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A framework for multi-scale
intervention modeling: virtual
cohorts, virtual clinical trials, and
model-to-model comparisons

Christian T. Michael1,2, Sayed Ahmad Almohri2,
Jennifer J. Linderman2* and Denise E. Kirschner1*
1Department of Microbiology and Immunology, University of Michigan–Michigan Medicine, Ann Arbor,
MI, United States, 2Department of Chemical Engineering, University of Michigan, Ann Arbor, MI,
United States

Computational models of disease progression have been constructed for amyriad
of pathologies. Typically, the conceptual implementation for pathology-related in
silico intervention studies has been ad hoc and similar in design to experimental
studies. We introduce amulti-scale interventional design (MID) framework toward
two key goals: tracking of disease dynamics from within-body to patient to
population scale; and tracking impact(s) of interventions across these same
spatial scales. Our MID framework prioritizes investigation of impact on
individual patients within virtual pre-clinical trials, instead of replicating the
design of experimental studies. We apply a MID framework to develop,
organize, and analyze a cohort of virtual patients for the study of tuberculosis
(TB) as an example disease. For this study, we use HostSim: our next-generation
whole patient-scale computational model of individuals infected with
Mycobacterium tuberculosis. HostSim captures infection within lungs by
tracking multiple granulomas, together with dynamics occurring with blood
and lymph node compartments, the compartments involved during pulmonary
TB. We extendHostSim to include a simple drug intervention as an example of our
approach and use our MID framework to quantify the impact of treatment at
cellular and tissue (granuloma), patient (lungs, lymph nodes and blood), and
population scales. Sensitivity analyses allow us to determine which features of
virtual patients are the strongest predictors of intervention efficacy across scales.
These insights allow us to identify patient-heterogeneous mechanisms that drive
outcomes across scales.

KEYWORDS

model study design, digital partners, disease modeling, tuberculosis, computational
biology, pharmacokinetic-pharmacodynamic model, sensitivity analysis, agent-
based model

1 Introduction

Understanding the effectiveness of intervention measures in the context of patient-to-
patient variability is a challenge in both drug and vaccine studies. Diseases such as cancer and
infections such as COVID-19 and tuberculosis (TB) show patient variation in both infection
outcomes and intervention efficacies. Actionable data–data that may help us determine
efficacious interventions as well as understand patient variability–is limited by the frequency
of patient visits, the quantity and quality of patient data, monitoring procedures, and resources.
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Computational models are an additional approach toward
gaining valuable insights into disease and accompanying
interventions. Models applied in biomedicine have been used to
disentangle the multitude of interconnected components of large
complex systems such as cancer, HIV-1/AIDS, influenza and TB.
Many modeling studies seek to: i) replicate experimental in vivo,
in vitro, or in situ studies by using in silico experiments while
maintaining experimental design, such as experimental
interventional studies (Aggarwal and Ranganathan, 2019); ii)
determine mechanistic impacts of model components and
perturbations/treatments/interventions on output, e.g., by using
sensitivity analyses; and/or iii) develop model extensions or
reductions to determine the relative importance of detailed
components (Kirschner et al., 2014).

In order for a model to credibly perform credible in silico
experiments requires rigorous validation against available data
(Tatka et al., 2023). The precision and rigor required are system-
specific and adapted to the expected use of the model’s output
(Fogarty et al., 2022), and consequences of incorrect model
predictions (Aldieri et al., 2023). Various standards exist to
codify model validation (Fogarty et al., 2022; Tatka et al., 2023);
including the ten rules for model credibility developed by the Multi-
scale Modeling Consortium (Erdemir et al., 2020; Fogarty et al.,
2022; Nanda et al., 2023; Tatka et al., 2023) for systems biology
approaches, as well as the ASME VandV40 standards (ASME, 2018;
Aldieri et al., 2023; Tatka et al., 2023), and NASA standards for
models and simulation (NASA, 2016; Tatka et al., 2023). Each of
these standards establishes a series of assessments by which we can
establish the appropriateness of a model to address a given question
of interest relative to the model’s context of use. Here we describe a
framework for using a validated computational model, for example,
in a virtual clinical trial.

When we design virtual clinical trials from computational
models, we find one luxury in that the definition of a “virtual
patient” is flexible. For example, if a pharmacokinetic-
pharmacodynamic (PK-PD) model is being implemented, then a
patient’s pharmacokinetic identity is entirely defined by a set of PK-
PD parameters. In many individual-scale computational
approaches, every population generated by a model is
independent, which reflects the design that motivates
experimental interventional studies. However, that same virtual
patient can serve in multiple “what-if” scenarios, such as
determining effects of model stochasticity or perturbed biological
influences or as a negative control (no drug treatment). The
experimental analogue to this approach would be tantamount to
running different experimental interventions on the same patient
under the same conditions and scenarios.

With our ability to select amongst many types of models that can
credibly represent the same system, we need a methodology to
compare models in an implementation-agnostic way. We have seen
a recent push to standardize modeling approaches with modeling
ecosystems such as CompuCell3D (Poplawski et al., 2008;
Shirinifard et al., 2009), VCell (Blinov et al., 2008; Schaff et al.,
2016), PhysiCell (Ghaffarizadeh et al., 2018), as well as standardized
language for ODE model implementation such as SBML (Keating
et al., 2020), SED-ML (Bergmann et al., 2017; Smith et al., 2021),
COMBINE, OMEX (Bergmann et al., 2014; Neal et al., 2020), and
others (Tatka et al., 2023). With this variety of platforms, software,

computational frameworks, and databases available (computational
models, medical digital twins, etc.), it is likely impossible to develop a
single computational package to automate analysis or comparison
methodologies that account for the myriad of modeling approaches
possible without overly constraining their use context. One
component common to all models is the representation a real
patient by a virtual one (with varying degrees of accuracy and
refinement), hence we can create a broadly-applicable
methodological framework to perform model-to-model
comparisons.

In this work we propose a generally applicable methodological
framework, which we refer to as a multi-scale interventional design
(MID) framework: a method of developing a cohort of virtual
patients that we use to examine impacts of interventions on each
virtual patient within a virtual cohort by tracking dynamics across
physiological scales, from within-patient, through whole-patient,
and up to the population scale (Figure 1A). Using a MID framework
requires three key components: i) a cohort of virtual patients, along
with a biological justification as to why the same virtual patient is
able to be represented in multiple models; ii) a set of two related and
validated model versions, such as a control model and an
experimental model if representing, for example, a treatment
intervention; and iii) an impact quantification method by which
the outcomes of both model versions can be
meaningfully compared.

Consider TB, a disease caused by an infectious bacterium
Mycobacterium tuberculosis (Mtb) that has infected one-fourth of
the current world’s population (WHO, 2022). In 2020, TB had a
comparable annual death-toll to COVID-19 (WHO, 2020), and
concurrent infection with COVID-19 or HIV has increased
mortality for TB patients (WHO, 2022). Patients infected with
Mtb may eliminate infection, control infection (resulting in latent
TB disease) or fail to control infection (resulting in active TB
disease), yet the factors determining those outcomes are not fully
understood. Note, it is important to distinguish that Mtb are the
bacteria that cause infection, whereas tuberculosis (TB) is the disease
that results from infection. Data for analysis of Mtb infection
progression typically comes from low-resolution measurements in
patients (e.g., sputum analysis (Portevin et al., 2014; Guzzetta et al.,
2015; Esmail et al., 2016)) or at necropsy when studying non-human
primates (NHPs) or other animal models (Barry et al., 2009; Martin
et al., 2017; Lin and Flynn, 2018; Wong et al., 2020; Grant et al.,
2022). As a result, deriving mechanistic insights to time-evolution of
Mtb infections and its interplay with patient heterogeneity across
populations is a crucial step in improving our ability to study TB as
well as other diseases.

Pulmonary TB, the most common form of the disease, is a
highly complex disease with multiple interacting systems
determining patient fate (note that we will also refer to
patients as hosts as this is common terminology for an
infectious disease). There is heterogeneity in lung granulomas,
the focal structures of Mtb-host interaction, within individual TB
hosts that is critical to prediction of host outcomes (Cadena et al.,
2017; Lyadova, 2017; Cicchese et al., 2020). Host-scale dynamics
are also heterogeneous and fall into at least three groups that exist
on a spectrum: hosts that will clear the infection, control the
infection, or fail to control infection and thus suffer active disease
(Lin and Flynn, 2018). The dynamics of Mtb infected cohorts are
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also heterogeneous, e.g., some hosts improve with drug treatment
rapidly while others do not. Thus to understand host infection
progression and treatment, it is imperative to study TB at
multiple scales and decipher how small-scale interactions
influence large-scale findings (Figure 1B), making it an ideal
candidate to test the MID framework.

To demonstrate our ability to study virtual cohorts using a MID
framework, we implemented and tested our framework on multiple
versions ofHostSim, our next-generation, within-host to whole-host
scale computational model of Mtb infection. These versions include
a negative control version of HostSim, wherein infection of virtual
TB hosts is left untreated, as well as three simple drug intervention
versions for comparison. We implemented and tested these drug
interventions in our virtual cohort and demonstrated that MID is an
effective framework type to yield multi-scale virtual patient insights

on complex biological problems that both include and explain
patient heterogeneity at each scale.

2 Methods

Creating a MID framework requires three interconnected
components: 1) a virtual cohort VH{ }, 2) a pair of related model
versions: a control model M0 and an intervention model MP to
represent these hosts, and 3) an impact quantification: a method of
evaluating and comparing the projected trajectories and final states
of the virtual hosts between model versions. We present these
components in the context of TB as an example. We also
describe an updated version of HostSim, our previously published
model of a whole-host, which captures the immune response to

FIGURE 1
(A)Multi-scale intervention design to study over three physiological scales. We include a collection of virtual patients, a virtual cohort, that can each
be represented by a control model or represented under various interventions applied (e.g., HostSim and a perturbed version, such as with drugs or
vaccines). The virtual patient can be evaluated in each scenario, and impact level quantified by observing differences in specific patient outcomes. This
can be quickly repeated for many patients in parallel to determine an overall population-scale impact (cohort effect), or to examine which
subpopulations respond to interventions. (B) We illustrate three of the operative scales critical to understand TB. Lung granulomas encompass the
complex dynamics ofMycobacterium tuberculosis (Mtb) populations and their interactions with various lymphocyte populations. Clinical classification of
the patient (active or latent disease) is determined by multiple granulomas interacting with the patient’s lymphatic system. At the population scale,
patients within a cohort vary in their susceptibility to infection and response to treatment, complicating our understanding and prediction of the
demographic of clinical classifications. Note: we created Panel (B) using BioRender.com.
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infection with Mtb within 3 physiological compartments: lungs,
lymph nodes, and blood that represent pulmonary TB.

2.1 Creating the virtual cohort - a collection
of 500 virtual hosts, VH{ }

In our virtual cohort, each virtual host represents a typical host
infected with Mtb with no comorbidities, and our virtual cohort will be
generated to well-represent the demographic range of untreated patient
outcomes observed in the biological context. We give our virtual hosts
as an infection inoculum, 13 founding Mtb and one to five resting
macrophages on day 0. Our virtual hosts represent Mtb infection
progression in individuals up to 400 days post-infection, tracking
granuloma cellular and bacterial composition once per day. In
practice, each virtual host (VHi) in the cohort ( VH{ }) is recorded
as a granuloma and whole-host scale parameter set Pi that is preserved
between all versions of that virtual host (whether disease, treatment,
etc.), which we refer to as the virtual patient (host) identity.We choose
our virtual cohort of 500 virtual hosts ( VH{ }) such that we capture the
demographic of clinical outcomes observed in reality (Cadena et al.,
2017). We select these parameter values by using the Latin Hypercube
Sampling (LHS) method to generate values within a biologically viable
range that we calibrate to multiple datasets (Section 2.3), ensuring that
we accurately capture the heterogeneous spectrum of host outcomes.
Note that the LHS method of parameter selection promotes stochastic
and stratified coverage of the parameter space under the assumption of
uniform distribution of each parameter within the experimental ranges
(Helton and Davis, 2003; Cacuci and Ionescu-Bujor, 2004; Marino
et al., 2008).

2.2 TB virtual host model: HostSim as M0

Briefly, the HostSim model is based on known biology of
pulmonary TB. When inhaled, Mtb is phagocytosed by
macrophages. These inactive macrophages are unable to fully
digest Mtb, which slowly replicates inside of them. Eventually,
the macrophage bursts after reaching a carrying capacity of
internal Mtb, and the cycle continues. In part due to the slow
Mtb replication rate, inflammatory signals and antigen presentation
occurs more slowly - and in NHPs, the lymph nodes (LNs) show no
metabolic activity until 2–4 weeks post-infection (Coleman et al.,
2014; Ganchua et al., 2018; Ganchua et al., 2020). Multiple
granulomas form, typically one for each Mtb colony forming unit
(CFU) (i.e., an individual Mtb bacterium) that lands within the lung
(Martin et al., 2017). Mtb-specific T-cells arrive from LNs to activate
macrophages and allow them to destroy intracellular Mtb and
induce apoptosis of infected macrophages. These dynamics result
in the development of a complex structure called a granuloma that
comprises Mtb, live immune cells, and dead tissue (caseum).

HostSim, our untreated virtual host model, is a multi-scale
computational model of an individual host that represents both the
tissue-scale and whole-host scale response to pulmonary Mtb infection
(Joslyn et al., 2022a; Joslyn et al., 2022b). We created a next-generation
version of HostSim herein to include additional biological features and
better capture Mtb infection immunobiology (see Supplementary
Material S1 Section 2 for model updates, and Supplementary

Material S2 for a complete model description and list of equations).
We represent three physiological compartments in our hybrid
computational model HostSim: lungs, LNs, and blood. The lung
compartment captures a collection of lung granulomas represented
as agents in an agent-based model. Each agent is itself comprised of a
system of 22 nonlinear ordinary differential equations (ODEs)
describing interactions between macrophages, three subpopulations
of Mtb - intracellular, extracellular, and non-replicating; cytokine
signals (e.g., IL-4, IL-10, IL-12, and TNF-α), and different T-cells in
various states of differentiation (Figure 2). Granulomas allow antigen-
presenting cells to travel to LNs proportional to the Mtb burden within
a granuloma, and the LN clonally expands Mtb-specific T-cells. T-cells
are released from the LN compartment (described by ODEs) into blood
(also represented by ODEs) where they may be recruited into lung
granulomas. Since each granuloma has its own instantiation and
parameterization within our ODE system, and formation of new
granulomas makes the number of granuloma ODE trajectories
variable, we consider HostSim to be a hybrid agent-based model.
HostSim is simulated in MATLAB using the ode15s variable order
ODE solver for time-stepping the ODE portions of HostSim.

When running simulations, cytokine signals and antigen
presenting cells circulate to a virtual host’s LN compartment,
which selectively clones Mtb-specific CD4+ and CD8+ T-cells. We
have newly-calibrated parameter ranges to a variety of data from
both NHPs (Gideon et al., 2015; Marino et al., 2016; Cadena et al.,
2018; Darrah et al., 2019) and our fine-grained model of a single
granuloma, GranSim, to capture the heterogeneity both between
hosts and between granulomas within a single host (see Section 2.3).

2.3 Calibrating the virtual cohort VH{ } to be
represented in M0

We first need to calibrate HostSim in order for it to be a credible
M0 in our MID framework. With 201 varied parameters and
3 compartments, HostSim requires careful calibration that leverages
known constraints and biological ranges. As in (Joslyn et al., 2022a;
Joslyn et al., 2022b), we calibrate our model by comparing its outputs
to data taken from 646 NHP granulomas assembled over the last
15 years (Gideon et al., 2015; Marino et al., 2016; Cadena et al., 2018;
Darrah et al., 2019). We use our previously published calibration
method, CaliPro (Joslyn et al., 2023), to refine both granuloma and LN
parameter ranges from our previously calibrated values (Joslyn et al.,
2022b). Our calibration criteria are implemented at the granuloma
scale, and each criterion tests the proximity of simulated granulomas
to granuloma data collected from NHPs (Gideon et al., 2015; Marino
et al., 2016; Cadena et al., 2018; Darrah et al., 2019), as well as synthetic
data from our fine-grain model of a single granuloma, GranSim
(Segovia-Juarez et al., 2004; Pienaar et al., 2017;Warsinske et al., 2017;
Sarathy et al., 2019; Cicchese et al., 2020; Budak et al., 2023).

Briefly, CaliPro is a calibration method that incorporates a broad
range of model parameters and multiple and varied datasets. Using
LHS, we choose a stratified collection of parameter values out of a
broad parameter (Marino et al., 2008). CaliPro evaluates the model
at each of these parameter values and determines whether the
outputs are sufficiently close to the given dataset(s) to be
admitted to a “pass set”, i.e., meeting heuristic criteria that
suggest that model output is biologically relevant. CaliPro then
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shrinks the parameter ranges to exclusively capture the pass set while
still covering the broadest possible set of parameters. This process is
iterated multiple times. After calibration, 90% of granulomas
“passed” all tests against calibration criteria, which are described
in Supplementary Material S1 Section 2.2. Our calibrated parameter
ranges are listed in Supplementary Material S2 Section 5.

2.4 Validation that our virtual cohort hosts
capture population demographics for TB

Our goal is to use HostSim simulations to determine, on
3 physiological scales: population-scale, host-scale, and

granuloma-scale, which features drive both granuloma and whole
host infection outcomes. As such, our virtual cohort should reflect
epidemiological contexts for TB (Joslyn et al., 2022b; WHO, 2022),
and our use case ofHostSim is to generate a collection of virtual hosts
whose trajectories agree with distributions of available global data on
humans for TB. To do this, we define virtual host classifications in a
clinically interpretable way. For studying TB, our classifications are
clinically latent, bacteria sterilizing, and active disease. We classify
virtual hosts as having active TB if either 1) they have higher total
lung CFU than an active-host cutoff of 3.2 · 105; or 2) they have at
least one granuloma which increases by more than 10% CFU
between days 100 and 150 post-infection. We chose these times
post-infection because primary infection sites have a transient peak

FIGURE 2
Diagram of HostSim model construction, M0 . (A) Granulomas within lungs (blue compartments) are linked to lymph node (purple) and blood (red)
compartments (details in Supplementary Material S2). We represent interventions as being applied to the equations governing Mtb development. (B)
Diagram of a simplified granuloma as represented in HostSim. In the central caseum sub-compartment, nonreplicating bacteria are trapped within a
hypoxic/necrotic core. All other species, including macrophages, T-cells, and extracellular bacteria, are in the viable cellular zone. Note that in
HostSim, the viable cellular zone is treated as well-mixed for the sake of cell-cell interactions. (C) Lung granulomas and lymph nodes of virtual TB host at
t = 250 days post-infection shown within the context of a lung and body triangulation of a nonhuman primate [courtesy of Henry J. Borish in JoAnne
Flynn Lab, University of Pittsburgh]. Cylinders on the trachea represent the lymph node compartments, and spheres (colored by their CFU count and sized
based on their cellular composition) represent granulomas. The branching blood vascular surface is colored based on blood effector CD4+ T-cell
concentration. (Details of visualization are in Supplementary Material S1 Section 3).
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of increasing bacterial numbers around day 30 before the immune
system responds and forms a proper granuloma (Cadena et al.,
2017). We define active disease based on data taken from 4 NHPs
that were necropsied early due to severe Mtb infection (see
Supplementary Material S1 Section 1, courtesy of the JoAnne
Flynn lab). We classify virtual hosts as sterilizing hosts if their
total lung CFU count has dropped to zero at or before 400 days post-
infection. We consider all other hosts as having clinically latent TB,
and there is a spectrum of outcomes within this group as is observed
in humans and NHPs (Lin and Flynn, 2018). After performing
calibration on the host and granuloma scales, our virtual cohort had
a distribution of outcomes: approximately 90% of virtual hosts
classified with latent TB, 6% with active TB, and 4% of virtual
hosts sterilizing their infection entirely. This indicates that our
virtual cohort reflects observed trends in patient outcomes at the
population scale (Cadena et al., 2017; Lin and Flynn, 2018). Note our
classifications are flexible as new data become available.

2.5 Developing intervention models MP for
our virtual cohort

Our goal is to create a cohort that we can test different model
perturbations such as antibiotic treatment, vaccines, or other
interventions. To do this, our goal is to build versions of our
model that represent a control version M0 and an intervention
version, MP. The intervention version should i) observe both the
host and granuloma scale mechanisms from M0, and thereby
maintains credibility, and ii) sufficiently represent intervention
dynamics to identify key drivers of host-response. Here, in the
interest of demonstrating the MID framework and its use, we use a
highly-simplified model of antibiotic treatment of TB as an example
of an intervention model MP. Our objective is to capture
heterogeneity in the host-response to treatment over multiple
physiological scales. To establish this approach, we use coarse-
grained representation of 3 TB antibiotics, where we qualitatively
represent the impact on bacterial burden in time by capturing the
known modes of action of different antibiotics. These simplified TB
drugs represent 3 different classes of drugs that are currently used to
treat TB: isoniazid (INH), bedaquiline (BDQ), and pyrazinamide
(PZA). While these drugs are typically used in combination therapy,
here, for example, purposes, we implement each one individually.
We model these drugs based only on their known killing
(bactericidal) or bacteriostatic behaviors (Zhang and Mitchison,
2003; Jayaram et al., 2004; Sarathy et al., 2018; Budak et al.,
2023), omitting for this simple model any consideration of
pharmacokinetics or transport limitations in accessing portions
of the granuloma as we have done in other work (Budak et al.,
2023). We define an INH-like intervention version MINH, a PZA-
like intervention MPZA, and a BDQ-like intervention MBDQ (each
version representing an MP). Here, we note some differences in
these drugs’mechanisms that we will phenomenologically capture: i)
INH is able to penetrate into caseum and kill bacteria but is not
taken up by infected macrophages (Jayaram et al., 2004; Prideaux
et al., 2015; Nahid et al., 2016; Sarathy et al., 2016; Sarathy et al.,
2018); ii) BDQ kills bacteria that it can reach more effectively but
takes much longer to penetrate into caseum (Dhillon et al., 2010;
Chahine et al., 2014; Prideaux et al., 2015; Sarathy et al., 2016;

Sarathy et al., 2018); and iii) PZA is a bacteriostatic drug that slows
bacterial replication but takes a long time to penetrate into caseum
(Zhang andMitchison, 2003; Prideaux et al., 2015; Nahid et al., 2016;
Sarathy et al., 2016; Sarathy et al., 2018).

We represent dosing our virtual hosts by modifying the
equations governing bacterial growth with the following unitless
treatment values Ai after intervention time t � 200 days.

d

dt
BE � A1 Replication( ) ± conversion toBI( ) − A2 Death( )

d

dt
BI � A3 Replication( ) ± conversion toBE, BN( ) − A4 Death( )

d

dt
BN � conversion fromBI( ) − A5 Death( )

where our control model M0 HostSim is recovered if each Ai � 1.
ForMBDQ, we set A2 � 5 · 107, A4 � 5000 and A5 � 10; intervention
parameters A1 � 1 and A3 � 1 since we do not treat BDQ as
bacteriostatic. In MINH, we define these action coefficients
relative to MBDQ - in MINH, we set A2 � 2500 since INH is less
effective at killing extracellular bacteria; we set A5 � 5 since more
INH ends up in caseum though it is less effective at a given
concentration than BDQ, and A4 � 1 because our simplified INH
does not get taken into macrophages; for INHwe also setA1 � 1 and
A3 � 1 as it is not bacteriostatic. For MPZA, the bacteriostatic effect
is captured by setting A1 � A3 � 0.5, halving bacterial replication
rates for all hosts. We set A2 � 1, A4 � 1, and A5 � 1 since PZA is
not bactericidal. It is important to remember that the virtual patient
(host) identity parameter values (Pi) used to define the virtual cohort
VH{ } are independent ofM0 andMP. By running simulations using
eitherM0 orMP with the same parameters Pi and initial conditions
- and thus each virtual host VHi - the entire virtual cohort can be
represented in every model version, while the treatment values Ai

are preserved across the cohort.

2.6 Impact quantification method for our
MID framework

The final component of our MID framework is an impact
quantification method that directly quantifies and compares the
impact of the intervention model versionsMINH,MPZA, andMBDQ

against the negative-treatment M0 at multiple physiological scales.
In principle, comparisons between virtual hosts and model versions
may use any outcomes and measurements that may be relevant to
the system under study. Importantly, the selection of impact
quantification is implicitly related to the model’s question of
interest and context of use, since models may have different
levels of credibility depending on which outcome is being
observed. The multi-scale component of a MID framework
comes from comparing the outcome of VHi represented in MP

(i.e.,MP(VHi)) to VHi represented inM0 (i.e.,M0(VHi)) for each
virtual patient in the virtual cohort. Here, we perform this
quantification by directly comparing CFU counts between model
versions over time. SinceM0 andMP have identically formatted and
nonnegative outputs - time-series data of all HostSim variables
computed once per day - the ratio of the outputs may be
considered at all scales. On the host scale, we examine the ratio
of total lung CFUs as
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Host Impact score � HS t; VHi( ) � log
M0 CFU VHi( ) + 1
MP CFU VHi( ) + 1

( ) t( )
(1)

In this way, hosts with HS ≈ 0 have very little treatment
effectiveness, HS > 0 have a positive influence on the system
outcome, and HS < 0 have a deleterious effect. Capturing impact
score over time informs many aspects of the score, including
projected time until expected results of intervention. We can also
compute an impact score at other physiological scales. For example,
at the granuloma scale, we compute an impact score for each
granuloma in the lung to obtain the granuloma impact,

Granuloma Impact Score � GS t;VHi( )

� log
M0 CFU VHi( ) + 1
MP CFU VHi( ) + 1

( ) t( ). (2)

2.7 Sensitivity analyses

As an additional form of impact quantification in a MID
framework, we can also evaluate the impact of MP via sensitivity
analysis, which allows us to identify parameters and initial
conditions that drive specific features of model output. We
use the partial rank correlation coefficient (PRCC) method,
which is a computationally efficient and accurate method for
performing sensitivity analysis on high-dimensional models
(Marino et al., 2008; Renardy et al., 2019; Renardy et al.,
2021). When given a set of model runs and a numerical
output of that model, the PRCC method determines for each
input parameter: i) a coefficient that measures the correlation
between that parameter and the model output and ii) a p-value
determining the statistical significance of that measurement. We
typically use this method to understand the impact of parameter
impacts on M0 outputs. However, since the same virtual cohort
VH{ } is being represented in both models, (M0( VH{ }) and
MP( VH{ })), sensitivity analysis methods apply to composite
models f[M0, MP]( VH{ }). Since impact quantification methods
such as expressions [1] and [2] satisfy the requirements of a
composite model, we can perform sensitivity analysis on these
scores as well to determine what patient characteristics correlate
with intervention scores.

3 Results

3.1 Constructing a MID framework

If we run thousands of simulations, allowing for patient-to-
patient variability and representation of each virtual host with and
without interventions, we refer to our collection as a virtual cohort.
We introduce ourMID framework, our goal for which is to create an
easily implementable layer for most computational modeling
systems that represent individual patient dynamics. MID is a
framework for making meaningful comparisons between the
outcomes of individual virtual patients’ outcomes in between a
negative control model M0 and a perturbed intervention version
of the model MP (see Figure 1A for a schematic).

To be specific, we require three interconnected components to
create ourMID framework, and they are: 1) a virtual cohort VH{ }, 2)
a pair of related and validated models to represent those patients: a
control model M0 and an intervention modelMP, and 3) a method
of evaluating and comparing the projected trajectories and final
states of the virtual hosts in either model version (see Section 2.6).
One of the only model prerequisites is that there be a natural
representation, or a biological justification, for how the same
virtual patient VHi is represented by M0 and MP. For example,
if M0 contains a simplified representation of pathogen replication
time andMP contains a detailed pathogen life cycle interacting with
a drug intervention, we must ensure that MP matches the “control
limit” as the drug level approaches 0.Wemust also use caution if two
model versions have notably different representations of the same
biological process. There must be some biologically-rooted
justification as to why we can reasonably assume that the same
host is being represented in both model versions.

Lastly, an impact quantification method should be specified that
compares trajectories of individual virtual hosts represented in both
the M0 and MP versions in a biologically-interpretable manner.
These should be specific to the particular model system and made to
ensure that comparisons between the models are relevant to the
intended goal of the intervention. For example, a drug intervention
may have an outcome evaluation that weighs time to sterilization,
pathogen burden, and drug toxicity. The MID framework
components are simple enough that they can be applied to many
models from multiple biomedical applications. We list a few
examples of potential MID framework implementations in
Table 1. Note that if we want to perform a MID framework
study using highly stochastic models, we must take care in
defining virtual host outcomes. For example, we might work with
Mean(M) and Var(M). Measurable features for impact
quantification should be able to capture differences in dynamics
betweenM0 andMP at the scale at which the intervention is applied.
As HostSim is deterministic (except for rare dissemination events)
once the initial agent properties are defined, we omit such
considerations from our TB application.

3.2 HostSim providesM0 for MID to study TB
over multiple scales

A key step of developing our MID framework study is to declare
a control model,M0. This model represents the unperturbed system
that we are interested in studying, which in our case is Mtb infection.
We want this model to be well calibrated and validated, and to
mechanistically represent our system at the scale that our
intervention is going to perturb. For M0, we use an updated
version of HostSim, our whole-host model of Mtb infection.

We update our TB simulation HostSim (Joslyn et al., 2022b) and
recalibrate it to additional published datasets from NHPs across
granuloma, host, and population scales (Gideon et al., 2015; Marino
et al., 2016; Cadena et al., 2018; Darrah et al., 2019).We calibrated using
our CaliPro procedure (Joslyn et al., 2023), integrating these data by
using a population of 500 virtual hosts VH{ } sampled from within
experimentally viable parameter ranges (see Section 2). Supplementary
Figure S2 shows several state variable trajectories over time for a single
representative virtual host with latent Mtb infection.

Frontiers in Systems Biology frontiersin.org07

Michael et al. 10.3389/fsysb.2023.1283341

11

https://www.frontiersin.org/journals/systems-biology
https://www.frontiersin.org
https://doi.org/10.3389/fsysb.2023.1283341


We validated our virtual hosts at multiple scales according to
the ten simple rules credibility standard (Erdemir et al., 2020;
Fogarty et al., 2022; Nanda et al., 2023; Tatka et al., 2023). Figures
3A–E shows trajectories of 6,500 primary granulomas and whole-

host CFU counts taken from 500 virtual hosts generated after we
calibrated to multiple datasets from different NHP studies. At the
population scale, clinically latent hosts had a range of
1–12 primary granulomas that eliminated all bacteria while

TABLE 1 Examples of potential application of theMID framework to biomedical systems. The virtual patient definition can be flexibly adapted and generalized to a
broad set of virtual subjects and intervention types. Note that in all cases,M0 andMP should be validated such that theymaymake credible claims about outcomes
used in impact quantification. In some cases, finding a small impact may provide useful results (e.g., that a proposed treatment will not impact patient outcomes,
or that a model simplification is sufficient to capture outcomes).

Model Virtual cohort members Model versions Example impact quantification

HostSim (Joslyn et al., 2022a; Joslyn et al.,
2022b)

Virtual host: a vector of parameters
describing host PK/PD in each
granuloma; Initial conditions of each
granuloma and lymph node

HostSim, which encompasses all
equations, dynamics, component
interactions

Ratio of bacteria load between untreated
host and host with antibiotic intervention
for each granuloma and host; demographic
of clinically Latent, Active, or Sterilizing
patients

(Tuberculosis)

M0 - No treatment

MP - With antibiotic treatment

Drug Interventions in GranSim (Pienaar
et al., 2017; Sarathy et al., 2019; Cicchese
et al., 2020; Budak et al., 2023)

Virtual granuloma: vector of parameters
for individual granuloma’s immune
response; initial conditions and grid
configuration

GranSim, which encompasses all agent
probabilities, dynamics and cell
behaviors, agent interactions

Function designating granulomas as
controlling, non-controlling, or sterilizing
as a function of their end state; expected
bacterial counts by subpopulation(Tuberculosis)

M0 - No treatment

MP - With antibiotic treatment

Tuneable Resolution with GranSim
(Segovia-Juarez et al., 2004;
Fallahi-Sichani et al., 2012a;
Fallahi-Sichani et al., 2012b; Kirschner
et al., 2014; Pienaar et al., 2016)

Virtual granuloma: vector of parameters
for individual granuloma’s immune
response; initial conditions and grid
configuration

GranSim, which encompasses all agent
probabilities, dynamics and cell
behaviors, agent interactions

Function designating granulomas as
controlling, non-controlling, or sterilizing
as a function of their end state; the
predicted growth phenotypes of bacteria
and activation levels of immune cells

(Tuberculosis) M0 - Coarse grained representation of
TNF-α, NF-κB, or metabolism

MP - Fine grained representation of
TNF-α, NF-κB, or metabolism

Antibody-drug conjugate simulation
(Menezes et al., 2020; Menezes et al.,
2022)

Virtual tumor: vector of parameters for
individual tumor’s vascularization state,
immune response, and initial grid
conditions

Model that encompasses all agent
probabilities, dynamics and cell
behaviors, agent interactions

Function designating tumors as growing or
shrinking as a function of structure and
cancerous cell count

(Solid tumor)
M0 - Untreated control

MP - Added antibody-drug conjugate
treatment

Quantitative systems pharmacology
simulation (Norton and Popel, 2014)

Virtual patient: vector of parameters for
virtual patient’s pharmacological
parameters in the untreated case

Quantitative systems pharmacology
simulation which describes immune-
cancer interactions

Function quantifying the relative
shrinkage of carcinoma with immune
checkpoint inhibitors(Hepatocellular carcinoma)

M0 - Untreated control

MP - Added immune checkpoint
inhibitors

Immune Response Agent-based Model
(Cockrell and An, 2017; Larie et al., 2021)

Virtual patient, wound, and environment:
parameters determining of distributions
of i) sustained endothelial tissue damage,
ii) patient response thereto, iii) initial
microstate, iv) external variables known to
affect patient prognosis

Stochastic and mechanistic model of
inflammatory response

Functions comparing the expectations,
variances, and other descriptive
distribution parameters of predicted
oxygen deficit or cytokine levels in time
with vs without treatment

(Sepsis)
M0 - Untreated control model

MP - Model of proposed treatment or
medical intervention for clinical sepsis

Fibrin contraction simulation (Britton
et al., 2019; Michael et al., 2023)

Virtual clot: collection of spatially
arranged platelets embedded within a
fibrin mesh

Subcellular element model that
represents multiple platelets pulling on
fibrin fibers to cause the emergent
contraction of a blood clot

Function quantifying the relative amount
of contraction of the blood clot and
distribution of multi-platelet clusters(in vitro Blood clot contraction)

M0 - Untreated control

MP - Blebbistatin treatment to weaken
contractile forces
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hosts with active infection had 2–12 sterilized granulomas
(Figure 3F). This recapitulates the common thinking that a
single high-burden granuloma may determine the state of the
Mtb host (i.e., active infection) (Lin et al., 2016). HostSim predicts
that a small portion of granulomas are able to clear infection with
innate response during early infection, which is presently not
feasible to test in vivo. This is a feature of all of our
computational and mathematical models of TB and it is
believed to be a phenomenon that occurs in humans. On both
the granuloma and host scale, we witness the presence of a
transient high-CFU peak at approximately day 20, consistent
with experimental observations (Gideon et al., 2015; Marino
et al., 2016; Cadena et al., 2018; Darrah et al., 2019) (see
Supplementary Material S1 Section 2 for details). Our updated
HostSim model also is able to examine predictions that would
match a PET-CT scan of a primate (human or NHP). We refer to
this as FDG avidity, one of the only sources of time-series
granuloma-scale data from live hosts and obtained via PET-CT
scans (see Supplementary Material S1 Section 3 for details). FDG
avidity is a measure of immune cell activity at the infection site
within granulomas (Lin et al., 2013; Esmail et al., 2016).
Supplementary Videos S1, S2 show the same representative
latent virtual host developing granulomas over 400 days post-
infection, with coloration based on their predicted FDG avidity
values (comparable to NHP PET-CT images in Figure 1A of
Ganchua et al. (Ganchua et al., 2018)).

3.3 Generating a virtual host VH at the
whole-host scale and a virtual cohort VH{ } at
the population scale

Our goal is to create a cohort of virtual hosts that mechanistically
produce the trajectories of bacterial burden in time. We will use this
virtual cohort to test interventions - either a treatment intervention,
e.g., drugs, vaccines, etc. (or in some cases, a model modification).
For an experimental treatment study, a cohort can be defined as both
an infection population and an uninfected (negative) control
population. Our “healthy” state is represented by steady-state
levels of T-cells in the blood and LNs and resting macrophages
within lungs (as we currently do not track host toxicity or tolerability
inHostSim, we only use the infection model for drug studies). In our
MID framework, we use a unique virtual population, our virtual
cohort, on which we test our interventions to compare against the
same virtual cohort against the untreated treatment control scenario
M0. To that end, we want to have a virtual cohort whose members,
(i.e., the virtual hosts) have a meaningful identity that can be
interpreted independently from any specific model version.

We represent our virtual hosts, members of our virtual cohort
VH{ }, by a collection of model parameters, Pi chosen from a set of
biologically valid ranges. We created a virtual cohort of 500 virtual
hosts in this way by sampling from calibrated experimental ranges, as
described in Section 2. Since our model versions share all parameter
fields (except intervention parameters Ai that do not vary between to

FIGURE 3
Virtual hosts and cohort for Mtb infection usingHostSim. (A–D) Bacteria loads (CFU) for the total bacterial population and subpopulation trajectories
for each granuloma. Curves showing granuloma CFU over time for each of the 13 primary granulomas in 500 hosts for 400 days post infection. Panel (A)
shows total CFU per granuloma as well as the analogous measurements from NHPs at specific points (Gideon et al., 2015; Marino et al., 2016; Cadena
et al., 2018; Darrah et al., 2019), (B) shows intracellular bacteria, (C) shows extracellular bacteria, and (D) shows nonreplicating bacteria. (E) Curves
showing total lung CFU for each of 500 virtual hosts. Trajectories are colored by the virtual host classification as sterilizing, latent, or active. We have also
show whole-lung CFU counts from published NHP studies (Gideon et al., 2015; Marino et al., 2016; Cadena et al., 2018; Darrah et al., 2019) by summing
CFU across all lung granulomas. (F) Population scale histogram of the number of sterilizing granulomas per virtual host out of 500 virtual hosts.
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virtual hosts), the same virtual host can be easily represented in either
model version, known as the virtual patient (host) identity.

3.4 Drug interventions using HostSim (MP)

A key aspect of creating a MID framework is to test interventions.
For example, given the large drug regimen design space for diseases
like TB, where multiple drugs are given for long periods of time, the
possible combinations are on the order of 1017 (Cicchese et al., 2017)!
The ability to explore the effects of drugs at the tissue, host, and
population scales simultaneously in a virtual cohort is necessary to
help screen this large space with the goal of identifying candidates that
will be the best to test within a human cohort. A key goal of creating a
MID framework is to use the impact of an intervention over multiple
scales and to examine the wealth of synthetic data by comparing the
outcomes of our virtual cohort with and without interventions.

To create an example intervention companion model MP to
HostSim, we will define a single-drug-like intervention. We will
assume that these drugs solely affect either bacterial replication and/
or death rates depending on their known drug actions (Figure 2). INH,
BDQ and PZA are three antibiotics that are commonly used to treat TB
(Chahine et al., 2014; Prideaux et al., 2015; Nahid et al., 2016; Sarathy
et al., 2016). INH and BDQ are known to have bactericidal activity,
althoughBDQ ismore efficient at killingMtbwithin the necrotic caseum
region of granulomas and can also be taken inside of infected
macrophages. PZA is a bacteriostatic drug whose action we represent
by halving the bacterial replication rate (see Section 2.5). Our simple
representations of drug interventions here do not include consideration
of pharmacokinetics, or the ability of drugs to penetrate well into
granulomas as we have done previously (Pienaar et al., 2017; Budak
et al., 2023). We define our impact quantifications in this setting to be a
host impact score HS and a granuloma impact score GS. These are
derived fromCFU ratios betweenMP andM0, where zero-score is zero-
efficacy, and positive scores indicate a beneficial intervention for virtual
hosts (see Section 2.6). Importantly, the outcomes being measured are
credible from both M0 and MP respectively as i) mechanistically
predicting CFU trajectories falls within their context of use, and ii)
our goal for using our exampleMP to calculateHs andGs is to examine
qualitative behavior of CFU reduction by Mtb subpopulation.

We described above how we generate our virtual cohort VH{ }.
We then represent and simulate this virtual cohort in both the
control version M0 and drug intervention versions of HostSim:
MINH,MBDQ, andMPZA, and we calculate the granuloma and host
impact scores (see Section 2.6, expressions [1] and [2]). Together,
these components give us a way to study the impact of interventions
on our virtual cohort, allowing us to analyze intervention efficacy
across the cell/tissue, whole-host, and population scales.

3.5 Granuloma and host scale analyses of
drug intervention capture
mechanistic insights

As the final component of our MID framework, we want to
understand how the perturbation or treatment MP affects our virtual
cohort over multiple physiological scales. With our drug interventions
defined above, we use the impact quantification method described in

Section 2 to compare outcomes of granulomas and hosts in the non-
treatment control scenario against the three drug treatment scenarios.
Figure 4 shows the impact quantification of the 3 different drug
interventions at all three physiological scales. We begin treatment at
day 200 and treat for 200 days post-infection. At all three scales, the
impact scores suggest that MBDQ is the most effective drug, which is
consistent with how we defined it as compared toMINH. Interestingly,
there is a wide range of impact scores on both the granuloma and host
scales, even if statistics on CFU counts at the population scale would not
directly reveal this (Figure 4; Table 2). In many granulomas, treatment
did not help much - indicated by an impact score near 0. Many
granulomas with low impact scores either cleared in both model
versions or cleared in the MP version only (as a result of
granulomas starting treatment with low CFU burden in the control
case). However, we observed many granulomas with low impact scores
(<0.5) that remained infected in bothM0 andMP, indicating that some
granulomas resist treatment more than others. This may depend on the
action of a drug, on the host immune response or on the bacterial levels
at the start of treatment. The population scale comparison between the
control and intervention cases suggests that bactericidal interventions (as
in the case of MBDQ and MINH) are a more effective action for a drug
intervention (middle and bottom rowpanels).We observe, however, that
the pooled cohort data (top row panels) cannot be used as accurately to
predict whether or not a drug will help an individual host. This
demonstrates the importance of developing a MID framework that
captures both granuloma-scale and host-scale intervention responses
that cannot be detected purely at a population level.

Another way to explore intervention impact scores is to
understand variance of intervention efficacy. We analyzed host
and granuloma impact scores as model outputs using a
sensitivity analysis that considers non-linear correlations, called
partial rank correlation (see Section 2.7). This method correlates
non-linear model parameters to outputs of interest, and in this case,
we can use both scale impact scores as a readout. The results shown
in Table 3 suggest that many host model parameters impact the
BDQ-like drug intervention. As BDQ is shown to have the largest
possible intervention impact score of the three drugs that we studied
(Figure 4; Table 2) as well as the widest variance of impact scores, we
found it surprising that BDQ also interacts with the highest numbers
of host parameters. It may be that interventions that interact with
many model components may both reach higher efficacy but also
have a more complex range of host responses. Moreover, we find
that parameters that correlate with the impact of drug interventions
also overlap with the parameters that impact FDG avidity outputs
(i.e., a measure of host immune activity) (SupplementaryMaterial S1
Section 3.2). What this tells us is that expressions FDG avidity, as
predicted by expressions [S1-S2], is driven by the same parameters
that drive our impact score. This may suggest that FDG avidity is a
good predictor of projected intervention efficacy, or that both
quantities are affected by the same mechanisms.

4 Discussion

We introduce a model analysis framework that can be used to
track a virtual cohort and the impacts of interventions or other
model perturbations across multiple physiological scales patient,
that we refer to as a MID framework. The three components of a
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FIGURE 4
Impact quantification of three single-drug-like interventions across granuloma, host, and population scales. (A) Column showing the three scales
(across rows) at which we analyze outcomes in our MID framework study. (B–D) Columns showing population, host, and granuloma scale impact
quantification scores for (B) MINH , (C) MBDQ, and (D) MPZA versions of HostSim. Granuloma and host scale plots show the granuloma and host impact
scores (Eqs 1, 2) across time for each granuloma and host, respectively. An impact score of 0 indicates equal CFU in M0 and MP and higher impact
scores indicate more favorable host outcomes. Blue lines show granuloma and host trajectories that are sterilized in the control group by day 400, green
lines show granulomas and hosts that sterilized only in the intervention version, and black lines indicate trajectories that sterilized in neither control nor
intervention cases. The population scale bar plots show a direct comparison between the control version and the intervention version at day 400,
highlighting that the variation of the impact efficacy is obfuscated if individual host trajectories are not tracked.

TABLE 2 Impact of interventions of three different drugs on a virtual cohort with 500 hosts across multiple scales.

Feature M0 MINH MPZA MBDQ

Percentage of sterilizing hosts in population 3.6% 4.2% 5.0% 12.0%

Percentage of hosts with active infection in population 5.6% 4.4% 4.0% 3.8%

Hosts that reduced CFU by 200 days post-intervention - 53% 91% 96%

Granulomas that reduced CFU by 200 days post-intervention - 16% 26% 32%

Granulomas that sterilized 67% 68% 69% 77%

TABLE 3 Descriptions of parameters significantly driving variance in granuloma impact scores for three different treatments. PRCC values remained unchanged
qualitatively between days 200 and 400 so, for simplicity, only the trends are shown. We use + to indicate a positive correlation after intervention, and - to indicate
a negative correlation, and “n/a" indicates no significant correlation. Trends indicated correspond to PRCC values that were filtered by PCC z-test (Marino et al.,
2008) to control for the absolute magnitude of the intervention impact.

Parameter description Efficacy correlation withMINH Efficacy correlation withMBDQ Efficacy correlation withMPZA

In-macrophage carrying capacity of Mtb ++ ++ ++

Resting macrophage infection rate constant n/a + ++

Half-saturation of Mtb in infected macrophages n/a - -

Decay rate constant of Interleukin-10 n/a - n/a
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MID framework are i) a cohort of a virtual patients (or virtual hosts)
consistent across model versions; ii) validated control and
intervention model versions; and iii) an explicitly defined method
of impact quantification. A MID framework leverages the ability of
models to perform “what-if” experiments on the same virtual patient
under different interventions and is able to decompose the spectrum
of patient responses to predict system parameters - and thereby also
individual model components - as being principally responsible for
patient placement within a spectrum.

As part of creating a MID framework, we developed an updated
version of our whole-hostmodel of TB,HostSim, which ranges from the
cell/tissue scale to the population scale.We calibrated thismodel to both
experimental data from the Flynn lab (Gideon et al., 2015; Marino et al.,
2016; Cadena et al., 2018; Darrah et al., 2019), and to synthetic data
from our fine-grained model GranSim, which is an agent-based model
that represents formation and function of individual granulomas. TB is
an ideal candidate for implementation of a MID framework as it is
complex and intrinsically multi-scale, which necessarily requires many
parameters. Moreover, model outcomes fromHostSim (e.g., CFU count
and FDG avidity) are directly comparable to existing data and can be
used to create and interrogate intuitive impact quantification measures.

We presented an example MID framework implementation to
generate examples of quantitative, mechanism-based outcome
predictions for interventions that are challenging to obtain
experimentally and may be used to forecast outcome heterogeneity
for future experiments. We used our TB-focused MID framework to
analyze the impact of three different drug interventions–each of which
phenomenologically represents a drug commonly used to treat TB–on
a virtual cohort of 500 virtual hosts. In doing so, we captured and
quantified the impact of different interventions at multiple scales,
which is typically inaccessible to an experimental-like research design
that usually occurs over a single scale. Our method shows that the
parameters - and thereby mechanisms - most correlated with host
responsiveness to drugs overlap with the parameters most that
correlate with our prediction a non-invasive, spatial measurement
of TB infection progression, FDG avidity.

Thoughwe use aMID framework to study virtual human patients in
the context of virtual clinical trials, the method is not tied to this
application. Given amodel system, one may develop interventionmodel
versions for other forms of interventions after you have a suitable control
version–e.g., host-directed therapies, vaccines, or booster efficacies.
Indeed, there are existing model studies that employ virtual-cohort-
like methods of analyses. However, without specific attention paid to
each of the three components of a MID framework, ad hoc approaches
may face i) an ill-defined notion of a virtual patient (or subject), such that
it is difficult to determine whether the “same subject” is being
represented in both model versions; ii) non-rectifiable or non-
credible model versions, where the control version M0 and the
intervention version MP are intractably different as in the case of a
singular perturbation, and iii) an improperly constructed intervention
quantification method which may bias or overly-abstract model outputs
and thus preclude meaningful interpretation. Improper impact
quantification selection may cause us to use model output outside of
its context of use, and lead to subtly non-credible comparisons.

Another use of theMID frameworkmay be to examine impacts of
model updates, allowing us to demonstrate model consistency. If a
model is updated extensively, we could use the original model as M0

and the updated model as a new versionM0
′ instead of anMP. In this

case, minimal deviations would suggest that very little changed by way
of introducing the new components–perhaps ideal for surrogate
modeling, or more informative about the impact of fine-graining a
model (Kirschner et al., 2014). Any simplification or re-representation
of a model subcomponent could be examined in this way if model
outputs and classifications are able to be meaningfully compared.

There are other advantages to having a MID framework. First, a
calibrated virtual cohort annotated with MID-framework outcomes
may be used to store virtual reference cases. That is, for
computationally intensive models, it may be useful to store
virtual hosts across a heterogeneous virtual cohort along with
their control (M0) and intervention (MP) outcomes for
comparison to quantitatively-similar real hosts. If a clinical
patient or an experimental subject can be measured in such a
way that we can find their nearest digital partners, then pre-
simulated fine-grained virtual patients may be used to
approximate both their untreated and treated outcomes. In this
way, we may quantitatively rank the most effective treatment for a
given real host, scaled with some confidence measure representing
the “closeness” of the clinical host to their nearest digital partner. If
the model is not entirely identifiable given live patient data, this will
yield a twofold benefit: 1) a family of nearest digital partners
identified by what data is available together with a forecast cone,
which quantifies how those partners diverge over time; and 2) a clear
and immediate use for new, multi-modal data. Including new data
will whittle down the family of digital partners and narrow the
forecast cone. We may also use the digital partner framework with
existing models to best identify what modes of new data will best
improve patient forecasting and illuminate what types of data will
best improve parameter identification. This is particularly important
when using mechanistic models for generating synthetic data for
other applications (An and Cockrell, 2023). Lastly, we can continue
to add more and more virtual patients to virtual cohorts as needed:
generating virtual patients around a given human subject whose
nearest digital partner lies in a sparsely-sampled region of parameter
space will allow us to dynamically populate the virtual patient cohort
to the needs of the real patient population.

Related efforts have been made to create tools that leverage
computational models for medical decision supplementation and
research (Vodovotz and An, 2019; Foy et al., 2020; Joshi et al., 2020;
Wright and Davidson, 2020; Laubenbacher et al., 2022;
Venkatapurapu et al., 2022), or for autonomous medical
decision-making (Hoffmann et al., 2020; Singh et al., 2022; Yang,
2022) as a form of personalized medicine. A digital twin is a tool that
predicts future states within a specific, real, complex biomedical
system using a flexible, calibrated multi-scale computational model
that integrates available real-time host-specific data. Medical digital
twins (MDTs) have been developed to replicate and predict the
trajectory of specific patients’ diseases (Wright and Davidson, 2020;
Masison et al., 2021; Laubenbacher et al., 2022).With recent demand
for standardization of and development of MDT validation,
uncertainty analysis, model linkage, and interpretable outcomes
(Wright and Davidson, 2020; Laubenbacher et al., 2022), the
ability to find digital partners within virtual cohorts created from
digital twins and the associated response to treatment would be a
powerful decision supplement tool.

It is worth noting the distinction between aMID framework and
several related sensitivity analysis tools. Existing sensitivity analyses,
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including both local and global methods, uncover dependencies
between a model’s input variables and outcomes. While these tools
(such as PRCC, used in this paper) are extremely valuable, they often
include comparison of many parameter values distributed through a
range. Often in experiments, intervention methods are defined
regimens - a procedure applied to all subjects of the study (e.g.,
having multiple patients test the same FDA-approved drug dosage).
In these cases, it is preferable to have an in-depth look at the impact
of a single intervention regimen on an individual, as opposed to
sampling a “gradient of intervention magnitude” - e.g., testing with/
without drug, as opposed to various dosages. This is also true in the
case of MDTs: having more detailed information on the projected
impact of two mechanistically distinct interventions on a single
patient may be invaluable. Moreover, MP and M0 may differ by
more than a single parameter perturbation (e.g., a new cell type
being considered in MP). In these cases, comparison between M0

and MP is substantially distinct from a local sensitivity analysis.
Importantly, using aMID framework is not a substitute for rigorous

and validated model construction, nor do we wish anybody to consider
our MID framework as such. Instead, it is a method to analyze
differences between two highly-related, credible, multi-scale models
by separating out those components that are patient-specific and those
components that are intervention-specific. Each individual model
version should be considered as a trial procedure - such as
experimental or a placebo group protocol-that is being applied to
the same virtual host. Each model version should be able to make
credible claims about host outcomes in each intervention scenario; and
the MID framework is a systematic method for examining drivers of
heterogeneity of the response to those interventions.

In the future, our HostSim-derived virtual cohort may be
improved by the use of experimental distributions for each
parameter in the model, instead of uniformly sampling from
each range. This would ensure that the virtual cohorts in our
MID framework capture the demographic of host heterogeneity
in more detail. This may grant us more insights both into subtle
differences between common presentations of TB at each scale, or it
may allow us to predict outlier or unusual host presentations or
responses. It is also worth noting that the three steps of creating a
MID framework, while conceptually simple, must be considered
carefully. Creation of intervention models may be straightforward in
some cases, but there should be a limiting case where the control case
can be recovered by reducing the intervention’s amplitude.
Representing a real-world entity (e.g., in the case of MDTs) in
each model version may embed assumptions about that host that
could be inconsistent between the model versions if each version’s
assumptions are not stated explicitly. Finally, the intervention
impact quantification method should be free of biases that might
favor one phenotype as more easily impacted than another and
should not overreach the context of use of either model version.
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Mathematical modeling is a pivotal tool for deciphering the complexities of
biological systems and their control mechanisms, providing substantial
benefits for industrial applications and answering relevant biological questions.
BioModels’Model of the Year 2023 competition was established to recognize and
highlight exciting modeling-based research in the life sciences, particularly by
non-independent early-career researchers. It further aims to endorse
reproducibility and FAIR principles of model sharing among these researchers.
We here delineate the competition’s criteria for participation and selection,
introduce the award recipients, and provide an overview of their
contributions. Their models provide crucial insights into cell division
regulation, protein stability, and cell fate determination, illustrating the role of
mathematical modeling in advancing biological research.

KEYWORDS

mathematical modeling, BioModels, competition, cell cycle, protein turnover, cell-
to-cell variability

1 Introduction

The mathematical modeling of biological systems plays a crucial role in
understanding complex processes, their regulation, and answering relevant
biological questions. It offers a broad spectrum of industrial applications. To
recognize and encourage advancements in this field, BioModels (Malik-Sheriff et al.,
2020) launched the “Model of the Year 2023” competition, with supporters such as the
EMBL Theory Transversal Theme, SBML, COMBINE, and ICSB. The competition aims
to highlight the work of non-independent early-career researchers who have made
significant contributions within the last two years (2021–2022) to the field through
exciting mathematical modeling-based research. Applications were accepted from
researchers including, but not limited to, PhD students, postdocs, staff scientists,
and research assistants from both academia and industry. Models developed by PIs
before becoming independent were also considered.

To facilitate the sharing of the model with the broader community and their
potential reuse, competition participants were required to submit their models to public
model-sharing repositories such as BioModels, CellCollective (Helikar et al., 2012), and
Physiome (Yu et al., 2011). The Physiome repository provides a curated collection of
physiological models primarily in CellML format, whereas CellCollective is a
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collaborative modeling building and sharing platform.
BioModels is a leading repository of curated biological models
which allows the submission of models in diverse modeling
formats that are further manually reproduced and
semantically annotated. The participants had the flexibility to
submit their models in any format, including SBML, CellML,
COMBINE archive, MATLAB, Mathematica, R, Python, or C++
(Malik-Sheriff et al., 2020), to enter the competition. However,
participants were encouraged to submit models with well-
commented or annotated code that adhered to MIRIAM
guidelines (Le Novère et al., 2005).

The selection process had a strong emphasis on scientific
excellence, along with the ability of the models to yield insights
into complex biological phenomena or practical applications.
Factors such as model reproducibility, adherence to community
standards, and good code-sharing practices were also considered.
The top models, regardless of their submission format—whether
in a community standard like SBML or as documented
code—underwent a manual verification process to ensure that
their results could be reproduced. Any non-reproducible models
were disqualified. Among the 25 submissions, the winning
models listed below were selected on the basis of the
above criteria.

• Dr Jan Rombouts Advisor: Gelens, L., KU Leuven, Belgium
“Modular approach to modeling the cell cycle” (De Boeck
et al., 2021) BioModels submission: BIOMD0000001079
BIOMD0000001080.

• Dr Eva-Maria Geissen Advisor: Hammarén, H.M., EMBL,
Germany “Protein turnover and post-translational
modification” (Hammarén et al., 2022) BioModels
submission BIOMD0000001078.

• Dr Lorenz Adlung Advisor: Schilling M, DKFZ, Germany
“Cell-to-cell variability in JAK2/STAT5 pathway”
(Adlung et al., 2021) BioModels submission:
BIOMD0000001077.

2 Overview of winning models

2.1 Modular approach to modeling the
cell cycle

These models address the fundamental biological question of
how cells regulate their division cycle. The mathematical crux of
the model lies in its simulation of bistable switches, which are
critical for understanding the robust and rapid transitions
between different phases of the cell cycle. The models capture
the essence of these bistable switches by applying a modified
Hill-type ultrasensitive response. This approach allows the
exploration of how cellular mechanisms, like the
accumulation and degradation of cyclin B, govern the cell
cycle. This approach is illustrated in two models: (1) the early
embryonic cell cycle of Xenopus laevis (BIOMD0000001079) and
(2) the somatic cell cycle with different cell cycle phases
(BIOMD0000001080). The models effectively decipher the

intricate balance and feedback loops involved in cell cycle
regulation and have the potential to offer a profound
understanding of cell proliferation and its dysregulation
in diseases.

2.2 Protein turnover and post-translational
modification

This model helps us understand whether protein turnover
data from metabolic labeling experiments can reveal the impact
of post-translational modifications (PTMs) on protein stability.
Through its reaction rate equations framework, the model
dissects the influence of the dynamics of interconvertible
proteo-forms—different forms of the same protein
differentiated only by their PTMs—on the measured protein
turnover dynamics. The model revealed that these dynamics
mask the actual stability-related dynamics of proteins.
However, the model highlighted the order of PTM addition
and/or removal relative to protein synthesis. This insight is
vital to the accurate interpretation of PTM-resolved turnover
data and an understanding of protein modification in the context
of its lifecycle.

2.3 Cell-to-cell variability in JAK2/
STAT5 pathway

This model addresses the crucial question of how erythroid
progenitor cells decide between proliferation, differentiation, and
apoptosis. The model employs a sophisticated series of coupled
ordinary differential equations to unravel the JAK2/
STAT5 signaling pathway’s role in this decision-making
process. The mathematical modeling here is pivotal in
identifying the specific thresholds of STAT5 activation that
determine cell fate and it addresses a significant gap in our
understanding of erythropoiesis. The model’s strength lies in
its ability to handle the inherent cell-to-cell variability within a
population, providing insights critical for developing targeted
therapies for blood disorders.

3 Discussion

Through the “Model of the Year 2023” competition and its
next edition, “Model of the Year 2024”, BioModels aims to
recognize outstanding contributions from early-career
researchers to systems biology modeling and highlight the
crucial role that these models play in answering fundamental
biological questions or industrial applications. Each winning
model exemplifies how mathematical modeling can be
harnessed to dissect complex biological processes, providing
insights that are pivotal for both basic biological
understanding and potential therapeutic applications. These
models are testament to the potential of integrating
mathematical modeling with biological research.
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Introduction: Molecular communication is the transfer of information encoded
by molecular structure and activity. We examine molecular communication
within bacterial consortia as cells with diverse biosynthetic capabilities can be
assembled for enhanced function. Their coordination, both in terms of
engineered genetic circuits within individual cells as well as their population-
scale functions, is needed to ensure robust performance.We have suggested that
“electrogenetics,” the use of electronics to activate specific genetic circuits, is a
means by which electronic devices can mediate molecular communication,
ultimately enabling programmable control.

Methods: Here, we have developed a graphical network model for dynamically
assessing electronic and molecular signal propagation schemes wherein nodes
represent individual cells, and their edges represent communication channels by
which signaling molecules are transferred. We utilize graph properties such as
edge dynamics and graph topology to interrogate the signaling dynamics of
specific engineered bacterial consortia.

Results: We were able to recapitulate previous experimental systems with our
model. In addition, we found that networks with more distinct subpopulations
(high network modularity) propagated signals more slowly than randomized
networks, while strategic arrangement of subpopulations with respect to the
inducer source (an electrode) can increase signal output and outperform
otherwise homogeneous networks.

Discussion: We developed this model to better understand our previous
experimental results, but also to enable future designs wherein subpopulation
composition, genetic circuits, and spatial configurations can be varied to tune
performance. We suggest that this work may provide insight into the signaling
which occurs in synthetically assembled systems as well as native microbial
communities.
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network science, electrogenetics, synthetic biology, molecular information,
microbial dynamics
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1 Introduction

Synthetic biology has enabled the production and sensing of
biomolecules through the design, testing and implementation of
genetic circuits. In addition to guiding complex biosynthesis
processes for therapeutic and industrial applications (Mimee
et al., 2015; Jiang and Zhang, 2016; Cao et al., 2020), these
engineered systems hold potential to communicate with and
guide synthetic consortia and even native biomes (Hwang et al.,

2017). Recently, synthetic consortia have been developed for
leveraging the diversity of multi population systems in ways that
expand biosynthetic potential and increase metabolic efficiency
(Dinh et al., 2020; VanArsdale et al., 2022; Zhao et al., 2022;
Gwon et al., 2023). The interactions within these engineered
communities rely on robust cascades of molecular
communication that convey information between cells (Quan
et al., 2016; Servinsky et al., 2016). As such, system designs need
to consider not only the genetic circuits within “designer” cells, but

FIGURE 1
Systems overview. Schematic of the (A) cellular design of a Monoculture System (left) in which “Receiver” cells express LasI and GFP in response to
hydrogen peroxide induction via the oxyRS regulon, and of a Transmitter/Receiver System (right) in which the same “Receiver” cells of the Monoculture
system are repurposed as “Transmitter” cells that convey molecular information (AI-1 by the expression of lasI) to a second population also denoted
“Receiver,” but that only express GFP in response to AI-1. (B) electrogenetic experimental setup where a biased gold electrode creates hydrogen
peroxide as an initial input signal to the cellular systems, and (C) an example network model structure for the Monoculture and Transmitter/Receiver
systems, saturation of green representing GFP levels and shading around nodes representing inducer production at those nodes.
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the communication networks that tie them together (Terrell
et al., 2021).

In this study we wanted to mathematically characterize
molecular signaling that guided previously published
experimental results (VanArsdale et al., 2022) in which two cell-
based systems synthesize a model product (green fluorescent
protein, GFP) via chemical and electrical induction schemes
exploiting different signaling pathways. These are depicted in
Figure 1A. They are both based on induction by hydrogen
peroxide. The base case (chemical induction) is actuated by the
simple addition of hydrogen peroxide. Then, we had previously
developed a means for electronically inducing cells; using simple
electrodes, we altered the redox state of inducers (Tschirhart et al.,
2017; Virgile et al., 2018; Kim et al., 2019; VanArsdale et al., 2022)
and these activate genetic circuits. We refer to the genetic expression
induced by electronic input as electrogenetics (Tschirhart et al.,
2017) and have shown how one can electronically control gene
expression, cell attributes (Virgile et al., 2018; VanArsdale et al.,
2022), and even cell consortia (Tschirhart et al., 2017; Stephens et al.,
2019; Bhokisham et al., 2020; VanArsdale et al., 2022; VanArsdale
et al., 2023). In our experimental work (Figure 1A), we either added
H2O2 (chemical induction) or we biased gold electrodes (2 mm
diameter disk) immersed in the cultures with a—0.55 V vs. Ag/AgCl
reductive potential (VanArsdale et al., 2022). This voltage is
sufficient to electronically induce cells, it works by reducing
oxygen dissolved in the growth media, creating hydrogen
peroxide. Cells in the vicinity of the electrode genetically respond
to the hydrogen peroxide through an engineered oxyRS regulon that
activates a genetic circuit via the hydrogen peroxide sensitive
transcriptional promoter, OxyR (Figure 1B). OxyR endogenously
regulates oxidative stress management genes by repressing
transcription until its cysteine groups are oxidized into disulfide
bonds. The resulting conformation change stabilizes the
transcription complex, inducing downstream gene expression
(Pomposiello and Demple, 2001).

In Figure 1B, we illustrate the design of the two systems: (i) a
receiver Monoculture and (ii) a Transmitter/Receiver co-culture. In
the former case, hydrogen peroxide stimulates LasI and GFP
production (Figure 1B). GFP is the model product in both cases
and is easily measured by its fluorescence. LasI synthesizes the
quorum sensing molecule N-3-oxo-dodecanoyl-L-homoserine
lactone, which we refer to as autoinducer-1 (i.e., AI-1). Quorum
sensing signaling molecules enable a collection of cells to take on a
population-wide phenotype. In the Transmitter/Receiver system,
the same cells used in the Monoculture system are repurposed as
“transmitters,” where the hydrogen peroxide-induced quorum
sensing signal is secreted and then encountered by the “receiver”
cells and these respond by producing GFP (VanArsdale et al., 2022).
Hence, in this two-strain culture one subpopulation turns the
electronic signal into a biological signal for subsequent genetic
activation and product synthesis in the second subpopulation.
Autoinducer-1 is a very strong signaling molecule in that it
activates gene expression at nanomolar amounts (Stephens et al.,
2019). This amplifies the original signal to increase gene expression
of the desired molecular product.

In this work, we employed a graphical modeling approach which
enables a coarse grain interpretation of multicellular systems
(Barabasi, 2013), thus, allowing us to capture agent-based

intercellular interactions that fit population dynamics (Gosak
et al., 2018). In Figure 1C, we depict our model in which each
node represents a cell that possesses several weighted attributes: (i)
local substrate concentration, (ii) the local inducer molecule
concentration, and (iii) GFP expression level. The edges
connecting nodes represent a communication channel where
signaling molecules may transfer information between nodes. To
characterize the movement of these signaling molecules, we
implemented a previously developed overlay that approximates a
formal diffusion model onto the network architecture (Sayama,
2015). This dramatically reduces computational demand while
retaining dynamics of molecular communication and cellular
connectivity.

With this model, we then characterized system performance in
response to chemical and electrical induction by evaluating GFP
production in both schemes. We further explored the effects of
spatially fixed cultures (biofilms) in comparison to continuously
stirred cultures by varying the edge dynamics in our model. Edges
that are fixed reflect static cells, like would exist in a biofilm. Edges
that are continually reconnecting between nodes reflect stirred
cultures. Then, by utilizing modularity, a graph measure of a
network’s subcommunity structure (Newman and Girvan, 2004),
we related the network’s spatial organization to its signal output.
Overall, our model enables a kinetic understanding of signal
propagation and GFP production among spatially varied bacterial
populations that, in turn, exploit different signaling processes. This
provides new hypotheses regarding modes of information
transmission and their effectiveness, ultimately leading to
new designs.

2 Materials and methods

2.1 Model formalism

Network initialization was performed by generating a random
undirected G (n, m) graph (Barabasi, 2013) in which there are n total
nodes and m total edges that are randomly distributed amongst the
nodes. In this network, each node represents an individual cell and
edges represent communication channels by which signaling
molecules can be transferred between nodes. Each node Ni

possesses the following dynamic node weights: si(t), H2O2 i(t),
AI-1i(t), and GFPi(t) corresponding to the cell’s substrate,
hydrogen peroxide, autoinducer-1, and green fluorescent protein
concentrations at time t, respectively. In this graph, edges are
unweighted and undirected, meaning they do not possess
quantitative attributes, nor do they follow any directionality in
their connections, i.e., signaling molecules can flow to in either
direction between two connected nodes. In our model, time is
discrete and represented by natural numbers, evolving forward
with each iteration of the simulation as depicted in Figure 2A. At
each timestep a transition is applied in which each attribute of the
network is sequentially updated via the following modules: (i) Gene
activation, (ii) Molecular production, (iii) Signal diffusion, (iv)
Growth, and (v) Edge randomization. That is, a gene activation
module is applied, and then activated nodes carry out their
respective molecular production models, resulting in increased
molecular concentrations at these nodes. Next a signal diffusion
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module is applied, and molecular concentrations are updated based
on the calculated exchange of molecules. Lastly, a growth module is
applied to nodes with available substrate; the concentrations of
divided nodes are amended. After this, edge randomization may be
applied to stirred culture simulations, and the time is forwarded to
the next timestep. Thus, the state of the system can be described at

any point by the nodes, each with their own set of state variables
described by their weights and edges as depicted in Figure 2A.

2.1.1 Gene activation and molecular production
To capture genetic induction and subsequent molecular

production we implemented a two step mechanism at each node

FIGURE 2
Simulation process and growth fit. (A)Overview of the simulation iterations, where initial state variables and edge structure are updated via transition
statemodules at each timestep. The output length of the state variables matrix and edge list increase by j new nodes. (B)Growthmeasurements for E. coli
strain OxyR-LasI-GFP (transmitters) with various hydrogen peroxide induction concentrations (chemical addition) are plotted in green, alongside average
total nodes of 10 simulation repeats at various division probabilities (Pdiv) over time in purple. Bars represent standard deviation. (C) Average substrate
per node for Pdiv in (B), the horizontal dashed line indicates a user-specified substrate threshold, k = 1, below which a node will no longer divide. The
shaded zones indicate standard deviation of the substrate concentration across the network for each probability.

TABLE 1 Equations for gene activation and subsequent protein production for the inducers: hydrogen peroxide and AI-1.

Description Equation

Hydrogen peroxide induced gene activation probability (1) ProbH2O2(H2O2 > 0) � 1

1+e−
[H2O2 ]−8

2

(2) ProbH2O2(0) � 0

AI-1 induced gene activation probability (3) ProbAI1(AI1> 0) � 1
1+e−50([AI1]−0.25)

(4) ProbAI1(0) � 0

Hydrogen peroxide induced molecular production rate (5) RateH2O2 � 2[S]
1+e−[H2O2 ]

AI-1 induced molecular production rate (6) RateAI1 � 0.2[AI1][S]
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at every timestep. First, the probability of gene activation is a
function of inducer concentration (see Table 1; Equations 1–6).
H2O2 induced gene expression is described by a logistic curve
(Table 1; Equations 1, 2; Supplementary Figure S1A) with a
threshold of 12.5 µM. AI-1 dependent gene expression is
implemented using a steeper and linear step function (Table 1:
Equations 3, 4; Supplementary Figure S1A) reflecting the nanomolar
requirements for induction (Chun et al., 2021; VanArsdale
et al., 2022).

If a gene is activated at a node for a timestep (via probability
function based on inducer concentration), it will produce the
specified molecular product (GFP or AI-1) at a set expression
rate based on the prevailing inducer concentration and substrate
availability (Table 1: Equations 5, 6; Supplementary Figures S1B, C).
For production based on AI-1, the rate is linear while for hydrogen
peroxide it is a saturation function so that at low concentrations
there is a steep peroxide dependence and at high concentrations the
rate is saturated (Stephens et al., 2019; Terrell et al., 2021;
VanArsdale et al., 2022). These transitions occur at each timestep
prior to the diffusion and growth modules, such that molecular
production occurs with the concentrations from the previous
timestep. The discrete equations are described in Table 2.

2.1.2 Signal diffusion
Signaling between nodes occurs across edges, such that only

nodes connected by an edge may transfer H2O2 and AI-1. Signal
molecule movement across edges are defined by a discrete
approximation of diffusion derived by the following equations as
previously described by Sayama (Sayama, 2015):

dci
dt

� α∑
j∈Ni

cj − ci( ) (1)

ci t + Δt( ) − ci t( ) � α∑
j∈Ni

cj − ci( )[ ]Δt (2)

ci t + Δt( ) � ci t( ) + α ∑
j∈Ni

cj t( ) − ci t( )deg i( )[ ]Δt (3)

where ci is the concentration of signaling molecule at a given node i,
cj is the concentration at that node’s neighbor j, deg(i) is the number
of edges at node i, and α is a diffusion coefficient (See Supplementary
Table S1 for all coefficient values). In Eq. 1, diffusion is generalized
to the change in concentration at a node with respect to the
difference between its own concentration and its neighbors. This
can be discretized (Eq. 2) and solved to find that the change in
concentration at a node is determined by the difference between the
sum of its neighbors’ concentrations and the product of its own
concentration and number of edges (Eq. 3). At every timestep, the
concentration is calculated from Eq. 3 for each node and updated

prior to growth module implementation. This process applies to the
following state variables and occurs prior to the calculation of
network growth: H2O2 (t) and AI-1(t). The equations for these
variables prior to network growth can be found in Table 2.

2.1.3 Network growth
The network grows with time, depending on substrate availability

and growth probability, Pdiv. Initially, each node is assigned the same
initial substrate weight, s0. At each time step, if a node has a substrate
level above a minimum threshold, k, the node has the probability Pdiv,
that it may divide into two. Following a division event, the substrate
(Table 2), H2O2 and AI-1 node weights are divided equally between
daughter nodes at each timestep. As noted above this occurs after the
diffusion module, such that the newly calculated H2O2 and AI-1
concentrations may be divided in two upon a division event. As
depicted in Figure 2A, with each iteration the network will increase by
j nodes, determined by substrate availability at each node and Pdiv. We
note that daughter nodes maintain fluorescence (GFP) of their
parent’s. This assumption is in agreement with previous
experiments (Servinsky et al., 2016). We additionally neglect
protein degradation, again in agreement with experimental results
(Servinsky et al., 2016).

After a division event, the resulting daughter nodes share an
edge and maintain their parent’s edges, limited to a maximum of
10 neighbors. Note, as commonly defined within the field of network
science, we refer to neighbors as nodes which share an edge
(Newman et al., 2006). These 10 neighbors are randomly
sampled from the parent’s neighbors including those that have
divided at that timestep. In a case where a dividing node has
10 neighbors that also all divide at that time step, out of the
20 surrounding nodes only 10 will be randomly selected to share
an edge with each daughter.

In Figure 2B, we depict growth curves for the Escherichia coli
strain OxyR-LasI-GFP grown with various hydrogen peroxide
concentrations (VanArsdale et al., 2022). These cells are the
receivers in the Monoculture case and transmitters in the
Transmitter/Receiver case (Terrell et al., 2021) (Figure 1).
Alongside we show the total number of nodes over time for a
simulated network of with 50 initial nodes, an s0 of 20, and a k of
1 for various Pdiv. With these s0 and k values, each node can divide five
times during the growth phase, allowing us to fit the initial node count
to 50 and total possible number of nodes to 1,600 which approximates
1 node to 0.001 OD600. The Pdiv values assigned helped to ensure that
the growth phase of the network translated well to experimental
results, such that 45 timesteps represented ~1 h of cell culture. Our
simulation thus mimicked the log phase growth of the cell cultures.
We note that flexibility for fitting experiments is enabled by altering

TABLE 2 State variable dynamics equations.

Variable Equation

H2O2 H2O2 i(t+1) = H2O2 i(t) + α[∑j∈Ni
H2O2j(t) −H2O2 i(t)deg (i)]

AI-1 AI-1i(t+1) = AI1 i(t) + ProbH2O2pRateH2O2 + α[∑j∈Ni
AI1j(t) − AI1i(t)deg (i)]

s si(t+1) =
s i(t)
2 (if node i divides)

GFP GFPi(t+1) = ProbAI1pRateAI1 + GFPi(t) (AI-1 induced) or GFPi(t+1) = ProbH2O2pRateH2O2 + GFPi(t) (H2O2

induced)
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the division probability, Pdiv. Additionally, we note that as the network
grows the average substrate per node decreases over time (Figure 2C),
until reaching below the threshold value of k = 1. As described above,
below this threshold, nodes may no longer divide. The shadowed area
in Figure 2C represents the full ranges of substrate levels across the
network and for each division probability.While the substrate defined
in our model represents general nutrient availability, the trend shown
in Figure 2C emulates the decrease in glucose over time in E. coli
cultures demonstrated experimentally (Shiloach et al., 1996). That is,
while the network model formalism does not include a typical
deterministic Monod model for growth with a maximum specific
growth rate and saturation constant, the configuration here well
represents the overall culture dynamics.

2.1.4 Edge randomization
To describe the spatiotemporal effects of various modes of cell

culture such as stirred, immobilized biofilms (static), and
combinations thereof, we implemented edge randomization. In
the absence of stirring, edges which are assigned during network
initialization and at each node division, remain fixed for the
duration of a simulation. To simulate a stirred batch culture, we
randomized the edges amongst all nodes at every timestep. We
simulated two base cases with either static or randomized edges and
with or without network growth to demonstrate the effects signaling
dynamics: one case where inducers may come from a highly
concentrated source node and another case where an electrode
may generate inducers at its surface over a specific time period
(Supplementary Figure S2). As anticipated, cases that include
network growth and edge randomization resulted in faster
homogeneity of signaling molecule concentration across the
network than non-growing networks or those growing with static
edges. From these tests, we found a set of parameters that when used,
enabled reasonable agreement between our previously published
data (s0 = 20, k = 1, Pdiv = 0.015, α = 1 and an initial average of
4 edges per node).

2.1.5 Electrical hydrogen peroxide generation
To mathematically characterize the production of hydrogen

peroxide at the surface of a biased electrode as a mode of
information transmission into bacterial cells, we model the input
as a signal generated from an individual source node, then link this
source to the various nodes. In our network architecture, the
electrode is represented by a single node which produces
hydrogen peroxide at each time step that it is turned “on.” To
simulate the actual experimental conditions in which electrical
stimulus resulted in negligible growth during the time of
induction (VanArsdale et al., 2022), we set the growth probability
parameter, Pdiv, to zero when the electrode is “on” until that time
when the growth was observed to increase. We fit the hydrogen
peroxide production for an initial network size of 100 to produce
46 µM hydrogen peroxide per timestep to approximate experimental
results (Supplementary Figure S3A).

Previously reported experimental results demonstrated that
electrical induction yielded lower GFP output compared to a
chemical addition, suggesting that the spatiotemporal
heterogeneity resulting from the localized inducer production at
the electrode’s surface effects output. To recapitulate these findings
in our model we limited the number of nodes connected to the

electrode to 5% of the total network at every timepoint. In
Supplementary Figure S3B, we plotted the Monoculture response
for chemically and electrically induced simulations to demonstrate
that the limitation of electrode connectivity to the network
reproduces experimental trends, via reduced GFP production
compared to chemical induction.

2.2 Code and data availability

Graph simulations were performed in Python using NetworkX
(Hagberg et al., 2008), and modifying and implementing the
Simulation class from A First Course in Network Science
(Menczer et al., 2020). Graph generation and initialization and
graph transition states were defined and are contained in
supplemental notebooks. Visualizations were performed using
Python’s matplotlib and seaborn libraries (Hunter, 2007;
Waskom, 2021). Experimental data used for parameter fitting are
from (VanArsdale et al., 2022).

Python notebooks and simulation data are available online at
github.com/kaychun29/bio-network-simulations.

3 Results

3.1 Chemical and electrical induction of
monoculture and transmitter/
receiver systems

We first simulate the two cellular systems in response to the
chemical addition of hydrogen peroxide. We aimed to capture the
experimental results depicted in Figures 3A, B (reproduced with
permission), where identical levels of hydrogen peroxide were added
to the Monoculture system and to the Transmitter/Receiver System.
We later measured GFP expression in all cells via flow cytometry
after 3 h (VanArsdale et al., 2022). Flow cytometry provides for the
distribution of GFP among all cells in a population. Especially at
high concentrations, a chemical addition of hydrogen peroxide
should result in a homogeneous input (VanArsdale et al., 2022)
wherein there is little “noise” accompanying induction. In the
Monoculture system, increases in GFP became obvious at initial
concentrations of 12.5 uM H2O2. Further increases in H2O2 had
relatively little effect on GFP. Interestingly, for the Transmitter/
Receiver system, lower initial concentrations of H2O2 resulted in
significant GFP expression owing to the AI-1 signal propagation. In
the end, the yield of GFP for this Transmitter/Receiver system was
nearly 10-fold higher than the case with just H2O2 added to the
monoculture, even at the highest concentrations (VanArsdale
et al., 2022).

To simulate these results, we assigned each node the same initial
hydrogen peroxide weight based on the initial experimental
concentration. We set initial GFP weights randomly using a
Gaussian distribution with a mean of 500 and standard deviation
of 250. This allows for all nodes to have fluorescence background,
which fit our previously published experimental distribution for
uninduced cells, Figures 3A, B (VanArsdale et al., 2022). For the
following simulations the initial network size was 100 nodes, with an
average of four edges per node. These initial conditions enabled
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FIGURE 3
Monoculture and Transmitter/Receiver GFP distributions for chemically and electrically induced edge randomized networks. Chemically induced (A)
Monoculture and (B) Transmitter/Receiver system at 3 h hydrogen peroxide addition, reproduced with permission from VanArsdale et al. (2022). (C) The
simulated monoculture system GFP distribution at 180 timesteps is shown for an aggregate of 10 replicates, with initial hydrogen peroxide concentration
ranging from0 to 100 µM. (D) The simulated Transmitter/Receiver system’s GFP distribution across all nodes at 180 timesteps is shown for an aggregate
of 10 replicates, with initial hydrogen peroxide concentration ranging from 0 to 100 µM. Experimental flow cytometry data of the (E) Monoculture and (F)
Transmitter/Receiver system at 3 h post charge application, reproduced with permission from VanArsdale et al. (2022). GFP distributions of simulated
electrical induction for the (G)Monoculture system and (H) Transmitter/Receiver’s receiver GFP distributions across all nodes at 180 timesteps post charge
application. Distributions shown are an aggregate of 10 simulated replicates, with charge durations ranging from 0-30 timesteps.
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reproducible network propagation, while conserving computational
time. We implemented network growth and edge randomization at
each timestep to recapitulate the well-mixed growing culture,
according to the methods previously described. For the
Monoculture system, chemical induction was simulated using the
gene activation probability (ProbH2O2, Table 1: Equations 1, 2) and
the molecular production rate (RateH2O2, Table 1: Equation 5). To
model the Transmitter/Receiver system in which a two-strain co-
culture is used to amplify the initial hydrogen peroxide signal, we

partitioned the initial network into 10 percent transmitter nodes,
which function the same as the Monoculture’s receivers, and
90 percent receiver nodes which activate GFP production by AI-
1 induction. In both systems, AI-1 freely diffuses between nodes at
each timestep (Stephens et al., 2019), while in neither case does the
GFP diffuse out of the cell47. In this Transmitter/Receiver system,
GFP production is probabilistically activated (ProbAI1, Table 1;
Equations 3, 4) and produced at a rate (RateAI1, Table 1:
Equation 6) dependent on AI-1 and substrate concentration. In

FIGURE 4
Transmitter/Receiver AI-1 distributions and signal metrics of chemically and electrically induced edge randomized networks. (A) The AI-1
distribution amongst all nodes in the Transmitter/Receiver network at 180 timesteps is shown for an aggregate of 10 replicates. (B) The AI-1 distribution
amongst all of nodes in the Transmitter/Receiver network at 180 timesteps post charge application is shown for an aggregate of 10 replicates. (C, D)
Calculated median GFP from the distributions data shown in Figure 3 plotted over their initial inducer concentration (C) and charge duration (D).
(E, F)Calculated percent active nodes from the distributions data shown in Figure 3 plotted over their initial inducer concentration (E) and charge duration
(F), threshold for activation was defined at 1000 GFP.
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Figures 3C, D we plotted the simulated GFP distributions across the
entire network for both the Monoculture and Transmitter/Receiver
networks at mid-log growth (180 timesteps) as a function of initial
H2O2 level. Consistent with the experimental results, the range of
expression in the Transmitter/Receiver network reached 105, while
the Monoculture network’s maximum values were ten-fold lower.

We next simulated the electrogenetic approach wherein an
applied reducing potential on the electrode generates hydrogen
peroxide and this, in turn, stimulates the cells. Naturally, a major
difference between this mode of induction is that the hydrogen
peroxide is generated at the electrode and while the system is
mixed, the peroxide level increases with the extent of its
generation rate. The experimental results from earlier work
are shown in Figures 3E, F (reproduced with permission)
(VanArsdale et al., 2022). In the Monoculture system, small
increases in GFP were observed until the cells were exposed
to −0.55 V for 1,800 s. In the previous work, a solution exposed to
this reduction duration produced approximately 15 µM of H2O2

(VanArsdale et al., 2022). Thus, the experimental results for the
electrogenetic case were roughly equivalent to the chemical
addition of H2O2. It was interesting to see that in the case of
the Transmitter/Receiver system, a continuous increase in GFP
was observed with increased charge. This was previously
described as a result of cells near the electrode experiencing

sufficient peroxide to induce AI-1, which, in turn, is stable and
can be mixed throughout (VanArsdale et al., 2022).

To simulate electrical induction, we utilized the same model
structure as described prior for chemical induction with the
exception of initial hydrogen peroxide concentrations. For
electrical induction, initial hydrogen peroxide weights were set
to zero across the whole network and hydrogen peroxide was
produced over a designated charge duration as described in
Methods. In Figure 3G, we found the simulated GFP
distribution of the electrically induced Monoculture system
did not increase significantly until greater than 30 timesteps of
applied charge (equivalent of 30 min), aligning with experimental
results in Figure 3E. For the Transmitter/Receiver system
(Figure 3H), activation increased nearly immediately, and full
activation was attained with 30 steps of electrode charge. Our
network model, in all cases, corresponded well with the actual
data in Figures 3E, F, wherein the Monoculture distribution was
essentially unchanged until over 960 s and the Transmitter/
Receiver distribution increased across the span of 960 s to
reach full activation.

An advantage of the network approach is that one can examine
state variables that are otherwise difficult to obtain experimentally.
Also, one can more easily align results with underlying mechanisms.
In Figures 4A, B, we plotted the estimated AI-1 distributions for the

FIGURE 5
Chemical versus electrical signaling dynamics for edge randomized networks. (A) Average hydrogen peroxide, (B) Average Monoculture GFP, (C)
Average Transmitter/Receiver GFP, and (D) Average Transmitter/Receiver AI-1 concentrations over time for a 6.25 µM hydrogen peroxide induced
chemical addition (blue) and 12 step charge duration (orange) across the entire network. Error bars appear as shaded regions, representing standard
deviation of aggregated network data from 10 simulation replicates.
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Transmitter/Receiver networks. While not measured experimentally
(VanArsdale et al., 2022), these simulated values are consistent with
expectations. The AI-1 distributions suggest significant
heterogeneity within the network. We found this heterogeneity
was a result of the variance in activation and spatial distribution
of the transmitter nodes and we note this heterogeneity has been
reported in chemically induced bacterial cell cultures (Servinsky
et al., 2016). We also note that such heterogeneity is not
characterized with commonly implemented population scale
ODE models, but it can be manipulated experimentally via
quorum sensing and genetic circuit design (Zargar et al., 2015).
Our initial network model suggests that there is a level of
heterogeneity that is innate to the system and is introduced when
amplifying an initial homogenous input through a subpopulation
of cells.

Interestingly, we found that the range of GFP for both
Transmitter/Receiver systems was reflected in the AI-1
distributions in Figures 4A, B. In the chemically induced system,
the AI-1 concentrations were between 101–10 (Jiang and Zhang,
2016) for initial H2O2 concentrations above 6.25 µM.
Comparatively, for the electrically induced system the AI-1
distribution across the entire network increased incrementally
with only the highest charge duration of 30 timesteps producing
above 101 of AI-1. We further evaluated signal transmission by
assessing the median GFP and fraction of activated cells for chemical
and electrical induced systems. These serve as metrics for final signal
output. The median GFP shows that with electronic induction,
expression was generally lower than with chemical induction
(Figures 4C vs. 4D), suggesting the signal was attenuated when
the inducer was produced at a point source (the electrode node) and
needed to diffuse outward among the cells to provide induction.

When comparing the Monoculture to Transmitter/Receiver
systems, we observed the amplified response enabled by the
Transmitter/Receiver system was readily apparent; the median GFP
was above 1.4 × 104 versus 2.5 × 103 for theMonoculture (Figure 4C), an
approximate 5-fold increase, when chemically induced with 100 µM.
With electrical induction the median GFP of the Transmitter/Receiver
system reached about 8.5 × 103 at the longest charge duration (30 steps),
whereas the Monoculture system did not increase above 2.0 × 103, an
approximate 4-fold difference. In addition to median GFP we also
calculated the percent activated nodes in the network for each initial
inducer concentration (by measuring the number of nodes with GFP
above a 103 threshold). In Figure 4E, we plotted chemically induced
systems and observed that although both systems ultimately reached
100% activity, the Transmitter/Receiver system reached this peak at
lower H2O2. For the electrically induced systems, the portion of active
nodes increased incrementally and monotonically with charge
(Figure 4F). We note that the Monoculture system had a
consistently lower percentage of active nodes than the Transmitter/
Receiver system, as expected, and never reached 100% by with
30 timesteps of induction. Overall, our model simulations
corresponded well with the previous data (Figures 3A, B, E, F). Our
simulations also suggest that despite the heterogeneity or “noise” that is
introduced by amplifying the initial signal through a subset of cells
(electrode induction), the molecular amplification that was enabled by
transforming the H2O2 into a stronger secondary signalingmolecule, in
particular one that evokes a quorum sensing response, overcame that
disruption, and produced high levels of signal and activation.

In Figure 5, we explored further the dynamics of H2O2, AI-1, and
GFP for the chemically and electrically actuated cases by plotting
their average (lines) and standard deviation (shaded) across the
network over time. We chose representative cases with similar
average H2O2 concentrations. In Figure 5A, we depict the
simulated H2O2 dynamics for the chemical addition of 6.25 μM
H2O2 and for the electrical induction at 12 timesteps of applied
charge (~6 µM of hydrogen peroxide generated). The widely
distributed H2O2 level in the case of electrical induction was
expected, but the average concentration simulated was quite
similar. We note, Figure 5A depicts Transmitter/Receiver H2O2

dynamics, however Monoculture dynamics were nearly identical
suggesting the type of cellular system does not affect hydrogen
peroxide diffusion and generation. Despite the comparable average
H2O2 levels in the systems over time, the AI-1 concentration of the
Transmitter/Receiver system was nearly 2-fold higher that of the
chemical induction (Figure 5B). In general, the GFP levels produced
by both theMonoculture and Transmitter/Receiver systems (Figures
5C, D) were higher for the chemical addition relative to the
electronically induced systems. This was understandable because
the electrode produced H2O2 levels were found to be widely
dispersed, indicating that many cells likely encountered minimal
levels of inducer (Figure 5A). When comparing the Monoculture
versus Transmitter/Receiver GFP dynamics (Figure 5C vs.
Figure 5D), GFP expression in the Monoculture increased
consistently over time whereas the Transmitter/Receiver network
expression was slightly delayed initially during which time AI-1 was
produced (~50 steps corresponding to peak AI-1) and subsequently
accumulated. For both modes of induction, the Transmitter/
Receiver GFP yields were higher irrespective of a delay in
production.

Overall, we note that the large standard deviations depicted in
Figure 5 reflect substantial heterogeneity within the network. We
suggest this heterogeneity is rooted in the wide signaling molecule
distribution that can occur when cell numbers are low (early on) and
when electrodes are used to generate hydrogen peroxide. In the latter
case, this signal molecule interacts with cells in a random and
distributed manner. In the experimental system, an uninduced
cell needs to be transported near an electrode to receive H2O2.
At further distances the peroxide could be depleted so that cells far
away never experience high levels. Interestingly, our network
model seems to well characterize the extent of signal
propagation and the effects of its design structure in
determining system outcome. The tradeoffs between the delay
in responses and expression levels provide insight on system
design. They also suggest spatial heterogeneity, we explore this as
a potential design feature as follows.

3.2 Spatial design via network topology:
Graph modularity and edge dynamics’ effect
on signaling

Based on our successes in characterizing experimental data from
both the chemical addition of hydrogen peroxide and its electrode-
based generation for both the Monoculture and the Transmitter/
Receiver systems, we decided to interrogate the design space for
altered induction methodologies. Specifically, we next explored how
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the relative spatial distribution of cells (nodes) could affect the
signaling. We decided to test a case where we retain transmitter cells
directly onto the electrode. Thus, in Figure 6A, in addition to the (i) a
chemical addition and (ii) electrical induction cases previously
described, we added (iii) electrical induction of transmitter cells
that are fixed to its surface. This last network structure captures
experimental designs in which cells are either engineered to bind to
gold electrodes (Terrell et al., 2021) or that are retained in an
assembled hydrogel film (Li et al., 2020). Cells localized in this
manner could receive electronic signals (hydrogen peroxide) and
then transmit their “message” to cells outside of the film through
signal synthesis, secretion, and transport to cells occupying the
liquid proximal to the electrode and beyond (Li et al., 2020). For

affixed cells, instead of randomizing edges at time steps, we fixed
edges andmaintained them throughout. This mimics a static system,
representative of a biofilm (Li et al., 2007; Cornell et al., 2020) or a set
of cells localized on an electrode (Terrell et al., 2021).

To quantify structural variation that emerges due to growth and
edge dynamics, we used modularity (Newman and Girvan, 2004;
Newman et al., 2006; Blondel et al., 2008) as a measure of network
structure (Supplementary Figure S4A). In general, modularity
describes how well a network is partitioned into various sub-
communities (Newman et al., 2006). A single community
wherein the connections are near random is represented by a
modularity value of zero, while a network where all edges fall
within the same community would have a modularity of 1 due to

FIGURE 6
Modularity and fold change dependent on network structure. (A)Graph schematic of the three spatial configurations tested. (B)Networkmodularity
of differing node arrangements and edge dynamics at timestep 180. (C) Fold change in GFP of randomized edge networks over static edge networks for
theMonoculture and Transmitter/Receiver systems with either chemical or electrical induction at 180 timesteps post induction. (D, E) Signal transmission
metrics for Transmitter/Receiver network architectures at 180 steps post 30 steps of electrical induction, calculated from an aggregate distribution
of 10 simulation replicates. (D) Percent active nodes for varying charge duration times. (E)Median GFP across network for varying charge duration times.
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its strong community structure (Newman and Girvan, 2004). For
our calculations, we use the Louvain method to calculate the
modularity as it is computationally efficient in finding high
modularity partitions of large networks (Blondel et al., 2008).

In Figure 6B, we depict the calculated Louvain modularity at
180 timesteps for the cases above (chemical and electrode induction
for mixed cultures), as well as the new case where transmitter cells
are fixed to the electrode (initial 10 nodes) and the receiver cells are
not fixed. For the Transmitters fixed onto the electrode, dividing
nodes inherit the edges from their parent nodes without further edge
randomization. As expected, our results show that there was
increased modularity calculated in the case where some cells are
fixed (Transmitters) and some are free to move (Receivers). In
general, we found that the modularity of randomized networks was
lower than static networks (see Supplementary Figure S4B for
simulations of completely fixed systems, not shown here). This is
understandable because randomized distribution of edges among
the nodes yields an unorganized network structure. In comparison,
as static networks grow, they maintain structure.

We further ran simulations with fixed edges for different charge
durations and hydrogen peroxide concentrations as in the earlier
simulations, to examine static biofilm cultures relative to well stirred
systems. We found differences in charge duration and initial
hydrogen peroxide concentrations did not affect the modularity
as molecular concentrations that are represented by node weights do
not affect the spatial structure of the network. We then analyzed the
output (i.e., GFP level) for these simulations. To compare the output
of these static cultures we calculated the ratio of average GFP at
180 timesteps from randomized networks to the static networks. We
use this as a way to measure the benefit of cells in the traditional
well-mixed system to those in a fixed or partially fixed system
(i.e., cells fixed to an electrode propagating signals to those in
fluid nearby). In Figure 6C, we plotted these ratios for each
inducer and system type. For the new case of transmitters
fixed to an electrode, we also tested a case in which the
receivers are also fixed to emulate multilayer deposition of
cells onto an electrode as a potential design. This is more
representative to a complete biofilm. The fold change
calculated from these transmitter fixed cases were done
relative to static networks of electrically induced Transmitter/
Receiver simulations.

Here we see that for chemical addition, there was little difference
between the network structures. This results from the fact that all
nodes experience the same initial inducer concentrations. For
electrically induced systems, there was minimal effect on the
Monoculture at all charge durations. In the Transmitter/Receiver
system, we found that for 30 steps of charge there was an
approximately 3-fold increase in signal when randomizing the
network. In fixed transmitter simulations, we found a
substantially larger range for the overall system output. These
fold increases are indicative of how edge randomization generally
increases output while strategic spatial arrangement of the co-
culture with respect to inducer sources can largely amplify signal
throughput.

Finally, we assessed how topological effects leading to increased
modularity affect signaling within the network. We calculated the
percentage of cells that are active (GFP above a 103 threshold) and
the median GFP for these Transmitter/Receiver simulations with

various edge dynamics (Figures 6D, E). We observed that the static
networks had both the lowest median GFP and the fraction of active
cells (Figures 6D, E). Interestingly, our simulations suggest that
introducing transmitters that are fixed to the electrode increases the
overall activation and median GFP over completely randomized
networks, and this is irrespective of receiver conformation (fixed or
not). We suggest this is due to the faster and increased AI-1
production that is enabled by transmitter proximity to the
electrode (Supplementary Figure S4C). Randomizing the receivers
further increased estimated output. This is a consequence of
allowing the whole receiver population’s increased contact with
the transmitter population, as the AI-1 source. This was evident
as the network’s GFP distributions where increasing static network
components correlate to a wider range in GFP values
(Supplementary Figure S4D). Overall, these results reveal that
while high modularity yields increased signal heterogeneity, it
also lowered signal output compared to low modularity networks.
That said, the strategic or intentional organization of subpopulations
can drastically increase output, despite increased modularity.

4 Discussion

In this work, we developed a graphical network approach for
modeling multi-population bacterial cultures. By coarse graining the
cell-to-cell signaling interactions that are known to occur in complex
bacterial systems (Waters and Bassler, 2005) and leveraging intrinsic
network properties that attempt to simulate spatial distributions, we
have elucidated signal dynamics that would be very difficult to
ascertain using traditional deterministic population scale
multicellular modeling. The implementation of a graph-based
model allowed us to vary network structures that we had
previously implemented experimentally. We were able to
determine network parameters (probabilities of growth, molecule
production, gene activation) that when employed in the model,
accurately recapitulated the experimental observations. Then node
weights (other state variables such as inducer levels, substrate levels,
etc.) were examined to better understand the experimental results.
Perhaps more importantly, with this agreement we then tested
hypotheses regarding the spatial composition of microbial
systems. Further, by implementing various edge architectures, we
attempted to mimic various engineered and endogenous culture
structures. We mimicked stirred batch conditions common to
biomanufacturing settings via edge randomization. Static edge
conformations imitate biofilms found in nature and other
immobilized or hydrogel-assembled cell systems. Additionally, we
could easily accommodate varied edge profiles in our model so that
we could test how relative spatial structures affect communication
between different populations.

Owing to the natural tendency to think in terms of
subpopulations and quorum sensing (Servinsky et al., 2016), we
introduced the notion that network modularity would be a valuable
tool in analyzing bacterial networks when organized in the various
experimental configurations. In testing fixed spatial conformations
we found that for increased modularity, meaning more
subcommunities in the network, maximum signal throughput is
reduced and delayed for simulations with an electrode as an input
source. We suggest this is attributed to the need for the input signal
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to diffuse into each subcommunity for the secondary signal to then
be produced and diffused back out for further signaling. We suggest
this introduces an increase in noise at each step of signal
transmission due to structural constraints. That said, these
decreases in signal can be overcome by spatially orienting
transmitter nodes close to the electrode as the input signal
source. We further tested fixing all transmitter nodes to the input
signal source (the electrode) and found that regardless of whether
the receivers were fixed or randomized this restored signal in fixed
networks and resulted in higher expression than in randomized
simulations. Correspondingly, in Terrell et al. (2021), they
demonstrated that by fixing microbes to a gold electrode they
could produce AI-1 with electrochemical stimulation, and this
was shown to be quite successful in signal propagation (more so
than in VanArsdale et al. (2022), where the transmitter and receiver
populations were fully mixed in a stirred vessel). Unfortunately, in
neither case was it experimentally feasible to monitor the AI-1
diffusion and activation across the system boundaries (Terrell et al.,
2021). Here, our work may provide theoretical insight into the
signaling occurring in these types of experimental configurations
and those found in natural biofilm systems, where measurements in
real time and at small distances is difficult.

Additionally, we suggest that models such as this can be further
extended to simulate other spatial conformations of cell populations
to provide insight into how much input and signal transmission is
necessary for successful outcomes (Chun et al., 2021). These include
cases where synthetic assembled consortia of higher complexity may
be cultured together in batch or spatially fixed within gels (Luo and
Shoichet, 2004), between membranes or 3D printed niches (Duraj-
Thatte et al., 2021), or within varying ecological niches (Li et al.,
2007; Schiessl et al., 2019; Cornell et al., 2020; Ciccarese et al., 2022;
Evans et al., 2023). For example, the field of biomaterials has
implemented the spatial confinement of cells within hydrogel
structures and microcapsules for the use in generating functional
living materials and to recreate micro communities found in nature
(Dsouza et al., 2022; Molinari et al., 2022; Wang et al., 2022;
Yanamandra et al., 2022).
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Exploring features associated with the clinical outcome of interest is a rapidly
advancing area of research. However, with contemporary sequencing
technologies capable of identifying over thousands of genes per sample, there
is a challenge in constructing efficient prediction models that balance accuracy
and resource utilization. To address this challenge, researchers have developed
feature selection methods to enhance performance, reduce overfitting, and
ensure resource efficiency. However, applying feature selection models to
survival analysis, particularly in clinical datasets characterized by substantial
censoring and limited sample sizes, introduces unique challenges. We
propose a robust ensemble feature selection approach integrated with group
Lasso to identify compelling features and evaluate its performance in predicting
survival outcomes. Our approach consistently outperforms established models
across various criteria through extensive simulations, demonstrating low false
discovery rates, high sensitivity, and high stability. Furthermore, we applied the
approach to a colorectal cancer dataset from The Cancer Genome Atlas,
showcasing its effectiveness by generating a composite score based on the
selected genes to correctly distinguish different subtypes of the patients. In
summary, our proposed approach excels in selecting impactful features from
high-dimensional data, yielding better outcomes compared to contemporary
state-of-the-art models.

KEYWORDS

colorectal cancer, ensemble feature selection, high-dimensional data, time-to-event
outcome, pseudo variables, group lasso

Introduction

Next-generation sequencing (NGS) techniques (Hu et al., 2021) can provide us with
information on the expression of more than 30,000 genes, which helps researchers
understand gene regulations and interactions to find treatments for diseases. However,
the number of genes associated with a particular disease is small (Yang et al., 2005).
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Therefore, we need to develop powerful tools to select genes that
work as a group and are associated with clinical outcomes. Feature
selection approaches were developed to choose the most relevant
and informative features for research questions from the original
raw set of features; therefore, they can help avoid overfitting, reduce
training time, handle the challenge of dimensionality, and simplify
data representations.

Survival analysis (Klein et al., 1992) is a statistical model
studying time-to-event data in which the event may not be
observed (censored) during the study because of loss to follow-up
or early end of the study. Due to the presence of censoring, which is a
unique characteristic in survival analysis, there is a need to develop
novel techniques to work with feature selections for survival data,
especially for high-throughput gene expression data in which most
of the potential predictors are unimportant, with nearly no effect on
the outcome (Friedman et al., 2010). The Cox proportional hazards
model is the most commonly used technique for analyzing survival
data. However, it was not designed for high-dimensional datasets
with a large number of predictors. Lasso (Least Absolute Shrinkage
and Selection Operator) introduces a penalty term to the Cox
model’s likelihood function, which penalizes the absolute values
of the regression coefficients. By forcing some coefficients to be
exactly zero, Lasso effectively performing variable selection. In
addition, there are models tailored to effectively handle situations
where the number of features outweighs the number of observations
(Li et al., 2018). Machine learning techniques that inherently handle
high-dimensional data have been adapted to handle censored data,
offering more flexible alternatives for analyzing high-dimensional,
right-censored, heterogeneous data. However, unlike statistical

models based on a mathematical framework, machine learning
approaches do not impose a specified relationship on the
predictors and outcomes and rely mainly on–data-driven
algorithms, which makes it hard to interpret results.
Furthermore, a lot of feature selection methods for survival
analysis use a scoring model (Neums et al., 2019) to measure
variations of features to select important features. Since the
scoring algorithm was developed specifically to take care of the
data censors and tie events of survival data, the results are biased
(Munson et al., 2009) which may lead to selecting nonimportant
features and provide a less accurate prediction.

We introduce a robust and effective “Pseudo-variables Assisted
Group Lasso” method built on the ensemble idea, i.e., “more heads
are better than one”, where features obtained from different selectors
are aggregated to enhance the final selection. Moreover, we
incorporated pseudo-variables which we know are irrelevant to
the outcome and the permutation technique to assist the
selection. The ensemble and pseudo-variables are nicely
embedded into the Group Lasso model to yield the final output.
Among aggregated features, only the features that consistently show
stronger signals than the pseudo-variables (known noises) across
permutations will be selected. We used colorectal cancer data from
The Cancer Genome Atlas (TCGA) for illustration of our proposed
approach. In addition, we performed simulation studies based on
two different settings, where the first one mimicked the colorectal
cancer data, and the second considered more complicated situations
under various scenarios. For each simulation, we first simulated gene
expression data for hundreds of genes and then generated survival
outcomes based on some causal genes. The proposed feature

FIGURE 1
Proposed pipeline. (A, B) Ensemble feature selection. (A) Feature selection based on different methods and aggregation of selected features. (B)
Pseudo-variables assisted group lasso. (C) Prediction for real data and simulation datasets.
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selection ensemble method was applied to “uncover” the causal
genes and compared to the existing methods.

Materials and methods

Colorectal cancer data set from
TCGA database

Raw gene expression counts were downloaded from colon
cancer (The Cancer Genome Atlas Network, 2012) datasets using
The Cancer Genomics Cloud (Lau et al., 2017); additional clinical
metadata was downloaded from cBioportal (Cerami et al., 2012).
The mRNA-Seq data from TCGA was produced using the
Illumina HiSeq 2000 platform and processed by the
RNAseqV2 pipeline, which used MapSplice for alignment and
RSEM for quantification.

A robust feature selection ensemble

The proposed pseudo-variable-assisted feature ensemble
procedure has two major steps: 1) aggregating the feature
selection results from multiple feature selectors (Figure 1A) and
2) fitting a group Lassomodel on the identified feature set with a new
permutation-assisted tuning strategy (Figure 1B). In the second step,
the group is defined based on the correlation structure, ensuring that
features are highly correlated within each group.

Aggregating the results from different feature selection
approaches is a critical step in ensemble learning. The outputs of
the different approaches can be various, either the subsets of selected
features, the rankings of all features, or both. We applied the same
scheme as in (He et al., 2022) to obtain the ranked feature set
depending on the types of outputs (Figure 1A), where the final rank
is an aggregation from each ranking. We assume that the

observations are (xi, yi), i � 1, . . . , n, where xi is a G-dimensional
vector in which each feature has its aggregated rank, and yi is a
survival outcome. Without loss of generality, we assume the G
features are quantitative variables (e.g., gene expressions).
However, the proposed method can be applied to categorical or
mixed-type variables. Similar to (He et al., 2022), we can rewrite the
G-dimensional vector xi as xi � (xTi1, xTi2, . . . , xTiB)T with xib of
dimension Lb, b � 1, . . . , B, ∑B

b�1Lb � G, based on their
correlation structure such that within each block, the absolute
value of pairwise correlation is all greater than a correlation
threshold ρT.

Next we consider a Group Lasso model (Utazirubanda et al.,
2021) on the ranked feature set (Figure 1B) for survival outcomes.
For commonly seen right censored survival data, yi � (Ti,Δi) is a
survival outcome, where Ti � min(Ui, Vi),
Δi � I(Ui ≤Vi) ∈ 0, 1{ }, with Ui and Vi denote the event time
of interest and the censoring time for the i th subject, respectively.
We model the relationship between the survival outcomes yi and
features xi using the Cox proportional hazards model (Deo
et al., 2021)

log
h t | xi( )
ho t( ) � β0 +∑B

b�1
xTibβb ≜ γβ xi( ),

where β0 is the intercept, and βb ∈ RLb is the parameter vector for
the bth block, ho(t) is the (unknown) baseline hazard function at
time t, and h(t | xi) is the hazard function at time t for the ith
subject with covariate vector xi. We aim to identify which gene
groups amongst the B groups associated with the
survival outcomes.

Based on the partial likelihood function,

L β( ) � ∏n
i�1

exp γβ xi( )[ ]
∑k ∈ Qj

exp γβ xk( )[ ]
⎧⎪⎨⎪⎩

⎫⎪⎬⎪⎭
Δi

,

TABLE 1 Parameters used for feature selection methods.

Approach R package Parameter Description Value

MIM (select top k) praznik k Select top k features 25

MRMR (select top k)

RF Min Depth (select top k) randomForestSRC ntree Number of trees 1,000

RF Var Imp (select top k) mtry Number of variables to possibly split at each node default

nodesize Minimum size of terminal node 15

RF Var Hunt (select top k) k Select top k feature 25

nsplit Number of random splits for splitting a variable 10

Cox (select up to top k which have
p-value less than α)

survival k Select top k feature 25

alpha p-value threshold 0.05

LASSO glmnet lamba Tuning parameter grid values 10(−10,−9.9,. . .,0,. . .,9.9,10)

Ensemble1 ρT Minimum pairwise correlation within block 0.75

Ensemble2 K Total number of permutations 50

τ Threshold of selection percentage 0.5
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Qj � k: Tk ≥Tj{ }, we can obtain the estimation of the complete
parameter vector β by minimizing the following objective function.

Qλ β( ) � −L β( ) + λ∑B

b�1sb βb
���� ����2.

Recall that λ is the tuning parameter that controls the amount of
shrinkage (larger λ shrinks more coefficients to zero), and sb is used
to rescale the penalty to each group. To ensure the top-ranked
features are more likely to be selected, we put a small penalty on top-
ranked feature sets by proposing using the product of the minimum
rank among each feature set and

��
Lb

√
.

The objective of this study is more about selecting the important
features than improving the prediction accuracy. Therefore, we propose
to use the pseudo-variables assisted tuning strategy (He et al., 2022) to
facilitate the group-lasso tuning parameter selection. This strategy is
built on the idea of combining the original and permutated input
features (e.g., expressed genes), where the permutations work as a
control to determine the significance of each group. Hence, we can
select significantly important genes (not by chance).

It is known that the λ in group-lasso-type regularization controls
the amount of shrinkage. As λ increases, fewer groups are selected. A
group can be considered more important one if it is selected when λ

is large. Based on these observations, we can define an importance
measure Vb � sup λ{ : the coefficient for bth group is nonzero}, for
each of the 2B groups, including the B groups from original input
features (b � 1, . . . , B) and their B groups of permutated copies
(b � B + 1, . . . , 2B). For each permutation, groups from original
input features are selected if their Vb is larger than max

B+1≤ b≤ 2B
Vb,

i.e., the strongest signal among permutated groups which we have
known are irrelevant groups. After running K (e.g., K = 50) times of
permutations, we selected the groups of features that have been
selected more than a certain number of percentages τ (i.e., τ � 0.5)
among K permutations.

Feature selection and machine learning
algorithms

In our study, we evaluated nine different feature selection
methods, including seven existing feature selection methods and
two robust ensemble feature selectors we constructed. The nine
selectors can be divided into four major groups: (I) feature selection
algorithms based on mutual information optimization: mutual
information maximization (MIM) (Torkkola, 2003), minimum
redundancy maximum relevance (MRMR) (Radovic et al., 2017);
and (II) random forest-based approaches: a random forest minimal
depth (RF Min Depth) (Ishwaran et al., 2008; Ishwaran et al., 2011),
a random forest variable importance (RF Var Imp) (Archer and
Kimes, 2008), a random forest variable hunting (RF Var Hunt)
(Chen and Ishwaran, 2013); and (III) Cox-based approaches: Cox
hazard proportional (Cox) (Deo et al., 2021) and 1 penalized Cox
(Lasso) (Goeman, 2010); (IV) ensemble learners (Zhou, 2021). We
created two feature ensembles, Ensemble 1 and Ensemble 2, where
the first one is the ensemble of Lasso, Cox, andMIM, and the second
is the ensemble of Lasso, Cox, MIM, andMRMR. Parameters used in
the paper were included in Table 1.

To compare the results of our feature selection ensemble method
with others, we tested the selected features on five well-known
prediction models using machine learning and non-parametric
techniques: (I) the Cox model with 1 regularization (Lasso)
(Binder, 2015); (II) models based on boosted trees: xgboost
(XGB) (Chen and Guestrin, 2016) (III) boosted gradient linear
models: xgboost based on linear learner (XGB linear) (Chen and
Guestrin, 2016) and (IV) random forest-based methods: random
survival forest (RF) (Segal, 2004) and ranger (Wright and ranger,
2017). All feature selection methods and machine learning
algorithms assessed here can handle the time-to-event outcome.

TABLE 2 Simulation scenario.

Scenarios Label Sample size # Of genes Event rate Sparsity (# of causal
genes/# of genes)

β1 β2 β3

1 n100_G1200_er0.3 100 1,200 0.3 30/1,200 −6 8 −10

2 n100_G1200_er0.5 100 1,200 0.5 30/1,200 −2 3 −4

3 n100_G1200_er0.7 100 1,200 0.7 30/1,200 −2 −3 4

4 n100_G600_er0.3 100 600 0.3 30/600 −6 8 −10

5 n100_G600_er0.5 100 600 0.5 30/600 −2 3 −4

6 n100_G600_er0.7 100 600 0.7 30/600 −2 −3 4

7 n200_G1200_er0.3 200 1,200 0.3 30/1,200 −6 8 −10

8 n200_G1200_er0.5 200 1,200 0.5 30/1,200 −2 3 −4

9 n200_G1200_er0.7 200 1,200 0.7 30/1,200 −2 −3 4

10 n200_G600_er0.3 200 600 0.3 30/600 −6 8 −10

11 n200_G600_er0.5 200 600 0.5 30/600 −2 3 −4

12 n200_G600_er0.7 200 600 0.7 30/600 −2 −3 4
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Simulation

To mimic the correlation structure in real data, we conducted a
simulation based on the colorectal cancer data. Considering in the
real world, we usually do not often observe the causal variables
directly, but rather the variables that are highly correlated with the
causal variables, if any. Here we use a modified version of the
simulation strategy as in (Degenhardt et al., 2019; He et al., 2022) to

mimic this real-world situation. We first picked six correlated gene
expression blocks from the colorectal cancer data, where each block
included 6,7,8,7,8 and 9 highly correlated genes (correlation
coefficient greater than 0.5) respectively (Supplementary Table
S1). For each of the first three blocks, we randomly selected one
of the genes as the unobserved causal variables (z1, z2 , and z3) which
are in the boldface in Supplementary Table S1 and the rest of the
genes in the first three blocks as observed causal variables

FIGURE 2
The results for the TCGA colorectal cancer dataset. (A) Normalized selection frequency of the top 20 selected genes by each feature selection
approach. Each row represents an individual single gene, and each column represents the feature selection approaches. (B) Kaplan-Meier survival curves.
The low-risk group and high-risk group were defined by median of the composite score. The composite score was calculated as the linear combination
of those genes selected by ensemble approach and their coefficients in the cox proportional hazard model. (C–E) DCA of 2 year, 3 year and 5 year.
(F) Heatmap of concordance index (C-index). The heatmap shows the mean value of the C-Index across 5 repeats of 5-fold cross-validation for each
combination of machine learning algorithms (rows) and feature selectionmethods (columns). (G)Heatmap of Brier Score. The heatmap shows themean
value of the Brier Score across 5 repeats of 5-fold cross-validation for each combination of machine learning algorithms (rows) and feature selection
methods (columns).
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v(j)i , i � 1, 2, 3; j � 1, . . . , Ji − 1, J1 � 6, J2 � 7, J3� 8 }{ , while
considering the genes from the last three blocks
v(j)i , i � 4, 5, 6; j � 1, . . . , Ji, J4 � 7, J5 � 8, J6 � 9{ } as observed
noncausal variables. For i th block, the variables
{v(j)i , J � 1, . . . , Ji} were generated using multivariate normal
distribution with mean zero and the correlation matrix computed
based on the real data. Then we generated survival outcomes using
the three unobserved causal variables based on a Cox proportional
hazards model using the reda R package (Fu et al., 2022) (simEvent
function), with ho(t) set as 1,

log
h t | z( )
ho t( ) � β0 + β1z1 + β2z2 + β3z3

In addition, we generated G − 42 independent predictor
variables wk, k � 1, . . . , G − 42, which are uncorrelated with the
base variables v(j)i{ }, are simulated based on a uniform
distribution of (0,1). The input G � 1000 features consisted
of v(j)i ,{ i � 1, 2, 3; j � 1, . . . , Ji − 1, J1 � 6, J2 � 7, J3 � 8},
v(j)i , i � 4, 5, 6; j � 1, . . . , Ji, J4 � 7, J5 � 8, J6 � 9{ } and wk,{
k � 1, . . . , G − 42}. We generated paired replicates (two n × G

matrixes) with the first used for feature selection evaluation
and the prediction models training, and the second used for
assessing stability of feature selection and evaluating the
prediction performance, and we repeated the processes for
100 times. The details of this real-data-based simulation,
including the coefficients, full list of the gene blocks, and
names of the unobserved causal genes, are provided in
Supplementary Table S1. For ease of presentation, we will
refer this real-data-based simulation as Simulation A below.

To further evaluate the performance of the proposed method
under more diverse scenarios, we performed additional simulations
(referred as Simulation B below). Similar to Simulation A, we first
generate unobserved causal variables (z1, z2 , and z3) and then the
observed variables, where some are highly corrected with the causal
variables (i.e., observed causal variables), and the rest are irrelevant
(i.e., noise variables). The survival outcome is also simulated based
on a Cox proportional hazards model using the reda R package (Fu
et al., 2022) (simEvent function)

log
h t | z( )
ho t( ) � β1z1 + β2z2 + β3z3

FIGURE 3
Feature selection performance based on Simulation B. In each panel, x-axis stands for different simulation listed in Table 1, y-axis stands for different
evaluationmetrics including FDR, Sensitivity, F-1 and Stability. For example, n100_G1200_eta0.3 stands for sample size is 100with 1,200 candidate genes
and the event rate is 0.5. Each colored curve stands for different feature selection approaches.
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where ho(t) is set as 1. The three base variables (z1, z2 , and z3, the
unobserved causal variables) and three additional independent
base variables (z4, z5 and z6, the unobserved non-causal
variables) are independently sampled from a uniform
distribution of (0,1). For each of the base variables zi, we
generate a set of 10 correlated predictor variables v(j)i ,
denoting the j th variable in group i, for j � 1, . . . , 10 and
i � 1, . . . , 6, using the following formula:

v
j( )

i � zi + 0.01 + 0.5 j − 1( )
9

) × N(0, 0.3( ),
The correlation between the base variable zi and v(j)i decreased

as j increased. Please note that zi, i � 1, . . . , 6, are only used to
simulate correlated variables v(j)i , and are not included for feature
selection and classification. G − 60 independent predictor variables
wk, k � 1, . . . , G − 60, which are uncorrelated with the base variables
v(j)i{ }, are also simulated based on a uniform distribution of (0,1).
Here we assume that the base variables are not observed. Hence, the
input features consist of 30 observed causal variables
v(j)i , i � 1, 2, 3; j � 1, . . . , 10{ } and 30 correlated, non-causal

variables v(j)i , i � 4, 5, 6; j � 1, . . . , 10{ } and G − 60 uncorrelated,
non-causal variables wk, k � 1, . . . , G − 60{ }, a total of G variables.

We consider twelve different simulation scenarios (Table 2)
including 1) different event rates (η � 0.3, 0.5, 0.7) which are mainly
determined by the coefficients in the Cox proportional hazards
model; 2) sparsity of causal genes (2.5%, 5%) with a different
number of genes (G = 600 and 1,200); and 3) different sample
sizes (n = 100 and 200). Similar as in Simulation A, for each of the
scenarios, we generated 100 paired replicates, where each pair is
consisted of two n × G matrixes.

Model evaluation

In the real data studies, the causal variables are unknown.
Moreover, due to different algorithm, we may have different lists
of selected features across all methods. Therefore, to determine the
important rank of features, we proposed using a weighted relative
frequency (WRF) to measure the relative frequency that a feature is
selected across five different folds as in (He et al., 2022). The weight

FIGURE 4
Empirical power of the feature selection approaches based on Simulation B. Each panel represents different simulation scenario listed in Table 1. For
example, n100_G1200_eta0.3 stands for sample size is 100with 1,200 candidate genes and the event rate is 0.5. In each panel, x-axis stands for the causal
variable index.
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of each selection is reciprocal to the number of features selected,
i.e., larger set of selection adds less weight to each selected feature. A
higher WRF indicates this feature is more consistently and sparsely
selected across different folds.

Since the causal variables are known in simulation studies, we
can evaluate the feature selection performance by comparing the
selection to the truth (the known causal variables). Specifically, we
used the following four commonly used metrics: false discovery rate
(FDR), sensitivity, stability, F-1 score and empirical powers. FDR is
the proportion of false-positive features in the selected feature set.
Sensitivity is calculated as the proportion of selected causal variables
among all the causal variables. Stability is calculated using Jaccard’s
index: the ratio of the length of the intersection and the length of the
union of two sets, where the two sets are the selections from the
paired replicates. F-1 score is calculated as 2 precision*sensitivity

precision+sensitivity, serving
as a balanced metric (harmonic mean) between sensitivity and
precision (1-FDR). Empirical power could be calculated for each
of the causal variables. It is the ratio that this particular causal

variable is selected among the simulation replicates. A power of
1 indicates this casual variable was identified in each replicate, and a
power of 0 means it was never selected across replicates. For each
feature selection method and each of the twelve scenarios, we
reported the average FDR, sensitivity, stability, F-1 score, and
empirical powers across the first replicate of each of the
100 simulations.

Furthermore, to check the effectiveness on the predictions of
our selected features compared to other well-known models, we
used the Integrated Brier score (Ishwaran et al., 2008; Moradian
et al., 2017) to assess the accuracy of predicted survival
probabilities over a specified time period of events. Lower
values of the Integrated Brier Score indicate better predictive
accuracy, with 0 being the optimal score (perfect prediction) and
1 representing a model with no predictive ability. Harrell’s
C-statistic, also known as the concordance index (C-index),
was used to evaluate discrimination with a higher value
indicating better discrimination, meaning the model is better

FIGURE 5
Brier score based on Simulation B. Panels present the Brier score for the corresponding prediction approach as indicated. In each panel, x-axis
stands for different simulation scenario listed in Table 1. For example, n100_G1200_eta0.3 stands for sample size is 100 with 1,200 candidate genes and
the event rate is 0.5. Each colored curve stands for different feature selection approaches.
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at distinguishing between different outcomes. A C-index of
0.5 suggests that the model’s predictions are no better than
random chance, while a C-index of 1.0 indicates perfect
discrimination.

Results

Key features selected by the ensemble
feature selection approach on a colorectal
cancer (CRC) dataset

In the cohort of n � 253 colorectal cancer subjects,
encompassing 19,947 genes, the median overall survival (OS)
was 83.2 months, with a median follow-up time of 22.5 months.
We identified G � 2,303 genes with p-value less than 0.05 based
on the univariable Cox proportional hazard model to further
evaluate different feature selection and prediction approaches.

We then applied our proposed ensemble approach, where the
groups were defined based on the correlation structure of the G �
2,303 genes, such that within each block, the absolute value of
pairwise correlation is all greater than 0.75. The proposed
ensemble approaches (Ensemble 1 and Ensemble 2) show the
consistency of selected genes and their important rankings
compared to all genes, while other methods can only
recognize some of them based on WRF (Figure 2A). Notably,
the gene SLC30A3, although selected by Lasso with the highest
WRF, was not identified by other methods. However, it attained
the top rank in our proposed ensemble approach, showing the
strength of the ensemble approach. Conversely, several genes
(MOS, C1ORF61, and MBL1P) that did not rank highest in Lasso
achieved top positions in random forest approaches, contributing
to higher WRF in the ensemble approaches. Within the top five
genes based on WRF (Ensemble 1 and Ensemble 2), SLC30A3,
MOS, C1ORF61, and MBL1P genes were found to have an
association with CRC (Lin et al., 2007; Zheng et al., 2015; Yin

FIGURE 6
C-index based on Simulation B. Panels present the C-index for the corresponding prediction approach as indicated. In each panel, x-axis stands for
different simulation scenario listed in Table 1. For example, n100_G1200_eta0.3 stands for sample size is 100 with 1,200 candidate genes and the event
rate is 0.5. Each colored curve stands for different feature selection approaches.
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et al., 2020; Peng et al., 2021; Cui et al., 2022), gene PAGE2, a gene
from cancer-germline genes, was found to be upregulated in
Caco-2 colorectal cancer cell line (Yilmaz-Ozcan et al., 2014). On
the other hand, other methods identified some of the above genes
that has connections with colorectal cancers. Using these five
genes, we created a composite score by calculating a linear
combination of the gene expressions multiplied by their
respective coefficients in a multivariable Cox proportional
hazards model. Figure 2B presents the Kaplan Meier curves
for the subjects with a composite score above and below the
median composite score (which is −0.40), with a median OS of
54.6 months and not reachable (log-rank test p-value <0.001),
respectively. The DCA (Decision Curve Analysis) curves based
on 2 years, 3 years and 5 years (Figures 2C–E) consistently show
that the net benefit curve outperforms reference lines across
various threshold probabilities, indicating clinical utility. As
shown in C-index (Figure 2F) and Brier scores (Figure 2G), in
general, the prediction approaches have the most impact on the
prediction performance rather than the feature selectors. Lasso
has a higher C index, and random forest, XGB, and XBG linear
yield the lowest Brier scores, while Ranger demonstrates
relatively poorer performance.

Improved performance by the ensemble
feature selection approach based on
simulation studies

Our ensemble approaches consistently demonstrated superior
feature selection performance compared to other methods
(Supplementary Figure S1A; Figure 3) with Ensemble 1 and
Ensemble 2 exhibiting similar performance based on both
Simulation A and Simulation B. Although the Lasso method also
had low FDRs, it had the lowest sensitivity, reduced F-1 and lower
stability. The random forest approaches overall showed poor
performance. As expected, in general, a larger sample size
(200 vs. 100) resulted in improved performance for all feature
selection approaches. However, the impact of the gene sparsity of
(2.5% vs. 5%) and event rates (0.3, 0.5, 0.7) on prediction
performance was minimal, with slightly better performance
observed at lower sparsity. In Supplementary Figure S1B;
Figure 4, the empirical power of our ensemble approaches is
consistently higher than or at least equivalent to that of other
feature selectors across all thirteen scenarios (1 scenario for
simulation A, and 12 for simulation B) for all 30 causal variables.

Similar to the real data analysis, the overall impact on
prediction performance is predominantly driven by the choice
of prediction approaches rather than the feature selectors due to
models’ bias. This observation is expected, as feature selection
does not guarantee an improvement in prediction performance.
Nevertheless, feature selection proves valuable by reducing the
dimensionality and complexity of predictive models, leading to
quicker model training times and improved convergence.
Predictably, across all prediction approaches, feature selection
based on the univariate Cox proportional hazards model
consistently exhibited the least favorable performance, while
the various selector approaches appeared quite similar.
Notably, a higher event rate corresponded to larger Brier

scores (Figure 5) and smaller C-index (Figure 6), indicating
poorer prediction performance. A larger sample size
contributed to slightly improved prediction performance in
terms of Brier score and C-index. Interestingly, gene sparsity
did not exert a notable impact on prediction performance. While
our feature selection models may not have surpassed others in
terms of accuracy measurements, we observed that they provided
a stable and consistent accuracy across all measurements (as
shown in Figure 5, 6; Supplementary Figures S1C, S1D). This
suggests that the features we selected are significant and exhibit
less bias, contributing to the reliability of our selected features.
We also performed Simulation C with smaller effect sizes
(Supplementary Table S2) with the same setting as Simulation
B. The results (Supplementary Figures S2–S4) were consistent
with all the observations mentioned above.

Conclusion and discussion

This paper proposes a robust ensemble feature selection
approach tailored explicitly for survival analysis. The
ensemble feature selection approach is built on enhancing the
feature selection process by combining different feature
selection algorithms, ultimately improving the quality of
feature selection and providing stabilized results. This is
accomplished through a novel ranking algorithm integrated
with a group lasso model, which is particularly advantageous
when dealing with feature groups. Therefore, our proposed
model is well-suited for applications in genetic data studies,
where it is imperative to analyze genes as cohesive groups rather
than individual entities. The proposed approach demonstrates a
unique ability to select the most compelling features from top-
tier models.

The key benefits of ensemble feature selections are 1)
Robustness: by aggregating the results from diverse feature
selection methods, the final ensemble is less likely to be
influenced by the biases or limitations of a single feature selector;
2) Improved Generalization: the ensemble of multiple feature
selectors, each built on a different algorithm, can lead to
improved generalization and better performance on unseen data;
3) Model Agnosticism: feature selection ensembles are usually
model-agnostic, meaning it is not tied to or dependent on a
specific machine learning model. Instead, they can be applied
across various feature selection models without favoring one over
the other, making them widely applicable.

Though we only applied the proposed method to gene
expression data, our method can be applied to a wide variety
of data having very large number of features in genetics/genomics
studies and medical research in general, such as genomic data,
transcriptomic data, epigenomic data, proteomic data, clinical
and phenotypical data and so on. Besides, the proposed method
can smoothly take care of the correlated structure, and even
utilize the natural set from certain biological knowledge such as
pathway. Moreover, ensemble feature selection can be applied to
different response variable, including quantitative, qualitative
and time-to-event responses. Although the prediction gain is
incremental, the benefits of feature selection are still significant.
Firstly, it can enhance the interpretability particularly in the
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biomedical field and aims the discovery of meaning biological
insights. Secondly, it can greatly improve the computational
efficiency of downstream analysis, making it more feasible to
handle large-scale data sets. Thirdly, it can help filter out
irrelevant noise variable, avoid overfitting and enhance the
reliability of the analyses.
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The function of the claustrum and its role in neurological disorders remains a
subject of interest in the field of neurology. Given the claustrum’s susceptibility to
seizure-induced damage, there is speculation that it could serve as a node in a
dysfunctional epileptic network. This perspective article aims to address a pivotal
question: Does the claustrum play a role in epilepsy? Building upon existing
literature, we propose the following hypotheses for the involvement of the
claustrum in epilepsy: (1) Bilateral T2/FLAIR magnetic resonance imaging (MRI)
hyperintensity of the claustrum after status epilepticus represents a radiological
phenomenon that signifies inflammation-related epileptogenesis; (2) The ventral
claustrum is synonymous with a brain area known as ‘area tempestas,’ an
established epileptogenic center; (3) The ventral subsector of the claustrum
facilitates seizure generalization/propagation through its connections with
limbic and motor-related brain structures; (4) Disruption of claustrum
connections during seizures might contribute to the loss of consciousness
observed in impaired awareness seizures; (5) Targeting the claustrum
therapeutically could be advantageous in seizures that arise from limbic foci.
Together, evidence from both clinical case reports and animal studies identify a
significant role for the ventral claustrum in the generation, propagation, and
intractable nature of seizures in a subset of epilepsy syndromes.

KEYWORDS

claustrum, claustrum sign, area tempestas, seizure generalization, impaired awareness
seizures, epilepsy, status epilepticus

1 Introduction

In epilepsy, a disorder characterized by recurring, spontaneous seizures, the challenge of
diverse etiologies complicates both seizure localization and treatment decisions (Watson
et al., 2021a). Although significant progress has been made in understanding the neural
underpinnings of epilepsy by viewing it as a brain network disorder, the ability to leverage
this network for therapeutic purposes remains elusive. To overcome these shortfalls and
identify novel targets for epilepsy therapeutics, recent studies have delved into themolecular
and epigenetic changes that occur in key brain regions associated with seizure activity,
namely, the hippocampus (Conboy et al., 2021; Pires et al., 2021). But another avenue has
emerged based on neuroimaging results pointing to an obscure brain region, the claustrum,
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which appears to have a role in aberrant networks that give rise to
the hyperexcitability underlying epilepsy.

Situated beneath the insular cortex, between the external and
extreme capsules, the claustrum is a distinctive subcortical structure
whose geometry can be described as a thin sheet of glutamatergic
projection neurons, extending across the anteroposterior extent of
the forebrain. The claustrum’s connectivity is extensive, innervating
the entire cerebral cortex, including the contralateral cortex, as well

as receiving inputs from both hemispheres (for review see Smith
et al., 2019a). These connections are topographically organized
based on modality across the claustrum’s dorsoventral extent,
with limbic connections concentrated in its ventral portion
(Smith and Alloway, 2014; Watson et al., 2017; Marriott et al.,
2021). In fact, renewed interest in the role of the claustrum in
epilepsy stems from these limbic connections with brain regions
frequently identified as seizure foci, such as the mediodorsal

FIGURE 1
Role of the claustrum in seizures. (A) Claustrum sign in a 24 year old female 7 days from onset of status epilepticus after febrile illness refractory to
antiseizure medications (Meletti et al., 2015). Horizontal (top row) and coronal (bottom row) sections show extent of bilateral claustrum FLAIR MRI
hyperintensity. Red arrows point to claustrum hyperintensity in one section. (B) Limbic connections of the ventral claustrum. Reciprocal connections
(orange lines) are shown with the hippocampal system, basolateral amygdala, piriform cortex, entorhinal cortex, insular cortex, medial PFC, and
ACC. (C) Claustrum seizure generalization network. Schematic illustrates the claustrum as a secondary node propagating seizures arising from limbic
brain structures to ipsi- and contralateral motor-related cortices. (D) Physiologically defined ‘area tempestas’ in epilepsy patients using EEG-fMRI.
Overlayed colored areas correspond to approximated areas of interictal discharge-related positive hemodynamic responses in studies color coded
within panel. Pink: Laufs et al., 2011, group EEG-fMRI analysis for amixed cohort of focal epilepsy patients (n = 19). Green and yellow: Fahoum et al., 2012,
group EEG-fMRI analysis results of temporal lobe epilepsy group (n = 32) for hemodynamic response functions peaking at 3s (green) and 5s (yellow) after
interictal epileptic discharges. Red: Garganis et al., 2013, discharge-correlated BOLD change in a patient experiencing recurrent focal seizures following
temporal lobectomy. Blue: Flanagan et al., 2013, group EEG-fMRI random effects analysis for a mixed epilepsy cohort (n = 27). Purple: Coan et al., 2014,
group EEG-fMRI T-maps frommesial temporal lobe epilepsy patients with hippocampal sclerosis (n = 13). Refer to studies for original EEG-fMRI overlays
t-score values, and p-values. Abbreviations: ACC, anterior cingulate cortex; BOLD, blood-oxygen-level-dependent; cc, corpus callosum; EEG,
electroencephalogram; fMRI, functional magnetic resonance imaging; FLAIR, fluid-attenuated inversion recovery; PFC, prefrontal cortex.
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thalamus, hippocampus, and amygdala (Jackson et al., 2020; Smith
et al., 2020; Benarroch, 2021).

Clinically, claustrum lesions that cause seizures often encompass
surrounding structures, complicating the identification of the
claustrum’s specific role. Recent structural magnetic resonance
imaging (MRI) studies have identified a distinctive signature that
prominently features the claustrum in patients with intractable
seizures, providing compelling evidence of its involvement in
epilepsy. To support this perspective, we begin by reviewing case
study evidence of radiological signals in the claustrum of new-onset
seizure patients with acute encephalopathies. Subsequently, we turn
to rodent models of epilepsy to precisely define the claustrum’s
involvement, allowing us to distinguish subregions implicated in
seizure generation and propagation, particularly its ventral portion
known to have significant connections with the limbic system
(Watson et al., 2017). The culmination of these separate
approaches has led us to the novel hypothesis that the ventral
claustrum is in fact synonymous with the so called ‘area

tempestas,’ a non-circumscribed brain area traditionally
implicated in seizure propagation and epileptogenesis. We also
speculate that disruption of claustrum connections with the
thalamus and cortex may impair consciousness during certain
seizure subtypes. With this evidence, we conclude by exploring
therapeutic development centered on the claustrum and identifying
the indications most likely to benefit from claustrum remediation.

2 Misleading signs? The claustrum’s
role in de novo status epilepticus

Case reports of patients with status epilepticus (SE) have
provided valuable insights into the involvement of the claustrum
in seizures (Meletti et al., 2015; Meletti et al., 2017; Atilgan et al.,
2022). In the acute phase of SE, a distinct hyperintensity localized to
the claustrum emerges in T2-weighted-fluid-attenuated inversion
recovery (T2/FLAIR) MRI images latent from seizure onset, as

TABLE 1 Appearance of Claustrum Sign in Cases of Generalized Tonic-Clonic Seizures and Status Epilepticus.

Case Study Patient Seizure Type EEG MRI Findings Diagnosis

Ayatollahi et al.
(2021) (North
America)

18 y/o F GTCS Theta/delta slow-wave activity Unremarkable day 7, bilateral claustrum T2/
FLAIR hyperintensity day 21, near-complete
resolution one month after

COVID-19 post-
infectious
encephalitis

Di Dier et al. (2023)
(Europe)

39 y/o F Focal evolving
into SE

N/A Bilateral claustrum T2/FLAIR hyperintensity FIRES

Guo and Hong
(2023) (Asia)

19 y/o F SE Bilateral multifocal discharges, left
hemisphere predominance

Bilateral claustrum T2/FLAIR hyperintensity
day 19

FIRES

Humayun et al.
(2023) (Asia)

6 y/o F GTCS Moderate amplitude 4 Hz theta,
intermixed delta

Bilateral claustrum T2/FLAIR hyperintensity COVID-19 post-
infectious
encephalitis

Hwang et al. (2014)
(Asia)

28 y/o F SE Generalized spike and waves at 1-1.5 Hz Bilateral claustrum T2/FLAIR hyperintensity
day 27†

SE with unknown
etiology

Ishii et al. (2011)
(Asia)

21 y/o M GTCS evolving
into SE

Slow basic rhythms with epileptic
discharges

Unremarkable day 7, bilateral claustrum T2/
FLAIR hyperintensity day 13, resolution day 26

Mumps encephalitis

Muccioli et al.
(2022) (Europe)

40 y/o F SE Bilateral asymmetric lateralized
periodic discharges, predominance in
right fronto-temporal region

Bilateral claustrum T2/FLAIR hyperintensity FIRES

Nixon et al. (2001)*
(Europe)

35 y/o M GTCS evolving
into SE

Generalized slow wave Unremarkable day 7, bilateral claustrum T2/
FLAIR hyperintensity day 13 (4 days after SE
onset)

SE with unknown
etiology

Safan et al. (2023)
(Asia)

30 y/o M GTCS evolving
into SE

Continuous left-sided epileptiform
discharges, left middle temporal
predominance

Bilateral external/extreme capsule
hyperintensities with bilateral claustrum
sparing day 9, resolution day 37

Seronegative limbic
encephalitis

Silva et al. (2018)
(Europe)

6 y/o F SE Occipital intermittent rhythmic delta
activity

Bilateral external/extreme capsule
hyperintensities day 22, reduction at month 3

NORSE

Silva and Sousa
(2019) (South
America)

16 y/o F SE N/A Bilateral claustrum T2/FLAIR hyperintensity
day 21†, resolution 4 months later

N/A

Sperner et al.
(1996) (Europe)

12 y/o F SE followed by focal
impaired awareness

Severe generalized slowing, right-sided
sharp slow waves

Bilateral claustrum T2/FLAIR hyperintensity
and T1 hypointensity day 21, resolution day 25,
normal MRI at week 7

SE with unknown
etiology

Dates of MRI findings extrapolated from first instance of symptoms reported within case studies. See articles for list of negative laboratory findings. Diagnoses are listed as presented in case

studies. Note that all cases show T2/FLAIR hyperintensity restricted to the claustrum with diffusion into the external and extreme capsules without involvement of other brain regions. See

Meletti et al., 2015; Meletti et al., 2017 for cohort population reports in patients with FIRES and NORSE. See Atilgan et al., 2022 for additional case studies involving hyperintensities in other

brain regions appearing with claustrum sign. Abbreviations: EEG, electroencephalogram; F, female; FIRES, febrile infection-related epilepsy syndrome; FLAIR, fluid-attenuated inversion

recover; GTCS, generalized tonic-clonic seizures; M, male; MRI, magnetic resonance imaging; NORSE, new-onset refractory status epilepticus; SE, status epilepticus. *Case resulted in death. †

Timeframe approximated based on article text.
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illustrated in Figure 1A. This radiological occurrence, termed
‘claustrum sign,’ is notable for its association with generalized tonic-
clonic seizures and its reversibility following SE resolution (Table 1).
Intriguingly, claustrum-related imaging abnormalities are rare in
patients with SE but are strongly linked to a de novo SE that
typically develops in young, healthy patients that are refractory to
antiseizure medications. In some cases, autoimmune antibody positive
encephalitic syndromes have been reported, including some cases of
COVID-19 post-infection encephalitis (Ayatollahi et al., 2021;
Humayun et al., 2023). However, the etiology in most cases remains
undetermined with patients being described in the context of febrile
infection-related epilepsy syndrome (FIRES) and new-onset refractory
status epilepticus (NORSE) (see updated terminology in Hirsch et al.,
2018). Thus, the claustrum sign serves as a distinctive radiological
biomarker, suggesting a potential link to inflammation-related
epileptogenesis and cytokine-mediated neuroinflammation. But does
this hyperintensity indicate a causative role for the claustrum in
inflammation-related SE, or does the claustrum sign simply signify
inflammation?

Unlike claustrum damage resulting from a hemorrhagic stroke or
penetrating head injury, which infrequently leads to seizures, viral and
autoimmune encephalitic etiologies canmanifest claustrum sign (Table 1;
see Atilgan et al., 2022, for additional case summaries). Two hypotheses
may explain the appearance of this radiological phenomenon. The first
involves postinfection neuronal loss, encompassing gliosis, spongiform
degeneration, and demyelination during the recovery phase (Kimura
et al., 1994; Sperner et al., 1996; Nomoto et al., 2007; Ishii et al., 2011).
Lending credence to this hypothesis, the presence of ischemic cell changes
and acute astrocytic reaction (astrogliosis) were observed in the claustra
during histopathological analysis of a patient’s brain after a fatal SE case
(refer to Table 1; Nixon et al., 2001). Conversely, a comprehensive
neuropathological study found no abnormalities in the claustra of
patients with chronic epilepsy and SE (Margerison and Corsellis,
1966). Another hypothesized mechanism is focal edema, gaining
support from recent case studies of claustral edema in the context of
refractory SE following consumption of Sugihiratkae mushrooms
(Kuwabara et al., 2005; Nishizawa, 2005; Nomoto et al., 2007). Edema
localized to the claustrum may therefore contribute to an aspect of the
refractory nature of SE.

The claustrum sign may not solely be a structural abnormality
but could instead signify network dysfunction, although it is seldom
observed outside of encephalopathies (Steriade et al., 2017; Silva
et al., 2018; Altigan et al., 2022). This prompts an exploration into
whether viral-induced connectional changes are causative factors
behind the appearance of this hyperintensity. A clue may reside in
the claustrum’s strikingly high density of inhibitory kappa-opioid
receptors (KORs) compared to other subcortical brain regions
(Peckys and Landwehrmeyer, 1999; Stiefel et al., 2014; Cahill
et al., 2022). The potential link between viral-induced KOR
dysfunction and the claustrum sign, potentially driven by
runaway excitation due to reduced dynorphin expression,
necessitates careful consideration (Solbrig and Koob, 2004;
Solbrig et al., 2006; Silva et al., 2018). More intriguingly, most
case studies reporting claustrum sign in the literature originate
from Asia and Europe, raising questions about the veracity of
this signal’s physiological significance, or whether it represents an
underreported, time-dependent radiological phenomenon
appearing around one to three weeks from symptom onset (Table 1).

3 Gene expression changes in
claustrum during seizures

The hypothesis that MRI hyperintensities may indicate aberrant
hyperactivity within nodes of an epileptic network has been proposed
(Silva et al., 2018; Ayatollahi et al., 2021). Examining the claustrum’s role
as a nodewithin a limbic epileptic network is a potential avenue to clarify
its relationshipwith seizure activity. Asmentioned previously, the ventral
most region of the claustrum connects to various limbic brain structures
that are implicated in seizure generation and epileptic pathology (Smith
et al., 2020). These regions include the piriform, medial prefrontal,
orbitofrontal, and entorhinal cortices, the amygdala (basolateral, central,
and medial nuclei), and the anterior and mediodorsal nuclei of the
thalamus (Fernandez-Miranda et al., 2008; Watson et al., 2017; Smith
et al., 2019b) (Figure 1B). Despite its anatomical significance, the
involvement of this limbic subsector of the claustrum has largely
been overlooked in seizure research, potentially due to its obscurity
and the ability to selectively modulate it without affecting neighboring
white matter (Watson and Kopell, 2022).

An alternative method to delve into the claustrum’s potential
involvement in seizures involves measuring its neuronal activity in
validated animal models of epileptogenesis. Numerous studies
investigating c-fos expression in temporal proximity to SE induced
by various methods consistently show increased expression in limbic
regions connected to the claustrum such as the hippocampus, piriform
cortex, medial prefrontal cortex, entorhinal cortex, amygdala, and
anterior nucleus of the thalamus (Morgan et al., 1987; Sitcoske
O’Shea et al., 2000; Szyndler et al., 2009; Barros et al., 2015; Siow
et al., 2020) (Figure 1B). Studies utilizing kainic acid, pentylenetetrazol,
lithium-pilocarpine, and kindling exhibit increased c-fos expression and
evidence of neuronal cell death in the claustrum itself (Willoughby et al.,
1997; Zhang et al., 1997; Covolan andMello, 2000; Sitcoske O’Shea et al.,
2000; Zhang et al., 2001; Siow et al., 2020; Druga et al., 2024). In fact, a
region we recently delineated as being a part of the ventral claustrum in
rodents, the dorsal endopiriform nucleus, shows c-fos expression during
SE only after the first convulsive seizure, corresponding to the
appearance of claustrum sign after the onset of SE in humans
(Table 1; Smith et al., 2020; see Majak and Moryś, 2007 for review).

In light of the emerging evidence supporting the ventral
claustrum’s role in epilepsy through gene expression studies, a
compelling avenue of exploration lies in understanding its
potential influence on specific aspects of seizures. Building upon
these insights, we next delve into a distinct aspect of claustrum
involvement - its potential role in impaired awareness seizures.

4 A case for involvement of the
claustrum in impaired
awareness seizures

Brain regions with changes in c-fos expression during seizures
provide a biological anchor by which to interpret resting-state
functional MRI (rs-fMRI) data. In one of our recent rs-fMRI
studies, we observed functional connections between the claustrum
and the thalamus, amygdala, and prefrontal cortex that are weakened
under isoflurane anesthesia (Smith et al., 2017). Building on these
results and findings in human rs-fMRI studies, we implicated the
ventral claustrum as a critical node within both the salience and
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default-mode intrinsic connectivity networks (ICNs): interconnected
brain regions that are functionally co-activated or co-deactivated
during specific cognitive activities that are found to be impaired
throughout epileptogenesis (Luo et al., 2011a; b; Smith et al., 2017;
Smith et al., 2019b). Interestingly, a decrease in default-mode ICN
activity is shown during generalized tonic-clonic seizures, and
selective impairment to this ICN during seizures is associated with
loss of consciousness (Danielson et al., 2011; Crone et al., 2015). This
presents the possibility that ventral claustrum output could be
impaired during seizures, and in turn alter ICN-mediated
consciousness.

The claustrum’s role in consciousness, speculated by Crick and
Koch (2005) has sparked renewed interest in research on the
subject. A study on a refractory epilepsy patient undergoing
stimulation mapping demonstrated that electrical stimulation
near the claustrum could reversibly disrupt consciousness
(Koubeissi et al., 2014). However, a later study involving several
epilepsy neurosurgical patients contradicted this finding, as
electrical stimulation of the claustrum did not lead to a loss of
consciousness (Bickel and Parvizi, 2019). Nevertheless, we do not
entirely rule out the possibility of the claustrum’s involvement in
seizures that impair awareness via ICN alterations. Cases with
claustrum sign often report impairment in consciousness (see
Atilgan et al., 2022 for review). Furthermore, most focal
impaired awareness seizures arise from the temporal lobe,
where many of its structures directly project to the ventral
claustrum, with more than half evolving into focal to bilateral
generalized seizures (Kumar and Sharma, 2023).

An ongoing clinical trial (NCT04897776, 2024) stimulating
the intralaminar thalamus to restore arousal in temporal lobe
epilepsy patients with impaired conscious awareness may offer
mechanistic insight. As shown in Figure 1C, seizures emanating
from limbic brain structures could impair interactions between
the claustrum, cortex, and thalamic nuclei. A robust and common
target of both the intralaminar thalamus and the claustrum is the
anterior cingulate cortex: where seizures often lead to impaired
consciousness and motor manifestations, often involving the
temporal lobe (Alkawadri et al., 2016; Benarroch, 2021). We
previously hypothesized that the connectivity between the
claustrum and cingulate cortex plays a major role in salience
and default-mode ICNs (Smith et al., 2019a; Kou et al., 2023).
Building upon this, we further hypothesize that disruption to this
critical network connection may impair awareness during
seizures originating from temporal lobe structures through its
interaction with motor-related cortical areas (cingulate cortex)
and the thalamus. We therefore support the viewpoint that while
the claustrum can influence the consciousness “master switch” of
a brainstem and diencephalic origin, it is not the master switch
itself (Blumenfeld, 2014; Gummadavelli et al., 2015).

5 The ventral claustrum is synonymous
with ‘area tempestas’: a brain region
imlicated in seizure generation and
propagation

It is plausible that the claustrum is a node by which seizures
can generalize or propagate from limbic-connected structures to

cortical regions considering the functional connectivity data
discussed above. Supporting this possibility, from animal data,
amygdaloid kindling studies reveal that claustrum lesions
destabilize or entirely block seizure generalization (Wada and
Kudo, 1997; Wada and Tsuchimochi, 1997; Mohapel et al., 2000).
Interestingly, a non-circumscribed anatomical region termed
‘area tempestas’ traditionally described within the deep
piriform cortex (primary olfactory) demonstrates strikingly
similar kindling results (Löscher et al., 1995). Upon further
research, the dorsal endopiriform (rodents) and pre-
endopiriform (human) nuclei (i.e., ventral claustrum)
correspond to this physiologically defined area (see Majak and
Moryś, 2007; Vaughan and Jackson, 2014 for review).

Insight into the exact functional relationship amongst the
ventral claustrum and limbic brain structures during seizures can
be further gleaned from a formative electroencephalogram
(EEG)-fMRI study involving focal epilepsy patients (Laufs
et al., 2011). Regardless of the localization of interictal and
ictal activity, the study identified a common, tightly localized
brain region attributed to be the “human equivalent of area
tempestas,” exhibiting increased hemodynamic responses in
relation to interictal epileptiform discharges. Based on the
reported Talairach coordinates, we previously hypothesized
that this area corresponds to the ventral claustrum (Meletti
et al., 2015). To further support our hypothesis, we show
EEG-fMRI results from this and subsequent studies that
attribute interictal discharge-related hemodynamic responses
to ‘area tempestas’ that correspond to the location of the
ventral claustrum (Figure 1D).

Interestingly, Laufs et al. also found reduced benzodiazepine-
GABAA receptor binding complex expression in ‘area tempestas,’ as
measured by flumazenil positron emission tomography, in patients
experiencing more frequent seizures. The claustrum notably harbors
a significant population of GABAergic interneurons, which are
influenced by anesthetic agents that interact with benzodiazepine
GABAA receptor binding complexes. Consequently, reductions
observed in the expression of these complexes may in fact occur
within the claustrum. This reduction may also be linked to the
decreased effectiveness of benzodiazepines observed in cases of
refractory SE (Singh et al., 2014; Borroto-Escuela and Fuxe, 2020;
Kim et al., 2020; Luo et al., 2023).

In line with these results, in Figure 1C we illustrate a putative
seizure generalization network from limbic-associated brain
structures to motor-related cortical areas via the ventral
claustrum. We hypothesize that seizures arising from temporal
lobe structures can generalize broadly across ipsi- and
contralateral neocortices (e.g., generalized tonic-clonic seizures)
through ventral claustrum projections. Considering this
subcortical generalization network, we further speculate that
anterior temporal lobectomy and other temporal lobe resection
techniques utilized in epilepsy could, in some cases, resect the
ventral portion of the claustrum or transect limbic fibers to this
subregion (Feindel et al., 2009; Borger et al., 2021; Dalio et al., 2022).
The incidence, benefits, and/or altered outcomes of these surgical
possibilities are unknown. However, a recent case study provides
strong evidence that not fully resecting ‘area tempestas’ may cause
seizure recurrence following temporal lobectomy (Garganis et al.,
2013; Figure 1D).
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6 Is the claustrum a suitable therapeutic
target in epilepsy?

Our perspective on available evidence implicates the ventral
claustrum as a key node within a dysfunctional epileptic network.
To review, four key pieces of evidence from clinical and animal studies
point to the claustrum as a useful target for therapeutic development in
epilepsy: (1) Neuroimaging data that show increased activation in a
region that stereotactically corresponds to the ventral claustrum; (2)
Histopathological data in both animals and humans that reveal
neuronal cell death and cellular alterations in the ventral claustrum
after uncontrolled seizures; (3) Electrical kindling data revealing that the
ventral claustrum has a low threshold and high susceptibility to seizure
induction, and lesions to this region can profoundly mitigate or block
seizure generalization; (4) Seizure-induced disruptions to claustro-
cortico-thalamic interactions that constitute brain wide ICNs could
impair consciousness during certain seizure subtypes. Considering this
evidence, we conclude that the ventral claustrum represents a viable
target in correcting a dysfunctional epileptic network. Below we review
several therapeutic possibilities.

Targeting endogenous opioids has recently gained attention as a
promising therapy to treat temporal lobe epilepsy (Zangrandi and
Schwarzer, 2022; Lankhuijzen and Ridler, 2024). As described
earlier, the claustrum has a high density of KORs, presenting a
unique opportunity to target this brain region with KOR agonists to
reduce neuronal excitability, especially during SE (Kumar et al.,
2023). Therefore, the use of KOR agonists as anticonvulsants,
specifically for refractory SE, should be explored further. More
work is also needed to explore how the use of benzodiazepine
and non-benzodiazepine GABAA modulators can be used to
selectively target claustrum interneurons during seizures.

We previously discussed data hinting at the possibility that resecting
the ventral claustrumcould, theoretically, provide benefit in patientswith
generalized seizures that arise from temporal lobe structures (Feindel
et al., 2009; Borger et al., 2021; Dalio et al., 2022). However, this
viewpoint is highly speculative and requires formal investigation to
support or refute. Magnetic resonance-guided focused ultrasound to
selectively ablate the ventral claustrum may provide a starting point to
test this hypothesis (Ranjan et al., 2019). Long-standing
neuromodulation techniques can also be used to target the
claustrum, especially with closed-loop, state-dependent stimulation
(Wong et al., 2021; Watson and Kopell, 2022). It is conceivable that
claustrum electrical stimulation may help correct an aberrant epilepsy
network or prevent seizure generalization, but confounding variables
such as the alteration of consciousness seen in theN-of-1 study discussed
(Koubeissi et al., 2014), and the possibility of off-target white matter
stimulation effects may make this modality less favorable (Kurada et al.,
2019). Owing to the claustrum’s unique anatomy, more advanced cell-
and pathway-specific neuromodulation techniques to effectively target
this structure are warranted (Watson et al., 2021b).

An emerging tool that could selectively target the claustrum to
treat epilepsy is gene therapy (Shaimardanova et al., 2022; Boileau
et al., 2023; Miyakawa et al., 2023). Diffuse or more targeted use of
viral promoters (e.g., adeno-associated viruses, AAVs) are being
used to restrict vector expression to select populations of neuronal
subtypes. Gene therapy would address the issue of non-specific
neuromodulation and the systemic targeting of many antiseizure
medications. For example, selectively attenuating glutamatergic

projection neurons in the ventral claustrum through gene therapy
may prevent seizure generalization or impaired awareness as
previously discussed. Even developmental and epileptic
encephalopathies such as Dravet syndrome may benefit from
selective targeting of Nav1.1 parvalbumin neurons in the
claustrum (Vormstein-Schneider et al., 2020; Niibori et al., 2023).

As we contemplate the therapeutic potential of targeting the
claustrum, the prospect of correcting a dysfunctional epileptic
network becomes both promising and challenging. This
perspective article opens new avenues for understanding the
intricate interplay between the claustrum and limbic brain
structures, providing a foundation for future research and
potential breakthroughs in epilepsy therapeutics.

Data availability statement

The original contributions presented in the study are included in
the article/Supplementary material, further inquiries can be directed
to the corresponding author.

Author contributions

GW: Conceptualization, Visualization, Writing–original draft,
Writing–review and editing. SM: Conceptualization, Visualization,
Writing–original draft, Writing–review and editing. AM:
Conceptualization, Writing–review and editing. PB: Conceptualization,
Writing–review and editing. SB: Conceptualization, Writing–review and
editing. JS: Conceptualization, Visualization, Writing–original draft,
Writing–review and editing.

Funding

The author(s) declare that no financial support was received for
the research, authorship, and/or publication of this article.

Conflict of interest

GWwas an employee of SK Life Science, Inc. when drafting this
article. JS was an employee of REGENXBIO when drafting
this article.

The remaining authors declare that the research was
conducted in the absence of any commercial or financial
relationships that could be construed as a potential conflict
of interest.

Publisher’s note

All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated
organizations, or those of the publisher, the editors and the
reviewers. Any product that may be evaluated in this article, or
claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

Frontiers in Systems Biology frontiersin.org06

Watson et al. 10.3389/fsysb.2024.1385112

54

https://www.frontiersin.org/journals/systems-biology
https://www.frontiersin.org
https://doi.org/10.3389/fsysb.2024.1385112


References

Alkawadri, R., So, N. K., Van Ness, P. C., and Alexopoulos, A. V. (2016). Cingulate
epilepsy: report of 3 electroclinical subtypes with surgical outcomes. JAMA Neurol. 70
(8), 995–1002. doi:10.1001/jamaneurol.2013.2940

Atilgan, H., Doody, M., Oliver, D. K., McGrath, T. M., Shelton, A. M., Echeverria-
Altuna, I., et al. (2022). Human lesions and animal studies link the claustrum to
perception, salience, sleep and pain. Brain 145, 1610–1623. doi:10.1093/brain/awac114

Ayatollahi, P., Tarazi, A., and Wennberg, R. (2021). Possible autoimmune
encephalitis with claustrum sign in case of acute SARS-CoV-2 infection. Can.
J. Neurol. Sci. 48 (3), 430–432. doi:10.1017/cjn.2020.209

Barros, V. N., Mundim, M., Galindo, L. T., Bittencourt, S., Porcionatto, M., andMello,
L. E. (2015). The pattern of c-fos expression and its refractory period in the brain of rats
and monkeys. Front. Cell Neurosci. 12, 72. doi:10.3389/fncel.2015.00072

Benarroch, E. E. (2021). What is the role of the claustrum in cortical function and
neurologic disease?. Neur. 96 (3), 110–113. doi:10.1212/WNL.0000000000011280

Bickel, S., and Parvizi, J. (2019). Electrical stimulation of the human claustrum.
Epilepsy Behav. 97, 296–303. doi:10.1016/j.yebeh.2019.03.051

Blumenfeld, H. (2014). A master switch for consciousness? Epilepsy Behav. 37,
234–235. doi:10.1016/j.yebeh.2014.07.008

Boileau, C., Deforges, S., Peret, A., Scavarda, D., Bartolomei, F., Giles, A., et al. (2023).
GluK2 is a target for gene therapy in drug-resistant temporal lobe epilepsy. Ann. Neurol.
94 (4), 745–761. doi:10.1002/ana.26723

Borger, V., Schneider, M., Taube, J., Potthoff, A., Keil, V. C., Hamed, M., et al. (2021).
Resection of piriform cortex predicts seizure freedom in temporal lobe epilepsy. Ann.
Clin. Transl. Neurol. 8 (1), 177–189. doi:10.1002/acn3.51263

Borroto-Escuela, D. O., and Fuxe, J. (2020). On the G protein-coupled receptor
neuromodulation of the claustrum. Neurochem. Res. 45 (1), 5–15. doi:10.1007/s11064-
019-02822-4

Cahill, C., Tejeda, H. A., Spetea, M., Chen, C., and Liu-Chen, L. (2022). Fundamentals
of the dynorphins/kappa opioid receptor system: from distribution to signaling and
function. Handb. Exp. Pharmacol. 271, 3–21. doi:10.1007/164_2021_433

Coan, A. C., Campos, B. M., Beltramini, G. C., Yasuda, C., Covolan, R. J. M., and
Cendes, F. (2014). Distinct functional and structural MRI abnormalities in mesial
temporal lobe epilepsy with and without hippocampal sclerosis. Epilepsia 55 (8),
1187–1196. doi:10.1111/epi.12670

Conboy, K., Henshall, D. C., and Brennan, G. P. (2021). Epigenetic principles
underlying epileptogenesis and epilepsy syndromes. Neurobiol. Dis. 148, 105179.
doi:10.1016/j.nbd.2020.105179

Covolan, L., and Mello, L. E. (2000). Temporal profile of neuronal injury following
pilocarpine or kainic acid-induced status epilepticus. Epilepsy Res. 39 (2), 133–152.
doi:10.1016/s0920-1211(99)00119-9

Crick, F. C., and Koch, C. (2005). Philos. Trans. R. Soc. Lond B Biol. Sci. 360 (1458),
1271–1279. doi:10.1098/rstb.2005.1661

Crone, J. S., Schurz, M., Holler, Y., Bergmann, J., Monti, M., Schmid, E., et al. (2015).
Impaired consciousness is linked to changes in effective connectivity of the posterior
cingulate cortex within the default mode network. Neuroimage 110, 101–109. doi:10.
1016/j.neuroimage.2015.01.037

Dalio, M. T. R. P., Velasco, T. R., Feitosa, I. D. F., Assirati Junior, J. A., Carlotti Junior,
C. G., Leite, J. P., et al. (2022). Long-term outcome of temporal lobe epilepsy surgery in
621 patients with hippocampal sclerosis: clinical and surgical prognostic factors. Font.
Neurol. 13, 833293. doi:10.3389/fneur.2022.833293

Danielson, N. B., Guo, J. N., and Blumenfeld, H. (2011). The default mode network
and altered consciousness in epilepsy. Behav. Neurol. 24 (1), 55–65. doi:10.3233/BEN-
2011-0310

Di Dier, K., Dekesel, L., and Dekeyzer, S. (2023). The claustrum sign in febrile infection-
related epilepsy syndrome (FIRES). J. Belg Soc. Radiol. 107 (1), 45. doi:10.5334/jbsr.3142

Druga, R., Mares, P., Salaj, M., and Kubova, H. (2024). Degenerative changes in the
claustrum and endopiriform nucleus after early-life status epilepticus in rats. Int. J. Mol.
Sci. 25, 1296. doi:10.3390/ijms25021296

Fahoum, F., Lopes, R., Pittau, F., Dubeau, F., and Gotman, J. (2012). Widespread
epileptic networks in focal epilepsies: EEG-fMRI study. Epilepsia 53 (9), 1618–1627.
doi:10.1111/j.1528-1167.2012.03533.x

Feindel, W., Leblanc, R., and Almeida, A. N. (2009). Epilepsy surgery: historical highlights
1909-2009. Epilepsia 50 (Suppl. 3), 131–151. doi:10.1111/j.1528-1167.2009.02043.x

Fernandez-Miranda, J. C., Rhoton Jr, A. L., Kakizawa, Y., Choi, C., and Alvarez-
Linera, J. (2008). The claustrum and its projection system in the human brain: a
microsurgical and tractographic anatomical study. J. Neurosurg. 108 (4), 764–774.
doi:10.3171/JNS/2008/108/4/0764

Flanagan, D., Badawy, R. A. B., and Jackson, G. D. (2014). EEG-fMRI in focal epilepsy: local
activation and regional networks.Clin. Neurophysiol. 125, 21–31. doi:10.1016/j.clinph.2013.06.182

Garganis, K., Kokkinos, V., and Zountsas, B. (2013). EEG-fMRI findings in late
seizure recurrence following temporal lobectomy: a possible contribution of area
tempestas. Epilepsy Behav. Case Rep. 12 (1), 157–160. doi:10.1016/j.ebcr.2013.09.001

Gummadavelli, A., Kundishora, A. J., Willie, J. T., Andrews, J. P., Gerrard, J. L.,
Spencer, D. D., et al. (2015). Neurostimulation to improve level of consciousness in
patients with epilepsy. Neurosurg. Focus 38 (6), E10. doi:10.3171/2015.3.FOCUS1535

Guo, K., and Hong, Z. (2023). Claustrum sign in febrile infection-related epilepsy
syndrome (FIRES). Neurol. Sci. 44 (9), 3357–3359. doi:10.1007/s10072-023-06887-6

Hirsch, L. J., Gaspard, N., van Baalen, A., Nabbout, R., Demeret, S., Loddenkemper,
T., et al. (2018). Proposed consensus definitions for new-onset refractory status
epilepticus (NORSE), febrile infection-related epilepsy syndrome (FIRES), and
related conditions. Epilepsia 59 (4), 739–744. doi:10.1111/epi.14016

Humayun, M. B., Khalid, S., Khalid, H., Zahoor, W., and Malik, W. T. (2023). Post-
COVID-19 encephalitis with claustrum sign responsive to immunomodulation. Cureus
15 (2), e35363. doi:10.7759/cureus.35363

Hwang, K. J., Park, K., Yoon, S. S., and Ahn, T. (2014). Unusual lesion in the bilateral
external capsule following status epilepticus: a case report. J. Epilepsy Res. 4 (2), 88–90. doi:10.
14581/jer.14019

Ishii, K., Tsuji, H., and Tamaoka, A. (2011). Mumps virus encephalitis with
symmetric claustrum lesions. Am. J. Neuroradiol. 32 (7), E139. doi:10.3174/ajnr.A2603

Jackson, J., Smith, J. B., and Lee, A. K. (2020). The anatomy and physiology of claustrum-cortex
interactions. Annu. Rev. Neurosci. 43, 231–247. doi:10.1146/annurev-neuro-092519-101637

Kim, J. J., Gharpure, A., Teng, J., Zhuang, Y., Howard, R. J., Zhu, S., et al. (2020).
Shared structural mechanisms of general anaesthetics and benzodiazepines. Nature 585
(7824), 303–308. doi:10.1038/s41586-020-2654-5

Kimura, S., Nezu, A., Osaka, H., and Saito, K. (1994). Symmetrical external capsule
lesions in a patient with herpes simplex encephalitis. Neuropediatrics 25 (3), 162–164.
doi:10.1055/s-2008-1073016

Kou, Z., Chen, C., Abdurahman, M., Weng, X., Hu, C., and Geng, H. (2023). The
claustrum controls motor activity through anterior cingulate cortex input and local
circuit synchronization in a preparatory manner. Neurosci. Bull. 39 (10), 1591–1594.
doi:10.1007/s12264-023-01079-w

Koubeissi, M. Z., Bartolomei, F., Beltagy, A., and Picard, F. (2014). Electrical
stimulation of a small brain area reversibly disrupts consciousness. Epilepsy Behav.
37, 32–35. doi:10.1016/j.yebeh.2014.05.027

Kumar, A., and Sharma, S. (2023). Focal impaired awareness seizures. StatPearls
Treasure Island (FL): StatPearls Publishing. 2024 Jan 31. PMID: 30085572.

Kumar, H., Katyal, J., and Gupta, Y. K. (2023). Effect of U50488, a selective kappa
opioid receptor agonist and levetiracetam against lithium-pilocarpine-induced status
epilepticus, spontaneous convulsive seizures and related cognitive impairment.
Neurosci. Lett. 815, 137477. doi:10.1016/j.neulet.2023.137477

Kurada, L., Bayat, A., Joshi, S., and Koubeissi, M. Z. (2019). The claustrum in relation to
seizures and electrical stimulation. Front. Neuroanat. 12 (13), 8. doi:10.3389/fnana.2019.00008

Kuwabara, T., Arai, A., Honma, N., and Nishizawa, M. (2005). Acute encephalopathy among
patientswith renal dysfunction after ingestion of "sugihiratake", angel’swingmushroom--study on
the incipient cases in the northern area of Niigata Prefecture.Rinsho Shinkeigaku 45 (3), 239–245.

Lankhuijzen, L. M., and Ridler, T. (2024). Opioids, microglia, and temporal lobe
epilepsy. Front. Neurol. 14, 1298489. doi:10.3389/fneur.2023.1298489

Laufs, H., Richardson, M. P., Salek-Haddadi, A., Vollmar, C., Duncan, J. S., Gale, K.,
et al. (2011). Converging PET and fMRI evidence for a common area involved in human
focal epilepsies. Neur. 77 (9), 904–910. doi:10.1212/WNL.0b013e31822c90f2

Löscher, W., Ebert, U., Wahnschaffe, U., and Rundfeldt, C. (1995). Susceptibility of
different cell layers of the anterior and posterior part of the piriform cortex to electrical
stimulation and kindling: comparison with the basolateral amygdala and “area
tempestas.”. Neuroscience 66 (2), 265–276. doi:10.1016/0306-4522(94)00614-b

Luo, C., Li, Q., Lai, Y., Xia, Y., Qin, Y., Liao, W., et al. (2011a). Altered functional
connectivity in default mode network in absence epilepsy: a resting-state fMRI study.
Hum. Brain Mapp. 32 (3), 438–449. doi:10.1002/hbm.21034

Luo, C., Qiu, C., Guo, Z., Fang, J., Li, Q., Lei, X., et al. (2011b). Disrupted functional
brain connectivity in partial epilepsy: a resting-state fMRI study. PLoS One 7 (1),
e28196. doi:10.1371/journal.pone.0028196

Luo, T., Li, L., Li, J., Cai, S., Wang, Y., Zhang, L., et al. (2023). Claustrum modulates
behavioral sensitivity and EEG activity of propofol anesthesia. CNS Neurosci. Ther. 29
(1), 378–389. doi:10.1111/cns.14012

Majak, K., and Moryś, J. (2007). Endopiriform nucleus connectivities: the
implications for epileptogenesis and epilepsy. Folia Morphol. Warsz. 66 (4), 267–271.

Margerison, J. H., and Corsellis, J. A. (1966). Epilepsy and the temporal lobes. A clinical,
electroencephalographic and neuropathological study of the brain in epilepsy, with particular
reference to the temporal lobes. Brain 89 (3), 499–530. doi:10.1093/brain/89.3.499

Marriott, B. A., Do, A. D., Zahacy, R., and Jackson, J. (2021). Topographic gradients
define the projection patterns of the claustrum core and shell in mice. J. Comp. Neurol.
529 (7), 1607–1627. doi:10.1002/cne.25043

Meletti, S., Giovannini, G., d’Orsi, G., Toran, L., Monti, G., Guha, R., et al. (2017).
New-onset refractory status epilepticus with claustrum damage: definition of the clinical
and neuroimaging features. Front. Neurol. 27 (8), 111. doi:10.3389/fneur.2017.00111

Frontiers in Systems Biology frontiersin.org07

Watson et al. 10.3389/fsysb.2024.1385112

55

https://doi.org/10.1001/jamaneurol.2013.2940
https://doi.org/10.1093/brain/awac114
https://doi.org/10.1017/cjn.2020.209
https://doi.org/10.3389/fncel.2015.00072
https://doi.org/10.1212/WNL.0000000000011280
https://doi.org/10.1016/j.yebeh.2019.03.051
https://doi.org/10.1016/j.yebeh.2014.07.008
https://doi.org/10.1002/ana.26723
https://doi.org/10.1002/acn3.51263
https://doi.org/10.1007/s11064-019-02822-4
https://doi.org/10.1007/s11064-019-02822-4
https://doi.org/10.1007/164_2021_433
https://doi.org/10.1111/epi.12670
https://doi.org/10.1016/j.nbd.2020.105179
https://doi.org/10.1016/s0920-1211(99)00119-9
https://doi.org/10.1098/rstb.2005.1661
https://doi.org/10.1016/j.neuroimage.2015.01.037
https://doi.org/10.1016/j.neuroimage.2015.01.037
https://doi.org/10.3389/fneur.2022.833293
https://doi.org/10.3233/BEN-2011-0310
https://doi.org/10.3233/BEN-2011-0310
https://doi.org/10.5334/jbsr.3142
https://doi.org/10.3390/ijms25021296
https://doi.org/10.1111/j.1528-1167.2012.03533.x
https://doi.org/10.1111/j.1528-1167.2009.02043.x
https://doi.org/10.3171/JNS/2008/108/4/0764
https://doi.org/10.1016/j.clinph.2013.06.182
https://doi.org/10.1016/j.ebcr.2013.09.001
https://doi.org/10.3171/2015.3.FOCUS1535
https://doi.org/10.1007/s10072-023-06887-6
https://doi.org/10.1111/epi.14016
https://doi.org/10.7759/cureus.35363
https://doi.org/10.14581/jer.14019
https://doi.org/10.14581/jer.14019
https://doi.org/10.3174/ajnr.A2603
https://doi.org/10.1146/annurev-neuro-092519-101637
https://doi.org/10.1038/s41586-020-2654-5
https://doi.org/10.1055/s-2008-1073016
https://doi.org/10.1007/s12264-023-01079-w
https://doi.org/10.1016/j.yebeh.2014.05.027
https://doi.org/10.1016/j.neulet.2023.137477
https://doi.org/10.3389/fnana.2019.00008
https://doi.org/10.3389/fneur.2023.1298489
https://doi.org/10.1212/WNL.0b013e31822c90f2
https://doi.org/10.1016/0306-4522(94)00614-b
https://doi.org/10.1002/hbm.21034
https://doi.org/10.1371/journal.pone.0028196
https://doi.org/10.1111/cns.14012
https://doi.org/10.1093/brain/89.3.499
https://doi.org/10.1002/cne.25043
https://doi.org/10.3389/fneur.2017.00111
https://www.frontiersin.org/journals/systems-biology
https://www.frontiersin.org
https://doi.org/10.3389/fsysb.2024.1385112


Meletti, S., Slonkova, J., Mareckova, I., Monti, G., Specchio, N., Hon, P., et al. (2015).
Claustrum damage and refractory status epilepticus following febrile illness. Neurology
85 (14), 1224–1232. doi:10.1212/WNL/.0000000000001996

Miyakawa, N., Nagai, Y., Hori, Y., Mimura, K., Orihara, A., Oyama, K., et al. (2023).
Chemogenetic attenuation of cortical seizures in nonhuman primates. Nat. Commun.
14 (1), 971. doi:10.1038/s41467-023-36642-6

Mohapel, P., Hannesson, D. K., Armitage, L. L., Gillespie, G. W., and Corcoran, M. E.
(2000). Claustral lesions delay amygdaloid kindling in the rat. Epilepsia 41 (9),
1095–1101. doi:10.1111/j.1528-1157.2000.tb00313.x

Morgan, J. I., Cohen, D. R., Hempstead, J. L., and Curran, T. (1987). Mapping patterns
of c-fos expression in the central nervous system after seizure. Science 10 (4811),
192–197. doi:10.1126/science.3037702

Muccioli, L., Pensato, U., Di Vito, L., Messia, M., Nicodemo, M., and Tinuper, P.
(2022). Teaching neuroimage: claustrum sign in febrile infection-related epilepsy
syndrome. Neurology 98 (10), e1090–e1091. doi:10.1212/WNL.0000000000013261

NCT04897776 (2024). Stimulation of the thalamus for arousal restoral in temporal
lobe epilepsy (START). Available at: https://clinicaltrials.gov/study/NCT04897776.

Niibori, Y., Duba-Kiss, R., Bruder, J. T., Smith, J. B., and Hampson, D. R. (2023). In
silico prediction and in vivo testing of promoters targeting GABAergic inhibitory
neurons. Mol. Ther. Methods Clin. Dev. 28, 330–343. doi:10.1016/j.omtm.2023.01.007

Nishizawa, M. (2005). Acute encephalopathy after ingestion of “sugihiratke”
mushroom. Rinsho Shinkeigaku 45 (11), 818–820.

Nixon, J., Bateman, D., andMoss, T. (2001). AnMRI and neuropathological study of a
case of fatal status epilepticus. Seizure 10 (8), 588–591. doi:10.1053/seiz.2001.0553

Nomoto, T., Seta, T., Nomura, K., Shikama, Y., Katagiri, T., Katsura, K., et al. (2007). A
case of reversible encephalopathy accompanied by demyelination occurring after ingestion
of sugihiratakemushrooms. J. Nippon. Med. Sch. 74 (3), 261–264. doi:10.1272/jnms.74.261

Peckys, D., and Landwehrmeyer, G. B. (1999). Expression of mu, kappa, and delta
opioid receptor messenger RNA in the human CNS: a 33P in situ hybridization study.
Neuroscience 88 (4), 1093–1135. doi:10.1016/s0306-4522(98)00251-6

Pires, G., Leitner, D., Drummond, E., Kanshin, E., Nayak, S., Askenazi, M., et al.
(2021). Proteomic differences in the hippocampus and cortex of epilepsy brain tissue.
Brain Commun. 3 (2), fcab021. doi:10.1093/braincomms/fcab021

Ranjan, M., Boutet, A., Bhatia, S., Wilfong, A., Hader, W., Lee, M. R., et al. (2019).
Neuromodulation beyond neurostimulation for epilepsy: scope for focused ultrasound.
Expert Rev. Neurother. 19 (10), 937–943. doi:10.1080/14737175.2019.1635013

Safan, A. S., Al-Termanini, M., Abdelhady, M., Osman, Y., Elzouki, A. Y., and
Abdussalam, A. L. (2023). Claustrum sparing sign in seronegative limbic encephalitis.
eNeurologicalSci 16 (31), 100465. doi:10.1016/j.ensci.2023.100465

Shaimardanova, A. A., Chulpanova, D. S., Mullagulova, A. I., Afawi, Z., Gamirova, R.
G., Solovyeva, V. V., et al. (2022). Gene and cell therapy for epilepsy: mini review. Front.
Mol. Neurosci. 11: 15: 868531. doi:10.3389/fnmol.2022.868531

Silva, G., Jacob, S., Melo, C., Alves, D., and Costa, D. (2018). Claustrum sign in a child
with refractory status epilepticus after febrile illness: why does it happen? Acta Neurol.
Belg 118 (2), 303–305. doi:10.1007/s13760-017-0820-9

Silva, R. A. E., and Sousa, T. A. P. (2019). Isolated involvement of external capsules
and claustrum in status epilepticus. Arq. Neuropsiquiatr. 77 (5), 369. doi:10.1590/0004-
282X20190040

Singh, S. P., Agarwal, S., and Faulkner, M. (2014). Refractory status epilepticus. Ann.
Indian Acad. Neurol. 17 (Suppl. 1), S32–S36. doi:10.4103/0972-2327.128647

Siow, P., Tsao, C., Chang, H., Chen, C., Yu, I., Lee, K., et al. (2020). Mice lacking
connective tissue growth factor in the forebrain exhibit delayed seizure response,
reduced c-fos expression and different microglial phenotype following acute PTZ
injection. Int. J. Mol. Sci. 21 (14), 4921. doi:10.3390/ijms21144921

Sitcoske O’Shea, M., Rosen, J. B., Post, R. M., and Weiss, S. R. (2000). Specific
amygdaloid nuclei are involved in suppression or propagation of epileptiform activity
during transition stage between oral automatisms and generalized clonic seizures. Brain
Res. 873 (1), 1–17. doi:10.1016/s0006-8993(00)02307-6

Smith, J. B., and Alloway, K. D. (2014). Interhemispheric claustral circuits coordinate
sensory and motor cortical areas that regulate exploratory behavior. Front. Syst.
Neurosci. 19: 8: 93. doi:10.3389/fnsys.2014.00093

Smith, J. B., Alloway, K. D., Hof, P. R., Orman, R., Reser, D. H., Watakabe, A., et al.
(2019a). The relationship between the claustrum and endopiriform nucleus: a
perspective towards consensus on cross-species homology. J. Comp. Neurol. 527 (2),
476–499. doi:10.1002/cne.24537

Smith, J. B., Lee, A. K., and Jackson, J. (2020). The claustrum. Curr. Biol. 30 (23),
R1401–R1406. doi:10.1016/j.cub.2020.09.069

Smith, J. B., Liang, Z., Watson, G. D. R., Alloway, K. D., and Zhang, N. (2017).
Interhemispheric resting-state functional connectivity of the claustrum in the awake
and anesthetized states. Brain Struct. Funct. 222 (5), 2041–2058. doi:10.1007/s00429-
016-1323-9

Smith, J. B., Watson, G. D. R., Liang, Z., Liu, Y., Zhang, N., and Alloway, K. D.
(2019b). A role for the claustrum in salience processing? Front. Neuroanat. 19, 64.
doi:10.3389/fnana.2019.00064

Solbrig, M. V., Adrian, R., Baratta, J., Lauterborn, J. C., and Koob, G. F. (2006). Kappa
opioid control of seizures produced by a virus in an animal model. Brain 129 (Pt 3),
642–654. doi:10.1093/brain/awl008

Solbrig, M. V., and Koob, G. F. (2004). Epilepsy, CNS viral injury and dynorphin.
Trends Pharmacol. Sci. 25 (2), 98–104. doi:10.1016/j.tips.2003.12.010

Sperner, J., Sander, B., Lau, S., Krude, H., and Scheffner, D. (1996). Severe transitory
encephalopathy with reversible lesions of the claustrum. Pediatr. Radiol. 26 (11),
769–771. doi:10.1007/BF01396197

Steriade, C., Tang-Wai, D. F., Krings, T., and Wennberg, R. (2017). Claustrum
hyperintensities: a potential clue to autoimmune epilepsy. Epilepsia Open 2 (4),
476–480. doi:10.1002/epi4.12077

Stiefel, K. M., Merrifield, A., and Holcombe, A. O. (2014). The claustrum’s proposed
role in consciousness is supported by the effect and target localization of Salvia
divinorum. Front. Integr. Neurosci. 26 (8), 20. doi:10.3389/fnint.2014.00020

Szyndler, J., Maciejak, P., Turzynska, D., Sobolewska, A., Taracha, E., Skorzewska, A.,
et al. (2009). Mapping of c-fos expression in the rat brain during the evolution of
pentylenetetrazol-kindled seizures. Epilepsy Behav. 16 (2), 216–224. doi:10.1016/j.
yebeh.2009.07.030

Vaughan, D. N., and Jackson, G. D. (2014). The piriform cortex and human focal
epilepsy. Front. Neurol. 5, 259. doi:10.3389/fneur.2014.00259

Vormstein-Schneider, D., Lin, J. D., Pelkey, K. A., Chittajallu, R., Guo, B., Arias-
Garcia, M. A., et al. (2020). Viral manipulation of functionally distinct interneurons in
mice, non-human primates and humans. Nat. Neurosci. 23 (12), 1629–1636. doi:10.
1038/s41593-020-0692-9

Wada, J. A., and Kudo, T. (1997). Involvement of the claustrum in the convulsive
evolution of temporal limbic seizure in feline amygdaloid kindling. Electroencephalogr.
Clin. Neurophysiol. 103 (2), 249–256. doi:10.1016/s0013-4694(97)96160-5

Wada, J. A., and Tsuchimochi, H. (1997). Role of the claustrum in convulsive
evolution of visual afferent and partial nonconvulsive seizure in primates. Epilepsia
38 (8), 897–906. doi:10.1111/j.1528-1157.1997.tb01255.x

Watson, G. D. R., Afra, P., Bartolini, L., Graf, D. A., Kothare, S. V., McGoldrick, P.,
et al. (2021a). A journey into the unknown: an ethnographic examination of drug-
resistant epilepsy treatment and management in the United States. Epilepsy Behav. 124,
108319. doi:10.1016/j.yebeh.2021.108319

Watson, G. D. R., Hughes, R. N., Petter, E. A., Fallon, I. P., Kim, N., Severino, F. P. U.,
et al. (2021b). Thalamic projections to the subthalamic nucleus contribute to movement
initiation and rescue of parkinsonian symptoms. Sci. Adv. 7 (6), eabe9192. doi:10.1126/
sciadv.abe9192

Watson, G. D. R., and Kopell, B. H. (2022). Editorial: all roads lead to Rome:
Harnessing thalamic neuromodulation for difficult-to-treat neurological disorders.
Front. Hum. Neurosci. 14, 1155605. doi:10.3389/fnhum.2023.1155605

Watson, G. D. R., Smith, J. B., and Alloway, K. D. (2017). Interhemispheric
connections between the infralimbic and entorhinal cortices: the endopiriform
nucleus has limbic connections that parallel the sensory and motor connections of
the claustrum. J. Comp. Neurol. 15 (6), 1363–1380. doi:10.1002/cne.23981

Willoughby, J. O., Mackenzie, L., Medvedev, A., and Hiscock, J. J. (1997). Fos
induction following systemic kainic acid: early expression in hippocampus and later
widespread expression correlated with seizure. Neuroscience 77 (2), 379–392. doi:10.
1016/s0306-4522(96)00462-9

Wong, K. L. L., Nair, A., and Augustine, G. J. (2021). Changing the cortical
conductor’s tempo: neuromodulation of the claustrum. Front. Neural Circuits 13,
658228. doi:10.3389/fncir.2021.658228

Zangrandi, L., and Schwarzer, C. (2022). The kappa opioid receptor system in temporal
lobe epilepsy. Handb. Exp. Pharmacol. 271, 379–400. doi:10.1007/164_2021_444

Zhang, X., Hannesson, D. K., Saucier, D. M., Wallace, A. E., Howland, J., and
Corcoran, M. E. (2001). Susceptibility to kindling and neuronal connections of the
anterior claustrum. J. Neurosci. 15 (10), 3674–3687. doi:10.1523/JNEUROSCI.21-10-
03674.2001

Zhang, X., Le Gal La Salle, G., Ridoux, V., Yu, P. H., and Ju, G. (1997). Prevention of
kainic acid-induced limbic seizures and fos expression by the GABA-A receptor agonist
muscimol. Eur. J. Neurosci. 9 (1), 29–40. doi:10.1111/j.1460-9568.1997.tb01350.x

Frontiers in Systems Biology frontiersin.org08

Watson et al. 10.3389/fsysb.2024.1385112

56

https://doi.org/10.1212/WNL/.0000000000001996
https://doi.org/10.1038/s41467-023-36642-6
https://doi.org/10.1111/j.1528-1157.2000.tb00313.x
https://doi.org/10.1126/science.3037702
https://doi.org/10.1212/WNL.0000000000013261
https://clinicaltrials.gov/study/NCT04897776
https://doi.org/10.1016/j.omtm.2023.01.007
https://doi.org/10.1053/seiz.2001.0553
https://doi.org/10.1272/jnms.74.261
https://doi.org/10.1016/s0306-4522(98)00251-6
https://doi.org/10.1093/braincomms/fcab021
https://doi.org/10.1080/14737175.2019.1635013
https://doi.org/10.1016/j.ensci.2023.100465
https://doi.org/10.3389/fnmol.2022.868531
https://doi.org/10.1007/s13760-017-0820-9
https://doi.org/10.1590/0004-282X20190040
https://doi.org/10.1590/0004-282X20190040
https://doi.org/10.4103/0972-2327.128647
https://doi.org/10.3390/ijms21144921
https://doi.org/10.1016/s0006-8993(00)02307-6
https://doi.org/10.3389/fnsys.2014.00093
https://doi.org/10.1002/cne.24537
https://doi.org/10.1016/j.cub.2020.09.069
https://doi.org/10.1007/s00429-016-1323-9
https://doi.org/10.1007/s00429-016-1323-9
https://doi.org/10.3389/fnana.2019.00064
https://doi.org/10.1093/brain/awl008
https://doi.org/10.1016/j.tips.2003.12.010
https://doi.org/10.1007/BF01396197
https://doi.org/10.1002/epi4.12077
https://doi.org/10.3389/fnint.2014.00020
https://doi.org/10.1016/j.yebeh.2009.07.030
https://doi.org/10.1016/j.yebeh.2009.07.030
https://doi.org/10.3389/fneur.2014.00259
https://doi.org/10.1038/s41593-020-0692-9
https://doi.org/10.1038/s41593-020-0692-9
https://doi.org/10.1016/s0013-4694(97)96160-5
https://doi.org/10.1111/j.1528-1157.1997.tb01255.x
https://doi.org/10.1016/j.yebeh.2021.108319
https://doi.org/10.1126/sciadv.abe9192
https://doi.org/10.1126/sciadv.abe9192
https://doi.org/10.3389/fnhum.2023.1155605
https://doi.org/10.1002/cne.23981
https://doi.org/10.1016/s0306-4522(96)00462-9
https://doi.org/10.1016/s0306-4522(96)00462-9
https://doi.org/10.3389/fncir.2021.658228
https://doi.org/10.1007/164_2021_444
https://doi.org/10.1523/JNEUROSCI.21-10-03674.2001
https://doi.org/10.1523/JNEUROSCI.21-10-03674.2001
https://doi.org/10.1111/j.1460-9568.1997.tb01350.x
https://www.frontiersin.org/journals/systems-biology
https://www.frontiersin.org
https://doi.org/10.3389/fsysb.2024.1385112


De novo prediction of functional
effects of genetic variants from
DNA sequences based on
context-specific molecular
information

Jiaxin Yang1, Sikta Das Adhikari1,2, Hao Wang1, Binbin Huang1,
Wenjie Qi1,3, Yuehua Cui2 and Jianrong Wang1*
1Department of Computational Mathematics, Science and Engineering, Michigan State University,
East Lansing, MI, United States, 2Department of Statistics and Probability, Michigan State University,
East Lansing, MI, United States, 3Department of Biomedical Engineering, Michigan State University,
East Lansing, MI, United States

Deciphering the functional effects of noncoding genetic variants stands as a
fundamental challenge in human genetics. Traditional approaches, such as
Genome-Wide Association Studies (GWAS), Transcriptome-Wide Association
Studies (TWAS), and Quantitative Trait Loci (QTL) studies, are constrained by
obscured the underlying molecular-level mechanisms, making it challenging to
unravel the genetic basis of complex traits. The advent of Next-Generation
Sequencing (NGS) technologies has enabled context-specific genome-wide
measurements, encompassing gene expression, chromatin accessibility,
epigenetic marks, and transcription factor binding sites, to be obtained across
diverse cell types and tissues, paving the way for decoding genetic variation
effects directly from DNA sequences only. The de novo predictions of functional
effects are pivotal for enhancing our comprehension of transcriptional regulation
and its disruptions caused by the plethora of noncoding genetic variants linked to
human diseases and traits. This review provides a systematic overview of the state-
of-the-art models and algorithms for genetic variant effect predictions, including
traditional sequence-based models, Deep Learning models, and the cutting-edge
FoundationModels. It delves into the ongoing challenges and prospective directions,
presenting an in-depth perspective on contemporary developments in this domain.

KEYWORDS

genetic variants, deep learning, DNA sequence, disease genetics, systems genetics,
cellular context specificity, foundation models

Introduction

Genetic variants have emerged as pivotal factors in the etiology of severe human
diseases (Klein et al., 2005). Therefore, quantitative and systems-level understandings of the
relationship between human diseases and genetic variants are critical in precision medicine
and clinical care. Over the past decades, the Genome-wide Association Study (GWAS)
(Hirschhorn and Daly, 2005; Visscher et al., 2012) has revolutionized the field of complex
disease genetics, in which millions of single-nucleotide polymorphisms (SNPs) of
individuals are tested to identify significant genotype-phenotype associations. However,
GWAS grapples with two pronounced limitations that have spurred the quest for advanced
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methodologies (Tam et al., 2019). Firstly, it often limited by low
statistical power, mainly stemming from the constraints imposed by
limited sample sizes and the arduous multi-testing demands.
Secondly, the causal relationships between specific genetic
variants and diseases remain obscured, partly owing to the
ambiguity induced by Linkage Disequilibrium (LD) (Bulik-
Sullivan et al., 2015) and the paucity of insights into the
underlying molecular mechanisms. Traditionally, human disease
genetics research has centered around SNPs located in protein
coding regions, a mere 1.2% of the human genome (Visscher
et al., 2012). Next-generation Sequencing (NGS) (Buermans and
den Dunnen, 2014) technologies like RNA-seq, DNase-seq, and
ChIP-seq (Luo et al., 2020) have empowered researchers to measure
gene expression, chromatin accessibility, and transcription factor

(TF) binding genome-wide. This advance fuels an exploration of the
vast non-coding genome and gives the potential to analyze the effect
of genetic variants on nearby local regions.

Given the DNA sequence’s fundamental role as the instruction
manual for all aspects of life, understanding the function of
regulatory genomic elements that control gene expression is
paramount. Moving beyond population-based statistical analyses
like GWAS and Transcriptome-Wide Association Studies (TWAS)
(Wainberg et al., 2019), direct predictions of genetic variant effects
from DNA sequences are pivotal for elucidating the underlying
biological mechanisms. This review will explore the evolution of
computational models for predicting genetic variant effects genome-
wide. We first review the traditional annotation-based models that
rely on simple sequence motifs to estimate variant impacts, then dive

FIGURE 1
The development of models for genetic variants’ effect predictions based on DNA sequences. (A) Traditional models leverage multi-omics data
resources to annotate and prioritize genetic variants and use static motif PWMs to analyze the gain- and loss-function of TF bindings. (B) Deep Learning
models, employing CNN, RNN, and Transformer architectures, are designed to predict functional genomics profiles across various cell types. They
determine the effects of genetic variants by comparing the predicted genomic profiles for the reference versus alternative alleles. (C) Foundation
Models utilize a self-supervised pre-training strategy based onDNA sequences only, enabling them to be efficiently fine-tuned for a range of downstream
tasks, including the prediction of genetic variant effects across different cellular contexts.
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into the advancements achieved through de novo prediction models
that leverage deep learning techniques (Figure 1). We conclude by
discussing the current challenges in the field of systems genetics and
proposing future research directions that hold promise for further
breakthroughs.

Functional variant annotation and
prioritization

The ENCODE (Luo et al., 2020) and the Roadmap Epigenomics
Consortium (Bernstein et al., 2010) have significantly advanced our
understanding of the human genome by profiling a wide array of
functional noncoding elements through diverse assays. This wealth
of data has enabled the functional annotation of genetic variants
across the human genome (Figure 1A). GWAVA (Ritchie et al.,
2014), by leveraging a comprehensive suite of genomic and
epigenomic annotations, predicts the functional impact of
noncoding variants. Its features encompass open chromatin
regions, TF binding sites, histone modifications, RNA polymerase
interactions, CpG islands, genomic segmentation, evolutionary
conservation, genic context, and sequence context. These
annotations are synthesized to mitigate the challenges posed by
context dependency and the variability of evolutionary conservation
signals within regulatory elements. Furthermore, pattern
recognition algorithms help to identify DNA sequence motifs
overrepresented in regulatory regions of co-expressed genes,
enhancing our understanding of gene regulation (Stormo and
Fields, 1998). The Position Weight Matrix (PWM) (Stormo and
Fields, 1998) represents DNA binding sites of different TFs by
scoring each potential base at a given genomic position, thereby
quantifying the specificity of protein-DNA interactions and
facilitating the prediction of new binding sites. An annotation-
based approach, Funseq2 (Fu et al., 2014), integrates these
methodologies to analyze loss-of-function and gain-of-function
events in TF binding. It calculates motif-breaking scores for
variants within TF binding motifs identified by ChIP-seq peaks,
and motif-gaining scores for variants in promoters or regulatory
elements significantly associated with genes, based on PWM
p-values for the mutated allele. Funseq2 also incorporates
annotation-based features such as conservation, enhancer-gene
links, network centrality, and recurrence across samples.
However, reliance solely on regulatory annotations and static
PWMs has its drawbacks: many variants in non-coding regions
do not overlap with regulatory annotations, and novel motifs cannot
be discovered through static PWMs (Zhou and Troyanskaya, 2015;
Kelley et al., 2016).

Addressing these limitations, kmer-SVM (Lee et al., 2011)
emerged as a pioneering model for predicting regulatory
elements directly from DNA sequences, bypassing the need for
existing annotated motifs. It counts the frequencies of various
k-mers within a piece of DNA sequence, employing a support
vector machine (SVM) trained on these k-mer features to assess
the likelihood of a sequence being a functional genomic regulatory
element or a tissue-specific enhancer. Gapped k-mers, utilized as
features in the gkm-SVM (Ghandi et al., 2014), have further
enhanced model accuracy in enhancer identification and TF
binding site prediction. Moreover, Delta-SVM (Lee et al., 2015)

incorporates the gkm-SVM predictions to assess the disruptive
impacts of genetic variants. Despite these advances, the
complexity and non-linearity of the underlying regulatory
grammar in DNA sequences require further improvements in
model performance (Zhou and Troyanskaya, 2015; Kelley
et al., 2016).

De novo prediction of genetic variants’
effects based on deep learning

Deep learning excels in two key capabilities: 1) extracting and
representing features, with enhanced flexibility and power, from
semi-structured and unstructured data formats, such as texts and
images, and 2) approximating various functions effectively through
deep layering, with neural networks comprising stacks of linear
transformations interspersed with non-linear activations. For the
purpose of predicting the effects of genetic variants (Figure 1B), deep
learning models typically represent reference DNA sequences using
the one-hot encoding (where A = [1,0,0,0], C = [0,1,0,0], G =
[0,0,1,0], T = [0,0,0,1], and N = [0,0,0,0]). The input DNA
fragments are represented accordingly, S ∈ R4×L, where L denotes
the DNA sequence length. Feature extraction from these one-hot
encoded sequences to produce sequence embeddings typically
employs two foundational architectures: the 1D Convolutional
Neural Network (CNN) (O’Shea and Nash, 2015) and the
Recurrent Neural Network (RNN) (Sherstinsky, 2018), such as
Long Short-Term Memory Network (LSTM) (Sherstinsky, 2018).

The CNN architecture focuses on local sequence information,
with the initial layer acting as a position-weight matrix, so that the
convolution operations are analogous to computing PWM scores
across the DNA sequence within each sliding window. Subsequent
deep CNN layers capture the non-linear and complex sequence
signatures, by utilizing the pooling layers to reduce dimensions after
each CNN layer. On the other hand, the LSTM architectures capture
sequential dependencies in the genome, by incorporating an internal
state that reflects the long-term sequential information. Following
these feature representation layers, several fully connected layers are
then utilized to generate the final predictions. CNNs, in particular,
are adept at learning hierarchical layers of complex, nonlinear
patterns without requiring strong prior biological assumptions,
thus enabling the discovery of novel sequence motifs and their
organizational sequence contexts (Zhou and Troyanskaya, 2015;
Kelley et al., 2016; Quang and Xie, 2016).

Pioneering applications of deep neural networks in this field, such
as DeepSEA (Zhou and Troyanskaya, 2015) and Basset (Kelley et al.,
2016), have demonstrated the significant potential of CNNs for
predicting genetic variants’ effects based solely on DNA sequences.
DeepSEA leverages a multi-task CNN model to predict TF ChIP-seq,
DNase-seq, and histone mark ChIP-seq peaks across a variety of cell
types, based on the data from the ENCODE andRoadmapEpigenomics
projects. Basset focuses on chromatin accessibility, while DanQ (Quang
and Xie, 2016) combines CNN and LSTM to enhance peak profile
prediction performance. Trained on the large-scale multi-omics
datasets across different cell types from the reference genome, these
deep learning models are thus capable of predicting the peak profiles of
distinct regulatory factors in a cell-type specific way. For a specific
alternative allele of interest, the model’s predictions based on the altered
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genome sequence are compared to those based on the reference
genome. The differences in predictions are then used as indicators
of the alternative allele’s functional disruptions under specific cellular
contexts, leading to mechanistic hypotheses of its downstream effects in
complex human diseases.

Further advancements have seen models like Basenji (Kelley et al.,
2018), which employs CNN architectures to predict a wider range of
genomic signals, including DNase-seq, histone mark ChIP-seq, and
CAGE signals across cell types. By using dilated convolution layers,
Basenji is able to capture more contextual information around 32 kb
DNA sequence windows, thereby identifying relevant regulatory
sequences over a broader scope. Additionally, efforts to understand
genetic variant effects have expanded from modeling the genomic
and epigenomic levels to predicting target genes’ expressions. For
instance, ExPecto (Zhou et al., 2018) predicts the effects on nearby
gene expression in a two-stage strategy. First, ExPecto forecasts histone
marks, TF, and DNase profiles from DNA sequences, and second, it
aggregates the forecasted signals to make predictions of tissue-specific
expression. This approach allows for the interpretation of genetic
variants’ effects in the dysregulation of nearby genes. Moreover,
BPNet (Avsec et al., 2021a) has pushed the boundaries further by
predicting base-resolution genomic profiles, utilizing a CNN
architecture without pooling layers to achieve the single-base pair
resolution predictions.

Cross-species regulatory information and
long-range variant effects

Expanding the training dataset is a well-regarded strategy to
enhance the accuracy of deep learning models. While new genome-
wide functional genomics profiles grow fast, these new datasets
primarily provide information that has already been captured by the
model from existing datasets in the human genome. The additional
benefits of gatheringmore functional genomics datasets from additional
human genomes may decrease, since the genotypes of different
individuals are largely similar. In this context, the quest for
significantly different training sequences becomes paramount, with a
greater potential to develop and refine more sophisticated and
precise models.

An intriguing solution lies in the exploration of non-human species
as a reservoir of novel training data. The regulatory DNA sequences of
species that are genetically related to humans possess sufficient
similarities, enabling the application of machine learning models
trained across these diverse genomes. Such cross-species training has
the potential to enhance the models’ understanding of regulatory
sequence activities. An example of this approach is the expansion of
the Basenji model to simultaneously process functional genomic signal
tracks from both the mouse and human genomes (Kelley, 2020). This
cross-species training strategy has been shown to yield more accurate
predictions on the test set of sequences which has not been seen by the
model previously, compared to those trained exclusively on data from a
single species. This innovative approach underscores the utility of
integrating diverse genomic data sources to significantly advance the
precision of predictive models in functional genomics.

However, CNNs, the key architecture in previous models, often
struggle with the problem of capturing semantic dependencies over long
genomic distances due to their focus on localized feature extraction,

which is limited by the filter size. Besides, RNNs can learn long-term
dependencies but are hampered by issues like vanishing gradients and
inefficiency in dealing with long genomic sequences. This limitation is
particularly challenging in modeling complex cell-type specific gene
regulation, where distal enhancers can influence gene expression over
large distances (Lieberman-Aiden et al., 2009; Wang et al., 2021),
underscoring the importance in predicting long-range effects of
genetic variants. The Transformer model (Vaswani et al., 2017) has
demonstrated remarkable success beyond its initial applications in
natural language processing and computer vision, increasingly
supplanting traditional CNN and RNN-based models across various
domains. Its exceptional capability to capture long-range dependencies
without relying on recurrent units renders it more scalable and adaptable
for handling large datasets. At the heart of the Transformer architecture
is the multi-head self-attention mechanism, which efficiently models
dependencies between genomic locations, regardless of their distance
(Vaswani et al., 2017). This ability allows deeper layers of the model to
discern increasingly complex relationships, facilitating the prediction of
distal genetic variant effects by capturing interactions between genomic
locations separated by considerable distances.

Enformer (Avsec et al., 2021b), a state-of-the-art model leveraging
both CNNs and the Transformer architecture, excels in predicting
histone marks, TF binding sites, chromatin accessibility, and gene
expression across diverse cell types, including those from the
genomes of human and mouse. Its design significantly extends the
model’s receptive field, enabling the identification of distal regulatory
elements up to 100 kb away. This expansive reach allows Enformer to
integrate information from all pertinent regions, such as enhancers,
thereby enhancing gene expression prediction. Moreover, the model’s
attention weights offer greater interpretability, shedding light on the
underlying mechanisms of chromatin and gene regulation. With its
superior performance of predictions across >5,000 functional genome
profiles, including gene expressions, Enformer showcases an
unparalleled capacity to forecast both local and distal genetic variant
effects. This demonstrates the potential of Transformer-basedmodels in
advancing our understanding and prediction of genetic regulations
underlying complex traits.

General sequence grammar of variants
learned by foundation models

Traditional deep learning models have achieved impressive
results in interpreting functional genomic profiles from DNA
sequences through supervised learning, where the models are
trained to accurately predict experimental genomic tracks based
on the sequence representations. However, this approach
necessitates a vast amount of labeled data, constraining the
models’ performance and utility in situations where labeled data
is scarce. Obtaining high-quality, labeled datasets is often expensive
and time-consuming. Moreover, the available data tends to be biased
towards certain well-studied cell types with many tracks, neglecting
a broad spectrum of cell types yet to be explored. This imbalance
results in overrepresented genomic tracks overshadowing the DNA
sequence representation, diminishing the efficacy of genomic
variant effect prediction in less studied, underrepresented cell types.

In contrast, the development of Foundation Models originally in
the fields such as text and image generation illustrates the potential
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benefits of leveraging context information through a self-supervised
pre-training strategy (Devlin et al., 2018; Brown et al., 2020). These
models, trained on enormous datasets, have demonstrated capabilities
surpassing human performance in certain tasks. The pre-training and
fine-tuning framework of Foundation Models involves initial training
on vast unlabeled datasets, followed by fine-tuning for specific
downstream tasks (Devlin et al., 2018; Brown et al., 2020). Applied
to disease genetics studies, this approach entails pre-training models
on unlabeled genomic sequences, which are subsequently fine-tuned
for specific genomic interpretation tasks (Figure 1C). This
methodology not only mitigates the challenges associated with data
scarcity and bias but also enhances the model’s ability to understand
and predict across a diverse range of cell types and genomic contexts
(Ji et al., 2021).

DNABERT (Ji et al., 2021) is a pioneer encoder-based Foundation
Model in genetics. It processes DNA sequences by breaking them
down into k-mers. For input sequences with lengths up to 512 bp, 15%
of k-mers are randomly replaced by a [MASK] token. The
Transformer encoder then leverages context information to
reconstruct these masked k-mers without additional information.
By accurately reconstructing the masked k-mers, DNABERT
captures the fundamental grammatical structures of DNA
sequences, enabling it to generate meaningful representations for
any given sequence. This model has demonstrated remarkable
efficacy across numerous downstream applications (Ji et al., 2021),
such as promoter identification, TF binding site prediction, and the
detection of functional genetic variants. Building on DNABERT’s
foundation, subsequent iterations like DNABERT2 (Zhou et al., 2023)
and DNABERTS (Zhou et al., 2024) have broadened the scope of

Foundation Models to encompass a wider range of species beyond
just humans.

The Nucleotide Transformer (Dalla-Torre et al., 2023), an
advanced and larger encoder-based Foundation Model, is pre-
trained on DNA sequences with over 2.5 billion parameters and
can handle sequences up to 6 kb in length. This model has shown
remarkable success in a variety of downstream tasks (Dalla-Torre
et al., 2023) after fine-tuning, demonstrating the beneficial impacts
of both increased model size and the ability to process longer
sequences. Beyond the Transformer architecture, HyenaDNA
(Nguyen et al., 2023) innovatively extends the contextual reach to
up to 1 million tokens at the single nucleotide level through the use
of global convolutional filters. This significant enhancement enables
the model to effectively leverage long-range chromatin regulation at
single base pair resolution. Additionally, HyenaDNA introduces
novel downstream adaptation methods, such as a unique soft
prompt technique. This approach allows for exceptional
downstream results without the necessity of updates to the pre-
trained model, thus facilitating the seamless application of the
Foundation Model to various tasks, including the prediction of
genetic variant effects. This revolution in model design and
functionality marks a pivotal advancement in our capacity to
understand and interpret complex genetic information.

Discussions

This review has explored the evolution of models dedicated to
predicting the effects of genetic variants using only DNA sequences

TABLE 1 Summary of computational models.

Tool Model
architecture

Required data Link

GWAVA Annotation-based Experimental annotation https://www.sanger.ac.uk/tool/gwava/

Funseq2 Annotation + PWM Experimental annotation + DNA sequence http://funseq2.gersteinlab.org/

Delta-SVM SVM DNA sequence https://www.beerlab.org/deltasvm/

DeepSEA CNN DNA sequence + experiment peaks https://hb.flatironinstitute.org/deepsea/

Basset CNN DNA sequence + experiment peaks https://github.com/davek44/Basset

DanQ CNN + LSTM DNA sequence + experiment peaks https://github.com/uci-cbcl/DanQ

Basenji CNN DNA sequence + experiment signals https://github.com/calico/basenji

ExPecto CNN + regression DNA sequence + experiment signals https://github.com/FunctionLab/ExPecto

BPNet CNN DNA sequence + experiment signals https://github.com/kundajelab/bpnet/

Basenji2 CNN DNA sequence + experiment signals https://github.com/calico/basenji

Enformer CNN + Transformer DNA sequence + experiment signals across
species

https://github.com/google-deepmind/deepmind-research/tree/
master/enformer

DNABERT Transformer DNA sequence https://github.com/jerryji1993/DNABERT

DNABERT2 Transformer DNA sequence https://github.com/MAGICS-LAB/DNABERT_2

DNABERTS Transformer DNA sequence https://github.com/MAGICS-LAB/DNABERT_S

The Nucleotide
Transformer

Transformer DNA sequence https://github.com/instadeepai/nucleotide-transformer

HyenaDNA Hyena DNA sequence https://github.com/HazyResearch/hyena-dna
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(Table 1). Enabled by the widespread availability of multi-omics
datasets and enhanced computational resources, researchers have
transitioned from basic feature annotation and motif recognition to
the development of sophisticated deep learning models. These
models, trained through both supervised and self-supervised
approaches, have progressively achieved more accurate
predictions of the genetic variant effects across a variety of cell types.

Despite their advancements, deep learning models for predicting
genetic variant effects face two significant challenges: Firstly, model
training predominantly relies on labeled data at the cell type level, which
limits their capability to discern the functional effects at the single-cell
level. With the advent of single-cell sequencing technologies, such as
scRNA-seq, scATAC-seq, and scHi-C, there is an influx of data
providing detailed insights into gene expression, chromatin
accessibility, and regulation at the single-cell level. This type of data,
however, tends to be sparse and noisy. Foundation models, pre-trained
on the fundamental sequence grammar, exhibit a strong potential for
enhancing their performance through fine-tuning with minimal data,
addressing the challenge of integrating single-cell level data. Secondly,
the training of current models is anchored to the reference genome,
neglecting the diversity and frequency of genetic variations across
different genotypes. While these models may excel in predicting
genetic profiles based on the reference genome, they primarily
capture consensus information, which may not accurately represent
the actual effects of genetic variants. The discrepancies between the
reference and alternative alleles do not fully encapsulate the impact of
genetic variants. CRISPR (Korkmaz et al., 2016; Fulco et al., 2019)
technology, which elucidates the casual and real effects of genetic
variants, offers valuable insights beyond the reference genomic
context. The CRISPR-derived data is expected to help to fill the gap
between model predictions and biological reality.
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Life’s building blocks: themodular
path to multiscale complexity
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Modularity, the structuring of systems into discrete, interconnected units, is a
fundamental organizing principle in biology across multiple scales. Recent
progress in understanding the role of modularity as an evolutionary
mechanism and a key driver of biological complexity has highlighted its
importance in shaping the structure and function of living systems. Here, we
propose a unifying framework that identifies the potential evolutionary
advantages of modularity in systems ranging from molecular networks to
ecologies, such as facilitating evolvability, enhancing robustness, improving
information flows, and enabling the emergence of higher-level functions. Our
analysis reveals the pervasiveness of modularity in living systems and highlights its
crucial role in the evolution of multiscale hierarchies of increasing complexity.

KEYWORDS

modularity, multiscale modeling, hierarchical organization, emergent complexity,
evolutionary structures, modular evolution, evolutionary dynamics, biological
complexity

1 Introduction

Modularity is a fundamental organizing principle in biological systems that manifests
itself at multiple scales and levels of organization (Ravasz et al., 2002; Meunier et al., 2009;
Lorenz et al., 2011). Although its precise definition can depend on the context, in a broad
sense, modularity in biology has been connected to the capacity of living systems to be “near
decomposable,” (Simon, 1962), that is, to their ability to divide functions into different
subunits known as modules, which perform specific tasks with a certain degree of autonomy
(Wagner et al., 2007). These modules can be viewed as composed of parts that interact more
closely with each other than with other modules, thus showing a degree of functional
independence that allows them to perform specific functions efficiently (Klingenberg et al.,
2003; Cheverud et al., 2004; Kadelka et al., 2023). Modularity is also closely related to the
emergence of hierarchical organization, in which systems are organized into nested levels,
where each level is composed of subsystems from lower levels and, in turn, forms part of
supersystems at higher levels (Barabasi and Oltvai, 2004).

Modularity is a multifaceted concept that has been studied through diverse perspectives,
including developmental, evolutionary, genetic, and morphological approaches, each with
its own set of questions, methods, and insights (Zelditch and Goswami, 2021). For example,
network theory provides a quantitative framework for analyzing modularity based on
topological features, while other approaches focus on the physical structures found in living
organisms, such as the organization of cells into tissues and organs or the arrangement of
skeletal elements (Melo et al., 2016; Felice et al., 2018). Other studies have explored the
modular functional interactions among components, such as gene regulatory networks and
metabolic pathways (Raff, 1996; Wagner et al., 2007).While these approaches have different
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emphases and may not always fully address the origins, evolution, or
implications of modularity, their collective findings highlight the
ubiquity of modular organization in biological systems. This
suggests the existence of a universal principle driving the
emergence of complexity, whereby simpler subsystems
agglomerate into stable combinations that become the building
blocks of larger and more intricate structures and functions,
potentially leading to the formation of hierarchical layers through
successive combinations of components and subcomponents
(Schaffer and Ideker, 2021). In this context, biological complexity
is understood as the degree to which a system comprised of
interrelated components can collectively exhibit emergent
properties and behaviors that are more than the sum of its parts
(Lobo, 2008). To fully understand the role of modularity in the
organization of life, an integrative approach that synthesizes insights
from different perspectives and considers the origins, evolution, and
implications of modularity across multiple scales is necessary.

The fundamental role of modularity in the evolution of
biological complexity is evidenced by its presence in a great
diversity of living systems (at multiple scales). For example, the
modular organization of cells is considered a crucial factor in the
emergence of higher life forms. As highlighted by Lynn Margulis’
groundbreaking work on endosymbiotic theory, the origin of
eukaryotic cells is a prime example of how modularity has driven
the emergence of more complex forms of life (Sagan, 1967; Gray,
2017). According to this theory, the modular integration of
specialized organelles (such as mitochondria and chloroplasts),
which evolved from symbiotic bacteria, allowed for greater
efficiency in cellular processes and played a key role in the
appearance of eukaryotic cells (Schliwa and van Blerkom, 1981).

The emergence of multicellularity is another notable example of
how modularity has driven the evolution towards increasing
complexity, as discussed by Smith and Szathmary (1997) in “The
Major Transitions in Evolution.” This seminal work explores the
role of modularity in the evolution of life, from the integration of
replicating molecules into chromosomes to the origin of societies.
Organisms like Volvox carteri, which appear to be in a transitional
stage towards multicellularity (Kirk, 2005), demonstrate how the
organization of cells into modules can give rise to more complex life
forms. In more advanced multicellular organisms, modular
specialization extends to tissues and organs, thus enabling the
emergence of highly complex adaptive systems (Bonner, 1988;
Wagner and Altenberg, 1996).

The holobiont concept (increasingly relevant for systems
biology) further illustrates how modularity and hierarchical
organization enable the emergence of higher levels of
complexity in biological systems. The holobiont refers to the
collective biological entity formed by a host and its associated
microbiome, functioning as an integrated and coherent unit of
evolution (Bordenstein and Theis, 2015; Rosenberg and Zilber-
Rosenberg, 2018). Just as the modular integration of organelles
gave rise to eukaryotic cells, and the modular organization of cells
led to multicellular organisms, the holobiont represents a higher
level of modular organization, where the host and its microbiome
form a collective organism that is more complex and adaptive
(Huitzil et al., 2018; 2023). Its hierarchical organization allows for
the emergence of novel properties and functions that are not
present in the individual components (Huitzil et al., 2020;

Huitzil et al., 2023), enabling holobionts to adapt to diverse
environments and respond to challenges more effectively than
either the host or the microbiome could alone.

At even larger scales, populations and ecosystems also exhibit
modular organization, forming complex networks of interactions
where groups of species interact more closely with each other than
with other groups, (Pimm, 1991; Sole and Montoya, 2001).
Moreover, superorganisms, such as bee and ant colonies,
represent a further level of organization into modular structures
and functions where groups of individuals specialized in different
tasks contribute to the efficiency and adaptability of the colony as a
whole (Holldobler and Wilson, 2009).

Multiscale modularity is not only a property observed in the
structural organization of biological systems but must also have
important implications for their evolution and adaptation. For
example, modular organization allows for the evolution of new
functions through the modification and recombination of existing
modules, without disrupting the entire system, while a hierarchy of
modules allows for evolution at multiple levels (Simon, 1962;
Kashtan and Alon, 2005; Wagner et al., 2007). This flexibility
may have been a key factor in generating the great diversity and
complexity of life on Earth. Various models and conceptual
foundations have been developed to better understand the
evolutionary implications of multiscale modularity, which we
briefly describe in the next section.

2 Models and theoretical foundations

The concept of modularity has been explored from various
perspectives to understand its role in the organization and
evolution of biological systems across multiple scales. One of the
most influential contributions in this field is the work by Simon
(1962), who introduced the idea of “nearly decomposable systems”
described in the introduction. This seminal work laid the
foundations for understanding how hierarchical modularity can
facilitate the efficient evolution and adaptation of complex
systems by reducing the interactions between subsystems.
Building upon these ideas, the study of modularity has been
approached from different angles, including network theory,
evolutionary biology, and systems biology, to unveil the
principles governing the emergence and maintenance of modular
organization in living systems.

Further advances in the study of modularity have revealed its
crucial role in shaping the structure and function of biological
networks. For instance, Ravasz et al. (2002) demonstrated that
metabolic networks exhibit a hierarchical modular organization,
with highly connected modules composed of smaller, less connected
modules. This hierarchical structure was shown to be related to the
functional classification of metabolic reactions, suggesting that
modularity and hierarchy are essential for the efficient
functioning of metabolic systems.

The complexity of biological systems and their modular and
hierarchical organization have inspired the development of
mathematical and computational models that seek to capture
fundamental principles underlying these phenomena. These
minimal models have been crucial for understanding how
modularity and hierarchy can emerge and evolve in complex
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adaptive systems (Hartwell et al., 1999; Alon, 2007; Solé and
Valverde, 2008). Optimization-based models, in particular, have
been instrumental in understanding the evolution of modularity
(Kashtan and Alon, 2005; Clune et al., 2013; Mengistu et al., 2016).
Kashtan and Alon (2005) demonstrated that modularity can evolve
in networks when the environment changes in a modular fashion,
suggesting that modularity is an adaptive response to certain
features of the environment.

Another important line of theoretical research has focused on
the evolutionary mechanisms that give rise to modularity in
biological systems. Wagner et al. (2007) reviewed the concept of
modularity from an evolutionary perspective, discussing how
natural selection can favor the emergence of modular
architectures. They argued that modularity enhances evolvability
by allowing for the independent evolution of different functional
modules, thus enabling the exploration of new adaptive solutions.

Network theory has provided a quantitative framework for
analyzing modularity based on connectivity patterns. Models
such as the “preferential attachment” model by Barabási and
Albert (1999) and the evolving modularity model by Valverde
and Solé (2007) have helped to understand how modular
architectures can emerge in biological networks. These suggest
that modularity can arise as a result of selection for both
robustness and evolvability.

Collectively, all these minimal models have provided valuable
insights into the mechanisms and principles underlying the
emergence and evolution of modularity and hierarchy in
biological systems. However, many challenges lie ahead, such as
integrating these principles into more realistic modeling frameworks
that capture the complexity of biological systems at multiple scales
and the empirical validation of these theoretical predictions.

In summary, the theoretical foundations for describing the
origins and properties of hierarchical modularity in biological
systems have been explored from different perspectives, including
complex systems theory, evolutionary biology, and network theory.
These efforts have revealed the emergence of modularity at multiple
scales as a fundamental organizational principle that can confer key
evolutionary advantages to biological systems, such as adaptability,
robustness, and efficiency.

3 Advantages of modularity

To advance towards a universal theory of the role of modularity
in the development of complex life forms, we must first identify the
evolutionary advantages (EAs) that this type of structure may
provide, regardless of the specific features or scale of the system.
By considering various theoretical and experimental realizations of
modularity, we propose here a general classification of the key EAs
of multiscale modularity into four classes that can be identified in a
variety of biological systems. These EAs can be briefly listed
as follows:

EA 1 The reuse and recombination of modular components
facilitate the evolution of new functions and rapid
adaptation of organisms to changing environments
(Patthy, 1999; Bashton and Chothia, 2007).

EA 2 Modularity enhances the robustness of biological systems
by limiting the propagation of perturbations and allowing
for the independent evolution of sub-systems (Wagner
et al., 2007; Samal and Jain, 2008).

EA 3Hierarchical modularity enables the efficient processing and
integration of information across multiple scales of
biological organization (Barabási et al., 2003; Meunier
et al., 2009; Maier et al., 2019).

EA 4 Modularity enables the integration of simpler components
into more complex systems, providing a pathway for the
evolution of biological complexity, the division of labor,
and the emergence of novel functions (Baldwin and
Clark, 2000).

These advantages play a crucial role in the emergence of
modular organization across multiple scales. By facilitating
adaptability, robustness, efficient information processing, and the
integration of simple elements into more complex components,
modularity allows for the evolution and survival of increasingly
complex living systems. This process can develop iteratively, with
modules at one level serving as building blocks for higher-level
modules, leading to the formation of multiple nested hierarchies of
modular structures at larger and larger scales.

4 Biological examples

To illustrate the evolutionary advantages of modularity
presented in the previous section, we will briefly describe a series
of examples that demonstrate how the key benefits of modularity
manifest themselves in concrete biological systems, providing
evidence for the central role of modularity in shaping the self-
organization of structure and function in living systems.

At the molecular level, the modular architecture of proteins
allows for the recombination of functional domains, facilitating the
evolution of new functionalities, which corresponds to an advantage
of type EA 1. For instance, the shuffling of protein domains through
mechanisms such as exon shuffling and gene duplication has been a
major driver of protein evolution (Patthy, 1999). This modular
organization enables proteins to adapt rapidly to new challenges
without the need to evolve entirely new structures from scratch.

Gene regulatory networks provide another example of a type EA
1 benefit of modularity. The lac operon in E. coli, for instance, is a
modular regulatory system composed of a promoter, an operator,
and structural genes that control the expression of enzymes involved
in lactose metabolism. This modular structure facilitates the efficient
control of gene expressions and has been found to regulate different
metabolic processes in other bacterial species, thus showing that it
can be reused and adapted to control diverse functions (Browning
et al., 2019). Similarly, the eukaryotic cell cycle is regulated by a
modular network of interacting proteins (cyclins and cyclin-
dependent kinases), with each protein complex forming a
functional module that drives a specific phase of the cycle
(Schulze-Gahmen et al., 1995). The modular organization of
these regulatory networks enables the reuse and recombination of
regulatory modules, facilitating the emergence of new functionalities
and the adaptation to diverse environmental conditions.
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We can also identify the benefits of modularity in the very different
context of cognitive processes. In this case, modularity allows the brain
to efficiently process complex information by integrating specialized
modules that operate in a relatively autonomous manner (Sperber,
2002; Carruthers, 2006), which corresponds to a type EA 3 case. This
organization enables the coexistence of functional specialization and
integration, as exemplified by language processing, which involves the
coordination of multiple specialized modules, such as phonological,
syntactic, and semantic processing units (Fodor, 1983; Robbins, 2009).
The modular structure of brain networks is hierarchically organized,
with smaller, more specialized modules nested within larger, more
integrative modules (Meunier et al., 2009). This hierarchical modularity
allows for efficient information processing within specialized domains
while also enabling the emergence of higher-level cognitive functions
through the integration of thesemodules. It can thus be characterized as
conferring not only type EA 3 but also type EA 4 advantages.

In yet a different context, at the ecosystem level, it has been
shown that modularity contributes to stability and resilience by
compartmentalizing interactions between species, which

corresponds to a type EA 2 benefit. In this case, modular
ecosystems are characterized by groups of species that interact
more strongly within modules than between modules (Olesen
et al., 2007). This compartmentalization can limit the spread of
perturbations and prevent cascading failures across the entire
ecosystem (Stouffer and Bascompte, 2011), thereby enhancing
robustness.

Finally, an example of a type EA 4 advantage of modularity can
be found in the modular organization of metabolic networks, where
the integration of simpler modules allows for the generation of more
complex metabolic capabilities. Photosynthesis, for instance,
comprises distinct modules, such as light-harvesting complexes
and electron transport chains, which integrate to convert light
into chemical energy (in the form of ATP and NADPH) (Stirbet
et al., 2020). Similarly, the citric acid cycle consists of a modular
assembly of enzymatic subunits that form an integrated functional
module, which enables the evolution of novel metabolic functions
through the recombination of existing modules. In both cases,
modularity enables the hierarchical integration of simpler

FIGURE 1
Modularity as a Path to Complexity in Biological Systems. The figure illustrates the role of modularity as a universal organizing principle, observed
across multiple scales and biological contexts, that enables the evolution of greater complexity. This complexity arises from the integration of interacting
modules, which give rise to new functions and emergent properties at each hierarchical level (Wolf et al., 2018). On the left, a schematic diagram shows
how biological systems self-organize modularly at different levels, highlighting their hierarchical nature, where each level is composed of modular
subsystems that integrate at higher levels. On the right, specific examples demonstrate this principle across various biological contexts and scales. At the
unicellular level, Chlamydomonas reinhardtii can form colonies like Volvox carteri, an organism in transition towards multicellularity. In these colonies,
cells organize into modules specialized in reproduction (gonidia) and motility (somatic cells), improving efficiency and division of labor (Herron, 2016). At
the multicellular level, modular organization is observed in various processes, such as morphogenesis in Drosophila melanogaster, where Hox genes
facilitate the formation of specialized modules and complex structures for diverse physiological functions (Hubert and Wellik, 2023). At the ecosystem
level, networks of interactions between species also exhibit modularity, with groups of species interacting more closely with each other, contributing to
ecosystem stability and resilience (Olesen et al., 2007). This framework provides an integrative perspective for understanding the role of modularity in the
evolution of biological complexity. This image was created with BioRender.com
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modules into more complex metabolic systems, facilitating the
emergence of novel functionalities. For example, photosynthesis
can further integrate with other modules (such as the carbon fixation
pathway) to enable plants to synthesize glucose from CO2, whereas
the citric acid cycle can couple with other metabolic pathways to
generate energy and precursors for biosynthesis (Akram, 2014).

The examples presented above illustrate how the key
evolutionary advantages of modularity can be identified in
biological systems across different scales and levels of complexity,
showing that the general properties of biological modularity go
beyond the specificities of a given system realization.

5 Discussion

The ubiquity of modular organization across biological scales,
from molecular networks to ecosystems, shows the fundamental
importance of this organizing principle in the emergence and
evolution of complex life forms. As we have shown above, by
compartmentalizing biological systems into relatively
autonomous, functionally specialized sub-systems, modularity
allows for the reuse and recombination of existing modules to
support new functions, enhance robustness, enable efficient
information processing, and facilitate the evolution of biological
complexity.

Understanding modularity as a fundamental principle of
organization across scales could unveil its power as a unifying
concept, placing it among the few universal principles proposed
to explain the remarkable tendency of evolution to generate
increasingly complex systems. Figure 1 illustrates this principle,
showcasing modularity’s role in biological complexity through
specific examples at different levels of organization. Another such
principle is criticality, which refers to the state of a system at the
boundary between order and chaos, where it exhibits a balance
between robustness and adaptability (Munoz, 2018). Robustness
refers to a system’s ability to maintain its functionality while facing
perturbations, while adaptability refers to its capacity to adjust to
changing conditions (Wagner, 2005; Whitacre, 2012). Notably,
modularity and criticality share essential features that enhance
robustness and adaptability. For example, modularity contributes
to robustness by localizing perturbations within modules, and it
supports adaptability by enabling the recombination of evolved
modules as a faster way to adjust to new conditions, rather than
having to develop entirely new solutions (Kashtan and Alon, 2005;
Clune et al., 2013).

This striking convergence of modularity and criticality raises
thought-provoking questions: Could these principles be deeply
interconnected, representing complementary facets of a more
fundamental organizational framework? Might the modular
architecture of biological systems facilitate their self-organization
towards critical states, thereby unlocking the adaptive advantages
associated with criticality (Irani and Alderson, 2023)? The intriguing
parallels between modularity and criticality invite us to explore the
interplay between these properties, potentially uncovering a more
comprehensive understanding of the principles that shape the
structure and dynamics of complex biological systems across scales.

Despite the significant progress made in understanding the
modular organization of biological systems, many challenges and

open questions remain. The development of more advanced
computational tools for detecting and analyzing modularity
across scales could provide deeper insights into the structure and
function of complex biological networks. Furthermore, exploring
the interplay between modularity and other organizational
principles, such as hierarchy and criticality, could provide novel
design principles for engineered systems.

The emerging era of cell engineering harnesses the modularity of
cells to program complex biological functions, paving the way for
transformative advances in biotechnology and medicine (Lim and
Pawson, 2010; Lim, 2022). By unraveling the mechanisms that
enable the integration of lower-level modules into increasingly
complex hierarchies, we may gain a deeper understanding of the
processes that gave rise to the first living organisms and the
subsequent evolution of biological complexity (Ruiz-Mirazo
et al., 2017).

The perspective that we present here highlights the importance of
modularity and hierarchical organization as fundamental principles in
the design and function of living systems across multiple scales. By
identifying the key evolutionary advantages conferred by modular
organization, we provide a unifying lens for understanding the
emergence of modular hierarchical structures in biology and the
mechanisms underlying the resilience, adaptability, and evolvability
of living systems. This knowledge not only improves our fundamental
understanding of biology but also provides opportunities for
applications in a variety of fields, from bioengineering to the design
of complex adaptive systems.

Data availability statement

The original contributions presented in the study are included in
the article/Supplementary Material, further inquiries can be directed
to the corresponding author.

Author contributions

SH: Conceptualization, Writing–original draft, Writing–review
and editing. CH: Conceptualization, Writing–original draft,
Writing–review and editing.

Funding

The author(s) declare that financial support was received for the
research, authorship, and/or publication of this article. This project
was made possible through the support of Grant 62213 from the
John Templeton Foundation. This funding supported the authors’
research and writing of this article.

Conflict of interest

Author CH was employed by CHuepe Labs.
The remaining author declares that the research was conducted

in the absence of any commercial or financial relationships that
could be construed as a potential conflict of interest.

Frontiers in Systems Biology frontiersin.org05

Huitzil and Huepe 10.3389/fsysb.2024.1417800

68

https://www.frontiersin.org/journals/systems-biology
https://www.frontiersin.org
https://doi.org/10.3389/fsysb.2024.1417800


Publisher’s note

All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the
reviewers. Any product that may be evaluated in this article, or
claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

References

Akram, M. (2014). Citric acid cycle and role of its intermediates in metabolism. Cell.
Biochem. biophysics 68, 475–478. doi:10.1007/s12013-013-9750-1

Alon, U. (2007). Network motifs: theory and experimental approaches. Nat. Rev.
Genet. 8, 450–461. doi:10.1038/nrg2102

Baldwin, C. Y., and Clark, K. B. (2000). Design rules, the power of modularity.
Cambridge: MIT press.

Barabási, A.-L., and Albert, R. (1999). Emergence of scaling in random networks.
science 286, 509–512. doi:10.1126/science.286.5439.509

Barabási, A.-L., Dezső, Z., Ravasz, E., Yook, S.-H., and Oltvai, Z. (2003). Scale-free and
hierarchical structures in complex networks. AIP Conf. Proc. 661, 1–16. doi:10.1063/1.
1571285

Barabasi, A.-L., and Oltvai, Z. N. (2004). Network biology: understanding the cell’s
functional organization. Nat. Rev. Genet. 5, 101–113. doi:10.1038/nrg1272

Bashton, M., and Chothia, C. (2007). The generation of new protein functions by the
combination of domains. Structure 15, 85–99. doi:10.1016/j.str.2006.11.009

Bonner, J. T. (1988). The evolution of complexity by means of natural selection. New
Jersey: Princeton University Press.

Bordenstein, S. R., and Theis, K. R. (2015). Host biology in light of the microbiome:
ten principles of holobionts and hologenomes. PLoS Biol. 13, e1002226. doi:10.1371/
journal.pbio.1002226

Browning, D. F., Godfrey, R. E., Richards, K. L., Robinson, C., and Busby, S. J. (2019).
Exploitation of the escherichia coli lac operon promoter for controlled recombinant
protein production. Biochem. Soc. Trans. 47, 755–763. doi:10.1042/BST20190059

Carruthers, P. (2006). The architecture of the mind. Oxford: Oxford University Press.

Cheverud, J., Schlosser, G., and Wagner, G. (2004). Modularity in development and
evolution.

Clune, J., Mouret, J.-B., and Lipson, H. (2013). The evolutionary origins of
modularity. Proc. R. Soc. b Biol. Sci. 280, 20122863. doi:10.1098/rspb.2012.2863

Felice, R. N., Randau, M., and Goswami, A. (2018). A fly in a tube: macroevolutionary
expectations for integrated phenotypes. Evolution 72, 2580–2594. doi:10.1111/evo.
13608

Fodor, J. A. (1983). The modularity of mind. Cambridge: MIT press.

Gray, M. W. (2017). Lynn margulis and the endosymbiont hypothesis: 50 years later.
Mol. Biol. Cell. 28, 1285–1287. doi:10.1091/mbc.E16-07-0509

Hartwell, L. H., Hopfield, J. J., Leibler, S., and Murray, A. W. (1999). From molecular
to modular cell biology. Nature 402, C47–C52. doi:10.1038/35011540

Herron, M. D. (2016). Origins of multicellular complexity: Volvox and the volvocine
algae.

Holldobler, B., and Wilson, E. O. (2009). The superorganism: the beauty elegance and
strangeness of insect societies. New York City: WW Norton and Company.

Hubert, K. A., and Wellik, D. M. (2023). Hox genes in development and beyond.
Development 150, dev192476. doi:10.1242/dev.192476

Huitzil, S., Huepe, C., Aldana, M., and Frank, A. (2023). The missing link: how the
holobiont concept provides a genetic framework for rapid evolution and the inheritance
of acquired characteristics. Front. Ecol. Evol. 11, 1279938. doi:10.3389/fevo.2023.
1279938

Huitzil, S., Sandoval-Motta, S., Frank, A., and Aldana, M. (2018). Modeling the role of
the microbiome in evolution. Front. physiology 9, 1836. doi:10.3389/fphys.2018.01836

Huitzil, S., Sandoval-Motta, S., Frank, A., and Aldana, M. (2020). Phenotype
heritability in holobionts: an evolutionary model. Symbiosis Cell. Mol. Med. Evol.
Aspects 69, 199–223. doi:10.1007/978-3-030-51849-3_7

Irani, M., and Alderson, T. H. (2023). Tuning criticality through modularity in
biological neural networks. J. Neurosci. 43, 5881–5882. doi:10.1523/JNEUROSCI.0865-
23.2023

Kadelka, C., Wheeler, M., Veliz-Cuba, A., Murrugarra, D., and Laubenbacher, R.
(2023). Modularity of biological systems: a link between structure and function. J. R. Soc.
Interface 20, 20230505. doi:10.1098/rsif.2023.0505

Kashtan, N., and Alon, U. (2005). Spontaneous evolution of modularity and network
motifs. Proc. Natl. Acad. Sci. 102, 13773–13778. doi:10.1073/pnas.0503610102

Kirk, D. L. (2005). A twelve-step program for evolving multicellularity and a division
of labor. BioEssays 27, 299–310. doi:10.1002/bies.20197

Klingenberg, C. P., Mebus, K., and Auffray, J.-C. (2003). Developmental
integration in a complex morphological structure: how distinct are the modules
in the mouse mandible? Evol. Dev. 5, 522–531. doi:10.1046/j.1525-142x.2003.
03057.x

Lim, W. A. (2022). The emerging era of cell engineering: harnessing the modularity of
cells to program complex biological function. Science 378, 848–852. doi:10.1126/science.
add9665

Lim,W. A., and Pawson, T. (2010). Phosphotyrosine signaling: evolving a new cellular
communication system. Cell. 142, 661–667. doi:10.1016/j.cell.2010.08.023

Lobo, I. (2008). Biological complexity and integrative levels of organization. Nat.
Educ. 1, 141.

Lorenz, D. M., Jeng, A., and Deem, M. W. (2011). The emergence of modularity in
biological systems. Phys. life Rev. 8, 129–160. doi:10.1016/j.plrev.2011.02.003

Maier, B. F., Huepe, C., and Brockmann, D. (2019). Modular hierarchical and power-
law small-world networks bear structural optima for minimal first passage times and
cover time. J. Complex Netw. 7, 865–895. doi:10.1093/comnet/cnz010

Melo, D., Porto, A., Cheverud, J. M., and Marroig, G. (2016). Modularity: genes,
development, and evolution. Annu. Rev. Ecol. Evol. Syst. 47, 463–486. doi:10.1146/
annurev-ecolsys-121415-032409

Mengistu, H., Huizinga, J., Mouret, J.-B., and Clune, J. (2016). The evolutionary
origins of hierarchy. PLoS Comput. Biol. 12, e1004829. doi:10.1371/journal.pcbi.
1004829

Meunier, D., Lambiotte, R., Fornito, A., Ersche, K., and Bullmore, E. T. (2009).
Hierarchical modularity in human brain functional networks. Front. neuroinformatics
3, 37. doi:10.3389/neuro.11.037.2009

Munoz, M. A. (2018). Colloquium: criticality and dynamical scaling in living systems.
Rev. Mod. Phys. 90, 031001. doi:10.1103/revmodphys.90.031001

Olesen, J. M., Bascompte, J., Dupont, Y. L., and Jordano, P. (2007). The modularity of
pollination networks. Proc. Natl. Acad. Sci. 104, 19891–19896. doi:10.1073/pnas.
0706375104

Patthy, L. (1999). Genome evolution and the evolution of exon-shuffling—a review.
Gene 238, 103–114. doi:10.1016/s0378-1119(99)00228-0

Pimm, S. L. (1991). The balance of nature? ecological issues in the conservation of
species and communities. USA: University of Chicago Press.

Raff, R. A. (1996). The shape of life, 544.

Ravasz, E., Somera, A. L., Mongru, D. A., Oltvai, Z. N., and Barabási, A.-L. (2002).
Hierarchical organization of modularity in metabolic networks. science 297, 1551–1555.
doi:10.1126/science.1073374

Robbins, P. (2009). Modularity of mind.

Rosenberg, E., and Zilber-Rosenberg, I. (2018). The hologenome concept of evolution
after 10 years. Microbiome 6, 78–14. doi:10.1186/s40168-018-0457-9

Ruiz-Mirazo, K., Briones, C., and de la Escosura, A. (2017). Chemical roots of
biological evolution: the origins of life as a process of development of autonomous
functional systems. Open Biol. 7, 170050. doi:10.1098/rsob.170050

Sagan, L. (1967). On the origin of mitosing cells. J. Theor. Biol. 14, 255–274. doi:10.
1016/0022-5193(67)90079-3

Samal, A., and Jain, S. (2008). The regulatory network of e. coli metabolism as a
boolean dynamical system exhibits both homeostasis and flexibility of response. BMC
Syst. Biol. 2, 21–18. doi:10.1186/1752-0509-2-21

Schaffer, L. V., and Ideker, T. (2021). Mapping the multiscale structure of biological
systems. Cell. Syst. 12, 622–635. doi:10.1016/j.cels.2021.05.012

Schliwa, M., and van Blerkom, J. (1981). Structural interaction of cytoskeletal
components. J. Cell. Biol. 90, 222–235. doi:10.1083/jcb.90.1.222

Schulze-Gahmen, U., Brandsen, J., Jones, H. D., Morgan, D. O., Meijer, L., Vesely, J.,
et al. (1995). Multiple modes of ligand recognition: crystal structures of cyclin-
dependent protein kinase 2 in complex with atp and two inhibitors, olomoucine
and isopentenyladenine. Proteins Struct. Funct. Bioinforma. 22, 378–391. doi:10.
1002/prot.340220408

Simon, H. A. (1962). The architecture of complexity. Proc. Am. philosophical Soc. 106,
467–482.

Smith, J. M., and Szathmary, E. (1997). The major transitions in evolution.
Oxford: OUP.

Frontiers in Systems Biology frontiersin.org06

Huitzil and Huepe 10.3389/fsysb.2024.1417800

69

https://doi.org/10.1007/s12013-013-9750-1
https://doi.org/10.1038/nrg2102
https://doi.org/10.1126/science.286.5439.509
https://doi.org/10.1063/1.1571285
https://doi.org/10.1063/1.1571285
https://doi.org/10.1038/nrg1272
https://doi.org/10.1016/j.str.2006.11.009
https://doi.org/10.1371/journal.pbio.1002226
https://doi.org/10.1371/journal.pbio.1002226
https://doi.org/10.1042/BST20190059
https://doi.org/10.1098/rspb.2012.2863
https://doi.org/10.1111/evo.13608
https://doi.org/10.1111/evo.13608
https://doi.org/10.1091/mbc.E16-07-0509
https://doi.org/10.1038/35011540
https://doi.org/10.1242/dev.192476
https://doi.org/10.3389/fevo.2023.1279938
https://doi.org/10.3389/fevo.2023.1279938
https://doi.org/10.3389/fphys.2018.01836
https://doi.org/10.1007/978-3-030-51849-3_7
https://doi.org/10.1523/JNEUROSCI.0865-23.2023
https://doi.org/10.1523/JNEUROSCI.0865-23.2023
https://doi.org/10.1098/rsif.2023.0505
https://doi.org/10.1073/pnas.0503610102
https://doi.org/10.1002/bies.20197
https://doi.org/10.1046/j.1525-142x.2003.03057.x
https://doi.org/10.1046/j.1525-142x.2003.03057.x
https://doi.org/10.1126/science.add9665
https://doi.org/10.1126/science.add9665
https://doi.org/10.1016/j.cell.2010.08.023
https://doi.org/10.1016/j.plrev.2011.02.003
https://doi.org/10.1093/comnet/cnz010
https://doi.org/10.1146/annurev-ecolsys-121415-032409
https://doi.org/10.1146/annurev-ecolsys-121415-032409
https://doi.org/10.1371/journal.pcbi.1004829
https://doi.org/10.1371/journal.pcbi.1004829
https://doi.org/10.3389/neuro.11.037.2009
https://doi.org/10.1103/revmodphys.90.031001
https://doi.org/10.1073/pnas.0706375104
https://doi.org/10.1073/pnas.0706375104
https://doi.org/10.1016/s0378-1119(99)00228-0
https://doi.org/10.1126/science.1073374
https://doi.org/10.1186/s40168-018-0457-9
https://doi.org/10.1098/rsob.170050
https://doi.org/10.1016/0022-5193(67)90079-3
https://doi.org/10.1016/0022-5193(67)90079-3
https://doi.org/10.1186/1752-0509-2-21
https://doi.org/10.1016/j.cels.2021.05.012
https://doi.org/10.1083/jcb.90.1.222
https://doi.org/10.1002/prot.340220408
https://doi.org/10.1002/prot.340220408
https://www.frontiersin.org/journals/systems-biology
https://www.frontiersin.org
https://doi.org/10.3389/fsysb.2024.1417800


Sole, R. V., and Montoya, M. (2001). Complexity and fragility in ecological
networks. Proc. R. Soc. Lond. Ser. B Biol. Sci. 268, 2039–2045. doi:10.1098/rspb.
2001.1767

Solé, R. V., and Valverde, S. (2008). Spontaneous emergence of modularity in cellular
networks. J. R. Soc. Interface 5, 129–133. doi:10.1098/rsif.2007.1108

Sperber, D. (2002). in Defense of massive modularity. doi:10.7551/mitpress/4108.003.
0008

Stirbet, A., Lazár, D., Guo, Y., and Govindjee, G. (2020). Photosynthesis: basics,
history and modelling. Ann. Bot. 126, 511–537. doi:10.1093/aob/mcz171

Stouffer, D. B., and Bascompte, J. (2011). Compartmentalization increases food-
web persistence. Proc. Natl. Acad. Sci. 108, 3648–3652. doi:10.1073/pnas.
1014353108

Valverde, S., and Solé, R. V. (2007). Self-organization versus hierarchy in open-source
social networks. Phys. Rev. E 76, 046118. doi:10.1103/PhysRevE.76.046118

Wagner, A. (2005). Robustness, evolvability, and neutrality. FEBS Lett. 579,
1772–1778. doi:10.1016/j.febslet.2005.01.063

Wagner, G. P., and Altenberg, L. (1996). Perspective: complex adaptations and the
evolution of evolvability. Evolution 50, 967–976. doi:10.1111/j.1558-5646.1996.
tb02339.x

Wagner, G. P., Pavlicev, M., and Cheverud, J. M. (2007). The road to modularity. Nat.
Rev. Genet. 8, 921–931. doi:10.1038/nrg2267

Whitacre, J. M. (2012). Biological robustness: paradigms, mechanisms, and systems
principles. Front. Genet. 3, 67. doi:10.3389/fgene.2012.00067

Wolf, Y. I., Katsnelson, M. I., and Koonin, E. V. (2018). Physical foundations of
biological complexity. Proc. Natl. Acad. Sci. 115, E8678-E8687–E8687. doi:10.1073/
pnas.1807890115

Zelditch, M. L., and Goswami, A. (2021). What does modularity mean? Evol. Dev. 23,
377–403. doi:10.1111/ede.12390

Frontiers in Systems Biology frontiersin.org07

Huitzil and Huepe 10.3389/fsysb.2024.1417800

70

https://doi.org/10.1098/rspb.2001.1767
https://doi.org/10.1098/rspb.2001.1767
https://doi.org/10.1098/rsif.2007.1108
https://doi.org/10.7551/mitpress/4108.003.0008
https://doi.org/10.7551/mitpress/4108.003.0008
https://doi.org/10.1093/aob/mcz171
https://doi.org/10.1073/pnas.1014353108
https://doi.org/10.1073/pnas.1014353108
https://doi.org/10.1103/PhysRevE.76.046118
https://doi.org/10.1016/j.febslet.2005.01.063
https://doi.org/10.1111/j.1558-5646.1996.tb02339.x
https://doi.org/10.1111/j.1558-5646.1996.tb02339.x
https://doi.org/10.1038/nrg2267
https://doi.org/10.3389/fgene.2012.00067
https://doi.org/10.1073/pnas.1807890115
https://doi.org/10.1073/pnas.1807890115
https://doi.org/10.1111/ede.12390
https://www.frontiersin.org/journals/systems-biology
https://www.frontiersin.org
https://doi.org/10.3389/fsysb.2024.1417800


Transporter annotations are
holding up progress in
metabolic modeling

John Casey1*, Brian Bennion1, Patrik D’haeseleer2,
Jeffrey Kimbrel2, Gianna Marschmann3 and Ali Navid1*
1Biochemical and Biophysical Systems Group, Lawrence Livermore National Laboratory, Livermore, CA,
United States, 2Systems and Synthetic Biology Group, Lawrence Livermore National Laboratory,
Livermore, CA, United States, 3Earth and Environmental Sciences, Lawrence Berkeley National
Laboratory, Berkeley, CA, United States

Mechanistic, constraint-based models of microbial isolates or communities are a
staple in the metabolic analysis toolbox, but predictions about microbe-microbe
and microbe-environment interactions are only as good as the accuracy of
transporter annotations. A number of hurdles stand in the way of
comprehensive functional assignments for membrane transporters. These
include general or non-specific substrate assignments, ambiguity in the
localization, directionality and reversibility of a transporter, and the many-to-
many mapping of substrates, transporters and genes. In this perspective, we
summarize progress in both experimental and computational approaches used to
determine the function of transporters and consider paths forward that integrate
both. Investment in accurate, high-throughput functional characterization is
needed to train the next-generation of predictive tools toward genome-scale
metabolic network reconstructions that better predict phenotypes and
interactions. More reliable predictions in this domain will benefit fields ranging
from personalized medicine to metabolic engineering to microbial ecology.

KEYWORDS

metabolic modeling, transporter annotation, microbial community modeling, flux
balance analysis, functional genomics

1 Introduction

Living systems interact with their surroundings. They acquire resources from their
environment; co-operate, steal from, compete against, or kill their neighbors. Molecular
compounds are the primary effectors of such interactions and thus the extent of these
behaviors depend on the specialized transport proteins that move substances across
membrane interfaces, into and out of cellular compartments. Microbes have designed
transporters to access an incredible diversity of chemical species, enabling them to harbor
pathways that generate cytotoxic byproducts (e.g., photorespiratory phosphoglycolate;
Bauwe et al., 2012), to survive in harsh environments (e.g., acid mine drainage; Baker
and Banfield, 2003), to harvest scarce resources (e.g., Lake Vostok, buried beneath 4 km of
ice; Karl et al., 1999), to communicate with one another (e.g., quorum sensing in Vibrio;
Hammer and Bassler, 2003), to attack one another (e.g., antibiotic production in soils;
Chandra and Kumar, 2017), and to maintain a delicate balance of redox couples (Falkowski
et al., 2008). For those interested in mechanistic modeling of such systems, knowing the full
repertoire of microbial transport processes is crucial to predicting their dynamics in
different habitats. This article describes the origins, state-of-the-art, challenges and

OPEN ACCESS

EDITED BY

Edoardo Saccenti,
Wageningen University and Research,
Netherlands

REVIEWED BY

Julia Koblitz,
German Collection of Microorganisms and Cell
Cultures GmbH (DSMZ), Germany
Maria Suarez-Diez,
Wageningen University and Research,
Netherlands

*CORRESPONDENCE

John Casey,
casey26@llnl.gov

Ali Navid,
navid1@llnl.gov

RECEIVED 01 March 2024
ACCEPTED 13 May 2024
PUBLISHED 24 July 2024

CITATION

Casey J, Bennion B, D’haeseleer P, Kimbrel J,
Marschmann G and Navid A (2024), Transporter
annotations are holding up progress in
metabolic modeling.
Front. Syst. Biol. 4:1394084.
doi: 10.3389/fsysb.2024.1394084

COPYRIGHT

© 2024 Casey, Bennion, D’haeseleer, Kimbrel,
Marschmann and Navid. This is an open-access
article distributed under the terms of the
Creative Commons Attribution License (CC BY).
The use, distribution or reproduction in other
forums is permitted, provided the original
author(s) and the copyright owner(s) are
credited and that the original publication in this
journal is cited, in accordance with accepted
academic practice. No use, distribution or
reproduction is permitted which does not
comply with these terms.

Frontiers in Systems Biology frontiersin.org01

TYPE Perspective
PUBLISHED 24 July 2024
DOI 10.3389/fsysb.2024.1394084

71

https://www.frontiersin.org/articles/10.3389/fsysb.2024.1394084/full
https://www.frontiersin.org/articles/10.3389/fsysb.2024.1394084/full
https://www.frontiersin.org/articles/10.3389/fsysb.2024.1394084/full
https://crossmark.crossref.org/dialog/?doi=10.3389/fsysb.2024.1394084&domain=pdf&date_stamp=2024-07-24
mailto:casey26@llnl.gov
mailto:casey26@llnl.gov
mailto:navid1@llnl.gov
mailto:navid1@llnl.gov
https://doi.org/10.3389/fsysb.2024.1394084
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/systems-biology
https://www.frontiersin.org
https://www.frontiersin.org/journals/systems-biology
https://www.frontiersin.org/journals/systems-biology#editorial-board
https://www.frontiersin.org/journals/systems-biology#editorial-board
https://doi.org/10.3389/fsysb.2024.1394084


future prospects of transporter functional annotation that we hope
will serve as a “call to arms” for doubling efforts in both
computational and experimental approaches.

Mechanistic, constraint-based modeling in systems biology has
benefitted immensely from standardization of the model
reconstruction process (Thiele and Palsson, 2010; Heirendt et al.,
2019), testing and reporting the quality of models (MEMOTE;
Lieven et al., 2020), consolidation of new algorithms and
software into just a few dominant software platforms
(overwhelmingly COBRA; Ebrahim et al., 2013; Heirendt et al.,

2019), and sharing in just a few dominant formats (overwhelmingly
SBML; Keating et al., 2020). That coordination has paved the way for
an ever-growing and active community of software developers,
engineers, systems biologists and computational biologists
working to relax many of the rigid assumptions of the first
generation of flux balanced models (Varma and Palsson, 1994).
While the software and protocols are fairly thorough, there are
several aspects of model reconstruction that are a bit flimsy,
including what to do about polymers, quinones, and, as we
discuss in detail here, transporters. Some authors may take the

FIGURE 1
The pitfalls of transporter annotations in community metabolic modeling. (A) Types of errors encountered when assigning a single putative
transporter to a single substrate. An annotationmaymiss an assignmentwhere there should be one, may create an assignmentwhere there should not, or
may get the direction(s) of transport wrong (either due to an incorrect orientation of an irreversible process, or due to a reversibility error). (B)Mappings
from transporter genes to substrates are non-unique. A single genemaymap to a single substrate ormultiple substrates, a single genemay be a part
of a complex with multiple genes which map to a single substrate or multiple substrates. (C) Microbial interactions are variously affected by transporter
annotation errors. For example, a species might not grow with missing assignment errors, the community might accumulate or deplete extracellular
metabolites by false assignment errors, or a mutualism might be broken by directionality errors. (D) Analysis of transport mappings in BiGG models (n =
108 models). Histograms showing the proportion of transporter reactions to total reactions (left), the proportion of transporter genes to total genes
(second from left), the proportion of one-to-many gene-to-transporter mappings to total transporter genes (second from right), and the proportion of
one-to-many exometabolite-to-transporter gene mappings to total exometabolites (right). The large peaks correspond, mostly, to models of
Escherichia coli, which are overrepresented in the BiGG database.
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effort to report what those decisions were and why they were made,
but there is certainly space for our community to weigh in on these
persistent concerns.

The accuracy of genome-scale metabolic model (GEM)
predictions are strongly correlated to the quality and
completeness of the metabolic network reconstructions (Bernstein
et al., 2023). The availability of transport mechanisms for import of
nutrients greatly influences choice of gap-filled reactions in both
automatically generated and curated models. This issue is further
complicated by the “moonlighting” nature of some proteins (Jeffrey,
2018) where under different conditions they assume different
functional roles. Many proteins also exhibit weak promiscuous
activities for a variety of metabolites which leads to an
“underground metabolism” that plays a major role in the fitness
of organisms (Noterbaart et al., 2018). Not accurately accounting for
presence of some importedmetabolites will lead to exclusion of these
reactions from the final network reconstruction and could lead to
errors in assessing the robustness of a system to various types of
perturbation. In previous work we have shown that functional
annotation tools generate metabolic annotations that are
incomplete and inconsistent with each other, and that the same
is true for transporter annotations, with typically less than half the
transporter annotation tools having substrate predictions that are
sufficiently detailed to be incorporated in a metabolic model
(Griesemer et al., 2018).

2 Discussion

2.1 Transporter annotations: what could
go wrong?

Pitfalls in matching transporters to their substrates come in a
variety of flavors. We define three elemental error types—missing
assignments, false assignments, and directionality errors (Figure 1A).
Theremay be a fourth, somewhatmore esoteric error type not included
in the figure that applies to the case of a transporter that modifies a
substrate during import (e.g., the phosphotransferase complex). These
are likely rare and we have not encountered one, but an error in the
annotation of the substrate modification or choice of cofactor (e.g.,
symporters) could conceivably occur. The frequency of different error
types is likely variable for different species and for different annotation
tools, but for some approximate context we quantified these errors in
the model organism E. coli K12 MG1655, comparing an extensively
curated GEM (iML1515; Monk et al., 2017) against an automatically
generated GEM for the same genome using CarveMe (v1.5.2; Machado
et al., 2018). Although transporter annotations in iML1515 may be
updated in the future, we consider it a high-quality benchmark for
evaluating error rates in automatically generated GEMs. In the
CarveMe draft model, missing assignments accounted for 8.9%,
false assignments accounted for 16.2%, and directionality errors
accounted for 4.5% of the total transport reactions. Thus, nearly a
third of annotated transporter functions were in error; because this
strain is massively overrepresented in the BiGG database (King et al.,
2016) that CarveMe references, we should treat these error rates as an
underestimate of the error rate expected for non-model organisms
using the same method. Griesemer and others showed that genome
coverage by metabolic annotation tools, and discrepancies in

annotation across different tools are significantly worse for
organisms that are more phylogenetically distant from well-studied
model organisms such as E. coli and B. subtilis, and we expect the same
to be true for transporter annotations (Griesemer et al., 2018).

Each error type applies in GEMs to four types of gene-protein-
reaction (GPR) mappings—one-to-one, one-to-many, many-to-
one, and many-to-many (Figure 1B). Non-unique mappings
between transporter genes, transporter proteins, and substrates
arise from the possibility that individual transporters have more
(one-to-one) or less (one-to-many) specificity in binding or selective
permeability, and that individual substrates may bind or pass
through one (one-to-one) or more (many-to-one) transporters.
An analysis of all manually curated models in the BiGG database
(King et al., 2016) revealed a wide range of unique mapping
frequencies, with 36% ± 29% (range 0%–91%) of exometabolites
mapping uniquely to a single transporter gene (n = 108 models;
Figure 1D). As an added layer of complexity, gene products may be
associated with more than one transporter complex (e.g., the
GLUT1 subunit is present in multiple sugar transporters), which
themselves may have broad substrate specificity (many-to-many) or
serve as a common structural protein for various transporters. As we
explore sources for the different error types and how those errors
propagate through non-unique mappings in more detail
(Figure 1C), it is worth reviewing the current state-of-the-art in
automated functional transporter annotation tools and the
databases they reference to address these pitfalls.

2.2 Transporter annotation tools
and databases

Besides the major sequence repositories, there are currently two
primary online database resources dedicated to transporters, and
several more niche databases which focus on specific taxonomic
groups or transporter types (Table 1). With two decades of
development and curation, the Transporter Classification
Database (TCDB; Saier, 2006; Saier et al., 2009; Saier et al., 2014;
Saier et al., 2016; Saier et al., 2021) remains a central clearinghouse
for transporter structures, bioinformatics tools, and is the official
home of the Transporter Classification (TC) system ontology, a
scheme based on mechanism, energy source, taxonomy and
substrate. Since 2001, the International Union of Biochemistry
and Molecular Biology (IUBMB) has designated the TC system
as the formally recognized ontology for membrane transporters
across all domains of life (Busch and Saier, 2003). Each entry in
TCDB is manually curated and often accompanied by a detailed
summary of the literature, and is maintained by a well-known
authority on transporters. Surprisingly, Kroll and others reported
that more than half of TCDB entries scored poorly (2 or below, on a
scale from 1 to 5) on the UniProt annotation scale, and instead opted
to rely on GO and UniProt entries (only those with a score of 5; Kroll
et al., 2023). TransportDB (now in version 2.0; Elbourne et al., 2017)
is another popular resource for systems biologists which builds on
the TCDB and NCBI datasets, with entries currently available for
2,761 organisms (predominantly bacteria, though there are some
eukaryotes and archaea) through a graphical and convenient web-
portal. Entries in TransportDB are computationally derived with
their accompanying annotation tool called TransAAP.
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A chronology of transporter annotation tools, their various
approaches, and a summary of their performance is available
elsewhere (Alballa et al., 2020; Cunha et al., 2023), and we
simply provide a convenient lookup table with short descriptions
and URLs for reference (Table 2). Recently, the TranSyT tool
(Cunha et al., 2023) has emerged as a front-runner alongside
TransAAP. In the spirit of integration and ease of use, TranSyT
can be implemented as a standalone app to generate a SBML file of
transport reactions, or within popular automated GEM
reconstruction pipelines like Merlin (Capela et al., 2022) and the
ModelSEED reconstruction tools in KBase (Faria et al., 2023).
TranSyT also scores annotations, a feature which may be
leveraged for merging multiple annotation sources (Henry et al.,
2010; Greisemer et al., 2018) or for generating ensemble GEM
reconstructions.

2.3 Modeling microbial community
interactions

Genome scale models have been used in simulating microbial
interactions for nearly two decades (reviewed by Heinken et al.,

2021), and numerous algorithms have tackled the problem from
different angles (reviewed by Biggs et al., 2015; Bauer and Thiele,
2018; Deiner and Gibbons, 2023; Scott et al., 2023). The architecture
of community models, whether they ought to be compartmentalized
or pooled into a “super-organism,” and whether one should attempt
to sample the combinatorial interactions with flux balance analysis
or to isolate the elementary modes of exchanges was pondered early
on (Taffs et al., 2009; Perez-Garcia et al., 2016). Common to most of
the more recent attempts is a compartmentalized approach with
either stationary or dynamic flux balance analysis, wherein each
strain-specific model interacts through an extracellular
“compartment” through the exchange of metabolites. Intuitively
(and formally; Klitgord and Segre, 2010), the compartmentalization
of pathways, or parts of pathways, or of entire metabolic networks
strongly influences predicted flux distributions and interactions. For
example, a non-compartmentalized model might regenerate ATP
fromADP in the absence of a protonmotive force. Thus, an accurate
accounting of which substrates, which products, and which
reactions are where is vital to constraining fluxes and identifying
modes of species-species interactions within a community.

Automated reconstruction of draft GEMs has improved
considerably over the past decade (Machado et al., 2018; Wang

TABLE 1 Databases dedicated to transporters. NA, URL not maintained.

Database Description URL Reference

ABCdb Prokaryotic ATP binding cassettes. Curated and
computational partitions

www-abcdb.biotoul.fr/ Fichant et al. (2006)

ARAMEMNON Plant membrane proteins. Computational aramemnon.botanik.uni-koeln.
de/

Schwacke et al. (2003), Schwacke and Flügge (2018)

TCDB All transporters. Curated www.tcdb.org/ Saier (2006), Saier et al. (2009), Saier et al. (2014), Saier
et al. (2016), Saier et al. (2021)

YTPdb Yeast membrane proteins. Curated NA Brohée et al. (2010)

TransportDB 2.0 All transporters. Computational http://www.
membranetransport.org

Elbourne et al. (2017)

TABLE 2 Annotation tools dedicated to transporters. Note that some portals appear to no longer bemaintained (NA), while others have changed URLs since
publication.

Name Notes URL Reference

TransAAP Integrated with TransportDB www.membranetransport.org/ Elbourne et al. (2023)

TIP Integrated with PathwayTools; parses existing text-based annotations bioinformatics.ai.sri.com/ptools/ Lee et al. (2008), Karp et al. (2020)

TrSSP Standalone, SVM annotation www.zhaolab.org/TrSSP/ Mishra et al. (2014)

TRIAGE Formerly the annotation tool for Merlin NA Dias et al. (2017)

TransATH Standalone, automated pipeline based on Saier’s protocol NA Aplop and Butler (2017)

TranCEP Standalone, combined homology and SVM annotation github.com/bioinformatics-group/
TranCEP

Alballa et al. (2020)

TranSyt Successor to TRIAGE, standalone and integrated with Merlin, KBASE transyt.bio.di.uminho.pt/ Cunha et al. (2023)

TransportTP Standalone, combined homology and SVM annotation NA Li et al. (2009)

PortPred Standalone. Combined DL-based protein embeddings and ML classification github.com/MarcoAnteghini/PortPred Anteghini et al. (2023)

SPOT Standalone. DL using Transformer Networks for classification of transporter-
substrate vector pairs

github.com/AlexanderKroll/SPOT Kroll et al. (2023)
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et al., 2018; Heirendt et al., 2019; Faria et al., 2023), making great
strides in closing the gap with curated models from genome
information alone, but a recent analysis of automated and non-
gapfilled draft GEMs showed dismal performance in predicting
substrate utilization (Gralka et al., 2023). While there is still no
substitute for manual curation by a skilled hand, draft GEM quality
could be markedly improved through more comprehensive
transporter annotations (Zuniga et al., 2021). Expansion from
monoculture simulations to more complex communities likely
amplifies these errors, resulting in poor agreement between
predicted and actual growth rates in a gut community using
three of the latest community FBA algorithms (Pearson
correlations of 0.07, at best; Joseph et al., 2024). Special attention
tomicrobial interactions (Sung et al., 2017) was given in the AGORA
bacteria reconstructions (Magnúsdóttir et al., 2017; Heinken et al.,
2023) and for the human host (the number of extracellular transport
reactions ballooned from 537 in Recon1 to 1,537 in Recon2; Sahoo
et al., 2014), but clearly there is room for more accurate and
comprehensive representation of transport processes to improve
growth and interaction predictions.

2.4 Challenges for transporter annotation
databases and tools

Guiding principles from the larger systems biology community
of shared access, integration and formatting, consistent with the
FAIR principles (Barker et al., 2022), should be adopted when
building relational databases and the tools that draw from them.
This includes providing persistent link identifiers for genes, proteins,
and substrates to common resources (e.g., NCBI, PubChem,
BRENDA, RHEA) wherever possible, providing documented
API’s for user access, adhering to community standard formats
like SBML and JSON, in the case of tools, working with other
developers to integrate with community standard reconstruction
pipelines like COBRA and KBase. As we look to the next-generation
of transporter annotation tools, especially those that build from
emerging methods in machine learning and artificial intelligence,
databases that prioritize these principles will be more readily
accessed and leveraged.

Database and tool developers should also seek to provide, wherever
possible, a minimal set of functional attributes of transporter gene
annotations required for GEM reconstruction. We have identified five
such attributes: membrane localization, membrane orientation (inward
vs. outward facing), binding reversibility, substrate specificity, and
reaction stoichiometry. We will discuss the current approaches and
challenges in assigning these attributes.

2.4.1 Membrane localization
With the exception of a few exceptionally well-studied model

organisms, protein localization across an entire proteome, or even a
substantial portion, is typically unknown a priori. A number of
predictive tools are based on homology to manually curated
databases of proteins of known localization (e.g., PSORT; Yu et al.,
2010) or based on identification of transmembrane domains and their
orientation (e.g., TMPred; Cuthbertson et al., 2005). Today, 77 protein
subcellular localization prediction tools are now listed in bio.tools
(reviewed in Li et al., 2023), with the newest generation (e.g.,

TmAlphaFold; Dobson et al., 2023) taking advantage of recent
advances in structural prediction. Several are tailored to specific
model organisms, while others draw from a broader taxonomic
resolution. In the absence of sanity-checks for each
compartmentalized reaction during the reconstruction process for a
particular species, and given the importance of assigning transporters to
the correct membrane, it may be wise to consider a consensus
localization (e.g., COMPARTMENTS; Binder et al., 2014) from a
collection of the most relevant sorting tools and other sources.

2.4.2 Transporter orientation and reversibility
Secondary-active transporters like ion symporters and

antiporters are typically reversible, but are often practically
irreversible under physiological conditions. However, a famous
counter-example is the oxygen-dependent transport of glutamate
into and out of nerve cells (Szatkowski et al., 1990). Even in this non-
canonical case, forward and reverse kinetics may be radically
different for inward- and outward-facing protein orientations
(Zhang et al., 2007). Primary-active transporters are, to our
knowledge, strictly irreversible. Because of its functional
classification scheme, annotation to the TC ontology should
cover all but the most egregious cases of reversibility.

2.4.3 Substrate specificity
Because assigning substrates to transporters is the crux of the

matter, we conducted an analysis of TransportDB 2.0 (Elbourne
et al., 2017), the most extensive database of transporter annotations
currently available. The dataset comprised 2,661 unique substrate
names associated with 940,581 substrate-transporter pairs,
distributed among 2,745 organisms. Substrates link identifiers
were unavailable, and a single substrate often appeared with
multiple names (e.g., “sodium ion” vs. “Na+”), making an
estimate of the true number of unique substrate-transporter pairs
difficult. For a subset of the unique substrate names (for practical
reasons, those which appeared in more than 8 organisms), we
manually assigned substrates into four categories: known (e.g.,
“Oxalate”), putative (containing a “?”; e.g., “Oxalate?”),
ambiguous (“a carboxylic acid”), and unknown (e.g.,
“metabolite”). From this categorization across all organisms, we
found that 52% ± 9%were known, 9% ± 4%were putative, 31% ± 8%
were ambiguous, and 9% ± 6% were unknown (Figure 2A).
Although the full 5-level TC system ontology terms are returned
with TransAAP, the datasets available through TransportDB
2.0 contain only the first three levels (194 unique terms). From
this coarse resolution, we found that only 5 ontology terms
represented a majority (66% ± 9%) of all transporter annotations
across all organisms, with a single term (3.A.1; ATP binding
cassettes) representing nearly half (45% ± 11%; Figure 2B).

A single transporter may have similar affinity for multiple
compounds, or even entire classes of compounds. This means
that in some cases, a transporter might be annotated to an
ambiguous level of substrate specificity (e.g., “a dicarboxylate”)
not because of a lack of knowledge of the appropriate
dicarboxylate molecule it transports (annotation is a missing one-
to-one mapping), but rather because it has broad specificity for
multiple dicarboxylate molecules (annotation is truly a one-to-many
mapping); perhaps even with comparable kinetic properties. Modest
changes of just one or two residues in transporter binding domains
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can affect substrate specificity and even stoichiometry, as is the case
for the cation/proton antiporters (Masrati et al., 2018), so
degeneracy in substrate specificity might be unfortunately necessary.

2.5 The trouble with diffusion

Although the selective permeability of membrane lipids with
different lipid compositions have been described in great detail
(Hannesschlaeger et al., 2019), diffusion reactions beyond the gasses
and a few waste products are rarely included in GEM reconstructions.
This may partly be due to the arbitrary nature of delineating the broad
spectrum of diffusion rates, from fast (order 10–2 m2 s−1; e.g., oxygen) to
slow (10–10 m2 s−1; e.g., high molecular weight polar compounds)
diffusing molecules. In general, phosphorylated metabolites might be
considered slow, eliminating a sizable portion of the total intracellular
metabolites, but the line becomes blurry when considering small
nonpolar metabolites like fatty acids, alkanes or alcohols. To make
matters worse, the decision to include a diffusive reaction for a
metabolite which is also actively transported would result in an
underestimate of energy costs in standard FBA. In addition to
specificity in transmembrane permeability, diffusive transport across
other intracellular compartments, like the shell proteins of
cyanobacterial carboxysomes which show preference for negatively
charged ions (Mahinthichaichan et al., 2018), should be represented.
Knowledge of the localization of pathways, or parts of pathways within,
can aid in filtering the list of candidate diffusive reactions into and out of
subcellular compartments, but this area is ripe for progress.

2.6 Prospects for computational approaches
to transporter functional annotation

The state-of-the-art in transporter annotation brings together
sequence alignment, systems biology ontologies, and structure analysis
tomake predictions about whether a gene product is a transporter, where
it might be located, its orientation, and what substrates it might bind.
Nevertheless, we find that many transporters lack sufficient coverage in
one or more of the required attributes. A leap forward will address gene-
protein-reaction specificity first.

We propose a concept for a computational pipeline built on existing
tools to progressively narrow the search space of potential transporter-
substrate binding pairs. By limiting the number of candidate substrates
for each predicted transporter structure, one can devise a strategy to
limit compute resources and alleviate some of the scalability problem
for downstream experimental validation. The pipeline (Figure 3),makes
parallel use of bioinformatics, systems biology tools and molecular
dynamics simulations to generate a short-list of substrates with
relatively high predicted ligand binding affinities. The workflow
begins with homology search against the TCDB to annotate genes
to the lowest level of ontology, given some threshold alignment.
Although the TC System is not phylogenetically structured per se,
an analogous approach to “Lowest Common Ancestor” (e.g., MEGAN;
Huson et al., 2007) could be used to assign ontology terms at a threshold
confidence level. In this scheme, a gene with close sequence similarity to
a transporter gene in the TCDB is annotated to level 5 (e.g., 2.A.1.1.1),
whereas another with weaker alignment is annotated to level 3 (e.g.,
2.A.1). Structuring the depth of annotation is a conservative strategy to

FIGURE 2
Summary of transporter annotations retrieved from TransportDB 2.0. (A)Distributions of the proportion of transporters annotated to different levels
of specificity across all organisms. Vertical dashed lines correspond to the mean of each distribution, and an example of each category is provided. (B)
Distributions of the proportion of transporters of the top 3 most abundant [super-] families across all organisms. ABC–ATP binding cassette; MFS–major
facilitator superfamily; PTS–phosphotransfer-driven group translocators.
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generate a list of children substrates that the query structure could
possibly transport (i.e., all substrates beneath 2.A.1). In a parallel step, a
draft GEM is reconstructed, returning the full set of intracellular
metabolites. By taking the intersection of these two lists, we pare
down the candidate substrates to only those which the organism
could conceivably take up or secrete. More stringent approaches
exist at this step, including an analysis of uptake and secretion
potential given the free exchange of all intracellular metabolites
across the system boundary using flux variability analysis
(Gudmundsson and Thiele, 2010), but the concept remains the
same. Finally, from the intersection set, predictions of ligand binding
affinity are used to generate a ranking of candidates. This step takes
advantage of advances in structure prediction (e.g., AlphaFold; Jumper
et al., 2021; RoseTTAFold; Baek et al., 2021), binding site inference,
docking andmolecular dynamics simulations (e.g., Ohnuki et al., 2023).
One approach here is to infer transporter binding sites from homologus
ligands and their cognate binding pockets already in the PDB databank
(PDBspheres; Zemla et al., 2022). Fusion Docking-ML calculation can
then be performed to determine the most favorable ligand poses in the
transporter (Jones et al., 2021). If increased fidelity is desired, various
versions of molecular dynamics simulations can be performed to
qualitatively and/or quantitatively predict favorable dynamical

protein-ligand interactions and associated binding constants
(Sohraby and Nunes-Alves, 2023). This approach benefits from high
throughput, with each simulation taking approximately 0.01 s/ligand
(Zhang et al., 2014), but may suffer from the lack of sensitivity for low
molecular weight ligands (less than 4 carbons) and metals, although
progress is being made (c.f., zinc; Wang, 2023). An exciting
development in this area is quantum docking simulations (Heifetz,
2020), which would, in principle, allow quantitation of binding affinities
for these small molecules. The drawback with this quantum docking is
throughput, with simulations taking on the order of minutes to hours
depending on the size of the binding pocket, each. At this stage,
depending on one’s objectives and the resources available, one might
either submit the best candidates for experimental validation or simply
apply a threshold affinity for annotation.

2.7 Prospects for transporter
functional genomics

With the advent of reliable protein structure prediction tools such
as AlphaFold (Jumper et al., 2021), we will likely see many of our
current sequence-to-function annotation tools replaced by a whole

FIGURE 3
A proposed computational workflow to progressively narrow the search space for experimental validation of transporter functional annotations. Red
lines correspond to paths followed for a single transporter and are repeated for all un-annotated transporters, while black lines correspond to paths taken
(once) for the whole genome. The pipeline begins (1) with alignment of transporter genes to the TCDB, retrieving a list (horizonal bars) of all children
metabolites associated with the lowest common ancestor ontology term. In another path (2), a draft GEM is reconstructed to generate a list of all
intracellular metabolites synthesized or degraded in the metabolic network. The intersection of both lists (cyan bars) is passed to a third path (3) as
candidates for docking simulations using the predicted protein structure. Predicted binding affinities that exceed some threshold are finally passed as
candidates for experimental validation.
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new generation of sequence-to-structure-to-function tools over the
next decade, both for enzyme annotation and for substrate-specific
transporter annotation. However, the availability of large-scale
substrate specificity data to train such tools will likely continue to
be a bottleneck. While computational methods can pare down the
search space of transporter-ligand binding candidates, evidence for
transporter annotations should come from experimental validation,
preferably in vivo (David et al., 2019). Recent advances in laboratory
automation and mass spectrometry are dramatically increasing the
throughput of functional and phenotypic screening (Coutant et al.,
2019), and there is potential for functional genomics guided by
mechanistic models. For instance, dynamic FBA can be used to
identify target genes to generate smaller, metabolic process-specific
deletion libraries for subsequent phenotyping (Brunnsåker et al., 2023).
To our knowledge, these approaches have not yet been applied to
transporters but could be easily adapted using Biolog-like screens
(Bochner et al., 2001) or exometabolomics (Jenkins Sánchez et al.,
2022). One high-throughput approach involves the use of a substrate-
selective riboswitch as biosensors (Genee et al., 2016). When expressed
along with metagenomic DNA fragments, transformants could be
screened for their ability to grow on the substrate, and in so doing, the
authors could assign function to uncharacterized transporters and
identified numerous transporter annotations in error for multiple
substrates. Another exciting recent development is Boundary Flux
Analysis (reviewed in Lewis, 2024), a method to link changes in
metabolite concentrations in growth media to constraints on uptake
or secretion rates in GEMs. This approach appears scalable and holds
great promise for screening deletion libraries.

3 Conclusion

Errors in transporter annotation arise from a variety of sources,
most often resulting in missing or false assignments to substrates.
Because of the non-unique mapping of genes to transporters to
substrates, these errors metastasize, contributing to horrendous
performance in the genotype-phenotype mapping of automated
GEM reconstructions based on genome annotation alone.
Mischaracterization of species-environment interactions is
compounded when inferring microbial interactions in community
models, leading to further expansion of spurious and false
interaction predictions, and therefore poor fidelity to
observations. To complement the progress enjoyed by other
aspects of GEM reconstruction, we need to pursue new
computational and experimental approaches to the transporter
annotation problem. We offer a strawman workflow combining
hierarchical ontology filtering with molecular dynamics simulations,
and look to emerging high-throughput screening methods to
validate predictions. Until the larger systems biology community
and sponsors prioritize this challenge, we can continue to expect
diminishing returns on advances in microbiome modeling.
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Both machine learning and mechanistic modelling approaches have been used
independently with great success in systems biology. Machine learning excels in
deriving statistical relationships and quantitative prediction from data, while
mechanistic modelling is a powerful approach to capture knowledge and infer
causal mechanisms underpinning biological phenomena. Importantly, the
strengths of one are the weaknesses of the other, which suggests that
substantial gains can be made by combining machine learning with
mechanistic modelling, a field referred to as Scientific Machine Learning
(SciML). In this review we discuss recent advances in combining these two
approaches for systems biology, and point out future avenues for its
application in the biological sciences.

KEYWORDS

machine learning, mechanistic models, scientific machine learning (SciML), ordinary
differential equations, system identification, parameter estimation, biology-informed
neural network (BINN)

1 Introduction

Classically, systems biology has primarily focused on the use of dynamic mechanistic
models to elucidate the underpinnings of natural phenomena. Popular model formalisms
applied include ordinary and partial differential equations (ODEs and PDEs, respectively),
Boolean networks, Petri nets, cellular automata, individual-based models, and
combinations of these. Properties of mechanistic models—including the type of
equation or rules, initial conditions, or parameter values—depend on the field, question
of interest, and expertise of the researchers involved and are often determined or
constrained by the limited availability and quality of experimental data. While classic,
low-dimensional models can fit a range of concentration-, time-, and space-dependent
datasets (Michaelis and Menten, 1913; Lotka, 1920; Volterra, 1926; Hodgkin and Huxley,
1952), for larger, high-dimensional biological systems such models can be difficult to
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construct due to the so-called curse of dimensionality (Bellman,
1957): as many variables and hence model parameters are necessary
to describe a high-dimensional system, it is virtually impossible to
generate sufficient experimental measurements to properly estimate
these parameters. Only if many existing parameters are known a
priori (e.g., reaction rates from experimental measurements), they
can be used to construct a quantitative mechanistic model that
overcomes the curse of dimensionality (Karr et al., 2012).
Alternatively, coarser models such as Flux Balance Analysis and
Boolean models are typically applied to large metabolic or regulatory
networks, as their assumptions lead to simpler models (Xiao, 2009;
Orth et al., 2010). Mechanistic models have been indispensable tools
to test if our current understanding of biology is necessary and
sufficient to describe experimental data, all while having
interpretable inner workings. Nevertheless, a gap exists whereby
high-throughput time- or space-dependent data is not yet readily
used to construct detailed, large mechanistic models.

More recently, state-of-the art machine learning (ML)
algorithms have been developed and applied to the increasing
wealth of biological data. Since these are data-driven methods
that are built to infer patterns from large, high-dimensional
datasets, they have enabled high accuracy in applications such as
protein structure and function prediction (Jumper et al., 2021;
Kulmanov et al., 2018), single-cell transcriptomics modelling
(Lopez et al., 2018), and more (see Baker et al., 2018; Sapoval
et al., 2022). However, many of these ML methods have limited
biological interpretability, and do not elucidate underlying biological
mechanisms in the way that mechanistic models can.

Given their complementary strengths and weaknesses,
integration between ML and mechanistic models, also called
SciML, is a promising new field, which has already gained
popularity in scientific disciplines such as engineering (Willard
et al., 2022), crop modelling (Maestrini et al., 2022), and physics
(Karniadakis et al., 2021). Indeed, there is a great interest in
combining these two approaches and their application in
diverse fields (Legaard et al., 2023; Tong et al., 2020; von
Rueden et al., 2021). In this review, we discuss the latest
advances in combining ML and mechanistic modelling
approaches—particularly in the form of ODEs or
PDEs—applied to systems biology. Notably, while similar
reviews for fields like biomedical multiscale models exist (Alber
et al., 2019), and reviews such as Gazestani and Lewis (2019)
concentrate solely on deep learning—a subset of ML—our focus is
on innovative approaches in merging biological knowledge with
various ML approaches within the systems biology domain. Here,
we aim to provide a perspective on the use of SciML for the study of
biological systems, and thus we do not explicitly focus on
performing the modelling in practice. For more information on
SciML-related software packages and best practices, please refer to
the Supplementary Material.

We first describe methods leveraging prior biological knowledge
or mechanistic models to augment the interpretability and accuracy
of ML models. Subsequently, we explore how ML techniques can
contribute to the development and simulation of mechanistic
models. Next, we review models that intrinsically merge
mechanistic models with ML, and the synergy this provides.
Finally, we provide a perspective on potential new avenues for
integration of ML and mechanistic models. A brief overview of

all categories of models that we discuss is given in Table 1, where we
highlight what mechanistic model and ML building blocks they are
built of, and for what goal they are integrated.

2 Combining ML with prior knowledge

2.1 Constraining ML model structure

Machine learning is concerned with computational methods
that learn (i.e., are trained) to perform a certain task based on
example data. A wide range of methods are available, each differing
primarily in the assumptions they impose on a problem. This
results in a trade-off between the model’s complexity and its ability
to learn any given problem, known as the bias-variance trade-off
(Geman et al., 1992). As a major subfield of ML, neural networks
(NNs, more recently called deep learning, DL) consist of simple
functions (“units” or “nodes”) that calculate a weighted
combination of their inputs and then apply a non-linear
transformation to produce an output. By combining several
layers of such units, given a dataset of examples of input x and
desired output y, sufficiently large NNs can in principle be trained
to approximate any function (Hornik et al., 1989)

ŷ � NN x, w, b( ) (1)
where w and b represent the internal weights and biases of the NN,
respectively. For readability, subsequent equations will omit explicit
mention of these parameters.

NNs have shown great potential in systems biology (Sapoval
et al., 2022) to, for example, relate multi-omics data to drug
response (Sharifi-Noghabi et al., 2019). Nevertheless, the broad
deployment and practical utility of NNs is still limited by a number
of factors. First, NNs can be hard to generalise to different
biological contexts as they easily overfit the specific training
data available. Second, as highly parameterised universal
approximation methods, NNs suffer from a lack of
interpretability. Therefore, it makes sense to inform NNs with
existing biological knowledge to constrain their complexity, a task
for which NNs are well-suited. Conventionally, such approaches
start from an existing NN architecture (e.g., a multi-layer
perceptron, MLP, or a recurrent NN, RNN) and limit some of
its internal connections based on biological data or prior
knowledge, thus reducing the number of parameters to be
estimated. In some cases, this allows certain elements of the
NN to take on a mechanistic meaning, which “opens up the
black box.” Here we discuss methods where NN performance
and/or interpretability has been aided by inclusion of
established biological insights.

A first way to enforce biological prior knowledge is by creating a
sparsely connected MLP, where each node represents a biological
entity (e.g., a gene, protein complex, or full cell organelle) and nodes
are only connected if they are known to interact based on
experimental or computational biological evidence (Elmarakeby
et al., 2021). Such a sparse MLP has been applied to cell growth
models, where connections were informed by Gene Ontology (GO)
terms (Ma et al., 2018) and to modelling signalling and
transcriptional regulation, where each connection is based on
known interactions between genes, proteins, and their pathway
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membership (Fortelny and Bock, 2020; Hartman et al., 2023).
Overall, these studies find that such biologically-constrained
MLPs outperform existing predictive models, suffer less from
overfitting compared to their fully connected counterparts, and
allow for meaningful biological interpretability. However, there is
no agreed upon best method yet to extract biological insights from
these sparse MLPs.

MLPs are not the only NN architecture that can be used as a
blueprint for biology-informed ML. For example, in a recurrent
neural network (RNN), the matrix governing the calculation of the
hidden state from the previous time point’s hidden state can be
likened to an interaction matrix (graph) between molecules in a
signalling network (Nilsson et al., 2022). Therefore, this matrix can
be constrained to only include known interactions, which prevents
overfitting, and enables genome-scale modelling of intracellular
signalling. Moreover, this matrix can be further constrained by
existing knowledge of dynamical systems, e.g., by restraining the
system’s largest eigenvalue to be smaller than one, as this ensures
that the RNN always converges to a steady state or equilibrium.
Other architectures, such as convolutional neural networks (CNN),
have also been constrained with prior knowledge in fields such as
physics (Zhang Z. et al., 2023). However, in the field of systems
biology we were unable to find examples of such applications yet,
even though CNNs could be used to study, e.g., spatial cell-cell
interactions.

Overall, this highlights the potential for constructing
biologically-constrained NNs by starting with existing NN
architectures that effectively align with the structure of the
biological problem being addressed. Nevertheless, not all prior
biological knowledge naturally lends itself to this, and the most
insightful way to extract meaning from the internal workings of an
NN remains to be elucidated.

2.2 Mechanistic model simulations as input

An alternative way to make use of biological knowledge is to use
the output of mechanistic models (defined more in depth in Section
3) as “input” to an ML model (Gelbach et al., 2022; Myers et al.,
2023). Note that this should be distinguished from “integrated
models,” where part of the system is modelled using ODEs and
another part using ML; here, we focus on cases where multiple ODE
simulations are performed to generate data to train the ML model.

One classic approach is so-called simulation-based inference,
which refers to a suite of techniques for inferring model parameters
when the likelihood function is not tractable (Cranmer et al., 2020).
A likelihood function quantifies the probability of observing a set of
data given a specific set of parameter values in a model. Parameter
values can then be optimised by maximising this likelihood.
Classical approaches for simulation-based inference include, e.g.,
approximate Bayesian computation (ABC), where parameters are
repeatedly drawn from a prior distribution, a simulation is run with
those parameters, and the parameter values are retained as a sample
of the posterior distribution if the simulated data is sufficiently close
to the observed data. This yields a probability distribution for
parameter values given a model structure and a dataset. The
approach is case-based, in the sense that for a new set of
observations, the entire estimation procedure must be run again.

A second approach is to create a model for the likelihood by
estimating the distribution of simulated data with, e.g., kernel
density estimation. Compared to ABC, it has the advantage of
spreading the costs of the initial investment in simulation across
various analyses or parameter estimates: new data points can be
evaluated more efficiently. Here, recent developments that use NNs
now allow density estimation to scale to high-dimensional data. An
example is normalising flows, in which variables described by, e.g., a

TABLE 1 Overview of the SciML approaches covered in this review, the models they merge, and the goal of integration (NN, neural network, MM,
mechanistic model, ML, machine learning, ODE, ordinary differential equation).

Section Name Starting point Combine with Goal

2.1 Constraining ML model
structure

Standard fully connected NN Dataset of (predicted) biological
interactions, only connect nodes in NN if
there is evidence for an interaction

Make nodes and edges take on meaning;
increase interpretability

2.2 Mechanistic model
simulations as input
for ML

Existing MM NN to make predictions based on MM
output

Perform task that MM could not do in
isolation

3.1 Selecting from a library of
candidate terms

Terms from which ODEs could
be constructed

ML to select key terms from the library Identify ODEs that fit dataset using a small
number of candidate terms

3.2 Finding hidden
mechanisms

ODEs with some terms
(i.e., mechanisms) already known

NN to fit unknown terms ODE model with increased performance;
potentially information about what terms
should be added to the ODEs

3.3 No candidate terms are
known

ODEs missing terms that are
needed to explain rate of change

NN that predicts the rate of change of each
element (e.g., gene), based on all other
elements in the system

Accurate, but hard to interpret method to
predict temporal patterns

3.4 NN to enhance model
simulations

Parameterised ODEs NN that predicts the solution of the ODEs Faster solving of the ODE system

4.1 ML to aid in fitting sparse,
noisy data

ODEs that should be fit to noisy
and/or sparse data

NN to interpolate the data while adhering to
the limits that the ODEs provide

Interpolate data (without overfitting) for
finding parameters of ODEs

4.2 Parametrisation of
metabolic systems

High-dimensional system of
ODEs with yet unknown
parameters

NN that predicts a set of parameters, and NN
that can classify if parameters are good or not

Find parameters for large system of ODEs
that make it consistent with experimental
data
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multivariate Gaussian are transformed through a parameterised
invertible transformation. Several such steps can be stacked, and
the parameters of the transformations are trained by maximising the
likelihood of the observed data. A recent example of such an
approach is Bayesflow (Radev et al., 2020), which trains two
neural networks on simulated data: i) a summary network, which
reduces a set of observations to learned summary statistics (for time-
series, typically a long-short-term memory (LSTM) network is used,
which is a variant of the above-mentioned RNN); and ii) an
inference network, which learns the posterior given these
summary statistics. The latter is implemented as a normalising
flow. Bayesflow has been used for systems biology problems in
Arruda et al. (2023) to consider measurements for different cells or
patients, and simulate a heterogeneous cell population using a non-
linear mixed-effects model of (single-cell) translation.

An alternative to simulation-based inference is to use transfer
learning (Przedborski et al., 2021). This leverages features and
representations learned by solving one problem to help solve a
related but different problem. After pretraining a model on a large
dataset, it can be transferred and fine-tuned for a new task with
smaller datasets, accelerating learning and improving performance.
This approach is especially useful when labelled data for the target
task is limited or expensive to obtain. In the specific example of
Przedborski et al. (2021), simulated clinical trial data was obtained
from an already calibrated ODE model for immunotherapy,
describing time evolution of various cell types based on
molecular interactions. Note that this existing model was not
directly aimed at distinguishing between patients responding and
non-responding to treatment. To do so, an additional classification
model was developed. Relevant features for distinguishing response
from non-response were selected from the initial conditions and
kinetic parameters of the ODE model simulations. These features
were then used as inputs to an NN, which was pretrained on the
simulated data to classify virtual patients as responders or non-
responders. Subsequently, transfer learning was used to fine-tune
the model on real clinical data.

Both biologically-constrained MLPs and ODE-input ML have
typically been applied to datasets where the final output is static (i.e.
a state that does not change). For dynamic outputs, it may be better
to start with a mechanistic model and enhance it using ML, as
discussed in the next section.

3 ML to enhance mechanistic models

Ordinary differential equation (ODE) models are a commonly
used framework to model biological dynamical systems. As the
affordability and accessibility of many experimental methods have
increased, and the scale of data generation has grown dramatically,
mechanistic models have become larger (Fröhlich et al., 2018), more
detailed, and less abstract. This leads to a need for both newmethods
for model construction (i.e., identifying the unknown terms in an
equation), and for improved numerical algorithms to address the
high computational requirements of ODE solving. Here, we discuss
four ways in which ML can support the construction and simulation
of mechanistic models: i) if potential terms in the ODE are already
known and a subset should be selected, ii) if some terms are still

unknown, iii) if all candidate terms are unknown, and iv) if ODE
solving should be enhanced.

3.1 Selecting from a library of
candidate terms

The first step of any mechanistic modelling study is to
define the equations of the model based on prior knowledge of
the biological system. These equations describe the rate at
which a variable changes over time and/or space, and how it
depends on other variables in the system and parameters/
reaction rates. The mathematical notation for such a system
generally reads

dx

dt
� f x, p, t( ) (2)

where dx/dt is the rate of change of species or variables x over time,
which is determined by reactions f with parameters (or rate
constants) p. These reactions may be influenced by time t. In
systems biology, the functions f could represent defined
chemical reactions between variables, e.g., conversions between
different states or enzyme-catalyzed Michaelis-Menten reactions,
that depend on parameters p with clear biological definitions, e.g.,
transcription, translation, complex formation, (de)phosphorylation,
dilution, degradation, and diffusion rates. Consequently, many
systems biology models are constructed from the same set of
mathematical terms, or building blocks, with a direct biological
interpretation (Ingalls, 2013; Klipp et al., 2016).

Another factor to consider is the size of the model, i.e. the
number of variables and/or parameters. This is often constrained
by the data availability, namely which system species and rates
have been measured. In the process of model construction, a key
question for the modeller is then whether a model needs to be
complete—in the sense that all known variables x need to be
contained within the model—or whether a smaller, abstract model
is sufficient to explain the available data. This is referred to as
model parsimony and measures such as the Akaike Information
Criterion can be used to compare model structures (Portet, 2020).
In practice, this means that systems biologists often search for
models with a limited number of “hidden,” or unmeasured,
variables to reduce the uncertainty in predictions made for
measured variables.

Both considerations above—equation formulation and model
size—can be biased by the researchers’ preferences and prior
knowledge. To avoid this, ML has recently been applied to
construct models based on data in an unbiased manner. For
example, Erdem and Birtwistle (2023) utilised ML to infer gene
networks from integrated -omics data and used these connections to
expand an existing mechanistic model (Erdem et al., 2022; 2023).
Alternatively, when a library of potential terms in f is already
known, the SINDy (sparse identification of non-linear dynamics)
family of symbolic regression methods has been developed to select
the most relevant terms from this library (Brunton et al., 2016;
Champion et al., 2019; Massonis et al., 2023). The SINDy method
(Brunton et al., 2016) rewrites an ODE, as in Eq. 2, into

f x( ) � Θ X( )Ξ (3)

Frontiers in Systems Biology frontiersin.org04

Noordijk et al. 10.3389/fsysb.2024.1407994

84

https://www.frontiersin.org/journals/systems-biology
https://www.frontiersin.org
https://doi.org/10.3389/fsysb.2024.1407994


where Θ(X) is a time-dependent matrix containing a library
of candidate mathematical terms for the ODE (e.g., cos(x(t)),
x2(t), . . .), and Ξ is a sparse matrix containing parameters detailing
the rates of each associated mathematical term in the equation. To
obtain the matrix Ξ from data, we can minimise a loss function

L � dxd

dt
− Θ X( )Ξ( )

2

(4)

where dxd/dt is the numerically approximated time-derivative
of time-dependent measurements. When the loss function L
approaches zero, the predicted ODEs produce solutions that
match the time-dependent measurements of variables. To
prevent complex models being obtained, this optimisation
problem is solved with sparse regression methods, such that Ξ
is a sparse vector containing as many zeros as possible (Brunton
et al., 2016). Test cases in the literature encompass a variety of
oscillatory systems, including Lorenz attractors, swinging
pendulums (which have recently been related to cell cycle
models (Dragoi et al., 2024)), spatial patterning, and glycoloysis
pathways in yeast. Moreover this SINDy methodology has since
been extended to model non-linear dynamics using implicit
functions (Kaheman et al., 2020) and to create structurally
identifiable models (Massonis et al., 2023). One recent
extension of the SINDy method used autoencoder NNs to
reduce the dimensionality of data x to a smaller set of “intrinsic
coordinates” z, which can be modelled and used to reproduce the
observations seen in the larger system (Champion et al., 2019). In
this instance the neural network calculates

z � NN x( ) (5)
where |z|< |x|, and dz/dt provides knowledge about the larger

system dx/dt. Compared to linear dimension reduction approaches
such as principal component analysis or dynamic mode
decomposition, this nonlinear approach may lead to poor
interpretability of the dynamic variables, but it allows for more
complex models to be simplified and analytically explored.

3.2 Finding hidden mechanisms

In a second, less constrained, modelling approach, universal
ordinary differential equations incorporate NNs into the differential
equations themselves. In this case, the mathematical definition of a
reaction or relationship between model variables may be unknown,
and a neural network is trained to determine the time-dependent
rate of change. An example universal ordinary differential equation
would then take the form

dx

dt
� f x( ) +NN x, t( ) (6)

where f(x) models known relations, whilst NN(x, t) is a time-
dependent NN that represents unknown interactions. The equations
are then fit to data as part of training the NN. Such methods
have been applied to ODEs (such as the oscillatory Lotka-
Volterra system), PDEs for describing spatio-temporal biological
phenomena (Rackauckas et al., 2021), and chemical master
equations describing stochastic kinetics of small genetic networks

including feedback loops (Jiang et al., 2021). Hence, they have
proven to be very convenient when commonly used
mathematical functions do not provide a model with a good fit
to data. Bringing universal ordinary differential equations together
with SINDy provides the opportunity, as in Rackauckas et al. (2021),
to determine an unknown time-dependent reaction rate, followed by
approximating the best mathematical definition of the reaction rate
using SINDy. This would allow models to simultaneously be
constructed directly from data whilst building on pre-existing
knowledge (contained in f(x)).

In a complementary approach, one can use the output of the
NNs (e.g., a plot of NN(x) vs. x) to estimate the precise
mathematical expression (functional form) that describes an
unknown term (Lagergren et al., 2020; Daryakenari et al., 2024).
Lagergren et al. (2020) showed that MLPs could be used to estimate
cell growth and diffusion terms in a PDE model describing scratch
assay experiments where cells repopulate available space on a
surface. From this analysis, explicit mathematical functions could
be approximated to create a phenomenological that then showed
these two terms were not sufficient for a fully accurateMLP fit. Based
on this discrepancy, the authors also added a time-delay term which
yielded a better model fit, even when taking into account the
increased number of parameters. This methodology was
demonstrated on both simulated and in vitro data.

3.3 No candidate terms are known

As a third approach, neural ODEs (nODEs) (Chen et al., 2019)
can be used to estimate the rate of change of the system. Here, no
underlying assumptions about the functional form of the dynamics
are made, and the neural network outputs the rate of change of x,

dx

dt
� NN x, t( ). (7)

nODEs have been applied for transcriptomic forecasting
(i.e., predicting gene expression over time) (Erbe et al., 2023),
but provide limited biological interpretability. To enhance
interpretability and integrate biological insights, Hossain
et al. (2024) incorporated prior knowledge into the neural
network architecture, specifically by adding soft constraints
which steer the nODE connections to putative transcription
factor-gene interactions obtained through transcription factor
binding site enrichment (comparable to Section 2.1). The
methodology was performed to model gene expression
changes in yeast cell cycles, breast cancer progression, and
B cell dynamics from ChIP-seq and RNA-Seq datasets. This
approach increased performance, led to a sparser NN, and could
be used to reconstruct underlying gene regulatory networks.
Potentially, this gene regulatory network could be used as a
starting point for a more insightful mechanistic model, built up
using some of the aforementioned methods. For single-cell
transcriptomics, Chen et al. (2022) and Zhang J. et al. (2023)
used an autoencoder to predict RNA velocities or expressions,
respectively. To gain biological insights into the workings of the
autoencoder, the latent layer could be probed for
biological insights.
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Nevertheless, elucidating the inner workings of nODEs remains
a challenge compared to more traditional ODE/PDE models.
Moreover, their predictive performance can still be improved,
especially for sparse, noisy biological data measurements.

3.4 Neural networks to enhance model
simulations

Once model equations have successfully been obtained, the next
step in model construction is to define parameters and simulate the
system. During parameter optimisation (i.e. data fitting), a
differential equation model is solved many tens of thousands of
times with different sets of parameter values before the output
simulations are compared with experimental data. In the absence
of extensive parallelisation, the computational cost of numerically
solving the model often leads to long run times for parameter
optimisation. Since traditional ODE solvers are computationally
demanding, researchers have considered the use of NNs to output
the solution of an ODE given time t as an input. The NN is then
trained to minimise a loss function that ensures the NN’s output
adheres to the underlying ODE (Grossmann et al., 2023).

This approach can be extended to PDEs, providing the NN with
time and spatial coordinates as has been done by Han et al. (2018),
Nabian and Meidani (2019), and Wang and Wang (2024) for high-
dimensional systems consisting of 50–100 equations. In these
examples, the spatial coordinates of the PDE are modelled using
a stochastic time-dependent processes and used as inputs into an
NN to predict the evolution of system components over
space and time.

Comparisons between this NN-based ODE/PDE solving
method and traditional approaches, such as finite element
methods, reveal two key insights (Han et al., 2018; Nabian and
Meidani, 2019; Grossmann et al., 2023; Stiasny and
Chatzivasileiadis, 2023; Wang and Wang, 2024). First, there is
debate as to whether NNs can predict solutions to differential
equations with similarly high accuracy as their finite-element
counterparts. For example, Grossmann et al. (2023) show that
their methodology provides PDE solutions with higher relative
error compared to finite-element methods. Notably, the relative
errors found in Grossmann et al. (2023) are comparable with those
for high-dimensional systems (Han et al., 2018; Wang and Wang,
2024). Second, the evaluation time of differential equation systems
using NNs does not change with the accuracy of solutions, in
contrast to finite element methods which take longer when
higher accuracy is required (Grossmann et al., 2023). This hints
to the possibility that parallelisation of NN evaluation could
dramatically speed up large-scale model simulations at the cost of
slightly decreased accuracy of numerical approximations. To the
best of our knowledge, researchers have not yet been able to bridge
the gap in relative error between NN solutions and solutions
obtained using finite-element methods.

In summation, the examples above illustrate how ML methods
can be applied to differential equation models to identify what terms
should be used in equations, predict novel terms in equations, and
speed up numerical approximation of complex models.

4 Integrating mechanistic models
and ML

4.1 ML to aid in fitting sparse, noisy data

Many of the methods discussed above require numerous time
point measurements with minimal noise, which is often difficult to
achieve for biological problems. Hence, generating an estimation of
the experimental data at unmeasured time points can greatly assist
in mechanistic model fitting and provide insight into the underlying
biological dynamics:

x̂ � NN t( ). (8)

However, since MLPs commonly contain thousands of
parameters, they are prone to overfitting the training data and
may not generalise well to out-of-sample scenarios (Willard
et al., 2022). Such function-estimating NNs can be made robust
by constraining them using known ODEs, i.e., making these models
physics-informed neural networks (PINNs) (Raissi et al., 2019). A
first approach is to make their derivative be as close as possible to a
priori ODE/PDEs that describe (aspects of) the known underlying
biological system. Such an approach was demonstrated by Yazdani
et al. (2020) on three biological datasets, and was implemented
through the loss function:

L � x̂ − x( )2︸���︷︷���︸
Data loss

+ d

dt
x̂ − f x̂, t( )( )

2

︸�������︷︷�������︸
ODE loss

(9)

The first term ensures a close match between the NN-
interpolated data x̂ and the experimental data x, while the
second term keeps the MLP derivatives in agreement with the a
prioriODEs f. ddt x̂ is found by automatic differentiation through the
NN. Minimising this loss function not only allows the NN to more
robustly fit the noisy training data, but also allows for simultaneous
fitting of parameters in the a priori ODEs f. All in all, this
demonstrates that the unidirectional interactions discussed so far
can be integrated, where mechanistic models inform ML, and
vice-versa.

On simulated datasets, Yazdani et al. (2020) demonstrate that
this approach successfully estimates practically identifiable
parameters (i.e., those that can be uniquely determined from
experimental data) for oscillatory or adaptive models with
5–20 unknown parameters and 5–10 system variables. It would
be interesting to determine how successful the methodology is with
sparser experimental datasets than those used in this study.
Note that this approach only works if the complete ODE
equations are known a priori; if parts are unknown, methods as
described in Section 3.2 could be used, as shown by Lagergren
et al. (2020).

In this nascent field, researchers integrating NNs with biological
knowledge use some ambiguous nomenclature for models, where
similar methods have been given different names, and different
methods have been given similar names. Table 2 provides an
overview (not aiming to be complete) striving to disambiguate
terminology.
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4.2 Parametrisation of metabolic systems

The use of system features alongside simulated or real data has also
been applied to NNs evaluating parameters of metabolic systems, such
as catalytic rates or maximal rate velocities and Michaelis constants.
Choudhury et al. (2022, 2023) present REKINDLE and
RENNAISANCE, that apply generative adversarial neural networks
(GANs) to find sets of metabolic enzyme parameters that recapitulate
metabolic profiles of E. coli in steady state conditions. Such
mathematical models incorporate tens of state variables and
hundreds of model parameters. In REKINDLE (Choudhury et al.,
2022), a generator NN is trained to produce model parameter sets
with such accuracy that a discriminator NN cannot predict whether
they are real or fake when compared with “ground-truth” parameter
sets. In RENNAISANCE (Choudhury et al., 2023), several GANs are
optimised by a genetic algorithm to produce parameter sets that lead to
a model consistent with experimentally determined metabolic
responses (e.g., speed at which metabolic pathways reach steady
state, system stability, etc.), an approach that foregoes the need for
comparison with “ground-truth” parameter sets. In the initial
generation of the genetic algorithm, many GANs are created and
compared for their ability to produce relevant parameter sets that
yield accurate steady state levels of metabolic concentrations. Following
generations are then populated with GANs that are perturbed versions
of the previous generations best-performing network. Over time, a
population of highly performing GANs are then obtained and allows
users to analyse variability of model parameters and dynamics for
metabolic pathways. The output of both REKINDLE and
RENAISSANCE can be used to simulate metabolic systems under
different experimental conditions (at steady state or within dynamic

bioreactors), compare predicted metabolic parameters with
experimentally determined counterparts (and use experimentally
measured parameter values to further constrain optimisation
solutions), and to predict how metabolic reactions change between
physiological states.

Finally, Sukys et al. (2022) have created Nessie, an NN that takes
a time-point and model parameters as input and predicts probability
distributions of single cell mRNA or protein copy numbers. By then
comparing the distributions of system variables with
experimentally-determined copy number distributions, the
method allows for the back-calculation and estimation of single
cell parameter distributions. The authors applied this idea to genetic
feedback loops, toggle switches, and kinase pathways. The NN
approach made analysis of relationships between parameters and
system properties—e.g., the parameters responsible for bimodality
in a simple autoregulatory feedback loop—approximately ten
thousand times faster.

In summary, recent developments propose a seamless
integration of NNs with mechanistic models, and we envision
that further progress in this research direction will enable models
with increased applicability, interpretability, and performance.

5 Prospective applications: from gene
regulatory networks to
whole organisms

In the previous sections we reviewed existing work, where
mechanistic modelling constrains or informs ML methods, where
ML helps construct mechanistic models, and methodologies where

TABLE 2 Nomenclature for integration of neural networks with biological knowledge.

Info Characteristics

Study Name for
approach

Underlying
ML structure

ODE/PDE
in loss
function

ML-structure
constrained by
biological
knowledge

MLP as
term in
ODE/
PDE

ODE as input to ML
(no simultaneous
fitting)

Lagergren et al.
(2020)

Biologically informed
neural network (BINN)

MLP (fully connected)
with PDE

Yes No Yes No

Elmarakeby
et al. (2021)

Biologically informed
neural network (BINN)

MLP (sparse) No Yes No No

Hartman et al.
(2023)

Biologically informed
neural network (BINN)

MLP (sparse) No Yes No No

Yazdani et al.
(2020)

Systems biology informed
neural network (SBINN)

MLP (fully connected)
with ODE

Yes No No No

Przedborski
et al. (2021)

Systems biology informed
neural network (SBINN)

MLP (fully connected) No No No Yes

Ma et al. (2018) Visible neural
network (VNN)

MLP (sparse) No Yes No No

Fortelny and
Bock. (2020)

Knowledge primed neural
network (KPNN)

MLP (sparse) No Yes No No

Nilsson et al.
(2022)

Large-scale knowledge-
EMBedded Artificial
Signaling-networks
(LEMBAS)

RNN (sparse) No Yes No No
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these two start to become intertwined. Clearly, exploiting the
synergy between ML and mechanistic models can lead to more
accurate, better interpretable models in systems biology, which will
enhance our capacity to modify the behaviour and performance of
biological systems in an informed way. Although the balance
between ML and mechanistic modelling within integrated
approaches may be a matter of taste, expertise of the scientist,
and the availability of data and prior knowledge or models,
mechanistic models in the end are most easily interpreted. In this
last part we therefore turn our focus to how we envision the
integration of (multiple) ML techniques could lead to the
improvement and expansion of mechanistic models. Additionally,
we suggest how ML methods can model residual components to
improve predictive power.

5.1 Potential for hybrid approaches to
understand tissue developmental patterning

As an illustrative example, in developmental biology the aim
is to decipher how cells with identical genetic make up decide
which genes to express when and where, in order to produce a
patterned specialised tissue consisting of a variety of distinct cell
types. In recent years, single-cell transcriptomics combined with

ML dimensionality reduction approaches such as tSNE and
UMAP (van der Maaten and Hinton, 2008; McInnes et al.,
2020) are increasingly used to identify gene expression clusters
corresponding to the distinct cell fates occurring in the tissue
under study. Subsequently, a pseudotime-based ordering of these
cell states enables the reconstruction of temporal trajectories
describing cell fate development and transitions (Trapnell, 2015;
Saelens et al., 2019) (Figure 1A). Thus far, these methods have
mostly been used to identify novel cell types, including the gene
expression profiles uniquely identifying these. Frequently, novel
cell states are identified that are intermediates of previously
known cell types (Jo et al., 2021; Gan et al., 2022), increasing
our knowledge of the gene expression changes that cells
experience on their path to differentiation. Additionally,
subdivisions of previously known cell fates into distinct
categories or rare novel cell types are frequently detected
(Grün et al., 2015; Tang et al., 2017; Krenkel et al., 2019; Fu
et al., 2020). This fine-grained level of understanding has only
been possible through the combination of single-cell sequencing
with ML methods.

Other ML approaches have been applied to infer gene
regulatory networks from single-cell transcriptomics data,
identify potential regulatory links between genes, and find the
specific cell types in which these regulatory interactions take

FIGURE 1
Proposed hybrid mechanistic-ML models for developmental tissue patterning. Based on single-cell transcriptomic data (A), ML methods can infer a
regulatory network (B), that can be used as a building block of a mechanistic spatial model incorporating known and hypothesised details of cell-cell
signalling and morphogen gradients (C). By comparing the cell differentiation trajectories produced by the model (D) to the actual expression data and
cell fate clusters (E and A), an iterative approach can identify missing genes, short-range cell signalling, and/ormorphogen gradients to optimise the
hybrid model (F).
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place (Aibar et al., 2017; Pratapa et al., 2020; Kamimoto et al.,
2023) (Figure 1B). Still, it is highly non-trivial to determine
whether the recovered regulatory interactions offer a full
explanation for the observed cell fate dynamics. In fact, this
may be unlikely given that single-cell sequencing is technically
limited in the number of transcripts sampled for each cell, with
absence of transcripts—particularly lowly-expressed
transcription factors—not necessarily meaning absence of
expression (Ke et al., 2023). Thus it appears an interesting
research direction to combine these methods with spatially
explicit mechanistic models of cell fate dynamics that can not
only incorporate gene regulatory dynamics but also direct short
range cell-cell signalling, longer range morphogen gradient based
signalling, transcription factor complex formation, and protein
stability regulation, (Figure 1C). While recently ML methods
have also emerged aimed at inferring cell-cell interactions from
single-cell sequencing data, this has thus far been limited to
leveraging known ligand-receptor pairs (Jin et al., 2021; Wilk
et al., 2023).

To construct such a mechanistic model for cell fate
patterning, the regulatory network inferred by ML can serve
as input into the mechanistic network model (Figures 1B,C).
Likely, the ML-inferred network is large and different networks
may be recovered depending on the specific inference algorithm
used, potentially necessitating taking an ensemble approach
(Marbach et al., 2012; De Clercq et al., 2021). Network
complexity could be reduced by scoring regulatory
interactions based on how frequently they are recovered by
different algorithms, the integration of transcription factor
binding measurements, and known transcription factor-
promoter interactions. Additionally, network pruning
approaches derived from NN pruning methods could be used
to reduce complexity of these regulatory networks (Yeom
et al., 2021).

Through simulating a mechanistic model of the multicellular
tissue (cell field) that incorporates the inferred gene regulatory
network, cell-cell signalling, and the role of morphogens
(Figure 1C), in silico gene expression dynamics across the tissue
can be generated (Figure 1D). Similar to the actual in vivo
measurements, such in silico dynamics can be clustered into cell
fates and organised according to their temporal dynamics, enabling
a direct comparison with the in vivo data (Figure 1E). Mismatches
between these simulated and actual cell fates and their dynamics can
then be used to further improve and complete the mechanistic
model (Figure 1F). This model optimisation should likely involve
ML-based optimisation of parameters not present in the
experimental data. Examples of these are protein stability, types
of cell-cell signalling and their downstream effects, and/or cellular
division dynamics. Finally, the integration of the mechanistic and
the ML models might include the incorporation of additional
relevant genes and interactions based on correlations with
alreadymodelled genes or with the phenotype aimed to be described.

Eventually, this could result in an interpretable mechanistic-ML
model that reproduces ML-derived cell types, dynamics of cell fates,
and inferred cell-cell signalling. We envision that iterating between
model learning and adaptive weighting and pruning/sparsifying of
inferred networks will help create models which balance explanatory
power and model complexity.

5.2 Whole organism studies as a potential
scenario for a hybrid mechanistic-ML model

In organisms, both local and systemic responses occur. These
responses involve a wide range of spatial and temporal scales, as
well as complex interactions between different organs. Here, we use
plants as an example of such a multi-scale process, in which the growth
and development of organs occurs throughout their lifetime and is
regulated by environmental conditions like nutrient stress, drought,
high temperatures, shading, or diseases. Ultimately, the organism’s
performance depends on the coordination of all its parts, necessitating
or the development of organism-level models that account for the
dynamic processes occurring in each organ. Mechanistic models are
typically limited in the number of temporal and spatial scales that can be
covered within a single modelling framework, as well as in the number
of relevant variables that can be considered. As an example of a
modelling framework to study whole organism models, Functional
Structural Plant (FSP) models integrate processes at the individual leaf
and root level, overall shoot and root level, and entire plant level. In
theory, FSP models can include molecular details on how each organ is
regulated, e.g., root growth, even if not resolved to the level of individual
cells. Still, they tend to be biased towards heavily studied adaptive
responses with a clear morphological phenotype, such as preferential
foraging towards high nutrient patches, stomatal closure and root
elongation under drought, shoot elongation and more upright
posture of leaves under high temperature and shading, and
reduction in growth to redirect energy to defence under disease
pressure (Ruffel et al., 2011; Huot et al., 2014; Pierik and Testerink,
2014; Quint et al., 2016; Buti et al., 2020). In contrast, transcriptomic
data reveal that next to these processes with a clear observable output, a
large range of metabolic and physiological responses are set in motion
by stresses as well. These include changes in nitrate and carbon
metabolism, membrane composition, osmotic regulation, and overall
rewiring of protein translation. There are missing regulatory layers that
are also important to explain an organism’s responses. The lack of
detailed description of the regulation and temporal dynamics of many
of these processes suggest these could bemore suited forML rather than
mechanistic modelling, yet still require integration within a
single model.

As an example, let us assume our overall organism model
contains several functional submodules governing specific
morphological and physiological responses in individual organs.
For a plant this will represent, e.g., root growth, hypocotyl (stem)
growth, or stomatal aperture in leaves (Figure 2A). For stomatal
aperture and hypocotyl elongation, key molecular players and
interactions have been identified experimentally, enabling the
construction of mechanistic models and explaining how they
regulate plant development (Figure 2B, top part of each panel).
However, many more relevant players and interactions are likely to
be discovered. A promising approach to fill knowledge gaps would
be to simulate these submodules using the existing mechanistic
models, and compare simulated gene expression with
transcriptomics measurements to determine how much of the
observed dynamics of known key regulatory genes is already
explained by the model, and how much “residual” is not
explained yet. ML could then be used to infer which genes
missing from the mechanistic model could explain these residuals
(Figure 2B bottom part, c), potentially under the condition that their
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regulatory connections to the genes in the mechanistic model can be
determined or inferred. The accuracy of the fit between the
mechanistic module response and observations can then be
improved by iteratively incorporating these novel genes into the
mechanistic model, while ensuring highmodel quality measures that
balance accuracy and model complexity (such as the Bayesian or
Akaike information criteria, BIC and AIC). Finally, any dynamics
that are still not explained by the mechanistic model—including
additional genes—can be integrated through an NN term,
generating a partly hybrid mechanistic ML module (Figure 2C).

A second possible application of integrated mechanistic-ML
modelling would be in the many responses that are not yet
properly understood or identified, but do impact the organism’s
performance. Firstly, ML approaches could be developed to predict
a particular phenotype, e.g., plant weight, given a number of
morphological, transcriptional, and physiological responses. Feature
importance assigned by the ML model would support the

parametrisation of the organism-level mechanistic model. Secondly,
ML approaches could be used to model the behaviour of still poorly
understood response modules for which nomechanistic models can be
formulated, (e.g., root growth in Figure 2B). Finally, the functional
modules need to be connected (because of reciprocal dependencies or
shared regulatory genes), as do different parts or organs of an
organism, based on reciprocal exchange of molecular information.
For plants, some root-shoot and shoot-root signals have been identified
to date, yet many more likely remain to be discovered. ML-based
approaches can help predict such missing connections between the
different functional modules as well as distinct plant parts.

It should be noted that even though this particular section
discusses plants, the foreseen approaches are equally applicable to
different fields of research and other organisms, for example, in
modelling a virtual human with mechanistic modules for certain
well-studied organ systems, supplemented with MLmodules for less
well-studied parts and supported by ML-based predictors.

FIGURE 2
Multiscale whole organism model that models various phenotypes. (A). Envisioned iterative strategy integrating mechanistic models (MMs) and
neural networks (NNs) (B), that in turn can be used to yieldmore accurate predictions (C). The hybridmodels developed for individual parts of an organism
can then be connected to account for inter-organ communication through exchange of molecular regulators and/or nutrients.
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6 Conclusion

As discussed, mechanistic models are knowledge-driven approaches
that offer insights into underlying biologicalmechanisms, but are hard to
scale up to high dimensions in terms of compute time, parametrisation,
and interpretability. On the other hand, ML is data-driven, allowing it to
make accurate predictions using large amounts of high-dimensional
data, yet it often allows for limited insight into the dynamic mechanisms
underlying biological functions. Thus, the strengths of one method are
the weaknesses of the other, implying that their integration would be a
promising means to achieve both mechanistic understanding and
accurate predictions in systems biology.

In our review, we have discussed methods which have either
successfully integrated biological knowledge or mechanistic
modelling into ML; used ML to help build, fit, or speed up
mechanistic models; or fully integrated both approaches. Especially
developments in this last category are promising; they allow each step of
the procedure to be informed by its influence on the final result and help
us overcome typical research challenges such as sparse and/or noisy
data, unknown contributing factors, or lack of biological interpretabilty.
We end with a vision on how iteratively applying several ML
approaches to inform mechanistic modelling may aid in developing
quantitatively detailed yet mechanistically tractable models for fields
such as developmental patterning or whole organism physiology. This
integrative approach promises to yield hybrid models with accurate yet
biologically interpretable outputs. Such models can then be used to
guide in an informed way the selection of desired behaviours of the
biological system under study.

The ability to extract meaningful biological insight from SciML
approaches is likely to remain a major focus for future research.
Only by “opening up the black box” can we illuminate the
complexities of biological processes, which are essential towards
deepening our scientific understanding of mechanisms that govern
the life we find all around us. Iteratively combining ML with
mechanistic modelling is one of several powerful means to
achieve this goal.
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Chimeric antigen receptor T (CAR T) cell therapy has shown remarkable success
in treating various leukemias and lymphomas. Cellular kinetic (CK) and
pharmacodynamic (PD) behavior of CAR T cell therapy is distinct from other
therapies due to its living nature. CAR T CK is typically characterized by an
exponential expansion driven by target binding, fast initial decline (contraction),
and slow long-term decline (persistence). Due to the dependence of CK on target
binding, CK and PD of CAR T therapies are inherently and bidirectionally linked. In
this work, we develop a semi-mechanistic model of CAR T CK/PD, incorporating
molecular-scale binding, T cell dynamics with multiple phenotypes, and tumor
growth and killing. We calibrate this model to published CK and PD data for a
CD19-targeting CAR T cell therapy. Using sensitivity analysis, we explore
variability in response due to patient- and drug-specific properties. We further
explore the impact of tumor characteristics on CAR T-cell expansion and efficacy
through individual- and population-level parameter scans.

KEYWORDS

CAR T-cell therapy, mechanistic modeling, quantitative systems pharmacology,
sensitivity analysis, cellular kinetics

1 Introduction

Chimeric antigen receptor (CAR) T-cells are T-cells engineered to produce CARs which
recognize and bind to a tumor antigen. In CAR T-cell therapy, a patient’s T-cells are extracted
and isolated, re-engineered to express a specific CAR, expanded ex vivo, and then infused back
into the patient. Six such therapies have been approved for treating a variety of blood cancers
(Chen et al., 2023). These therapies have been shown to produce long-lasting response and
superior response rates to alternative treatments (Melenhorst et al., 2022; Sermer et al., 2020). As
a result of the individualized nature of CAR Tmanufacturing, the contents of the dosed product
will vary from patient to patient. Further, CAR T cellular kinetic behavior is distinct from other
therapies due to its “living” nature; it is typically characterized by an exponential expansion, fast
initial decline (contraction), and slow long-term decline (persistence). Additionally, cellular
kinetics (CK) is not as well-studied as pharmacokinetics for more traditional drugs Chaudhury
et al. (2020). Interactions between CAR T-cells and tumor cells are complex since tumor
expansion has a significant impact on CAR T-cell expansion. Furthermore, much is still
unknown about the workings of CART-cells in the body and there is not a standardmonitoring
process. Modeling can shed light on CAR-T cell CK/PD and inform future studies by
mechanistically linking CAR T-cell doses to tumor cell growth and determining optimal
drug properties to achieve efficacy and safety. Furthermore, patient characteristics can be
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incorporated into the model to provide individualized dose predictions
and guide patient and indication selection.

Modeling and simulation has been used to understand CAR
T-cell dynamics and efficacy (see, for example, reviews by
Chaudhury et al. (2020); Nukala et al. (2021)) and the impact of
preconditioning (Owens and Bozic, 2021). Until recently, the three
distinct phases of CAR T cellular kinetics and the impact of different
CD4+ and CD8+ T cell phenotypes had not been mechanistically
described. Previous modeling work had captured CAR T cellular
kinetics either empirically (Stein et al., 2019), mechanistically but
without multiple phenotypes, (Singh et al., 2020), or mechanistically
with effector/memory phenotypes but without separating CD4+ and
CD8+ T cells (Hardiansyah and Ng, 2019). Recent work by Salem
et al. (2023) has incorporated all of these features, developing a
mechanistic model incorporating binding-driven CAR T-cell
expansion and activity for multiple CD4+ and CD8+ T-cell
phenotypes to match clinical data from multiple trials. Further
analysis of such models will be useful to understand system
behavior, inform engineering of CAR T-cells, and understand
variability in patient populations. In particular, sensitivity
analysis provides understanding of the key mechanisms driving
expansion and efficacy.

Here, we present a semi-mechanistic cellular kinetic-
pharmacodynamic (CK-PD) model for CAR T-cell therapy of
B-cell non-Hodgkin lymphoma (NHL). Our model includes
CD8+ and CD4+ naive, effector, and memory T-cell phenotypes,
binding of CARs to their target antigen CD19, binding-driven
activation and expansion of T-cells, T-cell death and conversion
to memory cells, and binding-driven killing of B cells by CD8+

effector cells. We demonstrate the ability of the model to capture
published human CAR T-cell CK and PD data, and perform
sensitivity analysis to understand key model features and predict
the impact of variability in patient, tumor, and drug characteristics.

2 Methods

2.1 Data

The model was informed by and benchmarked to published
human CAR T-cellular kinetics, B cell percentage, and clinical
response data from a phase I clinical trial with IM19 CAR
T-cells for 13 relapsed or refractory NHL patients (Ying et al.,
2021). The CK data and the B cell aplasia data were both digitized
using WebPlotDigitizer (Rohatgi, 2022). Two days prior to CAR
T-cell infusion, patients were pre-treated with fludarabine and
cyclophosphamide for 3 days to deplete endogenous
lymphocytes. IM19 CAR T-cells were dosed by weight at 3 × 105,
1 × 106, or 3 × 106 cells per kg. The CD4:CD8 ratio of the infused
CAR T-cells was reported for each of the patients.

2.2 Model structure

The model consists of a single compartment representing the
blood. CAR T-cell and B cell populations and their corresponding
receptor burdens are modeled explicitly. CAR T-cells, a fraction of
which are CD8+ and the remainder CD4+, are dosed directly into the

blood. All CAR T-cells are assumed to be naive at the time of dosing.
CARs on both CD8+ and CD4+ CAR T-cells can bind to CD19. CD8+

and CD4+ naive CAR T-cells are activated at a rate proportional to
the fraction of CAR that is bound to CD19. Activated CAR T-cells
then proliferate and become effector cells. CD8+ effector CAR
T-cells can then kill B cells at a rate proportional to the fraction
of CARs on CD8+ effector T cells that are bound to CD19. We
assume that CD4+ effector CAR T-cells do not kill B cells as we focus
only on direct effects (Alizadeh et al., 2023). Effector CAR T-cells
either die or become memory cells. Memory CAR T-cells have a
longer lifespan than effector cells, but do not participate in B cell
killing. Themodel is intended to describe the initial response to CAR
T therapy and therefore does not include any mechanisms for re-
activation of memory cells. A diagram of the model reactions is
shown in Figure 1. A more detailed description of the model
equations is given below, where all states are in units of nmol.

2.3 Cell state equations

Infused CAR T cells are dosed directly into the blood
(TCD8

inf (0) � fCD8T × Dose, where fCD8T is the fraction of
dosed CAR T-cells that are CD8+). These cells can then become
activated at a rate kact or die at a rate kdeath,inf. Activated CAR T cells
divide at a rate kdiv � (2ndiv − 1)/τ to form effector cells at a rate
kdiff � 2ndiv/τ, where ndiv is the average number of divisions per
activated cell and τ is the division time. At a rate of kdeath,eff, a
fraction fmem of effector cells become memory cells and the
remainder die. Memory T cells die at a rate of kdeath,mem. This
leads to the following equation for CD8+ CAR T cells, and similarly
for CD4+ CAR T cells.

dTCD8
inf

dt
� −kCD8

act TCD8
inf − kCD8

death,infT
CD8
inf

dTCD8
act

dt
� kCD8

act TCD8
inf + kCD8

div TCD8
act − kCD8

diffT
CD8
act

dTCD8
eff

dt
� kCD8

diffT
CD8
act − kCD8

death,effT
CD8
eff

dTCD8
mem

dt
� kCD8

death,efff
CD8
memT

CD8
eff − kCD8

death,memT
CD8
mem

Tumor cells are able to divide at a rate ktumdiv and be killed by CD8+

effector CAR T cells at a rate kkill � fboundkmaxkill, wherefbound is the
fraction of CD8+ CAR that is bound to CD19.

dTumor

dt
� ktumdiv Tumor − kkill pTumor pTCD8

eff

Endogenous lymphocytes are produced at a zeroth order rate kprod
and die at a first order rate kdeath,endo, resulting in the
following equation.

dEndo

dt
� kprodEndo − kdeath,endoEndo

2.4 Receptor equations

In addition to the cell-scale dynamics described above,
molecular-scale dynamics are explicitly accounted for in the
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model. Receptor equations for CAR and CD19 are written such that
the total receptor densities (CAR per T cell and CD19 per tumor cell)
remain constant, as determined by a receptor per cell (RPC)
parameter. Receptors are synthesized at a rate ksyn and
internalized at a rate kint. The equation for CD19 is written as
follows, accounting for tumor cell division, synthesis and
internalization of free CD19, binding/unbinding to CAR on
different types of T cells, release from CAR:CD19 complex that is
internalized with CAR, release from CAR:CD19 complex when a
CAR T cell dies, and tumor cell death.

dmAg

dt
� ktumdiv pTumor pRPCCD19/ NAv/1e9( ) + kCD19

syn Tumor − kCD19
int CD19

− kon
V

CARCD8
inf + CARCD4

inf + CARCD8
eff + CARCD4

eff + CARCD8
mem + CARCD4

mem( )CD19

+ koff CARCD8
inf : CD19 + CARCD4

inf : CD19 + CARCD8
eff : CD19(

+ CARCD4
eff : CD19 + CARCD8

mem: CD19 + CARCD4
mem: CD19)

+ kCARint CARCD8
inf : CD19 + CARCD4

inf : CD19 + CARCD8
eff : CD19(

+ CARCD4
eff : CD19 + CARCD8

mem: CD19 + CARCD4
mem: CD19)

+ kCD8
death,infCAR

CD8
inf : CD19 + kCD4

death,infCAR
CD4
inf : CD19

+ kCD8
death,effCAR

CD8
eff : CD19 + kCD4

death,effCAR
CD4
eff : CD19

+ kCD8
death,memCAR

CD8
mem: CD19 + kCD4

death,memCAR
CD4
mem: CD19 − kkillT

CD8
eff CD19

CARs on infused CAR T cells undergo synthesis and internalization,
binding/unbinding with CD19, conversion to an activated state, loss
from cell death, and release from CAR:CD19 complex when a tumor
cell dies. The equations for CD8+ infused CAR and CAR:

CD19 complex are shown below; equations for CD4+ CAR
are similar.

dCARCD8
inf

dt
� kCAR,CD8

syn TCD8
inf − kCARint CARCD8

inf − kon
V

CARCD8
inf CD19

+koffCARCD8
inf : CD19 − kCD8

act CARCD8
inf + kkillT

CD8
eff CAR

CD8
inf : CD19

−kCD8
death,infCAR

CD8
inf

dCARCD8
inf : CD19

dt
� kon

V
CARCD8

inf CD19 − koffCAR
CD8
inf : CD19 − kCARint CARCD8

inf : CD19

−kCD8
act CARCD8

inf : CD19 − kkillT
CD8
eff CAR

CD8
inf : CD19

−kCD8
death,infCAR

CD8
inf : CD19

Since activated CAR T cells in the model are an intermediate state
for the purposes of expansion and do not interact with the tumor, we
do not include binding of activated CARs to CD19 in the model.
CARs on activated CAR T cells follow the cellular kinetics
(i.e., activation of infused CAR, division, and differentiation) so
that CAR per T cell remains constant.

dCARCD8
act

dt
� kCD8

act CARCD8
inf + CARCD8

inf : mAg( ) + kCD8
div CARCD8

act

− kCD8
diffCAR

CD8
act

CARs on effector and memory CAR T cells are synthesized and
internalized, bind/unbind with CD19, undergo effector-to-memory
conversion, are lost through T cell death, and are released fromCAR:
CD19 complex when a tumor cell dies. These equations are given
below for CD8+ effector and memory CAR; equations for CD4+

CARs are similar.

FIGURE 1
Diagram showing interactions represented in the model. CAR-T cells are dosed as part CD8+, part CD4+. Drug product cells are activated by binding
to CD19 onmalignant B cells. Activated cells replicate and become effector cells. CD8+ effector cells kill B cells. Effector CAR T-cells either die or become
memory cells.

Frontiers in Systems Biology frontiersin.org03

Minucci et al. 10.3389/fsysb.2024.1380018

96

https://www.frontiersin.org/journals/systems-biology
https://www.frontiersin.org
https://doi.org/10.3389/fsysb.2024.1380018


dCARCD8
eff

dt
� kCD8

diffCAR
CD8
act + kCAR,CD8

syn TCD8
eff − kCARint CARCD8

eff − kon
V

CARCD8
eff CD19

+koffCARCD8
eff : CD19 + kkillT

CD8
eff CAR

CD8
eff : CD19 − kCD8

death,effCAR
CD8
eff

dCARCD8
eff : CD19

dt
� kon

V
CARCD8
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CD8
eff : CD19 − kCARint CARCD8

eff : CD19

−kkillTCD8
eff CAR

CD8
eff : CD19

dCARCD8
mem

dt
� kCAR,CD8

syn TCD8
mem − kCARint CARCD8

mem − kon
V

CARCD8
memCD19

+koffCARCD8
mem: CD19 + kkillT

CD8
eff CAR

CD8
mem: CD19

+fCD8
memk

CD8
death,effCAR

CD8
eff − kCD8

death,memCAR
CD8
mem

dCARCD8
mem: CD19
dt

� kon
V

CARCD8
memCD19 − koffCAR

CD8
mem: CD19 − kCARint CARCD8

mem: CD19

−kkillTCD8
eff CAR

CD8
mem: CD19

2.5 Model parameterization

Values for the majority of the model parameters were inferred
from literature as described below. The rest of the parameters were
fit to individual patient data from Ying et al. (2021), described below.

2.3.1 Patient and tumor properties
The total blood volume was estimated to be 5L, based on the

average human adult (Sharma and Sharma, 2018). The
concentration of endogenous lymphocytes was assumed to be 109

per L. Endogenous lymphocytes were estimated to have an average
lifespan of 30 days based on a steady-state assumption and
benchmarking to observed T-cell recovery following autologous
transplant (Hakim et al., 2005). We assume that 90% of
endogenous lymphocytes are depleted by chemotherapy
pretreatment prior to CAR T-cell infusion (Ying et al., 2019).
The carrying capacity for the number of tumor cells was
estimated to be 7 × 1012 based on the maximum tumor volume
reported in Press et al. (Press et al., 1993), assuming an average cell
diameter of 10μm (Das et al., 1991) and dividing the tumor volume
by average cell volume to obtain a maximum number of cells.
CD19 expression was estimated to be 5,000 receptors per B cell
based on published values for patients with different types of
lymphoma (D’Arena et al., 2000; Malik-Chaudhry et al., 2021;
Spiegel et al., 2021). The internalization half-life of CD19 was
estimated to be 4 h; published data indicates the internalization
half-life can be as fast as 30 min in human B-cell lymphoma cell lines
(Du et al., 2008) but as slow as 12+ hours in B-cell chronic
lymphocytic leukemia patient samples (Sieber et al., 2003).

2.3.2 CAR T-cell properties
The CAR internalization half-life was estimated to be 6 h based

on in vitro measurements for other CD19-targeting CAR T-cells Li
et al. (2020). The mean activation time (that is, the time between
binding to antigen and the start of cell proliferation) was estimated
to be 18 h for CD8+ CAR T-cells (Henrickson et al., 2008; Cui and
Kaech, 2010) and 36 h for CD4+ CAR T-cells (Kaech et al., 2002).
Average lifespans for memory CAR T-cells were estimated to be
180 days for CD8+ and 240 days for CD4+ (Borghans et al., 2018).
The CD4:CD8 ratio of the CAR T-cells for each patient were taken
from Ying et al. (2021), and all infused CAR T-cells were assumed to
be viable. We assumed expression levels of 12,700 CARs per T-cell
for both CD8+ and CD4+ cells based on a published average estimate
for a HMW-MAA-specific CAR on CD8+ T cells (Anikeeva et al.,
2021).We assumed that CARs bind to CD19 with an affinity of 1 nM

based on reported affinities for high affinity CAR T variants
(Jayaraman et al., 2020), with a binding on-rate of 0.001/nM/s.

Remaining model parameters, namely, the number of divisions
per T-cell, time per T-cell division, drug product and effector cell
lifespan, memory cell fraction, and initial tumor burden, were fit to
data as described in the following subsection.

2.3.3 Calibration and benchmarking
Considerable variability in CAR T-cell expansion and efficacy is

present in the data. To describe individual variability in CK, the

following parameters were fit to individual CK trajectories: initial

tumor burden, the number of divisions for activated T cells, and the

fraction of effector cells that become memory cells. The time per

T cell division and drug product and effector cell life spans were fit

globally to all patient data. Optimization was performed using a

Python-based trust region optimization method. Additionally, the

percentage of B cells out of total cells in the model was calibrated to

B cell aplasia data by tuning the number of endogenous lymphocytes

in the model within a small, biologically reasonable range such that

the mean and range of model outputs captured the general trend

observed in the data. The rate of tumor cell division was also tuned

to match the observed rebound in B cell aplasia data.

2.4 Model simulation and analysis

The model was implemented and simulations were performed
with Applied BioMath’s proprietary QSP modeling platform.
Analysis and plotting were performed with Python version 3.11.8.

Global sensitivity analysis (GSA) was evaluated using two
methods: Sobol indices estimated via the Fourier Amplitude
Sensitivity Test (FAST), implemented using SALib (Herman and
Usher, 2017; Iwanaga et al., 2022), and partial rank correlation
coefficients (PRCC), implemented using Pingouin (Vallat, 2018).

In the GSA, model parameters for which we had individual data
or fitted values (body weight, fraction of CD8+ CAR T cells, initial
tumor burden, number of CAR T cell divisions, and fraction of
memory cells) were varied across the full range of individual values.
Where possible, published ranges for individual parameters were
used. CD19 expression was varied from 1,500 to 16,825 receptors per
cell based on a published range for mantle cell lymphoma (D’Arena
et al., 2000). Tumor doubling time was varied from 24 h to 30 days,
based on the range reported in Roesch et al. (2014). Binding affinity
was varied from 0.32 to 14.3 nM based on the range of values for
CD19 CARs reported in Jayaraman et al. (2020). Remaining model
parameters were varied 2-fold up and down nominal values. All
parameters were sampled from a log-uniform distribution within
their respective ranges, with a sample size of 5,000. Simulations were
initialized with a 106 cells/kg dose. Model outputs considered in the
sensitivity analysis were the peak concentration of CAR T-cells
(Cmax) and the tumor burden at day 20.

To explore temporal dynamics and explore the impact of tumor
characteristics, we performed one-at-a-time scans of tumor division
time and CD19 expression per cell. The model was simulated for
specific patients as well as for the full patient population using
different values of these parameters, while keeping other model
parameters fixed.
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3 Results

3.1 CK fitting and PD benchmarking

CAR T-cell trajectories vary widely from patient to patient. Our
model was developed and calibrated to capture the typical phases of

CAR T-cell CK as well as the variability between patients through
fitting a combination of patient-specific and global parameter values.
Results of optimization of CAR T-cell concentration to clinical data
are shown in Figure 2. Figure 2A shows the average trajectory and
full range across all 13 patients and Figure 2C shows each fitted
patient simulation and data. The model adequately describes the

FIGURE 2
Model calibration and benchmarking results. (A) Patient population simulations for CAR T-cell CK. Black line indicates average model fit and shaded
region represent the full range of individual trajectories. Points represent data, with colors representing different patients. (B) Patient population
simulations for B cell aplasia. (C) Individual patient CAR T-cell CK data and simulations. Each panel represents an individual patient, the ID of which is
labeled at the top of each panel.
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overall behavior of the data despite the significant variability
between patients as well as within each patient data set. The full
table of final parameter values can be found in the
Supplementary Material.

Endogenous lymphocyte concentration and tumor doubling
time were hand-tuned to a small degree to match measurements
of B cells as a percentage of total lymphocytes, a measure of the
efficacy of the CAR T-cells. Due to challenges with digitization, B cell
aplasia data from only 6 of the 13 patients were distinguishable and
are shown in Figure 2. The average and range of model simulations
for all patient parameterizations capture the general trend of the data
well and spans the variability between patients.

3.2 Sensitivity analysis

To explore the impact of model parameters on Cmax and efficacy,
we performed Global Sensitivity Analysis (GSA). Results for Cmax are
shown in Figure 3A. Sobol indices (first order and total order) and
PRCC values are shown for all model parameters that had a p-value less
than 0.05 and ranked in the top ten parameters for at least one measure
of global sensitivity. The number of CAR T-cell divisions upon
activation contributes to more than 80% of the variability in Cmax,
which is a far greater contribution than any of the other parameters. The
next most influential parameters are tumor growth rate, initial tumor
burden, and mAb-CD19 binding affinity, which drive expansion
through CAR-antigen interactions. CAR T cell life spans and

CD19 expression are also influential. The ordering of parameters is
roughly consistent between first order Sobol index, total order Sobol
index, and PRCC. However, total order Sobol indices are generally at
least two-fold larger than first order Sobol indices, indicating that there
are interactions between parameters.

GSA results for tumor burden at day 20 are shown in Figure 3B.
The most influential parameters are the tumor division time,
number of T cell divisions, binding affinity, initial tumor burden,
and CD19 expression is also influential. Tumor- and binding-related
parameters are comparably influential on efficacy as the number of
T cell divisions. This is in contrast to the results for Cmax, where the
number of T cell divisions was by far the most influential parameter.
This indicates that while expansion and efficacy are often correlated,
patient properties such as tumor growth rate, initial tumor burden,
and CD19 expression are more important for driving efficacy than
they are for driving expansion. This is because CAR-CD19
interactions are required for both expansion and tumor cell killing.

3.3 Effects of tumor properties on CAR T
expansion and efficacy

To investigate potential mechanisms related to patient to patient
variability in response, we evaluated the effects of B cell division time
and CD19 expression on B cells. These two parameters, which were
informed by literature and not varied in Figure 2C were shown to be
influential parameters by the GSA. We first focus on two patient

FIGURE 3
Global sensitivity results (Sobol indices and PRCC) for Cmax and tumor burden at day 20 post-treatment. Only parameters with a p-value less than
0.05 and that rank in the top ten for at least one measure of sensitivity are shown.
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parameterizations (F0104 and F0110) which had distinct CK and
tumor growth profiles. F0104 has a typical CK profile consisting of
expansion, contraction, and persistence, paired with a clear
reduction in tumor growth, while F0110 had continued tumor
growth and less defined expansion and contraction phases.
Figure 4 shows simulations of CAR T-cell concentration and
tumor dynamics for these two patients, scanning over both
parameters. Parameters are varied 10-fold up and down from
nominal values to explore a wide range of system behaviors.

Scanning over B cell division time, shown in Figure 4A, revealed
qualitatively different behavior between the two patients. For patient
F0104, the model predicts that a B cell division time corresponds to a
more gradual contraction, resulting in a greater concentration of
CAR T-cells over time. The division time does not significantly
impact the Cmax. However, for patient F0110, the slope of the
contraction phase is relatively consistent across division times but
the Cmax increases with faster division times. For both patients, the
greater expansion of CAR T-cells is not sufficient to reverse tumor
cell growth. A faster B cell division time results in more tumor
growth regardless of CAR T-cell concentration for the parameter
range scanned. Within the first 10–15 days, there is an acute
reduction in tumor cells in response to initial CAR T-cell
expansion for the fastest tumor cell division time, 1.6 days.
However, this effect is transient and the faster B cell division
time results in faster rebound of the tumor. For the slower tumor
cell division times, CAR T expansion does reduce the tumor size; this
combined with the generally slower tumor growth results in slow
tumor growth in the longer term.

Figure 4B shows the results of varying CD19 expression on
B cells. Higher CD19 expression leads to additional binding to

CAR T-cells and subsequent activation, increasing CAR T-cell
expansion. This looks different for each of the patient
parameterizations; simulated CK for patient F0110 shows
greater sensitivity to CD19 expression compared to that of
patient F0104. For F0104, higher CD19 expression leads to
faster expansion and faster contraction, causing a sharper
peak in the CAR T CK. Higher CD19 expression also leads to
greater long-term persistence of CAR T-cells. Patient
F0110 exhibits greater expansion and persistence with
varying levels of CD19 expression, with no evident
contraction phase.

Examining the individually fit parameters for F0104 and
F0110 sheds light on the unique behaviors of both the CAR
T-cells and tumor cells between patient simulations. Patient
F0104 has a smaller fraction of effector CAR T-cells that
become memory cells, a larger initial tumor burden, and a
slightly higher number of CAR T-cell divisions upon
activation compared to patient F0110. This leads to greater
expansion (and therefore greater efficacy) of the CAR T-cells
for patient F0104, but potentially less persistence. For patient
F0110, the lower expansion and greater memory cell formation
leads to no clear contraction phase in the CK. The corresponding
tumor growth curves show no impact of treatment except a small
reduction in tumor growth rate at the highest receptor expression
level scanned.

To assess the behavior of CAR T-cells and tumor growth on a
population level, the parameter value for either B cell division
time or CD19 expression was updated one at a time for each
patient. These parameters were varied ranges described in
literature: Roesch et al. (2014) report NHL doubling times

FIGURE 4
Results of scanning key model parameters representing patient characteristics for two individual patient parameterization. Parameters were
scanned up to ~10x above and below their nominal parameterization for patient parameterizations F0104 and F0110. Simulations of CAR T-cell
concentration and total B cell fold change from initial are shown for scans of (A) B cell time per division and (B) CD19 receptors per cell.
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from 24 h to 30 days, and D’Arena et al. (2000) report a standard
deviation for CD19 expression of about 1/3 the mean value. The
minimum value for CD19 expression reported was much lower
(10-fold lower than the mean value), which we also include in the
parameter scan. Figure 5 shows the mean and standard deviation
across all patients for CK, tumor cell count, and tumor fold
change. Overall, the same patterns described above in the patient-
specific scans hold true: faster B cell division times yield more
CAR T-cell expansion and greater tumor growth, and higher
CD19 expression leads to more CAR T-cells and improved tumor
cell killing. Within the physiological ranges tested, B cell division
time has an impact on both CK and tumor cell growth by close to

an order of magnitude, on average. Notably, the rate of tumor
regrowth is similar for all tumor doubling times, indicating that
the increased persistence of CAR T-cells does counteract the
increased tumor growth.

The range of reported CD19 expression is quite varied, and the
model predicts that this parameter could have a significant impact
on treatment efficacy. Between the maximum and minimum values
scanned, within the range of reported values, there is about an order
of magnitude difference in the CAR T cell Cmax. Furthermore, for
the lowest CD19 RPC, there is essentially no tumor growth
inhibition. The three higher RPC values do show inhibition, with
a reduction from baseline of up to 10x.

FIGURE 5
Results of scanning key model parameters representing patient characteristics across all patient parameterizations. Parameters were scanned
across ranges consistent with values reported in the literature. Simulations of CAR T-cell concentration, total B cells, and B cell fold change from initial are
shown for scans of (A) B cell time per division and (B) CD19 receptors per cell. Mean and one standard deviation of all patient results are shown.
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3.4 Exploratory analysis: memory cell killing

To show how the model can explore questions about both
individual and population-level dynamics, we performed
simulations to understand the potential impact of memory cell
killing. In the nominal simulations, we assume that memory cells
do not kill tumor cells. For this analysis, we compare the nominal
simulations against those in which memory cell killing has the same
killing capacity as activated cells. Figure 6 shows the results for both
the population level and individual trajectories.

First observing the population-level dynamics in Figure 6A, the
impact on memory cell killing is observed only in the tumor, not in
CAR T CK. Furthermore, the model predicts that any difference is
observed after 50 days. This makes sense due to the delayed
appearance of memory cells and the subsequent growth of the
memory cell population - thus, memory cell killing is predicted
to have a small overall impact on reducing tumor growth during the
terminal phase of CAR T expansion. Since the exact memory cell
populations may vary from patient to patient, the impact of memory
cell killing may also be observed on a patient level, shown in
Figure 6B. It is evident that some patients show little impact of
memory cell killing, sch as F0125 and F0126. On the other hand,
tumor growth in patients F0107, F0111, F0123 nearly plateaus as
compared to the nominal parameterization which has linear growth.

Although there is insufficient data to inform the true activity of
memory CAR-T cells in the model, this hypothetical analysis shows the

ability of themodel to differentiate the impact of treatment on individual
patients as compared to a population-level impact. In these simulations,
a moderate population-level effect was the result of an aggregated variety
of patient effects, from no impact to a signficiant impact. Furthermore,
the model shows in what populations and at what times the impact of
these changes might be observed.

4 Discussion

Our mechanistic modeling approach incorporating molecular-
scale and cell-scale dynamics successfully captured CAR T CK-PD
and revealed key system behaviors. Mechanistic modeling is
necessary to capture the interplay of target engagement, T cell
expansion, and tumor cell killing. CAR T-cell therapy is distinct
from other therapeutics in that CK and PD are inter-dependent.
This dependency is demonstrated in our model by the sensitivity of
Cmax to tumor and binding parameters.

Global sensitivity analysis revealed that both drug-specific and
patient-specific properties can potentially explain variability in
response to CAR T therapy. The most influential drug-specific
properties are the number of divisions per activated CAR T-cell and
the binding of the CAR for CD19. The number of divisions for activated
cells is the most influential factor for peak CAR T-cell expansion, and
was also highly influential for tumor killing. This number of divisions
could potentially be increased through further engineering or refining of

FIGURE 6
Results of exploring the impact of memory cell killing. Simulations in whichmemory cells have the same killing capacity as active cells are compared
to the nominal case in whichmemory cells do not kill tumor cells. Simulations of CAR T-cell concentration, total B cells, and B cell fold change from initial
are shown in (A) where mean and one standard deviation of all patient results are compared. B cell fold change from initial is shown in (B); multicolored
lines represent individual patient trajectories, black curve represents the mean across all patients, and the gray region represents one
standard deviation.
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manufacturing processes for the CAR T product, for example, through
selection for naive cells (Arcangeli et al., 2022). Importantly, while we
classify this as a drug-specific property, this could be variable across
patients since the CAR T-cells are manufactured from the patients’ own
cells. Thus, individual variability in the number of T cell divisions can
also contribute to observed variability in CK and efficacy. Binding
affinity also impacted both CAR T-cell expansion and efficacy, which
could be improved in engineering of the CAR.

While our modeling suggests that CAR T expansion is driven
primarily by number of divisions, global sensitivity analysis shows
that tumor properties such as CD19 expression and growth rate are
comparatively more influential in driving efficacy. Tumor growth rate
was also highly influential on CK. This demonstrates two things: (1)
while expansion often correlates with efficacy, expansion itself is not
necessarily sufficient for tumor shrinkage, and (2) variability in patient
characteristics will lead to significant variability in both exposure and
response. Modeling provides insight into this variability and can be used
to inform patient, target, and indication selection.

In individual- and population-level model simulations, we observed
that although a faster tumor growth rate corresponds to increased CAR
T-cell expansion and distinct CK profiles, this increased expansion is
often not enough to control the faster-growing tumor. This implies that
drug characteristics may need to be modified in order to target more
aggressive tumors. Notably, while there is little to no predicted tumor
shrinkage for this CAR T with faster growing tumors for most patients,
treatment is still effective in slowing tumor growth both short- and long-
term, providing a benefit to patients. Increased target expression drives
both increased expansion and stronger tumor killing. Patients with low
target expressionmay be poor candidates for this type of treatment due to
poor expansion and little anti-tumor activity, leading to lack of response.
This also suggests that target expression should be a key consideration in
both target and indication selection, while balancing toxicity concerns.
Furthermore, the power of individualized parameterizations of themodel
was demonstrated in the memory cell killing exploratory analysis.
Although the population-level simulation showed a small overall
reduction in tumor growth, some patient trajectories showed
signficant reduction while others showed nearly no impact. Although
this was a hypothetical exploration due insufficient data, these
simulations demonstrate that modeling can have a large impact on
understanding individual patient dynamics.

In the future, this model and analysis could help drive decisions
in CAR T-cell design, manufacturing, patient selection, patient-
specific dose selection, and efficacious dose selection for novel CAR
Ts. This model could be further refined by adding other T cell
phenotypes, cytokines, immune cells types, and additional reactions
such as re-activation of memory cells. One key limitation of the
current work is lack of direct measurements of tumor burden over
time to inform efficacy. Rather, we relied of B cell aplasia data and
assumptions about the native immune population to estimate tumor
reduction. Additional efficacy data would help to better constrain
the model and may allow for individualized efficacy modeling.
Additional patient-specific data such as CD19 expression could
enable individualized predictions of efficacy/response through a
digital twin approach. Another limitation of this model is that it
does not account for effects of CD4+ T cells on tumor cell killing.
This model could also be extended to study other targets and
indications, including solid tumors for which there are currently
no approved CAR T-cell therapies.
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Building virtual patients using
simulation-based inference
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In the context of in silico clinical trials, mechanistic computer models for
pathophysiology and pharmacology (here Quantitative Systems Pharmacology
models, QSP) can greatly support the decision making for drug candidates and
elucidate the (potential) response of patients to existing and novel treatments.
These models are built on disease mechanisms and then parametrized using
(clinical study) data. Clinical variability among patients is represented by
alternative model parameterizations, called virtual patients. Despite the
complexity of disease modeling itself, using individual patient data to build
these virtual patients is particularly challenging given the high-dimensional,
potentially sparse and noisy clinical trial data. In this work, we investigate the
applicability of simulation-based inference (SBI), an advanced probabilisticmachine
learning approach, for virtual patient generation from individual patient data andwe
develop and evaluate the concept of nearest patient fits (SBI NPF), which further
enhances the fitting performance. At the example of rheumatoid arthritis where
prediction of treatment response is notoriously difficult, our experiments
demonstrate that the SBI approaches can capture large inter-patient variability
in clinical data and can compete with standard fitting methods in the field.
Moreover, since SBI learns a probability distribution over the virtual patient
parametrization, it naturally provides the probability for alternative
parametrizations. The learned distributions allow us to generate highly probable
alternative virtual patient populations for rheumatoid arthritis, which could
potentially enhance the assessment of drug candidates if used for in silico trials.

KEYWORDS

virtual patients, QSP modeling, individual patient fitting, machine learning, artificial
intelligence, simulation-based inference

1 Introduction

Quantitative Systems Pharmacology (QSP) models provide mechanistic insights into
the dynamic interactions between complex pathophysiological reactions and
pharmacological interventions, which yield dynamic responses of protein biomarkers
and clinical endpoints (Bradshaw et al., 2019; Sorger et al., 2011). Different model
parameterizations can represent variability in disease mechanisms and thereby capture
a large range of patients and endotypes. An individual parameter set θ for the QSP model is
here denoted as a virtual patient and determines its biomarker and disease score response to
a specific treatment (QSP(θ)). Finding and identifying these parameterizations θ within the
disease biology network allows us to model and assess virtual patients individually and
predict their disease progression and treatment response to novel drugs.
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The generation of virtual patients is either driven by hypothesis, to
capture, for example, high-level features of responses observed in the
clinic where no data is available (Friedrich, 2016), or driven by
collected clinical outcome data. Often, such data comes as
summary statistics over the patient population and requires the
use of parameter searches and parameter weighting methods (e.g.,
prevalence weighting (Klinke, 2008; Howell et al., 2012; Schmidt et al.,
2013; Allen et al., 2016)). Ideally, the clinical data includes individual
patient-level data which makes an explicit fit of real patients possible
(Björnsson et al., 2019; Allen et al., 2021; Luo et al., 2022). The latter
approach requires data preparation, high performance fitting
algorithms and efficient computation pipelines to achieve a robust
quantitative representation of several hundreds of patients given
noisy, locally sparse and high-dimensional individual clinical data.
Since the results of the individual patient fits are used to guide drug
development decisions, we here seek a broad understanding of virtual
patients in terms of how likely it is that they indeed describe the real
patient data.

Integrating machine learning (ML) approaches to QSP
modeling is a powerful strategy to tackle the computational
challenges associated with mechanistic modeling of such complex
biological systems (reviewed extensively in (Aghamiri et al., 2022)
and (Zhang et al., 2022)). ML has been successfully implemented in
parameter estimation (Wajima et al., 2009), model-order reduction
(Derbalah et al., 2022), virtual patient generation (Rieger et al., 2018;
Parikh et al., 2022) and the assessment of stochastic effects
(McComb et al., 2022).

Here, we investigate the applicability of a novel ML approach for
building virtual patients. We use simulation-based inference (SBI)
that has, to the best of our knowledge, not been applied to such large
QSP models yet. As an example, we use a proprietary QSP model for
rheumatoid arthritis and fit it to individual patient data where patients
have been treated with an anti-TNF drug. SBI approaches are
advanced ML techniques for inferring a parameterization of a
simulator given prior knowledge and empirical data (Lueckmann
et al., 2021). While classic fitting algorithms output a point estimate
for a parametrization (Byrd et al., 2000; Egea et al., 2009), SBI
produces a probability distribution over the parametrization space,
yielding a much more informative result. Prior knowledge in terms of
an expert-designed reference patient parametrization is used to build
an initial belief about the desired probability distribution. The belief
then gets updated based on clinical data observations. The resulting
learned probability distribution provides the probability of specific
patient parameterizations and thus technicallymakes it possible to not
only discover a single patient parameterization of high probability but
multiple ones. The probability distribution could hence be used to
generate new realistic virtual patients during in silico trials that may
participate in future studies.

In a second step, we propose to leverage knowledge from already
built virtual patients (from the same population) to enhance the
performance of the algorithm. Instead of using the reference
parametrization as prior knowledge for a new patient fit, we use
an already learned parametrization of a similar patient. The so-
called nearest patient fit (SBI NPF) thus starts from an improved
initial belief. We expect a more consistent fit among patients of
similar type, which would support an easier identification of virtual
patient subgroups. To identify a similar patient, we define a vicinity
criterion on the clinical data.

2 Methods

2.1 Clinical data

The individual patient data was taken from theMONARCHstudy
[NCT02332590, anti-TNF study arm: n = 155 (Burmester et al., 2017;
Gabay et al., 2017; Gaby et al., 2020)]. A total of 133 patients were used
for individual patient fitting. Individual patients were fitted amongst
others to cell counts (lymphocytes, macrophages), blood protein
biomarkers (CRP, MMP-3, RANKL, OPG, OC, CXCL13, sICAM-1
and IL6) as well as clinical readouts (SJC28, TJC28, DAS28-CRP). The
data was taken at baseline until 24 weeks of treatment with up to eight
measurement time points. Population statistics of the data is available
at https://zenodo.org/doi/10.5281/zenodo.12808208.

2.2 QSP model and simulation

The QSP model (built in SimBiology®, https://mathworks.com/
products/simbiology.html) contains 96 ordinary differential equations
(ODE) definitions, 260 reactions, 100 initial and repeated assignments
and over 1,000 literature references for parameterization of
450 parameters. For simulation in Julia (version 1.8.3, https://
julialang.org/), the Julia Package Sundials (package that interfaces
SUNDIALS 5.2.0 library, https://github.com/SciML/Sundials.jl) with
the solver CVODE_BDF() and absolute and relative tolerances of 1E-
6 were used to solve the ODE system. The QSP model is shown in
Supplementary Figure S1 (supplement).

The reference parametrization of the QSP model is a pre-
implemented solution to an anti-TNF treatment based on various
clinical, in vitro and animal in vivo experiments ranging from
mechanistic to clinical outcome data (Biesemann et al., 2023).

2.3 Global sensitivity analysis

Global sensitivity analysis allows us to determine the importance of
QSP parameters on relevant simulation outputs. The analysis was
performed during drug treatment, since this is the for the parameter
optimization relevant scenario. We defined the parameter ranges by
a ±30% interval around the reference parametrization and used Saltelli’s
sampling scheme (provided by the Python SALib module https://salib.
readthedocs.io/en/latest/api.html#sobol-sensitivity-analysis, version 1.
3.12). For a given parameter θi and a relevant QSP output variable Xj

we calculated the total order sensitivity index SXj,θi following the Sobol
procedure (Sobol, 2001). To deduce a single sensitivity value for each
parameter θi, we aggregated the total order sensitivity SXj,θi over the
relevant output variables weighted by their variance as

Saggθi
� ∑n

j�1SXj,θiVar Xj[ ]
∑n

j�1Var Xj[ ] (1)

2.4 Simulation-based inference

Simulation-based inference (SBI) is a class of methods which
apply statistical inference to learn the parameters of stochastic
simulators (Lueckmann et al., 2021), and hence are applicable for
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learning parameters of QSP models. Statistical inference combines a
prior distribution with empirical observations to conclude a
posterior distribution. More precisely, given a prior probability
distribution p(θ) over a parametrization θ ∈ Rn and observed
data xo ∈ Rd, it deduces the posterior probability distribution
p(θ |xo). Following Bayes theorem (Lee, 1989), the posterior is
calculated based on the likelihood function p(x|θ). Since the
analytical or numerical computation of the likelihood function is
often intractable for complex simulations (Cranmer et al., 2020), SBI
estimates the posterior in a “likelihood-free” manner, only relying
on samples of the simulator x ~ sim(θ).

In this work, we evaluate an SBI approach which learns the
posterior distribution with a density estimation neural network
(neural posterior estimation). More precisely, the desired posterior
p(θ |x) is assumed to be a member of a family of probability densities
qκ parametrized by κ that can be of various not-predefined shapes (e.g.,
multimodal). The distribution parameters κ are learned with a neural
network F(x,w), wherew denotes the adjustable weights of the neural
network and x denotes its input, i.e., p(θ|x) ≈ qF(x,w)(θ). The weights
of the neural network are trained by minimizing the loss function
L(w) � ∑M

i�1 − log qF(xi,w)(θi) over generated training samples
(θi, xi){ }i where the parameters θi are sampled from the prior
θi ~ p(θ) and the corresponding simulation results xi are sampled
from the QSP model xi ~ QSP(θi). Since QSP simulations are
expensive, we use the sample efficient algorithm sequential neural
posterior estimation (Greenberg et al., 2019). Only those training
samples (θi, xi) are considered relevant, where the simulation result
xi is close to the clinical data xo of the patient to be fitted. Such training

samples are generated by drawing parametrizations θi from a
sequentially refined posterior estimate ~p(θ|x) which is called
proposal posterior, cf. Figure 1, point 3. Since the posterior under a
proposal does not coincide with the desired posterior under the prior,
the authors in (Greenberg et al., 2019) present a re-parameterization of
the problem to automatically transform between estimates of the
proposal posterior ~p(θ|x) and the true desired posterior p(θ |x).
The sequential procedure leads to more informative and thus overall
fewer training samples from the simulator.

2.4.1 Usage for individual patient fitting
To run the selected SBI approach, a variety of hyperparameters

must be configured which are problem specific. First, to reduce the
complexity of the optimization task, we selected an appropriate
subset of the QSP parameters for fitting using global sensitivity
analysis (Section 2.3) and expert knowledge. Second, we chose a
prior distribution over the fitting parameters. Third, we selected the
neural network-based density estimator F which models the
posterior, the number of rounds in the sequential procedure of
the algorithm as well as the number of samples drawn per round
used to produce a posterior estimate.

Additional tuning of data and simulation outcome was applied:
To handle the measurement noise of the patient data, we introduced
(multiplicative lognormal) noise to the QSP simulation output
during training leading to a stochastic simulator. We considered
the scale parameter of the lognormally distributed noise as a fitting
parameter which allowed us to regulate and learn the appropriate
amount of noise per patient.

FIGURE 1
Workflow of the nearest patient fit pipeline (SBI NPF), steps 1–5. The SBI fitting procedure is depicted in step 3. Ellipses represent patient fits and
boxes represent processing steps.
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Due to the high dimensionality of the patient data, we reduced it
to summary statistics for fitting. More precisely, we represented each
biomarker timeseries by its median and the difference between its
0.9- and 0.1-quantile, indicating the rate with which a biomarker
increases or decreases. For 16 biomarkers, this resulted in a 32-
dimensional representation of the clinical data.

2.4.2 Nearest patient fit (SBI NPF)
The described SBI algorithm fits each patient individually and

independently. We investigated an additional approach for boosting
the performance by leveraging knowledge of an already learned
similar patient.

Since the raw biomarker time series data in the clinical study is
sparse, we used the introduced representation of the clinical data in
terms of a set of statistical features and computed the similarity
between patients as the Euclidean distance in the normalized feature
space. More precisely, we used the Euclidean metric proposed in
(Dixon, 1979) which is designed for the presence of missing data
since not all patients have measurements for all 16 biomarkers:

d Pi, Pj( ) �
�����������������������������������������������������������
∑
b∈CB

2 CB| |
32

median Pi,b( ) −median Pj,b( )( )2 + Q0.9 Pi,b( ) − Q0.1 Pj,b( )( )2( )
√

(2)

where CB denotes the set of common biomarkers of patient Pi and
patient Pj,median (Pi,b) is the normalized median of biomarker b for
patient Pi, and Qx(Pi,b) for x ∈ (0, 1) is the normalized x-quantile.

To implement the suggested nearest patient fit approach, we
considered the fitting process of the patient cohort as a sequential
procedure, cf. Figure 1. In each step, we fit a batch of patients in parallel
and the procedure terminates when all patients are fitted. Throughout
the process, the knowledge we gain from successful patient fits is
collected in a so-called knowledge container which makes the
knowledge available for the subsequent patient fitting experiments.
The developed pipeline is described in detail in the following:

• The knowledge container is initialized with the reference
patient, which is generated with the reference
parametrization in the QSP model (Figure 1, step 1).

• Aprocessingmodule selects a batch of patients forfitting (Figure 1,
step 2), which are nearest to the current patients in the container
according to our similarity metric (Equation 2). The prior for each
patient fit is defined based on the learned parametrization of its
most similar patient in the knowledge container.

• Each selected patient is fitted with the SBI algorithm
(Figure 1, step 3).

• The quality of each resulting patient-specific posterior
distribution is assessed by a processing module (Figure 1,
step 4). If the learned parameterization is better than the
reference parametrization according to the loss function in
Section 2.6, the patient fit is put into the knowledge container.
If not, its knowledge is not reused for the subsequent SBI
experiments, but it is still part of our learned virtual patient
population (Figure 1, step 5).

2.4.3 Implementation
We chose a cross-platform implementation to combine fast

and robust ordinary differential equation solvers from Julia with
high performance SBI methods from Python (version 3.9.12,

https://www.python.org/). We used the Python SBI implementation
provided by (Lueckmann et al., 2021) and customized the simulation
and patient data handling as described above. Information exchange
between the SBI algorithm and the QSPmodel was handled using hdf5-
files (in Python: https://pypi.org/project/h5py/, version 3.6.0, in Julia:
https://juliaio.github.io/HDF5.jl/stable/, version v0.16.16). The fitting
experiments were performed on a Linux server with Intel(R) Xeon(R)
Gold 6226R 65 core CPU that has 775 GB memory available, resulting
in fitting times of approximately 4 h per patient.

2.5 Benchmarks

Scatter search for MATLAB (SSm, Release 2014A) developed by
(Egea et al., 2009) and a gradient-based method (fmincon developed
by Mathworks) was used as benchmark on a Windows machine
(11th Gen Intel(R) Core(TM) i7-11850H) using MATLAB R2021b
and Simbiology version 6.2. Parameter bounds have been set twofold
around the reference parametrization. The computation time for a
single patient fit was set to 4 h, which met the convergence criterion.

2.6 Evaluation metrics

An individual patient fit yields a QSP parametrization θ. The
quality of the parametrization was assessed by comparing the
corresponding QSP output to the clinical data c as

L θ, c( ) �

���������������������������������
1

∑B
b�1Tb

∑B

b�1∑Tb

t�1
QSPb,t θ( ) − cb,t

max cb,1, . . . , cb,Tb( )( )
2

√√
(3)

where B denotes the number of biomarkers, Tb the number of clinical
measurement time points of biomarker b, QSPb,t(θ) the QSP output
for biomarker b at time twhen parametrizedwith θ, and cb,t the clinical
observation of biomarker b at time t. As biomarker values may be on
different scales, we used a maximum-scaling for equal weighting. Since
all considered fitting algorithms (SBI, SSm, fmincon) start from the
reference parametrization θref, we evaluated their performance against
the reference parameterization in terms of relative loss reduction as

gap θ, c( ) � L θref, c( ) − L θ, c( )
L θref, c( ) (4)

where θ denotes the parametrization determined by the respective
fitting algorithm. gap < 0 depicts worse data fits than the reference
parameterization while gap> 0 depicts improved data fits over the
reference parameterization with gap � 1 as the best possible case.
gap � 0 depicts no improvement over the reference parameterization.

For SBI, which produces a probability distribution over the
parametrization, we defined the ultimate parametrization θsbi as the
best one out of 100 samples drawn from the posterior. To evaluate
the quality of the posterior distribution, we also reported the fraction
of samples which are better than the reference parametrization,

f rac Dpost , c( ) � ∑100
k�11 L θk,sbi ,c( )< L θref ,c( ){ }

100
(5)

where θk,sbi denotes the k-th drawn sample from the learned
posterior distribution Dpost and 1 is the indicator function.

Frontiers in Systems Biology frontiersin.org04

Paul et al. 10.3389/fsysb.2024.1444912

108

https://www.python.org/
https://pypi.org/project/h5py/
https://juliaio.github.io/HDF5.jl/stable/
https://www.frontiersin.org/journals/systems-biology
https://www.frontiersin.org
https://doi.org/10.3389/fsysb.2024.1444912


3 Results

3.1 Selected hyperparameter values

The hyperparameters which control the sequential training
procedure (e.g., number of rounds) as well as the architecture of
the density estimation neural network, were optimized with grid
search (see Table 1 for an overview of the determined

hyperparameter values). A relevant subset of 25 QSP parameters
was selected for fitting based on biological expert knowledge, which
is often a reasonable first step (Cheng et al., 2022), and global
sensitivity analysis results. Figure 2 shows thirteen parameters
identified as key determinants of the model output by expert
priority (A), as well as the twelve most sensitive parameters (of
the remaining ones) identified by global sensitivity analysis (B)
(Equation 1). The parameters selected by expert priority were
categorized into “immune cell numbers in blood”, “sensitivity of
immune processes to cytokine levels” and “simulation of immune
cells”. Variability in the expert priority parameters across virtual
patients leads to variability in cell populations that play a significant
role in disease pathophysiology and response to treatment. Note that
the aggregated Sobol indices of the expert priority parameters are
comparable to those of the high sensitivity parameters.

For the 25 fitting parameters we chose a lognormal prior
distribution LogNormal(loc, scale) centered around the reference
parametrization with parameters loc � log (θref ) and scale � 0.25.
As the reference parametrization θref simulates a typical patient, the
prior can be an informed starting point for an individual patient fit.
The lognormal distribution was chosen to keep the range of
parameter values positive. Moreover, it covers the different scales
of the parameters with a single scale value since by definition the
amount of variance caused by the scale parameter also depends on
the parameter loc (the higher loc, the higher the variance) For SBI
NPF we derived the prior from the knowledge container (see Section
3.4) by centering the lognormal distribution around the
parametrization of the patient’s nearest container patient (and
using the same scale value as above).

TABLE 1 Table shows results of hyperparameter tuning.

Hyperparameter Value

Training procedure

Number of rounds 50

Number of simulations per round 100

Prior

Distribution Lognormal

Prior scale 0.25

Prior loc Reference parametrization + for noise: 0.2

Density estimator

Neural network “made”

Hidden features 100

Number of atoms 25

FIGURE 2
Aggregated Sobol indices for the 12 most sensitive parameters (B) and 13 expert priority parameters (A) selected by their role in the QSP RA model.
Parameters are grouped by the corresponding category (color).
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3.2 Virtual patient generation

Individual patient fits were performed for the presented SBI
approaches as well as for the selected benchmarks (SSm, fmincon)
and evaluated according to the loss function in Equation 3. For each
method, the distribution of the loss over all patients is depicted in
Figure 3A. All fitting algorithms lead to loss curves with smaller
mean loss values and smaller variance compared to the reference.
For each patient fit, the relative reduction of the reference loss is
shown in Figure 3B as a distribution over the population. The fitting
performance range is spanned by the two benchmarks fmincon and
SSm. While the performance distribution of SBI resembles fmincon,

SBI NPF yields a clear improvement which is similar to the SSm
performance distribution. For both SBI approaches there are a few
outlier patients, for which the reference is better than the respective
SBI result (i.e., negative relative reduction in Figure 3B). When
comparing the losses patient-wise, SBI NPF improves over SBI for
82% of the patients. SBI NPF does not only outperform SBI in terms
of the best posterior sample but also in terms of the whole learned
posterior distribution, cf. Figure 3C. It shows that for SBI typically
34% out of 100 posterior samples are better than the reference
parametrization, while for SBI NPF this number is around 80%.
Visual predictive checks on a biomarker level are presented in
Figures 4, 5 for the c-reactive protein(CRP) and a disease score

FIGURE 3
(A)Distribution of loss values (Equation 3) over the patient population (n = 133) for the different methods. (B)Distribution of the relative reduction of
the reference loss over the patient population (n = 133) shown for the different methods calculated using the gap function (Equation 4). Boxes represent
interquartile-ranges with a line at the median, whiskers extend to the last data point up to 1.5-fold of the interquartile range and circles represent outliers.
(C) Distribution of the fraction of posterior samples which outperform the reference fit (ref) for both SBI approaches (SBI and SBI NPF) calculated
from Equation 5.

FIGURE 4
Correlation between all patient’s observations from the clinical data (y-axis) and the respective simulation results (x-axis) depicted as a density plot
for a blood biomarker (CRP on the left) and a disease score (DAS28-CRP on the right). Simulation results were generated using the individual parameter
estimates from the four different algorithms (SBI, fmincon, SBI NPF and SSm). Dark-shaded areas indicate high density while soft-shaded areas indicate
low density.
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(DAS28-CRP). Figure 4 compares the clinical biomarker
observations of all patients (y-axis) at all time points to the
corresponding simulations of the model with the parameter sets
of the respective fitting algorithm (x-axis). This density
correlation plot illustrates that, similar to the benchmarks, the
SBI approaches are overall able to describe the clinical data
sufficiently well. The visual predictive checks also reflect that
SBI NPF leads to better fits than SBI. In Figure 5 we depict the
distribution of the clinical data and the obtained simulation
results (after 24 weeks of treatment) over the patient
population. Inter-patient variability is large in the clinical data
endpoints and the fitting methods are generally able to capture
this variability under the chosen parameter bounds. An example
of an individual fit obtained by SBI is shown in the
Supplementary Figure S2 for the CRP data. In summary, the
empirical evaluations demonstrate that the SBI approaches can
compete with classic fitting methods in the field in terms of fitting
quality and fitting speed. Moreover, the suggested SBI NPF
pipeline significantly improved over SBI.

3.3 Comparison of virtual patients

For each patient, SBI produces a posterior probability
distribution over the considered 25-dimensional parameter space.
Exemplary one-dimensional marginal posteriors are depicted in
Figure 6 for three different parameters. One column depicts the
marginal distribution for a specific QSP model parameter for three
different patients which all started from the same prior (grey). For
each parameter (column), the three learned patient-individual
posteriors (blue) differ significantly from each other. While a
learned posterior can have moved far away from the prior,
i.e., the reference parametrization, they can also resemble each
other, at least in the one dimension depicted in this figure
(similarity of the here depicted one-dimensional marginal prior

and posterior does not imply similarity of the 25-dimensional prior
and posterior distributions). Overall, we observe multiple shapes of
the marginal posteriors, which range from very concentrated
distributions to broader and flat ones.

Note that the sampled parameter sets from a patient posterior
distribution contain between-parameter relationships (example
given in the supplement as parallel coordinate plot, see
Supplementary Figure S3) and can be used to explore
correlations (example given in the supplement as correlation
matrix, see Supplementary Figure S4).

4 Discussion

4.1 Concept: Generation of virtual patients
by fitting individual patient data

QSP models are typically built in several steps. Individual
mechanistic parameters, such as binding or dissociation as well
as mechanistic pathway modules are first calibrated based on in vitro
and in vivo experiments and, in the final step, are then fitted to
clinical study data such as biomarker concentrations and disease
activity endpoints (Cheng et al., 2022).

Often this clinical data is only available as summary statistics,
which requires weighting methods to ensure a proper distribution of
the inferred parameter sets (Klinke, 2008; Schmidt et al., 2013). It
requires difficult assumptions on which patients may exist in the real
world and has consequences for prediction of drug efficacy.

Fitting of individual clinical data circumvents these assumptions
but is limited, in good cases, to only a few hundred patients where
the individual data is often provided without uncertainty statistics
(such as standard deviation). The lack of uncertainty statistics denies
the use of sophisticated approaches for generating alternative
parameterizations for a single patient, such as bootstrapping
(Tibshirani and Efron, 1986).

FIGURE 5
Depiction of clinical endpoints and corresponding simulation results as distributions over the patient population (n = 133) after 24 weeks of
treatment for DAS28-CRP (left) and CRP (right). Simulation results were generated using the individual parameter estimates from the four different
algorithms. Boxes represent interquartile-ranges with a line at the median, whiskers extend to the last data point up to 1.5-fold of the interquartile range
and circles represent outliers.
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By applying a simulation-based inference method, we generated
parameter probability distributions during the patient fit, directly
providing alternative parametrizations for real patients. More
precisely, sampling from the probability distributions yield
different highly likely parametrizations for an individual patient,
which can then be used to achieve a larger virtual patient population.
Thus, the above-mentioned limitations of individual patient data
have been overcome and the generated virtual population is based
on real patients, which is advantageous compared to weighting
methods and their assumptions.

The subsequent validation of the generated virtual
population, either from individual patient fitting or from
hypothesis-based methods, is usually achieved by predicting
the population outcome of other studies, for example, drugs
with different mode of action or different dosing schemes, under
consideration of the baseline characteristics of the study
population.

4.2 SBI for fitting individual patient data

In this work, we employ SBI to learn a distribution over the QSP
model parametrization for an individual rheumatoid arthritis
patient and build a virtual patient from it. The goal is to identify
regions in the parameter space which best explain the patient
observations, i.e., where the corresponding simulated biomarker
values match the patient’s clinical data.

The approach is particularly interesting for the described setup
since there may exist multiple optimal QSP parametrizations to
model the patient data. The learned probability distribution in the
parameter space naturally provides the probability of certain
parameterizations and can be used to explore alternative
parameterizations. Another benefit of SBI is that it treats the
simulation as a black box, similar to SSm and fmincon.

There exists a variety of SBI algorithms in the literature, see
(Lueckmann et al., 2021) for a detailed overview, from which we

FIGURE 6
Prior (grey) vs. selected patient-individual posterior (blue) one-dimensional marginal distributions for three model parameters. Every subplot stands
for an individual patient. Each column represents one specific parameter. X-axes represent the parameter value used in the QSP model (parameter-
specific units) and y-axes represent the density.
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chose the sample-efficient algorithm sequential neural posterior
estimation. The choice of the SBI approach as well as of the
stochastic global and deterministic local approach can yield
differences in the benchmarking as their performance needs to be
considered as partially problem specific (Egea et al., 2009).
Furthermore, the applied data statistics and the data noise
handling can influence the result performance.

4.3 Choice of hyperparameters

Within this challenging optimization problem, algorithms and
settings of hyperparameters are an impactful choice that is based
on the underlying optimization criterion and performance
assumptions. Alternative hyperparameter settings may yield
similar or better results and can be subject of further analysis.

To reduce the complexity of the optimization problem and to
achieve high quality model fits, we selected the most relevant
parameters for model fitting by assessing the parameter influence
on biomarker-related model outputs through global sensitivity
analysis (Sobol, 2001). In addition, expert priority parameters
have been included in the parameter estimation (Cheng et al.,
2022). The quantitative choice of 25 parameters seems arbitrary
but alternative parameter numbers did not improve the result of the
parameter estimation.

4.4 Performance of virtual patient
generation

The results of this work demonstrate that fitting of individual
patients can yield virtual patients that each outperform the
reference and that the model parameterizations can represent
the variability in clinical response typically seen in the data. The
variability in the patient data was very high, cf. Figure 5, which is
expected for rheumatoid arthritis as heterogeneous disease, and
poses a real challenge for individual patient fitting but also for
predicting response (Rehberg et al., 2021). Obviously, the inter-
patient variability is a consequence of phenotypic differences and
measurement noise. As noise cannot be explained biologically
with the mechanistic QSP model, a perfect correlation between
clinical data and model predictions in Figure 4 is difficult to
achieve (see also (Schmidt et al., 2013)). Yet the discussed
algorithms show a different fitting performance with fmincon
performing worst, SSm performing best and SBI being in
between. Fmincon generally is less suited for our optimization
task than the others as it searches for a local and not necessarily
global optimum. While fmincon and SSm provide only point
estimates, SBI provides a distribution, i.e., multiple parameter
estimates with corresponding probabilities. We note that the
fitting approach with SBI uses summary statistics of the clinical
data and not its raw observations like the benchmarks, which
could be a disadvantage. Yet overall, the SBI approaches get
reasonably close to SSm. Our results also illustrate that SBI can
handle a high-dimensional parameter space of 25 parameters and
make them suited for such kind of QSP problems. For
comparison, SBI approaches in the literature focused, so far,
on setups of only 2–10 parameters (Lueckmann et al., 2021; Reza

et al., 2022; Boelts et al., 2023; Boyali et al., 2021). The fact that
SBI could be improved with SBI NPF for 82% of the patients
demonstrates a high potential of the nearest patient fit pipeline
developed in this work. It showcases the influence and necessity
of good prior estimates for SBI algorithms. However, 18% of the
patients were better fitted with SBI, which starts from a
presumably less appropriate prior distribution. While SBI
approaches are inherently stochastic, the impact on fitting
quality was minor in repetitive experiments. We must assume
that the SBI NPF pipeline has room for improvement in defining
the patient vicinity criteria and/or that patient vicinity is not
always of benefit, as a QSP model may require very different
parametrizations to produce similar outputs (Duffull and Gulati,
2020). To conclude on the SBI NPF pipeline, the developed
concept of nearest patient fits is not specific to SBI but
represents a generic contribution that can be transferred to
any fitting algorithm which considers initial solutions.

4.5 Comparison of virtual patients

The patient-specific posterior marginal distributions show
that very diverse QSP model parametrizations can be necessary
to describe individual patients well, which SBI was able to learn.
The different shapes of the marginal posteriors indicate the
flexibility of the chosen SBI approach (sequential neural
posterior estimation) in modelling probability distributions.
While concentrated distributions can indicate a high certainty
in the virtual patient parametrizations, flat distributions may
point towards those that are uncertain. One advantage of the
learned distributions is that alternative virtual patient
parametrizations can directly be generated through sampling.
I.e., new highly-probable patient fits can be easily generated
without re-running the optimization solver or using other
metrics and assumptions such as prevalence weighting. These
alternate parameterizations of a virtual patient may describe the
fitted data equally well and may represent differences in the
disease mechanisms. Exploring alternate parametrizations is
fundamental to assess the range of treatment outcomes of an
individual patient.

On the population level, aggregation of the given patient-specific
posterior distributions may allow the application of population
statistics for assessment of subgroups, patient differences and
population spread.

4.6 General conclusion

In this work, we find SBI approaches to be powerful tools in
creating virtual patients using individual patient data. SBI achieved
the same performance in patient fits compared to benchmark
algorithms and provides parameter probability distributions,
which can be used to explore alternative parameterizations for
real patients to create more confidence in predicting clinical
outcomes for in silico trials. Furthermore, leveraging patient
similarities observed in the clinical data, improved the
performance and may be suited as a generalizable strategy in
generating virtual patients.
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SUPPLEMENTARY FIGURE S1
Schematic representation of key interactions in the QSP RA model. The
model is composed of a blood compartment (from which immune cells are
recruited) and a synovial tissue compartment (side of inflammation).
Thickness of connection dots illustrate the influence strength. Dots represent
positive influence, bars represent negative influence (only for Tregs).
Abbreviations: TNF: tumor necrosis factor, FLS: fibroblast-like synoviocytes
IL6R: interleukin-6 receptor, CRP: c-reactive protein, DAS28-CRP: disease
activity score 28 with CRP, TH: T helper cells, MAC: macrophages, Treg: T
regulatory cells, B: B cells.

SUPPLEMENTARY FIGURE S2
Individual patient fit of QSP model to c-reactive protein (CRP) data obtained
by SBI. The clinical patient data is depicted as circles. Data before treatment
start shows baseline characteristics of that individual patient and the drop in
CRP shows response to the treatment (treatment time: 24 weeks). Each
dashed blue line represents a fit obtained by SBI. More precisely, it
represents the QSP simulation result when parametrized with a sample
from the learned patient posterior. Note that the depicted fitting result was
obtained by fitting 16 clinical biomarkers and endpoints from that patient
simultaneously (including CRP).

SUPPLEMENTARY FIGURE S3
Parallel coordinate plot of parameter sets sampled from a patient posterior
distribution obtained by SBI. The 25 fitting parameters are depicted as p1, . . .,
p25 as columns, each equipped with a y-axis showing the respective
parameter value range. Each line (from p1 to p25) is one parameter set
derived from SBI for the given patient, obtained by sampling from the
learned patient posterior distribution. A line’s color represents the quality of
that parameter set in terms of the resulting fitting loss (Equation 3). Parameter
sets in dark green color illustrate low loss values while orange parameter
sets have higher loss values. A total of 100 parameter sets is shown.

SUPPLEMENTARY FIGURE S4
Parameter correlation calculated for the parameter sets shown in
Supplementary Figure S3: The heatmap shows the correlation between the
25 parameters shown as p1, . . ., p25 obtained from the 100 parameter sets
depicted in Supplementary Figure S3. Numbers are Pearson correlation
coefficients and are highlighted in red for positive correlation and in blue for
negative correlation.
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An exploration of testing genetic
associations using
goodness-of-fit statistics based
on deep ReLU neural networks

Xiaoxi Shen* and Xiaoming Wang

Department of Mathematics, Texas State University, San Marcos, TX, United States

As a driving force of the fourth industrial revolution, deep neural networks are
now widely used in various areas of science and technology. Despite the success
of deep neural networks in making accurate predictions, their interpretability
remains amystery to researchers. From a statistical point of view, how to conduct
statistical inference (e.g., hypothesis testing) based on deep neural networks is still
unknown. In this paper, goodness-of-fit statistics are proposed based on
commonly used ReLU neural networks, and their potential to test significant
input features is explored. A simulation study demonstrates that the proposed test
statistic has higher power compared to the commonly used t-test in linear
regression when the underlying signal is nonlinear, while controlling the type I
error at the desired level. The testing procedure is also applied to gene expression
data from the Alzheimer’s Disease Neuroimaging Initiative (ADNI).

KEYWORDS

deep neural networks, goodness-of-fit test, asymptotic normality, sample splitting,
genetic association

Introduction

Since the creation of backpropagation, neural networks have regained their popularity,
and deep neural networks are now the fundamental building blocks of sophisticated
artificial intelligence. For instance, in computer vision, convolutional neural networks
(CNNs) (LeCun, 1989) are commonly used for object detection, while recurrent neural
networks (RNNs) (Rumelhart et al., 1988), or more recently, transformers (Vaswani et al.,
2017) play vital roles in natural language processing.

One of the main reasons for the superior performance of deep learning models is that
neural networks are universal approximators. In fact, in the early 1990s, various research
established the universal approximation property for shallow neural networks, as well as
their derivatives with squashing activation functions—functions that are monotonically
increasing and approach 0 and 1 when the variable tends to negative and positive infinity,
respectively (Cybenko, 1989; Hornik et al., 1989; Pinkus, 1999) showed that any neural
network has the universal approximation property as long as the activation function is not a
polynomial. Recently, similar results have also been established for deep neural networks
with the Rectified Linear Unit (ReLU) activation function (Nair and Hinton, 2010). Another
important characteristic of shallow neural networks is that the approximation rate to certain
smooth functions is independent of the dimensionality of the input features (Barron, 1993),
making neural networks a great candidate to avoid curse of dimensionality. For example
(Shen et al., 2023; Braun et al., 2024), have shown that the rate of convergence of shallow
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neural networks is independent of the input dimension when the
underlying function resides in the Barron space.

Such nice approximation properties provide deep neural
networks with great potential for modeling complex genotype-
phenotype relationships, and a lot of research has been done in
this direction. For instance, a deep learning method known as
DANN (Quang et al., 2014) was proposed to make predictions
on the deleteriousness of genetic variants. In terms of predicting
effects of the non-coding regions, DanQ (Quang and Xie, 2016)
integrated CNNs and Bidirectional Long Short-Term Memory
networks to capture different aspects of DNA sequences and
outperformed other similar methods in various metrics. More
recently (Zhou et al., 2023), used deep neural networks to model
Alzheimer’s disease (AD) polygenic risk and the deep learning
methods outperform traditional methods such as weighted
polygenic risk score model and LASSO (Tibshirani, 1996).

Despite empirical and theoretical evidence on the powerful
prediction performance of deep neural networks, an overlooked
problem in deep learning is the interpretability of these models.
From a statistical perspective, the interpretability of deep learning
models can be improved if we know how to conduct statistical
inference using deep neural networks. In recent years, several works
have been done in this direction. For example (Horel and Giesecke,
2019), proposed a significant test based on shallow neural network
using empirical process theory. However, the asymptotic
distribution of the test statistic is hard to compute. Recently,
Shen et al. (2021) and Shen et al. (2022) proposed two testing
procedures for shallow neural networks with sigmoid activation
function. Both of these testing procedures are easier to implement
and have better performance compared to t-test or F test in linear
regression. Dai et al. (2024) also proposed a black box testing
procedure to test conditional independence between features and
response. Below we would like to point out several challenges one
needs to conquer in order to develop hypotheses testing based on
deep learning models:

1. Classical statistical hypothesis testing techniques in parametric
models are difficult to apply in DNNs. One reason is that the
parameters (weights and biases) are unidentifiable in general
(Fukumizu, 2003), making them hard to interpret. For
example, in linear regression, testing the significance of a
covariate is equivalent to testing the coefficient attached to
it is equal to 0 or not. However, in a DNN, there are many ways
to make the covariate vanish in the model. As an example one
can let all the weights directly attached to an input feature be
0 or one can also let all the weights for each hidden-to-output
unit to be 0.

2. The number of tuning parameters to train a DNN is large.
There is no general guideline on how to choose the number of
layers and the number of hidden units in each layer to achieve
desirable performance in a DNN. Additionally, in the training
process, how to wisely select the learning rate and the number
of iterations needed is also unclear. Without carefully choosing
these tuning parameters, it is likely that the trained DNN will
overfit the data. Although overfitting might be acceptable for
prediction, it generally needs to be avoided when conducting
statistical hypothesis testing.

3. There is lack of theoretical guarantees to ensure the
performance of DNNs as tools in genetic association
studies. Current theories on DNNs mainly focus on
evaluating the generalization errors of DNNs. Many results
available are based on the assumption of high-dimensional
regime, where the sample size and the number of features are of
the same order, or in the polynomial regime, where the sample
size grows polynomially as the number of features (Mei et al.,
2022; Mei and Montanari, 2022). These conditions are easily
satisfied in tasks like image classification, where one can use the
data augmentation strategy to manually generate new samples.
In genetic studies, however, researchers usually face a limited
sample size but a huge number of genetic variants, making
those results less attractive in genetic studies.

In this paper, we proposed a goodness-of-fit test based on deep
ReLU neural networks, extending the work of (Shen et al., 2021).
The rest of the paper is organized as follows: Section 2 provides a
brief introduction to deep neural networks, followed by the
proposed goodness-of-fit test. Results from simulation studies
and real data analyses are presented in Section 3, and
conclusions are drawn in Section 4.

Methods

Deep neural networks (DNNs)

A perceptron (Rosenblatt, 1958) originated from mimicking the
functionality of a neuron in the human brain. As shown in
Figure 1A, the green node is the only computation unit in a
perceptron, and it outputs a nonlinear transformation of the
linear combination of input units. Such a transformation in a
computation unit is often called an activation function. By
stacking multiple perceptrons together, a shallow neural network,
shown in Figure 1B, is obtained. The blue computation nodes in the
middle are known as the hidden units. Each of them computes a
nonlinear activation of a linear combination of the nodes in the
input layer. The green nodes are known as output units, and each of
them applies a linear or nonlinear activation to a linear combination
of the outputs from the hidden units. When the number of hidden
layers is more than one, as shown in Figure 1C, a deep neural
network is obtained.

Throughout the remainder of the paper, we consider deep neural
networks with only one output unit and linear activation is applied
to the output unit. In particular, the output of a deep neural network
with L hidden layer can be represented as

f x( ) � WL+1σ WLσ /W2σ W1x( )( )( ), (1)
where W l is an nl × nl−1 matrix containing the weights between the
(L-1)th layer and the lth layer. Here nl is the number of nodes in the
lth layer. By convention, the 0th layer represents the input layer,
while the (l+1)th layer represents the output layer and therefore,
n0 � p and nL+1 � 1 by our model assumption. σ: R → R is a
nonlinear activation function and in this paper, we considered
one of the most used nonlinear activation functions, the Rectified
Linear Unit (ReLU) activation function (Nair and Hinton, 2010).
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That is, σ(x) � max x, 0{ }. In (1), when σ is applied to a matrix or a
vector, it is considered as an elementwise operation.

Goodness-of-fit test based on DNNs

We consider the following nonparametric regression model:

Yi � f0 Xi( ) + εi, i � 1, . . . , n

where (Xi, Yi), i � 1, . . . , n are i.i.d pairs of data points with Xi �
[Xi1, . . . , Xip]T ∈ Rp being the vector of covariates for the ith
individual and Yi being the response for the ith individual.
ε1, . . . , εn are i.i.d. random errors with mean 0 and variance σ2.
Moreover, f0 is an underlying function to be estimated using deep
neural networks through minimizing the squared error loss:

f̂n � argminf∈FDNN

1
n
∑n
i�1

Yi − f Xi( )( )2,
where FDNN is the class of deep neural networks of the form
Equation 1, that is,

FDNN � f x( ) � WL+1σ WLσ /W2σ W1x( )( )( ): f
���� ����∞ ≤M{ }.

In addition, we assume that Xi come from a continuous
distribution, Yi ∈ [−M,M] for some M > 0 and the underlying
function is bounded, that is ‖f0‖∞≤M. These assumptions are
required to provide an upper bound for ‖f̂n − f0‖L2 as demonstrated
in (Farrell et al., 2021).

Our goal is to develop a statistical hypothesis testing procedure
to test whether certain covariates should be included in the model or
not based on the deep neural network estimator f̂n. In other words,
for S ⊂ 1, . . . , p{ }, a subset of indices of covariates, the null
hypothesis is H0: Xj, j ∈ S are not significant. To gain some
insights of the testing procedure, recall that in multiple linear
regression, testing the significance of a predictor is equivalent to
testing whether its coefficient is zero or not. This is the well-known
t-test procedure. However, due to the unidentifiability of neural
network parameters, such a method cannot be easily applied to
neural networks. On the other hand, such a t-test is equivalent to an
F test by comparing the mean squared error under the full model
where the predictor is involved and the reduced model where the
predictor is excluded from the model. Our goodness-of-fit test for
deep neural networks is constructed based on such an idea.

Following (Shen et al., 2021), we proposed to use a goodness-of-
fit (GoF) type statistic for genetic association studies using DNNs.
Here are the steps to construct the GoF test statistic.

1. Randomly partitioned the dataset into two parts. Denote
0< γ≤ 0.5 to be the proportion of the first part among the
total n data points. Also let m � �γn� be the number of data
points in the first part so that n −m is the number of data
points in the second part. For simplicity, we denote
(X1, Y1), . . . , (Xm, Ym) to be the first part of the data and
(Xm+1, Ym+1), . . . , (Xn, Yn) to be the second part of the data.

2. Use the first part is used to fit the data under the null
hypothesis H0 and this is done by training a deep neural
network whose input layer only involves the covariates
Xj, j ∉ S. The second part is used to fit the data under the
alternative hypothesis which is done by fitting a deep neural
network using all the covariates. The mean squares errors of
these two model fittings are given by

T0 � 1
m
∑m
i�1

Yi − f̂H0
Xi( )( )2,

T1 � 1
n −m

∑n
i�m+1

Yi − f̂H1
Xi( )( )2.

3. The asymptotic distribution of T0 and T1 can be obtained in a
similar fashion as of (Shen et al., 2021). Combining Lemma 3 in
(Shen et al., 2021) and Theorem 2 in (Farrell et al., 2021), it follows
that under the null hypothesisH0, bothT0 andT1 are asymptotically
standard normally distributed when BnLn logBn log n � o(n)
where Bn is the number of parameters in the DNN and Ln is
the number of hidden layers in the DNN. Therefore,

1
m

+ 1
n −m

( )κ[ ]−
1
2

T0 − T1( )→d N 0, 1( ),

where κ � E(ε4) is the fourth moment of the random error
provided that BnLn logBn log n � o(n).

4. The GoF test statistic can be obtained by replacing κ by a
consistent estimator:

T � 1
m

+ 1
n −m

( ) κ̂n[ ]−
1
2

T0 − T1( ),

FIGURE 1
Architectures of (A) a perceptron, (B) a shallow neural network and (C) a deep neural network.

Frontiers in Systems Biology frontiersin.org03

Shen and Wang 10.3389/fsysb.2024.1460369

118

https://www.frontiersin.org/journals/systems-biology
https://www.frontiersin.org
https://doi.org/10.3389/fsysb.2024.1460369


As mentioned in (Yatchew, 1992), a possible choice for κ̂n is

κ̂n � 1
n
∑n
i�1

Yi − f̂H0
Xi( )( )4 − 1

n
∑n
i�1

Yi − f̂H0
Xi( )( )2⎛⎝ ⎞⎠

2

.

5. The p-value of the test is then calculated the same way as in a
two-sided Z-test. In other words, p � P(|T|> |t|), where t is the
observed test statistic.

Network structures

A sufficient condition, as has been mentioned above, to ensure
asymptotic normality is BnLn logBn log n � o(n). In fact, this
condition provides some guidance on how to choose the network
structure. Since Bn is the number of parameters in a DNN,
Bnpn*

2
Ln, where n* � max n1, . . . , nLn{ }. Therefore,

BnLn logBn log npn*
2
L2n log(n*Ln)log n. Now we consider the

following scenarios:

• If Ln � O(1), such as a shallow ReLU neural network, then the
sufficient condition is equivalent to n*

2
log n* log n � o(n). In

this case, one can choose n* � O(n1
2−α) for some 0< α< 1

2.
• If n* � O(1), i.e., each hidden layer has a bounded number of
hidden units, then the sufficient condition is equivalent to
L2n logLn log n � o(n). In this case, one can choose Ln �
O(n 1−α

2 ) for some 0< α< 1.
• If both n* and Ln can increase with the sample size, then one
can choose n* � O(nα) and Ln � O(nβ) as long as α and β

satisfy 0< α + β< 1
2.

Results

Simulation 1

In this section, we conducted a simulation study to evaluate our
proposed test’s type I error and power. Since in genetic studies,
linear models are the most used method to detect genetic
associations, we compared our proposed test with the t-test in
linear regression. Specifically, we generated the response variable
via the following equation:

Yi � f0 Xi1( ) + εi, i � 1, . . . , n,

where Xi � [Xi0, Xi1]T, i � 1, . . . , n are i.i.d. random vectors
sampled from a uniform distribution on the square [−1, 1]2. εi, i �
1, . . . , n are i.i.d. random variables sampled from a normal
distribution N (0, 0.52). In the simulation, we consider two
different functions f0. One is the quadratic function f0(x) � x2

and the other one is a trigonometric function f0(x) � cos(2πx).
Since the first component does not involve in the simulation

equation, it was used to evaluate the performance of the type I error
of the proposed test. The null hypothesis to be tested isH0: X0 is not
significant, or equivalently, the index set for this null hypothesis is
S � 0{ }. The second component in Xi was involved in generating the
response, it was therefore to be used to evaluate the power of the
proposed test. In this case, the null hypothesis to be tested isH0: X1

is not significant, or equivalently, the index set for this null
hypothesis is S � 1{ }. To test significance of each component, we
applied the testing procedure as mentioned above. We started by
partitioning the data set into two parts with ratio γ � 0.1 and γ � 0.5.
Then the majority of the data was used to train a shallow or a deep
ReLU neural network under the alternative hypothesis while the
minority of the data was used to calculate the mean squared error
under the null hypothesis. When we trained the neural networks, the
following three network structures were used:

• A shallow ReLU neural network with the number of hidden
units being �n1/3�.

• A deep ReLU neural network with the number of hidden layer
being �n1/3� and each hidden layer has 18 hidden units.

• A deep ReLU neural network with �n1/4� hidden layers and
each hidden layer has �n1/4� hidden units.

All the three network structures used here meet the requirement
as mentioned in section 2.3. In the simulation, we considered sample
sizes being 200, 500, 1,000 and 2000. The stochastic gradient descent
algorithm was applied, and the batch size was determined so that
20 batches were used for each sample size. 200 epochs were used to
run the stochastic gradient descent. To further alleviate the possible
overfitting, we applied dropout to each hidden unit in the network
with a dropout rate being 0.05. To obtain the empirical type I error
and the empirical power, 1,000 Monte Carlo replications were
conducted. Tables 1, 2 below summarize the simulation results.

Based on Tables 1, 2, it can be easily seen that linear models and
the proposed GoF test can control the empirical type I error very well
at level 0.05, except that the proposed GoF test is slightly
conservative when the sample size is small for the quadratic
signal for the split-ratio γ � 0.1, while the empirical type I error
rate of the GoF test is slightly inflated for small sample size when the
split ratio γ � 0.5. The empirical powers of proposed GoF test based
on ReLU neural networks are consistently much higher compared to
the t-test in linear model, which suggests that the proposed GoF test
can outperform the t-test in linear model when the underlying signal
is nonlinear. On the other hand, it is worth noting that when γ � 0.1,
shallow ReLU neural networks achieve higher empirical power than
deep ReLU neural networks in both cases, especially when the
sample size is relatively large. On the contrary, when the
underlying function is the cosine function and the sample size is
200, deep ReLU neural networks have higher power compared to the
shallow ones. Similar situations can also be seen for γ � 0.5, but for
the cosine signal, deep neural networks with structure 1 (growing
number of hidden layers and fixed number of hidden units in each
layer) achieve higher power compared to shallow neural networks.
Therefore, we believe that these observations suggest that the rule of
parsimony still applies in ReLU neural networks.

Simulation 2

In many situations, a response variable can be related to multiple
causal variables. In this simulation, we investigated the performance
of the proposed method under such a scenario. In particular, the
response variable in this simulation was generated based on the
following equation:
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Yi � X1i| | + 2X2
2i + cos 2πX3i( ) + ϵi,

where all the covariates X0i, X1i, X2i, X3i are i.i.d. random variables
from Uniform[-1,1]. The random error term is sampled from
N (0, 0.52). Similar to Simulation 1, the variable X0 is not
involved in the underlying function, so it was used to check type
I error of the test, and the other three variables were used to evaluate
the power of the test.

In this scenario, the hypotheses of interest are H0: Xj is not
significant for j ∈ S with S � 0{ } for type I error and S � 1{ }, 2{ }, 3{ }
respectively for the three variables used to evaluate power. We used
the same deep neural network structures and the same choices of
tuning parameters as we did in Simulation 1. Table 3 summarize the
empirical type I error rates and the empirical power of the proposed
method, linear model, and the black-box test under the sample sizes
200, 500, 1,000, and 2,000.

As we can see from Table 3, both linear model t-test and the
proposed GoF test can control the type I error rate very well. Similar
to what we saw from Simulation 1, even the underlying function
contains multiple causal variables, the proposed GoF test can still
detect the significance of the variables having nonlinear associations
with the response variable.

Real data analyses

Alzheimer’s disease (AD) is one of the most common
neurodegenerative diseases with a substantial genetic component
(Karch et al., 2014; Sims et al., 2020). Therefore, it is of great
importance to have an efficient method to screen the genetic
components that are associated with AD pathogenesis so that
early treatments can be applied for disease management
(Zissimopoulos et al., 2015). To investigate the performance of
our proposed GoF test in identifying AD-related genes, we
applied our proposed method to the gene expression data from
Alzheimer’s Disease Neuroimaging Initiative (ADNI).

The hippocampus region plays a vital role in memory (Mu and
Gage, 2011) and the shrinkage of hippocampus volume is an early
symptom of AD (Schuff et al., 2009). Therefore, we chose the
hippocampus volume as the phenotype in the real data analysis.
After removing individuals with missing values for hippocampus
volume and merging data from individuals having both gene
expression information and hippocampus volume, a total of
464 individuals and 15,837 gene expressions were obtained. We
then regressed the scaled hippocampus volume onto some
important predictors including age, gender and education status.

TABLE 1 Comparisons between linear model and goodness-of-fit test based on ReLU neural networks under quadratic signal.

γ � 0.1 γ � 0.5

Sample size 200 500 1,000 2,000 200 500 1,000 2,000

Type I Error Linear Model 0.047 0.047 0.055 0.048 0.041 0.041 0.038 0.054

Shallow ReLU NN 0.028 0.053 0.050 0.053 0.102 0.066 0.056 0.053

Deep ReLU NN 1 0.030 0.054 0.049 0.052 0.108 0.066 0.053 0.050

Deep ReLU NN 2 0.046 0.048 0.039 0.042 0.088 0.061 0.055 0.051

Power Linear Model 0.058 0.071 0.068 0.076 0.073 0.068 0.058 0.063

Shallow ReLU NN 0.152 0.367 0.580 0.858 0.484 0.736 0.955 1.000

Deep ReLU NN 1 0.098 0.295 0.543 0.787 0.594 0.774 0.952 0.998

Deep ReLU NN 2 0.056 0.176 0.448 0.738 0.273 0.513 0.830 0.944

TABLE 2 Comparisons between linear model and goodness-of-fit test based on ReLU neural networks under cosine signal.

γ � 0.1 γ � 0.5

Sample size 200 500 1,000 2,000 200 500 1,000 2,000

Type I Error Linear Model 0.063 0.046 0.062 0.051 0.055 0.048 0.049 0.060

Shallow ReLU NN 0.057 0.050 0.056 0.063 0.072 0.079 0.056 0.050

Deep ReLU NN 1 0.054 0.048 0.056 0.059 0.081 0.075 0.048 0.050

Deep ReLU NN 2 0.039 0.061 0.040 0.052 0.064 0.076 0.048 0.052

Power Linear Model 0.051 0.058 0.061 0.055 0.062 0.050 0.043 0.068

Shallow ReLU NN 0.106 0.483 0.876 0.952 0.551 0.858 0.966 0.996

Deep ReLU NN 1 0.228 0.295 0.413 0.425 0.970 0.982 0.981 0.922

Deep ReLU NN 2 0.042 0.083 0.262 0.622 0.218 0.541 0.789 0.911
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The residual obtained will be used as the response variable to train
ReLU neural networks. The network structures and
hyperparameters in the ReLU neural networks used in the real
data analysis were the same as in the simulation studies. Table 4
summarizes the top 10 significant genes selected from t-test in linear
model and the GoF tests based on ReLU neural networks.

As can be seen from Table 4, the significant genes selected from the
GoF test do not overlap with the ones selected from the linear models,
and different network structures picked out similar genes. On the other
hand, in (Shen et al., 2022), the top 10 significant genes selected using a

testing procedure based on shallow sigmoid neural networks have large
overlap with the ones selected from the linearmodel. This indicates that
ReLU neural networks may be able to detect different signals that are
hard to detect when using linear models or shallow sigmoid neural
networks. Among them, the gene GRM2 is the top pick. Although the
biological mechanism of the association between these genes and AD
needs further validation, it is worth pointing out that a recent study has
shown that the metabotropic glutamate receptor 2 (mGluR2), a protein
encoded by the gene GRM2 plays a role in the pathogenesis of AD
(Srivastava et al., 2020).

TABLE 3 Comparisons between linear model and goodness-of-fit test based on ReLU neural networks under multiple causal variables.

γ � 0.1 γ � 0.5

Sample size 200 500 1,000 2,000 200 500 1,000 2,000

Type I Error (X0) Linear Model 0.058 0.046 0.044 0.043 0.052 0.047 0.056 0.048

Shallow ReLU NN 0.046 0.043 0.044 0.064 0.076 0.064 0.048 0.054

Deep ReLU NN 1 0.044 0.044 0.045 0.065 0.071 0.061 0.046 0.055

Deep ReLU NN 2 0.047 0.043 0.042 0.063 0.063 0.064 0.046 0.054

Power (X1) Linear Model 0.066 0.061 0.056 0.042 0.040 0.045 0.049 0.041

Shallow ReLU NN 0.049 0.064 0.108 0.127 0.128 0.134 0.172 0.287

Deep ReLU NN 1 0.050 0.068 0.070 0.078 0.130 0.131 0.136 0.181

Deep ReLU NN 2 0.048 0.055 0.058 0.074 0.084 0.072 0.075 0.107

Power (X2) Linear Model 0.081 0.075 0.065 0.062 0.074 0.065 0.070 0.087

Shallow ReLU NN 0.057 0.387 0.710 0.967 0.533 0.859 0.974 0.998

Deep ReLU NN 1 0.076 0.106 0.119 0.146 0.514 0.777 0.912 0.952

Deep ReLU NN 2 0.051 0.057 0.072 0.321 0.170 0.361 0.647 0.834

Power (X3) Linear Model 0.045 0.055 0.065 0.059 0.040 0.050 0.054 0.064

Shallow ReLU NN 0.046 0.082 0.373 0.568 0.163 0.228 0.273 0.314

Deep ReLU NN 1 0.054 0.093 0.203 0.263 0.404 0.633 0.749 0.666

Deep ReLU NN 2 0.050 0.042 0.055 0.119 0.077 0.111 0.171 0.309

TABLE 4 Top 10 significant genes selected from t-test in linear model and the GoF tests based on different ReLU neural network structures.

Linear model Shallow ReLU neural network Deep ReLU neural network 1 Deep ReLU neural network 2

SNRNP40 GRM2 GRM2 GRM2

PPIH DGCR6 DGCR6 DGCR6

GPR85 GPRC5D BRCA2 NDRG1

DNAJB1 SMARCB1 KIF1C GPRC5D

WDR70 NDRG1 NDRG1 KIF1C

CYP4F2 KIF1C GPRC5D KLF13

NOD2 NUDT22 NUDT22 COX20

MEGF9 BRCA2 COX20 NUDT22

CTBP1-AS2 COX20 SMARCB1 OR4A5

PHYKPL REG1A STAG3L4 STAG3L4
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Discussions and conclusion

In this paper, we have proposed a goodness-of-fit test based on
ReLU neural networks. The proposed test can be used to detect the
significance of a predictor. Once the network structures are suitably
chosen, the test statistics have an asymptotically normal distribution,
making it easy to implement in practice. Simulation results have
demonstrated that the proposed method can detect nonlinear
underlying signals, and real data analysis also showed the potential
that ReLU neural networks may detect signals that are hard to identify
from linear models or even shallow sigmoid neural networks.

On the other hand, although the theoretical framework of the
GoF test was proposed in this paper, in practice, the performance of
a deep ReLU neural network also depends on the optimization
algorithm used and the hyperparameters (e.g., learning rate, number
of epochs, etc.) selected. So, there is still a gap in how the DNN can
be used to conduct statistical inference on detecting significant
variables. This will be our future work. In addition, while we
mainly focused on testing a single variable (such as a gene
expression in the real data analysis) in this paper, it is
worthwhile to also investigate the performance of our proposed
method on a wider range of datasets to evaluate the performance of
the GoF test when testing a set of variants in a genetic region, such as
in a chromosome or in a pathway. In addition, various significant
testing procedures based on neural networks nowadays and as a
future work, we plan to conduct a comprehensive comparison on
these methods.
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includes multiple molecular subtypes, but it remains poorly understood from a
molecular andmechanistic standpoint. This hampers the development of rationally
targeted therapeutic strategies. The NIH-sponsored “Researching COVID to
Enhance Recovery” (RECOVER) initiative includes several retrospective/
prospective observational cohort studies enrolling adult, pregnant adult and
pediatric patients respectively. RECOVER formed an “OMICS” multidisciplinary
task force, including clinicians, pathologists, laboratory scientists and data
scientists, charged with developing recommendations to apply cutting-edge
system biology technologies to achieve the goals of RECOVER. The task force
met biweekly over 14 months, to evaluate published evidence, examine the
possible contribution of each “omics” technique to the study of PASC and
develop study design recommendations. The OMICS task force recommended
an integrated, longitudinal, simultaneous systems biology study of participant
biospecimens on the entire RECOVER cohorts through centralized laboratories,
as opposed to multiple smaller studies using one or few analytical techniques. The
resulting multi-dimensional molecular dataset should be correlated with the deep
clinical phenotyping performed through RECOVER, as well as with information on
demographics, comorbidities, social determinants of health, the exposome and
lifestyle factors that may contribute to the clinical presentations of PASC. This
approach will minimize lab-to-lab technical variability, maximize sample size for
class discovery, and enable the incorporation of as many relevant variables as
possible into statistical models. Many of our recommendations have already been
considered by the NIH through the peer-review process, resulting in the creation of
a systems biology panel that is currently designing the studies we proposed. This
system biology strategy, coupled with modern data science approaches, will
dramatically improve our prospects for accurate disease subtype identification,
biomarker discovery and therapeutic target identification for precision treatment.
The resulting dataset should be made available to the scientific community for
secondary analyses. Analogous system biology approaches should be built into the
study designs of large observational studies whenever possible.

KEYWORDS

COVID-19, PASC, RECOVER, systems biology, multi-omics

1 Introduction

The term Post-Acute Sequelae of SARS-CoV-2 infection
(PASC), also known as “Long COVID”, refers to numerous
conditions associated with widespread morbidity and rising
healthcare costs. PASC has highly variable clinical presentations,
and likely includes multiple molecular subtypes (Thompson et al.,
2023; Sherif et al., 2023). The NIH-sponsored “Researching COVID
to Enhance Recovery” (RECOVER) initiative includes retrospective/
prospective cohort studies including an adult cohort (Horwitz et al.,
2023), a cohort of pregnant adults (Metz et al., 2023; Reel et al., 2021)
and a pediatric cohort (Gross et al., 2024; Reel et al., 2021). These
studies aim to enroll a total of 12,580 adult non-pregnant patients,
2,300 adult pregnant patients and 19,300 pediatric patients to
rapidly improve our understanding of and ability to predict,
treat, and prevent Post-Acute Sequelae of SARS-CoV-2 infection
(PASC, or “Long COVID”) through deep clinical phenotyping and
laboratory studies. THE RECOVER “OMICS” Task Force was
charged with developing recommendations based on published
evidence and the experiences of its members, to incorporate
multi-omics into the analysis of RECOVER results.

2 Methods

2.1 Objectives

The “OMICS” task force of the RECOVER study, a multi-
disciplinary committee including clinicians, pathologists, laboratory
scientists and data scientists, was charged with developing
recommendations to apply cutting-edge system biology technologies
to achieve the goals of RECOVER. The task force met biweekly over
14 months, to evaluate published evidence, examine the possible
contribution of each “omics” technique to the study of PASC, as well
as the potential limitations of each technique, and develop a consensus
recommendation. The work was divided into two stages. During the first
stage, sub-committees with specific expertise on an “omics” technique
examined evidence supporting the use of that technique to study PASC,
the type of data it could generate and the mechanistic questions it could
answer, based on published evidence and the experiences of its members,
to incorporate multi-omics into the analysis of RECOVER results. Each
sub-committee presented to the entire task force. During the second
stage, the task force combined the findings of each sub-committee into a
comprehensive study design recommendation.
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3 Results and discussion

The OMICS task force recommended that integrated,
longitudinal, simultaneous multi-omics studies of participant
biospecimens be performed on the entire RECOVER cohort
through centralized laboratories, as opposed to multiple smaller
studies using one or few analytical techniques.

The RECOVER adult protocol (Horwitz et al., 2023) includes
multiple biospecimen collections: nasopharyngeal or nasal swab,
2 8.5 mL aliquots of blood in serum separation tubes, 4 × 8 ml
aliquots of blood in cell preparation tubes, 2 × 2.7 mL aliquots of
blood in sodium citrate tubes for plasma proteomics, 1 × 10 ml
aliquot of blood in EDTA tube, 1 2.5 mL aliquot of blood in
PAXgene RNA tube, 1 × 10 ml urine (no additives), 1 × 2mL
aliquot of saliva in Oragene OGR 600 and 1 25 mL aliquot of stool.
Of these, stool is sent by participants while the other samples are
processed locally as per protocol specifications and shipped in
batches to the central tissue bank. Participants who consent to
biospecimen donation for future research are asked to provide blood
and nasopharyngeal/nasal swab biospecimens at enrollment, 90 and
180 days after the index date (date of first infection or negative
COVID test), and then annually (Horwitz et al., 2023). Saliva is
collected upon enrollment for genetic analysis. Urine and stool are
collected biannually. Additionally, a battery of clinical laboratory
tests is performed in CLIA-certified laboratories at enrollment,
90 and 189 days after the index date, and thereafter, abnormal
tests are repeated annually. Specific symptoms or abnormal study
results trigger “Tier 2” or “Tier 3” assessments (see (Horwitz et al.,
2023) for details). A SARS-CoV-2 PCR test is performed at
enrollment for all “uninfected” participants, who are also tested
for SARS-CoV-2 nucleocapsid antibodies spike protein antibodies
for unvaccinated participants.

In addition to study visits, imaging and laboratory tests,
participants complete multiple surveys, using validated survey
instruments whenever possible, at 90-day intervals throughout
the study. At enrollment, data are collected on demographics,
social determinants of health (SDOH), disability, characteristics
of the initial SARS-CoV-2 infection (if applicable), pregnancy (if
applicable), vaccination status, comorbidities, medications, and
PASC symptoms. Subsequently, at 90-day intervals, data are
collected on interim infections, time-varying social determinants,
vaccinations, comorbidities, medications and symptoms (Horwitz
et al., 2023). The PASC symptom survey was developed for
RECOVER and includes an overall quality of life instrument
(PROMIS-10) and screening for core symptoms (43 for biological
males and 46 for biological females) drawn from existing literature
plus input from patient representatives and investigators. Questions
about depression, anxiety, post-traumatic stress disorder (PTSD),
and grief are also included. Report of a symptom may trigger
additional questions about that symptom. Details of survey
instruments are in the original reference (Horwitz et al., 2023).

The pregnancy study (Metz et al., 2023) follows a similar design
to the non-pregnant adult study, enrolling participants with
suspected, probable or confirmed SARS-CoV-2 infection during
pregnancy, or documented lack of exposure to SARS-CoV-2 during
pregnancy. Study procedures and biospecimen collections are
analogous to those in the non-pregnant adult study (Metz et al.,
2023), with modifications for breastfeeding or postpartum

participants, and additional health and developmental
assessments for babies exposed in utero to SARS-CoV-2.

The RECOVER pediatric study (Gross et al., 2024) has a similar
design, with limitations due to the age range of participants. All
pediatric participants complete a single Tier 1 visit including
PROMIS global health measures and symptom screening. This
visit includes a donation of saliva and capillary blood. Depending
on infection status, clinical history, symptoms and probability of
PASC, pediatric participants are promoted to Tier 2 or Tier 3, which
include additional biospecimen donations during the acute and
post-acute phase of PASC, as well as additional clinical
assessments and surveys. The types, aliquot numbers, and
cadence of biospecimen collections are described in detail in
(Gross et al., 2024).

In summary, each RECOVER study will generate vast
longitudinal datasets including clinical, demographic, medication,
SDOH and lifestyle data for each participant, as well as sufficient
types and numbers of biospecimen aliquots to permit a
comprehensive, longitudinal multi-omics investigation. Potential
environmental exposures can furthermore be estimated from
census tract or ZIP code data.

The multi-dimensional molecular dataset generated by the
multi-omics investigation should be correlated with the deep
clinical phenotyping performed through RECOVER, as well as
with information on demographics, comorbidities, social
determinants of health, the exposome and lifestyle factors
collected through RECOVER surveys, that may contribute to the
clinical presentations of PASC. Data generation and analytical
strategies should leverage integrative bioinformatics and
machine learning.

A major advantage, and a potential challenge, of multi-omics
approaches is that datasets derived from different analytical
techniques and measured using different scales must be
integrated. Approaches including multi-omics integration paired
with ML have been gaining popularity in clinical and biomedical
research (see (Reel et al., 2021; Niranjan et al., 2023)), though this
field is rapidly evolving. An important advantage inherent in multi-
dimensional measurements is that the extent to which different
measurements agree with each other or not is potentially
informative. For instance, transcriptomic data may or may not be
reflected in the relative abundance of protein products, or
quantitative differences in non-coding RNA expression may or
may not translate into relative abundance of potential target
mRNAs, the proteins they encode or the metabolites that these
proteins may process. System biology approaches based on multi-
omics have been used successfully in the study of cardiovascular
disease (Joshi et al., 2021).

With respect to PASC, strategies similar to what we propose
have been used on a smaller scale. ML has been used in the context of
a multi-step analytical strategy to combine proteomic and
metabolomic data to generate a multi-omics biomarker predictive
of the risk of PASC (Wang et al., 2023) and give insights on the
metabolic pathways altered during PASC. Dimensionality reduction
was achieved through unsupervised cluster analysis followed by
autoencoder (AE), using a three-layer neural network. Supervised
ML was then used to identify the minimal number of molecules
predictive of adverse clinical outcomes. This study, though very
promising, was limited by small sample size (117, of whom 105 were
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used as a training cohort for model development and 10% as a
validation cohort), the severity of acute COVIDs in the patients
enrolled and the absence of a vaccinated group. Despite these
limitations, these results indicate that similar analytical strategies
can be used successfully on a much larger sample with broader
phenotyping, to discover predictive biomarkers, therapeutic targets
and risk factors and to generate mechanistic hypotheses.

Within the RECOVER study, an unsupervised ML approach has
been used to identify clinical subtypes of PASC, after symptoms
differentiating infected from uninfected patients were identified
using LASSO (least absolute shrinkage and selection operator)
(Thaweethai et al., 2023).

Highly multiplexed “omics” approaches measure common
clinical analytes and many more parameters (Table 1) at a
fraction of the cost of traditional clinical tests, oftentimes using
similar quantities of specimens (Table 2). In a multi-omics
approach, analytes within each category (e.g., proteins, lipids,
nucleic acids, metabolites, and microbes) are all measured
simultaneously, generating high-content data that is more than
the sum of its parts. This approach allows the discovery of new
molecular signatures to enhance our understanding of complex
disease pathophysiology. These signatures may occur within a
single analyte category, but more likely cover more complex
patterns that span multiple molecular layers, e.g., genomics,

TABLE 1 Complementary data types captured by multi-omics assays.

Data type Assays

SNP
NGS

Epigenome Bulk
RNASeq

scRNASeq Proteome CyTOF Metabolome Microbiome

Genetic risk factors +

Epigenetic
modifications

+ +

mRNA/splice variants +

ncRNA +

Viral RNA +

Immune phenotyping + + + + +

Antibodies +

Cytokines, chemokines +

Peptide hormones +

Coagulation factors +

Viral proteins +

Post-translational
modifications

+ +

Human Metabolites +

Bacterial metabolites +

Toxins/drugs +

Vitamins/hormones +

Bacterial diversity +

TABLE 2 Approximate sample requirements for multi-omics assays.

Approximate
amount of
material

Assays

SNP
NGS,
GWAS

Methylome Bulk
RNASeq

scRNASeq Proteome CyTOF Metabolome Microbiome

300–400 ng
DNA (50 µL
blood)

50–100 ng DNA PBMC in
1 mL blood
(250 ng
RNA)

100,000 PBMC
(20–30 µL
blood)

400–500 µL
EDTA plasma

106 cells
(200–300 µL
blood)

50–100 µL plasma <500 mg stool
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epigenomics, transcriptomics, proteomics, lipidomics,
metabolomics, and microbiomics (Figure 1). Deep multi-omics
profiling will allow us to explore a broad spectrum of
pathophysiological mechanisms (Table 3), define gene-
environment interactions involved in the pathogenesis of PASC,
identify molecular subtypes and candidate biomarkers and propose
mechanism-based therapeutic strategies. The relative contributions
of each “omics” we evaluated and considerations on data generation
and analysis are described below.

3.1 Evidence supporting multi-omics
technologies used in COVID-19 and
PASC studies

3.1.1 Genomics
Genomics is an invaluable asset to understand disease risk,

mechanism and etiology, and to serve as a backbone to allow for
better modeling of multi-omics profiles in patient populations.
Several genome-wide association studies (GWAS) have identified
reproducible associations between specific loci and risk and
outcomes of acute COVID-19 (Ferreira et al., 2022) with the

most reproducible being with LZTFL1 and contiguous regions on
3q21.31 and ABO on 9q34.2. A recent GWAS study, currently in
pre-print, detected an association between a locus near the
FOXP4 gene and risk of developing PASC (Lammi et al., 2023).
That study analyzed data from 24 studies conducted in 16 countries,
totaling 6,450 PASC cases and 1,093,995 controls. However, most of
the patients were of European ancestry, and this study should be
replicated in a more diverse cohort. In GWAS studies, sample size
and composition of study population (e.g., case/control ratio,
ancestry, genetic admixture, etc.) are critical. FOXP4 is a broadly
expressed transcription factor. Lammi et al. (Lammi et al., 2023)
analyzed single-cell RNASeq data to confirm the expression of
FOXP4 in surfactant-producing Type II alveolar cells and
granulocytes. This correlation supports a possible mechanistic
link, and demonstrates the importance of integrative multi-omics
approaches. A recent computational study analyzed the evolution of
predicted CD8 T-cell epitopes in SARS-CoV-2 variants and its
correlation with clinical outcomes of acute COVID-19 in patients
with different HLA genotypes, illustrating the importance of
integrated analysis of viral and patient genomic data with clinical
data (Kim et al., 2024). A similar approach could be used with PASC,
and/or PASC clinical subtype, as an outcome. Beyond GWAS or

FIGURE 1
A comprehensive multi-omics approach to the mechanism(s) of PASC. From left to right: PASC is a consequence of infection with SARS-CoV-2.
Different viral variants or sub-variants (represented in different colors) may have different probability of causing PASC or be associated with different
presentations (e.g., due to different ability to cause persistent infection, to trigger pathogenic antibody responses, or to damage vascular endothelium).
Vaccines and anti-viral agents can decrease the risk of PASC by interfering with viral persistence and replication. Multiple exposures, including diet,
medications, tobacco, alcohol, environmental pollutants and co-morbidities, socioeconomic and psychosocial exposures, as well as sex hormones, can
potentially affect the risk and clinical presentations of PASC. The combined effect of these factors results into evolving clinical phenotypes ranging from
acute COVID-19 resolution to PASC through a number of mechanisms that can be best understood by simultaneously interrogating the multi-omics
landscape of patients, including individual genomics, epigenomics, bulk and single-cell transcriptomics, plasma and cellular proteomics, metabolomics,
and microbiome/virome. These different dimensions functionally interact with one another to determine pathogenetic mechanisms (e.g., persistent viral
infection, modulated by individual genetics, triggers immune, inflammatory and metabolic changes that are in turn modulated by the intestinal and
respiratory microbiomes and potentially by reactivation of other viruses). Insights generated by an integrated multi-omics investigation of patients with
well-characterized clinical phenotypes are likely to identify actionable biomarkers (whichmay discriminate between PASCmolecular subtypes), as well as
therapeutic targets and prevention strategies. Orthogonal multi-omics tests repeated over time are the most informative approach to capture the
pathogenesis of the different clinical presentations of PASC and their evolution over time.

Frontiers in Systems Biology frontiersin.org05

Sun et al. 10.3389/fsysb.2024.1422384

128

https://www.frontiersin.org/journals/systems-biology
https://www.frontiersin.org
https://doi.org/10.3389/fsysb.2024.1422384


other genetic analyses, genotyping data can be used in conjunction
with other multi-omics profiles to increase the likelihood of
discovery. Identification of molecular quantitative trait loci (QTL)
can be used to identify possible pathogenetic pathways (Debnath
et al., 2020). Different technologies can be used to obtain genotyping
information in PASC cases: high-density SNP-chips or low-pass
sequencing are established platforms. Emerging technologies, such
as nanopore long-read sequencing (Cuppen et al., 2022; Pervez et al.,
2022), may also reduce the cost of whole-genome and whole-
transcriptome sequencing.

3.1.2 Epigenomics
Epigenomics measure molecular events that regulate chromatin

accessibility and expression, which can reflect long-term
physiological states. Using methods such as chromatin
immunoprecipitation sequencing (ChIP-seq), CUT&RUN, or
assay for transposase-accessible chromatin using sequencing
(ATAC-seq) (Yan et al., 2020; Sun et al., 2019), which can also
be used in single-cell applications (Kashima et al., 2020), many
epigenetic processes have been identified and associated with
complex traits. One of the best characterized is DNA methylation
(5 methyl-cytosine), which is altered in numerous human diseases.
There is compelling evidence that changes in DNA methylation
profiles are detectable in viral infections such as HIV (Bednarik et al.,
1990; Zhang et al., 2016) and MERS (Menachery et al., 2018). In an
epigenome-wide association study (EWAS) (Bhat and Jones, 2022),
DNA methylation differences associated with a phenotype can be
assessed at hundreds of thousands of cytosine-phosphate-guanine
(CpG) sites across the epigenome. Several EWAS of COVID-19 in
the literature found distinct patterns of DNAmethylation associated
with disease severity early in the disease course (Castro de Moura
et al., 2021; Corley et al., 2021; Balnis et al., 2021; Zhou et al., 2021).

EWAS in the ongoing Norwegian Corona Cohort Study also
assessed whether there were differentially methylated CpGs
between those with PASC (N = 41) compared to a remission
group (N = 63), but did not find significant differences.
However, the study was not longitudinal, and the authors point
out that their sample size for PASC was small (Lee et al., 2022). The
same study identified 3 differentially methylated sites associated
with acute COVID-19 severity, including hypomethylation of
IFI44L, an interferon response gene also associated with COVID-
19 severity (Castro de Moura et al., 2021).

3.1.3 Transcriptomics
a) Bulk Transcriptomics: RNA transcripts act as intermediary

components between genetic information and protein
synthesis, and carry specific functions themselves.
Transcripts are a regulation hub that responds to both
environmental and genetic control, thus playing a major
role in the molecular characterization of diseases. Non-
coding RNAs fine-tune the expression levels of coding
RNAs and their protein products, providing an additional
level of regulation. Given its role as an ‘integration hub’
between genetic variation and environmental exposures, the
transcriptome dataset is a key layer in multi-omics approaches.
Bulk RNA sequencing (RNASeq) can measure the relative
abundance of individual transcripts, and determine differences
in mRNA splicing isoforms and RNA editing. Whole blood
transcriptome analysis can accurately measure the expression
levels of >16,000-20,000 RNA species, both protein-coding
and non-coding, thus providing one of the most high-quality
and high-content multi-omics datasets. Bulk transcriptomics
integrates the effects of multiple key variables that can
dynamically affect gene expression in blood cells (e.g.,

TABLE 3 Multi-omics assays generate information relevant to testing multiple mechanistic hypotheses for PASC.

Pathogenetic
hypothesis

Assays

SNP lp-
NGS,
GWAS

Epigenome Bulk
RNASeq

scRNASeq Proteome CyTOF Metabolome Microbiome

Genetic predisposition +

Viral persistence + +

Intra-patient viral
evolution

+

Non-SARS-CoV2 viral
reactivation (EBV, others)

+ +

Autoimmunity + + + + + +

Chronic inflammation + + + + + + +

Endothelial damage + +

Coagulation abnormalities +

Dysbiosis + +

Chronic stress + + + + +

Endocrine dysfunction + +

Toxic exposures + + +
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metabolic state, epigenetic variation, exposure to medications,
stress etc.). Transcriptional signatures in the blood or cells of
COVID-19 patients can help identify causal factors for acute
or chronic complications as well as potential therapeutic
targets (Jha et al., 2020; Asano et al., 2022). Recently, a long
non-coding RNA-based ML model has been used to identify
an RNA (LEF1-AS1) predictive of acute COVID-19 mortality
in a ML-driven study of 1,286 patients in 15 institutions
(Devaux et al., 2024). Additionally, a candidate signature of
acute COVID-19 including 3 long non-coding RNA,
2 cytokines and 2 proteins in peripheral blood mononuclear
cells (PMBCs) has been identified using a ML approach
(Heydari et al., 2024). This study had a fairly small sample
size (28 COVID-19 patients and 17 controls), but it illustrates
the promise of multi-analyte biomarkers including RNAs in
COVID-19. Current bioinformatics deconvolution
approaches enable effective estimation of cell-type fraction
and cell type specific gene expression in the peripheral
immune system from bulk transcriptome data, offering a
powerful tool for immune-phenotyping (Chen et al., 2018)
that is complementary to plasma and cellular proteomics. Bulk
samples employed for RNAseq can also be used for in-depth
immune repertoire analyses (Galson et al., 2020). These data
also allow prediction of physiological states, such as
PANoptosis (Yang et al., 2024; Dai et al., 2023) or innate
immunity activation (Karki and Kanneganti, 2022), and
upstream regulators of these states (e.g., transcription
factors, protein kinases, hormones), thus enabling the
identification of potential therapeutic targets. Critically,
transcriptomic data can also allow for the identification of
circulating SARS-CoV-2 viral load from whole blood
(including viral variant calling and, given sufficient
sequence coverage, detection of intra-patient viral
evolution), thus constituting an important tool to assess
persistent viremia from sources such as vascular beds.
Further virome/microbiome analyses of these data can
capture other viruses/bacteria that may contribute to PASC
pathophysiology (e.g., EBV). Several such transcriptome
analyses have been completed for acute COVID-19 and
PASC (Thompson et al., 2023; Hadjadj et al., 2020; Lucas
et al., 2020; Sposito et al., 2021; Sullivan et al., 2021; Ziegler
et al., 2021; Galbraith et al., 2022), but without integration with
other omics. This supports the need for further transcriptome
analyses in the RECOVER cohort in the context of a multi-
omics approach.

b) Single-cell transcriptomics: Bulk transcriptomics measures
RNA expression as an average of all cell types present in a
sample. This can potentially mask the contribution of rare cell
types or cellular states to the transcriptome. Single cell RNA
sequencing (scRNAseq) can add further detail to immune
phenotyping by measuring the transcriptomes of up to
20,000 individual cells simultaneously. This can provide
highly detailed information, albeit at higher cost than bulk
transcriptomics. scRNAseq protocols relevant to PASC can
include Cellular Indexing of Transcriptomes and Epitopes by
Sequencing (CITE-seq) and single cell VDJ sequencing
(scVDJ) analyses, which can provide advanced immune
phenotyping and T cell receptor/B cell receptor (TCR/BCR)

repertoire data, respectively, on the same cell (Cadot et al.,
2020; Kim et al., 2020; Lian et al., 2020; Saigusa and Ley, 2020;
Frangieh et al., 2021; Mercatelli et al., 2021; Rodahl et al., 2021;
Shi et al., 2021; Fan et al., 2022; Xu et al., 2022; He et al., 2022).

3.1.4 Proteomics
a) Soluble proteins: Protein-based biomarkers are commonly

used for the diagnosis and management of myriad medical
conditions and are likely to be useful for the prediction,
diagnosis, prognosis and clinical management of PASC.
Cytokines, chemokines, antibodies, coagulation factors,
growth factors, complement cascade components, peptide
hormones, and viral proteins can all be measured by high-
content proteomic methods in plasma. Multiple technologies
are now available to identify hundreds to thousands of
individual proteins from very small volumes of serum,
plasma, tissues, or cells, including peripheral blood
mononuclear cells (PBMCs). These include mass
spectrometry, SOMAscan® assays, Olink® proteomics, and
PhIP-seq (phage immunoprecipitation sequencing), to name
a few. Furthermore, some of these technologies (e.g., mass
spectrometry conjugated with the newest search algorithms
such as MSFragger (Kong et al., 2017)) enable the
identification of protein isoforms and post-translational
modifications, including novel ones. For example, while still
under development, the latest SOMAscan® platform
measures >7,000 proteins from a mere 125 μL of plasma or
serum (Gold et al., 2012). Of critical importance for the study
of autoimmunity in PASC, the PhIP-seq technology enables
the identification of virtually all auto-antibodies produced by
an individual (Mohan et al., 2018). A recent PhIP-seq study in
a relatively small cohort identified a common autoreactive
pattern in PASC patients and patients who had recovered from
acute COVID-19 (Bodansky et al., 2023), raising important
questions about the possible role of autoantibodies in PASC.
Plasma proteomic biosignatures can inform on multiple
pathophysiological processes at once, including but not
restricted to various forms of inflammation (e.g., systemic,
organ-specific, vascular), organ injury, vascular disorders,
neurodegeneration, dysregulation of coagulation and
fibrinolysis, and remote organ crosstalk via the blood. A
wealth of proteomics data are already available for acute
COVID-19 (Sullivan et al., 2021; Galbraith et al., 2022;
Galbraith et al., 2021; D’Alessandro et al., 2020), as well as
myriad auto-inflammatory conditions. In the context of an
integrated multi-omics strategy, proteomics data could
maximize the opportunities to discover mechanisms
underlying PASC pathophysiology as well as molecular
subtypes, clinically actionable biomarkers and
treatment targets.

b) Cellular proteomics-based immunophenotyping:
Immunophenotyping, which allows for the precise detection
of membrane and intracellular proteins using antibodies, has
identified signatures that are predictive of subsequent PASC
(Peluso et al., 2021). Cellular proteomics-based
immunophenotyping technologies can simultaneously
quantify, at the single-cell level, expression levels of
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40–50 surface and intracellular proteins of immune cells.
These include high-parameter flow cytometry (e.g., BD
X50), spectral flow cytometry (e.g., Cytek Aurora), and
CyTOF (cytometry by time-of-flight, a.k.a. mass cytometry).
CyTOF, the most common of these approaches, is a powerful
high-dimensional immunophenotyping method that can, in a
single specimen, quantify all major subsets of cells using its
~40 available channels. Alternatively, it can be used to deeply
characterize one immune subset of interest (e.g., to interrogate
phenotypes, homing properties, effector functions, and self-
renewal capacities of T cells) (Neidleman et al., 2021a; Ma
et al., 2021; Neidleman et al., 2021b; Neidleman et al., 2020).
Phospho-CyTOF also enable analyses of signaling states of
individual cells (Bendall et al., 2011). It can also be used to
characterize the glycan features of immune cells at the single-
cell level, informing on immune functions which are very
much modulated by cell-surface glycosylation (Ma et al.,
2022). As PASC is multifactorial and heterogeneous,
approaches such as CyTOF which allow for broad and
specific studies of immune subsets, will be key. Studies can,
for example, examine how the global immune landscape is
altered during PASC, as well as whether specific subsets
implicated in COVID-19 disease progression or PASC (e.g.,
T cells, myeloid cells, neutrophils) exhibit subset-specific
changes that can inform on mechanism of action. Studies
that have begun to use CyTOF to explore immunological
differences between fully recovered vs individuals with
PASC have revealed a dysregulated adaptive immune
response in the latter, e.g., global differences in T-cell
subsets, sex-specific differences in cytolytic T-cells,
increased frequency of T-cells migrating to inflamed tissues
but also exhausted T-cells, as well as increased frequency of
exhausted T-cells (Yin et al., 2023; Yin et al., 2024). Further
studies using larger cohorts are warranted. From a practical
standpoint, for the amount of data generated CyTOF is cost-
effective and requires relatively few cells relative to if samples
were to be analyzed using multiple low-parameter panels
implemented in conventional flow cytometry.

3.1.5 Metabolomics
Metabolites are the end products of multiple pathways and often

indicate the major phenotype(s) of metabolic and genetic disorders.
From diabetes to inborn errors of metabolism, metabolites can often
define the key pathways underlying complex diseases and serve as
potential biomarkers. Metabolites may also mediate the downstream
effects of genomic, epigenomic and transcriptomic processes, and in
turn influence these processes to modify PASC phenotypes. As a
measure of the status of hundreds of metabolic pathways, the overall
metabolome and the lipidome represent biologically and
mechanistically informative data streams. The endogenous
metabolome captures a broad range of inflammatory processes,
energy production, microbial metabolites, organ-specific
biomarkers, lipids, carbohydrates, steroids, and amino acids,
among other relevant information on physiologic processes.
Furthermore, exogenous metabolites capture environmental
exposures, including but not restricted to food and supplement
intake, toxins (e.g., per-and polyfluoroalkylic substances, also known
as PFAS, tobacco byproducts, illicit drugs), and medications (e.g.,

statins, ibuprofen, selective serotonin reuptake inhibitors), all of
which may be important in the development or modification of
PASC phenotypes, and cannot be easily predicted by other omics but
can potentially impact the results of other omics tests. Importantly,
these exogenous metabolites are not measurable by any other
mechanisms. Microbial metabolites, also measured by
metabolomics assays, may serve as important connectors to
microbiome data. The interconnections between the metabolome
and other multi-omics profiling illustrates an important aspect of
multi-omics strategies: while metabolomics can provide crucial
information as a single platform, it acts synergistically with other
omics data in elucidating important functional relationships to
PASC. Several small studies have demonstrated strong
dysregulation of endogenous metabolites associated with
particular PASC phenotypes (Valdés et al., 2022). For example,
tryptophan metabolism was found to be dysregulated by several
groups using metabolomic analyses in blood and urine studies
(Bustamante et al., 2022; Dewulf et al., 2022), but the
pathogenesis of this phenomenon is unclear. We believe that a
comprehensive, longitudinal metabolomics investigation of PASC in
the context of a multi-omics strategy in a sufficiently large cohort of
patients with deep clinical phenotypes will help define and prioritize
functional pathways.

3.1.6 Microbiome
The microbiome has multiple physiological roles in human

health, including: i) extracting indigestible ingredients from food
and synthesizing nutritional factors; ii) affecting host metabolism;
iii) developing systemic and intestinal immunity; vi) providing
signals for epithelial renewal and maintaining gut integrity; and
iv) secreting anti-microbial products. Alterations of the microbiome
may often be an initial disturbance with far-reaching ramifications
on disease progression. The gut microbiomes of hospitalized
COVID-19 patients were enriched with opportunistic pathogens
such as Clostridium hathewayi, Bacteroides nordii, and Actinomyces
viscosus (Zuo et al., 2020). In acute COVID-19, the gut microbiome
is associated with immune responses and disease severity (Zhang
et al., 2021; Maeda et al., 2022; Zuo et al., 2021) and also interacts
with the lung microbiome (Zhu et al., 2022). Changes in the gut
microbiome could influence respiratory tract infections through the
common mucosal immune system. Conversely, respiratory tract
dysbiosis and functional disorders due to COVID-19 also affect the
digestive tract (Zhu et al., 2022). Studies have demonstrated SARS-
CoV-2 interactions with host microbiome/virome communities,
clotting/coagulation issues, dysfunctional brainstem/vagus nerve
signaling, and immune cells (reviewed in (Proal and
VanElzakker, 2021)). There is observational evidence of gut
microbiome compositional alterations in patients with long-term
complications of COVID-19 (Liu et al., 2022). However, the current
studies have sample sizes varying from 8 to 130 patients and few
studies followed patients beyond 6 months post-infection (reviewed
in (Zhang et al., 2023)). A recent study (Xiong et al., 2023) using
multi-omics of microbiome-host interactions identified phenotypic,
intestinal microbial, and metabolic biomarkers for short-and long-
term myalgic encephalomyelitis/chronic fatigue syndrome. Large
amounts of microbiome data can be easily generated at low-cost in
the RECOVER adult and pediatric cohorts. These data, when
integrated with other multi-omics data, will allow for a better
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understanding of the virus-microbiome-host interactions and
identifying microbial and metabolic biomarkers for PASC.
Further studies are also needed to investigate whether microbiota
modulation can prevent or facilitate the recovery from PASC.

3.2 Considerations on data generation
and analysis

3.2.1 Data generation and randomization
Multi-omics data integration can generate valuable knowledge

to understand disease pathogenesis. However, multi-omics data can
often be burdened by large confounding signals that can prevent
accurate modeling and successful discovery. It is therefore essential
to appropriately design data collection and generation processes to
ensure that such confounders are minimized, and that multi-omics
data are amenable to address a large array of important biological
questions aiming to characterize, understand and treat PASC. For
example, it is usually better to reduce batch effects with a good study
design that accurately accounts for them rather than attempting to
correct for batch effects after the fact. One successful approach to
minimize batch effects involves adequate randomization schemes
that minimize risk of contamination of true signals by unwanted
variation. Such an approach is powerful when biological questions
are defined before data are collected, but often maximizes a distance
metric between a measure of interest and the drivers of this
unwanted variation at the cost of other potentially meaningful
traits. In hypothesis-generating situations, other approaches, such
as the inclusion of data generation controls (e.g., reference samples),
profiled repeatedly within and across different multi-omics assays,
have proven to be an important tool to control for unwanted
variation, including confounding from technical variation.
However, data generation controls can be complex to define,
must contain enough material to be assayed repeatedly, need to
capture the full range of biological variation in the multi-omics
assessed, and depending on the number needed, can substantially
increase data generation cost. These considerations are essential to
design a successful multi-omics discovery effort, and it is therefore
essential to include data generation experts as well as data scientists
who know the biases of each multi-omics profiling technology in
teams tasked with designing data generation strategies.

3.2.2 A multi-omics systems-biology approach to
data analysis

Each of the omics assays generates vast datasets that require
powerful analytical strategies (Gui et al., 2023; Martinez-Bartolome
et al., 2018; Lee et al., 2019; Michelhaugh and Januzzi, 2023).
Integrating data from multiple omics over time and with clinical,
demographic and exposome data is the next level of analytical
complexity. A multi-omics approach allows for the integration of
multiple layers of information into systems biology models that
capture the dynamic interplay between biological processes,
allowing not only the study of the functional relationships
between the molecular components of PASC, but the elucidation
of their causal relationships (Beckmann et al., 2020; Kuijjer et al.,
2019; Wang M. et al., 2021; Sonawane et al., 2022; Sonawane et al.,
2019; Argelaguet et al., 2020). This approach is critical to
understanding the pathogenesis of the clinical manifestations of

PASC (Table 3). Integrating multi-omics data with the deep clinical
and demographic phenotyping available via RECOVER will capture
the most complete picture of disease pathophysiology, leading to
more accurate identification and characterization of PASC subtypes
as compared to individual omics studies of individual patient
cohorts (Figure 1).

Multi-omics data are also important in substantiating and
validating findings across individual omics platforms (e.g., a
genetic polymorphism leading to transcriptomic, proteomic and
metabolomics effects). Critical to this is the longitudinal capture of
multi-omics data as the clinical presentations of PASC emerge and
progress. Given the high-content nature of omics datasets, they
support the development of machine learning (ML) class discovery
approaches for identification of clinically relevant biosignatures. The
rich datasets that will be produced as part of this effort will enable
predictive and diagnostic algorithms to identify candidate
biomarkers linked to disease outcomes. The thorough integration
of these data into meaningful, queryable, and informative models is
critical to understand the biological mechanisms, disease subtypes,
progression and prognosis of PASC, to investigate the impact of
modifiable risk factors and identify potential precision therapeutic
approaches to PASC. Inherent in this, is the measure of these data at
multiple time points throughout the disease process.

An example of the power of multi-omics approaches is the study
of multisystem inflammatory syndrome in children (MIS-C), a
serious complication of pediatric COVID-19. Longitudinal
plasma bulk transcriptomics, combined with whole blood
transcriptomics and plasma DNA epigenomics was recently used
to develop multi-organ damage signatures indicative of MIS-C (Loy
et al., 2022). This study complements previous genomic, proteomic
and immunophenotyping investigations of MIS-C (Sacco et al.,
2022; Gruber et al., 2020; Porritt et al., 2021; Carter et al., 2020)
to delineate a clearer picture of its pathogenesis. We posit that a
single comprehensive, integrated, longitudinal multi-omics
approach would have reached similar conclusions as multiple
consecutive studies focusing on 1-2 omics each. Such a
comprehensive study, performed through centralized labs, would
reduce lab-to-lab variability and pre-analytical variability, leveraging
a large sample size with rich, highly standardized clinical
phenotypes. Furthermore, it is difficult to predict ahead of time
which omics would be the most consistent and/or most clinically
informative, and which omics data are consistent with each other
(e.g., a clinically informative RNA may predict the abundance of an
enzyme that produces a metabolite, but if the protein abundance or
the metabolite levels are not consistent with RNA abundance,
perhaps because of short half-life of the protein or instability of
the metabolite, that protein or its metabolite product would not be
potential biomarkers or therapeutic targets).Another example of the
importance of capturing multi-omics data across demographics and
time points is the importance of sex and steroid hormones in the
PASC population. Innate and adaptive, humoral and cell-mediated
immune responses are impacted by hormones, and their
dysregulation contributes to immune-mediated diseases including
autoimmunity, a hallmark of PASC (Rojas et al., 2022; Moulton,
2018; Bereshchenko et al., 2018). Ovarian steroids recruit mast cells
and T-regs to the uterus during pregnancy (Schumacher et al., 2014).
Estradiol causes inflammasome activation in mast cells (Guo et al.,
2021). Estradiol deficiency due to menopause and/or hypogonadism
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contributes to overactivity of the renin-angiotensin-aldosterone
system (RAAS), while estrogen can contribute to mast cell
activation syndrome (MCAS), which may contribute to the
pathogenesis of PASC (O’Donnell et al., 2014; Szukiewicz et al.,
2022; Arun et al., 2022). The SARS-CoV2 spike protein binds to and
modulates both ACE2 and ERα receptors, and as sex hormones
regulate the expression of ACE2 (Solis et al., 2022; Wang H. et al.,
2021), the asymmetry in PASC development and clinical
presentations between sexes - as well as across menstruation
status and menstrual cycle time points - indicates that hormone
measurements, which can be performed by metabolomics for non-
peptide hormones and by proteomics for peptide hormones, are
critical components of a multi-omics strategy.

3.2.3 Task force recommendations
We recommended the following strategy: germline whole

genome sequencing (WGS) be performed on every RECOVER
participant consented for genetic analysis to be used for GWAS
studies. Epigenomics, bulk PBMC transcriptomics, plasma
proteomics, plasma targeted metabolomics and stool proteomics
should be performed on biospecimens from at least 2 time points per
participant (baseline, 90 days and 180 days, or at a minimum
baseline and 180 days) on biospecimens from as many
participants as possible. Samples taken at later time points during
the planned 4-year follow-up period may be analyzed as well in the
future, particularly to investigate cases that persist long-term.
However, the initial focus should be on the first 180 days post-
enrollment, as the number of participants dropping out of the study
or being lost to follow-up is likely to increase at later time points.
This time window is likely to be long enough to compare COVID-19
cases that do result in PASC to cases that do not, which is one of the
primary endpoints of the RECOVER studies, as well as PASC cases
that resolve clinically within 180 days from cases that persist beyond
that time, while maximizing sample size. Single-cell transcriptomics
and/or single-cell immunophenotyping may be performed on
subsets of participants from each arm of each cohort, to limit
costs. Bioinformatics deconvolution of cellular populations based
on bulk transcriptomics should be performed on all available PBMC
biospecimens.

It must be pointed out that the adult and pregnant adult
RECOVER cohorts include different arms: “acute infected”
participants, who enroll within 30 days of a SARS-CoV-
2 infection, “post-acute infected”, who enroll after 30 days post-
infection, “acute uninfected” enrolled within 30 days of a negative
COVID-19 test and “post-acute uninfected”, enrolled after 30 days
post-negative test (Horwitz et al., 2023; Reel et al., 2021). This
implies that baseline samples taken at enrollment are likely to reflect
different pathobiological stages of disease in acute infected versus
post-acute infected participants. It is also possible that a fraction of
the “uninfected” participants will have experienced subclinical
infections with SARS-CoV-2. Multi-omics analyses have the
potential to identify these cases, particularly through proteomics-
based identification of SARS-CoV-2 antibodies not detected by
conventional tests. As there are significant differences in study
design for the adult and pediatric cohorts (Horwitz et al., 2023;
Reel et al., 2021), longitudinal biospecimens will only be available for
Tier 2 pediatric participants, while baseline biospecimens will be
available for all participants. Also, the amounts of blood/plasma

available for the pediatric cohort will depend on the age of
participants. With these considerations in mind, maximizing
sample size should be the underlying principle. The main
objective of this proposed multi-omics analysis is to generate a
rich, multidimensional molecular profiling database to match the
clinical, pathophysiological and socioeconomics data elements
generated by the RECOVER studies. This data should be made
available to the scientific community for secondary analyses.

4 Conclusion

Based on its analysis of the available evidence, the OMICS Task
Force advocated an integrated “big data and systems biology”
approach, using multi-omics to analyze biospecimens from the
largest possible sample sizes in the RECOVER adult and
pediatric cohorts, as opposed to single analyte assays or
individual omics in multiple separate studies. This approach will
maximize our ability to understand pathogenetic mechanisms in
clinically defined patient subgroups, discover PASC molecular
subtypes and guide precision therapeutic strategies. Centralized,
streamlined omics analyses will limit potential inconsistencies
associated with laboratory-to-laboratory and batch variations. In
addition, multi-omics assays can capture most clinically assayed
biomarkers at cheaper costs. Data generation on this scale can only
be accomplished through highly multiplexed approaches, which will
maximize opportunities to discover mechanisms underlying PASC
pathophysiology.

PASC joins the number of poorly understood, chronic diseases
that have been the bane of patients, healthcare providers and clinical
researchers. While different clinical presentations of PASC have
been described, traditional molecular approaches have thus far failed
to produce a deep mechanistic understanding of the etiology,
pathogenesis and molecular subtypes of PASC. Many of our
recommendations have already been considered by the NIH
through the peer-review process, resulting in the creation of a
systems biology panel that is currently designing the studies we
proposed. Currently, this panel is hammering down the details of the
analytical strategies. The NIH RECOVER initiative offers an ideal
opportunity to understand PASC in diverse populations, and can
serve as a paradigm for the study of other complex, poorly-
understood chronic diseases.
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