus is associated with stress susceptibility (Tse et al.,
2014) and mice demonstrating stress resiliency exhibited an
increase of hippocampal neurogenesis by approximately 4% (Tse
et al., 2014).

Amygdala
The amygdala is best known for its role in fear responses.
For example animals with lesions of the amygdala exhibit a
disinhibition of fear responses and a significant increase in
prosocial behavior (Kluver and Bucy, 1997). Chronic stress is also
known to produce significant structural and functional effects
within the amygdala that are highly dependent upon the type and
duration of the stressor (Wilson et al., 2015). Moreover, it is now
well recognized that depression and anxiety are both associated
with amygdala hyperactivity (Drevets, 2000; Sheline et al., 2001).
While it is currently unclear how active and passive stress coping
strategies are associated with amygdala activity, it has been shown
using rodentmodels that resilient individuals exhibit a number of
stress-induced adaptations that may inhibit over activation of the
amygdala (Silveira Villarroel et al., 2018).

Bed Nucleus of the Stria Terminalis
Considered to be a part of the extended amygdala, the bed
nucleus of the stria terminalis (BNST) is best known for
its involvement in behaviors associated with social bonding
(Coria-Avila et al., 2014), aggression (Nelson and Trainor,
2007), mating (Coria-Avila et al., 2014) and stress-induced
cardiovascular function (Crestani et al., 2013; Oliveira et al.,
2015). Interestingly, fMRI studies in humans have determined
that the BNST is also involved in the generation of anticipatory
anxiety to unpredictable noxious stimuli (Straube et al., 2007;
Alvarez et al., 2011; Yassa et al., 2012). Although it is currently
unclear how stress affects BNST function in humans, studies
using rodent models have determined that exposure to stress
results in enhanced BNST activation (Kollack-Walker et al., 1997;
Martinez et al., 1998). It is also important to note that the BNST
is a sexually dimorphic brain region that has been shown to play a
critical role in the consequences of social defeat exposure in male
and femalemonogamous Californiamice. Following social defeat
exposure, Greenberg et al. (2013) showed that female California
mice not only demonstrated greater social avoidance but also
exhibited greater brain derived neurotrophic factor in the BNST
compared to their defeated male counterparts.

Nucleus Accumbens
The Nucleus Accumbens (NAc) is largely studied in the
field of addiction due to its role in motivation and reward.
However, the NAc is quickly gaining attention in the field
of stress and depression due to its potential involvement in
the development of anhedonia (Di Chiara et al., 1999; Yadid
et al., 2001). The NAc is predominantly inhibitory, releasing
γ-aminobutylic acid (GABA) in the ventral tegmental area,
thereby exerting control over cortical dopamine (Shirayama
and Chaki, 2006). fMRI studies conducted in humans have
shown that patients suffering from major depressive disorder
exhibit altered activation of the NAc during reward anticipation
and outcome compared to healthy controls (Misaki et al.,
2016). Importantly, the NAc has also been implicated in
coping behaviors. Use of active coping behaviors was associated
with increases in NAc activity while passive coping was
association with reductions in NAc activity (Levita et al.,
2012).

Frontiers in Behavioral Neuroscience | www.frontiersin.org October 2018 | Volume 12 | Article 24024

https://www.frontiersin.org/journals/behavioral-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/behavioral-neuroscience#articles


Finnell and Wood Inflammatory Mechanisms of Stress Susceptibility

SOURCES OF STRESS-INDUCED
NEUROINFLAMMATION

While it is clear that neuroinflammatory processes may be a
critical link in the pathogenesis of stress-related psychiatric
disorders in certain subpopulations of patients, it is important
to understand which stress sensitive processes are capable of
promoting neuroinflammation. The twomost likely mechanisms
of increased neuroinflammation include stress-induced
activation and sensitization (i.e., priming) of microglia and
stress-induced disruption of the blood brain barrier (BBB; see
Figure 1).

Microglial Activation and Priming
Microglia are considered to be highly adaptive cell types as they
are capable of transitioning between pro-inflammatory (M1)
and anti-inflammatory (M2) states. However, in response to
stress a greater number of microglia exhibit the proinflammatory
M1 phenotype (Tang et al., 2018). This change in morphology
can be stimulated by activation of glucocorticoid receptors
(GCRs; Ros-Bernal et al., 2011; Liu et al., 2016) found on the
cell surface of microglia, suggesting that stress-induced release

of cortisol (in humans) and corticosterone (in rodents) could
promote this shift to an M1 microglial state. The involvement
of M1 type microglia in stress-induced neuroinflammation has
further been supported by studies utilizing the tetracycline analog
minocycline. Minocycline, traditionally used as an antibiotic,
is well documented to inhibit the polarization of microglia to
an M1 proinflammatory phenotype (Kobayashi et al., 2013).
Moreover, use of minocycline in conjunction with inescapable
foot shock (Blandino et al., 2006) and chronic mild stress (Wang
et al., 2018) have shown that inhibition of the M1 microglial
phenotype, and subsequent suppression of proinflammatory
cytokine release, protects against the development of stress-
induced depressive- and anxiety-like responses in rodents.
Notably, minocycline is now being evaluated as a putative
treatment for bipolar depressive disorder in humans. A very
recent clinical trial demonstrated that daily doses of minocycline
was capable of producing anti-depressant effects in 90%
of study participants (Murrough et al., 2018). While more
information is required about the putative anti-inflammatory
effects minocycline may have in these patients, these studies
in combination provide clear evidence for the involvement of
M1 microglia in the emergence of depressive symptomatology.

FIGURE 1 | Schematic highlighting key sources of stress-induced neuroinflammation. Stress exposure is known to promote shifts in microglial morphology from a
highly ramified “resting” state to an ameboid M1 proinflammatory state. In addition to directly stimulating the release of cytokines, activation of microglial
glucocorticoid receptors (GCRs) also results in priming of inflammatory responses. This process can occur directly through activation of the NLRP3 inflammasome or
indirectly by promoting the release of reactive oxygen species (ROS) from mitochondria which results in the oxidation of high mobility group box -1 (HMGB-l). Once
released, HMGB-1 and proinflammatory cytokines such as interleukin (IL)-1β can act on toll like receptor 4 (TLR 4) on the surface of microglia to further stimulate the
NLRP3 signaling cascade. Another significant source of stress-induced neuroinflammation is the breakdown of the blood brain barrier (BBB). In pre-stress conditions
endothelial cells tightly adhere to one another, blocking the flow of circulating cytokines to the brain. However, in response to stress exposure, tight junctions
between these endothelial cells break down allowing for peripheral cytokines and inflammatory cells to penetrate into the brain. This process is known to be
facilitated by plasma vascular endothelial growth factor (VEFG)-164, endothelial claudin-5 (CLDN-5) and microglia released matrix metalloproteinase-9 (MMP-9).
∗Designate non-neuronal and non-glial origins.
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In addition to promoting the release of cytokines from
microglia (Nair and Bonneau, 2006; Kreisel et al., 2014), stress
is also capable of sensitizing microglia such that a subsequent
stress or immune challenge produces a faster and more robust
neuroinflammatory response (Frank et al., 2012, 2018; Fonken
et al., 2016). Importantly, glucocorticoid signaling is one factor
that has been shown to initiate this phase of stress-induced
neuroinflammatory sensitization termed microglial priming.
One potential mechanism by which this priming may occur is
though the dysregulation of the danger, damage and disease
signal high mobility group box-1 (HMGB-1). In response to
stress, the membrane glycoprotein CD200 and its receptor
(CD200R) exhibit significant down regulation at both the
genomic and protein levels (Frank et al., 2018). Notably CD200R
is almost exclusively expressed on microglia (Koning et al.,
2009) and is known to regulate proinflammatory signaling by
constitutively inhibiting myloid cells (Gorczynski, 2005). Loss
of CD200 and CD200R in rats exposed to inescapable foot
shock was further associated with enhancement of HMGB-1
and increased gene expression of IL-1β, tumor necrosis factor
(TNF)-α and nuclear factor kappa (NFκ)B (Frank et al.,
2018). This increased expression of proinflammatory genes
by HMGB-1 has been directly linked to the activation of
the nucleotide-binding oligomerization domain-like receptor
(NLRP3) inflammasome (Weber et al., 2015). In addition to
the noted effects on gene expression, HMGB-1 activation of the
NLRP3 inflammasome can further potentiate proinflammatory
signaling by enhancing the cleavage of proIL-1β to IL-1β via
activation of caspase-1 (Yan et al., 2012). However, it is important
to note that this proinflammatory capacity of HMGB-1 is
strongly tied to the redox state of the protein. In its fully reduced
state, HMGB-1 promotes chemotaxis but lacks the ability to
promote proinflammatory signaling. Alternatively, the oxidized
state of HMGB-1, designated by the formation of disulfide
linkages, is capable of potentiating proinflammatory signaling as
discussed above but lacks chemotactic abilities (Yang et al., 2012).
Although the majority of studies assessing the involvement of
HMGB-1 in microglial priming have come from studies using
inescapable foot shock (Yang et al., 2012; Weber et al., 2015),
chronic unpredictable stress (Franklin et al., 2018), and single
prolonged stress (Lai et al., 2018), exposure to social stressors
such as social defeat is known to enhance the intracellular
concentration of reactive oxygen species (ROS; see section
Oxidative Stress/Reactive Oxygen Species). Therefore, it is highly
plausible that HMGB-1 may also contribute to the emergence of
social stress-induced behavioral deficits.

These stress-induced alterations in the morphology and
reactivity of microglia requires several hours to manifest and
are evident for up to 72 h following the termination of stress,
a time point at which peripheral cytokine responses are no
longer detected (Tynan et al., 2010; Kopp et al., 2013; Deak
et al., 2017). These data nicely parallel findings indicating that
the development of depressive-like behaviors following a robust
inflammatory challenge occurs over a period of several hours
and persist well beyond 24 h (Capuron et al., 2002; Dantzer
et al., 2008). Moreover, preclinical studies using social defeat and
vicarious witness stress have demonstrated that repeated stress

exposure is capable of enhancing resting neuroinflammation
that persists for at least 5 days following the final stress
exposure, a time at which depressive-like behavior is evident
(Finnell et al., 2017a,b). Importantly these studies determined
that despite elevations in neuroinflammation and depressive-like
behavior 5 days following the final stress exposure, resting
peripheral inflammation had returned to baseline comparable
to non-stressed controls (Finnell et al., 2017a). The importance
of central inflammation in the emergence of stress-induced
depressive-like behavior has been further substantiated by studies
outlining the effectiveness of centrally administered IL-1 receptor
antagonist in inhibiting social defeat-induced depressive-like
behavior (Wood et al., 2015). Similar antidepressant-like effects
were demonstrated with the use of resveratrol, a natural anti-
inflammatory. Importantly, these effects were only achieved by
the highest dose, which was the only dose to effectively prevent
the neuroinflammatory response to social defeat (Finnell et al.,
2017a). These data strongly suggest that stress likely promotes
the emergence of an M1 microglial phenotype which may
directly underlie stress and inflammatory-induced behavioral
dysfunction.

Blood Brain Barrier Disruption
While cells within the brain are robustly capable of producing a
major source of neuroinflammation, cytokines circulating in the
blood can also serve as a source to increase neuroinflammation.
The BBB, in part a meshwork of specialized endothelial cells
along blood vessels surrounding the brain, serves the purpose of
regulating entry and export of cytokines (and other substances)
between the peripheral circulation and the brain. In a healthy
brain, cytokines are considered to be too large and hydrophilic
to passively diffuse across the BBB (Banks, 2005). However, the
IL-1 family, TNF and IL-6 exhibit distinct and saturable transport
mechanisms to effectively pass from the blood to the brain
(Banks et al., 1989, 1991). Moreover, pro-inflammatory cytokines
can disrupt the integrity of the BBB (Muramatsu et al., 2012).
As such, circulating inflammation may initiate a cascade that
enhances the flow of inflammatory factors from the circulation
into the brain, further exacerbating neuroinflammation. This
concept was demonstrated in an elegant study that showed
that microglia initiated the recruitment of IL-1β producing
monocytes to the brain and stimulated brain endothelial IL-1R1
(McKim et al., 2018). This study went on to further demonstrate
that microglial depletion prevented monocyte recruitment and
inhibited the development of anxiety in socially defeated
mice.

It is tempting to suggest that the link between diseases
characterized by peripheral inflammation including
cardiovascular disease, rheumatoid arthritis, etc., and the
striking increased risk of major depression in these patients
(Anda et al., 1993; Huffman et al., 2013; Marrie et al.,
2017) may be driven by an impaired BBB and exaggerated
neuroinflammation. In addition, social stress exposure, another
risk factor for psychiatric disorders is recognized to increase
the release of circulating proinflammatory cytokines in animals
and humans (Pace et al., 2006; Hodes et al., 2014; Wood
et al., 2015; Quinn et al., 2018). While circulating cytokine
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levels typically return to baseline following cessation of a
single acute social stressor (Cheng et al., 2015), preclinical
models generating a stress-induced depressive-like phenotype
achieved by repeated exposure to social defeat stress demonstrate
persistent enhancement in peripheral inflammatory sensitivity
(Hodes et al., 2014; Finnell et al., 2017a). In line with the
deleterious role of pro-inflammatory cytokines on the integrity
of the BBB, recent reports have identified the role of social stress
on various factors known to disrupt the BBB. For example,
male rats that demonstrate susceptibility to social defeat stress
as evidenced by passive coping responses during social defeat
and development of depressive-like behaviors, selectively
demonstrated enhanced BBB permeability in the ventral
hippocampus (Pearson-Leary et al., 2017) while the active
coping resilient subset of rats did not. Moreover, administration
of the proinflammatory cytokine vascular endothelial growth
factor-164 increased permeability of the BBB and was shown to
induce vulnerability in socially defeat rats (Pearson-Leary et al.,
2017). Stress-induced BBB disruption has also been documented
in a mouse model of social defeat, whereby the susceptible subset
of male mice also demonstrated stress-induced suppression of
claudin-5, an endothelial cell-specific tight junction protein,
in the NAc and the hippocampus as compared with controls
or the resilient subset of mice. Moreover, BBB permeability
was also confirmed in the susceptible subset of mice (Menard
et al., 2017). Importantly, these studies further established
suppressed claudin-5 expression in post mortem tissue from
the NAc of depressed patients. Taken together, disruption of
the BBB is a likely susceptibility mechanism driving increased
neuroinflammation and social stress-induced behavioral
dysfunction in animals, and may contribute to psychopathology
in humans.

Other proteins are likely targets for stress-induced increases
in BBB permeability and include HMGB-1 and matrix
metalloproteinase-9 (MMP-9). For example, HMGB-1 is
upregulated by social defeat stress (Finnell et al., 2017b) and
beyond its role in neuroinflammatory priming, is also involved in
BBB dysfunction. This role for HMGB-1 is supported by studies
demonstrating that administration of monoclonal antibody to
HMGB-1 protects against ischemia-induced BBB disruption
in rats (Zhang et al., 2011), and in humans anti-HMGB1
monoclonal antibody improves the BBB integrity of patients
with Alzheimers disease (Festoff et al., 2016). Together these
findings clearly define a role for HMGB-1 in BBB dysfunction
that could precipitate stress-related psychiatric dysfunction.
Furthermore, inflammatory factors including HMGB-1 (Qiu
et al., 2010) also stimulate the release of MMP-9, a zymogen that
breaks down the BBB, from infiltrating leukocytes and microglia
to contribute to endothelial damage (Crocker et al., 2006) and
BBB leakage (Seo et al., 2013). MMP-9 protein expression
is elevated in peripheral tissues and serum by social defeat
stress (Stelzhammer et al., 2015; Wu et al., 2015). While this
has yet to be documented in the brain following social defeat,
central MMP-9 has been shown to be regulated by fear learning
(Ganguly et al., 2013) and lends support to the possibility that
MMP-9 may be a putative target by which social stress could lead
to BBB disruption.

CENTRAL MECHANISMS CONFERRING
RISK OR RESILIENCE TO STRESS THAT
ARE REGULATED BY
NEUROINFLAMMATION

Acute stress is well recognized to stimulate the release of
proinflammatory cytokines from microglia (Blandino et al.,
2006, 2013) and repeated stress exposure is capable of producing
enduring increases in neuroinflammation in stress sensitive
brain regions (Voorhees et al., 2013; Wohleb et al., 2013;
Wood et al., 2015; Finnell et al., 2017a,b). While evidence
links an inflammatory state with a depressive phenotype,
our understanding of exactly which neuromodulatory
systems are acted upon by inflammatory cytokines and
chemokines that serve to increase stress susceptibility is
in its infancy. Several reviews have been published on the
impact that neuroinflammation has on the metabolism of
the neurotransmitters serotonin, dopamine and glutamate
and therefore, while clearly relevant to the pathophysiology
of depression, this topic will not be covered here (see Miller
et al., 2013). Herein, we will focus on the potential role of
neuroinflammation on mitochondrial dysfunction and oxidative
stress as well as glutamate neurotransmission or excitotoxicity
(see Figure 2).

Mitochondrial Dysfunction
Mitochondria play a critical role in cellular energy metabolism
and supply the large energy demand required by the brain,
especially under stressful conditions. The inner membrane of
mitochondria houses the electron transport chain, which is
made up of five protein complexes. Three of these respiratory
chain complexes (I, III and IV) pump protons throughout
the inner membrane generating the proton gradient that is
ultimately responsible for synthesizing adenosine triphosphate
(ATP) at complex V.Mitochondria are responsible for producing
the vast majority of the ATP in neurons and in particular
within presynaptic terminals mitochondrial ATP is required
for synaptic ion homeostasis and phosphorylation (Mattson
et al., 2008). There is mounting evidence that patients with
psychiatric disorders demonstrate mitochondrial abnormalities
at the functional level. For example, positron emission
tomography studies of brain glucose metabolism have identified
reduced glucose utilization in the brains of depressed patients
(Videbech, 2000). Moreover, mitochondrial ATP production
was also reduced in depressed patients (Gardner et al., 2003).
While the cause of this mitochondrial dysfunction is not
understood, it is noteworthy to consider the findings that
proinflammatory cytokines can impair mitochondrial function.
For example, physiologically relevant levels of TNF-α can
induce mitochondrial dysfunction; low (post-stroke) levels of
TNF-α rapidly reduce mitochondrial function as indicated by
increased caspase 8 activity and a decrease in mitochondrial
membrane potential (Doll et al., 2015). This effect was shown
to signal through TNF-R1 selectively and highlights the role
that proinflammatory cytokines may play in mitochondrial
dysfunction. Beyond the capability of neuroinflammation to
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FIGURE 2 | Mechanisms of stress-induced cytotoxicity. In addition to releasing cytokines, Ml type proinflammatory microglia release a variety of neurotransmitters,
co-agonists, and neuromodulators such as glutamate and its co-agonist D-serine. Normally, excess glutamate is taken up by excitatory amino acid transporter
(EAAT) 1 and 2 found on astrocytic processes. However, in proinflammatory conditions and in the presence of excess glutamate, EAAT 1 and 2 are down regulated,
thereby resulting in excess glutamate within the synaptic cleft. Importantly, neurons also contribute to stress-induced enhancements of glutamatergic tone. This is
thought to occur as stress exposure enhances mitochondrial glutaminase, the enzyme responsible for converting glutamine to glutamate. In addition to enhancing
excitatory tone, stress also sensitizes neurons to the excitatory effect of glutamate. Specifically, stress promotes the expression of GluA2 lacking
α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors and GLUN2B lacking NMDA receptors. These receptor subtypes allow for calcium (Ca2+)
to freely pass into the cell thereby enhancing the depolarizing effect of glutamate. This cumulative increase in excitatory tone is particularly detrimental for dendritic
spines that exhibit a long and thin morphology, as these spines are more sensitive to the degenerative effects induced by glutamatergic excitotoxicity.

induce mitochondrial dysfunction, it is interesting to note that
reducing activity of mitochondria within microglia amplifies the
NLRP3 inflammasome and IL-1β release (Sarkar et al., 2017).
Taken together these studies demonstrate a striking relationship
between neuroinflammation and mitochondrial dysfunction.

While no studies to date have directly evaluated the
role that stress-induced release of proinflammatory cytokines
has on mitochondrial function, it has been demonstrated
in various stress paradigms that repeated stress exposure
has dramatic effects on mitochondria. For example, chronic
immobilization stress and chronic mild stress inhibit the activity
of the respiratory chain complexes within the rat brain cortex
(Madrigal et al., 2001; Rezin et al., 2008) and was shown
to reduce hippocampal Na+, K+-ATPase activity (Gamaro
et al., 2003). Moreover, chronic mild stress has been shown to
reduce respiration rates of mitochondria located in the mouse

hippocampus, cortex and hypothalamus (Gong et al., 2011).
This study also confirmed that stress significantly impacted
the ultrastructure of mitochondria (Gong et al., 2011), which
are features of mitochondria in presynaptic neurons that have
been coupled to changes in synaptic strength (Cserép et al.,
2018). Moreover, there is evidence to suggest that distinct
differences in mitochondrial function regulate an anxiety-like
phenotype. For example, rats that exhibited high anxiety-like
behavioral tendencies also demonstrated reduced expression
of mitochondrial complex I and II proteins and decreased
respiratory capacity and ATP (Hollis et al., 2015). Surprisingly,
however, there is a paucity of studies evaluating the impact
of social defeat stress on brain mitochondria and even further
lack of studies determining whether the vast stress-induced
changes in mitochondrial function are driven by stress-induced
proinflammatory cytokines.
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Oxidative Stress/Reactive Oxygen Species (ROS)
Active neurons exhibit high rates of oxygen consumption
and as a result, produce large amounts of ROS (Halliwell,
1992). Mitochondria are the energy powerhouse of the cell and
represent the largest source of ROS production in addition
to monoamine oxidase and nitric oxide synthase. While ROS
play a role in several critical neuronal functions such as
neuronal plasticity and learning and memory (reviewed in:
Massaad and Klann, 2011), the large amounts of ROS are
tightly regulated by an antioxidant system. Under conditions
where this system becomes unbalanced, a deleterious buildup
of ROS is linked to stress-related psychiatric pathology in
clinical studies and is demonstrated to occur in stress-related
preclinical studies (de Oliveira et al., 2007; Salim et al., 2010,
2011; Lindqvist et al., 2017). Because mitochondria play a critical
role in the production and metabolism of ROS, mitochondrial
dysfunction is directly related to increased oxidative stress
(Mattson et al., 2008). In line with evidence discussed above
that TNF-α reduces mitochondrial function, ROS are also
dose dependently increased by treatment with either TNF-α
or IL-6 (Rochfort et al., 2014). Social defeat stress has also
been shown to induce ROS in stress-related brain regions,
and moreover ROS have been shown to play a permissive
role in the anxiety-like behavior following social defeat in
rats (Solanki et al., 2017). Interestingly, rats demonstrating
a high anxiety-like phenotype also exhibit increased ROS
production within the NAc (Hollis et al., 2015). Finally,
lending evidence to the role for ROS in the pathogenesis of
psychiatric disorders in humans, depressed patients not only
exhibited elevated markers of inflammation and the oxidative
stress marker F2-isoprostanes, but compared to individuals
who readily respond to antidepressants, non-responders
had higher levels of both oxidative stress markers and
inflammation (Strawbridge et al., 2015; Vaváková et al.,
2015; Lindqvist et al., 2017). Taken together, it is clear that
proinflammatory cytokines are capable of shifting the balance
of ROS production/elimination from a healthy balance towards
maladaptive. However, it is yet to be determined whether stress-
induced ROS and subsequent anxiety- and depressive-like
behavior is initiated by proinflammatory cytokines and
chemokines.

Glutamate Neurotransmission and
Excitotoxicity
The involvement of glutamate has also become an area of
interest in the etiology of depression. For example, heightened
excitability of hippocampal neurons may underlie the loss
of glutamatergic pyramidal neurons in depressed patients
(Rajkowska et al., 2005) and evidence from human postmortem
tissue has identified alterations in excitatory amino acid
transporters (EAATs) 1 and 2 and glutamine synthetase
(Rajkowska and Stockmeier, 2013). Moreover, it has been shown
that ketamine, a noncompetitive NMDA antagonist (Anis et al.,
1983), is capable of producing long lasting antidepressant effects
(Berman et al., 2000) even in patients that demonstrate resistance
to traditional antidepressant therapies (Zarate et al., 2006).
Importantly, the inhibitory action of ketamine requires the

presence of open NMDA channels (MacDonald et al., 1987)
and can remain bound to NMDA receptors even after the
channels have closed (Huettner and Bean, 1988), providing
pharmacological validity to these prolonged treatment effects.
Several preclinical models have demonstrated that exposure
to stress can result in abnormalities in glutamate signaling.
For example, 8 weeks of social isolation has been shown to
enhance the expression of both NR2A and NR2B subunits within
the hippocampus (Chang et al., 2015). Stress-induced increases
in these NMDA receptor subunits within the hippocampus
are known to not only enhance the intensity of excitatory
postsynaptic potentials (Chang et al., 2015) but are also
associated with the emergence of aggression, anxiety- and
depressive-like behaviors in rodents (Costa-Nunes et al., 2014;
Chang et al., 2015). However, it is important to note that
these alterations in NMDA receptor subunits following stress
exposure are brain region specific. Within the NAc, mice
exposed to chronic social defeat that also demonstrate behavioral
susceptibility, exhibit long term reductions of NR2B subunit
(Jiang et al., 2013). The loss of NR2B subunits significantly
impacted the synaptic function of NAc neurons by promoting
an increase in long-term depression (Jiang et al., 2013).
Interestingly, this study went on to determine that treatment with
Fluoxetine, a selective serotonin re-uptake inhibitor, was capable
of reversing the effects of defeat stress in susceptible mice such
that the molecular profiles within the NAc were nearly identical
to mice demonstrating resilience to the effects of social defeat
(Jiang et al., 2013).

Stress-induced alterations of NMDA receptors are not
the only putative source of glutamatergic excitotoxicity
in the brain. For example, unpredictable stress exposure
has been documented to produce similar alterations in
the subunit composition of α-amino-3-hydroxy-5-methyl-
4-isoxazolepropionic acid (AMPA) receptors such that
stress exposed rodents demonstrated greater expression of
GluR1 subunits (Hubert et al., 2014). Moreover, exposure
to the unpredictable stress paradigm resulted in a shift in
AMPA receptor distribution such that a greater number of
AMPA receptors were found on dendritic spines (Hubert et al.,
2014).This seemingly minor shift is well known to produce
functionally relevant alterations in neuronal signaling. AMPA
receptors which express the GluR2 subunit are impermeable
to extracellular Ca2+ due to an arginine block. Therefore,
loss of GluR2 subunits enhances the signaling strength of
AMPA receptors by enhancing the magnitude of the elicited
depolarization following AMPA receptor stimulation (Isaac
et al., 2007). Taken together, these findings suggest that exposure
to unpredictable stress may result in significant remodeling of
dendritic spines to vastly increase their sensitivity to excitatory
stimuli. These effects, similar to those demonstrated inmicroglia,
require at least 24 h following the cessation of stress to become
evident suggesting that these alterations are largely driven by
alterations in gene expression (Nasca et al., 2015) and are not
associated with the immediate stress response. Interestingly,
GluR2 subunits are also known to shift across the lifespan. In
rodents it has been shown that GluR2 steadily increases from
birth until adulthood. However, this composition of AMPA
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receptors does not remain stable and does decrease such that
70-week-old rodents exhibit significant decline in both protein
and mRNA for the GluR2 subunits within the hippocampus
(Pandey et al., 2015). While it is unclear if inflammatory
senescence and enhanced inflammatory reactivity is associated
with this shift in GluR2 subunits, these data suggest that a
natural loss of GluR2 may contribute to the enhanced risk of
mood disorders in aging populations.

A number of studies have directly implicated
neuroinflammation and microglial processes in the emergence
of glutamatergic excitotoxicity (Faust et al., 2010; Diamond and
Volpe, 2012). Most directly, glutamate can be released from
activated microglia (Barger et al., 2007) or neurons following
stimulation with cytokines such as IL-1β in a dose dependent
manner (Zhu et al., 2006). In addition, cytokines released by
neighboring microglia are capable of acting upon neurons to
increase neuronal glutaminase (Ye et al., 2013), a mitochondrial
enzyme responsible for the conversion of glutamine to glutamate
(Zhao et al., 2012). Importantly, TNF-α-induced increases in
glutaminase have been tied to the induction of ROS (Wang K.
et al., 2017), demonstrating the functional overlap that exists
in these stress and inflammatory sensitive systems. In addition
to stimulating the release of glutamate, microglia can actively
synthesize and release D-serine (Wu et al., 2004). D-serine
is a co-agonist for NMDA receptors and strikingly exhibits a
three-fold greater affinity for the receptor compared with glycine
(Matsui et al., 1995). Several studies have demonstrated that
exposure to social defeat stress in mice is capable of enhancing
D-serine that is associated with anxiety- and depressive-like
behaviors (Wang J. et al., 2017; Dong et al., 2018). Moreover,
genetic deletion of D-serine was capable of conferring resilience
to mice exposed to chronic social defeat (Dong et al., 2018).
While it is currently unclear if these defeat-induced increases
in D-serine are driven by defeat-induced proinflammatory
cytokines or activation of microglia, it has been shown that
administration of nonsteroidal anti-inflammatories such as
mefenamic acid (Armagan et al., 2012a,b), acetaminophen, and
naproxen (Armagan et al., 2012a) are capable of inhibiting
D-serine.

Importantly, the role of stress and inflammation in
glutamatergic excitotoxicity extends beyond glutamate receptors
and their ligands. A number of studies have further demonstrated
microglial involvement in glutamate accumulation in the
extracellular space. Specifically, microglial stimulation with
IL-1β (Ye et al., 2013) or TNF-α (Takeuchi et al., 2006; Ye
et al., 2013) promotes the release of microglial glutamate.
Under normal resting non-stress conditions, the brain has a
number of mechanisms in place to manage excess synaptic
glutamate. One such method is astrocyte mediated uptake
via EAAT1 and EAAT2 in humans and glutamate–aspartate
transporter (GLAST) and glutamate transporter 1 (GLT1) in
rodents (Bezzi et al., 2004; Furuta et al., 2005). However, this
protective mechanism has been shown to fail in instances where
glutamate accumulation resulted from stimulation of microglia.
Specifically, accumulation of glutamate in astrocytes results
in a compensatory downregulation of EAAT1 (Takaki et al.,
2012). Although preclinical studies assessing the role of GLAST

and GLT1 in social stress-induced behavioral dysfunction has
not been assessed, clinical studies have demonstrated altered
expression of EAAT1 and 2 within brains of depressed patients
(Miguel-Hidalgo et al., 2010; Rajkowska and Stockmeier, 2013).
Together these data indicate that cytokine activation of microglia
may result in a complex dysregulation of glutamate neuronal
transmission by both enhancing local glutamate synthesis,
stimulating glutamate release, and indirectly resulting in a
downregulation of receptors involved in the maintenance of
extra synaptic glutamate.

Remodeling of Excitatory Synaptic
Terminals
In addition to modifying the release, synthesis and uptake
of glutamate, stress and inflammation are known to alter the
structure of excitatory synaptic terminals. Specifically, it has been
shown that chronic stress results in the loss of dendritic spines
in areas such as the prefrontal cortex (Goldwater et al., 2009).
This loss of spines is directly associated with the emergence
of anxiety- and depressive-like behaviors (Qiao et al., 2016).
Stress has further been postulated to contribute to these effects
by modulating a number of factors including the synthesis
and release of MMP-9. In addition to promoting disruptions
in the BBB (see ‘‘Blood Brain Barrier Disruption’’ section),
MMP-9 is also involved in synaptic plasticity and remodeling of
dendritic spines (Wang et al., 2008). In the presence of MMP-9,
dendritic spines reshape from a short and round to a long and
thin morphology (Michaluk et al., 2011). These long and thin
spines are suggested to be less effective in conducting excitatory
signals as they restrict Ca2+ flow (Ebrahimi and Okabe, 2014).
Moreover, the thin and elongated spines also demonstrate
greater vulnerability to the damaging cellular consequences of
stress exposure (Radley et al., 2008; Bloss et al., 2011). In
this manner, MMP-9-induced remodeling of dendritic spines
may reduce neuronal excitability and promote the loss of
dendritic spines. While clinical studies documenting the role
of MMP-9 in the emergence of stress-induced depression are
lacking, preclinical studies have demonstrated that exposure to
social defeat results in elevations of the cytokine IL-1α and
MMP-9. Importantly, these findings were most pronounced in
susceptible rodents (Stelzhammer et al., 2015). These effects
of social defeat on dendritic spines is not limited to MMP-
9. Within the NAc inhibition of κB kinase (IκK) has also
been shown to promote the formation of long and thin spines
in animals exposed to social defeat (Christoffel et al., 2012).
Moreover, this study found a trend to suggest that a greater
number of long and thin spines was negatively associated with
social interaction which could be reversed by inhibiting IκK
(Christoffel et al., 2012). This same group later showed that
chronic exposure to social defeat was also associated with an
increase in the number of immature stubby spines in the NAc
(Christoffel et al., 2015). In accordance with their previous
findings, a larger number of stubby spines was associated
with the emergence of social avoidance (Christoffel et al.,
2015).

In the developing brain, microglia are well known to
contribute to the remodeling of neuronal synapses through a
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process termed synaptic pruning (reviewed in Lenz and Nelson,
2018). Synaptic pruning has been described as a phagocytic event
where immature and highly active synapses are permanently
removed. It was originally suggested that this occurred via
microglial engulfment of dendritic spines. However, a study by
Weinhard et al. (2018) demonstrated that although microglia
did contact dendritic spines, they did not completely engulf
the dendritic spines for elimination. Instead it was found that
microglia participate in a process termed trogocytosis in which
only a small portion of the dendritic spine is phagocytosed
(Weinhard et al., 2018). This process of trogocytosis also
stimulates the formation of new long and thin filopodia shaped
spines (Weinhard et al., 2018). While studies determining the
involvement of microglial pruning in the consequences of stress
exposure is unknown, it is probable that similar phagocytic
processes could occur as a consequence of stress exposure.

CONCLUSION

Prospective studies have clearly linked inflammatory related
disorders with increased risk of depression. Moreover, several
clinical studies support the notion that neuroinflammation
is associated with depressive symptomatology. However,
our understanding of the mechanisms that are impacted
by neuroinflammation, especially in the context of social
stressors is at its infancy. Gaining a better understanding of
neuroinflammatory-mediated adaptations that occur during
stress and are capable of producing psychopathology will be a
great advance in understanding the role of neuroinflammation

in the etiology of depressive and anxiety disorders. Beyond
the recognized effects of inflammatory cytokines on
neurotransmitter and neuropeptide systems, inflammation may
likely regulate susceptibility to social stress by altering the BBB,
sensitizing microglia, producing mitochondrial dysfunction and
oxidative stress as well as contributing to glutamate toxicity.
This review highlights these cytokine-sensitive mechanisms
that are favorably positioned to contribute to pathology, yet in
many cases their direct regulation by inflammatory cytokines
in the context of social stress has not been determined and
will represent a great advance to the etiology of stress-induced
psychiatric disorders.
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Natural variations in parenting are associated with differences in expression of
several hormones and neuropeptides which may mediate lasting effects on offspring
development, like regulation of stress reactivity and social behavior. Using the
bi-parental California mouse, we have demonstrated that parenting and aggression
are programmed, at least in part, by paternal behavior as adult offspring model
the degree of parental behavior received in development and are more territorial
following high as compared to low levels of care. Development of these behaviors
may be driven by transient increases in testosterone following paternal retrievals and
increased adult arginine vasopressin (AVP) immunoreactivity within the bed nucleus of
the stria terminalis (BNST) among high-care (HC) offspring. It remains unclear, however,
whether other neuropeptides, such as oxytocin (OT), which is sensitive to gonadal
steroids, are similarly impacted by father-offspring interactions. To test this question, we
manipulated paternal care (high and low care) and examined differences in adult offspring
OT-immunoreactive (OT-ir) within social brain areas as well as basal T and corticosterone
(Cort) levels. HC offspring had more OT-ir within the paraventricular nucleus (PVN)
and supraoptic nucleus (SON) than low-care (LC) offspring. Additionally, T levels were
higher among HC than LC females, but no differences were found in males. There
were no differences in Cort indicating that our brief father-pup separations likely had no
consequences on stress reactivity. Together with our previous work, our data suggest
that social behavior may be programmed by paternal care through lasting influences on
the neuroendocrine system.

Keywords: oxytocin, testosterone, corticosterone, paternal care, Peromyscus californicus

Abbreviations: AVP, arginine vasopressin; BNST, bed nucleus of the stria terminalis; CORT, corticosterone; HC, highcare;
HGL, huddling, licking and grooming behavior; HPA, hypothalamic-pituitary-adrenal; -ir, immunoreactive; LC, lowcare;
NGS, normal goat serum; OT, oxytocin; PBS, phosphate buffer saline; PVN, paraventricular nucleus; SON, supraoptic
nucleus; T, testosterone.
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INTRODUCTION

Variability within postnatal environments can have profound
consequences on phenotype development in offspring. Stress
reactivity and parental behavior, among other things, are
programmed by the quality of care received (Bester-Meredith
and Marler, 2003; Shannon et al., 2005; Ichise et al., 2006;
Uriarte et al., 2007; Rosenfeld et al., 2013). This phenotypic
plasticity is accompanied by changes to neural pathways
associated with behavioral regulation (Champagne et al., 2004;
Weaver et al., 2006; Oomen et al., 2009). While mothers
are the primary caregiver in most mammalian species, in an
estimated 5%–10% of mammals, fathers also contribute to
offspring development (Gubernick and Alberts, 1987; Ziegler
et al., 2000; Bester-Meredith and Marler, 2001). Within the
bi-parental California mouse (Peromyscus californicus), fathers
provide high-care (HC) towards both same and opposite sex
offspring, which influence neuroendocrine mechanisms that
facilitate similar rather than sexually dimorphic development.
Transient increases in testosterone levels (Becker et al., 2010;
Chary et al., 2015) and greater arginine vasopressin (AVP)
expression in the bed nucleus of the stria terminalis (BNST;
Frazier et al., 2006; Yohn et al., 2017), accompany territorial
aggression in HC offspring. Whereas in most species parental
behavior is accompanied by a reduction in aggression and T,
in bi-parental species (Hume and Wynne-Edwards, 2005),
like the territorial California mouse (Trainor and Marler,
2001, 2002), T remains high in fathers and is important
for maintaining paternal behavior since castration reduces
paternal behavior in this species (Trainor and Marler, 2001).
The current study aimed to identify whether paternal care,
which we have demonstrated programs both territoriality
(Yohn et al., 2017) and parental behavior (Bester-Meredith and
Marler, 2003; Gleason and Marler, 2013; Becker, unpublished;
Leithead, unpublished) in adult California mouse offspring,
influences other neuroendocrine mechanisms in addition
to T and AVP that may act or interact to shape adult
behavior.

The neuropeptide oxytocin (OT) is a likely candidate since
it is synthesized in the paraventricular nucleus (PVN) and
supraoptic nucleus (SON), with projections to social brain
areas (Champagne et al., 2001 rats; Pedersen and Boccia, 2003
rats) that regulate social behaviors (Consiglio et al., 2005 rats)
including parenting (Bales et al., 2007 prairie voles; Neumann and
van den Burg, 2013 rats) and aggression, particularly parental
aggression (Bosch, 2013 ‘‘rodents’’) and hypothalamus-pituitary-
adrenal (HPA) function (Neumann et al., 2000 rats; Engelmann
et al., 2006 rats; Rault et al., 2013 pigs). Moreover, the OT
system is sensitive to gonadal steroids, such as T (reviews
see Pedersen, 1997; Sladek et al., 2000 rat; Gordon et al.,
2011), which alone or by aromatization into estradiol acts as
a modulator of OT secretion and receptor expression within
brain areas (i.e., hypothalamus) that regulate both reproductive
and parenting behavior (Johnson et al., 1991 rats; Okabe
et al., 2013 mice; Gordon et al., 2017 humans). Furthermore,
there is significant overlap in expression of OT and aromatase
enzymes within the mammalian brain, with aromatase also

mainly expressed within the hypothalamus and limbic system
(Naftolin et al., 2001; Trainor et al., 2006; El-Emam Dief et al.,
2013). Furthermore, developmental studies, in mandarin voles,
indicate paternally deprived offspring have lower OT receptor
expression than offspring raised with a father (Wang et al.,
2012; Cao et al., 2014). Whether this is due to the absence of
the caregiver or a particular behavior displayed by the father is
unknown.

In addition to changes in the brain, environmental influences
on social behaviors and stress reactivity may be mediated by
alterations to endocrine systems (Bale, 2006; Clinton et al., 2008;
Lajud et al., 2012; Carini and Nephew, 2013). For example,
California mouse offspring experience transient increases in T in
response to paternal retrievals (Becker et al., 2010; Chary et al.,
2015). It is possible that experiencing these brief increases in T
will result in overall increased basal T levels in adulthood since
postnatal T is correlated with adult T (Sachser and Proöve, 1988;
Lürzel et al., 2010), although this hypothesis has yet to be tested.
Additionally, paternal deprivation leads to deficits in social
behavior (Yu et al., 2012; Bambico et al., 2015) and increased
anxiety (McEwen, 2007; Roberts et al., 2007; Jia et al., 2009;
Kim et al., 2013), which may correlate with HPA dysregulation
since in response to stress, corticosterone (Cort) is secreted.
However, no transient differences in Cort in response to paternal
care (Becker et al., 2010; Chary et al., 2015) nor basal Cort
dissimilarities between paternal absence or presence (Wang et al.,
2012) have been reported.

Postnatal paternal care impacts the development of social
behaviors and may be regulated by a complex interplay between
the hormones OT, T and Cort. For instance, OT expression
can be increased via T (El-Emam Dief et al., 2013), and then
have a buffering effect on the HPA axis, leading to a decrease
in Cort release (Leuner et al., 2012). To examine long-term
effects of postnatal paternal interactions on neuroendocrine
system development, wemanipulated California mouse offspring
rearing conditions to receive either HC or low-care (LC). Given
that removal of the father leads to decreased OT expression
(Wang et al., 2012; Cao et al., 2014), we aimed to assess
whether variability in paternal care leads to plasticity within
the OT system. In the current study, our primary aim was to
assess paternal care impact on OT-immunoreactive (OT-ir) cell
distribution in the PVN and SON, with these three areas of the
brain sensitive to gonadal steroids (El-Emam Dief et al., 2013)
and important in regulating stress response (Dabrowska et al.,
2011). Therefore, we also assessed adult basal T and Cort levels
since the paternal care manipulation can also have long-term
effects on the endocrine system. We hypothesized that PVN
and SON OT-ir would be higher in HC than LC offspring.
Since California mouse pups experience transient increases in
T following paternal retrievals (Becker et al., 2010; Chary et al.,
2015) and postnatal surges in T lead to higher adult T levels
(Sachser and Proöve, 1988; Lürzel et al., 2010), we predicted
higher basal T levels in adult HC than LC offspring. Lastly, as
a manipulation check, we measured basal Cort levels to confirm
that ourmodified retrieval manipulation had no lasting effects on
stress reactivity; predicting similar basal Cort levels between HC
and LC offspring.
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MATERIALS AND METHODS

This study was carried out in accordance with the
recommendations of the National Institutes of Health Guide
for the Care and Use of Laboratory Animals. The protocol was
approved by the Saint Joseph’s University IACUC. Detailed
materials and methods are provided as Supplementary Material
Information.

Subjects
Brains were collected from 52 California mice adults (120 days)
from the same cohort of mice used in Yohn et al. (2017) study.
Briefly, experimental animals postnatal days (PND) 15–21 were
assigned randomly to either HC (n = 26) or LC (n = 26)
postnatal paternal rearing conditions. As previously described by
Yohn et al. (2017), we used a modified retrieval manipulation
(use of Plexiglas divider) to ensure populations of experimental
animals had distinct early life experiences (HC and LC). To
establish populations, experimental families were first moved
into an observational cage on PND 8. Subsequently, paternal
retrieval behavior was manipulated for 20 min daily, across
PND 15–21 when pups are more inclined to leave the nest
and paternal retrieval behavior is at its highest (Bester-Meredith
et al., 1999). During each daily manipulation the mother and
non-experimental pups were removed and housed separately.
The experimental pup was handled for 30 s and returned to
the cage either inside the nest (LC) or outside of the nest
(HC). Prior to the pups return to the cage, a Plexiglass divider
was inserted into the cage separating the large and small
compartments of the observational cage. Results from Yohn
et al. (2017) showed that across 7 days, HC experienced greater
paternal retrievals than LC offspring since the Plexiglass divider
(had plastic mesh barrier for LC group) inhibited father-pup
contact during the daily LC manipulations. Separation of
father and pup had no effect on paternal behavior in the LC
group once the father and pup were reunited (Yohn et al.,
2017).

Immunohistochemistry
Adult experimental mice taken from the colony room were
euthanized via rapid decapitation. Brains were extracted,
immediately fixed in 5% acrolein overnight at 4◦C, transferred
to a 20% sucrose buffer solution and refrigerated for 48 h, and
finally frozen on dry ice and stored at −80◦C until cutting.
Beginning from approximately Bregma 0.37 through −1.23
(Paxinos et al., 2007; Campi et al., 2013), brains were sliced
on a cryostat at 40 um and stored at −80◦C in cyroprotectant
until staining. Sections were incubated overnight in a previously
validated antibody (Trainor et al., 2010) rabbit anti-OT (1:1,000,
AB911, Millipore, Temecula, CA, USA) and then for 2 h in
goat anti-rabbit IgG (1:250, PI-1,000, Vector Labs, Burlingame,
CA, USA) both times diluted in 2% normal goat serum (NGS)
phosphate buffer saline (PBS). Next, sections were amplified in
Avidin Biotin Complex (Vector Labs, Burlingame, CA, USA) and
then visualized using DAB peroxidase substrate kit (Vector Labs,
Burlingame, CA, USA). PBS washes occurred before and after
incubation, amplification and visualization.

Image Analysis
Sections were photographed on a Leica DM 2000 outfitted with
a DFC310 FX digital color camera (Leica) at 10× magnification.
For all cell counts, number of OT-ir positive cells were averaged
across two images of the PVN (posterior, Bregma −0.70 thru
−94) and SON (Bregma −0.70 thru −94; Figure 1A).

Testosterone and Corticosterone Enzyme
Immunoassay
Trunk blood was collected at brain extraction, with enough
serum from 39 of 52 experimental mice (male = 20, female = 19).
After collection, samples were centrifuged and separated, then
stored at −80◦C until assayed. Plasma T (1:10 dilution) and
Cort (1:50 dilution) concentrations were determined using
commercial assay kits (Enzo Life Sciences, Farmingdale, NY,
USA) previously validated in the California mouse (Chary et al.,
2015). The standard curve slope generated for Cort had a slope
of 1 (r2 = 0.91) and the slope for T was 0.72 (r2 = 0.87).
Inter-assay coefficient of variability values were 1.1% (Cort) and
3.1% (T) with intra-assay coefficient of variability values being
1.87% (Cort) and 2.65% (T). The cross-reactivity of the Cort
kits, according to the manufacturer, was 100% for Cort, 28.6%
for deoxycorticosterone, 1.7% for progesterone, and negligible
for other steroid hormones (>1%). The cross-reactivity of the T
kits was 100% for T, 14.64% for 19-hydroxytestosterone, 7.20%
for androstendione, and negligible for other steroid hormones
(>1%). Kit sensitivity was 26.99 pg/mL for Cort and 5.67 pg/mL
for T.

Statistical Analyses
Separate 2 × 2 analysis of variance (ANOVA) were run to assess
early life rearing conditions and sex differences on PVN and
SON OT-ir and basal T and CORT levels. Post hoc independent
samples t-tests for within-sex differences were run. Pearson’s
correlations were run to assess relationship between paternal
behavior and expression of OT-ir within each area. One animal
(female LC) was removed from analyses as cell counts were
only obtained from one of the three regions and T levels
were three standard deviations above the mean. All statistical
analyses were conducted using SPSS (version 23.0, Chicago, IL,
USA).

RESULTS

OT-Immunoreactivity
Separate ANOVAs indicated HC offspring had significantly
more OT-ir in the PVN (F(1,48) = 17.49, p < 0.001; Figure 1B)
and SON (F(1,39) = 9.1, p = 0.004; Figure 1C) than LC
offspring. Planned post hoc comparisons revealed HC males
had significantly more OT-ir than LC males within the PVN
(t(25) = 2.89, p = 0.008; Figure 1B) and SON (t(22) = 3.6,
p = 0.002; Figure 1C). Within females, HC offspring had
more OT-ir in the PVN (t(23) = 3.01, p = 0.006; Figure 1B)
than LC offspring. Unlike males, SON OT was similarly
expressed between HC and LC females (p = 0.421; Figure 1C).
We observed no effect of sex nor an interaction between
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FIGURE 1 | Differences in distribution of oxytocin-immunoreactive (OT-ir) cells between high-care (HC) and low-care (LC) offspring. Representative images of OT-ir
staining for each area of interest (atlas images were reproduced from Paxinos mouse atlas, 2007; 10× magnification with scale bar = 500 µm) (A). HC male and
female offspring have higher OT-ir cells within the paraventricular nucleus (PVN; B) and supraoptic nucleus (SON; C) compared to LC offspring. Number of postnatal
paternal is significantly associated with amount of OT-ir cells within the PVN (D) and SON (E). Amount of postnatal paternal huddling, grooming and licking (HGL)
behavior also was significantly associated with distribution of OT-ir cells in these areas (F,G). ∗∗∗p-value < 0.001, ∗p-value < 0.05.

rearing condition and sex on OT-ir within these regions
(p’s > 0.2).

Relationship Between
OT-Immunoreactivity and Early Life
Rearing Conditions
Paternal retrievals were positively correlated with PVN (r = 0.44,
p = 0.02; Figure 1D) and SON (r = 0.47, p < 0.001; Figure 1E)
OT-ir. Additionally, paternal huddling, grooming and licking
(HGL) behavior was positively correlated with PVN (r = 0.34,

p = 0.016; Figure 1F), SON (r = 0.44, p = 0.003; Figure 1G)
OT-ir.

Plasma Corticosterone and Testosterone
Concentrations
As expected, males had higher plasma T levels than females
(F(1,33) = 7.58, p = 0.009; Figure 2A). While there was no
main effect of rearing condition on plasma T concentrations
(p = 0.7) nor differences among males (p = 0.69); rearing effects
were indicated with higher T levels in HC than LC females,
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FIGURE 2 | Differences in early life paternal care on hormonal levels. HC females have higher T levels than LC females, with males having higher overall testosterone
levels females (A). Corticosterone (Cort) levels did not differ between HC and LC adult offspring across both sexes (B). ∗∗∗p-value < 0.001, ∗p-value < 0.05.

(t(15) = 2.27, p = 0.039). No rearing effects nor an interaction
effect on plasma T levels (p’s > 0.05) were found.

No rearing effects, sex differences, nor an interaction
were found for plasma Cort concentrations (p’s > 0.05;
Figure 2B).

DISCUSSION

Variability in paternal care produced differences in offspringOT-
ir. Pups raised under HC conditions had greater OT-ir than LC
offspring within the PVN and SON, regions that regulate various
behaviors ranging from parenting (Neumann and van den Burg,
2013; Wang et al., 2015) to affective behaviors and autonomic
functions (Cao et al., 2014; Yee et al., 2016). Within the PVN,
OT expression is linked to the onset and maintenance of both
maternal (Neumann and van den Burg, 2013) and paternal care
(Kenkel et al., 2014). Since paternal care programs adult offspring
social behavior in the California mouse (Bester-Meredith and
Marler, 2001; Frazier et al., 2006; Yohn et al., 2017), we suggest
that these differences in OT may guide the development of these
distinct behavioral phenotypes. Previous studies delineate the
relationship between paternal care and OT receptor expression
within the PVN and SON (Wang et al., 2012; Cao et al., 2014), our
novel findings illustrate susceptibility of PVN, and SON OT-ir
to postnatal paternal care. However, unlike paternal deprivation
studies, we emphasize the importance of paternal behaviors on
adult OT-ir with high levels of both paternal retrievals and
HGL behavior positively related to PVN and SON OT-ir. In
response to paternal retrievals HC offspring experience transient
increases in T (Becker et al., 2010; Chary et al., 2015), with
OT expression within these brain areas regulated in part by T
(Sladek et al., 2000; Gordon et al., 2011) and the aromatization
of T into estradiol (Naftolin et al., 2001; Trainor et al., 2006;
El-Emam Dief et al., 2013). The PVN and SON contain high
levels of aromatase (El-Emam Dief et al., 2013), which could
further explain differences in PVN and SON OT-ir between
HC and LC offspring. In the California mouse male and female
offspring retrieve their offspring at similar levels as they received
during development (Bester-Meredith and Marler, 2003; Becker,
unpublished; Leithead, unpublished), however mechanisms for
this behavioral transmission are not fully elucidated. Since OT

receptor expression is related to level of postnatal care (Francis
et al., 2002; Perkeybile et al., 2015), our results suggest a
potential mechanism by which parental care is transmitted across
generations.

Since sex differences in OT are reported (Lee et al., 2009;
Carter, 2014), we tested for paternal effects on OT-ir within
each sex even though no overall sex differences were observed.
Our analyses revealed HC males and females had more OT-ir
within the PVN than LC offspring, suggesting OT-ir is plastic
in response to the environment, potentially allowing more
adapted social behaviors within HC offspring. However, within
the SON, only males were susceptible to variability in care,
which may be due to sex differences in social behaviors and
physiological functions that SON OT-ir regulates. In females
and males SON OT is associated with parenting and other
social behaviors (Song et al., 2010; Bales et al., 2011); with
SON OT also facilitating uterine contraction and lactation
in females (Higashida et al., 2013). While future maternal
care may be susceptible to postnatal rearing conditions, other
functions like uterine contractions and lactation may be resistant
to environmental fluctuations in OT, thus resulting in HC
and LC females having similar expression within the SON.
Alternatively, this null result could have been confounded by
estrous, since SON OT-ir fluctuates in relation to circulating
estrogen levels (Shughrue et al., 2002) and we did not track
estrous cycle.

Since paternal retrievals induce transient increases in T
(Becker et al., 2010; Chary et al., 2015) and postnatal surges in T,
may be related to adult T levels (Sachser and Proöve, 1988; Lürzel
et al., 2010), we wanted to assess long-term effects of rearing
condition on adult basal T levels. Not surprisingly, we found
males had higher basal T levels than females. Within females,
we observed greater T levels in HC than LC offspring, which is
likely a long-term effect of rearing condition. Consistent with
Wang et al. (2015) prairie vole study, we found no differences
in male T. It is possible that postnatal paternal interactions may
not have long term effects on male T, or since males already have
high T, that a ceiling effect (Evans et al., 2000) may obscure a
potential impact. Seeing as OT expression is associated with a
buffering effect on HPA function (Neumann et al., 2000; Leuner
et al., 2012) and T can have organizational effects on theHPA axis
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(Seale et al., 2005; Goel and Bale, 2008), we examined adult basal
Cort levels as a manipulation check since parental interactions
may influence HPA function (Slotten et al., 2006; Engert et al.,
2011). Consistent with paternal deprivation studies and our
previous work (Becker et al., 2010; Wang et al., 2012; Chary et al.,
2015; Yohn et al., 2017) basal Cort levels were similar between
HC and LC offspring, suggesting ourmanipulation had no lasting
effects on Cort. To further test the impact of our manipulation
on stress responsivity, future studies could measure Cort levels
in adult mice after experiencing a stressful situation.

Our results demonstrate developmental plasticity within the
OT system in response to the postnatal paternal environment
which may be mediated by transient changes in T subsequent
to paternal retrievals during development. Our study is the
first to illustrate long-term effects of paternal care on basal
T levels in females, which may mediate transmission of social
behaviors, like parenting and aggression in territorial species.
Future studies are needed to examine the relationship between
postnatal increases in T in response to paternal retrievals and
adult OT expression to delineate whether the interplay between
postnatal T and adult OTmediate changes in social behavior. Our
results emphasize the critical role fathers hold in the development
of the neuroendocrine system in both males and females.
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Early-life experiences with caregivers can significantly affect offspring development in
human and non-human animals. While much of our knowledge of parent-offspring
relationships stem from mother-offspring interactions, increasing evidence suggests
interactions with the father are equally as important and can prevent social, behavioral,
and neurological impairments that may appear early in life and have enduring
consequences in adulthood. In the present study, we utilized the monogamous and
biparental California mouse (Peromyscus californicus). California mouse fathers provide
extensive offspring care and are essential for offspring survival. Non-sibling virgin
male and female mice were randomly assigned to one of two experimental groups
following the birth of their first litter: (1) biparental care: mate pairs remained with
their offspring until weaning; or (2) paternal deprivation (PD): paternal males were
permanently removed from their home cage on postnatal day (PND) 1. We assessed
neonatal mortality rates, body weight, survival of adult born cells in the dentate gyrus
of the hippocampus, and anxiety-like and passive stress-coping behaviors in male and
female young adult offspring. While all biparentally-reared mice survived to weaning, PD
resulted in a ∼35% reduction in survival of offspring. Despite this reduction in survival
to weaning, biparentally-reared and PD mice did not differ in body weight at weaning or
into young adulthood. A sex-dependent effect of PD was observed on new cell survival
in the dentate gyrus of the hippocampus, such that PD reduced cell survival in female,
but not male, mice. While PD did not alter classic measures of anxiety-like behavior
during the elevated plus maze task, exploratory behavior was reduced in PD mice. This
observation was irrespective of sex. Additionally, PD increased some passive stress-
coping behaviors (i.e., percent time spent immobile) during the forced swim task—an
effect that was also not sex-dependent. Together, these findings demonstrate that, in
a species where paternal care is not only important for offspring survival, PD can also
contribute to altered structural and functional neuroplasticity of the hippocampus. The
mechanisms contributing to the observed sex-dependent alterations in new cell survival
in the dentate gyrus should be further investigated.
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INTRODUCTION

Offspring development is dependent on early bond formation
with a caregiver (Rilling and Young, 2014). Lack of bond
formation can result in impairments in behavior and
neurodevelopmental disorders which may appear early in
life (Japel et al., 1999) and persist into adulthood (Parker, 1979;
Noorikhajavi et al., 2007; Tyrka et al., 2008). While the vast
majority of our knowledge of parent-offspring relationships
stem from mother-infant interactions (reviewed in Curley
and Champagne, 2016), a few early human studies focused on
the negative effects of paternal deprivation (PD) on offspring
development (Green and Beall, 1962; Jensen et al., 1989).
Increasing evidence from non-human animal studies suggests
numerous adverse outcomes associated with PD, including
dysregulated stress responses, impaired synaptic development
in the prefrontal cortex, altered anxiety-like, social, and
drug-seeking behaviors (Helmeke et al., 2009; Pinkernelle et al.,
2009; Jia et al., 2011; Gos et al., 2014; Wang et al., 2017). Despite
these advances in our knowledge, the underlying mechanisms
of PD-related behavioral and neurobiological deficits remain
unclear.

While fathers play a significant role in offspring care in
many human societies (Kleiman and Malcolm, 1981; Hrdy,
2005), paternal, or biparental care, is rare in mammals and is
observed in less than 6% of species examined (Kleiman and
Malcolm, 1981). California mice (Peromyscus californicus) are
a biparental species that are exclusively monogamous in the
wild (Ribble, 1991), exhibit strong attraction and preference
for the bonded mate over others (Gubernick and Nordby,
1993), and demonstrate significant paternal investment. Paternal
California mice engage in many behaviors performed by the
maternal female, including licking and grooming (LG), huddling,
nest building, and pup retrieval (Dudley, 1974b; Gubernick
and Alberts, 1987; Gubernick and Nelson, 1989; Gubernick
and Nordby, 1993). This substantial investment in offspring
care reduces offspring mortality and/or aids in development
and growth (Dudley, 1974a; Gubernick and Alberts, 1987;
Gubernick et al., 1993; Gubernick and Teferi, 2000). In the
absence of the father, maternal females do not compensate for
the missing paternal male (Dudley, 1974b)—an effect observed
in other monogamous species as well (common degu, Helmeke
et al., 2009; mandarin vole, Jia et al., 2009). Furthermore, as
females of this species are highly aggressive towards conspecifics
(reviewed in Steinman and Trainor, 2017), offspring care
provided by multiple females is highly unlikely. Therefore, the
California mouse is an excellent mouse model to investigate the
consequences of PD on neurobiological outcomes.

Experiments using monogamous and biparental species
suggest PD has long-lasting effects on hippocampal
neurochemical systems (Wu et al., 2014; Tabbaa et al., 2017), as
well as the structure and function of the hippocampus (Seidel
et al., 2011; Braun et al., 2013). The hippocampus plays a key
role in modulation of emotions (reviewed in Lucassen et al.,
2014) and regulation of the stress response system (reviewed
in Herman et al., 2016). The dentate gyrus of the hippocampus
is heavily implicated in the mediation of anxiety-like behavior

(Kheirbek et al., 2013; reviewed in Wu et al., 2015). More
recently, a functional association between adult hippocampal
neurogenesis and anxiety- and depressive-like behaviors has
been demonstrated. A reduction in neurons (i.e., doublecortin
positive cells; DCX+) is associated with stress-related anxiety
and depressive behavior; a return to baseline DCX+ cell number
results in normalization of anxiety- and depressive-like behaviors
(Yun et al., 2016).

Evidence from studies using human subjects suggests that
sexual dimorphisms in anxiety exist, with women largely
more vulnerable than men (Kessler et al., 1994; McHenry
et al., 2014). One likely underlying mechanism contributing to
this sexual dimorphism in functionality of the hippocampus
may be the regulation of adult neurogenesis (reviewed in
Marques et al., 2016). Sex-dependent abnormalities in social- and
reward-related behaviors have been observed in California mice
following PD (Bambico et al., 2015) and PD increases anxiety-like
behavior in adult mandarin voles (Microtus mandarinus, Jia
et al., 2009). To what extent anxiety-like behavior and other
hippocampus-related behaviors are regulated in a sex-dependent
manner by PD in California mice is unknown. Therefore, the
purpose of this study was to examine the interactions between sex
and PD on the survival of adult born cells in the hippocampus
and hippocampus-mediated behaviors, such as anxiety and
passive-stress coping behavior, in young adult California mice.

MATERIALS AND METHODS

Animals
Virgin male and female California mice (60–90 days of age) were
obtained from the Peromyscus Genetic Stock Center (University
of South Carolina, Columbia, SC, USA) or were descendants of
mice bred in our colony. Mice were provided ad libitum access to
food and water and were housed on a 16:8 reversed light/dark
cycle (lights off at 11:00 h). Non-sibling males and females
were paired, allowed to mate, and give birth to their first litter.
Twenty-six mating pairs resulted in 43 total offspring (Table 1).
An average of 1.64 ± 0.58 offspring per litter were produced.
On postnatal day (PND) 1 (12:00 h), two experimental groups of
offspring were formed by either leaving paternal males with their
mate and offspring (biparental care) or removing paternal males
from the home cage (PD). This resulted in the following groups
of experimental offspring: biparental care (n = male: 11; female:
10) and PD (n = male: 14; female: 8). All surviving offspring
were weaned on PND 35 and housed in same-sex groups of
three (i.e., some same-sex non-siblings were housed together so
that individual housing of mice could be avoided). This study
was carried out in accordance with guidelines provided by the
National Institutes of Health for the care and use of animals.
The protocol was approved by the University of Maryland
Institutional Animal Care and Use Committee.

Experimental Design
On PND 60, all biparentally-reared and PD offspring were
administered an intraperitoneal injection of the DNA synthesis
marker bromodeoxyuridine (BrdU; 200 mg/kg; Sigma-Aldrich,
St. Louis, MO, USA; cat. no. B5002) to determine the extent
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TABLE 1 | Litter size and number of primiparous California mouse mate pairs.

Litter size Number of mated pairs

1 11
2 13
3 2

to which sex and PD alter short-term survival of adult-born
cells in the dentate gyrus of the hippocampus. On PND 65,
all biparentally-reared and PD mice were tested for anxiety-like
behavior on the elevated plus maze task (see below). On PND 67,
all biparentally-reared and PDmice were assessed on a single trial
version of the forced swim task, a behavioral task used to assess
passive stress-coping behavior (see below). On PND 68, all mice
were perfused and brain tissue was harvested in preparation for
immunohistochemical processing (see below).

Elevated Plus Maze Task
Mice were individually removed from their home cages, ∼2 h
after lights out, and placed in a holding cage for transportation
to an adjacent behavioral room. After a 10-min acclimation
period, mice were tested on the elevated plus maze under
red-light illumination. The maze stood 75 cm above the floor
with arms measuring 11.5 × 55 × 45 cm. Mice were placed
in the center of the maze, facing an open arm, and observed
for 5 min. Behavior was digitally recorded and analyzed
with EthoVisionrXT 11 behavioral tracking software (Noldus,
Leesburg, VA, USA). Recordings were taken from a top-down
view at a rate of 30 frames per second. Latency to enter the
arms, duration of time spent in the arms, and number of arm
entries were assessed as previously described (Glasper et al., 2015;
Hyer et al., 2016). Duration of time spent in the open arms was
calculated as total time spent in the open arms divided by the
total time spent in both the open and closed arms, excluding the
center, multiplied by 100 and presented as a percentage. Mice
were returned to their holding cages immediately following the
conclusion of testing and returned to the colony. Mice that froze
for >40% of the time (Chauke et al., 2012) were excluded from
the study (n = 7, across all groups).

Forced Swim Task
The forced swim task was performed as previously described
(Hyer and Glasper, 2017). Mice were transported to the
red-light illuminated behavioral room, ∼2 h after lights out, and
acclimated as described above. This task consisted of placing
mice in a Plexiglas cylinder (30 cm diameter, 43 cm deep) filled
3
4 of the way with 23–25◦C tap water for 5 min. Behavior was
digitally recorded from a side view of the cylinder at 30 frames
per second in an effort to distinguish between swimming
and immobility behaviors (Bogdanova et al., 2013). Behavior
during the task was analyzed with EthoVisionrXT 11 behavioral
tracking software (Noldus). The following behaviors were used to
assess passive stress-coping behavior: % time immobile, latency
to the first bout of immobility, and frequency of immobility
bouts. Immobility was defined as mice remaining parallel to
the surface of the water, only moving slightly to remain afloat.
Swimming was defined as mice continuously moving paws and

head. Following testing, mice were dried, warmed on a heating
pad placed under their transportation cage, and returned to their
home cage. Flipping behavior during the forced swim task greatly
increases the likelihood that California mice will ingest water
(unpublished observations); therefore, any mice that exhibited
flipping behavior during the task were quickly removed and were
excluded from all endpoints (n = 2, across all groups).

Histological Procedures
On PND 68, ∼2 h after lights out, mice were anesthetized using
a ketamine–xylazine cocktail and transcardially perfused with
4% paraformaldehyde (PFA) in 0.1 M phosphate buffer, pH 7.0.
Brains were dissected from the skull and postfixed in 4% PFA
for at least 48 h at 4◦C. Coronal sections (40 µm) were sliced
throughout the rostrocaudal extent of the dentate gyrus on a
vibrating microtome (Leica Microsystems, Chicago, IL, USA)
into a bath of chilled 0.1 M phosphate-buffered saline (PBS), pH
7.5. Sections containing the dentate gyrus were identified using
the Peromyscus brain atlas1.

Immunoperoxidase Staining for BrdU
For BrdU peroxidase staining, a 1:12 series of sections were
mounted onto glass Super Frost Plus slides (Fisher Scientific,
Pittsburgh, PA, USA), dried, and pretreated by heating in 0.1 M
citric acid, pH 6.0. Tissue was rinsed with PBS, incubated
in trypsin for 10 min, denatured in 2 M HCL : PBS for
30 min, rinsed with PBS, incubated overnight in purified mouse
anti-BrdU (1:200; BD Biosciences, San Jose, CA, USA; cat. no.
347580), incubated in biotinylated horse anti-mouse (1:200;
Vector, Burlingame, CA, USA; cat. no. BA-2000) for 60 min,
rinsed in PBS, incubated with avidin–biotin complex (Vector),
rinsed with PBS, and then reacted in 0.01% diaminobenzadine
with 0.003% H2O2. All slides were counterstained with cresyl
violet, dehydrated, cleared with Citrisolv (Fisher Scientific), and
coverslipped under Permount (Fisher Scientific).

Data Analysis
Quantitative analysis was conducted on coded slides. The
numbers of BrdU-labeled cells on every twelfth unilateral
section throughout the rostrocaudal extent of the dentate gyrus
(i.e., granule cell layer, subgranular zone, and hilus) were counted
at 100×magnification under oil immersion on a Zeiss Primo Star
light microscope (Zeiss, Thornwood, NY, USA) using a modified
version of the optical fractionator method (West et al., 1991;
Ngwenya et al., 2005). The simplified formula for the estimated
total number of labeled cells was: N Σ Q × (1/ssf), which is the
total number of labeled cells counted (N Σ Q) multiplied by the
reciprocal of the section sampling fraction (1/ssf or 1/12; Leuner
et al., 2009). Brightfield photomicrographs were taken with an
AxioImager camera attached to a Zeiss microscope with a stage
controller using neuroimaging software (Neurolucida, Williston,
VT, USA). Images were cropped and optimized by adjusting
brightness and color balance in Adobe Photoshop Creative Cloud
2014.2.2.

1BrainMaps: An interactive multiresolution brain atlas. Available online at:
http://brainmaps.org.
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Statistics
Data were analyzed using GraphPad Prism version 7.03 for
Windows (GraphPad Software, La Jolla, CA, USA)2, unless
otherwise noted. Survival to weaning was assessed via Log-rank
(Mantel-Cox) Chi square analysis. Short-term cell survival was
assessed bymultiple t-test analysis and statistical significance was
determined using the Holm-Sidak method. Two-way analysis of
variance (ANOVA) was performed to assess main effects of sex
and rearing condition on all behavioral endpoints (i.e., elevated
plus maze, forced swim test), while three-way ANOVA was
performed to assess main effects of sex, age and rearing condition
on body weight using IBMr SPSSr Statistics (Version 24).
Sidak’s multiple comparisons tests were performed following
ANOVAs, when appropriate, and the multiplicity-adjusted
p-value was reported for each comparison. Mean differences
were considered statistically significant when p ≤ 0.05. For
neuronal and behavioral analyses, final N sizes are reported
within figure captions.

RESULTS

Paternal Deprivation Decreases Neonatal
Survival in California Mice
We assessed the effects of PD on survival to weaning in
P. californicus offspring. All (100%) biparentally-reared mice
survived to weaning (PND 35; Figure 1). In contrast, PD mice
displayed a marked and statistical decline in survival, with
66.67% surviving to PND 35 (χ2

(1,N = 25) = 4.96, p = 0.03). By the
end of the dark cycle on PND 1, greater than 20% of PD offspring
perished. Between PND 1 and PND 6, an additional 15% of PD
offspring were found deceased. After PND 6, no additional PD
deaths were observed.

2www.graphpad.com

FIGURE 1 | Paternal deprivation (PD) decreases survival to weaning in
California mice. Offspring were born on postnatal day (PND) 0. On PND 1,
fathers remained with mate and offspring (biparental care) or were
permanently removed (PD). Offspring survival was assessed daily until
weaning (PND 35). All California mouse offspring reared under biparental
conditions survived to weaning (dashed lines). However, by PND 1, only
∼75% of PD offspring (dotted lines) were observed alive. By PND 6, survival of
PD offspring dropped to ∼65% and remained constant until weaning.

Paternal Deprivation Does Not Alter
Growth of Offspring
We investigated the effects of sex, rearing, and time on body
weight at numerous points during the experiment: at weaning
(PND 35), at the time of BrdU injection (PND 60), and
immediately before perfusion (PND 68; Figure 2). No interaction
between sex, rearing, and time on body weight was observed
(F(2,66) = 0.19, p = 0.83). No interactions between rearing and
time (F(2,66) = 0.10, p = 0.90), sex and time (F(2,66) = 0.13,
p = 0.88), or sex and rearing (F(2,66) = 0.77, p = 0.38) on body
weight were observed. No main effects of sex (F(1,66) = 0.90,
p = 0.35) or rearing (F(1,66) = 1.69, p = 0.20) were observed.
However, a main effect of time on body weight was observed
(F(2,66) = 16.40, p = 0.00). Compared to weaning weight, mice
weighed more at time of BrdU injection (p = 0.00) and time
of perfusion (p = 0.00). No difference in weight was observed
between time of BrdU injection and time of perfusion (p = 0.53).

Survival of Hippocampal Newborn Cells Is
Reduced in Paternally-Deprived Female,
but Not Male, Young Adult Offspring
The effects of PD on survival of adult born cells in the dentate
gyrus of the hippocampus were investigated in young adult male
and female offspring (Figure 3). Amongmales, rearing condition
did not alter number of BrdU-labeled cells in the dentate gyrus
(t(23) = 0.34, p = 0.74). Among females, PD resulted in fewer
BrdU-labeled cells in the dentate gyrus compared to biparental
care (t(23) = 2.53, p = 0.02).

Sex and Paternal Deprivation Alter
Elevated Plus Maze Behavior in Young
Adult Offspring
We examined the effects of sex and PD on anxiety-like behavior
in young adult offspring, as measured by performance on the

FIGURE 2 | Paternal deprivation (PD), in California mice, does not alter body
weight. Male and female California mice were reared by both parents
(biparental care) or by the mother alone (PD) from postnatal day (PND) 1 until
weaning. Body weight was assessed at weaning (PND 35), prior to BrdU
injection (PND 60), and prior to perfusion (PND 68). Compared to weaning
weight, all mice, regardless of rearing condition or sex, weighed more at the
time of BrdU injection and at perfusion. Symbols represent mean ± SEM.
∗, main effect of time, p ≤ 0.05.
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FIGURE 3 | Paternal deprivation (PD) reduces new cell survival in the
hippocampus of female, but not male, young adult California mouse offspring.
(A) Short-term survival of bromodeoxyuridine (BrdU)-labeled cells was
determined in California mouse young adult male and female offspring reared
by both parents (biparental care) or reared by mother alone (PD) from
postnatal day (PND) 1 to weaning PD. PD reduced the number of
BrdU-labeled cells in the dentate gyrus of female, but not male, offspring. N
sizes: biparental male, 6; biparental female, 6; PD male, 9; PD female, 6. Bars
represent mean ± SEM. ∗p ≤ 0.05. (B) Representative photomicrographs
(40× oil magnification) of BrdU-labeled cells in the dentate gyrus of the
hippocampus. Scale bar = 40 µm. Arrows point to BrdU-labeled cells.

elevated plus maze task. In % time spent on the open arms
(Figure 4A), a significant interaction between rearing and sex
was observed (F(1,19) = 5.89, p = 0.03). Among biparentally-
reared mice, females spent considerably more time on the
open arms than males (p = 0.03); however, this sex effect was
not observed in PD mice (p = 0.71). No main effect of sex
(F(1,19) = 1.95, p = 0.18) or rearing (F(1,19) = 0.03, p = 0.87) was
observed in % time on the open arms. Latency to enter the open
arms (Figure 4B) was not altered by rearing (F(1,19) = 0.000,
p = 0.98) or sex (F(1,19) = 0.16, p = 0.69) and no interaction
between rearing and sex was observed (F(1,19) = 2.22, p = 0.69).
Total arm entries (Figure 4C) were not altered by rearing
(F(1,19) = 1.69, p = 0.21) or sex (F(1,19) = 0.02, p = 0.88) and no
interaction between rearing and sex was detected (F(1,19) = 0.34,
p = 0.57). In total distance traveled (Figure 4D), a main effect
of rearing (F(1,19) = 6.40, p = 0.02), but not sex (F(1,19) = 2.53,
p = 0.13), was observed. Overall, PD decreased the total distance
traveled during the elevated plus maze task. No interaction
between rearing and sex (F(1,19) = 0.39, p = 0.54) was observed.

Paternal Deprivation and Sex Alter Passive
Stress-Coping Behavior in Young Adult
Offspring
We determined the effects of PD and sex on passive stress-
coping behavior, during the forced swim task, in young adult
male and female offspring. In % time immobile (Figure 5A),
a main effect of rearing (F(1,22) = 4.72, p = 0.04), but not
sex (F(1,22) = 1.93, p = 0.18), was observed. Overall, PD
increased % time spent immobile during the forced swim task.
No interaction between rearing and sex was observed in %
time immobile (F(1,22) = 0.00, p = 0.97). Latency to the first
bout of immobility (Figure 5B) was significantly altered by
sex (F(1,22) = 29.54, p < 0.00) but not rearing (F(1,22) = 0.05,
p = 0.83). Males, irrespective of rearing, displayed passive stress-
coping behavior (i.e., floating) faster than females. No interaction
between rearing and sex was observed (F(1,22) = 0.25, p = 0.62).
Bouts of immobility (Figure 5C) were also not altered by rearing
(F(1,22) = 2.72, p = 0.11) or sex (F(1,22) = 0.12, p = 0.73), and no
interaction between rearing and sex was observed (F(1,22) = 2.22,
p = 0.15).

DISCUSSION

In the present study, we demonstrated that PD in P. californicus,
a biparental mouse species, is associated with reduced survival
during early postnatal development, sex-dependent deficits in
hippocampal structural plasticity, reduced exploratory behavior,
and impaired stress coping in young adulthood. PD results
in ∼35% decrease in offspring survival to weaning. Of those
offspring that survive to weaning, no differences in body weight
are detected; however, a sex-dependent decrease in the number
of adult-born cells is observed in the dentate gyrus of the
hippocampus. Specifically, PD females, but not males, exhibit
reduced short-term survival of newborn cells in the dentate
gyrus. Additionally, PD decreases exploratory behavior, but not
classic anxiety-like behaviors, during the elevated plus maze task.
Notably, and for the first time shown here, PD increases some
measures of passive stress-coping behavior during the forced
swim task (i.e., % time immobile). Together, these findings
suggest that the lack of paternal care, in a biparental species,
may contribute to long-lasting effects on structural plasticity and
behavioral function of the hippocampus.

California mouse fathers spend more time interacting with
offspring during the early, compared to late, postnatal period
(Bester-Meredith et al., 1999). Here, removing the paternal
male from the home cage resulted in a significant decline in
early (i.e., PND 1) postnatal survival. As previously mentioned,
California mice are an excellent model of biparental care given
the significant paternal care provided by California mouse
fathers. Male and female California mice parents spend similar
amounts of time in the nest (Dudley, 1974a) and aside from
nursing, parental behaviors performed on PND 1 are shared
equally by both the mother and father. Specifically, California
mouse fathers and mothers spend equal amounts of time in the
nest as well as equivalent durations of time in physical contact
with the pups (Gubernick and Alberts, 1987). On the whole,
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FIGURE 4 | Classic indices of anxiety-like behavior in the elevated plus maze are not altered by paternal deprivation (PD) among young adult California mice. Male
and female California mice were reared by both parents (biparental care) or by the mother alone (PD) from postnatal day (PND) 1 until weaning. On PND 65, mice
were tested on the elevated plus maze task for 5 min. (A) Among biparentally-reared offspring, females spent considerably more time on the open arms than males.
PD did not alter time spent on the open arms. ∗p ≤ 0.05. (B,C) Neither sex, nor rearing, altered latency to enter the open arms or total arm entries. (D) Irrespective of
sex, total distance traveled within the elevated plus maze was reduced by PD. N sizes: biparental care male; 4; biparental care female, 7; PD male, 7; PD female, 5.
Bars represent mean ± SEM. #, main effect of PD.

the early parental behaviors performed by fathers are similar
to that performed by mothers, however, fathers do perform
more non-anogenital licking of pups than mothers on PND 1
(Gubernick and Alberts, 1987).

When dead pups were observed, they were either cannibalized
or found unaltered outside of the nest, an outcome previously
reported in studies of California mice (Gubernick et al., 1993).
Pup death may be mediated, in part, by the dam’s response to the
absence of her mate. It is not uncommon for maternal California
mice to cannibalize or withhold care from young following mate
disappearance (Gubernick et al., 1993). A rapid termination
of the dam’s reproductive investments following the removal
of the mate may reflect the inability to successfully rear pups
alone, an effect also observed in the monogamous, biparental
Djungarian hamster (Phodopus cambelli); all pups observed
deceased 3 days postpartum if paternal male is removed (Wynne-
Edwards, 1987; Wynne-Edwards and Lisk, 1989). In the current
study, PD offspring survived if they lived to PND 6. Interestingly,
if California mice parents decide to forgo offspring care, pups are
observed deceased 2–5 days following birth (Cantoni and Brown,
1997). It should also be noted that offspring survival is decreased
even when males are removed several days before the birth of
pups (Gubernick et al., 1993), therefore the increase in offspring
mortality is likely not a result of experimenter handling or nest
disruption.

Increased pup death may also be due to problems related
to thermoregulation and/or metabolism. Thermoregulation,
in California mice pups, is related to the presence of the
father (Dudley, 1974b); individual California mice offspring
are ectothermic prior to PND 15 (Gubernick, 1987). Given
that most of the male’s early parental care is in the form
of huddling over pups (Gubernick and Alberts, 1987), direct
male care may enhance offspring survival by providing
warmth, as previously described (Dudley, 1974a). Heat transfer
may be even more necessary under harsh environmental
conditions, such as cold temperatures and/or when foraging
for food is necessary (Gubernick et al., 1993; Wright and
Brown, 2002; Bredy et al., 2007). It is likely that under
harsh laboratory conditions, our survival rate would be lower
than what is reported in the current study. In addition to
thermoregulation, problems associated with metabolism may
contribute to offspring mortality. Following mate removal,
California mouse mothers stop lactating 5–28 days later
(Gubernick and Teferi, 2000). It is possible that PD offspring
receive less nourishment than biparentally-reared offspring,
which may ultimately contribute to increased mortality. Future
studies are necessary to determine to what extent increased
California mousemortality, following the removal of the paternal
male, is a result of the direct absence of paternal care, since
California mice dams do not overcompensate for their partners’
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FIGURE 5 | Both rearing and sex alter indices of passive stress-coping
behavior during the forced swim test in young adult California mice. Male and
female California mice were reared by both parents (biparental care) or by the
mother alone [paternal deprivation (PD)] from postnatal day (PND) 1 until
weaning. On PND 67, mice underwent a 5 min forced swim test. (A) Overall,
PD increases % time immobile. #, main effect of PD. (B) Irrespective of rearing,
males display immobility faster than females. ∗p ≤ 0.05. (C) Neither sex, nor
rearing, alter bouts of immobility. N sizes: biparental care male, 8; biparental
care female, 7; PD male, 5; PD female, 6. Bars represent mean ± SEM.

absence (Dudley, 1974b), or indirect effects of altered maternal
care. Recent evidence from our lab has demonstrated no
differences in pup retrieval between multiparous California
mouse mothers rearing pups with or without her mate (Madison
et al., 2017). Pup retrieval is only one of many maternal

behaviors, therefore a thorough analysis of parental behavior
should be performed.

A sex-dependent effect of PD on the short-term survival of
adult born cells in the dentate gyrus of the hippocampus was
observed. Specifically, PD females exhibited a marked decline
in the number of BrdU-labeled cells, compared to females
reared by both parents. No effect of PD was observed in
the short-term survival of adult born cells in males. While
the phenotype of these 8-day old cells was not assessed in
the current study, doublecortin (DCX) is expressed in the
majority (∼89%) of 1-week old BrdU-labeled cells in the
hippocampus of young adult mice (Snyder et al., 2009). DCX
is expressed in young neurons as well as neuronal precursors
and plays key roles in neuronal maturation (Brown et al.,
2003; Kerjan et al., 2009). This sex-dependent effect of PD on
short-term cell survival in the dentate gyrus of the hippocampus
aligns with sex-dependent effects of PD on neuroendocrine
regulation and brain neurochemistry observed in biparental
rodents, including the California mouse. Serum corticosterone
and adrenocorticotrophin concentrations are increased in adult
female, but not male, mandarin voles exposed to PD (Wu
et al., 2014). Since stress and elevated glucocorticoids have been
repeatedly shown to inhibit new cell production and survival
(reviewed in Mirescu and Gould, 2006), the decreased cell
survival in our PD females, but not males, may reflect baseline
differences in serum corticosterone. This was not assessed in
our current study and should be further explored. Decreased
hippocampal glucocorticoid receptor (GR) and brain-derived
neurotrophic factor (BDNF) have been shown in female, but
not male, mandarin voles (Wu et al., 2014). Additionally, an
attenuation in basal activity of low-spiking medial prefrontal
cortex pyramidal cells has been observed in female, but not male,
California mice (Bambico et al., 2015). In male, but not female,
degus (Octodon degus), PD results in early (i.e., time of weaning)
deficits in dendritic plasticity of the orbitofrontal cortex—an
effect that is no longer apparent in adulthood (Helmeke et al.,
2009). It is unknown whether similar developmental trajectories
exist in hippocampal structural plasticity inmale California mice.

It is important to note that other models of early-life stress,
(i.e., disrupted maternal care) in uniparental species, like mice
and rats, results in sex-dependent alterations to hippocampal
neuroplasticity. Twenty-four hours of maternal deprivation on
PND 3 does not alter anxiety-like behavior, cognitive function, or
adult neurogenesis in 12–17 week old female rats (Loi et al., 2017)
but does lead to accelerated maturation of synaptic plasticity in
male rats (Derks et al., 2016). At weaning (PND 21), maternal
deprivation results in increased immature neuron survival
(i.e., DCX+ cells) inmale rats and decreasedDCX+ cells in female
rats. This effect was likely not driven by enduring sex-dependent
changes in maternal behavior following maternal deprivation on
PND 3 (Oomen et al., 2009). Maternal deprivation∼1 week later
(i.e., PND 9) immunologically primes hippocampal synapses of
male, but not female, juvenile rats (Viviani et al., 2014); reduced
anxiety-like behavior and increased risk taking behaviors are
observed in females only (Mela et al., 2015). Femalesmay bemore
resilient thanmales to the effects of early-life stress (Walker et al.,
2011), as early life nest and bedding disruption models describe
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enduring negative consequences in male mice only, including
increased basal corticosterone concentrations, decreased spatial
and object recognition memory, and decreased hippocampal
adult neurogenesis (Rice et al., 2008; Naninck et al., 2015).
To what extent similar sex-dependent observations occur, as
a result of maternal deprivation, in a biparental mammalian
species has yet to be investigated. Interestingly, in the biparental
zebra finch (Taeniopygia guttata), maternal deprivation results in
hyperresponsivity to stress and altered mRNA levels of GR and
mineralocorticoid receptors in the hippocampus, cerebellum,
and hypothalamus (Banerjee et al., 2012).

To what extent the lack of direct paternal care mediates the
observed sex-dependent effects on new cell survival is unclear,
however, it is conceivable that differential distribution of parental
care may play a factor. California mouse fathers engage in more
pup licking than mothers; however, fathers spend more time
licking non-anogenital regions compared to mothers (Gubernick
and Alberts, 1987). In rats, mothers engage in more anogenital
licking of male, compared to female, offspring (Richmond
and Sachs, 1984). This attentional bias toward male offspring
could have long-term consequences on development (Moore
and Power, 1992). While this bias in anogenital licking has
not been reported in California mice, it is possible that male
offspring receive more direct care from the mother in the form
of anogenital licking, thereby providing more parental care, thus
preventing a decline in hippocampal structural plasticity. More
detailed analysis of home cage parental behavior following PD
may shed light on this possibility given that maternal deprivation
on PND 3 results in greater LG on PND 4 in rat offspring,
with males receiving more attention than females (Oomen et al.,
2009); however, both the sex difference in LG and overall increase
in LG disappears by PND 5. To what extent similar findings
are observed following PD in California mice should be further
explored.

We did not observe an overall anxious phenotype among PD
offspring. During elevated plus maze testing, classical indices of
anxiety like behavior (i.e., reduced % time in the open arms,
increased latency to enter open arms; Komada et al., 2008)
were not observed following PD. However, exploratory behavior
(i.e., total distance traveled) was reduced in both male and female
PD offspring, compared to offspring receiving biparental care.
A reduction in locomotor activity, without altered anxiety-like
behavior, has been observed during assessments of anxiety-like
behavior in PD mandarin voles (Jia et al., 2009; Tabbaa et al.,
2017). In fact, reduced locomotor activity following PD has
been observed in both rodent and non-human primate species
(Dettling et al., 2002; Cao et al., 2014). Collectively, these studies
of PD in various mammalian species suggest that decreased
exploratory behavior may be indicative of an anxious phenotype
(Kõks et al., 1997) that may complicate more traditional indices
of anxiety-like behavior on the elevated plus maze. Despite
the lack of a sex-dependent effect in anxiety-like behavior
within the PD group, contrasted with the effect observed within
the biparental care group, restraint should be taken when
interpreting the effects of PD on anxiety-like behavior when
exploration is a primary component of the behavioral task (e.g.,
elevated plus maze).

PD, independent of sex, resulted in increased total time
spent immobile during the forced swim task. This is the
first demonstration, to our knowledge, of increased passive
stress-coping behavior following PD. Chronic physical
and psychological stressors significantly alter regulation of
neuroendocrine systems and reorganize brain regions, like the
hippocampus, which are highly responsive to stress hormones
(i.e., corticosterone; reviewed in de Kloet and Molendijk, 2016).
It is plausible that PD altered neuroendocrine regulation, yet
this was not assessed in the current study. Increased basal
corticosterone has been observed throughout the postpartum
period (Wang et al., 2014) and at weaning (Wang et al., 2012)
in mandarin vole offspring following removal of the paternal
male on PND 0 (i.e., day of birth). Mice with a history of
stress, followed by exposure to the forced swim task, exhibit
upregulation of genes in the hippocampus that are involved in
chromatin modification and epigenetics (e.g., BDNF and GR).
The altered expression of some of these genes can be long-lasting
(Gray et al., 2014; Hashikawa et al., 2015) and may underlie
immobility behavior during the forced swim task (De Pablo et al.,
1989; Campus et al., 2015). Latency to immobility, or floating, is
considered a main outcome measure of the forced swim task. In
the current experiment, the time from placement in the cylinder
to the first bout of immobility was markedly faster among males
than females. This effect was independent of rearing. However,
the total number of immobility bouts did not differ as a result of
sex. Therefore, although male California mice exhibited earlier
passive stress-coping behavior than females, this sex difference
did not influence global performance in the forced swim task.

In summary, our findings highlight the consequences of
PD in a biparental rodent species, the California mouse.
Removal of the father was associated with reduced structural
plasticity among female mice and generalized deficits in
exploratory and passive-stress coping behaviors. In humans,
quality, rather than continuity, of parental care is associated
with impaired behavioral dysfunction (i.e., depression; Parker,
1979). Given that maternal California mice do not compensate
for missing paternal contributions (Dudley, 1974a; Bester-
Meredith and Marler, 2003), the quality of care received by
PD offspring may be reduced, resulting in enduring effects
on hippocampal neuroplasticity and even survival. Mechanisms
underlying sex-differences in short-term survival should be
explored. Additionally, future studies should investigate to what
extent these findings are a direct result of paternal removal
or an indirect result of altered maternal care following mate
removal.
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Adolescent development is marked by significant changes in neurobiological structure
and function. One such change is the substantial adolescent-related decline in cellular
proliferation and neurogenesis in the dentate gyrus of the hippocampal formation.
Though the behavioral implications of these developmental shifts in cell proliferation
are unclear, these changes might contribute to the altered cognitive and emotional
functions associated with puberty and adolescence. The significant decrease in cellular
proliferation throughout adolescence might make the hippocampus more vulnerable to
perturbations during this developmental stage, particularly to factors known to disrupt
neurogenesis, such as chronic exposure to stress-related hormones. To examine this
possibility, we first measured cellular proliferation in the dentate gyrus of male and
female C57BL/6N mice before and after adolescence and then assessed both cellular
proliferation and the number of immature neurons in mice treated with oral corticosterone
for 4 weeks during either adolescence or adulthood. We found significant age-related
decreases in hippocampal cellular proliferation in both males and females. Though
the greatest decrease in proliferation was during adolescence, we also observed that
proliferation continued to decline through young adulthood. Despite the significant
effect of chronic oral corticosterone on body weight gain in both the adolescent-
and adult-treated males and females and the subtle, but significant suppressive
effect of corticosterone on the number of immature neurons in the adolescent-treated
males, cell proliferation in the hippocampus was unaffected by these treatments.
These data show that the substantial adolescent-related change in cellular proliferation
in the dentate gyrus is largely unaffected by chronic oral corticosterone exposure
in males and females. Thus, despite being vulnerable to the metabolic effects of
these chronic corticosterone treatments, these results indicate that the developmental
changes in cellular proliferation in the dentate gyrus are relatively resilient to these
treatments in mice.
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INTRODUCTION

Adolescence is associated with significant neurobiological
changes, including substantial declines in cellular proliferation
and neurogenesis in the dentate gyrus of the hippocampal
formation in both rats and mice (Heine et al., 2004; Kim
et al., 2004; He and Crews, 2007; Hodes et al., 2009; Ho et al.,
2012). Though the hippocampal formation plays a role in many
cognitive and emotional processes (Fanselow and Dong, 2010),
the neurobehavioral implications of these adolescent changes in
proliferation are unclear. In addition to development, exposure
to stress and stress-related hormones, such as corticosterone,
alter cell proliferation and neurogenesis in the dentate gyrus
(Schoenfeld and Gould, 2012; Opendak and Gould, 2015).
Given the marked increase in stress-related physiological and
behavioral dysfunctions associated with adolescence, ranging
from obesity to mood disorders (Turner and Lloyd, 2004; Dahl
and Gunnar, 2009; Lee et al., 2014; Poyrazoglu et al., 2014),
perturbations of adolescent hippocampal development by stress-
related hormones might contribute to the change in these
vulnerabilities.

We have recently shown that chronically exposing adolescent
and adult male mice to oral corticosterone leads to significant
changes in body weight and adiposity at both ages, but
the trajectory and magnitude of these metabolic changes are
different before and after adolescence (Kinlein et al., 2017).
In particular, despite similarly elevated circulating levels of
corticosterone achieved by these treatments, oral corticosterone
during adolescence results in initial reduced weight gain followed
by increases in body weight, while in adulthood these treatments
lead to more linear and substantial increases in both body
weight and adiposity (Kinlein et al., 2017). The impact of
chronic oral corticosterone treatments on hippocampal cellular
proliferation and neurogenesis during adolescence is currently
unknown, but may also show age-dependent effects like those
observed in the context of metabolism. As alluded to above, it
has been shown that exposing adult rats and mice to chronically
elevated corticosterone levels reduce hippocampal proliferation
and neurogenesis (Murray et al., 2008; David et al., 2009;
Brummelte and Galea, 2010; Rainer et al., 2012; Kott et al.,
2016). Thus, given the substantial developmental change in
proliferation and neurogenesis and the ability of corticosterone
to disrupt these processes, it is possible that the chronic
oral corticosterone treatments known to affect metabolism
differentially during adolescence and adulthood will also
result in age-dependent perturbations of these neurobiological
parameters.

The purpose of the present set of experiments was to further
explore adolescent-related changes in hippocampal proliferation
and determine the effects of chronic oral corticosterone on
hippocampal proliferation and number of immature neurons in
both adolescent and adult male and female mice. Specifically, in
the first set of experiments, we examined changes in hippocampal
cellular proliferation in male and female mice before and after
adolescence, as well during young adulthood. Based on studies
in male mice (He and Crews, 2007), we hypothesized that
female mice would also show adolescent-related decreases in

hippocampal proliferation. In the second set of experiments, we
exposed male and female mice to oral corticosterone treatments
during either adolescence or adulthood. Given the greater
change in hippocampal cellular proliferation and neurogenesis
during adolescence (Heine et al., 2004; Kim et al., 2004;
He and Crews, 2007; Hodes et al., 2009; Ho et al., 2012),
the age-dependent sensitivity to oral corticosterone in the
context of metabolism, and the effects of corticosterone on
these parameters in adulthood (Murray et al., 2008; David
et al., 2009; Brummelte and Galea, 2010; Rainer et al.,
2012; Kott et al., 2016), we hypothesized that corticosterone
treatment would lead to different effects in the adolescent-
compared to adult-treated mice. Finally, though we did not
compare males and females directly, the inclusion of both
sexes in these studies allowed us to explore whether males
and females are affected differently by these treatments, as
previous studies report sex differences in the response of
the hippocampus to stress-related hormones (Gobinath et al.,
2015).

MATERIALS AND METHODS

Animals and Housing
Male and female C57BL/6N mice were obtained from Charles
River Laboratories (Wilmington, MA, USA) and allowed to
acclimate for at least 1 week prior to the start of the experiments.
Mice were housed in pairs (same sex and age) in polycarbonate
cages (28 × 17 × 12 cm) with bed-o’cobs 1/4 inch bedding and
maintained on a 12-h light dark schedule (lights on at 8:00 h).
The temperature was maintained at 21 ± 2◦C and mice had
ad libitum access to water and rodent chow (Lab Diet #5012; PMI
Nutrition International LLC, Brentwood, MO, USA). The stage
of the estrous cycle was not determined in the female mice. All
procedures were approved by the Institutional Animal Care and
Use Committee of Columbia University.

Experimental Designs and Tissue
Collections
Four experiments were conducted (Figure 1A). In the first
two experiments, untreated male (Experiment 1) and female
(Experiment 2) mice were weighed and perfused (see below)
at 30, 58, 70, or 98 days of age (d) and brains were collected
(n = 4–6 per age). Though the exact age span that defines
adolescence and young adulthood in mice is unclear, these ages
are operationally defined in these experiments as pre-adolescent
(30 days), post-adolescent (58 days), young adult (70 days) and
adult (98 days). In the second two experiments, pre-adolescent
(30 days) and young adult (70 days) males (Experiment 3) and
females (Experiment 4) were exposed to one of two treatments:
0 or 100 µg/ml corticosterone (C2505; Sigma-Aldrich, St. Louis,
MO, USA) in a 1% ethanol and tap water vehicle (n = 6–8 per age
and dose). The dose and vehicle used in these studies were based
on previously published experiments in adolescent and adult
mice (Kinlein et al., 2017). As corticosterone is hydrophobic,
it was first dissolved in 100% ethanol via sonication and then
added to tap water to a 1% concentration. Animals were exposed
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to these treatments for 4 weeks, and therefore, ended at either
58 days or 98 days. Treatments were terminated ∼1 h prior to
tissue collection. A pilot study revealed that exposing adolescent
or adult mice to the 1% ethanol vehicle for 4 weeks did not
significantly affect the number of proliferating cells or immature
neurons in the dentate gyrus, and thus, to reduce animal
numbers, a tap water only control group was not included in
these experiments (Romeo, unpublished observation).Moreover,
as tissues from males and females were collected from different
sex-specific cohorts of animals and processed at different times,
results from each sex were analyzed separately.

For all experiments, animals were perfused after being
weighed and administered an overdose of ketamine (80 mg/kg,
i.p.p) and xylazine (5 mg/kg, i.p.). Transcardial perfusions
were conducted using heparinized saline followed by 4%
paraformaldehyde in 0.1 M phosphate buffer (PB). Brains were
removed and post-fixed in 4% paraformaldehyde for 24 h and
then incubated in 20% sucrose in 0.1 M PB for 24 h. Brains
were snap frozen on powdered dry ice and stored at−80◦C until
they were sectioned at 35 µm on a coronal plane. The sections
were stored in cryoprotectant (1:1 of 20% sucrose in 0.1 M
PB and ethylene glycol) at −20◦C until immunohistochemistry
was performed.

Immunohistochemistry
For all the experiments, 3–4 anatomically matched sections
through the dorsal hippocampus separated by 105 µm
(corresponding to plates 43–47 in a standard mouse atlas;
Franklin and Paxinos, 2008), were processed for either Ki-67 to
measure cellular proliferation or doublecortin (DCX) to measure
the number of immature neurons. The sections were washed in
0.1 M PB followed by a 5 min incubation in 0.3% H2O2 and
washed with 0.1 M PB with 0.1% Triton-X-100 (PBT). Sections
were then incubated for 1 h in 2% normal goat serum (NGS),
and then in either rabbit anti-Ki-67 (1:8,000; AB15580; Abcam,
Cambridge, MA, USA) or guinea pig anti-DCX (1:10,000,
AB2253; Millipore Sigma, Burlington, MA, USA) for 24 h
at 4◦C. Sections were then washed in PBT and incubated
in goat anti-rabbit or goat anti-guinea pig secondary (1:200;
Vector Laboratories, Burlingame, CA, USA) and then exposed
to Avidin-Biotin Complex (1:250; Vectastain ABC Kit, Vector
Laboratories) for 1 h at room temperature. The tissue was
then washed in 0.1 M phosphate buffer saline (PBS) and
exposed to 3,3′diaminobenzidine (DAB) in a 3 M sodium acetate
buffer containing 0.05% H2O2 for 5 min followed by washes
in PBS. For Ki-67, the DAB was nickel-enhanced. The tissue
was mounted on Fisher Brand Plus slides (Fischer Scientific,
Pittsburg, PA, USA) dried and exposed to 70%, 95% and 100%
ethanol, followed by xylenes, and cover slipped with DPX (06552,
Sigma-Aldrich). Tissue processed for Ki-67 was counter-stained
with cresyl violet (C1791, Sigma-Aldrich) prior to coverslipping
to measure the cross-sectional area of the dentate gyrus (see
below).

Microscopy and Histological Quantification
Ki-67-positive cells in both the upper and lower blades of the
dentate gyrus were counted using a light microscope with a

10× objective (Zeiss 200 M Axiovert), while the cross-sectional
area of the dentate gyrus was analyzed with ImageJ from
pictures taken under a 2.5× objective (Figure 1B). Bilateral
assessments were made from each section and number of
cells and cross-sectional areas were averaged. Based on the
cross-sectional measurements, Ki-67-positive cells are expressed
as the average number of cells per 100 µm2 of dentate
gyrus. Figure 1B provides a representative photomicrograph of
the Ki-67 cell counts and cross-sectional area of the dentate
gyrus.

DCX-positive cell counts were made under a 40× objective
in both the upper and lower blades of the dentate gyrus by
placing a grid of 10,000 µm2 superimposed on top of the
images (Figure 1C). Bilateral counts from each stained section
were averaged and data are expressed as the average number
of DCX-positive cells per 10,000 µm2. Figure 1C provides a
representative photomicrograph of DCX-positive cells and the
approximate placement of the grid used for analysis.

Statistical Analyses
Prior to statistical analyses, the normality of the data sets
was confirmed with Shapiro-Wilk normality tests. In
Experiments 1 and 2, one-way ANOVAs were used to
analyze differences in body weights and the number of
Ki-67-positive cells and cross-sectional areas of the dentate
gyrus at 30 days, 58 days, 70 days and 98 days. In Experiments
3 and 4, two-way ANOVAs (age of exposure × treatment
condition) were used to analyze the number of Ki-67-
and DCX-positive cells and cross-sectional area of the
dentate gyrus in response to either 0 or 100 µg/ml of oral
corticosterone exposure during 4 weeks of either adolescence
or adulthood. Significant main effects and interactions were
further analyzed with Tukey’s honestly significant difference
post hoc tests. Data are reported as the mean ± SEM
and differences were considered significant at p < 0.05.
All statistical analyses were performed using GraphPad
PRISM, version 7.04 (GraphPad Software Inc., San Diego,
CA, USA).

RESULTS

Experiments 1 and 2: Developmental
Changes in Hippocampal Cellular
Proliferation
Experiment 1
In males, body weight increased significantly during adolescence
and young adulthood (F(3,20) = 69.02, P < 0.05), such that
98-day males weighed the most while the 30-day males weighed
the least (Table 1). In the hippocampus, though there was
no significant effect of age on the cross-sectional area of
the dentate gyrus (P = 0.24; Figure 2A), the number of
Ki-67-positive cells per 100 µm2 of dentate gyrus decreased
significantly during adolescence (F(3,20) = 28.50, P < 0.05).
Specifically, 30-day males had significantly greater numbers
of proliferating cells than 58-day, 70-day, or 98-day males
(Figure 2B). Though not statistically significant, there appears
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FIGURE 1 | Schematic timeline of the experiments, with arrowheads indicating
the times of tissue collections (A). Representative photomicrograph of the
counter-stained dentate gyrus and Ki-67-positive cells (B) and representative
photomicrograph of the doublecortin (DCX)-positive cells in the dentate gyrus
and the approximate placement of the grid used to quantify the cells (C) Scale
bars in panels (B,C) = 50 µm. Note that the arrows in panels (B,C) are
indicating a few examples of Ki-67- and DCX-positive cells, respectively.

to be a trend toward a continued decrease in the number
of Ki-67-positive cells through 58-day, 70-day and 98-day
animals.

TABLE 1 | Mean (±SEM) body weight of male and female mice in Experiments 1
(male mice) and 2 (female mice).

Sex and days of age (d) Body weight (g)

Male 30d 17.1 ± 0.2a

Male 58d 24.1 ± 0.7b

Male 70d 24.9 ± 0.5b

Male 98d 28.2 ± 0.5c

Female 30d 15.7 ± 0.7a

Female 58d 19.1 ± 0.6b

Female 70d 21.8 ± 0.4c

Female 98d 24.1 ± 0.5d

Numbers that share a letter within an experiment are not significantly different from
one another (P < 0.05).

Experiment 2
In females, there was also a significant change in body weight
throughout adolescence and young adulthood (F(3,16) = 38.92,
P < 0.05), such that body weight significantly increased in
a linear manner at all four ages measured (Table 1). For
the measurements made in the hippocampus, there were both
significant increases in the cross-sectional area of the dentate
gyrus and decreases in the number of Ki-67-positive cells across
the ages (F(3,16) = 4.52 and 23.52. respectively, P < 0.05). For
cross-sectional area, the dentate gyrus was significantly larger in
98-day females compared to 30-day, 58-day, or 70-day females
(Figure 2C), while the Ki-67 cells per 100 µm2 of dentate gyrus
show the same adolescent-related decline as males, with 30-day
females having the greatest number of Ki-67 cells compared to all
the other ages (Figure 2D). Also similar to the males, it appears
Ki-67 cell number continues to decline in the dentate gyrus
through late adolescence and young adulthood, with the lowest
number of cells in the 98-day females.

Experiments 3 and 4: Hippocampal Cellular
Proliferation and Number of Immature
Neurons Following Oral Corticosterone
Treatment During Adolescence or
Adulthood
Experiment 3
For body weight in the adolescent- and adult-treatment males,
main effects were found, such that adult-treated males weighed
more than adolescent-treated males, and animals treated with
100 µg/ml of corticosterone were heavier than the animals
treated with 0 µg/ml of corticosterone (F(1,28) = 75.35 and
41.12, respectively, P < 0.05; Table 2). For the dependent
variables measured in the dentate gyrus, we found no
main effects or interaction of age of exposure or treatment
condition on the cross-sectional area (Figure 3A), and only
a significant main effect of age on the number of Ki-67
cells per 100 µm2 of the dentate gyrus (F(1,24) = 7.17,
P < 0.05). Specifically, the 58-day animals treated with
either 0 or 100 µg/ml of corticosterone during adolescence
had a greater number of Ki-67 cells than the 98-day
animals treated with either 0 or 100 µg/ml of corticosterone
during adulthood (Figure 3B). There was no main effect of
corticosterone treatment or interaction between age of exposure

Frontiers in Behavioral Neuroscience | www.frontiersin.org August 2018 | Volume 12 | Article 19261

https://www.frontiersin.org/journals/behavioral-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/behavioral-neuroscience#articles


Shome et al. Adolescence, Hippocampal Proliferation, and Corticosterone

FIGURE 2 | Mean (±SEM) cross-sectional area (mm2) of the dentate gyrus (DG) and number of Ki-67-positive cells per 100 µm2 of DG in 30-, 58-, 70-, and
98-day-old male (A,B; left panels) and female (C,D; right panels) mice. Bars that share a letter are not significantly different from one another.

and corticosterone treatment on Ki-67 cells number per 100µm2

of dentate gyrus.
For the number of DCX-positive cells in the dentate gyrus,

we found both a significant main effect of age of exposure as
well as a significant interaction between age of exposure and
corticosterone treatment (F(1,24) = 36.35 and 4.35, respectively,
P < 0.05). Specifically, like the number of Ki-67-positive cells,
the number of DCX cells were greater in the 58-day compared to
98-day males, independent of treatment. For the interaction, we
found a slight, but significant suppressive effect of corticosterone
on DCX cell number, but only when the exposure occurred
during adolescence (Figure 3C). There was no significant main
effect of treatment condition on the number of DCX cells in the
dentate gyrus of males.

Experiment 4
Similar to males, main effects were found on the body weights
of the adolescent- and adult-treatment females, such that adult-
treated females weighed more than adolescent-treated females,
and females treated with 100 µg/ml of corticosterone were
heavier than the females treated with 0 µg/ml of corticosterone
(F(1,26) = 14.16 and 25.28, respectively, P < 0.05; Table 2). Also
similar to the males, we found no main effects or interaction of

age of exposure or treatment condition on the cross-sectional
area of the dentate gyrus (Figure 4A), but found a significant
main effect of age on the number of Ki-67 cells per 100 µm2

of the dentate gyrus (F(1,22) = 6.03, P < 0.05). Like the
males, 58-day females treated with either 0 or 100 µg/ml of
corticosterone during adolescence had a greater number of Ki-67
cells than 98-day females treated with either 0 or 100 µg/ml

TABLE 2 | Mean (±SEM) body weight of male and female mice in Experiments 3
(male mice) and 4 (female mice) treated with either 0 or 100 µg/ml of
corticosterone (CORT) during either adolescence (30–58 days) or young
adulthood (70–98 days).

Sex and age of exposure Treatment condition Body weight (g)

Male Adolescent-Exposed 0 µg/ml CORT 23.6 ± 0.5

Male Adolescent-Exposed 100 µg/ml CORT 26.3 ± 0.8∗

Male Adult-Exposed 0 µg/ml CORT 27.7 ± 0.5

Male Adult-Exposed 100 µg/ml CORT 32.8 ± 0.5∗

Female Adolescent-Exposed 0 µg/ml CORT 20.6 ± 0.4

Female Adolescent-Exposed 100 µg/ml CORT 24.4 ± 0.9∗

Female Adult-Exposed 0 µg/ml CORT 23.4 ± 0.6

Female Adult-Exposed 100 µg/ml CORT 27.8 ± 1.0∗

Asterisks indicate a significant difference between the 0 µg/ml and 100 µg/ml
treatment conditions. Note that the significant main effects for age of exposure in
Experiments 3 and 4 are not indicated.
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FIGURE 3 | Mean (±SEM) cross-sectional area (mm2) of the DG (A), number
of Ki-67-positive cells per 100 µm2 of DG (B) and number of DCX-positive
cells per 10,000 µm2 (C) in male mice exposed to either 0 or 100 µg/ml of
corticosterone (CORT) during adolescence (white bars) or adulthood (black
bars). Asterisks indicate a significant difference between the
adolescent-exposed and adult-exposed animals, while # indicates a significant
difference between the 0 µg/ml and 100 µg/ml dose of CORT in the
adolescent-exposed animals.

of corticosterone during adulthood (Figure 4B). There was
no main effect of corticosterone treatment or interaction
between age of exposure and corticosterone treatment in the
females.

For DCX cells counts, we found only a significant main effect
of age of exposure (F(1,22) = 20.81, P < 0.05), such that 58-
day females had a greater number of DCX-positive cells than
98-day females, independent of treatment condition (Figure 4C).

FIGURE 4 | Mean (±SEM) cross-sectional area (mm2) of the DG (A) number
of Ki-67-positive cells per 100 µm2 of DG (B) and number of DCX-positive
cells per 10,000 µm2 (C) in female mice exposed to either 0 or 100 µg/ml of
CORT during adolescence (light gray bars) or adulthood (dark gray bars with
hash marks). Asterisks indicate a significant difference between the
adolescent-exposed and adult-exposed animals.

There was no main effect of treatment condition or interaction
between age of exposure and treatment condition on the number
of DCX-positive cells in the female dentate gyrus.

DISCUSSION

These data indicate that cellular proliferation in the dentate gyrus
showed significant declines during adolescent development in
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both male and female C57BL/6N mice. Furthermore, despite
significant somatic changes in response to these corticosterone
treatments, we found little effect of these treatments on
hippocampal proliferation and the number of immature neurons.
Specifically, chronic corticosterone exposure had no effect on
these parameters in adolescent- or adult-treated females, and in
males, only the number of immature neurons was affected when
these treatments occurred during adolescence. Thus, counter to
the original hypothesis, these data indicate that the substantial
change in hippocampal proliferation and neurogenesis that
occurs during adolescence is largely resistant to these chronic
oral corticosterone treatments.

The metabolic function of the animals was influenced by
this exposure to corticosterone, as has been reported previously
(Karatsoreos et al., 2010; Cassano et al., 2012; Kinlein et al.,
2017). That is, these corticosterone treatments led to significant
weight gain in the adolescent- and adult-exposed subjects. Thus,
the relative lack of corticosterone-induced changes in cellular
proliferation and number of immature neurons indicates a
dissociation between the effects of corticosterone on somatic
and neurobiological functions. It is possible that a higher dose
of corticosterone would have yielded a greater effect on the
neurobiological parameters we assessed, as the slight decrease
in DCX cell number in the adolescent-treated males suggests
that the 100 µg/ml dose of corticosterone might be near an
effective threshold. Furthermore, a longer time of exposure
might be needed, as others have reported that 7 weeks of oral
corticosterone exposure can reduce hippocampal proliferation
in adult male mice (David et al., 2009). Regardless, if this
method of delivery is to be used to understand the influence
of corticosterone on either hippocampal cellular proliferation or
neurogenesis in either adolescent or adult mice, then additional
experiments will be needed to address these dose response and
time course issues.

Given the relative absence of an effect of corticosterone
on hippocampal proliferation in the present study, these data
however do raise an interesting possibility that the metabolic
changes induced by these treatments might have protected the
dentate gyrus from any adverse effects of chronic corticosterone
exposure. For example, previous research has indicated that
metabolic hormones, such as leptin, can be neuroprotective
(Avraham et al., 2011), and leptin has been shown to reverse
the suppressive effects of chronic unpredictable stress on
hippocampal neurogenesis in rats (Garza et al., 2012). Leptin
levels have been reported to be increased in mice treated with the
dose of oral corticosterone used in the present study (Karatsoreos
et al., 2010). Moreover, the dentate gyrus has a relatively high
expression level of leptin receptors in C57BL/6 mice (Huang
et al., 1996). Thus, it is possible that the elevated leptin
levels induced by these treatments might have mitigated the

suppressive effects of corticosterone on hippocampal cellular
proliferation. Future experiments will be needed to address this
possibility.

We found that, independent of corticosterone treatment,
cell proliferation and the number of immature neurons were
significantly different between 58 days and 98 days of age
in both females and males, indicating that these parameters
of plasticity are not static during adulthood, but continue
to decrease. While previous work has observed a substantial
decrease in hippocampal cellular proliferation and neurogenesis
between adolescent and adult mice (He and Crews, 2007),
differences have not been previously measured at different
ages during young adulthood in mice. Given the important
role of hippocampal proliferation in neurobehavioral functions,
ranging from learning and memory to emotionality (Bannerman
et al., 2014), future studies will need to probe the functional
implications of these changes in the dentate gyrus during both
adolescence and young adulthood.

Taken together, these data indicate that despite profound
changes in hippocampal cellular proliferation and neurogenesis
during adolescence and adulthood, chronic oral corticosterone
exposure was largely unable to disrupt this developmental
process in male or female mice. Though oral corticosterone
may serve as a useful model to understand both adolescent-
and adult-related differences in metabolic dysfunctions (Kinlein
et al., 2017), the present data suggest this method may not
be an effective way to examine the role of corticosterone on
hippocampal neurogenesis in mice. Instead, we propose that
this methodology may be appropriate for future studies trying
to understand the interaction between metabolic dysregulation
and neurobiological functions, and the potential compensatory
mechanisms that metabolic hormones may have on deleterious
effects of chronic exposure to stress or stress-related hormones
on the brain and behavior.
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In developing youth, allergic asthma is the most common chronic condition, with
9%–10% of youth affected. Asthma onset during childhood and adolescence is further
associated with other health issues, particularly psychiatric conditions. To understand
causal mechanisms by which developmental asthma may lead to altered behavior,
brain and health trajectories, we developed a mouse model of developmental allergic
asthma. In the current study, we tested for potential long-term effects of developmental
asthma on adult lung function and behavior and brain gene expression associated
with emotion and stress regulation. We manipulated airway inflammation (AI) and
methacholine (MCH)-induced bronchospasm (resulting in labored breathing, LB) in
young male and female BALB/cJ mice and measured adult outcomes 3 months after
final asthma manipulations. Results indicated that allergen exposure, used to cause AI,
and which ended on post-natal day 56 (P56), led to persistent lung AI, mucus buildup
and gene expression related to allergic asthma 3 months after final allergen exposure. In
addition, at this same age, early allergen exposure led to altered brain gene expression
related to stress regulation (prefrontal corticotropin releasing hormone receptor 1,
Crhr1 and hippocampal glucocorticoid receptor, GR) and serotonin function (brainstem
serotonin transporter, SERT ). On the other hand, LB events during development led to
altered anxiety-related behavior. Importantly, sex and pre-asthma fear-related behavior
(ultrasonic vocalization, USV rates) modulated these adult outcomes. Asthma that
develops during childhood/adolescence may have long-term impacts on emotion and
stress regulation mechanisms, and these influences may be moderated by sex and
pre-asthma temperament.

Keywords: asthma, anxiety, inflammation, house dust mite, methacholine, ultrasonic vocalization

Abbreviations: AI, Airway inflammation; AI+LB, Airway inflammation+labored breathing; CON, Control; HDM, House
dust mite; IL, Interleukin; LB, Labored breathing; MCH, Methacholine; P, Postnatal day; USV, Ultrasonic vocalization.
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INTRODUCTION

Allergic asthma affects 9.5% of children and adolescents in the
United States (Akinbami et al., 2012). People with asthma can
develop comorbidities with other atopic disorders and other
health outcomes (Guerra et al., 2004; Lødrup Carlsen et al.,
2014). Importantly, there is a high comorbidity of allergic
and internalizing disorders such as anxiety and depression,
conditions that are associated with altered stress and immune
regulation (Nascimento et al., 2002; Goodwin et al., 2003; Katon
et al., 2007; Ross et al., 2007; Buske-Kirschbaum et al., 2008;
Tonelli et al., 2009). Interestingly, research suggests that asthma
patients are at greater risk for developing these internalizing
disorders as early as adolescence (Dudeney et al., 2017).

Serotonin function, in particular transporter function, has
been implicated in the pathology of internalizing disorders.
For example, serotonin transporter (SERT) knockout mice
display anxiety-like behavior, and in patients with depression,
negative attitudes are correlated with SERT binding potential
(Holmes et al., 2003; Meyer, 2007). Interestingly, serotonin
also plays a role in allergic responses—its release in the
periphery is part of the T-helper type 2 allergic response, and
manipulation of peripheral receptors results in improvement
of asthma symptoms in murine models (Nau et al., 2015;
Shajib and Khan, 2015). In addition, mast cells, which are
found in the skin and mucosal tissues as well as in the
central nervous system, play an important role in allergic
responses and produce molecules like histamine during reactions
(Theoharides et al., 2012; Dong et al., 2014). Mast cells are
also responsible for producing 20%–40% of the serotonin in
the hippocampus, and they produce serotonin in cases of
non-allergic asthma and after injury (Nautiyal et al., 2012;
Theoharides et al., 2012; Shajib and Khan, 2015). Thus,
one mechanism by which allergic asthma may predispose an
individual toward internalizing disorders may be by altered
serotonin regulation.

Adolescence is an important time for maturation and growth:
many changes occur in the body and brain that are critical
for normal development of emotion and stress regulation as
well as behavior (Spear, 2000; Tirelli et al., 2003; Dahl, 2004;
Romeo, 2010, 2015; Sachser et al., 2011; McCormick and Green,
2013). Chronic stressors during this period of growth can
have a negative impact on normal development and lead to
increased risk of anxiety- or depression-related internalizing
disorders (Spear, 2000; Molnar et al., 2001; Barnum et al.,
2012; Moretti and Craig, 2013; Dudeney et al., 2017). These
adolescent stress effects can also exacerbate adult allergen-
induced immune responses and lung hyper-responsiveness, and
they can increase midbrain tumor necrosis factor alpha and
interleukin (IL)-1 levels following a later immune challenge
(Chida et al., 2007; Barnum et al., 2012). The downstream
consequences of adolescent stress can be relatively long lasting.
For example, chronic adolescent social and non-social stress
in male rats and mice can result in anxiety-like effects from
3 weeks to 28 weeks after the end of stress (McCormick et al.,
2008; Chaby et al., 2015; Caruso et al., 2017). Chronic adolescent
stress can also cause lasting changes in rat hippocampal soma

volume 3 weeks after stress completion (Isgor et al., 2004). Thus,
adolescence may be a period when organisms are particularly
susceptible to long-term effects of stressors, although it is
important to note that adolescence may also be a period
of stress resilience (Meyer et al., 2016; Sadler and Bailey,
2016).

While evidence suggests that stressors during adolescence
predispose an organism toward adult anxiety, it is possible that
a predisposition to anxiety prior to adolescence may heighten
individual responses to and/or memory of adolescent stressors.
In the case of adolescent asthma, an anxious predisposition
may exacerbate inflammatory symptoms, resulting in more
severe or persistent asthma, and/or more frequent recollection
of these symptoms (Richardson et al., 2006). Research indicates
that anxiety can be brought on from experiencing a chronic
health challenge and associated adverse medical events (Chida
et al., 2008). Additionally, parental anxiety can influence
a child, putting them at increased risk for developing an
anxiety disorder (Whaley et al., 1999). This bi-directional
relationship between asthma and internalizing disorders
requires further study to elucidate causal directionality and
mechanism.

With regard to asthma-internalizing disorder co-morbidity,
there are important sex differences to consider. Young males
tend to have a higher prevalence of asthma compared to
females, but this ratio changes in adolescence and adulthood
such that females have higher rates of asthma than males
at these older ages (Anderson et al., 1992; Skobeloff et al.,
1992; Katon et al., 2007). Other disorders also show distinct
sex-specific diagnosis and prevalence patterns. Males tend
to show increased rates of behavioral and developmental
disorders like attention deficit hyperactivity disorder compared
to females, whereas females tend to exhibit higher rates
of anxiety, depression and other mood disorders (Andersen
and Teicher, 2000; Abikoff et al., 2002; Roza et al., 2003;
Holder and Blaustein, 2014). Among adolescents with asthma,
females are at greater risk for being diagnosed with anxiety
disorders compared to males (Katon et al., 2007; Ross
et al., 2007). The effects of adolescent stress can also be
worse in females compared to males (Bourke and Neigh,
2011).

In this manuscript, we focus on two features of allergic asthma
that may be important in influencing anxiety development.
Airway inflammation (AI) is a classic feature of allergic disorders,
including asthma, characterized by enhanced T-helper type
2 immune reaction. Allergen-activated T-helper type 2 cells
and IL-33 stimulated Type 2 innate lymphoid cells (ILC2)
produce cytokines such as IL-4, IL-5 and IL-13 to promote
the allergic response and inflammation (Galli et al., 2008;
Lloyd, 2010; Salmond et al., 2012; Sjöberg et al., 2017). Certain
polymorphisms of IL-33 have also been correlated with increased
risk of developing hay fever earlier than 6 years of age (Schröder
et al., 2016). Additionally, asthma is characterized by bouts
of respiratory dysfunction, bronchoconstriction and labored
breathing (LB), which can occur during acute asthma attacks.
This state of difficulty breathing that is often associated with
decreased oxygen saturation is a significant stressor, and it
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has been associated with respiratory failure, changes in muscle
activity, and remodeling of the airways (Smith and Hudgel, 1980;
Ahmad et al., 2012). Both chronic AI and repeated acute LB
experiences during development may alter brain and behavior
development in such a way as to predispose an individual toward
internalizing disorders.

Recent work has established amousemodel of peri-adolescent
asthma using independent manipulation of AI and LB to
determine how these developmental symptoms affect later-life
behavior and physiology. This prior work showed that chronic
exposure to intranasal allergen that began during the first week
of life led to significant AI, inflammatory cytokine expression,
mucus production and collagen buildup in the lungs within
2–4 weeks, and inhaled methacholine (MCH) treatments during
development led to significant acute LB events (Saglani et al.,
2009; Caulfield et al., 2017). In addition, in adulthood, 3 weeks
after termination of repeated peri-adolescent acute LB events,
mice exhibited increased anxiety-like behavior and altered
brain gene expression (Caulfield et al., 2017). In addition,
lung inflammation persisted 3 weeks after cessation of chronic
allergen exposure during development, and inflammation and
airway hyper-responsiveness was more pronounced in females
than males (Blacquière et al., 2010; Caulfield et al., 2017). A
longitudinal study on humans with asthma determined that
childhood asthma severity (at 7 years of age) strongly predicted
lung function and persistence of symptoms in adulthood (at
50 years of age; Tai et al., 2014a). In the current study, we
manipulated the same characteristics of allergic asthma (AI
and LB) to determine behavioral and physiological effects of
these peri-adolescent asthma symptoms 3 months after exposure
ended. We used our previously-established mouse model and
measured behavior, AI/mucus and brain/lung gene expression
3 months after allergen exposure ended (Caulfield et al., 2017).
To determine if long-term effects of developmental asthma were
specific to a certain sex or moderated by pre-asthma fearful
disposition, we studied both males and females and quantified
neonate fear-associated behavior (ultrasonic vocalization, USV)
prior to experimental asthma induction.

MATERIALS AND METHODS

Experimental Groups and Design
The goal of the present study was to determine what changes
persist in mouse adult anxiety-related behavior, gene expression,
and corticosterone production 3 months after peri-adolescent
asthma symptom exposure. The study used male and female
BALB/cJ mice in four peri-adolescent asthma conditions: (1) AI;
(2) LB; (3) AI+LB; and (4) Similarly-Handled Controls—CON
(Figure 1A). Animals were bred in three cohorts to reach
a minimum of 10 animals per sex per condition (N = 98,
23–41 mice/cohort). To control for litter effects, same-sex pups
from each litter were evenly distributed across all conditions,
and all experimental manipulations and data collection were
conducted for all littermates at the same time. Body weights
were measured on P14, 90 and 140 to determine if the above
manipulations altered growth trajectories. By P90, males weighed
significantly more than females (P90: F(1,82) = 125.7, p < 0.001;

P140: F(1,81) = 411.6, p < 0.001), but there were no significant
effects of AI, LB, or neonatal USV rates on weight at any age
(Fs < 2.65, ps > 0.108). This study was carried out in accordance
with the recommendations of the Guide for the Care and Use of
Laboratory Animals, Institute for Laboratory Animal Research.
The protocol was approved by the Pennsylvania State University
Institutional Animal Care and Use Committee.

Mouse Breeding and Housing
Male and female BALB/cJ breeders were obtained from Jackson
Laboratories (Bar Harbor, ME, USA), and mice were bred
in the laboratory. To produce litters of sufficient size, sister-
pairs were bred with one male to produce ‘‘double-litters’’
(24 double-litters, mean size: 6.5, not culled). Pup identity
was tracked by marking them with non-toxic Sharpier marker
until postnatal day (P) 9, at which point all pups were given
permanent, unique ear notches. To quantify pre-manipulation
fear-related behavior, USVs were measured and coded on P3-P5
(2 min/day) using the ‘‘Isolation’’ method and recording at
65 Hz (Dichter et al., 1996; Brunelli et al., 1997; Branchi et al.,
1998; Hahn and Lavooy, 2005; Caulfield et al., 2017). Several
inbred strains of mice, including BALB/cJ mice, display peak
USV production at postnatal day P3 with USVs in the range
of 60–80 kHz, and the amount of calling decreases during
the first 2 weeks of life (Bell et al., 1972). In rodents, USVs
can predict later-life emotion regulation; mice selectively bred
based on pup frequency of USVs develop into distinct high and
low-calling lines, and offspring of low-calling lines demonstrate
less anxiety-like behavior compared to the high-calling line
(Dichter et al., 1996; Brunelli et al., 1997). In the present
study, pups within each litter were characterized as either
high or low calling relative to their litter median, and high-
and low-calling pups were evenly distributed among treatment
conditions.

Pups were weaned from the dam at P22 and placed
into same-sex sibling groups (2–4 mice) in standard cages
(28 cm × 17 cm × 12 cm) with corn-cob bedding. Cages were
not individually ventilated, but rather had standard wire lid
covers with a filter top over the lid. Identical weekly husbandry
procedures were used for all groups. Mice remained in these
groups until P50, at which point they were single-housed
in standard cages, then returned to cages with their original
littermates on P60. On P110, mice were again single-housed for
behavior testing (P120–135) until sacrificed (P140; Figure 1C).
All mouse cages had a red polypropylene tube, which acted as
environmental enrichment and a familiar transport vehicle for
experimental manipulations (Roy et al., 2001). Throughout the
study, colony rooms were maintained at 21 ± 1◦C, at 30%–70%
humidity, and on a reverse 12:12 light:dark schedule (lights on
18:00 h, lights off 06:00 h). All animals had ad libitum access to
food and water throughout the study.

Induction of Adolescent Allergic Asthma
Symptoms
Experimental procedures for induction of allergic asthma
symptoms were conducted as previously detailed and are briefly
described below (Caulfield et al., 2017).
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FIGURE 1 | Study Timeline. (A) There were four experimental groups in the study, and each group experienced a component of airway inflammation and labored
breathing. The first group (Control, CON) served as the control group and received the saline control treatment for both experimental conditions. The second group
(Airway Inflammation, AI) was exposed to chronic house dust mite (HDM) to induce inflammation and to the saline control for the labored breathing condition. The
third group (Labored Breathing, LB) received saline control for the airway inflammation treatment and methacholine (MCH) to induce labored breathing events. The
final group (Airway Inflammation + Labored Breathing, AI+LB) was exposed to both experimental conditions (HDM and MCH). (B) Birth was designated as postnatal
day (P) zero, and ultrasonic vocalizations (USVs) were conducted from P3–5. AI exposures occurred three times per week from P7–56, and LB treatments occurred
once per week from P22–57. (C) Mice underwent numerous behavior tests including the elevated plus maze (EPM) on P120, Sucrose Preference Test (SPT) on
P126, Forced Swim Test (FST) on P129, Novel Object Task (NP) on P132 and Novel Social (NS) Partner Task on P135. Animals were sacrificed at P140 and samples
were collected.

Airway Inflammation (AI)
AI was induced by regularly exposing young mice intranasally to
an extract of the most common aeroallergen for humans—house
dust mite (Dermatophagoides pteronyssinus, HDM; Greer Labs,
NC, USA). The AI and AI+LB groups were exposed intranasally
to a solution of HDM three times per week, and the CON
and LB groups received saline on the same schedule using the

same technique (Figure 1B). From P7–15, mice received 10 µg
(10 µL of 1 mg/ml protein weight solution in saline) of HDM
at each exposure, and from P16–56, doses increased to 15 µg
HDM (15 µL) and were administered under brief isoflurane
anesthesia. This method leads to significant lung inflammation
within 2 weeks of first dosage, and elevated inflammation persists
throughout the exposure period and at least 3 weeks after
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cessation of the HDM exposures (Saglani et al., 2009; Caulfield
et al., 2017).

Labored Breathing (LB)
LB was induced by exposure to inhaled methacholine (MCH;
Sigma, St. Louis, MO, USA), a muscarinic receptor agonist. From
P22–57 exposures occurred once per week (Figure 1B). Mice
were placed in a whole-body plethysmograph holding chamber
(7.5 cm diameter × 7 cm height; Data Sciences International,
New Brighton, MN, USA) and allowed to acclimate for 3 min
followed by baseline breathing recorded for 3 min. After
acclimation and baseline, LBmice were exposed to five increasing
doses of aerosolized MCH (0, 6.25, 12.5, 25 and 50 ng/ml in
100 µl saline). AI+LB mice received a half-dose of MCH (0,
3.13, 6.25, 12.5, 25 ng/ml in 100 µl saline) to arrive at LB
estimates comparable to LB mice. In prior work, we titrated
the best MCH doses for the LB and AI+LB groups to arrive at
similar level of LB in both groups. CON and AI mice experienced
the exact same procedures but received saline instead of
MCH. To verify and estimate extent of bronchoconstriction,
enhanced pause (Penh) was recorded (Hamelmann et al., 1997)
using FinePointe software. Behavior in the plethysmograph was
recorded throughout each session (active, sit still, hunch, LB,
drool, gape). If three Penh values were above 15 or if a mouse
was visibly distressed, the MCH administration procedure was
terminated early. We have previously demonstrated that this
procedure leads to significant LB events in both allergen-exposed
and -unexposed BALB/cJ mice (Caulfield et al., 2017).

Behavior Testing
Anxiety-Related Behavior, Elevated Plus Maze (EPM)
On P120, elevated plus maze (EPM) was conducted to measure
anxiety behavior. This test has been pharmacologically validated,
and it is a classic test for observing anxiety-related behavior in
mice (Pellow et al., 1985; Lister, 1987; Hogg, 1996; File, 2001;
Carobrez and Bertoglio, 2005). The maze consists of two open
(30 × 5 cm) and two closed (30 × 14.5 × 5) flat perpendicular
arms elevated 42 cm above the ground. Test orders were pseudo-
randomized to balance conditions and litter mates. Mice were
brought to the test room ∼1 h before testing, transported to the
maze in the familiar red tube, and placed in the maze facing an
open arm. Testing was completed under red light illumination
(<5 lux), and behavior video-recorded for 5 min. Entry into
a maze arm was defined as four limbs crossing the boundary
between sections. Videos were scored for: percent time spent on
open arms, total number of entries into open arms, and total
number of entries into open and closed arms. Percent time on
and entries into the open arms were used as inverse metrics of
anxiety-like behavior, and total arm entries were used to measure
overall locomotion.

Hedonic Behavior, Sucrose Preference Test (SPT)
On P126, free-choice consumption of sucrose was recorded in
the Sucrose Preference Test (SPT) to examine mouse hedonic
behavior (Strekalova et al., 2004). SPT is a reliable measure of
depression-related hedonic behavior (Porsolt et al., 1977). Mice
had 24-h free access to a bottle with tap water and another bottle

with a 3% sucrose solution. BALB/cJ mice show a preference for
sucrose solutions with a concentration of sugar that is higher
than other inbred mouse strains (Lewis et al., 2005). After 12 h,
bottle positions were switched to avoid side preference biases.
Prior to and following the 24-h period, each bottle was weighed
to calculate consumption of sucrose solution relative to water.
Decreased relative sucrose consumption was used as an index of
anhedonic behavior (McCormick and Green, 2013).

Depression-Related Behavior, Forced Swim Test
(FST)
Forced Swim Test (FST) was conducted on P129 to measure
depression-related behavior. Mice were individually tested by
placing them into a large beaker of water (25–27◦C) for 6 min.
Latency to become immobile, number of times immobile,
and total time immobile were quantified from video coding.
Immobility was defined as lack of movement in at least three
limbs. FST is a classic test for depressive behaviors, and higher
levels of immobility are indicators of this (McCormick and
Green, 2013).

Novelty Exploration, Novel Physical and Novel Social
Arenas
Exploratory behavior was measured on two separate arenas, one
containing novel mouse-sized objects and another containing
a novel social (NS) partner as previously described (Cavigelli
et al., 2007). Briefly, both arenas were 120 cm × 120 cm with
opaque walls and a Plexiglas cover. The floor was covered with
semi-soiled bedding. For the Novel Physical test, small objects
were placed in three of the four corners. For the NS test, a
same-age, same-sex mouse was placed in a wire container in one
corner, and a similar empty container was placed in the opposite
corner. For both tests, mice were run individually by carrying
them in a red enrichment tube from their home cage to the open
corner of the arena. Behavior was video-recorded using a camera
positioned well above the arena, and all testing was conducted in
low, red light (<10 lux). Latency to approach a novel object or
the NS partner were recorded in each arena; these behaviors are
associated with stress regulation (Cavigelli et al., 2007).

Physiological Outcomes
Lung Inflammation, Mucus and Collagen
Left and right posterior lung sections were collected,
preserved in formalin, embedded in paraffin and then sliced.
Consecutive slices were stained with periodic acid-Schiff,
hematoxylin and eosin (H&E), or Masson’s trichrome to
quantify mucus, inflammation and collagen respectively.
Mucus levels were quantified on a scale of 0–6 as previously
described, with increasing numbers indicating increasing
mucus (Caulfield et al., 2017), and an average mucus score
was calculated per mouse based on measures from six
slices. The number of discrete inflammation areas (clusters
of inflammatory cells) and the length of each area were
measured perpendicular to airway/vessel membranes (20
µm diameter or larger) as previously described (Caulfield
et al., 2017). Total number of these areas and mean length
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were calculated from the six largest areas (three from
each lung/mouse, or as many areas as possible). Average
collagen thickness was quantified for each mouse based
on five thickness measures from each of 3–5 airways on
each of two lung slices per mouse as previously detailed
(Caulfield et al., 2017).

Adult Lung Cytokine Gene Expression
Lungs were collected at sacrifice and stored in RNAlater
(Ambion, Carlsbad, CA, USA) for 24-h before freezing at
−80◦C. Tissue RNA extraction was conducted using TRIzol
reagent (Invitrogen; Carlsbad, CA, USA) and Qiagen RNeasy
columns (Qiagen, Germantown, MD, USA). RNA quantity and
quality were determined with a NanoDropTM spectrophotometer
(Thermo Fisher Scientific, Wilmington, DE, USA) and Agilent
2100 BioAnalyzerTM (Agilent Technologies, Santa Clara, CA,
USA), respectively. Complementary DNA (cDNA) was reverse
transcribed from RNA with High-Capacity cDNA Reverse
Transcription kits (Applied Biosystems, Wilmington, DE, USA).
Quantitative real time PCR (qRT-PCR) was conducted to
measure relative abundance of the following genes in cDNA:
IL-4 (Mm00445259 m1), IL-5 (Mm00439646 m1). We also
conducted PCR to measure IL-13 expression (Mm00434204 m1),
but because of poor amplification, we do not report these
results here. Reactions were prepared in 96-well plates in
triplicate with validated TaqMan probes on a StepOnePlus
RT PCR System (Applied Biosystems). The following cycle
settings were implemented: 50◦C for 2 min, 95◦C for 10 min,
40 cycles of 95◦C for 15 s and 60◦C test for 60 s. Beta
actin (Actb) was used as the reference gene. Gene expression
scores were standardized to the median control mouse, and
relative gene abundance in each sample was determined with the
2−∆∆CT method as has been done previously (Caulfield et al.,
2017).

Adult Brain Serotonin- and HPA-Related Gene
Expression
Brains were freshly dissected at sacrifice, and the following brain
regions were collected: brainstem, hippocampus and prefrontal
cortex (PFC). All sections were collected, processed and analyzed
as described above for lung cytokine gene expression and as
described previously (Caulfield et al., 2017). The following
TaqMan Gene Expression Assay primers and probes were
used for PCR with brain tissue cDNA: SERT, serotonin
receptor 1a (5Htr1a), corticotropin releasing hormone receptor
1 (Crhr1) and glucocorticoid receptor (GR; Life Technologies,
Mm00439391 m1, Mm00434106 s1, Mm00432670 m1 and
Mm00433832 m1, respectively). The serotonin system is highly
implicated in anxiety and depression-related disorders (Holmes
et al., 2003), and this system is known to be affected in
models of allergy (Nau et al., 2015; Shajib and Khan, 2015).
Corticotropin releasing hormone and GRs are important aspects
of the stress response and anxiety-related behavior, and their
function can also become altered in response to developmental
stress (Contarino et al., 1999; Spear, 2000; McCormick and
Green, 2013).

Serum Corticosterone
Tomeasure basal glucocorticoid levels, trunk blood was collected
immediately after sacrifice. Mean time required to sacrifice and
collect a blood sample after removal from the home cage was
4.3 min (SEM: 0.11). Samples were centrifuged at 15,000 rpm for
15 min at 4◦C, and serum collected and stored at −80◦C until
analysis. Samples were analyzed in duplicate with a commercial
[125I] radioimmunoassay kit (MPBiomedicals, SolonOH,USA).
Intra-and inter-assay coefficients of variation for a low and high
control were 4.72 and 6.92 (for low control) and 5.51 and 6.88
(for high control). Time required for sample collection was
not related to serum corticosterone concentration (r = −0.125,
p = 0.182).

Statistical Analyses
To compare behavioral and physiological outcome variables
across conditions, ANCOVAs were conducted with AI
(intranasal saline vs. HDM exposure), LB (inhaled aerosolized
saline vs. MCH exposure), Sex (male vs. female) and USV
category (high vs. low) as factors. We used the cohort mean for
each outcome variable as a covariate to control for variation
between cohorts. Alpha was designated as 0.05. For all statistical
tests, variable distribution was examined to verify normal
distribution. The following variables were log transformed
to achieve a normal distribution for analyses: lung IL-4 and
IL-5 gene expression, brainstem SERT gene expression, serum
corticosterone, percent sucrose consumed in the SPT, percent
time spent on the open arms of the EPM, latency to immobility
in the FST, percent time immobile in the FST, latency to
approach an object in the Novel Physical task, and latency
to approach a social partner in the NS task. Outliers were
defined as ±2.5 SD and removed prior to statistical analyses.
Figures detail the untransformed estimated marginal means
for clarity. When there were no main or interaction effects
of Sex or USV category, we presented means in the figures
collapsed across these factors. Repeated measures ANOVAs
were used to determine if LB and/or Penh values changed during
repeat administrations from P22–57. Correlation analyses were
conducted to determine if there were any linear relationships
between gene expression (lung or brain), lung function measures
and behavioral outcomes.

RESULTS

Adult Physiology (P140)
Lung Cytokine Gene Expression
Three months after the final adolescent HDM and MCH
exposures, there was a significant main effect of Sex on IL-4 and
IL-5 expression—females had elevated levels compared to males
(IL-4: F(1,69) = 11.13, p < 0.001, Figure 2A; IL-5: F(1,68) = 158.23,
p < 0.001, Figure 2B). There were no other significant main
effects or interactions present for IL-4 (Fs < 3.62, ps > 0.061).
There was a main effect of AI on IL-5 expression—animals
treated with HDM had higher IL-5 expression than those not
treated with HDM (F(1,69) = 90.24, p < 0.001, Figure 2B). There
was also a main effect of LB, where MCH-treated mice had
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FIGURE 2 | Long-term lung effects of peri-adolescent allergen exposure. (A) Interleukin (IL)-4 gene expression was significantly elevated in females compared to
males. (B) IL-5 gene expression demonstrated main effects of sex, AI and LB. (C) Mucus levels, quantified from PAS-stained lung sections, were elevated in animals
that received AI. (D,E) Lung inflammation, quantified from hematoxylin and eosin (H&E)-stained sections, indicated that the average inflammation area length (D) and
number of areas (E) were significantly elevated in females compared to males and in AI animals compared to non-AI animals. (F) Collagen levels, quantified from
Mason trichrome-stained sections, were elevated in animals that received AI. (G) Representative images of lung sections stained for inflammation (H&E), mucus
(PAS) and collagen (Mason trichrome). Magnification is 20×. ∗p < 0.05, ∗∗p < 0.01, ∗∗∗p < 0.001.

less IL-5 expression compared to mice that were not exposed
to MCH (F(1,68) = 9.30, p < 0.01, Figure 2B). Finally, there
was a significant main effect of USV, where high-calling mice
had lower IL-5 expression than low-calling mice (F(1,68) = 4.41,
p < 0.05; data not shown in figure). No significant interactions
were noted for IL-5 (Fs < 2.02, ps > 0.160). We had poor
amplification for IL-13 and thus do not report results here.

Lung Mucus
There was a significant effect of AI onmucus levels; mice exposed
to chronic peri-adolescent HDM treatments had higher levels

of mucus in the lungs 3 months after final allergen treatments
(F(1,78) = 6.07, p < 0.05, Figure 2C,G). No other main effects or
interactions were significant (Fs < 3.63, ps > 0.060).

Lung Inflammation
Three months following completion of allergen exposure,
mice treated with HDM still had significant symptoms of
AI—i.e., greater average length and number of discrete areas of
inflammation—compared to non-HDM treated mice (AI main
effect on inflammation area length—F(1,78) = 82.76, p < 0.001;
and inflammation area number—F(1,78) = 100.70, p < 0.001,
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Figures 2D,E,G). There was also a main effect of Sex and an
interaction of Sex and AI for measures of AI (Sex effect: average
length of inflammation area—F(1,78) = 16.03, p < 0.001, average
number of inflammation areas—F(1,78) = 20.93, p < 0.001,
Figures 2D,E; Sex × AI interaction: average number of
inflammation areas—F(1,78) = 4.43, p < 0.05). Females had
greater inflammation than males, and female-specific increased
inflammation was particularly pronounced in the HDM-treated
mice. There were no other significant main or interaction effects
for average inflammation area length or count (Fs < 3.86,
ps > 0.053; Fs < 2.04, ps > 0.157).

Lung Collagen
Mice that were exposed to developmental HDM had significantly
more collagen compared to mice that were not exposed to
HDM (F(1,71) = 4.12, p < 0.05; Figures 2F,G). There were no
other significant main or interaction effects for average collagen
thickness (Fs < 3.68, ps > 0.059).

Peri-adolescent Bronchoconstriction
(P22–57)
Compared to saline administration, MCH administration caused
significantly increased LB counts and Penh values throughout
development (LB: F(1,20) = 170.56, p < 0.001, Figure 3A;
Penh: F(1,20) = 130.28, p < 0.001, Figure 3B). LB and Penh
values increased with age (LB: F(5,350) = 3.66, p < 0.01; Penh:
F(1,100) = 3.15, p < 0.05), and mice treated with both HDM
and MCH (AI+LB) had greater increases in LB and Penh values
than mice treated with MCH alone (LB; AI × LB interaction:
LB—F(1,20) = 4.47, p < 0.05; Penh—F(1,20) = 15.32, p < 0.001;
Group means across all ages for LB: CON 0.00 ± 0.19, AI
0.08 ± 0.16, LB 1.12 ± 0.18, AI+LB 1.63 ± 0.18; Penh: CON
0.48 ± 0.32, AI 0.63 ± 0.32, LB 1.34 ± 0.30, AI+LB 2.37 ± 0.30).

Adult Behavior
Elevated Plus Maze (P120)
There was a significant interaction of LB and USV on percent
time and number of entries in the open arms of the EPM.
For high-calling mice, MCH-exposure led to more time spent
and more entries in the open arms. For low-calling mice,
MCH-exposure led to less time spent and fewer entries into the
open arms relative to unexposed mice (LB × USV interaction:
percent time in open arms—F(1,80) = 8.05, p < 0.01; and number
of entries to open arms—F(1,80) = 4.97, p < 0.05, Figures 4A,B).
Additionally, there was a three-way interaction between AI, LB
and USV for time spent on the open arms, where the MCH
effect described above was dampened in mice exposed to both
HDM and MCH (F(1,80) = 5.01, p < 0.05, note final AI+LB bar
in Figure 4A). No other significant main or interaction effects
were observed for time spent or entries on open arms of EPM
(Fs < 2.79, ps > 0.099; Fs < 2.81, ps > 0.098). Time spent on the
open arms and number of entries on open armswere significantly
correlated (r = 0.782, p < 0.001). No significant main effects
or interactions were observed in total arm entries in the EPM
(Fs < 2.98, ps > 0.088; Figure 4C).

Latency to Approach Novelty (P132, P135)
In the novel object test (P132), there was a significant main
effect of Sex—males took longer to approach a novel object
compared to females (F(1,66) = 4.97, p < 0.05; Figure 4D).
There was also a significant three-way interaction between
AI, LB and USV (F(1,81) = 4.15, p < 0.05); HDM and
MCH independently decreased adult approach latencies for
high-calling mice and increased latency time in low-calling mice.
Both effects were negated by exposure to both HDM and MCH.
There were no other significant effects or interactions between
groups to approach a novel object (Fs < 1.32, ps > 0.255).
There were no significant main effects or interactions in
latency to approach a novel partner (P135; Fs < 2.29,
ps > 0.135).

Forced Swim Test (P129)
Adult mice that were exposed to HDM during development
became immobile faster in the FST compared to mice that were
not exposed (F(1,80) = 5.68, p < 0.05, Figure 4E). There were
no other main or interaction effects for latency to immobility
(Fs < 2.51, ps > 0.117). There were no significant main effects
or interactions for percent time spent immobile in the FST
(Fs < 2.64, ps > 0.108). There was a significant three-way
interaction between Sex, AI and USV for number of times
immobile (F(1,81) = 5.37, p < 0.05). HDM-exposure caused
high-calling males and low-calling females to increase the
number of immobility bouts in the FST compared to similar
calling males and females that were not exposed to HDM. No
othermain effects or interactions were found for number of times
immobile (Fs < 2.77, ps > 0.100).

Sucrose Preference Test (P126)
Analysis of percent sucrose consumed in the SPT revealed
a significant interaction between Sex and USV; high-calling
female mice consumed less sucrose than low-calling females,
whereas high-calling males consumed more sucrose solution
than low-calling males (F(1,80) = 4.09, p < 0.05). No other
main effects or interactions were observed for percent sucrose
consumed (Fs < 2.54, ps > 0.115; Figure 4F).

Basal Corticoid Rhythm (P140)
Circulating basal corticosterone levels were measured at
time of sacrifice (P140), 3 months following HDM/MCH
exposure. There were no main or interaction effects on
adult circulating corticosterone concentrations (Fs < 2.44,
ps > 0.123; experimental group means: CON 47.53 ± 12.48, AI
48.88 ± 11.14, LB 40.01 ± 12.32, AI+LB 55.82 ± 12.08).

Adult Brain Gene Expression (P140)
Three months after the end of peri-adolescent asthma
treatments, females that had been exposed to HDM
during development had greater SERT expression in the
brainstem, whereas HDM-exposed males had diminished
SERT expression compared to non-HDM exposed mice
(Sex × AI interaction—F(1,81) = 6.53, p < 0.05, Figure 5A).
There was also a three-way interaction of AI, LB and USV,
such that high-calling pups exposed to either HDM or MCH
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FIGURE 3 | Developmental bronchoconstriction. Mean (A) LB response and (B) Penh value for mice exposed to MCH was significantly increased compared to mice
that were exposed to saline. This was evident at each age of administration. ∗p < 0.05, ∗∗p < 0.01, ∗∗∗p < 0.001.

FIGURE 4 | Long-term behavioral effects of peri-adolescent allergic asthma symptoms. (A,B) High-calling mice (based on USV) that also experienced developmental
LB showed less anxiety-like behavior on the EPM compared to low-calling mice in terms of time spent on the open arms of the maze (A) and number of entries
made into the open arms of the maze (B). (C) There were no significant differences evident in number of total arm entries made in the EPM. (D) In the novel object
task, low-calling mice demonstrated a faster latency to approach a novel object compared to mice that were categorized as high-callers. (E) AI animals
demonstrated faster latency to immobility in the FST compared to those that did not experience AI. (F) No significant main effects were observed in the sucrose
preference test. ∗p < 0.05, ∗∗p < 0.01, ∗∗∗p < 0.001, NS, not significant.

showed increased SERT expression, whereas low-calling pups
had increased SERT expression only if they had received
both HDM and MCH (F(1,81) = 4.70, p < 0.05). There were
no other main or interaction effects on SERT expression
(Fs < 2.72, p > 0.103). Females had higher 5HTr1a expression
in PFC than males (F(1,69) = 5.31, p < 0.05, Figure 5B).
No other main effects or interactions were significant
for PFC 5HTr1a expression (Fs < 2.10, p > 0.151). For
hippocampal 5HTr1a expression, there were no main or
interaction effects (Fs < 1.38, p > 0.244). There was a
significant three-way interaction of Sex, AI and USV on

Crhr1 expression in PFC; relative to control mice, HDM-treated
low-calling females had greater expression than HDM-treated
low-calling males (F(1,67) = 5.02, p < 0.05, Figure 5C; three-way
interaction not shown on figure). No other interactions or
main effects were significant (Fs < 2.11, p > 0.151). For
high-calling mice, developmental HDM exposure resulted
in decreased hippocampal GR expression in adulthood,
whereas the reverse was true for low-calling mice (AI × USV
interaction—F(1,69) = 5.52, p < 0.05, Figure 5D). No other
main effects or interactions were significant (Fs < 3.90,
p > 0.052).
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FIGURE 5 | Long-term brain gene expression effects of peri-adolescent
allergic asthma symptoms. (A) Females that experienced developmental AI
had higher serotonin transporter (SERT ) gene expression in brainstem
compared to males that experienced AI in development. (B) Females had
higher levels of serotonin receptor 1a (5Htr1a) gene expression in prefrontal
cortex (PFC) compared to males 3 months after asthma symptom exposures
had been completed. (C) PFC corticotropin releasing hormone receptor 1
(Crhr1) gene expression in male and female mice across asthma condition;
HDM-treated low-calling females had more expression than HDM-treated
low-calling males (this three-way interaction is not indicated in the figure).
(D) High-calling mice that experienced AI had decreased glucocorticoid
receptor (GR) gene expression in hippocampus compared to low-calling mice
that experienced AI. ∗p < 0.05.

Correlations
Lung Measures
Many of the measures of lung inflammation and function
were significantly correlated with one another (correlation
statistics in Table 1). IL-5 expression was significantly and
positively correlated with average inflammation area length

(r = 0.694, p < 0.001), inflammation area count (r = 0.661,
p < 0.001) and mucus (r = 0.275, p = 0.011). Average
inflammation area length was strongly and positively correlated
with inflammation area count (r = 0.913, p < 0.001), and
mucus was positively correlated with inflammation area length
and count (r = 0.395, p < 0.001; r = 0.359, p < 0.001).
Collagen was positively correlated with inflammation patch
count (r = 0.211, p = 0.050), but it was not correlated with
average patch length (r = 0.188, p = 0.140), mucus (r = 0.188,
p = 0.082), or IL-5 gene expression in lungs (r = 0.112,
p = 0.333).

Lungs and Anxiety- and Depression-Related
Behavior
Some lung measures were significantly correlated with behavior
(Table 1). Percent time spent on the open arms of the EPM
was positively correlated with average inflammation area length
(r = 0.213, p < 0.05) and mucus (r = 0.324, p < 0.001),
and marginally related to inflammation area count (r = 0.187,
p = 0.071). Open arm entries on the EPM were positively
correlated with average inflammation area length (r = 0.212,
p < 0.05), inflammation area count (r = 0.220, p < 0.05), and
mucus (r = 0.232, p < 0.05). However, there were no significant
correlations between depression-related behavior (latency to
immobility on the FST) and the following lungmeasures: average
inflammation area length (r = −0.046, p = 0.661), number of
inflammation areas (r = −0.086, p = 0.408), mucus (r = −0.001,
p = 0.993) and lung IL-5 expression (r = 0.155, p = 0.157).

Brain Gene Expression and Anxiety-Related Behavior
A few correlations were found between brain gene expression
and anxiety-related behavior (Table 1). 5HTr1a gene expression
in PFC was significantly positively correlated with percent time
spent on the open arms of the EPM (r = 0.324, p < 0.01) and
number of open arm entries in the EPM (r = 0.234, p < 0.05).
It was also negatively correlated with mean USV calling rate
(r = −0.294, p < 0.01). On the other hand, 5HTr1a expression in
the hippocampus was not correlated with these same behavioral
measures (r = 0.108, p = 0.326; r = 0.095, p = 0.386; r = 0.163,
p = 0.100).

DISCUSSION

Long-Term Behavior and Brain Changes
Following Peri-adolescent Asthma
Results of the current study indicate that chronic inhaled
allergen exposure during development led to long-term changes
in lung function. Exposure to HDM extract three times
per week from neonatal age to late adolescence led to
increased AI, mucus, collagen and IL-5 gene expression
3 months after final allergen exposure, particularly in females.
In addition, developmental allergen exposure (and associated
lung alterations) altered gene expression for brainstem SERT
and PFC Crhr1, with these effects being sex- and USV-
specific. Females that had been exposed to allergen during
development showed increased brainstem SERT expression, and
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TABLE 1 | Statistical correlations among lung physiology, gene expression and behavior.

Factor 1 Factor 2 Sample size Pearson correlation (r) Significance (p)

Lung IL-5 Expression Inflammation Area Length 85 0.694 <0.001
Lung IL-5 Expression Inflammation Area Count 85 0.661 <0.001
Lung IL-5 Expression Mucus 85 0.275 0.011
Inflammation Area Count Inflammation Area Length 95 0.913 <0.001
Mucus Inflammation Area Length 95 0.395 <0.001
Mucus Inflammation Area Count 95 0.359 <0.001
Collagen Inflammation Area Count 87 0.211 0.050
Collagen Inflammation Area Length 87 0.160 0.140
Collagen Mucus 87 0.188 0.082
Collagen IL-5 Gene Expression 77 0.112 0.333
EPM % Time on Open Arms Inflammation Area Length 94 0.213 0.039
EPM % Time on Open Arms Inflammation Area Length 94 0.187 0.071
EPM % Time on Open Arms Mucus 94 0.324 0.001
EPM Open Arm Entries Inflammation Area Length 94 0.212 0.040
EPM Open Arm Entries Inflammation Area Length 94 0.220 0.033
EPM Open Arm Entries Mucus 94 0.232 0.025
FST Latency to Immobility Inflammation Area Length 95 −0.046 0.661
FST Latency to Immobility Inflammation Area Count 95 −0.086 0.408
FST Latency to Immobility Mucus 95 −0.001 0.993
FST Latency to Immobility IL-5 Gene Expression 85 0.155 0.157
PFC 5HTr1a Expression EPM % Time on Open Arms 85 0.324 0.002
PFC 5HTr1a Expression EPM Open Arm Entries 85 0.234 0.031
PFC 5HTr1a Expression Mean USV Calling Rate 102 −0.294 0.003
Hippocampus 5HTr1a Expression EPM % Time on Open Arms 85 0.108 0.326
Hippocampus 5HTr1a Expression EPM Open Arm Entries 85 0.095 0.386
Hippocampus 5HTr1a Expression Mean USV Calling Rate 103 0.163 0.100

Bold values indicate significant correlations.

low-calling females showed increased PFC Crhr1 expression,
compared to non-exposed females. Allergen-exposed males, on
the other hand, showed decreased brainstem SERT expression
and more modest increases in PFC Crhr1 expression compared
to unexposed males. These results, 3 months after final asthma
symptom induction, contrast with previously observed results
on short-term responses to developmental allergen exposure.
Specifically, in a prior study, we found that 3 weeks after
symptom induction was completed, there were no significant
effects of HDM exposure on similar adult anxiety- or depression-
related behaviors or similar brain gene expression related
to emotion and stress regulation. Rather, weekly exposure
to MCH to induce LB led to adult anxiety-related behavior
and brain gene expression in the short-term (Caulfield et al.,
2017). This disparity suggests that allergen exposure during
development, which causes immediate and significant AI,
mucus and collagen buildup, does not have immediate effects
on behavior and brain function, but rather, that long-term
allergic asthma symptoms that persist during development
and adulthood may eventually affect later behavior and brain
function.

While developmental allergen exposure caused several
changes in the above behavior and brain gene expression profiles,
the experimentally-induced, repeat, acute bronchoconstriction
events during development had fewer long-term effects on
behavior and brain gene expression. Exposure to inhaled
MCH once per week, which caused significant increases in
LB and Penh values at the time of exposure, only led to
one long-lasting effect on behavior and no long-lasting effects
on gene expression in the current study. The long-lasting

behavioral effect of peri-adolescent LB was increased anxiety-
related behavior on the EPM for mice that were low
USV-callers (i.e., low fear) as neonates. In a prior study, we
found that developmental LB led to significant short-term
changes in anxiety-related behavior and brain gene expression;
specifically, developmental MCH exposure caused decreased
open arm time on the EPM, decreased brainstem SERT
expression, and increased hippocampal 5Htr1a and Crhr1
expression 3 weeks after final MCH exposure (Caulfield
et al., 2017). This difference in results between the current
and prior study suggest that repeat exposure to acute LB
events during development may lead to significant short-term
changes in anxiety-like behavior and brain gene expression,
and that these effects subside over time. Long-term anxiety-like
behavior may only persist in individuals that initially show
relatively low levels of fear. Overall, the results of the
current study suggest that the strongest long-term impacts
of developmental asthma on behavior and brain function
may depend on persistent effects to lung function that
result from chronic allergen exposure during development,
as opposed to long-term behavior/brain changes that result
from a discrete developmental period of allergic asthma
symptoms.

In the current study, we also documented significant effects
of sex and neonatal USV rates on adult lung and anxiety-related
outcomes. Females showed more signs of lung inflammation and
IL-4 and IL-5 expression than males—an effect that has been
previously documented (Blacquière et al., 2010; Caulfield et al.,
2017). Females also displayed greater exploration (i.e., faster
latency to approach a novel object) compared to males. Females
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also had more 5HTr1a expression in the PFC compared to
males. It has been previously noted that females have higher
rates of anxiety- and mood-related disorders compared to males
(Roza et al., 2003; Ross et al., 2007; Holder and Blaustein,
2014). Some of these female-specific results of the present
study were also evident in adult mice that, as pups, had
displayed less fear-related USVs when isolated. Adult mice
that displayed low-calling USV rates as pups had increased
IL-5 expression in the lungs. Pup ultrasonic calling rates also
modulated some of the effects of developmental allergen and
LB on adult behavior. Regardless of sex, mice that experienced
weekly MCH exposures spent more time and made more
entries onto the open arms of the EPM if they were high
callers rather than low callers. Additionally, low-calling mice
approached a novel object faster than high-calling mice in
the Novel Physical test. USVs are vocal signals produced by
pups in various ethologically important circumstances including
isolation or separation from the nest, and they are important
in mother-pup communication in early life (Bell et al., 1972;
Branchi et al., 2001). In rodents, USVs can be predictors
of later-life emotion regulation; mice selectively bred based
on pup frequency of USVs develop into distinct high and
low-calling lines, and offspring of low-calling lines demonstrate
less anxiety-like behavior compared to the high-calling line
(Dichter et al., 1996; Brunelli et al., 1997). In 7-day old
mice, USV production can be modulated by anxiolytic and
anxiogenic drugs (Fish et al., 2004; Takahashi et al., 2009). The
present results are in contrast to what would be expected—if
high rates of USVs are suggestive of a higher predisposition
to become anxious, it would be expected that those mice
would demonstrate higher levels of inflammation and anxiety-
related behavior compared to low-calling mice. However, in the
current study, mice that showed low-calling rates demonstrated
higher levels of lung IL-5 gene expression, more anxiety-related
behavior, longer latencies to approach novelty and increased
hippocampal GR gene expression. These results are in the
opposite direction of what is expected, and they suggest that low-
callers, when faced with a challenge, increase their inflammatory
and anxiety-like symptoms. On the other hand, high-callingmice
may havemore resources to respond to developmental challenges
and show fewer long-term adult consequences of adolescent
stressors.

Persistent Alteration to Lung Function
After Developmental Immune Challenges
Previous research has demonstrated how early life respiratory
events alter later life lung function. For example, in mice,
neonatal exposure to high concentrations of oxygen causes
changes in lung development that persists into adulthood
(Yee et al., 2009). Human data also indicate that children
who have persistent or severe asthma are more likely to
continue experiencing irregular lung function as adults and
are at higher risk for developing COPD (Pasterkamp et al.,
1997; Tai et al., 2014b). Additionally, children that experience
pneumonia in early life (before 3 years of age) have impaired
lung function in adolescence and adulthood compared to

subjects that never had pneumonia during this time (Chan
et al., 2015). In the current study, persistent lung alterations
following peri-adolescent allergen exposure may have accounted
for increased immobility in the FST, a classic test for depression-
related behaviors (McCormick and Green, 2013). HDM-exposed
mice still showed significantly elevated lung inflammation,
mucus and collagen levels at the time of FST testing, which
occurred 3 months after termination of allergen exposure. More
rapid and frequent immobility in the FST was likely an effect of
the persistent AI and associated decreased oxygen availability for
HDM-exposed mice, as opposed to ‘‘depression-like’’ symptoms
per se.

Other studies have demonstrated lasting airway inflammatory
processes in rodent asthma models. For example, LACK
peptide (a novel antigen) exposure used to induce asthma
symptoms in BALB/cAnN mice, beginning at 6 weeks of
age, led to inflammatory symptoms that persisted 5 and
8 weeks after the termination of antigen exposure (Julia et al.,
2002). In adult female BALB/cJ mice, intranasal exposure
to ovalbumin for 12 weeks led to significant eosinophilic
inflammation, goblet cell hyperplasia and collagen deposition
that resolved 4 weeks after final allergen exposure, and
lymphocyte inflammation and smooth muscle thickening took
8 weeks to resolve (Alrifai et al., 2014). Adult female
BALB/cJ mice exposed to ovalbumin periodically over a
55-day protocol demonstrated significant inflammation but
no airway hyper-responsiveness 1 month after ovalbumin
exposure was terminated (McMillan and Lloyd, 2004). Adult
female BALB/c mice exposed to ovalbumin every other
day, over an 8-week period, had lasting inflammation 2,
4, 6 and 8 weeks following the termination of allergen
exposure (Temelkovski et al., 1998). In the present study,
we demonstrated that 8 weeks of peri-adolescent exposure to
HDM led to persistent AI 11.5 weeks after the end of allergen
exposure, and that this inflammation was more pronounced
in females compared to males. These results were evident in
histological measures and in cytokine-related gene expression.
These persistent effects are notably longer than previously
documented persistent effects in adult mice, suggesting that
allergic processes that develop during childhood/adolescence
may take longer to resolve than allergic processes that begin in
adulthood.

In the present study, we demonstrate that lung inflammation,
mucus, collagen and allergic cytokine gene expression (IL-4 and
IL-5) are increased in adult mice 3 months after the completion
of chronic developmental allergen exposures.We have previously
documented more enhanced increases in inflammation, mucus
and lung gene expression 3 weeks after the completion of asthma
symptom exposure, but in this prior study there was no collagen
buildup at this early time point (Caulfield et al., 2017). In the
current study, airway remodeling, as indicated with collagen
buildup, was evident 3 months after completion of asthma
symptom exposures. These results suggest that some aspects of
lung function (inflammation, mucus, gene expression) persist for
a long time after allergen exposure, while aspects related to lung
structure (collagen build-up) require a longer time to fully form
(Tanaka et al., 2002; Antunes et al., 2010; Salmond et al., 2012).
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Limitations and Future Directions
One limitation of the current study involves the dosing of MCH
between the LB and the AI+LB treatment groups. In order
to create similar LB and Penh values and to be conscious of
humane endpoints for the mice in the MCH administration
sessions, the dose of MCH (the bronchoconstriction agent) was
halved in mice exposed to both HDM and MCH (i.e., the
AI+LB group). Based on results from the current study, it
appears that in the AI+LB group, lung inflammation, gene
expression and behavior were qualitatively different from groups
that received only AI or only LB. Although, we found very
few statistical interactions of AI and LB, it is important
to note that the difference in MCH dosing in the AI+LB
group may limit the interpretation of results. Future work
should establish a better treatment protocol to induce both
AI and LB to understand synergistic effects of these asthma
symptoms.

Another potential limitation in the present study involved
the 2-min isolation method used to measure neonatal USV
rates. While brief isolation causes a stress response in the
pup, all pups experienced the same procedure, which was
conducted prior to manipulation of asthma symptoms. It is
possible that this early-life stress experience, prior to asthma
manipulations, may have masked or accentuated the asthma
effects reported here. However, this procedure allowed us to
control for pre-asthma anxiety-related behavior in individual
mice and to determine if early asthma symptoms lead to
elevated anxiety-like symptoms in individuals that are otherwise
predisposed toward anxiety. Further, we also used multiple
behavioral outcome measures in the current study. For an initial
exploratory study on potential long-term behavioral effects of
allergic asthma, we felt it was important to include multiple
behavioral outcomes. However, it is important acknowledge
that mouse responses to the latter tests (e.g., forced swim and
novelty exploration) may have been affected by earlier testing
experiences.

The findings from this study have important implications
for research on asthma therapy as it relates to anxiety- and
depression-related disorders. This is particularly true for
children and adolescents that mature with asthma symptoms
and inflammation and need to treat symptoms with chronic
pharmaceutical regimes. Specific asthma treatments may
differentially influence mechanisms associated with anxiety
and/or depression, and these effects should be evaluated in
pre-clinical research. For example, many asthma patients are
treated with daily inhaled corticosteroids to control asthma
symptoms, and these treatments are effective in reducing
inflammation (Lee et al., 2008; Alrifai et al., 2014). These drugs
also lead to lasting effects on growth, adrenal function, and other
processes (Merkus et al., 1993; Hanania et al., 1995; Molimard
et al., 2008). However, little is known about how these treatments
may affect internalizing disorder susceptibility and associated
mechanisms. The current study provides a model in which
to test the long-term influence of asthma treatments on both
peripheral lung processes and more centralized mechanisms
associated with anxiety- and depression-related symptoms.
With this initial study completed, future studies can include

fewer extraneous control measures in order to minimize
potential confounds of early life stress effects on the developing
immune system. With fewer early stressors, future studies can
avoid experimental noise and provide a stronger signal for
interpretation.

CONCLUSION

In summary, the current study is the first to show that persistent
lung inflammation coincides with changes in brain gene
expression that are associated with emotion and stress regulation,
providing potential mechanisms by which developmental asthma
may increase risk for internalizing disorders in a rodent
model. This study also demonstrates that adolescent allergen-
induced lung inflammation, mucus and collagen buildup persist
several months after termination of allergen exposure. An
important caveat is that these long-term lung, brain and behavior
responses to developmental allergic asthma may differ for
males and females and may also differ depending on early life
temperament/traits. Future work is required to further identify
and test potential mechanisms, to determine the influence of
asthma treatments, and to identify processes that predispose
some individuals with developmental asthma to internalizing
disorders.
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After a natural disaster like an earthquake about 15% of the population experience
a post-traumatic stress disorder (PTSD). However, even those without a diagnosis of
PTSD can suffer from disorders of the affective sphere, including anxiety, depression
and alteration of emotion recognition. The objective of this study was to investigate
the neuropsychological and emotional profile of students living in the earthquake-
affected areas of L’Aquila, Italy. A group of students living in L’Aquila at the time of
the 2009 earthquake was recruited, and compared to a control group of students
not living in any earthquake-affected areas. Participants were assessed by means of
the Beck Depression Inventory (BDI) scale, the State-Trait Anxiety Inventory (STAI),
the Insomnia Severity Index (ISI), the Intolerance of Uncertainty Scale Short Form,
the Uncertainty Response Scale (URS), the Anxiety Sensitivity Index 3 (ASI-3), and
the Eysenck Personality Questionnaire-Revised Short Form (EPQ-RS). Participants
also took part in two behavioral experiments aimed at evaluating their ability to
recognize facial expressions (by means of the Ekman and Friesen Pictures of Facial
Affect) and to evaluate emotionally evocative scenes (by means of the International
Affective Picture System (IAPS)). Results showed that students living in the earthquake-
affected areas had a general increase of anxiety and anticipation of threats. Moreover,
students living in the earthquake-affected areas showed a significantly higher overall
accuracy in recognizing facial expressions as compared to controls. No significant
differences between the two groups were detected in the evaluation of emotionally
evocative scenes. The novel result lies in the greater accuracy of earthquake victims in
recognizing facial expressions, despite the lack of differences from controls in evaluating
affective evocative scenes. The trauma exposure may have increased vigilance for
threats in earthquake victims, leading them to systematically pay attention to potential
signs of approaching threats, such as emotional facial expressions, thus progressively
developing particular “emotional expertise.”
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INTRODUCTION

After a natural disaster, like an earthquake, population
has an increased vulnerability to developing psychological
and psychiatric disorders. The most frequently reported is
Post-Traumatic Stress Disorder (PTSD), which is a mental health
problem triggered by life-threatening events (Neria et al., 2008).
The Diagnostic and Statistical Manual of Mental Disorders
(DSM-5) criteria for PTSD include the direct or indirect exposure
to a terrifying event; the occurrence of at least one of five
intrusion symptoms; the presence of an avoidance behavior
concerning trauma-related stimuli and of negative alterations
in cognitions and mood; and the occurrence of trauma-related
alterations in arousal and reactivity. Moreover, in order to fulfill
criteria for the PTSD diagnosis, symptoms are required to last for
more than 1 month, to create distress or functional impairment
in person affected, and to not be attributable to other illnesses or
to the use of medications or substances (American Psychiatric
Association, 2013). Prevalence rates of PTSD following an
earthquake are extremely heterogeneous across studies and range
from 4% to 67% (Tang et al., 2017). Factors accounting for
this variability include the population studied, the age groups
considered, the time elapsed since the traumatic event, the
sample size and the study design. As mental health looks like a
continuum, it is reasonable to expect that a population which
has been exposed to a natural disaster cannot simply be split
into two groups, one suffering from well-defined psychiatric
disorders and the other enjoying optimal mental health. It is
likely that a certain proportion of individuals belong to a gray
zone where a psychiatric illness is not diagnosed, but the person
is not experiencing complete mental well-being. This is to be
expected evenmore in the young, in whom traumatic experiences
may exert a profound impact on psychological and emotional
behaviors. Such an impact may not necessarily manifest as
impaired processing of emotions, but might rather lead to
heightened sensitivity to specific emotional signals, especially
those conveying self-relevant potential threatening information,
as in the case of negative emotional facial expressions (Bell et al.,
2017).

Defining the specific nature of these ‘‘compensative’’
emotional responses could have relevant translational
implications, including the implementation of interventions
aimed at encouraging the development of coping strategies
after natural disasters. International guidelines recommend
using cognitive-behavioral therapy (CBT) a few weeks after a
disaster or other shocking events to reduce psychopathological
symptoms, in particular those related to PTSD (Te Brake et al.,
2009). A recent review of the literature has demonstrated that,
among the cognitive-behavior therapy techniques, exposure
techniques seem particularly effective for treating PTSD after
earthquakes (Lopes et al., 2014). However, recent cognitive
models of anxiety disorders consistently reported attentional
biases toward threat-related stimuli not only in persons with a
clinical condition but also in nonclinical individuals reporting
high levels of anxiety (Dalgleish et al., 2003; Bar-Haim et al.,
2007; MacLeod and Grafton, 2016). It is worth noting here, that
together with PTSD, depression is one of the most common

psychiatric disorders appearing in earthquake survivors several
weeks or months after traumatic events, and often persisting for
years (Yule, 2001). Interestingly, current views on depression
underlined the central role of cognitive dysfunctions (Gonda
et al., 2015), and especially of attentional biases, in the etiology
and maintenance of the disorder (Disner et al., 2011). On
this basis, clarifying the nature of the dysfunctional emotional
processing in earthquake-exposed persons could allow choosing
the most effective cognitive-behavioral technique allowing
survivors to boost resilience and to acquire specific mental skills
to manage threats.

In this venue, the objective of the present study was
to investigate the neuropsychological and emotional profile
of earthquake-exposed university students and to identify
any specificity in the way they process affective information
including emotional facial expressions and emotionally evocative
scenes. Moving from previous evidence demonstrating an
increased sensitivity to negative facial emotions in earthquake-
exposed individuals as compared to non-exposed controls
(Bell et al., 2017), here we aimed at assessing whether this
enhanced response to visual affective stimuli was specific to
facial expressions or, instead, it was related to a pervasive
enhanced sensitivity towards all visual stimuli conveying affective
information, as in the case of affective complex scenes. Thus,
we compared earthquake-exposed students with non-exposed
control students on recognition of facial expressions (by means
of the Ekman and Friesen’s set of pictures) and on judgment
of emotionally evocative scenes (by means of the International
Affective Picture System (IAPS)).

Basing on previous literature reports, the following alternative
findings may be expected: (i) earthquake-exposed and not
exposed students may show a similar emotional profile without
significant differences in processing emotional stimuli, whether
these be facial expression or emotional evocative scenes; (ii)
earthquake-exposed students may have developed an increased
and generalized sensitivity to emotional information, resulting
in increased accuracy in processing all kinds of emotional
information, both emotional facial expressions and emotionally
evocative scenes; and (iii) earthquake-exposed students may
show a selective increased accuracy in recognizing emotional
facial expression, despite an unchanged perception of their own
internal emotional responses to evocative scenes not involving
faces. The results of the present study might provide empirical
evidence about the engagement of specific coping and resilience
strategies in young adults after an environmental traumatic
event.

MATERIALS AND METHODS

Experimental Setting
The earthquake epicenter of L’Aquila (central Italy) was used
as the experimental setting. On April 6th 2009, L’Aquila was
hit by an earthquake lasting 20 s and with a magnitude of
6.3 on the moment magnitude scale. The earthquake caused
309 deaths and the destruction of the city, with 65,000 inhabitants
being forced to leave their homes. The main earthquake was
followed by thousands of aftershocks in the subsequent months
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with a severe psychological burden on the whole population.
About 7 years after this devastating earthquake, with the city
only partially rebuilt, the population experienced additional
earthquakes (August and October 2016 and January 2017).
Although not causing further destruction, these resulted in
great psychological distress for the people of L’Aquila, who had
not yet recovered from the psychological, social and economic
consequences of the 2009 earthquake.

Participants
A sample of students living in L’Aquila at the time of the
2009 earthquake was recruited for the participation in the
study. To be included, participants had to fulfill the following
criteria: age >18 years at the time of the inclusion; stable
residence in L’Aquila at the time of the 2009 earthquake; no
history of previous or coexistent neurological or psychiatric
diseases, including PTSD, or assumption of drugs or substances
acting on the central nervous system; and signed informed
consent to participate in the study. A control group of
students, matched by age and sex, not living in any earthquake-
affected areas, was recruited and used for comparison: these
participants were all psychologically healthy individuals without
a personal or family history of mental illness. The whole
sample included 107 students. Forty-eight subjects belonged
to the experimental earthquake-exposed group (20 males and
28 females, mean age = 22.6, SD = 2.3 years) and 59 to the
control group (30 males and 29 females, mean age = 23.1,
SD = 1.6 years).

The research protocol was approved by the Internal Review
Board of the University of L’Aquila (01/2017). The study was
conducted in accordance with the ethical standards of the
Helsinki Declaration and signed informed consent was obtained
from all the participants.

Procedures
Self-Reported Measures
All participants were assessed by means of the following
formalized measures: the Beck Depression Inventory (BDI; Beck,
1967), the State-Trait Anxiety Inventory (STAI; Spielberger et al.,
1983; Pedrabissi and Santiniello, 1989), the Insomnia Severity
Index (ISI; Bastien et al., 2001; Castronovo et al., 2016), the
Intolerance of Uncertainty Scale Short Form (IUS-12; Freeston
et al., 1994), the Uncertainty Response Scale (URS; Greco and
Roger, 2001), the Anxiety Sensitivity Index 3 (ASI-3; Taylor
et al., 2007; Petrocchi et al., 2015) and the Eysenck Personality
Questionnaire-Revised Short Form (EPQ-RS; Eysenck et al.,
1985; Picconi et al., 2018).

The BDI (Beck, 1967) is a 21 items self-report inventory; it is
one of themost widely used psychometric tests for the assessment
of depression severity. Total score can range from 0 to 63, with
higher scores indicating increasing level of depressive symptoms.
The total score is usually used as dependent variable.

The STAI (Spielberger et al., 1983; Pedrabissi and Santiniello,
1989) is a commonly usedmeasure of trait and state anxiety: here,
the 20 items only for the assessment of trait anxiety have been
used. Total score can range between 20 and 60, and also in this

case high score reflect high level of anxiety. The total score has
been considered as dependent variable.

The ISI (Bastien et al., 2001; Castronovo et al., 2016)
is a 7-item self-report questionnaire assessing the nature,
severity and impact of insomnia. The usual recall period
is the ‘‘last month.’’ This tool allows evaluating different
dimensions (sleep onset, sleep maintenance and early morning
awakening problems, sleep dissatisfaction, interference with
daytime functioning, noticeability of sleep problems by others,
and distress caused by the sleep difficulties). A Likert scale is used
to rate each item, yielding a total score ranging from 0 to 28, with
higher scores indicating higher severity of insomnia symptoms.
The total score has been taken into consideration as dependent
variable.

The Tolerance of Uncertainty Scale Short Form (IUS-12;
Freeston et al., 1994) is a short version of the original 27-item
Intolerance of Uncertainty Scale that measures responses to
uncertainty, ambiguous situations and the future. The 12 items
are rated on a 5-point Likert scale and can provide a measure
of both Prospective Anxiety and Inhibitory Anxiety, as well as a
total measure of uncertainty (by summing the scores to all the
12 items). We considered the total score as dependent variable.

The URS (Greco and Roger, 2001) is a scale for the evaluation
of styles of coping with uncertainty. The 48 items are rated
on a 4-point Likert scale and can provide a measure of three
subscales (Emotional Uncertainty, Desire for Control, Cognitive
Uncertainty). As dependent variable, we considered both the
three subscales scores and the total score.

The ASI-3 (Taylor et al., 2007; Petrocchi et al., 2015) is an
18-item, self-report measure developed to assess vulnerability
to anxiety. Each item is rated on a 5-point Likert scale and
higher scores reflect high level of anxiety. As dependent variables,
we considered the Physical Concerns, Social Concerns and
Cognitive Concerns subscales as well as the total score (sum of
all the three subscales).

Finally, the EPQ-RS (Eysenck et al., 1985; Picconi et al., 2018)
was used to assess personality characteristics of participants.
EPQ-RS is a self-reported questionnaire with 48 dichotomous
(yes, no) items, 12 for each of the traits of neuroticism,
extraversion/intraversion and psychoticism, and 12 for the
lie scale. As dependent variables, the scores of neuroticism,
extraversion/intraversion, and psychoticism scales have been
taken into consideration.

Experimental Tasks
Task 1. Recognition of Facial Expressions
Photographs of 10 actors (five males, five females) were
taken from the Ekman and Friesen set of Pictures of
Facial Affect (Ekman and Friesen, 1976; Ekman, 1993).
Each model posed facial expressions corresponding to six
basic emotions: happiness, sadness, anger, fear, disgust and
surprise. The complete image set therefore included 60 stimuli
(10 faces × 6 emotions). For each stimulus, subjects were
required to name the expressed emotion selecting from six labels
(happiness, sadness, anger, fear, disgust or surprise), and then to
rate the emotion intensity expressed in the picture on a scale of
1–9 (1 = none, 5 = moderate, 9 = extreme).

Frontiers in Behavioral Neuroscience | www.frontiersin.org May 2018 | Volume 12 | Article 9184

https://www.frontiersin.org/journals/behavioral-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/behavioral-neuroscience#articles


Pistoia et al. Post-earthquake Distress and Emotional Expertise

Task 2. Evaluation of Emotionally Evocative Scenes
Stimuli consisted of complex pictures selected from the IAPS
(Lang et al., 1997; Bradley and Lang, 2007). Stimulus selection
was based on the results of a pilot study in which 80 university
students assigned 200 IAPS scenes to one of six emotion
labels (i.e., happiness, sadness, anger, fear, disgust and surprise)
defined on the basis of emotional category data on IAPS
(Lang et al., 1993; Davis et al., 1995; Bradley et al., 2001;
Mikels et al., 2005). Different studies demonstrated that many
of the IAPS images elicit multiple discrete emotions (Bradley
et al., 2001; Mikels et al., 2005). For this reason, in the
present experiment (see also Pistoia et al., 2010, 2015), we
only used images classified by at least 70% of normal subjects
consistently within one single emotional category. On this basis,
we had to exclude stimuli intended to elicit surprise, because
no item of this category reached the defined consistency level.
Moreover, following Mikels et al.’s (2005) approach, we also
excluded images being classified within two or more emotional
categories. Therefore, the resulting image set included 30 images
(6 items × 5 emotions), each consistently eliciting a single
emotional category among the following emotions (Lang et al.,
1993; Davis et al., 1995; Bradley et al., 2001; Mikels et al., 2005):
happiness (scenes involving babies or sporting events), sadness
(scenes of illness, cemeteries or funeral scenes), anger (scenes of
human violence), fear (scenes of snakes or spiders), and disgust
(scenes of rubbish or rats). Each stimulus was presented twice for
a total of 60 items.

The subjects were first required to provide an emotional
category rating by choosing among the five categories (happiness,
sadness, anger, fear, or disgust) the one corresponding to the
subjectively evoked emotion; the response was scored 1 if the
subject selected the emotional category consistently evocated
by the image, otherwise the response was scored 0. Then, the
subjects had to rate how strong their own emotional response was
on a scale of 1–9 (1 = not at all, 5 = moderately, 9 = extremely).

Statistical Analysis
For the self-reportedmeasures, amultivariate analysis of variance
was performed with group and sex as independent variables and
with scores on the self-reported measures as dependent variables.
Level for statistical significance was set at p < 0.0033 according
to Bonferroni’s correction for multiple comparisons. For the
behavioral measures (recognition of facial expressions and
evaluation of emotionally evocative scenes) a three-way mixed
analysis of variance (ANOVA) was performed, with emotion as a
within-subject factor and with group and sex as between-subject
factors.

RESULTS

Self-Reported Measures
The multivariate results showed significant effects for group
(Pillai’s Trace = 0.241; Wilks’ Lambda = 0.759; F(15,89) = 1.885;
p = 0.035, partial eta squared = 0.241) and for sex (Pillai’s
Trace = 0.313; Wilks’ Lambda = 0.687; F(15,89) = 2.698; p = 0.45,
partial eta squared = 0.230). The interaction between group and
sex was not significant (p > 0.05).

TABLE 1 | Scores (mean and SD) of the two groups on the self-reported
measures.

Controls Earthquake victims

Measures Mean SD Mean SD

ISI 5.05 3.5 6.35 4
IUS-12 35.00 15.2 42.54 16.7
URS total score∗ 121.03 12.1 128.56 13.3
URS emotional uncertainty∗ 26.53 6.1 31.69 7.4
URS desire for control 47.22 7.2 46.13 7.7
URS cognitive uncertainty 47.41 8.5 51.10 8.9
STAI∗ 37.63 8.2 42.46 7.8
BDI 6.54 5.2 8.56 5.8
ASI-3 total score∗ 10.90 8.3 18.21 13.3
ASI-3 physical concerns 3.41 3.9 5.46 5.6
ASI-3 cognitive concerns∗ 4.05 3.6 6.77 5.1
ASI-3 social concerns∗ 3.44 3.4 6.25 5.1
EPQ-R Extraversion/Introversion 9.05 2.8 8.48 3.2
EPQ-R neuroticism∗ 4.46 2.7 6.33 3.3
EPQ-R psychoticism 3.22 1.9 2.67 1.5

ISI, Insomnia Severity Index; IUS-12, Tolerance of Uncertainty Scale Short Form;
URS, Uncertainty Response Scale; STAI, State-Trait Anxiety Inventory; BDI, Beck
Depression Inventory; ASI-3, Anxiety Sensitivity Index; EPQ-R, Eysenck Personality
Questionnaire-Revised Short Form. ∗Significant at p ≤ 0.003.

For group (scores of the two groups on all the measures are
reported in Table 1), there were significant univariate effects
for: URS Total score (F(1,103) = 9.079, p = 0.003, partial eta
squared = 0.081), URS Emotional Uncertainty (F(1,103) = 15.399,
p = 0.0001, partial eta squared = 0.130), STAI-2 (F(1,103) = 10.036,
p = 0.002, partial eta squared = 0.089), ASI Total Score
(F(1,103) = 12.740, p = 0.001, partial eta squared = 0.110),
ASI Cognitive Concerns (F(1,103) = 10.944, p = 0.001, partial
eta squared = 0.096), ASI Social Concerns (F(1,103) = 11.777,
p = 0.0001, partial eta squared = 0.118), and EPQ Neuroticism
Scale (F(1,103) = 10.260, p = 0.002, partial eta squared = 0.091).
No other difference was significant at the Bonferroni corrected
p value.

For sex, there was only a significant univariate effect for
IUS-12 (F(1,103) = 15.322, p = 0.0001, partial eta squared = 0.129),
with females scoring higher (mean = 44, SD = 16.1) than
males (mean = 32.6, SD = 18.2). No other univariate effect was
significant at the Bonferroni corrected p value.

Experimental Tasks
Recognition of Facial Expressions
Percentages of correct responses are shown in Table 2.
A three-way mixed ANOVA was carried out, with emotion
(disgust, happiness, fear, anger, surprise and sadness) as a
within-subject factor and with group and sex as between-
subject factors. This showed a significant main effect of emotion
(F(5,515) = 36.897, p = 0.0001, partial eta squared = 0.264),
with recognition of fear (0.60) being worse than all other
emotions (disgust = 0.86; happiness = 0.99; anger = 0.89;
surprise = 0.96; and sadness = 0.79). Results also showed
significant main effects of group (F(1,103) = 16.832, p = 0.0001,
partial eta squared = 0.140), with overall accuracy being higher
in earthquake victims (mean = 0.89, SD = 0.14) than in
controls (mean = 0.81, SD = 0.12), and of sex (F(1,103) = 4.208,
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TABLE 2 | Accuracy (mean and SD) and intensity rating on correctly recognized
emotions (mean and SD) of the two groups on recognition of facial expressions
task.

Controls Earthquake victims

Accuracy Mean SD Mean SD

Disgust 0.84 0.2 0.88 0.3
Happiness 0.98 0.1 1.00 0
Fear 0.59 0.3 0.61 0.5
Anger 0.079 0.2 0.98 0.1
Surprise 0.93 0.2 0.99 0.2
Sadness 0.73 0.3 0.86 0.3
Intensity rating
Disgust 6.20 1.1 6.59 0.9
Happiness 6.61 0.86 6.83 0.8
Fear 6.24 1.3 6.60 0.9
Anger 5.66 1.4 5.78 1.2
Surprise 6.38 0.9 6.55 1.1
Sadness 5.57 1.2 5.63 1.3

p = 0.043, partial eta squared = 0.039), with females (mean = 0.87,
SD = 0.13) being more accurate than males (mean = 0.83,
SD = 0.14). No interaction was significant (all p > 0.05). Post hoc
Bonferroni’s pairwise comparisons on the main effect of emotion
demonstrated that recognition of happiness was significantly
easier than all other emotions (all p< 0.001), followed by surprise
(p = 0.01 vs. remaining emotions). No significant differences
were detected between recognition of anger, sadness, or disgust
(all p = 0.05), whereas recognition of fear was significantly worse
than all other emotions (p = 0.005).

For intensity rating on correctly recognized emotions, we
performed the same ANOVA as above, and results showed a
significant main effect of emotion (F(5,515) = 37.942, p = 0.0001,
partial eta squared = 0.271), with happy faces (6.72) being rated
more intense than all other emotion expressions (surprise = 6.45,
fear = 6.41, disgust = 6.40, anger = 5.71, and sadness = 5.60).
Results also showed a marginally significant main effect of sex
(F(1,103) = 3.939, p = 0.050, partial eta squared = 0.037), with
females’ rating (mean = 6.38, SD = 0.11) being higher than males’
(mean = 6.05, SD = 0.11), whereas the main effect of group
was not significant (p > 0.05). No interaction was significant
(all p > 0.05). Post hoc Bonferroni’s pairwise comparisons on
the main effect of emotion showed that rating of emotional
intensity was significantly higher for happiness with respect to
all the other emotions (p = 0.030), followed by surprise, fear and
disgust which were rated significantly more intense than anger
and sadness (p = 0.0001). Ratings of surprise, fear and disgust did
not significantly differ from each other (p > 0.05).

Evaluation of Emotionally Evocative Scenes
Emotional category ratings are shown in Table 3. A three-way
mixed ANOVA was carried out, with emotion (disgust,
happiness, fear, anger and sadness) as a within-subject factor
and group as a between-subject factor. This did not reveal
significant main effects of group or sex (both p > 0.05) but
showed a significant main effect of emotion (F(4,412) = 39.545,
p = 0.0001, partial eta squared = 0.277), with the rating of scenes
evocating anger (0.59) being more difficult as compared to the
other emotions (fear = 0.73; disgust = 0.78; sadness = 0.89;

TABLE 3 | Emotional category rating (mean and SD) and intensity rating of
affective scenes (mean and SD) of the two groups on judgment of emotionally
evocative scenes task.

Controls Earthquake victims

Mean SD Mean SD

Emotional category rating
Disgust 0.80 0.2 0.77 0.2
Happiness 0.91 0.3 0.90 0.2
Fear 0.73 0.2 0.73 0.3
Anger 0.62 0.3 0.56 0.3
Sadness 0.87 0.4 0.91 0.1
Intensity rating
Disgust 6.05 1.5 6.06 1.6
Happiness 6.46 1.4 6.87 1.4
Fear 6.16 1.8 6.43 1.4
Anger 7.44 1.3 7.79 1.3
Sadness 6.27 1.6 6.35 1.4

happiness = 0.90). Post hoc Bonferroni’s pairwise comparisons
demonstrated that the rating of scenes evocating anger was
significantly more difficult than that of the other emotions (all
p < 0.005). No significant differences were detected between the
rating of scenes evocating anger and disgust and between scenes
eliciting sadness and happiness (all p > 0.05); the rating of scenes
eliciting sadness and happiness was significantly easier that that
concerning the other emotions (all p < 0.0001).

Intensity ratings on correct responses were analyzed by
the same three-way mixed ANOVA as above, and results
showed a significant main effect of sex (F(1,103) = 10.362,
p = 0.002, partial eta squared = 0.091), with females’ rating
(mean = 6.89, SD = 0.14) being more higher than males’
(mean = 6.24, SD = 0.15), whereas the main effect of group
was not significant (p > 0.05). Moreover, results showed a
significant effect of emotion (F(4,412) = 37.678, p = 0.0001, partial
eta squared = 0.229), with scenes evocating anger (7.56) being
rated as more intense than all other scenes (happiness = 6.65,
fear = 6.30, sadness = 6.30, and disgust = 6.03). Post hoc
Bonferroni’s pairwise comparisons on the main effect of emotion
showed that the rating of emotional intensity was significantly
higher for scenes evocating anger with respect to all the other
scenes (p = 0.0001), whereas the ratings of scenes evocating
happiness, fear, sadness and disgust did not significantly differ
between each other (p > 0.05).

DISCUSSION

The main findings of the present study demonstrated a general
increase of anxiety and anticipation of threats, as well as a
tendency toward sleep problems in earthquake victims, which
is consistent with previous literature on the mental health and
psychological problems of earthquake victims (Maltais et al.,
2001; Tempesta et al., 2013; Ferrara et al., 2016; Bianchini et al.,
2017; Labra et al., 2017). Importantly, moreover, behavioral
experiments demonstrated significantly higher accuracy of the
earthquake-exposed group in recognizing facial expressions as
compared to the control group. This was notwithstanding
a comparable capacity to evaluate own emotional response
to affective scenes. Considering this combination of results,
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we would suggest that exposure to earthquake selectively
increased vigilance for threat detection leading earthquake
victims to systematically pay attention to stimuli signaling
potential threats, as in the case of emotional facial expressions.
Our interpretation is consistent with that recently provided
by Bell et al. (2017), who studied individuals exposed to
the 2010–2011 Canterbury (new Zealand) earthquake. They
found that both individuals with PTSD and earthquake-
exposed individuals without PTSD had increased accuracy
in recognition of emotional facial expressions as compared
to a non-exposed control group. The authors suggested that
the earthquake-exposure affected the recognition of facial
expressions, independently from the development of a clinical
psychopathological disease, by increasing the sensitivity to
threat-related stimuli.

Hypervigilance towards environmental stimuli, which signal
potential sources of threat, can be an adaptive mechanism
following the exposure to a traumatic event as it can be
advantageous to efficiently check the surrounding context in
order to detect an upcoming threatening event. In this respect,
being accurate in processing the others’ facial expressions
may be particularly useful, because such stimuli provide
highly relevant social information and play a key role in
emotional appraisal of self-relevant threats. However, it is
worth noting that the increased accuracy of earthquake-exposed
participants was not restricted to threat-related expressions (such
as angry and fearful faces). This result is again consistent
with the findings of Bell et al. (2017) who suggested that
this trend could be related to the prolonged exposure to
aftershocks in the earthquake-exposed individuals. As an
alternative explanation, we suggest that the development of a
hypersensitivity to emotional facial expressions, irrespective of
the specific emotional category, could represent an effective
way to rapidly detect the presence of self-relevant threatening
events in the surroundings (Sander et al., 2003). Disentangling
between these two alternative interpretations was outside the
main aims of the present study, but this issue merits a direct
investigation.

The novel result of the present study was that the higher
accuracy in emotional faces recognition was a specific emotional
response to the traumatic event rather than the expression
of a general, heightened sensitivity to affective information.
This was demonstrated by the findings that earthquake
victims did not show any difference from non-exposed
participants in evaluating the nature of their own reaction
to the presentation of affective scenes not involving faces. A
dissociation between explicit recognition of emotional facial
expressions and evaluation of affective scenes has been previously
reported by our group in studies on clinical populations with
specific neurological disorders involving damage of motor and
of sensory pathways, respectively (Pistoia et al., 2010, 2015).
The present study could demonstrate for the first time that
such a selective effect on processing of emotional faces can
also be the result of exposure to a stressful, traumatic event
and can be related to the development of specific expertise
allowing earthquake victims to effectively detect threats in the
surrounding environment.

Bianchini et al. (2017) investigated the relationship between
the presence of anxiety and depressive symptoms following
the trauma and the implementation of coping strategies (post-
traumatic growth) within a university student community
exposed to the 2009 L’Aquila earthquake, 2 years after the
traumatic experience. Results demonstrated that 13.3% of
the sample reported anxiety and about 60% showed variable
levels of depression, with moderate levels of depression being
predictive of post-traumatic growth. The authors suggested
that some psychopathological conditions with a typically
negative connotation, such as depression, might promote
the development of a positive post-traumatic response, likely
through the implementation of metacognitive skills that, in turn,
can favor positive and functional coping strategies. Within this
interpretative framework, greater accuracy in recognizing facial
expressions could represent a ‘‘positive’’ emotional response
of earthquake victims, who are forced to constantly deal
with emotional signals of threat. In recent years a number
of behavioral and neuroimaging studies have demonstrated
that experience can shape the persons’ ability to analyze
and respond to specific categories of stimuli. For instance,
while observing needles being inserted into others’ body parts,
physicians who are expert in acupuncture showed a specific
brain activation involving areas devoted to the understanding of
others’ mind and to the regulation of affective responses (Cheng
et al., 2007). Accordingly, Conson et al. (2013) demonstrated
that professional actors with specific training in voluntary
activation of mimicry to reproduce character’s emotions were
better at the explicit recognition of facial expressions than
both non-professionals and professional actors trained to infer
other’s inner states from reading the emotional context. The
authors argued that experience can selectively influence explicit
recognition of others’ facial expressions, depending on the
kind of ‘‘emotional expertise’’ acquired. The present study
suggests that such expertise in explicitly decoding others’ facial
expressions can be the result of trauma exposure. However, it
seems to be a maladaptive rather than a functional emotional
response to trauma, since the earthquake victims showed a
higher degree of anxiety, insomnia and threat anticipation.
The present results can therefore be best accounted for by
a hypervigilance toward threat-related stimuli, as consistently
found not only in people affected by different anxiety disorders
(e.g., generalized anxiety disorder, specific phobias, social phobia
or PTSD), but also in nonclinical individuals reporting high
levels of anxiety (Dalgleish et al., 2003; Bar-Haim et al.,
2007). Indeed, although hypervigilance to threats facilitates
the detection of danger in the environment and helps the
organism to respond effectively to threatening situations, it
plays a central role in the etiology and maintenance of anxiety
disorders (Beck, 1976; Eysenck, 1992; Mathews and MacLeod,
2002).

One possible limitation of the study lies in the fact that we
tested the processing of emotional faces by employing highly
prototypical stimuli displaying emotional faces with a straight
gaze, as previously made in most of the studies addressing the
same issue. However, one should take into account that such
a laboratory setting cannot completely simulate the action of
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processing emotional facial expressions in real-life situations
(Hess and Blairy, 2001). In this respect, one could manipulate
both emotional category and direction of eye gaze (direct
vs. averted) of the facial expression, thus developing more
ecologically valid, self-relevant threatening stimuli (Sander et al.,
2003; Ponari et al., 2013).

From a translational point of view, the present findings could
pave the way for the implementation of specific preventive and
treatment options for earthquake-exposed people by exploiting
available techniques of cognitive biases modification, such as
attentional bias modification (MacLeod and Clarke, 2013).
Attentional bias modification is an emerging treatment approach
designed to modify the patterns of attentional selectivity favoring
the processing of threatening information. Importantly here,
several studies with both clinical and non-clinical populations
have demonstrated that this technique can reduce emotional
vulnerability (Clarke et al., 2014). We did not use a classical
attentional bias task (MacLeod et al., 1986; Bar-Haim et al.,
2007) to demonstrate a condition of hypervigilance toward
emotional faces in earthquake victims, but our findings suggest
that the implementation of an attentional bias modification
paradigm might help to reduce the pattern of anxiety responses

in earthquake-exposed people. It might also prevent the possible
development of clear psychopathological disorders in victims
showing subclinical conditions.

In conclusion, the present study indicates a greater accuracy
of earthquake victims in recognizing facial expressions, despite
the lack of difference from controls in evaluating emotionally
evocative scenes. A possible explanation for this effect is
that trauma exposure increases threat detection in earthquake
victims, leading them to systematically pay much more attention
to every kind of potential sign of threat. This may lead people
exposed to trauma to progressively develop specific, ‘‘emotional
expertise.’’ Further studies are necessary to confirm our findings
and to implement preventive and treatment approaches to
boost resilience and encourage coping strategies in exposed
populations.
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