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Editorial on the Research Topic

Process Data in Educational and Psychological Measurement

The increasing use of computer-based testing and learning environments is leading to a significant
reform on the traditional form of measurement, with tremendous extra available data collected
during the process of learning and assessment (Bennett et al., 2007, 2010). It means that we can learn
and describe the respondents’ performances not only by their responses, but also their responding
processes, in addition to the response accuracy in the traditional tests (Ercikan and Pellegrino,
2017).

The recent advances in computer technology enhance the convenient collection of process data
in computer-based assessment. One such example is time-stamped action data in an innovative
item which allow for the interaction between a respondent and the item. When a respondent
attempts an interactive item, his/her actions are recorded, in the form of an ordered sequence of
multi-type, time-stamped events. These sorts of data stored in log files, referred to as process data in
this book, provide information beyond response data that typically show response accuracy only.
This additional information holds promise to help us understand the strategies that underlie test
performance and identify key actions that lead to success or failure of answering an item (e.g., Han
et al., 2019; Liao et al.; Stadler et al., 2019; He et al., 2021; Ulitzsch et al., 2021a; Xiao et al., 2021).

With the availability of process data in addition to response data, the measurement field
is becoming increasingly interested in borrowing additional auxiliary information from the
responding process to serve different assessment purposes. For instance, recently researchers
proposed different models for response time and the joint modeling of responses and response
time (e.g., Bolsinova and Molenaar; Costa et al.; Wang et al.). In addition, other process data such
as the path collected based on eye-tracking devices (e.g., Zhu and Feng, 2015; Maddox et al., 2018;
Man and Harring, 2021), action sequences in problem-solving tasks (e.g., Chen et al.; Tang et al.,
2020; He et al., 2021; Ulitzsch et al., 2021b), and processes in collaborative problem solving (e.g.,
Graesser et al., 2018; Andrews-Todd and Kerr, 2019; De Boeck and Scalise, 2019), are also worthy
of exploration and integration with product data for assessment purposes.

This Research Topic (formed in this edited e-book) intends to explore the forefront of
responding to the needs in modeling new data sources and incorporating process data in the
statistical modeling of multiple possible assessment data. This edited book presents the cutting-
edge research related to utilizing process data in addition to product data such as item responses
in educational and psychological measurement for enhancing accuracy in ability parameter
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estimation (e.g., Bolsinova and Molenaar; De Boeck and Jeon;
Engelhardt and Goldhammer; Klotzke and Fox; Liu C. et al.; Park
et al.; Schweizer et al.; Wang et al.; Zhang and Wang), cognitive
diagnosis facilitation (e.g., Guo and Zheng; Guo et al.; Jiang and
Ma; Zhan, Liao et al.; Zhan, Jiao et al.), and aberrant responding
behavior detection (e.g., Liu H. et al.; Toton and Maynes).

Throughout the book, the methods for analyzing process
data in technology-enhanced innovative items in large-scale
assessment for high-stakes decisions are addressed (e.g., Lee et
al.; Stadler et al.). Further, themethods for the extraction of useful
information in process data in assessments such as serious games
and simulations were also discussed (e.g., Liao et al.; Kroehne
et al.; Ren et al.; Yuan et al.). The interdisciplinary studies that
borrow data-driven methods from computer science, machine
learning, artificial intelligence, and natural language processing
are also highlighted in this Research Topic (e.g., Ariel-Attali
et al.; Chen et al.; Hao and Mislevy; Qiao and Jiao; Smink
et al.), which provide new perspectives in data exploration in
educational and psychological measurement. Most importantly,
the models presenting the integration of the process data and
the product data in this book are of critical significance to link
the traditional test data with the new features extracted from
the new data sources. Meanwhile, the papers included in the
book provide an excellent source for data and coding sharing,
which entails significant contributions to the applications of
the innovative statistical modeling of assessment data in the
measurement field.

The book chapters demonstrate the use of process data
and the integration of process and product data (item
responses) in educational and psychological measurement. The
chapters address issues in adaptive testing, problem-solving
strategy, validity of test score interpretation, item pre-knowledge
detection, cognitive diagnosis, complex dependence in joint
modeling of responses and response time, and multidimensional
modeling of these data types. The originality of this book
lies in the statistical modeling of innovative assessment data
such as log data, response time data, collaborative problem-
solving tasks, dyad data, change process data, testlet data,
and multidimensional data. Further, new statistical models
are presented for analyzing process data in addition to
response data such as transition profile analysis, the event
history analysis approach, hidden Markov modeling, conditional
scaling, multilevel modeling, text mining, Bayesian covariance
structure modeling, mixture modeling, and multidimensional
modeling. The integration of multiple data sources and the
use of process data provides the measurement field with
new perspectives to solve assessment issues and challenges
such as problem-solving strategy, cheating detection, and
cognitive diagnosis.

An overview of all the papers included in this Research Topic
is summarized in Table 1 with respect to their key features.
The scope of the Research Topic can be classified into five
major categories:

(1) leveraging process data to explore test-takers’ behaviors and
problem-solving strategies,

(2) proposing joint modeling for response accuracy and
response times,

(3) proposing new statistical models on analyzing response
processes (e.g., time-stamped sequential events),

(4) advancing cognitive diagnostic models with new data
sources, and

(5) using data streams in estimating collaborative problem-
solving skills.

The above categorization focused on each paper’s core
contribution though some papers can be cross-classified.
The papers’ key findings and advancements impressively
represent the current state-of-the-art methods in the field
of process data analysis in educational and psychological
assessments. As topic editors, we were happy to receive such
a great collection of papers with various foci and submit these
publications right as digital assessments are booming. The
papers collected in this Research Topic are also diverse in data
types, statistical approaches, and assessment with an extensive
scope in both high-stake and low-stake assessments, covering
research fields in education, psychology, health, and other
applied disciplines.

As one of the first comprehensive books addressing the
modeling and application of process data, this e-book has
drawn great attention since its debut was cross-loaded on three
journals in Frontiers in Psychology, Frontiers in Education,
and Frontiers in Applied Mathematics and Statistics. With 29
papers from 77 authors, this book enhances interdisciplinary
research in fields such as psychometrics, psychology, statistics,
computer science, educational technology, and educational
data mining, to name a few. As highlighted on the e-book
webpage, (https://www.frontiersin.org/research-topics/7035/
process-data-in-educational-and-psychological-measurement#
impact) on November 13, 2021, this e-book has accumulated
115,069 total reviews and 17,940 article downloads since
the Research Topic project launched in 2017. This number
keeps growing on a daily basis. The diversified demographics
provide convincing evidence that the papers in this book
reached the global research community, addressing the
critical issues of statistical modeling of multiple types
of assessment data in the digital era. This book is just
on time to provide tools and methods to shape this new
measurement horizon.

As more and more data are being collected in
computer-based testing, process data will become a very
important source of information to validate and facilitate
measuring response accuracy and provide supplementary
information in understanding test-takers’ behaviors, the
reasons of missing data, and links with motivation studies.
There is no doubt that there is high demand of such
research in the large-scale assessment, both high-stake
and low-stake, as well as in the personalized learning
and assessment to tailor the best source and methods
to help people learn and grow. This book is a timely
addition to the current literature on psychological and
educational measurement. It is expected to be applied
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TABLE 1 | An overview of papers collected in this Research Topic.

References Areas of advancement Data types Statistical approaches Assessment domains

Leveraging process data to explore test-takers’ behaviors and strategies

Ren et al. Exploring multiple goals in interactive

problem-solving items

Extracted response process

variables, correctness of

responses

Cluster analysis, logistics,

and least-squares

regression

Interactive problem-solving

in PISA 2012

Engelhardt and

Goldhammer

Proposing a validity research that

uses processing times to provide

both convergent and discriminant

validity evidence for the construct

interpretation of reasoning and

reading ability scores

Response data, response times MLR estimator (maximum

likelihood estimation with

robust standard error)

PIAAC 2012 literacy

assessments

Stadler et al. Exploring successful and

unsuccessful strategies with process

data in complex problem-solving

items

Response process data,

correctness of responses

N-grams model Interactive problem-solving

items

Lee et al. Exploring response times in complex

simulation-based tasks to understand

test-takers’ interactions

Response data, response times Cluster analysis and

hierarchical framework for

joint modeling item

responses and response

times

Interactive problem-solving

items

Toton and Maynes Detecting examinees with

pre-knowledge in experimental data

with conditional scaling of response

times

Item scores, response times Cluster analysis, factor

analysis

Simulation study and

empirical study in GRE

quantitative testing

Arieli-Attali et al. Understanding test-takers’ choices

using hidden Markov modeling of

process data

Response data, answer change,

item difficulty

Hidden Markov model Self-adapted tests

Qiao and Jiao Using data mining techniques in

analyzing process data and making

comparisons among

machine-learning algorithms in

exploring problem-solving items

Extracted response process

variables, correctness of

responses

Multiple machine learning

algorithms: supervised

techniques (CART, gradient

boosting, random forest,

and SVM), unsupervised

techniques (SOM, k-means)

Interactive problem-solving

in PISA 2012

Liu H. et al. Exploring test-takers’ problem-solving

strategies with a modified multilevel

mixture IRT model

Extracted response process

variables, correctness of

responses

Modified multilevel mixture

IRT model, latent class

analysis

Interactive problem-solving

in PISA 2012

Liao et al. Exploring sequential patterns in

problem-solving items and

relationship with individual differences

in background variables

Extracted response process

variables, response data,

background variables

N-grams model, feature

selection model, regression

analysis

PIAAC 2012

problem-solving in

technology-rich environment

Joint model for response accuracy and response times

Zhan, Jiao et al. Proposing a joint model for

multidimensional abilities and

multifactor speed

Response data, response times Joint modeling of response

and response time,

exploratory factor analysis

Simulation study and

empirical study in

computer-based math

assessment (PISA 2012)

Costa et al. Proposing a joint model for item

response and time-on-task to

increase the precision of ability

estimates

Response data, response times Multidimensional latent

model for response and

response time

Interactive problem-solving

in PISA 2012

Guo et al. Proposing a joint model for a

speed-accuracy tradeoff hierarchical

model based on cognitive experiment

Response data, response times Bayesian MCMC algorithm,

speed-accuracy hierarchical

model

Simulation study and

empirical study in Raven’s

Standard Progressive

Matrices

Klotzke and Fox Proposing a Bayesian modeling

framework for response accuracy,

response times, and other process

data variables

Response data, response times,

extracted response process

variables

Bayesian covariance

structure models

Simulation study and

empirical study in PIAAC

2012 cognitive assessments

Kroehne et al. Proposing a parameterized joint

model of response data and response

time to detect invariance by gender

and mode between computer-based

and paper-based tests

Response data, response times Bivariate generalized linear

IRT model framework

(B-GLIRT)

PISA 2012 and PISA 2009

reading assessments

(Continued)
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TABLE 1 | Continued

References Areas of advancement Data types Statistical approaches Assessment domains

De Boeck and Jeon An overview of models for joint

modeling of response times and

response accuracy in cognitive tests

Response data, response times Multiple response models

and joint models of

response data and

response times

Literature review

Wang et al. Modeling response time and

responses in multidimensional health

measurement

Response data, response times Multidimensional-graded

response model,

hierarchical joint model of

responses and response

times

Health measurement

Zhang and Wang Proposing a mixture learning model

that utilizes the response times and

response accuracy in learning

progression

Response data, response times Diagnostic classification

model framework, Bayesian

estimation

Simulation study and

empirical study in a

computer-based learning

environment

Bolsinova and

Molenaar

Proposing a joint model for response

accuracy and response times with

consideration on non-linear

conditional dependence

Response data, response times Joint model for quadratic

conditional dependence,

joint model for

multiple-category

conditional dependence,

indicator-level

non-parametric moderation

method

Simulation study and

empirical study in

high-stakes arithmetic

assessment

Statistical model on response process

Smink et al. Therapeutic change process research

through multilevel and text mining

Life narratives textual data and

response data

Multilevel models, text

mining

Epidemiologic Studies

Depression Scale and life

narratives (CES-D)

Schweizer et al. Investigating how the major outcome

of a confirmatory factor investigation

is preserved when scaling the

variance of a latent variable by the

various scaling methods

Scaling data Multiple confirmatory factor

analysis

Simulation study and

empirical study in

Multitrait-Multimethod

(MTMM) design

Liu C. et al. Proposing a model with a leakage

parameter to better characterize the

item leaking process and develop a

more generalized detection method

by monitoring responses of

test-takers

Response data Generalized linear model for

detection, leakage

simulation model

Simulation study and

empirical study in

operational computerized

adaptative testing

Park et al. Proposing a multidimensional IRT

approach for dynamically monitoring

ability growth in adaptive learning

systems

Response data, response times Multidimensional IRT Simulation study and

web-based learning

platform

Chen et al. Proposing an event history analysis

approach to predict duration and

outcome of solving a complex

problem by making use of process

data

Time-stamped sequential events

data, correctness of responses

Regression model Interactive problem-solving

in PISA 2012

Advancement in cognitive diagnostic model with process information

Guo and Zheng Comparing termination rules for

variable-length CD-CAT from the

information theory perspective

Response data, test

construction variables

Multiple cognitive diagnostic

models

Simulation study

Jiang and Ma Proposing a model to integrate

differential evolution optimization into

the EM framework in the log-linear

cognitive diagnostic model estimation

Response data Log-linear cognitive

diagnostic model with EM

algorithm, differential

evolution

Simulation study and

empirical study in

assessment of a health

profession

Zhan, Liao et al. Proposing a joint testlet cognitive

diagnostic model for paired local item

dependence using response time and

response accuracy

Response data, response times Joint testlet cognitive

diagnosis modeling

PISA 2015 computer-based

math assessment

(Continued)
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TABLE 1 | Continued

References Areas of advancement Data types Statistical approaches Assessment domains

Using data streams for estimating collaborative problem-solving skills

Hao and Mislevy Characterizing interactive

communications in collaborative

problem-solving using a conditional

transition profile approach

Conversations collected in a

computer-based collaborative

problem-solving platform

Conditional transition profile,

cluster analysis

Collaborative

problem-solving platform

Yuan et al. Assessing collaborative

problem-solving competence by

extracting indictors from process

stream data and modeling dyad data

Process stream data in

collaborative problem solving,

response data

Multidimensional Random

Coefficients Multinomial

Logit Model (MRCMLM)

Collaborative

problem-solving platform

adapted from a

problem-solving task in

PISA 2012

more extensively in educational and psychological
measurement, such as in computerized adaptive testing and
dynamic learning.
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Multiple goals balancing is an important but not yet fully validated dimension of complex
problem solving (CPS). The present study used process data to explore how solvers
clarify goals, set priorities, and balance conflicting goals. We extracted behavioral
indicators of goal pursuit from the log data of 3,201 students on the third subtask of the
“Ticket” task in the PISA 2012 CPS test. Cluster analysis was used to identify 10 groups
that varied in goal pursuit behavior. Logistics and least-squares regression analysis were
used to explore how goal pursuit affected task scores and CPS proficiency. The results
showed that competent solvers clarified goals and weighed priorities more effectively.
They also made trade-offs between conflicting goals. The importance of theoretically-
driven log data analysis and coping strategies in the face of multiple goals conflict
scenarios was discussed.

Keywords: complex problem solving, multiple goals balancing, log data analysis, educational data mining,
K-means cluster analysis

INTRODUCTION

Science and technology are developing in the current information explosion era. People are facing
an increasing number of complex problems in daily life, many of which involving the simultaneous
pursuit of multiple goals. Therefore, complex problem solving (CPS) becomes common in real
life, such as the use of complex technology (e.g., mobile phones, personal computers, and vending
machines), the management of complex organizations (e.g., companies and departments), and the
prediction of complex environments (e.g., weather and stock prices; Funke, 2003, 2010).

Complex problem solving refers to successful interaction with a dynamic task environment,
wherein all or some rules in the environment can only be learned by exploring and integrating
information (Buchner, 1995). Many researchers have suggested that CPS should be assessed in a
simulated problem scenario (a complex system) where has a plurality of variables. In the scenario,
solvers are asked to manipulate some of the variables to explore effective rules of describing
relationships among all variables (knowledge acquisition), and then solvers need to use the learned
knowledge of rules to achieve specific goals (knowledge application; Funke, 2001).

Multiple Goals in Complex Problem Solving
Blech and Funke (2010) verified that the presence of conflicting goals affects the difficulty of a
complex system. They found that increasing the number of goals in CPS – especially with respect
to conflicting goals – increases the cognitive and emotional challenges faced by solvers (Funke,
1992). Therefore, in the case of complex problems involving multiple goals, solvers may not be
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able to fully account for each goal. Thus, they might weigh the
priority of each. They may first achieve one goal and then find
the next one; they may sacrifice one goal in exchange for another;
or they may choose to achieve a complementary goal. These
strategies emphasize the importance of goal priority (Funke,
2010). Dörner and Kreuzig (1983) proposed that operative
intelligence involves the skills of goal elaborating and goal
balancing. Later, Dörner proposed the CPS action theory, which
divides the CPS solution process into six characteristic phases,
of which one is exploring and determining important parts of
the system (e.g., such as defining and balancing conflicting goals;
Dörner and Wearing, 1995).

The five-dimensional model of CPS consists of system
exploration, information reduction, model formation, control
considering dynamic change, and prioritization of goals, in
which the ability to clarify, prioritize, and balance goals is
an important dimension (Funke, 2001; Fischer et al., 2012;
Greiff and Fischer, 2013; Schoppek and Fischer, 2015; Herde
et al., 2016). However, when assessing CPS, researchers usually
develop complex systems based on simplified models. For
example, complex systems like Genetic Lab (Sonnleitner et al.,
2012), MicroDYN and MicroFIN (Greiff et al., 2012) were
developed based on the three-dimensional model comprising
information retrieval, model building, and forecasting or the
two-dimensional model including knowledge acquisition and
knowledge application. The assessment of problem solving
in PISA 20121 is based on a four-dimensional CPS model
consisting of exploring and understanding, representing and
formulating, planning and executing, and monitoring and
reflecting (OECD, 2013). The use of this simplified model
neglects other CPS dimensions that have been raised in the
literature. For example, no researchers have developed complex
systems that directly measure the skill of multiple goals balancing,
nor have any researchers attempted to extract behavioral
indicators from the log files of a complex system to evaluate
solvers’ competency in this skill.

Data Mining of the Log Data
Analysis of log data has become an important method for
revealing how CPS proficiency might be improved (Herde
et al., 2016; Dörner and Funke, 2017). Comparing to results
data, process data contain more information about the problem
solving process, which can better represent solvers’ actual
CPS proficiency. Some researchers have attempted to conduct
preliminary analyses of log data recorded by complex systems. It
is found that the “vary one thing at a time” (VOTAT) strategy is an
effective problem solving strategy in complex systems (Vollmeyer
et al., 1996; Wüstenberg et al., 2014). Greiff et al. (2016) collected
the log data of MicroDYN and counted solvers’ non-interfering
observations, intervention frequency, VOTAT strategy, and time
on task. In this study, solvers were instructed to manipulate the
input variables and then to click on “apply” to activate it, and
each round represented an intervention. The results showed that

1The Program for International Student Assessment (PISA) is a comprehensive
large-scale international comparative test project conducted by the Organization
for Economic Cooperation and Development (OECD) (OECD Indicators, 2009).

good problem solvers were not only good at using VOTAT, but
also had moderately frequent intervention, highly frequent non-
intervention observation, and a moderate response time; poor
problem solvers tended to demonstrate little intervention or to
constantly intervene.

However, most of the process indicators extracted from log
data proposed by the previous research are simple indicators
(e.g., time on task, intervention frequency, etc.) and fail to delve
into meaningful CPS behavior sequences. To date, VOTAT is the
only CPS strategy based on the behavior sequences that has been
verified by log data analysis (Kröner et al., 2005; Wüstenberg
et al., 2012; Müller et al., 2013; Greiff et al., 2015).

The purpose of the present study is to test and supplement the
theoretical discussion of multiple goals balancing in the literature
based on the meaningful CPS behavior sequences contained
in the log data.

This Study
Although researchers generally believe that multiple conflicting
goals is an important feature of CPS systems, not all CPS
systems have this feature, such as MicroDYN (Schoppek and
Fischer, 2015). If the problem solving goals of a complex
system are clear and equally important or independent and
non-conflicting, solvers’ ability to balance multiple goals cannot
be assessed. After considering the above-mentioned issues, the
present study selected a proper CPS task that can meet the
research purpose. Log data were analyzed to explore solvers’
processes of clarifying goals, setting priorities, and making trade-
offs between conflicting goals. Thereby, the study aimed at
confirming the important role of multiple goals balancing in CPS
and increasing emphasis placed on this skill.

With the overarching goal of exploring the role of multiple
goal balancing ability in CPS, the research questions were
as follows:

(1) When solving complex problems, how do solvers clarify
and weigh goal priorities to achieve better scores?

(2) Which goal pursuing strategies are more productive to
solving a complex problem?

MATERIALS AND METHODS

Task Descriptions
In the study, data from the “Ticket” task of the PISA 2012
CPS log data were selected as the analytical subject. This task
requires solvers to purchase a ticket using a virtual ticket vending
machine. Ticket type is determined by three attributes [as shown
in Figure 1A: train network (city subway or country train), fare
type (full fare or concession), and trip (daily or individual)]. Daily
tickets can be used an unlimited number of times on the day of
purchase. Individual tickets can be used on different dates. If the
latter is selected, the number of trips must be determined (from
1 to 5). Therefore, solvers have a total of 2 × 2 × (1 + 5) = 24
ticket types to choose from. When the ticket type is determined,
the ticket price in zed (virtual currency unit) will be shown on the
vending machine (see Figure 1B). Solvers then have two options:
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FIGURE 1 | Interface of the “Ticket” task. (A) Selecting stage. (B) Purchasing stage.

purchase the ticket or cancel the purchase and return to the initial
selection screen.

The subject of the present study was the third subtask of the
“Ticket” task, wherein solvers must purchase a city subway ticket
that includes two trips. More than one choice is available to
meet the ride need. Thus, solvers must consider the two goals
of ride demand and price discount simultaneously, in order to
find an optimal ticket. However, when solvers choose to purchase
concession tickets, they receive notice that “There are no tickets
of this type available. Please press CANCEL and buy a different
ticket.” Because solvers only get feedback that the ticket is not
available and receive no further information about the reasons
why, they must try more ticket types until they are successful in
securing a ticket. Thus, the third goal of the subtask is to find an
available ticket.

The optimal purchase plan meets the three goals
simultaneously: it satisfies the ride demand (demand goal),
has the lowest price (price goal), and is available (availability
goal). Since no concession tickets meet the needs of city travel,
if solvers always work toward the price goal; they will repeatedly
encounter a situation in which they cannot buy a concession

ticket. Therefore, solvers must buy a slightly more expensive
ticket in order to perform the task. Therefore, there is a direct
conflict between the price goal and the availability goal. The
demand and availability goals are superior to the price goal, and
solvers should give priority to achieving the first two goals before
striving to fulfill the price goal.

In summary, this third subtask of the “Ticket” task contains
multiple conflicting goals with varying priority. Therefore, the log
data of this subtask were deemed suitable for exploring solvers’
ability to balance multiple goals in CPS.

Log Data Sample
The study was based on a secondary analysis of previously
collected and publicly available data. The data selected from the
PISA 2012 CPS log data were de-identified. The fare system
of subway ticket vending machines is common in developed
countries. We selected students from six developed countries:
Austria, Japan, Australia, Ireland, Germany, and France. Because
it is reasonable to believe that they share similar behavioral
patterns given that their countries have similar economic
backgrounds, and the students could be coded with the same
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coding scheme. A total of 40,217 students in these countries
participated in the test, and the log data of 3,896 (9.69%) students
were made available for analysis.

Partial log data are displayed in Figure 2A, below. Each
row records an operation of an individual solver. Solvers’
cancelation or purchase operations after generating a complete
ticket purchase were treated as segmentation marks between
plans, and operations were divided into different ticket purchase
plans. For example, Figure 2 shows the first 14 operations
of a particular student. In the first six trials, the student
attempted to purchase the ticket plan of (city subway,
concession, individual ticket, two trips), and then canceled
the purchase. This represented a complete purchase plan.
The last six actions constitute the solver’s second purchase
plan. In addition, a purchase plan may be incomplete. For
example, the first three operations in Figure 2B showed that
he/she chose the country train, and then clicked the cancel
button. Because the solver clicked CANCEL without selecting
fare type and trip, this purchase plan was considered as
incomplete. A total of 5,933 incomplete operations were excluded
from the log data, resulting in 113,707 actions in the final
data set (95.04%).

Six hundred and ninety-five students with less than two
plans after the first purchase plan were excluded because
there were not enough plans to analyze their competence
of balancing goals. Data from the remaining 3,201 students
(82.16%) were used in the final analysis. Among these students,
there were 1,594 males and 1,607 females, with an average age of
15.82 years (SD = 0.39).

Indicators of Goal Pursuit
In order to evaluate whether problem solvers clearly identified
and pursued the goals, two psychometricians and three
undergraduate psychology students were invited to identify
solvers’ behaviors that can represent goal pursuit. If no sufficient
reasons can support the behavior is goal pursuit, then the
conclusion cannot be made. This means that goal pursuit was
defined as a deliberate strategy that solvers pursue rather than the
solvers’ willingness in pursing the goal.

The following coding schemes were ultimately developed:

(1) Demand goal pursuit: If the plan met the ride demand
as required by the task (city subway with two trips or
an unlimited ticket), it would be coded as “1” (pursuing
the demand goal); otherwise, it would be coded as “0”
(abandoning the demand goal).

(2) Price goal pursuit: Solvers could only see the ticket
price (the only output variable of the “Ticket” task) after
completing their ticket selection. Thus, if a solver canceled
the ticket after seeing the price, we would conclude that the
solver was not satisfied with the price. That is, if the plan
ended in “cancel,” the plan would be coded as “1” (pursuing
the price goal).

If the plan ended with “purchase,” further judgment would
be needed to determine whether the price of the plan was the
cheapest among the available plans known to the solver (all
previous plans except failed ones). If all of the plans that were
known to the solver were failed, because there were no enough

FIGURE 2 | Example of log data for the third subtask of the “Ticket” task. (A) Example of complete plan log data. (B) Example of incomplete plan log data. The
variables (from left to right) are full ID code, country code, school code, student code, event type (task start, task end, or intermediate event), time point of the event,
serial number of the event, value of the event input variable, type of train network, type of price, type of ticket, and number of trips.
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evidences to illustrate if the solver considered the price, we
applied strict rules, which was the plan had to be the cheapest
among all previous failed plans. In either scenario, if the price of
the plan ended with “purchase” was the cheapest, then it would
be coded as “1” (pursuing the price goal), otherwise it would be
coded as “0” (abandoning the price goal).

(3) Availability goal pursuit: Participants would know that
some tickets could not be bought but had to be got through
strategic plans only after they clicked “purchase” at the first
time but did not receive tickets, so all the plans before the
first purchase plan would be coded as missing values for the
unawareness of the availability goal.

When the solver found that the ticket is not exist, he/she
usually changed one attribute or just changed the number of
trips. However, this change could not reveal the solver’s deliberate
efforts to avoid failure. The availability goal pursuit indicator
should reflect the search strategy of available ticket type between
attributes rather than within attributes. Therefore, we used three
consecutive plans to code the indicator. Plan adjustment made on
the basis of a solver’s initial purchase failure would be recorded
as “Adjustment 1–2,” and the next plan adjustment would be
recorded as “Adjustment 2–3.” When “Adjustment 1–2” and
“Adjustment 2–3” pertained to different ticket attributes, the
third plan would be coded as “1,” (pursuing the availability goal);
otherwise, it would be coded as “0” (abandoning the availability
goal). Similarly, “Adjustment 3–4” and so on would be coded
according to the previous “Adjustment.”

The ratios of the number of the plans pursued for each of the
three goals to the total number of plans would be considered goal
pursuit indicators. We developed an autoscoring program in the
R language that divided the operations into mark plans, judged
whether the plans were complete, and coded the goal pursuit of
plans. The autoscoring program in R has been double-checked by
two undergraduate psychology students.

Statistical Analysis
Cluster analysis was carried out on the goal pursuit indicators in
order to identify groups with different set goal priorities. These
groups were then compared to the task score used in the present
study (with “1” meaning success and “0” meaning failure in
problem solving) and CPS proficiency (solvers’ ability estimated
from their performance on the PISA 2012 CPS test) in order
to explore whether groups with better priority setting showed
better performance. We chose the partitioning around medoids
(PAMs) algorithm for cluster analysis, because it was more
robust than K-Means against noise and outliers (Kaufman and
Rousseeuw, 1987, 2009). The package ‘FPC’ (‘Flexible Procedures
for Clustering’) of the statistical software R 3.4.4. was used to
carry out PAM algorithm (Hennig, 2007).

Regressions analyses were used to analyze the effects of
goal pursuit indicators and their interactions on problem
solving performance. A simple slope test of the interaction
was applied to explore the impact of different combinations
of the three goal pursuit behaviors on problem solving and to
probe problem solvers’ strategies for choosing among conflicting

goals. The standardized z-scores of goal pursuit indicators and
their interactions were predictors, and the task score and CPS
proficiency on the PISA 2012 test were outcome variables.
Regression analyses were performed using SPSS 23.0 (IBM, 2015).

RESULTS

Descriptive Statistics
The descriptive statistics are presented in Table 1. Results showed
that the third “Ticket” subtask score was moderately correlated
with CPS proficiency (r = 0.39). Three goal pursuit indicators
were correlated with task score and CPS proficiency.

Cluster Analysis of Goal Pursuit
Indicators
The PAM algorithm was applied to cluster the dataset. The
numbers of clusters were determined at 10 when the average
silhouette width reached the maximum value. Table 2 lists the
number of people in each group, within-cluster sum of squares
and their average values for task score, CPS proficiency, and the
three goal pursuit behaviors (columns 6–8, respectively) and their
z-scores (columns 9–11, respectively).

The z-scores of the three goal pursuit behaviors were
compared across groups. The results showed that the three
groups with the highest task scores showed positive demand and
availability goals pursuit (0.68, 0.59, and 0.69; and 1.33, 0.62, and
1.10, respectively). In other groups, at least one of the demand
and availability goals was negative. This showed that successful
problem solvers worked hard on both of these goals. The price
goal pursuit of Groups 1, 3, and 4 were negative (−0.74, −2.73,
and−0.27, respectively), and that of Group 2 was positive (1.07),
which indicated that price goal pursuit was not important for
solving the problem.

The task score of Group 5 (0.61) was 0.2 lower than that of
Group 4 (0.81). In this group, demand goal pursuit was positive,
but availability goal pursuit was negative (−0.94), that is the
availability goal was ignored, and the price goal was much more
highly prioritized than that in Group 4. Group 10 pursued a
higher demand goal but neglected the availability goal (−2.02);
it also excessively pursued the price goal (1.27), which greatly
reduced the task score (0.18). This showed that pursuit of the
demand goal on its own could not effectively solve the problem;
rather, solvers had to also pursue the availability goal, without
strongly pursuing the price goal.

The demand goal pursuit of all other groups was negative, and
this affected their task scores (0.24–0.50) (e.g., Groups 6–9).

Logistic Regression of Goals Pursuit on
Task Score
Logistic regression was used to test whether task score could be
predicted by three types of goal pursuits and their interactions.
The results of the Omnibus Test compared to the previous model
were significant (χ2 = 770.433, df = 3, p < 0.001; χ2 = 112.543,
df = 2, p< 0.001) when adding all goal pursuits and their two-way
interaction terms into the model in sequence. The results showed
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TABLE 1 | Descriptive statistics of variables.

Variable M SD Minimum Maximum 1 2 3 4

(1) Task score 0.63 0.48 0 1 –

(2) CPS proficiency 544.06 86.75 214.9 802.5 0.39∗∗ –

(3) Demand goal pursuit (%) 90.12 13.65 0 100 0.38∗∗ 0.23∗∗ –

(4) Price goal pursuit (%) 68.30 23.18 0 100 −0.04∗ −0.02 0.10∗∗ –

(5) Availability goal pursuit (%) 61.91 27.79 0 100 0.25∗∗ 0.09∗∗ −0.05∗∗ −0.31∗∗

∗p < 0.05, ∗∗p < 0.01. The columns names 1,2,3,4 refer to the four variables in the rows.

TABLE 2 | Cluster results of goal pursuit.

Group Number of
people

Within-cluster
sum of squares

Task
score

CPS
proficiency

Demand
goal (%)

Availability
goal (%)

Price
goal (%)

Demand
goal (z)

Availability
goal (z)

Price
goal (z)

1 447 197.61 0.88 557.04 99.37 98.99 51.03 0.68 1.33 −0.74

2 411 214.50 0.88 575.15 98.19 79.16 93.13 0.59 0.62 1.07

3 73 181.26 0.82 561.16 99.57 92.45 4.88 0.69 1.10 −2.73

4 501 153.07 0.81 563.47 97.46 56.07 61.99 0.54 −0.21 −0.27

5 558 375.86 0.61 542.74 95.98 35.9 83.63 0.43 −0.94 0.66

6 369 313.75 0.50 530.97 82.29 45.59 45.27 −0.57 −0.59 −0.99

7 456 204.50 0.43 528.00 76.9 64.05 75.73 −0.97 0.08 0.32

8 117 84.88 0.24 494.11 67.32 91.23 34.78 −1.67 1.05 −1.44

9 117 307.71 0.24 498.81 48.48 76.34 78.26 −3.05 0.52 0.43

10 152 104.38 0.18 507.83 99.15 5.87 97.72 0.66 −2.02 1.27

overall 3201 2137.52 0.63 544.06 90.12 61.91 68.30 0 0 0

that the availability goal pursuit and the demand goal pursuit as
well as the interactions between the availability goal pursuit and
the other two goal pursuits, respectively, were significant and had
effects that differ from zero.

The Nagelkerke R2 of the final model was 0.329,
demonstrating a medium effect on task score by goal pursuit.
The prediction accuracies of the correct and incorrect responses
were 87.2 and 54.7%, respectively, and total accuracy was 75.3%
(see Table 3).

Demand goal pursuit (B = 1.041, Wald χ2
(df= 1) = 394.670,

p < 0.001) and availability goal pursuit (B = 0.702, Wald χ2
(df=

1) = 198.667, p < 0.001) significantly positively predicted task
score. The demand goal resulted in a larger regression coefficient
than the availability goal (see Table 4).

The interaction between demand goal pursuit and availability
goal pursuit was significant (B = 0.277, Wald χ2

(df = 1) = 25.187,
p < 0.001). The results of the simple slope test of availability goal
pursuit at high/low demand goal pursuit (the mean plus/minus a

TABLE 3 | Logistic regression of goal pursuit on task score.

Correct or
incorrect
prediction Predicted

results accuracy (%)

0 1

Observation data of correct
and incorrect answers

0 644 533 54.7

1 259 1765 87.2

Overall 75.3

TABLE 4 | Logistic regression coefficient of goal pursuit on task score.

Predictor Model 1 Model 2

B SE Wald χ2 B SE Wald χ2

Demand 1.013 0.049 425.54∗∗∗ 1.041 0.052 394.670∗∗∗

Availability 0.726 0.047 235.425∗∗∗ 0.702 0.050 198.667∗∗∗

Availability ∗ demand 0.277 0.055 25.187∗∗∗

Availability ∗ price 0.319 0.042 56.857∗∗∗

Nagelkerke R2 0.292 0.329

The Omnibus Test 770.433(3) 112.543(2)
(χ2/df)

∗∗∗p < 0.001. The variables not significant was excluded in the model.

standard deviation) are shown in Figure 3. On the whole, solvers
with high demand goal pursuit scored higher than those with
low demand goal pursuit. This suggested that the demand goal
was more important than the availability goal. For those with
high demand goal pursuit, availability goal pursuit significantly
positively predicted task score to a greater extent (B = 0.559,
p < 0.001). For those with low demand goal pursuit, availability
goal pursuit significantly positively predicted task score to a
smaller extent (B = 0.246, p < 0.001) (see Figure 3). If the solver
pursuing the demand goal pursued the availability goal at the
same time, he/she would efficiently improve task scores and solve
the problem best. However, if the solver neglected the demand
goal, even though pursuing availability goal was beneficial to
improve task score, the improvement would be limited.

The interaction between price goal pursuit and availability
goal pursuit was significant (B = 0.319, Wald χ2

(df = 1) = 56.857,
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FIGURE 3 | Interaction between availability goal pursuit and demand goal
pursuit.

p < 0.001). The results of the simple slope test are shown in
Figure 4. On the whole, solvers who pursued the availability
goal scored higher than problem solvers who did not pursue
the availability goal. This suggested that the availability goal was
prioritized over the price goal. For those with high availability
goal pursuit, price goal pursuit significantly positively predicted
task score (B = 0.201, p < 0.001). However, for those with low
availability goal pursuit, price goal pursuit significantly negatively
predicted task score (B =−0.172, p< 0.001) (see Figure 4). These
results indicated that, when solvers did not work hard to pursue
the availability goal and pursued the price advantage blindly,
their task score dropped significantly. If solvers worked hard
toward achieving the availability goal pursued price advantage,
they would achieve higher scores.

Linear Regression of Goals Pursuit on
CPS Proficiency
A linear regression model was built to examine goal pursuit as the
predictor of CPS proficiency using the least-squares regression
method. All of the model tests were significant, with R2 = 0.078.
Demand goal pursuit (B = 20.700, t = 12.832, p < 0.001)
and availability goal pursuit (B = 8.204, t = 5.234, p < 0.001)
significantly positively predicted CPS proficiency (see Table 5).

FIGURE 4 | Interaction between availability goal pursuit and price goal pursuit.

The interaction between demand goal pursuit and
availability goal pursuit also significantly negatively
predicted CPS proficiency (B = 4.345, t = 2.637, p < 0.01).
The simple slope test showed that, for those with high
demand goal pursuit, the availability goal significantly
positively predicted CPS score (B = 12.557, p < 0.05), and
for those with low demand goal pursuit, the availability
goal did not significantly predict CPS score (B = 3.810,
p = 0.058). Solvers who pursued the demand goal and
the availability goal achieved the highest CPS proficiency
scores (see Figure 5).

The interaction between price goal pursuit and availability
goal pursuit significantly positively predicted CPS proficiency
(B = 7.329, t = 5.309, p < 0.001). The results of the simple
slope test showed that, for those with high availability
goal pursuit, price goal pursuit significantly positively
predicted CPS proficiency (B = 8.411, p < 0.001); for
those with low availability goal pursuit, price goal pursuit
significantly negatively predicted CPS proficiency (B = −6.275,
p < 0.01) (see Figure 6).

DISCUSSION

Although CPS assessment has been researched for more than
40 years, its development as an assessment tool is far from mature.
Many researchers have proposed rich theoretical models of CPS,
but none of these suggested models has been fully validated
(Fischer et al., 2012; Greiff and Fischer, 2013; Greiff et al., 2013).

The present study explored multiple goals balancing behavior
shown in the log data of the third subtask of the “Ticket”
task of PISA 2012. The purpose of the study was to test and
supplement the theoretical discussion of previous studies through
an analysis of measured data. The main findings are described in
two sections below.

Coping Strategies in Multiple Goals
Conflict Scenarios
The Importance of Clarifying Goals and Working Hard
for Them
Dörner placed great emphasis on the importance of clarifying
goals in a vague situation, noting that this is often the first step
in solving a problem (Dörner and Wearing, 1995). The present
study analyzed the log data of a CPS task to explore solvers’
ability to clarify and pursue each goal. In the task, solvers needed
to first clarify the demand and price goals, then identify the
availability goal following failure to secure a ticket. The demand
and availability goals had to be met to solve the problem, but
their difficulty levels obviously differed. The result showed that,
on average, 90.12% of solvers’ plans met the demand goal, but
only 61.91% met the availability goal. As solvers had to sacrifice
the price goal to get the ticket, only 68.30% met this goal. In fact,
unless goals were in direct conflict, solvers’ goal-oriented actions
toward as many goals as possible resulted in more effective
problem solving. For example, amongst solvers who gave up the
demand goal and turned to pursue the availability goal, task
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TABLE 5 | Linear regression coefficients for goal pursuit on CPS proficiency.

Model 1 Model 2

Predictor B SE t β B SE t β

Demand 20.585 1.491 13.808∗∗∗ 0.237 20.700 1.613 12.832∗∗∗ 0.239

Availability 9.450 1.558 6.064∗∗∗ 0.109 8.204 1.568 5.234∗∗∗ 0.095

Availability ∗ Demand 4.345 1.647 2.637∗∗ 0.050

Availability ∗ price 7.329 1.380 5.309∗∗∗ 0.096

R2 0.066∗∗∗ 0.078∗∗∗

1R2 0.012∗∗∗

∗∗∗p < 0.001. The variables not significant was excluded in the model. B stands regression coefficients, and β stands standardized regression coefficients.

scores were higher for those who also pursued the price goal than
for those who ignored it.

The Importance of Prioritizing Goals and Balancing
Strategies
In a CPS task with conflicting goals, solvers must do more
than clarify goals to solve the problem; they must also correctly
prioritize the goals and execute strategies to deal with conflicting
goals. For this reason, Funke (2001) strongly emphasized the
cognitive process of assessing and prioritizing goals in CPS.

In the task used in the present study, because tickets that met
the ride demand and were also available were not concession

FIGURE 5 | Interaction between availability goal pursuit and demand goal
pursuit.

FIGURE 6 | Interaction between availability goal pursuit and price goal pursuit.

tickets, solvers had to buy a slightly more expensive ticket in order
to solve the problem. Therefore, the demand and availability goals
were superior to the price goal, and solvers should have given
priority to achieving the first two goals before striving to fulfill
the price goal. The regression and cluster analyses showed that if
solvers tried hard to pursue both goals, they solved the problem
well; if they did not work hard toward one of the goals, they were
almost unable to solve the problem. Fischer et al. (2012) suggested
that, when there is a conflict between goals, solvers must find a
satisfactory trade-off by only partially achieving some goals. This
is indeed an effective strategy; it is very important to prioritize
goals and pursue the most important ones, rather than all goals.

The results also showed that the demand goal resulted
in a larger regression coefficient than that of the availability
goal. Further, the cluster analysis demonstrated that solvers
who pursued the demand goal scored highest and solvers who
gave up the demand goal scored lowest. This suggested that,
although the demand goal and the availability goal were both
important, the demand goal had priority over the availability goal.
Indeed, in the task, since “the availability of such a ticket” was
unpredictable, solvers should have first ensured that each solution
met the demand goal before working toward the availability
goal. Effective solvers prioritized goals in the following sequence:
demand goal, availability goal, and price goal. Thus, when solvers
face multiple conflicting goals in a problem, they should first
consider the most important goals and gradually explore ways
to balance them and then consider the secondary goals. If the
process is reversed, with the important goals sacrificed for the
secondary goals, problem solving will fail.

The Importance of Theoretically-Driven
Log Data Analysis
In the present study, the extraction of goal pursuit indicators
from the log data were based on the task feature of multiple
goals conflict. The resulting indicators were meaningful and
easy to facilitate the next step of analysis. This process of
identifying indicators fundamentally differs from that of data-
driven analysis, which commonly obtains indicators that are
huge and uninterpretable. Researchers have to use complex data
mining techniques such as machine learning or deep learning to
analyze a large number of features or indicators in the data-driven
analysis. Therefore, using an appropriate theory to analyze log
data files is often a multiplier.
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We used cluster and regression analysis to explore
solvers’ goal prioritization and balancing strategies in the
context of multiple goals conflict. The results strengthen
our understanding of multiple goals balancing behavior
and support and complement the theoretical elaboration of
multiple goals balancing in CPS. They also demonstrate that
theoretically-driven log data analysis cannot only make log
analysis more concise, efficient, and interpretable, but also
contribute to the confirmation, improvement, and promotion
of CPS theory.

Limitations
The present study analyzed the log data of a task with
multiple conflicting goals of varying priorities. It demonstrated
the importance and necessity of multiple goals balancing
in CPS. However, there are still some shortcomings in
this study, which should be supplemented and improved in
further research.

Firstly, the findings of this study is only applicable to
participants with three or more purchase attempts (3,201
students, 82.16% of all participants) because those with a lower
number of purchase attempts were not included in the analyses.
Secondly, this study used a subtask of the PISA test that was
not designed originally for multiple goals balancing. Further
research should develop more complex systems with multiple
goals conflict in order to fully explore strategies of multiple
goals balancing. These complex systems should involve an
increasing number of complex goals, in order to better reveal how
people solve problems effectively in complex problem scenarios.
Otherwise, it should ensure that the complex system includes a
more flexible “confirm submit” button. In such a scenario, every
time a solver attempts a purchase plan, he/she will click a button
to get information about the availability and price of the ticket.
This will enable researchers to easily segment hidden plans, as the
“confirm submit” button will automatically indicate the end of a
complete plan in the log data.

CONCLUSION

Overall, theoretically-driven log data analysis of CPS process
data can extract valuable information from messy process data,
and this information can contribute to the improvement of CPS
cognitive theory. Competent solvers identify and clarify goals
more effectively and ensure that each step of their action plan
has a clear goal orientation. More importantly, successful coping
with multiple goals in tasks requires proper goal prioritizing
and balancing.
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A validity approach is proposed that uses processing times to collect validity evidence
for the construct interpretation of test scores. The rationale of the approach is based
on current research of processing times and on classical validity approaches, providing
validity evidence based on relationships with other variables. Within the new approach,
convergent validity evidence is obtained if a component skill, that is expected to underlie
the task solution process in the target construct, positively moderates the relationship
between effective speed and effective ability in the corresponding target construct.
Discriminant validity evidence is provided if a component skill, that is not expected to
underlie the task solution process in the target construct, does indeed not moderate
the speed-ability relation in this target construct. Using data from a study that follows
up the German PIAAC sample, this approach was applied to reading competence,
assessed with PIAAC literacy items, and to quantitative reasoning, assessed with
Number Series. As expected from theory, the effect of speed on ability in the target
construct was only moderated by the respective underlying component skill, that is,
word meaning activation skill as an underlying component skill of reading competence,
and perceptual speed as an underlying component skill of reasoning. Accordingly, no
positive interactions were found for the component skill that should not underlie the
task solution process, that is, word meaning activation for reasoning and perceptual
speed for reading. Furthermore, the study shows the suitability of the proposed
validation approach. The use of time information in association with task results brings
construct validation closer to the actual response process than widely used correlations
of test scores.

Keywords: validity evidence based on response processes, speed, component skills, time on task effect,
processing times

INTRODUCTION

Assessing the validity of the intended test score interpretation is critical when drawing conclusions
based on test scores. Various sources of validity evidence were described in the Standards for
Educational and Psychological Testing (American Educational Research Association [AERA],
American Psychological Association [APA], and National Council on Measurement in Education
[NCME], 2014). One such source is evidence based on response processes. Information on the
response process is now more easily available than ever before due to computer-based assessments
and is also closer to the actual response process than test scores (Kane and Mislevy, 2017). For
instance, information from the response process, namely processing times, has been used to support
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construct interpretation for mental rotation tasks: Spatial
rotation theory postulates that mental rotation should proceed
similarly to physical rotations. Indeed, the physical angle of
the rotation object predicted not only item difficulty but
also processing time (Bejar, 1990; Embretson, 1994). However,
referring to the response process can be challenging if no single
process model exists and various cognitive processes are involved
in the task solution, as is the case for reading and reasoning tasks
(Kane and Mislevy, 2017, p. 11).

The aim of this paper is to propose a construct validation
approach that uses information from the response process,
namely, processing times. This approach does not require
complete process models, but simply assumptions about
underlying component skills of the response process that are
related to automation of information processing elements.
These component skills have previously been used in classical
approaches like the nomothetic span approach (Embretson,
1983), which investigates relations between test scores and other
constructs as validity evidence (American Educational Research
Association [AERA], American Psychological Association [APA],
and National Council on Measurement in Education [NCME],
2014). Our proposed construct validation approach combines the
nomothetic span approach with the relation of speed to ability.

Relations of speed to ability can be considered at different
levels. The within-person level refers to the relation of effective
speed to effective ability within a person, which can typically
be investigated by observing a person completing a task under
multiple experimental speed conditions (e.g., Goldhammer et al.,
2017b). The obtained speed-ability relation is always negative
as predicted by the speed-ability tradeoff (van der Linden,
2009). In contrast, our proposed validation approach is based
on the speed-ability relationship at the between-person (or
population) level. That is, persons complete a test without any
speed manipulation. The observed speed-ability relation can be
positive, zero, or negative depending on characteristics of the
person and item level.

SPEED AND ABILITY

Recent technologies offer the opportunity to record not just the
product of task performance, that is the task solution, but also
aspects of the behavioral process, for example, by recording time
information or eye movements. Previous research using process
data indicates that experts’ task solution process tends to differ
from that of novices. Higher reading skills are associated with
less and shorter fixations, longer saccades and fewer regressions
(Rayner, 1998). Chess experts detect relevant information on
a chess board faster, on average, than chess novices (Sheridan
and Reingold, 2014). Chess experts were also four times faster
than novices in a visual chess task and times for this task
even correlated with the degree of expertise, measured as Elo
ratings for experts or hours practicing chess per week for novice
players (Sheridan and Reingold, 2017). In matrices tasks, total test
scores were correlated with different task solution behaviors; they
were positively related to the proportion of total time spent on
inspecting matrices and negatively related to the proportion of

total time spent on the response options (Vigneau et al., 2006).
According to these studies, the task solution behavior of more
proficient persons tends to differ across domains from that of
less proficient persons, indicating differences in the cognitive
processes underlying task solution.

Information about the time test-takers spend on each task is
available by default nowadays in computer-based assessments.
Time information carries information about the duration of the
performed cognitive processes, with the limitation that the time
a person spends on a given task might not only reflect task-
related cognitive processes, but also non-task-related processes;
for instance, it might also be affected by engagement (cf.
response time effort; Wise and Kong, 2005). However, correct
solutions do indicate a “successful mental process” (Hornke,
2000, p. 182), making it reasonable to interpret time as the
duration of task-related cognitive processes, especially in the
case of fast and correct responses. Also, rapid guessing may
be associated with correct responses although not consistently
and by chance, respectively. In this study, we interpret time
information as the duration of the cognitive processes but
consider processing times only in relation to the outcomes of this
cognitive processing, namely response accuracy as an indicator
of ability. Note that when referring to speed and speed-ability
relationships, higher speed always means shorter time. If results
are reported from studies in which response times were used,
we have reversed the effects to also interpret them consistently
in terms of speed.

Relations Between Speed and Task
Success at the Between-Person Level
The relation between speed in a task and the probability of task
success is described as the ‘time on task effect’ (Goldhammer
et al., 2014) and has been investigated in various studies with
regard to item difficulty, person ability, and different domains
(Goldhammer et al., 2014, 2015; Becker et al., 2016; Naumann
and Goldhammer, 2017; see also Weeks et al., 2016). The time on
task effects is modeled as the (average) effect of speed in an item
on task success and the effect may vary across persons and items
(fixed and random effect).

The average effect of speed in a task on the probability of
a correct task solution has been found to be positive, zero,
or negative in different studies. This means that in some
assessments, more speed was associated with a higher probability
of task solution, while in other assessments, less speed was
associated with a higher probability of task solution. The
direction of the relation depends first on the kind of cognitive
processes required by a task. Goldhammer et al. (2014) reported
that speed in a problem-solving task was associated with a
lower probability of task solution, and for a reading task with
a higher probability of task solution. The different directions
were explained by differences in the task demands. Problem
solving was assumed to require more controlled processing; thus,
higher speed in a task was associated with a lower probability
of a correct task solution. Reading was assumed to be based
more on automatic processes; thus, higher speed in a task was
associated with a higher probability of a correct task solution.
Hence, the relation between speed in a task and the probability

Frontiers in Psychology | www.frontiersin.org 2 May 2019 | Volume 10 | Article 113122

https://www.frontiersin.org/journals/psychology/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/psychology#articles


fpsyg-10-01131 May 30, 2019 Time: 12:21 # 3

Engelhardt and Goldhammer Using Time Information for Validation

of a correct task solution was considered to depend on the
cognitive processes performed in a task: whether they were more
automatic or controlled.

The direction of the relation depends secondly on the
interaction between person ability and item difficulty. Higher
speed in a task is associated with a higher probability of
task solution for more able persons working on rather easy
items, and with a lower probability of task solution for less
able persons working on harder items. Irrespective of whether
the average effect of speed in a task on the probability of
a correct task solution is positive, zero, or negative, across
domains the effect varies consistently in that it is more
positive, or less negative, for persons with higher abilities,
compared to persons with lower abilities, and for easier items
compared to harder items. Such variations have been found
across domains, for instance in reading, problem solving, and
reasoning (Goldhammer et al., 2014, 2015; Becker et al., 2016;
Naumann and Goldhammer, 2017; see also Weeks et al., 2016;
Bolsinova et al., 2017a; De Boeck et al., 2017; Chen et al.,
2018). Thus, the relation between speed in a task and the
probability of a correct task solution for a specific test in a
certain domain can be positive for one group and negative for
another. Different relations for speed in a task and the probability
of a correct task solution indicate that the performed cognitive
processes differ.

Theoretical Models for Speed in a Task
and Task Success
A number of different – possibly domain-specific – models
explain why persons differ in their cognitive processes when they
solve a task depending on their proficiency.

The distinction between the two kinds of cognitive processes
explaining variation in the time-on-task effect stems from
dual processing theory (Schneider and Shiffrin, 1977; Schneider
and Chein, 2003): Automatic processes are well learned, run
in parallel, and are unaffected by cognitive load. Controlled
processes require attention, run serially, and depend on cognitive
load. Controlled processes can also run automatically when they
are well learned (cf. Ackerman, 1988). Persons who cannot solve
tasks in automatic mode need to perform controlled processes,
which leads to higher cognitive load and exceeds cognitive
resources at some point (Sweller et al., 1998). Persons with
a high proportion of automatized processes will solve items
with high speed and high accuracy and solve even hard items
correctly, because working memory can handle items with a
higher cognitive load in the presence of more automatized
processes. Persons with fewer automatized processes will need
more time for correct solutions and will not be able to solve
hard items correctly, because controlled processes are impaired
by cognitive load.

Becker et al. (2016) also referred to cognitive processes
performed in an automatic or controlled mode for matrices tasks.
They stated that for very easy tasks, task complexity is low, which
leads to a low cognitive load and automatic processing. In very
hard tasks, task complexity is high, which leads to a high cognitive
load and controlled processing. For items that are in between,
more able respondents will be able to solve them in an automatic

mode, while less able respondents will need to solve them in a
controlled mode. If mental load is too high, working memory
operates at its capacity limit increasing the probability that the
task cannot be solved correctly.

Naumann and Goldhammer (2017) explained the difference
between more and less proficient readers with reference to
the compensatory-encoding model (Walczyk, 1995). This model
posits that automatic reading processes on the word level are
important for text comprehension. Readers with less automatized
processes need to compensate for this deficit by performing
these processes in a controlled mode. For less proficient readers,
this might still lead to a correct, but slower, solution for
relatively easy items and will burden working memory. As a
consequence, as cognitive load increases, working memory will
at some point reach its limit, meaning that the respondent will
not be able to solve a task with a high cognitive load correctly
(Sweller et al., 1998).

We assume that dual processing theory, extended by cognitive
load theory (Sweller et al., 1998) as described by Becker et al.
(2016), explains the relation between speed in a task and
response accuracy in tasks where more than a single cognitive
process is involved in task solution. Complex tasks like reading
comprehension or reasoning (Kane and Mislevy, 2017) are
based on numerous processes, and component skills enable the
automation of information processing elements. Domain-specific
theories explain which component skills are important for the
automatization of tasks in a given domain. For instance, the
automatic lexical access to word meaning is essential for reading
comprehension (cf. Perfetti, 2007).

The proposed validation approach is suitable for tasks
following the dual processing theory classification. There might
be tasks for which this assumption does not hold, for example
tasks which mainly require knowledge, in which domain-specific
component skills might not be involved in the task solution
process and automatization does not provide any advantage. In
some tasks, other factors like decision-making speed might also
matter, and models other than the dual processing framework
are more suitable for describing the relation between task
speed and accuracy. For example, diffusion models are typically
used for very easy two-choice response tasks requiring short
response times. Such models represent the response process
as an information accumulation process the proceeds until
enough evidence for one of the two choices is collected
(van der Maas et al., 2011).

VALIDITY APPROACH USING
TIME INFORMATION

Although validating test score interpretations based on response
processes (cf. American Educational Research Association
[AERA], American Psychological Association [APA], and
National Council on Measurement in Education [NCME], 2014)
is closer to the actual cognitive processes than merely using
assessment results, providing this kind of validity evidence
can be challenging if no single process model is available
(Kane and Mislevy, 2017), as is the case for reading tasks
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(Kintsch, 1998), for instance. The following validation approach
allows for investigating the validity of test score interpretations
from assessments of complex constructs such as reading
comprehension by using processing times as generic information
about the response process.

The validation approach is based on the latent effect of the
person variable speed on ability. Following van der Linden
(2007), speed in a task (i.e., processing time observed for a task)
depends on a person-specific and an item-specific component.
The person-specific component (effective) speed represents inter-
individual differences in time use, and it is assumed to be the
same across all items (although the weighting can vary across
items, see Klein Entink et al., 2009). The item-specific component
describes an item’s time intensity and the difference between the
observed processing time and the expected processing time given
the person-/item-specific components represents the residual.
Just as ability is estimated based on all item responses, the speed
is estimated according to time use across all items.

The effect of speed on ability is assumed to be more positive
(or less negative) in a group of strong test-takers and vice
versa. This kind of moderation has been shown by previous
empirical studies which revealed differences in the relationship
between speed (e.g., average item response time or time for
a specific processing behavior) and ability (e.g., test score)
depending on item difficulty or person ability (Neubauer, 1990;
Knorr and Neubauer, 1996; Rayner, 1998; Vigneau et al., 2006;
Sheridan and Reingold, 2014, 2017).

We assume that in complex tasks, differences in the speed-
ability relation depend on automatized sub-processes, and
thus on well-developed component skills. Persons with better
component skills will be able to perform sub-processes in an
automatized mode, while persons with weaker component skills
will perform these sub-processes in a controlled mode (cf.
dual processing theory; Schneider and Shiffrin, 1977; Schneider
and Chein, 2003). The automatized mode enables fast correct
solutions. In contrast, the controlled mode allows correct but
slower task solutions and is affected by a high cognitive load.
Consequently, solving tasks with a high cognitive load in a
controlled mode will exceed working memory capacity at some
point (Sweller et al., 1998), and prevent the respondent from
solving these tasks successfully. Based on the dual-processing
theory together with cognitive load theory it is expected that
the strength of the component skill has an impact on the
observed speed-ability relation. If these differences in the speed-
ability relation depend on certain component skills predicted
by domain-specific theories, the relation between speed and
ability in a sample would be positively moderated by these
component skills. In turn, a component skill is involved in
a task’s response process and supports a fast and correct task
solution process if it positively affects the relation between
speed and ability in the target domain (cf. Figure 1). Such a
positive interaction effect supports the validity of the construct
interpretation assuming that a task’s solution process requires these
component skills.

The presented validation approach focuses on person-level
variables. It is based on the assumption that differences in the
relation between effective speed and effective ability describe

differences in cognitive processes. Person-level variables, for
example component skills that theoretically underlie the task
solution process, are assumed to refer to those differences
in cognitive processes and should hence moderate the speed-
ability relation.

Interpretations of Moderation Effects
Before the moderation effects are discussed, the main effects
of effective speed are focused. A positive main effect of effective
speed on the effective ability (cf. Figure 1A) means that persons
with a higher effective speed show also a higher effective
ability. This positive effect suggests that processes amenable to
automation were involved in performing these tasks and that,
in persons working both fast and successfully, these processes
are automatized to a large extent. Lower speed and lower
ability would result for those persons who compensate non-
automated processes by controlled processes. While for simple
tasks controlled processing would lead to correct and slower task
solutions, difficult tasks would be wrong due to limited working
memory capacity. A negative main effect of effective speed on the
effective ability (cf. Figure 1B) means that persons with a higher
effective speed have a lower effective ability and vice versa. This
suggests that controlled processes were more likely to be used
to perform these tasks. A lower speed along with higher ability
would result for those who performed these tasks in a controlled
mode. For those who did not thoroughly engage into the solution
process and/or gave up at an early stage, this would result in
higher speed and lower performance at the same time. Such a
disengaging behavior could be driven by individual expectations
of task success (cf. intentional omissions, Mislevy and Wu, 1996;
see also Goldhammer et al., 2017a). Thus, potential sources of
variations in effective speed may originate not only from the
performed task-specific cognitive processes but also from the
test-taker’s meta-cognition about performing the task.

A positive moderation effect of a component skill on the speed-
ability relationship means that the speed-ability relation becomes
more positive or less negative. The positive moderation of the
positive speed effect (see Figure 1A) indicates that for persons
being in command of well-automatized procedures (e.g., lexical
access), effective speed (e.g., in reading) more strongly reflects
individual differences in ability (e.g., reading comprehension).
For persons with weak component skills, however, effective
speed is less (or even negatively) related to ability, since time-
consuming controlled or strategic processes have to be performed
to obtain a correct response. The positive moderation of the
negative speed effect (see Figure 1B) indicates that for persons
with strong component skills effective ability would be less
impaired in the situation of high effective speed; put differently,
such persons may afford to work fast to some extent given highly
automatized elements of cognitive processing. The opposite
is true for persons with weak component skills. Here, the
detrimental effect of fast controlled processing is strengthened.
A positive moderation effect supports that the respective
component skill is associated with automatic processing in
the target domain and would thus provide convergent validity
evidence for the construct interpretation of the ability test score, if
this component skill is theoretically assumed to underlie the task
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FIGURE 1 | Illustration of the relation of effective speed to effective ability at the between person level (A: positive relation, B: negative relation). The upper/lower
dashed line indicates how a strong/weak construct-related component skill is expected to moderate the speed-ability relation. For persons with strong component
skill it is expected to be more positive and less negative, respectively (and vice versa).

solution process. Conversely, a component skill that underlies
the task solution process according to an alternative theory (cf.
Kane, 2013), but does not moderate the speed-ability relation in
a positive direction, would support the intended theory-based
interpretation and provide discriminant validity evidence for the
construct interpretation of the test score.

A negative moderation effect of a component skill on the
speed-ability relationship would indicate that the difference in
effective ability between persons with strong vs. weak component
skills becomes even smaller for persons with higher effective
speed (the lines in Figure 1 would converge at high effective
speeds). As described, if a component skill was responsible for
performing processes in automated mode, the difference should
be higher at higher speed. A negative moderation effect would
therefore support that this component skill was not associated
with automatic processing in the target domain. Instead, the
advantage for persons with strong component skills in the event
of a negative moderation effect is greater for those who worked
slowly. In the case of a negative main effect of speed, for example,
the component skill could be a resource that contributes to the
correct solution of the task, particularly when working at low
levels of speed.

Assumptions
Please note that the conclusions that are drawn from these
moderation effects are different from those that can be drawn
based on the pure main effects of component skills on target
ability: The main effects of component skills on target ability
describe the relationships between two ability variables being
defined by item response variables (i.e., correctness of task
results). The moderation effects, however, consider not only the
task outcomes but also the speed at which these results were
achieved, that is, the process of task completion. Consequently,
a failure to find a main effect would mean that persons with
high component skills do not reach higher test scores in the
target ability. A failure to find a moderation effect would mean

that persons with higher component skills do not show a more
positive relation of ability and speed in the target construct,
hence, that this component skill is not related to underlying
automated processes. The time a person takes on an item also
depends – especially when the item is solved incorrectly – on
motivational factors like the willingness to perform the tasks as
instructed (cf. test-taking effort; Wise and DeMars, 2005). This
means that a respondent who takes a relatively short time across
items can be indicative of a high degree of automated processes,
but also low engagement throughout the test (cf. Goldhammer
et al., 2017a). However, only persons with automated processes
will be able to solve tasks in a domain correctly and with
high speed. Hence, we assume that considering speed across
tasks, together with ability, allows for interpreting differences in
the relation between speed and ability in terms of differences
in cognitive processing. Still, this approach depends on the
assumption that most persons perform task-related processes.
If many persons do not behave as intended, it will be hard to
detect moderating variables for the speed-ability relationship.
This can be especially problematic when many respondents
perform rapid guessing.

Just as in other correlational approaches, person variables
might moderate the speed-ability relation not because they are
part of the assumed task solution process but because they
correlate with other third variables that describe why persons
work faster and rather correctly. It clearly follows from this that
the construct validity of the interpretation of the component skill
score is a crucial precondition for the suggested approach.

Furthermore, the extent to which the target ability and
the component skill overlap is crucial for our approach: The
component skill should describe a relevant sub-process of the
cognitive processes in the target construct that can be automated.
If the component skill represents only a rather irrelevant aspect
of the cognitive processes in the target ability, performing this
process automatically will not significantly moderate the speed-
ability relationship in the target construct. If the component skill
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represents the cognitive processes in the target ability to a very
large extent, the component skill would strongly predict the target
ability, making an interaction effect between target speed and
component skill unlikely. Furthermore, our approach is based on
differences in cognitive processes as represented by the speed-
ability relation in the target construct and in the respective
component skills. Therefore, the sample needs to include such
differences. Heterogeneous samples, such as those in the PIAAC
study, are likely to meet these preconditions.

Classification of the Validity Approach
In terms of classical validation approaches, the proposed
validation approach of examining relations with component
skills can be seen as similar to the nomothetic span approach
(Embretson, 1983) or collecting validity evidence based on
relations with other variables (American Educational Research
Association [AERA], American Psychological Association [APA],
and National Council on Measurement in Education [NCME],
2014). However, our approach does not focus on relating test
scores of the target construct (e.g., reading) and component
skills (e.g., lexical access) to each other. Instead, we analyze
whether component skills moderate the relation between speed
and ability. If a component skill that is theoretically assumed to
be elicited by the task actually moderates the relation between
speed and ability (cf. Figure 1), it supports the notion that
this component skill is indeed involved in the response process
of this task. Consequently, such a result provides validity
evidence for the construct interpretation of the test scores
based on response processes (American Educational Research
Association [AERA], American Psychological Association [APA],
and National Council on Measurement in Education [NCME],
2014). The nomothetic span approach focuses on individual
differences rather than on differences between items (cf. construct
representation approach; Embretson, 1983). This is also why
our suggested approach focuses on the person-specific time
component that underlies response times in all items (van
der Linden, 2007) rather than on the time a person takes
on single items.

RESEARCH QUESTIONS

The overall empirical goal of this study is to test the
proposed validity approach based on processing times. Two
cognitive constructs, reading comprehension and reasoning,
were selected to investigate the validity of the construct
interpretation of related test scores. The literacy competence test
from the Program for the International Assessment of Adult
Competencies (PIAAC; OECD, 2016) was used for assessing
reading comprehension and the Number Series Test (McArdle
and Woodcock, 2009) for assessing reasoning. Competencies
such as reading comprehension are assumed to matter for
the handling of very specific situations, whereas general
cognitive skills can be applied to a wide range of situations
(Klieme et al., 2008).

The following sections describe component skills underlying
reading and reasoning that are thus critical for automated

processing. They are assumed to moderate the speed-ability
relationship in a positive direction. A positive moderation
by the component skill that theoretically underlies the task
solution process would provide convergent validity evidence.
Kane (2013) argues that test score interpretations should be
put to the test. In traditional approaches, such as analyzing
relations to other variables (e.g., American Educational Research
Association [AERA], American Psychological Association [APA],
and National Council on Measurement in Education [NCME],
2014), this type of challenging analysis would be done to provide
discriminant validity evidence for the construct interpretation. In
a similar vein, in our approach, discriminant validity evidence
would be provided if a component skill that is believed to underlie
the task solution process according to alternative theories does
not moderate the relation between speed and ability in a
positive direction.

Reading
Literacy items in PIAAC are assumed to involve “a range of
skills from the decoding of written words and sentences to
the comprehension, interpretation, and evaluation of complex
texts” (OECD, 2016, p. 18). Kintsch (1998) describes reading
as the interplay of bottom-up and top-down processes in
his construction-integration model. Bottom-up processes are
performed to process words in order to build a propositional
representation of the text. Then, knowledge is integrated in
top-down processes to construct a situation model. One bottom-
up-process that is theoretically involved in reading (Kintsch,
1998) and also an empirical predictor of reading comprehension
(Perfetti, 2007) is the activation of word meanings. Word reading
is a process that can be automatically performed (Augustinova
and Ferrand, 2014). Thus, the relationship between speed and
ability in reading is assumed to be influenced by the extent
to which readers activate word meanings from the text in an
automatic or controlled mode and should be more positive for
automatic activation. Knowing more words might prevent a
person from encoding letters separately or from guessing the
meaning from the context. In the context of cognitive load
(Sweller et al., 1998), not knowing words might burden working
memory capacity and might not only prevent faster task solution
in easy items but might even more so prevent correct task
solution on harder items.

If the relation between speed and ability in reading is
more positive among persons with greater word meaning
activation, this provides convergent validity evidence for the
construct interpretation, because it indicates that the solution
process in reading tasks requires reading-specific component skills
(Hypothesis 1a).

The wide range of situations to which general cognitive
skills can be applied bring them into play as an alternative
interpretation of competence scores. Whether competence tests
used in large-scale assessments are also based on general cognitive
skills and to what extent they represent the outcomes of learning
processes have been investigated in numerous studies based on
item scores (Brunner, 2005; Nagy, 2006; Rindermann, 2006;
Prenzel et al., 2007; Baumert et al., 2009; Rindermann and
Baumeister, 2015; Saß et al., 2017). The construct interpretation
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should be challenged through alternative interpretations that
see general cognitive skills as also involved in literacy items.
An important component skill of general cognitive skills is
perceptual speed (e.g., Vernon et al., 1985).

If the relation between speed and ability in reading is not more
positive among persons with higher perceptual speed, this provides
discriminant validity evidence for the construct interpretation, as it
indicates that the solution process in reading tasks does not involve
reasoning-specific component skills (Hypothesis 1b).

Reasoning
Fluid reasoning is assumed to be a good indicator for general
cognitive skills (Vernon, 1965). Reasoning requires controlled
mental operations to solve novel problems. Deductive/inductive
reasoning and quantitative reasoning are considered to belong
to the broad category of fluid reasoning alongside other
constructs. Fluid reasoning is required to accomplish cognitively
complex tasks and is hence based on various elementary
cognitive processes (McGrew, 2009). The elementary cognitive
processes underlying reasoning processes include working
memory capacity and perceptual speed (Vernon et al., 1985;
Neubauer, 1990; Schweizer and Koch, 2002; Altmeyer et al.,
2009). Perceptual speed describes the ability to perform easy
and elementary cognitive tasks automatically, and is one of
the specific, narrower abilities involved in processing speed
(McGrew, 2009). Higher perceptual speed can lead to faster
solutions on easy fluid reasoning tasks and correct solutions
on demanding tasks, because it allows a greater amount of
information to be processed despite limited working memory
capacity. Slow processes, in contrast, may lead to a loss of
information and a slow or even incorrect task solution (Jensen,
1982; Vernon et al., 1985; Sweller et al., 1998).

If the relation between speed and ability in reasoning is more
positive among persons with greater perceptual speed, this provides
convergent validity evidence for the construct interpretation, as
it indicates that the solution process in reasoning tasks requires
reasoning-specific component skills (Hypothesis 2a).

Although it is has been shown that schooling can affect
reasoning (Ceci and Williams, 1997; Guill et al., 2017), we
assume that highly specific component skills of education-related
competencies, such as word meaning activation, do not moderate
the relation between reasoning speed and reasoning ability in a
positive direction.

If the relation between speed and ability in reasoning is not
more positive among persons with higher word meaning activation,
this provides discriminant validity evidence for the construct
interpretation, as it indicates that the solution process in reasoning
tasks does not involve component skills that are related to reading
(Hypothesis 2b).

MATERIALS AND METHODS

Sample
This study is based on data from the PIAAC-L study (GESIS –
Leibniz Institute for the Social Sciences, German Socio-Economic
Panel (SOEP) at DIW Berlin and LIFBI – Leibniz Institute

for Educational Trajectories, 2017; Rammstedt et al., 2017). In
PIAAC-L, all German respondents from the PIAAC study were
re-contacted in 2015 and received either (randomly selected)
PIAAC literacy items (N = 1423) or other instruments. One year
later, respondents from the 2015 assessment were re-contacted
again and all received measures from the Socio-Economic Panel
(SOEP; Schupp et al., 2008), the Symbol-Digit Test (Schupp
et al., 2008) and a multiple-choice vocabulary intelligence test
(Lehrl, 2005). Some of those respondents were also selected
to complete the Number Series Test in 2016 (McArdle and
Woodcock, 2009; Engelhardt and Goldhammer, 2018) based on
the instruments they had received in 2015. The data set used
for the analyses in this study consists of N = 1588 respondents.
Of those, N = 744 respondents completed the PIAAC literacy
items and the Number Series, N = 679 only the PIAAC literacy
items, and N = 165 only the Number Series. In the whole
data set, respondents were M = 42.41 years old (SD = 13.72;
Min = 19, Max = 69) on average in 2015, and 48.55% were male
(51.45% female).

Measures
The PIAAC literacy test1 included a total of 49 dichotomously
scored items and is assumed to assess reading competence
(cf. OECD, 2016). PIAAC is an OECD study that aims to
assess adults’ competencies in literacy, numeracy, and problem-
solving in an international comparison. These “key information-
processing competencies” (OECD, 2016, p. 16) are necessary,
for example, to participate in social life or the labor market. In
addition, they are also assumed to be transferable to different
situations and learnable.

In PIAAC, literacy is defined as “understanding, evaluating,
using and engaging with written texts to participate in society, to
achieve one’s goals, and to develop one’s knowledge and potential”
(OECD, 2016, p. 19). The reading tasks can contain a continuous
text, a non-continuous text (e.g., form), or both, and can even
contain more than one text. Each reading task also requires one
of three cognitive strategies (access and identify, integrate and
interpret, or evaluate and reflect), and can address topics related
to work, personal matters, society and community, or education
and training. The example item (see footnote 1) “preschool
rules” requires the cognitive strategy “access and identify” and
takes up a personal topic. In this item, test-takers have to take,
from a text, by what time, at the latest, children have to arrive
at preschool. The text contains nine bullet points from one
or two short sentences and each bullet point describes a rule.
Two of these rules contain time information, which makes it
necessary to also read the text in which the time information
is embedded in order to solve the item. Regardless of the type
of text (continuous texts, non-continuous texts, mixed texts, or
multiple texts), cognitive strategy (access and identify, integrate
and interpret, or evaluate and reflect), or topic (work-related,
personal, community and society, or education and training), test
takers must comprehend text in each PIAAC literacy item. It
is assumed that word activation skills support the task solution

1For example items, see www.oecd.org/skills/piaac/Literacy%20Sample%20Items.pdf
(accessed October 26, 2018).
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in terms of speed and accuracy, as the fast retrieval of word
meaning from memory supports the correct semantic integration
of words and, in turn, the comprehension of text. In addition,
the automatic retrieval of words from memory reduces cognitive
load and does not compromise the cognitive processes that are
required for task solution. For this reason, across all items, word
meaning activation skill is expected to moderate the relationship
between speed and ability in reading. The literacy test was
administered in a two-stage adaptive test design (Kirsch and
Yamamoto, 2013, p. 10), with 9 out of 18 items administered in
the first items and 11 out of 31 items administered in the second
stage (OECD, 2016). The assessment had no time restriction.
Respondents had an increased probability of receiving a testlet
appropriate for their skill level depending on three variables
(education level, native speaker, passing score on computer-based
assessment core tasks; for more details, see OECD, 2016). Two
separate latent factors were modeled on the basis of the literacy
items: reading ability and reading speed. Fitting 2-parameter
IRT models in Mplus (Muthén and Muthén, 2015) based on
N = 1423 respondents revealed that all literacy item response
variables loaded significantly on a joint latent ability factor
[standardized loadings (variance of the latent variable fixed to
one): M = 0.60; SD = 0.11; Min = 0.37; Max = 0.82; see the
Appendix for further information]. Note that the MLR estimator
(maximum likelihood estimation with robust standard errors),
which was used to deal with the missing data structure, does
not provide absolute model fit information. We refrain from
presenting additional information on item fit given that both
the PIAAC literacy test and the Number Series Test are well-
established and trialed instruments. The reading speed factor was
obtained as follows: item-level processing times, that is the total
time a person spent on an item including editing or reviewing
their answer, were at first log-transformed and then subjected
to a confirmatory factor analysis. On average, respondents spent
M = 72.87 s on an item (SD = 28.66; Min = 25.59; Max = 129.04).
The log-transformed processing times for all items loaded on a
joint latent factor (cf. Figure 2, which describes the model for data
analyses) representing person-specific time use (standardized
loadings: M = 0.59; SD = 0.07; Min = 0.46; Max = 0.75; see the
Appendix for further information). For easier interpretation in
terms of reading speed, we switched the polarity of the processing
time results (from positive to negative and vice versa), such that
higher values indicate greater speed and thus less time spent
on an item. The model fit of the measurement model for the
processing times was acceptable (CFI = 0.879; TLI = 0.872;
RMSEA = 0.029; SRMR = 0.072).

Fifteen dichotomously scored Number Series items (McArdle
and Woodcock, 2009) were used to measure fluid reasoning
ability, because quantitative reasoning is a specific ability within
the broader domain of fluid reasoning (McGrew, 2009). Each
of the fifteen number series consisted of between four and
seven numbers. One number was missing in each of the first
14 number series. Only in the fifteenth number series were
two numbers missing. The missing numbers were either located
at the beginning, in a middle position, or at the end of the
number series. After 16 min, test-takers were navigated not to
the next number series but to the end of the assessment (cf.

Engelhardt and Goldhammer, 2018). This only happened to
seven respondents. Two separate latent factors were modeled
on the basis of the number series items: reasoning ability and
reasoning speed. A 2-parameter IRT model was fitted, with
all items loading significantly on a joint latent ability factor
[standardized loadings (variance of the latent variable fixed to
one): M = 0.69; SD = 0.11; Min = 0.52; Max = 0.87; N = 909
respondents; see the Appendix for further information]. In order
to test the measurement model for a joint latent reasoning
speed factor, the total processing times, that is, the time in
seconds a person spent on a single item including editing or
reviewing their answer (M = 28.40; SD = 26.33; Min = 5.36;
Max = 110.61), were first log-transformed. Then, a confirmatory
factor analysis of the log-transformed processing times was
conducted to model a latent factor (cf. Figure 2) representing
person-specific time use. The polarity of the processing time
results was changed for the results presented in the tables.
That is, higher values indicate less time spent on an item
(higher speed). Due to an unacceptable model fit (CFI = 0.707;
TLI = 0.658; RMSEA = 0.129; SRMR = 0.103), correlations
between items were allowed back into the model one-by-one
according to the modification indices until the model fit reached
an acceptable level (CFI = 0.966; TLI = 0.948; RMSEA = 0.050;
SRMR = 0.043). Correlations were only added between very
easy items and between hard items. This indicates that not only
did persons differ in their general reasoning speed, but that
there were also differential differences in reasoning speed for
easy and harder items. In the final model, all items loaded on
the reasoning speed factor (standardized loadings: M = 0.51;
SD = 0.15; Min = 0.16; Max = 0.68; see the Appendix for
further information).

For the two component skills, word meaning activation
and perceptual speed, one latent factor was modeled per test.
Perceptual speed is frequently assessed using the Symbol-Digit
Test2 (Ackerman, 1988). This test was also part of the Socio-
Economic Panel (Schupp et al., 2008) and was thus used in

2For an example, see p. 10 https://www.diw.de/documents/publikationen/73/diw_
01.c.570984.de/diw_ssp0339.pdf (accessed October 26, 2018).

FIGURE 2 | Structural model to investigate how the component skills
[perceptual speed (PS) and word meaning activation (WMA)] moderate the
relation between speed and ability in reading and reasoning tests (latent
correlations are omitted).
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this study. To complete the test, respondents recoded symbols
into digits according to a legend. The legend consisted of nine
symbols corresponding to the digits one to nine. Participants
had 90 s to recode as many symbols as possible one after the
other on the computer. Of these 90 s, the total number of
correctly coded digits was recorded for three time intervals of
30 s each, known as parcels. A latent perceptual speed factor was
modeled on the basis of these three parcels, leading to a fully
saturated and therefore perfectly fitting model (see the Appendix
for further information).

The Multiple-Choice Vocabulary Intelligence Test3 (Lehrl,
2005) from the Socio-Economic Panel (Schupp et al., 2008)
was used to measure a component skill specific to reading.
This test requires respondents to identify the existing word in
37 word groups of increasing difficulty. Each group consists
of five potential German words, four of which are fictitious.
Task completion time was not restricted (Zabal et al., 2016).
Kintsch (1998) describes this skill as word meaning activation.
Because we wanted subsequent analyses to be based on relations
among latent variables, a single indicator model was used to
estimate a latent variable for word meaning activation. In order to
ensure model identification, the single indicator variable (i.e., the
number of correct answers across all 37 items) was standardized,
the variance of the latent factor was fixed to 1, and the factor
loading was fixed to the root of 0.76 (see the Appendix for further
information). This loading served as a proxy for the estimated
reliability of this test and is based on its correlation with a similar
test (Satzger et al., 2002).

Data Analyses
Data was analyzed using Mplus (Muthén and Muthén, 2015).
As the literacy items were administered in an adaptive
design, the three context variables involved in testlet selection
(education level, native speaker, passing score on computer-based
assessment core tasks) were included as correlated variables for
Hypotheses 1a and 1b in order to make it justifiable to assume
that the not-administered items were missing at random (MAR;
cf. Enders, 2010). The MLR estimator (maximum likelihood
estimation with robust standard error) can be used to test
structural equation models using categorical items. It also has the
advantage of being able to consider all information under the
missing at random (MAR) assumption despite the presence of
missing data, making it suitable for the present study. Structural
equation models for each domain were tested to analyze the
hypotheses. First, only main effects for reasoning/reading speed
were modeled as predictors of reading/reasoning ability (baseline
model). To test the hypotheses, latent interaction terms (cf.
latent moderated structural equations; Klein and Moosbrugger,
2000) of reasoning/reading speed and perceptual speed and
of reasoning/reading speed and word meaning activation were
included in the model for literacy (Hypotheses 1a and 1b)
and number series (Hypotheses 2a and 2b). These models also
contained the main effects of perceptual speed and word meaning
activation. The model for the hypotheses is visualized in Figure 2.

3For an example, see p. 11 https://www.diw.de/documents/publikationen/73/diw_
01.c.570984.de/diw_ssp0339.pdf (accessed October 26, 2018).

RESULTS

To test the hypotheses, we analyzed whether the relation between
speed and ability was positively moderated only by the domain-
specific component skill, meaning that the relation between speed
and ability is assumed to be more positive for persons with higher
domain-specific component skills. The results are presented
separately for reading (Table 1) and reasoning (Table 2).

Reading
Reading speed and reading ability were not significantly related
in the sample (Table 1: β = −0.08, p = 0.053). When including
perceptual speed in the analyses (cf. Results for Hypothesis 1b),
the relation between reading speed and reading ability became
more negative (Table 1: β = −0.28, p < 0.001). This might be
because reading speed and the component skill perceptual speed
were positively correlated (r = 0.37; p< 0.001).

Word meaning activation, as a domain-specific component
skill, was positively associated with reading ability (main effect:
β = 0.49, p < 0.001). As expected, the relation between reading
speed and reading ability was positively moderated by word
meaning activation (Hypothesis 1a; interaction effect: β = 0.12,
p = 0.001). This indicates that persons with higher word meaning
activation skills had higher reading ability scores (main effect)
and those who worked faster had, in addition, higher reading
ability scores, compared to those with lower word meaning
activation skills (interaction effect; see Figure 3, Hypothesis
1a), because the relation between reading speed and reading
ability was more positive for these persons, providing convergent
validity evidence that word meaning activation is important for
automated reading processes.

Perceptual speed, as a component skill of fluid reasoning,
was also positively associated with reading ability (main effect:
β = 0.49, p < 0.001). As expected, perceptual speed did
not moderate the relation between reading speed and reading
ability in a positive direction (Hypothesis 1b; interaction effect:
β = −0.07, p = 0.023), but did so in negative direction.
This indicates that persons with higher perceptual speed had
higher reading ability scores (main effect) compared to persons
with lower perceptual speed. But this advantage of having
higher perceptual speed was smaller for those who worked
faster (interaction effect, see Figure 3, Hypothesis 1b). The
fact that no positive moderation effect was found provides
discriminant validity evidence. Further interpretations of the
negative interaction effect are presented in the discussion section.

Reasoning
Reasoning speed and reasoning ability were positively related
(Table 2: β = 0.27, p < 0.001) in this sample. The component
skill perceptual speed was positively correlated with reasoning
speed (r = 0.48; p < 0.001), which led to a less positive but
still significant relation between reasoning speed and reasoning
ability (Table 2: β = 0.11, p = 0.030) when the component skill
perceptual speed was included in the model.

As expected, perceptual speed, a domain-specific component
skill, was positively related to reasoning ability (main effect:
β = 0.35, p < 0.001) and moderated the relationship between
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TABLE 1 | Interaction effects of component skills – word meaning activation (WMA) and perceptual speed (PS) – and reading speed on reading ability.

Baseline model Hypothesis 1a (convergent) Hypothesis 1b (discriminant)

β SE z p β SE z p β SE z p

Reading speed −0.081 0.04 −1.941 0.053 −0.041 0.04 −1.021 0.310 −0.281 0.04 −7.181 <0.001

WMA 0.49 0.05 10.41 <0.001

WMA × Reading speed 0.121 0.03 3.891 <0.001

PS 0.49 0.03 16.32 <0.001

PS × Reading speed −0.071 0.03 −2.271 0.023

Baseline model: N = 1423; Hypotheses 1a and 1b: N = 1587. 1Data analysis was based on processing times (higher values indicating more time on an item). In order to
interpret the obtained latent variables as “speed” (higher values indicating less time on an item), we inverted the polarity of the β- and z-values for speed in the table.

TABLE 2 | Interaction effects of component skills – word meaning activation (WMA) and perceptual speed (PS) – and reasoning speed on reasoning ability.

Baseline model Hypothesis 2a (convergent) Hypothesis 2b (discriminant)

β SE z p β SE z p β SE z p

Reasoning speed 0.271 0.04 6.161 <0.001 0.111 0.05 2.171 0.030 0.241 0.04 6.151 <0.001

WMA 0.46 0.04 10.78 <0.001

WMA × Reasoning speed 0.061 0.04 1.431 0.152

PS 0.35 0.04 8.36 <0.001

PS × Reasoning speed 0.101 0.04 2.501 0.012

Baseline model: N = 909; Hypotheses 2a and 2b: N = 1410. 1Data analysis was based on processing times (higher values indicating more time on an item). In order to
interpret the obtained latent variables as “speed” (higher values indicating less time on an item), we inverted the polarity of the β- and z-values for speed in the table.

reasoning speed and reasoning ability in a positive direction
(Hypothesis 2a; interaction effect: β = 0.10, p = 0.012). This
indicates that persons with higher perceptual speed had higher
reasoning ability scores (main effect) and those who worked
faster had, in addition, higher reasoning ability scores compared
to those with lower perceptual speed for (interaction effect; see
Figure 3, Hypothesis 2a), because the relation between reasoning
speed and reasoning ability was more positive for these persons.
This provides convergent validity evidence that the component
skill of perceptual speed is important for automated processes in
reasoning tasks.

Word meaning activation was also positively associated with
reasoning ability (main effect: β = 0.46, p < 0.001), but
did not positively moderate the relation between reasoning
speed and reasoning ability (Hypothesis 2b; interaction effect:
β = 0.06, p = 0.152), providing discriminant validity evidence.
This suggests that persons with higher word meaning activation
skills had higher reasoning ability scores but this difference did
not increase for those who worked faster (interaction effect;
see Figure 3, Hypothesis 2b). Word meaning activation was as
expected not important for automated cognitive processes in
reasoning tasks.

DISCUSSION

Main Findings
The results provided both convergent and discriminant validity
evidence for the construct interpretation of reasoning and
reading ability scores. Convergent evidence was provided because
the relations between speed and ability were more positive

among persons with stronger domain-specific component skills
(word meaning activation for reading and perceptual speed for
reasoning). This means that people with stronger component
skills that were theoretically assumed to be relevant for the target
ability did indeed obtain higher ability scores and this advantage
was even more explicit when they worked faster, which supports
that the component skills were indeed involved in automated task
solution processes. Discriminant validity evidence was provided
because the component skills that were assumed to be irrelevant
for automated task solution processes in each domain did
not moderate the speed-ability relation in a positive direction.
Persons with higher scores on the irrelevant component skills and
who worked faster did not show relative higher ability compared
to persons with lower scores on the irrelevant component skills.

Interpretation of Empirical Findings
Although empirical support was found for the hypothesized
moderation effects, the two component skills (word meaning
activation and perceptual speed) were positively associated with
both abilities examined (reading and reasoning). One could
ask whether these correlations between test scores for one
ability and component skills for the other ability call the
validity of the intended construct interpretation into question.
We argue that this is not the case, because competencies
and general cognitive skills are assumed to be related, for
instance because schooling may affect reasoning, and there is
ongoing discussion about the extent to which those skills can
be separated (Brunner, 2005; Nagy, 2006; Rindermann, 2006;
Prenzel et al., 2007; Baumert et al., 2009; Rindermann and
Baumeister, 2015; Saß et al., 2017). Hence, it is not surprising
that component skills for reading correlate with tests scores
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FIGURE 3 | Moderation effects of perceptual speed and word meaning activation for the relation between speed and ability in the reading and reasoning tests.

for reasoning tasks and vice versa, and this does not call
the validity of the test score interpretation into question.
Perceptual speed is considered to be a general and domain-
unspecific skill. According to cognitive load theory (Sweller
et al., 1998), fast processing might reduce cognitive load in
complex tasks, which could in turn help with task solution
even if a task’s cognitive load is high. Hence, persons with
higher perceptual speed might also have advantages in tasks
from other domains. Moreover, according to Cattell’s (1963)
investment theory, fluid intelligence (e.g., reasoning) is important
for the acquisition of crystallized abilities (e.g., reading). The
reverse is also posited: Educational processes are assumed to
affect fluid intelligence (Ceci and Williams, 1997; Guill et al.,
2017). Hence, such correlations can actually be expected on
the basis of empirical findings and theoretical assumptions.
The advantage of the suggested validity approach is that it
helps distinguish the roles of different component skills for
different domains by determining whether they are related to
fast and correct task solution processes or not. We conclude
that not only ability score differences should be focused on
when investigating the validity of the construct interpretation of
ability scores, but also differences in the speed-ability relation and
how they are affected by component skills considered relevant
for the construct.

Interpreting the speed-ability relation in terms of construct-
related response processes requires ruling out alternative
explanations. For instance, test-wiseness could explain the speed-
ability relation, as greater test-wiseness presumably makes test-
takers both faster and more successful. However, one would
assume that test-wiseness has a consistent impact across domains.
This is obviously not the case given the differences between
reasoning and reading in the relation between speed and ability.
Moreover, the pattern of interaction effects for construct-related
component skills speaks against this assumption as well.

Unpredicted but interestingly, the relation between reading
speed and reading ability was also moderated by perceptual
speed, but in a negative direction. This does not contradict our
hypothesis, which was that perceptual speed does not moderate
the speed-ability relation in a positive direction. The negative
interaction effect does not mean that perceptual speed is involved
in performing reading processes in the automated mode (what
would have been supported by a positive moderation effect, as
was the case for word meaning activation). It rather indicates
that higher perceptual speed is associated with higher ability
for persons working more slowly. Perceptual speed could have
functioned as a resource, for instance to compensate for non-
automatized processes. Word identification during reading can
be based on different processes (cf. Perfetti, 2007): on extracting
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word meanings or decoding single letters. While word meaning
activation might matter for the first process, perceptual speed
might matter for decoding when the meaning cannot be directly
retrieved. Higher perceptual speed might thus increase the
probability of correct item solution when respondents invest time
into decoding single words in order to understand the text as
well as possible.

What do the results mean for the pursued research questions
for reading? The results first indicate that solving PIAAC literacy
items is rooted in typical reading-specific processes like word
meaning activation. Word meaning activation was not only
predictive of reading ability (main effect) but was also related
to fast and correct solutions and thus involved in the response
process (interaction effect). Secondly, higher perceptual speed,
a component skill of reasoning, predicted reading ability (main
effect). The unexpected negative interaction effect indicated
that the speed-ability relation differed depending on a persons’
perceptual speed. The results suggested that perceptual speed was
not related to automated cognitive processes but may, rather,
represent a resource for compensating behavior. This result
is highly interesting because it indicates that perceptual speed
plays a different role in PIAAC literacy items than reading-
specific component skills. Thus, examining the relations between
component skills and speed-ability relations in tasks from a
given domain can reveal whether and how component skills are
involved in the solution process for complex tasks like reading.

The results for reasoning need to be interpreted in light of the
general reasoning speed factor we modeled. Correlations between
items were allowed in order to achieve an acceptable model fit
for the measurement model. Correlations between easy items and
between hard items were necessary, but not between items with a
medium level of difficulty. This indicates that speed in reasoning
tasks can be multidimensional, perhaps because strategies might
change from easy to hard items. In this study, the latent reasoning
speed factor is dominated by the speed respondents exhibited on
items of medium difficulty. As a consequence, the results should
primarily be interpreted in this respect, that is, perceptual speed
might particularly play a role for items of medium difficulty.
Other component skills might potentially be involved in easier
or harder items. Hence, it would be interesting to investigate
in future studies what other component skills are crucial in
reasoning items depending on the level of item difficulty.

Regarding the research question on interaction effects, it can
be concluded for reasoning that the component skill of perceptual
speed seems to be important for reasoning tasks at least at a
medium level of difficulty, while word meaning activation as is
not related to automated processes when solving reasoning items.

Limitations of the Study
We applied our validation approach to a subsample of the
German PIAAC sample that was re-assessed within a longitudinal
setting. This longitudinal setting was highly advantageous
because it meant that the same individuals completed reading
tasks, reasoning tasks, and both component skills tasks (i.e.,
word meaning activation and perceptual speed). However,
there were also some limitations. First, each construct was
only operationalized with one measure, which means that the

latent variables we obtained may also reflect properties of
the measure (e.g., the ability to deal with numerical material
in the case of reasoning). Second, the selection of domain-
specific component skills was limited. For instance, in the case
of literacy, the component skill semantic integration (Richter
and Naumann, 2009) would have been another candidate to
affect the speed-ability relation. Third, the PIAAC study is a
low-stakes assessment study, and test-takers’ motivation might
have varied. Low motivation elicits cognitive processes that may
be unrelated to the task solution. By contrast, the described
approach is based on the assumption that speed in an item can
be interpreted as the duration of a person’s cognitive processes
and differences in the speed-ability relation as an indicator for
differences in cognitive processing. Fourth, test-takers in the
PIAAC-L assessment completed the PIAAC reading items in both
2012 and 2015. Although there was some time in between, test-
takers might have gotten used to these kinds of tasks and have
remembered seeing the same items 3 years ago. Thus, carry-over
effects could have affected the results.

Strengths and Limitations of the
Validation Approach
In our view, the strength of the proposed validation approach is
that information from the response process is used to support
the validity of construct interpretations. Relations between
component skills and the two ability tests (cf. main effects)
did not reveal any differences between reading and reasoning,
because word meaning activation and perceptual speed were
positively predictive for both constructs. Only when considering
component skills as a moderator of the relation between speed
and ability were differences revealed between the reading and
the reasoning tests. In the reasoning test, the relation between
reasoning speed and reasoning ability was more positive for
persons with higher perceptual speed. In the reading test, the
relation between reading speed and reading ability was more
negative for persons with higher perceptual speed. Hence, higher
perceptual speed supports a higher degree of automatization
in reasoning but plays a different role in reading – one
possible explanation being to compensate for non-automated
processes. However, these different roles only become visible
when examining not just the relations between component skills
and the product of task completion (relation between component
skill and ability), but also the process of task completion
(relation between component skill and the speed-ability relation).
Although the data analysis is based on regression analyses with
speed ‘predicting’ ability, we assume no causal direction in the
relation between speed and ability. However, we do assume that
differences in component skills can indeed ‘cause’ a different
relation of speed and ability.

We assume that this approach is especially useful for
validating the construct interpretation of constructs for which
no single process model exists. A number of different processes
are involved in tasks like reading and reasoning, making it
challenging to use process information for validation (Kane
and Mislevy, 2017, p. 11). Research on the reading process
indicates a web of complex, entangled processes that are both
top-down and bottom-up, both controlled and automated. The
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described approach only explicitly requires assumptions to be
made about the involved component skills. However, it also
implicitly assumes constant task-related cognitive processes.
For assessments in which items are heterogeneous, the role of
various component skills may vary across items, and different
ones may even be required for different items. In such cases,
it seems reasonable to investigate moderation effects at the
item level as well.

An additional advantage of our approach is that it helps
to collect not only convergent but also discriminant validity
evidence. If we had only focused on sources of convergent
validity, positive interaction effects could have also been caused
by other factors such as restricted variance (cf. Cortina et al.,
2018). When a certain level of a component skill that is
also related to the target ability is considered, the variance
in the target ability is restricted. Positive interactions might
stem from the fact that the predictor restricts variance in the
criteria. Thus, the analyses of discriminant sources provided
additional support by showing that although the predictors
and criteria were related, the positive interaction effects did
not occur in all cases, but only for the hypothesized effects
based on the theoretical assumptions. This supports the notion
that the positive interaction effects for sources of convergent
validity evidence are not the result of variance restriction.
In addition, the collection of convergent and discriminant
validity evidence, by referring to the same component skill for
different constructs, allows conclusions about the distinctness
or relatedness of two constructs in terms of their underlying
processes. Two constructs differ in their underlying processes
when a component skill positively moderates the speed-ability
relationship of construct A but not of construct B. In the
present study, perceptual speed as an underlying skill in
terms of automation moderated the speed-ability relation for
reasoning, but not for reading competence, and word meaning
activation for reading competence, but not for reasoning. In
future studies focused on constructs that are less divergent
than reading and reasoning, where a component skill of one
target ability cannot provide discriminant validity evidence for
the other construct, one could also include component skills
that can serve as sources of discriminant validity evidence for
both constructs.

Furthermore, this approach is based on the assumption that
sub-processes of the task solution process can be performed
in an automatized mode. Hence, this approach is limited to
constructs for which the dual processing framework holds. We
assume that our approach is especially applicable to assessments
from educational studies (e.g., PIAAC; OECD, 2016), which
focus on assessing broad competence domains that require the
interplay of various component skills. In any event, a sound
theoretical basis concerning the involved component skills is
required to derive hypotheses. However, it is conceivable that
also variables apart from component skills can be used as
moderating variables. Different behavior associated with different
speed-ability relations could be originate from tasks that allow
different solution strategies with one way being superior to
the other, or by differently experienced participants (e.g., test-
wiseness; Millman et al., 1965). In both cases, persons who

worked faster and used superior solution strategies or had a
higher test experience compared to other persons should have
even higher scores.

Finally, although our validation approach aims to investigate
the response process for validation purposes, it does not
capture the intra-individual cognitive information processing
for a single person completing a single item. Instead, our
validation argument relies on statistical parameters describing
relations across persons to infer meaningful characteristics of the
response process.

Future Directions
In general, the presented empirical findings can be seen as
preliminary and must be supported by future studies. In this
study, test score validation was challenged (cf. Kane, 2013) with
alternative theories by collecting discriminant validity evidence.
However, there was no cross validation checking, for instance.
In the future, the proposed validation approach must prove
itself with respect to other samples, other constructs and other
component skills.

As previously argued, the validation approach is assumed to
be especially useful when no single process model exists. From
this, it follows that more than one component skill is likely to
be involved in task solution in such cases. Hence, more than
one component skill may moderate the speed-ability relationship
and should be considered when collecting convergent validity
evidence. The simultaneously inclusion of multiple, interrelated
component skills (e.g., semantic integration and word meaning
activation in the case of reading) in the model would affect
the interpretation of effects. In this case, the effects would be
estimated as partial regression coefficients controlling for the
other predictors in the model.

As mentioned above, the role of component skills may vary
across items depending on item characteristics. Moderation
effects could also be tested at the item level by adding effects
of (residual) response time on (residual) response within items
(cf. Bolsinova et al., 2017b). Investigating how component skills
moderate these item-specific effects would shed light on how the
effect of being faster than expected on task success depends on
certain component skills. The variation in the moderating effect
across items could be related to item difficulty as well as item
characteristics that determine it. Thus, our approach could be
adapted to the item level in order to provide further insights into
the response process at this level.

CONCLUSION

Overall, this study proposed a novel validation approach that
allows for investigating the role of component skills in response
processes by focusing not only on the main effect of component
skills on the targeted ability dimension, but also on how they
influence the relation between speed and ability. As shown in
the empirical example, including speed and interacting variables
in the construct validation allows for testing specific hypotheses
about the role of component skills in the task completion process,
beyond their role in the task outcome.
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APPENDIX

TABLE A1 | Measurement models reading (standardized results).

Reading ability Reading speed

Loading (SE) Threshold (SE) Loading (SE) Intercept (SE)

Item 1 0.44 (0.09) −1.47 (0.10) 0.63 (0.03) 20.48 (0.66)

Item 2 0.71 (0.05) −1.04 (0.07) 0.60 (0.03) 22.59 (0.73)

Item 3 0.64 (0.06) −0.98 (0.07) 0.51 (0.04) 16.73 (0.56)

Item 4 0.48 (0.06) −0.67 (0.06) 0.56 (0.03) 27.89 (0.92)

Item 5 0.71 (0.03) −0.65 (0.04) 0.71 (0.02) 18.61 (0.42)

Item 6 0.57 (0.04) −0.02 (0.04) 0.56 (0.02) 19.11 (0.45)

Item 7 0.59 (0.04) −1.07 (0.05) 0.64 (0.02) 17.16 (0.39)

Item 8 0.45 (0.04) 0.07 (0.04) 0.66 (0.02) 21.13 (0.50)

Item 9 0.64 (0.04) −0.57 (0.04) 0.61 (0.02) 22.57 (0.53)

Item 10 0.55 (0.04) 0.10 (0.04) 0.54 (0.03) 20.13 (0.46)

Item 11 0.82 (0.02) −0.29 (0.04) 0.69 (0.02) 18.62 (0.44)

Item 12 0.49 (0.04) 0.67 (0.04) 0.63 (0.02) 17.51 (0.41)

Item 13 0.52 (0.04) 0.07 (0.04) 0.52 (0.03) 18.83 (0.43)

Item 14 0.64 (0.05) −0.47 (0.06) 0.60 (0.03) 17.06 (0.55)

Item 15 0.50 (0.05) −0.15 (0.05) 0.62 (0.03) 20.86 (0.68)

Item 16 0.52 (0.05) 0.25 (0.05) 0.49 (0.04) 17.05 (0.57)

Item 17 0.60 (0.06) 0.71 (0.06) 0.55 (0.04) 18.18 (0.60)

Item 18 0.41 (0.06) 0.22 (0.06) 0.71 (0.03) 21.11 (0.70)

Item 19 0.63 (0.07) −0.98 (0.09) 0.46 (0.05) 16.26 (0.70)

Item 20 0.73 (0.07) −1.65 (0.11) 0.50 (0.05) 19.07 (0.81)

Item 21 0.62 (0.12) −2.32 (0.20) 0.55 (0.04) 20.83 (0.85)

Item 22 0.70 (0.05) −0.31 (0.07) 0.62 (0.04) 19.97 (0.80)

Item 23 0.46 (0.07) −0.55 (0.08) 0.49 (0.05) 16.64 (0.71)

Item 24 0.51 (0.08) −0.67 (0.08) 0.53 (0.04) 19.26 (0.83)

Item 25 0.63 (0.04) −0.54 (0.05) 0.75 (0.02) 23.75 (0.63)

Item 26 0.37 (0.05) 0.30 (0.05) 0.63 (0.03) 18.30 (0.51)

Item 27 0.58 (0.04) −0.15 (0.05) 0.69 (0.02) 21.04 (0.55)

Item 28 0.49 (0.05) −0.86 (0.05) 0.49 (0.03) 16.25 (0.45)

Item 29 0.74 (0.04) −0.94 (0.06) 0.52 (0.03) 17.40 (0.48)

Item 30 0.79 (0.04) −0.50 (0.06) 0.64 (0.03) 21.68 (0.75)

Item 31 0.70 (0.05) −0.32 (0.06) 0.60 (0.03) 15.72 (0.56)

Item 32 0.67 (0.05) −0.30 (0.06) 0.62 (0.03) 16.77 (0.58)

Item 33 0.64 (0.05) −0.89 (0.06) 0.61 (0.03) 20.59 (0.56)

Item 34 0.62 (0.04) −0.07 (0.04) 0.54 (0.03) 17.34 (0.48)

Item 35 0.64 (0.04) −0.52 (0.05) 0.59 (0.03) 19.52 (0.52)

Item 36 0.57 (0.06) −0.16 (0.06) 0.49 (0.04) 16.97 (0.66)

Item 37 0.71 (0.06) 0.46 (0.06) 0.56 (0.04) 17.75 (0.70)

Item 38 0.75 (0.05) −0.47 (0.07) 0.47 (0.05) 19.14 (0.75)

Item 39 0.58 (0.06) −1.47 (0.08) 0.63 (0.02) 15.95 (0.42)

Item 40 0.42 (0.05) 0.45 (0.05) 0.56 (0.03) 19.16 (0.51)

Item 41 0.74 (0.04) 0.33 (0.04) 0.58 (0.03) 20.26 (0.55)

Item 42 0.77 (0.03) 0.33 (0.04) 0.56 (0.03) 23.43 (0.64)

Item 43 0.58 (0.04) −0.36 (0.05) 0.46 (0.03) 16.51 (0.45)

Item 44 0.77 (0.04) −0.31 (0.06) 0.65 (0.03) 20.35 (0.72)

Item 45 0.66 (0.05) −0.08 (0.06) 0.64 (0.03) 23.06 (0.82)

Item 46 0.56 (0.07) 0.74 (0.06) 0.72 (0.03) 18.51 (0.67)

Item 47 0.50 (0.07) 0.85 (0.07) 0.55 (0.04) 18.24 (0.67)

Item 48 0.49 (0.06) 0.35 (0.06) 0.69 (0.03) 17.93 (0.64)

Item 49 0.68 (0.07) 1.21 (0.07) 0.57 (0.04) 17.69 (0.65)
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TABLE A2 | Measurement models reasoning (standardized results).

Reasoning ability Reasoning speed

Loading (SE) Threshold (SE) Loading (SE) Intercept (SE)

Item 1 0.87 (0.05) −2.95 (0.28) 0.36 (0.03) 4.01 (0.10)

Item 2 0.77 (0.10) −2.61 (0.18) 0.47 (0.03) 4.33 (0.11)

Item 3 0.56 (0.07) −1.64 (0.08) 0.55 (0.03) 4.79 (0.12)

Item 4 0.77 (0.07) −2.41 (0.14) 0.59 (0.03) 4.11 (0.10)

Item 5 0.60 (0.05) −1.24 (0.06) 0.62 (0.02) 4.58 (0.11)

Item 6 0.58 (0.04) −0.46 (0.04) 0.66 (0.02) 5.17 (0.13)

Item 7 0.70 (0.09) −2.05 (0.11) 0.66 (0.02) 4.40 (0.11)

Item 8 0.66 (0.05) −0.94 (0.05) 0.68 (0.02) 4.93 (0.12)

Item 9 0.72 (0.04) −0.73 (0.05) 0.66 (0.02) 4.86 (0.12)

Item 10 0.52 (0.04) −0.37 (0.04) 0.43 (0.03) 4.79 (0.12)

Item 11 0.60 (0.04) −0.37 (0.04) 0.44 (0.03) 4.44 (0.11)

Item 12 0.77 (0.03) 0.00 (0.04) 0.50 (0.03) 4.82 (0.12)

Item 13 0.86 (0.03) −0.29 (0.04) 0.48 (0.03) 5.03 (0.13)

Item 14 0.71 (0.03) −0.31 (0.04) 0.37 (0.03) 4.67 (0.12)

Item 15 0.70 (0.04) 0.60 (0.05) 0.16 (0.04) 5.42 (0.14)

TABLE A3 | Measurement models perceptual speed and word meaning activation (standardized results).

Loading (SE) Intercept (SE)

Perceptual speed

Interval 1 (0–30 s) 0.85 (0.01) 3.09 (0.06)

Interval 2 (30–60 s) 0.89 (0.01) 4.23 (0.08)

Interval 3 (60–90 s) 0.82 (0.01) 4.45 (0.09)

Word meaning activation

Number of correct answers 0.87 (0.02) 0.00 (0.03)
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Influencing students’ educational achievements first requires understanding the
underlying processes that lead to variation in students’ performance. Researchers are
therefore increasingly interested in analyzing the differences in behavior displayed in
educational assessments rather than merely assessing their outcomes. Such analyses
provide valuable information on the differences between successful and unsuccessful
students and help to design appropriate interventions. Complex problem-solving (CPS)
tasks have proven to provide particularly rich process data as they allow for a multitude
of behaviors several of which can lead to a successful performance. So far, this data
has often been analyzed on a rather aggregated level looking at an average number of
actions or predefined strategies with only a few articles investigating the specific actions
performed. In this paper, we report the results of an exploratory analysis of CPS log-files
that is aimed at distinguishing between students that applied the correct strategy to a
problem but failed to solve it and those applying the strategy successfully. In that, the
sequence of behavior displayed is reduced to interpretable parts (n-grams) that allow
searching for meaningful differences between the two groups of students. This level of
analysis allows finding previously undefined or unknown patterns within the data and
increases our understanding of the processes underlying successful problem-solving
behavior even further.

Keywords: log-file, problem-solving, n-grams, process data, educational assessment

INTRODUCTION

The advent of computers to psychological and educational assessment has made it possible to
analyze behavioral processes and sequences of actions through information captured in computer-
generated log-files (records of all actions taken while working on a computerized assessment;
Bunderson et al., 1989). Researchers are no longer limited to measuring the final outcome of an
assessment (e.g., solved vs. not solved) but can also investigate the steps and actions resulting in
the specific outcome through analyzes of test-taking behaviors. In other words, analyzing log-files
allows researchers to make inferences about the latent cognitive processes involved in solving tasks
from overt behavior (Greiff et al., 2015b). Log-files may, for example, inform researchers of specific
mistakes made while working on a problem that may be indicative of a misunderstanding of the
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problem at hand (Ifenthaler et al., 2012). Identifying
specific test-taking behaviors that lead to successful and
unsuccessful performance has proven to be a treasure
chest for the improvement of interventions and teaching
enabling the differentiation of instructions and scaffolding
and providing students with avenues for learning individually
tailored to their needs.

A field that has made much use of log-file analysis in
the last years is the field of complex problem-solving (CPS;
e.g., Goldhammer et al., 2014; Greiff et al., 2016). Analyzing
students’ behavior through log-files, it was shown that the
application of the vary-one-thing-at-a-time strategy (VOTAT;
Tschirgi, 1980), also referred to as “control of variables strategy”
(Chen and Klahr, 1999), could explain a great deal of students’
performance in solving complex problems (Greiff et al., 2015b).
Others noted, however, that simply identifying those students
that applied the VOTAT strategy is not sufficient to fully explain
why some students successfully solve a task whereas others do
not (Kuhn and Dean, 2005). There must be other differences
in metastrategic behavior that distinguish students that apply
the VOTAT strategy and successfully solve a problem and those
students that apply the strategy but fail. The aim of this paper
is to use data mining techniques to analyze CPS log-files to find
differences in behavior that indicate successful and unsuccessful
behavior beyond the already established strategies.

LOG-FILES IN COMPLEX
PROBLEM-SOLVING TASKS

Traces of behavior have been gathered in psychology studies
since the 1930s (Skinner, 1938). Today, modern computer-
based applications of psychological assessment make it very
easy to capture a variety of interaction behaviors and save
them to log files for later analysis. These interaction data
have been referred to virtually synonymously as “log-file data”
(Arroyo and Woolf, 2005), “discrete action protocols” (Fu, 2001),
or “process data” (Zoanetti, 2010), only listing the most common
names. Behavioral log-files are indicators of human behavior as
observed by automatic sensors that capture and record actions
displayed while interacting with the assessment. They may
include behavior as diverse as rich audio and video recordings
or low-level keystrokes.

Complex tasks, allowing for multiple behaviors that lead
to a correct solution, produce valuable log-files with sufficient
variation among participants for a meaningful interpretation.
The study of how individuals engage with such complex tasks is
therefore synonymous with problem-solving (Vista et al., 2016).
Exploration of the processes employed in problem-solving or in
engaging with complex tasks can provide information about the
cognitive skills that underlie successful resolution of the problems
or tasks (O’Neil et al., 2003; Griffin and Care, 2015). Indicators
of these cognitive skills can be deduced from behaviors, which
are captured in the form of attempted or completed processes in
problem-solving tasks.

Problem-solving tasks that are particularly rich in log-file data
are CPS tasks. Throughout this paper, CPS is understood as

“(. . .) the successful interaction with task environments that are
dynamic (i.e., change as a function of the user’s interventions
and/or as a function of time) and in which some, if not all, of
the environment’s regularities, can only be revealed by successful
exploration and integration of the information gained in that
process” (Buchner in Frensch and Funke, 1995, p. 14). CPS tasks
thus differ from static problem-solving tasks in that they require
active interaction between the problem solver and the problem
resulting in very meaningful log-file data (Greiff et al., 2015a).

ANALYZING LOG-FILE DATA

A priori Established Sequences
of Behavior
Log-file data can be analyzed in two different ways: Based
on a priori established sequences of behaviors (top–down)
or bottom–up in an exploratory analysis that searches
for patterns within the behavior displayed (Vista et al.,
2016). Regarding CPS, various studies provided valuable
findings by searching test-taking behavior for instances of
specific, theoretically defined exploration strategies (e.g.,
Kröner et al., 2005; Wüstenberg et al., 2014). One of the
strategies investigated most often in CPS research is the
application of the VOTAT; Tschirgi (1980), also referred to as
“control of variables strategy” (Chen and Klahr, 1999). When
applying the VOTAT strategy, all variables of a problem are
manipulated individually while the remaining variables are
held constant to determine the effect of the varied independent
variables on the dependent outcomes. VOTAT thus describes
the principle of isolated variation of variables, which is the
core component of scientific experimentation (Kuhn and
Dean, 2005) and has been the almost exclusive focus of
psychologists investigating the development of scientific
reasoning (Zimmerman, 2000).

Empirically, multiple studies (e.g., Kröner et al., 2005;
Wüstenberg et al., 2012, 2014) showed that application
of VOTAT is strongly related to CPS performance (see
also Funke, 2010). Most prominently, Greiff et al. (2015b)
demonstrated the usefulness of the VOTAT strategy to explain
performance differences within a problem-solving task that was
part of the 2012 cycle of the Programme for International
Student Assessment (PISA), one of the most widely recognized
educational large-scale assessments (Turner and Adams, 2007).
Their analysis of the Climate Control task showed, that applying
the VOTAT strategy was strongly related to overall performance.
This relation was observed both on the individual level and on
the country level. However, not all students applying the VOTAT
strategy solved the task leading researchers to search for other
behaviors separating successful and unsuccessful problem-solvers
(Kuhn and Dean, 2005).

As the empirical approach of searching for predefined
behavioral patterns cannot explain why some students fail to
solve tasks even though they apparently apply the correct
strategy, it is necessary to take a closer look and conduct
exploratory analyses searching for differences within the
behaviors of students that apply the correct strategy and succeed
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and those that apply the correct strategy but fail, which is what
we will attempt in this paper.

Exploratory Approaches
Especially if long sequences of behavior need to be analyzed,
exploratory approaches provide a helpful description of the
underlying patterns. An approach proposed to explorative search
for repetitive patterns within long sequences is the n-gram
method (Damashek, 1995). The n-gram method summarizes a
long string of entries (e.g., letters in words or separate instances
of behaviors) as sequences of n consecutive elements. While
this method was originally developed to classify and mine text
data (Damashek, 1995), data scientists quickly noticed that it
was also useful to classify behavior (mostly in the domain of
web data mining; Mobasher, 2007). In this paper, we will use
the n-gram approach to exploratively search for differences in
behavior displayed by students that applied the VOTAT strategy
to solve a complex problem and succeeded in solving it and those
who applied the VOTAT strategy but failed to solve the problem.

To illustrate the n-gram approach take a problem that only
allows for two different behaviors (A and B). A potential string
of behaviors for the problem-solving process of a problem solver
could look like this:

AABBBABABBBABBBAAABBABBBA
Table 1 illustrates how this sequence could be summarized

by n-grams of the lengths n = 2 (bigrams), n = 3 (trigrams),
and n = 4 (four-grams), each representing an increasingly
more complex but less frequently appearing set of consecutive
actions. In that way, the behavior of each problem solver
could be described based on a set of sequences, which could
then be used to either classify problem-solvers or predict
future behavior (Liu and Kešelj, 2007). Due to this flexibility,
n-grams form the basis of many data mining techniques
(Borges and Levene, 2000).

TABLE 1 | Example of n-grams of different length with respective frequencies.

n = 2 n = 3 n = 4

Sequence Frequency Sequence Frequency Sequence Frequency

AA 2 AAA 1 AAAA 0

AB 6 AAB 2 AAAB 1

BA 6 ABB 5 AABA 0

BB 5 ABA 1 AABB 2

BAA 1 ABAA 0

BAB 3 ABAB 1

BBA 5 ABBA 1

BBB 4 ABBB 4

BAAA 1

BAAB 0

BABA 1

BABB 3

BBAA 1

BBAB 3

BBBA 4

BBBB 0

THIS STUDY

The aim of this study is to use exploratory educational data
mining techniques in explaining CPS behavior. We go beyond
the already established VOTAT strategy, exploring differences
in behavior between students that applied the VOTAT strategy
to a complex problem and successfully solved it and those that
applied the strategy but failed to solve the complex problem.
To analyze students’ behavior, we chose the n-gram approach
(Damashek, 1995) introduced above to classify students that
applied the VOTAT strategy into successful and unsuccessful
problem-solvers based on their behavior. Applying the n-gram
approach, we summarize the participating students’ behavior
while solving the complex problem into a set of short sequences
that can be used to find behaviors that are indicative of whether
a student that applied the VOTAT strategy will also solve the
complex problem. Next to presenting the empirical example, we
will illustrate the methodological steps necessary to apply the
n-gram approach to log-file data of CPS behavior.

EMPIRICAL EXAMPLE

Sample
For the empirical example, we relied on a large sample
(N = 1399) of students attending the ninth grade in a Finish
municipality. The data were drawn from the Vantaa panel
study for the development of learning to learn competencies
in basic education. This panel is sampled to be representative
for the Finish population based on several demographic and
socioeconomic indicators (see Vainikainen, 2014 for more
information) and the findings gained are likely to be generalizable
to other samples. The mean age of the students at the time of
data collection was 15.8 years (SD = 0.43). 48% of the students
were girls and 50% boys (2% missing information). The data
used for this study can be found in an anonymized form on
the open science framework repository created for this paper1.
The research design and the scales were approved by the local
Education Department. The same scales and design have been
used also in national educational evaluations commissioned by
the Ministry of Education and Culture, and by the Finnish
National Board of Education, based on the Basic Education
Act (1999). The measures and design have been approved, in
relation with another study, also by the Ethical Committee of
the Finnish National Institute for Health and Welfare. Both the
students and their parents were asked to provide their informed
consent in writing.

Task
Over the course of the assessment, students solved multiple CPS
tasks based on the MicroDYN approach (Greiff et al., 2015a).
The MicroDYN approach is based on linear structural equations
(Funke, 2001) in which (in this study) three input variables were
related to three output variables (see specific example below).
The underlying relations were opaque to students at the onset

1osf.io/jycku
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of the task and needed to be determined by applying adequate
strategies (i.e., the VOTAT strategy) to acquire knowledge
about the problems’ structure and to apply that knowledge to
achieve certain goals.

The example task used for this paper was the item “Handball
training,” which is illustrated in Figure 1. It illustrates problems
based on the MicroDYN approach very well and is of sufficient
difficulty to allow for variation in both behavior and successful
solutions (Stadler et al., 2016). In this task’s scenario, participants
take over the role of the coach of a handball team trying to
figure out how different types of training (labeled Training A,
Training B, and Training C; left part of Figure 1) influence
certain attributes of the players (i.e., Motivation, Power of the
throw, Exhaustion; right part of Figure 1). The best strategy
to solve such tasks based on the MicroDYN approach is
to apply the VOTAT strategy; that is, to manipulate each
variable individually (e.g., to put Training C on “++”), while
keeping all other input variables constant, and to click on
“apply” (in the center of Figure 1). The resulting changes
in the outcome variables indicate the relations between the
input and the output variables. After working on the scenario,
the resulting knowledge (i.e., the relation between the three
training strategies and the three outcomes needed to be

plotted in the model underneath the task; see the lower
part of Figure 1).

Extraction and Scoring of Log-Files
The task was implemented in the CBA item builder, a generic
assessment platform, which has been designed to meet these
requirements (for an overview see Rölke, 2012). This tool is
provided by the German Institute for International Educational
Research (DIPF) that organizes the development of the software
and collects and coordinates new requirements. It allows
users without programming experience to develop and deploy
computer-based assessment tasks using a graphical user interface.
After testing, log-files containing the response data can be
downloaded in an XML format2 from the test computer or server
for further analysis. A detailed description of the embedding and
scoring of CPS tasks implemented in the CBA item builder can be
found in Greiff et al. (2013). An exemplary XML file can be found
on the open science framework repository see text footenote1.

For this study, we used two different scripts to extract the
data from the log-files. To extract students’ scores, time on task,
and the use of VOTAT, we used an SPSS script already used

2http://www.w3.org/XML

FIGURE 1 | Scenario (top) and model (bottom) of the “Handball training” task.
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in various previous studies (e.g., Greiff et al., 2013). To score
the application of the VOTAT strategy, log-files of students’
behavior were analyzed. Full credit was given if participants
manipulated each input variable at least once while keeping
all other variables constant; otherwise, no credit was assigned
(Wüstenberg et al., 2014). For the explorative n-gram analyses
the complete string of behaviors was extracted by a customized
python script3, using the built-in xml.etree.ElementTree package.

Table 2 shows some exemplary data from a log file
of the “Handball training” task. Students could make and
apply changes to the input variables (i.e., the rounds in
the assessment). One round was recorded every time the
“Apply” button was pressed applying changes from none
to all of the input variables (i.e., working on the scenario,
“S”) to the output variables. In the example, the participant
applied the VOTAT strategy in manipulating each variable
individually. The nature of the XML files does, however, not
allow discerning the order in which variables were manipulated
within each round. Changes in the model were recorded
every time a line was drawn or removed between an input
and an output variable to plot findings (i.e., working on
the model, “M”). Our python script extracted the string of
behavior as a vector of “M” or “S” for each participant
allowing for an easy interpretation. In the example, the extracted
string would be “SSS” as all three recorded behaviors were
changes in the scenario. In addition, we extracted the total
number of behaviors (length of the vectors) and the time
spent working on the task (without reading the problem
description, which was presented separately from the actual
problem scenario). Use of the “reset” and “help” button was
ignored as these do not provide any additional information
on the solution process and were used by a marginal number
of participants (Nreset = 53; Nhelp = 19). The python script
can be found on the open science framework repository
see text footnote1.

Statistical Analysis
In order to find behavioral differences between students that
applied the VOTAT strategy and successfully solved the complex
problem and those students that applied the VOTAT strategy
but failed, we first identified the respective students, assigning
a dummy coded variable. This variable separated successful
and unsuccessful students that applied the VOTAT strategy
and assigned missing values to all students that did not apply
the VOTAT strategy.

3www.python.org

To find the sequences of behaviors that led to success or
failure in the problem-solving process, we applied the chi-
square feature selection model, which is frequently used in
natural language processing or other data mining contexts
(Oakes et al., 2001). Recent publications have demonstrated
how to apply this approach to problem-solving data, though
(He and von Davier, 2015, 2016). The chi-square feature
selection model tests whether occurrence and non-occurrence
of behaviors are independent for two groups. Under the null
hypothesis, the behaviors would be equally likely for both
groups. Based on the observed distribution of behaviors, a
chi-square value can thus be computed to evaluate the departure
from this null hypothesis. A problem with this approach is
potentially over-interpreting the relevance of extremely common
behaviors that have little or no discriminating power while
under-estimating the relevance of rather infrequent behaviors.
Moreover, the added relevance of a behavior is not linear.
More occurrences of a behavior indicate higher importance,
but not as much relative importance as an undamped count
would suggest (Manning and Schütze, 2005). To solve this
problem, a weight is assigned to the observed frequency of each
sequence of behaviors based on the number of participants
displaying the sequence of behavior, the sequence’s total
frequency, and the total number of behaviors observed for a
more detailed description of the chi-square feature selection
model see (He and von Davier, 2016). The weight function for
sequence of behavior i in total behavior j (1) was defined as:

weigth
(
i, j
)
=

{ [
1+ log

(
fi,j
)]

log
(

N
sfi

)
if fi,j ≥ 1

0 if fi,j = 0
(1)

where N is the total number of sequences, f is the
sequence’s frequency and sf is the number of behaviors
where the sequence i appears. The first clause applies to
sequences occurring in the same behavior, whereas for
sequences that do not appear (fi,j = 0), we use weight
(i,j) = 0.

The scripts for all analyses can be found on the open science
framework repository see text footnote1. Table 3 provides the raw
and weighted frequencies for all sequences of behavior of students
applying the VOTAT strategy.

RESULTS

As can be seen from Table 4, the task was relatively difficult
with only 544 (38.9%) of the students solving the task

TABLE 2 | Example data from a log file of the “Handball training” task (adapted from Greiff et al., 2013).

General information Input variables Output variables

Timestamp Button pressed Training A Training B Training C Motivation Power Exhaustion

15:13:21 Apply 0 1 0 17 15 15

15:13:23 Apply 0 0 1 17 17 15

15:13:26 Apply 1 0 0 17 19 17
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TABLE 3 | The raw and weighted frequency for all sequences of behavior.

Behavior sequence Frequency of sequences Frequency of actions Weight Freq. in correct Freq. in incorrect

Raw Wgt Raw Wgt

Bigrams

MM 663 5063 0.01 4073 37.57 990 9.13

MS 159 221 2.08 166 345.36 55 114.43

SM 224 327 1.66 249 414.13 78 129.73

SS 81 226 3.07 156 478.76 70 214.83

Trigrams

MMM 628 4275 0.12 3454 408.11 821 97.01

MMS 125 159 2.33 120 279.12 39 90.71

MSM 118 147 2.38 113 269.00 34 80.94

MSS 54 66 3.08 47 144.59 19 58.45

SMM 206 267 1.75 208 363.20 59 103.02

SMS 28 33 3.47 25 86.66 8 27.73

SSM 79 96 2.76 72 198.80 24 66.27

SSS 50 128 3.49 82 286.51 46 160.73

Four-grams

MMMM 495 3574 0.59 2895 1698.67 679 398.41

MMMS 80 101 2.77 79 218.45 22 60.83

MMSM 90 103 2.62 80 209.51 23 60.23

MMSS 41 48 3.25 34 110.37 14 45.45

MSMM 97 114 2.56 90 230.19 24 61.39

MSMS 14 15 3.65 11 40.15 4 14.60

MSSM 22 23 3.50 17 59.46 6 20.99

MSSS 36 41 3.31 28 92.70 13 43.04

SMMM 171 210 1.96 167 327.60 43 84.35

SMMS 24 28 3.53 22 77.70 6 21.19

SMSM 20 21 3.54 16 56.57 5 17.68

SMSS 12 12 3.63 9 32.64 3 10.88

SSMM 67 76 2.87 60 172.40 16 45.97

SSMS 11 11 3.64 8 29.10 3 10.91

SSSM 50 57 3.10 40 123.96 17 52.68

SSSS 25 71 4.06 42 170.71 29 117.87

Freq., frequency; Wgt, weight; S, working on the scenario; M, changing the model.

TABLE 4 | Distribution of students based on whether they solved the problem and
applied the VOTAT strategy.

Applied the VOTATstrategy

No Yes Total

Solved the problem No 712 143 855

Yes 21 523 544

Total 733 666 1399

correctly. Moreover, 666 (47.6%) of the students applied the
VOTAT strategy. Applying the VOTAT strategy, generally, lead
to a substantially higher likelihood of solving the problem
(χ2 = 401.10; df = 1; p < 0.001). However, 143 (21.5%)
of the students that applied the VOTAT strategy did not
solve the problem.

In the exploratory analysis, we attempt to understand
this observation by finding behavioral differences among the

students that applied the VOTAT strategy by using the n-gram
approach. There was no significant difference between the
absolute number of behaviors observed for either group of
students [t(664) = 0.52; p = 0.601; d = 0.05] nor the
time spent working on the task [t(664) = 0.27; p = 0.790;
d = 0.03]. Table 5 displays the results of the chi-square
feature selection model analyzing differences in likelihoods
of specific n-grams for students that applied the VOTAT
strategy and solved the problem and those that did not. Note
that the possible behaviors were reduced to working on the
scenario (S) and changing the model (M). N-grams with higher
chi-square values are more discriminative between the two
groups. Moreover, Table 5 indicates whether the n-grams were
more typical of students that solved the problem or of those
that did not.

As can be seen from Table 5, the informational value of
the n-grams increases with their length, while the general
pattern does not change. The most discriminative sequence of
behavior was consistently the one indicating working maximally
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TABLE 5 | Summary of the chi-square feature selection model for bigrams, trigrams, and four-grams.

n = 2 n = 3 n = 4

Sequence χ2 p Dir. Sequence χ2 Dir. p Sequence χ2 Dir. p

SS 31.98 <0.001 − SSS 59.98 − <0.001 SSSS 76.34 − <0.001

MM 0.92 0.337 + MMM 12.16 + <0.001 MMMM 67.09 + <0.001

MS 0.23 0.632 − MSS 4.08 − 0.043 MSSS 7.21 − 0.007

SM 0.05 0.823 + SMM 1.95 + 0.163 SMMM 5.43 + 0.020

MSM 0.37 + 0.543 SSSM 5.30 − 0.021

SSM 0.17 − 0.680 MMSS 3.64 − 0.056

MMS 0.04 − 0.841 MSMM 2.70 + 0.100

SMS 0.00 − 1.00 SSMM 2.01 + 0.156

MMMS 1.52 + 0.218

MMSM 0.87 + 0.351

SMMS 0.69 + 0.406

SSMS 0.36 − 0.549

MSMS 0.32 − 0.572

MSSM 0.27 − 0.603

SMSS 0.03 − 0.862

SMSM 0.01 + 0.920

N-grams with higher chi-square values are more discriminative; Dir., Direction of the difference between groups. “+” represents behaviors that were more typical of
students that solved the task “−“ represents behaviors that were more typical of students that did not solve the task; S, working on the scenario; M, changing the model.

long in the scenario (SS, SSS, and SSSS), which was always
more typical of the students that did not solve the task.
This was followed by the sequence of behavior indicating
working maximally long in the model (only statistically
significant for MMM and MMMM), which was always more
typical of students solving the task. Generally, the sequences
indicating repeated changes in the scenario were associated
with failing to solve the problem (statistically significant for
MSS, MSSS, and SSSM), whereas the sequences indicating
repeated changes in the model were associated with solving the
problem (statistically significant for SMMM). The discriminative
value (high chi-square values) was highest for the sequences
with the longest uninterrupted sequences of one specific
behavior (M or S) and least for those that indicated frequent
changes between working on the scenario and working on the
model (e.g., SMSM).

DISCUSSION

The aim of this study was to use exploratory educational data
mining techniques in explaining problem-solving behavior.
We chose one of the most established types of CPS tasks
(based on the MicroDYN approach; Greiff et al., 2015a),
for which the optimal strategy is well known (i.e., the
VOTAT strategy; Tschirgi, 1980). However, not all students
applying the VOTAT strategy also solved the tasks correctly
implying that simply observing whether or not the strategy
was applied is not sufficient to understand why some
students succeed in solving CPS tasks while others do not
(Kuhn and Dean, 2005).

Describing the whole string of behaviors observed for
each individual student as a set of n-grams of different

length (Damashek, 1995) allowed us to exploratively search
for differences in the behavior observed within those students
that applied the VOTAT strategy and successfully solved
the task and those that applied the strategy but still failed
to solve the task. The empirical example illustrates that
given enough complexity, there are substantial differences
in the frequencies of observed n-grams between the two
groups. Interpreting those differences, however, requires some
understanding of the task and what it takes to solve it
(Banovic et al., 2016).

Correctly applied, the VOTAT strategy requires problem-
solvers to make only minimal changes in the scenario, register
the effects and then immediately plot the findings in the
model (Wüstenberg et al., 2012). Any deviations from this
algorithm will increase the cognitive load (Sweller, 2011)
on the problem-solver as important information (i.e., either
changes made in the scenario or findings resulting from these
changes) need to be stored in working memory (Sweller, 1988).
Inspecting the differences in behaviors between students
that applied the VOTAT strategy and successfully solved
the task and those that applied the strategy but still failed,
the general pattern seemed to be that the students that
solved the task spent fewer rounds continuously working
on the scenario (e.g., SS, SSS, or SSSS) but more rounds
working on the model (e.g., MMM and MMMM). Students
that did not solve the task, thus, did not immediately
plot their findings, thereby increasing their cognitive load
and, in turn, the task’s difficulty (Kirschner, 2002). Our
findings thus highlight the importance of metastrategic
competencies that enable a person to not only apply the
correct strategy to solve a problem but to make use of the
information gained in the process. Metastrategic competencies
encompass awareness, understanding, monitoring, and
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management of one’s strategic performance of many kinds
of cognitive tasks (Kuhn and Pearsall, 1998). As becomes
obvious from our analyses, students that did not solve
the problems correctly either lacked understanding of the
VOTAT strategy or were not able to manage their use of the
strategy. Due to the exploratory nature of our analyses, our
interpretations are post hoc though and should be corroborated
by experimental studies.

There are other limitations to be considered. In focusing
only on the students applying the VOTAT strategy we
reduced our sample to N = 666, excluding almost half of
the initial sample from our analyses. However, since the
aim of our paper was to find behavior differences between
students that applied the VOTAT strategy and successfully
solved the problem and those students that applied the
VOTAT strategy but failed, students that did not apply the
VOTAT strategy at all were irrelevant to our analyses. Future
studies should extend our analyses to explore differences
in behavior across all students not selected by a priori
defined strategies.

Moreover, coding of the log-files into changes in
the scenario and changes in the model does not allow
differentiating between different changes applied to the input
variables within one round of changes to the scenario (e.g.,
manipulations of only one variable vs. manipulations of
multiple variables). However, this simplification allows for
a relatively straight-forward interpretation of the resulting
n-grams. A more detailed coding of changes to the scenario,
on the other hand, would lead to an exponentially higher
number of potential behavior sequences most of which
would most likely have very little information value due
to their specificity. The potential variance in changes in
the input variables between successful and unsuccessful
students is further reduced by the fact that all participants
included in our analyses applied the VOTAT strategy (i.e.,
manipulated all input variables at least once individually
while keeping the others constant). Since manipulating
all input variables individually once is sufficient to solve
the task, all further manipulations, regardless of whether
single or multiple variables, will result in unnecessary
additional information increasing cognitive load. Testing these
assumptions will, however, require additional information to
be logged (for more on the completeness of log data see
Kroehne and Goldhammer, 2018).

Finally, the n-gram approach showcased in this paper is
not the only explorative educational data mining approach
applicable to CPS log-files, of course. Other studies have
applied analyses of the interaction of behavior displayed while
solving tasks such as Network Analysis (Wooldridge et al., 2018),
or included the temporal order of behaviors in their
analyses by displaying them as complex directed networks
(Vista et al., 2016). All of these approaches share the
aim of understanding problem-solving behavior on a very
detailed level and the difficulties that come with that aim.
Most importantly, any increase in task specificity (e.g.,
longer n-grams) comes, necessarily, with a decrease in
generalizability. In that, perfect understanding of students’

behavior in one task may be meaningless to understand
performance in another task unless the structural similarities
between these tasks are well understood and theoretically
described. Future studies should, therefore, investigate
the generalizability of behavior across different problem-
solving tasks.

The findings show the potential benefit of applying explorative
educational data mining approaches such as the n-gram approach
in addition to searching for a priori defined strategies. Knowledge
about how and why students that actually apply the correct
strategy to solve a problem fail to actually solve it has
implications for the instruction or training of CPS tasks.
So far, interventions aimed at increasing CPS performance
have relied on repeatedly confronting problem-solvers with
problems of a similar nature (e.g., Kretzschmar and Süß, 2015).
Training lead to an increase in performance and, in fact,
also to an increase in strategic prowess (Lotz et al., 2017).
However, no dedicated strategy training has been published
to the best of our knowledge. Based on our findings, such a
strategy training should consider to not only teach the VOTAT
strategy but also metastrategic knowledge such as the handling
of information gained through the application of VOTAT
(Zohar and Peled, 2008).

CONCLUSION

In summary, our paper showcased the n-gram approach on a
CPS task. The detailed description of the data provided some
indication toward behavioral differences within students that
apply the correct strategy toward a problem and solve it as
opposed to those that apply the correct strategy and fail. We
hope that the paper will help other scholars in finding ways
to analyze and interpret log-file data themselves. After all, the
exploitation of this rich resource through dedicated analyses is
still in its infancy and we believe that it is a treasure trove worth
hunting for.

ETHICS STATEMENT

Ethics approval was granted for the data collection (see
Vainikainen, 2014).

AUTHOR CONTRIBUTIONS

All authors listed have made a substantial, direct and
intellectual contribution to the work, and approved it
for publication.

FUNDING

This research was supported by a project funded by the Fonds
National de la Recherche Luxembourg (The Training of Complex
Problem Solving; “TRIOPS”).

Frontiers in Psychology | www.frontiersin.org 8 May 2019 | Volume 10 | Article 77746

https://www.frontiersin.org/journals/psychology/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/psychology#articles


fpsyg-10-00777 May 4, 2019 Time: 16:17 # 9

Stadler et al. Taking a Closer Look

REFERENCES
Arroyo, I., and Woolf, B. (2005). “Inferring learning and attitudes from a Bayesian

network of log file data,” in Proceedings of the AIED 05, 12th International
Conference on Artificial Intelligence in Education, Chicago.

Banovic, N., Buzali, T., Chevalier, F., Mankoff, J., and Dey, A. K. (2016). “Modeling
and understanding human routine behavior,” in Proceedings of the 2016 CHI
Conference on Human Factors in Computing Systems, eds J. Kaye, A. Druin,
C. Lampe, D. Morris, and J. P. Hourcade (New York, NY: ACM), 248–260.
doi: 10.1145/2858036.2858557

Borges, J., and Levene, M. (2000). “Data mining of user navigation patterns,” in
Lecture Notes in Computer Science Lecture Notes in Artificial Intelligence, Vol.
1836, ed. B. Masand (Berlin: Springer), 92–112. doi: 10.1007/3-540-44934-5_6

Bunderson, C. V., Inouye, D. K., and Olsen, J. B. (1989). “The four generations
of computerized educational measurement,” in Educational Measurement, ed.
R. L. Linn (Washington DC: American Council on Education), 367–407.

Chen, Z., and Klahr, D. (1999). All other things being equal: acquisition and
transfer of the control of variables strategy. Child Dev. 70, 1098–1120. doi:
10.1111/1467-8624.00081

Damashek, M. (1995). Gauging similarity with n-grams: language-independent
categorization of text. Science 267, 843–848. doi: 10.1126/science.267.5199.843

Frensch, P. A., and Funke, J. (eds) (1995). Complex Problem Solving: The European
Perspective. London: Routledge.

Fu, W.-T. (2001). ACT-PRO action protocol analyzer: a tool for analyzing
discrete action protocols. Behav. Res. Methods Instrum. Comput. 33, 149–158.
doi: 10.3758/BF03195360

Funke, J. (2001). Dynamic systems as tools for analysing human judgement. Think.
Reason. 7, 69–89. doi: 10.1080/13546780042000046

Funke, J. (2010). Complex problem solving: a case for complex cognition? Cogn.
Process. 11, 133–142. doi: 10.1007/s10339-009-0345-0

Goldhammer, F., Naumann, J., Stelter, A., Tóth, K., Rölke, H., and Klieme, E.
(2014). The time on task effect in reading and problem solving is moderated by
task difficulty and skill: insights from a computer-based large-scale assessment.
J. Educ. Psychol. 106, 608–626. doi: 10.1037/a0034716

Greiff, S., Niepel, C., Scherer, R., and Martin, R. (2016). Understanding students’
performance in a computer-based assessment of complex problem solving: an
analysis of behavioral data from computer-generated log files. Comput. Hum.
Behav. 61, 36–46. doi: 10.1016/j.chb.2016.02.095

Greiff, S., Stadler, M., Sonnleitner, P., Wolff, C., and Martin, R. (2015a). Sometimes
less is more: comparing the validity of complex problem solving measures.
Intelligence 50, 100–113. doi: 10.1016/j.intell.2015.02.007

Greiff, S., Wüstenberg, S., and Avvisati, F. (2015b). Computer-generated log-file
analyses as a window into students’ minds? A showcase study based on the
PISA 2012 assessment of problem solving. Comput. Educ. 91, 92–105. doi:
10.1016/j.compedu.2015.10.018

Greiff, S., Wüstenberg, S., Holt, D. V., Goldhammer, F., and Funke, J.
(2013). Computer-based assessment of complex problem solving: concept,
implementation, and application. Educ. Technol. Res. Dev. 61, 407–421.
doi: 10.1007/s11423-013-9301-x

Griffin, P., and Care, E. (2015). Assessment and Teaching of 21st Century Skills.
Dordrecht: Springer.

He, Q., and von Davier, M. (2015). “Identifying feature sequences from process data
in problem-solving items with n-grams,” in Springer Proceedings in Mathematics
& Statistics: Volume 140. Quantitative Psychology Research: The 79th Annual
Meeting of the Psychometric Society, Wisconsin, 2014, Vol. 140, eds L. A. van der
Ark, D. Bolt, W.-C. Wang, J. A. Douglas, S.-M. Chow, and P. Society (Berlin:
Springer), 173–190. doi: 10.1007/978-3-319-19977-1_13

He, Q., and von Davier, M. (2016). “Analyzing process data from problem-
solving items with n-grams,” in Advances in Higher Education and Professional
Development Book Series. Handbook of Research on Technology Tools
for Real-World Skill Development, Vol. 1, ed. Y. Rosen (Hershey, PA:
Information Science Reference), 750–777. doi: 10.4018/978-1-4666-9441-5.
ch029

Ifenthaler, D., Eseryel, D., and Ge, X. (2012). “Assessment for game-based
learning,” in Assessment in Game-Based Learning: Foundations, Innovations and
Perspectives, eds D. Eseryel, X. Ge, and D. Ifenthaler (New York, NY: Springer),
1–8. doi: 10.1007/978-1-4614-3546-4

Kirschner, P. A. (2002). Cognitive load theory: implications of cognitive load
theory on the design of learning. Learn. Instruct. 12, 1–10. doi: 10.1016/S0959-
4752(01)00014-7

Kretzschmar, A., and Süß, H.-M. (2015). A study on the training of complex
problem solving competence. J. Dyn. Decis. Mak. 1:4. doi: 10.11588/jddm.2015.
1.15455

Kroehne, U., and Goldhammer, F. (2018). How to conceptualize, represent, and
analyze log data from technology-based assessments? A generic framework
and an application to questionnaire items. Behaviormetrika 45, 527–563.
doi: 10.1007/s41237-018-0063-y

Kröner, S., Plass, J. L., and Leutner, D. (2005). Intelligence assessment with
computer simulations. Intelligence 33, 347–368. doi: 10.1016/j.intell.2005.03.
002

Kuhn, D., and Dean, D. (2005). Is developing scientific thinking all about learning
to control variables? Psychol. Sci. 16, 866–870. doi: 10.1111/j.1467-9280.2005.
01628.x

Kuhn, D., and Pearsall, S. (1998). Relations between metastrategic knowledge and
strategic performance. Cogn. Dev. 13, 227–247. doi: 10.1016/S0885-2014(98)
90040-5

Liu, H., and Kešelj, V. (2007). Combined mining of Web server logs and web
contents for classifying user navigation patterns and predicting users’ future
requests. Data Knowl. Eng. 61, 304–330. doi: 10.1016/j.datak.2006.06.001

Lotz, C., Scherer, R., Greiff, S., and Sparfeldt, J. R. (2017). Intelligence in action –
Effective strategic behaviors while solving complex problems. Intelligence 64,
98–112. doi: 10.1016/j.intell.2017.08.002

Manning, C. D., and Schütze, H. (2005). Foundations of Statistical Natural
Language Processing. Cambridge, Mass: MIT Press.

Mobasher, B. (2007). “Data mining for web personalization,” in The Adaptive Web.
Lecture Notes in Computer Science, Vol. 4321, eds P. Brusilovsky, A. Kobsa, and
W. Nejdl (Berlin: Springer).

Oakes, M., Gaaizauskas, R., Fowkes, H., Jonsson, A., Wan, V., and Beaulieu, M.
(2001). “A method based on the chi-square test for document classification,”
in Proceedings of the 24th Annual International ACM SIGIR Conference on
Research and Development in Information Retrieval - SIGIR ’01, eds D. H. Kraft,
W. B. Croft, D. J. Harper, and J. Zobel (New York, NY: ACM Press), 440–441.
doi: 10.1145/383952.384080

O’Neil, H. F., Chuang, S.-H., and Chung, G. K. W. K. (2003). Issues in the
computer-based assessment of collaborative problem solving. Assess. Educ. 10,
361–373. doi: 10.1080/0969594032000148190

Rölke, H. (2012). “The item builder: a graphical authoring system for complex
item development,” in Proceedings of the E-Learn 2012–World Conference on
E-Learning in Corporate, Government, Healthcare, and Higher Education 1,
(Chesapeake, VA: AACE), 344–353.

Skinner, B. F. (1938). The Behavior of Organisms: An Experimental Analysis.
New York, NY: Appleton-Century-Crofts.

Stadler, M., Niepel, C., and Greiff, S. (2016). Easily too difficult: estimating item
difficulty in computer simulated microworlds. Comput. Hum. Behav. 65, 100–
106. doi: 10.1016/j.chb.2016.08.025

Sweller, J. (1988). Cognitive load during problem solving: effects on learning. Cogn.
Sci. 12, 257–285. doi: 10.1207/s15516709cog1202_4

Sweller, J. (2011). “Cognitive load theory,” in The Psychology of Learning and
Motivation: v.55. Cognition in Education, Vol. 55, eds J. P. Mestre and B. H.
Ross (San Diego, CA: Academic Press), 37–76. doi: 10.1016/B978-0-12-387691-
1.00002-8

Tschirgi, J. E. (1980). Sensible reasoning: a hypothesis about hypotheses. Child Dev.
51, 1–10. doi: 10.2307/1129583

Turner, R., and Adams, R. J. (2007). The programme for international student
assessment: an overview. J. Appl. Meas. 8, 237–248.

Vainikainen, M.-P. (2014). Finnish Primary School Pupils’ Performance in Learning
to Learn Assessments: A Longitudinal Perspective on Educational Equity. Report
No. 360, Helsinki: Unigrafia.

Vista, A., Awwal, N., and Care, E. (2016). Sequential actions as markers of
behavioural and cognitive processes: extracting empirical pathways from data
streams of complex tasks. Comput. Educ. 9, 15–36. doi: 10.1016/j.compedu.
2015.10.009

Wooldridge, A. R., Carayon, P., Shaffer, D. W., and Eagan, B. (2018). Quantifying
the qualitative with epistemic network analysis: a human factors case study of

Frontiers in Psychology | www.frontiersin.org 9 May 2019 | Volume 10 | Article 77747

https://doi.org/10.1145/2858036.2858557
https://doi.org/10.1007/3-540-44934-5_6
https://doi.org/10.1111/1467-8624.00081
https://doi.org/10.1111/1467-8624.00081
https://doi.org/10.1126/science.267.5199.843
https://doi.org/10.3758/BF03195360
https://doi.org/10.1080/13546780042000046
https://doi.org/10.1007/s10339-009-0345-0
https://doi.org/10.1037/a0034716
https://doi.org/10.1016/j.chb.2016.02.095
https://doi.org/10.1016/j.intell.2015.02.007
https://doi.org/10.1016/j.compedu.2015.10.018
https://doi.org/10.1016/j.compedu.2015.10.018
https://doi.org/10.1007/s11423-013-9301-x
https://doi.org/10.1007/978-3-319-19977-1_13
https://doi.org/10.4018/978-1-4666-9441-5.ch029
https://doi.org/10.4018/978-1-4666-9441-5.ch029
https://doi.org/10.1007/978-1-4614-3546-4
https://doi.org/10.1016/S0959-4752(01)00014-7
https://doi.org/10.1016/S0959-4752(01)00014-7
https://doi.org/10.11588/jddm.2015.1.15455
https://doi.org/10.11588/jddm.2015.1.15455
https://doi.org/10.1007/s41237-018-0063-y
https://doi.org/10.1016/j.intell.2005.03.002
https://doi.org/10.1016/j.intell.2005.03.002
https://doi.org/10.1111/j.1467-9280.2005.01628.x
https://doi.org/10.1111/j.1467-9280.2005.01628.x
https://doi.org/10.1016/S0885-2014(98)90040-5
https://doi.org/10.1016/S0885-2014(98)90040-5
https://doi.org/10.1016/j.datak.2006.06.001
https://doi.org/10.1016/j.intell.2017.08.002
https://doi.org/10.1145/383952.384080
https://doi.org/10.1080/0969594032000148190
https://doi.org/10.1016/j.chb.2016.08.025
https://doi.org/10.1207/s15516709cog1202_4
https://doi.org/10.1016/B978-0-12-387691-1.00002-8
https://doi.org/10.1016/B978-0-12-387691-1.00002-8
https://doi.org/10.2307/1129583
https://doi.org/10.1016/j.compedu.2015.10.009
https://doi.org/10.1016/j.compedu.2015.10.009
https://www.frontiersin.org/journals/psychology/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/psychology#articles


fpsyg-10-00777 May 4, 2019 Time: 16:17 # 10

Stadler et al. Taking a Closer Look

task-allocation communication in a primary care team. IISE Trans. Healthc.
Syst. Eng. 8, 72–82. doi: 10.1080/24725579.2017.1418769

Wüstenberg, S., Greiff, S., and Funke, J. (2012). Complex problem solving —
More than reasoning? Intelligence 40, 1–14. doi: 10.1016/j.intell.2011.
11.003

Wüstenberg, S., Stadler, M., Hautamäki, J., and Greiff, S. (2014). The role of strategy
knowledge for the application of strategies in complex problem solving tasks.
Technol. Knowl. Learn. 19, 127–146. doi: 10.1007/s10758-014-9222-8

Zimmerman, C. (2000). The development of scientific reasoning skills. Dev. Rev.
20, 99–149. doi: 10.1006/drev.1999.0497

Zoanetti, N. (2010). Interactive computer based assessment tasks: how problem-
solving process data can inform instruction. Australas. J. Educ. Technol. 26,
585–606. doi: 10.14742/ajet.1053

Zohar, A., and Peled, B. (2008). The effects of explicit teaching of metastrategic
knowledge on low- and high-achieving students. Learn. Instruct. 18, 337–353.
doi: 10.1016/j.learninstruc.2007.07.001

Conflict of Interest Statement: SG is one of two authors of the commercially
available COMPRO test that is based on the multiple complex systems approach
and that employs the MicroDYN approach. However, for any research and
educational purposes, a free version of MicroDYN tasks is available and he receives
royalties for COMPRO.

The remaining authors declare that the research was conducted in the absence of
any commercial or financial relationships that could be construed as a potential
conflict of interest.

Copyright © 2019 Stadler, Fischer and Greiff. This is an open-access article distributed
under the terms of the Creative Commons Attribution License (CC BY). The use,
distribution or reproduction in other forums is permitted, provided the original
author(s) and the copyright owner(s) are credited and that the original publication
in this journal is cited, in accordance with accepted academic practice. No use,
distribution or reproduction is permitted which does not comply with these terms.

Frontiers in Psychology | www.frontiersin.org 10 May 2019 | Volume 10 | Article 77748

https://doi.org/10.1080/24725579.2017.1418769
https://doi.org/10.1016/j.intell.2011.11.003
https://doi.org/10.1016/j.intell.2011.11.003
https://doi.org/10.1007/s10758-014-9222-8
https://doi.org/10.1006/drev.1999.0497
https://doi.org/10.14742/ajet.1053
https://doi.org/10.1016/j.learninstruc.2007.07.001
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/psychology/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/psychology#articles


fpsyg-10-00906 April 22, 2019 Time: 17:41 # 1

ORIGINAL RESEARCH
published: 24 April 2019

doi: 10.3389/fpsyg.2019.00906

Edited by:
Bernard Veldkamp,

University of Twente, Netherlands

Reviewed by:
Chun Wang,

University of Washington,
United States

Carmen Llinares Millán,
Universitat Politècnica de València,

Spain

*Correspondence:
Yi-Hsuan Lee
ylee@ets.org

Specialty section:
This article was submitted to

Quantitative Psychology
and Measurement,

a section of the journal
Frontiers in Psychology

Received: 01 September 2018
Accepted: 04 April 2019
Published: 24 April 2019

Citation:
Lee Y-H, Hao J, Man K and Ou L

(2019) How Do Test Takers Interact
With Simulation-Based Tasks?
A Response-Time Perspective.

Front. Psychol. 10:906.
doi: 10.3389/fpsyg.2019.00906

How Do Test Takers Interact With
Simulation-Based Tasks? A
Response-Time Perspective
Yi-Hsuan Lee1* , Jiangang Hao1, Kaiwen Man2 and Lu Ou3

1 Educational Testing Service, Princeton, NJ, United States, 2 Department of Human Development and Quantitative
Methodology, Measurement, Statistics and Evaluation Program, University of Maryland at College Park, College Park, MD,
United States, 3 ACT Inc., Iowa City, IA, United States

Many traditional educational assessments use multiple-choice items and
constructed-response items to measure fundamental skills. Virtual performance
assessments, such as game- or simulation-based assessments, are designed recently
in the field of educational measurement to measure more integrated skills through
the test takers’ interactive behaviors within an assessment in a virtual environment.
This paper presents a systematic timing study based on data collected from a
simulation-based task designed recently at Educational Testing Service. The study is
intended to understand the response times in complex simulation-based tasks so as
to shed light on possible ways of leveraging response time information in designing,
assembling, and scoring of simulation-based tasks. To achieve this objective, a series
of five analyses were conducted to first understand the statistical properties of the
timing data, and then investigate the relationship between the timing patterns and the
test takers’ performance on the items/task, demographics, motivation level, personality,
and test-taking behaviors through use of different statistical approaches. We found that
the five analyses complemented each other and revealed different useful timing aspects
of this test-taker sample’s behavioral features in the simulation-based task. The findings
were also compared with notable existing results in the literature related to timing data.

Keywords: trialogue, response time, hierarchical modeling framework, cluster analysis, motivation,
rapid-guessing behavior

INTRODUCTION

Many traditional educational assessments use multiple-choice (MC) items and
constructed-response (CR) items to measure fundamental skills, such as verbal and quantitative
skills. The MC and CR items in the same form are assembled to measure the same construct
but usually are not attached to a common scenario throughout the test. There is an increasing
interest in the field of educational measurement in developing new capabilities for new task
formats and assessment types to measure more integrated skills, such as problem-solving
and critical thinking, which may not be directly assessed by those traditional educational
assessments. Virtual performance assessments (VPAs), such as game- or simulation-based
assessments, are often used to serve the purpose (Baker and Clarke-Midura, 2013; Mislevy
et al., 2014). In a VPA, a test taker’s proficiency is assessed based on his/her interactions with
the virtual environment. As such, good understanding of how the test taker interacts with the
virtual environment is essential for developing psychometrically sound scoring rules for VPAs,
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and for designing and assembling VPAs to support the intended
scoring rules. In this paper, we aim at better understanding the
test taker’s interactions with the virtual environment from the
perspective of their response time (RT) to the items in a VPA.

There is rich literature on RT research concerning the design,
assembly, and scoring aspects of traditional MC tests that are
digitally based (for review papers, see, e.g., Schnipke and Scrams,
2002; Lee and Chen, 2011; Kyllonen and Zu, 2016; De Boeck
and Jeon, 2019). These literature also suggests that RTs contain
rich information about test takers’ response processes, test-taking
behaviors and strategies, and motivation. One reason is that
test takers’ timing behaviors reflect person-task interactions.
When the major assessment outcomes to be scored are the final
responses to items, test takers may adjust their timing behaviors
or strategies to cope with the test conditions in order to optimize
their test performance. The adjustment in behavior or strategy
may occur before people take a test (during practice exams) or
during a live test (Lee and Haberman, 2016). Thus, compared to
item responses, their timing behaviors tend to be more sensitive
to test context and content, test/item type, and test conditions.
RTs have been used as ancillary information for improving
precision of parameter estimation and validity of measurement
beyond what is available based on item responses: For example,
for tests that are intended to measure both speed and accuracy,
RTs may be used to derive scores together with item responses
(Maris and van der Maas, 2012; van Rijn and Ali, 2018). To
have better control on test speededness, RTs may be utilized for
assembling test forms in non-adaptive testing and selecting items
in adaptive testing (e.g., van der Linden et al., 1999; Choe et al.,
2018). In addition, RTs have been used in test security analyses
and examination of general test-taking behaviors (e.g., solution
behavior vs. rapid-guessing behavior, due to test speededness or
low motivation).

To our knowledge, test takers’ timing behaviors in VPAs
have been less explored psychometrically, possibly due to limited
access to large-scale empirical data from VPAs. Educational
Testing Service (ETS) researchers have conducted a timing
study of simulation-based tasks in the context of the National
Assessment of Educational Progress (NAEP; Jia and Lee, 2018).
The study focused on two simulation-based tasks, each with
four items given with a time limit to around 2,000 students;
the tasks assessed technology and engineering literacy of grade
eight students in the United States. This study had three primary
findings. First, the items that asked the students to conduct
simulations or experiments (referred to as simulation items
henceforth) required much more time to complete than the
rest of the items did, but the simulation items did not appear
to be especially difficult. Second, rapid-guessing behavior was
not an issue for these simulation-based tasks, although the
assessment was considered low-stakes to the students. Third,
the correlation between the observed task time and performance
was positive but almost negligible. Note that each of the two
NAEP simulation-based tasks was used as part of a test form for
assessing technology and engineering literacy and the scores were
not reported at the task level. While RTs have also been examined
in other fields, the focuses tend to be different from those in
educational measurement—for example, to study varying student

interactions in computer-supported collaborative learning (e.g.,
Jeong, 2004) or to assess learning in intelligent tutoring systems
(e.g., Beck et al., 2000).

The simulation-based tasks considered in Jia and Lee (2018)
were relatively short and simple. In this current work, we
furthered the effort on RT analysis to study a more complex
simulation-based task that has a complete storyline about how
a test taker investigates volcano eruption in a virtual geology lab.
This simulation-based task was developed as part of an effort to
assessing collaborative problem-solving (CPS) skills in science,
the ETS Collaborative Science Assessment Prototype (ECSAP;
Hao et al., 2015, 2017; Liu et al., 2015). In ECSAP, there are two
parallel simulation-based tasks. One is intended for individual
test takers to respond, referred to as the single-user version. The
other is for dyadic teams to respond collaboratively, referred to as
the collaborative version. Both the individual and collaborative
versions of the simulation-based tasks were modified from an
earlier simulation-based task about volcano science designed
to assess students’ science inquiry skill (Zapata-Rivera et al.,
2014). In the single-user version, each participant responded to
11 items without any time limit, and their item responses and
item RTs were captured. In the collaborative version, two human
participants collaborated through a chat box to interact with
two virtual agents to complete the same task. In the previous
research, the foci were primarily on the collaborative version of
the simulation-based task to explore CPS skills and collaboration
engagement through the online chats (e.g., content, frequency,
and chat time) between team members and their item responses
(see the CPS references above, and Halpin et al., 2017), while the
single-user version was simply used as a control. No systematic
timing analysis has been carried out using data collected from
either version of the tasks.

In this paper, we present a systematic study on the RTs
collected from the single-user version of the simulation-based
task. Our goal is to understand the RTs in complex
simulation-based tasks so as to shed light on possible ways
of leveraging RT information in designing, assembling, and
scoring of simulation-based tasks. To achieve the objective, a
series of five analyses were conducted to first understand the
statistical properties of the timing data, and then investigate the
relationship between the timing patterns and the test takers’
performance on the items/task, demographics, motivation level,
personality, and test-taking behaviors through use of different
statistical approaches. As will be shown, the five analyses
complement each other and reveal different timing aspects of this
test-taker sample’s behavioral features in the simulation-based
task we studied. The behavioral features observed in this
simulation-based task may be quite different from those in
traditional educational assessments, and the comparisons will
benefit RT researchers as well as researchers who are interested
in the same or similar datasets.

It is worth noting that the study concentrates on timing
and response data in the simulation-based task, although in
general, a simulation-based task may have many assessment
metrics beyond RTs and responses that are worth exploring.
Also, this study is not intended to evaluate the potential of
simulation-based tasks or VPAs beyond timing and response data
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for use in the field of educational measurement. For more general
discussion about VPAs, please see, for example, Baker and Clarke-
Midura (2013) and Mislevy et al. (2014). The rest of the paper
is organized as follows. The next section provides information
about the simulation-based task and the data under study. The
series of five analyses are then described in detail regarding
the methods and results. The Discussion section concludes the
findings, addresses the implications of the results for the design,
assembly, and scoring of simulation-based tasks, and discusses
possible directions for future research.

DATA

As mentioned earlier, this study is based on a secondary
analysis of the existing data on the simulation-based task
about volcano science published in Hao et al. (2015, 2017)
and Liu et al. (2015). The simulation-based task (referred
to as the task henceforth) was designed to measure science
inquiry skills on volcano science and delivered to 463 test
takers on Amazon Mechanical Turk. Each test taker interacted
with two virtual agents to complete 11 items embedded in
a common scenario. The task began with an introduction to
scientific information about volcano eruptions, followed by
seven selected-response items on knowledge assessment (Items
1–7), and then four CR items on a simulation (Items 8–11).
Among the four items about the simulation, the test takers
were supposed to conduct a simulation on Item 8, in which
they had to decide on the number of seismometers they
wanted to use to monitor the volcano and then placed them
in different regions around the volcano to collect data; they
were then asked to explain why they chose that number of
seismometers and the time duration they wanted to collect the
data on Items 9 to 11. Table 1 presents the type and format
of the 11 items, with some details (e.g., number of options
per MC item and what actions were required per CR item)
that will be used in discussing the analysis results. In this
study, all items were scored dichotomously as 0 (incorrect) or

TABLE 1 | Information about the 11 items in the task.

Item Type Format Note Chance-level
proportion

correct

1 MC Single selection 1 out of 4 options 1/4

2 MC Single selection 1 out of 4 options 1/4

3 MC Multiple selection 2 out of 3 options 1/3

4 MC Order order 5 options 1/120

5 MC Single selection 1 out of 4 options 1/4

6 MC Single selection 1 out of 4 options 1/4

7 MC Single selection 1 out of 4 options 1/4

8 CR Simulation item 0

9 CR Explain the design 0

10 CR Explain the design 0

11 CR Explain the design 0

The chance-level proportion correct refers to the expected probability of answering
the item correctly by guessing. This information is used in Analysis 5.

1 (correct). For Item 8, the score was based on the correctness
and completeness of the simulation. As will be shown, such
items may not be difficult but are typically time-consuming.
It is noteworthy that, as compared to traditional educational
tests, the level of task complexity—in terms of multiple item
types and formats, and the actions required to achieve a correct
answer to the embedded items—is unusual. Thus, some findings
in this study are likely unique to simulation-based tasks and not
necessarily generalizable to traditional educational tests with MC
and/or CR items.

The test takers could only take the items in the delivery order
and were not permitted to revisit earlier items in the task. There
was no time limit imposed on the task and everyone completed
the task, so the data involved no missing item responses and
RTs. For each test taker, the overall task time comprised two
portions—one portion involving the time spent listening to
scientific information about the common scenario, and the other
portion involving the time spent working on the embedded
items. The former portion was a fixed amount of time paced
by the system, and was ignored in the rest of the study. The
latter portion consisted of the item RTs under evaluation. In
this study, we chose to consider the item-level RTs as the
starting point to navigate the person-task interactions in the task,
together with item-level responses. This choice facilitated the
comparison of findings across items within the simulation-based
task, and between the simulation-based task and the traditional
educational tests examined in the RT literature. In this paper,
for each individual, the task score refers to the sum of the
responses to the 11 items, and the task time refers to the sum of
the 11 item RTs.

In addition to the task, the test takers also responded
to a standalone test for general science knowledge (with
37 single-selection MC items, referred to as the MC test
henceforth), a demographic survey (including questions about
their motivation level when completing the task), and a 10-item
personality survey (Gosling et al., 2003). For more details about
these different task/test/surveys, see Hao et al. (2017). The scores
on the MC test and the responses to the survey questions were
available for 445 of the 463 test takers, and this additional
information was used as person covariates in the study. Thus,
data from the 445 test takers were used in all analyses. Below is
some information about the composition of the test-taker sample
under study:

(a) About 63.6% of them were male.
(b) Their age ranged from 18 to 51, with a median of 24.
(c) They could be classified into four major ethnic

groups—White (75.5%), Asian (12.8%), Black (6.1%),
and others (5.6%).

(d) Regarding their career plan after college1—about 70.8%
planned to work or worked full time, about 22.3% planned

1The original question and options were as follows: “What do you expect your
main activity will be in the year after you leave college? A. Working full time; B.
Attending graduate school; C. Serving in the military; D. Other.” Given the age
range of the test takers, it was assumed that the test takers selected the option
that best described their situation at the time they took the task, which either had
occurred or had been planned.
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to attend or attended graduate school, and the rest
had other plans.

(e) On the three motivation questions—did you find the task
engaging? Did you find the task interesting? Did you learn
something new from the task?—the fractions of the test
takers answering 1, 2, or 3 (from agreeing most to least)
was about 60%, 35%, and 5%, respectively.

It is worth mentioning that the test takers on Amazon
Mechanical Turk were recruited to complete the task, the MC
test, and the surveys. The MC test had several items designed to
monitor if the test takers paid enough attention to the test and
that might affect the payment. One example item was as follows:
Which of the following cannot be found on earth? (a) Ocean; (b)
moon (key); (c) dessert; and (d) woods. Those items were so easy
that any test taker in the sample who considered them were able
to answer correctly. All of the test takers included in this study
answered the attention-track items correctly. Thus, it is expected
that the test takers would be motivated in completing the task
to some extent, although they experienced no consequences for
their performance on the task and the MC test.

ANALYSES AND RESULTS

In this section, we present five analyses that were intended to
investigate the following aspects of the task times and item RTs
collected from the task:

(1) Statistical properties of the task times and item RTs.
(2) How did the task times relate to the test takers’

performance on the task/MC test, demographics,
motivation level, and personality?

(3) How did the item RTs and responses relate to each other?
(4) Did the test takers show different timing patterns across

items? Did they inform differences in strategies/time
allocation on the task?

(5) Did the test takers show rapid-guessing behavior on this
task? Was there a clear motivation issue in this dataset?

ANALYSIS 1: STATISTICAL PROPERTIES
OF THE TIMING DATA

Because the task was given without time limits, the first question
to answer was how the task times and item RTs varied for
different test takers. Descriptive statistics of task scores and item
responses were evaluated to complement the timing analysis
at different levels. In addition, how the timing variables were
distributed was of interest, as later analyses involved modeling
of task times and RTs.

Methods
Basic summary statistics were computed for task times and item
RTs. Boxplots were made to show possible differences in the
RT distributions for the 11 items. Preliminary results suggested
that the histogram of task times and the histograms of item
RTs had unimodal, right-skewed shapes. Thus, the distribution

of task times and the distributions of item RTs were examined
via QQ-plots and the Kolmogorov-Smirnov test, with respect
to three theoretical models with these properties—lognormal
model, gamma model, and Weibull model. These are three
popular parametric models in time-to-event studies in survival
analysis (Kalbfleisch and Prentice, 2002). The Kolmogorov-
Smirnov test is a non-parametric test of the equality of
continuous probability distributions that can be used to compare
the empirical distribution function of a sample with a reference
(theoretical) probability distribution. The type I error rate was set
at 0.05 for evaluating the Kolmogorov-Smirnov test results.

Results
Regarding the task-level data, the task times were typically short,
ranging from 1.5 to 18.3 min. The first quartile, the median, and
the third quartile of the task times were equal to 3.3, 4.2, and 5.3,
respectively. The task scores ranged from 0 to 11, with the first
quartile, the median, and the third quartile of the task scores equal
to 6, 8, and 9, respectively. Overall, the test takers had decent
performance on the items without spending much time. These
test takers also performed well on the MC test, with the middle
50% of test takers scoring between 25 and 32 on a 0–37 scale.

Regarding the item-level data, Figure 1 (left panel) shows
the boxplots of RTs by item (with 23 observations with RTs
greater than 150 s excluded from the plot to make the RT
patterns clearer to see). It is clear that the RT distributions varied
across items in terms of both central location and dispersion,
although the majority of the RTs were below 50 s for all items
except Item 8 (this item took more time relative to other items).
These RTs were generally short, as compared to those in the
traditional educational assessments discussed in the RT literature.
As depicted in Figure 1 (right panel), the items were easy for the
test takers. All of the items, except the last one, had a proportion
correct greater than 0.5 (four were above 0.85). Items 7 and
8 present a clear contrast concerning time-consumption and
difficulty—both items were very easy; but for the majority of the
test takers, Item 7 could be answered in 10 s, while Item 8 took
about 30 to 62 s. As shown in Table 1, these two items are very
different in terms of item type: Item 7 is a single-selection MC
item, while Item 8 is a simulation item.

Regarding the distribution of the timing data, the empirical
timing distributions were compared to three theoretical models—
lognormal model, gamma model, and Weibull model. Figure 2
presents three QQ plots that compared the empirical distribution
function of the task times with the best fitting distribution of
the three models. Among the three QQ plots, the lognormal
model approximated the task times very well and outperformed
the other two models—all of the points lay on the reference
line except for 8 outliers (<2%) at the right tail. Results of
the Kolmogorov-Smirnov test also suggest that the lognormal
model supported the observed task times. The Kolmogorov-
Smirnov test statistics for the best fitting lognormal model and
gamma model were equal to 0.04 (p-value = 0.13) and 0.06
(p-value < 0.001). Similarly, the lognormal model generally
supported the RTs per item, although different central locations
and dispersion levels should be considered for different items.
Overall, results from this analysis indicate that simple statistical
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FIGURE 1 | Boxplots of RTs by item (left) and proportion correct by item (right).

models, such as lognormal regression, are appropriate for
modeling the task times (Analysis 2) and for modeling the item
RTs (Analysis 3) in this task.

ANALYSIS 2: HOW DID TASK TIMES
RELATE TO PERFORMANCE AND
OTHER INFORMATION AVAILABLE FOR
THE TEST TAKERS?

As noted in the Data section, additional data were available
for the test takers. Because the focus of this study was on the
test takers’ timing data, variables derived from the additional
information, including task score, were used as person covariates
(i.e., predictors) in this analysis to investigate their relationship
with the task times. The research question was to what extent
the variations in the task times can be explained by these
person covariates.

Methods
To examine the effects of the person covariates on the task
times, normal linear regression was employed to fit the log-
transformed task times with different sets of predictors2. There
were 27 possible covariates for the test takers:

• Two scores, one on the task and the other on the MC test.
The correlation between these two scores was equal to 0.43
(p-value< 0.0001).
• Twelve demographic variables, including age, gender,

ethnicity, high school type, experience in science, career
plan after college, and home environment (related
to science learning). All but “age” were treated as
nominal variables.

2Fitting normal linear regression with the log-transformed task times or fitting
lognormal regression with the task times did not yield noticeable differences in the
results, so only the former case was discussed.

• Three variables from the motivation questions—did you
find the task engaging? Did you find the task interesting?
Did you learn something new from the task? All were
treated as nominal variables, each with three categories3.
• Ten personality variables from the personality survey.

All were treated as nominal variables, each with
five categories4.

Three models were considered. There was a base model
that only included an intercept and no predictor. Model 1
included an intercept and eight predictors that were chosen
subjectively from the 27 possible covariates. The eight predictors
were the task score, age, gender, ethnicity, career plan after
college, and the three motivation variables. Compared to

3The responses (1–3) to the three motivation questions were ordinal in nature.
Treating each motivation question as an ordinal variable had the advantage
of estimating 1 fewer parameter, but it assumed that the successive response
categories were equally spaced (Long and Freese, 2006, p. 421) and had monotonic
effects on the log-transformed task times. To assess the effect of this variable
treatment, in addition to the models presented in Table 2, Models 1 and 2
with the three motivation variables treated as ordinal were also considered. The
corresponding adjusted R2 were equal to 0.02 (11 degrees of freedom) and 0.05 (9
degrees of freedom), respectively. This version of Model 2 selected the same final
predictors except for “Did you find the task interesting?” which did not enter the
model, and this version performed slightly worse than the Model 2 in Table 2.
An alternative approach was considered that replaced the three separate ordinal
motivation variables with their sum score in Models 1 and 2, but this replacement
also did not improve the model fit. Thus, treating the motivation questions as
separate nominal variables was preferred with this dataset.
4The test takers were asked to rate the extent to which they agreed or disagreed
with the statement in each personality question from 1 (disagree strongly) to 5
(agree strongly). When treating them as ordinal variables, one could compute the
Pearson correlation between the responses to a pair of questions. It was found
that the Pearson correlations between any two of the 10 personality variables
were below 0.4 in absolute value (i.e., weak correlation), except for two cases with
correlations of −0.48 and −0.66. There was no difference in handling each of the
10 personality variables as original or nominal in Model 2 in terms of adjusted R2.
However, replacing the 10 separate personality variables with their sum score in
Model 2 led to an adjusted R2 equal to 0.02 (3 degrees of freedom), with only one
predictor selected (How many books at home?). Thus, this version of Model 2 was
not discussed further.
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FIGURE 2 | QQ plots for task times against three theoretical models.

the rest of the person covariates, these eight predictors are
more commonly available in different large-scale educational
assessments, so their effects on the task times were of interest
and assessed in Model 1. The second model concerns a stepwise
regression (Draper and Smith, 1998, ch. 15) that identified
useful predictors from all 27 possible person covariates. The
predictors were added one by one to the model only if
the F statistic for a predictor was significant at the 0.05
level, which is recommended by Draper and Smith (1998),
p. 342) for stepwise linear regression. The same criterion
was used for removal of predictors. The final model is
referred to as Model 2. The residual root mean squared error
(RMSE), the estimated coefficient of determinationR2, and the
estimated adjusted R2 were reported for each model. The
RMSE represents the variability of the log-transformed task
times once all useful predictors are included. Adjusted R2 was

considered, because it combines information about model fit
with number of parameters. Other measures, such as information
criteria (Akaike, 1974; Schwarz, 1978), might be employed for
the same purpose.

Results
Table 2 summaries the model-fitting results. The stepwise
regression approach selected 4 predictors out of 27 and
outperformed Model 1, in which the 8 predictors were chosen
subjectively. The final 4 predictors in Model 2 and the
estimated effects on the (log-transformed) task times are as
follows:

• Career plan after college? Test takers who worked full time
or attended graduate school tended to have shorter task
times than those with other plans.
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TABLE 2 | Model-fitting results for task times.

Model Number of
predictors

Model
degrees of
freedom

RMSE R2 Adjusted
R2

Base 0 0 0.38 0.00 0.00

Model 1 8 14 0.37 0.05 0.02

Model 2 4 11 0.36 0.08 0.06

The model degrees of freedom refers to the number of coefficients associated with
the predictors and does not include the intercept.

• Personality variable—disorganized/careless? Test takers
who strongly agreed that they were disorganized/careless
spent less time than those who did not agree strongly.
• How many books at home? Test takers with enough books

to fill one shelf, 11–25, tended to spend longer task times
than did those with fewer or a lot more books.
• Did you find the task interesting? Test takers who chose

2 spent slightly less time than those who chose 1 (agreed
most) or 3 (agreed least) did.

Although interesting, Model 2 explained only about 6% of
the variability in the log-transformed task times and did not
substantially reduce the RMSE relative to the base model. It
was therefore concluded that none of the person covariates
available in the dataset had clear effects on the test takers’ time
on task, and further details about the parameter estimates in
Model 2 are omitted.

ANALYSIS 3: HOW DID ITEM RTS AND
RESPONSES RELATE TO EACH OTHER?

There are many ways to examine the relationship between the
observed RTs and item responses. If one assumes that the task
may measure two latent traits per test taker, ability and speed,
then a possible approach is the hierarchical framework for joint
modeling item responses and RTs (van der Linden, 2007). This
framework assumes that each test taker operates at fixed levels of
speed and ability in a test. It tends to be adequate for tests with
generous time limits (van der Linden, 2007, p. 292) or without
any time limits—that is, the task under study.

Methods
The hierarchical framework assumes that the task measures two
latent traits for each test taker j, one for ability θj and the other
for speed τj which may be correlated among a group of test takers
of size J = 445. It also assumes that each item i, 1 ≤ i ≤ I = 11,
can be characterized by such parameters as difficulty bi, time-
intensity βi, time-discrimination αi, and so on, some of which
may be correlated among items in a test. Let Yji and Tji be test
taker j’s response and RT on item i, respectively. The hierarchical
framework assumes that, conditioning on the parameters for test
takers and for items, item responses Yji and RTs Tji on the task
items are independent and can be modeled separately at Level 1
of the framework by an IRT model (for item responses Yji)
and a timing model (for RTs Tji). At Level-2 of the framework,

the correlation between person parameters (i.e., ability θj and
speed τj) across test takers and the correlations between item
parameters across items are captured in the multidimensional
prior distributions and can be estimated from the data.

Due to the small sample size and short test length, the Rasch
model was employed to model item responses Yji, with the
conditional probability equal to

p
(
Yji|θj, bi

)
=

1
1+ exp

[
−
(
θj − bi

)] .
According to the results in Analysis 1, the item RTs supported
a lognormal model reasonably well but tended to have different
central locations and levels of dispersion in the distributions
for different items. Thus, a lognormal regression model with
two item parameters, one for time-intensity βi (to describe
possible differences in the central location) and the other for
time-discrimination αi (to describe possible differences in the
dispersion), was chosen to model the RTs. More specifically, the
regression of the logarithm of Tji on test taker j’s speed τj and
item i’s time-intensity βi may be expressed as

log
(
Tji
)
= βi − τj + εji

where the random error εji ∼ N
(
0, α−2

i
)
. Parameter τj indicates

the speed of test taker j, larger τj for faster respondents. Parameter
βi represents the time-intensity of item i: the larger the βi, the
more time item i requires for the test takers to respond. Parameter
αi represents the discriminating power of item i in RTs, and
larger αi corresponds to less variable Tji across test takers. The
probability density function (PDF) of Tji is equal to

f
(
t|τj, βi, αi

)
=

αi

t
√

2π
exp

{
−

α2
i

2
[
log (t)−

(
βi − τj

)]2
}
.

Level-2 of the framework involves joint models of the person
parameters and of the item parameters. The joint distribution of
the test taker’s ability θj and speed τj, 1 ≤ j ≤ J, was assumed to
follow a bivariate normal distribution,(

θj
τj

)
∼ N2

(
µp, 6p

)
with the mean vector µp = (0, 0)′ and covariance matrix

6p =

(
σ2

θ σθτ

σθτ σ2
τ

)
.

Let ρθt = σθt/ (σθσt) be the correlation between ability θj and
speed τj across j. Similarly, for item parameters, a bivariate
normal distribution was assumed for item difficulty bi and time-
intensity βi, 1 ≤ i ≤ I,(

bi
βi

)
∼ N2 (µI, 6I)

with the mean vector µI =
(
µb,µβ

)′ and covariance matrix

6I =

(
σ2

b σbβ

σbβ σ2
β

)
.
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Let ρbβ = σbβ/
(
σbσβ

)
be the correlation between difficulty bi

and time-intensity βi across i. The item parameter moments
were constrained from the general case, which includes
time-discrimination αi in the item parameter vector. In this
study, time-discrimination αi was estimated separately. The αi
was assumed to be independent of bi and βi for two reasons.
First, previous studies (e.g., Bolt and Lall, 2003; Fox et al., 2014)
indicate that the correlations between the time-discrimination
αi and the other item parameters (bi and βi) provide negligible
information about the item quality or person latent traits,
especially the relationship between speed and accuracy among
test takers. Thus, by following the convention of jointly
estimating an RT model and an IRT model, the covariances
related to time-discrimination αi were ignored. Second, forcedly
estimating the covariances related to time-discrimination αi
might cause an over-fitting issue with complex hierarchical
modeling, which might yield untrustworthy person parameter
estimates. Thus, the mentioned constraints were applied.

A software program that implements a Bayesian MCMC
approach with Just Another Gibbs Sampler (JAGS; Plummer,
2015) was employed to estimate the model parameters (Man et al.,
2019). The prior distributions for estimating the mean vector and
the covariance structure of the item difficulty and time-intensity
were specified as follows:

µb ∼ N (0, 2) ,µβ ∼ N (4.5, 2) ,6I ∼ IW (II0, νI0) ,

and αi ∼ InvGamma (1, 1) ,

where IW denotes the inverse-Wishart distribution, InvGamma
denotes the inverse-gamma distribution, II0 is a 2× 2 identity
matrix, and νI0 indicates the degree of freedom, which in this
case is 1. Likewise, the prior distribution for estimating the
covariance structure of the person parameters is defined as 6p
∼IW (II0, νI0), the same distribution as 6I given above. Model
parameters were estimated by the posterior mean, or the expected
a posteriori (EAP) estimate, through the algorithm.

The R2jags package (Su and Yajima, 2015) was utilized to run
JAGS in R (R Core Team, 2016). The potential scale reduction
(PSR) factor was used for evaluating the model parameter
convergence (Gelman et al., 2003).

Results
For parameter estimation with this dataset, the MCMC approach
involved two chains, each with thinning of 5 using 15,000 total
iterations with a 5,000 burn-in. In this study, a PSR value
of a parameter estimate lower than 1.1 indicates satisfying
convergence (Gelman and Rubin, 1992a,b). Figure 3 shows that
the estimation of all of the parameters converged, as all the PSR
values were lower than 1.1. The current choice of hyperpriors
N (0, 2) and N (4.5, 2) for µb and µβ seemed suitable for the
dataset with the use of the Rasch model and the two-parameter
lognormal RT model as the two chains reached their convergence.
Also, the current setting of priors follows the convention of
fitting IRT and RT models with Bayesian estimation (e.g., van
der Linden et al., 2010; Natesan et al., 2016; Luo and Jiao, 2018).
However, whether such hyperpriors generally work for jointly

FIGURE 3 | Histogram of the values of the potential scale reduction factor
based on the fitted joint model.

modeling RTs and responses in the hierarchical framework needs
to be addressed by additional sensitivity analysis.

The histogram of the EAP estimates of the ability parameters
(Figure 4, left panel) was skewed to the left, while the histogram
of the EAP estimates of the speed parameters (Figure 4, right
panel) was roughly symmetric. Both histograms had mean equal
to 0 due to the imposed constraints for identifiability of the model
parameters, but the EAP estimates of the ability parameters
were much more variable than were the EAP estimates of the
speed parameters.

On the other hand, there was a tiny, but statistically
significant, positive correlation between the ability and speed
parameters among the test takers. Based on the estimated
Level-2 model parameters in Table 3, the estimated correlation
ρ̂θt = σ̂θt/

(
σ̂θσ̂t

)
= 0.04/ (0.85 · 0.08)1/2

= 0.17, with a 95%
credible interval (0.034, 0.302). A positive correlation between the
ability parameter and the speed parameter for a test-taker sample
implies that more proficient test takers tended to work faster
on the task. This level of correlation is very weak compared to
many reported studies based on the same hierarchical framework.
For instance, Klein Entink et al. (2009) reported an estimated
correlation of−0.76 for a low-stakes assessment and an estimated
correlation of 0.3 for a personality questionnaire; Wang et al.
(2013) found an estimated correlation of 0.71 for a high-stakes
adaptive test; Zu et al. (2016) showed estimated correlations of
0.59 for a high-stakes Listening test and of 0.86 for a high-
stakes quantitative reasoning test. The authors noted that the
correlation between ability and speed probably depends on the
test context and content, type of test, type of item, and the test
conditions. There are many possible reasons for the finding of
a weak positive correlation observed in this dataset, such as
different item types among the 11 items (especially simulation
items vs. others), no time limit on the task, and not a challenging
task to the test takers so that spending more or less time did not
affect the accuracy of their responses substantially.

Based on the estimated Level-2 model parameters in Table 3,
the estimated correlation between the items’ difficulty and
time-intensity, ρ̂bβ = σ̂bβ/

(
σ̂bσ̂β

)
= 0.24/ (2.77 · 0.43)1/2 =0.22
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FIGURE 4 | Histograms of the EAP estimates of the ability parameters (left) and of the speed parameters (right) for the test takers in the dataset.

TABLE 3 | Estimates of item parameters and level-2 model parameters.

RT Rasch

Time-intensity Time-discrimination Difficulty

EAP SE EAP SE EAP SE

β1 3.06 0.02 α1 4.02 0.30 b1 −0.72 0.12

β2 2.60 0.03 α2 5.12 0.37 b2 −0.58 0.11

β3 2.59 0.03 α3 3.68 0.27 b3 −0.93 0.12

β4 3.49 0.02 α4 7.58 0.57 b4 −0.43 0.12

β5 2.81 0.02 α5 6.28 0.46 b5 −3.07 0.22

β6 2.96 0.02 α6 5.59 0.40 b6 −2.05 0.16

β7 1.94 0.02 α7 7.45 0.57 b7 −3.90 0.30

β8 3.76 0.02 α8 3.80 0.27 b8 −2.94 0.22

β9 3.27 0.03 α9 2.65 0.19 b9 −0.32 0.11

β10 2.31 0.02 α10 10.03 0.83 b10 −0.18 0.11

β11 3.31 0.03 α11 3.16 0.23 b11 1.30 0.13

Covariance matrix of item parameters

σ 2
b 2.77

σbβ 0.24

σ 2
β 0.43

Covariance matrix of person parameters

σ 2
θ 0.85

σθτ 0.04

σ 2
τ 0.08

For each item parameter, the EAP and SE are the posterior mean and posterior
standard deviation, respectively.

with a 95% credible interval (−0.376, 0.710). Thus, there was no
clear relationship between the items’ difficulty and time-intensity.
Item type is likely a key factor for this finding. In addition to the
Level-2 model parameters, Table 3 also summarizes the estimates
of all item parameters. To better associate the combinations of
the estimated item difficulty and time-intensity with the 11 items,
Figure 5 depicts their EAP estimates by item. For example, the
least time-consuming item (Item 7, a single-selection MC item)

FIGURE 5 | EAP estimates of item difficulty and time-intensity by item.

was the easiest item in the task, but the most time-intensive item
(Item 8, a simulation item) was also very easy. It is common
for simulation-based tasks to include simulation items, which
ask the test takers to follow specific instructions to conduct an
experiment or a simulation, and such items are usually scored
based on the completeness of the experiment/simulation. Relative
to other item types, simulation items may not be difficult, but
they are typically time-consuming. In the task under study, the
most time-intensive but very easy item was indeed one such
item, which asked the test takers to decide on the number and
locations of seismometers to be placed around a volcano in order
to collect proper data for later analyses. The simulation items in
the two NAEP simulation-based tasks revealed the same pattern
of time-intensive but easy (Jia and Lee, 2018).

Figure 6 presents the item characteristic curve based on the
fitted Rasch model with the observed proportion correct for the
11 items. To evaluate the observed proportion correct, the test
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FIGURE 6 | Item characteristic curve (solid blue line) with observed proportion correct (black dots line) for the 11 items.

takers were classified into 6 equal-size groups based on their
EAP estimates, and then the fraction of correct responses was
computed per group for each item.

ANALYSIS 4: DID THE TEST TAKERS
SHOW DIFFERENT TIMING PATTERNS
ON THE TASK?

The preceding section considers a parametric approach to jointly
modeling item responses and RTs. The hierarchical framework
in van der Linden (2007) makes assumptions that each test taker
operates at fixed levels of speed and ability, and is not designed to
detect different test-taking behaviors/strategies or potential latent
classes. In practice, test takers may employ different strategies
to allocate their time across items. Cluster analysis is a useful
approach to studying different patterns of the trend and variation
in RTs across items among a test-taker sample. Test takers
showing similar RT patterns would be identified as a cluster.
Through examination of the identified clusters, the analysis may

suggest differences in strategies/behaviors across test takers and
changes in strategies/behaviors across items.

Methods
This analysis examined the RT patterns across the 11 items
to look into possible trends and variations of the test takers’
response processes. Each test taker’s RT pattern spanned an 11-
dimensional space, and a hierarchical cluster analysis was applied
to the RT patterns of all test takers to find out how they clustered
in the 11-dimensional space. After experimenting using a number
of clustering methods and distance metrics, it was found that
a hierarchical clustering approach with the Euclidean distance
calculated from the RTs and the Ward linkage (Ward, 1963) led to
the most interpretable clustering of test takers. By using the Ward
linkage, a pair of clusters being chosen to be merged at each step
of the hierarchical clustering process will minimally increase the
total within-cluster variance. We determined the final number
of big clusters based on the elbow point of the inter-cluster
distances. After the clusters were identified, given a cluster, the
mean of RTs was computed for each item, and the 11-dimensional
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mean RT vector was graphed to depict the trend and variation of
the general RT pattern for the cluster. To evaluate if the clusters
had different overall performance in terms of accuracy and timing
or item performance, the test takers’ task times, task scores, and
item responses were compared by cluster. The person covariates
used in Analysis 2 were also considered for further investigation
of the clusters.

Results
Figure 7 shows the cluster dendrogram. Based on the elbow point
of the linkage (Figure 8), three clusters were identified. For each
cluster, the average time spent on each item is shown in Figure 9.
One may observe that cluster 1 (with 12 test takers) corresponded
to a “slow” response pattern, as those test takers spent more time
on average on almost all items. Cluster 2 (with 222 test takers)
corresponded to a “fast” response pattern, as the test takers spent
less time on average on every item. Cluster 3 (with 211 test takers)
corresponded to a “moderate” response pattern, as their average
RTs lie between the average RTs of those in cluster 1 and cluster
2 on most of the items. All three clusters shared a somewhat
similar timing trend on most items but deviated from the trend
on specific items. The common timing trend generally follows
the patterns of item time-intensity observed in the boxplots of
items in Analysis 1 (Figure 1) and estimated in the hierarchical
framework in Analysis 3 (Figure 5). The differences among the
test takers’ RT patterns translated into different estimated speed.
The existence of the three clusters with different RT patterns
did not distort the RT distributions for individual items: the RT
distributions of clusters 2 and 3 overlapped and did not appear
as distinct peaks; cluster 1 only had 12 test takers and their RTs
tended to appear as outliers in the overall RT distribution per
item rather than a second mode. Thus, there was no evidence
against using a lognormal distribution in modeling RTs (see
section “Results” in Analysis 1), and the fact that the estimation of

the model parameters converged successfully in the hierarchical
modeling (Analysis 3) provided a sign of reasonable fit.

Figure 10 shows the boxplot of task times by cluster (left
panel) and the mean task score by cluster with the associated 95%
confidence limits (right panel). The task-level timing differences
among the three clusters agreed with the findings regarding the
item-level timing patterns discussed above (Figure 9). One may
find that, despite the different timing patterns, the accuracy (as
reflected by the task scores) was comparable across the clusters—
this result suggests that, although the test takers in different
clusters might have approached the items in different ways and
that resulted in differences in RTs, their performances were not
much affected. This finding is consistent with the observed weak
positive correlation between the test taker’s speed and ability
estimated in the hierarchical framework. More importantly,
results from the cluster analysis revealed variations in different
clusters’ RT patterns across items, especially between cluster 1
and the rest of the test takers (Figure 9). The test takers in cluster
1 spent a lot more time to figure out what to do with Item 8,
which is the simulation item that asked the participants to decide
on the number of seismometers they want to use to monitor
the volcano and then place them in different regions around
the volcano. Besides the longer RTs on average, the test takers
in cluster 1 did not do as well on Item 8 as those in clusters
2 and 3—the proportions correct for clusters 1, 2, and 3 were
0.67, 0.92, and 0.96, respectively. The 12 test takers in cluster 1
also tended to spend more time on two follow-up CR questions
about the simulation (Items 9 and 11) and perform slightly worse
on these items. In general, such information may be leveraged
to supply valuable formative feedback to students, teachers, and
assessment developers to help identify potential learning gaps
or design issues. With respect to the person covariates, the
only more noticeable difference among the three clusters was
their gender decomposition: only one-third of cluster 1 (4 out

FIGURE 7 | Dendrogram of the clustering of test takers based on RTs.
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FIGURE 8 | Elbow plot of the inter-cluster distance. The red dot indicates where the elbow point is located.

FIGURE 9 | Mean RT by item for each of the three clusters.

of 12) were male, while almost two-thirds of either cluster 2 or
3 were male (which tracked the gender decomposition in the
overall sample well).

ANALYSIS 5: DID THE TEST TAKERS
SHOW RAPID-GUESSING BEHAVIOR ON
THE TASK?

Analysis 4 employed cluster analysis to identify clusters with
different timing patterns. The analysis in this section focuses on

two specific test-taking behaviors, solution behavior and rapid-
guessing behavior. As noted in the Introduction section, RTs
have been used to differentiate rapid-guessing behavior from
solution behavior. Test takers exhibiting rapid-guessing behavior
on an MC item typically spend little time relative to the majority
of the test takers, and their probability of answering the item
correctly is likely close to the chance-level proportion correct
(i.e., the expected probability of answering an item correctly
by guessing). Thus, more effective approaches to identifying
rapid-guessing behavior consider both item responses and RTs
(e.g., Ma et al., 2011; Lee and Jia, 2014; Wang and Xu, 2015;
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FIGURE 10 | Boxplot of task times by cluster (left) and the mean task score by cluster with the associated 95% confidence limits (right).

Guo et al., 2016). There are many reasons that may lead to
the presence of rapid-guessing behavior on a test: a common
issue for high-stakes assessments is test speededness, whereas
a common concern for low-stakes assessments is motivation.
The analysis in this section is intended to assess the extent of
rapid-guessing behavior in the task. Because the task was given
without time limits, clear presence of rapid-guessing behavior
is more likely to indicate motivation issues. If rapid guessing
is negligible or not present in a dataset, then motivation is
unlikely a concern.

Methods
The non-model-based procedure in Lee and Jia (2014) was
originally developed for MC tests. It was adapted by Jia and
Lee (2018) to examine rapid-guessing behavior and motivation
issues in the two NAEP simulation-based tasks. This procedure
examines the items on a test one by one. For each item,
it defines a time threshold through visual inspection of the
RT distribution with the information of proportion correct
evaluated at every observed RT (i.e., conditional proportion
correct). For MC items, an identified time threshold for an
item should classify the test takers into two groups: One
group, which is assumed to exhibit solution behavior, has RTs
greater than the time threshold and their proportion correct
should be clearly greater than the chance level (i.e., for a
4-option single-selection MC item, the chance-level proportion
correct is about 0.25). The other group, which is assumed
to exhibit rapid-guessing behavior, has RTs shorter than the
time threshold and conditional proportion correct close to
the chance level. For items that are unlikely to be answered
correctly by guessing (e.g., CR items), the chance level may
be set at 0, and the rest of the procedure remains applicable
(Jia and Lee, 2018).

Data with larger fractions of RTs falling below the
corresponding time thresholds indicate more substantial
levels of rapid guessing on the test. If no item involves the
patterns of short RTs and chance-level proportion correct, or if

the fraction of identified rapid guesses is negligible, then rapid
guessing is considered not a concern for the test.

Results
The procedure was applied to each of the 11 items to identify
possible time thresholds based on the item-level RT histograms
and the associated results of conditional proportion correct.
Figure 11 presents the RT distributions of all 11 items overlaid
with the conditional proportion correct represented in red points.
As the identification of rapid guesses focuses on shorter RTs, the
RT distributions were truncated at the 90th percentile for each
item. According to Table 1, the chance-level proportions correct
for the MC items are as follows: 0.25 for Items 1, 2, 5, 6, and 7;
1/3 for Item 3; and 1/120 for Item 4. Items 8–11 were CR items,
so their chance-level proportions correct were set at 0.

Based on Figure 11, one could, in a strict sense, identify time
thresholds of 6 and 8 (seconds) for Items 9 and 11, respectively,
which classified the test takers into the two behaviors—solution
behavior vs. rapid-guessing behavior. However, the size of the
respective resulting group for rapid-guessing behavior was almost
ignorable, that is, 1 (0%) for Item 9 and 8 (<2%) for Item 11.
None of the other items had an identifiable time threshold that
clearly separates the two behaviors. In fact, most of the items
had decent proportions correct for pretty short RTs. Thus, it was
concluded that no clear rapid-guessing behavior was detected in
this dataset using timing and response data, and motivation is
unlikely an issue.

DISCUSSION

This paper presents a systematic RT study on the simulation-
based task about volcano science, and investigates different
timing aspects of this test-taker sample’s behavioral features at
the task level and the item level. The goal is to understand
the RTs in complex simulation-based tasks so as to gain
insights into possible ways of leveraging RT information in
designing, assembling, and scoring of simulation-based tasks.
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FIGURE 11 | Item-level RT distribution with conditional proportion correct for the 11 items (RTs truncated at the corresponding 90th percentile).

Information about the test takers’ performance on the items/task,
demographics, motivation level, and personality was also
considered. The task involved 11 items of various types associated
with a common scenario, and was delivered without time limits.
The majority of the test takers spent 6 min or less on the 11 items
and performed well.

The five timing analyses revealed the following interesting
findings. First, the timing data at both the task level and the
item level showed good distributional properties, which made it
possible to employ relatively simple statistical models that are
unimodal and right-skewed, such as lognormal regression, to
analyze the relationship between the timing data and other data
available for the test takers. Second, the number of observations
being identified as associated with rapid guessing was negligible.
Thus, it was concluded that no clear rapid-guessing behavior
was observed in this dataset, and motivation was not an issue
for this sample-task combination. Third, the items were not
time-consuming for this sample, and there was little variability
in the task times for this sample. None of the available person
covariate (i.e., task performance, demographics, self-reported
motivation levels, and responses to personality questions) was
useful in explaining the variability in the task times, so there was
no notable difference in the task times among any demographic
subgroups. The two major clusters identified in the cluster
analysis also did not present differences in the RT patterns
among the demographic subgroups. Fourth, the results of the
hierarchical modeling framework indicated a weak positive

correlation estimated between the test takers’ ability and speed.
The three clusters identified in the cluster analysis also exhibited
different RT patterns across the 11 items but comparable task
scores. All three clusters shared a somewhat similar timing trend
on most items but deviated from the trend on specific items. Last
but not least, the hierarchical modeling framework revealed no
clear association between the items’ time intensity and difficulty.
The simulation item had a very different combination of difficulty
and time-intensity (easy but very time-consuming) compared to
the other items in the task.

There are several implications of the results concerning the
design, assembly, and scoring of simulation-based tasks. First,
the good distributional property of the timing variables may be
attributed to the “no time limit” condition, which implies no
constraint on the timing variables and that results in no missing
data due to lack of time in both timing and responses. Thus,
censoring, a common issue in time-to-event studies in survival
analysis (see, e.g., Kalbfleisch and Prentice, 2002; Lee and Ying,
2015), is not a concern in this dataset. Imposing no time limit
to a simulation-based task may allow test takers to choose their
own pace in working on the items. In contrast, for tasks/tests
with an overall time limit, as is the case for typical educational
assessments discussed in the RT literature, the presence of time
limits may lead to missing item responses and RTs, some extent of
speededness, truncated times at the test level and even at the item
level, or may introduce between-item dependencies among each
test taker’s RTs. As a result, more sophisticated statistical models
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may better describe RTs and responses in time-limit tests (e.g.,
Ranger and Ortner, 2012; Lee and Ying, 2015; Bolsinova et al.,
2017; Molenaar et al., 2018).

The finding of no clear association between the items’ time
intensity and difficulty was interesting but not surprising. Among
many possible factors, test type and item type may play an
important role in this finding, as the simulation item had a
very different combination of difficulty and time-intensity (easy
but very time-consuming) compared to more traditional MC
and CR items. The contrast between simulation items and more
traditional MC and CR items in the time spent and difficulty was
also discovered in the two NAEP simulation-based tasks studied
in Jia and Lee (2018). Thus, this finding is possibly unique to
simulation-based tasks, and is not necessarily generalizable to
traditional educational tests with MC and/or CR items.

On the other hand, the weak positive correlation estimated
between the test takers’ ability and speed in this sample suggests
that task scores (or item responses) and task times (or RTs) may
reveal different useful information about the test takers on the
task. The cluster analysis resulted in similar conclusions. Perhaps,
two scores may be reported, one about accuracy and the other
about speed/efficiency, to describe a test taker’s performance on a
simulation-based task. The finding of no notable difference in the
task times, or in the RT patterns of the two major clusters, among
any demographic subgroups indicates that fairness in terms
of timing was not an issue for this sample-task combination.
However, it is unclear how test takers would change their
behaviors when they were told that all process data would be
examined and scored. Further research is needed to evaluate
such impact on person-task interactions. As already mentioned
in Analysis 3, this level of correlation is unusual as compared to
existing findings in the RT literature. There are many possible
factors for this observation. For example, test type and item
type (especially simulation items vs. others) are likely relevant.
Test design and condition may be another factor—the task was
delivered without time limit and was not high-stakes, so the test
takers were not urged to complete accurately and quickly. Range
restriction (e.g., Raju and Brand, 2003) is another possibility.
The dataset under study came from a test-taker sample that
seemed proficient in the task. This factor may also explain the
lack of association between the test takers’ time spent on the
task and the available person covariates. Further empirical studies
should focus on different simulation-based tasks and/or different
test-taker populations to assess the generalizability of the weak
positive association observed in this study.

One potential issue with scoring the current simulation-based
task is that the task length may be too short to produce reliable
scores on any aspects of the task performance. The sample
size was also limited in this dataset. The short task length
probably results from practical constraints on the overall task
time, which not only includes the time spent responding to the
embedded items but also includes the time spent listening to
information about the common scenario. Our study indicated
that the 11 items were generally not time-consuming for this
test-taker sample. Thus, it may be adequate to include a few
more non-simulation items to better assess what the test takers
know and can do while not making the overall task time overly

excessive. Designing the simulation-based task with more items,
together with a larger sample, would also open up the possibility
of using more complicated statistical models to capture the more
complex person-task interactions. For instance, the simulation
in the task may introduce additional dependencies among the
associated items, or the test takers may change their behaviors
across items of different types. Extensions of the hierarchical
framework (van der Linden, 2007) with more complex IRT
models may better describe the additional dependencies among
the associated items. Mixture models may be used to detect
heterogeneous behaviors with multiple classes underlying the
responses and RTs (e.g., Molenaar et al., 2018), or to detect the
test takers’ shifting between solution behavior and rapid-guessing
behavior with two underlying classes (e.g., Wang and Xu, 2015).
Further work in this direction is worth considering.

Analysis 5 in the study concluded no notable rapid-guessing
behavior or motivation issue in this dataset. Possible explanations
include that this task was more engaging to this sample of test
takers, the task was not too challenging to the test takers so
they were willing to work on the items, and so on. Jia and Lee
(2018) also found no issue with rapid-guessing behavior in the
two NAEP simulation-based tasks. It is likely that simulation-
based tasks are more interesting and engaging to test takers,
but more research with different datasets—in terms of different
tasks, different test-taker populations, different test conditions,
and so on—is needed to further investigate the benefit of using
simulation-based tasks in various settings. It may also be useful
to retrieve more fine-grained data at the action level, including
timing, processes, and others, to look further into person-task
interactions (see, e.g., Ercikan and Pellegrino, 2017; Man and
Harring, 2019). In any case, it will be valuable to conduct a
systematic RT study similar to the one presented herein to
assess different timing aspects of a test-taker sample’s behavioral
features in the simulation-based task of interest. Findings from
such an RT study will lead to a better understanding of the
person-task interactions and therefore offer insights into possible
ways to leverage RT information in designing, assembling, and
scoring of the simulation-based task of interest.
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The detection of examinees who have previously accessed proprietary test content is a

primary concern in the context of test security. Researchers have proposed using item

response times to detect examinee pre-knowledge, but progress in this area has been

limited by a lack of real data containing credible information about pre-knowledge and by

strict statistical assumptions. In this work, an innovative, but simple, method is proposed

for detecting examinees with pre-knowledge. The proposed method represents a

conditional scaling that assesses an examinee’s response time to a particular item,

compared to a group of examinees who did not have pre-knowledge, conditioned on

whether or not the item was answered correctly. The proposed method was investigated

in empirical data from 93 undergraduate students, who were randomly assigned to have

pre-knowledge or not. Participants took a computerized GRE Quantitative Reasoning

test and were given no items, half the items, or half the items with correct answers to

study before the test, depending on their condition. Exploratory analysis techniques were

used to investigate the resulting values at both the item and person-level, including factor

analyses and cluster analyses. The proposed method achieved impressive accuracy of

separation between disclosed and undisclosed items and examinees with and without

pre-knowledge (96 and 97% accuracy for cluster analyses, respectively), demonstrating

detection power for item disclosure and examinee pre-knowledge. The methodology

requires minimal assumptions about the data and can be used for a variety of modern

test designs that preclude other types of data forensic analyses.

Keywords: test security, latencies, cheating, pre-knowledge, data forensics, response times, experiment

INTRODUCTION

Greater access to technology and the rise of standardized testing have led to an increase in threats of
cheating on tests. Pre-knowledge of exam content occurs when exam items, options, and/or answers
(presumed or actual) are harvested and shared with future examinees. Examinees maymemorize or
record exam content and divulge that information to future examinees via conversations, forums
or online groups, review courses, shared files, or even by selling exam content online. The result is
examinees who have accessed exam content prior to testing, gaining an unfair advantage through
pre-knowledge of the content. When items are disclosed and pre-knowledge is gained, test security
is violated and the validity of test scores should be questioned. In this paper, a new method for
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analyzing response time data is proposed that makes minimal
assumptions about the nature of the data and provides
meaningful information about extreme response times,
aiding in the detection of disclosed items and examinees
with pre-knowledge.

There are several known cases in which widespread pre-
knowledge was observed after exam content was disclosed. In
one case, the certifications of 139 physicians were suspended for
soliciting or sharing exam content through exam preparation
courses (American Board of Internal Medicine, 2010). In another
case, more than 250 examinees who allegedly accessed or
shared exam content on social media sites were identified and
penalized (Federation of State Boards of Physical Therapy,
2015). In yet another case, the average GRE score for several
countries increased by 50–100 points on test sections with
scaled scores ranging from 200 to 800 (Kyle, 2002). It was
discovered that exam content was being posted and widely
accessed by examinees in these countries. Information on
the prevalence of pre-knowledge is understandably difficult to
obtain, but cases like these can provide information about the
potential magnitude of the issue when the stakes for exams
are high.

Pre-knowledge is difficult to detect because there are not
usually external signs of this type of cheating (Bliss, 2012).
Typically, examinees with pre-knowledge have accessed and
memorized exam content before testing. These factors mean that
the detection of pre-knowledge must be accomplished through
data forensics analyses rather than through surveillance by test
proctors or video cameras.

Expected Patterns of Examinees
With Pre-Knowledge
Examinees with pre-knowledge presumably do not answer test
questions by conventional independent and intellectual means.
Given that standardized tests have many respondents providing
predictable and valid response patterns, examinees with pre-
knowledge likely have different, identifiable response patterns
in their data. In order to detect examinee pre-knowledge, it
is important to understand how pre-knowledge influences data
patterns. Differences are likely to manifest in both the item scores
and the response time patterns. Additionally, examinees with
pre-knowledge are likely respond to disclosed and undisclosed
items differently, even after item difficulty and complexity are
taken into account.

Examinees with pre-knowledge are likely to receive a higher
score than they would have given their own ability, although
their exact score depends on: the accuracy of the source of the
pre-knowledge, their capability to memorize and recall the test
content, and their ability level prior to obtaining pre-knowledge.
Thus, score is not likely to be a powerful predictor of pre-
knowledge unless it is analyzed in combination with other
variables, such as item response times (RTs) or latencies.

There are many possible patterns that could represent pre-
knowledge, but at a basic level, examinees with pre-knowledge
are expected to:

• score higher on disclosed items than other items, because they
likely accessed answers to these items while preparing for the
exam (van der Linden and van Krimpen-Stoop, 2003; Belov,
2016a; Toton et al., in preparation);

• avoid or neglect studying for the test, thus receiving lower
scores on undisclosed items than other items; and

• respond more quickly to disclosed items than to other items,
because they were previously exposed to these items, and thus
may spend less time reading the item content and selecting
a response (van der Linden and van Krimpen-Stoop, 2003;
Toton et al., in preparation).

Although we have separated items into disclosed and
undisclosed for the purpose of this research, it is very common
that the status of a group of items is unknown. Thus, it is
important to note that detecting an item as undisclosed does
not necessarily indicate that the item has not been disclosed. In
addition, different subsets of examinees may have pre-knowledge
of different items.

The above patterns in item scores and response times are
generally expected to be true when pre-knowledge is present,
although variability in these patterns is to be expected. The
statistical methods to detect pre-knowledge use some or all
of these patterns in order to identify examinees who are
suspected of having pre-knowledge and/or items that may have
been disclosed.

Statistics to Detect
Examinee Pre-Knowledge
A wide variety of statistical approaches for detecting pre-
knowledge have been explored in the literature and it is beyond
the scope of this paper to review all of them. We will briefly
describe categories of methods to detect pre-knowledge and a few
methods to represent each category. For more comprehensive
reviews on the wide variety of statistics used to detect pre-
knowledge, see Bliss (2012), Eckerly (2017), or Scott (2018).
Categories of methods to detect pre-knowledge include analyses
of person-fit, similarity, score differences, and response times.
Some methods may span multiple categories. For example, the
method proposed in this paper applies the logic of person-fit and
score-differencing statistics to response time data.

Person-Fit Statistics
Person-fit statistics only require item scores to compute
and are a part of a typical psychometric analysis. Thus,
computing person-fit statistics to detect pre-knowledge is a
standard approach for psychometricians. Examinees without
pre-knowledge are expected to respond to test items in Guttman
patterns, such that examinees are expected to answer easier
test items correctly up until a specific difficulty level and
then answer all test items harder than that level incorrectly
(Guttman, 1944). Person-fit statistics quantify the degree of
misfit between an examinee’s responses and the expected
Guttman pattern.

One person-fit statistic that is a common baseline for detecting
pre-knowledge is lz (Drasgow et al., 1985). This statistic is the
standardized log likelihood of a test response, based on an Item
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Response Theory (IRT) model. It is assumed that lz is normally
distributed, but that is often not the case in live data. Karabatsos
(2003) assessed the performance of 36 person-fit indices in
detecting unusual response patterns (e.g., a high ability examinee
answering easy items incorrectly, but difficult items correctly),
including lz . The best statistic,Ht (Sijtsma andMeijer, 1992), was
a non-parametric statistic that compared an examinee’s response
pattern to the response patterns of all other examinees. Generally,
non-parametric (i.e., those not based on IRT models) person-
fit indices performed better than parametric indices. Another
study, which applied IRT models to simulated data to detect
cheating found that the lco difference (Ferrando, 2007), a sum
of squared, standardized residuals across items, performed better
than other methods, including Ht (Clark et al., 2014). All of the
tested person-fit methods performed poorly on data with low
rates of cheating.

The main limitations of using person-fit statistics to detect
pre-knowledge are that they have relatively lower power than
other statistics (Belov, 2016a) and that all types of misfit to the
model is identified and flagged, so drawing inferences about what
may have caused the misfit to the model (e.g., examinee pre-
knowledge) is extremely difficult. Additionally, if pre-knowledge
is widespread, it may be that examinees without pre-knowledge
exhibit misfit.

Similarity Statistics
Similarity statistics quantify the agreement between examinees’
responses. Answer-copying statistics are a type of similarity
statistics that are typically computed for a single pair of
examinees. Similarity statistics are a broader category than
answer-copying statistics since they do not require labeling of
source and copier examinees and are generally designed to
detect groups larger than two who may have shared a source
of pre-knowledge.

Angoff (1974) developed and researched the performance
of eight answer-copying statistics. The two best statistics were
those that (1) identified anomalously large numbers of identical
incorrect responses in a pair of examinees, compared to other
pairs of examinees with similar products of incorrect and
identical incorrect responses, and (2) represented the maximum
identical incorrect responses, or omitted responses, in a string
of identical responses, compared to other pairs of examinees
with similar scores. Similarly, Frary et al. (1977) developed the
g2 statistic to compare the number of identical responses in a
pair to the expected number of identical responses. To compute
the expected number of identical responses, a source and a
copier are labeled in the pair and then the probability that the
copier selected the same response as the source is calculated and
these probabilities are summed over all items. This difference
between the expected identical responses and observed identical
incorrect responses is then standardized. This statistic is based
in classical test theory (CTT). Wollack (1997) expanded on this
work, developing the omega (ω) statistic, which is computed in a
similar manner, but is based in the framework of IRT and uses the
nominal response model (Bock, 1972) to obtain the probabilities
that each examinee will select a particular response option.

van der Linden and Sotaridona (2006) and Maynes (2017)
also used the nominal response model to estimate probabilities
of an examinee selecting a particular response. The generalized
binomial test developed by van der Linden and Sotaridona
(2006) counts the total identical answers between examinees
and compares it to the expected number. The M4 similarity
statistic compares the observed identical incorrect, identical
correct, and non-matching responses to the expected counts,
based on the examinees’ scores, using a generalized trinomial
distribution (Maynes, 2017). Both of these methods provide a
way to assess mismatch between the expected level of similarity
between examinees and the observed level of similarity.

The main limitation of using similarity statistics to detect
pre-knowledge is that their performance is known to be
affected by the examinees’ scores. High-scoring examinees should
have strong agreement in their responses, since they provide
mostly correct responses. Additionally, similarity statistics were
developed for use on fixed form tests, where all examinees
receive the same items, but often cannot achieve sufficient power
in modern test designs such as computerized adaptive testing
(CAT) or linear-on-the-fly testing (LOFT) because the number of
items in common across examinees is typically very small. Thus,
similarity analyses are powerful but often cannot be conducted
with confidence in data obtained from modern test designs, due
to the small number of common items.

Score-Differencing Statistics
If information about the items is known, different subsets of
items can be scored and then the scores compared across subsets.
For example, if a subset of items is known to be undisclosed
(e.g., a group of new items is added to an exam), scores
on the undisclosed items can be compared to scores on the
remainder of the items. Examinees with much lower scores on
the undisclosed subset and much higher scores on the remainder
of the items should be detected as anomalous. These analyses
are often referred to as score-differencing or differential person
functioning analyses.

The Deterministic, Gated Item Response Theory Model
proposed by Shu et al. (2013) detects examinees with pre-
knowledge by separating probably disclosed items and probably
undisclosed items. Score differences between the two item types
are computed and examinees are split into those suspected of
having pre-knowledge and those who are not based on those
differences. Depending on the classification of the examinee
and the item type, the ability level on the measured construct
and the ability level due to cheating are both estimated. In this
way, the model can identify a “true” ability level, untainted by
the influence of probably disclosed items. Eckerly et al. (2015)
expanded on this work, proposing a process of purifying the
scale of item and person parameters by removing detected
examinees from the computation of item difficulty parameters
and then using the purified item parameters to re-estimate
ability estimates. This modification reduced false-positives, while
maintaining detection power.

Belov (2017) developed the posterior shift statistic, which
is a Bayesian analysis that compares posterior distributions of
ability between subsets of items. For example, comparing known
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disclosed items to remaining items, or known undisclosed items
to the remaining items. An expansion of this work injects
a posterior shift statistic into a specially organized Markov
Chain Monte Carlo to simultaneously detect disclosed items and
examinees with pre-knowledge in a situation where a subset
of undisclosed items is known (Belov, 2016b). The results
suggest that the method performs well, even when the known
undisclosed subset actually contains up to 15% disclosed items,
but not when the known undisclosed subset contains 30%
disclosed items. Thus, the method is robust to some error in
specifying the undisclosed subset, but requires that the majority
of the items in the undisclosed subset be accurately identified.

The main limitation of score-differencing statistics is that
the additional information on items they require to compute is
often unavailable or inaccurate. This can limit the application of
score-differencing statistics to live data.

Flawed key analyses
Flawed key analyses are a subset of score-differencing statistics,
although they are also strongly related to similarity analyses.
Items are often disclosed without official answer keys and
examinees who create their own keys often make errors. If a
disclosed answer key contains errors and is known, a flawed key
analysis can provide valuable information about pre-knowledge.
Flawed keys are commonly discovered online or by finding keys
used by rogue review courses, who sometimes create practice tests
out of live items and provide an answer key to score the test. To
conduct a flawed key analysis when the disclosed key is known,
each test is scored using the actual key and the disclosed key, and
examinees with significantly higher scores on the disclosed keys
are identified (Scott, 2018).

Some research has focused on estimating latent sources, which
includes flawed keys, from response data. To estimate a flawed
key, similarity statistics can be utilized. Scott (2018) proposed
a method of estimating disclosed keys that involved computing
(Wollack, 1997) omega for all possible pairs of examinees. Four
methods were compared to estimate the disclosed key, selecting
each item’s key as the response from the (1) source in the most
source-copier pairs that exceeded a threshold of omega, (2)
source in the source-copier pair with the largest omega value, (3)
examinee’s response pattern that was in the most source-copier
pairs where omega exceeded a threshold, and (4) the source
that was associated with the most copiers with maximum omega
values. The results showed that the fourth method performed
with very high accuracy in live data and the third performed best
in simulated data, indicating that the estimation of flawed keys
may require different methods in different contexts.

Maynes and Thomas (2017) analyzed clusters of examinees
to estimate disclosed keys. This analysis assumes that a similar
cluster of examinees has been detected using the Wollack and
Maynes (2016) method, which is similar to nearest neighbors
clustering. In the Wollack and Maynes (2016) method, pairwise
similarity is computed for all examinees. Then, similarity values
and test responses are plotted against each other in a dense graph
of edges. Edges that fall below a selected threshold are removed
and then clusters are created by labeling the groups of connected
edges. Maynes and Thomas (2017) analyzed such clusters to

extract the disclosed key using fourmethods, selecting each item’s
key as the response that (1) was most commonly chosen, (2)
maximized the corrected item-total correlation, (3) contributed
most to a chi-square, comparing the expected responses from
the nominal response model to the actual responses, and (4) had
the highest Kullback-Leibler divergence (Kullback and Leibler,
1951). Simulations varying the latent ability of the disclosed key
and the amount of answer copying were performed. The results
showed that the method that maximized the corrected-item total
correlation was the best at accurately estimating the disclosed
key, particularly with high amounts of answer-copying or large
cluster sizes.

Haberman and Lee (2017) expanded this research to
identify multiple disclosed keys, which were estimated using
multidimensional IRT models. Once the multiple disclosed keys
were estimated, examinees whose responses were identical or
nearly identical to those disclosed keys were identified. This
method appears to have good power and low false-positive rates,
but it was tested on live data, so it is impossible to determine the
power of the method by comparing the detected examinees to the
examinees who actually used disclosed keys.

The main limitation of flawed key analyses is that they require
additional information about disclosed keys to be known or
estimated. However, once disclosed keys are obtained, a flawed
key analysis can provide very powerful and compelling evidence
that an examinee had pre-knowledge.

Response Time Statistics
The change from paper-and-pencil based testing to computer-
based testing allowed the automatic collection of RT data,
which inspired researchers to develop a variety of methodologies
to detect pre-knowledge using RTs. van der Linden and van
Krimpen-Stoop (2003) noted that due to the continuous nature of
RTs, they contain more information, variability, and granularity
than item score data.

van der Linden and van Krimpen-Stoop (2003) proposed
a model to identify unusual RTs, particularly those resulting
from pre-knowledge and item harvesting, on computerized
adaptive tests. Item scores were analyzed using a three-parameter
logistic IRT model (Birnbaum, 1968) and the RTs were modeled
using a log-normal model. The log-normal RT model, originally
published by Thissen (1983), estimates the time required for
an item, the speed of the examinee, and the average RT
for the population. The model by van der Linden and van
Krimpen-Stoop (2003) assumes that the model for item scores
is independent of the model for response times. Expected RTs
for each item were estimated, using both maximum likelihood
and Bayesian estimates. Extremely unusual RTs were detected
by investigating the residual differences between the expected
RTs and the observed RTs. The Bayesian residuals had better
detection rates than the others, but also had higher false-positive
rates. This method assumes that RTs have the same variance
across items and examinees and that IRT model parameters for
the data are accurate and consistent with known parameters.
van der Linden and Guo (2008) expanded upon this research,
proposing a combination of the RT and IRT models, allowing
the examinees’ RTs to be adjusted for their speed to investigate
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the correspondence of their RT patterns with the estimated time
required for each item.

Meijer and Sotaridona (2006) introduced the effective
response time, which is an estimate of the time necessary to
respond to an item correctly. Like van der Linden and van
Krimpen-Stoop (2003), they proposed a three-parameter logistic
model with a log-normal model for the RTs, estimating the speed
of the examinee, the time required for each item, and the average
RT for the population. However, only RTs of examinees with
correct responses and with probabilities of answering correctly
greater than the estimated pseudo-guessing parameter were used
in the computation of the effective response time. This eliminated
the effects of RTs caused by random guesses and other test
taker behaviors that may yield uninformative RTs. This method
has reasonable Type I error rates and has been used to detect
pre-knowledge in K-12 data (Liu et al., 2013).

These methods require strict assumptions be met to model the
RT data. They assume that each examinee has a constant working
speed, the majority of examinees do not have pre-knowledge,
item parameters are known, and that difficult items take longer
than easier items. Additionally, item complexity, which can be
described as the number of steps that must be completed to
respond to an item, appears to be largely ignored. It is possible
to have a very easy item that requires a large number of steps.
It is possible that the difficulty of the item could be low, while
the complexity of the item is high, which should affect the RTs of
the item. Most of the available models for RTs ignore important
factors that influence the data and require strict assumptions
about the nature of the data.

In this paper, a simple, but innovative, method for using
response times to detect disclosed items and examinees with pre-
knowledge is proposed that makes minimal assumptions about
the data and is appropriate for a wide variety of test designs.

Computing Conditional zRTs
We propose a measure of the extremeness of a response
time that compares the RT for each person on each item to
a group of examinees without pre-knowledge who received
the same score on that item. Comparing a sample of data
tainted by pre-knowledge to another tainted sample and
expecting to detect extreme examinees is unlikely to yield
the desired results. In the proposed method, the group of
examinees without pre-knowledge (i.e., the uncontaminated
comparison group) was the control condition of an experiment
on pre-knowledge. However, in practice there is often no
such group. Data from pilot testing or from the first day
of testing for a particular exam form could be used and
assumed to be uncontaminated by pre-knowledge, since exams
are unlikely to be compromised prior to the first day of
administrations (barring the help of a program insider or hacking
the server).

The RTs for each examinee on each item can be
transformed using the natural log transformation to
approximate normality. After computing means and
standard deviations of the log RTs for each item for the
uncontaminated comparison group, the individual log RTs
can be converted into conditional zRTs, so named because

the log RTs are conditioned on item score, compared to
the uncontaminated comparison group, and the statistics of
interest are computed as z-scores. The conditional zRT for
person j on item i with an item score of s can be computed
using Equation (1).

zRTijs =
RTijs − xCis

σCis
(1)

In Equation (1), RTijs represents the log-transformed response
time for person j on item i with an item score of s (0 or
1), xCis represents the average log RT for the uncontaminated
comparison group on item i with an item score of s, and
σCis represents the standard deviation of the log RTs for the
uncontaminated comparison group on item i with an item score
of s. Thus, conditional zRTs can be computed by taking the
difference between an examinee’s RT on an item and the average
RT on that item for an uncontaminated comparison group with
the same item score, divided by the standard deviation of the RTs
on the item for the uncontaminated comparison group with the
same item score.

After they are computed, conditional zRTs can be analyzed
using exploratory grouping techniques, such as cluster analysis,
to identify groups of items (disclosed and undisclosed) and
examinees (with and without pre-knowledge). In the following
sections, each particular component of the conditional zRTs that
captures important information is discussed.

Comparing RTs Based on Item Score
Very fast response times can be produced by fast examinees, by
testing strategies such as rapid guessing, or by examinees with
pre-knowledge. To distinguish between these response patterns,
item score should be taken into account. Response time data
are messy and depend upon item difficulty, item complexity,
personal testing style, testing strategies, and the speededness of
a test. RTs can encompass a huge range and still be representative
of normal test-taking behavior. Underlying multidimensionality
coupled with high variability makes it difficult to determine
which RTs should be considered extreme. However, conditioning
RTs based on item score can help to distinguish between
the potential behavioral causes for extreme RTs. For example,
random guesses may yield fast RTs with mostly incorrect
responses, but responses made with pre-knowledgemay yield fast
RTs with mostly correct responses.

Examinees with pre-knowledge who attempt to mask their
response patterns would also likely be detected by the proposed
method, as their pattern of conditional zRTs is likely to
differ from examinees without pre-knowledge. For example, an
examinee with pre-knowledge may complete the test quickly and
then spend a large amount of time on a single item to lengthen the
test time, but conditional zRTs should indicate that the examinee
was anomalously fast and responded correctly on a large number
of items, then anomalously slow on a single item.
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Using an Uncontaminated Comparison Group to

Obtain Comparison RTs
With data contaminated by cheating, it can be difficult to find
meaningful separation in groups of items or persons, especially
when information about the categories is unknown. One risk
when analyzing contaminated data is that the results may not
actually represent pre-knowledge. Thus, inferences made from
contaminated data may penalize examinees with potentially
life-changing consequences. Because many normal test-taking
behaviors and strategies are not well-understood, model bias
is a distinct possibility. It is important that examinees are not
detected simply because they have employed a different test-
taking strategy or exhibited an unusual test-taking style.

When computing conditional zRTs, the log RT for each
examinee on each item is compared to the log RTs for that
item obtained from an uncontaminated comparison group. If the
uncontaminated comparison group is sufficiently large, it can be
assumed to include a wide variety of test-taking strategies and
other normal variation in test-taking behaviors.

Obtaining A Dataset With Pre-Knowledge
Pre-knowledge is difficult to study because high-quality data are
scarce. Data containing pre-knowledge are generally gathered
from one of three sources: simulations, using measures that
approximate pre-knowledge in real data, or experiments that
empirically manipulate pre-knowledge. Each of these methods
has strengths and weaknesses, which are comprehensively
discussed in Thomas and Maynes (2018).

Simulations
Simulations are often used to test methodologies for detecting
pre-knowledge, but they do not contribute to understanding the
natural patterns caused by pre-knowledge and are unlikely to
capture the full variability of normal test-taking behaviors and
strategies used by real examinees. Using simulated data that is
too clean and does not capture the noise of normal test-taking
may artificially inflate the performance of detection methods that
are tested on such data.

Real Data
In real data, the examinees with pre-knowledge are typically
unknown. Examinees who are suspected of having pre-
knowledge may be identified, but the credibility of this
information varies widely between testing programs and exams.
Thus, using this information as a dependent variable can
introduce a significant element of uncertainty.

Experiments
Using experiments to manipulate pre-knowledge allows for
the creation of known examinees with pre-knowledge for a
known subset of items. Tiemann et al. (2014) conducted an
experimental study of pre-knowledge by asking 20 participants
to write down test content they remembered after taking a test.
The participants were told the next participant would be able
to use this content while taking the test. Some participants
were informed they would be asked to remember the content
after the test and some were not. The results showed that

many participants remembered imprecise information about the
test content, but few remembered specific information. Ten
participants who were informed in advance that they would be
asked to remember test content demonstrated poor recall of the
content, with only seven items and two answers remembered
specifically and correctly. Surprisingly, 10 participants who were
not informed they would be asked to remember test content
in advance demonstrated better recall of the content, with nine
items and 11 answers remembered specifically and correctly.
The next part of the study investigated if access to the test
content provided by previous examinees prior to testing raised
scores. Two cheat sheets were created, one based on content
remembered by participants who were informed they would
be asked to recall test content in advance and one from those
who were not. Students were randomly assigned to receive
one of these cheat sheets to study and then took the test.
The results showed no significant differences in test scores
between students who received cheat sheets and students who
did not.

A major advantage of laboratory experiments is that the
data encompass the complexity of test-taking behavior and
the identities of examinees with pre-knowledge can be known.
However, previous studies attempting to mimic pre-knowledge
in the laboratory have shown null results (Tiemann et al., 2014),
possibly because participants were unmotivated or because the
pre-knowledge provided was too weak to find effects. In the
current study, experimental data were analyzed because of the
benefits of having known groups of items and examinees while
capturing normal test-taking variability.

Experimental Design
The data utilized in this study were collected with a 3 (Pre-
Knowledge: Control vs. ItemOnly vs. Item+Answer) × 2 (Item
Disclosure: Disclosed vs. Undisclosed) within and between-
subjects design. All participants took a computerized GRE
Quantitative Reasoning test. Pre-knowledge was manipulated by
allowing some participants access to some test items (with or
without accompanying answers) prior to the test. In the control
condition, participants took the test but were not exposed to
any of the test items in advance. In the experimental conditions,
participants were allowed to study 12 of the 25 test items for
20min before the test. In the ItemOnly condition, only the
items themselves were provided to the participants (without
their corresponding answers). In the Item+Answer condition,
both the items and the correct answers were provided to
the participants.

The design of this study was different from previous
experimental studies in a few key ways. First, perfectly accurate
disclosed test items (and answers in the Item+Answer condition)
were provided to participants, rather than attempting to
have potentially unmotivated participants harvest the items
themselves. Second, the effect of the examinees’ motivation
to harvest items or cheat was removed by simply assigning
some examinees to study provided disclosed materials and
some not to. The task was not identified as relevant to
cheating in any way, as the researchers who conducted the
study simply requested that examinees study the materials.
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The conditions only differed in whether or not they received
test content in advance, and, if they did, the nature of that
test content. Thus, pre-knowledge was investigated regardless
of the examinees’ ability to harvest items or motivation
to cheat.

It was expected that participants in the study who were
in the experimental conditions and given pre-knowledge of
some items would select more correct answers on disclosed
items than undisclosed items and respond more quickly to
disclosed items than undisclosed items, as discussed in the
Expected Patterns of Examinees with Pre-Knowledge section of
this paper.

The Goals of the Current Study
The goal of the current study is to implement the proposed
method of computing conditional zRTs, described above, in
experimental data to create datapoints that capture complex
information about the response patterns of the examinees.
Particular attention will be paid to the feasibility of calculating
the conditional zRTs and the assessing which components
of the statistic provide the most important information. The
conditional zRTs will then be analyzed using exploratory
grouping methods, such as cluster and factor analyses, to
attempt to identify groups of items and groups of examinees.
The performance of the method in identifying groups of
items (disclosed and undisclosed) and examinees (with and
without pre-knowledge) will be assessed using the known groups
contained in the experimental data. The purpose of the study
is to assess a new method for detecting examinees with pre-
knowledge and disclosed items in experimental data. If the
method performs well, it may be able to be used to detect
disclosed items and examinee pre-knowledge in a variety of
live testing data, including those with modern test designs that
preclude many data forensics analyses.

METHODS

Participants
Participants were 93 undergraduate psychology students
(28 men, 64 women, and one gender non-conforming) at
the University of Virginia. The sample was composed of
primarily first year students (61% first year, 18% second year,
17% third year, 3% fifth year, and 1% exchange students).
Participants took part in a 90min laboratory session through the
psychology department participant pool and were compensated
with 1.5 h credit.

Procedure
This study was conducted according to the recommendations
of, and was approved by, the Institutional Review Board for
Social and Behavioral Sciences at the University of Virginia. All
subjects gave written informed consent in accordance with the
Declaration of Helsinki.

Participants were randomly assigned to condition
immediately after signing up for a timeslot to participate in
the study. When participants arrived at the lab, they were
asked to leave their belongings with the researcher and enter

a small room with a desk and computer. All participants were
given a yellow sheet of laminated paper that they could put
under the door if they wanted to ask questions or contact the
researcher. This prevented the participants from discovering
that other participants were receiving different treatment than
they were (i.e., studying test items in advance) and completing
the test more quickly. After gathering informed consent
and giving participants instructions, the researcher left the
participant alone.

Participants in the experimental conditions were first given
a packet of materials that they were told to study for 20min
before taking the test. The packet contained instructions on
how to use the study materials, a test form with 12 of the 25
test items, and two pieces of scratch paper. The 12 test items
in the ItemOnly condition contained only the test items and
possible answer choices; the same 12 items were provided in
the Item+Answer condition, including red circles indicating the
correct answers.

After the pre-knowledge stage, participants in the
experimental conditions took a computerized Qualtrics version
of an out-of-circulation, paper-and-pencil GRE Quantitative
Reasoning test (Educational Testing Service, 2017) that the
researchers were granted permission to use. Computerizing the
test allowed for the collection of response time data for each item.

Participants in the control condition proceeded immediately
to the computerized test, without first completing the pre-
knowledge stage. All participants were given 40min to complete
the test. Participants who finished any stage of the experiment
in less than the allotted time could notify the researchers by
slipping a yellow paper under the door (to avoid participants
from overhearing others) and advance to the next stage of
the experiment.

After the test, participants were given 20min to complete a
battery of individual difference measures to assess factors that
might impact their performance on the test or their general
willingness to cheat. This battery included self-reported effort
and time spent studying the packet of 12 items (for experimental
conditions only), information about the testing experience of
the participant during the study, math proficiency, previous
exposure to GRE study materials, demographics, test anxiety
(Westside Test Anxiety Scale, Driscoll, 2007), the Big Five
personality traits (TIPI, Gosling et al., 2003), Moral Foundations
(MFQ30, Graham et al., 2011), and religiosity/spiritualism.
The order of the scales after demographics was randomized
across participants.

For more comprehensive information about the study design,
participants, or measures, see Toton et al. (in preparation).

RESULTS

The data used in this paper was obtained by disclosing a
perfectly accurate key of 12 of the 25 items to a subset of
the examinees. Examinees with pre-knowledge exhibited higher
scores and faster RTs on disclosed items than examinees without
pre-knowledge (Toton et al., in preparation). In contrast, the
examinees with and without pre-knowledge did not differ
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FIGURE 1 | Average log RTs by item and condition. This figure shows the average log RT by condition (see color) and item (see x-axis). Even-numbered items were

disclosed and odd-numbered items were not. The error bars represent the standard errors.

significantly in item scores or log RTs for undisclosed items.
Log RTs for each item for participants in all conditions are
presented in Figure 1. For more information about how the three
conditions differed from one another on all measures, see Toton
et al. (in preparation).

Three different transformations for approximating normality
in the RT data were investigated: the square root, logistic,
and inverse transformations. The logistic, or natural log
transformation, was the best transformation for achieving an
approximately normal distribution for the majority of the
items (14/25) in the data, as assessed by the Shapiro-Wilk test
(Shapiro and Wilk, 1965). The results suggested that the square
root transformation could also have been used as it was the
best transformation for approximating normality for 10 of the
25 items.

Descriptive statistics for each condition are presented in
Table 1. Figures 2, 3 show the response patterns of item
scores and log RTs for an example examinee with and
without pre-knowledge. These response patterns are a graphical
representation of the information that is captured in the
conditional zRTs. The examinees whose data are shown in
Figures 2, 3 were selected because their data mimicked patterns
that were expected based on theoretical ideas of taking the
test with and without pre-knowledge. However, there is large
variability in the patterns for examinees, particularly in the
patterns of examinees who appear to be guessing for much of
the test or examinees who appear to be very high in ability
on the tested construct. The selected data shown in Figures 2,
3 demonstrate support for the theoretical ideas concerning the
response patterns exhibited by examinees who took the test with
and without pre-knowledge.

To compute the conditional zRTs, the means and standard
deviations of the log RTs for each item were computed for
control participants (N = 33) for both correct and incorrect
responses. The conditional zRTs for each person on each item

TABLE 1 | Descriptive statistics by condition.

Control ItemOnly Item+Answer

N 33 30 30

Disclosed item scores 7.67 (2.41) 8.57 (2.91) 11.33 (1.12)

Undisclosed item scores 6.91 (2.48) 7.13 (2.66) 7.43 (2.71)

Disclosed item RT 76.59 (64.12) 32.74 (59.35) 20.46 (27.38)

Undisclosed item RT 98.09 (63.60) 103.76 (88.36) 123.95 (94.52)

Disclosed item LN RT 4.05 (0.78) 2.73 (1.15) 2.53 (0.93)

Undisclosed item LN RT 4.36 (0.75) 4.25 (1.03) 4.48 (1.00)

This table presents the means and standard deviations (in parentheses) of item scores,

raw response times (RTs) across examinees and items in seconds (Item RTs), and log

RTs across examinees and items (Item LN RTs) for disclosed and undisclosed items for

participants in each of the three conditions.

were computed using Equation (1). No conditional zRTs were
computed for incorrect responses to Item 4 because no examinees
responded to this item incorrectly in the control or other
conditions. No conditional zRTs were computed for incorrect
responses to Item 1, because there was only one participant in
the control condition who responded to the item incorrectly, so
the standard deviation could not be computed. Conditional zRTs
were not necessary in this case because no participants in the
experimental conditions had incorrect responses to this item that
needed to be compared to the control group. Information on the
sample size, mean, and standard deviations of the log RTs for the
control condition that were used to compute the conditional zRTs
are presented in Table 2.

Assessing Components of the Conditional
zRTs
The computation of conditional zRTs based on item score
and using an uncontaminated comparison group of examinees
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FIGURE 2 | Response patterns for a control participant. This figure shows the item scores (see marker shape) and log RTs (y-axis) for disclosed (even, presented on

the left) and undisclosed (odd, presented on the right) items. Note that for this control participant, there is no discernable difference between the response patterns for

the disclosed and undisclosed items.

FIGURE 3 | Response patterns for an ItemOnly participant. This figure shows the item scores (see marker shape) and log RTs (y-axis) for disclosed (even, presented

on the left) and undisclosed (odd, presented on the right) items. Note that for this ItemOnly participant, there is a discernable difference between the response

patterns for the disclosed and undisclosed items, such that disclosed items are more likely to be answered correctly and quickly.
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TABLE 2 | Descriptive statistics of control group for computing conditional zRTs.

Item N correct control Average correct control SD correct control N incorrect control Average incorrect control SD incorrect control

1 32 3.95 0.38 1 3.92 NA

2 17 3.96 0.51 16 3.96 0.44

3 24 4.63 0.52 9 4.65 0.30

4 33 3.54 0.61 0 NA NA

5 21 4.60 0.47 12 4.61 0.57

6 31 4.00 0.41 2 3.89 0.39

7 18 4.13 0.58 15 4.44 0.59

8 16 4.09 0.62 17 4.06 0.73

9 6 4.99 0.30 26 4.70 0.52

10 19 4.27 0.52 14 4.44 0.63

11 7 5.17 0.39 24 4.97 0.46

12 14 3.97 0.49 18 4.03 0.74

13 23 4.51 0.49 10 4.65 0.52

14 13 4.91 0.99 19 4.92 0.60

15 14 4.62 0.46 17 4.58 0.86

16 28 4.71 0.43 4 4.44 0.95

17 21 3.79 0.56 11 3.41 0.79

18 22 3.72 0.32 9 3.65 0.62

19 13 4.78 0.42 16 4.31 0.72

20 26 3.46 0.31 4 4.14 0.44

21 23 4.05 0.41 6 3.50 1.12

22 18 4.11 0.53 10 3.73 0.99

23 16 4.01 0.57 11 3.56 1.44

24 16 4.19 1.23 12 3.58 1.45

25 10 4.39 0.67 18 3.97 1.32

This table provides the sample size, average, and standard deviation of the log RTs from the control condition that were used to compute the conditional zRTs for both correct and

incorrect responses.

without pre-knowledge were decisions based in theoretical
considerations. To test if these factors impacted the performance
of the conditional zRTs, zRTs were also computed:

• without conditioning on score, using the full sample as a
comparison group,

• conditioning on score, using the full sample as a comparison
group, and

• without conditioning on score, using the control condition as
a comparison group.

The comparison groups were used to compute the means
and standard deviations in Equation (1). Note that in the
current data, the majority of the participants had item pre-
knowledge, so using the full sample as the comparison group
should be dramatically different from using just the control
condition. There were 60 examinees with pre-knowledge of
12 items, which means that there were 720 total responses of
examinees with pre-knowledge to disclosed items (ignoring the
possibility of missing data and assuming examinees with pre-
knowledge display the expected patterns consistently). If all of
these were answered anomalously quickly, then one would expect
approximately 720 extremely fast zRTs. When the full sample
was used as a comparison group, 69 zRTs were detected when
the zRTs were not conditioned on score and 57 were detected

TABLE 3 | Comparing extreme results using different methods of computing zRTs.

Label Conditioned

on score

Comparison

group

Extreme

zRT count

Fast,

extreme

zRT count

zRTs- Full No Full sample 91 69

Conditional zRTs-

Full

Yes Full sample 85 57

zRTs-Control No Control condition 568 504

Conditional zRTs Yes Control condition 589 521

This table presents the number of zRTs more extreme than a z of ±1.96, the critical value

for a z-distribution at α = 0.05, and the number of those representing fast zRTs, with

z-scores more extreme than −1.96 for several methods of computing zRTs.

when the zRTs were conditioned on score (seeTable 3). However,
when the control condition was used as the comparison group,
more than 500 zRTs were detected; 504 when the zRTs were
not conditioned on score and 521 when zRTs were conditioned
on score.

The zRTs computed using the full sample were very different
than those computed using the control participants as the
comparison group, particularly for participants in the ItemOnly
and Item+Answer conditions (see Figure 4). Participants in
the control condition had similar zRTs no matter which
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FIGURE 4 | Conditional zRTs computed with different comparison groups. The conditional zRTs for one Item+Answer participant computed with all participants as

the comparison group are presented in blue and with only control participants as the comparison group in red. The dashed lines represent z-scores of ±1.96; it is

expected that 95% of the distribution of conditional zRTs will fall in between these lines. When all participants were used as the comparison group, the disclosed and

undisclosed items appeared similar in terms of conditional zRTs, but when only control participants were used as the comparison group, the disclosed items for this

participant appeared to be much more extreme.

computation was used, but participants in the ItemOnly or
Item+Answer conditions were muchmore likely to have extreme
zRTs detected when the control condition was used as a
comparison group.

Separating Disclosed and
Undisclosed Items
The goal of the item-level analyses was to use exploratory
data techniques to create groups of items and then to assess
those groups to investigate if they represented disclosed
and undisclosed items. Cluster and factor analyses were
conducted and are presented below. Note that correlations and
Kolmogorov-Smirnov tests were also investigated, and achieved
good separation of item groups, but are not presented here for
the sake of brevity.

Cluster Analyses
K-means cluster analysis is an exploratory data analysis
technique used to group datapoints into a number of clusters,
where the number of clusters to create is specified by the
researcher (Lloyd, 1957). First, k number of cluster center are
randomly placed among the data. Second, the points closest
to each center are assigned to that cluster. Third, the mean
of the points assigned to each cluster is computed and the

center is moved to this point. The second and third steps
continue until a stable solution is obtained. If groupmemberships
of the data are known, the estimated group memberships
obtained in the cluster analysis can be compared with the known
group memberships. Cluster solutions were obtained using the
“kmeans” function in the “stats” package of R (R Core Team,
2016), using the Hartigan and Wong (1979) algorithm. This
algorithm is an efficient k-means analysis that prevents re-
analysis of data points that were not assigned to a different
cluster in the last step. Comparisons of each datapoint to the
cluster centers were based on Euclidean distance and iterations
continued until the total within sum of squares was minimized.
Cases with missing conditional zRTs were omitted from these
analyses, leaving 70 complete cases for analysis. There were
nine control participants with missing data, eight ItemOnly
participants, and six Item+Answer participants. Two and three-
cluster solutions were computed to investigate grouping accuracy
for disclosed and undisclosed items and the robustness of
the grouping accuracy when different numbers of clusters
were specified.

Two-cluster solution for items
The two-cluster solution grouped the items into two groups
containing 14 and 11 items, respectively (see Figure 5). The
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FIGURE 5 | Two-cluster solution for items. The two clusters represent good separation between disclosed (even-numbered) and undisclosed (odd-numbered) items.

The cluster centers and cluster membership are indicated by shape (triangles represent the cluster of size 11 and circles represent the cluster of size 14). To visualize

the cluster results, components were obtained using principal component analysis, and the clusters are plotted on those components. This plot was created using the

“fviz_cluster” function in the “factoextra” package of R (Kassambara and Mundt, 2017).

group of 14 items contained all 13 undisclosed items as well as
one disclosed item that was incorrectly grouped (Item 24). The
group of 11 items contained all of the remaining disclosed items.
Overall, 24 of the 25 items were grouped correctly into disclosed
or undisclosed items. Thus, this cluster analysis produced
groupings that were 96% accurate in separating disclosed and
undisclosed items.

Three-cluster solution for items
The three-cluster solution closely mirrored the two-factor
solution, again grouping all of the disclosed items except item
24 into a cluster of size 11. The cluster of size 14 observed in
the two-cluster solution was split into two clusters in the three-
cluster solution, one of size eight and one of size six. The cluster
of size eight included only undisclosed items and the cluster of
size six included five undisclosed items and one disclosed item
(Item 24). This cluster solution was as accurate as the two-cluster
solution in grouping items based on their disclosure status.

Factor Analyses
Three sets of data were analyzed by factor analysis to explore
latent components that underly similarities in data: conditional
zRTs, item scores, and item log RTs. Factor solutions were
assessed for the three sets of data using the “fa” function in
the “psych” package of R, excluding missing data in a pairwise
fashion (Revelle, 2016). The factor analyses were conducted using
principal axis factoring and promax, or oblique, rotations to
allow correlations between the factors. For the purposes of this
analysis, factor loadings of <0.30 were considered low. One and
two-factor solutions were computed to analyze differences in
grouping accuracy for disclosed and undisclosed items.

Conditional zRTs
The one-factor solution for conditional zRTs explained 26% of
the variance and showed that the 12 disclosed items had factor
loadings that were positive and strong on the factor, as well as
three undisclosed items (seeTable 4). The remaining undisclosed
items had weak loadings on the factor, ranging from λ = −0.12
to λ = 0.25. Thus, 22 of the 25 items were grouped with items of
the same disclosure status (88% accuracy).

The two-factor results for the conditional zRTs explained
42% of the variance and showed good simple structure, with
all 12 disclosed items loading strongly on the first factor and
12 of the 13 undisclosed items loading strongly on the second
factor (see Table 4). There were no items with cross-loadings
of 0.30 or greater. One undisclosed item, Item 1, did not
load strongly onto either factor, but had a negative loading on
factor one and a positive loading on factor two. Thus, 24 of
the 25 items were grouped with items of the same disclosure
status (96% accuracy). When all cases with missing data were
excluded, leaving 70 examinees for analysis, the one and two-
factor solutions exhibited perfect simple structure with clear
separation between disclosed and undisclosed items and no cross
loadings of 0.30 or greater.

Item scores
The factor analyses for item scores excluded item four, since
no participants responded to that item incorrectly. The one-
factor solution for item scores explained 16% of the variance and
showed that 10 disclosed items and seven undisclosed items had
factor loadings of 0.30 or greater on the factor. The remaining
one disclosed item and six undisclosed items had factor loadings

Frontiers in Education | www.frontiersin.org 12 June 2019 | Volume 4 | Article 4977

https://www.frontiersin.org/journals/education
https://www.frontiersin.org
https://www.frontiersin.org/journals/education#articles


Toton and Maynes Detecting Pre-knowledge With Response Times

TABLE 4 | Factor loadings of conditional zRTs for items.

One factor

solution

Two factor solution

Item Factor 1

loading

Factor

1 loadings

Factor 2

loadings

Disclosed items 2 0.70 0.69 0.06

4 0.63 0.58 0.13

6 0.57 0.56 0.06

8 0.68 0.66 0.08

10 0.69 0.80 −0.15

12 0.74 0.75 0.03

14 0.69 0.61 0.20

16 0.75 0.80 −0.04

18 0.72 0.85 −0.19

20 0.75 0.84 −0.11

22 0.72 0.73 0.03

24 0.64 0.62 0.08

Undisclosed

items

1 −0.12 −0.19 0.14

3 0.24 −0.05 0.62

5 0.18 −0.09 0.56

7 0.24 −0.03 0.59

9 0.25 −0.09 0.76

11 0.17 −0.14 0.65

13 0.40 0.09 0.68

15 0.27 −0.04 0.67

17 0.12 −0.10 0.47

19 0.32 0.08 0.52

21 0.36 0.16 0.43

23 0.16 −0.08 0.51

Factor loadings for one and two-factor solutions for conditional zRTs of items. Factor

loadings above 0.30 are bolded.

of <0.30 on the factor. Thus, 16 of the 25 items were grouped
with items of the same disclosure status (64% accuracy).

The two-factor solution for item scores explained 22% of
the variance and showed that nine disclosed items had factor
loadings of 0.30 or greater on the first factor and that seven
undisclosed items and one disclosed item had factor loadings of
0.30 or greater on the second factor, with no cross loadings of 0.30
or greater. The remaining one disclosed item and six undisclosed
items did not load strongly onto either factor. Thus, 16 of the
25 items were grouped with items of the same disclosure status
(64% accuracy).

Log RTs
The one-factor solution for log RTs explained 26% of the variance
and showed that 12 disclosed items and six undisclosed items had
factor loadings of 0.30 or greater on the factor. The remaining
seven undisclosed items had factor loadings of <0.30 on the
factor. Thus, 19 of the 25 items were grouped with items of the
same disclosure status (76% accuracy).

The two-factor solution for log RTs explained 40% of the
variance and showed that all 12 disclosed items had factor

loadings of 0.30 or greater on the first factor and that 12 of the
13 undisclosed items had factor loadings of 0.30 or greater on
the second factor, with no cross loadings of 0.30 or greater. The
one remaining undisclosed item did not load strongly onto either
factor but had a negative loading on factor one and a positive
loading on factor two. Thus, 24 of the 25 items were grouped with
items of the same disclosure status (96% accuracy).

Separating Examinees With and
Without Pre-Knowledge
The goal of the person-level analyses was to use cluster analyses
to create groups of examinees. Cluster solutions were obtained
using the “kmeans” function in the “stats” package of R (R
Core Team, 2016). Cases with missing conditional zRTs were
omitted from these analyses, leaving 70 complete cases for
analysis. Two and three-cluster solutions were computed to
investigate grouping accuracy for examinees with and without
pre-knowledge, the robustness of the grouping accuracy when
different numbers of clusters were specified, and to investigate
if the three-cluster solution distinguished between control, Item,
and Item+Answer participants. Correlational results were also
investigated, and showed separation of examinees with and
without pre-knowledge, but are not presented here for the sake
of brevity.

Two-Cluster Solution for Examinees
The two-cluster solution grouped the examinees into two groups
containing 26 and 44 participants, respectively (see Figure 6).
The group of 26 examinees contained 24 control participants, one
ItemOnly participant, and one Item+Answer participant. The
group of 44 examinees contained 22 ItemOnly participants and
23 Item+Answer participants. Overall, 68 of the 70 examinees
with no missing conditional zRTs were grouped correctly into
examinees with or without pre-knowledge (97% accuracy).

Three-Cluster Solution for Examinees
The three-cluster solution grouped the items into groups
containing 26, 27, and 17 examinees, respectively (see Figure 7).
The results closely mirrored those obtained in the two-
factor solution, as the cluster of size 26 contained the same
examinees as in the two-cluster analysis (24 control, one
Item, and one Item+Answer). The cluster of 27 examinees
contained only examinees with pre-knowledge, 15 ItemOnly
participants and 12 Item+Answer participants. Similarly, the
cluster of size 17 contained only examinees with pre-knowledge,
six ItemOnly participants, and 11 Item+Answer participants.
This cluster solution was as accurate as the two-cluster
solution in grouping examinees based on whether or not they
had pre-knowledge.

DISCUSSION

Response times were transformed with the logistic
transformation, conditioned on item score, and compared
to log RTs from a group of examinees without pre-knowledge
to compute conditional zRTs. There were two item score
combinations that conditional zRTs could not be computed
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FIGURE 6 | Two-cluster solution for examinees. The two clusters represent good separation between control (IDs that end in−1), ItemOnly (IDs that end in−2), and

Item+Answer (IDs that end in−3) participants. Two examinees were grouped incorrectly by this analysis (1064-3 and 1087-2). The cluster centers and cluster

membership are indicated by shape (circles represent the cluster of size 26 and triangles represent the cluster of size 44). To visualize the cluster results, components

were obtained using principal component analysis, and the clusters are plotted on those components. This plot was created using the “fviz_cluster” function in the

“factoextra” package of R (Kassambara and Mundt, 2017).

FIGURE 7 | Three-cluster solution for examinees. The three clusters represent good separation between control (IDs that end in−1), ItemOnly (IDs that end in−2), and

Item+Answer (IDs that end in−3) participants. The cluster centers and cluster membership are indicated by shape (circles represent the cluster of size 26, squares

represent the cluster of size 27, and triangles represent the cluster of size 17). Two examinees were grouped incorrectly by this analysis (1064-3 and 1087-2). To

visualize the cluster results, components were obtained using principal component analysis, and the clusters are plotted on those components. This plot was created

using the “fviz_cluster” function in the “factoextra” package of R (Kassambara and Mundt, 2017).
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for. Item 1 had one incorrect response and Item 4 had no
incorrect responses, so the control condition means and/or
standard deviations could not be computed. The participant
who responded to Item 1 incorrectly was a control condition
participant. Thus, conditional zRTs would not have been
computed for these item score combinations even if the mean
and standard deviation for the control group had been available,
because there were no response times for these item and score
combinations from the experimental conditions that needed to
be compared to the control condition.

Computing the zRTs using the control condition as the
comparison yielded more extremely fast zRTs than using the
full sample as the comparison group. Given that there were 60
examinees with pre-knowledge of 12 items, we expected around
720 extremely fast responses, assuming no missing data and
that examinees with pre-knowledge consistently exhibit expected
patterns. Thus, the detection of around 500 zRTs using the
control sample as a comparison is muchmore consistent with the
expectation of around 720 than the detection of 57–69 zRTs when
using the full sample as the comparison group. Conditioning
on score appeared to be less important to the performance of
the conditional zRTs, than the choice of comparison group.
The number of extremely fast zRTs computed using the same
comparison groups were similar, with and without conditioning
on score (for the full sample comparison group 57 and 69
and for the control condition comparison group 521 and 504,
respectively). However, the number of extremely fast zRTs
computed using different comparison groups were very different,
even when they were matched by if they were conditioned
on score (for those conditioned on score 57 and 521 and for
those not conditioned on score 69 and 504, respectively). Thus,
the use of a comparison group without compromise appears
to be a key element in obtaining useful information from
conditional zRTs.

Cluster and factor analyses found distinct groups of items,
which showed very good correspondence to the disclosed and
undisclosed item groups. Person-level analyses of correlations
and cluster analyses identified separations between examinees
with and without pre-knowledge. The cluster analyses were 96%
accurate when grouping items (24 of 25 correctly grouped) and
97% accurate when grouping examinees (68 of 70 correctly
grouped). The one item that was incorrectly grouped was second
to last in the disclosed materials that participants received and
thus may have exhibited a weaker effect of pre-knowledge than
some of the other items.

Factor analyses of item scores showed poor performance in
separating disclosed and undisclosed items, but factor analyses
on the log RTs were about as effective at grouping items as
the conditional zRTs. The two-factor solutions separated items
better than the one-factor solutions. Thus, if two factors are
observed in the conditional zRTs or log RTs in what was
expected to be unidimensional data, item disclosure and pre-
knowledge may be present. These findings indicate that disclosed
items can be identified in strongly contaminated data simply
by performing factor analyses on the log RTs. However, it
is possible that this result is due to the large proportion of
examinees with pre-knowledge in the current data and that factor

analysis of conditional zRTs would outperform factor analysis
of log RTs if lower rates of item disclosure or pre-knowledge
were present.

The two and three-cluster solutions for grouping examinees
resulted in the same accuracy. There were three conditions
in the experimental study representing examinees with no
pre-knowledge, examinees with pre-knowledge of items, and
examinees with pre-knowledge of items and answers. The
results for both cluster solutions indicate that examinees were
grouped by whether they had any pre-knowledge rather than
the nature of that pre-knowledge, such that examinees with
pre-knowledge of items and examinees with pre-knowledge
of items and answers were identified as a single group.
These findings suggest that it does not matter if answers
were provided, as examinees with pre-knowledge of the items
exhibited similar patterns to examinees with pre-knowledge of
the items and answers. It is possible that participants in the
ItemOnly condition were able to solve the items they had pre-
knowledge of, creating their own answer key, and thus obtaining
a similar amount of pre-knowledge to those who had the answer
key provided.

Many techniques for analyzing potential pre-knowledge
require that examinees are administered the same items or forms,
limiting their utility in practice. Conditional zRTs were developed
and selected for research because they can be applied to tests
administered using fixed-forms and to tests administered using
other modern test designs, such as CAT, LOFT, or multi-stage
adaptive testing (MSAT). This is a very important advantage of
using the proposed method.

Conditional zRTs are easy to compute, analyze, and explain
to exam stakeholders. The computation of conditional zRTs only
requires item scores, response times, and a group of examinees
to serve as an uncontaminated comparison group. Strict
assumptions regarding the nature of the data are not required.
The assumptions of z-scores are that the distribution is normal,
hence the logistic transformation of RTs. The computation of
the conditional zRTs assumes that the comparison group means
and standard deviations are representative of the population
of examinees without pre-knowledge who received the same
score on the item. The statistical methodology is intuitive and
interpreting the results does not require formidable statistical
expertise. Conditional zRTs are datapoints that take into account
an examinee’s score on an item and the amount of time a typical
examinee without pre-knowledge would take to complete the
item to achieve that same score. These values could be used by
testing programs of all sizes and can be used in MSAT, CAT, and
LOFT test designs. These factors indicate that conditional zRTs
may provide a useful method to conduct data forensics for non-
traditional test designs. Thus, the main strength of conditional
zRTs is the flexibility they offer for detecting item disclosure and
examinee pre-knowledge across a wide variety of situations and
sample sizes.

Limitations
In the current study, the majority of the participants had pre-
knowledge. Thus, it is possible that analyses of the conditional
zRTs were able to separate disclosed from undisclosed items and
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examinees with pre-knowledge from those without because of the
high rates of item disclosure (48%) and examinee pre-knowledge
(65%) in the data. The computation of conditional zRTs should
not be influenced by the proportion of item compromise or pre-
knowledge, as each examinee’s RTs are directly compared to a
control sample of RTs with the same item scores. However, the
performance of the grouping techniques, such as cluster analysis,
in detecting groups of items and/or persons may be impacted by
the proportion of compromise and pre-knowledge. Presumably,
accuracy would decrease with smaller proportions of item
compromise and examinee pre-knowledge. If the approximate
baseline rates of item compromise or examinee pre-knowledge
are known, the cluster analyses can be weighted with this
information. If such information is unknown, other grouping
techniques may perform better. We hope this research will serve
to inspire future research on conditional zRTs in data with
various rates of item disclosure and pre-knowledge. Additional
research should compare conditional zRTs to other methods,
such as the IRT-based lz person-fit statistic, score-differencing
statistics, and similarity analyses. Investigating conditional zRTs
in a broader range of data will illuminate when this method is
most appropriate and effective as well as identifying best practices
for analyzing them.

One issue that may limit the utility of the proposed method
is obtaining a sufficient sample size of RTs uncontaminated
by pre-knowledge for comparison. Ideally, the uncontaminated
comparison group would be composed of 30 or more
examinees for each possible item score. In practice, the
feasibility of such a sample size is likely dependent on the
characteristics of a test, such as the design. For example,
it may be more difficult to achieve sample sizes of 30 or
more for a CAT exam where not every examinee receives
the same items, because of low administration rates for some
items. Additionally, an easy item should yield a sufficient
sample size for comparison of examinees with an item
score of one, but may not yield a sufficient sample size
of examinees with an item score of zero. In the current
research, the naturally occurring available sample size was
used for comparison, but future research may benefit from
investigating methods for improving such comparisons with
small sample sizes.

Although it is expected that examinees with pre-knowledge
have identifiable response patterns, it is important to note
that disclosed test content varies in accuracy and may be
utilized imperfectly because of human error or other factors.
The scores of examinees with pre-knowledge depend on
the accuracy of the disclosed test items or key. Even in a
case where the correct answer for every item on a test is
disclosed, examinees may have different abilities or tendencies
to memorize and recall that information accurately. Some
examinees with pre-knowledge may intentionally use disclosed
content imperfectly; for example, by only accessing difficult
items or answering some disclosed test items incorrectly to
avoid detection. Some examinees may be aware that their
RTs are being monitored by testing companies and engage
in behaviors to make their test-taking behaviors look less
suspicious. Thus, although it is expected that examinees

with pre-knowledge will display distinct response patterns in
comparison to examinees without pre-knowledge, there may be
considerable individual variability. It is also likely that examinees
with pre-knowledge will invent novel ways of responding to
avoid detection, which makes the detection of pre-knowledge an
evolving problem.

Future Research
Future research on conditional zRTs should attempt to improve
the quality of information in the uncontaminated comparison
group of log RTs. The purpose of the comparison group is to
accurately capture typical response times of examinees who do
not have pre-knowledge and who put an appropriate level of
effort into responding to the items. In the current study, all
log RTs for the examinees in the control group were used to
compute the log RT means and standard deviations. Extreme
outliers or rapid guesses were not excluded when computing
these comparison group statistics because of the small sample
size of the control condition and because such data are typical in
testing data. However, the information provided by conditional
zRTs could be improved by identifying and removing rapid
guesses and other extreme data points prior to the computation
of the comparison group statistics. This should cause increased
separation in conditional zRTs between normal responses and
rapid guesses or responses of examinees with pre-knowledge.

Another possible way to improve the quality of the
information in the comparison group would be to use a statistic
other than the mean in the calculation of the conditional zRTs.
Z-scores use the mean and standard deviation to scale data
and are thus most appropriate for normal distributions with
sufficient sample sizes. In the current study, log transformations
of response times were used to approximate normality, but it is
possible that some item RT distributions remained skewed after
the transformation and the mean did not accurately represent
the center of the distribution because of the presence of outliers.
In such cases, the median is more appropriate as an indicator
of the center of the distribution. Using the median would
prevent the skewness of the distribution from causing some
log RTs to appear more or less extreme than they should,
based on the comparison group. With sufficient sample size,
it may also be possible to compute conditional zRTs matching
examinees with a comparison group of examinees without pre-
knowledge with a similar ability level. Although examinees
with pre-knowledge likely have inflated ability estimates, this
matching would compare their log RTs to the log RTs of
examinees without pre-knowledge with a similar ability level.
Such a comparison would likely detect the log RTs of the
examinees with pre-knowledge as anomalous, even when the
examinees have high ability levels. These adjustments could
improve the quality of information in the comparison group,
leading to improved separation of extreme log RTs from
typical log RTs.

One potentially fruitful future direction for the use of
conditional zRTs would be to identify groups of examinees based
on their patterns. Latent profile analysis, or similar grouping
methods could be used to distinguish types of responding. For
example, differentiating high ability examinees from examinees
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with pre-knowledge or low ability examinees from random
guessers. This would advance the ultimate goal of this type of
research, which is to develop statistical models to identify likely
examinee behaviors. Investigating how the examinee behavior
patterns for an exam shift over time may provide valuable
information, such as when test content may have been disclosed
or the population of examinees has changed.

Summary
In this study, a new method was proposed for analyzing response
times to detect pre-knowledge, computing a conditional scaling
by comparing each examinee’s response time on each item to
a sample of response times on the same item from examinees
who did not have pre-knowledge and who received the same
score on that item. The comparisons were conducted using
logistically transformed response times and computed as z-
scores, hence the name of the resulting values, conditional
zRTs. These conditional zRTs were computed and analyzed
in an experimental data set obtained by randomly selecting
some examinees to have pre-knowledge of half of the test
items. Some examinees received only test items and some
also received correct answers. The results showed that the
computation of conditional zRTs was feasible, even with a
small uncontaminated comparison group, and that using an
uncontaminated comparison group was more important to the
performance of the zRTs than conditioning on score. Exploratory

analyses of the conditional zRTs found strong separation between
disclosed and undisclosed items and between examinees with and
without pre-knowledge.
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With the rise of more interactive assessments, such as simulation- and game-based

assessment, process data are available to learn about students’ cognitive processes

as well as motivational aspects. Since process data can be complicated due to

interdependencies in time, our traditional psychometric models may not necessarily

fit, and we need to look for additional ways to analyze such data. In this study,

we draw process data from a study on self-adapted test under different goal

conditions (Arieli-Attali, 2016) and use hidden Markov models to learn about test takers’

choice making behavior. Self-adapted test is designed to allow test takers to choose

the level of difficulty of the items they receive. The data includes test results from

two conditions of goal orientation (performance goal and learning goal), as well as

confidence ratings on each question. We show that using HMM we can learn about

transition probabilities from one state to another as dependent on the goal orientation,

the accumulated score and accumulated confidence, and the interactions therein. The

implications of such insights are discussed.

Keywords: hidden Markov model, self-adapted test, likelihood ratio test, goal orientation, confidence

1. INTRODUCTION

With the rise of interactive assessment and learning programs, process data become available
to infer about students’ cognitive and motivational aspects. Process data can help us learn
about students’ strategies, preferences, and attitudes. In the context of problem solving, detecting
strategies may reveal the cognitive processes needed to perform the task, and may even be
considered as a factor in ability estimating (DiCerbo and Behrens, 2012; Liu et al., 2018). However,
interactive assessments such as simulation- and game-based assessments often afford opportunities
to make choices about the course of game/simulation (e.g., which variables to try in the simulation,
which path to take in the game) that are not directly connected to ability albeit may influence its
assessment. Such choices may be a result of or reflect metacognitive or motivational aspects of task
performance. For example, students’ self-estimated knowledge and belief in their ability, students’
tendency toward challenge, or whether students are motivated to do their best or just perform at
minimum effort are just a few of the factors that may play a role in choices made in interactive
assessment.

Metacognition of task performance is rarely assessed as part of educational or academic
assessments, yet it is acknowledged as important in student performance (Camara et al., 2015).
One aspect of metacognition is the Feeling of Knowledge (FOK; Koriat, 1993) that is evoked
naturally when attempting to answer a question. The cognitive process of attempting to answer
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a question evokes the FOK based on the implicit and explicit
accessibility cues (the easiness of accessing the answer, the
vividness of the clues, the amount of information activated,
etc.), and the content of that knowledge, its coherence, and the
inferences that can be made from various clues retrieved (cf.
Koriat, 1993, 2000). The more information activated and the
easier it is accessed, the more confident a person is in his or
her answer. Asking people to evaluate their level of confidence
in answering a question is the most common way to eliciting
their FOK estimation and is amoderately valid predictor of actual
knowledge (Koriat, 1993, 2000; Wright and Ayton, 1994).

Feeling of knowing and estimation of one’s own ability
relate to and affect a student’s engagement or motivation when
performing a task, which is called the “expectancy component”
in the Expectancy-Value Model of motivation by Pintrich and
colleagues (Pintrich, 1988; Pintrich and De Groot, 1990; Pintrich
and Schunk, 2002). Another component of the Expectancy-Value
Model is the perceived value of the task. One aspect of perceived
value is the goal orientation toward the task. Research on goal
orientation of task performance yields a primary distinction
between “performance” and “learning” goals (Dweck and Leggett,
1988). Individuals with a performance goal strive to perform at
their best to demonstrate their skills to themselves or others,
while individuals with a learning goal toward a task strive to
learn from the task caring less about demonstrating their skills.
Although individuals often exhibit these attitudes in general
(Dweck et al., 1995), studies have shown that the orientation
goal can be changed via psychological intervention given prior
to performing a task and even only by the instructions of the
task (Dweck, 2006). One of the pervasive findings regarding
this distinction is that students with a learning goal are more
motivated and seek more challenges (Dweck, 2006; Blackwell
et al., 2007; Yeager and Dweck, 2012).

In this study we tap into motivational and metacognitive
aspects of task performance via modeling process data. We are
analyzing data from a previous study (Arieli-Attali, 2016) that
applied the goal-orientation manipulation in a self-adapted test,
while collecting also confidence ratings. Self-adapted testing is
designed to allow test takers to choose the level of the difficulty
of the items they receive. In her study, Arieli-Attali (2016)
instructed participants in one condition to perform at their
best on the test, with incentive of a reward; participants in the
second condition were instructed to use the self-adapted test as a
learning tool for a test the following day. Main findings showed
that participants in the learning goal condition chose overall
more difficult items (about half a level on average out of seven
possible levels) compared to the performance goal condition,
after controlling for pre-test performance, manifested both in the
start of the test (the first choice) and the mean choices across
all items. In addition, participants in the learning goal condition
reverted to a strategy of choosing only the easiest level for all
items significantly less frequently than those in the performance
goal condition did (3.4% compared to 11.5%, respectively), and
showed more exploratory behavior by choosing a wider range
of difficulty levels (range of 3 levels compared to 2.5 levels
in the performance goal condition).These results support the
general theory and converge with previous findings by Dweck

and colleagues about the higher motivation and tendency to seek
more challenges when one is holding a learning goal orientation.
Regarding confidence ratings, Arieli-Attali found that those in
the learning goal condition showed under-confidence while those
in the performance goal condition showed over-confidence (−1.4
vs. +1.9% respectively), similar to a recent study by Dweck
and colleagues (Ehrlinger et al., 2016). Using the process data
from Arieli-attali’s study will allow us to tap deeper into the
dynamics of choices as changing over time and depending on goal
orientation and confidence rating. Before we describe the details
of the current study, we provide a brief summary of research on
self-adapted testing.

Self-adapted tests are designed to allow test takers to choose
the level of difficulty of the items they receive (Rocklin and
O’Donnell, 1987; Wise et al., 1992; Hontangas et al., 2004;
Arieli-Attali, 2016). Such tests provide both product data—
which items were answered correctly—as well as process data—
what difficulty levels were chosen across time. Using an item
response theory modeling approach, each test taker’s ability
can be estimated using the product data regardless of the item
difficulty levels chosen. However, the difficulty preferences (the
process data) may also be useful as an indication of the test taker’s
metacognitive and/or motivational state.

Previous studies on self-adapted tests were primarily
concerned with the product data and its reliability and validity.
However, there were also studies that looked into the process
data particularly to examine the strategies of test takers in
choosing the difficulty levels (Rocklin, 1989; Johnson et al., 1991;
Ponsoda et al., 1997; Hontangas et al., 2000; Revuelta, 2004). In
these studies, strategies were examined with regards to correct
or incorrect responses to the adjacent preceding item, based on
the assumption that the “results” on a previous item, whether
correct or incorrect, would affect the next choice. Researchers
were interested in uncovering the “rules,” if existed, in examinees’
choices, mostly adopting the approach of defining predetermined
rules and looking in the data to find them. For example, Rocklin
(1989) defined a “flexible strategy” as a selection of an easier
level after an incorrect response, and a more difficult level after
a correct response. This strategy is intuitive and in fact simulates
the sequence of item difficulty produced by a Computer Adaptive
Test (CAT) algorithm that maximizes test accuracy, where test
takers often receive an easier item after incorrect response, and
a harder item after a correct response, based on item response
theory (Hambleton and Swaminathan, 1985). Defining such a
strategy is based on the intuition that this would also be the most
“rational” strategy people are using in their choices. In addition
to the flexible strategy, Rocklin (1989) defined two variations:
the “failure tolerant” and “failure intolerant.” In the former,
selections do not change after incorrect response (thus, showing
tolerance to incorrect/failure), and in the latter, selections do
not change after correct responses. Findings from this study and
another study that followed (Johnson et al., 1991) showed that
few test takers adhere to one of the three clear-cut categories,
while most people exhibit more of a mixed strategy (or what
Johnson et al., 1991 termed as “sluggishly flexible”) where test
takers selected a harder level after one or a string of several
correct responses, and selected an easier level after one or a string
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of several incorrect responses. In other studies (e.g., Hontangas
et al., 2000; Revuelta, 2004) authors made somewhat different
distinctions (such as totally rigid, partly flexible, and partly
rigid); however, the findings were still very similar, showing that
the majority of test takers are in the “partly rigid partly flexible”
category, supporting previous findings. In Revuelta (2004)’s
study, the author also reported that a majority of selections
(about 60%) had the same difficulty level as the previous
item.

In the current study, we take a different approach to look
at the sequences of difficulty choices. Although we still look
at transitions, we adopt a hidden latent approach rather than
direct analysis of the observed choices. In addition, due to
the inter-dependencies among difficulty choices, we apply a
hidden Markov model (HMM). Under an HMM we assume
independence between the observed choices conditional on
respective latent states, which follow a first-order Markov
process such that the current state only depends on the
previous state. We explain initial states and state transitions
in terms of probabilities and the effects of covariates on these
probabilities. The HMM approach, as well as other variations
of Markov models, are becoming increasingly popular among
the educational measurement community for cognitive modeling
(Yudelson et al., 2013; Li et al., 2016; LaMar, 2018; Wang et al.,
2018) and analyses involving serially dependent process data
(Vermunt et al., 1999; Dutilh et al., 2010; Bergner et al., 2017;
Shu et al., 2017). We add to the literature an application of the
HMM approach in characterizing test takers’ behavior in self-
adapted tests. The advantages of using this approach in our
context are three-fold: (1) the introduction of the latent state
as the metacognitive and/or motivational state that drives the
observed difficulty choices can separate the stochasticity in the
underlying metacognitive process from measurement errors; (2)
it allows the same observed difficulty level to be a reflection of
different latent states depending on the choices before and after
(see Figure 5 below for a specific example); (3) the estimation
is robust against some design decisions such as the number of
difficulty levels offered in different applications of self-adapted
testing (whether 5, 7, or 9 difficulty levels are offered may change
the observed sequence).

2. THE CURRENT STUDY

In this paper we conduct a secondary analysis of the data from
Arieli-Attali (2016). The original study evaluated how the goal
orientation conditions affected test takers’ item difficulty choices,
as well as the influence of different feedback conditions that
will not be considered here. The aim of the current analysis
is to model test takers’ choices of item difficulty under the
two orientation goal conditions, while taking into account the
correctness and confidence ratings of previous items. We applied
a first order Markov process, that looked at the change of the
current state/class as dependent on the previous one. However,
we used accumulated correctness and confidence as predictors.
That is, we assumed that accumulated prior results of overall
success (accumulated correct answers) and overall state of FOK

(accumulated confidence) would affect the latent state and hence
the next observed choice.

Using HMM we obtained the transition probabilities between
the latent classes. Transition from a class with lower difficulty
level to one with a higher difficulty level (i.e., an upward
transition) represents a scenario where a test taker was willing
to take on higher difficulty levels presumably due to increase
in motivation, openness to challenge and exploration and/or
increase in self-perceived ability due to evidence of success. On
the contrary, a transition from choosing higher to lower difficulty
items (i.e., a downward transition) illustrates the case where a
test taker preferred to lower the difficulty, presumably due to a
decrease in motivation or to alleviate stress, and/or as a strategy
to get a better score/feedback (get more items correct).

Our first research question concerned modeling the
transitions between latent states given the current state in
the two goal conditions. Based on Arieli-Attali (2016)’ results we
anticipated that participants in the performance goal condition
would not only have higher probability of choosing the lower
difficulty state initially but also transition less from this state.

Our second research question addressed transitions in
difficulty as dependent on correctness of and confidence on
past items responses. We hypothesized that overall accumulated
correctness and confidence would interact such that being correct
and confident would generally enhance upward transitions while
being incorrect and unconfident would enhance downward
transitions. Regarding transitions in the mis-match cases of being
correct with low confidence (under-confident) or being incorrect
with high confidence (over-confidence), we hypothesized overall
more transitions in both directions resulting from the conflict
between confidence and feedback about correctness.

The paper is organized as follows: we first describe the data
and the modeling approach. Next we provide some insights into
the data using visualization of the raw data, the most common
sequences and the patterns observed. We then report the results
of the HMM analysis addressing specifically the two research
questions. Lastly, we discuss these results in relation to their
contribution to the emerging field of analyzing process data in
assessment.

3. METHODS

3.1. Participants, Design, and Procedure
Arieli-Attali (2016) reported a final sample of 583 adult
participants (age range = 18–74 years, M = 33.09; 45% women),
recruited through Amazon Mechanical Turk (limited to native
English speakers and residents of the US or Canada), who
participated in a task over 2 days. Ethics approval for the study
was obtained from Fordham University Institutional Review
Board and a written informed consent was obtained from all
participants (for the IRB approval and informed consent form see
appendix E in Arieli-Attali, 2016). Our analysis includes data only
from Day 1 of the experiment. On Day 1, participants completed
a 24-item non-adaptive pre-test and a 40-item self-adapted test,
both comprising open-ended general knowledge items. We used
the pre-test scores that were obtained in the form of percentage
of correct responses (ranged from 0.22 to 1, with a mean of
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0.75, and standard deviation of 0.16). Following completion
of the pre-test, participants were randomly assigned to one of
two goal conditions: 286 participants were in the performance
goal condition (condition = 1), instructed to maximize their
score on the test, and 297 were in the learning goal condition
(condition = 0), instructed to use the test as a learning tool for
the test the next day. During the self-adapted test, participants
chose a difficulty level for each item out of seven difficulty
levels offered. After responding to each question, participants
rated their confidence in their answer on a scale from 0 to 100
with 10-point intervals. After submission of the answer and the
confidence ratings, participants received feedback whether their
answer was correct or not and were provided with the correct
answer. Coding of correctness was 0 for incorrect and 1 for
correct. The observed item difficulty levels were integers from 1
to 7, which we divided by 7 to arrive at a range comparable with
other variables used in the model fitting. Confidence reporting
was converted proportionally to a scale from 0 to 1.

3.2. Modeling
We modeled test takers’ choices of item difficulty using a hidden
Markov model (HMM; Vermunt et al., 1999; Böckenholt, 2005;
Visser and Speekenbrink, 2010; Visser, 2011) that assumed the
manifest variables (i.e., item difficulty choices) are conditionally
independent given an underlying latent Markov chain with
a finite number of latent states or classes of the general
difficulty preferences. We assumed that there are M states in the
Markov chain. In the following text, we use “state” and “class”
interchangeably to refer to the latent state of theM-state Markov
chain, which is denoted as Si,j, where integers i and j, respectively
index participants and items. The categorical variable Si,j was
an integer element from the finite set {1, 2, · · · ,M} and varies
across people and items. In our measurement model (as shown
in the upper panel of Figure 1), we assumed that the conditional
distribution of the manifest choices of item difficulty, yi,j, given
Si,j, was univariate normal with mean µSi,j and variance of σ

2
Si,j
.

Although yi,j was ordinal in our current study, we treated it as
continuous because we conceptualized the 7 manifest difficulty
levels as a continuum representing participants’ preferences
of item difficulty and the intervals between any two points
were approximately equal. The seven-level difficulty structure
corresponded to the seven categories of a categorized item
difficulty continuous scale (−3, −2, −1, 0, 1, 2, 3). The average
difficulties of items at each difficulty level are: −3.3, −1.8,
−0.9. −0.2, 0.5, 1.0, and 1.8 for level 1 through 7 respectively
(corresponding to 92, 80, 68, 55, 41, 30, and 16% average
probability of correct answer at each level) (Arieli-Attali, 2016).
So the data were an ordinal approximation of a continuous
variable. Practically, the rule of thumb is that ordinal variables
with five or more categories can often be used as continuous
without substantial harm to the analysis (Johnson and Creech,
1983; Norman, 2010; Rhemtulla et al., 2012). There were 7
categories in our study. We preferred to treat the data as
continuous rather than as categorical for ease of interpretation.
Depending on the magnitude of µSi,j , each class thus represented
a more general item difficulty level that the participants feel

FIGURE 1 | An illustration of a 3-state hidden Markov model. The latent

categorical Si,j is linked to the observed variable yi,j , j = 1, 2, · · · , 40 through a

measurement model. πm,i1,m = 1, 2, 3 is the probability of individual i’s being

initially in the class m and is explained by observed covariates I i,j . plm,ij is the

probability of individual i’s transitioning from class l at item j − 1 to class m at

item j, and is explained by observed covariates hi,j .

comfortable choosing but may stochastically end at different
manifest choices according to the measurement model.

In the latent model (as shown in Figure 1), we assumed that
the change process of Si,j followed a first-order Markov chain
process, where the current state only depended on the previous
state. We described the dynamics of Si,j through its initial state
and transitions between the states. The former depends on aM×

1 vector of initial state probabilities, π i1 = [πm,i1], and the latter
is characterized by aM ×M matrix of transition probabilities of
moving from a state l to a statem, Pij = [plm,ij], whose k-th row is
denoted as Pij,k. Individual differences in the dynamic processes
of Si,j were assumed to lie in the initial state probabilities and the
transition probabilities, represented by two multinomial logistic
regression models as follows:

Pr
(

Si,1 = m|Ii,1
)

1

= πm,i1 =
exp(am + b

T
mIi,1)

∑M
k=1 exp(ak + b

T
k Ii,1)

, (1)

Pr
(

Si,j = m|Si,j−1 = l, hi,j
)

1

= plm,ij =
exp(clm + d

T
lmhi,j)

∑M
k=1 exp(clk + d

T
lkhi,j)

,

(2)

where m = 1, 2, · · · ,M denotes the latent classes, Ii,1, hi,j
are vectors of covariates used for prediction in the logistic
regressions, am and clm denote the logit intercepts, and bm,
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and dlm denote the regression coefficients of the covariates in
the associated log-odds (LO) relative to a specified reference
class. In the current study, we predicted the initial class
probabilities, πm,i1, using the goal condition (abbreviated as
d), pre-test score (abbreviated as p), and their interactions,
and explain the transition probabilities, plm,ij, using the
goal condition, accumulated correctness (abbreviated as r),
accumulated confidence (abbreviated as f), and the interactions
therein. The accumulated correctness and confidence at item
j were calculated as the percentage of correctness or average
confidence among items from the beginning to item j.

For identification purposes, both Equations (1) and (2) require
specification of a reference class where all parameters in the
regression equation are zero, which ensures that the initial class
probabilities across all classes and the probability of moving into
any class from a single class sum to 1.0. πm,i1 is the probability
of individual i’s being initially in the class m, and the regression
coefficients bm denote the effects of the covariates in the LO of
being initially in the class m relative to the reference class. plm,ij

is the probability of individual i’s transitioning from class l at
item j − 1 to class m at item j, and the slopes in dlm represent
the effects of the covariates on the LO of transitioning from
the lth class into the mth class relative to transitioning into
the reference class. The choice of the reference class will only
affect the logit regression parameters to be estimated, but will
not influence the fit indices, the other parameter estimates, and
the transformed estimated probabilities by a notable significant
amount. Theoretically, the probability of being in the reference
class cannot be zero in the model. Practically, it is recommended
to choose a class that is presumably large enough and can make
interpretation of results easier, for example, the normative class,
the largest class, or the intermediate class. In this study, we used
the default latent reference class of the R package depmixS4 (i.e.,
the first class), which turned out to be the medium class based on
its mean estimate, but the findings should not be sensitive to this
choice.

We can summarize Equations (1) and (2) into vector forms of
π i1 = g([am + b

T
mIi,1]) and Pij = g([clm + d

T
lmhi,j]), where g(·) is

the softmax (normalized exponential) function. In our full model
(also shown in Table 1), Ii,1 is a 3 × 1 vector of the covariates
d, p, and their interaction dp, and hi,j is a 7 × 1 vector of the
covariates including d, r, f, three two-way interactions (df, dr, and
fr), and one three-way interaction (dfr). Accordingly, there are 3
parameters in bm and 7 parameters in dlm. Altogether, there are
2M+4(M−1)+8M(M−1) parameters in the model, consisting
of 2M parameters in the measurement model, (3+1) parameters
each forM− 1 regressions of initial class probabilities, and (7+1)
parameters each (i.e., clm and dlm) for M(M − 1) regressions of
M(M − 1) transition probabilities.

Parameters of the model can be estimated using the
expectation-maximization (EM) algorithm, where the
expectation of the complete log-likelihood function of the
parameters given the observations yi,j and states Si,j are
iteratively maximized to yield parameter estimates. In the R
package depmixS4 (Visser and Speekenbrink, 2010), the EM
algorithm has been implemented for unconstrained models,
using the standard glm routine and the nnet.default routine in the

nnet package (Venables and Ripley, 2002) in the maximization
step for maximizing different parts of the expectations obtained
in the expectation step. For more information on the estimation,
we direct the readers to check the Visser and Speekenbrink
(2010) paper.

Model fit of hidden Markov models can be compared using
Akaike information criterion (AIC; Akaike, 1973) and Bayesian
information criterion (BIC; Konishi et al., 2004). The lower the
AIC or BIC, the better the model fits the data. The fit of nested
models can also be examined using likelihood ratio tests (LRT;
Vermunt et al., 1999; Giudici et al., 2000). If p < 0.05, the more
general model shows significant improvements in fit than the
constrained model at the .05 level.

Additionally, given a sequence of observations {yi,j} and a
hidden Markov model, we could get the most probable sequence
of the state estimates of {Si,j}, using the Viterbi algorithm (Viterbi,
1967; Forney, 1973; Rabiner, 1989). In the depmixS4 package,
one can use the posterior() function to obtain the Viterbi most
probable states, as well as the highest probabilities of a state
sequence ending in a certain state at item j with all observations
up to the item j taken into account.

4. RESULTS

In this section, we first provide a description and visualization
of the data, along with the HMM general results about state
classifications and initial state modeling, followed by two sets
of our transitions modeling questions: (1) modeling transitions
between states in the two goal conditions; (2) modeling
transitions based on accumulated correctness and confidence and
their interactions.

4.1. Description of Data
Here we summarize the most relevant characteristics of the
data. First we present the choice sequences and the visualization
of the data: Figure 2 was created using the R package
TraMineR (Gabadinho et al., 2011), and shows all the difficulty
choice sequences and the ten most frequent sequences for
the performance (P) and learning (L) goal conditions. The
most frequent sequences are those with no transitions, where
participants chose a level and stayed with it for the entire 40-
item test, most frequently the extreme levels (level 1 and 7).
Although there was not a clear difference between the conditions
in the number or proportion of participants choosing to start
and stay at the highest difficulty level (level 7; 3 participants in
the performance goal condition, constituting 1.05%, and 5 in
the learning goal condition, taking up 1.68%), substantially more
participants chose to start at the lowest difficulty level (level 1)
and stay there in the performance goal condition (33 or 11.54%)
than in the learning goal condition (10 or 3.37%). In the learning
goal condition there were also frequent sequences of starting and
staying at level 2, 4, and 5 (as can be seen in the right-most panel),
while in the performance goal condition these sequences were not
frequent. Generally, there were also more switches in difficulty
levels in the learning goal condition than in the performance goal
condition. The average number of upward (i.e., from a lower
manifest difficulty level to a higher one) and downward (i.e.,
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TABLE 1 | Fit indices and parameter estimates across fitted models.

Model A B B1 B2a B2b B3

M 2 3 3 3 3 3

[1, I i,j ] [1, d, p, dp] [1, d, p, dp] [1, d, p, dp] [1, d, p, dp]

[1, hi,j ] [1, d] [1, f, r, fr] [1, d, f, r, fr, df, dr, dfr]

AIC −16658.95 −27223.54 −27282.80 −27306.69 −27466.63 −27487.31

BIC −16602.55 −27110.74 −27121.66 −27097.20 −27160.46 −26987.77

df 7 14 20 26 38 62

logLik 8336.474 13625.771 13661.399 13679.344 13771.316 13805.653

LRT B ⊂ B1 B1 ⊂ B2a B1 ⊂ B2b B2b ⊂B3

1
χ
2 [1df ] 71.26*[6] 35.89*[6] 219.83*[18] 68.67*[24]

µ1(σ1) 0.19 (0.07) 0.19 (0.07) 0.19 (0.07) 0.19 (0.07) 0.19 (0.07) 0.19 (0.07)

µ2(σ2) 0.62 (0.22) 0.51 (0.12) 0.51 (0.12) 0.51(0.12) 0.51(0.11) 0.51(0.11)

µ3(σ3) 0.86 (0.13) 0.86 (0.13) 0.86 (0.13) 0.86 (0.13) 0.86 (0.13)
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*p < 0.05; d, condition; p, pre-test score; f, accumulated mean confidence; r, accumulated mean correctness.

from a higher manifest difficulty level to a lower one) transitions
in the learning condition were 7.43 and 6.51, respectively, both
slightly higher than in the performance condition (6.07 and 5.40,
respectively).

Regarding the distribution of choices, among all chosen item
difficulty levels (i.e., a total of 583 × 40 choices), 22.85% were at
level 1, ranked as the highest proportion and followed by 19.67%
at level 4, 16.13% at level 3, 14.22% at level 2, 10.73% at level

5, 8.87% at level 7, and 7.52% at level 6. The distribution of the
manifest choices is displayed in Figure 3, which suggests that
the marginal distribution of the data should follow a mixture
distribution. The chosen item difficulty levels were negatively
correlated with answer correctness (point-biserial correlation rpb
= −0.30, p <0.001) and perceived confidence (r = −0.28, p
<0.001), while the latter two variables were positively correlated
(rpb = 0.60, p <0.001).
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FIGURE 2 | Sequences of difficulty choices and the most frequent 10 sequences across the performance (P) and learning (L) conditions.

FIGURE 3 | The distribution of manifest difficulty choices overlaid with the normal densities from the fitted 3-state HMM model.

To examine the item dependencies in the difficulty choices,
we obtained the residuals of the manifest difficulty data after
removing the participant and item effects in a generalized
additive mixed model using the R package mgcv (Wood,
2006). The autocorrelation functions (ACFs) of the residuals
are plotted in Figure 4 using the R package itsadug (van
Rij et al., 2017), where the first panel displays the average
ACF across participants, and the rest five are the ACFs for 5
randomly selected individuals. Although there were individual
differences in the ACFs, on average the lag-1 autocorrelation was
relatively high, around 0.44, suggesting the need of a first-order
Markov model.

4.2. Hidden Markov Modeling Results
We used R package depmixS4 (Visser and Speekenbrink, 2010)
to fit a series of HHMmodels to the data, which are summarized
in Table 1. Comparison analyses indicated that a 3-state HMM
(Model B; AIC = −27223.54, BIC = −27110.74) provided a
better fit to the data than a 2-state HMM (Model A; AIC =
−16658.95, BIC = −16602.55) based on the AIC and BIC (see
Table 1). We hence present the results from 3-state HMMs.
The parameter estimates of µSi,j and σSi,j in the measurement
model are summarized in Table 1. Based on Table 1, the three
latent states respectively represent low [L; µ1(σ1) = 0.19 (0.07)],
medium [M; µ2(σ2) = 0.51 (0.12)], and high [H; µ3(σ3) = 0.86
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FIGURE 4 | The autocorrelation functions in the residuals of manifest difficulty choices after removing participant and item effects; the dashed blue lines represent the

95% confidence limits.

(0.13)] item difficulty levels. The estimated normal densities
are shown as overlaid on the manifest distribution in Figure 3.
The fitted mixture distribution of the hidden Markov models
was still able to capture the manifest distribution of the chosen
difficulty levels.

Figure 5 shows four representative participants’ trajectories of
item difficulty choices, accumulated confidence, and accumulated
correctness, accompanied by the estimated most probable state
at each item colored differently in the background. For example,
participant 27 in the learning goal condition stayed at the low-
level difficulty across time (switching between level 1 and 2)
and the most probable latent state throughout was the L latent
class (background colored blue). The accumulated correctness
was generally high (above 70%) and the accumulated confidence
was relatively low (mostly below 50%), yet they co-varied across
time. Participant 347 in the performance goal condition, on the
other hand, chose high-difficulty items across time (levels 5,
6, and 7) and the most probable latent state was the H latent
class (background colored pink). The levels of confidence and
correctness for this participant were almost identical, with a
decline at approximately item 8. Participants 374 and 468 showed
more transitions in their choices of difficulty levels. Participant
468 showed a gradual increase in item difficulty choices reflected
in the transition of the most probable latent state from L to
M to H latent states (blue → green → pink) with a steady
high accumulated correctness albeit moderately low accumulated
confidence. Lastly, participant 374 showed many transitions
upwards and downwards, while correctness and confidence
were moderately low. Note that participant 374 provides an

illustration of how the samemanifest/observed difficulty level can
be associated with different most probable latent states: level 4
(just above .5 on the y-axis) was linked to the H state when the
surrounding difficulty choices were higher (between item 10 and
20), but linked to the M state when the preceding choices were
lower (between item 25 and 30) (see arrows on the figure).

Similar to Arieli-Attali (2016) in predicting choices, we used
pre-test score (i.e., percentage of correctness), goal condition, and
their interaction as predictors of initial difficulty latent state; the
resulting Model is Model B1. As noted above Arieli-Attali (2016)
reported that test takers’ selection of difficulty on the first item
differed across goal conditions, with lower difficulty chosen in the
performance group, after controlling for pre-test performance.
Our model analysis adds to this finding by using the three latent
states rather than manifest difficulty levels. Parameter estimates
and fit indices are shown in Table 1. Model B1 fits significantly
better than Model B based on the LRT (1

χ
2 = 71.26, 1df = 6,

p < 0.05). As it is not intuitive for us to draw conclusions from
the parameter estimates in the LO sense, we illustrate the logistic
regression results in terms of expected probabilities evaluated at
certain values of the predictors in stacked bar figures. Figure 6
indicate that when participants’ pre-test scores are controlled,
the expected probability of starting the test in a low-difficulty
state compared to medium- or high-difficulty, is higher in the
performance goal condition. Also it is evident from Figure 6, that
within a condition, the higher the pre-test score, the higher the
probability that the participant would initially be in amedium- or
high-difficulty state. In particular, participants who answer fewer
than half of the pre-test items correctly are more likely (above the
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FIGURE 5 | Four representative individuals’ trajectories of item difficulty choices, accumulated confidence, and accumulated correctness, with the estimated most

probable state at each item as identified by the 3-state hidden Markov model colored differently in the background.

50%) to be in the low-difficulty initial state. Participants who have
higher or full pre-test scores are more likely to be in initial state
of medium- or high-difficulty. Now we turn to model transitions.

4.3. Research Question 1: Modeling
Transitions in the Two Goal Conditions
Our first research question addressed modeling transitions
between states in the two goal conditions. We added a
multinomial logistic regression of the transition probabilities
with condition as predictor to Model B1 (i.e., Model B2a), which
significantly improves the fit of Model B1 (1

χ
2 = 35.89, 1df

= 6, p < 0.05) and has a lower AIC value1. Fitting results of
Model B2a are presented in Table 1 and Figure 7. Figure 7 shows
the expected probability of transitions to and from each of the
three latent states separately for each condition. As this figure
shows, in both conditions the most probable choice behavior
is staying in the same latent difficulty state with probabilities
of over 90% (recall that different manifest difficulty levels were
included in each latent state). However, when looking at the
transitions between conditions, the model predicts a higher
likelihood of staying at low difficulty and a lower likelihood
of upward transitions from low to medium difficulty in the
performance goal condition. In other words, participants in the

1Please note that the BIC of B2a is larger than that of B1.

performance goal condition are expected to transition less from
the low state, confirming and adding to the results reported
by Arieli-Attali (2016) that test takers in the performance goal
condition tended to choose the lower level more frequently than
in the learning goal condition, shown here also when considering
latent states and transitions between states. Note that transitions
from the medium or high state (either upwards or downwards)
were similar between the two goal conditions.

4.4. Research Question 2: Modeling
Transitions Based on Correctness and
Confidence
We next fitted a more general model than Model B1,
with accumulated correctness and confidence across items as
predictors without condition (i.e., Model B2b), to evaluate
the influence of these characteristics on transitions. Parameter
estimates and fit indices are presented in Table 1 and expected
probabilities are displayed in Figure 8. Compared to Model B1,
B2b fits the data significantly better (1

χ
2 = 219.83, 1df = 18,

p < 0.05) and has lower AIC and BIC values. Note that the figure
presents the four extreme quadrants of the two continuous scales.
The horizontal line represents the accumulated correctness
showing the extreme ends of the scale as “all incorrect” and “all
correct” (from left to right), while the vertical line represents
the accumulated confidence, showing the extremes of lowest and
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FIGURE 6 | Effects of condition and prescore on initial class probabilities. The numbers in the stacked bars are expected probabilities evaluated at certain values of

the predictors based on the model fitting results.

FIGURE 7 | Effects of condition on the transition probabilities. The numbers in the stacked bars are expected probabilities evaluated at certain values of the predictors

based on the model fitting results.
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FIGURE 8 | Effects of accumulated correctness, confidence, and their interactions on the transition probabilities. The numbers in the stacked bars are expected

probabilities evaluated at certain values of the predictors based on the model fitting results.

highest confidence (from bottom to top). As this figure shows,
with high accumulated correctness (top and bottom right-side
panels), expected probability of transitions is low and staying
at the same difficulty state has the highest likelihood across
the confidence scale. However, when accumulated correctness
decreases (toward the quadrants in the top and bottom left-
side panels) there is higher likelihood for transitions in both
directions, and the likelihood of transitions increases as the
confidence increases (i.e., illustrating the interaction between
these factors). In particular, we can see expected downward
transitions from the medium state when confidence is low
(22.3%; bottom left-side panel), and from the high-state when
confidence is high (27.7%; top left-side panel), as expected.
However, we can also see that when the accumulated confidence
is highest (top left-side panel; indicating over-confidence)
participants are more likely to transition upwards from the low
state (66.1%) equally to either themedium- or high-state. In other
words, staying at the same state is the least probable in this case
relative to other quadrants and states (recall that this quadrant
is the extreme end of the confidence scale, and transition
upwards from the low state are expected to increase as confidence
increases). To get a sense of the frequency of participants
with different relations between accumulated correctness and

confidence, in particular considering the representation within
each of the four quadrants illustrated in Figure 8, we show
in Figure 9 the relation between accumulated correctness and
confidence after 10, 20, 30, and 40 items. As can be seen, the data
cluster along the diagonal increasingly as the number of items
increased, with sparse representation in the quadrants with mis-
matches between correctness and confidence. This suggests that
test takers were overall well-calibrated in their confidence, with
little representation of over- and under-confidence.

We then further added back goal condition as a predictor
of the transition probabilities to Model B2b (i.e., Model B3),
which significantly improved the fit of Model B2b (1

χ
2 = 68.67,

1df = 24, p < 0.05) and has a lower AIC value2. Figure 10
shows the same transition probabilities as in Figure 8 split by
goal condition. The downward transitions when accumulated
correctness decreases are also evident when split into the goal
condition and are more so in the learning goal condition. The
findings about higher likelihood of upward transitions in the
over-confident quadrant are still evident when split into the goal
conditions, with somewhat more transitions in the performance
goal compared to learning goal condition (73.8 and 65.2%,

2Please note that the BIC of B3 is larger than that of B2b.
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FIGURE 9 | The distribution of accumulated confidence and correctness.

respectively at the extreme quadrant of the confidence scale). A
new finding from this split analysis is that there are also more
transitions in the performance goal condition when accumulated
correctness is high but confident is low (27%; bottom right-side
panel, the quadrant indicating under-confidence).

5. DISCUSSION

The purpose of our secondary data analysis from Arieli-Attali
(2016) was to apply a hiddenMarkovmodel to test takers’ choices
of item difficulty in a self-adapted test. We investigated whether
those choices could be modeled by the goal condition (learning
vs. performance), as well as the test takers’ correctness and
confidence across items. Analysis of the data using the hidden
Markov model identified three latent states of difficulty from
the seven manifest levels. These three latent states correspond
to low, medium and high difficulty levels, and may be an
indication of a low, medium or high self-estimated ability and/or
motivation. We first modeled test takers’ initial difficulty state
based on their pre-test scores and goal condition, confirming past
results (Arieli-Attali, 2016) about preference of lower difficulty
in the performance goal condition, showing it here also as a
higher expected probability of starting in the low state in the
performance goal condition after controlling for pre-test scores.
The results here add to the understanding that this is not just the
single first choice influenced by the goal orientation (in addition
to the self-perceived ability), but rather it is the participant’s
latent state that is influenced and therefore drives the choices

accordingly. This result further confirms that when the goal
orientation is to excel at a task individuals may avoid taking on
challenges (Dweck, 2006).

We then used the model to predict transitions across items,
and found the highest likelihood was to remain at the same
difficulty state across items. This is the main contribution
of applying a latent state approach in this context, because
manifested choices may show transitions attributable to random
variability while actual latent states are less likely to change.
When using only goal condition as a predictor, there was
no difference in transitions from the middle- or high- states
between the two goal conditions, however there was a slightly
lower likelihood of upward transitions from the low state in
the performance goal condition relative to the learning goal
condition, confirming the overall finding that test takers in the
performance goal condition applied a strategy of the “easy way
out,” keeping low effort (Arieli-Attali, 2016).

The main contribution of this analysis is in the application of
the HMM to model the interaction between answer correctness
and confidence. We have shown that the likelihood of transitions
increased when the accumulated correctness decreases. This
result is intuitive as it means that participants were attentive to
the correctness feedback and when they were overall wrong they
tended to transition or change their metacognitive/motivational
state. We found that downward transitions were more likely
across the confidence scale as expected, but upward transitions
were more likely when confidence increased for those who
were in the low state, that is, we found that when confidence
was highest, it reached the highest likelihood of about 2/3
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FIGURE 10 | Effects of condition, correctness, confidence, and their interactions on the transition probabilities. The numbers in the stacked bars are expected

probabilities evaluated at certain values of the predictors based on the model fitting results.

upward transitions in the over-confidence end of the scale.
This finding can be related to the literature on confidence and
learning from errors by Metcalfe and colleagues (Butterfield and
Metcalfe, 2001; Metcalfe and Xu, 2018). This line of research
generally showed that people who made an error with high
confidence were more likely to correct their mistake compared
to a situation when the error was made with low confidence (the
hypercorrection phenomenon). One of the explanations of this
phenomenon is the surprise/attention explanation, which says
that individuals experience surprise at being wrong when they
were sure they were right, and as a consequence they rally their
attentional resources (Butterfield and Metcalfe, 2006; Metcalfe
et al., 2012). In our study we showed that individuals with high
confidence whowere proven incorrect weremore likely to change
difficulty state as reflected in more transitions upwards. The
transitions upwards may be a reflection of being more attentive
or putting forth more effort, similar to what occur under the
hypercorrection phenomenon.

We also found that accumulated correctness and confidence
interacted with goal condition in predicting transitions. The
transitions when accumulated correctness decreases were also
likely when split into the goal conditions but the downward
transitions have higher likelihood in the learning goal condition,

while the upward transitions in the over-confidence case have
higher likelihood in the performance goal condition. This
analysis also revealed a new finding of higher likelihood of
upward transitions in the performance goal condition when
accumulated correctness was high but confident was low, i.e.,
in the under-confidence end of the scale. These two findings
together, that in the performance goal condition test takers were
more likely to transition upwards from the low state in both mis-
matched conditions (over- and under- confidence), indicate the
specific interaction of the goal with correctness and confidence,
and may suggest that when (1) participants are instructed to
do their best, (2) they experience mis-match between what they
think they know and what they actually know (feedback of
correctness), and (3) they are in the low state without possible
downward transition, they try to “find their luck” someplace else
or decide to put more effort. This finding may suggest that mis-
calibration between confidence and correctness could serve as a
motivating factor, as being in the low state in the performance
goal condition has been shown to stem from low motivation
(Arieli-Attali, 2016). This combined pattern was not found for
the learning goal condition, suggesting that evidence about mis-
calibration when one is striving to learn has less of an effect (i.e.,
it had an effect in over-confidence, but not in under-confidence).
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These results are consistent with the literature on goal
orientation, showing that participants who are encouraged to
use the test for learning rather than focusing on performance
are more likely to seek challenges and show resilience amid
difficulties (Yeager and Dweck, 2012). However, our additional
findings about the interaction between correctness, confidence,
and goal orientation further shed light on the complexity of
the choices made in self-adapted test. The interactions we
found suggest that the test takers’ goal (i.e., whether the
participant needs to maximize one’s score, as the goal of the
test), confidence across items (as a reflection of one’s internal
states), and correctness (as an outside feedback) together may
form a recursive feedback loop that results in the changes of an
individual’s motivational and/or metacognitive state and further
affects choice behavior.

To summarize, in this study we explored ways to learn
about the motivation and feeling of knowledge of test takers
and its affect on their actions while engaging in an interactive
self-adapted test, via analyzing process data. Motivation and
engagement is particularly crucial in low stakes assessment
programs (such as the National Assessment of Educational
Progress program, or the Trends in International Mathematics
and Science Study), where test scores have no personal

consequences for individuals, potentially resulting in low
motivation to do one’s best, and subsequently threatening the
validity of the test scores. While low stakes programs make
attempts to make their tests more interactive and appealing
to participants in order to increase their engagement, we offer
insights on how goal orientation, correctness and confidence
influence choices that determine the course of the test. More
research is needed to learn about how complex choice making
in simulation- and game-based assessment can be modeled by
factors inherent to the simulation or the game (such as curiosity,
challenge seeking, sense of satisfaction, and the like).
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Due to increasing use of technology-enhanced educational assessment, data mining

methods have been explored to analyse process data in log files from such assessment.

However, most studies were limited to one data mining technique under one specific

scenario. The current study demonstrates the usage of four frequently used supervised

techniques, including Classification and Regression Trees (CART), gradient boosting,

random forest, support vector machine (SVM), and two unsupervised methods,

Self-organizing Map (SOM) and k-means, fitted to one assessment data. The USA

sample (N = 426) from the 2012 Program for International Student Assessment (PISA)

responding to problem-solving items is extracted to demonstrate the methods. After

concrete feature generation and feature selection, classifier development procedures

are implemented using the illustrated techniques. Results show satisfactory classification

accuracy for all the techniques. Suggestions for the selection of classifiers are presented

based on the research questions, the interpretability and the simplicity of the classifiers.

Interpretations for the results from both supervised and unsupervised learning methods

are provided.

Keywords: data mining, log file, process data, educational assessment, psychometric

INTRODUCTION

With the advance of technology incorporated in educational assessment, researchers have been
intrigued by a new type of data, process data, generated from computer-based assessment, or new
sources of data, such as keystroke or eye tracking data. Most often, such data, often referred to as
“data ocean,” is of very large volume and with few ready-to-use features. How to explore, discover
and extract useful information from such an ocean has been challenging.

What analyses should be performed on such process data? Even though specific analytic
methods are to be used for different data sources with specific features, some common analysis
methods can be performed based on the generic characteristics of log files. Hao et al. (2016) have
summarized several common analytic actions when introducing the package in Python, glassPy.
These include summary information about the log file, such as the number of sessions, the time
duration of each session, and the frequency of each event, can be obtained through a summary
function. In addition, event n-grams, or event sequences of different lengths, can be formed for
further utilization of similarity measures to classify and compare persons’ performances. To take
the temporal information into account, hierarchical vectorization of the rank ordered time intervals
and the time interval distribution of event pairs were also introduced. In addition to these common
analytic techniques, other existing data analytic methods for process data are Social Network
Analysis (SNA; Zhu et al., 2016), Bayesian Networks/Bayes nets (BNs; Levy, 2014), HiddenMarkov
Model (Jeong et al., 2010), Markov Item Response Theory (Shu et al., 2017), diagraphs (DiCerbo
et al., 2011) and process mining (Howard et al., 2010). Further, modern data mining techniques,
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including cluster analysis, decision trees, and artificial neural
networks, have been used to reveal useful information about
students’ problem-solving strategies in various technology-
enhanced assessments (e.g., Soller and Stevens, 2007; Kerr et al.,
2011; Gobert et al., 2012).

The focus of the current study is about data mining techniques
and this paragraph provides a brief review of related techniques
that have been frequently utilized and lessons that have been
learned related to analyzing process data in technology-enhanced
educational assessment. Two major classes of data mining
techniques are supervised and unsupervised learning methods
(Fu et al., 2014; Sinharay, 2016). Supervised methods are used
when subjects’ memberships are known and the purpose is
to train a classifier that can precisely classify the subjects
into their own category (e.g., score) and then be efficiently
generalized to new datasets. Unsupervised methods are utilized
when subjects’ memberships are unknown and the goal is to
categorize the subjects into clearly separate groups based on
features that can distinguish them apart. Decision trees, as a
supervised data classification method, has been used very often
in analysing process data in educational assessment. DiCerbo
and Kidwai (2013) used Classification and Regression Tree
(CART) methodology to create the classifier to detect a player’s
goal in a gaming environment. The authors demonstrated the
building of the classifier, including feature generation, pruning
process, and evaluated the results using precision, recall, Cohen’s
Kappa and A’ (Hanley and McNeil, 1982). This study proved
that the CART could be a reliable automated detector and
illustrated the process of how to build such a detector with
a relative small sample size (n = 527). On the other hand,
cluster analysis and Self-Organizing Maps (SOMs; Kohonen,
1997) are two well-established unsupervised techniques that
categorize students’ problem-solving strategies. Kerr et al. (2011)
showed that cluster analysis can consistently identify key features
in 155 students’ performances in log files extracted from an
educational gaming and simulation environment called Save
Patch (Chung et al., 2010), which measures mathematical
competence. The authors described how they manipulated the
data for the application of clustering algorithms and showed
evidence that fuzzy cluster analysis is more appropriate than
hard cluster analysis in analyzing log file process data from
game/simulation environment. Most importantly, the authors
demonstrated how cluster analysis can identify both effective
strategies and misconceptions students have with respect to the
related construct. Soller and Stevens (2007) showed the power
of SOM in terms of pattern recognition. They used SOM to
categorize 5284 individual problem-solving performances into
36 different problem-solving strategies, each exhibiting different
solution frequencies. The authors noted that the 36 strategy
classifications can be used as input to a test-level scoring
process or externally validated by associating them with other
measures. Such detailed classifications can also serve as valuable
feedback to students and instructors. Chapters in Williamson
et al. (2006) also discussed extensively the promising future
of using data mining techniques, like SOM, as an automated
scoring method. Fossey (2017) has evaluated three unsupervised
methods, including k-means, SOM and Robust Clustering Using

Links (ROCK) on analyzing process data in log files from a
game-based assessment scenario.

To date, however, no study has demonstrated the utilization
of both supervised and unsupervised data mining techniques
for the analysis of the same process data. This study aims at
filling this gap and provides a didactic of analyzing process
data from the 2012 PISA log files retrieved from one of the
problem-solving items using both types of data mining methods.
This log file is well-structured and representative of what
researchers may encounter in complex assessments, thus, suitable
for demonstration purposes. The goal of the current study is
3-fold: (1) to demonstrate the use of data mining methods on
process data in a systematic way; (2) to evaluate the consistency
of the classification results from different datamining techniques,
either supervised or unsupervised, with one data file; (3) to
illustrate how the results from supervised and unsupervised data
mining techniques can be used to deal with psychometric issues
and challenges.

The subsequent sections are organized as follows. First,
the PISA 2012 public dataset, including participants and the
problem-solving item analyzed, is introduced. Second, the data
analytic methods used in the current study are elaborated and
the concrete classifier development processes are illustrated.
Third, the results from data analyses are reported. Lastly, the
interpretations of the results, limitations of the current study and
future research directions are discussed.

METHODS

Participants
The USA sample (N = 429) was extracted from the 2012
PISA public dataset. Students were from 15 years 3 months old
to 16 years 2 months old, representing 15-year-olds in USA
(Organisation for Economic Co-operation Development, 2014).
Three students with missing student IDs and school IDs were
deleted, yielding a sample of 426 students. There were no missing
responses. The dataset was randomly partitioned into a training
dataset (n = 320, 75.12%) and a test dataset (n = 106, 24.88%).
The size of the training dataset is usually about 2 to 3 times of the
size of the test dataset to increase the precision in prediction (e.g.,
Sinharay, 2016; Fossey, 2017).

Instrumentation
There are 42 problem-solving questions in 16 units in 2012
PISA. These items assess cognitive process in solving real-life
problems in computer-based simulated scenarios (Organisation
for Economic Co-operation Development, 2014). The problem-
solving item, TICKETS task2 (CP038Q01), was analyzed in the
current study. It is a level-5 question (there were six levels in total)
that requires a higher level of exploring and understanding ability
in solving this complex problem (Organisation for Economic Co-
operation Development, 2014). This interactive question requires
students explore and collect necessary information to make a
decision. The main cognitive processes involved in this task are
planning and executing. Given the problem-solving scenario,
students need to come up with a plan and test it and modify it

if needed. The item asks students to use their concession fare to
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find and buy the cheapest ticket that allows them to take 4 trips

around the city on the subway within 1 day. One possible solution
is to choose 4 individual concession tickets for city subway, which

costs 8 zeds while the other is to choose one daily concession

ticket for city subway, which costs 9 zeds. Figure 1 includes these
two options. Students can always use “CANCEL” button before

“BUY” to make changes. Correctly completing this task requires

students to consider these two alternative solutions, then make
comparisons in terms of the costs and end up choosing the
cheaper one.

This item is scored polytomously with three score points, 0, 1,

or 2. Students who derive only one solution and fail to compare
with the other get partial credits. Students who do not come

up with either of the two solutions, but rather buy the wrong
ticket, get no credit on this item. For example, the last picture
in Figure 1 illustrates the tickets for four individual full fare for
country trains, which cost 72 zeds. “COUNTRY TRAINS” and
“FULL FARE” are considered as unrelated actions because they
are not the necessary actions to accomplish the task this item
requires. In terms of scoring, unrelated actions are allowed as
long as the students buy the correct ticket in the end and make
comparisons during the action process.

Data Description
The PISA 2012 log file dataset for the problem-solving
item was downloaded at http://www.oecd.org/pisa/pisaproducts/

FIGURE 1 | PISA 2012 problem-solving question TICKETS task2 (CP038Q01) screenshots. (For more clear view, please see http://www.oecd.org/pisa/test-2012/

testquestions/question5/ ).
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database-cbapisa2012.htm. The dataset consists of 4722 actions
from 426 students as rows and 11 variables as columns. Eleven
variables (see Figure 2) include: cnt indicates country, which
is USA in the present study; schoolid and StIDStd indicate
the unique school and student IDs, respectively; event_number
(ranging from 1 to 47) indicates the cumulative number of
actions the student took; event_value (see raw event_values
presented in Table 1) tells the specific action the student took
at one time stamp and time indicates the exact time stamp
(in seconds) corresponding to the event_value. Event notifies
the nature of the action (start item, end item, or actions in
process). Lastly, network, fare_type, ticket_type, and number_trips
all describe the current choice the student had made. The
variables used were schoolid, StIDStd, event_value and time.
ID variables helped to identify students, while event_value and
time variables were used to generate features. The scores for all
students were not provided in the log file, thus, hand coded and
carefully double checked based on the scoring rule. Among the
426 students, 121 (28.4%) got full credit, 224 (52.6%) got partial
credit and 81 (19.0%) did not get any credit. Full, partial, and no
credit were coded as 2, 1, and 0, respectively.

Feature Generation And Selection
Feature Generation

Features generated can be categorized into time features and
action features, as summarized in Table 1. Four Time features
were created: T_time, A_time, S_time, and E_time, indicating
total response time, action time spent in process, starting
time spent on first action, and ending time spent on last
action, respectively. It was assumed that students with different
ability levels may differ in the time they read the question
(starting time spent on first action), the time they spent
during the response (action time spent in process), and the
time they used to make final decision (ending time spent
on last action). Different researchers have proposed various
joint modeling approaches for both response accuracy and

response times, which explain the relationship between the
two (e.g., van der Linden, 2007; Bolsinova et al., 2017).
Thus, the total response times are expected to differ as
well.

However, in this study, action features were created by
coding different lengths of adjacent action sequences together.
Thus, this study generated 12 action features consisting of
only one action (unigrams), 18 action features containing
two ordered adjacent actions (bigrams), and 2 action features
created from four sequential actions (four-grams). Further,
all action sequences generated were assumed to have equal
importance and no weights were assigned to each action
sequence. In Table 1, “concession” is a unigram, consisting of
only one action, that is, the student bought the concession
fare; on the other hand, “S_city” is a bigram, consisting of
two actions, which are “Start” and “city subway,” representing
the student selected the city subway ticket after starting the
item.

Sao Pedro et al. (2012) showed that features generated

should be theoretically important to the construct to achieve
better interpretability and efficiency. Following their suggestion,

features were generated as the indicators of the problem-solving
ability measured by this item, which is supported by the scoring

rubric. For example, one action sequence consisted of four

actions, which was coded as “city_con_daily_cancel,” is crucial to
scoring. If the student first chose “city_subway” to tour the city,
then used the student’s concession fare (“concession”), looked at
the price of daily pass (“daily”) next and lastly, he/she clicked
“Cancel” to see the other option, this action sequence is necessary
but not sufficient for a full credit.

The final recoded dataset for analysis is made up of 426
students as rows and 36 features (including 32 action sequence
features and 4 time features) as columns. Scores for each student
served as known labels when applying supervised learning
methods. The frequency of each generated action feature was
calculated for each student.

FIGURE 2 | The screenshot of the log file for one student.
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TABLE 1 | 15 raw event values and 36 generated features.

Event_value (15) Start, End, city_subway, concession, full_fare, daily,

Cancel, country_trains, individual, Buy, trip_1, trip_2,

trip_3, trip_4, trip_5

Time features (4) T_time, A_time, S_time, E_time

Single actions (12) All in raw event_values except for Start, End and Buy

Two actions coded

together (18)

S_city (Start −→ city_subway)

S_country (Start −→ country_trains)

city_full (city_subway −→ full_fare)

city_concession (city_subway −→ concession)

country_full (country_trains −→ full_fare)

country_concession (country_trains −→ concession)

concession_daily (concession −→ daily)

concession_individual (concession −→ individual)

full_daily (full_fare −→ daily)

full_individual (full_fare −→ individual)

individual_trip4 (individual −→ trip_4)

other_cancel (other −→ Cancel)

daily_cancel (daily −→ Cancel)

trip4_cancel (trip_4 −→ Cancel)

daily_buy (daily −→ Buy)

trip4_buy (trip_4 −→ Buy)

individual_other (individual −→ other)

other_buy (other −→ Buy)

Four actions

coded together (2)

city_con_ind_4 (city_subway −→ concession −→

individual −→ trip_4) city_con_daily_cancel

(city_subway−→ concession −→ daily −→ Cancel)

Feature Selection

The selection of features should base on both theoretical
framework and the algorithms used. As features were generated
from a purely theoretical perspective in this study, no such
consideration is needed in feature selection.

Two other issues that need consideration are redundant
variables and variables with little variance. Tree-based methods
handle these two issues well and have built-in mechanisms
for feature selection. The feature importance indicated by
tree-based methods are shown in Figure 3. In both random
forest and gradient boosting, the most important one is
“city_con_daily_cancel.” The next important one is “other_buy,”
which means the student did not choose trip_4 before the action
“Buy.” The feature importance indicated by tree-based methods
is especially helpful when selection has to be made among
hundreds of features. It can help to narrow down the number
of features to track, analyze, and interpret. The classification
accuracy of the support vector machine (SVM) is reduced due to
redundant variables. However, given the number of features (36)
is relatively small in the current study, deleting highly correlated
variables (ρ ≥ 0.8) did not improve classification accuracy
for SVM.

Clustering algorithms are affected by variables with near zero
variance. Fossey (2017) and Kerr et al. (2011) discarded variables
with 5 or fewer attempts in their studies. However, their data were
binary and no clear-cut criterion exists for feature elimination
when using cluster algorithms in the analysis of process data.
In the current study, 5 features with variance no >0.09 in
both training and test dataset were removed to achieve optimal
classification results. Descriptive statistics for all 36 features can
be found in Table A1 in Appendix A.

In summary, a full set of features (36) were retained in the tree-
based methods and SVMwhile 31 features were selected for SOM
and k-means after the deletion of features with little variance.

Data Mining Techniques
This study demonstrates how to utilize data mining techniques to
map the selected features (both action and time) to students’ item
performance on this problem-solving item in 2012 PISA. Given
students’ item scores are available in the data file, supervised
learning algorithms can be trained to help classify students
based on their known item performance (i.e., score category)
in the training dataset while unsupervised learning algorithms
categorize students into groups based on input variables without
knowing their item performance. No assumptions about the data
distribution are made on these data mining techniques.

Four supervised learning methods: Classification and
Regression Tree (CART), gradient boosting, random forest, and
SVM are explored to develop classifiers while, two unsupervised
learning methods, Self-organizing Map (SOM) and k-means, are
utilized to further examine different strategies used by students in
both the same and different score categories. CART was chosen
because it worked effectively in a previous study (DiCerbo and
Kidwai, 2013) and is known for its quick computation and
simple interpretation. However, it might not have the optimal
performance compared with other methods. Furthermore, small
changes in the data can change the tree structure dramatically
(Kuhn, 2013). Thus, gradient boosting and random forest, which
can improve the performance of trees via ensemble methods,
were also used for comparison. Though SVM has not been used
much in the analysis of process data yet, it has been applied
as one of the most popular and flexible supervised learning
techniques for other psychometric analysis such as automatic
scoring (Vapnik, 1995). The two clustering algorithms, SOM and
k-means, have been applied in the analysis of process data in log
files (Stevens and Casillas, 2006; Fossey, 2017). Researchers have
suggested to use more than one clustering methods to validate
the clustering solutions (Xu et al., 2013). All the analyses were
conducted in the software program Rstudio (RStudio Team,
2017).

Classifier Development
The general classifier building process for the supervised learning
methods consists of three steps: (1) train the classifier through
estimating model parameters; (2) determine the values of tuning
parameters to avoid issues such as “overfitting” (i.e., the statistical
model fits too closely to one dataset but fails to generalize to other
datasets) and finalize the classifier; (3) calculate the accuracy of
the classifier based on the test dataset. In general, training and
tuning are often conducted based on the same training dataset.
However, some studies may further split the training dataset into
two parts, one for training while the other for tuning. Though
tree-based methods are not affected by the scaling issue, training
and test datasets are scaled for SVM, SOM, and k-means.

Given the relatively small sample size of the current dataset,
training, and tuning processes were both conducted on the
training dataset. Classification accuracy was evaluated with
the test dataset. For the CART technique, the cost-complexity
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FIGURE 3 | Feature importance indicated by tree-based methods.

parameter (cp) was tuned to find the optimal tree depth using
R package rpart. Gradient boosting was carried out using R
package gbm. The tuning parameters for gradient boosting were
the number of trees, the complexity of trees, the learning rate
and the minimum number of observations in the tree’s terminal
nodes. Random forest was tuned over its number of predictors
sampled for splitting at each node (mtry) using R package
randomForest. A radial basis function kernel SVM, carried out
in R package kernlab, was tuned through two parameters: scale
function σ and the cost value C, which determine the complexity
of the decision boundary. After the parameters were tuned, the
classifiers were trained fitting to the training dataset. 10-fold-
validation was conducted for supervised learning methods in the
training processes. Cross-validation is not necessary for random
forest when estimating test error due to its statistical properties
(Sinharay, 2016).

For the unsupervised learning methods, SOM was carried out
in the R package kohonen. Learning rate declined from 0.05 to
0.01 over the updates from 2000 iterations. k-means was carried
out using the kmeans function in the stats R package with 2000

iterations. Euclidian distance was used as a distance measure for
both methods. The number of clusters ranged from 3 to 10. The
lower bound was set to be 3 due to the three score categories
in this dataset. The upper bound was set to be 10 given the
relative small number of features and small sample size in the
current study. The R code for the usage of both supervised and
unsupervised methods can be found in Appendix B.

Evaluation Criterion
For the supervised methods, students in the test dataset are
classified based on the classifier developed based on the training
dataset. The performance of supervised learning techniques
was evaluated in terms of classification accuracy. Outcome
measures include overall accuracy, balanced accuracy, sensitivity,
specificity, and Kappa. Since item scores are three categories,
0, 1, and 2, sensitivity, specificity and balanced accuracy were
calculated as follows.

Sensitivity =
True Positives

True Positives + False Negatives,
(1)
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Specificity =
TrueNegatives

TrueNegatives + False Positives,
(2)

Balanced Accuracy =
Sensitivity + Specificity

2
(3)

where sensitivity measures the ability to predict positive cases,
specificity measures the ability to predict negative cases and
balanced accuracy is the average of the two. Overall accuracy and
Kappa were calculated for each method based on the following
formula:

Overall Accuracy =
True Positives + TrueNegatives

Total Cases
(4)

Kappa =
po − pe

1− pe
(5)

where overall accuracy measures the proportion of all correct
predictions. Kappa statistic is a measure of concordance for
categorical data. In its formula, po is the observed proportion
of agreement, pe is the proportion of agreement expected by
chance. The larger these five statistics are, the better classification
decisions.

For the two unsupervised learning methods, the better fitting
method and the number of clusters were determined for the
training dataset by the following criteria:

1. Davies-Bouldin Index (DBI; Davies and Bouldin, 1979)
calculated as in Equation 6, can be applied to compare the
performance of multiple clustering algorithms (Fossey, 2017).
The algorithm with the lower DBI is considered the better
fitting one which has the higher between-cluster variance and
smaller within-cluster variance.

DBI =
1

k

∑k

i=1
maxi6=j

Si + Sj

Mij
(6)

where k is the number of clusters, Si and Sj are the average
distances from the cluster center to each case in cluster i and
cluster j.Mij is the distance between the centers of cluster i and
cluster j. Cluster j has the smallest between-cluster distance
with cluster i or has the highest within-cluster variance, or
both (Davies and Bouldin, 1979).

2. Kappa value (see Equation 5) is a measure of classification
consistency between these two unsupervised algorithms. It is
usually expected not smaller than 0.8 (Landis and Koch, 1977).

To check the classification stability and consistency in the
training dataset, the methods were repeated in the test dataset,
DBI and Kappa values were computed.

RESULTS

The tuning and training results for the four supervised learning
techniques are first reported and then the evaluation of their
performance on the test datasets. Lastly, the results for the
unsupervised learning methods are presented.

Supervised Learning Methods
The tuning processes for all the classifiers reached satisfactory
results. For the CART, cp was set to 0.02 to achieve minimum

error and the simplest tree structure (error < 0.2, number of
trees < 6), as shown in Figure 4. The final tuning parameters
for gradient boosting: the number of trees = 250, the depth
of trees = 10, the learning rate = 0.01 and the minimum
number of observations in the trees terminal nodes = 10.
Figure 5 shows that when the maximum tree depth equaled
10, the RMSE was minimum as iteration reached 250 with
the simplest tree structure. The number of predictors sampled
for splitting at each node (mtry) in the random forest
was set to 4 to achieve the largest accuracy, as shown in
Figure 6. In the SVM, the scale function σ was set to 1
and the cost value C set to 4 to reach the smallest training
error 0.038.

The performance of the four supervised techniques
was summarized in Table 2. All four methods performed
satisfactorily, with almost all values larger than 0.90. The
gradient boosting showed the best classification accuracy overall,
exhibiting the highest Kappa and overall accuracy (Kappa= 0.94,
overall accuracy = 0.96). Most of their subclass specificity and
balanced accuracy values also ranked top, with only sensitivity

FIGURE 4 | The CART tuning results for cost-complexity parameter (cp).

FIGURE 5 | The Gradient Boosting tuning results.
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FIGURE 6 | The random forest tuning results (peak point corresponds to mtry = 4).

TABLE 2 | Average of accuracy measures of the scores.

Method R package Kappa Overall accuracy Sensitivity Specificity Balanced accuracy

0 1 2 0 1 2 0 1 2

CART rpart 0.92 0.95 0.89 0.97 0.97 0.98 0.96 0.99 0.93 0.96 0.98

Random Forest randomForest 0.92 0.95 0.89 0.95 10.0 0.99 0.96 0.97 0.94 0.95 0.99

Gradient Boosting gbm 0.94 0.96 0.89 0.97 10.0 0.99 0.96 0.99 0.94 0.96 0.99

Support Vector Machine kernlab 0.92 0.95 0.94 0.93 10.0 0.98 0.98 0.97 0.96 0.96 0.99

for score = 0, specificity for score = 1 and balanced accuracy
for score = 0 smaller than those from SVM. SVM, random
forest, and CART performed similarly well, all with a slightly
smaller Kappa and overall accuracy values (Kappa= 0.92, overall
accuracy= 0.95).

Among the four supervised methods, the single tree structure
from CART built from the training dataset is the easiest to
interpret and plotted in Figure 7. Three colors represent three
score categories: red (no credit), gray (partial credit), and green
(full credit). The darker the color is, the more confident the
predicted score is in that node, the more precise the classification
is. In each node, we can see three lines of numbers. The
first line indicates the main score category in that node. The
second line represents the proportions of each score category,
in the order of scores of 0, 1, and 2. The third line is the
percentage of students falling into that node. CART has a built-in
characteristic to automatically choose useful features. As shown
in Figure 7, only five nodes (features), “city_con_daily_cancel,”
“other_buy,” “trip4_buy,” “concession,” and “daily_buy,” were
used in branching before the final stage. In each branch, if the
student performs the action (>0.5), he/she is classified to the
right, otherwise, to the left. As a result, students with a full credit
were branched into one class, in which 96% truly belonged to this
class and accounted for 29% of the total data points. Students

who earned a partial credit were partitioned into two classes,
one purely consisted of students in this group and the other
consisted of 98% students who truly got partial credit. For the
no credit group, students were classified into three classes, one
purely consisted of students in this group and the other two
classes included 10 and 18% students from other categories. One
major benefit from this plot is that we can clearly tell the specific
action sequences that led students into each class.

Unsupervised Learning Methods
As shown in Table 3, the candidates for the best clustering

solution from the training dataset were k-means with 5 clusters
(DBI= 0.19, kappa= 0.84) and SOMwith 9 clusters (DBI= 0.25,

kappa= 0.96), which satisfied the criterion of a smaller DBI value

and kappa value ≥ 0.8. When validated with the test dataset, the
DBI values for k-means and SOM all increased. It could be caused

by the smaller sample size of the test dataset. Due to the low kappa
value for the 5-cluster solution in the validation sample, the final
decision on the clustering solution was SOM with 9 clusters.
The percentage of students in each score category in each cluster
is presented in Figure 8. The cluster analysis results obtained
based on both SOM and k-means can be found in Table A2 in
Appendix A.
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FIGURE 7 | The CART classification.

TABLE 3 | Clustering Algorithms’ Fit (DBI) and Agreement (Cohen’s Kappa).

Training dataset (n = 320) Test dataset (n = 106)

Number of

clusters

DBI Kappa DBI Kappa

k-means SOM k-means SOM

3 1.427 1.54 0.037 1.741 1.696 0.900

4 1.792 1.447 0.061 1.444 1.178 0.078

5 0.188** 1.296 0.843 1.098 1.133 0.320**

6 1.448 1.087 0.934 1.057 1.171 0.390

7 1.413 1.023 0.835 1.177 0.920 0.891

8 0.198 1.057 0.753 1.063 1.034 0.894

9 1.099 0.249* 0.959 1.288 0.979 0.831

10 1.442 0.251 0.884 1.288 0.816 0.627

**Best fitting solution with the training dataset but lower Kappa value with the test dataset,

indicating the disagreement between k-means and SOM.
*Final chosen solution. Bold values indicate potential final clustering solution and are

discussed in the text.

To interpret, label and group the resulting clusters, it is

necessary to examine and generalize the students’ features and
the strategy pattern in each of the cluster. In alignment with

the scoring rubrics and ease of interpretation, the nine clusters
identified in the training dataset are grouped into five classes and
interpreted as follows.

1. Incorrect (cluster1): students bought neither individual tickets
for 4 trips nor a daily ticket.

2. Partially correct (cluster 4–5): students bought either
individual tickets for 4 trips or a daily ticket but did not
compare the prices.

3. Correct (cluster 7 and 8): students did compare the
prices between individual tickets and a daily ticket and
chose to buy the cheaper one (individual tickets for
4 trips).

FIGURE 8 | Percentage in each score category in the final SOM clustering

solution with 9 clusters from the training dataset.

4. Unnecessary actions (cluster 2, 3, and 6): students tried
options not required by the question, e.g., country train ticket,
other number of individual ticket.

5. Outlier (cluster 9): the student made too many attempts and is
identified as an outlier.

Such grouping and labeling can help researchers better
understand the common strategies used by students in each
score category. It also helps to identify errors students made
and can be a good source of feedback to students. For those
students mislabeled above, they share the major characteristics
in the cluster. For example, 4% students who got no credit in
cluster 4 in the training dataset bought daily ticket for the city
subway without comparing the prices, but they bought the full
fare instead of using student’s concession fare. These students are
different from those in cluster 1 who bought neither daily tickets
nor individual tickets for 4 trips. Thus, students in the same
score category were classified into different clusters, indicating
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that they made different errors or took different actions during
the problem-solving process. In summary, though students in the
same score category generally share the actions they took, they
can also follow distinct problem-solving processes. Students in
different score categories can also share similar problem-solving
process.

SUMMARY AND DISCUSSIONS

This study analyzed the process data in the log file from one
of the 2012 PISA problem-solving items using data mining
techniques. The data mining methods used, including CART,
gradient boosting, random forest, SVM, SOM, and k-means,
yielded satisfactory results with this dataset. The three major
purposes of the current study were summarized as follows.

First, to demonstrate the analysis of process data using
both supervised and unsupervised techniques, concrete steps in
feature generation, feature selection, classifier development and
outcome evaluation were presented in the current study. Among
all steps, feature generation was the most crucial one because
the quality of features determines the classification results to
a large extent. Good features should be created based on a
thorough understanding of the item scoring procedure and the
construct. Key action sequences that can distinguish correct and
incorrect answers served as features with good performance.
Unexpectedly, time features, including total response time and its
pieces, did not turn out to be important features for classification.
This means that considerable variance of response time existed
in each score group and the differences in response time
distributions among the groups was not large enough to clearly
distinguish the groups (see Figure A1 in Appendix A). This
study generated features based on theoretical beliefs about the
construct measured and used students as the unit of analysis.
The data could be structured in other ways according to different
research questions. For example, instead of using students as
the unit of analysis, the attempts students made can be used as
rows and actions as columns, then the attempts can be classified
instead of people. Fossey (2017) included a detailed tutorial on
clustering algorithms with such data structure in a game-based
assessment.

Second, to evaluate classification consistency of these
frequently used data mining techniques, the current study
compared four supervised techniques with different properties,
namely, CART, gradient boosting, random forest, and SVM.
All four methods achieved satisfactory classification accuracy
based on various outcome measures, with gradient boosting
showing slightly better overall accuracy and Kappa value. In
general, easy interpretability and graphical visualization are
the major advantages of trees. Trees also deal with noisy and
incomplete data well (James et al., 2013). However, the trees
are easily influenced by even small changes in the data due to
its hierarchical splitting structure (Hastie et al., 2009). SVM, on
the contrary, generalizes well because once the hyperplane is
found, small changes to data cannot greatly affect the hyperplane
(James et al., 2013). Given the specific dataset in the current
study, even the CART method worked very well. In addition, the
CART method can be easily understood and provided enough

information about the detailed classifications between and within
each score category. Thus, based on the results in the current
study, the CART method is sufficient for future studies on
similar datasets. Unsupervised learning algorithms, SOM and
k-means, also showed convergent clustering results based on
DBI and Kappa values. In the final clustering solution, students
were grouped into 9 clusters, revealing specific problem-solving
processes they went through.

Third, supervised and unsupervised learningmethods serve to
answer different research questions. Supervised learningmethods
can be used to train the algorithm to predict memberships in
the future data, like automatic scoring. Unsupervised methods
can reveal the problem-solving strategy patterns and further
differentiate students in the same score category. This is
especially helpful for formative purposes. Students can be
provided with more detailed and individualized diagnostic
reports. Teachers can better understand students’ strengths and
weaknesses, and adjust instructions in the classroom accordingly
or provide more targeted tutoring to specific students. In
addition, it is necessary to check any indication for cheating
behavior in the misclassified or outlier cases from both types of
data mining methods. For example, students answered the item
correctly within an extremely short amount of time can imply
item compromise.

This study has its own limitations. Other data mining
methods, such as other decision trees algorithms and clustering
algorithms, are worth of investigation. However, the procedure
demonstrated in this study can be easily generalized to other
algorithms. In addition, the six methods were compared based
on the same set of data rather than data under various conditions.
Therefore, the generalization of the current study is limited due
to factors such as sample size and number of features. Future
studies can use a larger sample size and extract more features
from more complicated assessment scenarios. Lastly, the current
study focuses on only one item for the didactic purpose. In
the future study, process data for more items can be analyzed
simultaneously to get a comprehensive picture of the students.

To sum up, the selection of data mining techniques for the
analysis of process data in assessment depends on the purpose of
the analysis and the data structure. Supervised and unsupervised
techniques essentially serve different purposes for data mining
with the former as a confirmatory approach while the latter as
an exploratory approach.
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Computer-based assessments provide new insights into cognitive processes related

to task completion that cannot be easily observed using paper-based instruments.

In particular, such new insights may be revealed by time-tamped actions, which

are recorded as computer log-files in the assessments. These actions, nested in

individual level, are logically interconnected. This interdependency can be modeled

straightforwardly in a multi-level framework. This study draws on process data recorded

in one of complex problem-solving tasks (Traffic CP007Q02) in Program for International

Student Assessment (PISA) 2012 and proposes a modified Multilevel Mixture IRT model

(MMixIRT) to explore the problem-solving strategies. It was found that the model can not

only explore whether the latent classes differ in their response strategies at the process

level, but provide ability estimates at both the process level and the student level. The

two level abilities are different across latent classes, and they are related to operational

variables such as the number of resets or clicks. The proposed method may allow for

better exploration of students’ specific strategies for solving a problem, and the strengths

and weaknesses of the strategies. Such findings may be further used to design targeted

instructional interventions.

Keywords: computer-based problem solving, PISA2012, process data, the modified multilevel mixture IRT model,

the process level, the student level

INTRODUCTION

The problem-solving competence is defined as the capacity to engage in cognitive processing
to understand and resolve problem situations where a solution is not immediately obvious. It
includes the willingness to engage in these situations in order to achieve one’s potential as a
constructive and reflective citizen (OECD, 2014; Kurniati and Annizar, 2017). Problem solving can
be conceptualized as a sequential process where the problem solver must understand the problem,
devise a plan, carry out the plan, and monitor the progress in relation to the goal (Garofalo and
Lester, 1985; OECD, 2013). These problem-solving skills are key to success in all pursuits, and
they can be developed in school through curricular subjects. Therefore, it is no surprise that
the problem-solving competency is increasingly becoming the focus of many testing programs
worldwide.
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Advances in technology have expanded opportunities for
educational measurement. Computer-based assessments, such as
simulation-, scenario-, and game-based assessments, constantly
change item design, item delivery, and data collection (DiCerbo
and Behrens, 2012; Mislevy et al., 2014). These assessments
usually provide an interactive environment in which students
can solve a problem through choosing among a set of available
actions and taking one or more steps to complete a task.
All student actions are automatically recorded in system logs
as coded and time-stamped strings (Kerr et al., 2011). These
strings can be used for instant feedback to students, or for
diagnostic and scoring purposes at a later time (DiCerbo
and Behrens, 2012). And they are called process data. For
example, the problem solving assessment of PISA 2012, which
is computer-based, used simulated real-life problem situations,
such as a malfunctioning electronic device, to analyze students’
reasoning skills, problem-solving ability, and problem-solving
strategies. The computer-based assessment of problem solving
not only ascertains whether students produce correct responses
for their items, but also records a large amount of process
data on answering these items. These data make it possible
to understand students’ strategies to the solution. So far,
to evaluate students’ higher order thinking, more and more
large-scale assessments of problem solving become computer-
based.

Recent research has focused on characterizing and scoring
process data and using them to measure individual student’s
abilities. Characterizing process data can be conducted via a
variety of approaches, including visualization, clustering, and
classification (Romero and Ventura, 2010). DiCerbo et al. (2011)
used diagraphs to visualize and analyze sequential process data
from assessments. Bergner et al. (2014) used cluster analysis to
classify similar behaving groups. Some other researchers used
decision trees, neural networks, and Bayesian belief networks
(BBNs) (Romero et al., 2008; Desmarais and Baker, 2012; Zhu
et al., 2016), to classify the performance of problem solvers
(Zoanetti, 2010) and to predict their success (Romero et al.,
2013). Compared to characterizing process data, the research of
scoring process data is very limited. Hao et al. (2015) introduced
“the editing distance” to score students’ behavior sequences based
on the process data in a scenario-based task of the National
Assessment of Educational Progress (NAEP). Meanwhile, these
process data have been used in psychometric studies. Researchers
analyzed students’ sequential response process data to estimate
their ability by combining Markov model and item response
theory (IRT) (Shu et al., 2017). It is noteworthy that all these
practices have examined process data that describe students’
sequential actions to solve a problem.

All the actions, recorded as process level data, which are
nested in individual level, are logically interconnected. This
interdependency allows a straightforward modeling in a multi-
level framework (Goldstein, 1987; Raudenbush and Bryk, 2002;
Hox, 2010). This framework is similar to those used in
longitudinal studies, yet with some differences. In longitudinal
studies, measurements are typically consistent to show the
development pattern of certain traits. For process data, however,
actions are typically different within each individual. These

successive actions are used to characterizing individuals’ problem
solving strategies.

It is common in computer-based assessments that a nested
data structure exists. To appropriately analyze process data (e.g.,
time series actions) within a nested structure (e.g., process within
individuals), the multi-level IRT model can be modified by
allowing process data to be a function of the latent traits at
both process and individual levels. It is noteworthy that in the
modified model, the concept of “item” in IRT changed to each
action in individuals’ responses, which was scored based on
certain rules.

With respect to the assessment of problem solving
competency, the focus of this study is the ability estimate
at the student level. We were not concerned with individual’s
ability reflected from each action at the process level, since the
task needs to be completed by taking series actions. Even for
individuals with high problem solving ability, the first few actions
may not accurately reflect test takers’ ability. As a result, more
attention was put on the development of ability at the process
level because it can reveal students’ problem solving strategies.
Mixture item response theory (MixIRT) models have been used
in describing important effects in assessment, including the
differential use of response strategies (Mislevy and Verhelst,
1990; Rost, 1990; Bolt et al., 2001). The value of MixIRT models
lies in that they provide a way of detecting different latent groups
which are formed by the dimensionality arising directly from the
process data. These groups are substantively useful because they
reflect how and why students responded the way they did.

In this study, we incorporated the multilevel structure into
a mixture IRT model and used the modified multilevel mixture
IRT (MMixIRT) model to detect and compare the latent groups
in the data that have differential problem solving strategies. The
advantage of this approach is the usage of latent groups. Although
they are not immediately observable, these latent groups, which
are defined by certain shared response patterns, can help explain
process-level performance about how members of one latent
group differ from another. The approach proposed in this study
was used to estimate abilities both at process and student levels,
and classify students into different latent groups according to
their response strategies.

The goal of this study is to illustrate steps involved in applying
the modified MMixIRT model in a computer-based problem
solving assessment then to further present and interpret the
results. Specifically, this article focuses on (a) describing and
demonstrating the modified MMixIRT model using a task of
PISA 2012 problem-solving process data; (b) interpreting the
different action patterns; (c) analyzing the correlation between
characteristics of different strategies and task performance, as
well as some other operational variables such as the number
of resets or clicks. All the following analysis was based on one
sample data set.

MEASUREMENT MATERIAL AND DATASET

Problem Solving Item and Log Data File
This study illustrates the use of the modified MMixIRT model
in analyzing process data through one of the problem-solving
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tasks in PISA 2012 (Traffic CP007Q02). The task is shown
in Figure 1. In this task, students were given a map and the
travel time on each route, and then they were asked to find
the quickest route from Diamond to Einsten, which takes
31min.

The data are from the task’s log file
(CBA_cp007q02_logs12_SPSS.SAV, data source: http://www.
oecd.org/pisa/data/) (an example of log data file is shown in
Appendix 1). The data file contains four variables associated
with the process. The “event” variable refers to the type of
event, which may be either system generated (start item,
end item) or student generated (e.g., ACER_EVENT, Click,
Dblclick). The “time” variable is the event time for this item,
given in seconds since the beginning of the assessment, with
all click and double-click events included. The “event_value”
variable is recorded in two rows, as a click event involves
selecting or de-selecting a route of the map. For example, in
the eleventh row where the state of the entire map is given, 1
in the sequence means that the route was selected, and 0 means
that it was not; the twelfth row records an event involving
highlighting, or un-highlighting. A route of the map represents
the same click event, and it is in the form “hit_segment
name” (The notes on log file data can be downloaded
from http://www.oecd.org/pisa/data/). All the “click” and
“double-click” events represent that a student performs a click
action that is not related to select a route. Table 1 shows the
label, the route and the correct state of the entire selected
routes.

Sample
The study sample was drawn from PISA 2012 released dataset,
consisting of a total of 413 students from 157 American schools
who participated in the traffic problem-solving assessment
(47.2% as females). The average age of students was 15.80 years
(SD= 0.29 years), ranging from 15.33 to 16.33 years.

For the traffic item response, the total effective sample
size under analysis was 406, after excluding seven incomplete
responses. For the log file of the process record, there were 15,897
records in the final data file, and the average record number
for each student was 39 (SD = 33), ranging from 1 to 183. The
average response time was 672.64 s (SD= 518.85 s), ranging from
58.30 to 1995.20 s.

THE MODIFIED MMIXIRT MODEL FOR
PROCESS DATA

Process-Level Data Coding
In this task log file, “ACER_EVENT” is associated with “click.”
However, in this study we only collected the information
of ACER_EVENT and deleted the redundant click data.
Then, we split and rearranged the data by routes, making
each row represent a step in the process of individual
students, and each column represent a route (0 for de-
selecting, and 1 for selecting). Table 2 shows part of the
reorganized data file, indicating how individual student
selected each route in each step. For example, the first line

FIGURE 1 | Traffic.
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TABLE 1 | The routes of the map.

Label Route Included or not in the

correct routes

P1 Diamond-Nowhere 1

P2 Diamond-Silver 0

P3 Emerald-Lincoln 0

P4 Emerald-Unity 0

P5 Lee-Mandela 1

P6 Lincoln-Sato 0

P7 Mandela-Einstein 1

P8 Market-Lee 1

P9 Market-Park 0

P10 Nobel-Lee 0

P11 Nowhere-Einstein 0

P12 Nowhere-Emerald 0

P13 Nowhere-Sakharov 1

P14 Nowhere-Unity 0

P15 Park-Mandela 0

P16 Park-nowhere 0

P17 Sakharov-Market 1

P18 Sakharov-Nobel 0

P19 Sato-nowhere 0

P20 Silver-Market 0

P21 Silver-nowhere 0

P22 Unity-Park 0

P23 Unity-Sato 0

1, Yes; 0, No.

represents that student 00017 selected P2 in his/her first
step.

Process data were first recoded for the analysis purpose.
Twenty-three variables were created to represent a total number
of available routes that can possibly be selected (similar to
23 items). The right way for solving this problem is to select
the following six routes: Diamond–Nowhere–Sakharov–Market–
Lee–Mandela–Einstein (i.e., P1, P5, P7, P8, P13, and P17). For
the correct routes, the scored response was 1 if one was selected,
and 0 otherwise; for the incorrect routes, the scored response
was 0 if one was selected, and 1 otherwise. Each row in the
data file represents an effective step (or action) a student took
during the process. In each step, when a route was selected or
not, the response for this route was recoded accordingly. When
a student finished an item, all the steps during the process were
recorded. Therefore, for the completed data set, the responses of
the 23 variables were obtained and the steps were nested within
students.

The Modified MMixIRT Model Specification
The MMixIRT model has mixtures of latent classes at the process
level or at both process and student levels. It assumes that possible
heterogeneity exists in response patterns at the process level and
therefore are not to be ignored (Mislevy and Verhelst, 1990;
Rost, 1990). Latent classes can capture the interactions among the
responses at the process level (Vermunt, 2003). It is interesting

to note that if no process-level latent classes exist, there are
no student-level latent classes, either. The reason lies in that
student-level units are clustered based on the likelihood of the
processes belonging to one of the latent classes. For this particular
consideration, the main focus in this study is to explore how to
classify the process-level data, and the modified MMixIRT model
only focus on latent classes at the process level.

The MMixIRT model accounts for the heterogeneity by
incorporating categorical or continuous latent variables at
different levels. Because mixture models have categorical latent
variables and item response models have continuous latent
variables, latent variables at each level may be categorical or
continuous. In this study, the modified MMixIRT includes both
categorical (latent class estimates) and continuous latent variables
at the process level and only continuous (ability estimates) latent
variables at the student level.

The modified MMixIRT model for process-level data is
specified as follows:

Process-Level

P
(

yjki = 1
∣

∣

θjkg ,Cjk = g
)

=
exp(αig.Wθjkg − βig)

1+ exp(αig.Wθjkg − βig)
(1)

P
(

yjk1 = ω1, yjk2 = ω2, · · · , yjkI = ωI

)

=
∑G

g= 1
γjkg

∏I

i=1
P

(

yjki = 1
∣

∣

θjkg ,Cjk = g
)

ωi

(1− P
(

yjki = 1
∣

∣

θjkg ,Cjk = g
)

)
(1−ωi) (2)

Student-Level

P
(

yki = 1
∣

∣

θk

)

=
exp(αi.Bθk − βi)

1+ exp(αi.Bθk − βi)
(3)

For the process level, in Equation (1), i is an index for ith route
(i = 1, . . . , I), k is an index for a student (k = 1,. . . , K), j is
an index for the jth valid step of a student during the response
process (j = 1, . . . , Jk),(J is the total steps of the kth student)
and g indexes the latent classes (Cjk = 1, . . . , g. . .G, where G is
the number of latent classes), Cjk is a categorical latent variable
at the process level for the jth valid step of student k, which
captures the heterogeneity of the selections of routes in each step.
P

(

yjki = 1
∣

∣

θjkg ,Cjk = g
)

is the probability of selecting an route
i in the jth step of student k, which is predicted by the two-
parameter logistic (2PL) model, and αig.W is the discrimination
parameter of process-level in class g, W means within-level,
βig is the location parameter in class g, and θjkg is the latent
ability of examinee k for a specific step j during the process of
selecting the route, which is called the process ability in this study
(θjkg ∼N(µjkg , σ

2
jkg)). The process abilities across different latent

classes are constrained to follow a normal distribution (θjk ∼N(0,

1)). In Equation (2), P
(

yjk1 = ω1, yjk2 = ω2, · · · , yjkI = ωI

)

is

the joint probability of the actions in the jth step of student k.
ωi denotes either selected or not selected for ith route. For the
correct routes, 1 represents that the route was selected, and 0
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otherwise; for the incorrect routes, 0 represents that the route was
selected, and 1 otherwise. γjkg is the proportion of the jth step in

each latent class and
∑G

g=1 γjkg = 1. As can be seen from the

Equation (2), the probability of the actions (yjki) are assumed to
be independent from each other given classmembership, which is
known as the local independence assumption formixturemodels.

For the student level, in Equation (3), αi.B is the item
discrimination parameter where B represents between-level. βi

is the item location parameter which is correlated with the
responses of the final step of the item. θk is the ability estimate at
the student level based on the final step of the process, which also
represents the problem-solving ability of student k in this study
(θk ∼N(0, 1)).

Figure 2 demonstrates a modified two-level mixture item
response model with within-level latent classes. The squares in
the figure represent item responses, the ellipses represent latent
variables, and 1 inside the triangle represents a vector of 1 s.
As is shown in the figure, the response for each route of the

jth step [yjk1,..., yjki,..., yjkI] is explained by both categorical
and continuous latent variables (Cjk and θjkg , respectively)
at the process level; and the final response of students for
each route [yk1,..., yki,..., ykI] is explained by a continuous
latent variable (θk) at the student level. The arrows from the

continuous latent variables to the item (route) represent item

(route) discrimination parameters (αig,W at the process level and

αi,B at the student level), and the arrows from the triangle to the
item responses represent item location parameters at both levels.

The dotted arrows from the categorical latent variable to the other
arrows indicate that all item parameters are class-specific.

It should be noted that the MMixIRT model is different
from the traditional two-level mixture item response model
in the definition of the latent variables at the between-level.
In the standard MMixIRT model, the between-level latent
variables are generally obtained from the measurement results
made by within-level response variables [yjk1,..., yjki,..., yjkI] on
between-level latent variables (Lee et al., 2017). In this study,

TABLE 2 | Example of the reorganized data file.

StIDStd Time Event_number Event_value P1 P2 P3 P4 P5 P6 P7 P8 … P21 P22 P23

00017 837.6000 2.00 ’01000000000000000000000 0 1 0 0 0 0 0 0 … 0 0 0

00017 839.8000 4.00 ’11000000000000000000000 1 1 0 0 0 0 0 0 … 0 0 0

00017 841.1000 7.00 ’11000000000010000000000 1 1 0 0 0 0 0 0 … 0 0 0

00017 841.7000 9.00 ’11000000000010000100000 1 1 0 0 0 0 0 0 … 0 0 0

00017 842.7000 11.00 ’11000000010010000100000 1 1 0 0 0 0 0 0 … 0 0 0

00017 844.8000 13.00 ’11000000010010000101000 1 1 0 0 0 0 0 0 … 0 0 0

00017 846.4000 15.00 ’11000000010000000101000 1 1 0 0 0 0 0 0 … 0 0 0

00017 847.4000 17.00 ’01000000010000000101000 0 1 0 0 0 0 0 0 … 0 0 0

00017 848.4000 19.00 ’01000000010000000001000 0 1 0 0 0 0 0 0 … 0 0 0

00017 850.6000 21.00 ’01000000000000000001000 0 1 0 0 0 0 0 0 … 0 0 0

00017 851.6000 23.00 ’01000000010000000001000 0 1 0 0 0 0 0 0 … 0 0 0

00017 852.5000 25.00 ’01000000000000000001000 0 1 0 0 0 0 0 0 … 0 0 0

00017 853.4000 27.00 ’01000000100000000001000 0 1 0 0 0 0 0 0 … 0 0 0

00017 853.7000 29.00 ’01000000100000010001000 0 1 0 0 0 0 0 0 … 0 0 0

FIGURE 2 | The modified MMixIRT model for process data.
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the process-level data mainly reflect the strategies for problem
solving, while the responses at the last step represent students’
final answers on this task. Therefore, students’ final responses are
used to estimate their problem-solving abilities (latent variable at
the between-level, i.e., ability of the student level) in the modified
MMixIRT model.

Mplus Software (Muthén and Muthén, 1998-2015) was used
to estimate the parameters of the modified MMixIRT model, as
specified above. In addition, the detailed syntax are presented in
Appendix 5.

RESULTS

Results of Descriptive Statistics
Table 3 shows the proportion of each route selected by the
students in the correct group and in the wrong group,
respectively. The correct group consists of students who selected
the right routes, and the wrong group refers to students who
failed to do so. There are a total of 476 students, with 377 in
the correct group and 99 in the wrong group. The results show
that most of the students in the correct group selected the right
routes, while a large number of students in the wrong group
selected the wrong routes. To further explore the differences of
the proportion of students selecting the wrong routes in the two
groups, χ2-tests were conducted. No significant differences were
found between the correct group and the wrong group in terms
of the proportion of students who clicked four wrong routes,
including P4 [χ2

(1) = 0.370, P > 0.05], P9 [χ2
(1) = 3.199, P >

0.05], P10 [χ2
(1) = 3.636, P > 0.05], and P15 [χ2

(1) = 2.282, P
> 0.05]. This further suggests that it was difficult for the correct
group to avoid these routes during their response process, and
even quite a number of students in the correct group experienced
trial and error before eventually solving the problem.

Results of the Modified MMixIRT Model
Model Selection
The determination of the number of latent classes has been
discussed in many studies (Tofighi and Enders, 2008; Li
et al., 2009; Peugh and Fan, 2012). Several statistics of the
mixture IRT models are often computed to compare relative
fits of these models. Akaike’s (1974) information criterion (AIC)
incorporates a kind of penalty function for over-parameterization
on model complexity. A criticism of AIC has been that it is not
asymptotically consistent because the sample size is not directly
involved in its calculation (Janssen and De Boeck, 1999; Forster,
2004). Schwarz (1978) proposed BIC as another information-
based index, which attains asymptotic consistency by penalizing
over-parameterization by using a logarithmic function of the
sample size. For the sample size in BIC, the number of persons
is used in multilevel model (Hamaker Ellen et al., 2011) and in
multilevel item response model (Cohen and Cho, 2016). Most
studies suggested the BIC value as the best choice because it was a
sample-based index that also penalized the sophisticated model.
However, Tofighi and Enders (2008) indicated in their simulation
study that a sample size-adjusted BIC (aBIC) was an even better
index. Smaller AIC, BIC, and aBIC values indicate a better model
fit for mixture IRT models. Besides, entropy value has been used

TABLE 3 | The proportion of route selection.

Route Selected proportion

Wrong group Correct group

P1 40.023 69.504

P2 38.158 19.872

P3 3.290 1.688

P4 0.635 0.815

P5 16.055 25.148

P6 2.481 1.287

P7 15.699 22.260

P8 4.340 21.953

P9 25.379 23.435

P10 12.586 12.007

P11 16.559 10.819

P12 4.304 2.601

P13 36.846 64.109

P14 8.404 3.622

P15 5.182 6.886

P16 19.122 12.771

P17 16.653 43.530

P18 17.629 13.157

P19 4.884 1.923

P20 17.579 10.732

P21 15.369 7.211

P22 5.531 1.759

P23 4.296 1.377

The right routes are printed in bold.

to measure how well a mixture model separates the classes; an
entropy value close to 1 indicates good classification certainty
(Asparouhov and Muthén, 2014).

Themodel selection results for themodifiedMMixIRTmodels
are given in Table 4. The model fit indicates that LL, AIC, BIC,
and aBIC decreased consistently as the class number increased
to eight classes, and the nine-class model did not converge. As
noted above, the best fit for AIC, BIC, and aBIC was determined
or dictated by the smallest value in the ordered set of models from
the least to the most complex. As suggested by Rosato and Baer
(2012), selecting a robust latent class model is a balance between
the statistical result of the model fit and the substantive meaning
of the model. The model that fits best and yields meaningful
classes should be retained. In this study the proportions of latent
classes were examined to ensure the empirical significance, and
the interpretability of each class was considered accordingly.
For the 6-class model, the proportion of each class was 18.1,
30.7, 18.1, 20.1, 7.2, and 5.9%. And for the 7-class model,
the proportion was 19.9, 13.4, 6.0, 12.3, 13.5, 27.4, and 7.5%.
Compared to the 6-class model, in the 7-class model, the extra
class of the steps was similar to class 2 of the 6-class model, while
mixing class 4 at the same time. This makes the 7-class model
hard to interpret. For the 8-class model, the proportion of one
of the classes was too small (only 2.7%). Taking into account
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both the model fit index and the interpretability of each class, the
6-class model was retained in this study.

Description of Class Characteristics
The most likely latent class membership are displayed in Table 5.
In this matrix, steps from each class have an average probability
of being in each class. Large probabilities are expected on the
diagonal. The numbers on diagonal are greater than 0.9. It can
be concluded from the results that the modified MMixIRTmodel
can classify students properly based on process data.

Figure 3 presents the characteristics of route selection for
each class based on the 6-class mixture IRT model, with À, Á,
Â.... indicating the order of the routes. Based on the results
of the modified MMixIRT model, the number of clicks of the
23 routes (P1–P23) in each class is listed in Appendix 2. The
characteristics of route selection can be obtained pursuant to
routes that get more clicks than others in each class, as well
as the relations among routes shown in Figure 1. For example,
P17, P13, P1, P8, P5, P16, and P7 in Class 1 were clicked more
than other routes; however, Figure 1 shows that there is no
obvious relationship between P16 and other routes. Therefore,
the characteristic of Class 1 was defined as P1-P13-P17-P8-P5-
P7 and P16 was removed. These routes were sequenced by the
number of clicks they got, with the most clicked routes taking
the lead. As indicated in Figure 3, different latent classes have
typical characteristics depending on the similarity of the correct
answers. For example, the route selection strategy of Class 1 best
approximated the ideal route required by the item. Based on
their last click, almost all the students in Class 1 gave the correct
answer. Therefore, Class 1 could be regarded as the correct
answer class, while the rest classes took different wrong routes.

The numbers in circles (À, Á, Â....) indicate the order of the
routes.

As is illustrated in Table 6, different classes demonstrated
different means of process-level ability. It is obvious that the
mean process ability in Class 1 is the highest (0.493), followed
by Class 6, Class 2, Class 4, yet Class 5 and Class 3 with the
lowest process-level ability. A closer check of these classes in
Figure 3 indicates that the selected routes of Class 5 and Class
3 were incredibly far away from the correct one, and they
took far more than 31min. Therefore, it is no surprise that
the mean process-level ability estimates of these two classes

were the lowest and were both negative (−1.438 and −0.935,
respectively). In addition, as can be seen in the number of
students, almost all the students in Class 1 provided the right
answer, demonstrating that different latent classes had different
probabilities of the correct answer. In summary, the process-
level ability is different across latent classes, which is related
to different strategies of students’ route selection or cognitive
process.

The Sequence of Latent Classes at the Process Level
Based on the results of the modified MMixIRT model, the
characteristics of the strategy shifts between step-specific classes
were explored and summarized. To capture the characteristics
of students’ strategy shifts during the response, it is necessary
to identify the typical route selection strategy of each class in
the first place. In this study, if a student applied the strategy
of a certain class three or more times consecutively, it was
considered that the student had employed the strategy of this
class at the process level. Three times was chosen as the rule
of thumb because it demonstrated enough stability to classify
a solution behavior. Then the strategy shifts of each student
during their clicking procedure could be obtained in orders.
The typical route selection strategy of different classes and the
class shifts of students in the correct group are presented in
Appendixes 3, 4, respectively. The results inAppendix 4 provide
useful and specific information about the strategy shifts used
by students over time. For example, in the correct group, 58
students shifted from one class to another, including 22 from
Class 2 to Class 1, 3 from Class 3 to Class 1, 30 from Class

TABLE 5 | Most likely latent class membership of each class.

Most likely latent class membership

Class 1 Class 2 Class 3 Class 4 Class 5 Class 6

Class 1 0.945 0.000 0.006 0.033 0.004 0.012

Class 2 0.001 0.936 0.002 0.033 0.013 0.015

Class 3 0.002 0.020 0.949 0.011 0.017 0.001

Class 4 0.029 0.004 0.007 0.949 0.002 0.010

Class 5 0.002 0.007 0.018 0.002 0.969 0.002

Class 6 0.016 0.014 0.001 0.025 0.002 0.942

TABLE 4 | Model comparison and selection.

No

of

class

No of Free

parameters

LL Value Akaike

(AIC)

Bayesian

(BIC)

Sample-Size

Adjusted BIC

Entropy

1 46 −112745.581 225583.161 225936.108 225789.923

2 95 −99334.232 198858.463 199587.375 199285.472 0.957

3 144 −92723.338 185734.676 186839.552 186381.931 0.860

4 193 −89375.035 179134.070 180607.239 179997.077 0.920

5 242 −87186.912 174857.823 176714.629 175945.571 0.936

6 291 −85974.117 172530.234 174763.005 173838.228 0.908

7 340 −84864.882 170409.764 173018.500 171938.004 0.904

8 389 −83821.533 168421.066 171405.766 170169.552 0.893
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FIGURE 3 | Route selection strategy by class.

4 to Class 0, and 3 from Class 6 to Class 1. It is noteworthy
that when students did not apply any strategies for more than
three times consecutively, it was regarded as class 0 in this
study.

The Relationship of the Two Level Ability
Estimates and Operational Variables
To validate whether students with different patterns of actions
will have different process-level ability, the descriptive statistics
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TABLE 6 | Means and standard deviations of process level abilities.

Latent class size

for process-level

No of Students Process-level ability

Count Proportion Right Wrong Mean SD

Class 1 2875 18.1 307 3 0.493 0.678

Class 2 4867 30.7 0 41 0.323 0.903

Class 3 2867 18.1 0 14 −0.935 0.386

Class 4 3192 20.1 0 26 0.292 0.556

Class 5 1138 7.2 0 12 −1.438 0.404

Class 6 940 5.9 0 3 0.424 0.698

Total 15879 100 307 99 0.000 0.934

In the column of no of Students, the last step of the process within each student is

classified into one of the six latent classes. Then, the numbers of students who gave

the correct or wrong answer are summarized based on the latent classes.

were conducted of operational variables such as the number
of route clicks and resets and their correlation with the mean
ability estimate of process-level ability (See Table 7 for details).
To further explore the differences of click actions between
the correct group and the wrong group, several T-tests were
conducted. The results indicate that students in the correct
group did significantly fewer resets than their counterparts in
the wrong group [t(404) = 2.310, P < 0.05]. No significant
differences were detected of the number of routes clicked or the
response time between the correct group and the wrong group
[t(404) = 1.656, P= 0.099; t(404) =−0.199, P= 0.843]. The results
in Table 7 suggest two things. Firstly, positive correlation existed
between the estimate of student-level ability and that of process-
level ability. This means that the process-level ability estimate
provides consistency and auxiliary diagnostic information about
the process. The students with higher process-level ability had
higher ability estimates of student level. Secondly, for the process-
level ability, a significant negative correlation existed between the
mean process-level ability estimate and variables such as the valid
number of route clicks and the number of resets for students in
the correct group. It is concluded that in the correct group, the
less frequently a student clicks the routes and resets the whole
process, the higher process-level ability he or she is likely to
obtain. For students in the wrong group, however, no significant
correlations were observed between the mean ability estimate
and the variables discussed above. Instead, a significant negative
correlation was found between the mean process-level ability
estimate and the absolute time of difference from 31min. For
these students, their process-level ability decreased as the time
cost by the wrong routes increased. Third, the mean process-level
ability estimate for the correct group was 0.310, in contrast to
−0.175 for the wrong group, which reveals a significant difference
between the two groups [t(404) = 8.959, P < 0.001]. In terms
of student-level ability, the estimate for the correct group was
significantly higher than for the wrong group [t(404) = 112.83,
P < 0.001].

The result in Table 8 indicates that the sequence of latent
classes are consistent with the ability estimates at both process
and student levels. For students in the correct group, the mean
process-level ability estimate decreased as the number of class

shifts, clicks and resets increased. Students with higher process-
level ability tended to select the correct route immediately or after
a few attempts. Consequently, these students clicked and reset
for fewer times because they had a clearer answer in mind and
therefore were more certain about it. In contrast, for students in
the wrong group, the mean ability estimates at both process and
student levels were rather small when the number of class shifts
were 0 and 1. When the number of class shifts was 0, students
failed to stick with a specific strategy to solve the problem during
the process. It took them a longer response time with about two
resets on average; as a result, the time cost for their route selection
was nearly twice the target time. When the number of class shifts
was 1, these students simply stuck to a totally wrong route for
the entire time, with shorter response time and fewer numbers
of clicks. However, unlike the correct group, the number of class
shifts in the wrong group showed a non-linear relationship with
the mean ability at both process and student levels. At first,
when the number of class shifts increased from 0 to 4, the ability
estimates at both levels increased as well. The explanation was
that because these students figured out the right routes, they
should have higher abilities than the 0 shift group that sticks to
the wrong route all the time. For example, students with four
shifts all ended up using strategy of Class 1, which was the right
strategy class (Appendix 4). Therefore, they were supposed to
have the highest process ability in the wrong group. However,
when the number of class shifts increased from 5 to 6, the process-
level ability estimate dropped. This has much to do with the fact
that too many shifts reflected little consideration and a lack of
deep cognitive processing.

DISCUSSION

A modified MMixIRT model was described for modeling
response data at process and student levels. The model developed
in this study combined the features of an IRTmodel, a latent class
model, and a multilevel model. The process-level data provide
an opportunity to determine whether latent classes or class shifts
differ in their response strategies to solve the problem. The
student-level data can be used to account for the differences
of students’ problem solving abilities. The ability estimate at
both process and student levels are different across latent classes.
The modified MMixIRT model makes it possible to describe
differential strategies based on process-level and student-level
characteristics. If a student’s specific strategies and their strengths
and weaknesses can be described in the process of solving
a problem, then the assessment of a student’s proficiency in
problem solving can guide instructional interventions in target
areas.

As process data from various computer-based assessment or
educational learning system have become common, there is an
urgent call for analyzing such data in an accurate way. The
psychometrical model-based approach has a great potential in
this aspect. Latent classes and the characteristics of latent class
shifts obtained from process data can reveal students’ reasoning
skills in problem-solving. The findings of characteristics of
process-level latent classes make it easy to uncover meaningful
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TABLE 7 | Correlation between ability estimates and operational variables in process.

Item response

result

Click action variable Mean ability of process level Ability of student level Mean SD

Correct

(N = 307)

No of Route Clicks −0.657** / 79.760 63.874

No of Resets −0.467** / 0.919 1.737

Absolute Time of Difference from 31 / / 0.000 0.000

Response Time 0.048 / 675.540 525.710

Mean Ability of Process Level / / 0.310 0.447

Ability of Student Level / / 1.371 0.000

Wrong

(N = 99)

No of Route Clicks −0.050 0.142 93.030 84.138

No of Resets −0.124 0.098 1.394 1.910

Absolute Time of Difference from 31 −0.248* −0.179 5.210 10.869

Response Time −0.087 0.022 663.620 499.466

Mean Ability of Process Level / 0.597** −0.175 0.530

Ability of Student Level 0.597** / −0.432 0.281

Total

(N = 406)

No of Route Clicks −0.439** −0.066 83.000 69.484

No of Resets −0.378** −0.103* 1.035 1.790

Absolute Value of Difference from 31 −0.269** −0.407*** 1.300 5.802

Response Time 0.015 0.012 672.640 518.849

Mean Ability of Process Level / 0.454*** 0.192 0.512

Ability of Student Level 0.454** / 0.931 0.787

Correct Responses 0.407** 0.985*** 0.756 0.430

“31” indicated in “absolute value of difference from 31” in Column 8 refers to the time taken in walking the right route for the item CP007Q02. *p < 0.05, **p < 0.01, ***p < 0.001.

TABLE 8 | Ability estimates and the operational variables in the different numbers of class shifts in the correct group and wrong group.

Correct or wrong

answer group

No of

class

shifts

No of

students

Process-

level ability

(Mean)

Student-

level ability

(Mean)

Response time

(Mean)

Valid No of

click

(Mean)

Absolute value of

difference from 31

(Mean)

No of

Reset

(Mean)

Correct group

(N = 307)

1 32 0.650 1.371 714.941 19.375 0 0.156

2 58 0.692 1.371 609.116 31.655 0 0.121

3 69 0.468 1.371 814.619 60.667 0 0.275

4 73 0.196 1.371 601.215 93.795 0 1.192

5 63 −0.141 1.371 649.711 134.143 0 1.937

6 12 –0.279 1.371 679.617 212.25 0 3.5

Wrong group

(N = 99)

0 11 −0.453 −0.548 991.7 36.909 29.182 2.091

1 15 −0.439 −0.552 377.713 22.867 1.067 1.067

2 12 0.139 −0.312 470.392 37.75 1.417 0.5

3 12 0.466 −0.275 552.042 71.917 0.917 0.667

4 20 −0.151 −0.438 784.455 94.4 1.250 0.85

5 24 −0.343 −0.492 690.038 170.292 5.042 2.292

6 5 −0.348 −0.162 921.02 234 1.000 2.6

and interesting action patterns from the process data, and to
compare patterns from different students. These findings provide
valuable information to psychometricians and test developers,
help them better understand what distinguishes successful
students from unsuccessful ones, and eventually lead to better
test design. In addition, as shown in this study, some operational
variables such as the number of resets and the number of clicks
or double clicks are related to the ability estimates at both process

and student levels and therefore can predict student scores on
problem solving assessment. Since students’ different abilities
capture individual patterns in process data, it can be used to
score or validate the rubrics. Williamson et al. (2006) explain
that a “key to leveraging the expanded capability to collect and
record data from complex assessment tasks is implementing
automated scoring algorithms to interpret data of the quantity
and complexity that can now be collected” (p. 2).
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The extension of the modified MMixIRT approach proposed
in this study can be implemented in several ways. Firstly, it can be
simplified in removing the process-level ability parameters, and
also be extended to include student-level latent classes instead of
abilities. Secondly, one of the advantages of this proposed model
is that item parameters can be constrained to be equal across the
process-level and student-level. So the abilities of both levels are
on the same scale and can be compared and evaluated. Lastly, the
main benefits of multilevel IRT modeling lie in the possibility of
estimating the latent traits (e.g., problem solving) at each level.
More measurement errors can be accounted for by considering
other relevant predictors such as motivations (Fox and Glas,
2003).

The psychometrical model-based approach also has its
limitations. First, even though latent class shifts preserve the
sequential information in action series, they do not capture
all the related information. For instance, for the purpose of
convenient analysis in this study, some unstable characteristics
of a latent class such as random shifts were not used in our
definition of class characteristics and class shifts. Fortunately, in
many cases, as in this study, this missing information does not
affect the results. If it becomes an issue in some cases, it can
be addressed by considering more details about the latent class
shifts to minimize the ambiguity. Second, this study only takes
a single route as an analysis unit, yet failing to consider possible

route combinations. For example, in some cases two routes are
available, it makes full sense to combine these two routes into
one to conduct analysis, because the link between these routes
is exclusive. In the future, we may consider the transition model
for different route combinations, such as Bi-Road. In terms of

the generalizability of the modified MMixIRT model for solving
complicated problems, if the process data for another single task
can be recoded or restructured as the data file in this study,
similar models can be applied to explore the latent classes and
characteristics of the problem solving process. However, the
difficulty during the analysis lies in how to recode the responses
into dichotomous data. For multiple tasks, a three-level model
can be applied, with the first level as the process level, the second
as the task level and the third as the student level. If there are
plenty of tasks, the ability estimates of the student will stay
stable. Therefore, while the generalizability of the model may be
conditional, the main logic of the MMixIRT approach can be
generalized.
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Adult assessments have evolved to keep pace with the changing nature of adult
literacy and learning demands. As the importance of information and communication
technologies (ICT) continues to grow, measures of ICT literacy skills, digital reading, and
problem-solving in technology-rich environments (PSTRE) are increasingly important
topics for exploration through computer-based assessment (CBA). This study used
process data collected in log files and survey data from the Programme for the
International Assessment of Adult Competencies (PIAAC), with a focus on the
United States sample, to (a) identify employment-related background variables that
significantly related to PSTRE skills and problem-solving behaviors, and (b) extract
robust sequences of actions by subgroups categorized by significant variables.
We conducted this study in two phases. First, we used regression analyses to
select background variables that significantly predict the general PSTRE, literacy, and
numeracy skills, as well as the response time and correctness in the example item.
Second, we identified typical action sequences by different subgroups using the
chi-square feature selection model to explore these sequences and differentiate the
subgroups. Based on the malleable factors associated with problem-solving skills, the
goal of this study is to provide information for improving competences in adult education
for targeted groups.

Keywords: process data, problem solving, sequential pattern, background variables, large-scale
assessment, PIAAC

INTRODUCTION

Adult assessments have evolved to keep pace with the changing nature of adult literacy and
learning demands. As the importance of information and communication technologies (ICT)
continues to grow, measures of ICT skills are increasingly important topics for exploration
through computer-based assessment (CBA). The Programme for the International Assessment
of Adult Competencies (PIAAC) is the first international household survey of adult skills
predominantly collected using ICT skills. Conducted in 40 countries, this international survey
measures key cognitive and workplace skills including literacy, numeracy, and problem-solving in
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technology-rich environments (PSTRE). These skills are not
only critical to individual prosperity but are also key drivers of
economic growth and societal advancement (Organisation for
Economic Co-operation and Development [OECD], 2013b, p. 3).

Specifically, PSTRE assessment focuses on the ability of “using
digital technology, communication tools and networks to acquire
and evaluate information, communicate with others and perform
practical tasks” (Organisation for Economic Co-operation and
Development [OECD], 2012). As digital technology has become
an indispensable part of human lives, there is an increasing
need for measuring the ability to solve problems in conjunction
with basic computer literacy skills. PSTRE assessment renders it
possible to measure how well adults process, analyze, and address
problems for specific goals in a computer-based environment.

According to a recent report published by the National Center
for Education Statistics (Rampey et al., 2016), United States
respondents on average scored lower than respondents from
other countries in the PSTRE domain (Organisation for
Economic Co-operation and Development [OECD], 2013b,
p. 11). In particular, the United States sample had the largest
proportion of respondents scoring below Level 1, which is
the minimum proficiency level required to complete simple
problem-solving tasks in daily life (Organisation for Economic
Co-operation and Development [OECD], 2013b, p. 21).

Some facts about specific subgroups of United States
respondents are also concerning. Scores for millennials (adults
born after 1980 and between ages 16–34) in the United States
were among the lowest of all participating countries even though
over half of them spent 35 hours per week on digital media
(Organisation for Economic Co-operation and Development
[OECD], 2013b, p. 21; Goodman et al., 2015). It was found
that 41% of respondents with less than high school education
chose to take the paper version of PIAAC, compared to 17%
for high school graduates and 5% for those with a college
degree or above (Organisation for Economic Co-operation and
Development [OECD], 2013b, p. 21). Further, 30% of those who
reported being out of the workforce took the paper-based test
as opposed to 14% for adults in the labor force (Organisation
for Economic Co-operation and Development [OECD], 2013b,
p. 21), suggesting a correlation between skills required for
completing the computerized version of the assessment and
employability (Vanek, 2017).

An issue that PIAAC attempts to provide a clear picture for
is the match between supply and demand for employment skills
(Organisation for Economic Co-operation and Development
[OECD], 2016, p. 3). There has been increasing interest
in exploring the relationship between proficiency levels and
subgroups by employment-related variables, such as employment
status and skills used at work (e.g., Organisation for Economic
Co-operation and Development [OECD], 2016, p. 102–103; Perry
et al., 2016). However, assessment of skills is merely one step
toward a more balanced labor market. Knowing which subgroups
performed better is a good starting point, but the processes that
gave rise to the final proficiency levels are more informative for
providing necessary education.

To bridge the gap between supply and demand and provide
targeted intervention, it is important to understand which

subgroups performed at a lower level and why. Specifically, how
did these respondents arrive at a specific wrong answer, and how
did subgroups differ in terms of problem-solving strategies? In
this regard, more fine-grained investigation on multiple sources
of data is needed, which cannot be easily achieved by utilizing
response data alone.

The use of computers as the delivery platform enables data
collection not just on whether respondents are able to solve the
tasks. It also gives information on how they solved them, which
is referred to as process data. Process data has great potential for
providing insight into different phases of educational learning.
One key application area is allowing intelligent tutoring systems
to adapt to respondents’ needs in real time based on their
characteristics (e.g., Baker, 2007; D’Mello et al., 2008; Scheuer and
McLaren, 2011). Another area that has attracted much interest is
to model changes in knowledge over time via Bayesian knowledge
tracing (e.g., Corbett and Anderson, 1994; Baker et al., 2008;
Pavlik et al., 2009).

More importantly, several studies have revealed the critical
role of process data in understanding different problem-solving
strategies (e.g., Hurst et al., 1997; Vendlinski and Stevens,
2002; He and von Davier, 2015, 2016; He et al., 2018).
Vendlinski and Stevens (2002) identified three strategy levels
that students adopted to solve a chemistry item: limited, prolific,
and efficient. Students who used a limited strategy tried only
a few options before attempting to solve the item, whereas the
prolific strategy was to explore almost all options on the menu,
similar to the “unfocused problem-solving strategy” found in
Hurst et al. (1997). On the contrary, students with efficient
strategy concentrated only on the key pieces of information,
resulting in the highest probability of a correct answer. He
and von Davier (2015) further pointed out that the pattern of
robust sequences of actions differed significantly by respondents’
performance levels by respondents’ performance levels, which
was found consistently were consistent across countries. Those
in the higher-performing group tended to use more tools such as
search and sort, had clearer understanding of the subgoals, and
were able to recover from initial mistakes. The lower-performing
group, however, demonstrated more hesitative behaviors, such
as clicking “cancel” repeatedly, and only had a vague idea about
the purpose of the item (He and von Davier, 2016). He et al.
(2018) continued investigating the differences in problem-solving
strategies associated with background variables on one PIAAC
item across six countries. It was found that test takers with high
levels of skills for using ICT at home were more likely to have
higher PSTRE performance. Respondents with different genders
had significant differences in digital task-solving strategies. In
fact, older people, female, and those with low ICT skill use at
home or work showed a need for more intervention to improve
their PSTRE skills.

Based on the results from He and von Davier (2015,
2016) and He et al. (2018), the present study mainly
focuses on employment-related variables and the United States
sample to further identify important factors associated with
problem-solving skills. Specifically, two research questions
are addressed via exploring the process data from one
representative PSTRE item:
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(1) Which employment-related background variables are
significantly related to performance in the PSTRE, literacy,
and numeracy domains in the United States sample?

(2) For those subgroups that showed significantly different
performance on a representative PSTRE item, what
features can we extract from process data to best
characterize their behaviors?

By analyzing process data in different employment situations
and with different work experience, we are able to see different
behavioral patterns by subgroups during the process of solving
digital tasks. The rest of this paper is structured as follows.
In Section “Materials and Methods” we elaborate on the data
and instrument used in this study, and introduce the proposed
approach (i.e., regression analysis and feature identification)
to map the background variables with action sequences in
process data. The results corresponding to the two research
questions are presented in Section “Results”, with special
attention to generalizing results for the United States population.
In the last section, we summarize the findings and discuss the
limitations and potential future work using process data in large-
scale assessments.

MATERIALS AND METHODS

Datasets and Instruments
The PSTRE assessment in PIAAC 2012 study included 14
items, with seven in each of the two booklets.1 Respondents
who responded to the PSTRE items had to have some prior
computer experience and to have passed the first two stages
of core computer-based assessments. The PSTRE items were
generally designed in four different environments—email, web,

1PSTRE sample items can be found on the National Center for Education Statistics
website: https://nces.ed.gov/surveys/piaac/sample_pstre.asp.

TABLE 1 | Summary of environments in each item.

Booklet Order Item Email
(MC)

Web
(WB)

Word
Processor

(WP)

Spreadsheet
(SS)

PS1 1 U01a 1

PS1 2 U01b 1

PS1 3 U03a 1 1

PS1 4 U06a 1

PS1 5 U06b 1

PS1 6 U21 1

PS1 7 U04a 1 1

PS2 1 U19a 1 1

PS2 2 U19b 1 1

PS2 3 U07 1

PS2 4 U02 1 1 1

PS2 5 U16 1

PS2 6 U11b 1

PS2 7 U23 1 1

word processor, and spreadsheet; each item involved one or two
environments as summarized in Table 1.

Item U02, the Meeting Room Assignment item, was
chosen as an example to illustrate the present study. There
are three environments involved in this item: email, web,
and word processor. Respondents were asked to read
through a list of emails of meeting room requests in
the email environment, and then try to fill out as many
requests as possible in the room reservation system in a
web environment.

There are four reasons why we decided to use U02 as
an example:

(1) U02 was rather difficult for United States respondents:
932 (70%) respondents received no credit, 294 (22%)
received partial credit, and only 114 (9%) got full
credit. Such an item could potentially provide more
information to identify reasons for failure when tracking
respondents’ process data. Researchers have found that
for a moderately difficult item, respondents tend to
demonstrate more heterogeneous use of strategies,
aberrant response behavior, and response time (e.g.,
Vendlinski and Stevens, 2002; Goldhammer et al., 2014;
de Klerk et al., 2015). To explore the difference between
respondents who at least got part of the item correct and
those who received no credit, the polytomous scores were
dichotomized by collapsing partial credit and full credit in
the present study.

(2) U02 had multiple environments (email, web, and word
processor), which tended to have more diverse actions
from which to extract information.

(3) Compared to items at the beginning or the end, items in
the middle of the booklet were less likely to demonstrate
position effect (e.g., Wollack et al., 2003).

(4) U02 shared environments with most items in booklet
PS2. This provided the possibility to investigate the
consistency of problem-solving strategies across items for
each individual.

The present study used two datasets, the public-use
background questionnaire (BQ) from PIAAC 2012 and the
assessment’s log file. The former dataset contains the original and
derived variables from the BQ, cognitive response data, as well
as sampling weights. The employment-related variables reflected
different perspectives of the test taker’s employment situation,
such as employed or not, whether the test taker had a supervisor
role, related work experience, computer use at work, and so on.
The demographic variables included age, gender, the test taker’s
education level, the test taker’s parents’ education level, whether
the assessment was given in the test taker’s native language, and
the number of books at home. Variables from the BQ, with a
focus on those related to employment and work experience, were
used to explore the relationship between patterns extracted from
process data and respondents’ employment situations. Variables
measuring skills used at home, such as ICT and numeracy skills
at home, were not considered since work-related background
variables had stronger connections to employment situation
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(Organisation for Economic Co-operation and Development
[OECD], 2016).

Additionally, scored responses, total response time, timing
of first action, and number of actions were available for
each item in the three domains. For each of the 3 domains,
10 plausible values were provided for each test taker (see
more information in Organisation for Economic Co-operation
and Development [OECD], 2013a, Chapter 17). The proposed
analyses were conducted with and without sampling weights,
and the differences were marginal. Therefore, we reported results
with sampling weights only. Log files recorded the actions
taken during the assessment, including actions taken during the
assessment, such as sorting, clicking menu, opening a folder,
using the help function, and so on.

The total sample size for the BQ was 5,010.2 The descriptive
statistics of age, gender, and education of all respondents in the
BQ were reported in Tables 2, 3. The distributions of age and
gender are rather even. About 46% of the respondents obtained
postsecondary education, 39% had upper secondary education,
and 13% had lower secondary education or less.

Data Analyses
The present study was conducted in two phases: regression
phase and feature identification phase (see Figure 1 as an
overview). In the first phase, we employed regression analyses

2For the regression analyses in study 1, all respondents with valid
PSTRE/literacy/numeracy scores and background variables were used in the
analyses. There are two reasons for this. First, it retains the generalizability to the
whole United States population. Second, it enables the comparison among the
significant variables for the PSTRE, literacy, and numeracy domains to explore the
uniqueness of PSTRE skills. Only the sample that responded to PSTRE assessment
was used when we further explored features from process data.

TABLE 2 | Descriptive statistics of age and gender for all respondents in BQ.

Level Age Count (%) Gender Count (%)

1 24 or less 837 (16.71%) Male 2, 323 (46.37%)

2 25–34 1,045 (20.86%) Female 2, 687 (53.63%)

3 35–44 978 (19.52%)

4 45–54 1,084 (21.64%)

5 55 plus 1,066 (21.28%)

TABLE 3 | Descriptive statistics of education level for all respondents in BQ.

Level Education Count (%)

1 Lower secondary or less (ISCED 1,2,
3C short or less)

629 (12.55%)

2 Upper secondary (ISCED 3A-B, C long) 1,977 (39.46%)

3 Postsecondary, non-tertiary (ISCED
4A-B-C)

394 (7.86%)

4 Postsecondary, tertiary – professional
degree (ISCED 5B)

414 (8.26%)

5 Postsecondary, tertiary – bachelor
degree (ISCED 5A)

902 (18.00%)

6 Postsecondary, tertiary –
master/research degree (ISCED 5A/6)

578 (11.54%)

7 Missing 116 (2.32%)

to select background variables that could significantly predict
respondents’ PSTRE, literacy, and numeracy proficiency levels,
response time, as well as response correctness in the example
item. In the second phase, typical action sequences were
identified by different subgroups using the chi-square feature
selection model.

Regression Phase: Identifying Significant
Employment-Related Background Variables
Regression analyses were conducted to examine which
employment-related variables have significant associations
with both person- and item-related outcome variables. The
variables were carefully selected from the BQ, including 20
employment-related and 6 demographic variables. Table 4
summarizes the description, number of non-missing categories,
and the reference category for each variable (see Appendix
Table A1 for detailed descriptions for all levels of each variable).
To avoid a dramatic decrease in sample size and incorporate
information as much as possible in the regression analysis,
we coded missing responses in the selected variables as an
additional category and retained in the regression analyses.
This method was popularized by Cohen and Cohen (1985) as
a way to deal with missing responses in categorical variables.
This method incorporates all the available information into
the regression analyses, whereas other methods could heavily
depend on data collection design and model specification
(e.g., Howell, 2008). Compared to the deletion methods, the
generalizability of the results to the United States population may
also be retained using the proposed method. Moreover, it is the
simplest approach to addressing missing data with some missing
mechanisms being untestable (Carpenter and Goldstein, 2004;
Horton and Kleinman, 2007).

With respect to the dependent variables, we used the
respondents’ scores in PSTRE, literacy, and numeracy as well
as total response time and binary scores (correct as 1; incorrect
as 0) in U02. To retain as much information as possible in
the regression analysis, we included all respondents who had
plausible values in each domain, resulting in a total sample size of
4,103, 4,898, and 4,898 for PSTRE, literacy, and numeracy scores,
respectively. Further, we used total item response time (U02RT)
and dichotomized scores (U02score) as item-related variables in
the regression analysis for the Meeting Room Assignment item.
Note that only 1,340 in the sample who had process data for this
specific item were adopted in the current study, occupying one
third of the whole sample size used in the regression analysis.

Of the five outcome variables, linear regression was conducted
for the four continuous outcome variables—PSTRE, literacy,
and numeracy scores, as well as the item response time on the
Meeting Room Assignment item. For the dichotomized scores, a
logistic regression was carried out. The regression analyses were
conducted using the International Association for the Evaluation
of Educational Achievement (IEA)’s International Database
(IDB) Analyzer version 4.0.16.0 (International Association for the
Evaluation of Educational Achievement [IEA], 2013) to interface
with SAS 9.4 SAS Institute, 2015). In this study, each regression
analysis was carried out using a full sample weight and 45
replicate weights, as well as 10 plausible values if the outcome
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FIGURE 1 | An overview of the two-phase analysis.

TABLE 4 | Summary of BQ variables used in the present study.

No. Variable Description Number of
categories

Reference category

(1) PAIDWORKa Incidence of paid work experience 4 1. No work ever

(2) C_D05 Employed/unemployed/out of labor force 3 1. Employed

(3) D_Q04_T1b Is an employee/supervisor/ self-employed/unpaid 4 1. Employee, not supervisor

(4) D_Q08b Managing how many employees 5 1. 1–5 people

(5) D_Q12b Education level sufficient/too high/too low to do job satisfactorily 3 1. Necessary

(6) D_Q12c_RCc Related work experience in years 4 1. No experience

(7) F_Q05a Incidence of solving simple problems 5 1. Never

(8) F_Q05b Incidence of solving complex problems 5 1. Never

(9) F_Q07b Need more training for skill use at work or not 2 1. Yes

(10) G_Q06 Level of computer use 3 1. Straightforward

(11) ISCOSKIL4 Skilled/semi-skilled/ elementary occupations 4 1. Skilled occupations

(12) EARNMTHALLDCL Monthly earning decile including all incomes 10 1. Lowest decile

(13) LEARNATWORK_WLE_CA Index of learning at work 6 0. All zero response

(14) ICTWORK_WLE_CA Index of use of ICT skills at work 6 0. All zero response

(15) INFLUENCE_WLE_CA Index of use of influencing skills at work 6 0. All zero response

(16) NUMWORK_WLE_CA Index of use of numeracy skills at work 6 0. All zero response

(17) PLANNING_WLE_CA Index of use of planning skills at work 6 0. All zero response

(18) READWORK_WLE_CA Index of use of reading skills at work 6 0. All zero response

(19) TASKDISC_WLE_CA Index of use of task discretion at work 6 0. All zero response

(20) WRITWORK_WLE_CA Index of use of writing skills at work 6 0. All zero response

(21) AGEG10LFS Age in 10-year bands 5 1. 24 or less

(22) PARED Highest of parents’ level of education 3 1. Neither parent have attained
upper secondary

(23) NATIVELANG Test language same as native language or not 2 0. Test language is not native
language

(24) EDCAT6 Highest level of formal education obtained 6 1. Lower secondary or less

(25) GENDER_R Gender 2 1. Male

(26) J_Q08 Number of books 6 1. 10 books or less

aPAIDWORK is recoded from NOPAIDWORKEVER (never had paid work), PAIDWORK5 (have had paid work in the last 5 years) and PAIDWORK12 (have had paid
work in the last 12 months). bD_Q04_T1 provides information about whether the respondent is an employee, supervisor, self-employed, or unpaid. This variable
was chosen since research has shown that the relationship between some variables is different for wage earners and self-employed workers, such as earnings and
conscientiousness (Organisation for Economic Co-operation and Development [OECD], 2016). cD_Q12c_RC is recoded from D_Q12c (related work experience in years)
by collapsing category 2–4.
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variable was the scores from one of the three domains. The final
regression coefficient estimates were weighted averages of the
coefficient estimates from each round. The standard errors of
the coefficient estimates were pooled standard errors reflecting
variability due to multiple imputation and/or sampling error.
Then the significance of the coefficient estimates was determined
by the relative magnitude of the final coefficient estimates and
the pooled standard errors. Readers can refer to International
Association for the Evaluation of Educational Achievement [IEA]
(2013) for more information.

Feature Identification Phase: Identifying Typical
Action Sequences by Subgroups
In the feature identification phase, process data were used
to understand the inherent differences among respondents’
action sequences in the test-taking process. Each individual’s
time-stamped action sequences in U02 were extracted from the
log file and recoded into (mini-) sequences by n-grams.

An n-gram is defined as a contiguous sequence of n
words in text mining; similarly, when analyzing action
sequences from process data, an n-gram can be defined as
a sequence of n adjacent actions (Manning and Schütze,
1999). For instance, a typical sequence for email review
actions is recorded as “MAIL_VIEWED_4, MAIL_VIEWED_2,
MAIL_VIEWED_1”, the unigram is each of the three separate
actions (e.g., “MAIL_VIEWED_4”), the bigram is the two
adjacent actions as one unit, (e.g., “MAIL_VIEWED_2,
MAIL_VIEWED_1”), and the trigram is the three adjacent
actions as one unit (e.g., “MAIL_VIEWED_4, MAIL_VIEWED_2,
MAIL_VIEWED_1”). In this study, we focused on unigrams,
bigrams, and trigrams, which are adjacent action sequences of
length 1, 2, and 3, respectively.

When retrieving information from the n-grams, a question
regarding whether all terms could be considered equally
important based on their raw frequencies needs to be addressed.
In fact, certain terms have little or no discriminating power
in determining relevance; it was recommended to give them
less weight when classifying different subgroups (Manning
and Schütze, 1999). We adopted term weights in this study
to adjust for between- and within-individual differences in
action frequencies. In terms of between-individual differences,
a popular weighting method in text mining, inverse document
frequency (IDF; Spärck Jones, 1972) that was renamed as inverse
sequence frequency (ISF; He and von Davier, 2016) was adapted
for estimating the weight of each n-gram. ISF is defined as
ISFi = log

(
N/sfi

)
≥ 0, where N denotes the total number of

sequences in the sample, which is the same as the total number
of respondents, and sfi represents the number of sequences
containing action, i.e., a large ISF reflects a rare action in the
sample, whereas a small ISF represents a frequent one.

Within-individual differences occur when an individual takes
some actions more often than others. Although more frequent
sequences are usually more important than less frequent
sequences, the raw frequencies of these action sequences often
overestimate their importance (He and von Davier, 2015, 2016).
To account for within-individual differences in the importance
of action sequences, a weighting function was employed f

(
tfij

)
=

1+ log
(
tfij

)
, where tfij > 0 represents the frequency of action

i in sequence j (Manning and Schütze, 1999). Combining the
between- and within-individual weights, the final action weight
can be defined as weight

(
i, j

)
=

[
1+ log

(
tfij

)]
log

(
N/sfi

)
for

tfij ≥ 1. In contrast to raw frequency, this weighting mechanism
was applied for attenuating the effect of actions or action vectors
that occurred too often to be meaningful. (For more details of
n-grams and term weights in process data analysis, refer to He
and von Davier, 2015, 2016).

To answer the question regarding which actions or mini action
sequences (i.e., n-grams) are the key factors that distinguish
subgroups, we applied a commonly used tool in natural language
processing—the chi-square feature selection model (Oakes et al.,
2001)—to identify robust classifiers. The chi-square feature
selection model is recommended for use in textual analysis due
to its high effectiveness in finding robust keywords and for testing
the similarity between different text corpora (e.g., Manning and
Schütze, 1999; He et al., 2012, 2014, 2017). The definition of
“robust” is different from what is defined in statistics; here,
robust features are generally defined as the “best” features with
high information gain in natural language processing (Joachims,
1998). Chi-square scores assigned to the features were ranked in a
descending order, and those with the highest scores were defined
as robust features. Specifically, frequencies and weights of certain
actions for different employment statuses were used as input for
the chi-square selection model.

Features extracted for different groups (e.g., income and
employment type) were used to understand the inherent
differences in typical sequences among subgroups. The package
“tm” (Feinerer, 2017) in R version 3.3.3 (R Core Team, 2017)
was utilized for applying chi-square selection model to identify
robust features. We formed subgroups based on each significant
employment-related predictor for the outcome variable U02score
(i.e., binary variable correctness/incorrectness in the Meeting
Room Assignment item). The significant level of the predictor
was compared with the reference level of the predictor. For
instance, if the fourth decile of EARNMTHALLDCL was
significantly different from the reference group, two subgroups
were formed by respondents in the lowest decile and in the
fourth decile. Chi-square selection model was then applied to
compare action sequences between these two subgroups and
identify robust features to distinguish them.

RESULTS

Regression Phase
The distributions of the background variables were checked
to ensure the representativeness of this sample. The difference
between the percentages of each category of the background
variables from the sample with valid scores on the U02
item (i.e., Meeting Room Assignment) and the total sample
was usually around 1–2% (see Appendix Table A2 for
details). As such, we deemed that the differences were not
substantially different.

The sample size and descriptive statistics of the five outcome
variables—PSTRE, literacy, and numeracy scores, and the
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TABLE 5 | Sample size and descriptive statistics of the outcome variables.

Variable name Sample size Minimum Maximum Mean Standard
deviation

PSTRE 4,103 113.56 425.01 277.98 43.11

Literacy 4,898 100.94 424.33 271.84 48.28

Numeracy 4,898 40.33 426.90 254.68 55.80

U02RT∗ 1,340 5.16 2704.38 215.67 208.63

U02score 1,340 0 1 0.30 0.21

∗U02RT is reported in seconds.

response time and dichotomized scores for item U02 —are
reported in Table 5. Using scores from all three domains
as dependent variables enabled us to explore the uniqueness
of PSTRE skills. In other words, which employment-related
variables were significant in predicting PSTRE scores but not
literacy or numeracy scores. The significant predictors identified
from regression analyses are summarized in Table 6 with respect
to each of the five outcome variables. Table 7 presents the
unstandardized coefficient estimates for the significant variables.
The standardized coefficients for all variables were reported in
Appendix Table A3, as a measure of variables’ contributions
to predicting the outcome that accounts for contributions
of other independent variables (e.g., Menard, 1995, 2004;

Zientek et al., 2008; Nathans et al., 2012). The rank ordering of
the absolute values of these coefficients indicates the relative
importance of the variables.

In general, all five outcome variables had one significant
variable in common, EDCAT6, which means that the highest
level of formal education is important for obtaining high
scores in all three domains and on individual item responses,
and it also contributes to longer item response time in this
particular item. Among the three person-related dependent
variables, more predictors were significant in predicting
literacy and numeracy scores when compared with PSTRE
scores. The significant variables for literacy and numeracy
scores were more similar, though the three domains had 13

TABLE 6 | Summary of significant predictors.

No. Variable Description PSTRE Literacy Numeracy U02RT U02score

(1) PAIDWORK Incidence of paid work experience 1∗ 1

(2) C_D05 Employed/unemployed/out of labor force

(3) D_Q04_T1 Is an employee/supervisor/self-employed/unpaid

(4) D_Q08b Managing how many employees

(5) D_Q12b Education level sufficient/too high/too low to do job satisfactorily 1 1 1

(6) D_Q12c_RC Related work experience in years 1 1

(7) F_Q05a Incidence of solving simple problems 1 1 1

(8) F_Q05b Incidence of solving complex problems 1 1

(9) F_Q07b Need more training for skill use at work or not 1 1

(10) G_Q06 Level of computer use 1 1 1 1

(11) ISCOSKIL4 Skilled/semi-skilled/elementary occupations 1 1 1

(12) EARNMTHALLDCL Monthly earning decile including all incomes 1 1 1 1

(13) LEARNATWORK_WLE_CA Index of learning at work 1 1 1

(14) ICTWORK_WLE_CA Index of use of ICT skills at work 1 1 1

(15) INFLUENCE_WLE_CA Index of use of influencing skills at work 1 1 1

(16) NUMWORK_WLE_CA Index of use of numeracy skills at work 1 1 1 1

(17) PLANNING_WLE_CA Index of use of planning skills at work 1 1 1

(18) READWORK_WLE_CA Index of use of reading skills at work 1 1

(19) TASKDISC_WLE_CA Index of use of task discretion at work 1

(20) WRITWORK_WLE_CA Index of use of writing skills at work 1 1

(21) AGEG10LFS Age in 10-year bands 1 1 1 1

(22) PARED Highest of parents’ level of education 1 1 1 1

(23) NATIVELANG Test language same as native language or not 1 1 1 1

(24) EDCAT6 Highest level of formal education obtained 1 1 1 1 1

(25) GENDER_R Gender 1 1

(26) J_Q08 Number of books 1 1 1

∗The number 1 indicates that at least one level of this variable was significantly different from 0 at the significance level of 0.05.
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TABLE 7 | Summary of unstandardized regression coefficients of significant variables.

Variable Category Description PSTRE Literacy Numeracy U02RT U02score

Intercept Intercept 214.93 162.42 126.44 380.70

PAIDWORK 3 Have had paid work in 5 years but not 12 months 22.37 30.59

4 Have had paid work in 12 months 37.51

D_Q12b 2 A lower education level would be sufficient 5.22 3.76

3 A higher education level would be needed −8.17 −8.38 −9.35

D_Q12c_RC 2 Less than 1 year of relevant work experience −5.07 −5.49

4 More than 3 years of relevant work experience 6.76

F_Q05a 2 Solve simple problems less than once a month 9.13

3 Solve simple problems less than once a week but at
least once a month

13.53 10.91 17.92

4 Solve simple problems at least once a week but not
everyday

12.58 13.80 17.11

5 Solve simple problems everyday 16.47 17.71 19.07

F_Q05b 5 Solve complex problems every day −11.01 −9.14

F_Q07b 2 Do not need more training for skill use at work 6.20 7.28

G_Q06 2 Moderate level of computer use 9.97 7.23 8.15 39.03

3 Complex level of computer use 15.44 10.35 15.96 74.98

ISCOSKIL4 2 Semi-skilled white-collar occupations −3.83 −4.47 −4.80

3 Semi-skilled blue-collar occupations −7.29 −7.10 −6.24

4 Elementary occupations −13.49 −14.11

EARNMTHALLDCL 4 4th decile of monthly earning 2.00

9 9th decile of monthly earning 7.88

10 10th decile of monthly earning 10.15 12.38 11.55

LEARNATWORK_WLE_CA 4 More than 60–80% on index of learning at work −7.60 −10.42 −9.74

ICTWORK_WLE_CA 1 Lowest 20% on index of use of ICT skills at work 10.98 10.05

2 More than 20–40% on index of use of ICT skills at work 12.28 15.23 11.28

3 More than 40–60% on index of use of ICT skills at work 16.34 13.63 12.09

4 More than 60–80% on index of use of ICT skills at work 17.78 11.52 10.29

5 More than 80% on index of use of ICT skills at work 20.52 15.46 16.00

INFLUENCE_WLE_CA 1 Lowest 20% on index of use of influencing skills at work 1.63

5 More than 80% on index of use of influencing skills at
work

−10.84 −10.24

NUMWORK_WLE_CA 2 More than 20–40% on index of use of numeracy skills
at work

9.12 5.70 8.76

3 More than 40–60% on index of use of numeracy skills
at work

7.10

4 More than 60–80% on index of use of numeracy skills
at work

8.51 8.33 10.47 50.43

5 More than 80% on index of use of numeracy skills at
work

6.89 10.26

PLANNING_WLE_CA 4 More than 60–80% on index of use of planning skills at
work

9.33 12.72 55.12

READWORK_WLE_CA 1 Lowest 20% on index of use of reading skills at work 2.23

5 More than 80% on index of use of reading skills at work −14.44

TASKDISC_WLE_CA 4 More than 60–80% on index of use of task discretion at
work

−0.43

WRITWORK_WLE_CA 3 More than 40–60% on index of use of writing skills at
work

6.85

4 More than 60–80% on index of use of writing skills at
work

7.93 1.68

AGEG10LFS 2 25–34 −17.20 −12.91 −12.10

3 35–44 −24.57 −17.21 −16.84

4 45–54 −31.89 −22.09 −20.77 0.63

5 55 plus −35.85 −23.64 −20.65 0.53

(Continued)
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TABLE 7 | Continued

Variable Category Description PSTRE Literacy Numeracy U02RT U02score

PARED 2 At least one parent has attained secondary and
postsecondary, non-tertiary

10.31 10.15 13.06 46.16

3 At least one parent has attained tertiary 12.33 15.38 15.93 77.01

NATIVELANG 1 Test language same as native language 13.92 17.41 9.99 1.29

EDCAT6 2 Upper secondary (ISCED 3A-B, C long) 10.09 16.72 21.31 52.29 7.70

3 Postsecondary, non-tertiary (ISCED 4A-B-C) 14.18 19.91 27.92 7.70

4 Tertiary – professional degree (ISCED 5B) 17.59 27.84 35.31 5.47

5 Tertiary – bachelor degree (ISCED 5A) 24.00 35.74 45.59 66.62 10.16

6 Tertiary – master/research degree (ISCED 5A/6) 28.60 44.53 55.83 79.51 15.18

GENDER_R 2 Female −4.19 −12.89

J_Q08 2 11–25 books 6.54

3 26–100 books 10.45 9.84 14.52

4 101–200 books 13.97 13.54 21.49

5 201–500 books 22.49 20.20 26.62

6 More than 500 books 14.13 19.74 23.33

Coefficients reported in this table for U02score are odds ratios. U02RT is reported in seconds. All numbers shown in the table are significant regression coefficients. The
missing cells or missing categories indicate insignificant coefficient values and therefore are not reported. Those cells in gray indicate coefficient estimates that are in
consistent with our expectation.

significant variables in common. D_Q12c_RC, the related
work experience in years, and GENDER_R (gender) were
significant in predicting PSTRE and numeracy but not literacy,
whereas WRITWORK_WLE_CA (index of use of writing
skills at work) was only important for literacy scores. As the
focus of this study, PSTRE scores had one unique significant
variable—READWORK_WLE_CA (index of use of reading
skills at work)—indicating that these skills are significantly
related to PSTRE scores. This reflects that by item design, PSTRE
items would require higher-level reading skill use at work to
understand the item structure, follow the instructions, and
browse the website.

Only five variables were significant in predicting the
response time on the Meeting Room Assignment item. The
regression coefficient estimates showed that respondents who
were well-educated, had higher levels of computer use, used more
numeracy and planning skills at work, and whose parents also
obtained higher education degrees tended to spend more time
on the item. Although some research has shown that people
with higher ability need less time to finish an item (e.g., van
der Linden, 2007; Klein Entink, 2009; Wang and Xu, 2015; Fox
and Marianti, 2016), other studies demonstrated the opposite
evidence, especially for non-speeded tests (e.g., Roberts and
Stankov, 1999; Klein Entink et al., 2009). This observation is
consistent with the fact that PIAAC was not a timed assessment;
respondents were allowed to take as much time as needed.

Similarly, U02score did not have as many significant variables
as the person-related outcomes either (i.e., PSTRE, literacy, and
numeracy scores), where only eight variables were significant. It
was also noted that not all variables were significant in predicting
PSTRE scores. This might be because PSTRE scores are holistic
measures of the PSTRE skills, which represent the common
construct assessed by the 14 PSTRE items. As U02 only partially
contributed to the PSTRE scores, it did not necessarily contain all
aspects of the construct.

In terms of the coefficient estimates, most were consistent with
our expectations. With respect to employment-related variables,
respondents who had paid work, more related work experience,
solved simple or complex problems more frequently, had higher
level of computer use, had skilled occupations and higher
monthly income, and/or had higher index variables tended to
have higher scores in the three domains and higher odds of
success in this specific item. For the demographic variables,
younger male respondents who were well-educated and had
many books at home would get higher scores when the test was
given in their native languages.

However, some coefficient estimates were inconsistent with
our expectations, which are highlighted in gray in Table 7. For
example, we would expect respondents with more related work
experience to perform better in general, but the estimates for
the variable representing experience of less than a year were
negative for PSTRE and numeracy scores. This indicates that,
controlling for all other variables, having short work experience
was not better than having no experience for these two outcomes.
For F_Q05b (solve complex problems every day), coefficients
for literacy and numeracy scores were also negative when
comparing the highest category to the lowest, reflecting that a
respondent who solved complex problems regularly might get
a score lower than a respondent who never solved complex
problems at work. These contradictory results may indicate some
interactions among the predictors, which would be worthwhile
for further exploration.

Feature Identification Phase
For the significant predictors for U02score, we further explored
how the action sequences of the two groups were different from
each other. We used two significant variables—monthly income
and education—as concrete examples to show how the features
from process data were identified. Given the limited space, we
listed more detailed results in the Appendix.
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Differences by Monthly Income Subgroup
The regression coefficient for the fourth decile of
EARNMTHALLDCL (monthly earning decile including
all incomes) was significant and positive, indicating that
respondents with monthly income in that decile were more likely
to get a score of 1 than those in the first (lowest) decile. As such,
it is of interest to investigate how the respondents with monthly
income in those deciles differed regarding their action sequences.
In other words, what features did the two groups of respondents
have in their test-taking behaviors that gave rise to higher or
lower chances of answering the Meeting Room Assignment
item correctly?

As demonstrated earlier, we conducted chi-square selection
to identify the most distinguishable n-grams between the two
groups. Specifically, the top five unigrams, bigrams, and trigrams
with the highest chi-square scores were obtained for the focal
group and the reference group, respectively. The description and
frequency of 34 unigrams used in the present study were reported

in Table 8. These robust features were used to understand
the most distinctive action sequences between the two
groups of respondents. The same procedure was carried
out for all significant predictors for U02score. Tables 9, 10
demonstrate monthly income and education as two examples,
respectively; the robust features for all the other predictors are
reported in Appendix Tables A4–A14 for more details. The
interpretations of the actions were based on content experts who
designed the item.

Table 9 presents the top five unigrams, bigrams, and trigrams
for the respondents falling within the fourth and first (lowest)
deciles of monthly earning. Among the unigrams, folder-related
actions were found more often in the fourth decile group,
such as fold, add, or delete a folder. There were a few
folders in the email environment, though respondents were not
required to perform any actions on them. The fourth decile
group also applied more cancel-related actions, such as cancel
sorting, cancel changing reservation, cancel switching to the

TABLE 8 | Description and frequency of unigrams.

No. Features Description Frequency

(1) FOLDER_VIEWED View a folder 5762

(2) ENVIRONMENT_WB Go to web environment 4715

(3) ENVIRONMENT_MC Go to email environment 4317

(4) MAIL_VIEWED_1 View 1st email 2725

(5) HISTORY_VIEWCALENDAR Go to calendar tab in web environment 2190

(6) MAIL_VIEWED_3 View 3rd email 1968

(7) HISTORY_RESERVATION Go to reservation tab in web environment 1935

(8) COMBOBOX_ROOM Choose a room when filling out a room request 1891

(9) MAIL_VIEWED_4 View 4th email 1698

(10) MAIL_VIEWED_2 View 2nd email 1544

(11) MAIL_MOVE Move an email 1499

(12) NEXT_INQUIRY Go to next item 1371

(13) START Start item U02 1326

(14) COMBOBOX_START_TIME Choose start time when filling out a room request 1312

(15) COMBOBOX_END_TIME Choose end time when filling out a room request 1304

(16) COMBOBOX_DEPT Choose department when filling out a room request 1296

(17) HISTORY_MEETINGROOMS Go to meeting room details tab in web environment 1058

(18) ENVIRONMENT_WP Go to word processor environment 987

(19) SUBMIT_RESERVATION_FAILURE Submit a reservation request unsuccessfully 987

(20) SUBMIT_RESERVATION_SUCCESS Submit a reservation request successfully 971

(21) HISTORY_UNFILLED Go to unfilled tab in the web environment 551

(22) SUBMIT_UNFILLED Submit an unfilled request 414

(23) FOLDER Do folder-related actions (i.e., create/delete a folder) 332

(24) HISTORY_HOME Click on the home button in the web environment 244

(25) CHANGE_RESERVATION Change an existing reservation 227

(26) KEYPRESS Type in word processor environment 152

(27) REPLY Reply an email 118

(28) CANCEL Click on cancel button 111

(29) HELP Use help function 87

(30) COPY Use copy function 42

(31) SEARCH Use search function 38

(32) SORT Use sort function 21

(33) PASTE Use paste function 15

(34) BOOKMARK Do bookmark-related actions (i.e., add/delete a bookmark) 13
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TABLE 9 | Top five features of action sequences selected for the 4th and 1st deciles of monthly earning groups.

Group N-gram Action sequences Chi-square

4th decile of monthly earning Unigram FOLDER 39.08

CANCEL 16.54

BOOKMARK 7.44

HISTORY_HOME 4.02

HELP 1.84

Bigram FOLDER_VIEWED, FOLDER 24.06

FOLDER, FOLDER_VIEWED 22.93

FOLDER, FOLDER 22.67

MAIL_VIEWED_1, MAIL_VIEWED_3 18.51

NEXT_INQUIRY, CANCEL 17.64

Trigram FOLDER, FOLDER_VIEWED, FOLDER_VIEWED 21.87

MAIL_VIEWED_1, MAIL_VIEWED_3, MAIL_VIEWED_4 19.70

FOLDER_VIEWED, FOLDER, FOLDER 18.67

ENVIRONMENT_MC, MAIL_VIEWED_1, MAIL_VIEWED_3 17.25

MAIL_VIEWED_1, MAIL_VIEWED_3, MAIL_VIEWED_3 16.68

1st decile of monthly earning Unigram SEARCH 11.72

COPY 10.90

KEYPRESS 10.51

PASTE 5.89

HISTORY_VIEWCALENDAR 2.81

Bigram ENVIRONMENT_WB, COMBOBOX_START_TIME 15.78

COMBOBOX_END_TIME, HISTORY_VIEWCALENDAR 11.20

HISTORY_RESERVATION, HISTORY_VIEWCALENDAR 10.50

COPY, KEYPRESS 10.16

HISTORY_UNFILLED, HISTORY_RESERVATION 9.79

Trigram HISTORY_VIEWCALENDAR, HISTORY_RESERVATION, HISTORY_VIEWCALENDAR 20.16

MAIL_VIEWED_3, ENVIRONMENT_WB, HISTORY_UNFILLED 16.25

ENVIRONMENT_MC, ENVIRONMENT_WB, ENVIRONMENT_MC 16.13

ENVIRONMENT_MC, ENVIRONMENT_WB, COMBOBOX_START_TIME 15.87

MAIL_VIEWED_4, ENVIRONMENT_WB, ENVIRONMENT_MC 14.88

next item, and so on. Though cancel actions are sometimes
considered hesitative behaviors (He and von Davier, 2015), they
could also indicate that the fourth decile group tried different
options in the menu to figure out what could be done in
the environment.

Other actions that the fourth decile group frequently used
were actions associated with bookmarks, clicking the home
button in the web environment, and help functions. The
bookmarks were accessible via the dropdown menu or a button
on the menu bar. Using the bookmark actions, respondents
could easily access the pages that they considered important or
useful. The home button was right next to the bookmark button
on the menu bar, which is a convenient way to return to the
main page of the web environment. The help functions were
designed in both email and web environments. In the email
environment, the help function provided information regarding
actions taken for an email, for instance, write, reply, forward,
or delete an email. In the web environment, the help function
offered instructions on the menu bar items, such as home and
bookmark. As expected, the fourth decile group appeared to
take more exploratory actions to facilitate their problem-solving
process compared to the first decile group.

The unigrams commonly adopted by the first decile group
were entirely different. The most discriminating features included
search, copy, keypress (pressing a key on the keyboard), paste,
and click on the view calendar button. The search function
was available in both email and web environments. However,
the search function was not required to obtain a correct
answer to U02, as the information in the two environments
was displayed in short text or tables. The copy, keypress, and
paste unigrams were used in the word processor environment
solely, where respondents could take notes for the time and
location of the meeting room requests and compare to the
existing schedules. Similar to search, the three functions only
existed to aid the synthesis of available information and conflict
schedules. For the view calendar button, respondents used it
to retrieve the schedules for each meeting room in a certain
time period. Respondents were able to see not only the existing
reservations, but also the reservations they made for the
meeting room requests.

The lower odds of a correct answer to U02 for the
first decile group indicated an association between these
functions and lower performance in this group. One explanation
for this phenomenon could be that the search function
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and word processor environment were rather redundant for
high-performing respondents since they could collect and
synthesize information more efficiently. Applying such functions
might be a sign that respondents were having difficulty in
comprehending or solving U02. Additionally, the view calendar
button seemed to suggest that respondents in this group were still
in the process of figuring out the purpose of the item instead of
working on solving the problem.

Compared to the unigrams, the robust bigrams and trigrams
were often more closely related for a certain group. The
bigrams for the fourth decile mainly involved folder-related
actions, email-viewing actions, and cancel actions; the
trigrams also contained similar information. The bigram
“FOLDER, FOLDER_VIEWED” was found in the trigram
“FOLDER, FOLDER_VIEWED, FOLDER_VIEWED”; the bigram
“MAIL_VIEWED_1, MAIL_VIEWED_3” were also included
in the robust trigram “MAIL_VIEWED_1, MAIL_VIEWED_3,
MAIL_VIEWED_4”. This is because bigrams with high
frequencies were also likely to appear more commonly when
started with or followed by another action. Further, while
the five robust unigrams tended to provide unique pieces of
information, the five bigrams tended to have overlap due to the
increase in sequence length, as did the trigrams. For instance,
the top three robust bigrams for the fourth decile group were all
folder-related actions, whereas three of the top five trigrams were
email-viewing actions.

These mini-sequences of the fourth decile group, along with
the unigrams, demonstrated evidence that respondents in this
group were working on the item and trying to understand
the meeting room requests. It is worth noticing that the
emails viewed by the fourth decile group were the first, third,
and fourth emails (i.e., MAIL_VIEWED_1, MAIL_VIEWED_3,
MAIL_VIEWED_4); the second email did not show up in any
robust features. In fact, the second email was the only one
irrelevant to meeting room requests among the four. Therefore,
viewing only the three relevant emails was a strong indication that
the respondents at least understood the goal of this item, and were
able to filter out emails irrelevant to the goal.

For the first decile group, the respondents did a lot
of switching among tabs in the web environment (e.g.,
HISTORY_VIEWCALENDAR, HISTORY_RESERVATION,
HISTORY_UNFILLED), or switching among environments (e.g.,
ENVIRONMENT_MC, ENVIRONMENT_WB). Such switching
actions indicated that the first decile did not devote much to
solving the item. Instead, they seemed to be lost in the item or
not interested in exploring more. Results based on unigrams,
bigrams, trigrams all suggested that compared to the first decile,
respondents in the fourth decile group were more engaged in
solving the item. The fourth decile group also adopted more
efficient problem-solving strategies, such as bookmark and help.
This is consistent with the results from regression analysis that
the fourth decile group was more likely to obtain a correct answer
to the Meeting Room Assignment item (see Table 7).

Differences by Education Subgroups
Another example is the comparison between the robust
features from the highest and lowest education groups, as

presented in Table 10. Respondents in the highest education
group obtained tertiary-master/research degrees, whereas the
lowest education group obtained lower secondary education
or less. The chi-square selection method also identified
highly distinctive features for the two groups. The most
discriminating unigrams for the highest education group were
sorting, submitting filled reservation or unfilled request (i.e.,
SUBMIT_RESERVATION_SUCCESS, UNFILLED_SUBMIT),
and filling out the room and the start time for the request (i.e.,
COMBOBOX_ROOM, COMBOBOX_START_TIME).

The sorting function was available in the email environment.
Respondents could choose to sort by sender, subject, or
receiver of the email. Although sorting was not a necessary
step to the success of U02, well-educated respondents might
consider sorting by subject as a more efficient approach to
identifying the emails related to meeting room requests. The
COMBOBOX-related actions showed evidence of filling out the
details of meeting room requests using the dropdown menus.
Then, if the requested room and time had no conflict with
the existing schedule, one would receive a notice of submitting
the reservation successfully. There was also one meeting room
request that could not be filled given the current schedule, which
needed to be recorded as well. UNFILLED_SUBMIT indicated
that the test taker also submitted the unfilled request. Such actions
were key to the correctness of the Meeting Room Assignment
item, because one had to fill out the details of each room
request and submit at least one reservation or unfilled request
successfully to answer it correctly.

The lowest education group, however, mainly used redundant
functions. Moving emails, viewing folder, pasting, copying, and
searching were the most important unigrams, which coincidently
were found as robust unigrams in the first decile monthly
earning group as well. Both the lowest education group and
first decile monthly earning group had lower performance on
U02 compared with their peers. This finding suggested that
lower-performing respondents might be prone to using these
unnecessary functions (as defined by content experts), indicating
they were unable to figure out a solution.

The robust bigrams and trigrams for the highest education
group encompassed some action sequences that also related to
filling and submitting the requests, as well as viewing emails,
which were required procedures to obtain a correct answer.
Some features indicating switching among tabs or environments
also appeared. Though we interpreted similar actions for the
first decile group as signs of low motivation, these actions could
have different meanings for another group. When combined
with other robust features for the highest education group, these
actions served as connections among necessary steps to finish
the item, such as filling in comboboxes and submitting requests.
Therefore, the highest education group did not wander around
aimlessly, but in fact attempted to synthesize information from
multiple environments and make a successful reservation.

Email-moving and folder-viewing actions manifested
themselves again in the robust bigrams and trigrams for the
lowest education group. These action sequences identified by
chi-square selection method demonstrated a clear distinction
between the problem-solving processes of the two groups with
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TABLE 10 | Top five features of action sequences selected for the highest and lowest education groups.

Group N-gram Action sequences Chi-square

Tertiary – master/research degree Unigram SORT 14.04

SUBMIT_RESERVATION_SUCCESS 7.24

COMBOBOX_ROOM 6.88

UNFILLED_SUBMIT 6.82

COMBOBOX_START_TIME 6.22

Bigram COMBOBOX_END_TIME, COMBOBOX_DEPT 20.36

ENVIRONMENT_WB, ENVIRONMENT_MC 17.06

ENVIRONMENT_MC, MAIL_VIEWED_1 16.84

SUBMIT_RESERVATION_SUCCESS, HISTORY_UNFILLED 16.73

HISTORY_MEETINGROOMS, ENVIRONMENT_MC 16.57

Trigram ENVIRONMENT_MC, MAIL_VIEWED_1, MAIL_VIEWED_2 26.36

HISTORY_RESERVATION, HISTORY_MEETINGROOMS, HISTORY_VIEWCALENDAR 23.26

MAIL_VIEWED_1, MAIL_VIEWED_3, MAIL_VIEWED_4 20.73

COMBOBOX_END_TIME, COMBOBOX_DEPT, SUBMIT_RESERVATION_SUCCESS 19.96

COMBOBOX_START_TIME, COMBOBOX_END_TIME, COMBOBOX_DEPT 19.35

Lower secondary or less Unigram MAIL_MOVE 197.12

FOLDER_VIEWED 24.15

PASTE 9.77

COPY 7.73

SEARCH 7.25

Bigram FOLDER_VIEWED, MAIL_MOVE 159.17

MAIL_MOVE, FOLDER_VIEWED 156.81

MAIL_VIEWED_3, MAIL_MOVE 104.55

MAIL_VIEWED_4, MAIL_MOVE 90.67

MAIL_MOVE, MAIL_VIEWED_4 90.10

Trigram MAIL_MOVE, FOLDER_VIEWED, MAIL_MOVE 148.51

FOLDER_VIEWED, MAIL_MOVE, FOLDER_VIEWED 95.11

MAIL_VIEWED_3, MAIL_MOVE, FOLDER_VIEWED 92.88

FOLDER_VIEWED, MAIL_MOVE, MAIL_VIEWED_3 92.17

MAIL_VIEWED_4, MAIL_MOVE, FOLDER_VIEWED 86.50

different education levels. While the highest education group was
completing the item with clear subgoals, the lowest education
group spent much time and effort moving the emails around
and viewing the folder. As a result, these discriminating features
identified from the action sequences were in fact strongly
associated with the performance on the item.

Differences by Other Background Variables
Some general findings from other significant variables resembled
the results from the two discussed examples. As presented
above, higher income, higher level on the index variables (except
for TASKDISC_WLE_CA, index of use of task discretion at
work), and higher educational level were associated with higher
probability of answering the Meeting Room Assignment item
correctly. A younger respondent who took the test in the same
language as his or her native language was also more likely to
obtain a correct answer. Some background variables have more
than one significant dummy variables, such as age and education.
It is worth noticing that the features selected for the reference
group did not need to be the same when the focal group changed
since chi-square chose features that can best distinguish the
reference and the focal groups.

Overall, groups with higher odds of a correct answer were
likely to adopt the actions related to SUBMIT (submitting filled
reservation or unfilled request), COMBOBOX (filling out the
room and the start time for the request), help, and sort. Help
and sort are two actions that might be indicative of more efficient
problem-solving strategies. To complete the room requests in this
item, respondents had to fill time slots for a specific room in
the COMBOBOX and use one of the two submit buttons. These
respondents demonstrated evidence that they went through the
necessary steps to obtain correct answers to the Meeting Room
Assignment item.

Groups with lower odds of a correct answer, however,
used more actions such as MAIL_MOVE (moving email) and
SUBMIT_FAILURE (failure to submit a room request). The
occurrence of MAIL_MOVE and SUBMIT_FAILURE did not
always mean that a respondent had trouble finishing an item.
A respondent could have been categorizing emails, so he or she
could discard those emails that were irrelevant to room requests.
If SUBMIT_FAILURE was followed by some adjustments in
COMBOBOX and SUBMIT_RESERVATION_SUCCESS, then the
respondent made two attempts to submit a reservation and did
self-correction. It is when the two actions appeared in the selected
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features predominantly, and not accompanied by other useful
actions, that they might not be able to solve the item.

For some significant dummy variables, COMBOBOX-related
actions were in fact identified as robust features for
the group with lower odds of a correct answer (e.g.,
INFLUENCE_WLE_CA and READWORK_WLE_CA, or
lowest 20% on index of influencing skills at work, and lowest
20% on index of reading skills at work, respectively), while
for others, the selected features were mainly associated with
MAIL_MOVE. Adopting COMBOBOX-related actions could be
a sign of understanding the purpose of the item and being able to
figure out how to fill out the room requests. These respondents
were considered closer to the borderline of a correct answer than
the group with mostly MAIL_MOVE actions and might have had
greater potential to get a score of 1 if proper interventions were
given. On the contrary, if the majority of a respondent’s actions
were MAIL_MOVE, he or she might have needed more detailed
guidance from the initial steps to submitting the requests.

An intriguing finding is that for the lowest age group (24
or less), the MAIL_MOVE action showed up in the top five
robust features quite frequently, even though this group was
more likely to answer correctly to the Meeting Room Assignment
item compared to elder age groups. That is to say, given
two respondents with the same occupation, work experience,
work-related skills, and so on, the one who was 24 years old or
younger would have had a higher probability of a correct response
than the one who was 45 to 54, or 55 or older. However, the
lowest age group often had different occupations and much less
work experience than respondents who were 45 and above. The
skills and experiences that the older age groups had accumulated
might have enabled them to apply more efficient problem-solving
strategies despite younger respondents having more advantage
on information technologies. Another possible explanation is
that using MAIL_MOVE was characteristic of the youngest age
group as an action taken without realizing it. They could simply
have been moving emails around as they went through the
thinking process.

DISCUSSION

This study aimed at exploring the relationship between sequential
problem-solving actions and employment-related variables, and
identified the key features for respondents with different levels
of employment-related variables. We focused on the data from
BQ and log files for the United States population on one
representative PSTRE item, the Meeting Room Assignment
item, in the main study of 2012 PIAAC. The study was
conducted in two phases: (a) use of regression analyses to identify
background variables having significant associations with PIAAC
performance, and (b) application of chi-square selection method
to select robust features of the significantly different groups.

In general, most significant variables and their regression
coefficients were consistent with our expectations. Respondents
who were well-educated and young, and had more work
experience and higher work-related skill use, tended to have
higher scores in the three domains and higher odds of success

in the Meeting Room Assignment item. Comparing scores in
the three domains, the significant variables for literacy and
numeracy scores were more similar. PSTRE scores had one
unique significant variable—READWORK_WLE_CA (lowest
20% on index of use of reading skills at work)—indicating that
PSTRE items might require higher-level reading skill use at work
to understand the item structure, follow the instructions, and
browse the website.

We further explored the process data to investigate what
action sequences were associated with the variables that were
significantly related to success in the Meeting Room Assignment
item. Based on the final goal of submitting meeting room
requests, there were five necessary steps in the problem-solving
process for the studied item: (a) read emails; (b) choose the emails
related to meeting room requests; (c) synthesize information
from multiple environments; (d) determine the requests that
could or could not be filled; (e) and submit filled reservations
and unfilled requests. Similar to what He and von Davier (2015,
2016) found, respondents who had higher income, work-related
skill use, and education level demonstrated clear subgoals in
solving the item. For instance, respondents with higher income
performed more MAIL_VIEWED actions; they were also able
to focus on emails directly related to meeting room requests.
SUBMIT and COMBOBOX actions were commonly applied by
those with higher work-related skill use at work. Respondents
with high education level and high writing skill use at work
tended to use more sorting actions.

Some key actions were found more often in the groups with
higher income and work-related skill use. Such group were
generally prone to adopt SUBMIT_RESERVATION_SUCCESS,
UNFILLED_SUBMIT, and actions related to COMBOBOX,
HELP, and SORT. These actions demonstrated evidence that
the respondents went through necessary steps to fulfill room
requests in this item. Groups with lower income and work-related
skill use, however, took more actions such as MAIL_MOVE
and SUBMIT_FAILURE, which were either redundant or an
indication of failing to complete a request.

The most important implication of the present study was that
features identified from process data shed light on how much
intervention a certain group of respondents might need. There
was clear evidence from process data for the steps to read emails,
filter the irrelevant email, and submit requests. For instance,
respondents who adopted COMBOBOX-related actions but still
failed to solve the item may have already mastered the majority
of required PSTRE skills. Therefore simple instructions on the
final steps might be sufficient for them to obtain a correct answer.
In contrast, MAIL_MOVE and FOLDER could be a sign that the
respondents needed more comprehensive guidance and training
on PSTRE skill. However, evidence for synthesizing information
and addressing conflicts were not as traceable. Given sufficient
evidence for each required step, further analyses could potentially
determine at which specific step an intervention was needed. It
also provides the possibility of scoring complex items like PSTRE
items base on process data in the future.

Overall, groups with different levels of background variables
often demonstrated quite distinctive characteristics with respect
to test-taking behaviors. Actions indicative of low PSTRE skill for
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one group may not mean the same for another group. Therefore,
it is important to establish a basic understanding of the common
action sequences that a group would take before making decisions
on the necessary training and interventions.

When interpreting the robust features identified from process
data, it is recommended that one considers unigrams, bigrams,
and trigrams simultaneously. This would provide a more holistic
view of the respondents’ problem-solving strategies. One example
of this is the sequential action of switching among environments.
This action could be indicative of aimless behaviors if it was
predominant; it could also be the transition among required
steps, such as reading emails and submitting requests, if a wide
range of features appeared. Therefore, the diversity of the robust
features was found informative regarding the interpretation of
action sequences.

Despite innovations in this study, at least four limitations are
worth mentioning. First, we restricted this study to United States
respondents only. Findings related to test-taking behaviors and
culture effects that might be learned from other countries were
not taken into consideration. Nonetheless, the proposed research
plan is applicable to data from other countries. Researchers may
compare patterns and action sequences extracted from other
countries to those from the United States sample to obtain further
insights regarding cross-country differences.

Second, the study focused on process data from the PSTRE
domain only. Considering the respondents who had scores in all
three domains in the BQ dataset, the correlations between PSTRE
scores and literacy/numeracy scores are about 0.81 and 0.76,
respectively, for the United States in the 2012 PIAAC assessment
(Organisation for Economic Co-operation and Development
[OECD], 2013a, p. 7, Chapter 18). Given the strong correlations,
the associations between respondents’ sequential action patterns
in PSTRE and other domains could be evaluated in future studies.

Third, we used the method suggested by Cohen and
Cohen (1985) to deal with missing responses in the BQ,
where missing responses were coded as another category
for each variable. This method was employed in the present
study to retain all available information when missingness
occurred in the independent variables (Howell, 2008) and
when the missing proportion was higher than 5% or 10%
(Schafer, 1999; Bennett, 2001). However, the interpretability
of the results becomes a problem (Howell, 2008). Some
researchers have also found that this method may produce
biased estimates for the regression coefficients under some
circumstances, even though it produced reasonably accurate
standard error estimates (Jones, 1996; Allison, 2001). Though
comparing different approaches to dealing with missing data

was not the focus of this study, more advanced methods
might be considered in future studies, such as maximum
likelihood and multiple imputation (e.g., Bennett, 2001;
Howell, 2008).

Lastly, the present study investigated the sequential patterns
for different subgroups on only one representative PSTRE item.
As the action sequences in process data are highly context
dependent (Rupp et al., 2010), the findings from this study need
to be cross-validated using other items in a similar context.
PSTRE items that share environments with U02 could be further
explored to shed light on the consistency of problem-solving
strategies across multiple items.

To summarize, this study provides critical evidence of
relationships between employment-related background variables
and sequential patterns in PSTRE using one example item
based on the United States sample in PIAAC. It also provides
information to education policy makers to find reasons for
success and failure by different employment-related subgroups,
thus helping to find an optimal solution to improve their
PSTRE skills via a tailored approach. Such information would
be key to improving adults’ lifelong learning strategies. Further
explorations have been done on multiple items, and similar
patterns have been observed, but results were not included to
avoid distracting from the main theme of the present study. We
recommend to continue exploring the generalizability of results
presented in this study across PSTRE items in future studies and
to make comparisons across countries and language groups.
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APPENDIX

TABLE A1 | Description of independent variables in the regression analyses.

No. Variable Category Description

(1) PAIDWORK 1 No work ever

2 Have had paid work but not in 5 years

3 Have had paid work in 5 years but not in 12 months

4 Have had paid work in 12 months

(2) C_D05 1 Employed

2 Unemployed

3 Out of the labor force

(3) D_Q04_T1 1 Employee, not supervisor

2 Employee, supervising fewer than 5 people

3 Employee, supervising more than 5 people

4 Self-employed or unpaid family worker

(4) D_Q08b 1 1–5 people

2 6–10 people

3 11–24 people

4 25–99 people

5 100 or more people

(5) D_Q12b 1 Current level is necessary

2 A lower education level would be sufficient

3 A higher education level would be needed

(6) D_Q12c_RC 1 No experience

2 Less than 1 year of relevant work experience

3 1 or 2 years

4 More than 3 years of relevant work experience

(7) F_Q05a 1 Never solve simple problems

2 Solve simple problems less than once a month

3 Solve simple problems less than once a week but at least once a month

4 Solve simple problems at least once a week but not everyday

5 Solve simple problems everyday

(8) F_Q05b 1 Never solve complex problems

2 Solve complex problems less than once a month

3 Solve complex problems less than once a week but at least once a month

4 Solve complex problems at least once a week but not everyday

5 Solve complex problems every day

(9) F_Q07b 1 Need more training for skill use at work

2 Do not need more training for skill use at work

(10) G_Q06 1 Straightforward computer use

2 Moderate computer use

3 Complex computer use

(11) ISCOSKIL4 1 Skilled occupations

2 Semi-skilled white-collar occupations

3 Semi-skilled blue-collar occupations

4 Elementary occupations

(12) EARNMTHALLDCL 1 1st decile of monthly earning

2 2nd decile of monthly earning

3 3rd decile of monthly earning

4 4th decile of monthly earning

5 5th decile of monthly earning

6 6th decile of monthly earning

7 7th decile of monthly earning

8 8th decile of monthly earning

(Continued)

Frontiers in Psychology | www.frontiersin.org 18 March 2019 | Volume 10 | Article 646139

https://www.frontiersin.org/journals/psychology/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/psychology#articles


fpsyg-10-00646 March 25, 2019 Time: 18:15 # 19

Liao et al. Mapping Background With Problem-Solving Patterns

TABLE A1 | Continued

No. Variable Category Description

9 9th decile of monthly earning

10 10th decile of monthly earning

(13) LEARNATWORK_WLE_CA 0 All zero response

1 Lowest 20% on index of learning at work

2 More than 20–40% on index of learning at work

3 More than 40–60% on index of learning at work

4 More than 60–80% on index of learning at work

5 More than 80% on index of learning at work

(14) ICTWORK_WLE_CA 0 All zero response

1 Lowest 20% on index of use of ICT skills at work

2 More than 20–40% on index of use of ICT skills at work

3 More than 40–60% on index of use of ICT skills at work

4 More than 60–80% on index of use of ICT skills at work

5 More than 80% on index of use of ICT skills at work

(15) INFLUENCE_WLE_CA 0 All zero response

1 Lowest 20% on index of use of influencing skills at work

2 More than 20–40% on index of use of influencing skills at work

3 More than 40–60% on index of use of influencing skills at work

4 More than 60–80% on index of use of influencing skills at work

5 More than 80% on index of use of influencing skills at work

(16) NUMWORK_WLE_CA 0 All zero response

1 Lowest 20% on index of use of numeracy skills at work

2 More than 20–40% on index of use of numeracy skills at work

3 More than 40–60% on index of use of numeracy skills at work

4 More than 60–80% on index of use of numeracy skills at work

5 More than 80% on index of use of numeracy skills at work

(17) PLANNING_WLE_CA 0 All zero response

1 Lowest 20% on index of use of planning skills at work

2 More than 20–40% on index of use of planning skills at work

3 More than 40–60% on index of use of planning skills at work

4 More than 60–80% on index of use of planning skills at work

5 More than 80% on index of use of planning skills at work

(18) READWORK_WLE_CA 0 All zero response

1 Lowest 20% on index of use of reading skills at work

2 More than 20–40% on index of use of reading skills at work

3 More than 40–60% on index of use of reading skills at work

4 More than 60–80% on index of use of reading skills at work

5 More than 80% on index of use of reading skills at work

(19) TASKDISC_WLE_CA 0 All zero response

1 Lowest 20% on index of use of task discretion at work

2 More than 20–40% on index of use of task discretion at work

3 More than 40–60% on index of use of task discretion at work

4 More than 60–80% on index of use of task discretion at work

5 More than 80% on index of use of task discretion at work

(20) WRITWORK_WLE_CA 0 All zero response

1 Lowest 20% on index of use of writing skills at work

2 More than 20–40% on index of use of writing skills at work

3 More than 40–60% on index of use of writing skills at work

4 More than 60–80% on index of use of writing skills at work

5 More than 80% on index of use of writing skills at work

(21) AGEG10LFS 1 24 or less

2 25–34

3 35–44

(Continued)
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TABLE A1 | Continued

No. Variable Category Description

4 45–54

5 55 plus

(22) PARED 1 Neither parent has attained upper secondary

2 At least one parent has attained secondary and postsecondary, non-tertiary

3 At least one parent has attained tertiary

(23) NATIVELANG 0 Test language different from native language

1 Test language same as native language

(24) EDCAT6 1 Lower secondary or less (ISCED 1, 2, 3C short or less)

2 Upper secondary (ISCED 3A-B, C long)

3 Postsecondary, non-tertiary (ISCED 4A-B-C)

4 Tertiary – professional degree (ISCED 5B)

5 Tertiary – bachelor degree (ISCED 5A)

6 Tertiary – master/research degree (ISCED 5A/6)

(25) GENDER_R 1 Male

2 Female

(26) J_Q08 1 10 books or less

2 11–25 books

3 26–100 books

4 101–200 books

5 201–500 books

6 More than 500 books

TABLE A2 | Difference in percentages of each category of background variables between the whole sample and the sample with U02 response.

Levels

Variables 0 1 2 3 4 5 6 7 8 9 10 Missing

PAIDWORK 1.35 1.42 −0.62 −4.40 2.25

C_D05 −4.86 −1.44 4.08 0.04 2.18

D_Q04_T1 0.13 −1.17 −1.49 −1.81 4.34

D_Q08b −1.22 0.11 −0.86 −0.51 −0.33 2.81

D_Q12b −3.28 −0.03 −0.15 3.47

D_Q12c −0.76 −1.97 −0.46 0.13

F_Q05a 1.97 0.45 0.38 −2.88 −4.83 4.92

F_Q05b 0.75 −1.02 −1.52 −1.70 −1.38 4.87

F_Q07b −0.83 −4.05 4.88

G_Q06 −2.61 −4.92 −0.02 7.54

ISCOSKIL4 −5.49 −0.85 0.61 0.73 5.00

EARNMTHALLDCL −0.44 −0.99 −0.13 −0.74 0.46 −0.32 0.63 −0.19 −1.32 −1.27 4.33

LEARNATWORK_WLE_CA 0.68 0.75 0.09 −2.12 −1.25 −1.54 3.39

ICTWORK_WLE_CA 0.71 −1.79 −0.70 −2.18 −0.95 −2.47 7.38

INFLUENCE_WLE_CA 0.58 1.33 0.21 −2.04 −1.86 −2.88 4.68

NUMWORK_WLE_CA 1.89 −0.91 −1.03 −1.14 −1.32 −2.17 4.68

PLANNING_WLE_CA 1.59 −0.40 −1.29 0.02 −1.40 −3.19 4.68

READWORK_WLE_CA 0.36 0.80 0.78 −1.63 −2.94 −2.05 4.68

TASKDISC_WLE_CA 0.75 0.10 −1.85 −3.27 0.03 −0.48 4.72

WRITWORK_WLE_CA 1.75 0.75 −1.38 −1.65 −1.15 −2.98 4.68

AGEG10LFS −2.18 −1.34 −1.85 2.08 3.30

PARED 4.18 −3.25 −4.49 3.57

NATIVELANG 3.05 −5.25 2.20

EDCAT6 3.22 −0.04 −0.79 −0.69 −2.24 −1.63 2.17

GENDER_R −0.51 0.51

J_Q08 3.48 −1.41 −1.00 −2.16 −0.97 −0.24 2.29
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TABLE A3 | Standardized regression coefficients in the regression analyses.

No. Variable Category PSTRE Literacy Numeracy U02RT U02score

(1) PAIDWORK 2 0.02 0.02 0.04 0.05 0.46

3 0.12 0.13∗ 0.15∗ −0.14 0.41

4 0.12 0.21 0.26∗ −0.33 −0.17

(2) C_D05 2 < 0.01 0.13 0.14 0.13 0.17

3 0.06 0.23 0.26 0.11 0.15

(3) D_Q04_T1 2 −0.05 0.02 0.02 −0.14 −0.45

3 −0.11 −0.09 −0.09 < 0.01 1.91

4 −0.09 −0.02 −0.05 < 0.01 −0.46

(4) D_Q08b 2 0.02 0.07 0.07 −0.16 −0.54

3 0.07 0.07 0.08 −0.12 −0.45

4 0.04 0.04 0.07 −0.10 −0.38

5 0.04 0.04 0.05 −0.07 −0.20

(5) D_Q12b 2 0.05∗ 0.03∗ 0.03 0.01 0.03

3 −0.05∗ −0.04∗ −0.04∗ −0.03 −0.05

(6) D_Q12c_RC 2 −0.04∗ −0.03 −0.04∗ −0.02 −0.14

3 < 0.01 < 0.01 −0.01 < 0.01 < 0.01

4 < 0.01 0.02 0.04∗ 0.04 < 0.01

(7) F_Q05a 2 0.02 0.04∗ 0.04 0.03 0.41

3 0.08∗ 0.06∗ 0.08∗ 0.04 0.37

4 0.12∗ 0.11∗ 0.12∗ 0.04 0.76

5 0.19∗ 0.18∗ 0.17∗ 0.12 0.90

(8) F_Q05b 2 < 0.01 −0.02 < 0.01 −0.01 −0.63

3 < 0.01 −0.03 −0.02 −0.01 −0.53

4 −0.01 −0.02 < 0.01 < 0.01 −0.61

5 −0.02 −0.07∗ −0.05∗ 0.03 −0.44

(9) F_Q07b 2 0.04 0.06∗ 0.06∗ −0.02 0.04

(10) G_Q06 2 0.11∗ 0.07∗ 0.07∗ 0.09∗ 0.64

3 0.08∗ 0.05∗ 0.06∗ 0.08∗ 0.33

(11) ISCOSKIL4 2 −0.04∗ −0.04∗ −0.04∗ −0.01 0.09

3 −0.06∗ −0.05∗ −0.04∗ −0.02 0.01

4 −0.03 −0.07∗ −0.07∗ −0.03 < 0.01

(12) EARNMTHALLDCL 2 −0.02 < 0.01 < 0.01 −0.06 < 0.01

3 −0.04 −0.04 −0.03 −0.06 −0.07

4 −0.01 −0.01 < 0.01 < 0.01 0.09∗

5 −0.03 < 0.01 < 0.01 −0.06 −0.07

6 −0.02 < 0.01 < 0.01 −0.08 −0.03

7 < 0.01 0.03 0.03 −0.06 < 0.01

8 < 0.01 0.02 0.02 −0.06 < 0.01

9 0.02 0.04∗ 0.03 −0.08 0.02

10 0.06∗ 0.06∗ 0.05∗ −0.05 0.04

(13) LEARNATWORK_WLE_CA 1 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01

2 < 0.01 < 0.01 < 0.01 −0.03 0.07

3 −0.03 −0.01 < 0.01 −0.02 −0.02

4 −0.04 −0.02 −0.02 −0.03 −0.03

5 −0.07∗ −0.08∗ −0.07∗ −0.05 −0.03

(14) ICTWORK_WLE_CA 1 0.05 0.07∗ 0.06∗ 0.01 −0.28

2 0.09∗ 0.09∗ 0.06∗ < 0.01 −0.20

3 0.12∗ 0.08∗ 0.06∗ 0.10 −0.16

4 0.13∗ 0.07∗ 0.06∗ 0.07 −0.10

5 0.17∗ 0.11∗ 0.10∗ 0.05 −0.15

(15) INFLUENCE_WLE_CA 1 0.04 −0.01 < 0.01 0.02 0.08∗

2 0.06 −0.02 < 0.01 < 0.01 < 0.01

3 0.03 −0.04 −0.02 < 0.01 < 0.01

(Continued)
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TABLE A3 | Continued

No. Variable Category PSTRE Literacy Numeracy U02RT U02score

4 0.03 −0.04 −0.04 −0.06 −0.04

5 0.03 −0.09∗ −0.07∗ −0.06 −0.05

(16) NUMWORK_WLE_CA 1 0.04 0.01 0.01 0.04 < 0.01

2 0.07∗ 0.04∗ 0.05∗ 0.04 < 0.01

3 0.04 0.03 0.04∗ 0.06 < 0.01

4 0.08∗ 0.06∗ 0.07∗ 0.09∗ < 0.01

5 0.06∗ 0.03 0.07∗ 0.06 < 0.01

(17) PLANNING_WLE_CA 1 < 0.01 0.04 0.04 0.05 −0.03

2 < 0.01 0.01 0.03 0.03 < 0.01

3 < 0.01 0.02 0.03 0.05 < 0.01

4 0.03 0.07∗ 0.08∗ 0.10∗ 0.04

5 < 0.01 0.04 0.04 0.05 −0.03

(18) READWORK_WLE_CA 1 0.02 0.03 0.02 0.06 0.14∗

2 < 0.01 0.02 0.02 0.02 0.04

3 −0.05 0.01 0.01 < 0.01 −0.07

4 −0.07 < 0.01 < 0.01 0.05 −0.02

5 −0.14∗ −0.02 −0.02 0.04 −0.09

(19) TASKDISC_WLE_CA 1 −0.02 0.03 0.05 −0.05 < 0.01

2 < 0.01 0.05 0.05 −0.09 −0.03

3 < 0.01 0.06 0.05 −0.11 −0.09

4 < 0.01 0.05 0.02 −0.07 −0.15∗

5 0.01 0.05 0.02 −0.11 −0.05

(20) WRITWORK_WLE_CA 1 < 0.01 0.02 0.01 −0.05 −0.10

2 0.01 0.04 0.02 < 0.01 < 0.01

3 < 0.01 0.05∗ 0.03 < 0.01 < 0.01

4 0.03 0.06∗ 0.04 < 0.01 0.10∗

5 < 0.01 < 0.01 −0.03 −0.04 0.03

(21) AGEG10LFS 2 −0.16∗ −0.11∗ −0.09∗ −0.07 0.05

3 −0.23∗ −0.14∗ −0.12∗ −0.05 0.01

4 −0.30∗ −0.19∗ −0.15∗ −0.04 −0.10∗

5 −0.31∗ −0.19∗ −0.14∗ 0.02 −0.13∗

(22) PARED 2 0.12∗ 0.10∗ 0.11∗ 0.11∗ 0.05

3 0.14∗ 0.15∗ 0.13∗ 0.18∗ 0.09

(23) NATIVELANG 1 0.10∗ 0.13∗ 0.06∗ 0.05 0.04∗

(24) EDCAT6 2 0.11∗ 0.17∗ 0.18∗ 0.12∗ 0.55∗

3 0.09∗ 0.11∗ 0.14∗ 0.06 0.33∗

4 0.12∗ 0.16∗ 0.18∗ 0.03 0.28∗

5 0.21∗ 0.27∗ 0.29∗ 0.12∗ 0.49∗

6 0.21∗ 0.28∗ 0.30∗ 0.12∗ 0.48∗

(25) GENDER_R 2 −0.05∗ < 0.01 −0.11∗ < 0.01 −0.03

(26) J_Q08 2 0.04 0.05∗ 0.02 −0.03 0.22

3 0.11∗ 0.09∗ 0.12∗ < 0.01 0.29

4 0.12∗ 0.1∗ 0.14∗ −0.04 0.27

5 0.16∗ 0.12∗ 0.14∗ 0.04 0.30

6 0.08∗ 0.09∗ 0.09∗ < 0.01 0.20

Significant variables are marked with asterisks. As the logit of the probability of U02score = 1 could range from negative to positive infinity, coefficients for U02score were
standardized usingπ/

√
3 as an approximate for the standard deviation of the dependent variable, as implemented in SAS (e.g., Menard, 1995, 2004).
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TABLE A4 | Top five features of action sequences selected for the groups with lowest 20% or all zero response on INFLUENCE_WLE_CA.

Group N-gram Action sequences Chi-square

Lowest 20% on Unigram COPY 6.46

INFLUENCE_WLE_CA REPLY 5.01

SEARCH 4.56

HELP 3.38

PASTE 3.18

Bigram SUBMIT_RESERVATION_SUCCESS, HISTORY_MEETINGROOMS 11.12

UNFILLED_SUBMIT, ENVIRONMENT_MC 8.10

MAIL_VIEWED_3, FOLDER_VIEWED 7.31

HISTORY_VIEWCALENDAR, COMBOBOX_ROOM 6.77

ENVIRONMENT_WB, UNFILLED_SUBMIT 6.56

Trigram COMBOBOX_DEPT, ENVIRONMENT_MC, ENVIRONMENT_WB 12.09

SUBMIT_RESERVATION_SUCCESS, HISTORY_MEETINGROOMS, HISTORY_VIEWCALENDAR 9.62

HISTORY_UNFILLED, UNFILLED_SUBMIT, ENVIRONMENT_MC 9.58

COMBOBOX_DEPT, SUBMIT_RESERVATION_SUCCESS, HISTORY_MEETINGROOMS 9.42

ENVIRONMENT_MC, ENVIRONMENT_WB, ENVIRONMENT_MC 9.20

All zero response on Unigram MAIL_MOVE 17.83

INFLUENCE_WLE_CA FOLDER_VIEWED 9.48

CANCEL 7.97

SUBMIT_RESERVATION_FAILURE 1.58

HISTORY_HOME 0.54

Bigram SUBMIT_RESERVATION_SUCCESS, SUBMIT_RESERVATION_FAILURE 29.75

MAIL_MOVE, FOLDER_VIEWED 23.45

ENVIRONMENT_WB, HISTORY_HOME 21.24

MAIL_VIEWED_3, MAIL_MOVE 20.17

MAIL_VIEWED_2, MAIL_MOVE 18.77

Trigram FOLDER_VIEWED, MAIL_VIEWED_1, MAIL_MOVE 30.13

MAIL_MOVE, FOLDER_VIEWED, FOLDER_VIEWED 23.99

ENVIRONMENT_WB, COMBOBOX_ROOM, COMBOBOX_START_TIME 23.23

COMBOBOX_DEPT, SUBMIT_RESERVATION_SUCCESS, SUBMIT_RESERVATION_FAILURE 22.58

ENVIRONMENT_MC, NEXT_INQUIRY, CANCEL 22.00

TABLE A5 | Top five features of action sequences selected for the groups with lowest 20% or all zero response on READWORK_WLE_CA.

Group N-gram Action sequences Chi-square

Lowest 20% on Unigram HELP 4.29

READWORK_WLE_CA CANCEL 3.69

COPY 3.59

HISTORY_VIEWCALENDAR 3.28

SEARCH 2.00

Bigram ENVIRONMENT_MC, MAIL_VIEWED_3 9.10

HISTORY_VIEWCALENDAR, HISTORY_UNFILLED 5.45

HISTORY_RESERVATION, COMBOBOX_ROOM 5.41

ENVIRONMENT_WB, HISTORY_VIEWCALENDAR 5.15

CHANGE_RESERVATION, CHANGE_RESERVATION 4.58

Trigram ENVIRONMENT_MC, ENVIRONMENT_WB, HISTORY_VIEWCALENDAR 6.70

ENVIRONMENT_WB, HISTORY_RESERVATION, HISTORY_VIEWCALENDAR 6.59

ENVIRONMENT_WB, HISTORY_RESERVATION, COMBOBOX_ROOM 6.27

ENVIRONMENT_MC, MAIL_VIEWED_3, ENVIRONMENT_WB 6.06

START, MAIL_VIEWED_1, MAIL_VIEWED_2 5.64

(Continued)
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TABLE A5 | Continued

Group N-gram Action sequences Chi-square

All zero response on Unigram MAIL_MOVE 28.76

READWORK_WLE_CA FOLDER_VIEWED 4.66

SUBMIT_RESERVATION_FAILURE 4.58

HISTORY_HOME 4.45

REPLY 1.07

Bigram HISTORY_UNFILLED, HISTORY_UNFILLED 35.28

MAIL_VIEWED_3, ENVIRONMENT_MC 26.10

FOLDER_VIEWED, MAIL_MOVE 22.78

MAIL_MOVE, FOLDER_VIEWED 22.25

HISTORY_HOME, HISTORY_MEETINGROOMS 20.55

Trigram ENVIRONMENT_WB, COMBOBOX_END_TIME, COMBOBOX_DEPT 47.51

FOLDER_VIEWED, MAIL_MOVE, FOLDER_VIEWED 35.91

MAIL_VIEWED_3, MAIL_MOVE, MAIL_VIEWED_2 34.97

SUBMIT_RESERVATION_FAILURE, COMBOBOX_DEPT, SUBMIT_RESERVATION_FAILURE 33.24

COMBOBOX_ROOM, SUBMIT_RESERVATION_FAILURE, COMBOBOX_DEPT 33.24

TABLE A6 | Top five features of action sequences selected for the groups with 60–80% or all zero response on TASKDISC_WLE_CA.

Group N-gram Action sequences Chi-square

60–80% on TASKDISC_WLE_CA Unigram FOLDER 2.17

HISTORY_HOME 1.87

KEYPRESS 1.52

HELP 0.88

MAIL_MOVE 0.63

Bigram HISTORY_RESERVATION, HISTORY_VIEWCALENDAR 2.58

COMBOBOX_END_TIME, ENVIRONMENT_MC 2.47

MAIL_VIEWED_4, MAIL_VIEWED_3 2.13

ENVIRONMENT_WB, ENVIRONMENT_WP 1.94

ENVIRONMENT_WP, ENVIRONMENT_MC 1.91

Trigram COMBOBOX_START_TIME, COMBOBOX_END_TIME, ENVIRONMENT_MC 2.16

ENVIRONMENT_MC, ENVIRONMENT_WB, COMBOBOX_DEPT 2.15

COMBOBOX_END_TIME, ENVIRONMENT_MC, ENVIRONMENT_WB 1.74

ENVIRONMENT_WB, COMBOBOX_DEPT, SUBMIT_RESERVATION_SUCCESS 1.60

ENVIRONMENT_WB, HISTORY_RESERVATION, HISTORY_VIEWCALENDAR 1.44

All zero response on TASKDISC_WLE_CA Unigram SUBMIT_RESERVATION_FAILURE 3.94

COMBOBOX_DEPT 0.69

CHANGE_RESERVATION 0.41

ENVIRONMENT_WP 0.19

COMBOBOX_END_TIME 0.18

Bigram CANCEL, HISTORY_MEETINGROOMS 78.31

ENVIRONMENT_WB, COMBOBOX_END_TIME 75.33

COMBOBOX_DEPT, COMBOBOX_DEPT 34.89

COMBOBOX_ROOM, ENVIRONMENT_MC 30.89

START, NEXT_INQUIRY 30.31

Trigram ENVIRONMENT_WB, COMBOBOX_END_TIME, COMBOBOX_DEPT 138.78

MAIL_VIEWED_4, MAIL_VIEWED_4, NEXT_INQUIRY 96.79

ENVIRONMENT_WP, ENVIRONMENT_WB, COMBOBOX_END_TIME 95.64

HISTORY_RESERVATION, COMBOBOX_START_TIME, ENVIRONMENT_MC 95.64

MAIL_VIEWED_1, ENVIRONMENT_WP, ENVIRONMENT_WP 95.64
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TABLE A7 | Top five features of action sequences selected for the groups with 60–80% or all zero response on WRITWORK_WLE_CA.

Group N-gram Action sequences Chi-square

60–80% on WRITWORK_WLE_CA Unigram CANCEL 12.84

SORT 12.34

BOOKMARK 5.55

UNFILLED_SUBMIT 5.41

SEARCH 4.88

Bigram SUBMIT_RESERVATION_SUCCESS, COMBOBOX_ROOM 16.28

COMBOBOX_END_TIME, COMBOBOX_DEPT 15.44

ENVIRONMENT_WB, UNFILLED_SUBMIT 14.59

COMBOBOX_END_TIME, SUBMIT_RESERVATION_SUCCESS 13.67

CHANGE_RESERVATION, ENVIRONMENT_MC 12.38

Trigram ENVIRONMENT_WB, HISTORY_VIEWCALENDAR, HISTORY_RESERVATION 17.00

HISTORY_VIEWCALENDAR, ENVIRONMENT_MC, NEXT_INQUIRY 16.99

MAIL_VIEWED_4, ENVIRONMENT_WB, HISTORY_VIEWCALENDAR 16.20

MAIL_VIEWED_1, MAIL_VIEWED_1, ENVIRONMENT_WB 15.83

ENVIRONMENT_WB, ENVIRONMENT_MC, FOLDER_VIEWED 15.70

All zero response on WRITWORK_WLE_CA Unigram MAIL_MOVE 121.84

FOLDER_VIEWED 12.97

COPY 11.99

PASTE 2.66

MAIL_VIEWED_2 1.97

Bigram MAIL_MOVE, FOLDER_VIEWED 91.26

FOLDER_VIEWED, MAIL_MOVE 89.43

MAIL_MOVE, MAIL_VIEWED_1 74.40

MAIL_VIEWED_4, MAIL_MOVE 72.36

MAIL_MOVE, MAIL_VIEWED_3 69.92

Trigram FOLDER_VIEWED, MAIL_MOVE, MAIL_VIEWED_1 88.62

MAIL_VIEWED_2, MAIL_VIEWED_2, MAIL_VIEWED_2 81.90

MAIL_MOVE, FOLDER_VIEWED, MAIL_MOVE 76.13

MAIL_MOVE, MAIL_VIEWED_1, MAIL_MOVE 68.14

MAIL_MOVE, MAIL_VIEWED_4, MAIL_MOVE 59.57
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TABLE A8 | Top five features of action sequences selected for the groups with age 45–54 and age 24 or less.

Group N-gram Action sequences Chi-square

Age 45–54 Unigram HISTORY_HOME 71.57

HELP 51.53

FOLDER 44.96

REPLY 31.92

COPY 11.36

Bigram FOLDER_VIEWED, ENVIRONMENT_MC 61.98

HISTORY_HOME, HISTORY_HOME 56.88

HELP, FOLDER_VIEWED 46.19

FOLDER, FOLDER_VIEWED 42.16

START, NEXT_INQUIRY 41.40

Trigram FOLDER_VIEWED, FOLDER, FOLDER_VIEWED 49.10

HISTORY_HOME, HISTORY_HOME, ENVIRONMENT_MC 46.57

MAIL_VIEWED_3, MAIL_VIEWED_4, ENVIRONMENT_WB 42.33

FOLDER_VIEWED, FOLDER_VIEWED, ENVIRONMENT_MC 41.07

MAIL_VIEWED_1, MAIL_VIEWED_3, MAIL_VIEWED_4 40.06

Age 24 or less Unigram MAIL_MOVE 32.37

HISTORY_UNFILLED 11.04

CHANGE_RESERVATION 6.10

SUBMIT_RESERVATION_FAILURE 3.41

UNFILLED_SUBMIT 2.96

Bigram MAIL_VIEWED_3, MAIL_MOVE 56.40

MAIL_VIEWED_1, MAIL_MOVE 41.25

MAIL_MOVE, MAIL_VIEWED_2 40.61

MAIL_MOVE, MAIL_VIEWED_4 38.06

MAIL_VIEWED_4, MAIL_MOVE 37.37

Trigram START, MAIL_VIEWED_1, MAIL_MOVE 54.83

MAIL_VIEWED_3, MAIL_MOVE, FOLDER_VIEWED 51.72

MAIL_MOVE, MAIL_VIEWED_4, MAIL_MOVE 43.26

MAIL_VIEWED_2, MAIL_VIEWED_2, MAIL_VIEWED_2 43.11

MAIL_VIEWED_1, MAIL_MOVE, FOLDER_VIEWED 42.37
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TABLE A9 | Top five features of action sequences selected for the groups with age 55 or more and age 24 or less.

Group N-gram Action sequences Chi-square

Age 55 or more Unigram HISTORY_HOME 95.57

HELP 69.64

REPLY 56.68

FOLDER 53.56

SORT 22.21

Bigram HISTORY_HOME, HISTORY_HOME 103.26

FOLDER_VIEWED, ENVIRONMENT_MC 84.40

FOLDER_VIEWED, FOLDER 52.83

HELP, FOLDER_VIEWED 48.34

FOLDER_VIEWED, REPLY 39.27

Trigram HISTORY_HOME, HISTORY_HOME, HISTORY_HOME 75.62

FOLDER_VIEWED, FOLDER_VIEWED, ENVIRONMENT_MC 60.11

FOLDER_VIEWED, FOLDER_VIEWED, FOLDER 41.40

FOLDER_VIEWED, ENVIRONMENT_MC, ENVIRONMENT_MC 39.70

HELP, FOLDER_VIEWED, FOLDER_VIEWED 37.36

Age 24 or less Unigram MAIL_MOVE 40.37

PASTE 10.44

COPY 6.60

ENVIRONMENT_WB 4.88

HISTORY_MEETINGROOMS 3.82

Bigram MAIL_MOVE, MAIL_VIEWED_2 43.08

FOLDER_VIEWED, MAIL_MOVE 34.00

MAIL_VIEWED_1, MAIL_MOVE 32.85

MAIL_MOVE, MAIL_VIEWED_3 31.82

MAIL_MOVE, FOLDER_VIEWED 29.20

Trigram MAIL_MOVE, MAIL_VIEWED_2, FOLDER_VIEWED 34.83

ENVIRONMENT_MC, ENVIRONMENT_WB, COMBOBOX_DEPT 33.78

MAIL_VIEWED_2, FOLDER_VIEWED, MAIL_MOVE 33.19

MAIL_MOVE, MAIL_VIEWED_1, MAIL_MOVE 32.86

ENVIRONMENT_WB, COMBOBOX_DEPT, ENVIRONMENT_MC 28.72
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TABLE A10 | Top five features of action sequences selected for the groups with test language same as native language or not same as native language.

Group N-gram Action sequences Chi-square

Test language same as native language Unigram SORT 5.64

PASTE 4.37

HELP 3.00

UNFILLED_SUBMIT 2.77

FOLDER 2.29

Bigram HISTORY_VIEWCALENDAR, ENVIRONMENT_WP 17.51

SUBMIT_RESERVATION_FAILURE, HISTORY_VIEWCALENDAR 10.59

FOLDER, FOLDER_VIEWED 8.49

MAIL_VIEWED_3, NEXT_INQUIRY 8.43

COMBOBOX_DEPT, COMBOBOX_START_TIME 7.32

Trigram ENVIRONMENT_WB, HISTORY_MEETINGROOMS, ENVIRONMENT_MC 11.37

FOLDER_VIEWED, FOLDER_VIEWED, ENVIRONMENT_WB 10.48

ENVIRONMENT_WB, HISTORY_VIEWCALENDAR, HISTORY_UNFILLED 10.42

HISTORY_UNFILLED, ENVIRONMENT_MC, ENVIRONMENT_WB 10.13

HISTORY_VIEWCALENDAR, ENVIRONMENT_WP, ENVIRONMENT_WB 9.33

Test language not the same as native language Unigram SEARCH 16.28

BOOKMARK 2.29

MAIL_MOVE 1.16

HISTORY_MEETINGROOMS 0.67

COMBOBOX_DEPT 0.29

Bigram NEXT_INQUIRY, KEYPRESS 141.04

COMBOBOX_ROOM, HISTORY_HOME 75.69

BOOKMARK, HISTORY_VIEWCALENDAR 67.68

HISTORY_RESERVATION, BOOKMARK 67.68

SEARCH, KEYPRESS 49.98

Trigram HISTORY_HOME, HISTORY_MEETINGROOMS, HISTORY_VIEWCALENDAR 134.08

SUBMIT_RESERVATION_FAILURE, ENVIRONMENT_MC, ENVIRONMENT_WP 132.41

COMBOBOX_END_TIME, COMBOBOX_ROOM, ENVIRONMENT_MC 130.71

FOLDER_VIEWED, SEARCH, SEARCH 129.22

MAIL_VIEWED_2, ENVIRONMENT_WP, ENVIRONMENT_WB 128.67
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TABLE A11 | Top five features of action sequences selected for upper secondary and lowest education groups.

Group N-gram Action sequences Chi-square

Upper secondary Unigram SUBMIT_RESERVATION_FAILURE 6.88

COMBOBOX_ROOM 5.08

HISTORY_HOME 5.03

COMBOBOX_START_TIME 3.49

BOOKMARK 3.21

Bigram MAIL_VIEWED_4, MAIL_VIEWED_2 13.92

FOLDER, FOLDER_VIEWED 13.77

HISTORY_HOME, HISTORY_HOME 13.14

FOLDER_VIEWED, FOLDER 12.18

ENVIRONMENT_WB, ENVIRONMENT_MC 12.15

Trigram ENVIRONMENT_WB, HISTORY_MEETINGROOMS, ENVIRONMENT_MC 15.66

ENVIRONMENT_MC, MAIL_VIEWED_1, MAIL_VIEWED_2 15.18

MAIL_VIEWED_1, MAIL_VIEWED_3, MAIL_VIEWED_4 14.87

HISTORY_RESERVATION, HISTORY_MEETINGROOMS, HISTORY_VIEWCALENDAR 14.28

FOLDER_VIEWED, FOLDER, FOLDER_VIEWED 13.07

Lower secondary or less Unigram SEARCH 32.49

MAIL_MOVE 30.71

CANCEL 14.37

COPY 12.53

PASTE 11.72

Bigram SEARCH, FOLDER_VIEWED 54.79

HISTORY_UNFILLED, HISTORY_UNFILLED 54.12

CANCEL, MAIL_MOVE 53.27

CHANGE_RESERVATION, ENVIRONMENT_WP 52.96

MAIL_MOVE, FOLDER 51.19

Trigram FOLDER_VIEWED, MAIL_MOVE, MAIL_VIEWED_3 74.80

MAIL_VIEWED_4, FOLDER_VIEWED, MAIL_VIEWED_4 72.11

MAIL_MOVE, MAIL_VIEWED_3, MAIL_MOVE 55.93

HISTORY_UNFILLED, HISTORY_RESERVATION, HISTORY_UNFILLED 52.49

MAIL_VIEWED_4, FOLDER_VIEWED, MAIL_VIEWED_1 52.28
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TABLE A12 | Top five features of action sequences selected for postsecondary, non-tertiary, and lowest education groups.

Group N-gram Action sequences Chi-square

Postsecondary, non-tertiary Unigram HISTORY_HOME 19.52

SORT 8.20

SUBMIT_RESERVATION_FAILURE 3.59

BOOKMARK 3.29

COMBOBOX_ROOM 1.85

Bigram HISTORY_HOME, HISTORY_HOME 26.85

ENVIRONMENT_WB, ENVIRONMENT_MC 13.68

SUBMIT_RESERVATION_SUCCESS, HISTORY_VIEWCALENDAR 11.67

FOLDER_VIEWED, REPLY 11.06

ENVIRONMENT_MC, MAIL_VIEWED_1 10.32

Trigram ENVIRONMENT_MC, MAIL_VIEWED_1, MAIL_VIEWED_2 18.60

ENVIRONMENT_WB, ENVIRONMENT_WB, ENVIRONMENT_MC 18.46

ENVIRONMENT_WB, ENVIRONMENT_MC, FOLDER_VIEWED 16.61

ENVIRONMENT_WB, HISTORY_MEETINGROOMS, ENVIRONMENT_MC 16.19

MAIL_VIEWED_1, MAIL_VIEWED_3, MAIL_VIEWED_4 16.03

Lower secondary or less Unigram SEARCH 23.04

MAIL_MOVE 19.31

PASTE 6.78

HISTORY_UNFILLED 2.58

FOLDER_VIEWED 2.25

Bigram MAIL_VIEWED_2, MAIL_MOVE 32.76

MAIL_MOVE, MAIL_VIEWED_1 25.84

MAIL_VIEWED_3, MAIL_MOVE 25.74

MAIL_MOVE, MAIL_VIEWED_2 25.42

MAIL_VIEWED_1, MAIL_MOVE 21.10

Trigram MAIL_MOVE, MAIL_VIEWED_2, MAIL_MOVE 32.53

FOLDER_VIEWED, MAIL_MOVE, MAIL_VIEWED_2 26.88

MAIL_VIEWED_1, MAIL_MOVE, MAIL_VIEWED_1 23.64

MAIL_VIEWED_2, MAIL_MOVE, FOLDER_VIEWED 23.23

MAIL_VIEWED_3, MAIL_MOVE, FOLDER_VIEWED 21.26
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TABLE A13 | Top five features of action sequences selected for tertiary-professional degree and lowest education groups.

Group N-gram Action sequences Chi-square

Tertiary – professional degree Unigram COMBOBOX_ROOM 4.48

SUBMIT_RESERVATION_SUCCESS 4.02

COMBOBOX_DEPT 3.66

COMBOBOX_START_TIME 3.65

COMBOBOX_END_TIME 3.26

Bigram ENVIRONMENT_WB, ENVIRONMENT_MC 13.20

MAIL_MOVE, ENVIRONMENT_WP 11.95

ENVIRONMENT_WB, ENVIRONMENT_WB 10.87

ENVIRONMENT_MC, MAIL_VIEWED_1 10.34

SUBMIT_RESERVATION_FAILURE, HISTORY_MEETINGROOMS 9.98

Trigram ENVIRONMENT_WB, ENVIRONMENT_WB, ENVIRONMENT_MC 19.62

MAIL_VIEWED_1, MAIL_VIEWED_4, ENVIRONMENT_WB 18.65

ENVIRONMENT_MC, MAIL_VIEWED_1, MAIL_VIEWED_2 18.29

ENVIRONMENT_WB, HISTORY_MEETINGROOMS, ENVIRONMENT_MC 17.63

MAIL_VIEWED_3, MAIL_VIEWED_1, MAIL_VIEWED_4 15.67

Lower secondary or less Unigram COPY 30.70

MAIL_MOVE 28.30

FOLDER 22.22

PASTE 20.33

FOLDER_VIEWED 12.20

Bigram MAIL_VIEWED_2, MAIL_MOVE 31.13

MAIL_MOVE, MAIL_VIEWED_3 28.74

FOLDER_VIEWED, MAIL_MOVE 24.85

MAIL_MOVE, MAIL_VIEWED_1 22.55

MAIL_MOVE, MAIL_VIEWED_2 22.37

Trigram MAIL_MOVE, MAIL_VIEWED_2, MAIL_MOVE 38.57

FOLDER_VIEWED, MAIL_MOVE, MAIL_VIEWED_3 38.13

MAIL_MOVE, MAIL_VIEWED_1, MAIL_MOVE 30.98

MAIL_VIEWED_2, MAIL_MOVE, FOLDER_VIEWED 29.04

MAIL_VIEWED_1, MAIL_MOVE, MAIL_VIEWED_1 28.07
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TABLE A14 | Top five features of action sequences selected for tertiary-bachelor degree and lowest education groups.

Group N-gram Action sequences Chi-square

Tertiary – bachelor degree Unigram REPLY 7.10

COMBOBOX_ROOM 6.50

COMBOBOX_START_TIME 5.30

SUBMIT_RESERVATION_SUCCESS 5.14

COMBOBOX_DEPT 4.76

Bigram MAIL_VIEWED_4, MAIL_VIEWED_1 16.49

MAIL_VIEWED_1, MAIL_VIEWED_3 16.24

ENVIRONMENT_WB, ENVIRONMENT_MC 16.13

HISTORY_MEETINGROOMS, ENVIRONMENT_MC 14.32

MAIL_VIEWED_4, MAIL_VIEWED_2 13.87

Trigram HISTORY_RESERVATION, HISTORY_MEETINGROOMS, HISTORY_VIEWCALENDAR 20.75

ENVIRONMENT_WB, HISTORY_MEETINGROOMS, ENVIRONMENT_MC 20.25

ENVIRONMENT_MC, MAIL_VIEWED_1, MAIL_VIEWED_2 17.86

MAIL_VIEWED_1, MAIL_VIEWED_3, MAIL_VIEWED_4 16.25

MAIL_VIEWED_4, MAIL_VIEWED_1, ENVIRONMENT_WB 15.25

Lower secondary or less Unigram MAIL_MOVE 109.87

PASTE 59.04

FOLDER_VIEWED 14.04

COPY 13.82

SEARCH 8.05

Bigram MAIL_VIEWED_1, MAIL_MOVE 101.94

FOLDER_VIEWED, MAIL_MOVE 98.18

MAIL_MOVE, MAIL_VIEWED_2 90.67

MAIL_MOVE, MAIL_VIEWED_3 90.67

MAIL_MOVE, FOLDER_VIEWED 83.84

Trigram FOLDER_VIEWED, MAIL_MOVE, MAIL_VIEWED_2 103.42

MAIL_MOVE, FOLDER_VIEWED, MAIL_MOVE 93.20

MAIL_MOVE, MAIL_VIEWED_3, FOLDER_VIEWED 88.33

MAIL_VIEWED_3, FOLDER_VIEWED, MAIL_MOVE 88.33

MAIL_VIEWED_3, MAIL_MOVE, FOLDER_VIEWED 88.13
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Working speed as a latent variable reflects a respondent’s efficiency to apply a
specific skill, or a piece of knowledge to solve a problem. In this study, the common
assumption of many response time models is relaxed in which respondents work with
a constant speed across all test items. It is more likely that respondents work with
different speed levels across items, in specific when these items measure different
dimensions of ability in a multidimensional test. Multiple speed factors are used to
model the speed process by allowing speed to vary across different domains of ability.
A joint model for multidimensional abilities and multifactor speed is proposed. Real
response time data are analyzed with an exploratory factor analysis as an example
to uncover the complex structure of working speed. The feasibility of the proposed
model is examined using simulation data. An empirical example with responses
and response times is presented to illustrate the proposed model’s applicability
and rationality.

Keywords: response times, joint model, variable speed, multidimensional item response theory, hierarchical
modeling framework

INTRODUCTION

With the popularity of computer-based tests, the collection of item response times (RTs) has become
a routine activity in large- and small-scale educational assessments. For example, the Programme
for International Student Assessment (PISA) started using computer-based tests and recorded RTs
data since 2012. RTs provide information about the working speed of respondents but also could be
utilized to improve measurement accuracy because RTs are considered to convey a more synoptic
depiction of the respondents’ performance beyond what is obtainable based on correct responses
alone (van der Linden et al., 2010; Bolsinova and Tijmstra, 2018).

Before making inferences by employing RTs, it is necessary to create an appropriate statistical
model for RTs. Over the past few decades, various RT models have been presented based on
cognitive/psychological theories and experimental research (for a review, see De Boeck and Jeon,
2019). Currently, the Bayesian hierarchical modeling framework (van der Linden, 2007) is one
of the most flexible tools to explain the relationship between latent ability and working speed.
This framework is gaining more recognition and is sufficiently generalized to integrate available
measurement models for item response accuracy (RA) and RTs. Typically, in the hierarchical
modeling of RTs and RA, the RT measurement model assumes that a respondent works at a constant
speed throughout a test. Meanwhile, the RA measurement model assumes that a respondent puts
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his or her best effort forward to solve a set of items correctly
by using the required knowledge. Thus, the association between
latent ability and working speed is assumed to be changeless
for each respondent working on a test. In other words, each
respondent is assumed to work at a constant pace given his or
her invariant ability at that time (Fox and Marianti, 2016).

Currently, most joint models for RA and RTs only use
unidimensional measurement models to capture the relationship
between latent ability and working speed within a unidimensional
test scenario (e.g., Klein Entink et al., 2009a,b; Wang et al.,
2013; Fox et al., 2014; Molenaar et al., 2015, 2016; Wang and
Xu, 2015; Fox and Marianti, 2016). In reality, however, multiple
latent abilities are involved to correctly answer an item, especially
in multidimensional tests (e.g., Tatsuoka, 1983; Reckase, 2009).
Compared to unidimensional tests, one significant characteristic
of multidimensional tests is that different test items may measure
distinguish latent ability dimensions.

In educational and psychological measurements, working
speed as a latent variable reflects a respondent’s efficiency to
apply a specific skill or a piece of knowledge to solve a problem.
Therefore, latent speed should be discussed by considering the
linkage to a particular dimension of latent ability. It is reasonable
to assume that respondents could vary their working speeds
across items that measure different dimensions of ability. In
other words, the multidimensional structure for latent ability
could be used to model the process of speed change, where the
working speed is allowed to vary across dimensions of ability. For
example, in a math test, the working speed on items that measure
algebra problem-solving ability may differ from those measuring
geometry problem-solving ability.

With the development of psychometrics, multidimensional
measurement models for RA [e.g., multidimensional item
response theory (MIRT) models and diagnostic classification
models (DCMs)] have been well developed and widely used (see
Reckase, 2009; Rupp et al., 2010). Recently, based on hierarchical
modeling, a few studies have attempted to use MIRT models
or DCMs for RA to capture the multidimensional structure of
the latent trait when multidimensional tests are involved. But
still, a unidimensional or single-factor RT (SRT) model is used
to measure latent speed (Zhan et al., 2018; Man et al., 2019;
Wang et al., 2019). Thus, in these studies, the relationships
between multiple latent abilities and one single latent speed are
assumed to be constant for each respondent working with a
constant speed on different items. However, assuming identical
working speeds across different dimensions of ability may be
too restrictive to describe intricate data and thus may lead to
ambiguous conclusions. It is desirable to release this limitation
to allow each dimension of ability to be associated with a specific
speed factor. As current joint models may be inappropriate for
multidimensional tests, it is critical to develop a joint model that
allows working speed to vary across dimensions of ability.

To model varying working speeds within different domains of
ability, it is possible to use multiple-speed factors/dimensions to
describe the speed process. Each speed factor corresponds to a
specific dimension of latent ability. An individual speed process
is assumed, describing the changes in speed across dimensions.
Thus, respondents can work at different levels of speed on items

within different dimensions of ability during multidimensional
tests. Each individual speed process will be defined using a
confirmatory multifactor structure, which in turn is defined
by the dimensions of ability measured by items, according to
the testing blueprint. Furthermore, it will be shown that the
multifactor working speed model can be integrated with a MIRT
model for latent ability. Under this new joint model, it is assumed
that each respondent works at a unique speed corresponding to
the dimension represented by an item.

We first extend the most popular single-factor lognormal RT
(SLRT) model (van der Linden, 2006) to a multifactor working
speed model that considers changing speed across dimensions.
This is called the multifactor lognormal RT (MLRT) model.
Second, a joint model of multidimensional latent ability and
multifactor working speed will be proposed. Our paper starts
with a brief review of the SLRT model, followed by presenting
the proposed MLRT model. The proposed joint model is then
presented. Next, a motivating example will be provided to
demonstrate the multifactor structure of working speed and
its compatibility with the multidimensional structure of latent
ability. Moreover, two simulation studies will be conducted to
evaluate the psychometric properties of the proposed joint model.
An empirical example will also be analyzed to illustrate the
application of the proposed joint model. Finally, we summarize
our findings and discuss directions for future research.

MULTIFACTOR LOGNORMAL
RESPONSE TIME MODEL

Let Tni be the observed RT of person n (n = 1,..., N) to item i
(i = 1,..., I). In the SLRT model, the logarithmic function is used
to transform the positively skewed distribution of RT to a more
symmetric shape and is assumed to be dominated by item i’s time-
intensity parameter ξ i and person n’s latent speed parameter τn as
follows:

logTni = ξi − τn + εni, εni ∼ N(0, ω−2
i ), (1)

or equivalently,

logTni ∼ N(ξi − τn, ω−2
i ). (2)

where ξi represents the time needed to complete item i, τn is the
single-factor working speed of person n, and εni is the normally
distributed residual error term, with mean zero and varianceω−2

i ,
where ωi is the time-precision parameter.

In recent years, the SLRT model has been extended in some
studies. For instance, Klein Entink et al. (2009a) included a
time-discrimination parameter as a slope parameter for latent
speed. Klein Entink et al. (2009b) proposed the Box-Cox
transformation for RT modeling. Wang et al. (2013) proposed
a linear transformation model for RTs. Furthermore, Fox and
Marianti (2016) proposed a variable working speed model, which
allows the respondents to adjust their working speed along
the sequence of items throughout the test. Although Fox and
Marianti’s (2016) model relaxed the assumption of constant speed
in the SLRT model, their variable speed was different from that
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focused on in this study. One is to change speed as the item
response progresses, and the other is to change speed as the
dimension of ability examined by the item changes.

As mentioned previously, the kernel hypothesis of this
study is that respondents can work with different levels of
speed on items requiring different dimensions of ability during
multidimensional tests. In other words, working speed has a
multifactor structure, which is defined by the multidimensional
structure of ability. In the multidimensional test, assuming
there are K sub-dimensions of latent ability. In the current
study, only the between-item multidimensionality (Adams
et al., 1997) is considered, where each item measures a single
dimension but different items measure different dimensions, so
the multidimensionality occurs between items. To model variable
speed across dimensions, we first relaxed the assumption of the
SLRT model that each respondent works at a constant speed
on all items throughout the test and allowed the instantaneous
speed to be different on different items, that is, τn→τ̃ni. Then,
a confirmatory multifactor structure was given to model the
instantaneous speed at item i of person n, as

τ̃ni =

K∑
k=1

τnkqik, (3)

where τ̃ni is the instantaneous speed at item i of person n,
and τnk is the working speed factor of person n corresponding
to kth-dimension (k = 1, 2,..., K) of ability. The Q-matrix
(Tatsuoka, 1983) is an I-by-K confirmatory matrix with element
qik indicating whether kth-dimension of ability is required to
answer item i correctly: qik = 1 if the dimension is required, and
qik = 0 otherwise. For between-item multidimensionality, only
one dimension is measured by an item, namely, only one element
in qi equals to 1. In such cases, the MLRT model can be expressed
as

logTni = ξi − τ̃ni + εni = ξi −

K∑
k=1

τnkqik + εni, εni ∼ N(0,ω−2
i )

(4)
or equivalently,

logTni ∼ N(ξi − τ̃ni, ω−2
i ). (5)

If only one dimension of ability is assumed to be measured by all
items, the MLRT model reduces to the SLRT model.

JOINT MODEL FOR RESPONSE
ACCURACY AND RESPONSE TIMES

Model Construction
Since both RA and RTs contain information about items and
persons, it is advantageous to analyze them simultaneously. To
this end, based on hierarchical modeling, we propose a new
joint model called the multidimensional-multifactor joint (MMJ)
model. For illustration purposes, in the MMJ model in this study,
the MLRT model is used as the measurement model for RTs, and

according to the 2012 PISA mathematics assessment framework
(OECD, 2013), the multidimensional Rasch (MR) model (Adams
et al., 1997) is employed as the measurement model for RA.

Besides observing RTs, let Yni be the observed RA for person n
to item i. The MR model can be expressed as

logit(P(Yni = 1)) =
K∑

k=1

θnkqik + di, (6)

where logit(x) = log(x/(1–x)), P(Yni = 1) is the probability of a
correct response by person n to item i, θnk is the latent ability of
person n on dimension k, di is the intercept or easiness of item i,
and qik is the element of Q-matrix.

The multivariate normal distribution was used to describe the
relationships among the multidimensional ability and multifactor
speed: (

θn
τn

)
∼N

((
µθ

µτ

)
,
∑

Person

)
,

∑
Person

=



σ2
θ1
...

. . .

σθ1θK · · · σ2
θK

σθ1τ1 · · · σθKτ1 σ2
τ1

... · · ·
...

...
. . .

σθ1τK · · · σθKτK στ1τK · · · σ
2
τK


, (7)

where θn = (θn1,..., θnk,..., θnK)’ is the multidimensional latent
ability vector; τn = (τn1,...,τnk,...,τnK)’ is the multifactor working
speed vector; µθ and µτ are the population mean vector of
multidimensional ability and the population mean vector of
multifactor working speed, respectively; and6person is a variance-
covariance matrix of person parameters, where σ2

θk
is the variance

of θk, σ2
τk

is the variance of τk, σθkθk′ is the covariance of θk and θk ′ ,
στkτk′ is the covariance of τk and τk ′ , and στkτk′ is the covariance of
θk and τk.

Furthermore, for the item parameters, a bivariate normal
distribution was used to describe the relationship between item
easiness and item time-intensity,

(
di
ξi

)
∼ N

((
µd
µξ

)
,
∑

item

)
,
∑

item
=

(
σ2
d

σdξ σ2
ξ

)
, (8)

where µd and µξ are the mean of item easiness and the mean
of item time-intensity, respectively; and 6item is a variance-
covariance matrix of item parameters, where σ2

d and σ2
ξ are the

variance of item easiness and the variance of item time-intensity,
respectively; σdξ is the covariance of item easiness and item time-
intensity.. The residual error variance, ω−2

i , is assumed to be
independently distributed.

For the MMJ model, the latent scales of multidimensional
ability and mutlifactor speed need to be identified. This can be
accomplished by restricting the population mean of the ability
and speed as µθ = µτ = 0.
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Parameter Estimation
Parameters in the MMJ model can be estimated via the
full Bayesian approach with the Markov Chain Monte Carlo
(MCMC) method. In Bayesian estimation, prior distributions of
model parameters and observed data likelihood produce a joint
posterior distribution for the model parameters. In this study, the
Just Another Gibbs Sampler (JAGS) software (Plummer, 2015)
was used to estimate parameters. JAGS uses a default option of
the Gibbs sampler (Gelfand and Smith, 1990), whose code for the
proposed joint model is provided in the online Supplementary
Appendix.

Under the assumption of local independence, Yni and logTni
are independently distributed as

Yni ∼ Bernoulli(P(Yni = 1))and logTni ∼ N(ξi − τ̃ni, ω− 2
i ).

Weakly but not non-informative priors are preferentially used
in this study to increase the generalizability of our codes by
imposing vague prior beliefs on estimating parameters. The
setting of priors refers to that used by Zhan et al. (2018) and Man
et al. (2019).

The priors of the person parameters are set as(
θn
τn

)
∼ N

((
0
0

)
,
∑

person

)
,

with a hyper prior∑
person

∼ InvWishart(Rperson, K*),

where Rperson is a K*-dimensional identity matrix, and K*
indicates the degree of freedom, which in this case is equal to the
dimension of the Rperson.

In addition, the priors of item parameters are set as(
di
ξi

)
∼ N

((
µd
µξ

)
,
∑
item

)
,ω−2

i ∼ InvGamma(1, 1)

.
Furthermore, the hyper priors are specified as

µd ∼ Normal(0, 2),µξ ∼ Normal(4.3, 2),

∑
item

∼ InvWishart(Ritem, 2),

where Ritem is a two-dimensional identity matrix. Finally,
the posterior mean is treated as the estimated value for
model parameters.

A MOTIVATING EXAMPLE

To explore the multifactor structure of working speed, and to
explore whether this structure matches the multidimensional
structure of latent ability, a motivating example with the
exploratory factor analysis (EFA) of RTs was presented first.

Data Description
The PISA 2012 computer-based mathematics RT data were
analyzed. This data set was originally used by Zhan et al. (2018).
In this study, there are N = 1,581 respondents and I = 9 items.
The logarithm of RTs was computed before the analysis, and all
zero RTs were treated as missing data. A Q-matrix (see Table 1)
was specified based on the PISA 2012 mathematics assessment
framework (OECD, 2013). Three dimensions that belong to the
mathematical content knowledge were chosen, namely, change
and relationships (θ1), space and shape (θ2), and uncertainty and
data (θ3). However, it should be noted that this Q-matrix was
originally used to link items and latent abilities or to present the
multidimensional structure of latent ability. In other words, this
Q-matrix does not specify the latent structure of working speed
unless the structure explored by the EFA of RTs matches it.

Exploratory Analysis and Results
The Mplus (version 8.1) (Muthén and Muthén, 2019) was
used here. The EFA within a confirmatory factor analysis
framework method was used by default in Mplus. In this study,
the number of factors to retain was set as 1 to 5, which
means 1- to 5-factor CFA models were all employed to fit
RT data. Then, Akaike Information Criterion (AIC; Akaike,
1974) and Bayesian Information Criterion (BIC; Schwarz, 1978)
were used as model-data fit indexes to help judge the number
of factors/dimensions. Theoretically, correlations should exist
among multiple dimensions; thus, oblique rotation was used.
Other settings followed the default (e.g., the maximum likelihood
was used as an extraction method).

Table 2 presents the model-data fit indexes of the EFA.
According to previous studies, TLI > 0.95, CFI > 0.95,
SRMR≤ 0.08, and RMSEA< 0.05 mean good model-data fit (Hu
and Bentler, 1999; Steiger, 1990). The AIC preferred the 4-factor
model, and the BIC preferred the 3-factor model after taking into
account the penalty weighting of sample size. On the whole, the
3-factor model seems to fit the data better than the other models.

Table 3 presents the rotated factor loading matrix for the
3-factor model. Compared to the theoretically constructed
Q-matrix for latent ability, there is only a difference in
CM038Q03T. The rotated factor loading of CM038Q03T on
Factor 3 is 0.300 (p < 0.05), which also supports the

TABLE 1 | Q-Matrix for PISA 2012 released computer-based mathematics items.

Items θ1 θ2 θ3

CM015Q02D 1

CM015Q03D 1

CM020Q01 1

CM020Q02 1

CM020Q03 1

CM020Q04 1

CM038Q03T 1

CM038Q05 1

CM038Q06 1

Blank means zero.
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TABLE 2 | Exploratory factor analysis model-data fit indexes for RT data.

Model χ2 df TLI CFI AIC BIC SRMR RMSEA (90% CI)

1-factor 462.79** 27 0.896 0.922 24592.15 24737.03 0.045 0.101 (0.093, 0.109)

2-factor 225.49** 19 0.930 0.963 24370.85 24558.65 0.032 0.083 (0.073, 0.093)

3-factor 32.66** 12 0.989 0.996 24192.02 24417.38 0.010 0.033 (0.020, 0.047)

4-factor 5.56 6 1.000 1.000 24176.92 24434.48 0.004 0.000 (0.000, 0.031)

5-factor 0.09 1 1.006 1.000 24181.44 24465.83 0.000 0.000 (0.000, 0.045)

**p < 0.01; χ2 = chi-square; df = degrees of freedom; TLI = Tucker-Lewis index; CFI = comparative fit index; AIC = Akaike information criterion; BIC = Bayesian information
criterion; SRMR = standardized root mean square residual; RMSEA = root mean square error of approximation; CI = confidence interval.

theoretical structure to a certain extent. The results indicate
that the latent structure of working speed might be a 3-
factor structure, which is also consistent with the theoretical
multidimensional structure of latent ability (i.e., the Q-matrix in
Table 1).

Overall, the results of the EFA support the kernel hypothesis
of this study. However, due to the limitations of the EFA,
the estimation of parameters such as individual working speed
cannot be realized. Therefore, further exploration and utilization
of the proposed MMJ model are necessary.

SIMULATION STUDIES

Two simulation studies were conducted to evaluate the
performance of the MMJ model under various conditions. The
primary purpose of simulation study 1 was to examine whether
the model parameters could be recovered accurately using the
proposed Bayesian estimation algorithm, in which data were
simulated from the MMJ model and analyzed with itself.

Man et al. (2019) has shown that, in multidimensional
tests, the joint model that involves multidimensional ability
and single-factor speed (denoted as MSJ model in this
study) performs better than the joint model that involves
unidimensional ability and single-factor speed (e.g., van der
Linden, 2007). In this study, we focus on the comparison between
the MMJ model and the MSJ model. Specifically, simulation
study 2 was conducted to evaluate: (a) the consequences
of ignoring the multifactor structure of working speed, in
which the data were simulated from the MMJ model but

TABLE 3 | Rotated factor loading matrix for the 3-factor model for
response times data.

Item Factor 1 Factor 2 Factor 3

CM015Q02D 0.695*

CM015Q03D 0.609*

CM020Q01 0.565*

CM020Q02 0.801*

CM020Q03 0.642*

CM020Q04 0.943*

CM038Q03T 0.502*

CM038Q05 0.985*

CM038Q06 0.621*

*p < 0.05; absolute value of factor loading below 0.4 was omitted.

analyzed with the MSJ model; and (b) the consequences of
misspecifying a multifactor structure of working speed, in
which the data were simulated from the MSJ model but
analyzed with the MMJ model. Note that the results of
simulation study 2 were omitted for brevity but can be found
in the online Supplementary Appendix (see Supplementary
section S1).

Design and Data Generation
In simulation study 1, four factors were manipulated including
(a) sample size: N = 500 and 1,000, (b) test length: I = 15
and 30, (c) the correlation coefficient between latent ability
and its corresponding working speed factor: ρθτ = –0.7
and –0.4, and (d) the number of dimensions of ability:
K = 3 and 5. Q-matrices are presented in Figure 1. In
addition, the true values of other parameters were generated
according to the results of a data analysis using real data
(Zhan et al., 2018). For item parameters, item easiness,
di, and item time intensity, ξ i, were generated from a
bivariate normal distribution with mean vector (0, 4) and
covariance matrix of [1, –0.2; –0.2, 0.25]. In such a setting,
ρdξ = –0.4. The reciprocal of the standard deviation of the error
term, ω, is set to 2 for all items. Person parameters were generated
from(θn, τn)

′
∼ N((0, 0)′,

∑
Person), where

∑
Person

=



σ2
θ1
...

. . .

σθ1θK · · · σ2
θK

σθ1τ1 · · · σθKτ1 σ2
τ1

... · · ·
...

...
. . .

σθ1τK · · · σθKτK στ1τK · · · σ
2
τK



=



1
...

. . .

0.8 · · · 1
0.5ρθτ · · · 0.5ρθτ 0.25
...

. . .
...

...
. . .

0.5ρθτ · · · 0.5ρθτ 0.15 · · · 0.25


.

In such a case, the covariance of two latent abilities is σθθ ′ = 0.8
(i.e., correlation coefficient ρθθ ′ = 0.8) and the covariance of
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FIGURE 1 | K-by-I Q’ matrix in the simulation study 1. D = dimension of latent ability; items with * are used for I = 15 conditions.

TABLE 4 | Recovery of item parameters in simulation study 1.

Mean Bias Mean RMSE Cor

I N ρθτ K d ξ ω d ξ ω d ξ ω

15 500 −0.4 3 0.000 0.001 −0.013 0.106 0.021 0.075 0.995 0.999 NA

5 0.011 –0.001 −0.024 0.110 0.023 0.077 0.995 0.999 NA

−0.7 3 −0.006 0.000 −0.016 0.098 0.024 0.073 0.996 0.999 NA

5 0.009 0.001 −0.017 0.114 0.022 0.085 0.994 0.999 NA

1000 −0.4 3 −0.001 −0.001 −0.009 0.076 0.016 0.051 0.997 1.000 NA

5 0.001 0.001 −0.012 0.074 0.015 0.056 0.998 1.000 NA

−0.7 3 –0.002 0.000 −0.011 0.077 0.015 0.052 0.997 1.000 NA

5 0.002 0.000 −0.014 0.077 0.016 0.053 0.997 1.000 NA

30 500 −0.4 3 –0.006 0.000 −0.015 0.110 0.022 0.070 0.994 0.999 NA

5 0.003 0.000 −0.018 0.106 0.022 0.073 0.995 0.999 NA

−0.7 3 −0.001 –0.001 −0.017 0.103 0.022 0.067 0.995 0.999 NA

5 −0.003 0.000 −0.019 0.106 0.023 0.074 0.995 0.999 NA

1000 −0.4 3 0.001 –0.001 −0.007 0.075 0.016 0.047 0.997 1.000 NA

5 −0.003 0.000 −0.007 0.076 0.015 0.051 0.997 1.000 NA

−0.7 3 0.000 0.000 −0.008 0.077 0.016 0.050 0.997 0.999 NA

5 −0.002 0.000 −0.010 0.076 0.016 0.051 0.997 1.000 NA

I = test length; N = sample size; ρθτ = correlation coefficient between ability and speed; K = number of dimensions of ability; d = item easiness; ξ = item time-intensity;
ω = item time-discrimination; Mean Bias = mean bias across all items; Mean RMSE = mean root mean square error across all items; Cor = correlation between estimated
and true values. Cor of ω is NA because of the variance of true ω is zero.

two latent speeds is στ τ ′ = 0.15 (i.e., correlation coefficient
ρτ τ ′ = 0.6). Thirty data sets were generated.

Analysis
In simulation study 1, the MMJ model was fitted to each of
the 30 replications. In each replication, two Markov chains
with random starting points were used, and each chain ran
10,000 iterations with the first 5,000 iterations in each chain as
burn-in. Finally, the remaining 10,000 iterations were used for
the model parameter inferences. The potential scale reduction
factor (PSRF; Brooks and Gelman, 1998) was computed to
assess the convergence of each parameter. A PSRF with values
smaller than 1.2 indicates convergence. Our studies indicated
that the PSRF was smaller than 1.1 for all parameters, suggesting
good convergence.

To evaluate parameter recovery, the bias and the root mean
square error (RMSE) was computed as: (υ̂) =

∑R
r=1

υ̂−υ
R and

RMSE(υ̂) =
√∑R

r=1
(υ̂−υ)2

R , where υ̂r is the estimated value of
the model parameter in rth replication and υ is the true value of
the corresponding model parameter, respectively; R is the total
number of replications. The correlation between estimated and
true values (Cor) was also computed.

Results
Table 4 presents the recovery of item parameters. All item
parameters were well recovered. The recovery of time-
intensity was the best, followed by time-discrimination,
and then item easiness. An increasing sample size
yielded a better recovery of item parameters. It seems
that test length, the correlation coefficient between
latent ability and latent speed, and the number of
dimensions have a limited impact on the recovery of
item parameters.
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Tables 5, 6 present the recovery of ability and speed,
respectively. First, the recovery of multiple speed factors was
better than that of abilities. Increasing test length yielded a
better recovery of person parameters; by contrast, increasing
the number of dimensions yielded a worse recovery of person
parameters. In addition, the higher the correlation coefficient
between ability and speed, the better the recovery of latent
abilities becomes; however, the correlation coefficient had little
effect on the recovery of latent speeds.

Table 7 presents the recovery of the item mean vector
and item variance-covariance. Increasing test length
and sample size yielded a better recovery. However, the
correlation coefficient between ability and speed and the
number of dimensions had a limited effect on the recovery.
Additionally, the recovery of covariances (omitted, due
to space limitations) was better than that of variances of
item parameters.

Tables 8, 9 present the recovery of variances of person
parameters. Similar to the pattern of the recovery of ability and
speed, the recovery of variances of multiple speed factors was
better than that of abilities. Increasing test length, sample size,
and the correlation coefficient between ability and speed yielded
a better parameter recovery. By contrast, more dimensions led to
a worse recovery of variances of person parameters. Additionally,
the recovery of covariances (omitted, due to space limitations)
was better than that of variances of person parameters.

In general, the recovery of time-related parameters (e.g., item
intensity, the covariance of item easiness and time-intensity,
speed factors, and covariance of ability and speed) was better
than that of time-unrelated parameters (e.g., item easiness and
latent abilities). Overall, simulation study 1 indicated that model
parameters of the MMJ could be recovered very well via the
proposed full Bayesian MCMC estimation algorithm.

AN EMPIRICAL EXAMPLE

Data Description and Analysis
In this section, the PISA 2012 computer-based mathematics RA
and RT data were analyzed by using the MMJ model and the MSJ
model to explore whether the former fits the data better than
the latter when the test structure is multidimensional. Details
about this data set were mentioned previously in the motivating
example. The Q-matrix in Table 1 was used. For each model,
in each replication, the numbers of chains, burn-in iterations,
and post-burn-in iterations were the same as those set in the
simulation study. Convergence was well achieved according to
the PSRF< 1.1.

Posterior predictive model checking (PPMC; Gelman et al.,
2014) was used to evaluate model-data fit. A posterior predictive
probability (ppp) value near 0.5 indicates that there are no
systematic differences between the realized and predictive values,
and thus an adequate fit of the model. In PPMC, the sum of the
squared Pearson residuals for person n and item i (Yan et al.,
2003) was used as a discrepancy measure to evaluate the overall
fit of the RA model, which is written as

D(Yni; θnk, di, qik) =
N∑

n=1

I∑
i=1

(
Yni − P(Yni = 1)

√
P(Yni = 1)(1− P(Yni = 1))

)2
,

where P(Yni = 1) has the same definition as that in Equation (6).
The sum of the standardized error function of logTni for person
n and item i was employed as a discrepancy measure of the RT
model:

D(logTni; ξi, τ̃ni,ωi) =

N∑
n=1

I∑
i=1

(
ωi(logTni − (ξi − τ̃ni))

)2
.

TABLE 5 | Recovery of multidimensional ability in simulation study 1.

Mean Bias Mean RMSE Cor

I N ρθτ K θ1 θ2 θ3 θ4 θ5 θ1 θ2 θ3 θ4 θ5 θ1 θ2 θ3 θ4 θ5

15 500 −0.4 3 0.000 0.000 0.000 0.599 0.599 0.598 0.798 0.800 0.800

5 0.000 0.000 0.000 0.000 0.000 0.623 0.627 0.624 0.625 0.623 0.780 0.779 0.782 0.781 0.781

−0.7 3 0.000 0.000 0.000 0.520 0.518 0.519 0.854 0.854 0.854

5 0.001 0.000 0.000 0.000 0.000 0.522 0.529 0.526 0.523 0.524 0.853 0.849 0.851 0.853 0.850

1000 −0.4 3 0.000 0.000 0.000 0.592 0.592 0.594 0.803 0.803 0.802

5 0.000 0.000 0.000 0.000 0.000 0.615 0.617 0.619 0.618 0.617 0.786 0.785 0.783 0.783 0.785

−0.7 3 0.000 0.000 0.000 0.515 0.514 0.514 0.856 0.856 0.856

5 0.000 0.000 0.000 0.000 0.000 0.519 0.522 0.522 0.524 0.519 0.854 0.852 0.851 0.850 0.854

30 500 −0.4 3 0.000 0.000 0.000 0.497 0.495 0.497 0.866 0.867 0.866

5 0.000 0.000 0.000 0.000 0.000 0.540 0.536 0.536 0.534 0.526 0.840 0.842 0.843 0.844 0.849

−0.7 3 0.000 0.000 0.000 0.448 0.450 0.449 0.893 0.892 0.892

5 0.000 0.000 0.000 0.000 0.000 0.474 0.474 0.470 0.473 0.470 0.879 0.880 0.881 0.880 0.881

1000 −0.4 3 0.000 0.000 0.000 0.491 0.489 0.490 0.869 0.870 0.869

5 0.000 0.000 0.000 0.000 0.000 0.528 0.528 0.526 0.529 0.529 0.846 0.847 0.848 0.847 0.846

−0.7 3 0.000 0.000 0.000 0.447 0.450 0.448 0.892 0.892 0.892

5 0.000 0.000 0.000 0.000 0.000 0.469 0.468 0.473 0.470 0.470 0.882 0.883 0.880 0.882 0.881

I = test length; N = sample size; ρθτ = correlation coefficient between ability and speed; K = number of dimensions of ability; θ = latent ability; Mean Bias = mean bias
across all persons; Mean RMSE = mean root mean square error across all persons; Cor = correlation between estimated and true values.
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TABLE 6 | Recovery of multifactor speed in simulation study 1.

Mean Bias Mean RMSE Cor

I N ρθτ K τ 1 τ 2 τ 3 τ 4 τ 5 τ 1 τ 2 τ 3 τ 4 τ 5 τ 1 τ 2 τ 3 τ 4 τ 5

15 500 −0.4 3 0.000 0.000 0.000 0.191 0.194 0.194 0.922 0.920 0.920

5 0.000 0.000 0.000 0.000 0.000 0.225 0.225 0.227 0.227 0.226 0.891 0.888 0.890 0.889 0.890

−0.7 3 0.000 0.000 0.000 0.191 0.190 0.188 0.922 0.924 0.925

5 0.000 0.000 0.000 0.000 0.000 0.221 0.221 0.221 0.224 0.224 0.895 0.895 0.895 0.892 0.893

1000 −0.4 3 0.000 0.000 0.000 0.193 0.191 0.193 0.921 0.923 0.921

5 0.000 0.000 0.000 0.000 0.000 0.226 0.226 0.224 0.227 0.224 0.890 0.891 0.892 0.889 0.892

−0.7 3 0.000 0.000 0.000 0.189 0.189 0.189 0.925 0.925 0.925

5 0.000 0.000 0.000 0.000 0.000 0.221 0.221 0.221 0.223 0.223 0.895 0.894 0.895 0.894 0.894

30 500 −0.4 3 0.000 0.000 0.000 0.144 0.145 0.146 0.957 0.956 0.956

5 0.000 0.000 0.000 0.000 0.001 0.177 0.177 0.177 0.176 0.177 0.934 0.935 0.934 0.935 0.934

−0.7 3 0.000 0.000 0.000 0.143 0.144 0.144 0.957 0.957 0.957

5 0.000 0.000 0.000 0.000 0.000 0.175 0.175 0.176 0.173 0.175 0.935 0.936 0.935 0.937 0.936

1000 −0.4 3 0.000 0.000 0.000 0.144 0.144 0.146 0.957 0.957 0.956

5 0.000 0.000 0.000 0.000 0.000 0.175 0.175 0.176 0.177 0.176 0.936 0.935 0.935 0.934 0.935

−0.7 3 0.000 0.000 0.000 0.142 0.143 0.144 0.958 0.958 0.957

5 0.000 0.000 0.000 0.000 0.000 0.174 0.174 0.173 0.174 0.174 0.936 0.936 0.937 0.937 0.936

I = test length; N = sample size; ρθτ = correlation coefficient between ability and speed; K = number of dimensions of ability; τ = speed factor; Mean Bias = mean bias
across all persons; Mean RMSE = mean root mean square error across all persons; Cor = correlation between estimated and true values.

TABLE 7 | Recovery of item mean vector and item variance-covariance in simulation study 1.

Bias RMSE

I N ρθτ K σd
2 σdξ σξ

2 µd µξ σd
2 σdξ σξ

2 µd µξ

15 500 −0.4 3 0.155 0.021 0.095 0.020 0.006 0.169 0.027 0.096 0.027 0.007

5 0.135 0.013 0.097 0.023 0.005 0.162 0.016 0.097 0.029 0.007

−0.7 3 0.151 0.016 0.095 0.024 0.006 0.164 0.020 0.095 0.029 0.007

5 0.142 0.021 0.094 0.026 0.005 0.163 0.026 0.094 0.032 0.007

1000 −0.4 3 0.158 0.015 0.096 0.013 0.005 0.164 0.018 0.096 0.016 0.006

5 0.124 0.015 0.095 0.015 0.004 0.136 0.020 0.095 0.018 0.006

−0.7 3 0.150 0.018 0.096 0.016 0.005 0.159 0.022 0.096 0.019 0.006

5 0.132 0.016 0.096 0.018 0.004 0.144 0.019 0.096 0.021 0.004

30 500 −0.4 3 0.070 0.012 0.046 0.024 0.004 0.083 0.016 0.046 0.027 0.005

5 0.060 0.012 0.044 0.018 0.003 0.068 0.014 0.045 0.023 0.004

−0.7 3 0.078 0.010 0.046 0.013 0.004 0.090 0.012 0.046 0.016 0.005

5 0.056 0.012 0.043 0.019 0.003 0.066 0.014 0.043 0.023 0.004

1000 −0.4 3 0.062 0.006 0.044 0.013 0.003 0.069 0.008 0.044 0.016 0.004

5 0.053 0.008 0.045 0.013 0.002 0.060 0.010 0.045 0.017 0.003

−0.7 3 0.068 0.010 0.046 0.009 0.003 0.079 0.012 0.046 0.012 0.004

5 0.044 0.007 0.046 0.012 0.002 0.052 0.009 0.046 0.015 0.003

I = test length; N = sample size; ρθτ = correlation coefficient between ability and speed; K = number of dimensions of ability; σd
2 = variance of item easiness; σξ

2 = variance
of item time-intensity; σdξ = covariance of item easiness and item time-intensity; RMSE = mean root mean square error.

Additionally, two information criteria that suitable for
Bayesian estimation, the deviance information criterion
(DIC) and widely available information criterion (WAIC)
(Gelman et al., 2014, Chapter 7), were computed for model
selection. A smaller value of these two criteria indicates a
better model-data fit.

Results
The DIC and WAIC both identified that the MMJ model fit
the data better than the MSJ model, as shown in Table 10.
In the MMJ model, the ppp values of the RA model and the

RT model were 0.736 and 0.578, respectively, which indicates
an adequate model-data fit. The results indicate that it is more
appropriate to simultaneously consider the multidimensionality
of latent ability and the multifactor structure of working speed
for the multidimensional test.

Note that the parameter estimates of the MMJ model
in the empirical example were omitted for brevity but
can be found in the online Supplementary Appendix
(see Supplementary section S2), mainly because this
part of the content is not the main concern of the
empirical study.
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TABLE 8 | Recovery of the variance of ability in simulation study 1.

Bias RMSE

I N ρθτ K σθ1
2 σθ2

2 σθ3
2 σθ4

2 σθ5
2 σθ1

2 σθ2
2 σθ3

2 σθ4
2 σθ5

2

15 500 −0.4 3 0.002 −0.047 −0.026 0.152 0.154 0.142

5 −0.047 −0.088 −0.055 −0.056 −0.062 0.139 0.193 0.195 0.184 0.168

−0.7 3 −0.007 0.000 0.010 0.140 0.121 0.142

5 −0.036 −0.066 −0.004 −0.016 −0.061 0.157 0.164 0.148 0.166 0.135

1000 −0.4 3 −0.058 −0.033 −0.042 0.101 0.100 0.104

5 −0.072 −0.077 −0.023 −0.095 −0.092 0.123 0.147 0.116 0.139 0.140

−0.7 3 −0.034 −0.018 −0.015 0.106 0.105 0.099

5 −0.071 −0.088 −0.067 −0.056 −0.045 0.148 0.139 0.117 0.131 0.118

30 500 −0.4 3 0.007 –0.035 0.010 0.090 0.099 0.078

5 −0.068 −0.085 −0.086 −0.054 −0.055 0.127 0.123 0.136 0.111 0.112

−0.7 3 −0.014 −0.019 −0.017 0.082 0.097 0.080

5 −0.030 –0.075 −0.034 –0.070 −0.056 0.100 0.131 0.099 0.110 0.117

1000 −0.4 3 −0.009 0.003 –0.040 0.060 0.057 0.063

5 −0.070 −0.033 −0.070 –0.084 –0.042 0.099 0.097 0.101 0.107 0.084

−0.7 3 0.011 −0.032 −0.006 0.045 0.087 0.056

5 −0.050 −0.060 −0.069 −0.069 −0.072 0.100 0.091 0.110 0.113 0.101

I = test length; N = sample size; ρθτ = correlation coefficient between ability and speed; K = number of dimensions of ability; σθ
2 = variance of ability; RMSE = mean root

mean square error.

TABLE 9 | Recovery of the variance of speed factor in simulation study 1.

Bias RMSE

I N ρθτ K στ1
2 στ2

2 στ3
2 στ4

2 στ5
2 στ1

2 στ2
2 στ3

2 στ4
2 στ5

2

15 500 −0.4 3 0.002 0.001 0.004 0.010 0.010 0.010

5 0.004 –0.003 0.003 0.001 −0.001 0.012 0.016 0.017 0.013 0.013

−0.7 3 0.001 0.002 0.002 0.011 0.009 0.010

5 0.007 0.002 0.002 0.003 0.001 0.015 0.014 0.013 0.012 0.015

1000 −0.4 3 0.000 0.003 0.000 0.006 0.008 0.008

5 –0.003 0.005 0.000 −0.001 −0.001 0.009 0.013 0.011 0.011 0.008

−0.7 3 0.002 0.001 0.001 0.009 0.007 0.008

5 0.001 –0.002 0.002 −0.002 0.003 0.010 0.010 0.009 0.011 0.009

30 500 −0.4 3 0.004 0.002 0.003 0.008 0.008 0.008

5 0.002 0.003 0.001 0.002 −0.001 0.009 0.008 0.009 0.009 0.009

−0.7 3 0.003 0.002 0.005 0.007 0.008 0.011

5 0.003 0.001 0.004 0.002 0.001 0.010 0.009 0.010 0.010 0.010

1000 –0.4 3 0.003 0.002 0.000 0.006 0.005 0.005

5 0.000 0.002 0.003 0.001 0.000 0.006 0.008 0.009 0.008 0.006

−0.7 3 0.001 0.002 0.002 0.005 0.007 0.006

5 0.000 0.000 0.002 0.001 −0.001 0.008 0.006 0.006 0.007 0.006

I = test length; N = sample size; ρθτ = correlation coefficient between ability and speed; K = number of dimensions of ability; στ
2 = variance of speed factor; RMSE = mean

root mean square error.

TABLE 10 | Model fit for the PISA 2012 computer-based mathematics data.

Analysis Model DIC WAIC ppp_RA ppp_RT

MMJ 34853 34433 0.736 0.578

MSJ 35910 35669 0.608 0.569

MMJ, multidimensional-multifactor joint model; MSJ, multidimensional-single-
factor joint model; DIC, deviance information criterion; WAIC, widely available
information criterion; ppp, posterior predictive probability value; RA, item response
accuracy; RT, item response times. Relatively smaller values are indicated in bold.

DISCUSSION

The kernel hypothesis of this study is that respondents can work
with different levels of speed on items that require different
dimensions of ability for a multidimensional test. To model the
varying speed across dimensions of ability, this study relaxed
the assumption of many RT models in which it is assumed that
respondents work with a constant rate throughout the test. As a
result, a multifactor working speed model and a joint model for
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multidimensional ability and multifactor speed were proposed.
First, a motivating example with the EFA of PISA

2012 computer-based mathematics RTs was presented.
The results indicate that working speed has a multifactor
structure, which is also consistent with the multidimensional
structure of ability. Then, two simulation studies were used
to evaluate the psychometric properties of the proposed
joint model. The results indicate that (1) parameters of
the proposed joint model could be well recovered using
the proposed Bayesian MCMC approach, (2) misspecifying
a multifactor structure of speed has limited effect on
the recovery of model parameters, and (3) ignoring the
multifactor structure of speed could lead to biased and
imprecise estimation, especially for time-related parameters.
The PISA 2012 computer-based mathematics RA and RT
data were analyzed as well to illustrate the implications
and applications of the proposed models. The results show
that it is appropriate to consider the multidimensionality
of latent ability and the multifactor structure of working
speed, simultaneously, in multidimensional tests. Overall,
considering the results of EFA, the simulation studies,
and the empirical example, there are reasons to believe
that the kernel hypothesis of this study is valid and the
proposed model can reasonably jointly analyze RA and RTs in
multidimensional tests.

The work presented in this article is only a first attempt
to deal with the variable speed across dimensions of
ability. Despite promising results, further exploration
is encouraged. First, the proposed MLRT model is an
extension of the classical lognormal RT model (van der
Linden, 2006). Thus, there are some limitations of the
current model. For instance, it assumes that RA and RTs
are conditionally independent given all person parameters
(Meng et al., 2015; Bolsinova and Maris, 2016); that after
log-transformation, the log RTs follow a normal distribution
(Klein Entink et al., 2009b); and that all respondents apply
the same problem-solving strategy throughout the whole test
(Wang and Xu, 2015).

Second, although the proposed model takes into
account the differences in working speed across different
dimensions of ability, it still assumes that the working
speed of a respondent is constant on items within the
same dimension. In future studies, this hypothesis can
be further relaxed; that is, each respondent could be
allowed to change his or her working speed in different
dimensions, and could also be allowed to adjust his or her
working speed within the same dimension according to
the order of items.

Third, in the proposed joint model, a multivariate
normal distribution was used to describe the relationships
among multidimensional ability and multifactor speed.
So, the number of total dimensions is twice as many as
the number of dimensions that are measured by the test,
which may increase the complexity of the model and
the computational burden. If the ability and speed can
each have a second-order (or bi-factor) structure, not
only can the parameter estimation challenge be largely

reduced, but the structures of ability and speed can be
posited and tested.

Fourth, in this study, only the MR model and
the MLRT model were used as measurement models
for illustration. Given the “plug-and-play” nature
of the hierarchical modeling, various MIRT models
and multifactor working speed models can be
adopted in the future.

Fifth, applications of the proposed model, such as detecting
aberrant responses (e.g., rapid-guessing and cheating) in
multidimensional tests, need further investigation.

Moreover, in Bayesian estimation, the prior distribution
reflects the data analyst’s beliefs and the known information
about the data. In practice, we recommend that the
data analyst select appropriate prior distributions based
on the actual test scenario rather than copy those
given in this study.

Last but not least, only the between-item multidimensional
test was considered in this study. For the between-item
multidimensional test, it is clear that working speed can
vary across items when the items are related to different
dimensions. However, the within-item multidimensional
test is still possible in reality. For example, when
respondents, especially non-native English speakers, take
part in the GRE R© Subject Test (e.g., Mathematics), at
least two abilities are needed: one for understanding
the questions (e.g., English reading ability), and one for
solving the questions (e.g., the subject ability). Meanwhile,
the corresponding two latent speed factors work; one
reflects the working speed of reading, and the other
one reflects the working speed of problem-solving. The
introduction of within-item multidimensionality is bound
to increase the complexity of the model and the difficulty
of constructing the Q-matrix. Thus, the rationality and
necessity of the within-item multifactor working speed
model is still an open-ended question needed to be
studied in the future.
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Log-file data from computer-based assessments can provide useful collateral information

for estimating student abilities. In turn, this can improve traditional approaches that

only consider response accuracy. Based on the amounts of time students spent

on 10 mathematics items from the PISA 2012, this study evaluated the overall

changes in and measurement precision of ability estimates and explored country-level

heterogeneity when combining item responses and time-on-task measurements using

a joint framework. Our findings suggest a notable increase in precision with the

incorporation of response times and indicate differences between countries in how

respondents approached items as well as in their response processes. Results also

showed that additional information could be captured through differences in themodeling

structure when response times were included. However, such information may not reflect

the testing objective.

Keywords: log files, computer-based assessment, time on task, measurement precision, measurement

invariance, PISA

1. INTRODUCTION

Computers have become increasingly common implements used in classroom activities over the
past few decades. As a reflection of this trend, large-scale educational assessments have moved
from paper and pencil based tests to administrated computer assessments. In addition to being
more efficient and reducing human error, computer-based assessments allow for a greater variety of
tasks. Further, interactive computer environments can be used to generate log files, which provide
easy access to information concerning the examinee response process. These log files contain time-
stamped data that provide a complete overview of all communication between the user-interface
and server (OECD, 2019). As such, it is possible to trace how respondents interact with the testing
platform while gathering information about the amount of time spent on each task.

The first computer-based administration of the Programme for International Student
Assessment (PISA) dates back to 2006 (OECD, 2010). However, more extensive studies involving
log files were enabled through the release of the PISA 2009 digital reading assessment (OECD,
2011). In this context, time-on-task and navigating behaviors can be extracted from these log files
as relevant variables. The information derived from variables of this type can help teachers further
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understand the solution strategies used by students while
also enabling a substantive interpretation of respondent-item
interactions (Greiff et al., 2015; Goldhammer and Zehner, 2017).
The variables taken from log files can also be included in
sophisticated models designed to improve student proficiency
estimations (van der Linden, 2007).

While log file data from computer-based assessments have
been available for several years, few studies have investigated
how they can be used to improve the measurement precision
of resulting scores. Using released items from the 2012 PISA
computer-based assessment of mathematics, this study thus
explored the potential benefits of incorporating time-on-task
variables when estimating student proficiency. We specifically
compared three different models to advance the current
understanding of what time-on-task adds to scores resulting from
an international large-scale assessment program.

1.1. Time-On-Task and Item Responses
Several previous studies have investigated the relationship
between time-on-task and item responses. For example,
Goldhammer et al. (2015) studied the relationship between item
responses and response times through a logical reasoning test,
thus finding a non-linear relationship between reasoning skills
and response times. Further, Goldhammer and Klein Entink
(2011) investigated how time-on-task and item interactivity
behaviors were related to item responses using complex
problem-solving items. In addition, Naumann and Goldhammer
(2017) found a non-linear relationship between time on task
and performance on digital reading items from the PISA 2009
assessment. Finally, Goldhammer et al. (2014) studied the
relationship between time-on-task, reading, and problem solving
using PIAAC data. Results indicated that the association between
time-on-task and performance varied from negative to positive
depending on the subject matter and type of task.

In large-scale educational assessments, student proficiency
is mainly estimated through the item response theory
(IRT) framework (von Davier and Sinharay, 2013). Here,
categorical item-response data are considered manifestations
of an underlying latent variable that is interpreted as, for
example, mathematics proficiency. While time-on-task can be
incorporated in several different ways from an IRT perspective
(van der Linden, 2007), the state-of-the-art view considers
them as realizations of random variables, much like actual item
responses (Kyllonen and Zu, 2016). A hierarchical model is most
commonly used with time-on-task data. Specifically, a two-level
structure is used to incorporate time-on-task, item responses,
and latent variables into a single model (van der Linden, 2007).
While the hierarchical modeling framework has the advantage of
considering both response accuracy and response times as latent
variables, it has practical limitations in that it requires specialized
software for fitting the model. Molenaar et al. (2015) illustrated
how the hierarchical model can be slightly simplified such that
standard estimation techniques could be used. This type of
formulation of the model allows the use of both generalized
linear latent variable models (Skrondal and Rabe-Hesketh, 2004)
and non-linear mixed models (Rijmen et al., 2003) with item-
response and time-on-task data. Furthermore, the approach

outlined by Molenaar et al. (2015) encompasses not only the
standard hierarchical model (with the necessary simplification)
but also its extensions which allow for more complex relationship
between time-on-task and ability such as the model of Bolsinova
and Tijmstra (2018). For these reasons, this study pursued the
approach of Molenaar et al. (2015) for its analysis of PISA
2012 data.

1.2. The Present Study
This study investigated the utility of combining item responses
with time-on-task data in the context of a large-scale computer-
based assessment of mathematics. It also evaluated the properties
of the employed model with respect to each participating
country1. Specifically, the framework developed by Molenaar
et al. (2015) was used to investigate how measurement precision
was influenced by incorporating item responses and time-
on-task data into a joint model. We also explored country-
level heterogeneity in the time-on-task measurement model. As
such, the model proposed for this analysis of computer-based
large-scale educational assessments implied a different set of
underlying assumptions than current procedures. Specifically, we
viewed response-time data as comprising an extra information
set that enabled us to gain additional insight regarding the
latent construct of interest. This also implies that any inference
regarding the underlying construct at the country level would
potentially change through the proposed approach as opposed to
current analysis methods, which this study also investigated. The
three following research questions were thus proposed:

• RQ1: What changes occur in the overall ability estimates
and their level of precision regarding PISA 2012 digital
mathematics items when time-on-task data are included in the
analysis?

• RQ2: How do time-on-task model parameters differ across
items and countries?

• RQ3: What changes occur in country-level performance when
time-on-task data are considered in the analysis?

Our findings should add to the current literature on the
relationship between time-on-task and responses to performance
items. Our results also have important implications for
large-scale assessment programs in regard to evaluating the
added measurement precision that is granted by incorporating
additional data sources (e.g., time-on-task). Such investigations
can inform large-scale assessment programs about whether and
how time-on-task data should be included in models designed to
generate operational results reports.

2. DATA AND METHODS

2.1. The 2012 PISA Computer-Based
Assessment of Mathematics
PISA administered its first computer-based mathematics
literacy assessment as part of its fifth program edition.

1We use “country” as a generic term referring to all countries and economies

participating in the PISA study. A list of the countries codes is displayed in the

Supplementary Material.
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TABLE 1 | Sample size, mean score, and variation in student performance on all clusters, as well as sample size, percentage of female, average total time, and

percentage of missing responses for the 10 released and valid log-file data from the PISA 2012 computer-based mathematics by country.

Country
All clusters (41 items) Valid log-file data (10 items)

n Mean S.D. n % Female Average total time (min) % Missing response

SGP 2,873 566.02 98.34 453 49.89 16.13 3.22

QCN 2,409 562.26 93.64 393 49.87 16.13 0.64

KOR 2,675 552.57 90.15 433 44.34 13.92 1.20

HKG 2,714 549.64 86.71 421 45.37 15.37 2.45

MAC 3,147 542.90 82.85 522 50.00 17.92 3.41

JPN 6,351 539.01 87.80 982 46.44 15.65 3.21

TAP 3,063 537.26 88.80 513 51.27 15.13 2.51

CAN 10,817 522.85 91.92 1,527 51.34 14.28 4.16

EST 2,837 516.09 82.13 460 50.00 14.54 2.37

BEL 4,617 512.15 98.60 707 49.50 14.19 4.82

DEU 2,881 509.37 95.50 441 51.02 13.75 2.43

FRA 3,012 508.06 91.95 440 53.18 15.43 4.41

AUS 11,834 507.70 90.94 1,833 48.88 13.55 1.99

AUT 2,731 507.34 88.74 436 50.92 13.42 1.28

ITA 3,089 498.76 83.14 440 45.68 16.54 6.86

USA 2,572 498.03 88.75 402 46.77 14.57 1.89

NOR 2,924 497.56 87.25 413 48.67 13.48 2.20

SVK 3,145 497.34 86.07 505 44.75 16.24 5.88

DNK 4,149 496.19 86.41 629 51.83 13.51 1.43

IRL 2,613 493.08 80.50 389 51.41 14.85 3.26

SWE 2,671 489.93 86.06 423 52.48 13.84 3.62

RUS 3,186 489.15 79.83 531 50.28 16.36 4.24

POL 2,567 489.04 86.01 428 52.10 13.09 1.64

PRT 3,272 489.03 85.09 487 48.05 15.52 3.29

SVN 4,385 486.94 87.83 678 45.87 10.95 0.65

ESP 5,751 475.08 81.99 933 50.38 14.44 3.63

HUN 2,746 469.84 92.58 445 52.81 12.79 1.82

ISR 2,677 446.61 111.28 387 54.78 14.65 2.48

ARE 6,732 434.06 84.28 1057 51.09 14.03 4.07

BRA 3,172 420.74 83.85 480 50.00 16.40 9.92

COL 5,173 396.84 73.33 782 53.58 16.48 8.09

Overall mean 3,961 612 49.77 14.62 3.40

(1) Countries are displayed by the ISO three-letter code. Their correspondence names are available at the Supplementary Material. (2) Countries are sorted by mean scores. (3) Mean

scores and variation were retrieved by OECD (2014c) report, Annex B3. OECD does not provide the overall mean quantities. Remaining statistics were calculated by the authors using

PISA 2012 micro and log-file data.

A total of 32 countries participated in this effort. In
this context, 40 min were allocated for the computer-
based portion of the test, with math items arranged in
20 min clusters that were assembled with digital reading
or problem-solving prompts (OECD, 2014a). A total of
41 math items were selected for this assessment. These
items varied from standard multiple-choice to constructed
response formats.

Table 1 presents the characteristics of the PISA sample by
country (sample size, Math performance, and variation) for the
whole computer-based of mathematics clusters (41 items) as
well as to the subsample with available and valid log-file data
(10 items).

We utilized data from a total of 18,970 students across 31
countries. We excluded data from Chile since log-file data for
two of the analyzed items were unavailable (I20Q1 and I20Q3).
Students with invalid information (e.g., those that did not receive
final scores or had incomplete timing information) were also
excluded from the analysis. On average, the sample size of each
country is around 600 (S.D.= 333), the percentage of female is
50% across all the countries. The average total time on the 10
items varied from 10.95 to 17.92 min. Brazil was the country
with the highest percentage of missing responses (9.92%) on the
analyzed items.

The analyzed log-file data from 10 items were made publicly
available on the OECD website. We thus extracted the time

Frontiers in Psychology | www.frontiersin.org 3 March 2021 | Volume 12 | Article 579128167

https://www.frontiersin.org/journals/psychology
https://www.frontiersin.org
https://www.frontiersin.org/journals/psychology#articles


Reis Costa et al. Improving the Precision of Ability Estimates

TABLE 2 | Characteristics of the released PISA 2012 computer-based of mathematics items.

Item Format % correct
Thresholds - PISA scale

Average response time (min) % Missing response

1 2

I15Q1 MC 59.02 498.51 1.36 0.81

I15Q2 CR 8.43 685.84 700.72 1.87 0.93

I15Q3 CR 29.02 577.18 658.58 1.98 3.25

I20Q1 CR 29.58 562.07 690.91 2.18 1.69

I20Q2 MC 47.42 549.29 0.96 1.93

I20Q3 CR 26.91 644.25 1.33 2.55

I20Q4 MC 44.12 565.73 0.84 3.30

I38Q3 MC 67.13 468.75 1.25 3.94

I38Q5 CR 27.75 641.05 1.82 6.60

I38Q6 CR 23.24 660.45 1.56 8.96

(1) Item are displayed by the position within the cluster. (2) MC = Multiple Choice and CR= Constructed Response item type. (3) The international percent of correct responses, and

thresholds values were retrieved by OECD (2014b) report, Annex A1. Remaining statistics were calculated by the authors using PISA 2012 log-file data. (4) Threshold values in PISA

2012 were defined as the ability at which the probability of achieving that score or higher reaches 0.62 using a partial credit model.

FIGURE 1 | (A) M1: response accuracy only (B) M2: simple-structure hierarchical model (C) M3: Extended hierarchical model with cross-loadings. The parameter’s

sub-indices are: p, person; I, item; c, country.
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students spent on analyzed items and their final responses (i.e.,
response accuracy). All items were allocated in three units (CD
production: items “I15Q1,” “I15Q2,” and “I15Q3”; Star points:
items “I20Q1,” “I20Q2,” “I20Q3,” and “I20Q4”; Body Mass Index:
items “I38Q3,” “I38Q5,” and “I38Q6”) and were administered in
the same cluster.

Table 2 shows the reported item characteristics by OECD
(international percent of correct responses, and thresholds used
for scaling the items in PISA 2012) as well as the average response
time and percentage of missing responses by item.

Although the effects of the item position were likely negligible
due to the length of the computer-based assessment (OECD,
2014b), we were still able to determine that the percentages
of missing data were larger for items located at the end of
the cluster. We used the full information maximum likelihood
approach (FIML) featured in Mplus version 7.3 (Muthén and
Muthén, 2012) to incorporate all available data into our analyses.
Doing this, the missing responses were treated as missing at
random (MAR) and all the available data were incorporated in
the modeling.

2.2. Statistical Analyses
This study compared three measurement models to estimate
student proficiency based on the abovementioned PISA dataset.
All these models can be seen as special cases of the framework of
Molenaar et al. (2015). They are:

• Model 1 (M1): It provided a baseline and thus only included
response accuracy in a unidimensional IRT framework. The

model can be seen as a special case of the framework of
Molenaar et al. (2015) in which it is assumed that there is
no relationship between latent proficiency and response time
data.

• Model 2 (M2): A multidimensional latent variable model for
the response accuracy and response times, where the response
accuracy are related to a latent proficiency and the response
times are related to a latent speed. The latent factors are
assumed to be correlated. This is a variant of the model
described in Molenaar et al. (2015): Here the relationship
between the latent proficiency and response times is specified
through the relationship between the latent proficiency and
latent speed.

• Model 3 (M3): A multidimensional latent variable model for
the response accuracy and response times, where response
accuracy is related to a latent proficiency and the response
times are related to a latent speed and proficiency. This is
also a special case of the approach of Molenaar et al. (2015)

TABLE 5 | Estimated means and variances of students’ abilities, EAP reliability

and average of the standard errors for the three measurement models.

Model Mean (µ̂θ ) Variance (σ̂ 2
θ
) EAP reliability Average SE

M1 0.00 1.00 0.73 0.51

M2 −0.02 1.06 0.77 0.49

M3 −0.02 1.05 0.80 0.45

International results of the PISA 2012 digital math items.

TABLE 3 | Framework for the estimation of international parameters for each analyzed model.

Model µθ σ
2
θ

µτc σ
2
τc

ais bis ξ is λis σ
2is ρθτ φis

M1 0 1 - - Free Free - - - - -

M2 Free Free 0 1 ais M1 bis M1 Free Free Free Free -

M3 Free Free 0 1 ais M1 bis M1 Free Free Free 0 Free

For M3, the second latent variable (τ ∗) was rotated to obtain the estimates of the transformed factor loadings (i.e., the factor loadings for speed correspond to the relationship between

response time and the latent variable which has the same interpretation as τ in M2).

TABLE 4 | Framework for the estimation of countries’ parameters for each analyzed model.

Model µθc σ
2
θc

µτc σ
2
τc

ais bis ξ ics λics σ
2
ic
s ρθτc φics

M1_Full Free Free - - ais M1 bis M1 - - - - -

M2_Full Free Free Free Free ais M1 bis M1 ξis M2 λis M2 σ
2
i s M2 Free -

M2_Strong Free Free Free Free ais M1 bis M1 ξis M2 λis M2 Free Free -

M2_Weak Free Free 0 Free ais M1 bis M1 Free λis M2 Free Free -

M2_Struct Free Free 0 1 ais M1 bis M1 Free Free Free Free -

M3_Full Free Free Free Free ais M1 bis M1 ξis M3 λis M3 σ
2
i s M3 Free φis M3

M3_Strong Free Free Free Free ais M1 bis M1 ξis M3 λis M3 Free Free φis M3

M3_Weak Free Free 0 Free ais M1 bis M1 Free λis M3 Free Free φis M3

M3_Struct Free σ
2
θc M1_Full 0 1 ais M1 bis M1 Free Free Free 0 Free

(1) Since φics are not freely estimated in the models M3_Full, M3_Strong, and M3_Weak, the correlation between the latent variables is identified. For the M3_Struct model, however,

we constrained the variance of the latent speed to be the same as the estimates from the M1_Full model to make sure that the correlations between Xis and θ will be the same as in

model 1 and therefore θ will have similar interpretation as M1. (2) After obtaining the parameter estimates in the M3_Struct model, the second latent variable (τ ∗ ) was rotated to match

the latent speed variable in M2, and ρθτc was calculated.
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TABLE 6 | Model fit statistics (BIC) by model and country.

Country
M2 models M3 models

Range BIC Preferred Range BIC Preferred

ARE [29647.12–29774.20] M2_Struct [29537.07–29815.97] M3_Weak

AUS [54700.07–54766.34] M2_Weak [54328.41–54415.99] M3_Full

AUT [13147.99–13240.82] M2_Full [13049.54–13149.53] M3_Full

BEL [20621.68–20670.20] M2_Full [20487.24–20539.84] M3_Weak

BRA [12137.77–12214.90] M2_Weak [12091.05–12181.83] M3_Weak

CAN [43637.52–43803.38] M2_Strong [43440.33–43598.05] M3_Weak

COL [21367.18–21653.93] M2_Weak [21289.22–21653.15] M3_Weak

DEU [13002.93–13065.20] M2_Full [12919.52–13010.30] M3_Full

DNK [18226.95–18269.57] M2_Full [18090.74–18175.80] M3_Full

ESP [27485.45–27588.13] M2_Full [27287.14–27437.58] M3_Full

EST [12629.05–12761.87] M2_Strong [12482.02–12625.00] M3_Strong

FRA [12890.52–12913.41] M2_Weak [12772.27–12824.20] M3_Weak

HKG [13527.25–14034.09] M2_Struct [13479.78–13752.47] M3_Struct

HUN [12181.87–12197.26] M2_Strong [12110.29–12155.05] M3_Strong

IRL [10701.96–10754.46] M2_Strong [10602.46–10685.45] M3_Strong

ISR [12298.66–12436.20] M2_Weak [12229.09–12370.03] M3_Weak

ITA [12674.72–12748.87] M2_Weak [12559.46–12616.12] M3_Full

JPN [30542.91–31258.25] M2_Struct [30320.88–31046.07] M3_Struct

KOR [13060.99–13190.37] M2_Struct [12977.21–13138.38] M3_Weak

MAC [15390.05–15536.21] M2_Weak [15250.20–15396.36] M3_Weak

NOR [12867.52–12905.24] M2_Strong [12784.82–12845.24] M3_Weak

POL [12530.05–12563.72] M2_Full [12444.90–12511.19] M3_Full

PRT [14017.90–14079.03] M2_Full [13934.64–14045.98] M3_Full

QCN [11640.00–11840.43] M2_Weak [11579.94–11665.66] M3_Struct

RUS [15790.27–15843.04] M2_Weak [15683.03–15754.20] M3_Weak

SGP [13129.26–13240.15] M2_Weak [13016.65–13090.06] M3_Strong

SVK [13976.93–14004.75] M2_Struct [13877.89–13903.17] M3_Full

SVN [19994.64–20004.67] M2_Weak [19942.30–19986.59] M3_Strong

SWE [12449.46–12509.05] M2_Full [12325.18–12420.05] M3_Full

TAP [15235.19–15292.96] M2_Struct [15121.61–15158.37] M3_Full

USA [11209.98–11277.11] M2_Weak [11186.89–11239.37] M3_Weak

Total BIC [556031.15–557223.67] M2_Weak [552353.33–555491.33] M3_Weak

(1) The range indicates the minimum and maximum values of the BIC statistic by country. (2) The suffix “_Full” indicates full measurement invariance (fixing all item parameters to be equal

to the international estimates), “_Strong” indicates strong measurement invariance (country-specific residual variances are allowed to be estimated, while time intensity parameters and

factor loadings are fixed to be equal to the international estimates), “_Weak” means weak measurement invariance model (country-specific residual variances and country-time intensity

parameters are freely estimated, while factor loadings are fixed to be equal to the international estimates), and “_Struct,” structural measurement invariance (wholly fitted time-related

parameters, i.e., all time-related parameters are freely estimated in each country).

in which the relationship between latent proficiency and
response times goes not only through the relationship between
latent proficiency and latent speed, but also through the direct
relationship between the ability and individual response times.
For this model we employed a particular rotation approach
described in Bolsinova and Tijmstra (2018).

Figure 1 shows the graphical representation of the models
across PISA countries. For comparability purposes, the items’
parameters for response accuracy were fixed from model 1 into
models 2 and 3. This approach assures that the models are on the
same scale since the relationship between response accuracy and
latent proficiency will be the same across models.

This section discusses the mathematical formulations used in
each model. The steps used to estimate model parameters for use
with the PISA dataset and an analysis of measurement invariance
across countries are discussed later.

2.2.1. Model Specification
Let X = (X1, . . . ,XI) be a random vector of responses on the I
items and T =

(

Tp1, . . . ,TpI

)

be a random vector of response
times on the same items with realizations xp· =

(

xp1, . . . , xpI
)

and tp· =
(

tp1, . . . , tpI
)

, for each person p, respectively.
For response accuracy, we adopted the graded response

model (GRM) used by Samejima (1969). This was done because
some PISA items used a partial scoring method and, unlike
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FIGURE 2 | Estimates of the countries’ time intensity for model 2—Weak measurement invariance.

other IRT models used for polytomous data (e.g., the partial

credit model), the GRM is equivalent to simple factor analytic

models in application to discrete data and can therefore be fitted
using standard factor analysis software and structural equation
models. The differences between the various IRT models used for
polytomous data are usually very small; in our case, only three
items out of 10 allowed partial scoring. The GRM specifies the
conditional probability to obtain each category k ∈ [1 :m], where
m is the highest possible category for the item. The conditional
probability of obtaining this score or higher, given the latent trait
θ , is defined by

Pr
(

Xi ≥ k|θ
)

=
exp[ai

(

θ − bik
)

]

1+ exp[ai
(

θ − bik
)

]
, (1)

where ai is the item factor loading/discrimination parameter, and
bik is the item category threshold parameter2. The probability of
obtaining a particular response category k is then

Pr
(

Xi = k|θ
)

= Pr
(

Xi ≥ k|θ
)

− Pr
(

Xi ≥ k+ 1|θ
)

, (2)

2The logistic function was used here because it is more common than the

cumulative normal function used in IRT applications, including for large-scale

international assessments such as PISA.

where Pr(Xi ≥ 0) = 1 and Pr(Xi ≥ m+1) = 0.Whenm = 2, the
GRM reduces to the two-parameter logistic IRT model used by
Birnbaum (1968), with only one difficulty parameter bi per item
instead of multiple threshold parameters. M1 defined exclusively
by Equation (2).

There are also cases in which both responses and response

times are used to estimate respondent proficiency. Here, instead
of simply specifying the model for response accuracy, we must

specify the full model for the joint distribution of response

accuracy and response times. For Model 2, we thus adopted the
hierarchical modeling approach used by van der Linden (2007),

which requires not only the specification of the measurement

model for response accuracy (in our case, the GRM) but also the
specification of the measurement model for the response times,

and the models for the relationship of the latent variables in the
two measurement models. The model used for the relationship
between item parameters in the two measurement models is
often specified, as well. However, as shown by Molenaar et al.
(2015), excluding this relationship does not substantially change
the parameter estimates, especially when large sample sizes are
involved. Furthermore, the use of standard estimation techniques
is prevented when including a model for the item parameters.
Given the very large sample sizes available in this analysis, we
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thus specified a higher-order relationship on the person side
(i.e., the model for latent variables), but did not do so on the
item side.

The joint distribution of response accuracy and response times
is conditional to both latent proficiency and speed (denoted by
τ ) in the hierarchical model. In this case, it is assumed to be a
product of the marginal distribution of response accuracy, which
only depends on latent proficiency, and the marginal distribution
of response time, which only depends on latent speed.We refer to
this as a simple-structure model because every observed variable
therein is solely related to one latent variable. This differs from
the extension of the hierarchical model used by Bolsinova and
Tijmstra (2018), which includes direct relationships between
response times and latent proficiency in addition to its relation
to latent speed.

A lognormal model with item-specific loadings was used for
the response times (Klein Entink et al., 2009). It is equivalent to
the one-factor model used for log-transformed response times.
The conditional distribution of response time on item i given the
latent speed variable is defined by

Ti ∼ lnN (ξi − λiτ , σ
2
i ), (3)

which is the lognormal distribution in which the mean is
dependent on the item time intensity ξi and the latent speed τ .

The strength of the relationship between the response time and
the latent speed depends on the factor loading λi. Meanwhile, σ 2

i
denotes the item-specific residual variance.

The dependence between the latent proficiency and the latent
speed variables is modeled using a bivariate normal distribution
with correlation parameter ρ. This correlation between the latent
variables specifies the indirect relationship between response
times and latent proficiency. In turn, this allows us to strengthen
the measurement of proficiency (i.e., increase measurement
precision) by using the information contained in the response
times. The magnitude of the improvement in measurement
precision is solely determined by the size of the correlation
between the latent speed and latent proficiency (Ranger, 2013).

M3 employed the same model for response accuracy as that
used in M1 and M2. However, a different model was used for
response times. That is, the mean of the lognormal distribution of
response time was dependent on two latent variables, as follows:

Ti ∼ lnN (ξi − λiτ
∗ + φiθ , σ

2
i ), (4)

where the cross-loading φi specifies the strength of the
relationship between response time and proficiency. Here, an
asterisk is used for the latent variable τ

∗ because it should be
interpreted differently from the simple-structure model (M2).
Since the cross-loadings between latent proficiency and response

FIGURE 3 | Estimates of the countries’ means and their respective confidence intervals for the different models.
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time are freely estimated, the correlation between θ and τ
∗ is

not identified and is instead fixed to zero so that τ
∗ can be

interpreted as a latent variable, thus explaining the covariance of
the response times that cannot be explained by latent proficiency.
However, it is possible to rotate the latent variable τ

∗ to match
the latent speed variable of the simple-structuremodel. Following
Bolsinova and Tijmstra (2018), we will apply a rotation of the
factors such that τ

∗ is the latent variable that explains most
of the variance of response times. In that case, the correlation
between latent proficiency and speed and the corresponding
values for the transformed factor loading in the two dimensions
can be calculated.

2.2.2. Analysis Strategies
We used the LOGAN R package version 1.0 (Reis Costa and
Leoncio, 2019) to extract student response times and accuracy
from the PISA 2012 log file containing data for 10 digital math
items. We then conducted analyses according to two steps.

First, we fitted all three models by combining the sample
consisting of 31 countries to estimate model parameters at an
international level. Then, we analyzed the models across PISA
countries by fixing specific parameters from previous analyses
to allow cross-model comparisons. We also evaluated parameter
invariance in the response time model. All model parameters

were estimated using the restricted maximum likelihood method
in Mplus version 7.3 (Muthén and Muthén, 2012).

Table 3 summarizes the analytical framework used in the first
step. Item discrimination (ais) and threshold parameters (bis)
were freely estimated forModel 1, with the proficiencymean (µθ )
and variance (σ 2

θ
) fixed to 0 and 1, respectively. To enable model

comparisons, the item discrimination and threshold parameters
were not estimated for M2 and M3 but were rather fixed to the
parameter estimates from M1. For these models, the response
time parameters (ξis, λis, σ

2
i s, and φis) and themean and variance

of the proficiency were freely estimated.
All analyses were conducted assuming the same graded

response model for the item-response modeling. We evaluated
the fit of the GRM model for M1 (in which the item
discrimination and threshold parameters were freely estimated)
by calculating two approximate fit statistics [i.e., the Root Mean
Square Error of Approximation (RMSEA) and the Standardized
Root Mean Square Residual (SRMR)] using the complete dataset
in the mirt R package (Chalmers, 2012). As a guideline, cutoff
value close to 0.08 for SRMR and a cutoff value close to 0.06 for
RMSE indicated acceptable fit (Hu and Bentler, 1999).

We conducted country-level analyses in the second step.
Table 4 shows the fixed and freely estimated parameters for each
model. Here, models containing the suffix “_Full” indicate full

FIGURE 4 | EAP reliabilities estimates per country and model.
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measurement invariance. That is, we estimated each country’s
mean and variance for the latent variables (θc, τc, or ρθτ c),
fixing all item parameters (ais, bis, ξics, λics, σ

2
ics, or φics) with

international estimates as derived in step one. Models containing
the suffix “_Strong” indicate strong measurement invariance
in which item-specific residual variances (σ 2

ics) are allowed to
be estimated, instead. Weak measurement invariance models
contain the suffix “_Weak.” Here, both the item-specific residual
variance (σ 2

ics) and item-time intensity parameters (ξics) were
freely estimated. In this case, however, the mean of the latent
speed variable was fixed to 0 for model identification. Lastly,
structural measurement invariance (suffix “_Struct”) indicates
all time-related parameters are freely estimated (ξics, λics, σ

2
ics

or φics). For model identification, we fixed the mean and the
variance of the latent speed variable to 0 and 1, respectively.
We also incorporated a new constraint in model “M3_Struct” to
allow the free estimation of the cross-loading parameter (φics).
In this case, we constrained the variance of the latent speed to
be the same as the estimates from the M1_Full model to make
sure that the correlations between Xis and θ will be the same
as in model 1 and therefore θ will have similar interpretation
as in M1.

We estimated student abilities using the Expected a Posteriori
(EAP) approach (Bock and Mislevy, 1982) and evaluated

measurement precision using the EAP-reliability method
(Adams, 2005) and the average of the standard errors of the
ability estimates. Finally, we computed the Bayesian Information
Criterion (BIC) for model selection (Schwarz, 1978).

3. RESULTS

We addressed our research questions by assessing the results
according to the following three steps: (1) we estimated the
overall ability estimates and their level of precision regarding
PISA 2012 digital math items by the three measurement models,
(2) presented our findings about the invariance of response-
time model parameters across items and countries, and (3)
showed changes in country-level performance when time-on-
task was considered.

3.1. RQ1: Overall Performance
We first investigated the model fit for the graded response
model. This model was assessed as having a good fit
based on its SRMSR (0.036). It also exhibited acceptable
fit according to its RMSEA (0.050). We thus concluded
that our baseline model had sufficiently good overall fit
for continued analyses, including those related to time-on-
task variables.

FIGURE 5 | Average standard errors of abilities’ estimates per country and model.
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FIGURE 6 | Correlations between EAP estimates.

Table 5 shows the overall estimates for student abilities and
the measurement precision of these estimates in relation to
the PISA 2012 digital math items across the different models.
Although there was no substantial difference, M2 and M3 (i.e.,
the simple-structure hierarchical model and the cross-loadings
model, respectively) exhibited increased measurement precision
(as captured by larger EAP reliability estimates and smaller
average standard errors) when response times were included in
the modeling framework.

3.2. RQ2: Measurement Invariance
We investigated measurement invariance of the time-on-task
parameters for each country with both M2 and M3. We also
calculated the BIC for each individual model and summarized
these statistics to identify the level of invariance that best
represented the data overall (Table 6). As such, the assumption
of invariance of the model’s parameters does not hold for
most countries and models. Weak measurement invariance were
preferred in most of the cases (i.e., there was country-specific
heterogeneity in the time intensity (ξi) and residual variance (σ

2
i )

parameters for the time-on-task measurement models).
To illustrate the differences in the time-on-task measurement

model parameters, Figure 2 presents the estimated time-intensity
parameters for each item in each country as applied to the
preferred model in the simple-structure framework (M2). The

graph indicates that students in all analyzed countries placed
the most effort into answering the first item, I20Q1, from Unit
20 (Star Point unit). However, the pattern of estimated time-
intensity between different items varied according to country. For
example, the estimated time intensity of item I38Q06 was larger
than that of item I15Q01 for several countries, but the opposite
was found for about just as many countries.

3.3. RQ3: Country-Level Performance
Figure 3 shows the estimated country means in computer-based
mathematical literacy and the associated confidence intervals
for the three measurement models. The estimated means did
not show substantial discrepancies for the analyzed countries
between the different models.

Figure 4 shows the estimated reliability of the EAP ability
estimates for each country. Measurement precision increased for
all countries when time-on-task variables were included; here,
the model containing cross-loadings had the highest estimated
EAP reliability. As illustrated in Figure 5, there was a decrease in
average standard errors for ability estimates when time-on-task
variables were included.

Figure 6 shows the correlations between EAP ability estimates
from the baseline model and from those including time-on-task
variables. Ability estimates from models that included cross-
loadings generally had lower correlations with the baseline
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model-based ability estimates as compared to models that did not
include cross-loadings. This indicates that the ability estimates
from model 3 captured an additional source of information.
However, this may not have reflected the test objective (i.e.,
estimating student computer-based mathematical literacy).

4. SUMMARY AND DISCUSSION

This study examined the extent to which inferences about ability
in large-scale educational assessments were affected by and
improved by including time-on-task information in the statistical
analyses. This issue was specifically explored using data from
the PISA 2012 Computed-Based Assessment of Mathematics. In
line with statistical theory, model-based measurement precision
(as captured by the EAP reliability estimates) improved when
using the standard hierarchical model as opposed to the response
accuracy only model for each of the 31 considered countries that
participated in the PISA program. This increase was notable for
most countries, with many showing increases in estimated EAP
reliability at or above 0.05. If such a version of the hierarchical
model can adequately capture the data structure, then this
suggests it can also provide a notable increase in precision over
the default response-accuracy only models.

For practically all countries, model-based measurement
precision was further increased when using the extended
version of the hierarchical model, which allowed a direct
link between response times and ability by including cross-
loadings (i.e., rather than using the standard hierarchical model).
This model successfully extended the hierarchical model by
considering overall response speed as relevant to the estimated
ability while also allowing individual item-response times to
be linked to said ability if such patterns were present in
the data. Thus, the model allowed time-on-task to provide
more collateral information when estimating ability than was
possible when using the standard hierarchical model. This
increased precision was also notable for most countries (generally
between 0.02 and 0.03). However, the increase was generally
less sizable than those obtained by using the hierarchical
model instead of a response-accuracy only model. Thus, the
biggest gain in precision was already obtained by using a
simple-structure hierarchical model; extending the model by
incorporating cross-loadings generally only resulted in modest
additional gains.

We investigated the extent to which time-on-task parameters
could be considered invariant across countries for both the
simple-structure hierarchical model and the extension that
included cross-loadings. The results suggested that only weak
measurement invariance existed. As such, full or strong
measurement invariance did not hold. That is, our findings
suggest that countries may differ both in item time-intensity
(capturing howmuch time respondents generally spent on items)
and the item-specific variability of the response times (i.e., the
degree to which respondents differed in the amounts of time

they spent on particular items). This suggests relevant differences
between countries in regard to how respondents approached
items as well as in their response processes.

Measurement precision improved for all countries when using
the selected versions of M2 and M3 (i.e., over the precision
levels obtained using M1). Since changing the model used
to analyse the data may also affect model-based inferences,
we also analyzed the extent to which such inferences would
be affected by these changes. Here, no country showed a
substantial change in estimated mean, thus suggesting that the
overall assessment of proficiency levels for different countries
was not heavily affected by a model change. However, the
estimated correlations between the individual ability estimates
obtained using M1, M2, and M3 showed small deviations
from 1 for many countries, suggesting that the ability being
estimated does not overlap perfectly across the three models.
The differences between M1 and M3 were most notable in
this regard. That is, they generally resulted in the lowest
correlations between ability estimates. It is thus not surprising
that these two models had the lowest correlation; they also
had the largest differences in modeling structure. However,
one should carefully consider which of the models best
operationalizes the specific ability that will be estimated.
Additional validation research is thus needed to determine
whether the inclusion of time-on-task information results in
overall improved measurement quality.
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Most tests are administered within an allocated time. Due to the time limit, examinees
might have different trade-offs on different items. In educational testing, the traditional
hierarchical model cannot adequately account for the tradeoffs between response time
and accuracy. Because of this, some joint models were developed as an extension of the
traditional hierarchical model based on covariance. However, they cannot directly reflect
the dynamic relationship between response time and accuracy. In contrast, response
moderation models took the residual response time as the independent variable of the
response model. Nevertheless, the models enlarge the time effect. Alternatively, the
speed-accuracy tradeoff (SAT) model is superior to other experimental models in the
SAT experiment. Therefore, this paper incorporates the SAT model with the traditional
hierarchical model to establish a SAT hierarchical model. The results demonstrated that
the Bayesian Markov chain Monte Carlo (MCMC) algorithm performed well in the SAT
hierarchical model of parameters by using simulation. Finally, the deviance information
criterion (DIC) more preferred the SAT hierarchical model than other models in empirical
data. This means that it is indispensable to add the effect of response time on accuracy,
but likewise should limit the effect on the empirical data.

Keywords: response time, accuracy, the speed-accuracy tradeoff, time limit, hierarchical model

INTRODUCTION

In any decision-making process, one of the most basic issues is the speed-accuracy tradeoff (SAT).
In our various behaviors, the SAT is almost ubiquitous. From insects to primates, the changing
trend of speed and accuracy in decision-making process is an inevitable problem. The SAT is
defined as an individual’s willingness to respond slowly and makes relatively fewer errors compared
to their willingness to respond quickly and makes relatively more errors. This means that low speed
corresponds to higher accuracy, or high speed corresponds to lower accuracy (Heitz, 2014).

In cognitive experiments, the SAT has been studied for a long time. The relationship between
response time and accuracy can be obtained by different methods. In the traditional reaction time
experiment, the SAT can be obtained by six basic methods: instructions, payoffs, deadlines, time
bands, response signals, and partitioning of reaction times. However, it cannot obtain complete
information processing dynamics and can only provide a single time point in different experimental
condition. Unlike the traditional reaction time experiment, Reed (1973) and Wickelgren (1977)
proposed a SAT experimental paradigm. Compared to the traditional reaction time experiment,
the SAT experiment is a different experimental paradigm. In the SAT experiment, processing
time is an independent variable or an experimental condition and each experimental condition
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is applied to different processing times. Moreover, a speed-
accuracy tradeoff model (SAT model) is used to fit the
reaction time and accuracy in different experimental conditions.
Therefore, SAT model can provide a complete dynamic
relationship between reaction time and accuracy. After that,
SAT experiment and the model were widely applied in cognitive
experiments, such as conceptual processing (McElree et al., 2000),
sentence comprehension (McElree, 2000; McElree et al., 2003),
Memory (McElree, 1998) and Attention (McElree and Carrasco,
1999; Giordano et al., 2009).

In addition to the SAT model, the sequential sampling models
are likewise used to analyze SAT experiments. In the sequential
sampling models, the most popular model is the diffusion model.
Furthermore, the diffusion model can interpret various SAT
criterions by different parameters, such as boundary separation
(Ratcliff and Rouder, 1998; Ratcliff et al., 2001; Ratcliff et al.,
2003), drift rate (Starns et al., 2012; Rae et al., 2014). McElree
and Dosher (1989) derived the expression for response time
and accuracy from the diffusion model. In contrast with SAT
model, the diffusion model was worse to fit the experimental
data. In addition, the density function of the diffusion model is
extremely complex (Cox and Miller, 1970), which makes more
difficult to apply.

The relationship between response time and response
accuracy represents an important area of study within
educational testing. In educational testing, the most popular
model is the hierarchical model of van der Linden (2007).
Moreover, it is defined as the traditional hierarchical model
in this paper. The traditional hierarchical model models the
relations between speed and accuracy for a population of test
takers separately from the impact of these parameters on the
responses and times of the individual test takers. The same will be
done for the relations between the time and response parameters
of the items. Therefore, the relations between the response and
time can be captured at a higher level of modeling. In other
word, the traditional hierarchical model consists of two levels.
The first level is two independent response models and response
time model, and the second level is the joint distribution of
the person parameters and the joint distribution of the item
parameters. The hierarchical model links the correlation between
ability and speed to account for the tradeoff between response
time and accuracy. Additionally, the hierarchical model greatly
promotes the analysis and application of response time and
accuracy (Wang et al., 2013, 2018; Meng et al., 2014; Zhan et al.,
2018). However, the traditional hierarchical model does not fully
explain the relationship between the response time and accuracy.
Because of this, Ranger and Ortner (2012) and Meng et al. (2015)
further explained the relationship between response time and
accuracy based on covariance. However, they cannot directly
reflect the dynamic relationship between response time and
accuracy. In contrast with covariance, a response moderation
model took the residual response time as the independent
variable of the response model (Bolsinova et al., 2016, 2017).
Nevertheless, the response moderation model enlarged the time
effect and ignored the influence of ability on accuracy.

In cognitive experiments, SAT model has obvious advantages,
whereas the current hierarchical model has obvious shortcomings

in the tradeoff between response time and accuracy. Therefore,
a SAT hierarchical model integrates the SAT model with the
traditional hierarchical model in this paper. The SAT hierarchical
model not only reflects the dynamic relationship between
response time and accuracy, but can also avoid the influence of
expanding time on accuracy. The paper is organized as follows.
Firstly, the SAT hierarchical model is described based on the SAT
model. Secondly, a Bayesian estimation procedure is proposed
and some simulation studies are used to evaluate parameter
recovery. Thirdly, three hierarchical models are compared to an
empirical data. Finally, the paper concludes with a discussion.

SAT HIERARCHICAL MODEL

In the paper, the SATHM is based on the hierarchical framework.
In the SAT hierarchical model, the SAT response model is
formulated by the previous response model and the SAT model.
In addition, the other parts are the same with the traditional
hierarchical model.

Response Time Model
For the response times, a lognormal model is linked by the latent
speed variable (τi), the item time intensity (βj) and the item
residual variance (σ2

j ). Within Eq. 1, lnTij is the response time
of examinee i on item j after a log transformation.

lnTij ∼ N(βj − τi, σ
2
j ) (1)

SAT Response Model
In Eq. 2, SAT model is an exponential function (Reed, 1973,
1976).

d′(t) = λ× (1− exp (−ϕ× (t− δ))) t > δ and t 6= 0 (2)

Where λ is the asymptotic level of accuracy, δ is the response time
at which accuracy begins to grow above chance or non-decision
time, ϕ represents the slope of the accuracy to asymptote. d′(t)
is the accuracy of different response time. In each experimental
condition, the three parameters of the SAT model were fitted
to each observer’s response time and the average accuracy
by the method of least squares. Moreover, the SAT model
can determine the effect of experimental conditions by adding
different parameters.

In the traditional hierarchical model, the basic assumption
of the response model is that probability is not included time-
limit effect. However, there is no doubt that time limits can
detract from average examinee performance in that examinees
correctly answered fewer items with the imposed time limits.
Therefore, it is very necessary to model a response model that
takes into account the impact of response time and ability. In
the SAT model, λ is the asymptotic level of accuracy with no
time limit. It is consistent with the assumptions of the response
model in the traditional hierarchical model. Because of this, the
lambda (λ) of the SAT model is defined as two-parameter logistic
model (2PLM):

λij = P(ηij = 1|aj, bj; θi) =
exp(aj × θi − bj)

1+ exp(aj × θi − bj)
(3)
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FIGURE 1 | The relationship between residual time and accuracy. (A) α > 0, (B) α < 0

Where ηij is the latent response of examinee i for item j. θi
denotes the ability parameter, aj and bj are the discrimination and
difficulty for item j.

In the educational test, the tradeoffs of different test takes
on the item may be different. Therefore, the parameters of the
SAT model should be reconstructed. For the time term ϕ×

(t − δ), it can be replaced with the term αjZij + ζ. Zij is the
standardized residual log-response time of examinee i for item j,
which reflects the difference between the observation time and
the expected time (Eq. 4). αj is the slope of residual time for
item j, and ζ is the intercept of the effect of residual time on
the test. Due to the condition of t − δ > 0, the exponential
transformation is added in the term (αjZij + ζ). Finally, the SAT
response model is established (SATM, Eq. 5). Furthermore, when
the time is sufficient, the SAT response model is transformed
to 2PLM. Due to response time as a random variable, the
response time may be different if an examinee on the item
can be answered more than once. The SATM can describe
the theoretical relationship between the different response time
and accuracy.

Zij =
lnTij − (βj − τi)

σj
(4)

Pij(Uij = 1|Zij) = λij(1− exp(−exp(αjZij + ζ)) (5)

In order to compare the SAT response model with other models,
response moderation model was Eq. 6 (RMM, Bolsinova et al.,
2017). Figure 1 showed the relationship between residual time
and accuracy of SATM and RMM. In figure A and B, the
parameters of the two models were the same. However, there were
significant differences between the two models on the asymptotic
level of accuracy. The probability of RMM can always close to 1 by
the increase in response time. Therefore, it means that response

time has a crucial impact on accuracy. Although examinees’
ability are extremely low, they can also get a high score in the
difficult item by increasing the time. In SATM, the accuracy is
affected not only by response time, but also by ability. Even
if the time is enough, the accuracy of SATM is also low for
low-ability examinee.

P(Uij = 1|Zij) =
exp(aj × θi − bj + αjZij)

1+ exp(aj × θi − bj + αjZij)
(6)

Hierarchical Model Framework
The SAT hierarchical model also consists of two levels. At
the first level, SATM and the response time model are two
independent models. At the second level, the person parameters
and item parameters are assumed to draw from a multivariate
normal distribution with mean vector and covariance matrix,
respectively (Eq. 7).

µI = [µθµτ] and6P =

[
σ2

θ σθτ

σθτ σ2
τ

]
(7)

µJ =
[
µbµβ

]
and6I =

[
σ2
b σbβ

σbβ σ2
τ

]
(8)

ESTIMATION AND MODEL SELECTION

Identifying Restrictions
To identify the SAT hierarchical model, the parameters should be
fixed to µθ = µτ = 0 and σ2

θ = σ2
τ = 1 (van der Linden, 2007).

Prior Distributions
The SAT hierarchical model is estimated by a fully Bayesian
Markov chain Monte Carlo (MCMC) method. The prior
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for the item parameters aj,1/σj, and αj all follow the left-
truncated normal distribution N (0, 1) I (0, ). The prior for ζ

is follows the standard normal distribution N (0, 1). Moreover,
the item parameters bj and βj are assumed to follow the
normal distribution N (0.001, 0.001). The covariance matrix 6I
selects an inverse-Wishart distribution InvWishart(R2, 2), where
R2 is a binary unit matrix. Due to identifying restrictions,
the correlation ρθτ is equal to the covariance σθτ, and ρθτ ∈

[−1, 1]. A doubly truncated normal distribution is selected as
the prior distribution of the covariance σθτ ∼ N (0, 1) I (−1, 1)
(Meng et al., 2015).

Model Fit for the Hierarchical Models
On the model selection criteria, the deviance information
criterion (DIC, Spiegelhalter et al., 2002) is selected. Based on
the posterior distribution of the log-likelihood or the deviance,
DIC is calculated from the samples generated by the MCMC
simulation. DIC = D̄+ pD, where pD is the effective number of
parameters, D̄ is the posterior mean of deviance (i.e., −2 × Log-
likelihood). The smaller the DIC, the better the model is fitted in
the empirical data.

SIMULATION STUDY

Design of the Simulation Study
To verify the parameter recovery with the proposed
estimation method, a simulation study was carried out
based on the test length (m = 30, 60) and the sample
size (N = 500, 1000). There were 30 replications for
each condition. For different item parameters, they were
separately drawn from different distributions: aj ∼ N(0, 1)I(0),
1
σj
∼ N(0, 1)I(0), αj ∼ N(0, 1)I(0), ζ ∼ N(0, 1), and[

bj, βj
]
∼ MVN

(
[0, 3] ,

[
1 .25
.25 .25

])
. The person parameters θ

and τ were sampled from a bivariate normal distribution with
σθτ = 0.5. The chosen parameters, test length and sample size
are the most commonly used settings (Wang et al., 2013; Meng
et al., 2015; Bolsinova et al., 2017).

Results of the Simulation Study
The item and person parameters were measured by the Mean
squared error (MSE) and average bias (Bias).

MSE(ξ̂ ) =

∑R
r=1

∑m
j=1(ξ̂ − ξ)

2

R×m
(9)

Bias(ξ̂ ) =

∑R
r=1

∑m
j=1(ξ̂ − ξ)

R×m
(10)

Where ξ̂ and ξ are the estimated and true values of model
parameters, respectively. R is the number of replications and m
is the test length.

The estimated results of the item parameters are displayed
in Table 1. The MSE for the item parameters decreased when
the sample size N increased. For the condition with N = 1000,

m = 60, the MSE of b decrease from 0.0592 to 0.034, and the
other parameters were less than 0.032. The absolute Bias of the
item parameters were close to 0.07. Therefore, the results of item
parameters were acceptable for all conditions.

Alternatively, Table 1 shows the result of the person
parameters. The MSE of the speed parameter was below 0.03
within each condition. However, the result of the ability decreased
from 0.17 to less than 0.10 with the increase of the test
length. On the other hand, the Bias of the person parameters
fluctuated around zero. Consequently, the person parameters
were likewise acceptable.

EMPIRICAL EXAMPLE

Data and Method
We analyzed data from the Raven’s Standard Progressive Matrices
(SPM). The SPM includes five sets (A to E) and 12 items in
each set. The valid sample size was 320 and the difficulty of the
items was disorderly. In the process of responding, examinees
could only answer questions in the order of the presented,
and were not allowed to be returned. The time limit of this
test was 40 min.

Three models were fitted to the empirical data using Gibbs
samplers (30000 iterations, 10000 burn-in, 2 chains and 2
thinning). The multivariate potential scale reduction factor
(Brooks and Gelman, 1998) was used to monitor the convergence
diagnostic and required less than 1.1.

RESULTS

The SPM data was fitted by the traditional hierarchical
model (van der Linden, 2007, M0), the RMM hierarchical model
(RMHM) and the speed-accuracy tradeoff hierarchical model
(SATHM), respectively. According to the DIC, SATHM
was the smallest (DIC = 47306.22), RMHM was followed
(DIC = 47677.85) and the largest was M0 (DIC = 48069.24).
Therefore, it means that considering the effect of response time
on accuracy can improve model fit. Furthermore, SATHM fitting
is superior to RMHM, so it is necessary to limit the effect of
response time on accuracy. The remainder of this section will
focus on the results of SATHM.

The results of the hyperparameters and the intercept
parameter (ζ) are presented in Table 2. With the 95% credible
interval for the correlation σθτ, speed was negatively correlated
with ability. The mean of the intercept parameter (ζ) was 2.6431
and the mean of b was−2.646. Meanwhile, the correlation of item
parameters b and β was highly positive.

Finally, the relationship between b and alpha is presented in
Figure 2. The dotted line of the horizontal axis is the mean
of b. From Figure 2, when α was less than 0, b was greater
than or approaching the mean of b for all items. Therefore, the
effect of residual response time is more likely to be negative for
medium-difficulty items. The result is slightly different from that
of Bolsinova et al. (2017; Figure 3). It may be related to the
difficulty of the test, because the test is relatively simple.
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TABLE 1 | MSE and Bias for the item parameters.

N = 500, m = 30 N = 1000, m = 30 N = 500, m = 60 N = 1000, m = 60

Model parameters MSE Bias MSE Bias MSE Bias MSE Bias

Item parameters a 0.0592 −0.0279 0.0315 −0.0338 0.0460 −0.0334 0.0314 −0.0350

b 0.0592 0.0423 0.0295 0.0115 0.0564 −0.0003 0.0340 −0.0046

ζ 0.0032 0.0186 0.0092 0.0611 0.0110 −0.0100 0.0004 0.0047

α 0.0551 0.0102 0.0663 0.0019 0.0590 0.0085 0.0256 0.0148

σ 0.0018 −0.0007 0.0008 0.0018 0.0016 −0.0007 0.0009 0

β 0.0048 −0.0068 0.0019 0.0146 0.0068 −0.0116 0.0025 −0.0087

Person parameters θ 0.1710 0.0174 0.1770 −0.0019 0.0918 0.0031 0.0948 −0.0031

τ 0.0298 −0.0002 0.0258 0.0050 0.0151 0.0053 0.0147 0.0142

DISCUSSION

The accuracy of completing a task has always been the main
evaluation index in the educational assessment. During a variety
of task situations, all the indexes indicating the quality of
examinees are extremely important, including the correctness
of the result as well as the timeliness of the decision-making

TABLE 2 | Posterior means and 95% credible intervals of the hyperparameters
and the intercept parameter (ζ) under the SAT hierarchical model.

Mean s.d 95% credible interval

σθτ −0.7361 0.0544 [−0.8239 −0.6109]

σ2
b 2.2172 0.4404 [1.5157 3.2314]

σbβ 0.8467 0.1818 [0.5612 1.2672]

σ2
β 0.4849 0.0916 [0.3367 0.6966]

ζ 2.6431 0.1385 [2.3960 2.9316]

µb −2.6460 0.2019 [−3.0521 −2.2519]

µβ 2.4868 0.0983 [2.2950 2.6783]

FIGURE 2 | Posterior means of the b and α under SATHM.

process. Moreover, most tests are administered within an
allocated time. Due to the time limit, examinees might have
different tradeoffs on different items. However, current models
cannot effectively analyze the effect of the SAT. In cognitive
experiments, SAT model is more superior to describing the
dynamic relationship between reaction time and accuracy than
other models. Therefore, this paper incorporates the SAT model
with the traditional hierarchical model to establish the SATHM.
In addition, the parameters of SATHM can be performed well
using the MCMC algorithm and the DIC more preferred the
SATHM than other models in empirical data.

Some other issues should be further researched. Firstly, the
SATHM merely explains the item-specific tradeoff. However,
it is simple to extend to the tradeoff of between-person
differences with reference to Bolsinova et al. (2016, 2017).
Secondly, the lognormal response model was selected to model
the response time in SATHM, but it not always satisfies the
normality assumption. Therefore, some other models should be
investigated, such as Shifted Wald distribution (Anders et al.,
2016) and the semi-parameter model (Wang et al., 2013). Finally,
Chen et al. (2018) have explored the relationships between
response time and accuracy and found that there may be a
curvilinear dependency. Accordingly, a curvilinear SATHM can
be obtained with some extensions.
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A novel Bayesian modeling framework for response accuracy (RA), response times

(RTs) and other process data is proposed. In a Bayesian covariance structure modeling

approach, nested and crossed dependences within test-taker data (e.g., within a testlet,

between RAs and RTs for an item) are explicitly modeled. The local dependences are

modeled directly through covariance parameters in an additive covariance matrix. The

inclusion of random effects (on person or group level) is not necessary, which allows

constructing parsimonious models for responses and multiple types of process data.

Bayesian Covariance Structure Models (BCSMs) are presented for various well-known

dependence structures. Through truncated shifted inverse-gamma priors, closed-form

expressions for the conditional posteriors of the covariance parameters are derived.

The priors avoid boundary effects at zero, and ensure the positive definiteness of the

additive covariance structure at any layer. Dependences of categorical outcome data are

modeled through latent continuous variables. In a simulation study, a BCSM for RAs and

RTs is compared to van der Linden’s hierarchical model (LHM; van der Linden, 2007).

Under the BCSM, the dependence structure is extended to allow variations in test-takers’

working speed and ability and is estimatedwith a satisfying performance. Under the LHM,

the assumption of local independence is violated, which results in a biased estimate of

the variance of the ability distribution. Moreover, the BCSM provides insight in changes

in the speed-accuracy trade-off. With an empirical example, the flexibility and relevance

of the BCSM for complex dependence structures in a real-world setting are discussed.

Keywords: process data, educational measurement, Bayesianmodeling, covariance structure, marginal modeling,

cross-classification, response times, latent variable modeling

1. INTRODUCTION

Computer-based assessments (CBAs) provide the opportunity to gather responses times (RTs) and
other process data in addition to the test-takers’ responses. Empirical research has shown that in
combination with response patterns, RTs can lend valuable insight into interesting test-taker, item
and test characteristics, such as pre-knowledge of items, motivation, time-pressure or differential
speededness (Bridgeman and Cline, 2004; Wise and Kong, 2005; Meijer and Sotaridona, 2006; van
der Linden et al., 2007; van der Linden and Guo, 2008; Marianti et al., 2014; Qian et al., 2016). New
types of process data have been explored lately that carry the potential to lend additional insight into
(latent) response processes and to improve inferences about constructs of interest (e.g., Azevedo,
2015; He et al., 2016; Goldhammer and Zehner, 2017; Maddox, 2017). To make valid inferences
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from process data, innovative joint models are needed that are
capable of utilizing test-taker data beyond RAs and RTs, while
accounting for complex relationships in multiple data types.

An important concept is the speed-accuracy trade-off, which
states that, on average, a test-taker’s ability suffers from an
increased working speed (van der Linden, 2009). Test scores
depend on test-takers’ speed during the test and ignoring this
within-subject relationship threatens the validity of inferences
about their ability level. In experimental cognitive psychology,
the speed-accuracy trade-off can be modeled for individual
persons as the relationship between the proportion of correct
tasks and the average time spent on the tasks (Luce, 1986).
In educational measurement, learning effects can be expected
when presenting the same item to a test-taker multiple times
(Butler, 2010). Hence, in practical applications, often only a single
measurement of RA and RT is obtained for each combination of
test-taker and item. Therefore, it is common to assume a certain
homogeneity in the speed-accuracy trade-off within a group of
test-takers and how they are affected by the condition of interest
(Thissen, 1983; Klein Entink et al., 2008; Glas and van der Linden,
2010; Ranger and Kuhn, 2013; Goldhammer and Kroehne, 2014;
Goldhammer et al., 2014; Loeys et al., 2014; Molenaar et al.,
2015; van der Linden and Fox, 2016). Alternatively, in certain
experimental settings, the researcher can control the test-takers’
working speed (by imposing time limits) and thereby exclude the
person-level working speed variable from the regression equation
(Goldhammer and Kroehne, 2014).

More general and flexible approaches to model and test the
within-subject dependence structure have been achieved through
the generalized linear mixed model (GLMM) (McCulloch,
2003) and mixture models. The within-subject mixture models
allow subject-specific changes in the speed-accuracy trade-off
across different states. However, in practice the number of
states is very limited (Wang and Xu, 2015; Molenaar et al.,
2016) to obtain identifiable and stable estimation results. In
GLMMs, the measurement model for the RAs or the RTs is
extended by including either the person level variable (ability
or working speed) or the dependent variable of the respective
other measurement model as a covariate in the regression
equation. Item-specific person-level and person-specific item-
level variables allow the speed-accuracy trade-off to vary between
items and allow item parameters to vary across persons,
respectively (e.g., Goldhammer et al., 2014, 2015). Furthermore,
a non-linear relation between RAs and RTs can be specified (e.g.,
Molenaar et al., 2015; Bolsinova and Molenaar, 2018).

However, the complexity of a GLMM is drastically increased
when including other process data and extending the GLMMs
with additional person-level variables. It is therefore questionable
whether the GLMM approach can manage the challenges of
utilizing new types of process data in complex CBAs. Currently,
GLMMs are limited in the amount of process data information
that can be utilized to make inferences due to restrictions
on the model complexity and the sample size. Furthermore,
GLMMs are also limited in how the information is utilized.
For instance, correlations between RAs and different types
of process data may vary depending on item characteristics
or test design. In that case, interaction effects are needed to

model item and/or testlet-specific dependences, but this will
significantly increase the complexity of the GLMM. To prevent
over-parameterization and weak numerical stability, techniques
such as principle component analysis, latent class analysis, or
various model selection algorithms (e.g., backward elimination,
forward selection or all subsets regression) (Thomas, 2002; Efron
et al., 2004; Wetzel et al., 2015) have been proposed to reduce
the number of covariates in the regression equation. However,
this complicates a straightforward modeling approach and can
lead to arbitrary assumptions and ad hoc decisions. It is well-
known that ignoring correlations in test-taker data may cause
violations of local independence assumptions and can result in
biased inferences about parameters, the reliability of the test, and
hinder test equating (e.g., Yen, 1984; Ackerman, 1987; Chen and
Thissen, 1997; Bradlow et al., 1999; Baker and Kim, 2004; Jiao
et al., 2005, 2012; Wang and Wilson, 2005; Wainer et al., 2007).
Therefore, when including new types of process data, care must
be taken in modeling the dependence structure to avoid making
biased inferences.

The proposed Bayesian Covariance Structure Model (BCSM)
can handle different types of nested and cross-classified
dependence structures for multiple types of test-taker data. The
BCSM extends the marginal model for hierarchically structured
item RT data of Klotzke and Fox (2018). In the model of
Klotzke and Fox (2018), dependences that follow from nested
classifications (e.g., item clusters in a testlet design) are directly
modeled as covariances without including random effects. The
methodology is extended to classifications across multiple data
types. Thus, in addition tomodeling nested classifications (within
a data type), relationships in data across different types (e.g.,
RTs and dichotomous responses) are modeled through cross-
classifications in the dependence structure. In the same manner
as the nested classifications, crossed classifications are modeled
explicitly as covariance parameters. Without the inclusion of
random effects, the parsimony of the BCSM is preserved,
where dependences between each cluster of observations can
be modeled with a single covariance parameter. The BCSM
assumes a multivariate normal distribution for the data, either
directly or through a threshold specification (i.e., for categorical
or count data), and allows distinct modeling of the mean and
covariance structure. The BCSM parameters can be estimated
with an efficient Gibbs-sampling algorithm, even for a reasonably
small sample size. Modeling local dependences via covariance
parameters instead of modeling dependences through random
effects (i.e., the random effect variance defines the covariance
between clustered observations) has two advantages: first,
covariances can be negative or positive, which allows more
flexibility in specifying complex dependence structures than
random effect variances. The latter can only model positive
dependences. Second, tests for local independence under the
BCSM framework do not require testing at the boundary of
the parameter space (i.e., the null hypothesis states that the
covariance parameter is equal to zero). This stands in contrast
to a random effect variance, which is a-priori restricted to be
positive. In the BCSM, this means that the prior distributions
for the covariance parameters are less informative, i.e., they
don’t assume beforehand that the covariance parameters are
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greater than zero. Therefore, more objective inferences about the
dependence structure can be made. Finally, contrary to common
marginal modeling approaches such as generalized estimating
equations (GEE) (Liang and Zeger, 1986; Diggle et al., 2013), the
dependence structure is fully modeled in an additive covariance
structure. This allows testing for interaction effects (e.g., local
dependence within testlets) (Lee and Neider, 2004), and to
estimate random person/group effects post-hoc from the residuals
of the model. The latter is of utility if the random effects structure
cannot be estimated in the traditional way (fitting a random
effects model) due to for instance sample size limitations. For
example, test-taker ability estimates can be obtained under a
complex within-subject dependence structure, while accounting
for various types of process data information.

The paper is organized as follows: first, the BCSM is
introduced. Next, an additive covariance structure is defined that
can be utilized to explicitly model dependences in data from
different types (RAs, RTs, and other process data). Five well-
known dependence structures are presented under the BCSM.
An approach to model the interdependence of categorical data
through truncated conditional univariate normal distributions
of latent variables is specified. Closed-form expressions for the
conditional posterior distributions of the covariance parameters
are derived through truncated shifted inverse-gamma priors,
where the truncation point ensures the positive definiteness of the
additive covariance matrix. Samples from the full joint posterior
are obtained using a Gibbs sampler. In a simulation study, a
BCSM for RAs and RTs is compared to the hierarchical model
of van der Linden (2007) (LHM) given a situation in which the
test-taker’s working speed and ability are allowed to vary over
the course of the test, thus violating the assumption of local
independence in models that presume a fixed working speed and
ability. In an empirical example, data from the Programme for
the International Assessment of Adult Competencies (PIAAC)
study (OECD, 2013) is analyzed with a BCSM for RAs and
two types of process data. Finally, the results, limitations and
future prospects of the proposed framework for educational
measurement applications are discussed.

2. MODELING COVARIANCE STRUCTURES

Data can be dependent on different levels. For example, in a
testlet structure data of items within a testlet may be correlated
stronger than data across items. Hence, data may be locally
dependent on a testlet level. Furthermore, more than one data
point may be available for an item (e.g., dichotomous responses,
RTs and additional process data). The relationship between two
data points (of the same test-taker) for an item can be positive
or negative. The corresponding local dependence can either
increase (when positive) or decrease (when negative) the total
correlation of data for an item. This multilevel dependence
structure is specified through a cross-classification matrix. In
BCSM, an additive covariance structure forms the link between
the covariance parameters and the cross-classification matrix.

Observations within a group can be more alike than
observations across groups. In the BCSM framework, this local

dependence is modeled in an additive covariance structure.
Each source of local dependence, i.e., the effect of each
grouping on the association of components, is represented by
a covariance parameter and a layer in the additive structure.
Group membership is specified by a Nt ×Nc classification matrix
u, where Nt is the number of layers in the additive covariance
structure and Nc is the number of components. Each row in u

thus corresponds to a layer in the covariance structure and the
columns define the local dependence of components in that layer.
Components that are grouped together within a layer are marked
by a 1, ungrouped components are marked by a 0.

The components are assumed to be multivariate normally
distributed with a Nc-dimensional mean vector µ and a Nc ×

Nc-dimensional covariance matrix 6. The inclusion of person
level random effects is not necessary as the covariance structure
implied by the usual person level variables (such as ability and
working speed) is directly modeled. As a consequence, the mean
structure consists of intercepts on the group and item level.
Intercepts on the group level are for example the average working
speed or ability in a group of test-takers. Intercepts on the
item level are commonly denoted as item time intensity and
item difficulty parameters. Furthermore, test-taker background
variables can be included as covariates.

The covariance matrix consists of a base layer 60 and Nt

additive layers. In the base layer, the measurement error variance

is modeled, whereby 60 = diag
(

σ
2
1 , . . . , σ

2
Nc

)

. Each additive

layer t is constructed out of a covariance parameter θt and the
t-th row of the classification vector, i.e., ut :

6 = 60 +

Nt
∑

t=1

θtutu
T
t . (1)

On a mathematical level, no qualitative difference is made
between the covariance parameters θ = {δ, τ ,ω,φ, ν,1}.
However, for the sake of clarity, in this text δ, τ , and ω represent
the covariance between, respectively, the RTs, the RAs and
additional process data of a test-taker. The local dependence that
follows from grouping observations from different data types
on a person level is represented by the covariance parameter φ.
The vector ν contains the cross-covariances between components
of different types (e.g., RAs and RTs). Furthermore, 1 are the
covariances that follow from blocks within components of one
type (e.g., testlets within RT data).

Five examples of models for responses and process data are
described that can be constructed within the BCSM framework.
Each example is illustrated for a test size of p = 6 items. The
utilized data types are RTs (RT), RAs that are manifested as
discrete variables through a threshold specification (RA) and
additional process data (W). The observed categorical data are
denoted as D. Finally, the scalability of BCSMs given a growing
number of items and extensions to the classification structure
is discussed.

2.1. The BCSM for Speed and Ability
The BCSM for speed and ability follows the classification as
implied by the LHM with binary factor loadings. In this model,
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a test-taker’s RTs are grouped by the latent factor working speed,
and the RAs are grouped by the latent factor ability. Furthermore,
observations are grouped across the two data types on a person
level, which represents a correlation between a test-taker’s ability
and working speed. Table 1 shows the classification matrix and
covariance parameters of the BCSM for speed and ability.

2.2. Variable Speed-Accuracy Trade-Off
For the variable speed-accuracy trade-off model, the BCSM
for speed and ability is extended with an item-specific cross-
covariance between a test-taker’s RTs and RAs. This allows to
investigate how the speed-accuracy trade-off within a group of
test-takers varies between items. Thereby, a certain homogeneity
in the relevant response processes is assumed, which leads to test-
takers within a group sharing a common speed-accuracy trade-
off. The classification diagram for the variable speed-accuracy
trade-off model is shown in Figure 1. Table 2 extends Table 1

with the additional classification rules and covariance parameters
implied by a variable speed-accuracy trade-off.

2.3. Blocked Structures of
Cross-Covariances
Just as the variable speed-accuracy trade-off model, the blocked
structures of cross-covariances model extends the BCSM for

TABLE 1 | The additive covariance structure of the BCSM for speed and ability is

implied by the random effects structure of the LHM with binary factor loadings.

Classification matrix u

Covariance Response times Response accuracies

δ 1 1 1 1 1 1 0 0 0 0 0 0

τ 0 0 0 0 0 0 1 1 1 1 1 1

φ 1 1 1 1 1 1 1 1 1 1 1 1

speed and ability with a varying cross-covariance between a test-
taker’s RTs and RAs. However, the cross-covariance is defined to
change per blocks of (here: two) items. A possible application for
this model is test-taking under varying time-pressure conditions.
In such a scenario, it is reasonable to assume local dependence
for components (i.e., RTs and RAs) within a block of items
that belong to the same time-pressure condition. In the variable
speed-accuracy trade-off model on the other hand, the local
dependence is defined per individual item. Table 3 extends
Table 1 with the additional classification rules and covariance
parameters of the blocked structures of cross-covariances model.

2.4. Differential Blocked Structures of
Cross-Covariances Across Factors
The within-subject dependence structure can also be specified for
components within a single data type. In the differential blocked
structures of cross-covariances across factors model, the variable
speed-accuracy trade-offmodel is extended with a separate testlet
structure for each the RTs and the RAs. The testlet structures are
defined independently of each other. Table 4 extends Tables 1, 2

TABLE 2 | The additive covariance structure of the variable speed-accuracy

trade-off model is an extension of the BCSM for speed and ability with

item-specific cross-covariances between RTs and RAs.

Classification matrix u

Covariance Response times Response accuracies

ν1 1 0 0 0 0 0 1 0 0 0 0 0

ν2 0 1 0 0 0 0 0 1 0 0 0 0

ν3 0 0 1 0 0 0 0 0 1 0 0 0

ν4 0 0 0 1 0 0 0 0 0 1 0 0

ν5 0 0 0 0 1 0 0 0 0 0 1 0

ν6 0 0 0 0 0 1 0 0 0 0 0 1

FIGURE 1 | Classification diagram for the variable speed-accuracy trade-off model. The classification implied by the LHM is extended by grouping components

item-wise. This allows the group level speed-accuracy trade-off to vary between items.
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TABLE 3 | The additive covariance structure of the blocked structures of

cross-covariances model is an extension of the BCSM for speed and ability with

block-wise cross-covariances between RTs and RAs.

Classification matrix u

Covariance Response times Response accuracies

ν1 1 1 0 0 0 0 1 1 0 0 0 0

ν2 0 0 1 1 0 0 0 0 1 1 0 0

ν3 0 0 0 0 1 1 0 0 0 0 1 1

TABLE 4 | The additive covariance structure of the differential blocked structures

of cross-covariances across factors model is an extension of the variable

speed-accuracy trade-off model with independent testlet structures for separate

data types.

Classification matrix u

Covariance Response times Response accuracies

11 1 1 0 0 0 0 0 0 0 0 0 0

12 0 0 1 1 0 0 0 0 0 0 0 0

13 0 0 0 0 1 1 0 0 0 0 0 0

14 0 0 0 0 0 0 1 1 1 0 0 0

15 0 0 0 0 0 0 0 0 0 1 1 1

with the additional classification rules and covariance parameters
of the differential blocked structures of cross-covariances across
factors model.

2.5. More Than Two Data Types
A BCSM is not limited to RTs and responses. Additional
process data can carry information relevant to the research.
In this example, additional process data is available for each
combination of test-taker and item. Therefore, p = 6
components are added to the model. In the illustrated model, an
item-specific cross-covariance between components of all types
is assumed. That means for example that RTs and RAs to an
item may correlate in a different way than RAs and process data,
to the same item. Furthermore, φ1, φ2, and φ3 represent the 3-
by-3 covariance of the three latent factors (e.g., ability, working
speed, and speed first action) that are related to the three types
of data. Table 5 shows the classification matrix and covariance
parameters of the more than two data types model.

2.6. Model Scalability
The models constructed in the BCSM framework are scalable
with respect to the length of the test, the number of data types
and the specified dependence structure. The number of columns
of u corresponds to the number of data components (Nc). If
a single observation is available for each combination of test-
taker, item and data type, the number of data components is
the product of the number of items (p) and the number of data
types (Nd), i.e., Nc = p ∗ Nd. Consequently, extending the test
length with one item increases the number of columns of u by
Nd. Similarly, introducing an additional data type increases the
number of columns by p.

TABLE 5 | The additive covariance structure for a BCSM that incorporates

additional process data, next to RTs and RAs.

Classification matrix u

Covariance Response

times

Response

accuracies

Process

data

δ 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0

τ 0 0 0 0 0 0 1 1 1 1 1 1 0 0 0 0 0 0

ω 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1

φ1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0

φ2 1 1 1 1 1 1 0 0 0 0 0 0 1 1 1 1 1 1

φ3 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1

ν1 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0

ν2 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0

ν3 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0

ν4 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0

ν5 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0

ν6 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0

ν7 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0

ν8 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0

ν9 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0

ν10 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0

ν11 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0

ν12 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1

ν13 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0

ν14 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0

ν15 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0

ν16 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0

ν17 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0

ν18 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1

The number, if any, of additional rows of u depends on
the specified classification structure. For example, under the
structure specified in Table 1, a change in the number of
data components does not affect the number of rows of u.
Instead, the existing groupings are extended to include the new
data components.

In other situations, the number of groupings depends on the
number of data components. For example, given the item-specific
cross-classifications as defined in Table 2, each additional item
leads to one additional classification rule (the RA and RT of a test-
taker to one item are grouped together) and therefore inserts one
row into u. Thus, if the variable speed-accuracy trade-off joint-
model is applied to a test with p2 = 100 instead of p1 = 10
items, the number of columns increases by (p2 − p1) ∗ Nd =

(100 − 10) ∗ 2 = 180 and the number of rows increases by
p2 − p1 = 90.

3. CATEGORICAL OUTCOME DATA

When recording the test-takers’ responses during a test, discrete
realizations of latent response variables are observed. The
multivariate normally distributed RA data (latent responses)
are linked through a threshold specification to their discrete
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realizations. However, truncating a multivariate normal
distribution in high dimensions is non-trivial (Botev, 2017)
and simply truncating independently for each dimension
does not lead to the intended multivariate joint-distribution
(Horrace, 2005).

The proposed solution is to derive the univariate normal
distribution of each latent response component, conditional on
all other components. The univariate normal distribution is
derived by partitioning the additive covariance structure 6, as
defined in Equation 1, into four parts. The upper left part, B11,
gives the variance of the k-th component and the diagonal parts,
B12 and B21, contain the covariance of the k-th component with
the remaining components. Finally, B22 describes the covariance
structure of all components but the k-th:

6 =

Yik Ỹ i
[ ]

B11 B12 Yik

B21 B22 Ỹ i

, (2)

where Y is a N × Nc-dimensional matrix, containing data from
all Nc components and N test-takers. A tilde, i.e., a ∼, above a
vector or matrix indicates that the k-th component is excluded
from the data structure. Based on the partitioned covariance
matrix, the means and variance of the conditionally univariate
normal distribution of the k-th component are derived for
each test-taker:

µYk|Ỹ
= µYk

+ B12B
−1
22 (Ỹ − µỸ ), (3)

σ
2
Yk|Ỹ

= B11 − B12B
−1
22 B21. (4)

A closed-form expression for B
−1
22 is derived through the

Sherman-Morrison formula (e.g., Lange, 2010, p. 261):

A
−1
t+1 = (At + λvv

T)−1 = A
−1
t −

A
−1
t vv

T
A
−1
t

1/λ+ vTA
−1
t v

, (5)

where A
−1
t = 6̃

−1
t is the inverse of the additive covariance

structure for all but the k-th component at the t-th layer, λ = θt+1

is the covariance parameter for the added layer and v = ũt+1

contains the classification structure for the new layer. Given that

the inverse of A−1
0 = 6̃

−1
0 , i.e., the inverse of the diagonal matrix

consisting of the measurement error variance parameters for all
but the k-th component, is known, the inverse for any additional
layer can be derived recursively.

4. BAYESIAN INFERENCE

In line with the approach suggested by Fox et al. (2017)
and Klotzke and Fox (2018), closed-form expressions for the
conditional posterior distributions of the variance and covariance
parameters are derived through truncated shifted inverse-gamma
priors. For each of the Nt layers of the additive covariance
matrix, a truncation point trt is derived by applying the Sherman-
Morrison formula (Lange, 2010, p. 260–261). Enforcing the
truncation through the indicator function 1tr ensures that the

covariance matrix is positive definite at any layer t. This leads to a
lower bound for each covariance parameter (θt > trt) conditional
on the classification structure and the inverse of the covariance
matrix at the underlying layer (t − 1):

trt = −1/uTt 6
−1
t−1ut . (6)

For the measurement error variance parameters (the diagonal
terms of 60) a truncation sets the probability of negative values
a-priori to zero.

The reasoning behind the shift parameters is based upon
two premises: (1) a draw of θt is obtained through sampling
θt + ψt and subtracting the shift parameter ψt iteratively within
the Markov chain Monte Carlo (MCMC) (Gilks et al., 1995)
algorithm, (2) the probability distribution of θt + ψt must
incorporate all information that is available in the data about θt . It
is shown in Equations (7) and (8) that the probability distribution
of the person level means across that are grouped together in ut

contains all available information about the covariance parameter
θt . Note that the person level means are constructed as the
mean of (correlated) random normal variables and are therefore
univariate normally distributed.

Conditional on the classification structure and the additive
covariance matrix at its highest layer (6Nt ), the variance of the
person level means is derived through the property that the
variance of the sum of correlated random variables is the sum
of their covariances:

Var
(

Ȳi(k∈ut )|6Nt , u
)

= Var





∑

k∈ut

Yik/

(

1TNc
ut

)





=

[(

Nc
∑

k=1

σ
2
k utk + θt

(

1TNc
ut

)2

+
∑

j6=t

θj

(

1TNc
(uj ⊙ ut)

)2



 /

(

1TNc
ut

)2





= θt +









Nc
∑

k=1

σ
2
k utk +

∑

j6=t

θj

(

1TNc
(uj ⊙ ut)

)2



 /

(

1TNc
ut

)2





= θt + ψt , (7)

where ⊙ denotes the Hadamard product and 1Nc is a
Nc-dimensional vector of ones. A sufficient statistic for
Var

(

Ȳi(k∈ut)|6Nt , u
)

= θt + ψt is therefore the sum of squares
of the deviations of the conditional person level means from the
conditional grand mean,

SSBt =

N
∑

i=1

(

Ȳi(k∈ut) − Ȳ.(k∈ut)

)2
. (8)

Similarly, the within-component sum of squares is a sufficient

statistic for Var(Yik) = σ
2
k
+

Nt
∑

t=1
θtutk, namely

SSWk =

N
∑

i=1

(

Yik − Ȳ.k

)2
. (9)
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From Equations (8) and (9) follow Nt + Nc sufficient statistics
for the Nt covariance and Nc variance parameters, out of which
the additive covariance structure, as specified in Equation (1), is
composed. The model is therefore identified under the condition
that the rows of the classification matrix u are mutually distinct.

The truncated shifted inverse-gamma prior extends the
default inverse-gamma prior for variance components with
a shift and a truncation parameter; the former allowing a
covariance parameter to take on negative values, the latter
ensuring the positive definiteness of the additive covariance
matrix at any layer:

IG(x,α0,β0,ψt , trt) =

[

β
α0
0

Ŵ(α0)
(x+ ψt)

−α0−1exp

(

−
β0

x+ ψt

)]

·

1tr(x > trt), (10)

where the truncation point (trt) and shift parameter (ψt) are
computed according to Equations (6) and (7).

Note that conjugacy between the extended inverse-gamma
prior and the likelihood function of a normal distribution
is preserved, thus leading to truncated shifted inverse-
gamma posteriors for the covariance and measurement
error variance parameters:

θt ∼ IG(x,α0 + N/2,β0 + SSBt/2,ψt , trt), (11)

σ
2
k ∼ IG(x,α0 + N/2,β0 + SSWk/2,

Nt
∑

t=1

θtutk, 0). (12)

The a-priori restriction of σ 2
k
> 0 is thus enforced by fixing the

truncation point for the measurement error variance parameters
to zero.

See Appendix A in Supplementary Material for an outline of
the MCMC algorithm and the corresponding sampling steps.

5. SIMULATION STUDY

In a simulation study, the within-subject dependence structure
under a model for RTs and dichotomous responses is estimated.
A comparison is made between a BCSM and the LHM. In the
BCSM framework, the dependence structure is directly modeled
in an additive covariance matrix. In the LHM framework, the
dependence structure is implied by the random effect structure
and in particular the random effect variances. Therefore, the
focus of this simulation study is the precision and bias of the
(co)variance parameter estimates.

In the simulated experiment, across two conditions, N =

200 and N = 1, 000 randomly selected persons are taking a
test that consists of p = 12 items. Furthermore, the time-
pressure on the test-takers systematically changes after every two
items. This is assumed to affect the response processes within
the group of test-takers over the course of the test. For example,
under a perceived high time-pressure, guessing may become
more likely. The change in response processes is reflected by
the within-subject dependence structure, i.e., the speed-accuracy
trade-off may vary between blocks of two items and is common
across test-takers.

The length of the test is fixed across the 100 replications for
both conditions of the simulation.Within each condition, all test-
takers are part of the same group. Within each replication, test-
taker data are generated and the BCSM as well as the LHM are
fitted with 5000 MCMC iterations and a burn-in phase of 10%.
The LHM is fitted using the R-package LNIRT (Fox et al., 2018).

5.1. LHM for Fixed Speed and Ability
On the first level of the hierarchical framework, separate
measurement models for the RTs and RAs are specified. The
item discrimination parameters are fixed to 1, which gives the
following first level models for the RTs (RT) and RAs (RA) of
test-taker i and item k:

RTik = βk − ζi + eRTik , (13)

RAik = θi − bk + eRAik
, (14)

where ζi ∼ N (µζ , δ) and θi ∼ N (µθ , τ ) are random variables
on a person level, representing the variation in working speed
and ability between test-takers. The time intensity and item
difficulty parameters βk and bk are item level intercepts and
are not given further attention in this simulation study. Finally,
eRTik ∼ N (0, σ 2

k
) and eRAik

∼ N (0, 1) are the measurement
errors. On the second level, a model for the joint-distribution of
the person parameters (working speed and ability) is defined:

6p =

(

δ + φ φ

φ τ + φ

)

. (15)

Note that the LHM assumes a constant working speed and ability
across the test for a test-taker. From this follows a test-wide
cross-covariance between a test-taker’s RTs and RAs φ.

5.2. BCSM for Variable Speed and Ability
In the BCSM, the within-subject dependence structure is
modeled directly in an additive covariance structure with 9 layers.
The covariance structure is defined in Equation (1), where θ =

{δ, τ ,φ, ν1, . . . , ν6} are the (cross-)covariance parameters and the
classification matrix is specified in Table 6. A truncated shifted
inverse-gamma prior with shape = 10−3 and scale = 103 is
defined for the variance and covariance parameters.

5.3. Data Generation
Data are generated under a generalization of the models specified
in Equations (13)–(15) that allows the test-takers’ working speed
and ability to vary over the course of the test:

RTik = βk − ζit(k) + eRTik , (16)

RAik = θit(k) − bk + eRAik
. (17)

6pk =

(

δ + φ + νt(k) φ + νt(k)
φ + νt(k) τ + φ + νt(k)

)

, (18)

where t(k) denotes item k in classification group t. The
population values of the (co)variance parameters are δ = 0.5,
τ = 0.5, φ = 0.5 and ν = {0,−0.05,−0.1, 0.4, 0.2, 0.3}. The item
level intercepts (β and b) are set to zero. Finally, the population
values of the measurement error variances are generated from a
uniform distribution with lower bound 0.5 and upper bound 1.5.
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TABLE 6 | The additive covariance structure of the BCSM allows a varying speed-accuracy trade-off between blocks of two items.

Classification matrix u

Covariance Response times Response accuracies

δ 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0

τ 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1

φ 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

ν1 1 1 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0

ν2 0 0 1 1 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0

ν3 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0

ν4 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0

ν5 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 1 1 0 0

ν6 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 1 1

TABLE 7 | Means and standard deviations of posterior mean estimates across

100 simulated replications of data for 200 and 1,000 test-takers and 12 items.

Mean (SD) of posterior mean estimates

N = 200 N = 1,000

Cov BCSM LHM BCSM LHM

δ = 0.5 0.49 (0.03) 0.51 (0.03) 0.50 (0.01) 0.52 (0.01)

τ = 0.5 0.51 (0.07) 0.45 (0.06) 0.48 (0.03) 0.42 (0.03)

φ = 0.5 0.51 (0.03) 0.50 (0.03) 0.50 (0.02) 0.49 (0.01)

ν1 = 0 0.00 (0.04) −0.01 (0.02)

ν2 = −0.05 −0.05 (0.04) −0.06 (0.03)

ν3 = −0.1 −0.07 (0.03) −0.11 (0.03)

ν4 = 0.4 0.39 (0.06) 0.39 (0.03)

ν5 = 0.2 0.18 (0.05) 0.19 (0.02)

ν6 = 0.3 0.28 (0.06) 0.30 (0.02)

A comparison is made between a BCSM and the LHM. In the BCSM framework, the full

within-subject dependence structure is modeled.

5.4. Results
Under the LHM, the test-wide cross-covariance and the
variance of the test-taker working speed distribution are
successfully estimated. The variance of the ability distribution
(τ ) is underestimated for both sample size conditions under
the LHM, which can be attributed to ignoring the block-
wise deviations from the test-wide cross-covariance. Under
the BCSM, the full within-subject dependence structure is
successfully estimated. Cross-covariances near zero (ν1, ν2,
and ν3) are estimated without bias regardless of sample size,
which can be attributed to the non-informative truncated
shifted inverse-gamma priors. The standard deviations
of the posterior mean estimates are comparable for both
models. Increasing the sample size leads to smaller standard
deviations of the posterior mean estimates for both models.
Under the BCSM, an average correlation of 0.99 (SD: 0.01)
is observed under both conditions between the simulated
measurement error variance parameters and their posterior
mean estimates. The results of the simulation study are
summarized in Table 7.

6. EMPIRICAL EXAMPLE: PIAAC 2012

The Programme for the International Assessment of Adult
Competencies (PIAAC) study deploys a computer-based large
scale assessment to gain insight into adult competencies across
the domains of numeracy, literacy and problem solving (OECD,
2013). The computer-based nature of the assessment allows
recording behavioral process data, in addition to the scored
responses. It is assumed that the process data correlate with
the scored responses and therefore contain information about
the latent competencies of interest. Describing these correlations
requires paying attention to local dependences within the data.
Local dependences follow from shared item characteristics (e.g.,
response mode), the test design (e.g., testlets), the manner the
process data is obtained (e.g., a single measurement per type,
test-taker and item, multiple measurements or aggregated data)
and the latent factor structure (e.g., data components load on
test-takers’ ability and working speed). Furthermore, test-taker
characteristics such as computer experience or gender may affect
the associations of data components (e.g., the correlation of RTs
and RAs of an item may differ between test-takers with and
without computer experience). It will be shown that a BCSM can
be constructed that (a) takes the complex dependence structure
within test-taker data into account, (b) allows correcting for
between-subject differences in the dependence structure by
including test-taker background variables, and (c) can be
estimated given a reasonable sample size.

6.1. Data Set
The data set consists of responses and process data for N = 745
Canadian test-takers and p = 15 items. For each combination
of item and test-taker, three data points are available: the scored
dichotomous response, the total (log) RT it took the test-taker
to complete the item and the (log) time it took the test-taker
until they took their first action on that item. Nine of the
items measure numeracy competencies, the remaining six items
measure literacy competencies. Furthermore, the items differ
in their response mode. See Table 8 for an overview of the
included items and their characteristics. Moreover, the test-
takers’ gender (0: male, 1: female), computer experience (0: no,
1: yes), whether or not they are a native speaker (0: no, 1: yes)
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TABLE 8 | Id, name, domain, and response mode of the 15 PIAAC items included

in the data analysis of the empirical example.

Item id. Name Domain Response mode

1 Wine 1 Numeracy Number match

2 Wine 2 Numeracy Stimulus clicking

3 Gas gauge Numeracy Number match

4 Photo 1 Numeracy Number match

5 Photo 2 Numeracy Stimulus clicking

6 Photo 3 Numeracy Exact match

7 Urban population Numeracy Number match

8 Tiles Numeracy Exact match

9 Package Numeracy Stimulus clicking

10 Baltic stock market 1 Literacy Stimulus clicking

11 Baltic stock market 2 Literacy Stimulus highlighting

12 Baltic stock market 3 Literacy Stimulus clicking

13 Baltic stock market 4 Literacy Stimulus clicking

14 TMN antitheft 1 Literacy Stimulus highlighting

15 TMN antitheft 2 Literacy Stimulus highlighting

and their educational level (1: low, 2: medium, 3: high) were
recorded. Further information on test-taker demographics and
item characteristics can be found in Statistics Canada (2013).

6.2. Dependence Structure
Data that are naturally grouped may be stronger correlated than
(conditionally) unrelated data. In the data set at hand, items are
grouped through their domain (numeracy or literacy) and their
response mode (number match, exact match, stimulus clicking
or stimulus highlighting). For each grouping, three layers are
defined: one for each pair of data types. This allows to explore
how the dependences between, respectively, RAs and RTs, RAs
and times to first action (TAs), and RTs and TAs vary across item
domains and response modes, while controlling for the rest of
the dependence structure. Furthermore, data components that
load on a common latent factor may be correlated. Latent factors
are the test-taker’s ability, working speed and speed first action.
The correlation between the latent factors is modeled in separate
layers. Figure 2 illustrates the classifications that follow from the
groupings. Data within each classification group may be locally
dependent. The corresponding classification matrix for the Nc =

45 data components and Nt = 24 classification groups is shown
in Appendix B (Supplementary Material).

6.3. Statistical Model
Under the BCSM framework, a model for response and process
data is constructed. In themean structure of the joint-model, test-
taker background data are modeled as predictor variables. The
dependence structure is modeled through an additive covariance
matrix that defines the relationship of the multivariate normally
distributed error terms:

Y i = XiB+ εi, εi ∼ N(0Nc ,6), (19)

where Y = {RA,RT,TA} is a N × Nc-dimensional matrix
containing the RAs that underlie the scored dichotomous

responses (RA), the total RTs per item for each test-taker
(RT), and the time passed until the test-taker’s first action
per item (TA). The N × 5-dimensional matrix X contains the
grand-mean centered test-taker background variables (gender,
computer experience, native speaker and education level) and
a vector of ones as first column. B is a 5 × Nc matrix
containing the regression weights for each of the four covariates
on the Nc data components, and the intercepts. The first
column of B contains the item-specific intercepts, which can be
interpreted as item difficulty, time intensity and average time
to first action parameters. The weights and intercepts are thus
modeled for each data component and are equal across test-
takers, therefore representing fixed effects. Note that no random
variance components are associated with fixed effects, whereby
they don’t enter the modeled dependence structure. TheNc×Nc-
dimensional additive covariance matrix 6 consists of Nt = 24
layers that correspond to the specified dependence structure:

6 = diag(σ )+

Nt
∑

t=1

θtutu
T
t . (20)

For the RA components, the measurement error variance
parameters are fixed to one. Furthermore the scale of the
IRT model is set by fixing the mean of the item-specific
intercepts (i.e., the mean of the item difficulty parameters)
to zero. The classification matrix u is shown in Appendix B
(Supplementary Material). A truncated shifted inverse-gamma
prior with shape = 10−3 and scale = 103 is defined for the
variance and covariance parameters. No a-priori information
about the regression weights is used: the prior guesses for the
scale matrix and the mean matrix of B equal the identity matrix
and a matrix of zeros, respectively.

6.4. Results
The model parameters are estimated with a single MCMC chain
of 55,000 iterations from which the first 15,000 iterations are
discarded as burn-in period. Visual inspection of traceplots and
applying the Heidelberger and Welch’ criterion (Heidelberger
and Welch, 1983) using the R-package coda (Plummer et al.,
2016) indicate a satisfying exploration of the parameter space
and do not provide evidence against convergence of the MCMC
algorithm. The posterior means and standard deviations of the
twenty-four covariance parameters in the additive covariance
structure are summarized in Table 9. Figure 3 shows the
corresponding 95%-Highest Posterior Density (HPD) intervals.

Given the observed data, it can be concluded that the
probability of local dependence in the ability and speed
first action latent factor classification groups is at least 95%.
Furthermore, a positive interdependence in the higher order
relationship between RTs and TAs is found. This implies that
on average, test-takers who work overall faster also lose less
time before making the first move in the item solving process.
The results indicate that it is necessary to model the implied
covariance structure of the correlated person effects on each
type of test-taker data (RAs, RTs, and TAs). The variation in
the data explained on a person level that is captured by the
latent factors (ability, working speed, and speed first action) and
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FIGURE 2 | Classification diagram for the PIAAC 2012 BCSM. The classification structure specifies dependences between scored responses and behavioral process

data for varying item characteristics (domain and response mode) and a correlated latent factors structure. RA, RAs that underlie the scored dichotomous responses;

RT, total RTs per item; TA, times to first action per item.

their correlation is estimated through the corresponding layers
in the additive covariance structure: modeling the person effects
themselves is not required.

Neither variations in the item domains, nor in the response
modes caused local dependence in the data. For each domain
and response mode, three sources of local dependence are
independently evaluated: the relationships between, respectively,
(1) RAs and RTs, (2) RAs and TAs, and (3) RTs and TAs.
Modeling the 3-by-3 covariances for each specified subset of
items shows that the interdependences across data types and the
investigated item characteristics are sufficiently captured by the
covariance layers through which the dependences of the latent
factors structure are specified. It can therefore be concluded that
the items’ domain and response mode do not explain a noticeable
amount of variance in the test-taker data when controlling for the
rest of the dependence structure.

The occurrence of a vast number of covariance parameter
estimates close to, or approximately equal to, zero highlights
the importance of the truncated shifted inverse-gamma prior
specification that avoids boundary effects by moving the edge
of the parameter space away from zero. For instance, a default
inverse-gamma prior would presume that θ20 > 0 and would
therefore be informative with regard to the probability of local
dependence caused by the cross-relationship of RAs and TAs
that belong to items with the stimulus clicking response mode: it
decreases the estimated probability of local independence, i.e., the
(estimated) probability that the true value of θ20 is zero, and can
thereby provoke false conclusions about the underlying response
processes. Finally, measurement error variance parameters are
estimated for the fifteen RT components (mean: 0.62, SD: 0.47)
and the fifteen TA components (mean: 0.31, SD: 0.19).

7. DISCUSSION

A novel Bayesian framework to model local dependences in test-

taker data is proposed. The BCSM allows specifying dependences

across different types of data (RAs, RTs and other process data)
and multiple levels (e.g., within a testlet, clustered data per item
and test-taker). The local dependences are specified through
a cross-classification structure and are explicitly modeled as
covariance parameters. In an additive covariance structure,
nested and/or cross-classified data structures are modeled
through covariance parameters.

Recording test-taker data during CBAs is not limited
to scored responses and RTs. For researchers and assessors
these additional process data are of utility: they can increase
the precision of test-taker ability estimates and lend new
insights into underlying response processes. However, using
process data to draw inferences is problematic in the GLMM
framework: each additional type of data requires the inclusion
of new person-level variables. If interaction effects occur,
the model’s complexity further increases drastically. A highly
complex model is prone to over-parameterization and weak
numerical stability, which may strongly limit its utility in
practical applications.

The BCSM framework allows the construction of

parsimonious models without requiring random effects (on
a person or group level) to model data dependences. Contrary

to common marginal modeling approaches such as GEE, the
dependence structure is however fully modeled in an additive
covariance structure. This allow testing for interaction effects
and to estimate the random effects post-hoc from the residuals
of the model. By estimating random effects post-hoc, inferences
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TABLE 9 | Posterior means and standard deviations of the Nt = 24 covariance

parameters in the additive covariance structure.

Layer Classification Level
Posterior distribution

Mean SD

1 Ability Latent factor 0.47 0.16

2 Working speed Latent factor 0.01 0.03

3 Speed first action Latent factor 0.05 0.02

4 Ability-Working speed Latent factor 0.01 0.01

5 Ability-Speed first action Latent factor −0.03 0.02

6 Working speed-Speed first

action

Latent factor 0.12 0.02

7 Numeracy: RA-RT Item domain 0.01 0.03

8 Numeracy: RA-TA Item domain 0.05 0.03

9 Numeracy: RT-TA Item domain 0.04 0.02

10 Literacy: RA-RT Item domain 0.00 0.03

11 Literacy: RA-TA Item domain 0.01 0.03

12 Literacy: RT-TA Item domain 0.03 0.02

13 Exact match: RA-RT Response mode −0.01 0.17

14 Exact match: RA-TA Response mode 0.11 0.11

15 Exact match: RT-TA Response mode 0.07 0.10

16 Number match: RA-RT Response mode −0.02 0.05

17 Number match: RA-TA Response mode 0.07 0.07

18 Number match: RT-TA Response mode 0.04 0.04

19 Stimulus clicking: RA-RT Response mode 0.01 0.04

20 Stimulus clicking: RA-TA Response mode 0.00 0.03

21 Stimulus clicking: RT-TA Response mode 0.00 0.02

22 Stimulus highlighting: RA-RT Response mode −0.02 0.04

23 Stimulus highlighting: RA-TA Response mode 0.01 0.03

24 Stimulus highlighting: RT-TA Response mode 0.02 0.02

Each layer of the covariance structure corresponds to one classification. Classifications

are made across three data types (RA, response accuracies that underlie the scored

dichotomous responses; RTs, response times; TAs, times to first action taken) based on

(correlated) latent factors, item domains, and item response modes.

about test-taker characteristics can be made conditional on a
complex within-subject dependence structure that follows from
combining various auxiliary process data types into a coherent
model. There is no theoretical limitation to the number of data
types to combine, or in the number of components within each
type (e.g., test length).

Modeling local dependences through covariance parameters
instead of random effect variance parameters results in an
extended parameter space. This allows more flexibility in
specifying complex dependence structures (covariances can be
negative, zero or positive). Compared to default inverse-gamma
priors for variance parameters, truncated shifted inverse-gamma
priors for the covariance parameters are less informative and
allow more objective inferences about the dependence structure.
The truncation is furthermore used to ensure the positive
definiteness of the additive covariance structure, and can be
utilized for inequality hypothesis testing (e.g., θ1 < θ2 < θ3).
Through conjugacy of the proposed priors, BCSMs can be fit with
an efficient Gibbs-sampling algorithm.

In a simulation study, a complex within-subject dependence
structure was successfully estimated under a BCSM for responses
and RTs. The model used for data generation allowed the test-
takers’ working speed and ability to vary over the course of a test.

The LHM was not capable to capture this variation and showed
bias in the variance estimate of the ability distribution. Under
the BCSM, variation in test-takers’ working speed and ability did
not violate the condition of local independence: the dependence
structure was extended to account for the variation. Furthermore,
by estimating the extended dependence structure, insight into
the development of the speed-accuracy trade-off on group level
across the test was obtained.

The empirical example based on the PIAAC study showed
a complex real-world dependence structure in response and
process data. Covariance, measurement error variance and
item parameters were estimated conditional on a dependence
structure that took into account the classifications across three
data types (scored dichotomous responses, RTs, TAs), item
characteristics (domain, response mode), and the latent factor
structure (data components load on the correlated factors ability,
working speed and speed first action). Furthermore, test-taker
background variables were included as covariates to correct
for between-subject differences in the dependence structure.
Through additive layers in a single covariance matrix, 3-by-3
covariance structures were modeled for each specified subset of
items. This allowed to evaluate the cross-dependence between all
pairs of data types individually for each of the item domains and
response modes. The results indicated, that the interdependences
across data types and the investigated item characteristics were
sufficiently captured by the covariance layers through which
the dependences of the latent factors structure were specified.
The empirical example illustrates how, in the BCSM framework,
the modeled dependence structure can be flexibly adapted to
the design and the underlying theoretical constructs of an
assessment. Furthermore, the vague nature of the truncated
shifted inverse-gamma prior specification promotes unbiased
inferences about the dependence structure. In the empirical
example, this was in particular important due to the vast number
of covariance parameter estimates close to, or approximately
equal to zero. In this situation, a prior specification that does
not take boundary effects into account artificially increases
the estimated probability of local independence and hence
provokes false conclusions about the dependence structure and
the underlying response processes.

In addition to integrating multiple types of test-taker data,
dependences can follow from the test design, item properties,
the (sub-)population of test-takers, test-takingmodes, test-taking
conditions, and from an interaction of these characteristics.
Examples are testlet structures, in which data within a testlet
is often more alike then data across testlets (e.g., Wainer and
Kiely, 1987; Yen, 1993; Wainer et al., 2007), or the interaction of
culturally loaded concepts in items and diverse (sub-)populations
of test-takers (e.g., with and without migration background)
(e.g., Steele and Aronson, 1995; Paniagua, 2000; Good et al.,
2003; Robinson, 2010). The resulting dependences in test-taker
data form a threat for the flawless psychometric equivalence of
an assessment, if not accounted for Helms (1992).

In educational measurement, factor loadings, or slope
parameters, are utilized to assess differential item functioning
(DIF) across groups, test-taking modes and over time (Millsap,
2010), allow multidimensional item response theory (MIRT)
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FIGURE 3 | 95%-Highest Posterior Density (HPD) intervals for the Nt = 24 covariance parameters in the additive covariance structure. Black dots correspond to

posterior mean estimates.

(Reckase, 2009), and are used to represent the quality of an
item to discriminate between distributions of test-takers with a
different level of ability or speed (van der Linden, 2007; Klein
Entink et al., 2008). As discussed by Klotzke and Fox (2018),
factor loadings integrate seamlessly into the proposed modeling
framework. In fact, the inclusion of factor loadings solely
removes the restriction of values being either zero or one in the
classification matrix, hence keeping the modeling structure and
the therein derived equations intact. However, while this allows
to include pre-calibrated factor loadings into the model, no
estimation procedure has been described so far. In a conditional-
BCSM hybrid model, the factor loadings can also be modeled in
the mean structure instead of in the covariance structure. For
example, a 2PL-IRT model with item-discrimination parameters
can be specified in the mean structure and the dependences
implied by a testlet structure can be explicitly modeled in the
multivariate distribution of the error terms. This approach is
straightforward and suited for practical applications. A downside
is, that a trade-off is been made between the parsimony of the
model and the number of person level variables included in the
mean structure. In the empirical PIAACdata example showcased,
the factor loadings were predefined given the test design and

item characteristics. Freeing the factor loadings will further
increase the flexibility in the modeled dependence structure
and thereby the utility of BCSM for practical applications in
educational measurement.

It has been shown that modeling a non-linear relationship
between RAs and RTs can be beneficial (e.g., Molenaar et al.,
2015; Bolsinova and Molenaar, 2018). Through the additive
covariance structure in BCSM, the conditional dependence
between RTs and RAs is not limited to vary solely based
on item membership (i.e., data points that belong to the
same item are conditionally more alike), but is allowed to
change based on item characteristics (e.g., domain and response
mode), test form (e.g., computer based vs. paper-and-pencil)
and test design (e.g., a testlet structure). Individual test-taker
characteristics that may cause between-subject differences in
the dependences of RTs and RAs are controlled for through
modeling test-taker background variables as covariates in the
mean structure (e.g., the relationship between RTs and RAs
may vary based on the test-takers’ age or a pre-test speed
categorization). This differs from methods that model a non-
linear relationship between RTs and RAs through a predefined
function that involves person-specific random components
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and/or item parameters (Molenaar et al., 2015; Bolsinova et
al., 2017; Bolsinova and Molenaar, 2018): in BCSM, test-taker
characteristics that may affect the relationship between data
types are controlled for in the mean structure, and the person-
specific random effects are not modeled. Item characteristics are
modeled in the mean structure (e.g., item difficulty parameters)
and through additive layers in the covariance structure (e.g.,
item response mode). It is an interesting future prospect to
see in how far the BCSM framework can be extended for
covariance structures that follow from curvilinear functions for
the relationship between data types. Furthermore, the BCSM
approach must be distinguished from methods that model a
person-specific covariance matrix (e.g., Meng et al., 2015): by
their nature, models that explicitly specify a covariance matrix
for each test-taker heavily increase in complexity with growing
sample size and thus must impose strong restrictions on the
modeled dependence structure to achieve model identification.
In contrast, BCSM aims at designing parsimonious models
that are easily identified when complex dependence structures
are modeled.

The BCSM framework is not limited to RTs and dichotomous
responses. Dependences between dichotomous responses
and RTs were modeled through latent continuous variables.
Expressions for the mean and variance of the conditional normal
distribution of a latent variable were obtained by partitioning the
additive covariance matrix and analytically deriving its inverse.
Information from the observed responses (whether or not a test-
taker responded correctly to an item) was utilized by truncating
the respective distribution. Modeling dependences through

latent continuous variables can be extended to data with more
than two ordered or unordered response categories (e.g., Castro
et al., 2012). This extends the range of process data that can be
integrated into a BCSM. For example, sequential action patterns
can be operationalized as count variables through N-grams (He
et al., 2016). It is interesting to see under which conditions a
BCSM allows to draw inferences about the interdependence
between responses, RTs and action patterns and which new
insights into latent response processes can be obtained. Further
future prospects of BCSMs are the application to additional
real-world empirical settings, extensions to unbalanced data and
nested classifications on a person level (e.g., a test-taker is part of
a school and classroom), and evaluating the utility of estimating
test-taker effects post-hoc. Finally, it is of interest to compare
the plausibility of different dependence structures in a Bayesian
model selection framework (e.g., Kass and Raftery, 1995).
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In this paper, we developed a method to extract item-level response times from log data

that are available in computer-based assessments (CBA) and paper-based assessments

(PBA) with digital pens. Based on response times that were extracted using only time

differences between responses, we used the bivariate generalized linear IRT model

framework (B-GLIRT, [1]) to investigate response times as indicators for response

processes. A parameterization that includes an interaction between the latent speed

factor and the latent ability factor in the cross-relation function was found to fit the data

best in CBA and PBA. Data were collected with a within-subject design in a national

add-on study to PISA 2012 administering two clusters of PISA 2009 reading units. After

investigating the invariance of the measurement models for ability and speed between

boys and girls, we found the expected gender effect in reading ability to coincide with a

gender effect in speed in CBA. Taking this result as indication for the validity of the time

measures extracted from time differences between responses, we analyzed the PBA data

and found the same gender effects for ability and speed. Analyzing PBA and CBA data

together we identified the ability mode effect as the latent difference between reading

measured in CBA and PBA. Similar to the gender effect the mode effect in ability was

observed together with a difference in the latent speed between modes. However, while

the relationship between speed and ability is identical for boys and girls we found hints

for mode differences in the estimated parameters of the cross-relation function used in

the B-GLIRT model.

Keywords: reading ability, computer-based assessment, mode-effects, response times, log data, paper-based

assessment

INVARIANCE OF THE RESPONSE PROCESSES BETWEEN
GENDER AND MODES IN AN ASSESSMENT OF READING

Technology-based assessments offer the possibility to collect additional log data, including response
times as the amount of time test-takers spend responding to particular questions or tasks. Primarily,
response times provide information about test-takers’ speed, which—if not considered—might
confound comparisons of test-takers’ ability [2] due to inter-individual differences in the
speed-ability compromise [3]. Response times can allow inferences about response processes
[4, 5]. Although at the individual level response times are influenced by multiple factors [6], the
comparison of characteristics at the group level, such as the between-person relationship of speed
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and ability (e.g., [7]), can provide information about the
comparability of underlying processes. Yet, response times
and the relationship between speed and ability might also be
considered as criteria for a comparison of response processes
between test administrations with different properties [8]. Such
mode effect studies often focus on the degree of measurement
invariance (e.g., [9]), typically excluding effects of between-
person characteristics, such as gender, either as differential item
functioning (DIF, e.g., [10]) or ability difference at the population
level (e.g., [11, 12]).

Research on mode effects and gender differences both
consider mainly comparisons concerning the correctness of
responses (response accuracy). Time-related criteria, such as the
number of not reached items or response times at the item
level, are rarely considered (see [13], for an exception) for the
investigation of equivalence betweenmodes or gender. Instead, as
summarized by Kong et al. [14], reading speed is often analyzed
for the comparison between modes.

Focusing on differences in the response accuracy requires that
the underlying response processes are identical. However, the
differences in reading comprehension found between computer-
based assessment (CBA) and paper-based assessment (PBA, e.g.,
[15]), and boys and girls [e.g., [16]] might also be caused by
construct-related differences such as reading strategies (e.g., [17])
between mode or gender. These differences might be associated
with different test-taking processes in the assessments, resulting
in a certain response behavior which allows investigating the
relationship between speed and ability as characteristic of the
response process.

Since PISA introduced CBA in 2015 [18], some authors have
questioned the comparability of CBA and PBA in PISA, in
particular, concerning trend estimates (e.g., [19, 20]). Although
a detailed review of the current literature regarding mode effects
is beyond the scope of this paper (see, e.g., [8]), we aim at
providing a method for investigating response time differences
between modes, which is currently missing. The potential benefit
of a method that allows investigating speediness as an additional
criterion of equivalence for mode effects is 2-fold: Allowing the
removal of potential confounding of inter-individual differences
in the speed-ability compromise concerning the comparability
across modes and developingmodels for the explanation of mode
effects beyond their simple quantification.

Comparing response processes regarding response times
between modes requires the accessibility of response time
measures at the item-level. While the availability of response
times is often mentioned as one of the benefits of CBA (e.g.,
[21]), response times are metered only at an aggregate level
in PBA (e.g., [22]). This lack of detailed time information
from PBA instruments restrains the investigation of mode
effects concerning time-related equivalence criteria and results in
limited knowledge about the comparability of response processes
between modes. The current study aims at filling this gap by
using time measures collected with so-called digital pens in
comparison to time measures extracted from log files of CBA
test administration. Hence, gender differences which are well-
known to exist concerning reading ability are investigated at
first demonstrating the usefulness of the derived time measures

for the comparison of response times of boys and girls in CBA
and PBA separately. Afterward, the time measures are used to
investigate mode effects assuming that the operationalization of
the time measures is comparable between CBA and PBA. To
summarize, we use B-GLIRTmodels, which are introduced in the
next section, to investigate speed and ability using data from a
technology-based assessment conducted as add-on study to PISA
2012 in Germany.

Modeling Response Times With the
B-GLIRT Framework
Recent psychometric models incorporate response times in
item response theory (IRT) models, either with a constant
speed assumption (hierarchical modeling, e.g., [23]; bivariate
generalized linear IRT, B-GLIRT, [1]) or without (e.g., [24]).
In this paper, the B-GLIRT approach is focused, because this
framework provides promising features: (i) it can be adapted to
various relationships between responses and response times, (ii)
it can be estimated with standard SEM software, and (iii) it can be
applied to investigate measurement invariance [1]. The B-GLIRT
model as shown in Figure 1 [1]models responses to dichotomous
items using a linear model and a link function, known to result in
the normal ogive version of the 2-parameter model

E
(

Zpi
)

= 8
−1

[

E
(

Xpi

)]

= αiθp + βi (1)

with a slope parameter αi and an intercept parameter βi for
each item i. In addition to the responses Xpi, the response times
Tpi are included in the B-GLIRT model, log-transformed, as
factor model

E
(

ln Tpi

)

= λi + ϕiτp + f
(

θp; ρ
)

(2)

with σ
2
ωi as the variance of the residual variables ωi. The

intercepter parameter λi is the time intensity parameter for item i
and a slope parameter ϕi as time discrimination relates the latent
speed factor τp to the (log-) response time.

The flexible nature of the B-GLIRT model comes into play
when the cross-link function f

(

θp; ρ
)

is specified, allowing
the estimation of models that are equivalent or similar to
different psychometric models for the simultaneous estimation
of response accuracy and response times. A B-GLIRT model
for response times that corresponds to the model proposed by
Thissen [25] with an additional time discrimination parameter is

E
(

ln Tpi

)

= λi + ϕiτp − ρ1αiθp (3)

with ρ1 as the slope parameter for the regression of (log-)
response time on the latent ability variable θp [see [1], for the
derivation of the cross-link function]. We will refer to this model
as the B-GLIRT regression model.

A second model can be specified using the following form of
the cross-link function:

E
(

ln Tpi

)

= λi + ϕiτp − ϕiρ1θp (4)

The model in Equation (4) is equivalent to the model suggested
by van der Linden [23] as the hierarchical model, extended by the
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FIGURE 1 | Schematic display of the B-GLIRT Model by Molenaar et al. [1] used to investigate measurement invariance.

slope parameter ϕi for the time discrimination. The parameter
ρ1 can be interpreted as correlation, depending on the constraint
used to identify the factor model. We will refer to this model as
the B-GLIRT hierarchical model.

A third model, which is to some extent equivalent to a
between-subject version of the model suggested by Partchev and
De Boeck [26], can be specified by adding an interaction term in
the cross-relation function as follows:

E
(

ln Tpi

)

= λi + ϕiτp + ρ1θp + ρ2τpθp. (5)

In this model, the parameter ρ1 corresponds to the linear
regression coefficient, while ρ2 is the regression coefficient for
the latent interaction term τpθp

. We will refer to this model as

the B-GLIRT interaction model.

Item-Level Response Times
As we will describe in this section, time differences between
subsequent responses were used to derive comparable item-level
response times for PBA and CBA. The main idea that allows
extracting time measures from PBA and CBA is to focus on
time between responses while taking into account the order of
responses. For instance, a proxy for the item-level response time
for a question “Q2” (the second question of a hypothetical test)
is the time difference between the responses to question “Q2”
and “Q1” if both questions are answered consecutively. When
all questions in a booklet are answered in a strictly ascending
order, time measures for all questions could be derived from
the time difference between responses (besides the very first
question “Q1”).

Reconstructing the Response Sequence Using States
Omitted responses and answers in non-ascending order have to
be dealt with to obtain quantities that allow an interpretation

as item-level response times measures in real data applications.
The strategy described in this paper requires partitioning the
whole testing time into segments, which start and end with the
selection of answers in consecutive questions. The necessary
theoretical justification for the treatment of the self-selected
order of responses can be provided by a general framework
that uses log data to distinguish meaningful states of the test-
taking process [27]. In this framework, log events are processed
algorithmically by reconstructing the sequence of states using,
for instance, a finite state machine. Using this formal method
allows implementing a procedure that can be applied to extract
response times from the gathered raw log events that takes the
response sequences and omitted responses as different “states”
into account. The considered states correspond to sections of
the test-taking processes that can be interpreted with respect to
reading the text or answering a particular question.

Creating States Using Answer-Change Events Only
In the following, the theoretical framework will be applied
to create meaningful sequences, by considering only so-called
answer-change events (i.e., events that occur when the response
to a task is changed). Figure 2 presents an example for three
different state sequences for the first three questions of a test.

For the first sequence with the response pattern “R-R-R-. . . ”
(i.e., a response R is given for the first three items, and no
response is missing), the first answer-change event is used to
separate the state “Reading Unit Text & Answering Q1” from
the state “Answering Q2.” Since it is impossible to extract from
the time differences between responses, at which point a test-
taker exactly started a unit, no item-level time measure can be
extracted for the very first question in this approach. However,
when the second question is answered, the time between the first
and the second response can be counted as time component for
question Q2.
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FIGURE 2 | State sequences for the responses to the first 3 questions for 3 different missing response pattern.

The second pattern illustrates the effect of an omitted item. In
this sequence with the pattern “R-O-R-. . . ” (i.e., the second item
was omitted, O), the first answer-change event separates the states
“Reading Unit Text & Answering Q1” from the state “Omitting
Q2 and Answering Q3.” According to the nature of missing
responses, no time measure for the two states “Omitting Q2” and
“Answering Q3” can be extracted, because the two underlying
states collapse into the state “Omitting Q2 and Answering Q3”
due to the missing answer-change event for question Q2. Hence,
it depends on additional reasoning whether and how the time
measure for this collapsed state “Omitting Q2 and Answering
Q3” should be used. For sequences with more than one omitted
response (e.g., R-O-O-R, not included in Figure 1), the structure
of the problem remains identical: the time differences between
two answer-change events do not allow to identify states with a
clear meaning if states collapse due to omitted responses. As we
will show later, sequences with collapsed states resulting from the
process of omitting one or multiple (further) questions can either
be ignored (option “strict”) or counted as time components for
the first questions after the omission (option “liberal”).

The third sequence in Figure 1 illustrates the missing value
pattern “O-R-R-. . . ” (i.e., the first question is omitted). In this
situation, the observed answer-change event can be used to
identify the transition from the state “Reading Unit Text &
Omitting Q1 and Answering Q2” and the state “Answering
Q3.” Even though no item-level response time for the collapsed
state “Reading Unit Text & Omitting Q1 and Answering Q2”
is available, the time between the responses to question Q2 and

question Q3 allows extracting an item-level response time for
question Q3 with a clear interpretation. Note that all sequences
start in the state “Reading Unit Text & Answering Q1” because
the reading text was shown on the first page(s) of the CBA
instrument and the reading text was printed on the first page(s)
of the PBA booklet, respectively. The use of the finite state
machine approach for analyzing log data assumes that the
test-taking process can be described as a progression of states
that corresponds to one question at a time, starting with the
reading text and the first question for each unit. By starting
the finite state machine used to reconstruct the sequence of
states for each test-taker in the state “Reading Unit Text &
Answering Q1,” knowledge about the CBA and PBA instrument
is included in the analysis using the finite state machine approach
introduced in [27].

Defining the Interpretation of Time Measures Using

Bigrams
To generalize from the sequences shown in Figure 2 to all
possible sequences, we consider subsequences of length two (i.e.,
pairs of subsequent answers). Subsequences can be described
using the terminology of n-grams of all potential sub-sequences.
Pairs of subsequent answers create n-grams of size 2, labeled
as bigrams. The bigrams Q1-Q2 and Q2-Q3, for instance,
correspond to the sequence one as shown in Figure 2. Item-level
response times can be extracted using bigrams with the finite
state machine approach, in which the time between responses is
counted as time component for the second part of each bigram.
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That is, the time difference between the observed responses in
the bigram Q1-Q2 is used as time component counting for the
item-level response time for question Q2.

The representation of subsequences as bigrams created from
the reconstructed sequence of states points to the different
options for the handling of omitted responses and non-ascending
response orders. If no additional navigation-related log data are
incorporated (i.e., if only time differences between responses
are used that create answer-change events)1, an assumption
is required for a “liberal” treatment, namely the assumption
that the time between two responses can always be counted
for the question which was answered last. Time measures for
collapsed states can also be derived under this assumption
(e.g., the item-level response time for omitting question Q2
and answering question Q3 after question Q1, see the second
sequence in Figure 2). However, depending on the frequency
of omitted responses, time measures for collapsed states (i.e.,
bigrams resulting from omitted responses or jumps to previous
questions), that occur only rarely in an empirical application
might not be possible to include in a psychometric model due to
data sparseness. Therefore, we consider the following two options
to deal with bigrams that represent either omitted responses
(such as Q1-Q3) or non-ascending self-selected response orders
(such as Q3-Q1):

• Option 1 (Strict): Only time measures of adjacent tasks are
extracted, using missing values for response times when
questions are omitted, or answers are given in a self-selected,
non-ascending order for a particular test-taker. Item-level
response times extracted in this strict way have the clearest
interpretation but are only available for a subset of responses.
They cannot be computed for responses that are given next
to an omitted response and they are missing for questions
answered in non-ascending order.

• Option 2 (Liberal): Timemeasures for all bigrams are extracted
and interpreted regardless of the previous response. For each
bigram of two responses, the time difference between the
two responses is counted as time component for the second
response of the bigram, regardless whether the two responses
represented in the bigram are direct neighbors or any pair of
questions, answered one after the other. This option results
in item-level response times that always contain the true
response times, but also additional time for omitting one or
multiple responses. Accordingly, more noise is absorbed into
the response time measures using option 2.

Accordingly, the following interpretations of item-level response
times are possible for the exemplary sequences with omissions
in Figure 2. For the second sequence, only the bigram Q1-Q3 is
observed because Q2 is omitted. The time between the response
to the first question Q1 and the response to the third question
Q3 could be interpreted as time measure for the third response
Q3 (option “liberal”). Alternatively, the time measure could be

1In this paper we focus on possibilities that are applicable to log data gathered

in PBA and CBA, ignoring approaches that use, for instance, navigation-related

paradata or other information that indicate, how long a page with an omitted task

was visible on a computer screen.

modeled separately or excluded from the analysis, as such a time
measure is only available from persons showing this particular
pattern (omitting Q2). For the third sequence, only the bigram
Q2-Q3 can be observed in the data, because Q1 was omitted.
Accordingly, no timemeasure for Q1 can be extracted for persons
showing such a pattern. In summary, the derivation of item-
level response times can be described as follows: The test-taking
process is segmented into states based on the answer-change
events. The treatment of the time measure for a particular state
is derived from the bigram of two subsequent states. A liberal
option to extract item-level response times ignores the first state
in the bigram, a strict option creates time measures for identical
bigrams only, resulting in more missing values.

Cumulating Response Times for Multiple

Answer-Changes
In the empirical application, the within-unit navigation was
neither restricted in CBA nor PBA2. Accordingly, any bigram,
for instance, Q2-Q3, could occur multiple times if answers to
question Q2 and Q3 were selected and changed again. Hence,
the item-level response times had to be aggregated within test-
takers before using them in the psychometric model. Aggregating
response times over multiple exact identical bigrams (option 1)
is only expected for a small number of cases. In contrast, for
option 2, item-level response times from all bigrams that end
with a particular question are aggregated to derive total item-
level response times for a particular question. In both options,
the response times are cumulated.

Hypotheses
A linear cross-relation function in the B-GLIRT model seems
plausible for ability tests if higher underlying abilities are related
to faster responses (i.e., if working more fluently and faster
reflects higher ability level). Spending more time on a particular
task may also indicate a more careful work on the task, predicting
a linear relationship in the opposite direction. From the “time
on task” literature (e.g., [28]) it was derived that the linear
relationship between speed and ability should be negative for
reading items. However, it is known from previous research that
the time on task effect increases with increasing ability level [28].
Hence, it is expected that for a linear cross-relation function the
correlation is negative (H1a) and that a speed-ability interaction,
as modeled in the interaction term τpθp

of the cross-relation

function f(.) in Equation (5), can be found (H1b). Regarding
the two different options to operationalize response times at the
item level, we have no specific hypothesis, i.e., we investigate the
robustness of the findings regarding both options for hypothesis
H1a and H1b.

We expected to replicate gender differences for reading ability
that were repeatedly found in previous research [e.g., [12]] in
CBA (H2a) and PBA (H2b). However, we did not expect different
response processes between boys and girls, i.e., equal parameters

2Note that the between-unit navigation was not restricted in PBA (i.e., students

were able to go back to a previous unit within the booklet), but between-unit

navigation was not possible in the CBA implementation. As discussed, for instance,

by Kroehne and Martens [8] the different possibilities to navigation between units

could contribute to the differences between modes.
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of the cross-relation function are expected for boys and girls,
again for CBA (H3a) as well as for PBA (H3b), when the model
takes ability and speed differences into account.

Analyzing PBA and CBA together, we also expected equal
parameters of the cross-relation function for both modes (H4),
after taking inter-individual differences in the accuracy mode
effect into account which were found in previous research
[Kroehne et al. (submitted)].

To provide empirical evidence regarding the validity of the
extracted item-level response times (a) and the response times
collected using digital pens (b), we disentangled the analyses of
gender and mode effects. After selecting the parameterization
fitting best for the cross-relation function we first analyzed data
for CBA concerning gender effects. Subsequently, we repeated
the analyses of gender effects using PBA data aiming at similar
patterns and, in particular, equal parameters of the cross-relation
function. Based on these analyses we proceeded by analyzing
CBA and PBA simultaneously concerning mode effects.

METHOD

Instruments
Items measuring reading comprehension investigated in this
study were taken from the PISA 2009 reading assessment [18].
Two intact clusters with non-overlapping items had been selected
and computerized with the CBA-ItemBuilder [29]. The two
clusters comprised five polytomously scored items with multiple
score categories and 32 dichotomously scored items (eight units
in total). Polytomously scored items were dichotomized in this
study by merging full credits and partial credits. Kroehne et al.
(submitted) presents a detailed description of various properties
of the test administration that constituted the assessment in both
modes. Specifically, PBA was conducted with digital pens [for
technical details see [13]] allowing to record time stamps and
digital traces of strokes that provide the basis for the comparison
of response processes as indicated by response times.

Sample
In this study, 856 students (aged from 15.33 to 16.33,M = 15.82,
SD= 0.29) were assessed (48.67% female). The subset of students
was sampled randomly from the sample of German PISA 2012
main study schools and none of the sampled schools were
excluded due to technical problems. The sample contained 33.9%
students from the academic track, 15.89%were immigrants in the
first or second generation, and 8.86% reported that German is not
their language at home.

Design
An experimental design with random assignment of test-takers
to modes was implemented. A between-subject design was
supplemented by an additional within-subject component
to investigate construct-related changes and cross-mode
correlations. For that purpose, a subset of 440 test-takers
answered reading items in CBA and PBA (i.e., one cluster in
each mode). Those students had to change the administration
mode (i.e., switching between modes in the middle of the testing
session was implemented). The sequence of modes (CBA-PBA
and PBA-CBA) was balanced between the 440 test-takers to

avoid confounding of mode and position effects. None of
the test-takers answered both clusters in the identical mode.
Consequently, the 416 test-takers in the between-subject part
of the design which were administered only one cluster in one
mode had missing values by design for all units of the other
cluster. In both modes the reading assessment was administered
self-paced with a time limit at the cluster level and only the mode
was randomly assigned, while the speed for reading texts and
answering tasks was self-selected.

Data Analysis
As described above, item-level response times were extracted
from the CBA log data and the digital traces of strokes gathered
with digital pens using time differences between responses only
and further prepared using the strict and the liberal option
as described above. Specifically, we operationalized the time
of an answer-change event comparable between both modes
as the point in time when the last response-related action to
a particular question was observed (mouse click for complex
and simple multiple-choice items or typing for text response
in the CBA mode; last XY-coordinate event of a stroke in
the PBA mode). Focusing on the last response-related action
results in time measures that absorb the answering time itself
(i.e., the time that was required to write, type, or select
an answer).

The log-transformed response times were used in latent
variable models for the speed factor, after trimming item-level
time measures by recoding response times that were larger than
300 s3 as missing values. Time measures for the response to the
first question in each cluster were not included in the mode due
to data sparseness (i.e., the models were built using up to 30
responses and up to 28 response times for each test-taker).

B-GLIRT models were estimated in Mplus 7.4 [30] using
dichotomous indicators of the item responses for the ability
factor. Multi-group structural equation models with latent
interaction termwere estimated using theMLR estimator and the
Knownclass-option of Mplus. Example inputs for the different
models are provided in the digital supplement.

Absolute model fit measures were not available for this
estimation of the B-GLIRT models. Therefore, the analyses were
based on the assumption that the ability part fit the particular
IRT model in each mode (see Kroehne et al. (submitted), for a
detailed investigation of mode effects in the responses, ignoring
response times). For the B-GLIRT models, which also contain
a speed part, the information criteria AIC and BIC were used
for relative model comparisons. As discussed by Vrieze [31], the
choice between AIC and BIC depends on the researchers’ notion
of the true model and the assumption whether the true model
is one of the candidate models. Hence, the selection of AIC or
BIC also reflects the result of weighing efficiency (i.e., finding the
model that minimizes themean squared error of prediction; AIC)
against consistency (i.e., finding asymptotically the true model, if
it is one of the candidate models; BIC).

In the first step of the analysis we aim at finding the
best fitting parametrization of the cross-relation function.

3The value of 300 s was selected as a threshold to remove outliers without any

further theoretical justification.
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For this comparison we do not necessarily expect that
the true model is part of the candidate models, so we
prefer the AIC. The set of investigated parameterizations
of the cross-relation function is chosen as the models
that fit into the framework of the B-GLIRT models and
that were used in previous research to investigate the
relationship of speed and ability. However, we formulate
a particular hypothesis specifically for one of the possible
parameterizations (H1a).

In the second step, we investigate measurement invariance
of the response and speed parts of the B-GLIRT model with
the best fitting parameterization of the cross-link function
selected in the first step, regarding gender groups. In order
to find the degree of measurement invariance, we compare
model fit criteria between different restrictive models starting
with an unconstraint multi-group model as a baseline model.
Technically we followMillsap and Yun-Tein [32] using a stepwise
procedure to find the best fitting model by constraining (1)
slope parameters, (2) intercept parameters, and (3) residual
variances across groups. Doing so we include constraints on
measurement parameters and relaxed constraints about the
equality of latent variables variances and means. For this
comparisonwe prefer AIC for the same reasons as in the first step,
but we also report BIC to allow an independent evaluation of the
model comparisons.

Mplus code to fit the described models can be found in the
digital Appendix.

RESULTS

Descriptive summaries of the variability of response time and
correctness of responses across items are provided in Figure 3

and Figure 4. The (log-) response time (upper part) for the 28
responses and the proportion correct (lower part) for the 30 items
are plotted in Figure 3 for males and females and in Figure 4

for PBA and CBA. The descriptive plots in Figure 3 suggest
systematic gender differences, especially for response times. For
a multitude of items, systematic differences in the response
times can also be supposed for the mode comparison presented
in Figure 4.

Table 1 contains the information criteria for selecting the
best-fitting parameterization for the cross-relation function of
the B-GLIRT models. Consistent for both modes (PBA vs.
CBA) and both options of aggregating item-level response
times (strict vs. liberal), the cross-link function of the B-
GLIRT interaction model that corresponds to Partchev et al.
[26], including an interaction between ability and speed
parameter, was the best fitting model according to the AIC
(and BIC) criterion.

Table 1 also presents the estimated parameters (with standard
errors in parenthesis) for all considered parameterizations of
the cross-relation function. For a linear relationship between
speed and ability (i.e., the parameter of the B-GLIRT hierarchical
model), we found the expected negative relationship (confirming
hypothesis H1a). Note that the negative relationship is found to
be slightly stronger for CBA (e.g., −0.614 for the strict option

for PBA compared to −0.766 for PBA). However, as the B-
GLIRT interaction model provides the better model fit for PBA
and CBA regarding AIC (and BIC, confirming H1b), all further
analyses will be based on the parameterization of the cross-
relation function for the B-GLIRT interaction model as shown in
Equation (5).

The observed patterns of regression coefficients are identical
for the two investigated options to aggregate response time
measures to item-level time measures (strict vs. liberal).
Accordingly, all subsequent models are based on the more liberal
option 2 as slightly smaller standard errors are observed for
this option with fewer missing time measures. It should be
acknowledged that the estimated regression coefficients are small
overall with only minor differences between modes (PBA vs.
CBA): 0.074 (0.023) vs. 0.190 (0.021) for ρ1 and −0.133 (0.020)
vs.−0.192 (0.020) for ρ2.

The results of the second analysis step, the investigation of
measurement invariance of parameters estimated in the B-GLIRT
interaction model for gender and mode, are reported in the next
two subsections.

Gender
Table 2 presents the information criteria for the investigation
of measurement invariance between gender groups for data
gathered in the CBAmode using the B-GLIRT interaction model.
Model comparisons with respect to the information criteria
are conducted relative to a baseline model with 293 estimated
parameters which were allowed to vary freely between groups
(Model C1). The model comparisons are grouped into three
sets of models: ability (successively constraining discrimination
and difficulty parameters; Model C2-C7), speed (successively
constraining time intensity and time discrimination parameters;
Model C8-C16) and ability and speed (successively constraining
all parameters; Model C17-C25). The AIC (and BIC) can be
compared across the different model specifications and the
model with the lowest information criterion will be selected and
interpreted in this step of the analysis.

Constraining loadings for the response model αi improved
the model fit (Model C2). Relaxing the equality constraint of the
latent variances for the ability factor θp (Model C3) decreased the
fit slightly, indicating that there are no gender differences with
respect to the ability variance. This pattern was also observed for
the restriction of the intercept parameters βi in Model C4, which
fits slightly better than the model with relaxed equality constraint
on the latent variance (Model C5). The model fitting best for the
response part in terms of AIC (and BIC) is Model C6, in which,
in addition to Model C3, group differences in the latent mean of
the ability factor θp are estimated (but different from Model C7
equal ability variances are specified).

Table 2 also informs about possible differences that can be
estimated using a particular set of constraints. Using Model
C6, the best fitting model in the set of models constraining
parameters of the ability part (Model C2-C7), we estimated the
expected ability differences to be 0.426 (0.092) between boys and
girls (confirming H2a).

Model C8 to Model C16 add parameter constraints of the
speed part of the B-GLIRT interaction model, starting with
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FIGURE 3 | Gender differences with respect to the log-response time and the proportion correct responses.

FIGURE 4 | Mode differences with respect to the log-response time and the proportion correct responses.

constraining the slope parameters ϕi, which resulted in a better
model fit compared to the baseline Model C1. Similar to the
ability part, we observed that allowing for group differences with
respect to the variance of the latent speed factor τp consistently
decreases model fit. AIC and BIC disagree with respect to the
invariance of the intercept parameter λi for CBA. Constraining
λi across groups resulted in an increased AIC (Model C8 vs. C10
and Model C9 vs. C11), while the BIC decreased. However, the

best fitting model according to the AIC criterion in this set of
models with constrained parameters of the speed part is model
C12 (vs. Model C15 using BIC).

Corresponding to the observed ability differences, speed
differences in CBA between boys and girls of 0.471/0.454
(0.134/0.130) were estimated using Model C12 and Model
C15, respectively. However, interpreting these speed differences
requires accepting invariance of time intensity parameters
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TABLE 1 | Information criteria for the model comparison (different parameterizations of the cross-relation).

Mode Time option B-GLIRT cross-link function Npar AIC BIC Cross parameter(s)

ρ1 ρ2

PBA Strict Regression 145 20982.961 21632.344 −0.122 (0.016)

PBA Strict Hierarchical 145 20938.633 21588.017 −0.614 (0.048)

PBA Strict Interaction 146 20911.934 21565.796 0.092 (0.026) −0.131 (0.030)

PBA Liberal Regression 145 24144.109 24793.493 −0.105 (0.017)

PBA Liberal Hierarchical 145 24102.078 24751.462 −0.534 (0.058)

PBA Liberal Interaction 146 24042.836 24696.698 0.074 (0.023) −0.133 (0.020)

CBA Strict Regression 145 25485.367 26134.082 −0.197 (0.025)

CBA Strict Hierarchical 145 25396.492 26045.207 −0.766 (0.030)

CBA Strict Interaction 146 25319.898 25973.086 0.206 (0.022) −0.204 (0.021)

CBA Liberal Regression 145 26513.802 27162.516 −0.188 (0.025)

CBA Liberal Hierarchical 145 26447.617 27096.332 −0.741 (0.033)

CBA Liberal Interaction 146 26378.315 27031.503 0.190 (0.021) −0.192 (0.020)

For the AIC and BIC, best values are in bold. Identical patterns were observed for both time options (strict vs. liberal) and for all time thresholds (300, 500, 1500 s), not printed. Standard

errors for cross parameters are in parenthesis. The column Npar contains the number of estimated parameters.

TABLE 2 | Measurement invariance of the B-GLIRT model with linear interaction term in the cross-relation function with respect to gender for data from computer-based

assessment.

Model Part Constrained Estimated differences Npar AIC BIC χ
2
1ρ

C1 Baseline - - 293 26244.851 27543.231 7.252

C2 Ability αi 263 26207.033 27372.473 7.879

C3 αi σ
2
θ

264 26208.507 27378.379 7.332

C4 αi , βi 233 26197.810 27230.310 8.344

C5 αi , βi σ
2
θ

234 26199.670 27236.602 8.113

C6 αi , βi µ
θ

234 26178.163 27215.094 8.130

C7 αi , βi σ
2
θ
, µ

θ
235 26179.916 27221.279 7.791

C8 Speed ϕi 265 26231.190 27405.493 18.347

C9 ϕi σ
2
τ

266 26232.850 27411.585 16.365

C10 ϕi , λi 237 26246.339 27296.565 3.357

C11 ϕi , λi σ
2
τ

238 26248.039 27302.696 2.297

C12 ϕi , λi µτ 238 26228.993 27283.650 2.002

C13 ϕi , λi σ
2
τ
, µτ 239 26230.999 27290.088 1.143

C14 ϕi , λi , σ
2
ωi

209 26258.705 27184.853 3.900

C15 ϕi , λi , σ
2
ωi

µτ 210 26242.394 27172.973 2.439

C16 ϕi , λi , σ
2
ωi

σ
2
τ
, µτ 211 26244.365 27179.376 1.154

C17 Ability & Speed αi , ϕi 235 26192.054 27233.416 19.606

C18 αi , ϕi σ
2
θ
, σ

2
τ

237 26195.487 27245.712 17.006

C19 αi , ϕi , βi µ
θ

206 26155.924 27068.778 15.533

C20 αi , ϕi , βi , λi 177 26179.820 26964.166 3.449

C21 αi , ϕi , βi , λi µ
θ
, µτ 179 26144.712 26937.921 1.188

C22 αi , ϕi , βi , λi σ
2
τ
, µτ 179 26182.876 26976.084 2.738

C23 αi , ϕi , βi , λi σ
2
θ
, σ

2
τ
, µ

θ
, µτ 181 26147.798 26949.869 0.972

C24 αi , ϕi , βi , λi , σ
2
ωi

µ
θ
, µτ 151 26158.674 26827.805 1.384

C25 αi , ϕi , βi , λi , σ
2
ωi

σ
2
θ
, σ

2
τ
, µ

θ
, µτ 153 26162.001 26839.994 0.998

Column χ
2
1ρ

contains the value of the test statistic for the hypothesis that the estimated parameters of the cross-relation function are equal between groups (df = 2). For the AIC and

BIC best values are in bold, and italic values indicate best values within parts of the model. The column Npar contains the number of estimated parameters.

between groups, which is not supported based on the AIC
criterion for the speed part of the B-GLIRT interaction model.
Taking BIC as the criterion for simultaneously investigating

speed and ability provides weak reasoning for assuming
measurement invariance concerning the time intensity
parameters λi (Model C20 or Models C15/C24). Moreover,
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the BIC also shows improved model fit for constraining the
residual variances σ

2
ωi across groups (Model C24).

The last column of Table 2 shows the value of the χ
2

statistic provided as Wald-test by Mplus, specified to test the
hypothesis that the parameters ρ1 and ρ2 of the cross-relation
function of the B-GLIRT interaction model are equal between
groups (χ2

1ρ
, with df = 2). The estimated parameters ρ1

and ρ2 involved in this Wald-test (see Table 3, upper part)
from Model C12 and Model C15 did not differ statistically
significant between boys and girls, as soon as time intensity
parameters were assumed to be invariant. Note that the impact
of the time discrimination parameter λi is a post-hoc explanation
motivated by the observation that the smallest χ

2
1ρ

value of
models with unconstrained time discrimination parameters (C2-
C9; C17-C19) is 7.879, while the largest value of all models with
constrained discrimination parameters (C10-C16; C20-C25) is
3.900. However, invariance is not supported by the AIC criterion,
which was preferred by theoretical considerations. Accordingly,
we only partially confirmed hypothesis H3a.

We now describe the results for investigating measurement
invariance of the B-GLIRT interaction model between gender
groups for data gathered in the PBA mode.

Table 4 replicates the measurement invariance investigation
for the data gathered in the paper-based test administration.
Concerning the abilitymodel, AIC and BIC favor themodels with
constrained slope and intercept parameters. The latent variance
of the ability factor in the female group is estimated 0.758
(0.126) in Model P7 (the model with the lowest AIC value), but
BIC slightly favors Model P6 which assumes equal latent ability
variances between groups. However, we found full measurement
invariance for the ability model in the PBA administration
according to the AIC when the variance and the mean of the
latent ability variable are freely estimated in the female group.

Concerning the speed part of the B-GLIRT interaction
model for the PBA data we observed a small improvement
in model fit when constraining the slope parameters ϕi across
groups (see Model P8 vs. Model P1 in Table 4) and a small
additional improvement for constraining the time discrimination

TABLE 3 | Estimated parameters of the cross-relation function for the B-GLIRT

interaction model.

Mode Model Group ρ1 ρ2

CBA C12 Male 0.234 (0.028) −0.189 (0.024)

Female 0.208 (0.033) −0.183 (0.034)

C15 Male 0.242 (0.028) −0.200 (0.027)

Female 0.190 (0.030) −0.158 (0.025)

C21 Male 0.226 (0.026) −0.187 (0.023)

Female 0.200 (0.029) −0.180 (0.028)

PBA P12 Male 0.118 (0.030) −0.157 (0.034)

Female 0.063 (0.031) −0.078 (0.044)

P15 Male 0.117 (0.031) −0.158 (0.034)

Female 0.070 (0.035) −0.083 (0.042)

P21 Male 0.108 (0.030) −0.142 (0.034)

Female 0.073 (0.028) −0.102 (0.051)

parameters λi (see Model P10 vs. Model P8). The best fitting
model of the speed component for PBA in terms of AIC was
achieved by acknowledging latent mean differences in the speed
factor between gender groups, estimated as 0.426 (0.133) for
PBA using Model P12. Constraining the residual variances σ

2
ωi

across groups increased the AIC (i.e., measurement invariance
with respect to the residual variances of the speed factor could
not be achieved using the AIC as the criterion). Similar to the
CBA data, taking BIC as the criterion would allow establishing
measurement invariance with respect to the residuals (see Model
P22 in Table 4)4.

Combining ability and speed for the PBA data resulted in
the best fitting model regarding AIC when αi, ϕi, βi, and λi are
constrained across groups (Model P21/Model P23 in Table 4).
However, measurement invariance with respect to the residual
variances σ

2
ωi was neither achieved using AIC nor BIC. Speed and

ability differences estimated using Model P21 were 0.316 (0.099)
and 0.405 (0.161) demonstrating that girls have a higher ability
(confirming H2b) while taking more time to respond in PBA.
However, as the last column in Table 4 reveals, the estimated
parameters of the cross-relation function ρ1 and ρ2 did not differ
statistically significantly between boys and girls (see Table 3,
lower part, for the estimated values of ρ1 and ρ2), confirming
H3b. Moreover, Table 3 contains the descriptive result that the
coefficients ρ1 for the linear main effect of θp and ρ2 for the
interaction τpθp

are smaller for PBA compared to CBA, estimated

in separate B-GLIRT interaction models for both modes.

Mode
In the following, we report the results for investigating
measurement invariance regarding mode. For these analyses
we examined the data for boys and girls together, without
grouping by gender. In order to test the equality of the cross-
relation parameters of the B-GLIRT interaction model between
modes, we considered a combined model for CBA and PBA
simultaneously (see Figure 5 for a schematic path diagram). Due
to the within-subject component of the experimental design, a
single group structural equation model with indicators for PBA
and CBA items can be specified.

Measurement invariance as investigated for the comparison
of groups regarding the person-level variable “gender” is not
strictly necessary when modeling mode effects since the mode
effect can be identified making use of the randomized assignment
of test-taker to CBA vs. PBA. To model the mode effect as a
latent difference variable, we re-parameterized the model as a
method effect model (e.g., [33]) within the B-GLIRT framework
(see Figure 6)5. Doing so, we assumed measurement invariance
concerning the ability part of the model by constraining αi and βi

across modes. This allows identifying a latent difference variable
θMode as the difference between θp;PBA and θp;CBA (included with
equal loadings for each item administered in CBA mode, see

4Measurement invariance with respect to the residual variances σ
2
ωi of the speed

model is not required for a valid interpretation of gender differences.
5The symmetrical reformulation of the speed model was avoided taking into

account that, although first evidence was provided regarding the comparability of

timemeasures, the time indicators Ti;PBA andTi;CBA were created using completely

different log data.
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TABLE 4 | Measurement invariance of the B-GLIRT model with linear interaction term in the cross-relation function with respect to gender for data from paper-based

assessment.

Model Part Constrained Estimated Differences Npar AIC BIC χ
2
1ρ

P1 Baseline - - 293 24040.658 25340.450 2.896

P2 Ability αi 263 24026.589 25193.297 3.036

P3 αi σ
2
θ

264 24027.350 25198.494 2.948

P4 αi , βi 233 24024.846 25058.469 3.013

P5 αi , βi σ
2
θ

234 24023.531 25061.590 2.853

P6 αi , βi µ
θ

234 24014.357 25052.416 2.957

P7 αi , βi σ
2
θ
, µ

θ
235 24013.158 25055.653 2.870

P8 Speed ϕi 265 24038.974 25214.554 7.613

P9 ϕi σ
2
τ

266 24039.335 25219.351 6.160

P10 ϕi , λi 237 24021.565 25072.933 1.989

P11 ϕi , λi σ
2
τ

238 24022.290 25078.094 1.483

P12 ϕi , λi µτ 238 24008.566 25064.369 2.181

P13 ϕi , λi σ
2
τ
, µτ 239 24008.621 25068.861 1.162

P14 ϕi , λi , σ
2
ωi

209 24032.007 24959.162 2.112

P15 ϕi , λi , σ
2
ωi

µτ 210 24019.856 24951.448 1.998

P16 ϕi , λi , σ
2
ωi

σ
2
τ
, µτ 211 24016.573 24952.601 0.764

P17 Ability & Speed αi , ϕi 235 24023.956 25066.452 7.915

P18 αi , ϕi σ
2
θ
, σ

2
τ

237 24024.405 25075.773 5.554

P19 αi , ϕi , βi µ
θ

206 24005.692 24919.539 6.913

P20 αi , ϕi , βi , λi 177 23995.572 24780.771 2.228

P21 αi , ϕi , βi , λi µ
θ
, µτ 179 23974.340 24768.411 1.336

P22 αi , ϕi , βi , λi σ
2
τ
, µτ 179 23996.141 23996.141 1.169

P23 αi , ϕi , βi , λi σ
2
θ
, σ

2
τ
, µ

θ
, µτ 181 23974.766 24777.709 0.681

P24 αi , ϕi , βi , λi , σ
2
ωi

µ
θ
, µτ 151 23985.216 24655.075 0.990

P25 αi , ϕi , βi , λi , σ
2
ωi

σ
2
θ
, σ

2
τ
, µ

θ
, µτ 153 23983.940 24662.671 0.346

Column χ
2
1ρ

contains the value of the test statistic for the hypothesis that the estimated parameters of the cross-relation function are equal between groups (df = 2). For the AIC and

BIC, best values are in bold, and italic values indicate best values within parts of the model. The column Npar contains the number of estimated parameters.

Figure 6) and estimating the latent correlation between θp and
θMode. The ability difference between modes is obtained as the
mean of this latent difference variable θMode.

Starting with an unconstrained baseline model (Model M1)

for the combined estimation of B-GLIRT interaction models
for CBA and PBA data, Table 5 contains information criteria
for the sequence of constrained models that allow to evaluate
measurement invariance. As the comparison AIC reveals (see

the ability part in Table 5) a model with equal item difficulty
parameters and equal item discrimination parameters (Model
M3) fits the data almost equally well-compared to mode-

specific item difficulties (Model M2) or mode-specific item
parameters (Model M1).

The lower part of Table 5 contains results from the combined

estimation of B-GLIRT interaction models with constrained
parameters of the measurement models for the latent speed
factors (τp;PBA and τp;CBA) and the latent ability factors (θp;PBA
and θp;CBA), which are re-parameterized as the latent ability

factor (θp) and the latent difference variable (θmode). To ensure
the necessary comparability concerning the measurement model

of the speed factor for comparing ρ1 and ρ2 between CBA and

PBA, we estimated a sequence of models with different equality
constraints for ϕi and λi between modes (Model M4 to Model

M8 in Table 5). While constraining ϕi (Model M4) led to an
improved model fit in terms of AIC (and BIC), the fit declined,
when time intensity parameters λi were constrained (Model
M6 vs. Model M4), as indicated by an increased value of the
AIC (and the BIC).

As Figure 7 shows, time intensity parameters estimated using
Model M4 under the specification of zero and equal latent means
for the speed factors τp,CBA and τp,PBA are slightly higher for PBA
for most items (only 6 out of 28 time intensity parameters are
smaller for PBA). Similar to the model specification used for
the mode effect in the ability part of the B-GLIRT interaction
model we simplified the mode effect for the time factor by
constraining the differences in the time intensity parameter to
a single parameter. Using an explicit identification based on an

equality constraint of λi between modes, the parameter µ
(PBA)
τ

(i.e., the mean of the latent speed factor τp,PBA) was estimated in
Model M6 as 0.561 (0.097), p < 0.05. A similar effect of 0.508
(0.089), p < 0.05, was estimated under the best fitting model

in terms of BIC (Model M7). The mean µ
(PBA)
τ of the speed

factor τp,PBA corresponds to themode effect with respect to speed,
because the mean of the latent speed factor was constrained to
zero for the CBA speed factor τp,CBA. Allowing the mean of the
latent speed factor to vary between modes worsened the model
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FIGURE 5 | B-GLIRT model for responses and response times gathered in a within-subject design with planned missing values in paper-based and computer-based

assessment.

fit in terms of AIC (and BIC), but strongly affected the estimated
parameters in the cross-relation function. This is illustrated in the
last column of Table 5. The χ

2 statistics, provided as a Wald-test
by Mplus for tests of the hypothesis that the parameters ρ1 and
ρ2 of the cross-relation function differ between modes (χ2

1ρ
), are

highly sensitive to this part of the model (mis-) specification.
Finally, Table 6 shows the estimated parameters of the cross-

relation function and the estimated mode effect parameters
concerning speed and ability. In both models M6 and M8 the
combined Wald-test for the constraint that the parameters ρ1

and ρ2 differ between CBA and PBA resulted in a χ
2-value

that indicates with df = 2 statistical significance. Inspecting
the estimated values revealed that the difference is mainly due
to the different interaction effect ρ2 between modes, rejecting
H4. Moreover, we found that the latent speed factor τp,PBA has
a variance different from 1 and a mean different from 0 (i.e.,
we found speed differences between modes). Test-takers tend
to work slower in PBA and the speed factor has a smaller
variance in PBA (i.e., test-takers are more similar with respect
to speed in PBA compared to CBA). This completes the picture
that is described with an ability mode effect: the latent mode
effect variable θmode with an estimated mean µ

θ ,mode different

from 0 indicates an overall shift in the estimated ability (lower
ability estimated from CBA). Inter-individual differences in the
mode effect regarding the ability are modeled as latent difference
variable. This latent difference variable is negatively correlated
with reading ability, indicating a higher ability mode effect for
test-takers with low reading abilities. Finally, we consistently
found a moderate correlation between the latent speed factors
for PBA and CBA across the different models. This moderate
correlation indicates that responding in a particular speed to
PBA administered reading units is only moderately related to
the speed chosen to respond to CBA administered units in the
self-paced assessment.

DISCUSSION

In this study, we applied psychometric modeling of response
times gathered from CBA and PBA with digital pens for two
selected clusters of PISA 2009 print reading assessment. For that
purpose, we developed a method to derive comparable response
times at item-level from log data that can be obtained from CBA
and PBA (using digital pens). Subsequently, we used the time
measures as indicators for the response speed in latent variable
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FIGURE 6 | Re-parameterized B-GLIRT model with a latent difference variable for inter-individual differences in the mode-effect and correlated, mode-specific speed

factor.

TABLE 5 | Measurement invariance of the B-GLIRT model with linear interaction term in the cross-relation function between computer-based and paper-based

assessment.

Model Part Constrained Estimated differences Npar AIC BIC χ
2
1ρ

M1 Baseline - - 295 50207.795 51619.876 22.798

M2 Ability αi σ
2
θmode

265 50197.487 51465.967 26.496

M3 αi , βi µθmode, σ
2
θmode

236 50198.058 51327.723 25.940

M4 Ability & Speed αi , βi , ϕi µθmode, σ
2
θmode

208 50196.661 51192.299 43.474

M5 αi , βi , ϕi , λi µθmode, σ
2
θmode

180 50385.100 51246.709 12.886

M6 αi , βi , ϕi , λi µθmode, σ
2
θmode

, µ
(PBA)
τ , σ

2 (PBA)
τ 182 50320.474 51191.656 7.966

M7 αi , βi , ϕi , λi , σ
2
ωi

µθmode, σ
2
θmode

153 50500.148 51232.516 12.171

M8 αi , βi , ϕi , λi , σ
2
ωi

µθmode, σ
2
θmode

, µ
(PBA)
τ , σ

2 (PBA)
τ 155 50432.544 51174.485 7.294

Column χ
2
1ρ

contains the value of the test statistic for the hypothesis that the estimated parameters of the cross-relation function are equal between modes (df = 2). For the AIC and

BIC, best values are in bold. The column Npar contains the number of estimated parameters.

models and investigated differences in relationship of speed and
ability across gender and mode. The analyses were grounded in
the underlying idea that differences in the relationship between
speed and ability could provide hints for actual differences in the
true response process.

We found an overall negative correlation between speed
and ability. The best relative fit was observed for a B-GLIRT
interaction model, meaning a B-GLIRT model with a cross-
relation function that included an interaction term between speed
and ability in the regression of the (log-) response time on speed
and ability. The regression coefficient for this interaction was
estimated negatively for CBA and PBA. Using this specification
of the cross-relation function in a multi-group analysis we found

measurement invariance of the B-GLIRT interaction model
between boys and girls concerning the slope and the intercept
parameters of the speed and the ability part of the measurement
model, but not concerning residual variances of the speed part
of the measurement model. In line with previous research, we
found ability differences between boys and girls. We also found
that the gender differences in the reading ability coincide with
speed differences between boys and girls for both modes (girls
responded slower while tending to obtain higher scores than
boys). Due to the nature of the study (only the mode was
randomly assigned while the speed was self-selected) we can only
assess that gender differences exist concerning speed and ability
for PBA as well as for CBA. Using the available data, the specified
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FIGURE 7 | Estimated time intensity parameters for model M4 for the comparison of paper-based and computer-based assessment.

TABLE 6 | Estimates of selected model parameters of the combined B-GLIRT interaction model for CBA and PBA data (see Figure 6).

Model CBA PBA Mode effect (Speed) Mode effect (Ability) Correlations

ρ1 ρ2 ρ1 ρ2 µ
τ ;PBA σ

2
τ ;PBA µ

θ;mode σ
2
θ;mode Cor

(

τCBA, τPBA
)

Cor(θmode, θ )

M4 0.152(0.017) −0.167(0.016) 0.036(0.017) −0.146(0.027) – – −0.105(0.047) 0.143(0.051) 0.422(0.066) −0.253(0.139) n.s.

M6 0.166(0.026) −0.172 (0.022) 0.172 (0.032) −0.237 (0.025) 0.503(0.089) 0.586 (0.080) −0.106 (0.047) 0.238 (0.069) 0.407(0.071) −0.358 (0.120)

M8 0.157 (0.019) −0.163 (0.016) 0.157 (0.038) −0.215 (0.041) 0.484 (0.080) 0.622 (0.115) −0.113 (0.047) 0.165 (0.055) 0.399(0.070) −0.262 (0.117)

Estimated mean of the mode effect variable µθ;mode is unstandardized. Mean (µτ ;PBA) and variance (σ 2
τ ;CBA

) of the mode effect (speed) are parameterized relative to the mean and

variance of the latent speed variable, that was fixed to mean zero (µ
τ ;CBA = 0) and variance (σ 2

τ ;CBA
= 1). All estimated parameters not marked with “n.s.” are statistically significant

different from zero (p < 0.05).

Wald-tests for the comparison of the parameters in the cross-
relation function between boys and girls showed no statistically
significant difference in these parameters. Hence, our results give
no reason to assume different response processes (as captured by
the cross-relation function of the B-GLIRT model) for boys and
girls so far.

Analyzing data for CBA and PBA together allowed
investigating mode effects with respect to speed (in addition
to the typical investigated comparability of ability estimates or
item parameters). Resting on the invariance assumptions of time
discrimination parameters estimated from PBA and CBA data,
which was only supported by BIC, we found mean differences in
speed in addition to mean differences in ability. Test-takers tend
to answer items in PBA slower and more correctly in comparison
to CBA. Moreover, we found hints that the relationship between

speed and ability, modeled using the cross-relation function of
the B-GLIRT model with an interaction term, differs between
modes. However, the estimated regression coefficients for the
interaction term are of small magnitude.

Our results reason further investigations of mode and gender
differences in the response process and, in particular, a focus on
the role of the self-selected speed component when changing the
administration mode and when investigating gender differences
in reading ability. However, as already investigated with this
dataset Kroehne et al. (submitted) the mode effects found in the
abilitymodel give no reason to reject the hypothesis that CBA and
PBA are construct-equivalent. Specifically, the latent correlation
of PBA and CBA was not found to differ statistically significantly
from the expected correlation of two test parts measuring the
identical construct within one mode (for instance, PBA).
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Limitations and Further Research
Up to the authors’ knowledge, the current study is the
first investigation of mode effects for self-paced assessments
conducted under large-scale assessment conditions that includes
a comparison of PISA reading assessments concerning response
times. As the method to derive comparable item-level time
measures for PBA and CBA was not previously available, the
current study has some major limitations. For instance, the
time measure for the first question of each cluster could not
be derived in PBA, because no timestamp was available that
indicated the start of the assessment. Future use of digital pens as
an assessment device to collect log data from PBA might modify
the assessment instrument by requesting the test-taker to draw a
cross right before starting to read the reading text for the first unit
in a booklet.

The conducted comparison of different parameterizations of
the cross-link function within the framework of B-GLIRTmodels
and the investigation of measurement invariance in parameters
of the best fitting model is limited as both are based on the
assumptions that the items fit the ability part and that the
unconstrained combinedmodel shows acceptable absolutemodel
fit. An additional limitation regarding the applied modeling is
that we restricted the complexity by investigating gender effects
and mode effects separately in this study. Current literature (e.g.,
[34]) give reasons to assume an interplay between the mode and
gender effect. Further research might focus on a multi-group
model by gender with both modes. Due to the small sample
size, estimation problems and the required estimation time, this
has not been investigated yet. Moreover, as the latent interaction
model is demanding on a computational level and the sample
size is rather small, a replication of the finding that a cross-
relation function including the interaction between speed and
ability using different data would be beneficial.

Regarding the interpretation of the study results, a technical
limitation is that we have not computed any measures of effect
size and practical significance. Moreover, the relationship of
the speed differences with other covariates such as an ICT-
related measure of basic computer skills is subject to additional
investigations. Also, since we did not control for the answering
time as the time to give the response (writing vs. typing), the
observed response time differences between modes might be
caused by the mechanical process of “answering.”

Conceptually, the role of speed as a potential mediating
variable of mode effects is open for further research, for instance,
by analyzing mode and gender differences within subgroups of
test-takers with comparable (self-selected) speed. In the current
form, the study is limited to the descriptive finding that ability
differences coexist together with speed differences.

The validity of the reported results regarding the response
time models rest on the operationalization of item-level response

times applied in this paper. The chosen approach was mainly
driven by the desire to create time measures that give insights
into the comparison of the response process between modes.
However, only limited validity evidence exists regarding the
interpretation of the time measures derived from paper-
based assessments using digital pens. More detailed analyses
are needed, for instance, comparing item-level response time
measures derived using different operationalization using all
available log data for CBA.
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Response times (RTs) are a natural kind of data to investigate cognitive processes

underlying cognitive test performance. We give an overview of modeling approaches

and of findings obtained with these approaches. Four types of models are discussed:

response time models (RT as the sole dependent variable), joint models (RT together

with other variables as dependent variable), local dependency models (with remaining

dependencies between RT and accuracy), and response time as covariate models

(RT as independent variable). The evidence from these approaches is often not

very informative about the specific kind of processes (other than problem solving,

information accumulation, and rapid guessing), but the findings do suggest dual

processing: automated processing (e.g., knowledge retrieval) vs. controlled processing

(e.g., sequential reasoning steps), and alternative explanations for the same results exist.

While it seems well-possible to differentiate rapid guessing from normal problem solving

(which can be based on automated or controlled processing), further decompositions of

response times are rarely made, although possible based on some of model approaches.

Keywords: response time, response accuracy, cognitive tests, cognitive processes, psychometric models, local

dependencies, automated and controlled processes

INTRODUCTION

Cognitive tests are meant to measure abilities. Abilities refer to levels of performance, whereas
processes are the activities involved in reaching a performance outcome. Typically, cognitive tests
do not yield processmeasures. It is perfectly possible tomeasure an ability without knowledge of the
processes that are involved, but then the resulting measure only describes the level of performance,
which is not always satisfying because it leaves why questions unanswered. Explanation requires a
narrative of how something comes about. Processes provide such a narrative. Processes do not only
help for understanding, they also help for more informative feedback and knowing the processes
may help for interventions and remediation. Process information is also relevant to make validity
inferences in the positive sense if the inferred processes support the interpretation of the intended
ability, and in the negative sense, for example, because unintended processes can invalidate a
measurement result. An important example of an invalidating process is guessing. Like it is possible
to measure without investigating processes, it is also possible to investigate processes without
measuring the related abilities, and a combination of the two is also possible.

Processes have the intrinsic feature that they take time. Therefore, response times are
natural and evident kinds of data to investigate processes. Other kinds of data can also be
informative regarding processes involved in reaching or not reaching a certain performance level.
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In fact, the responses themselves may be informative. For

example, based on a cognitive theory stipulating the processes
involved in finding the correct response to a set of test items, a
model can be developed for the probability of a correct response
based on the mastery of the process skills required to successfully
respond to the items. This is the basic principle behind cognitive
diagnostic modeling (Rupp et al., 2010). Mediation research
can also contribute to process research because the mediation

variable functions as a process in the narrative of how the level of
a dependent variable comes about (Hayes, 2017). It may explain

why mediation analysis has become so popular. As far as types of
data are concerned, eye movement data are an interesting source
of information regarding processes (Cho et al., 2018), because

it may be assumed that the mind follows the eyes, or the eyes
fixate the stimuli the viewer is processing. Furthermore, brain
activation and EEG data can be useful, as well as actions such as

clicking and moving on the computer screen to find an answer to
a question.

Here we will focus on response times, the time a respondent

takes to respond to individual items in a cognitive test. Making
use of response times in modeling test data can lead to the
identification and measurement of processes, but, as will be

discussed, the use of response time information does not
necessarily imply it leads to inferences regarding the processes
which are involved. The scope of this article comprises modeling
approaches in which response times are used and cognitive

process inferences can be made. For more general reviews of the
use and importance of response time and of time available to
make a test, see reviews by Lee and Chen (2011); Kyllonen and
Zu (2016) and Schnipke and Scrams (2002).

Response time modeling approaches can be classified into
four very broad possibly overlapping and not necessarily
homogeneous categories. The categories are partly inspired by
an overview made by van der Linden (2009). Before listing the
categories, we introduce a symbolic notation for the models:

Tpi for the response time of person p and item i;
Api for the response accuracy of person p and item i;
← to indicate which variable is the dependent or independent
variable; for example, Tpi ← means that response time is the
dependent variable.

(a) Response time models: response times as the sole end variable
(Tpi ←);

(b) Joint models: response times as one of the end variables,
jointly with another kind of variable (e.g., accuracy)
( [Tpi,Api]←);

(c) Dependency models: joint models in which response
times and other data (e.g., response accuracy) are jointly
modeled with the possibility of dependencies beyond
dependencies captured by latent variables and item parameters
([Tpi ↔ Api])←;

(d) Response times as covariate models: response times as an
origin variable and another kind of variable (e.g., accuracy) as
the end variable (Api← Tpi).

An end variable is an outcome variable, also called dependent
variable, the last variable in a dependency network. For example,

in a simple measurement model for speed, the observed response
times are modeled as a function of a latent speed variable and
item time parameters. More than one variable can have the status
of an end variable. For example, response time and response
accuracy (correct vs. incorrect) can be joint end variables. An
origin variable is a covariate, also called independent variable,
a variable in the dependency network that is not explained by
any other variable. More than one variable can have the status
of origin variable.

RESPONSE TIME MODELS

Three subtypes of modeling will be discussed for the Tpi ← case,
and thus with response time as the sole end variable: (1)
distribution models, (2) explanatory models, and (3) models with
response accuracy as a covariate.

Distribution Models for Response Times
Not only the mean but also the distribution of response times
is informative (e.g., Van Zandt, 2002). In most studies response
times turn out to be distributed with a variance that increases
with the mean. Many types of distributions have this feature
or can accommodate this feature: gamma, inverse Gaussian,
ex-Gaussian, and ex-Wald, lognormal, Weibull, and Gumble,
while in fact also the normal distribution has been used even
though it does not have the feature. Distributions are in the
first place used as a tool to make a model work, which for
some of these distributions means deciding on a link function
or a transformation (Lo and Andrews, 2015). However, the
distributions have also been interpreted in terms of generating
processes and these processes may have cognitive interpretations.

- Gamma distribution: is generated when the response process
consists of a set of sequential processes with an exponential
time distribution, suggesting that the underlying processes
are sequential. For example, Maris (1993) has used gamma
distribution models to model response times for mental
rotation items.

- Inverse Gaussian distribution: is generated from an
information accumulation process with a single stopping
criterion. For illustrations of this and other distributions, see
Lo and Andrews (2015).

- Weibull and Gumbel distributions: are generated from parallel
processes with a stopping rule based on the first process that
reaches the information accumulation criterion (a decision
threshold). The Weibull distribution has been used by Loeys
et al. (2011) for a joint model of response time and accuracy.

- Ex-Gaussian distribution: is generated by the sum of a
normally distributed random variable and an exponentially
distributed random variable. It has three parameters: µ and
σ for the normal distribution, and τ for the exponential
distribution. The exponential distribution explains the skew.
The Gaussian component has been interpreted as reflecting
automatic processes and the exponential component as
reflecting more controlled processes. There also seems to be
a relationship of τ with cognitive efficiency (based on the
drift rate parameter of the drift diffusion model, see Ratcliff,
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1978; Ratcliff and McKoon, 2008) and working memory
(Schmiedek et al., 2007). Based on simulation studies by
Matzke and Wagenmakers (2009) it seems that all three ex-
Gaussian parameters are sensitive to the decision threshold
(the boundary separation from the diffusion model) but that
primarily τ is sensitive to differences in cognitive efficiency
(the drift rate parameter of the diffusion model).

- Shifted Wald distribution: is generated by an accumulation
process with a certain rate and threshold, and with a shift
parameter. The shift parameter can also be added to other
distributions to account for the fact that the lower response
time boundary is not zero but slightly higher (a zero response
time is impossible). The shifted Wald distribution has been
used by Anders et al. (2016).

It was Luce’s (1986) purpose to derive underlying processes from
response time distributions, but he came to the conclusion that
the relationship between processes and distribution is not as clear
as one would like (p. 173–174), and additionally, differentiating
between the distributions is not always easy. The relationship
between distributions and processes is also discussed by Van
Zandt and Ratcliff (1995).

For the practical purpose of measurement and because it often
fits the data very well, the lognormal distribution has become
popular for cognitive test response times (van der Linden, 2006,
2007) without process interpretation claims. In some other
applications, practical considerations have led to an approach
based on the proportional hazard principle (e.g., Ranger and
Kuhn, 2012, 2014; Ranger and Ortner, 2012; Wang and Xu, 2015;
Kang, 2017). Burbeck and Luce (1982) explain that the normal,
Gumbel, and ex-Gaussian distributions have a monotone non-
decreasing hazard function, while the exponential distribution
(a special case of the Weibull) has a constant hazard function,
and the Weibull distribution can accommodate a decreasing,
constant, and increasing function. Finally, a peaked hazard
function applies to the lognormal and the inverse Gaussian. The
hazard function approach may be more than just practical for
fitting the data. The actual shape of the function (increasing,
decreasing, constant, curvilinear) may imply suggestions for the
kind of process. As an alternative for the proportional hazards
model, the response times can also be categorized so that a
generalized linear mixed model approach can be used (Molenaar
et al., 2018), and a Box-Cox transformation is another option
(Klein Entink et al., 2009a).

Explanatory Response Time Models
There is a tradition in cognitive psychology to decompose
response times based on hypothesized sequential processes
(Donders, 1869; Sternberg, 1969). The most extensive work is
conducted by Sternberg (1977b, 1985). He started his work
with analogy items (Sternberg, 1977a,b) and later extended it to
other cognitive problems, such as deductive reasoning problems
(Sternberg, 1980, 1986).

His theory, models, and analyses are briefly described here.
Suppose an analogy problem “Son is to aunt as daughter is to ?..”
( A:B :: C:? ..), with D as the correct response. The hypothesized
processes are: encoding, inference, mapping, and application.

First, there are three terms to be encoded (“son,” “aunt,” and
“daughter”). Second, an inference needs to be made, based on
a comparison of A and B (“son” and “aunt”) which implies
two differences (sex and generation). Third, mapping consists of
comparing A and C (“son” and “daughter”), which implies one
difference (sex). Finally, application consists of applying the A:B
relationship to C to findD, which implies two differences (sex and
generation). A basic assumption in the model is that a difference
between terms takes time. To differentiate the number of feature
differences to be processed for inference and application and to
vary the number of terms to be encoded, one can present the
respondents with A and B before the response time is recorded,
so that the task requires only the encoding of one term (C),
and the feature differences relevant for mapping and application
(assuming A and B have already been encoded and an inference
is made). The example item with a full item format leads to the
following equation:

RT = intercept + aXa + bXb + cXc + dXd + ε, (1)

where RT is the response time, Xa = 3 (encoding of A, B, C),
Xb = 2 (differences between A and B), Xc = 1 (differences
between A and C), Xd = 2 (differences between C and D), and a,
b, c, and d are parameters referring to the time spent per process,
while ε is a residual term. For the reduced item format, with
A and B presented before the response time is registered, the
equation would be:

RT = intercept + aXa + cXc + dXd + ε, (2)

where Xa = 1, Xc = 1, Xd = 2.
When a person is presented with a large set of problems with

different values for the different X-variables, regression analyses
can be conducted, one per respondent, which is what Sternberg
(1977a) did at a time when mixed models were not yet common
practice. Based on this approach, he was able to estimate the time
each hypothesized process takes per person.

Around the same time as Robert Sternberg did his research,
Susan Embretson (Whitely, 1976, 1977) was doing very similar
work but with binary accuracy as the dependent variable,
using item response (IRT) models. In fact, Fischer (1973) had
formulated an IRT model with the potential to do just that. His
Q-matrix contains the X-variables from the above equations.
Within IRT this has further led to the test design idea (Embretson,
1985), cognitive diagnosis modeling (CDM) (Rupp et al., 2010)
and explanatory item response models (De Boeck and Wilson,
2004). An important difference between CDM and the other
approaches is that process inferences are discrete (often binary)
and refer to mastery of skills that may be related to hypothesized
processes; but see Zhan et al. (2018c) for mastery in probabilistic
terms. However, because response times are not involved in these
approaches, we will not follow up on these developments here.

Explanatory response time models have also been embedded
in models discussed elsewhere in this article. For example,
Maris (1993) has used item covariates in his gamma model,
Klein Entink et al. (2009b) have used item covariates in the
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hierarchical model of van der Linden (2007) to be discussed
in Section Distribution Models for Response Times, and van
Breukelen (2005) did the same in a related model. However,
such applications with the possibility for process inferences are
rather rare, whereas they have clear potential for the study of
response times, just as they have for response accuracy. Possibly,
the extension of CDMwith response time data (Zhan et al., 2017)
can lead to a further interest in this approach.

Response Time as a Function of Response

Accuracy
Usually response time is considered as the independent variable
for response accuracy and not the other way around. However,
there is some literature on how the type of incorrect response is
an indication for response time and for the underlying processes.
For example, Novikov et al. (2017) hypothesize based on the
literature that errors either stem from lack of cognitive control
(deemed to be premature responses) and would lead to short
response times (error speeding) or from attentional lapses and
uncertainty. The study by Novikov et al. (2017) concerns an
auditory discrimination task and the use of EEG to locate
oscillations in different regions of interest in the brain. On
average the response times were shorter for correct responses
than for incorrect responses, a common finding for complex
attentional tasks (Wilding, 1971; Luce, 1986) and slow errors are
found to be an indication of attentional lapses and uncertainty.
The empirical results turned out to be roughly in line with the
hypothesis about fast and slow errors based on EEG oscillations
in regions of interest in the brain known to be informative about
the hypothesized processes.

JOINT MODELS

It has become common practice to register response times for
all item responses, so that parallel data are available: response
accuracy and response time per pair of respondent and item. This
allows then for ( [Tpi,Api]←) models, where time and accuracy
are joint end variables. The parallel data concept is broader than
response time and response accuracy. Although the applications
are rare or even non-existing, parallel data can also include eye-
movement data, brain activation data (BOLD signals) and EEG
data for one or more regions of interest (ROI).

Molenaar et al. (2015) have discussed a broad framework
for joint models, called the bivariate generalized linear item
response theory modeling (B-GLIRT) framework. As shown by
Molenaar et al. (2015), these models are basically IRT versions
of two-dimensional confirmatory factor analysis (CFA) models:
one factor for ability and another (correlated) factor for speed.
Guessing and random item parameters are thus far not used
in factor models, but they can be and have been included in
the IRT versions. The prototypical model in the category is the
hierarchical model (van der Linden, 2007), which has inspired
related models with a different response time distribution (e.g.,
Loeys et al., 2011; Wang et al., 2013; Kang, 2017), with a
multidimensional extension of the measurement model (Zhan
et al., 2018a), and with item response time varying in a systematic

way during the test (Fox and Marianti, 2016). An interesting
feature of the B-GLIRT framework is that Thissen’s (1983) joint
model can also be accommodated into B-GLIRT although it
may not look like a typical CFA model. Another feature is that
polytomous responses can also be dealt with.

The B-GLIRT models are measurement models but not
process models. The primary function of response times is
to strengthen ability measurement. However, two other types
of joint models exist with the ambition to model cognitive
processes based on parallel data regarding response time and
response accuracy: diffusion models (Ratcliff, 1978) and race
models (Townsend and Ashby, 1978). Tuerlinckx and De Boeck
(2005) have shown that both these cognitive models can be
approximately re-parameterized as item response models and
thus as measurement models for test data. Since then, van der
Maas et al. (2011) have developed a version of the diffusionmodel
for cognitive test data (see Ranger and Kuhn, 2018, for estimation
methods), and Rouder et al. (2015) and Ranger et al. (2014), have
developed race models for joint response accuracy and response
time data from cognitive tests. The diffusion model and the
race model as process models are discussed after the hierarchical
model is presented. Finally, there is a beginning research line
of using parallel data for cognitive diagnostic modeling (Zhan
et al., 2017, 2018b) with the possibility of accommodating
local dependencies (Zhan et al., 2018b). These models offer the
possibility of extending the hierarchical model and dependency
models to another popular type of psychometric models.

The Hierarchical Model
The most popular method to analyze parallel data is van der
Linden’s (2007) hierarchical model and it is a member of the
B-GLIRT family. Roughly speaking it is a two-dimensional
model, with one dimension for accuracy (correct vs. incorrect)
interpreted as ability and another dimension for response time
(log of response time) interpreted as speed. The model is more
complex, because the ability dimension is based on the three-
parameter logistic (3PL) model with random items parameters
for accuracy as well as for response time. The model is a
hierarchical model because of the multivariate distribution for
ability and speed and for the item parameters of response
accuracy and response time. Furthermore, van der Linden (2009)
notes that the ability would be higher and the speed lower
if the respondent would make the same test with more focus
on accuracy. Therefore, the ability and speed as measured are
“effective” ability and speed for an unknown speed-accuracy
tradeoff from the part of the respondent. Although the model is
very useful as ameasurementmodel, it is not a processmodel. It is
a measurement model with the advantage that the measurement
of ability can benefit from the response time information. If the
two dimensions are related, the measurement of each of them
gains strength from the data for the other.

The assumption of van der Linden (2007) model is that
response times follow a lognormal distribution. Loeys et al.
(2011) have used the lognormal distribution and the shifted
Weibull, while for example Wang et al. (2013) and Kang
(2017) have used a semi-parametric proportional hazards model
which gives the opportunity to accommodate most types of
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distributions and deviations from these. As far as the distribution
can be interpreted in process terms, the proportional hazard
approach can function as an explorative approach for cognitive
processes.

Diffusion Model
The drift diffusion model has been presented in an explicit
way as an alternative for the hierarchical model by van der
Maas et al. (2011). The model is a modification of the original
drift diffusion model (Ratcliff, 1978; Ratcliff and McKoon, 2008;
Ratcliff et al., 2016) so that it can be used for multiple-choice
data from cognitive tests. The primary process is information
accumulation in response to a stimulus (an item) that comes
with a binary choice question (e.g., “is the number of asterisks
you see smaller or larger than 50?”). The restriction to binary
choices is removed in the van der Maas et al. (2011) version. The
information accumulation process is not a straight-line process,
instead it is a random walk process between two boundaries
(one for each response option) with a trend in the direction of
one of both but with the possibility to end up at the boundary
opposite to the trend because of the random character of the
process.When a decision boundary is reached, the corresponding
response follows. The trend parameter is called the drift
parameter. The other parameters are boundary separation, bias,
and non-decision time. The boundary separation represents the
speed-accuracy balance (how certain one wants to be before
responding), bias depends on where the process starts (in the
middle or closer toward and thus in favor of one of the
boundaries), and the non-decision time is the time not taken by
the information accumulation.

Although the diffusion model is a process model, it is basically
a one-process model, with the one process being information
accumulation, governed by three parameters (drift, boundary
separation, and starting point). The non-decision time is a rest
category for processes involved in the perception of the stimulus
and the act of responding.

For rather simple binary choice tasks with on average
extremely fast responses—much faster than cognitive test
responses—itmakes sense that only one process is involved, while
this is less likely for more complex cognitive tasks as presented
in cognitive tests. Information accumulation may be a basic
elementary component, but if it is, it would need to be repeated
in each of the processes involved in more complex tasks, for
example, in each of the processes Sternberg (1977a) has found
to play a role in analogy tasks. Such an extension is a serious
complication and cannot yet be dealt with in model formulation
and estimation.

Still, van der Maas et al. (2011) have shown that latent variable
modeling (including item parameters) is possible for the diffusion
model assuming just one diffusion process. The major two latent
variables in the model are cognitive efficiency (drift rate of the
process) which is always positive in the van der Maas et al.
model, and cautiousness (boundary separation for the process).
Cognitive efficiency makes one respond faster and with a higher
probability of a correct response, whereas cautiousness makes
one respond slower and with a higher probability of a correct
response. Therefore, and roughly speaking one can expect that
these two dimensions are a rotation of the ability and speed

dimensions of the hierarchical model, with cognitive efficiency
in between ability and speed and with cautiousness in between
ability and the opposite of speed.

In sum, although the diffusion model has several advantages
(a process model, more fine-grained, taking the speed-accuracy
balance into account), it is based on a one-process assumption,
and as far as the latent variables are concerned, it is roughly
speaking a rotation of the hierarchical model. Conceptually
speaking, the cognitive efficiency as measured in the diffusion
model, shows clear similarities to Spearman’s (1927) view on
intelligence and how the speed-accuracy balance plays a role in
the response process (p. 250).

Race Models
Race models are based on the notion of a competitive race
between accumulators, one for each response option. The Rouder
et al. (2015) model has a shift parameter for response time but it
has only one latent variable: the ratio of the rate of information
gain and response boundary, and for the application Rouder et al.
(2015) describe, this one latent variable is highly correlated with
effective ability from the hierarchical model. The Ranger et al.
(2014) model has two latent variables (but not a shift parameter):
one for information accumulation in support of the correct
response, and one for misinformation accumulation (supporting
the incorrect response). The amount of processing capacity is the
sum of these two and accounts for response time, whereas the
discrepancy between the two accounts for response accuracy. The
authors show that the speed-accuracy trade-off is a complicated
function of these two. Because the two latent variables can be
approximately re-parameterized as effective speed and effective
ability, this race model is equivalent to the recognition of speed
and ability as basic latent variables. We have empirical evidence
for this conceptual analysis. From our own analysis of data,
it was found that for the Ranger et al. latent variables the
multiple correlations with effective ability are 0.886 and 0.833
(two different sets of items were used) and with effective speed
they are 0.979 and 0.962. In other words, although the models
have very different functional forms, the latent variables that
are being extracted belong roughly to the same two-dimensional
space.

The race models share with the diffusion model that they
are process models, that they are more fine-grained, and that
they have a solution for the speed-accuracy issue, but as far as
latent variables are concerned, they seem to work with roughly
the same two-dimensional space as the hierarchical model.
In other words, the difference with the hierarchical model is
primarily an interpretation difference. The diffusion model and
racemodels both assume one primary process: either information
accumulation between boundaries, or a race among different
accumulators.

LOCAL DEPENDENCY MODELS

Local dependency models are models in which response time
and response accuracy are jointly modeled but in which they
are also related to each other beyond the relationship of their
corresponding latent variables and item parameters so that they
imply or can explain an extra dependency (of the type [Tpi ↔
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Api]← ). While Tpi and Api are end point variables, they also are
covariates to explain the local dependency.

Types of Models
There is clear evidence for local dependencies between response
time and accuracy (Bolsinova and Maris, 2016). The inclusion
of dependencies in a joint model can be realized through the
introduction of local dependency parameters or through models
with different classes of responses (based on different response
mechanisms). The former models are latent variable models
with remaining dependencies. Either the item response time has
a direct effect on the corresponding item accuracy (Bolsinova
et al., 2017a; De Boeck et al., 2017) or vice versa (van der
Linden and Glas, 2010), or the relationship is modeled as a
symmetrical residual dependency. The alternative type of models
are class models with two classes of responses corresponding to
two responsemodes: a fast mode and a slowmode. The classes are
classes of item responses (not of items and neither of persons),
each with a different model and thus with different processes
to arrive at a response. Examples of such models are described
by Partchev and De Boeck (2012) (for manifest classes) and by
Molenaar and De Boeck (2018), Wang and Xu (2015), Molenaar
et al. (2016) for latent classes.

In the models presented in the former two articles with class
models, either the observed item response time determines which
model applies for accuracy (Partchev and De Boeck, 2012) (it is a
manifest class model) or the item response time is a covariate for
the probability of the model that applies for accuracy (Molenaar
and De Boeck, 2018) (it is a latent class model). In both these
models there is only one sub-model (one class) for response
times, but there are two for accuracy. Which of the two applies
depends on the response time, in a deterministic way in the
former model and in a stochastic way in the latter.

In the other two models the response classes are associated
with differentmodels for response accuracy and response time. In
the Wang and Xu (2015) model, one class represents the regular
problem solving process and the other class is a rapid guessing
class, while in the Molenaar et al. (2016) model, the two classes
represent fast and slow problem solving processes (with aMarkov
transition between the two), respectively, but none of the two
corresponds to guessing.

Two other models may seem similar to the latter two, but they
are in fact person class models and not response class models.
First, Meyer (2010) has also published a model for response
time and response accuracy with two classes, a regular problem
solving class and a rapid guessing class, for problem solvers
and rapid guessers. Second, Jeon and De Boeck (2018) also
work with person classes, each with its own accuracy model and
with item response times as covariates of the class probabilities.
The resulting classes are interpreted by the authors as a regular
problem solving class and one or two automatic knowledge
retrieval classes.

Findings
Based on the latent variable models with remaining
dependencies, the main finding is a negative dependency
between response time and response accuracy. Fast responses

(short response times) have a higher accuracy (Bolsinova et al.,
2017a,b; De Boeck et al., 2017). The dependency cannot be
explained by the fact that easy items require less response time
because the relationship across items (and persons) is taken care
of through the item parameters (and the latent variables). The
results are supported by the response class models with a fast
and slow class. Items are easier in the fast response class than
in the slow item response class (Partchev and De Boeck, 2012;
DiTrapani et al., 2016; Molenaar et al., 2016; Molenaar and De
Boeck, 2018). The rapid guessing mixture model cannot explain
these results because it implies a positive dependency (slower
responses are more correct). It is possible that the two types
of response class models inform us about different underlying
phenomena in the same data. Rapid guessing is considered an
important phenomenon in educational measurement. It has
been linked to lack of motivation, and in line with this hypothesis
a response time effort (RTE) index has been developed (Wise and
Kong, 2005; Wise and Gao, 2017) to identify motivation issues.

The negative dependency does not show in all studies, for
example, in one of the two datasets in Bolsinova et al. (2017b),
the dependency is positive. The exceptions can be explained by
another rather robust finding that the dependency is positively
correlated with the difficulty of the items (Meng et al., 2015;
Bolsinova et al., 2017a,b; De Boeck et al., 2017; Molenaar and
De Boeck, 2018). The easier (more difficult) the items are the
stronger (weaker) the negative dependency is, and for more
difficult items the dependency can be positive.

The negative dependency can be interpreted as the
consequence of attention variation during the test. This
would imply a variation of cognitive efficiency and thus a higher
(lower) accuracy paralleled by shorter (longer) response time.
The link with item difficulty can be explained if one assumes,
in line with the diffusion model, that dominant responses are
faster. The easier an item is, the more dominant the correct
response is, and thus faster. For the difficult items, there may be
one or more dominant incorrect responses raising the chances
of an incorrect response being faster. Therefore, a variation of
cognitive efficiency may lead to an association of fast with correct
or with incorrect, depending on the difficulty of an item.

There are some alternative explanations for the same findings.
First, on average easy items come with faster responses, but
if easiness also depends on the respondent this would lead to
a negative dependency between response time and response
accuracy. At the same time, difficult items come with slower
responses, but it is likely that respondents guess more on difficult
items, which would lead to fast responses with a small probability
of being correct. Second, it is also possible that, again on average,
for easy items one relies more on automated processes, such
as knowledge retrieval, which can be very fast, whereas difficult
items require more controlled processing, which takes time. The
latter explanation can be found in Goldhammer et al. (2014) for
results that will be discussed in the next section on studies with
response time as a covariate. For a further discussion of possible
explanations, see Bolsinova et al. (2017c).

Based on the studies cited here, the residual dependencies
are a robust finding, in low-stakes and high-stakes tests, for
open-ended as well as multiple-choice items, for children and
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adults, for educational tests as well as for intelligence tests. They
are an intriguing phenomenon in the investigation of cognitive
processes because they are derived from a more fine-grained
analysis than the common models with latent variables and
item parameters. Latent variables inform us about rather general
individual differences in speed and ability and their association
seems to vary depending on the test (Schnipke and Scrams,
2002; Klein Entink et al., 2009c; van der Linden, 2009). They
can stem from differences in the speed-accuracy balance and
other confounding variables. With respect to correlations across
items, overall item differences in time intensity and difficulty and
the fact that more difficult items take more time are rather self-
evident findings. However, the dependencies are a new category
of findings obtained after controlling for general differences
and associations across persons and items; they refer to the
more specific relationship between response time and accuracy
(Bolsinova et al., 2017c).

One further and even more specific finding, although not
based on joint modeling of response times and response
accuracy, but on double-centering of response times instead (an
explorative technique) is that the residual relationships between
response time and difficulty may be curvilinear (Chen et al.,
2018). The curvilinear relationship including its precise shape is
confirmed with a fine-grained modeling approach by Bolsinova
and Molenaar (2018). Naumann and Goldhammer (2017) also
obtained curvilinear relationships with a method described in
Section Local Dependency Models, and van Breukelen (2005)
found indications of curvilinearity for some types of items with a
related model.

Another and very recent joint latent variable model with
dependencies is the generalized speed-accuracy response model
for dichotomous items (van Rijn and Ali, 2017, 2018). It is a
model with only one latent variable (a capacity variable) for
when a scoring rule is used described by Maris and van der
Maas (2012). Starting from the scoring rule, a corresponding
model is formulated, by way of reversed engineering. The scoring
rule implies that correct (incorrect) responses are rewarded
(penalized) more the shorter the response time is. Responses,
whether correct or incorrect do contribute less to the score the
slower they are. When all the available time to respond is used
(response time equal to the time limit) the response has no
effect on the score. The model is at the same time a model
with local dependence between response time and response
accuracy, which is not surprising given that it is a model for
a scoring rule that combines correctness and response time.
Interestingly this model is applied by the authors to data from
respondents who were not aware of the scoring rule. Therefore,
the implicit assumption is that the rule they were using reflects
their actual speed-accuracy balance. The speed-accuracy balance
is of a different kind than the one defined by the boundary
separation in the diffusion model. The latter implies that the
larger the boundary separation is, the larger the value discrepancy
is between a success and a failure. Instead, following the Maris
and van der Maas scoring rule, the value of success and failure
depends on the response time. The model does not allow for
individual differences and item differences with respect to the
speed-accuracy balance, but such an extension could lead to an

estimation of the balance. A further interesting implication of the
model is that the relationship between response probability and
response time is curvilinear.

The findings from the class models are partly overlapping with
those from latent variable models with residual dependencies in
that the negative dependency and the link with item difficulty
are supported as explained earlier. On the other hand, the class
models seem to provide evidence for a dual-processing view. This
is easy to understand for rapid guessing as a processing mode
(Meyer, 2010; Wang and Xu, 2015), even though it might be
necessary to distinguish between rapid guessing and cheating
(Wang et al., 2018) because cheating can also be fast. Class
models may bemore difficult to understand for other distinctions
between processes (if not prior suspects such as rapid guessing or
cheating are available). A first obstacle is that the latent variable
for accuracy is the same or highly correlated in the two classes
in class models for slow and fast responses (Partchev and De
Boeck, 2012; Coomans et al., 2016; DiTrapani et al., 2016; De
Boeck et al., 2017; Molenaar and De Boeck, 2018). It means that,
although the processes seem different, as one may infer from a
difference in item parameters, the underlying abilities cannot be
differentiated. When a respondent switches from one mode to
another, which is modeled through a Markov model in Molenaar
et al. (2016), an empirically not distinguishable ability is being
used. This may seem odd, but it is possible indeed that, for
example, the abilities for automated processing and controlled
processing are empirically extremely highly correlated and nearly
identical, even though the actual processes are different. A second
obstacle is that the differences between the two classes have not
much been explored in terms of item features or kinds of error.
Based on the only effort we know of (Coomans et al., 2016),
there is evidence for a qualitative difference between the response
errors in the fast and slow response classes. For the two example
items (multiplication items) given in Table 5 of the article, fast
errors seem to be typos or negligent responses based on the
correct or a related arithmetic operation, whereas slow errors can
be reconstructed based on an unrelated kind of operation. For
example, for 100 × 3000=?, 3,0000 is a popular fast error, and
400,000 and 1,300,000 are more typically slow errors. Similarly,
for 2 × 80?, 40 is more popular as a fast than as a slow error and
the reverse is true for 600. Whereas, fast errors seem to be slips,
slow errors seem based on complicated incorrect operations or
slow guesses.

RESPONSE TIMES AS COVARIATE

MODELS

Finally, there are studies in which response times are used as a
covariate, in all cases with response accuracy as the dependent
variable (models of the type Api ← Tpi ). Response time is the
origin variable and accuracy is the end variable. We will first
discussmodels inspired by the speed-accuracy tradeoff (SAT) and
next the generalized linear mixed model (GLMM) approach of
Goldhammer and colleagues will be covered. A combination of
both can be found in van Breukelen (2005) and his analysis of
mental rotation data.
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SAT-Based Models
Perhaps the most well-known phenomenon that relates response
time to accuracy is the speed-accuracy trade-off (Heitz, 2014).
The SAT implies that the success rate shows an exponential
growth to a limit as a function of time. The curve has been
described by Wickelgren (1977) and is very similar to the curve
that can be derived from the diffusion model (Wagenmakers
et al., 2004). Lohman (1989) has used the curve for test data and
has estimated the corresponding person parameters, such as the
growth rate and the upper asymptote. It does make sense that
with increasing time available, the accuracy rate goes up. A quite
different question is whether the success rate goes up with the
time a respondent takes to respond.

Roskam (1987) andVerhelst et al. (1997)make the assumption
that a similar growth curve as the SAT curve applies to the time a
respondent takes to respond (Roskam, 1987, 1997) and to minus
the actual speed of a respondent (Verhelst et al., 1997). Wang and
Hanson (2005) make the same assumption as Roskam although
for a more complex model. A very nice feature of the Wang
and Hanson (2005) model and of Lohman’s (1989) approach
is that the growth rate can be interpreted as speed (accuracy
gain per unit of time, analogous to miles per hour) and the
upper asymptote can be interpreted as power in the sense of
the maximum accuracy one can reach. While it is undoubtedly
true that the probability of success increases as a function of
releasing time pressure or extending the available response time
(e.g., Semmes et al., 2011; Davison et al., 2012; Goldhammer and
Kroehne, 2014; Goldhammer et al., 2017; Chen et al., 2018), it
also seems empirically the case that the accuracy curve does often
not increase with the observed response time, as will be discussed
in the following.

GLMM Based Covariate Models
In a series of studies, Goldhammer and colleagues (Goldhammer
et al., 2014, 2015, 2017; Naumann and Goldhammer, 2017)
have investigated the relationship of time on task with response
accuracy, inspired by a dual-processing theory. The basic findings
obtained with GLMM are that the association between response
time and response accuracy controlling for the latent accuracy
variable and for accuracy item parameters depends on the kind
of task. However, it was always the case that the association is less
negative (or more positive) for more difficult items. This was true
for reading and problem solving tasks (Goldhammer et al., 2014),
Raven items (Goldhammer et al., 2015), lexical decision tasks
(Goldhammer et al., 2017), and digital reading (Naumann and
Goldhammer, 2017). These results are perfectly in line with the
results obtained from local dependency models, and they are also
in line with findings by Jeon and De Boeck (2018) that faster than
expected response times have a positive covariate effect on the
probability of belonging to respondent classes where easy items
are even easier, which are interpreted as knowledge retrieval
(vs. problem solving) classes in line with the dual-processing
hypothesis. The difficulty related dependencies are interpreted
from the hypothesis that easy tasks are more amenable to
automatization. Because in the studies by Goldhammer and
colleagues the relationship between response time and response
accuracy was more negative for respondents with high values on

the accuracy latent variable, higher levels of skill are also assumed
to correspond with higher levels of automatization.

Discussion and Conclusion
We will first discuss the general finding of local dependency,
followed by some considerations regarding cognitive process
modeling based on response times. For each of the points,
conclusions and suggestions for further directions will also be
formulated.

The general finding of local dependency between response
time and response accuracy is important for at least three reasons.
First, the dependency is a violation of measurement invariance
because the dependency implies that ability and speed cannot be
measured independently. It is important to investigate how large
the resulting distortions are. It is possible that the established
violations do not cause large measurement distortions. Second,
although the local dependency does not give a direct process
indication, it can be interpreted as an indirect indication of the
main type of processing: automated vs. controlled processing.
The distinction, and thus the dual-processing theory, must
not necessarily be interpreted as a dichotomy, it can also be
interpreted as a continuum. When interpreted as a dichotomy,
it corresponds to the class models for response time and response
accuracy. When interpreted as a continuum, it corresponds to
latent variable models with residual dependencies and to the
research line of Goldhammer et al. Third, the dependency seems
to have a specific shape indicating that up to a certain point longer
response times are associated with an increasing accuracy, after
which longer response times become associated with a decreasing
accuracy. To be clear, this is not a result based on the relationship
between the latent variables; instead it is based on the local
dependencies after controlling for latent variables. Following the
results from Chen et al. (2018) the turning point comes earlier if
the test is more knowledge based and less reasoning based. The
shape of the curve may reflect the cost of time and effort on the
speed-accuracy tradeoff. Early on in the response process the cost
of spending more time is compensated by an increasing chance
to find the correct response, but the longer it takes to find the
correct response the higher the cost becomes while the perceived
chance of finding the correct response may decrease so that the
expectation of a correct response does no longer compensate for
the cost of effort. This may not play a role for simple cognitive
tasks with fast responses, but it seems more likely for problems as
presented in a cognitive test, especially when the test has a global
time limit. Future research should take the increasing cost of time
and effort into account.

Most of the cognitive test research related to response times
is focused on measurement and improvement of the quality of
measurement, either making use of response times as collateral
information for the ability to be measured or to identify and
solve issues. One of the major issues is the speed-accuracy trade-
off. Working at a slower or faster rate can reflect a natural
pace but it may also be induced by a chosen speed-accuracy
balance with consequences for the accuracy of responses and
thus for ability estimation, and a faster or slower rate can also
have consequences for speededness toward the end of the test.
Unless an experimental design is used with a manipulation of
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the available time, it is not possible to investigate and measure
the effects of the SAT. However, experimental manipulations do
not inform us about the speed-accuracy balance a respondent
chooses when taking a test. The diffusion model seems to give
an answer to that important question. It may be a valid answer
for the simple two-choice tasks, but it is unclear whether it does
for cognitive tests. Further, the assumption of the diffusionmodel
is very similar to Spearman’s (1927) assumption that speed and
accuracy are governed by cognitive capacity and trading accuracy
against speed. Consequently, there is no room for speed as a
capacity or as a natural pace variable. Instead there is just one
cognitive capacity which determines fast and accurate responses,
except for a possibly interfering attitude: the speed-accuracy
balance the respondent chooses to work with. To summarize,
one cannot simply transpose the diffusion model to cognitive test
data and make inferences about the SAT based on that model.
Future diffusion model based research should take the nature of
cognitive tests into account.

Another major issue is rapid guessing, due to lack of
motivation, or due to strategic considerations such as gaining
time in order to focus on items with a better perceived
chance of success. Rapid guessing is an important practical
measurement problem, but it does not inform us about the
cognitive processes that play a role when the respondent
does work on finding a correct response. It is surprising that
response time decomposition models are not used more for
cognitive tests, in the line of the cognitive process research
by Robert Sternberg. Instead, this more differentiated research
is represented in cognitive diagnostic modeling and thus in
research and measurement based on response accuracy instead
of response time (but see Zhan et al., 2017), whereas response

times have a natural relevance for process research. It would be
of interest for future research to focus more on response time
decomposition models for cognitive test data, beyond the issue
of rapid guessing. A combination of response time modeling
with cognitive diagnostic model is an alternative and promising
avenue for research.

In the future, process research can also come from other types
of parallel information, such as eye movement data, recording
of actions during the responding process (through clicks and
moves on the computer screen), and brain imaging and EEGdata.
One of the important ongoing trends is the use of data analytics
to unravel processes based on recorded actions during the time
between the item presentation and the actual response. It is too
early for a bet on which approaches will lead to breakthroughs.
We should also consider that processes can be so complex and
highly variable that it may not pay off to identify what the
specific processes are and how they relate, and that it may be
more efficient to assess cognitive processes on a higher level of
abstraction, for example, howmuch they are based on automated
vs. controlled processes. To summarize, the inclusion of other
types of data beyond response times, such as eye tracking data
and brain imaging may lead to important novel findings, but,
perhaps choices have also to be made regarding the detailed or
more general nature of processes one wants to investigate. A
good compromise between specificity and generality of processes
seems desirable.
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This study explored calibrating a large item bank for use in multidimensional health

measurement with computerized adaptive testing, using both item responses and

response time (RT) information. The Activity Measure for Post-Acute Care is a

patient-reported outcomes measure comprised of three correlated scales (Applied

Cognition, Daily Activities, and Mobility). All items from each scale are Likert type, so

that a respondent chooses a response from an ordered set of four response options.

The most appropriate item response theory model for analyzing and scoring these items

is the multidimensional graded response model (MGRM). During the field testing of the

items, an interviewer read each item to a patient and recorded, on a tablet computer, the

patient’s responses and the software recorded RTs. Due to the large item bank with over

300 items, data collection was conducted in four batches with a common set of anchor

items to link the scale. van der Linden’s (2007) hierarchical modeling framework was

adopted. Several models, with or without interviewer as a covariate and with or without

interaction between interviewer and items, were compared for each batch of data. It

was found that the model with the interaction between interviewer and item, when the

interaction effect was constrained to be proportional, fit the data best. Therefore, the final

hierarchical model with a lognormal model for RT and the MGRM for response data was

fitted to all batches of data via a concurrent calibration. Evaluation of parameter estimates

revealed that (1) adding response time information did not affect the item parameter

estimates and their standard errors significantly; (2) adding response time information

helped reduce the standard error of patients’ multidimensional latent trait estimates, but

adding interviewer as a covariate did not result in further improvement. Implications of

the findings for follow up adaptive test delivery design are discussed.

Keywords: response time, hierarchical model, health measurement, multidimensional graded response model,

item response theory (IRT)

INTRODUCTION

When assessments are delivered via computer-based devices, collecting persons’ response times
(RTs) at the item level is straightforward. The analysis of item-level RTs on assessments has
attracted substantial interest recently. For example, in personality assessments, RTs have been used
to measure attitude strength (Bassili, 1996), to detect social desirability (Holden and Kroner, 1992),
and to enhance criterion validity (Siem, 1996). In achievement testing, RTs have been used to
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evaluate the speededness of the test (Van Der Linden et al., 1999),
to detect aberrant behavior (e.g., Wang and Xu, 2015;Wang et al.,
2018b,c), and to design a more efficient test (Bridgeman and
Cline, 2004; Van der Linden andGuo, 2008; van der Linden, 2009;
Fan et al., 2012). RTs have also been used to evaluate response
data quality in web-based surveys (Galesic and Bosnjak, 2009).

In the healthmeasurement domain, response time (sometimes
called reaction time) is often used to measure cognitive
functioning, particularly in research on aging (e.g., Pearson,
1924; Braver and Barch, 2002; Hultsch et al., 2002; Anstey
et al., 2005; Osmon et al., 2018). Similar to the speed test in
educational assessments, RTs are usually collected from timed,
target stimuli tasks, in which respondents are instructed to
respond as quickly as possible. In this case, only RTs, not
response accuracy, is of interest. For example, in a study using
the United Kingdom Health and Lifestyle Survey (Cox et al.,
1987; Der and Deary, 2006), person-level reaction times were
examined across different age and gender groups. Another
example is using RTs from a stop-signal reaction time task to
study response inhibition from patients with Parkinson’s disease
and other brain disorders (Gauggel et al., 2004; Verbruggen
et al., 2013). Despite these widespread applications of RTs, little
attention has been paid to the usefulness of item-level response
times as collateral information for improving measurement
precision. These previous studies have primarily used scale-
level, aggregated RTs, such as its mean and standard deviation.
However, item-level RTs, routinely collected during computer-
based assessment delivery, provide richer information. Only a
recent didactic review by Osmon et al. (2018) demonstrated
the advantages of examining the entire RT distribution rather
than only its mean and standard deviation to understand the
efficacy of mental speed assessment in clinical neuropsychology.
Therefore, it was of interest to apply advanced psychometric
models for item-level RTs in the assessment of reported health
behaviors and evaluate if RTs help better estimate the main
constructs of interest.

MODELS

Multidimensional Graded Response Model
The most appropriate measurement model for ordered
polytomous responses is the graded response model
(GRM; Samejima, 1969). The item response function of the
unidimensional GRMmodel is

Pjk (θ) = P+
jk (θ) − P+

j,k+1 (θ) =
e
[

Daj
(

θ−bjk
)]

1+ e
[

Daj
(

θ−bjk
)]

−
e
[

Daj
(

θ−bj,k+1

)]

1+ e
[

Daj
(

θ−bj,k+1

)] (1)

where Pjk (θ) is the probability of a randomly selected person
with a latent trait θ selecting category k of item j (k−1 . . . K).
P+
jk (θ) is the boundary response function, interpreted as the

probability of responding to category k and above for item j given
θ . aj is the item discrimination parameter for item j. bjk is the
boundary location parameter for item j in category k (k = 0, . . . ,

K). D = 1.7 is the normalizing constant. Because by definition,
P+j0 (θ) ≡ 1 and P+jK+1 (θ) ≡ 0, neither bj0 nor bjK+1 are estimable

parameters. Therefore, for an item with four response categories,
only three boundary parameters are estimated.

When the instruments include multiple scales measuring
different constructs or different aspects of the same construct
(e.g., Zickar and Robie, 1999; Fraley et al., 2000; Fletcher and
Hattie, 2004; Zagorsek et al., 2006; Pilkonis et al., 2014), the
multidimensional extension of the GRM, namely, the MGRM
(Hsieh et al., 2010; Jiang et al., 2016), is appropriate. Let θ be a
vector of lengthH representing the latent traits of interest, and let
h = 1, 2, . . . , H. Similar to the unidimensional case, P+j0 (θ) ≡ 1

and P+
j(K+1) (

θ) ≡ 0. When the test displays a simple structure,

the boundary response function takes the form of

P+
jk (θ) =

1

1+ exp
[

−Dajh
(

θh − bjk
)]

=
1

1+ exp
[

−D
(

ajhθh + cjk
)] , (2)

assuming item j measures dimension h only so that ajh
is the item discrimination parameter on the hth dimension
of item j. In Equation 2, cjk = −ajhbjk and this a-c
parameterization with D = 1 is consistent with flexMIRT’s (Cai,
2013) default parameterization; the c parameter is interpreted
as the “intercept.” Equation 2 could also be modified to
accommodate complex structure; for details, see Reckase (2009).

Bivariate Models of Responses and RTs
Given that RTs carry useful collateral information about
both item and person characteristics, the bivariate model of
responses and RTs (Molenaar et al., 2015) was considered. The
measurement model for responses was as specified in Equation 2,
and the measurement model for RTs takes the form

lntij = λj + ϕjτi − ϕjρdθid + ωij (3)

Here, tij denotes the RT of patient i on item j, τi is the latent
speed parameter of patient i, λj and ϕj are the time-intensity
and time-discrimination parameters of item j, and ωij is the
residual. If the residuals are assumed to be normally distributed,
then Equation 3 suggests that the response time tij follows a log-
normal distribution. Other more flexible types of residuals can
also be assumed if the data warrants (e.g., Wang et al., 2013a,b).

The term, ϕjρdθid, is called a cross-relation function (Ranger,
2013; Molenaar et al., 2015), and it is assumed that item j
measures the dth dimension. Different from van der Linden’s
(2007) hierarchical model in which a covariance structure is
assumed on θ and τ at a second level, this cross-relation term
directly models the relationship between the latent ability and
observed log-transformed RTs (log-RTs). Certainly, the cross-
relation term based on τi could alternatively enter into the
measurement model of responses; for example, Molenaar et al.
(2015) argued that incorporating the cross-relation term in the
RT model had unique advantages. That is, when the purpose
of including RT information is to improve the measurement
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precision of θ , it is preferable to leave the measurement model for
the responses unchanged while modeling the information about
θ (if any) in the RTs. In this regard, θ accounts for the shared
ability variance in the responses and RTs and τ accounts for the
additional, unique variance in the RTs. This joint model is termed
as Model 0 and its diagram is shown in Figure 1.

To ensure model identifiability, several constraints need to
be in place. First, regarding the MGRM model, the mean and
variance of θs are restricted to be 0 and 1, respectively. Second,
the mean and variance of τ is also constrained to be 0 and 1 such
that the residual variance of ωij is freely estimated1. The three
θ components are assumed to be correlated, and the correlation
matrix is freely estimated. However, all three θs are assumed
uncorrelated with τ due to the inclusion of the cross-relation
term. The same set of constraints was assumed for all other
models introduced hereafter.

Molenaar et al. (2015) suggested identifiability constraints that
are similar to those listed, except that var(τ )= 1− ρ

2, instead of
1. Both constraints are sufficient, and their choice conveniently
allows the interpretation of ρ as a correlation coefficient. Note
that in van der Linden’s (2007) model the variance of τ is
estimable (Equation 22, p. 294). This is because the lognormal
model for RT in van der Linden (2007) takes the form

f
(

tij; τi,αj,βj

)

=
αj

tij
√
2π

exp

{

−
1

2

[

αj

(

lntij − (βj − τi)
)]

}

(4)

where αj is interpreted as the dispersion parameter that quantifies
the variance of the lognormal distribution, rather than the
discrimination parameter as in Equation 3.

Bivariate Model With Interviewer as a
Covariate
Because more than one interviewer was used for data collection,
three variations of the bivariate model with interviewer as a
covariate were considered. The first model is

lntij = λj + ϕjτi − ϕjρdθid +
∑P

p=1
γjpxp + ωij, (5)

where xp is a binary indicator variable indicating if interviewer
p recorded the RTs for patient i, and P is the total number of
interviewers in the data. P equaled 6 for batch 1 and 5 for batches
2–4. Because each patient interacted with only one interviewer,
only one non-zero element in the summation

∑P
p=1 γjpxp enters

into the regression equation for patient i. The model in Equation
5 (BivariateModel 1) assumes that interviewer effects differed per
item, i.e., there is an interaction between interviewer and items.

Model 2 is a slightly restricted version of Model 1, and the
measurement model for RT becomes

lntij = λj + ϕjτi − ϕjρdθid + ϕj

∑P

p=1
γpxp + ωij, (6)

where all parameters have the same interpretations as in Equation
5 except τi, which can be interpreted as the individual “residual”

1By default, Mplus sets the factor mean to be 0 for both θ and τ .

FIGURE 1 | Path diagrams of four different bivariate models (the total number

of items is hypothetically 96 for illustration purpose).
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speed after removing the interviewer effect. The MGRM model
is still used for polytomous responses. In Equation 6, the
interviewer effect differs across items but by the same amount,
denoted as ϕj. This Model 2 can also be viewed as a hierarchical
model in which the interviewer variable predicts the speed at the
second level, as follows:

lntij = λj + ϕjτi − ϕjρdθid + ωij

τi =
∑P

p=1
γpxp + εi, (7)

where εi is the individual residual speed. Compared to Model 1,
Model 2 greatly reduces the number of parameters and hence is a
more parsimonious model. When fitting the hierarchical model
in Mplus (Muthén and Muthén, 1998-2015), the variance of τ

cannot be fixed directly but instead the variance of εi is fixed at 1.
Model 3 considers only the interviewer main effect and it

assumes that the interviewer effect does not differ across items.
Again theMGRM stays the same, and the model for RTs becomes

ln tij = λi + ϕjτi − ϕjρdθid +
∑P

p=1
γpxip + ωij. (8)

Although this Model 3 has essentially the same number of
parameters as Model 2, it assumes no interactions between
interviewers and items. The path diagrams for the four models
are presented in Figure 1.

METHODS

Instrument and Subjects
Responses and RTs from the Activity Measure for Post-Acute
Care (AM-PAC) were analyzed (Yost et al., 2018). The AM-
PAC is the first multi-domain patient reported outcomesmeasure
with the capability to direct care in a hospital rehabilitation
environment. The scores from the AM-PAC are intended to
be linked to the widely understood stages of the Functional
Independence Measure (O’Dell et al., 1998; Huang et al., 2000)
such that appropriate rehabilitative care plans can be immediately
identified. It is anticipated that the AM-PAC will provide an
inexpensive and accurate alternative to clinician assessments.
The three domains covered in the AM-PAC include Applied
Cognition, Daily Activity, and Mobility. A sample question from
the Applied Cognition domain is: “How much difficulty do you
currently have reading a long book (over 100 pages) over a number
of days?”, and the four response options are “Unable” (coded
as 1), “A lot” (coded as 2), “A little” (coded as 3), and “None”
(coded as 4). Items were administered to hospital inpatients
via a computer-assisted personal interview using Qualtrics R©

web survey software. During the field testing of the items, an
interviewer read each item to a patient and recorded, on a tablet
computer, the patient’s responses and the software recorded RTs.
A total sample of 2,270 hospitalized patients were recruited to
the study; their mean age was 65 years. Roughly 54% were male
and 96% were non-Hispanic white, and 78% had two or more
comorbidities (Yost et al., 2018).

Questions were grouped into blocks according to domain, and
the order of item administration within a block was randomized.

Given that there were 324 items in total in the bank, data
collection proceeded in four batches to reduce patient burden.
The first batch of 109 items was administered to patients, and
24 linking items were selected with eight items in each domain.
The number of linking items was determined based on Kolen and
Brennan (2004)’s recommendation that at least 20% of the items
need to be shared between different test forms to have enough
information to link the scale (Wang et al., 2016). These linking
items in each domain were selected to produce a composite
information function that was closest in shape to the domain
information function. Linking items were assembled using the
linear programming solver “lp_solve version 5.5” (Diao and van
der Linden, 2011). Then, the set of linking items was carried
forward in subsequent data collection batches. Table 1 presents
the number of items per domain for the four batches.

Preliminary Data Cleaning
Table 2 presents the summary descriptive statistics for the four
batches of data. The cleaned Batch 1 dataset contained 563
respondents after deleting 67 (10.6%) respondents with at least
20 missing items. The cleaned Batch 2 dataset contained 490
respondents after deleting 52 (9.6%) respondents with more
than 10 missing items. The cleaned Batch 3 dataset contained
500 respondents after deleting 55 (9.9%) respondents with more
than 9 missing items. The cleaned Batch 4 dataset contained
507 respondents after deleting 36 (6.6%) respondents with more
than nine missing items. Although each item contained four
response categories, for some items, category 1 and/or category
2 received no responses or very few responses. These items
were then recoded to ensure that the lowest response category
for each item was always 1, but the highest response category
could be 4 or less. As shown in Table 2, the response time
distribution exhibited extreme skewness (ranging from 29.08 to
41.84), and therefore the distribution was truncated by removing
the top 2.5% and removing the RTs smaller than 3 s, resulting in
skewness from 1.48 to 1.66. The resulting data was entered into
modeling analysis. Recent research by Marmolejo-Ramos et al.
(2015a) suggested that Box-Cox transformation outperformed
the elimination method in normalizing positively skewed data.
However, the extremely long and short RTs were trimmed
in these data because those RTs were considered as outliers.
Extremely long RTs happened when the patient took a break such
as “service came in to discuss plans” or “patient lunch came and
wanted to stop.” The row for the missing proportion of RTs in

TABLE 1 | Number of unique items per domain for the four batches.

Batch Applied

cognition

Daily

activity

Mobility Total

Unique Linking

1 28 27 30 85 24

2 24 24 24 72 24

3 24 24 24 72 24

4 23 23 25 71 24

Linking 8 8 8 24 24

Total 107 106 111 324 —
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TABLE 2 | Descriptive statistics of the observed data, by batch.

Variable Batch 1 Batch 2 Batch 3 Batch 4

SAMPLE SIZE

Before cleaning 630 542 555 543

After cleaning 563 490 500 507

Trimmed proportion of RTs 6.24% 3.21% 3.16% 4.59%

NUMBER OF ITEMS

2 categories 1 0 0 0

3 categories 31 26 22 23

4 categories 77 70 94 72

RT BEFORE TRUNCATION

Mean 9.27 9.79 9.82 8.39

SD 21.28 17.39 25.37 17.62

Skewness 41.84 32.40 35 .85 29.08

RT AFTER TRUNCATION

Mean 8.21 8.44 8.06 7.18

SD 4.14 4.92 4.80 4.05

Skewness 1.48 1.66 1.65 1.53

Table 2 refers to the proportion of RTs at the person-by-item
level, out of the cleaned sample size (e.g., 563 for batch 1), that
was deleted either because they were extremely short (<3 s) or
extremely long (upper 2.5%).

To further test the normality of item-level RT distributions,
the Kolmogorov-Smirnov (K-S) test (Smirnov, 1948) was
conducted for all item-level log-RTs. The K-S statistic quantifies
the distance between the empirical distribution function of a
sample and the cumulative distribution function of a reference
distribution, and it is a non-parametric test of the equality of
two distributions. For the present purpose, the K-S test was done
with response times that were at least 3 s and were below the
97.5% percentile. This item-level K-S test compared the log-RTs
of that item to the theoretical normal distribution with the mean
and variance computed for the item. The null hypothesis is that
the log-RTs follow a normal distribution. Hence, a significant p-
value (i.e., p < 0.05) indicated that the log-RTs distribution was
significantly different from normal. Results showed that in Batch
1, 54 out of 110 items exhibited statistically significant p-values,
but the K-S statistics for those items were very small (ranged from
0.05 to 0.1). In Batches 2, 3, and 4, 30 out of 96, 16 out of 96, 11
out of 95 items, respectively, had significant p-values, but again,
the K-S statistics were small.

The K-S test was chosen because of its wide popularity.
For instance, it was used to evaluate the item RT distributions
from computer-based licensure examinations (Qian et al., 2016).
However, other tests, such as the Shapiro-Wilk (S-W) test
(Royston, 1982) has been found to be more powerful than the
K-S test to detect departure from normality (Marmolejo-Ramos
and González-Burgos, 2013). Unsurprisingly, using the S-W tests
on the same data set showed that 99.1% of Batch 1 items, 90.6% of
Batch 2 items, 95.8% of Batch 3 items and 92.6% of Batch 4 items
had significant p-values. However, the lognormal model was still
used as the parametric model for RTs in the following analysis
because the skewness (shown in Table 2) after truncation was not

high, and the lognormal distribution was a convenient choice that
most software packages can handle.

Collapsing Response Categories
In the data analysis, response categories for some items were
collapsed due to lack of observations in those categories.
Specifically, for a given item, if a category received no response
or only one response, the response of this option, if any,
was combined into the responses of the next higher category.
Therefore, as shown in Table 2, some items had fewer than
four response categories. The treatment of collapsing response
categories is legitimate for the graded response model because
it does not substantially change the item parameter estimates2.
For instance, a 4-category GRM item (k = 1, 2, 3, 4) item will
have four parameters, i.e., aj, bj1, bj2, bj3. When collapsing the
lowest two response categories, the parameters of the same item
become a∗j ≈ aj, b

∗
j2 ≈ bj2, b

∗
j3 ≈ bj3. This is because the

GRM is essentially a difference model (see Equation 1), and the
same discrimination parameter is assumed across all boundary
response functions [i.e., P+

jk (θ)].

Model Fitting and Item Calibration
Bivariate Model Fitting
All four models in Figure 1 were fit with marginal maximum
likelihood estimation (MML) using the Expectation-
Maximization (EM) algorithm in Mplus3 These models
were fitted to each batch of data separately to evaluate global
model fit via AIC, BIC and−2Log-likelihood. The Mplus source
code of Batch 4 is provided in the Appendix. The same source
code was used for other batches, as well. As shown in Table 3,
Model 2 was the best-fitting model across all four batches of
data based on BIC, but Model 1 was preferred based on AIC. In
addition, Model 2 and Model 3 are respectively nested within
Model 1. The deviance test (i.e., likelihood ratio test) revealed
that there was a significant difference between Model 1 and
Model 2, Model 1 and Model 3, implying that Model 1 should be
preferred. However, Model 2 was used in the following analysis
for two reasons: (1) Model 2 is a much more parsimonious
model than Model 1 and it is conceptually more reasonable
because the interviewer effect should not interact with items, i.e.,
the interviewer’s speed should be relatively static across items;
(2) when fitting Model 1 in the concurrent calibration described
below, it failed to converge due to complexity and data sparsity.

Concurrent Calibration
When data are collected in different batches, linking items are
used to place the items from the different batches onto a common
scale. Concurrent calibration has been demonstrated to be more
effective than separate calibration plus post-hoc linking (Kolen
and Brennan, 2004) because the latter approach suffers from
linking error. Three models were compared in the concurrent
calibration: the MGRM model for responses only, Model 0, and

2A separate study (Jiang and Wang, 2019) was conducted that provided analytic

and simulation evidence for this claim.
3Mplus was chosen because it is widely used in social science research. Mplus

plotting using R is available via the “rhdf5” package. For details, refer to http://

www.statmodel.com/mplus-R/.
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Model 2. Models 1, and 3 were not considered because of their
poorer fit compared to Model 2. Both the item and person
parameters and their standard errors were compared across the
three models. The main research question was whether including
RTs and interviewer information helped improve the estimation
accuracy of both item and person parameters.

When pooling data from the four batches together, the
concurrent calibration of Model 0 andModel 2 failed to converge
due to the sparsity of data and model complexity. Therefore,
a two-stage approach was implemented. In the first stage, data
from Batches 2–4 were pooled and a concurrent calibration was
conducted on the pooled data. Data from Batch 1 was left out
because this batch had the largest number of items flagged under
the K-S test. By shrinking the sample size, all models successfully
converged. Then in the second stage, Batch 1 data were calibrated
using the fixed parameter calibration approach (Kim, 2006). That
is, the linking item parameters (i.e., a, b, λ, and ϕ) were fixed at
their estimated values obtained from Stage 1 for each of the three
models such that the remaining items were estimated on the same
scale as the linking items. Hence, no further linking procedure
was needed.

Due to the collapsing of response categories, a side note for
the two-stage approach is worth mentioning. Specifically, for
the linking items, the threshold parameters of Batch 1 did not
always match those in Batches 2–4. For example, an item had
four categories (three threshold parameters) in Batches 2–4, but
only three categories (two threshold parameters) in Batch 1. The
linking items always had the same or fewer categories in Batch
1 as compared to the combined data due to the smaller sample

TABLE 3 | Global fit results (AIC, BIC,−2Log-likelihood) for the four bivariate

models, by batch.

Batch and

model

Number of

free parameters

AIC BIC -2Log-likelihood

BATCH 1

Model 0 736 133566 136755 132094

Model 1 1281 133174 138725 130612

Model 2 741 133316 136527 131834

Model 3 741 133409 136620 131926

BATCH 2

Model 0 652 102468 105202 101164

Model 1 940 102049 105992 100170

Model 2 655 102235 104982 100924

Model 3 655 102339 105086 101030

BATCH 3

Model 0 656 111384 114149 110072

Model 1 1040 110613 114996 108532

Model 2 660 111001 113783 109682

Model 3 660 111323 114105 110004

BATCH 4

Model 0 648 108550 111290 107254

Model 1 1028 107733 112080 105676

Model 2 652 108174 110931 106870

Model 3 652 108364 111121 107060

Bold values highlighted the best-fitting model based on the information criteria.

size of Batch 1. In this case, only the corresponding threshold
parameters and discrimination parameter for an item were input
into the fixed calibration. The rationale is the same as before—
collapsing response categories does not substantially change the
item parameters.

RESULTS

Global Model Fit
Table 4 presents the global model fit statistics for the three
models in both stages. Note that the AIC and BIC from
the MGRM are smaller because they are on a different scale
compared to Model 0 and Model 2 due to its exclusion of RT
information. Consistent with the separate calibration results,
Model 2 fit the data better thanModel 0, reflected by smaller AIC
and BIC values.

Item Parameter Estimates
Figure 2 presents the scatterplots of item discrimination
parameters (aj) across the three models; all points fall along
the 45◦ line, implying a close alignment of item parameter
estimates from the three models. This is unsurprising because
the variance of θ was fixed at 1 across all models, which fixed
the scale of aj. Means of SEs of estimates of aj were 0.188 in the
MGRM, 0.190 in Model 0, and 0.190 in Model 2. A simple t-
test showed no significant differences of SEs between the different
models.

The correlations of boundary parameters b̂jk between different
models were all 1, and therefore the scatterplots (Figure 3) show

that the estimates of b̂jk from the different models fall tightly on
the 45◦ line. Moreover, t-tests showed no significant differences

of mean SEs of b̂jk between different models. Thus, the results
suggest that, in these data, estimation of MGRM item parameters
aj and bj, and their SEs were not affected by the addition of RT
information.

With respect to the item time discrimination parameter, ϕj,
the correlation between their estimates from Model 0 and Model
2 was 0.99. The scatterplot (Figure 4) shows that these estimates
of ϕ̂j from the two models fell on a line that was not 45◦,
indicating that there was a linear relationship between ϕ̂js from
the two models. The explanation is as follows: Focusing on the
two terms in Model 0 and Model 2, respectively, ϕj(τi − ρdθid)

TABLE 4 | Global model fit results.

Stage and Model AIC BIC

STAGE 1: CONCURRENT CALIBRATION (BATCHES 2-4)

MGRM 185303.933 190099.963

Model 0 327447.703 336067.811

Model 2 326589.532 335230.884

STAGE 2: FIXED PARAMETER CALIBRATION

MGRM 74013.471 75391.453

Model 0 134224.604 136824.572

Model 2 133924.461 136546.095

Bold values highlighted the best-fitting model based on the information criteria.
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FIGURE 2 | Scatterplots of item discrimination parameters (aj ) across three models. (A) MGRM vs. Model 0, (B) MGRM vs. Model 2, and (C) Model 0 vs. Model 2.

(Equation 3) and ϕj(
∑P

p=1 γpxip + εi − ρdθid) (Equation 7)

the (τi − ρdθid) and (εi − ρdθid) are the same across the two
equations because both τi and εi are on the 0–1 scale. Due to
the data collection design, the same interviewer went through all
items in the batch each time, and each interviewer interviewed
a portion of the sample. For instance, suppose the sample size
is N, and there are n1, n2 − n1, n3 − n2, n4 − n3, and N − n4
patients interviewed by each interviewer, as shown in Table 5.
Then, for item j, those patients assigned to Interviewer 1 all
carry the same interviewer effect of γ1, and similarly for the
three other groups. Hence, the second and third columns are the
same for every item, and also because the mean and variance
of these two columns are different, there is a unique linear
relationship between ϕ̂js from the twomodels. On the other hand,
SEs of ϕ̂j of Model 2 are significantly lower (p < 0.001) than
those of Model 0: Mean SE was 0.018 in Model 0 and 0.013 in
Model 2.

Regarding the time intensity parameter, λj, again the
correlation between their estimates from Model 0 and Model 2
was larger than 0.99. SEs of λ̂j from Model 2 were significantly
higher (p < 0.001) than those of Model 0: Mean SE was 0.020 in
Model 0 and 0.023 in Model 2. The results suggest that the SE of
item response time parameters ϕ̂j and λ̂j is affected in different
directions by the addition of interviewers as covariates. However,
the absolute difference in SEs was not too large to be concerning
because the difference appearedmostly in the third decimal place.

Person Parameter Estimates
In terms of θ estimation, the θ̂1, θ̂2, and θ̂3 from all three models
correlated as high as 0.99 to 1. Mean SEs from Models 0 and 2
(Table 6) were significantly lower than those from the MGRM (p
< 0.001), and there was no significant difference of SE between
Model 0 and Model 2. This result implies that adding response
time decreased the SE of θ̂ , which is consistent with prior findings
(e.g., van der Linden et al., 2010;Wang et al., 2013a,b), but adding
the interviewer variable did not further decrease the SEs.

Table 7 presents the estimated correlation parameters.
Consistent with previous findings (e.g., Wang et al., 2018a), there
were moderate to high correlations among the three latent traits.
Moreover, the speed factor also played a modest role as reflected
by the moderate size of ρ1 to ρ3. These correlations were higher
in Model 2 than in Model 0, which is unsurprising because after
removing the interviewer effects on RTs, the individual speed
factor should correlate higher with individual latent traits.

The last column in Table 7 refers to the fixed effects of
interviewers. During Batches 2–4 data collection, the same five
interviewers were recruited and one of them was randomly
selected as the reference for dummy coding. It appears from
the estimated γ̂p that interviewers differed substantially and that
is why including the interviewer variable in the model helped
improve model data fit. For Batch 1 data collection, a different set
of six interviewers was recruited; among them, three overlapped
with the other set of five. However, because a different reference
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FIGURE 3 | Scatterplots of item boundary parameters (from left to right: b̂j1, b̂j2, b̂j3) across three models. (A) MGRM vs. Model 0, (B) MGRM vs. Model 2, and (C)

Model 0 vs. Model 2.

interviewer was selected, the estimated γ̂p from stage 1 and
2 model fitting were not directly comparable. Still, the results
show that interviewers operated at different speeds and they
contributed to the observed RT variabilities.

DISCUSSION AND CONCLUSIONS

Response time as part of the assessment process data has
gained great popularity in recent decades in educational and

psychological measurement. This is because collecting RTs
has become easy, due to computer-based assessment delivery,
and RTs provide an additional source of information for
researchers to understand an individual’s behavior as well as
the characteristics of the items. More than a dozen IRT models
have been proposed in the psychometrics literature, with an early
focus on modeling the different shapes of RT distributions (e.g.,
Rouder et al., 2003; van der Linden, 2007; Loeys et al., 2011;Wang
et al., 2013a,b) and a later focus on modeling within-subject
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FIGURE 4 | Scatterplot of estimates of ϕ̂j between Model 0 and Model 2.

TABLE 5 | An illustration of the linear transformation relationship of ϕ̂j from Model

0 and Model 2.

Patients Model 0 ϕ
0
j Model 2 ϕ

2
j Interviewer

1 to n1 (τi − ρdθid )
(

τi − ρdθid

)

+ γ1 1

n1+1 to n2 (τi − ρdθid )
(

τi − ρdθid

)

+ γ2 2

n2+1 to n3 (τi − ρdθid )
(

τi − ρdθid

)

+ γ3 3

n3+1 to n4 (τi − ρdθid )
(

τi − ρdθid

)

+ γ4 4

n4+1 to N (τi − ρdθid )
(

τi − ρdθid

)

5 (reference)

TABLE 6 | Mean and SD of SE of θ̂ from three models.

θ MGRM Model 0 Model 2

SE θ1

Mean 0.307 0.280 0.279

SD 0.093 0.076 0.076

SE θ2

Mean 0.252 0.242 0.241

SD 0.082 0.071 0.070

SE θ3

Mean 0.178 0.171 0.171

SD 0.079 0.074 0.074

variations such as different and changing test-taking behaviors
(e.g., Wang and Xu, 2015; Molenaar et al., 2018; Wang et al.,
2018b,c). However, the usage of item-level RT information has
rarely been explored in health measurement.

This study systematically investigated the application of RTs
for improving measurement precision of the target latent traits
and the estimation precision of the item parameters. The
bivariate joint model discussed in Molenaar et al. (2015) was
applied and expanded in two respects: (1) a multivariate θ was
considered in the measurement model for responses, and this θ

vector was correlated with the latent speed through the cross-
relation term; (2) an interviewer covariate was entered into the
model to explain the variability of the observed RTs. Patient-
reported outcomes obtained from personal interview surveys
are widely used in health services research studies (Clancy and
Collins, 2010), especially when conducting such surveys among

older adults or patients with severe symptoms like the sample
used in the present research. Thus, the observed RTs might be
contaminated by the interviewer’s reaction speed and, hence, the
interviewer variable should be included in the model.

Several approaches to including the interviewer variable
were explored. Results indicated that Model 2, which is a
hierarchical model, consistently best fit the data. In this model,
the interviewer’s effect on the observed RTs is mediated through
patients’ latent speed. It is more parsimonious than Model 1
in which the interviewer’s effect could differ for different items.
Indeed, Model 2 also makes more intuitive sense because the
interviewer effect reflects the different interviewers’ response
styles (i.e., fast or slow responders) that could be considered as
the latent speed of an interviewer; hence, it should not change
from item to item.

Results from the data analysis revealed that (1) adding
response time information did not affect the item parameter
estimates and their standard errors significantly; and (2) adding
response time information helped reduce the standard error
of patients’ multidimensional latent trait estimates, but adding
interviewer as a covariate did not result in further improvement,
although the interviewer effect was significant. Regarding the first
point, it is not surprising because Ranger (2013) has proven that
the amount of (Fisher) information RTs provide to θ cannot be

>
ρ
2

1−ρ
2 (i.e., an upper bound) regardless of test length and RT

distributions. A simple explanation is that RTs only contribute to
θ via τ due to the hierarchical structure in van der Linden (2007),
and hence the maximum information RTs provide is when τ is
“observed,” resulting in the information upper bound. As a result,
the collateral information provided by RT will be useful when
test length is short, but its role diminishes in longer tests when
information accrued through responses is already high. That said,
it is still worth pointing out that the role of speed as a self-
contained construct might be useful for psychological and health
assessment. It might be particularly promising to investigate the
additional validity of the assessment by including speed in the
prediction of external criteria.

An immediate implication for the follow-up adaptive design of
the AM-PAC is that RT does not need to be included in interim
θ estimation (i.e., selecting items during assessment delivery),
but it could be used to improve the final θ estimates. Moreover,
to further improve the time efficiency of adaptive testing, the
maximum information per time unit (Fan et al., 2012) or its
simplified version (Cheng et al., 2017) could be applied. In this
case, the interviewer effect could be ignored when estimating
an individual patient’s speed, as long as item time parameters
are provided. This is pragmatically sound because it is likely
that different interviewers will be used for adaptive testing data
collection in some measurement environments.

Due to the positive skewness of the RT distribution, typical
log-transformations were used (van der Linden, 2007; Wang
and Xu, 2015; Qian et al., 2016), and the raw RT data was
cleaned by trimming the extremely short and long observations.
However, recent research by Marmolejo-Ramos et al. (2015a)
suggested that the Box-Cox transformation outperformed the
elimination methods in normalizing positively skewed data.
Vélez et al. (2015) proposed a new approach to estimate the
parameterλ in the Box-Cox transformation. In cases in which the
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TABLE 7 | Final Pearson correlation parameter estimates for the three models from two calibration stages.

Stage and Model ρ
θ1θ2

ρ
θ1θ3

ρ
θ2θ3

ρ1 ρ2 ρ3 γ p

STAGE 1: CONCURRENT CALIBRATION (BATCH 2 TO 4)

MGRM 0.624 0.468 0.846 – – – –

Model 0 0.625 0.488 0.839 0.425 0.458 0.418 –

Model 2 0.628 0.492 0.840 0.583 0.629 0.578 (1.150, 1.053, 0.725, −0.911)

STAGE 2: FIXED PARAMETER CALIBRATION

MGRM 0.702 0.545 0.869 – – – –

Model 0 0.707 0.584 0.881 0.400 0.433 0.457 –

Model 2 0.706 0.583 0.880 0.527 0.577 0.605 (1.063, −0.286, 1.315, −0.135, 1.046)

log-transformation is insufficient, the Box-Cox transformation
could be a viable alternative. In the present study, the extremely
long and short RTs were trimmed because those RTs were
considered as outliers. On the other hand, when there is lack
of information on the outliers, Ueda’s method could be used
to automatically detect discordant outliers (Marmolejo-Ramos
et al., 2015b). Because observed RTs could exhibit different
skewed distributions, a careful decision needs to be made with
respect to dealing with outliers, data transformation, and using
the mean vs. the median, for making valid inferences (Rousselet
and Wilcox, 2018). When the median is used, then quantile
regression instead of a mean-based linear model should be
considered instead.
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The increased popularity of computer-based testing has enabled researchers to collect

various types of process data, including test takers’ reaction time to assessment items,

also known as response times. In recent studies, the relationship between speed and

accuracy in a learning setting was explored to understand students’ fluency changes

over time in applying the mastered skills in addition to skill mastery. This can be achieved

by modeling the changes in response accuracy and response times throughout the

learning process. We propose a mixture learning model that utilizes the response times

and response accuracy. Such a model accounts for the heterogeneities in learning styles

among learners and may provide instructors with valuable information, which can be

used to design individualized instructions. A Bayesian modeling framework is developed

for parameter estimation and the proposedmodel is evaluated through a simulation study

and is fitted to a real data set collected from a computer-based learning system for spatial

rotation skills.

Keywords: response times, learning behaviors, diagnostic classification model, hidden markov model, mixture

model

1. INTRODUCTION

Educational researchers have shown long term interests in understanding the heterogeneity among
online learners. Learners can differ not only in their initial background and general learning ability,
but also in terms of how they learn. For example, learners’ affects, that is the attitudes, interests,
and values that learners exhibit, can influence their behaviors in the learning process and hence the
learning outcomes. Methods were proposed by educational data miners to detect students’ affects
based on their interactions with the online learning systems (e.g., Baker et al., 2012). By identifying
the affects of each student during the learning process, such as boredom, disengagement, confusion,
and frustration, educators can provide targeted interventions accordingly to improve learning
outcomes. Students can also vary in their preferred mode of instructions. Felder and Silverman
(1988) developed the Index of Learning Styles survey, which measured learners’ characteristics
on the Sensing/Intuiting, Visual/Verbal, Active/Reflective, and Sequential/Global dimensions. A
student’s learning style can provide indications of possible strengths and difficulties in the learning
process.

The increased popularity of computer-based testing has enabled researchers to collect various
types of process data, including test takers’ reaction time to assessment items, also known as
response times. In the field of Psychometrics, extensive research has been conducted on the joint
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modeling of response accuracy and response times (e.g., Thissen,
1983; van der Linden, 2006, 2007; Fox and Marianti, 2016).
Findings from these studies demonstrated that incorporating
the additional information from response times, in addition
to response accuracy, can improve the estimation accuracy of
item parameters and individuals’ latent traits or latent classes,
further our understanding of individuals’ test-taking behavior
and the test items’ characteristics, and help differentiate learners
using different test-taking strategies (e.g., Meyer, 2010; Wang
and Xu, 2015). Most recently, response times have been used to
measure students’ improvements in skill mastery over time. An
example is the work fromWang et al. (2018c), in which response
times, together with response accuracy, were incorporated into
a higher-order hidden Markov model framework (Wang et al.,
2018b) to provide information about learners’ mastery of the
assessed skills, as well as their fluency of applying the mastered
skills.

Wang et al. (2018c) assumed that all learners were engaged in
the learning process, that is, they devoted their attention to the
learning interventions and answered the assessment questions
as correctly as possible. However, as mentioned in the very
beginning, learners may have different learning styles. Assuming
all learners to have the same learning style may under- or
over-predict their learning outcomes. This current study aims
to address this limitation with a mixture learning model with
response times and response accuracy that can account for the
presence of heterogeneities in learning styles among learners.

Response times have shown great potentials in identifying
students’ learning styles, especially student engagement. As an
example, Henrie et al. (2015) provided a comprehensive review of
methods for measuring student engagement in technology-based
learning environments in the literature, and the time spent on
homework, web pages, readings, et cetera were commonly used
as an indicator of student engagement. Response times were also
used by educational data miners to identify disengaged learners
Beck (2004). A statistical approach to identify unobserved
subpopulations in the data is by using mixture models. Mixture
models have been widely used in psychometrics research, for
example, addressing some practical issues in testing, such as
identifying rapid-guessing or aberrant behaviors among test-
takers (e.g., Wang and Xu, 2015), detecting compromised test
items (e.g., McLeod et al., 2003), and modeling test-taking speed
in time-constrained testing scenarios (e.g., Bolt et al., 2002). A
lot of previous research considered the fit of mixture models
to response and response time data collected from educational
assessments. For example, Wise and DeMars (2006) proposed an
effort-moderated IRT model, under which whether or not the
response time of an examinee on a test item exceeds an item-
specific threshold is used to infer if the subject has demonstrated
efforts on the item, and Wang and Xu (2015) used different
underlying response and response time distributions for item
responses in different test-taking modes (e.g., solution, pre-
knowledge, or rapid-guessing). However, modeling heterogeneity
in learning behavior is more challenging than modeling that in
testing behavior, as one needs to consider different measurement
models as well as the transition models that describe the
change of latent constructs over time. The proposed model,

which will be described in details in the following section, is
more closely related to the literature about Mixture Hidden
Markov Models (HMMs). Langeheine and Van de Pol (1990)
and Van de Pol and Langeheine (1990) proposed the mixed
Markov latent class model, which, in its most general form,
is the mixture of several first order hidden Markov models. It
assumeed that different subpopulations differed in their initial
state distributions, transition probabilities, and the response
distributions under a HMM. Vermunt et al. (2008) further
extended the mixed Markov latent class model to incorporate
time-invariant or time-dependent covariates for each subject at
each time point.

The mixture learning model proposed in this study adopts
a similar framework for modeling the learners’ behaviors in a
learning process as that in the mixture HMMs. However, instead
of assuming subpopulations of learners throughout the entire
learning process, we assume that at each point in time, a learner
can be in different learning modes. Furthermore, in addition to
the item response data, learners’ response times are also used in
the measurement model, to measure both the change of learners’
latent speed over time and any change in their engagement with
the learning process.

The rest of the paper is organized as follows. A motivating
example is first presented to demonstrate the utility of response
times and response accuracy in the detection of heterogeneous
learning behaviors in a computer-based learning program. This
is followed by the presentation of the proposed mixture learning
model and a Bayesian estimation procedure. We then present
the results from fitting the proposed mixture model to the
data described in the motivating example. A simulation study
is presented to verify the accuracy of proposed estimation
algorithm under different conditions and to validate the results
from the real data analysis. We further discuss our findings and
limitations of this study and propose future research directions
in the last section.

2. A MOTIVATING EXAMPLE

This motivating example is presented to illustrate the necessity of
using both response times and response accuracy to differentiate
learners’ behaviors in a learning environment. We start with
presenting the results from an exploratory analysis on a data
set collected through a spatial rotation learning program (Wang
et al., 2018a). This learning program was developed on the basis
of a pilot learning program in Wang et al. (2018b) to train four
fine-grained mental rotation skills, namely (1) x90: 90◦ rotation
along the x-axis; (2) y90: 90◦ y-axis; (3)x180: 180◦ x-axis; and (4)
y180: 180◦ y-axis. Test questions in this new learning program
were developed based on the ones in Wang et al. (2018b), and
these four distinct yet related skills were identified as the set of
measured skills by several previous studies (e.g., Maeda et al.,
2013; Culpepper, 2015; Wang et al., 2018b). The structure of the
learning program is summarized by the flow chart in Figure 1.
Specifically, the learning program started with a testing module,
followed by two consecutive learning modules, and finally ended
with a testingmodule. Eachmodule was composed of 10 different
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FIGURE 1 | The design of the spatial rotation learning program.

questions that were selected based on various criteria, including
item characteristics and how well they assessed or improved the
four skills. The main purpose of the two testing modules was
to measure accurately the four binary spatial skills at a given
point in time, while the two learning modules aimed to improve
test-takers’ mental rotation skills. Learning interventions were
provided only in learning modules, in which participants were
provided with learning materials after completing each question.
A total of 585 undergraduate students with diverse backgrounds
participated in the experiment. Written informed consent was
obtained from the participants of this study. These students either
received a course credit or a stipend through their participation.
For students who received a stipend, their total amount of
payment was proportional to the number of correct responses
they provided in the experiment. Different incentive strategies
may also trigger different learning patterns.

We first explore the data by plotting the log response times of
all person-item combinations across four modules in Figure 2.
It is observed that the response time distributions in modules
1, 2, and 4, especially module 4, have a bimodal structure:
the first mode appeared within a short time period, while the
second appeared at a later time. The previous studies that had
similar observations in a testing environment concluded these
two modes represent rapid-guessing and solution behaviors, and
this is the evidence for amixture of two populations with different
response behaviors (e.g., Van der Linden and Guo, 2008; Wang
et al., 2016). However, in a learning environment, the behavior
of fast test-taking does not directly imply random guessing,
as there is a confounding factor that the speed, especially in
module 4, may be due to the improvement of cognitive skills
after receiving learning interventions. To see this, we further
identified the faster participants in module 4 and explored their
module 4 test scores as well as their testing time and module
1 score. The reason to choose module 1 and 4 is because these
two testing modules had similar item characteristics and can
be regarded as parallel, thus we can compare the change in
response accuracy and response times without worrying about
the form effect. Figure 3 documented the results from four
participants. From there we can see that first, Participant 567

and Participant 145 almost had the same speed in modules 1
and 4. However, the former may represent a person with random
guessing as he/she had low response accuracy in both modules,
and the latter may represent one who mastered or was fluent
in the four skills so that he/she can responded quickly while
maintaining high accuracy (achieved a full score in eachmodule).
The behavior from Participant 576 may indicate this student
had a solution behavior in module 1 but switched to random
guessing in model 4. The response speed and response accuracy
from Participant 383 both increased, and the increased speed
may be due to the improvement of the spatial skills. Lastly,
participants may switch engagement mode during the learning
process. Figure 4 further documents the examples of learning
behaviors of three participants in this experiment. Across all four
modules, participant 185 (left) responded to the questions with
high speed and low accuracy, indicating he/she was not engaged
during the whole experiment. Participant 78 (middle) seemed
to be engaged in learning during the first 2 modules, however,
his/her response accuracy sharply decreased inmodule 4 together
with the total response time reaching a plateau, indicating he/she
started to lose motivation in the last module. Participant 354
(right) presents another pattern, where he/she might not be
engaged in the first module, but then switched to be engaged in
the following modules. All these findings illustrate the necessity
to use response times and response accuracy together to detect
different learning behaviors.

3. MIXTURE LEARNING MODEL WITH
RESPONSE TIMES AND RESPONSE
ACCURACY

3.1. Model Formulation
We introduce the mixture modeling framework using the
computer-based learning environment presented in section 2 as
an example. It is assumed that N learners are trained to learn
K skills at T time points, and that they are assessed with items
developed under the Diagnostic Classification Model framework
(DCM; also known as Cognitive Diagnosis Model). At time
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FIGURE 2 | Histogram of the log response time for all person-item combination across four modules.

FIGURE 3 | Line plots of four participants’ testing time and module scores in module 1 and module 4. The dashed line and solid line represent module score and

testing time respectively. Time point 1 represents module 1 and Time point 2 represents module 4.
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FIGURE 4 | Line plots of three participants’ cumulative total scores and total response times at the end of each item.

point t, Jt questions are administered, and the skills measured
by each question are documented through a Qt-matrix, with
the j, kth element indexed by qjkt , which equals 1 when item j
requires attribute k and 0 otherwise. Let Xit = (Xi,1,t , ...,Xi,Jt ,t)

′

denote responses to the Jt questions from learner i at time
t. Xi,j,t takes a value of 1 or 0 depending on whether the
response is correct or incorrect. The reaction times, or latencies,
for these questions are denoted by Li,t = (Li,1,t , ..., Li,Jt ,t)

′.
For learner i, the latent skill profile at time t is denoted by
αi,t = [αi,1,t , . . . ,αi,K,t]

′, with αi,k,t = 1 indicating mastery
of a skill k and αi,k,t = 0 indicating non-mastery. Let Di,t

be a binary variable that denotes the learning mode of learner
i at time point t, with Di,t = 0 for an engaged mode and
Di,t = 1 for a disengaged mode. In this study, we index the
time points in the learning process at the module level, that
is, each model is regarded as a time point, and a learner is
assumed to have the same learning mode and attribute pattern
across all items that are administrated at the same time point.
We impose this assumption for the consideration of model
simplicity, and a generalization of this assumption to item-level
time indexing is provided in the discussion section as a future
direction. Given the learner’s engagement mode at a given time
point Di,t , the proposed mixture learning model considers the
between-mode differences of the learners on the following three
sub-models, namely (1) a transition model that captures the
change of latent profile between two adjacent time points, (2)
a measurement model that describes the distribution of item
responses to the assessment questions at a given time point,
and (3) a response time model that outlines the distribution
of reaction times at a given time point. As the learner is
assumed to have only two modes at a given time point, we will
address the above three types of models based on whether the

learner is in an engaged learning mode or a disengaged learning
mode.

First, a learner in an engaged learning mode (Di,t = 0) is
assumed to employ relevant skills to respond to the assessment
questions as accurately as possible. In this case, a reasonable
DCM can be chosen as the measurement model. For example, if
the deterministic input, noisy-“and”-gate (DINA; e.g., Macready
and Dayton, 1977; Junker and Sijtsma, 2001) model is chosen,
then the probability of a correct response on item j by learner i at
time t is given by

P(Xi,j,t = 1 | αi, sj, gj, qj) = (1− sj)
ηijg

1−ηi,j,t

j , (1)

where ηi,j,t =
∏K

k=1 α

qj,k,t
i,k,t

is the ideal response, indicating
whether learner i possesses all required skills to answer item j
correctly, and sj and gj are the slipping and guessing parameters
of item j. Essentially, the DINA model describes the case where
a learner needs to master all requisite skills of an item to be
able to answer the item correctly with high probability (1 −

sj). Missing any of the item’s requisite skills would result in a
probability of a correct response of gj instead. We note that
while the DINA model is chosen in the present study, other
DCMs can be chosen based on the specific assessment items
in hand. This includes, for example, the deterministic input,
noisy-“or”-gate model (Templin and Henson, 2006), the reduced
reparameterized unified model (DiBello et al., 1995; Hartz, 2002;
Roussos et al., 2007), and other general models, such as the log-
linear cognitive diagnosismodel (Henson et al., 2009), the general
diagnostic model (von Davier, 2008), and the generalized-DINA
model (de la Torre, 2011).

When a learner engages in solution behavior on an assessment
item, we adopt the dynamic response time model proposed by
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Wang et al. (2018c) to describe the distribution of the reaction
time to this item. Specifically, Li,j,t is assumed to follow a log-
normal distribution,

log(Li,j,t) ∼ N

(

γj − (τi + φ ∗ Gi,j,t),
1

a2j

)

. (2)

where τi is the initial latent speed of learner i, γj is the time-
intensity parameter of item j, capturing the overall amount
of time the item requires, and aj is the time-discrimination
parameter of item j, which captures variance of log-response
times at a given τi and γj. Gi,j,t is a covariate defined according
to the latent skill profile αi,t , and φ is the parameter that
characterizes the change of the latent speed due to Gi,j,t . The key
part of such a dynamic response time model is the covariate Gi,j,t ,
which captures the change in speed of the subject over time as a
function of the attribute trajectory of subject i, and here we use
the indicator function for G proposed in Wang et al. (2018c),
namely

Gi,j,t =

{

1, if αi,t � qj,

0, otherwise.
(3)

With Gi,j,t defined this way, a learner can take one of two speed
statuses on each item: Depending on whether all the required
skills of item j are mastered time t, his or her speed on the item
is either τi or τi + φ. In terms of the transition probability, we
make the assumption that a learner in the engaged mode also has
high a engagement level in the learning process and thus may
improve in skill mastery over time. In the engaged learningmode,
the learner’s transitions of attribute pattern from that time point
to the next is hence modeled using a simplified version of the
higher order hidden Markov DCM (HO-HM DCM) proposed
by Wang et al. (2018b), specifically, the logit of the probability of
transitioning from non-mastery to mastery on skill k at time t+1
is given by

logit[P(αi,k,t+1 = 1 | αi,k,t = 0,αi,t)] = λ0+λ1θi+λ2

∑

∀k′ 6=k

αi,k′ ,t .

(4)
In this model, θi denotes the overall, time-invariant learning
ability of learner i. The term

∑

∀k′ 6=k ai,k′ ,t represents how many
attributes learner i has already acquired other than attribute
k at time t. By using a higher order logistic model for the
transition probabilities in the hidden Markov model, the effect
of different factors on the probability of learning a skill can hence
be examined. A monotonicity assumption is also imposed in the
current study, where the probability of forgetting a learned skill,
P(αi,k,t+1 = 0 | αi,k,t = 1,αi,t), is 0.

On the other hand, if a learner is in a disengaged learning
mode at time t, with Di,t = 1, we assume this learner takes
the rapid-guessing strategy on assessment items and shows low
engagement in the learning process. We model their rapid-
guessing strategy using similar methods as that in Wang and Xu
(2015), where the probability of correctly responding to item j
is equal to a parameter g∗ ∈ (0, 1) across all items, and the

TABLE 1 | Components of the mixture learning model under different engagement

modes.

Learning mode Engaged (Di,t = 0) Disengaged (Di,t = 1)

P(αi,t+1 | αi,t ) =
logit[P(αi,k,t+1 = 1 | αi,k,t = 0,αi,t )] =

λ0 + λ1θi + λ2
∑

∀k′ 6=k αi,k′,t

I(αi,t+1 = αi,t )

P(Xi,j,t = 1) = (1− sj )
∏K
k=1 α

qj,k
i,t,k g

1−
∏K
k=1 α

qj,k
i,t,k

j
g∗

log(Li,j,t ) ∼ N

(

γj − (τi + φ ∗ Gi,j,t ),
1
a2
j

)

N(µ1, σ
2
1 )

distribution of response times under the rapid-guessing strategy
is also assumed to be the same across items, specifically,

log(Li,j,t) | Di,t = 1 ∼ N(µ1, σ
2
1 ), (5)

where µ1 and σ
2
1 are the mean and variance of the log-response

times in the disengagedmode. The disengagement in the learning
process is reflected in the transition probabilities from the current
stage to the next. In other words, if a learner i is in the disengaged
mode at time t, his or her attribute pattern at time t+1 is assumed
to be unchanged from αi,t . As a summary, Table 1 presents the
learning, response, and response time models for the learners
under two different learning modes.

3.2. Bayesian Estimation
The proposed mixture learning model with engaged and
disengaged modes is fitted under a Bayesian framework. We first
outline the prior for each parameter in this modeling framework.
Recall that Di,t denotes the membership of learner i at time t in
terms of whether one is disengaged, where Di,t = 1 if learner i is
disengaged at time t, and Di,t = 0 otherwise. We assume that

Di,t ∼ Bernoulli(ω), (6)

where ω is the probability an arbitrary learner belongs to the
disengaged group, and the prior distribution of ω is

ω ∼ Beta(1, 1). (7)

The initial attribute pattern of learner i is assumed to be a
multinomial sample from all C = 2K possible classes, with

P(αi,1 = αc) =

C
∏

c=1

π
I(αi,1=αc)
c , (8)

where a Dirichlet prior distribution for the initial probabilities of
each attribute pattern is used,

π = [π1, . . . ,πC] ∼ Dirichlet(1, . . . , 1). (9)

At time t ∈ {1, . . . ,T − 1}, if a learner is in the engaged learning
mode with Di,t = 0, his or her attribute pattern at the next time
point, αi,t+1, conditioning on the attribute pattern at time t is
modeled using the HO-HM DCM in Equation (4). Similar to
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Wang et al. (2018c), we used the following prior probabilities for
the learning model parameters:

λ0 ∼ Normal(0, 1), λ1 ∼ Log-normal(0.5, 1),

λ2 ∼ Log-normal(−0.5, 0.62). (10)

If the learner is disengaged at time t with Di,t = 1, αi,t+1 is equal
to αi,t with probability 1.

The responses of a learner under the engaged mode are
assumed to follow the DINA model in Equation (1). A Beta prior
was used for the slipping and guessing parameters of all the items,
in other words,

p(sj, gj) ∝ s
as−1
j (1−sj)

bs−1g
ag−1

j (1−gj)
bg−1

I(0 ≤ gj < 1−sj ≤ 1).

(11)
On the other hand, the response to an item j by a learner in
the disengaged mode is assumed to be a Bernoulli sample with
success probability g∗, in other words, P(Xi,j,t = 1 | Di,t = 1) =
g∗, where g∗ is assumed to have a Beta(1, 1) prior distribution.

At each time point t = 1, . . . ,T, ifDi,t = 0, subject i’s response
time on each item follow the log-normal distribution in Equation
(2). Similar to that in Wang et al. (2018c), we use the following
priors for the response time model parameters:

γj ∼ N(0, 1),φ ∼ N(0, 1), and a2j ∼ Gamma(1, 1). (12)

IfDi,t = 1, the reaction time to each item by learner i are assumed
to follow the log-normal distribution given in Equation (5), with
the following priors for the response time model parameters:

µ1 ∼ N(0, 1), and σ
2
1 ∼ Inv-Gamma(1, 1). (13)

Lastly, for each learner, his or her latent learning ability θi follows
a standard normal prior distribution, and his or her initial latent
speed τi in the engaged mode is assumed to follow a normal
distribution with mean 0 and variance σ

2
τ
, where the variance,

σ
2
τ
, has the Inverse-Gamma prior distribution:

σ
2
τ
∼ Inv-Gamma(2.5, 1). (14)

The conditional distribution for each parameter can be derived
based on the specified priors and the likelihood function
of the observed data. The details on the full conditional
distributions of the model parameters are presented in
Appendix I. A Metropolis-Hastings within Gibbs sampler is
developed to iteratively update the parameters by sampling
from their conditional distributions. For θi and for λ, their
conditional distributions do not resemble any known families
of distributions, and thus, Metropolis-Hastings (MH) steps are
used to update these parameters. A special note for the MCMC
algorithm is that when Di,t, = 1, or in other words when
a learner is disengaged, the proposed model assumes that the
attribute pattern at the next time point, αi,t+1, is the same as
αi,t . In this case, αi,t and αi,t+1 share the same attribute pattern.
When updating the αi,ts sequentially for each learner, instead
of sampling each αi,t separately, sets of consecutive αis with no
transitions in between (e.g., αi,t and αi,t+1, if Di,t = 1) are

sampled together, conditioning on the attribute pattern before
the last transition, the learner’s attribute pattern after the next
transition, and the observed responses and response times at
all time points where the underlying attribute pattern is the
current one. For example, if student i is disengaged at time 1
and engaged at time 2, then the proposed model predicts that, by
the assumptions of “no transition” under the disengaged learning
mode, the student should have the same attribute pattern at
times 1 and 2. Thus, the algorithm samples αi,1 and αi,2 together,
conditioning on π , αi,3, and the observed item responses and
response times at time 2. The detailed description of the MCMC
algorithm for parameter estimation is given in Appendix II.

4. ANALYZING LEARNING BEHAVIORS IN
A SPATIAL ROTATION LEARNING
EXPERIMENT

In this section, we apply the proposed mixture learning model to
analyze the data in the motivating example. To demonstrate the
necessity of fitting this complex model, we in addition fitted two
relatively simpler models, one is themodel inWang et al. (2018c),
which is a joint model for response accuracy and response time
without considering the mixture structure, and the other is
an independent model that fit the response accuracy with the
HOHM DCM (Wang et al., 2018b) and the response time with
a static log-normal model. These three models all converged after
20,000 iterations based on the Gelman-Rubin proportional scale
reduction factor (PSRF; Gelman et al., 2014), also known as R̂.
The last 25,000 iterations were thus used to provide estimates
for model parameters. We compared these three models based
on the joint Deviance Information Criteria (DIC) and posterior
predictive checking. First, the joint DIC for the proposed mixture
model is 223104.2, which is the smallest among the three models
[joint (224690.7) and independent (226364.1)], indicating a
better fit of the proposed mixture model compared with the
two simpler models. The testing quantities used in the posterior
predictive checking are the minima, maxima, and mean of the
change score (total score in Module 4 minus that in Module
1) and change response time (testing time in Module 4 minus
that in Module 1). The posterior predictive p-values for these
quantities are documented in Table 2. In general, an extreme p-
value (close to 0 or 1) implies that the model cannot be expected
to capture this aspect of the data. Based on the results in Table 2

we can conclude that the three models had a similar fit in terms
of response accuracy. However, the mixture model had the best
fit for the response time portion, as the other two models had
extreme p-values for the three defined testing quantities. All these
results demonstrate that the mixture learning model can improve
the data-model fit compared with the two simpler models, and
it is necessary to use this model to explore students’ learning
behaviors.

The average proportion of disengaged participants from the
mixture learning model was estimated as ω̂ = 0.03 (SD = 0.004),
indicating on average, about 3% of participants were disengaged
at each time point. The following analysis focuses on interpreting
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TABLE 2 | Posterior predictive p-values for three testing quantities.

Model Change Score Change Time

Min Mean Max Min Mean Max

Mixture 0.375 0.558 0.313 0.706 0.770 0.744

Joint 0.605 0.511 0.311 0.942 0.941 0.930

Independent 0.572 0.514 0.287 0.941 0.949 0.924

the learning behaviors and outcomes in the disengaged learning
group and engaged learning group.

4.1. Disengaged Learning Group
Based on the estimated D̂i,t for each participant i, a total of 41
participants were not engaged in at least one of the four time
points. There were 11 different disengaged learning patterns,
as shown in Figure 5. These patterns can be summarized by
four types of disengaged learning behaviors. The first is the
behavior that participants began as being engaged in answering
questions and learning, but they then became disengaged during
the learning process. Among participants with this pattern, a
relatively large proportion of them were engaged in learning
and testing during the first three modules, but switched to
disengaged in the very last module. This could possibly explain
the exploratory finding in section 2 that the bimodal structure
of the log response time distribution in module 4 is more obvious
than that in the other three modules. The second type of behavior
can be characterized by the participants being disengaged at first
and then switching to engagement in later modules. The third
type of behavior is characterized by constant switching between
disengaged and engaged modes during the learning process.
The last type of behavior is complete disengagement throughout
the four modules. These different disengaged behaviors may
provide feedback on the learning program design. For example,
for the participants who were not engaged in the last module,
about 70% of them were estimated to have mastered all four
skills after the third module. In the last module, participants
may become attuned to the nature of the test or bored, which
leads to disengagement. This indicates that varieties in testing
questions could be enhanced to better attract their attention in
the learning program. When participants was not engaged in
answering questions, they randomly guessed the item correctly
with probability ĝ∗ = 0.503(SD = 0.022). Their log response
time distribution was estimated to follow a normal distribution
with mean µ̂1 = 2.528(SD = 0.069) and variance σ̂

2
1 =

1.158(SD = 0.038). This translates to an expected response time
of about 12.5 s per item when a learner is disengaged.

4.2. Engaged Learning Group
The posterior means (EAPs) and standard deviations (SDs)
estimated with the MCMC algorithm for the coefficients of the
transition model and the speed change rate in the response
time model are summarized in Table 3. About 52.7% of the
participants were estimated as masters of all four skills at the
initial time point. In general, when a participant was in an
engaged mode, the transition from non-mastery to mastery of a

FIGURE 5 | The distribution of disengagement patterns. The x-axis represents

the estimated summary pattern of Di,ts at four time points, with 1 indicating

disengaged and 0 as engaged.

TABLE 3 | The MCMC parameter estimates for the transition model and φ from

the response time model.

Parameters λ0 λ1 λ2 φ

EAP −2.214 2.757 0.286 −0.332

SD 0.323 0.781 0.119 0.028

The estimates are the averages across five chains.

skill at one time point to the next is significantly and positively
related to one’s general learning ability (λ̂1 = 2.757) and the
number of mastered skills (λ̂1 = 0.286). The speed change rate
is estimated as−0.332, indicating participants on average tended
to respondmore slowly to questions if theymastered the required
skills for a question than when they missed some required skills.
However, this estimate is the average across all participants; a
generalization is to allow each individual to have a different
change rate, which could possibly detect the increased speed due
to the change of latent skill.

The MCMC estimates for the item parameters, including the
DINA model item parameters and the response time model
item parameters, are documented in Table 4. The estimated
DINA model item parameters are similar to the findings in
Wang et al. (2018c) and Wang et al. (2018b), as these two
learning programs share similar test questions. The average
of the estimated time intensity parameters is 3.10, indicating
participants in the engaged mode spent about 22.2 s answering
a test question.

5. SIMULATION STUDY

A simulation study was conducted to achieve three goals. The first
was to verify the accuracy of the proposed MCMC algorithm,
the second was to provide validation for the real data analysis,
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TABLE 4 | The MCMC parameter estimates for item parameters and response

time parameters.

Item s g a γ

1 0.045 (0.014) 0.811 (0.043) 1.410 (0.044) 2.312 (0.040)

2 0.086 (0.018) 0.737 (0.044) 1.776 (0.056) 2.940 (0.037)

3 0.082 (0.019) 0.699 (0.037) 1.865 (0.059) 3.371 (0.035)

4 0.224 (0.026) 0.635 (0.033) 1.679 (0.054) 3.762 (0.035)

5 0.140 (0.023) 0.484 (0.039) 1.781 (0.055) 3.452 (0.034)

6 0.223 (0.025) 0.570 (0.037) 1.702 (0.053) 3.476 (0.035)

7 0.195 (0.026) 0.355 (0.040) 1.869 (0.058) 3.510 (0.033)

8 0.195 (0.025) 0.530 (0.035) 1.737 (0.055) 3.658 (0.034)

9 0.299 (0.029) 0.379 (0.036) 1.735 (0.058) 3.687 (0.035)

10 0.279 (0.029) 0.378 (0.035) 1.533 (0.047) 3.612 (0.037)

11 0.019 (0.008) 0.876 (0.039) 2.103 (0.067) 2.671 (0.034)

12 0.011 (0.006) 0.943 (0.019) 2.271 (0.074) 2.594 (0.033)

13 0.037 (0.010) 0.842 (0.043) 2.113 (0.067) 2.601 (0.033)

14 0.088 (0.015) 0.843 (0.038) 2.150 (0.071) 2.464 (0.034)

15 0.106 (0.014) 0.855 (0.029) 2.155 (0.071) 2.187 (0.035)

16 0.064 (0.015) 0.585 (0.042) 1.820 (0.057) 3.040 (0.035)

17 0.095 (0.019) 0.498 (0.047) 2.011 (0.066) 3.019 (0.035)

18 0.060 (0.013) 0.783 (0.034) 1.975 (0.062) 2.854 (0.034)

19 0.089 (0.016) 0.658 (0.040) 1.723 (0.053) 3.135 (0.036)

20 0.119 (0.019) 0.613 (0.042) 1.655 (0.051) 3.179 (0.037)

21 0.032 (0.010) 0.798 (0.051) 1.848 (0.058) 2.630 (0.035)

22 0.220 (0.022) 0.317 (0.043) 1.769 (0.055) 3.292 (0.035)

23 0.329 (0.025) 0.405 (0.045) 1.947 (0.060) 2.979 (0.034)

24 0.135 (0.019) 0.429 (0.065) 1.500 (0.046) 3.173 (0.040)

25 0.257 (0.024) 0.421 (0.049) 2.099 (0.065) 2.904 (0.034)

26 0.146 (0.020) 0.261 (0.042) 1.817 (0.056) 3.333 (0.035)

27 0.215 (0.023) 0.392 (0.041) 1.732 (0.053) 3.509 (0.036)

28 0.361 (0.026) 0.370 (0.040) 1.810 (0.056) 3.395 (0.034)

29 0.483 (0.026) 0.327 (0.041) 1.749 (0.054) 3.289 (0.035)

30 0.532 (0.026) 0.273 (0.037) 1.743 (0.055) 3.271 (0.036)

31 0.063 (0.013) 0.756 (0.060) 2.108 (0.070) 2.622 (0.034)

32 0.035 (0.009) 0.825 (0.044) 2.106 (0.071) 2.264 (0.035)

33 0.033 (0.009) 0.892 (0.030) 1.867 (0.059) 2.736 (0.036)

34 0.227 (0.022) 0.458 (0.049) 1.701 (0.053) 3.241 (0.036)

35 0.141 (0.019) 0.537 (0.048) 1.727 (0.054) 3.075 (0.036)

36 0.205 (0.022) 0.520 (0.049) 1.780 (0.057) 3.498 (0.036)

37 0.232 (0.023) 0.345 (0.043) 1.546 (0.049) 3.492 (0.038)

38 0.274 (0.024) 0.366 (0.044) 1.662 (0.052) 3.299 (0.037)

39 0.494 (0.027) 0.171 (0.034) 1.373 (0.042) 3.439 (0.041)

40 0.254 (0.024) 0.285 (0.044) 1.368 (0.043) 3.206 (0.041)

Standard errors in parentheses.

and the last was to demonstrate the necessity of modeling
the heterogeneity of learning behaviors when they do exist. In
order to achieve these goals, the proposed mixture learning
model was chosen as the data generation model and the true
model parameters were generated according to the estimated
parameters from the real data analysis. Two additional factors
were considered, one was sample size (N = 585, 1,000, 3,000)
and the other was the overall probability of disengagement (ω =

0.03 or 0.10). Under each simulation condition, 50 data sets
were simulated, and the proposed model was refitted through
the MCMC algorithm. In addition, under each of the two N =

385 conditions (ω = 0.03 or 0.10), one data set generated
from the mixture model was also fitted to the joint learning
model of responses and response times under the HO-HMDCM
framework proposed by Wang et al. (2018c). This assumes all
learners are in the engaged mode across all time points, and the
results from this model misspecification scenario can be used to
demonstrate the third goal. The estimated parameters were then
compared to the ones used to generate the data sets. The details of
the simulation procedures and evaluation criteria are presented
in the following subsection.

5.1. True Parameters
We simulated the attribute trajectories of N = 585, 1,000, or
3,000 learners on K = 4 skills across T = 4 time points. Ten
assesment items were administred at each time point (Jt = 10).
The learners’ initial attribute patterns were randomly sampled
from the set of all possible attribute profiles ({0, 1}K), with
probabilities of each profile set to be the expected a posteriori
(EAP) estimates from the real data analysis. For each learner,
their latent learning ability θi was randomly sampled from the
standard normal distribution, and their latent speed τi was
randomly generated from a normal distribution with mean 0 and
variance σ

2
τ
estimated from the empirical data.

At each time point t = 1, . . . ,T, the learners were randomly
assigned to one of two possible learning modes, namely the
engaged learning mode (Di,t = 0) and the disengaged learning
mode (Di,t = 1). The true probability of Di,t = 1 was set to either
ω = 0.03 or ω = 0.1, depending on the simulation condition.
Then, conditioning on the learner’s mode at time t, the attribute
mastery changes, responses, and response times were simulated
with different distributions. More specifically:

1. Transition. If at time t, learner i is in the engaged learning
mode (Di,t = 0), the probability that the learner transitions
from non-mastery to mastery on a skill is given by the
modified HO-HM DCM in Equation (4). Similar to Wang
et al. (2018b), we assumed the monotonicity in the growth
of attribute mastery, in other words, a mastered skill will not
be forgotten. The true intercept (λ0) and slopes (λ1, λ2) of
the learning model were set to the EAP estimates from the
empirical data analysis presented in Table 3. If learner i is
disengaged at time t with Di,t = 1, the learner’s attribute
pattern at the next time point, αi,t+1, was set to be the same
as the current one, αi,t .

2. Response. When a learner is in the engaged learning mode
at time t (Di,t = 0), the learner is assumed to engage in the
solution behavior, and the responses were simulated under
the DINAmodel in Equation (1). The estimated slipping and
guessing probabilities from the empirical data were used as
the true parameters of the 40 items (Table 4). On the other
hand, if the learner is disengaged at time t with Di,t =

1, a rapid-guessing strategy is assumed and the learner’s
responses are generated from Bernoulli(g∗). Similar to the
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other parameters, we set g∗ equal to the EAP estimate from
the real data analysis, which is 0.503.

3. Response Times. We assumed that when a learner is in
the engaged learning mode, the observed response times
follow the log-normal model in Equation (2), with Gi,j,t =

I(αi,t � qj), which takes the value 1 if learner i has mastered
all requisite skills for item j by time t and 0 otherwise.
For each assessment item, the empirically estimated time
intensity parameter γj and time discrimination parameter aj
in Table 4were used as the true parameters in the simulation
study and, similarly, the true value of the slope in front of
the covariate Gi,j,t , φ was set equal to the EAP obtained
from the real data, which is –0.332. If Di,t = 1. In other
words, learner i is disengaged at time t, the observed reaction
time to any item at that time point was simulated from
log-normal(µ1, σ1), again, the EAPs of µ1 and σ1 estimated
from the real data were used as the true parameters.

5.2. Parameter Estimation
To start the MCMC, we first generated initial values of all
the model parameters, and each of them was sequentially
updated given the others from the conditional distributions in
the Appendix. Specifically, the initial fixed parameters were
generated as follows:

λ0 ∼ N(0, 1), λ1 ∼ U(0, 1), λ2 ∼ U(0, 1),

π ∼ Dirichlet(1), φ ∼ U(0, 1), ω ∼ U(0, 0.2),

g∗ ∼ U(0, 0.5), sj ∼ U(0, 0.3), gj ∼ U(0, 0.3),

µ1 ∼ N(2, 1), σ1 ∼ U(0, 1), γj ∼ N(3.45, 0.52),

aj ∼ U(2, 4), σ
2
τ
∼ Inv-Gamma(1, 1).

The random parameters, namely D,α, θ and τ , were then
randomly generated based on the corresponding fixed
parameters.

A chain length of 30,000 iterations was used for the MCMC,
with the first 5,000 as the burn-in that were excluded for the
computation of the point estimates of the parameters. From the
post burn-in iterations, we calculated the expected a posteriori
(EAP) estimates of each of the model parameters by taking
the average of the parameter samples. For the discrete model
parameters, α andD, the final point estimates were dichotomized
depending on whether the associated post burn-in average was <

or > 0.5.

5.3. Evaluation Criteria
The performance of the proposed algorithm is evaluated in terms
of two aspects. The first is to evaluate the convergence of the
MCMC algorithm. Five separate chains with different starting
values were run with chain lengths of 30,000 iterations under the
N = 585,ω = 0.1 condition, based on one randomly simulated
data set. The R̂ (Gelman et al., 2014) was calculated for each
parameter at different chain lengths, with the first half of the
chain as the burn-in, and the progression of the maximum R̂ out
of all estimated parameters was used to determine an adequate
chain length for convergence. The second was to evaluate the
ability of the proposed algorithm to accurately recover the true
parameters. The following indices were used to evaluate different

parameters in the model. Specifically, the recovery of the learners’
attribute patterns of at each time point was evaluated using the

attribute-wise agreement rate, AAR =

∑N
i= 1

∑K
k= 1 I(αikt=α̂ikt)
N×K ,

and the pattern-wise agreement rate, PAR =

∑N
i= 1 I(αi,t=α̂i,t)

N ,
between the true (α) and estimated (α̂) attribute patterns. Note
that the learners who were estimated as not engaged in any of
the four time points were excluded from calculating these two
indexes, as no information was available to provide estimates for
their latent profile at each time point. We further evaluated the
recovery of φ, σ 2

τ
,π , λ, ω, µ1,σ1, and g∗ by comparing the mean

and standard deviation of the posterior parameter samples to the
true values. The agreement between true and estimated response
time model parameters (a and γ ), learning ability (θ), and latent
speed (τ ) was evaluated in terms of the correlation between true
and estimated values, and similarly for a, γ , θ , s, and g. Note that
for each learner, the data used to update θ are the transitions
from non-mastery to either non-mastery or mastery at the next
time point. Therefore, once a learner becomes a master of all
skills, the subsequent αs will not provide additional information
on θ , and no data on the transitions are available for learners
who have mastered all skills at the very beginning. For this
reason, the learners whose estimated initial attribute pattern was
(1, 1, 1, 1) were excluded from the computation of the correlation
between true and estimated learning abilities. The last index is the
sensitivity and specificity of the detection of disengagements, that
is, the proportion of times that true disengagement is correctly

detected, which is defined as
∑N

i= 1

∑T
t= 1 I(D̂i,t=1,Di,t=1)

∑N
i= 1

∑T
t= 1 I(Di,t=1)

), and the

proportion of times that true engagement is correctly identified,

which is defined as
∑N

i= 1

∑T
t= 1 I(D̂i,t=0,Di,t=0)

∑N
i= 1

∑T
t= 1 I(Di,t=0)

.

5.4. Results
5.4.1. Parameter Convergence
Figure 6 presents the change of the maximum univariate R̂
among all model parameters as chain length increases. From the
figure, we observe that after approximately 2,000 iterations, the
maximum R̂ fell below 1.2, and that at around 5,000 iterations, R̂
has fully stabilized, indicating chain convergence.

5.4.2. Parameter Recovery
Table 5 presents the attribute-wise agreement rates (AARs)
and the pattern-wise agreement rates (PARs) between the
true and estimated attribute patterns (α) at each time point,
under different disengagement rate (ω) and sample size (N)
conditions. Across all conditions and time points in the learning
process, the proposed estimation algorithm achieved over 85%
accuracy inmeasuring the presence/absence of attributes for each
participant. The estimation accuracy was the lowest for the initial
time point (t = 1), and it increased as t increased, achieving
over 90% agreement at t = 4. We also observed slightly higher
accuracy in the α estimates when sample size was larger and when
the probability of disengagement was lower.

In Table 6, we present the biases and RMSEs of the fixed
parameters in the model and the sensitivity and specificity of the
learning mode estimates (Di,t) averaged across 50 replications.
Specifically, these fixed parmeters include the transition model’s
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FIGURE 6 | Maximum Gelman-Rubin Proportional Scale Reduction Factor across all parameters with different chain lengths. The x−axis is the length of the MCMC

chain, and the y−axis is the maximum PSRF. The dashed line represents the commonly used threshold of R̂ = 1.2 for parameter convergence, and the solid line

corresponds to R̂ = 1, the minimum R̂ that can be achieved.

TABLE 5 | The averaged attribute-wise and pattern-wise agreement rates (AARs

and PARs) between the true and estimated α across 50 repetitions under each

simulation condition.

ω N Criteria t = 1 t = 2 t = 3 t = 4

0.03 585 AAR 0.872 0.910 0.923 0.923

PAR 0.683 0.745 0.784 0.793

1,000 AAR 0.875 0.912 0.926 0.926

PAR 0.688 0.749 0.789 0.798

3,000 AAR 0.877 0.913 0.927 0.928

PAR 0.696 0.752 0.792 0.800

0.10 585 AAR 0.864 0.901 0.916 0.915

PAR 0.666 0.726 0.769 0.776

1,000 AAR 0.869 0.903 0.917 0.918

PAR 0.678 0.732 0.770 0.782

3,000 AAR 0.872 0.905 0.919 0.919

PAR 0.688 0.738 0.775 0.784

intercept (λ0) and slopes (λ1, λ2), the correct response probability
in the disengaged mode (g∗), the probability of disengagement
(ω), the mean (µ1) and standard deviation (σ1) of the log
response times in the disengaged mode, the coefficient for the
increase of latent speed (φ) for engaged learners, and the variance
of latent speed (σ 2

τ
). Across all conditions, the bias of the

estimated fixed parameters, except those associated with the
transition model (λ), were relatively small, with small RMSEs.
One possible reason for the relatively large bias and RMSE for

λ is that with T = 4, each learner could be observed on at
most 3 transitions, and considering that a large proportion of
learners started with mastery of all or most of the skills at the
initial time point and that some learners might be disengaged at
a selection of time points, the actual number of observations for
transitions is usually <3 per learner. Thus, the amount of data
available for estimating the transition model parameters, as well
as the θs, is limited. We further observed that larger sample sizes
were associated with slightly lower bias and standard error of the
parameter estimates. In addition, a higher rate of disengagement
(ω = 0.1) was associated with larger biases and RMSEs of
learning model parameter (λ) and φ estimates, but smaller biases
and RMSEs of g∗ and µ1, σ1, the parameters associated with
the response and response time distributions in the disengaged
mode. This trend is expected, as a higher ω translates to a larger
number of observations associated with disengagement and less
observations associated with engagement.

Across several repetitions of the simulation study, the
estimated learning mode of each learner at each time point, Di,t ,
showed high agreement with the true values, with sensitivity
over 95% when ω = 0.03 and over 96% when ω = 0.1,
and specificity over 99% across all simulation conditions. This
suggests that under the proposed estimation algorithm, whether
a learner is disengaged or engaged at a given time point could
be detected correctly most of the times based on their response
times, responses, and transitions in attribute mastery.

The correlation between true and estimated values of
θ , τ , a, γ , s, and g are presented in Table 7. For the items’
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TABLE 6 | The bias and RMSE of the fixed parameter estimates under different simulation conditions and the specificity and sensitivity of the Di,t estimates.

True ω N λ0 (RMSE) λ1 (RMSE) λ2 (RMSE) g∗ (RMSE)

0.030 585 0.562 (0.631) −0.423 (0.775) 0.043 (0.145) 0.001 (0.026)

0.030 1,000 0.430 (0.499) −0.408 (0.626) 0.037 (0.135) 0.001 (0.022)

0.030 3,000 0.231 (0.307) −0.204 (0.352) −0.004 (0.106) 0.003 (0.013)

0.100 585 0.628 (0.691) −0.556 (0.837) 0.059 (0.153) −0.000 (0.014)

0.100 1,000 0.479 (0.546) −0.359 (0.646) 0.037 (0.137) 0.001 (0.011)

0.100 3,000 0.230 (0.313) −0.225 (0.388) 0.014 (0.119) 0.001 (0.007)

True ω N ω (RMSE) µ1 (RMSE) σ1 (RMSE) φ0 (RMSE)

0.030 585 0.000 (0.005) −0.000 (0.066) 0.003 (0.042) −0.017 (0.031)

0.030 1,000 0.000 (0.004) −0.001 (0.048) −0.004 (0.033) −0.010 (0.023)

0.030 3,000 0.000 (0.003) −0.001 (0.030) −0.000 (0.022) −0.003 (0.012)

0.100 585 0.001 (0.008) −0.000 (0.034) 0.000 (0.023) −0.023 (0.033)

0.100 1,000 −0.001 (0.007) −0.001 (0.027) −0.002 (0.019) −0.005 (0.022)

0.100 3,000 0.000 (0.004) −0.003 (0.014) 0.001 (0.010) −0.005 (0.014)

True ω N σ
2
τ
(RMSE) DP: Sensitivity D: Specificity

0.030 585 0.005 (0.015) 0.952 0.999

0.030 1,000 0.003 (0.010) 0.954 0.999

0.030 3,000 0.001 (0.005) 0.954 0.999

0.100 5,85 0.005 (0.015) 0.967 0.996

0.100 1000 0.002 (0.010) 0.965 0.996

0.100 3,000 0.001 (0.005) 0.967 0.996

Values outside the parenthesis for λ,g∗,ω,µ1, σ1,φ0, and σ
2
τ
are the biases of the parameter estimates averaged across 50 replications. Values in the parenthesis are the RMSEs of

the parameter estimates averaged across 50 replications.

TABLE 7 | Correlations between true and estimated latent learning ability (θ ) and

initial speed (τ ) of learners, item response time model parameters (a, γ ), and DINA

model item parameters (s,g).

ω N ρ
θ

ρτ ρa ργ ρs ρg

0.03 585 0.663 0.968 0.967 0.998 0.989 0.982

1,000 0.670 0.968 0.982 0.999 0.993 0.989

3,000 0.669 0.968 0.994 1.000 0.998 0.997

0.10 585 0.643 0.964 0.967 0.998 0.988 0.982

1,000 0.647 0.964 0.979 0.999 0.993 0.989

3,000 0.645 0.965 0.993 1.000 0.997 0.996

response time model parameters (a, γ ), the DINA model
parameters (s, g), and the learners’ initial latent speeds (τ ), there
was a high agreement between the true and estimated values,
with correlations over 96%. For the latent learning abilities of
the learners (θ), the estimate values demonstrated larger errors
with correlations around 0.67 when ω = 0.03 and around 0.64
when ω = 0.1. Similar to the larger errors in the transition model
parameter estimates, we think the larger error in the estimation
of θ can potentially be attributed to the paucity of data available
to update θi for each subject.

5.4.3. Consequences of Misspecification
Finally, we briefly summarize the parameter recovery results
when the model is misspecified, that is, when the data generating

model is the mixture model but the mixture structure is ignored
when refitting data. We note that this is a special case of the
proposed mixture model with Di,t = 0 for all i and t.

Table 8 presents the summary of the parameter recovery
results when the model without mixture is fitted to the data
generated from the mixture learning model, with different true
disengagement probabilities (ω = 0.03 or 0.10). In both cases,
a sample size of N = 585 was used. We present the correlations
between the true and estimated θ , τ , a, γ , s, and g. In addition, we
also present the averaged attribute agreement rate (AAR) between
true and estimated α across the four stages.

Compared to when themixture is explicitly modeled, ignoring
the mixture in the data resulted in remarkable decreases in the
estimation accuracy of θ , τ , a, and the attribute trajectories of
the learners, α. The decrease in estimation accuracy is more
salient when the proportion of disengagement is higher. Thus, we
conclude that when learner disengagement exists in the learning
process, assuming that all learners are engaged could greatly
sabotage the model parameter estimates, including the estimates
of the learner’s skill mastery patterns and latent traits.

In addition to the recovery of the truemodel parameters under
model misspecification, we also compare themodel-data fit of the
missepcifiedmodel and that of the mixture model. As a reminder,
these two models were fitted to the response and response times
data generated under the mixture condition with N = 585 and
ω = 0.03. On the same data set, the DIC obtained from the
mixture learningmodel and the misspecifiedmodel was 223269.1
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TABLE 8 | Recovery of the model parameters when the mixture in the data is

ignored.

True ω ρ
θ

ρτ ρa ργ ρs ρg
¯AAR

0.03 0.561 0.904 0.926 0.997 0.983 0.958 0.859

0.10 0.426 0.815 0.827 0.993 0.979 0.965 0.802

and 226197.3, respectively. This suggests that when a mixture
structure does exist in the observed data, the model without the
mixture fits significantly worse than the mixture model.

6. DISCUSSION

In this paper, we propose amixture learningmodeling framework
which can address the heterogeneity in learning behaviors. A
simple model with two possible learning modes, namely the
engagedmode and the disengagedmode, motivated by a real data
analysis on a computer-based learning program, is provided as
an example. Specifically, with this model, learners are assumed
to demonstrate different learning and response behaviors under
different modes, leading to differences in the distributions of
attribute mastery transitions over time, item responses, and
response times. A Bayesian estimation procedure is established to
estimate the parameters of the mixture learning model. Different
learning behaviors were discovered by applying the proposed
model to the real data from the spatial rotation learning program.
Simulation studies showed that the model parameters could
be accurately estimated, the learners’ learning mode could be
detected with high accuracy, and the Markov chains stabilized
within 5,000 iterations. In addition, the simulation results from
the model misspecification scenario suggested the necessity
of fitting the proposed mixture learning model instead of a
homogeneous learning model when data suggest the existence of
a mixed structure of learning modes.

The proposed mixture learning model has the potential to
detect learner disengagement in an online learning context.
Compared to traditional classroom learning, online learning
programs often provide the learners with a significantly more
flexible and less controlled environment. Whereas, instructors in
traditional classrooms can directly observe the learners’ behaviors
and their reactions to different interventions, in online learning,
the educators do not interact face to face with the learners.
This mixture learning model framework provides a way for
educators to infer the online learners’ learning mode (e.g.,
engaged or disengaged) and their corresponding latent skills
based on the observed responses and reaction times to assessment
questions at different time points. This can help the educators to
provide different stimuli to different learners through the online
learning environment. Furthermore, the proposed model can
also help to refine and design individualized learning materials.
As demonstrated from the real data analysis, learners may
become disengaged at a certain stage of the learning process, and
if this can be detected, then different types of learning materials
can be delivered so that it does not make the learning tasks
boring or transparent. Finally, even though illustrated within a
DCM framework, the way to model the engaged and disenaged

learning behavior can be generalized to other latent variable
models based on specific assessment requirements. For example,
if a continuous latent trait is assumed to be measured by the
assessment, then a traditional Item Response Theory Model can
be used for response accuracy. The latent growth model can be
used to describe the change of the continuous latent trait.

Though promising, the proposed mixture learning model has
the limitations that it only considers two learning modes and it
assumes the learning mode is the same for all items in the same
module. These restrictions can all be relaxed in future studies,
in which more than two learning modes can be considered to
differentiate various types of disengagement or to capture other
learning behaviors other than engagement and disengagement,
such as a warm-up mode, where students have low familiarity
with the learning environment and need some time to adjust
before fully engaging. We can also consider the learners’ modes
and attribute patterns at a finer grain size, such as treating the
response to each item as a time point. Another direction is to
consider a higher order model that describes the probability that
a learner is disengaged at a specific time point, given a set of
time dependent or time independent covariates, such as learners’
demographic information or other characteristics, the mode of
instruction (e.g., video, text, interactive exercise), or the temporal
position of the current learning block (e.g., first learning block
which may show slow warm-up of the learners, or later learning
blocks on which learners may demonstrate fatigue). Lastly, a
prior sensitivity analysis needs to be conducted in the future to
investigate the sensitivity of the model estimation results to the
prior specification.
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The most common process variable available for analysis due to tests presented in a

computerized form is response time. Psychometric models have been developed for joint

modeling of response accuracy and response time in which response time is an additional

source of information about ability and about the underlying response processes.

While traditional models assume conditional independence between response time and

accuracy given ability and speed latent variables (van der Linden, 2007), recently multiple

studies (De Boeck and Partchev, 2012; Meng et al., 2015; Bolsinova et al., 2017a,b)

have shown that violations of conditional independence are not rare and that there is

more to learn from the conditional dependence between response time and accuracy.

When it comes to conditional dependence between time and accuracy, authors typically

focus on positive conditional dependence (i.e., relatively slow responses are more often

correct) and negative conditional dependence (i.e., relatively fast responses are more

often correct), which implies monotone conditional dependence. Moreover, most existing

models specify the relationship to be linear. However, this assumption of monotone

and linear conditional dependence does not necessarily hold in practice, and assuming

linearity might distort the conclusions about the relationship between time and accuracy.

In this paper we develop methods for exploring nonlinear conditional dependence

between response time and accuracy. Three different approaches are proposed: (1) A

joint model for quadratic conditional dependence is developed as an extension of the

response moderation models for time and accuracy (Bolsinova et al., 2017b); (2) A joint

model for multiple-category conditional dependence is developed as an extension of the

fast-slow model of Partchev and De Boeck (2012); (3) An indicator-level nonparametric

moderationmethod (Bolsinova andMolenaar, in press) is used with residual log-response

time as a predictor for the item intercept and item slope. Furthermore, we propose

using nonparametric moderation to evaluate the viability of the assumption of linearity

of conditional dependence by performing posterior predictive checks for the linear

conditional dependence model. The developed methods are illustrated using data from

an educational test in which, for the majority of the items, conditional dependence is

shown to be nonlinear.

Keywords: response time, conditional dependence, nonlinear relationship, response processes, joint modeling,

hierarchical model, response moderation
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INTRODUCTION

When psychological and educational tests are presented in a
computerized form, it is feasible to not only record the product
of the response process (i.e., response accuracy), but also the
characteristics of the process itself. The most commonly used
process variable is response time. Various psychometric models
have been developed to jointly model response accuracy and
response time (van der Linden, 2007; Molenaar et al., 2015a,b)
which are aimed at (1) better measurement of the ability of
interest, and (2) investigating the relationship between the
time and accuracy components of the process. The prominent
framework for modeling the joint distribution of response time
and accuracy is the hierarchical modeling framework (van der
Linden, 2007), which specifies separate measurement models for
ability and speed and combines them on the higher level through
the dependence between speed and ability. In this way, when it
comes to the relationship between time and accuracy on the same
item, the only thing that the model estimates is the correlation
between the latent variables—speed and ability—and all the
observed correlations between time and accuracy are assumed to
be explained by that correlation. That is, conditional on speed
and ability, time and accuracy are assumed to be independent.
However, it has been shown inmultiple empirical data sets (Meng
et al., 2015; Bolsinova and Maris, 2016; Bolsinova and Tijmstra,
2016; Bolsinova et al., 2017a,b) that time and accuracy are in fact
not conditionally independent and there is more to learn from
the conditional dependence between response time and accuracy.

Several methods have been proposed for testing the
assumption of conditional independence (van der Linden
and Glas, 2010; Bolsinova and Maris, 2016; Bolsinova and
Tijmstra, 2016) and different extensions of the hierarchical
model have been proposed to relax this assumption (Ranger
and Ortner, 2012; Meng et al., 2015; Bolsinova et al., 2017a,b).
From these studies, it appears that a violation of conditional
independence is not a rare finding and that substantively
interesting phenomena may be revealed by investigating the
conditional dependencies (Bolsinova et al., 2017c).

When it comes to conditional dependence between time
and accuracy, authors typically focus on positive conditional
dependence (i.e., relatively slow responses are more often
correct) and negative conditional dependence (i.e., relatively
fast responses are more often correct). This implies, that
a monotone conditional dependence is assumed for time
and accuracy. Moreover, most existing models specify the
relationship to be linear. However, this assumption of monotone
and linear conditional dependence does not necessarily hold in
all situations. It could be that responses which are faster than
expected are less often correct than responses with response times
close to what is expected, but responses slower than expected
are not more often correct than those with response times close
to what is expected. Therefore, researchers should be able to
test whether linearity of conditional dependence between time
and accuracy is plausible and to investigate potential nonlinear
conditional dependence.

Nonlinear conditional dependence is interesting from the
substantive point of view because by abandoning the assumption

of monotonicity and linearity of the conditional relationship
between time and accuracy one can get a more complete picture
of the response process. Since a linear model can only reveal
positive or negative dependence, it may ignore important parts of
the response phenomena. Imagine a situation in which an item is
solved either using a fast optimal strategy or a slow error-prone
strategy (i.e., slow responses are less often correct than relatively
fast responses) and, in addition to that, some of the respondents
respond to the item by guessing (i.e., very fast responses are
rarely correct). If one of these phenomena is much stronger
than the other, then a linear effect in one of the directions would
be detected (i.e., positive conditional dependence if guessing is
the strongest factor, or negative conditional dependence if the
difference in strategies is the strongest factor). The linear model
might also find no evidence of conditional dependence if the
two opposing factors balance each other out. In none of these
scenarios, a valid conclusion about the relationship between
time and accuracy would be drawn. On the contrary, nonlinear
methods would allow one to detect a violation of conditional
dependence and to get a better understanding of the response
processes.

In this paper we develop methods for exploring nonlinear
conditional dependence between response time and accuracy.
Three different approaches are proposed. (1) The joint models
for conditional dependence between time and accuracy (see e.g.,
Bolsinova et al., 2017b) are extended to include quadratic effects,
which allows one to study nonlinear relationships between
residual time and accuracy. (2) Partchev and De Boeck’s (2012)
model is extended to allow for multiple categories of responses
which makes it possible to reveal nonmonotonic relationships
between time and accuracy. Moreover, the model is modified
in such a way that response time is treated as a continuous
variable following a log-normal distribution, and the categories
are defined based on the difference between the observed and
expected log-transformed response time. This allows one to study
the conditional dependence separately from the relationship
between speed and ability on the higher-level of the hierarchical
model. Bayesian estimation algorithms are developed for the
two new joint models for response time and accuracy. (3) We
propose using the indicator-level nonparametric moderation
method (Bolsinova and Molenaar, in press) with residual
log-response time as a predictor for the intercept and the slope
of the item characteristic curve (ICC), such that nonparametric
relationships between the residual response time and the item
parameters can be investigated. Furthermore, we propose using
nonparametric moderation to evaluate the viability of the
assumption of linearity of conditional dependence. This can be
done by performing posterior predictive checks for the linear
conditional dependence model.

The remainder of the paper is organized as follows. In
section 2 the hierarchical model for response time and
accuracy is presented and the assumption of conditional
independence is formally defined. In section 3 existing
models for conditional dependence are discussed. In
section 4 we propose three methods for exploring
nonlinear conditional dependence. Section 5 presents
an empirical example in which nonlinear conditional
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dependence is investigated, and the paper concludes with a
discussion.

JOINTLY MODELING RESPONSE TIME
AND ACCURACY USING THE
HIERARCHICAL MODEL

In the hierarchical model (van der Linden, 2007; Van Der Linden,
2009) the random variables response accuracy and response time
of person p on item i, denoted by Xpi (with realizations xpi = 0/1
for incorrect/correct) and Tpi (with realizations tpi), respectively,
are assumed to be independent, conditional on the latent variable
ability, denoted by θp, and speed, denoted by τp:

f (xpi, tpi | θp, τp) = f (xpi | θp, τp)f (tpi | θp, τp). (1)

Furthermore, it is assumed that response accuracy is independent
of speed given ability, and that response time is independent of
ability given speed. The full specification of the hierarchical
model for response times and accuracy requires four
model ingredients: (1) a measurement model for response
accuracy, typically an item response theory (IRT) model; (2)
a measurement model for response times; (3) a model for the
relationship between the latent variables; and (4) a model for the
relationship between the item parameters. In this section, we will
present a simple specification of the model, which we will use as
a basis for describing the existing extensions of the hierarchical
model allowing for conditional dependence.

For the response accuracy measurement model, we use a
two-parameter normal-ogive model (Lord and Novick, 1968) in
which the probability of a correct response to the item depends
on the ability of the person:

Pr(Xpi = 1 | θp) = 8(αiθp + βi), (2)

where αi and βi are the slope and the intercept of the ICC,
and 8(·) denotes the cumulative standard normal distribution
function. Alternatively, the three-parameter normal-ogive model
(Klein Entink et al., 2009), logistic IRT models (Bolsinova et al.,
2017a), and cognitive diagnostic models (Zhan et al., 2018) have
been used as the first ingredient for the hierarchical model.

For the response time measurement model, we use a log-
normalmodel (van der Linden, 2006) in which the response times
are assumed to have a log-normal distribution with the mean
equal to the difference between the time intensity of the item,
denoted by ξi, and the speed latent variable:

f (tpi | τp) = lnN (ξi − τp; σ
2
i ) (3)

where σ
2
i is the residual variance of the log-transformed

response time. Here, 1
σ
2
i

can be considered a time discrimination

parameter since the smaller σ
2
i is, the larger the proportion

of the variance of response times explained by speed is. This
model can also be seen as a constrained linear factor model
with all factor loadings equal to each other (Molenaar et al.,
2015b). Alternatively, one can use an unconstrained linear factor

model with additional item-specific factor loadings (Fox et al.,
2007). Different choices for the response time model, used as an
ingredient for the hierarchical model, include a model based on
Box-Cox transformation of response times (Klein Entink et al.,
2009), and a Weibull model (Rouder et al., 2003).

For the relationship between the latent variables and for the
relationship between the item parameters we use multivariate
normal distributions. For identification, the mean vector of
the latent variables is constrained to zero, and the variance
of θ is constrained to one1. For the relationship between the
item parameters (αi,βi, ξi) we also use a multivariate normal
distribution. Unlike the distribution of the person parameters,
here the mean vector and the covariance matrix can be estimated
freely.

The conditional independence assumption in Equation (1)
means that accuracy and time can be correlated only if ability
and speed, which determine their expected values, are correlated.
The residual response accuracy and residual log-transformed
response time are taken to be noise and the fluctuations on the
response accuracy and response time sides of the model are taken
to be uncorrelated.

MODELING CONDITIONAL DEPENDENCE
BETWEEN TIME AND ACCURACY

The conditional independence assumption can be relaxed and
the relationship between residual response time and residual
response accuracy can be incorporated into the model. One
way to do that is to model the joint distribution of time and
accuracy to the same item as a bivariate distribution with a non-
zero correlation parameter. Ranger and Ortner (2012) proposed
modeling the joint distribution of log-transformed response time
(denoted by t∗pi) and augmented continuous response accuracy

(denoted by x∗pi defined such that xpi = I(x∗pi > 0)) as a

bivariate normal distribution with an item-specific conditional
correlation, denoted by ρi:

f (x∗pi, t
∗
pi | θp, τp) = N2

([

αiθp + βi

ξi − τp

]

,

[

1 ρiσi

ρiσi σ
2
i

])

. (4)

Here, the marginal distribution of response accuracy and
response time are the two-parameter normal-ogive model and
log-normal model, the same as in the hierarchical model
presented in the previous section. Meng et al. (2015) have further
extended this model to allow the conditional correlation to vary,
not only across persons, but also across items.

Bolsinova et al. (2017b) have shown that the joint model in
Equation 4 is equivalent to amodel in which the joint distribution
of accuracy and time is factorized as a product of the marginal
log-normal model for time and a conditional model for accuracy
given time, which is a two-parameter normal-ogive model,
with the intercept being a linear function of the standardized

1Note that if the factor model with item-specific factor loadings is used, then the

variance of speed also has to be constrained.
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difference between the observed and expected log-transformed
response time:

Pr(Xpi = 1 | tpi, θp, τp) = 8

(

αiθp + βi0 + βi1
ln tpi − (ξi − τp)

σi

)

,

(5)
where βi0 is the baseline intercept and β1i is the linear effect
of standardized residual log-transformed response time on the
intercept of the ICC. In addition to the linear effect on the
intercept, the model can be extended with a linear effect on the
slope of the ICC (Bolsinova et al., 2017b)2:

Pr(Xpi = 1 | tpi, θp, τp) = 8((αi0+αi1zpi)θp+βi0+βi1zpi), (6)

where zpi denotes the standardized difference between the
observed and expected log-transformed response time
ln tpi−(ξi−τp)

σi
, and αi0 and αi1 are the baseline slope and the

linear effect of zpi on the slope of the ICC, respectively. The
parameters βi1 and αi1 can be interpreted as the main effect of
residual log-transformed response time on response accuracy,
and the interaction effect between ability and zpi on accuracy,
respectively. Throughout the paper we refer to this model as the
linear conditional dependence model.

The approaches discussed above treat the response time as a
continuous variable and relate the parameters of the IRT model
for accuracy to deviations of the observed log-response time from
its expected value. An alternative proposal has been to categorize
response time into two classes—fast and slow—and jointly model
the dichotomized response time and response accuracy using an
IRTree model (De Boeck and Partchev, 2012). In this case, the
ICC parameters can differ between the two classes (Partchev and
De Boeck, 2012; DiTrapani et al., 2016). If the two-parameter
normal-ogive model is used, then the probability of a correct
response given response time is:

Pr(Xpi = 1|tpi, θp) = 8

((

αiFI
(

tpi ≤ t̃i
)

+ αiS

(

tpi > t̃i
))

θp

+βiFI
(

ti ≤ t̃i
)

+ βiSI
(

ti > t̃i
))

, (7)

where t̃i denotes the median response time to item i, and
subscripts F and S denote the fast and the slow class, respectively.
Since, only two classes of response time are defined, only a
monotonic relationship between response time and accuracy can
be explored, for example responses in the slow class being more
often correct than responses in the fast class (βiS > βiF), or
responses in the slow class being less informative about ability
than responses in the fast class (αiS < αiF).

It is important to note that separation of the response times
into two classes is typically done using an item-level median
split. Therefore, this approach is different from the linear models
discussed above, since the ICC parameters are related to the
categorized observed response time, and not to the difference
between the expected and observed response time, such that the
differences between the fast and slow classes capture not only
the conditional dependence, but also the relationship between

2Note, that alternatively it has been proposed to include a linear effect on the

log-transformed slope of the ICC (Bolsinova et al., 2017a)

ability and speed (persons for whom the responses to item i are
categorized as fast on average would have a higher speed latent
variable in the log-normal model than persons for whom the
responses to item i are slow).

MODELING NONLINEAR CONDITIONAL
DEPENDENCE

The linear conditional dependence models and the fast-slow
model provide quite a simplistic picture of the relationship
between response time and accuracy. The residual dependence
between time and accuracy is not necessarily monotone and the
change of the ICC parameters is not necessarily linear in zpi.
To further investigate the relationship between response time
and accuracy, we propose two new joint models for conditional
dependence between response time and accuracy, and also use
a nonparametric moderation method to explore the relationship
between the residual log-transformed response time and the
parameters of the response accuracy model.

Joint Model for Quadratic Conditional
Dependence
To allow for a nonlinear relationship between residual log-
transformed response time and the ICC parameters, we extend
the conditional model of response accuracy in Equation (6)
with quadratic effects. To simplify the notation, we introduce
a function 9(·, x) = (8(·))x(1 − 8(·))1−x. The resulting joint
model for time and accuracy is then the following:

f (xpi, tpi | θp, τp) = f (xpi | tpi, θp, τp)f (tpi | τp)

= 9

(

(αi0 + αi1zpi + αi2z
2
pi)θp + βi0

+βi1zpi + βi2z
2
pi, xpi

)

1

tpi
√
2πσi

exp

(

−
(ln tpi − ξi + τp)

2

2σ 2
i

)

, (8)

where αi2 and βi2 are the quadratic effects of the residual log-
transformed response time on response accuracy. If α2i < 0,
then the strength of the relationship between ability and the
probability of a correct response first increases with residual log-
transformed response time and then decreases, and vice versa
if αi2 > 0. Similar interpretations can be given to the sign of
βi2. When the quadratic effect is negative, the corresponding
parameter of the ICC (i.e., slope or intercept) is the highest when
zpi = − αi1

2αi2
.

Our joint model is an extension of the hierarchical model,
therefore in addition to the specification of the joint distribution
of the outcome variables, we also need to specify the distribution
of the latent variables and the distribution of the item parameters.
On the person side we use N2(0,6) where the variance of θ

is contrained to be 1. On the item side, we use N7(µI ,6I) for
{αi0,αi1,αi2,βi0,βi1,βi2, ξi}, whereµI and6I are themean vector
and the covariance matrix of the item parameters, respectively.
Note, that while we are including nonlinear effects in modeling
the conditional dependence between time and accuracy given
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ability and speed, we do not extend the standard hierarchical
model with nonlinear effects on the higher level, since it goes
beyond the scope of the current paper. However, one may
consider more complex models for the joint distribution of the
person parameters and for the joint distribution of the item
parameters that would allow for a nonlinear relationship on the
higher level as well as on the lower level.

This extended joint model for conditional dependence
between response time and accuracy can be estimated in a similar
way as the linear conditional dependence models (Bolsinova
et al., 2017b) using Bayesian estimation. The Appendix contains
the full specification of the density of the data, prior and posterior
distributions, and the detailed steps of the Gibbs Sampler, in
which the parameters are consecutively sampled from their full
conditional posteriors.

Multiple-Category Conditional
Dependence Model
An alternative to the quadratic conditional dependence model
for exploration of nonmonotone dependence is an extension
of the slow-fast model. Allowing the ICC parameters to differ
not just across two classes of responses, but across multiple
classes, makes it possible to uncover nonmonotone relationships
between residual response time and the ICC parameters (e.g., an
item being most informative for the middle categories and least
informative for the extreme categories).

Considering multiple categories is not the only way in which
our joint model differs from the existing fast-slow models.
Instead of categorizing the response time itself, we are going
to use the residual log-transformed response time, since we are
interested in the conditional dependence between response time
and accuracy, taken separately from the relationship between
speed and ability.

The joint distribution of response time and accuracy in this
model is:

f (xpi, tpi | θp, τp) = 9







αim +

M
∑

k=1,k6=m

αikz
∗
pik



 θp

+βim +

M
∑

k=1,k6=m

βikz
∗
pik, xpi





1

tpi
√
2πσi

exp

(

−
(ln tpi − ξi + τp)

2

2σ 2
i

)

, (9)

whereM is the number of categories of residual log-transformed
response time, m is the baseline category, z∗

pik
= I(qk ≤

zpi ≤ qk+1), and q1, . . . , qM+1 are the a priori defined thresholds
between the categories (q1 = −∞, qM+1 = +∞). Note, that
in this joint model response time is modeled as a continuous
variable such that there is no loss of information in the
measurement of speed due to categorization.

Given that residual log-transformed response time belongs to
the baseline category, the item parameters are equal to {αim,βim}.
When zpi belongs to one of the remaining categories k 6= m, the
parameters are equal to {αim + αik,βim + βik}. When M > 2

the model allows for nonmonotone conditional dependence. For
example, if m is the middle category and βik < 0, ∀k 6= m,
then it means that both responses that are slower than expected
and those that are faster than expected are less often correct
than responses for which the observed response time is closer
to the expected response time. The more categories are used the
more flexibly the model can account for different patterns of
conditional dependence. However, the more categories there are
the smaller the sample size per category is and the less precise the
estimates of the item parameters are.

Analogous to the quadratic model, this joint model for time
and accuracy can also be estimated using a Gibbs Sampler (see
Appendix for details). Here we specify the same distribution for
the latent variables, and similarly N2M+1(µI ,6I) is specified for
{αi1, . . . ,αiM ,βi1, . . . ,βiM , ξi}.

Nonparametric Approach
The third approach to exploring nonlinear conditional
dependence is in line with the nonparametric indicator-level
moderation approach developed by Bolsinova and Molenaar
(in press), which is a extension of the local structural equation
modeling approach from Hildebrandt et al. (2016). The idea
of the method is to explore the nonparametric relationship
between the indicator-level covariate and the parameters of the
latent variable model. In the case of investigating the conditional
dependence between response time and accuracy, this method
can be applied by using the residual log-transformed response
time as the covariate for the intercept and the slope of the ICCs
of the items in the accuracy measurement model. Using residual
log-transformed response time instead of the observed response
time itself is important because in that way one can investigate
the relationship conditional on the latent variables and not the
marginal relationship between time and accuracy. By including
the residual log-transformed response time as a covariate in
the analysis we can look at how the probability of a correct
response changes depending on whether the response is shorter
than expected or longer than expected (i.e., the intercept being
a function of residual log-transformed response time) and how
the relationship between ability and the probability of a correct
response changes depending on the response being relatively
fast or slow (i.e., the slope being a function of the residual
log-transformed response time).

Unlike the first two approaches in which the joint distribution
of response time and accuracy is modeled, in nonparametric
moderation it is not possible to model the two outcome variables
jointly since in this approach residual log-transformed response
time is treated as an observed covariate. Therefore, we propose
using a two-step procedure. First, the measurement model for
response times is fitted and the estimates of the standardized
residual log-transformed response time are computed:

ẑpi =
ln tpi − ξ̂i + τ̂p

σ̂i
. (10)

Second, the estimates ẑpi are included in the analysis of response
accuracy as indicator-level moderators.
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For each item, a set of focal points F1, . . . , FJ for the value
of the standardized residual log-transformed response time are
defined for which the slope and intercept of the ICC are
estimated. Since for all items the moderator has a mean of zero
and a standard deviation of one, it makes sense to have the same
focal points for different items. For each focal point j and for
each item, the estimates of αji and βji are obtained by weighting
the responses to the item from each person p using the distance
between the value ẑpi and the focal point. For each combination
of an item i and a focal point j a vector of weights wji is defined
with each element corresponding to a particular person p:

wpji = exp






−

(ẑpi − Fj)
2

2
(

hN− 1
5

)2
)






, (11)

there h is the bandwidth factor which serves as a smoothing
parameter and determines how far from the focal point ẑpi has
to be to have a relatively large impact on the estimates of the
parameters αji and βji. We will use the vale of 1.1 for h, which has
been proposed in the nonparametric literature (Silverman, 1986)
and has been successfully used for indicator-level moderation
(Bolsinova and Molenaar, in press).

The item slopes and intercepts of the K items in the test
are estimated in an iterative procedure. To start, the values of
the slope and intercept are initialized for each combination of
a person and an indicator, that is N × K matrices of response-
specific slopes and intercepts, denoted by α

∗ and β
∗ respectively,

are defined. The estimates of the item slopes and intercepts from
the conditional independence hierarchical model can be used as
starting values. After initialization, repeatedly for each item the
estimates of αji and βji are obtained for each focal point j by
maximizing the weighted log-likelihood:

lnL(αji,βji |X,α
∗,β∗,wji)

=
∑

p

ln

∫

(

9(αjiθ + βji, xpi)
)wpji

∏

k6=i

9(α∗
pkθ + β

∗
pk, xpk)N (θ; 0, 1)dθ , (12)

where the responses to item i are weighted with wji, while for the
rest of the items k 6= i the current values of response-specific
slopes and intercepts contained in α

∗
·k
and β

∗
·k are used.

After αji and βji are obtained, we update the values of α
∗
·i and

β
∗
·i as follows:

α
∗
pi =











α1i if ẑpi < F1,

αji + (ẑpi − Fj)
α(j+1)i−αji

Fj+1−Fj
if Fj ≤ ẑpi ≤ Fj+1, ∀j ∈ [1, J − 1],

αJi if ẑpi > FJ;

(13)
with a similar specification for β

∗
pi. That is, if ẑpi is outside of the

range of the focal points, then the parameters are set equal to the
parameters at the nearest focal point, and otherwise α

∗
pi and β

∗
pi

are computed using piece-wise linear regression.
Under this nonparametric approach the significance of

conditional dependence can be tested using permutation tests.

To perform these tests, one needs to repeatedly estimate
the nonparametric relationship between the residual log-
transformed response time and the parameters of the ICCs in
permuted data sets, that is, data sets in which the response
accuracy data points are kept intact but the residual log-
transformed response times are randomly assigned to different
persons in the sample. As a first tool to draw inferences about
the significance of the relationship between the residual log-
transformed response time and the ICC parameter, one can use
graphical checks of deviations of the observed relationship and
the relationship in the permuted data sets. However, a more
rigorous test is to use the variance of the parameters across
focal points as a statistic and compare the observed value to
its distribution in the permuted data sets. The proportion of
permuted data sets in which the variance is larger than in the
observed data can be used to approximate the p-value for testing
the hypothesis of conditional independence.

Furthermore, nonparametric moderation can be used to
evaluate the viability of the assumption of linearity of conditional
dependence. This can be done by performing posterior predictive
checks (Meng, 1994; Gelman et al., 1996) for the linear
dependence model. The idea of posterior predictive checks is
to compare the observed relationship between the residual log-
transformed response time and accuracy (as estimated using the
nonparametric method) with its posterior predictive distribution
under the linear conditional dependence model. To do so one
needs to (1) sample from the posterior distribution of the model
parameters of the linear conditional dependence model, (2)
using the values of the parameters sampled from this posterior
generate replicated data under the model, and (3) evaluate the
relationship between residual log-transformed response time
and the parameters of the ICCs in each of the replicated data
sets using the nonparametric method. In addition to the visual
comparison of the estimated relationship in the observed data
set and multiple replicated data sets, one can also use some
measure quantifying a deviation from linearity and compare
the observed measure with its posterior predictive distribution
in the replicated data sets. To obtain such a measure one can
first compute residuals in a simple linear regression model with
the estimates of the ICC parameter at focal points (α̂1i, . . . , α̂Ji

or β̂1i, . . . , β̂Ji) as an outcome variable and the focal points as
a predictor, and then compute the maximum of the absolute
value of the cumulative sum of these residuals. The higher this
value, the larger the deviation from linearity is. The proportion
of replicated data sets in which the deviation from linearity
is larger than in the observed data approximates the posterior
predictive p-value. Small posterior predictive p-values (i.e., below
0.05) indicate that the deviation from linearity in the observed
data is too large to conclude that the assumption of linearity of
conditional dependence is viable.

EMPIRICAL EXAMPLE

Method
To illustrate how the nonlinear conditional dependence between
response time and accuracy can be investigated, the proposed
methods were applied to a data set of a high-stakes arithmetic
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test3. One of the test versions with 38 items answered by 4,632
persons was available for analysis. For this data set several
models were fitted: (1) the conditional independence model,
(2) the linear conditional dependence model, (3) the quadratic
conditional dependence model, and (4) the multiple-category
conditional dependence model. In Model 4 we considered 5
categories for residual log-transformed response time and the
thresholds between the categories were set equal to -1.5, -0.5,
0.5, and 1.5 (i.e., the thresholds are symmetric around zero and
each two neighboring thresholds are one standard deviation away
from each other), themiddle category (i.e., the category where the
response times are the closest to their expected values) was used
as a baseline.

The four models were fitted using Gibbs Samplers with 10,000
iterations including 5,000 iterations of burn-in. For the details of
the estimation algorithm for the conditional independencemodel
and the linear conditional dependence model see Bolsinova
et al. (2017b). Gibbs Samplers for Models 3 and 4 are described
in the Appendix. The fitted models were compared using the
modified Bayesian information criterion (BIC) which has been
previously used for comparing and selecting joint models for
response time and accuracy (Bolsinova et al., 2017b)4. The
criterion is modified in the sense that posterior means of the
model parameters are used instead of the maximum likelihood
estimates of the parameters. The models allowing for nonlinear
conditional dependence have a larger penalty term based on their
larger number of parameters (i.e., quadratic effects in addition to
the baseline ICC parameters and the linear effects in the quadratic
model, and category-specific ICC parameters for the multiple
category model).

In addition to fitting the joint models for response time and
accuracy, the nonparametric moderation method was applied to
the data. To do so the standardized residuals of log-transformed
response time in the one-factor model with equal factor loadings
(i.e., which is equivalent to the log-normal model in Equation 3)
were computed using “lavPredict” function from the R-package
“lavaan” (Rosseel, 2012). As focal points we used [-2, -1.5, -1,-0.5,
0, 0.5, 1, 1.5, 2], that are the points where the observed log-
transformed response time is equal to the expected value, and
where the deviation from the expected value are equal to 0.5, 1,
1.5, and 2 residual standard deviations. To test the significance
of the effect of residual log-response time on the slopes and the
intercepts of the ICCs, permutation tests with 500 replications
were performed.

Finally, to test the linearity of conditional dependence,
posterior predictive checks were performed for the linear
conditional dependence model. Given each 10th sample of the

3We would like to thank Dutch National Institute for Measurement in Education

(CITO) for making this data set available to us. For confidentiality reasons we

cannot disclose the content of the test items analyzed in this paper, but example

items can be found at http://www.cito.nl/onderwijs/voortgezet%20onderwijs/

rekentoets_vo/voorbeeldtoetsen. IRB approval was not needed for the study, since

the data were collected previous to the study within high-stakes testing, and only

response time and accuracy data and no information identifying the respondents

was available for analysis.
4We are only using the modified BIC and not the modified Akaike information

criterion (AIC) which has also been evaluated by the authors because they have

shown that AIC tends to be too liberal.

TABLE 1 | Information criteria for the four joint models for time and accuracy.

Model -2LL P Modified BIC

Conditional independence 2046864 – 2126317

Linear conditional dependence 2042274 76 2122368

Quadratic conditional dependence 2040146 152 2120882

Multiple-category model 2039572 304 2121591

P is the number of additional parameters compared to the conditional independence

model.

model parameters after the burn-in a replicated data set was
generated under the linear conditional dependence model (i.e.,
500 replicated data sets were generated). The nonparametric
moderation method was applied for each of the replicated data
sets in the same way as for the observed data. The relationship
between standardized residual log-transformed response time
and the ICC parameters in the replicated data sets and the
observed data were compared graphically. Furthermore, in each
data set for each effect, the maximum of the absolute value
of the cumulative sum of the residuals in the simple linear
regression model with the focal points as a predictor and the ICC
parameter as an outcome variable was computed. For each effect,
the proportion of replicated data sets in which the deviation from
linearity (quantified by the maximum of the absolute value of the
cumulative sum of the residuals) was larger than in the observed
data was computed to approximate the posterior predictive p-
value for the linearity check.

Results
Table 1 shows the information criteria for the fitted joint models.
The conditional independence model has the worst values
compared to all models which take conditional dependence into
account. This result shows that the conditional independence
assumption does not hold for this test. Furthermore, models
allowing conditional dependence to be nonlinear have lower
information criteria values than the linear conditional
dependence model, which shows that the assumption of
linearity of conditional dependence also does not hold. The
quadratic model was better than the multiple-category model,
which points in the direction that the ICC parameters are not
homogeneous within each category.

It is important to investigate whether the main inferences
that are made based on the linear conditional dependence
model would also hold for the nonlinear conditional dependence
models and for the nonparametric moderation method. The first
question is about the presence of the effects on the intercept
and the slope of the ICCs of the separate items. In the linear
conditional dependence model for 24 and 30 items, the 95%
credible intervals of α1i and β1i respectively, did not include zero,
which can be seen as evidence of the presence of the effects.
In the quadratic model for 33 and 37 items the 97.5% credible
intervals5 of either αi1 or αi2, and of either βi1 or βi2 did not
contain zero, which can be seen as evidence of the presence of

5We decided to use a wider credible interval for the quadratic model because here

two parameters are evaluated for each ICC parameter to make a conclusion about

the presence of the effect instead of one, that is the area outside of the credible

interval was divided by the number of parameters which were evaluated.
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FIGURE 1 | Intercept of the item characteristic curve of item 7 (β7, on the

y-axis) as a function of residual log-transformed response time (z7, on the

x-axis) estimated with different methods. The item intercept is modeled as a

function of residual log-transformed response time, such that the intercept is

different depending on the value of that residual.

conditional dependence for these items. In the multiple-category
conditional dependence model for 29 and 37 items the 98.75%
credible intervals6 of at least one of αik, k 6= m and one of βik, k 6=
m did not contain zero. For 25 and 35 items the permutation
test had p-values below 0.05 for the effects on the slopes and
the intercept respectively, pointing to the presence of main and
interaction effects of residual log-transformed response time on
response accuracy.

We note that the nonlinear methods are more flexible and
complex and therefore provide noisier results and have less power
for detecting the effects, so it would not be surprising if a linear
effect is detected by the simpler linear method, but not by more
complex nonlinear methods. On the contrary, having items for
which the linear conditional dependence model does not detect
the effect, while it is detected by the nonlinear models should
be worrying, since it would mean that the effect is not detected
due to its nonlinear nature. This is the case, for example, for the
effect on the intercept of item 7: Figure 1 shows the estimated
relationship between the residual log-transformed response time
and the intercept of the ICC for this item under the linear
conditional dependence model and under the three nonlinear
methods. It can be seen that when we allow the effect to be
nonlinear and nonmonotone there is a clear relationship, while
with the linear model the resulting relationship is close to a
horizontal line.

The second kind of conclusion that is typically made based on
the linear conditional dependence model is about the correlation

6We decided to use a wider credible interval for the multiple-category model

because here four parameters are evaluated for each ICC parameter to make a

conclusion about the presence of the effect instead of one parameter, that is the area

outside of the credible interval was divided by the number of parameters which

were evaluated.

between the baseline intercept of the items and the effect of
residual log-transformed response time on the intercept. In
multiple data sets previously this correlation was found to be
negative (Bolsinova et al., 2017a,b). In our data set we found
the same relationship. Figure 2 (top left) shows the relationship
between the estimates of βi0 and βi1 in the linear conditional
dependence model. For easier items the effects are more often
negative, and for more difficult items the effects are more
often positive. To check whether a similar conclusion would be
made using the nonlinear methods we performed the following
analyses: (1) For the quadratic model for the items with negative
βi2 (i.e., items for which there exists a value of zpi which
maximizes the intercept of the ICC) we plotted the points at
which the intercept is maximized (− βi1

2βi2
) against the baseline

intercept (see Figure 2, top right); (2) For the multiple-category
model we plotted the category for which the item intercept is
the highest against the intercept in the baseline category (see
Figure 2, bottom left); (3) For the nonparametric method we
plotted the focal points for which βji is the highest against the
overall proportion of correct responses to the item (see Figure 2,
bottom right). In all three additional plots we see a similar
relationship as for the linear conditional dependence model: For
easier items relatively fast responses tend to bemost often correct,
while for difficult items relatively slow responses tend to be most
often correct.

The comparison of the information criteria shows that
linearity of conditional dependence does not hold for the test
as a whole. Additionally, we examined the estimates of the item
hyper-parameters specifying the mean and the variance of the
quadratic effects. The means of the quadratic effects across items
were estimated to be -0.02 [-0.07, 0.04] for αi2s, and -0.09 [-0.15,
-0.03] for βi2s. The variances of the quadratic effects were 0.03
[0.02, 0.05] for αi2s and 0.03 [0.02, 0.05] for βi2s. For the effects
of the item intercepts there is a clear pattern of the intercept first
increasing and then decreasing with residual log-transformed
response time since the mean of βi2 is negative, but for the effects
on the item slopes the pattern is not so clear.

In addition to the overall conclusions about the presence of
nonlinear effects, at least for some of the items, it is also important
to look at each item separately and evaluate the results of the
posterior predictive checks for linearity. For 27 and 30 items the
posterior predictive p-value for linearity was below 0.05 for the
effects on the slope and the intercept of the ICC, respectively.
Figures 3–6 give examples of some of the items with the largest
deviations of conditional dependence from linearity. For item
1 the intercept of the ICC increases very steeply when the
response is faster than expected, while positive deviations from
the expected response time hardly result in further increase of the
probability of a correct response (see Figure 3). From this figure,
one can also see that the strength of the effect is underestimated
in the linear conditional dependence model since the effect is
averaged across the ranges of z in which there is an effect and
where there is no effect. The slope of item 2 first increases and
then decreases, for which the quadratic model gives quite a good
approximation, while the linear conditional dependence severely
misrepresents the relationship between residual log-transformed
response time and the item slope (see Figure 4). For items 28
and 30 (see Figures 5, 6), the direction of the effect changes
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FIGURE 2 | Differences in the effect of residual log-transformed response time (z) on item easiness depending on the baseline easiness.

FIGURE 3 | Intercept of the item characteristic curve of item 1 (β1, on the

y-axis) as a function of residual log-transformed response time (z1, on the

x-axis) estimated with different methods.

in the area where the observed response time is close to its
expected value: Responses both faster than expected and slower
than expected are less often correct than the responses with

response times close to their expected values. Figures 5B, 6B
illustrate the posterior predictive check for the intercepts of items
28 and 30. Here, the relationships in the observed data (black
lines) clearly deviate from what would be expected if the data
were generated under the linear conditional dependence model
(gray lines). Note, that for the first of these two items the linear
conditional dependence model reports a positive conditional
dependence between response time and accuracy and for the

second one it reports a negative conditional dependence, which is

correct only for a part of the scale of the residual log-transformed

response time and does not adequately represent the pattern of
conditional dependence as a whole.

Additionally, we compared the estimates of ability under

the conditional independence model, the linear conditional

dependence model and the two nonlinear conditional
dependence models (quadratic and multiple-category models)

to check how the inclusion of conditional dependence in a

model (and the exact way in which it is modeled) influences
the inferences about the respondents. The correlations between

the estimates of θ under each pair of models was very high,
the lowest value of the correlation was above 0.988, and the
highest value of the correlation was above 0.999. Therefore, in
this example modeling conditional dependence does not change
the measured construct, while it does allow learning more about
the relationship between time and accuracy compared to the
standard conditional independence model.
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FIGURE 4 | (A) Slope of the ICC of item 2 (α2, on the y-axis) as a function of residual log-transformed response time (z2, on the x-axis) estimated with different

methods; (B) posterior predictive check for linearity of conditional dependence: each gray line represents the relationship between the residual log-transformed

response time of item 2 (z2) and the slope of the ICC of item 2 (α2) estimated in the replicated data generated under the linear model, and the black line represents the

relationship in the observed data.

FIGURE 5 | (A) Intercept of the ICC of item 28 (β28, on the y-axis) as a function of residual log-transformed response time (z28, on the x-axis) estimated with different

methods; (B) posterior predictive check for linearity of conditional dependence: each gray line represents the relationship between the residual log-transformed

response time of item 28 (z28) and the intercept of the ICC of item 28 (β28) estimated in the replicated data generated under the linear model, and the black line

represents the relationship in the observed data.

DISCUSSION

Our empirical example shows that conditional dependence
between response time and accuracy can be nonlinear: in
this example models allowing for nonlinear dependence are
preferred over the linear dependence model, and for the
majority of the items the posterior predictive checks indicate
violations of linearity of the relationship between residual log-
transformed response time and the ICC parameters. Using a
linear conditional dependencemodel may in some situations lead
to incorrect conclusions about the relationship between response
time and accuracy: (1) One may conclude that conditional
independence holds, when conditional independence is violated
in a nonmonotone way such that the positive dependence in one
range of the z-values and the negative dependence on another
range cancel each other out; (2) The strength of the effect may
be underestimated, when the effect is strong in some range of z-
values and is either very weak or is absent in another range; (3)
One may conclude that the dependence is, for example, negative
while in fact it is both positive and negative depending on the

range of z-values. In such situations, by modeling nonlinear
conditional dependence one can get a better picture of the
relationship between response time and accuracy in the data and
get closer to understanding the response processes behind this
relationship.

The approaches proposed in this paper make use of the
difference between the observed and expected log-transformed
response times, zpi, as a predictor variable to account for
unobserved heterogeneity in the responses. In the model, we do
not explicitly separate the unobserved heterogeneity by means
of additional latent variables. As a result, zpi, which contains
noise, is fully incorporated in the responsemodel which decreases
the power to detect an effect as the parameter estimates will
have increased sampling fluctuations due to the noise in the
residual log-transformed response time. However, we did not
want to further complicate the model by introducing additional
latent variables. In addition, introducing more latent variables
may also decrease the power to detect an effect due to increased
estimation error. Another aspect of the conditional dependence
models is that false positives may arise if the response time model
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FIGURE 6 | (A) Intercept of the ICC of item 30 (β30, on the y-axis) as a function of residual log-transformed response time (z30, on the x-axis) estimated with different

methods; (B) posterior predictive check for linearity of conditional dependence: each gray line represents the relationship between the residual log-transformed

response time of item 30 (z30) and the intercept of the ICC of item 30 (β30) estimated in the replicated data generated under the linear model, and the black line

represents the relationship in the observed data.

is misspecified. That is, such misspecifications will be absorbed
in zpi which in turn may be detected as a linear or non-linear
conditional dependence effect if the misspecification is large
enough. As a result, ideally one should carefully consider model
fit of the response time measurement model before interpreting
the results of the present parametric approach.

The conclusion about the negative relationship between the
baseline intercept of the items and the effects of residual log-
transformed response time on the intercept, previously found
in other datasets (see e.g., Bolsinova et al., 2017b) and also
found in our empirical example, seems to be robust regarding
the violation of the linearity of the effect. With all three
methods allowing for nonlinear dependence, we observed a
relationship between the overall easiness of the item and the
pattern of conditional dependence. When nonlinear conditional
dependence is considered, we can no longer talk about the single
effect on the intercept, instead we are considering the range of
values of zpi for which the intercept (and therefore response
accuracy) is the highest. For easier items, the optimal values of zpi
tend to be more negative (responses faster than expected), while
for difficult items, the optimal zpi is positive (responses slower
than expected).

In this paper we used three different approaches to modeling
nonlinear conditional dependence: (1) the quadratic conditional
dependence model, (2) the multiple-category conditional
dependence model, and (3) the nonparametric modeling
approach. These three approaches all have their comparative
advantages and disadvantages. An important difference between
the first two methods and the third one is that the first two
methods allow modeling response time and accuracy jointly,
while the third method requires a two-step procedure in
which the estimates ẑpi are treated as observed covariates for
the distribution of response accuracy. This can be seen as a
disadvantage of the nonparametric approach. At the same time,
the nonparametric approach allows for more flexibility in the
relationship between residual log-transformed response time
and the ICC parameters. A limitation of the quadratic approach
is that it restricts the possible relationship between the residual
log-transformed response time and the ICC parameters to having
a particular parametric shape and does not allow exploration

of the shape of the conditional dependence. One way in which
the quadratic shape of the relationship between zpi and the
ICC parameters is restrictive is that the function is symmetric,
whereas it could be that the decrease of the parameter when
moving away from the maximum point (given that the quadratic
effect is negative and there is a maximum) is stronger when zpi
is becomes smaller that its optimal value than when it becomes
larger. The nonparametric method allows us to more closely
follow the shape of the relationship, however due to its flexibility
the method requires larger sample sizes. A limitation of the
multiple-category approach is that it assumes that within each
category of residual log-transformed response time the item
parameters are constant, which might not necessarily be the case
in practice.

While the empirical example considered an application from
educational measurement, the developed methodology can be
expected to be relevant for applications relating to ability
measurement in general, in cases where both response time and
accuracy are recorded. Like the traditional hierarchical model,
the models proposed in this paper make it possible to obtain
additional information about ability based on the observed
response times, but the methods also allow one to further study
and model the complex relationship that may exist between
response time and accuracy. This can, for example, be considered
relevant in the context of developing and applying intelligence
tests or other complex cognitive tests, where one might expect
that items display relevant patterns of conditional dependence.
For example, it may be that response time is indicative of the
particular problem solving strategy that a respondent employs,
which may also affect how likely one is to provide a correct
response. Additionally, it may be that long response times are
indicative of aberrant test taking behavior, such as inattention
or distraction, which makes it plausible that such responses
should be seen as less informative of ability than responses for
which the response times do not indicate aberrant behavior.
Our methods allow one to take this into account, by allowing
the discrimination parameter of the item to be influenced by
residual response time. In this way, the proposed methods allow
researchers to work with models for ability measurement that
take both response time and accuracy into account and that are
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highly flexible with regard to the relationship between these two
outcome variables that can be dealt with, and can accommodate
a variety of deviations from conditional independence that
can be expected in both high- and low-stakes psychological
testing.
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Online interventions hold great potential for Therapeutic Change Process Research

(TCPR), a field that aims to relate in-therapeutic change processes to the outcomes of

interventions. Online a client is treated essentially through the language their counsellor

uses, therefore the verbal interaction contains many important ingredients that bring

about change. TCPR faces two challenges: how to derive meaningful change processes

from texts, and secondly, how to assess these complex, varied, and multi-layered

processes? We advocate the use text mining and multi-level models (MLMs): the former

offers tools and methods to discovers patterns in texts; the latter can analyse these

change processes as outcomes that vary at multiple levels. We (re-)used the data

from Lamers et al. (2015) because it includes outcomes and the complete online

intervention for clients with mild depressive symptoms. We used text mining to obtain

basic text-variables from e-mails, that we analyzed through MLMs. We found that

we could relate outcomes of interventions to variables containing text-information. We

conclude that we can indeed bridge text mining and MLMs for TCPR as it was possible

to relate text-information (obtained through text mining) to multi-leveled TCPR outcomes

(using a MLM). Text mining can be helpful to obtain change processes, which is also the

main challenge for TCPR. We showed how MLMs and text mining can be combined, but

our proposition leaves open how to obtain the most relevant textual operationalization of

TCPR concepts. That requires interdisciplinary collaboration and discussion. The future

does look bright: based on our proof-of-concept study we conclude that MLMs and text

mining can indeed advance TCPR.

Keywords: therapeutic change processes research (TCPR), multilevel models (MLMs), text mining, process data,

online interventions, text variables

1. INTRODUCTION

Traditional forms of psychotherapy are nowadays increasingly supplemented by online
interactions: it is not uncommon that a counsellor seeks contact with a client through e-mail,
text, chat, or other text-bearing messages. As the contact between counsellor and client becomes
increasingly digitally mediated, it should be possible to trace the factors that contributed to the
beneficial outcome of treatment back to these textual interactions.
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In this light, the field of Therapeutic Change Process
Research (TCPR) re-establishes its importance. TCPR aims
to identify the mechanisms through which psychological
treatments bring about positive and therapeutic change
(Greenberg, 1986; Orlinsky et al., 2004; Elliott, 2010,
2012). TCPR has a long-standing tradition of studying the
linguistic “products” of therapy (e.g., homework exercises,
diaries, transcripts) in order to understand therapeutic
change (Kazdin and Nock, 2003; Imel et al., 2015).

The rising popularity of Internet-based interventions (cf.
Hoogendoorn et al., 2017) allow researchers to ask new TCPR
research questions and re-establish the relevance of several
known questions. Questions pertaining to the change processes
that are beneficial to clients necessitate investigation of the
“active ingredients” of therapy, of which many are linguistic
(Muntigl andHorvath, 2005; Imel et al., 2015). TCPR has thus the
potential to reveal the fundamental processes that are related to
change. Aside from insight in what helps patients improve their
functioning and reduce (clinical) symptoms, the importance of
TCPR is also related to the rising number of people diagnosed
with mental health disorders (see e.g., Andrade et al., 2013;
Whiteford et al., 2013).

Over many decades, researchers attempted to answer
TCPR questions; Orlinsky et al. (2004) estimated that there
are more than 2000 published process-outcome studies of
psychotherapy. Crits-Christoph et al. (2013) discuss several
(methodological) issues related to TCPR, and express that
“individual psychotherapy is not based just on an individual: it
is a dyadic relationship consisting of a patient and therapist.”
Similar to Kenny and Hoyt (2009) and Crits-Christoph et al.
(2013) argued that—from a statistical point of view—patients
are nested within their therapist, hence, TCPR is concerned
with multi-level models (MLMs; also known as hierarchical
linear models, mixed models, random coefficient, or random
effects models).

Yet, we found few studies that applied MLMs specifically
to study therapeutic language. In the current work, we will
present an approach for the study of therapeutic change processes
based on text mining and MLMs by (re-)analyzing e-mails send
between counsellor and client (Lamers et al., 2015). We do so
by first making a comprehensive argument for the importance
of understanding multi-layered change processes (Knobloch-
Fedders et al., 2015), and argue for the use of text mining to
study TCPR.

1.1. TCPR: Therapeutic Change Process
Research
Progress in psychotherapy research is not made by only
demonstrating the (average) effectiveness of a treatment; the
history of psychotherapy research is marked by a gradual increase
in the understanding of psychotherapeutic change processes
(Orlinsky et al., 2004; Braakmann, 2015). Hence, psychotherapy
benefits from a greater understanding of TCPR1, which is

1It should be noted that various terminologies are used in the literature, e.g.,

Change Process Research (CPR: Elliott, 2010; Greenberg, 2007), Psychotherapy

Process Research (PPR: Gelo et al., 2012), and some of the early works simply

defined as the scientific investigation of what occurs during
psychotherapy, with regard to its clinical meaningfulness; in
other words, it investigates the process through which clinically
relevant changes occur within psychotherapy (Gelo and Manzo,
2015, p. 248).

Questions concerning the underlying processes that benefit
the client also align with the interests of many clinical
practitioners (Norcross and Wampold, 2011): what treatment,
by whom, is most effective for this individual with that specific
problem, and under which set of circumstances (Paul, 1967, p.
111)? Studies aimed at demonstrating average effects at group
level fail to show what aspects of the intervention are related to
the change the intervention realized (Barkham et al., 1993; Nock,
2007). Still, more effort is devoted to the analysis of the outcomes
of psychotherapeutic interventions.

1.1.1. TCPR and the Study of the Therapeutic

Conversation
As early as Freud’s talking cure, the importance of looking
at language to understand the therapeutic process has been
recognized. Conversation is still the interactive medium central
to most forms of psychotherapy (Muntigl and Horvath, 2005).
The idea that the verbal exchange between counsellor and
client contains important ingredients of therapy fueled TCPR
(Greenberg, 1986; Hill and Lambert, 2004; Elliott, 2010), which
is known for its a long-standing tradition of studying the
linguistic “products” of therapy (e.g., homework exercises,
diaries, transcripts) in order to understand therapeutic change
(Gelo et al., 2015, p. 303, 392). For example, the Narrative
Processes Coding System is “focused on the strategies and
processes by which a client and counsellor transform the events
of everyday life into a meaningful story that both organizes and
represents the client’s sense of self and others in the world”
(Angus et al., 1999).

Another reason to specifically choose text over other types of
TCPR data is that a valid understanding of psychotherapeutic
processes require measurements collected from multiple
perspectives, including that of the client, counsellor, and
(possibly) external observers (Knobloch-Fedders et al., 2015).
A good way to do so is to study the text-based representation
of the therapeutic interaction. Because these transcripts are a
direct observation of the therapeutic process, they reflect what
actually happened in therapy. Transcripts can thus provide
the basis to obtain the perspective of the client, counsellor,
and (or independent) observer on the therapeutic process.
Such interpretations are usually measured by questionnaires
or interviews, and are retrospective reflections. Transcripts
come with the additional benefit that they are relatively

refer to “change” (Braakmann, 2015; Hill and Corbett, 1993). The term “process-

outcome research” is also often used, for example by Orlinsky et al. (2004), who

defined it as “(primarily) the actions, experiences, and relatedness of patient and

therapist in therapy session when they are physically together, and (secondarily)

the actions and experiences of participants specifically referring to one another

that occur outside of therapy sessions when they are not physically together”

(Crits-Christoph et al., 2013, p. 311). To emphasize that we are dealing with

change resulting from therapy, we propose to describe change processes as TCPR:

Therapeutic Change Process Research.
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straightforward to obtain after providing transcripts of the
therapeutic conversation.

In this light, it is not unsurprising to see TCPRmoving toward
online interventions. Aside from being cost-efficient, web-based
self-help interventions directly produce the textual interaction
between therapist and counsellor, and come with the additional
benefits that they are effective (see e.g., Andrews et al., 2004,
2010; Andersson et al., 2014), and easily accessible by large groups
of people (Wang et al., 2007; Hoogendoorn et al., 2017). Just like
transcripts, assessment of the interaction between counsellor and
client in a web-based intervention has the potential of being a
direct observation of the therapy process (Pennebaker et al., 2003;
Schegloff, 2007; Elliott, 2012; Gelo et al., 2012).

Transcription and manual analyses mark the labor-intensive
nature of TCPR, which is also the main reason why the
field did not yet reach its full potential (Smink et al.,
under review). Traditional research methods start with the
recording and transcription of a psychotherapeutic intervention
so that human raters can (manually) code and analyse these
transcripts (Atkins et al., 2014). Because the understanding of
change processes mainly relies on qualitative analysis, these
methods are only as fast as the researcher(s) conducting the
research, which in practice limits their use to small scale studies
(Atkins et al., 2012; Imel et al., 2015).

To strike a balance between TCPR’s ambition to unravel the
black-box through which therapy attains its effects and the labor-
intensity of the TCPRmethods, we propose to use automated text
analysis methods. Text mining, a computational approach to text
analysis, can be used to automatically extracted text features that
can contribute to the understanding of the active ingredients of
therapy. We are observant of the criticisms that algorithms have
yet to achieve the same depth of analysis as humans. However, in
our view, it would be a shortcoming to TCPR’s ambitions if the
insights that basic text features can offer remain unused. In the
next session we will discuss how text mining can scale up TCPR
by finding text-based predictors—also known as input variables
or independent variables—from therapy related texts. We will
do so making use of multi-level models (MLMs), an advanced
statistical model that is able to capitalize on the hierarchical
structure of text data.

1.2. Text Mining: Scaling Up TCPR
As language is an important mediator of psychotherapeutic
processes, obtaining information about these processes through
texts is one of the first applications of text mining. Mergenthaler
(1996) compared five computer-assistedmeasures for the analysis
of textual data of two psychotherapies, and was among the
first to apply text mining for psychology. He used text mining,
which he then called “computer assisted analysis of textual data,”
to identify turning points in sessions, which could then be
explored more deeply by humans through (qualitative) analyses
methods. Anderson et al. (1999) developed Computer Assisted
Language Analysis System (CALAS) to examine the relationship
of various linguistic measures to outcome measures in high
and low verbalized affect segments. Many applications of text
mining are still centered around finding key moments in the
therapeutic process (cf. Lepper and Mergenthaler, 2005; Pfäfflin

et al., 2005; Fontao and Mergenthaler, 2008), which is also
a common approach in TCPR (e.g., the “Significant Events
Approach” in Elliott, 2010).

Practically, typical text mining approaches in psychology
include counting words, identifying topics, and coupling the
terms to a domain-specific ontology (Hoogendoorn et al., 2017).
Text mining2 refers to a general methodological framework that
includes several automated methods to analyse large corpora
of texts (cf. Jurafsky and Martin, 2017). As text mining
is a methodological framework that combines and includes
numerous techniques and methods from many disciplines, it is
not surprising that terms referring to the automatic extraction of
information from text are used sometimes interchangeably, such
as text mining and NLP.

1.2.1. Text Mining Emotions
The Linguistic Inquiry and Word Count (LIWC) software by
Pennebaker et al. (2015a) is used by many researchers, and
has showed to be effective in predicting therapist empathy
(Gibson et al., 2015), counsellor behavior (Pérez-Rosas et al.,
2017), and identifying emotional and cognitive process in
psychotherapy (McCarthy et al., 2017). LIWC categorizes word
usage by counting the percentage of words that reflect—
among other categories—thinking styles, emotional states, and
social concerns (Pennebaker et al., 1997; Hirsh and Peterson,
2009; Tausczik and Pennebaker, 2010). LIWC taps into the
underlying idea that word use is one of the most direct means
of expressing thoughts and feelings (Fast and Funder, 2008), as
the way individuals talk and write provides a window into their
emotional and cognitive worlds psychological characteristics
(Pennebaker et al., 2003, 2015b).

The writing intervention by Lamers et al. (2015) focused on
different life themes, with one theme central to each of the
seven modules. By asking clients to describe specific positive and
several difficult memories, clients adjusted their life stories step-
by-step by integration of these memories. Lamers et al. (2015) did
not study the content of the e-mails.

Previous studies showed that positive therapeutic outcomes
from writing interventions are associated relatively high rate
of positive emotion words, few negative emotion words, and
with an increasing number of “cognitive”3 words throughout the
intervention (e.g., Campbell and Pennebaker, 2003; Pennebaker
et al., 1997, 2015b). As the intervention of Lamers et al. (2015)
focuses specifically on positive and difficult memories and
emotions with the aim of integrating these two, we study words
the reflective of these aspects in e-mails. As the intervention by
Lamers et al. (2015) aims to improve integration of positive and
negative memories, we expect that LIWC’s “cause” and “insight”
categories are mostly reflective of that process. We aim to find
further evidence for these findings in data from Lamers et al.
(2015), by relying on text mining and multi-level models.

2We recommend Manning and Schütze (1999); Feldman and Sanger (2007);

Jurafsky and Martin (2017) for a detailed overview of text mining. For aspiring

text mining practitioners, we recommend the NLTK library available in the

programming language Python (Bird et al., 2009).
3Cognitive words are a word category from the LIWC program.
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1.2.2. Text Mining and MLMs
Although the idea to relate words or textual aspects (in
psychotherapeutic texts) to outcomes is well-established in
TCPR, there are methodological issues that are specifically
relevant when analyzing text data. Studying change processes
in e-mails mandates accounting for the dyadic relation (Crits-
Christoph et al., 2013, p. 301), and is therefore dependent on both
the counsellor and client.

While the assumption of independence of observations is the
basis for traditional statistical models, such as the ANOVA
or regression model, some text mining models relax this
assumption. For example, the naive Bayes classifier assumes
independence assumptions between observations. The model
classifies units to the category that has the highest probability;
a common application of the model is the spam-filter, where e-
mails are classified as either spam or “ham” (no-spam). He et al.
(2012) used naive Bayes to find words that could discriminate
between texts written by soldiers with or without PTSD.

Naive Bayes is a family of algorithms based on the assumption
that the value of a particular (text)feature is independent of
the value of any other feature. This independence assumption
is too strong (“naive”); in reality, independence does not hold
for texts that are written by the same person. In doing so, the
model “naively’ neglects the nesting of e-mails within person,
ignoring the assumption of independence. In the next section
work, we will argue for the importance of applying MLMs to
analyse textual data for correct statistical inference, as MLMs
do not violate the non-independence in e-mail data (Kenny
et al., 2002). A consequence of failing to recognize the nested
and hierarchical structures in e-mails is that standard errors
of the estimated coefficients are underestimated, leading to
an overstatement of statistical significance. MLMs recognize
the existence of hierarchies in data by allowing for residual
components at each level of the hierarchy.

1.2.3. Psychotherapy As a Multi-Leveled Procedure
Because MLMs offer the possibility to include predictors at
the level of the individual, the group and at any other
level of organization, the model arises quite naturally for
TCPR (Raudenbush and Bryk, 2002). Many individual change
phenomena can be represented through a two-level hierarchical
model. The first level represents each clients’ development by
an individual growth trajectory that depends on the repeated
measures for each client. The second level unit represents
variables that are not repeatedly measured, such as gender,
income, or depressive symptoms. The first level consists out
of—for example—experienced pain at the beginning, middle,
and at the end of therapy. The second level consists of the
clients themselves, who could be (at a third level) nested within
their therapist, for examples see Baldwin et al. (2007) and
(Baldwin and Imel, 2013).

From a statistical viewpoint, TCPR practically equates
to research questions concerning either a (longitudinal)
development over time (Crowder and Hand, 1990; Baldwin
et al., 2007; Nissen-Lie et al., 2010; Fitzmaurice et al., 2011;
Adler, 2012), an (dyadic) interaction between a counsellor
and its client (Tasca and Gallop, 2009; Kenny and Hoyt, 2009;

Crits-Christoph et al., 2013), or to both. MLMs are—compared
to traditional statistical methods—particularly useful to both of
these situations as they capitalize on hierarchically organized
data. Many kinds of data, including observational data collected
in the human and biological sciences, have a hierarchical or
clustered structure.

Considering that the psychotherapeutic practice is a multi-
leveled procedure, it becomes apparent that client and counsellor
are the two pre-eminent levels of organization. As counselors
(almost) always treat more clients, clients could be viewed as
grouped within their counsellor, similar to the students being
nested within their class (Kenny and Hoyt, 2009; Crits-Christoph
et al., 2013). Crucial to any MLM is that the unit of analysis at
the lowest level (the students or clients) are nested within higher
level units (classes or counsellor), that itself could also be nested
within (higher) even higher units (schools, therapeutic practices,
or clinical institutions).

Many of the applications of MLMs in psychotherapy resolve
around the question of how to assess psychotherapeutic
effectiveness. Adelson and Owen (2012) examined the influence
of psychotherapists on clients’ clinical outcomes. Baldwin et al.
(2007) and Marcus et al. (2009) both showed that higher rates
of therapeutic alliance could be relate to better therapeutic
outcomes through MLMs (Crits-Christoph et al., 2013). Baldwin
and Imel (2013) searched the literature for studies comparing
outcomes of therapists. Nissen-Lie et al. (2010) accounted for
variation in early patient-rated alliance by means of various
self-reports of therapists providing treatment in a naturalistic
outpatient setting.

1.3. Research Questions
Online a client is treated essentially through the language their
counsellor uses, therefore the verbal interaction contains many
important ingredients that bring about change. TCPR faces two
challenges, first, how to derive meaningful change processes from
(the) large bodies of texts (that online interventions produce)?
Second, how to assess these complex, varied, and multi-layered
processes? These two questions are intimately linked: insight in
complex change processes gives an indication of how to derive
other meaningful processes, and visa-versa.

We therefore advocate the combination of text mining and
MLMs: the former offers tools and methods to discover patterns
and trends in texts; the latter can analyse processes that vary
at multiple levels. As the study by Lamers et al. (2015) is a
writing intervention of which the writing assignment, the e-mails
themselves, and the outcomes of the intervention are available,
we give a proof-of-concept based on data from this study.

2. METHODS

2.1. Participants
The dataset derived from 174 clients who were recruited by
Lamers et al. (2015) through advertisements inDutch newspapers
and websites. Only participants who felt depressed and were
interested in writing about their life were included by Lamers
et al. (2015). The sample was thus a self-selected group of
individuals who had expressed interest in the program.
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All participants had moderate depressive symptomatology
and were randomly allocated to either the life-review “the stories
we live by” (auto-biographic writing; AW), or the “expressive
writing” (EW) intervention, or a waiting list condition. The
mean age of the participants in the AW condition was 57.7
(SD = 10.3) years old, and the majority was female (75.9%).
The mean age in the EW condition was 56.8 (SD = 7.9), and
the majority was female (77.6%). In both conditions, the majority
of the participants received a higher form of education (i.e.,
universities or colleges; AW: 48.3%, EW: 37.9%). Formore details
see Lamers et al. (2015).

2.2. Design
2.2.1. Study by Lamers et al. (2015)

2.2.1.1. Auto-biographic writing (AW)
The AW condition was a life-review self-help intervention that
consisted of homework assignments, divided over modules that
had to be completed over the course of 10 weeks. Clients
communicated about their progress with trained counselors
through a weekly e-mail interaction. According to Lamers et al.
(2015) the self-help model program was based on insights from
the autobiographical memory (Serrano et al., 2004; Brewin, 2006;
Williams et al., 2007), narrative therapy (White and Epston,
1990; White, 2007), and life-review (Butler, 1963; Birren and
Deutchman, 1991; Haight and Webster, 1995; Bluck and Levine,
1998; Westerhof et al., 2010b), and has been shown effective in
previous studies (Korte, 2012; Westerhof et al., 2017).

2.2.1.2. Expressive writing (EW)
According to Lamers et al. (2015) the EW intervention was
based on the method of expressive writing (Pennebaker et al.,
1997). The method consisted of daily writing about emotional
experiences, for 15 − 30 min on 3 − 4 consecutive days during
1 week. Lamers et al. (2015) extended and adapted this method
to an intervention with seven modules, to make it a comparable
with the life-review intervention.

2.2.2. Current Study
Our first intention was to demonstrate how text mining can
be used to obtain change processes from e-mails. Lamers et al.
(2015) concentrated their efforts on the analysis of the outcomes
of the interventions but did not analyse the content of textual
characteristics of the e-mails. After pre-processing, we obtained
the insight, cause, positive, and negative emotion words from the
LIWC program.

Our second intention was to demonstrate how multi-level
models (MLMs) can be used to assess text-based measures of e-
mails to aid understanding of the change processes. Similar to
Lamers et al. (2015) we used the post-treatment measurement of
the CES-D scale as the main outcome variable.

2.3. Materials
2.3.1. Questionnaires
The data available to us included the pre- and post-therapeutic
measurements of the CES-D. The Center for Epidemiologic
Studies Depression Scale (CES-D) is a brief self-report
questionnaire to measure severity of depressive symptoms

in the general population (Radloff, 1977). Lamers et al. (2015)
used the Dutch version of the CES-D (Beekman et al., 1997);
higher CES-D scores indicated more depressive symptoms (20
items, range 0− 60, α = 0.78).

The intervention of Bohlmeijer and Westerhof (2010) teaches
participants about autobiographical reasoning by specifically
improving the ability to reason about the autobiographical
self (Lamers et al., 2015). This form of reasoning describes
the process of relating episodic memories to the conceptual
self (Pasupathi and Carstensen, 2003; Thorne et al., 2004). By
making the moral of an individual’s life-story explicit, (s)he
obtains insight in what the particular memory could reveal,
explain, cause, give insight, or provide a (life) lesson learned
about the (autobiographical) self. These processes are extensively
researched by—for example—Pennebaker and Chung (2011),
mainly in the context of showing how analog experiences, such as
emotions, are translate to digital forms that bear meaning, such
as of stories.

This process is operationalized by phrases that LIWC analyses
can detect from the insight (e.g., “I now realize that. . . ”) and cause
(e.g., “I understand why. . . ”; Pennebaker and Chung, 2011). As
the increase in insight and cause words are intractly related to
emotional writing, we also study the (increase in) positive words,
and (decrease in) negative words from LIWC (Westerhof et al.,
2010a; Pennebaker and Chung, 2011).

2.3.2. Software
We used the LIWC software of Pennebaker et al. (2015b) to
analyse the e-mails for the emotion and insight categories. We
used the NLTK library of Bird et al. (2009) in the programming
language Python (Python Software Foundation, 2018, version
3.6), for pre-processing and dividing the e-mail texts in words
and sentences.

For our statistical analyses, we relied on the programming
language R (R Core Team, 2019, version 3.5.1). We used package
lme4 for estimation and evaluation of our MLMs (Bates et al.,
2015), and package psych for making descriptions of our
variables (Revelle, 2018).

2.4. Data
2.4.1. Available Data
The data included the pre- and post-therapeuticmeasurements of
the CES-D scale, and the e-mails exchanged between counselors
and clients (2079 e-mails in total).

2.4.2. Complete Cases
In total, data of 174 clients was available to us from Lamers et al.
(2015). We only used clients with no missing data. 166 of the
174 clients (95.4%) had a complete CES-D score. Not all e-mails
were available, so we could only analyse the e-mails of 104 clients
(59.8%). After removing duplicates, we included 97 clients in our
analyses (55.7%, all percentages calculated against the original
total of 174 clients).

2.4.3. Anonymization
Identifying information has been removed from the dataset
that contained the outcomes (“structured” data), we identified
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clients based on a unique four digits number. The e-mails
(“unstructured” data) have been anonymized by removing
all (e-mail) addresses, phone numbers, names of persons,
organizations, and locations. Client names and counsellor names
have been replaced by the previously mentioned unique four
digits number so that it remained possible to identify which mails
were written by the same person and which clients were treated
by the same counsellor. The counselors were also anonymized.

2.4.4. Process Data
The e-mails of Lamers et al. (2015) should include the whole
therapeutic process because they are the only form of interaction
between counsellor and client. The e-mail procedure is explained
(in Dutch) in detail in Bohlmeijer andWesterhof (2010). We will
give some quotes that we translated fromDutch to English to give
an impression of process data in a therapeutic context.

The first quote comes from a female participant: “My trust in
people is damaged pretty badly, I’m no longer in such good faith
as I was in the past.” In response, the counsellor asks: “Can you
tell us a bit more about this? How did this happen? Are there times
when you feel that you can trust people?”

In the second week a male participant writes: “By writing
about myself, and especially naming the nice aspects about my
life, I notice that writing is already paying off.” In the sixth week
he writes: “I feel that I am coming back to who I am.” He also
expresses his graduate toward the counsellor: “I do not have a
specific question for you, a reaction from you based on my writing
already is already enough. However, if you do ask questions, that
would help me even further.”

The third example comes from a (different) female
participant: “How should I continue with my life? Is it okay?
Almost thirty years ago I lost my brother and my sister-in-law. I
lost my 10-year-old daughter... Losing a child is pretty much the
worst thing that can happen to you.” In week seven she wrote
(about her daughter): “The tears are rolling down my cheeks as
I think about you intensively. Over the duration of the course I
have learned to balance between positive and negative emotions by
means of communication or through writing. I succeeded, because
I know that you knew that I am still an optimist in life. You and
dad have a share in this. You were both never judgemental, but
always stimulating.”

2.5. Procedure
2.5.1. Selection of the Text Variables From LIWC
We chose to use the number of insight and cause words from
the cognitive process category, and the number of positive and
negative words form the LIWC program (Pennebaker et al.,
2015b). We had several reasons for doing so, first of all,
past studies showed that positive therapeutic outcomes are
associated with writing assignments of individuals that include
relatively high rates of positive emotion words, few negative
emotion words, and with an increasing number of cognitive
words throughout the intervention (Pennebaker et al., 1997,
2015b; Campbell and Pennebaker, 2003; Campbell et al., 2013).
Secondly, these basic text features are—as the name implies—
relatively straightforward to obtain from an e-mail. Third, it is
our ambition to show how textual information can be obtained

through text mining and analyzed with MLMs. We do not aim to
advance TCPR theory in our current paper: determining which
textual predictors are meaningful is beyond the scope of our
work. We intend to show how TCPR can be modeled in e-
mails. Lastly, by bridging text mining and MLMs other TCPR
researchers are enabled to advance TCPR theory using these
two methodologies.

2.5.2. Pre-processing
We used the NLTK library to preprocess the e-mails. NLTK
pounts sentences by counting word-terminal end-of-sentence
punctuation like the period, question mark and / or exclamation
mark. NLTK has a limited list of abbreviations, which are
not included in the punctuation/sentence count. Word-internal
punctuation, like the first period in e.g., is ignored. Handling
of interjections depends on their punctuation, for example,
“Oh?” is a separate sentence while “Oh,” is part of the following
sentence. Sentence fragments and quotes with end-of-sentence
punctuation are counted as separate sentences.

NLTK is an often used Python library for text pre-processing,
as it provides detailed documentation in Bird et al. (2009) on the
order and content of the preprocessing steps.

2.5.3. Pre- and Post-therapeutic Measurements of

the Text-Variables
We calculated the pre- and post-therapeutic scores of the text-
variables (insight, cause, positive, and negative words form LIWC
program) by averaging over the number of these words as
counted by Pennebaker et al. (2015b) in the first and last three
e-mails of the intervention by (Lamers et al., 2015). The original
intervention also included a third time-point (T0 a depression
measure at the onset of the writing treatment, T1 a measure at
the end of the treatment, and T2 a follow-up measure). However,
only for the first two measurements (those at the beginning and
end of therapy) we had e-mail data available. Hence, we dropped
the follow-up measure (T2) from our dataset, as we could not use
in our text mining models.

2.6. Analyses
In total, we estimated five MLMs, see Figure 1 for an overview
and the R code. The regression equations below will give an
indication of how the R code and equations are related. The data
we used were the pre- and post-therapeutic measurements of
the CES-D and the insight, cause, and the positive and negative
emotion words of the LIWC Pennebaker et al. (2015b).

The pre- and post-therapeutic measurements of the CES-D
scale were considered to be an outcome variable of the MLMs.
Each MLM had a random intercept for the client to describe the
variability in outcome scores across clients. An index i is used to
refer to a pre-therapeutic score (i = 1) or post-therapeutic score
(i = 2), and an index j is used to refer to the jth client. Then, the
outcomes can be described with a MLM, which is represented by

CES-Dij = µ + u0j + Xijβ1 + eij. (1)

The errors eij are assumed to be normally distributed with
a mean of zero and variance σ

2
e , and the random intercepts

u0j is also assumed to be normally distributed with mean
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# Modelling the null / basic model.

M0 <- lmer(cesd ~ post + (1 | id),

data)

# Modelling of the positive and

negative words categories.

ME1 <- lmer(cesd ~ post*posemo

+ (1 | id), data)

ME2 <- lmer(cesd ~ post*negemo

+ (1 | id), data)

# Modelling of the insight and cause

categories.

MCP1 <- lmer(cesd ~ post*insight +

(1 | id), data)

MCP2 <- lmer(cesd ~ post*cause +

(1 | id), data)

FIGURE 1 | R code of the five multi-level models (M0, ME1, ME2, MCP1, and

MCP2) using package lme4. In all models, we estimated the post-therapeutic

measurement of CES-D (cesd) based on a random intercept for each client

(id). In ME1 we estimated the post-therapeutic effect of the number of

positive emotion words as the interaction effect between the number of

positive emotion words (posemo) and an indicator variable (post). The other

models are similar, in ME2 we estimated the effect of the number of negative

emotion words (negemo), in MCP1 we estimated the effect of the number of

insight words, and in the MCP2 we estimated the effect of the cause

words. M0 is nested under each of these models.

zero and variance τ . The parameter µ is the general mean
across scores. The predictor variables are stored in a matrix X.
The common effects, β1, represent the effects of the predictor
variables on the outcomes CES-D. The predictor variables X

explain variance in scores across the pre- and post-therapeutic
measurement, and do not explain any change between the pre-
and the post-therapeutic scores. To assess change, an indicator
variable is used for the post-therapeutic measurement with
D1j = 0 for all the pre-measurements, and D2j = 1 for the
post-measurements. A significant interaction between the post-
therapeutic measurement scores and a predictor variable would
identify a change.

The MLM described in Equation (1) can be recognized
as a repeated measures model, where the model describes
the profile of two measurements for each subject. The well-
known models for pre- post-therapeutic measurements are the
change-score model (the difference in outcomes is regressed
on the predictor variables) and the regressor variable method
(ANCOVA; the post-therapeutic measurement is regressed
on the pre-therapeutic measurement and predictor variables,
e.g., Allison, 1990). Allison (1990) and Kutner and Brogan
(1982) showed that the repeated measures model is more
general than the change score model, which is more restrictive
and provides less information about the data. Furthermore,
it is possible to control for additional group differences
at the pre-therapeutic measurement by including additional
predictor variables (Schmidt et al., 2016). This can be

beneficial for instances when different groups have not been
randomly assigned to different treatments and pre-therapeutic
measurement differences between groups need to be accounted
for to measure treatment effects. According to the repeated
measures model, the MLM for the CES-D scores using the
post-therapeutic measurement indicator D is given by,

CES-D1j = µ0 + u0j + Xjβ1 + e1j

CES-D2j = µ0 + u0j + Xjβ1 + µ1I(D2j = 1)

+XjI(D2j = 1)β2 + e2j.

The parameters β1 represent the common effects of the
predictor variables X on the outcomes CES-D and explain
part of the common variance in the pre- and post-therapeutic
measurements. The intercept µ0 represents the average
score level at the pre-therapeutic measurement, and the µ1

the average change in scores between the pre- and post-
therapeutic measurements. Given the effects of the predictor
variables, the µ1 represents the assessed average change
in measurements that is not explained by any predictor
variable. The parameters β2 represents the contribution of
the predictor variables in explaining unique variance in the
post-therapeutic measurement scores. Significant interaction
β2 effects identify and explain a change in scoring between the
pre- and post-therapeutic measurements.

The first model, our “null” model, acted as a baseline, hence
the name M0. In M0, we test whether a random intercept for
each client explains variability in outcome scores across clients. In
ME1, we test whether the text-predictor variable positive emotion
words contributes to explaining the unique variance in post-
therapeutic scores. In ME2, MCP1, and MCP1 we test similar
hypotheses, but then with the number of the number of negative
emotion, insight and cause words.

3. RESULTS

We intended this section as a guideline for TCPR researchers who
aspire to use text mining for multilevel modeling. We start with a
statistical summarization of the variables that we used in our five
multilevel models. Then we present and interpret the fixed and
random effects of these models, and the corresponding goodness
of fit measures. In doing so, we hope to give guidance of how
these two frameworks should be combined, without presenting
results of statistical significance.

3.1. Variable Descriptions
In total, we used five variables, one from the intervention from
Lamers et al. (2015); we obtained the other four (text) variables
from the LIWC program by Pennebaker et al. (2015b). The CES-
D score (M= 19.42, SD= 8.75), the number of positive emotion
words (M= 40.25, SD= 27.15), the number of negative emotion
words (M =21.62, SD = 11.73), the number of insight words
(M = 48.19, SD = 28.49), and the number of cause words (M
= 20.93, SD = 14.1) are summarized in Table 1 (mean and
standard deviations in the text are combinations of the pre- and
post-therapeutic measurements).
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3.2. Multilevel Models
In total, we estimated five multilevel models (see Figure 1). The
post-therapeutic measurement of CES-D was the main outcome.
In M0, model 0, we estimated the post-therapeutic measurement
based on a random intercept for each client. M0 is nested under
the other four models. In ME1 (“Model Emotion”), we estimated
the post-therapeutic effect of the number of positive emotions
words and a random intercept for each client. ME2 was similar
to ME1, but instead of positive emotion words, we estimated
the effect of (the number of) negative emotions words. MCP1
(“Model Cognitive Process”) was similar in the same respect:

TABLE 1 | Descriptive statistics of the CES-D score, insight, cause, positive, and

negative emotion words from the e-mails of the clients on the pre- (T0) and

post-therapeutic (T1) measurement.

Variable Time M SD Median Min. Max.

CES-D T0 23.41 7.51 23 10 49

T1 15.42 8.07 14 1 37

Positive emotion T0 36.78 20.73 35 2 110

T1 43.71 32.07 34 0 162

Negative emotion T0 25.47 16.17 22 1 77

T1 17.76 13.76 14 0 62

Insight T0 50.52 27.03 50 1 142

T1 45.86 29.84 41 2 173

Cause T0 21.32 12.92 18 2 59

T1 20.54 15.25 18 0 85

we estimated the effect of insight words (instead of positive
or negative words), and in MCP2 we estimated the effect of
cause words.

3.3. Interpretation
The data do not support our hypotheses that the writing
intervention improves the number of positive, insight and cause
words, while decreasing the number of negative words. Rather
than using the data of Lamers et al. (2015) as a case to obtain
new insights about TCPR, we present it as a use case for
process researchers who wish to investigate e-mail data through
multilevel models. Accordingly, we assessed the results in Table 2
in four steps.

3.3.1. 1. Fixed Effects: Intercept and Post-therapeutic

Indicator
The post-therapeutic effect of the writing intervention is
estimated as the interaction (“interaction” in Table 2) between
the model specific variable (“variable,” with a varying meaning
between the models, variable indicates the number of positive
emotion words in ME1, negative emotion words in ME2,
insight words in MCP1, and cause words in MCP2) and the
post-therapeutic indicator (“post. indi.”) in Table 2. As we are
specifically interested in the post-therapeutic interaction effect,
we do not interpret the effect of the model specific variable and
post-therapeutic indicator in Table 2. The fixed effect of M0 is
the grand mean (µ), which is interpretable as the positive effect
of the writing treatment, without specific change effects of the

TABLE 2 | Model fit, parameter estimates and corresponding standard errors of the fixed and random effects of the five multilevel models.

Baseline Emotion Cognitive processes

M0 ME1 ME2 MCP1 MCP2

Fixed 23.41 (0.792) * 22.83 (1.516) ** 22.61 (1.397) ** 21.62 (1.588) ** 21.69 (1.447) **

Intercept -7.99 (0.858) * 0.02 (0.035) 0.03 (0.045) 0.04 (0.027) 0.08 (0.057)

Post-indicator -5.60 (1.735) * -6.33 (1.649) ** -5.33 (1.820) * -5.50 (1.663) **

Variable interaction -0.06 (0.039) -0.08 (0.066) -0.05 (0.033) -0.12 (0.068)

Random

σ
2
e 35.74 35.37 35.80 35.46 35.66

τ 25.06 24.89 25.21 25.21 24.72

Model fit

deviance 1327.38 1323.48 1325.89 1324.58 1324.24

AIC 1335.38 1335.48 1337.89 1336.58 1336.24

BIC 1348.45 1355.09 1357.50 1356.19 1355.85

LogLik -663.69 -661.74 -662.95 -662.29 -662.12

χ
2 3.89 1.48 2.80 3.13

χ
2 df 2 2 2 2

Effect size

�
2
0 df 0.67 0.68 0.67 0.68 0.67

The mean of the text-variable, indicated by “variable” in the table, changes between the five models: in ME1 it is the number of positive words, in ME2 it is the number of negative words,

in MCP1 it is the number of insight words, and in MCP2 it is the number of cause words. The “interaction” variable is the interaction between the text variable and the post-therapeutic

indicator (“post. indi.”).

Coefficients (and standard errors).

*p < 0.01.

**p < 0.001.
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word categories we included. We also estimated the effect of the
post-therapeutic indicator. However, this effect should not be
interpreted, as it merely acts as a dummy variable in our model.

3.3.2. 2. Assess Post-treatment Effects
There are two ways to evaluate the model(s). The first is based on
values of the post-therapeutic interactions. Table 2 does not give
an indication that models ME1, ME2, MCP1, and MCP2 have
significant post-treatment effects at the p < 0.05 level. Because
all the relevant information lies in the interaction effect, the effect
of the (text-)“variable” should also not be interpreted.

The second way to evaluate models is based on model fit.
Of the all the model fit information in Table 2, the χ

2-test is
perhaps the most straightforward to interpret, as it comes with
a significance test. As none of the χ

2-tests are significant, the
model fit information in Table 2 does not indicate that one of
the four models (ME1, ME2, MCP1, and MCP2) is a (significant)
improvement over the baseline model M0. The other fit criteria
should be seen as measures that indicate good model fit if they
are closer to zero (there are several good sources, we suggest
Burnham and Anderson, 2004, as a starting point).

3.3.3. 3. Random Effects
The variance of the random effect τ express the variation
in post-therapeutic depression scores for individuals. The
variance of the residual error σ

2
e expresses the variance of

the measurement errors, conditional on the individuals (the
random effects). Table 2 shows that the main effect of the text
variables are—relative to the interaction effects—quite large.
This is an indication that the sample (and population) are
quite heterogeneous, making it difficult to estimate the effect of
the writing intervention, as homogeneous treatment effect are
simpler to estimate.

3.3.4. 4. Effect Size
For the calculation of the effect sizes, we followed the suggestions
of Xu (2003). �

2
0 in Table 2 is a generalization of the well-

known R2 measure, which can be interpreted as a measure for
explained variance in multilevel models. Overall, Table 2 shows
that all models have a relative large proportion of explained
variance. However, as model fit is (decimally) similar for all
models, we cannot conclude that one model should be preferred
over the others.

4. DISCUSSION

Key questions of Therapeutic Change Process Research (TCPR)
usually adhere to obtaining a thorough understanding of the
change processes that are (most) beneficial to the client. For
TPCR, the pertinent question is not whether psychotherapy is
effective, but how change occurs. It is common for TCPR to
study the language used in the (therapeutic) interaction between
client and counsellor in order to obtain answers to this question.
Two challenges arise, how to obtain text-measures that relate to
change processes, and how to analyse these change processes. We
argued that text mining could be used for the first challenge, and
multi-leveled models (MLMs) to overcome the second.

4.1. Conclusion
The complete-data subset from Lamers et al. (2015) does not
suggest that the writing intervention contributes to change
in the (number of) insight, cause, positive, and negative
emotion words. The analyses show that the intervention does
decrease post-therapeutic depression, however, the data did not
indicate that this decrease could be associated with one of the
text variables.

We aimed to make a case for the correct analyses of e-mail
data, by obtaining text variables from large bodies of text, not
to obtain theoretical insights. We showed that text mining is
an appropriate tool to model change processes, as it can answer
questions related to change processes.

The second goal of our paper was to show how complex
and multi-layered change processes should be assessed. We
presented a straightforward re-parametrization of multi-level
models, that allowed for assessing post-therapeutic change. The
way we parametrize our MLMs allows for modeling a baseline
(pre-therapeutic score) and change (post-therapeutic score) over
time, while accounting for the dependency between pre- and
post-therapeutic score of each client. This also corresponds to
growth modeling of multilevel data, where measurements are
nested within subjects (Muthén, 1997). The association of specific
text variables to the outcomes of the intervention was illustrative
for these two points. Based on this proof-of-concept, we conclude
that obtaining and analyses of textual information through text
mining and MLMs can indeed advance TCPR.

4.1.1. Relevance
The main advantage of these models is that it opens up the
possibility to engage more with clients in therapeutical settings.
With online interventions on the rise, there is clear room to
do so. The information from texts, which is directly accessible
and does not require intensive transcription procedures, and can
then be used to steer the therapeutic process in the desirable
direction. Text mining can thus be used as a form of “direct
feedback,” as MLMs allow for correct modeling of the relations
between variables.

4.2. Open Challenges
We proposed that text mining can be used to identify the
important change processes within therapy related texts, and
MLMs can be used to explain the relations between processes
and outcomes. Full demonstration of the capabilities of this
framework requires multiple datasets, and many of the problems
that we faced require the attention of more researchers. We
start the discussion session by describing these (open) challenges.
Then, in the next section, we cover the limitations specific to
our study.

4.2.1. Operationalization
Operationalization is one of the first challenges that users of
text mining for TCPR face. Many of the TCPR constructs
are theoretical, and need to be operationalized into linguistic
features so that they are clearly distinguishable, measurable, and
understandable in terms of empirical observations. Examples
of these variables include emotional ventilation, dramatic relief,
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tension release, abreaction, or catharsis (for more examples,
see Grencavage and Norcross, 1990). Operationalization is
not only an important aspect for TCPR, nor is it limited
to psychology, the whole social and life sciences require
good operationalizations.

The linguistic products of therapy (diaries, psychotherapeutic
assignments, or transcripts of the therapeutic interaction)
provide rich source of research material, provided that the
variables of interest are adjustable to texts. In our current work,
we used a basic text features from LIWC. We justified our use
of these basic text features because we aimed to give a proof-of-
concept with the intend of showing how TCPR and MLM can
be bridged.

However, our choice for such a basic text variable leaves one
of the largest challenges open: what to (text) mine? Traditionally,
the text mining community was more concerned with collecting,
storing and managing large bodies of unstructured text rather
than applying theoretical models from other fields. Advances
in the field of computer science made technical issues
less insurmountable than they were a decade ago (Mayer-
Schönberger and Cukier, 2013, p. 8). As a results, text mining is
no longer reserved for those with a computer science degree.

The increase in solved technical issues did not lead to insights
in “what to mine.” We did not aim to advance TCPR theory with
our current paper; we intended our work as a method paper,
because with the current state of the literature, it is difficult
to determine which textual predictors are meaningful. Also, we
feel that our proposition to bridge text mining and MLMs itself
allows for advancing TCPR theory. Constructs as described by
Grencavage and Norcross (1990), Orlinsky et al. (2004), Elliott
(2010), and Elliott (2012) require a ‘translation’, or adjustment,
before text mining is applicable to these data types. Domain
experts in the TCPR field are well-equipped to face this question,
but this requires an interdisciplinary approach.

We showed how MLMs and text mining can be combined,
but our proposition leaves open how TCPR concepts should
be operationalized for text mining metrics. That would require
an interdisciplinary collaboration and discussion. However, the
future does look bright: based on our proof-of-concept study we
conclude that MLMs and text mining can indeed advance TCPR.

The next step in that direction, would be to—aside from
LIWC—incorporate other existing text mining software,
such as TCM (Therapeutic Cycles Model; Mergenthaler,
1996), or CALAS (Computer Assisted Language Analysis
System; Anderson et al., 1999).

4.2.2. Measurement Error
Elliott (2010) argued that TCPR is plagued by measurement
error. Although the term “error” is often used, in our experience,
it can refer to two different concepts depending on the field
of study. With the risk of over-generalization, in the machine
learning community and other fields that rely heavily on
predictive analytics, error often refers to the error or confusion
matrix. The table of confusion reports the number of false
positives and negatives, and the true positives, and negatives.
These measurement represent the performance of an algorithm.
Error then refers to measures of predictive error, the difference

between the observed values and the values predicted by
the model.

In statistics, error is related to measurement error, which
represents the difference between a measured value of a quantity
and its true value. Measurement error is often used to indicate
whether or not measurement is reliable. Reliability expresses how
repeatable measurements are when remeasured. The reliability
of a measure is then a direct function of the amount of error is
present in the measurement. Because no behavioral measure is
perfectly reliable, some degree of measurement error will always
occur. Therefore, reliability is low when there is a abundance
of error, and vice versa. The underlying idea is that every
observation is a combination of the hypothetical true score plus
some measurement error.

Although nowadays ideas appear to be floating freely between
machine learning and statistics (Wasserman, 2010, p. 8), some
concepts—such as measurement error—are traditionally more
associated with one branch rather than the other (see for
example Donoho, 2017). Measurement error is well-established
in statistics, and has potential for machine learning disciplines
such as text mining. Variables are simply an operationalization
of the process, behavior or item that we are trying to measure.
Estimation of the measurement error reflects the uncertainty
present in the estimate. Consistency of the research measures
benefits when accounting for measurement error.

In fact, with respect to measurement error, MLMs are the
way forward. MLMs recognize the existence of several levels,
nesting and hierarchies in data. MLMs capitalize on this concept
by allowing for the inclusion of residual components at each
level of the hierarchy. Hence, the precision of the estimation
of measurement error increases, as the residual variance
is partitioned.

4.2.3. Sample Size
TCPR is rooted in qualitative research methods; MLMs come
from the quantitative sciences. Intensive case-studies are not
uncommon for qualitative scientists, but will lead to statistical
power issues for MLMs. As MLMs introduce multiple levels,
the total number of units observed for each level become the
sample size. The relevant sample size for power issues depends
on the parameters that are being tested. Unlike the traditional
regression, there is a difference between testing a regression
coefficient or a variance parameters in a MLM.

The main limit is the sample size at the highest level of
organization. Naturally, having multiple measures (at the first
level) for one client (second level) is less informative then having
these same multiple measures for multiple clients. The number
of clients will therefore be one of the main issues for using MLMs
for TCPR, but it will limit the wide scale application of MLMs
for TCPR.

4.3. Limitations
We already gave an impression of some overarching open
challenges that—in their current form—limit the applicability
and wide-scale impact of the ideas we presented in the
current work.
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4.3.1. Excluded Therapy
Based on the design of Lamers et al. (2015), it would also have
been straightforward to model the effect of treatment. Modeling
treatment as a random effect could have provided an insight in
the efficacy of the treatment for each individual client. The fixed
effect of treatment would have given some insight in the average
efficacy of the treatment groups in comparison with each other.

We however, as Lamers et al. (2015), we could not differentiate
between the two conditions of the treatment. They found both
writing conditions to be helpful in comparison to the control
group, but could not differentiate between the expressive writing
and autobiographical writing conditions.

We justified our exclusion furthermore because we only
intended to show that text mining can be used to obtain
additional predictors for multilevel models. Our intend was
not to offer new theoretical insights for psychological writing
interventions; we intended to offer methodological rather
theoretical insights.

4.3.2. Complete Cases
We only included clients with complete cases and did not attempt
to account for the missing data. First of all, it was difficult
to determine why certain measurements where missing for an
individual. Lamers et al. (2015) gave an overview of drop-out
and missing data: it was challenging for us to determine post-hoc
what the exact reason for missing data or drop out was for an
individual based on general information.

Because we did not understand the underlying reason for the
occurrence of missing data, we were hesitant in choosing an
imputation technique. Also, because we did not intend to draw
theoretical conclusions from our work, we felt that the issues with
generalization and validity associated with ignoring missing data
were less relevant for our proof-of-concept.

4.4. Future Research
MLMs come with the well-known advantage that the model
can incorporate the hierarchical structure of the data. This is
idea holds potential for TCPR, as change processes are often
multifaceted and multi-layered. For example, an interesting
analyses would be to see the effect counselors have on their
clients. As a counsellor almost always treats multiple clients, it
is possible to estimate the effect of a counsellor on its clients.
Combining this form of nesting with other forms of nesting, such
as the treatment effect itself, it would then be possible to estimate
counsellor efficacy in different arms of the treatment. Accounting
for clustering influences the estimation of the treatment effect as
these influences are expressed as parameters in the model.

TCPR would also receive an enormous boost when change
processes could be automatically detected through text mining.
Some methods, such as the Innovative Moments Coding Scale
(perhaps better known under its abbreviated name ICMS, see
Gonçalves et al., 2009, 2010), already provided an avenue for
doing so.

We are optimistic about TCPR’s future through the happy
marriage between text mining andMLMs. Especially in the social
sciences, many phenomena can considered to be leveled, and the
usage of text mining is already picking up. Social scientists in
general often intend to learn about relations between variables
in the population. In our view, in comparison with machine
learning models, MLMs are of use to social scientists because
they can provide theoretical insights in the relationships between,
rather than building a black box model with the goal of attaining
good predictive qualitative. MLMs can thus be used to explain
relations between variables, whereas text mining can thus be
used to obtain important therapy related variables, given that
other TCPR research point in the direction of which important
constructs are present in texts.
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This paper investigates how the major outcome of a confirmatory factor investigation is

preserved when scaling the variance of a latent variable by the various scaling methods.

A constancy framework, based upon the underlying factor analysis formula that enables

scaling by modifying components through scalar multiplication, is described; a proof is

included to demonstrate the constancy property of the framework. It provides the basis

for a scaling method that enables the comparison of the contribution of different latent

variables of the same confirmatory factor model to observed scores, as for example, the

contributions of trait and method latent variables. Furthermore, it is shown that available

scaling methods are in line with this constancy framework and that the criterion number

included in some scaling methods enables modifications. The impact of the number of

manifest variables on the scaled variance parameter can be modified and the range of

possible values. It enables the adaptation of scaling methods to the requirements of the

field of application.

Keywords: scaling, variance parameter, variance of latent variable, confirmatory factor analysis, structural

equation modeling, scaling methods, constancy framework

INTRODUCTION

In evaluating the results of factor analysis, the focus is usually on the factor loadings as related to
the magnitude and the direction of the relationship to the latent variable. While also a parameter
of the model, under factor analysis, the variance of the latent variable is largely ignored as a source
of information for evaluation. A reason for ignoring the variance as a source of information is
its dependency on the indicator selected for scaling in order to achieve model identification. It is
well-known that modifying scaling by replacing one indicator by another one changes the value
of the variance among other consequences (e.g., Gonzalez and Griffin, 2001; Steiger, 2002). Such
dependency does not endorse the variance of the latent variable as a reliable source of information.

Despite the dependency on indicator selection, factor variance can be an important piece of
information for evaluation. Even though it is commonly ignored, the variance of a latent variable
has been recognized as a useful source of information for some specific areas, in particular,
longitudinal research and invariance analyses (McArdle and Cattell, 1994; Schmitt and Kuljanin,
2008; McArdle, 2009). For example, the variance of a latent variable is used for evaluating
development across time and for gaining insight about differences between groups. Besides these
statistical approaches, there are further analysis strategies that may profit from comparisons of the
variances of latent variables, such as the multitrait-multimethod approach (Marsh and Grayson,
1995) and the bifactor approach (Reise, 2012). Especially when using a multitrait-multimethod
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design, it may be important to know how large the trait variance
is in comparison to the method variance. This information
reveals the relative contributions of different measures to the
representation of a construct.

The particular interest in the scaling of latent variables has
given rise to several specific methods that satisfy the needs of
the corresponding areas of research (Little et al., 2006). For
example, in longitudinal research (McArdle and Cattell, 1994)
it is useful to scale the variance in such a way that it is set
equal to one at the first measurement occasion. This approach
establishes a baseline, and changes from the baseline to successive
measurement occasions are more readily interpretable. Thus,
different scaling methods may be of interest to achieve specific
goals based upon the design under consideration. However,
despite the different goals giving rise to different scalingmethods,
all methods must be able to preserve the major outcome of
a confirmatory factor investigation while scaling transforms a
statistic into a new reference system. Therefore, it should be
possible to relate the various scaling methods to each other and
to integrate them into a common framework.

The available methods for scaling variances (either implicitly
or explicitly) include a definition of the relationship between
the factor loadings and the variance of the corresponding
latent variable (Little et al., 2006). Such a definition is also
required in confirmatory factor analysis for specifying the
model of the covariance matrix1 (Jöreskog, 1970). Therefore,
this model is considered as the framework that may preserve
the major outcome of an investigation and is suitable for
investigating scaling methods. We discuss this point in greater
detail in the following sections where different scaling methods
are considered and consequences of possible modifications
are demonstrated.

SCALED VARIANCES AS SOURCES OF
INFORMATION

In order to be regarded as an important source of information,
the variance of the latent variable must be scaled; i.e., it
must be adapted to the reference system of interest. This
kind of adaptation requires that a content area is identified
that potentially profits from the availability of scaled variances.
Some content areas for scaling are already mentioned. In this
section the perspectives of models of measurement are used for
considering areas that may profit from scaling the variances
of latent variables. Furthermore, scaling in confirmatory
factor analysis (CFA) is compared with standardization for
obtaining meaningful weights in linear regression analysis.
Standardized regression weights enable the comparison of the
contributions of independent variables to the explanation of the
dependent variable.

Before detailing the process, the specificity of the variance
characterizing a latent variable needs to be addressed. Both the
latent variable and the variance are parts of a tested model and,

1The model of the covariance matrix refers to the form of the 6 matrix of

relationships included in the general factor analysis formula, typically written as:

6 = 383‘+ ⊖ and defined in Equation (6).

therefore, to some degree are shaped by the characteristics of this
model. The variance of the latent variable is assigned the role of
a parameter of a model that is thought to reflect dispersion, but
is not equivalent to the variance defined as the sum of squared
deviations (Verbeke and Molenberghs, 2003; Stoel et al., 2006).
For ease in communication, we stay with the term variance.

At first, the possible advantage of scaling the variance of
the latent variable of a one-factor confirmatory factor model is
considered. This model relates the p×1 vector x representing the
centered observations to the product composed of the p×1 vector
λ representing the factor loadings and of the latent variable
ξ and to the p×1 vector δ representing the error influences
(Graham, 2006):

x = λξ + δ. (1)

There is also an extended version of this model (Miller, 1995;
Raykov, 1997). It additionally includes the p×1 vector µ of latent
intercepts and applies to the non-centered observationsX instead
of the centered observation x:

X = µ + λξ + δ. (2)

This unidimensional model mainly serves the investigation
of the structural validity and also of the convergent and
discriminant validity of scales. Examinations are expected to
provide information on the correctness of this model with respect
to the given data. If the information suggests correctness (as
shown by acceptable fit), it is retained; otherwise it is rejected. No
further information requiring scaling is necessary unless there is
a repeated application of the model.

The model of measurement of Equation (2) is designed
according to the assumption that there is only one systematic
source of responding. It ignores, for example, the well-
known impurity problem that was observed in cognitive
measures (Jensen, 1982; Miyake et al., 2000). It states
that it is virtually impossible to complete many cognitive
items without stimulating auxiliary processes besides the
intended cognitive process. In other words, it is quite
likely that there is at least one other process influencing
the responses besides the process reflecting the construct,
which is in the focus of the scale. This second process
needs to be represented in the model of measurement as
another source of responding by an additional component.
Enlarging the model of measurement of Equation (2) gives
the following:

X = µ + λfirst source ξ first source + λsecond source ξ second source + δ (3)

where the labels first source and second source distinguish as
subscripts between the construct source reflecting the intended
cognitive process and the other source, the auxiliary process.

In the case of the two-factor confirmatory factor model, it
may not be sufficient to know that the model is correct because
there are two different sources showing different qualities. In the
case of the second source being unrelated to the source captured
by the scale, the two sources are a “good” source (related to the
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construct of interest) and a “bad” source (clouding measurement
of the construct) and, therefore, it is at least important to
know whether the good one dominates the response, and it
is even better to be able to show that the influence of the
bad source is a minor influence on the responses. This means
that the two latent variables constitute a reference system
for scaling.

Distinguishing between good and bad sources is not just
an idea but a real problem of substantive research. There are,
for example, impure measures of working memory capacity
showing this characteristic. We mention one major case of
controversy that highlights the importance of quantifying the
contributions of the additional sources to responding: there
are now a number of studies reporting very high correlations
between working memory capacity and intelligence suggesting
more or less equivalence of working memory capacity and fluid
intelligence. However, there is also good reason for suspecting
that measures of working memory capacity do not only tap
working memory capacity but also processing speed (Chuderski,
2013, 2015). Using a very large sample in an investigation
focused on this issue, it was possible to demonstrate that
minimizing the possible influence of processing speed lowered
the correlation substantially. That processing speed is a threat
to the validity of a measure is not only a problem of cognitive
research but also of assessment in general. If there is a time
limit in testing, processing speed is likely to contribute to
performance (Oshima, 1994). The combination of a time limit in
testing and processing speed impairs the validity of measurement
(Lu and Sireci, 2007).

A similar situation is noted in linear regression analysis with
two or more independent variables. The dependent variable
is explained/predicted by the independent variables, and it
is of interest to know about the relative contributions of
the individual independent variables. These contributions are
reflected by the regression weights. For demonstrating the
structural similarity with the model of Equation (3), assume
the dependent variable Y, the independent variables X1 and
X2, the intercept b0 and the error e (notation according to
Osborne, 2017) that relate to each other according to the
following equation:

Y = b0 + b1X1 + b2X2 + e (4)

where b1 and b2 are the regression weights. Standardized
regression weights signify the contributions of independent
variables to the explanation of the dependent variable.
These regression weights can be compared. For
example, the weights can be used for evaluating
contributions of independent variables that, for example,
may be considered as variables reflecting good and
bad sources.

The confirmatory factor model of Equation (3) includes
equations showing a structure similar to Equation (4), as
is obvious when using a more detailed way of presenting

the vectors:
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(5)

There are factor loadings serving more or less the same purpose
as the regression weights in regression analysis (λi instead of bi).
Although the estimation methods used in confirmatory factor
analysis and linear regression analysis may differ from each other
and lead to somewhat differing estimates, factor loadings, and
regressions weights show some functional similarity.

However, in confirmatory factor analysis, the two sources that
are to be compared with each other show not only one factor
loadings, but p of them. This means that the factor loadings
need to be integrated into one statistic. The variance can be
this statistic since factor loadings and the variance of the latent
variable depend on each other, as is demonstrated in the next
section. The dependency is established by a framework. Bymeans
of this framework it becomes possible to relate variances scaled
with respect to multiple indicators to the initially mentioned
scaling by fixing one indicator (e.g., Gonzalez and Griffin, 2001;
Steiger, 2002). Given this framework, it is shown in one of the
following sections that it possible to achieve scaled variances,
which can serve for comparisons like those by standardized
regression weights, by one of the scaling methods.

CONSTANCY DUE TO SCALAR
MULTIPLICATION

This section addresses the issue of constancy regarding the
reproduction of the empirical covariance matrix by the model of
the covariance matrix, despite scaling variance parameters. It is
argued that constancy despite scaling by means of the various
methods is accomplished by means of scalar multiplication.
Scalar multiplication denotes the multiplication of a scalar and a
matrix. The usefulness of scalar multiplication is detailed below.

Constancy is considered with respect to the model of the
covariance matrix (Jöreskog, 1970) that is often symbolized by
6. This matrix (i.e., model of the covariance matrix) is denoted
as the p × p model-implied covariance matrix for p manifest
variables (6 ∈ ℜp×p) and is specified to reproduce the p ×

p empirical covariance matrix S (S ∈ ℜp×p). Under CFA, the
definition of the model 6, is given by the following equation:

6 = 383
′ + 2 (6)

where 6 is defined as the sum of 383
′ and 2. The product

383
′ is composed of the p × q matrix of factor loadings 3

(3 ∈ ℜp×q) (and its transpose 3
′) and the q × q matrix 8
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(8 ∈ ℜq×q) consists of the variances and covariances of q latent
variables. The second component in the equation is the p × p
diagonal matrix of error components 2 (2 ∈ ℜp×p), which is
linked additively to the first component.

The reasoning regarding constancy concentrates on 383
′

since constancy of this part of the model with respect to a specific
empirical covariance matrix S implies that 2 is also constant.
Scaling the variance parameters of 383

′ in a manner that
assures constancymeans that the product (as a whole) is constant,
although the factor loadings and the variance and covariance
parameters may change.

A constancy framework for scaling. Assume the p× qmatrices
of factor loadings denoted 3 and 3

∗ and the q × q matrices of
the variances and covariances of latent variables denoted as8 and
8

∗. Constancy in the sense of equality of 383and 3

∗

8

∗

3

∗

,

383
′ = 3

∗
8

∗
3

∗′, (7)

is given if there is a scaling constant c
(

c ∈ ℜ>0
)

such that

3

∗

= c 3

and
8

∗

= 1/ c2 8.

Scaling is achieved by multiplying both 3 and 8 with c
respectively the inverse of its square. In the following section it is
demonstrated that the available scaling methods can be described
in terms of this framework.

In order to ensure that the stated equality is correct, a proof is
provided. The proof consists of three parts:

a) transformation of the left-hand side of Equation 7 to the
right-hand side to illustrate equivalence (Proof 1)

b) demonstration that the products of matrices included in
Equation 7 produce matrices of the same size (Proof 2), and

c) demonstration that all entries of the two products of matrices
are the same (Proof 3).

Proof 1. First, c ∈ ℜ>0 is introduced into the left-hand side of
Equation 7:

383
′ = 1× 383

′ =
c× c

c× c
× 383

′ = c×
1

c2
× c× 383

′

The × symbol is used for explicitly emphasizing some cases
of multiplication. As c is a scalar, 3 and 8 are matrices
and the entries of the matrices are real numbers. Thus, the
commutative and associative properties of scalar multiplication
enable reordering of the scalars:

c×
1

c2
× c× 383

′ = c× 3 ×
1

c2
× 8 × c× 3

′

= (c× 3) ×

(

1

c2
× 8

)

×
(

c× 3
′
)

= (c3)

(

1

c2
8

)

(

c3′
)

Finally, a product term is achieved that includes components that
are in line with the replacement rules introduced in combination
with Equation (2), 3

∗

= c 3 and 8

∗

= 1/ c2 8:

(c3)

(

1

c2
8

)

(

c3′
)

= 3
∗
8

∗
3

∗′.

Proof 2. Since the product of the matrix of factor loadings and of
the matrix of variances and covariances (and also the transpose
of the matrix of factor loadings) is an additive component of
the sum that constitutes the model of the covariance matrix
according to Equation 6, the size of 383

′ is the same as the
size of 6 that is, a p × p matrix. It remains to demonstrate that
3

∗
8

∗
3

∗′ is also a p × p matrix. Since c is a scalar, it does not
change the size of the matrix to which it serves as multiplier. This
means that the size of c 3 is the same as the size of 3, the size of
1/ c2 8 the same as the size of 8, and the size of c 3

′ the same as
the size of 3′. Consequently, for 3

∗ = c 3 and 8
∗ = 1/ c2 8, the

size of 3∗
8

∗
3

∗′ is the same as the size of 383
′.

Proof 3. This proof requires the demonstration that the
entries of 383

′ are the same as the entries of 3
∗
8

∗
3

∗′. Both
products of matrices are considered as the true part of a p × p
model-implied covariance matrix (i.e., the summand, excluding
error of Equation 6); therefore, the entries of the ith row and jth
column are represented by σ τ ij and σ

∗
τ ij across the two matrices,

respectively. Given the research interest in investigating the
variance at the latent level,8 is assumed to be a diagonal matrix2.

In the case of q latent variables and diagonal 8, the true (i.e.,
population) part of the ith row and jth column σ τ ij is given by:

στij = λi1Φ11λj1 + ...+ λiqΦqqλjq. (8)

Analogically, the true part of the entry of the ith row and jth
column σij

∗ is described by the following equation:

σ
∗
τij = λ

∗
i1φ

∗
11λ

∗
i1 + ...+ λ

∗
iqφ

∗
qqλ

∗
iq. (9)

The next steps make use of scaling constant c as introduced in
combination with Equation (7). Since 3

∗ is set equal to c3, the
entry of the ith row and jth column of 3

∗ (i.e., λij
∗) can be

replaced by the entry of the ith row and jth column of c3 (i.e.,
cλij). Furthermore, as 8

∗ corresponds by definition to 1/c2 8,
the entry of the ith row and jth column of 8

∗ that is φij
∗ can be

replaced by the entry of the ith row and jth column of 1/c2 8 that
is 1/c2φij such that:

σ
*
τij = cλi1

1

c2
φ11cλj1 + ...+ cλiq

1

c2
φqqcλjq.

Because scalar multiplication is also distributive, the equation can
be further transformed into:

σ
*
τij = c×

1

c2
× c×

(

λi1φ11λj1 + ...+ λiqφqqλjq

)

.

Since the sum given in parentheses of the right-hand side of this
equation corresponds to the right-hand side of Equation (8), it
can be replaced by the left-hand side of Equation 8:

σ
*
τij = c×

1

c2
× c× στij.

2In this investigation, we are assuming orthogonal factors to place the focus on the

decomposition of the latent variance in non-overlapping parts. This assumption

is in line with the majority of models of measurement employed in assessment

research (Graham, 2006). The omission of the interaction term helps to keep the

illustration succinct and of manageable size.
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In the final step, coefficients are arranged to provide a ratio that
amounts to one:

σ
*
τij =

c2

c2
× στij = στij �

THE INTEGRATION OF THE SCALING
METHODS INTO THE CONSTANCY
FRAMEWORK

Given that the proof applies to all p × q matrices of factor
loadings 3, it also applies to all p × 1 matrices of factor
loadings, referred to as p × 1 vectors of factor loadings (λ). In
this case, the matrix of variances and covariances, 8, reduces
to the scalar, φ. This scalar is the variance parameter which
represents the variance of the latent variable in the model of
the covariance matrix. The status of this parameter as variance
has been questioned since it can be assigned a negative value in
the process of parameter estimation (Verbeke and Molenberghs,
2003; Stoel et al., 2006).

In this case of a p × 1 vector of factor loadings, Equation (7)
reduces to:

λφλ
′ = λ

∗
φ
∗
λ
∗ ′ (10)

if there is a scaling constant c ∈ ℜ>0such that λ∗ = c λ and φ
∗

= 1/c2φ.
The one-factor version of the constancy framework, as

described by Equation (10) in combination with the two
replacement rules, provides the basis for the following equation
that related the scaled variance parameter φsc to the scaling
constant c and to the original variance parameter φ:

φsc =
1

c2
φ. (11)

Scaling the variance parameter through use of Equation
(11) is a general scaling method, as c may be selected to
represent different scaling methods. Furthermore, this equation
can be used to investigate the properties of specific scaling
methods and to compare their effects. The following subsections
relate this approach to available scaling methods, including
the marker-variable method, the reference-group method and
criterion-based methods (e.g., effect-coding method; Little et al.,
2006; Little, 2013). In the following subsections, each method
is described.

The Marker-Variable Method
This frequently used method for scaling the variance parameter
states that a value of one is assigned to one of the factor loadings
(i.e., a marker variable) while the other factor loadings and the
variance parameter of the latent variable are freely estimated.
Such a configuration of free and fixed factor loadings is illustrated
by Figure 1. A double circle identifies the factor loading selected
for serving as indicator.

However, the influence of the marker variable is incorporated
into the variance of the latent variable. Integrating this specific

FIGURE 1 | Illustration of a confirmatory factor model with a factor loading

constrained according to the marker-variable method.

FIGURE 2 | Illustration of a confirmatory factor model with the variance of the

latent variable constrained according to the reference-group method.

method into the constancy framework requires the choice of c
with respect to the originally selected factor loading λi such that:

1 = λ∗

i = cλi (12)

where λi refers to the left-hand part of Equation (10) and λ
∗
i

to the right-hand part. If λi > 0 then c ∈ ℜ>0. Given the
original variance parameter, φ, the scaled variance parameter φsc

is obtainable by means of Equation (11).

The Reference-Group Method
The reference-group method requires that the value of one
is assigned to the variance parameter (i.e., standardized latent
variables) while all factor loadings are freely estimated. This
means that

1 = φsc =
1

c2
φ. (13)

Figure 2 includes the graphical illustration of major parts of a
model of measurement with the variance parameter φ set equal
to one.

If φsc corresponds to the original variance parameter φ, c is
equal to one. Otherwise, if φ is given, c is obtainable by means of
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a reordered version of Equation (11):

c =

√

φ

φsc
.

Criterion-Based Methods
Methods including a criterion number, pc, are referred to as
criterion-based methods. The number selected as criterion is
related to the sum of factor loadings or the sum of squared factor
loadings. Criterion-based methods differ from each other in the
number selected as the criterion and the way of summing the
factor loadings. First, there is the effect-coding method (Little
et al., 2006) that is equivalent to effect-coding used in analysis
of variance where factor loadings are replaced by numbers that
represent the coding of the effect. These numbers must be
adjusted in such a way that their sum equals the number of
manifest variables (p) and the adjusted numbers are used in the
estimation of the variance parameter. In an example provided
by Little et al. (2006), each one of the factor loading is set
equal to one. It is highlighted that the estimate of the latent
variance corresponds to the average of the indicator variables’
variances (p. 63).

Equation (14) gives the formal representation of the basic
characteristic of this method; that is, the selection of constraints
such that the sum corresponds to pc. In considering the
scaling constant, c, the method is related to the outlined
constancy framework:

pc = 1′
λ
∗
coding_constraints = 1′

cλcoding_constraints (14)

where 1 is a p × 1 vector of ones, λ∗

coding_constraints the vector of

adjusted numbers serving as factor loadings and λcoding_constraints

the vector of original numbers selected for coding the effect. The
scaling constant c is necessary whenever the numbers selected for
coding the effect do not directly sum to pc.

A second criterion-based method relates the criterion number
to the sum of squared factor loadings that was suggested for
investigations focusing on variances and covariances (Schweizer,
2011). The number of manifest variables p is set equal to
the product of the p × 1 vectors of adjusted factor loadings
λ

∗, respectively the vectors of original factor loadings λ with
multiplier c:

pc = λ ∗ ′
λ∗ = cλ′cλ. (15)

Using principles of scalar multiplication, the cs can be put in front
of the product of vectors so that:

pc = c2λ′
λ. (16)

The product of vectors reveals that in this case the scaling aims
at the variance explained by the factor. Given pc and λ, c is
obtainable by means of a reordered version of Equation (16).

The graphical illustration for demonstrating the criterion-
based methods includes products of the scaling constant c and
λ (see Figure 3).

If λ originates from parameter estimation and not from effect
coding, it may be necessary to estimate the value in the first step
and fix it for scaling in the second step.

FIGURE 3 | Illustration of a confirmatory factor model with all factor loadings

constrained according to the criterion-based methods.

THE EFFECT OF THE CRITERION
NUMBER ON THE OUTCOME OF SCALING

While the marker-variable method and the reference-group
method are rather restricted, the criterion-basedmethods include
a criterion number that enables the adjustment to special
expectations regarding the size of scaled variance parameters.
This adjustment does not violate the constancy property.
Although this criterion number is set equal to the number of
manifest variables for good reasons in the version provided by
Little et al. (2006), the number is changeable and may be changed
to achieving variance values that vary within a smaller or larger
range of possible values for the scaled variance parameter.

To demonstrate the effect of different choices of pc, let pcA and
pcB (where pcA > pcB) be two criterion numbers selected for the

scaling of the variance parameter. Given the product λλ

′

and the
initial inequity of pcA and pcB, Equation 16 suggests that

c2Aλ
′
λ > c2Bλ

′
λ.

Because both sides of the inequity include the product λλ

′

, the
inequity can be reduced to

c2A > c2B.

The consequence of this inequity for the scaled variance
parameters φscA and φscB when computed according Equation
(11) is described by the next inequity:

φscA =
1

c2A
φ < φscB =

1

c2B
φ (17)

The scaled variance parameter φscA is smaller than the scaled
variance parameter φscB since φscA includes the larger scaling
constant c as divisor. This inequity reveals that the larger pc, the
smaller the scaled variance parameter.

To demonstrate the practical consequences of selecting
different values for pc, the empirical consequences of changing
pc are reported in the following section for a number of
different conditions. The computations are conducted according
to Equations (11, 15). The outset is given by setting the original
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TABLE 1 | Sizes of scaled variance parameters for criterion numbers set equal to

the number of manifest variables (p) or proportions of it (r) in combination with

different sizes of the factor loadings and numbers of manifest variables.

Proportion

of r

Number of

manifest

variables p

Sizes of scaled variances

Factor loading

of 0.2

Factor loading

of 0.4

Factor loading

of 0.6

1/1 4 0.04 0.16 0.36

1/1 8 0.04 0.16 0.36

1/1 12 0.04 0.16 0.36

1/2 4 0.08 0.32 0.72

1/2 8 0.08 0.32 0.72

1/2 12 0.08 0.32 0.72

1/4 4 0.16 0.64 1.44

1/4 8 0.16 0.64 1.44

1/4 12 0.16 0.64 1.44

variance parameter equal to one and the factor loadings to 0.2,
0.4, or 0.6. Furthermore, the number of manifest variables is
set to 4, 8, or 12. In the first step, it is investigated how pc as
proportion of p, that is defined to correspond to the number
of manifest variables, influences the size of the scaled variance
parameter. Three proportions are considered: 1, 1/2, and 1/4. The
proportion of 1 requires the consideration of pcs of 4, 8 and 12,
the proportion of 1/2 pcs of 2, 4, and 6, and the proportion of 1/4
pcs of 1, 2, and 3.

The results are reported in Table 1. The first to third rows
give the results for the original size of the criterion number, the
fourth to sixth rows for the half of the original size and the
seventh to ninth rows for the quarter of the original size. The
inspection of the individual sections of Table 1 reveals that the
number of manifest variables has no influence on the size of the
scaled variance parameter, whereas the increase of factor loadings
leads to an increase of the scaled variance parameter. The results
suggest that the larger the factor loadings, the larger the scaled
variance parameter. In contrast, the comparison of the sections
shows that the smaller the proportion of pc, the larger the scaled
variance parameter. This increase is predicted by the inequity of
Equation (17). In the smallest proportion the factor loadings of
0.6 even lead to scaled variance parameters larger than one.

Furthermore, there is the opportunity to define the criterion
number pc independent of the number of manifest variables. In
order to explore this possibility, the criterion number is set equal
to 1, 5 and 10. Additionally the numbers of manifest variables (4,
8, 12) and the sizes of factor loadings (0.2, 0.4, 0.6) are varied.

The results are reported in Table 2. This table shows the
same structure as Table 1. The comparisons of the three sections
display an overall decrease of the scaled variance parameter from
the first to the last one. This decrease is in line with the inequity
of Equation (17). Furthermore, within the sections there is an
increase of the scaled variance parameter from four manifest
variables to 12 manifest variables. As also observed in Table 1,
there is an increase of the scaled variance parameter associated
with the increase of factor loadings.

TABLE 2 | Sizes of scaled variance parameters for criterion numbers (pc)

independent of the number of manifest variables combined with different sizes of

the factor loadings and numbers of manifest variables.

Criterion

number

Number of

manifest

variables

Sizes of scaled variances

Factor loading

of 0.2

Factor loading

of 0.4

Factor loading

of 0.6

1 4 0.160 0.640 1.440

1 8 0.320 1.280 2.880

1 12 0.480 1.920 4.320

5 4 0.032 0.128 0.288

5 8 0.064 0.256 0.576

5 12 0.096 0.384 0.864

10 4 0.016 0.064 0.144

10 8 0.032 0.128 0.288

10 12 0.048 0.192 0.432

Taken together, the results show that the increase of the factor
loadings leads to an increase of the scaled variance parameter and
that an increase of the criterion number leads to a decrease of the
scaled variance parameter. Furthermore, the comparison of the
results of Tables 1, 2 reveals that linking the criterion number
to the number of manifest variables leads to constancy of the
scaled variance parameter whereas otherwise, (i.e., when there is
independency of the number of manifest variables) an increase of
the number of manifest variables leads to an increase of the scaled
variance parameter.

SCALING FOR ACHIEVING VARIANCES
FOR COMPARISONS

The achievement of scaled variances for comparing the influences
of latent variables on responding like standardized regressions
weights in regressions analysis is presented as a major aim in
the second section of the paper. For reaching this aim we resort
to a basic method of factor analysis for estimating the variance
explained by a factor. This method suggests the computation of
the sum of squared factor loading λ′λ. It can alternatively be
achieved by the trace of the corresponding matrix:

λ
′
λ = trace

(

λλ
′
)

.

Although a variance parameter is not considered, it can be
assumed being set equal to one (φ = 1) and being omitted for
convenience. In order to achieve similarity of the right-hand part
of this Equation and the left-hand part of Equation (10) and
also Equation (7), φ (= 1) is inserted in the right-hand part of
this Equation:

λ
′
λ = trace

(

λφλ
′
)

. (18)

In the next step the matrix included in the parentheses is
transformed bymaking use of the second criterion-basedmethod
(Equation 15). The criterion number pc is set to 1:

1 = λ ∗ ′
λ∗ = cλ′cλ. (19)
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The scaling framework of Equation (10) respectively Equation
(7) enables the replacement of the vectors in the parentheses
of Equation (18) and the assignment of the scaling constant as
numerator to the variance parameter:

λ
′
λ = trace

(

λ ∗
φ

c2
λ ∗ ′

)

Since the ratio of φ and c2 is a scalar, it can be removed from the
parentheses and is replaced by the scaled variance parameter φ

∗:

λ
′
λ = φ ∗ trace

(

λ ∗ λ ∗ ′
)

.

Because of setting the criterion number pc to 1, the trace must be
1 so that

λ
′
λ = φ ∗ ×1 = φ

∗.

The contributions of all factor loadings are transferred to the
scaled variance parameter. If this method is applied to the
variances of two latent variables of the same model, as for
example to the latent variables of Equation (3), there are
two scaled variances that incorporate the contributions of all
factor loadings on the corresponding latent variables. It enables
the comparison of the influences of these latent variables
on responding.

EXAMPLE: SCALING TRAIT AND METHOD
LATENT VARIABLES WITH MTMM

We demonstrate consequences of employing different criterion
numbers for scaling the variance of the latent variable through
an investigation of a Multitrait-Multimethod (MTMM) design.
For illustration, the MTMM matrix from the classic article by
Campbell and Fiske (1959) was used; however, we recognize that
the original matrix was a synthetic example, and thus, may not
demonstrate optimal fit. Using the original MTMM matrix as
correlation matrix input for CFA and specifying the model of
measurement according to the correlated trait-correlatedmethod
model (Widaman, 1985) revealed two problems: (1) two negative
error variances and (2) relationships among standardized
error variances did not reflect expected relationships for the
complements of reliability estimates provided along the main
diagonal (0.89, 0.89, 0.76, 0.93, 0.94, 0.84, 0.94, 0.92, 0.85).
In order to assure positive values of the error variances and
to establish the expected relationship, the main diagonal of
the matrix was changed from (1, 1, 1, 1, 1, 1, 1, 1, 1) to
(1.145, 1.140, 1.145, 1.005, 0.965, 0.965, 0.940, 1.010, 0.980).
Following the argument in justifying the use of the ridge option
(Yuan et al., 2011), it was assumed the modification would
affect error components of variances but not the systematic
components themselves.

Furthermore, the insignificant correlations among the trait
and method latent variables were eliminated from the full
correlated trait-correlated method model. Only the correlations
of the second and third method latent variables (r = 0.52) and
the first and second trait latent variables (r= 0.31) remained. The

revised correlated trait-correlated method model yielded good
model fit, χ2(16) = 17.63, normed χ

2 = 1.10, RMSEA = 0.014,
SRMR = 0.065, CFI = 1.00, GFI = 0.99. This model estimated
factor loadings, while the variance parameters of the model were
set equal to one for identification.

Various methods for scaling are investigated3. At first, the
results of criterion-based scaling are reported. Since Equation
(14) was proposed for coding effects, Equation (15) guided the
computation. Setting the criterion number to 3, that is, to the
number of manifest variables for each construct and method led
to the following variance parameter estimates: φmethod 1 = 0.286;
φmethod 2 = 0.528; φmethod 3 = 0.527; φtrait 1 = 0.472; φtrait 2 =

0.481; φtrait 3 = 0.359. No reported variance estimate was larger
than one.

After setting the criterion number to 1, the following estimates
of the variance parameter were observed: φmethod 1 = 0.859;
φmethod 2 = 1.585; φmethod 3 = 1.582; φtrait 1 = 1.415; φtrait 2

= 1.444; φtrait 3 = 1.076. All estimates of the variances of the
trait latent variables were larger than one and two method latent
variable variances were larger than one. While not reported, the t
values for parameter significance testing were independent of the
criterion number.

Next, the marker-variable method was used. One of the three
factor loadings on each one of these latent variables was set equal
to one whereas the remaining factor loadings and the variance
parameter were free for estimation. Setting the first factor loading
on each factor to one led to the following estimates of the variance
parameter: φmethod 1 = 0.291; φmethod 2 = 0.534; φmethod 3

= 0.500; φtrait 1, = 0.711; φtrait 2 = 0.745; φtrait 3 = 0.517.
Results for setting the second factor loading on each factor to one
were: φmethod 1 = 0.245; φmethod 2 = 0.522; φmethod 3 = 0.543;
φtrait 1 = 0.361; φtrait 2 = 0.348; φtrait 3 = 0.299, respectively.
Finally, the selection of the third factor loading on each latent
variable for constraining values to one provided the following
estimates: φmethod 1 = 0.322; φmethod 2 = 0.529; φmethod 3 =

0.539; φtrait 1 = 0.342; φtrait 2 = 0.351; φtrait 3 = 0.260. In
sum, different selections led to different estimates of the variance
parameters. For example, selecting the first and second manifest
variables as markers revealed the variance of the first method
latent variable as the smallest one whereas in selecting the third
manifest variables as marker the variance of the third trait latent
variable was smallest.

The criterion-based method and the marker-variable method
were considered for scaling the variance parameters obtained
for Campbell and Fiske’s MTMM. Different properties of these
methods became apparent. The largest estimates were observed
for the criterion-based method when the criterion number was
one. Setting the criterion number to three led to overall smaller
estimates. The marker-variable method led to different rank-
orders of the variance estimates for different selections of marker
variables. A unique set of variance estimates was not obtainable
by means of this method. The reference-group method was not
considered since this method only makes sense if dependences

3All t values for parameter significance were large, with p < 0.05 for all tests. We

have eliminated t values to keep the focus on the variance estimates; however, t

values are available upon request.
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among the latent variables can be assumed as in longitudinal
research. In contrast, trait and method latent variables are
independent of each other.

DISCUSSION AND CONCLUSIONS

Although a variance parameter is a necessary component of
factor analysis models, researchers often do not consider the
effect that the scaling of this parameter has on the variance of
the latent variable. One major issue addressed in this paper is the
preservation of information when changing from one reference
system to another through scaling. Scaling the variance of a
latent variable must preserve the result regarding the structure
of the data while simultaneously improving interpretability and
comparability of the result. The consistency framework presented
in this paper reveals how the preservation occurs, and we provide
insight into the crucial role of scalar multiplication. Scalar
multiplication enables the change of parts of the model of the
covariance matrix that is basic to the confirmatory investigation
while exhibiting constancy of the product of these parts.

The investigation of the available methods for scaling the
variance parameter reveals that the available methods fit to
the constancy framework; however, methods present different
degrees of flexibility. Whereas, the reference group method
is totally fixed, the marker-variable method allows some
adaptability to the data in that the method enables the selection
of the indicator variable from the set of all manifest variables. We
understand that different methods of setting a marker variable
for identification may lead to different standard error terms for
parameters, and subsequently, different significance test (i.e., Z)
values (Gonzalez and Griffin, 2001), the method of scaling latent
variables is consistent in terms of fit and parameter estimates.

Criterion-based methods, however, are potentially adaptable
to specific needs as the criterion number may be changed to
meet a specific situation. The use of a criterion number provides
the opportunity to design the method for scaling the variance
parameter in such a way that it is possible to: (1) choose between

dependency and independency on the number of manifest
variables, and (2) opt for lower or larger values of the variance
parameter, i.e. different ranges of the possible sizes of the scaled
variance parameter, starting with zero.

The application of the scaling methods concentrated on the
MTMM provided by Campbell and Fiske (1959). All scaling
methods were considered; however, not all of them were able
to fit the MTMM matrix. The reference-group method does not
apply if there is only one sample; however, it provides a starting
point for scaling according to other methods as estimates of
the factor loadings are obtained by setting the variances of the
latent variables equal to one. The application of the marker-
variable methods requires the selection of marker variables;
results revealed that different marker-variables lead to different
values as the result of scaling. This is not a good property if
unique statistics (e.g., means, standard deviations) are expected.
Uniqueness of scaled variance estimates are achieved by the
criterion-based method.

The criterion-based method also provides an opportunity to
achieve scaled variances similar to eigenvalues. Using positive
integers as criterion numbers, the largest scaled variance
parameters are obtainable for one as criterion number. According
to the results of an empirical study, use of the value of
one as a criterion number leads to estimates of the variance
parameter that correspond to eigenvalues if the model for
investigating the data is unidimensional and specific procedural
properties are considered (Schweizer et al., 2017). This property
enlarges the range of possible applications of scaled variances.
Whereas, variance parameters scaled in another way can only be
compared with each other, the scaling in using one as criterion
number additionally enables comparisons of scaled variances
with eigenvalues.
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Item leakage has been a serious issue in continuous, computer-based testing, especially

computerized adaptive testing (CAT), as compromised items jeopardize the fairness

and validity of the test. Strategies to detect and address the problem of compromised

items have been proposed and investigated, but many solutions are computationally

intensive and thus difficult to apply in real-time monitoring. Recently, researchers have

proposed several sequential methods aimed at fast detection of compromised items, but

applications of these methods have not considered various scenarios of item leakage.

In this paper, we introduce a model with a leakage parameter to better characterize the

item leaking process and develop a more generalized detection method on its basis.

The new model achieves a high level of detection accuracy while maintaining the type-I

error at the nominal level, for both fast and slow leakage scenarios. The proposed model

also estimates the time point at which an item becomes compromised, thus providing

additional useful information for testing practitioners.

Keywords: computerized adaptive testing, CAT, compromised item detection, generalized linear model,

test security

1. INTRODUCTION

Due to advances in information technology, continuous testing has been offered for many
large-scale testing programs, and test takers can take such exams nearly any time during the year.
Although continuous testing provides test takers with considerable flexibility and convenience, it
also raises serious security concerns. Individuals who take the test earlier in a testing window could
share the items orally or online (e.g., via social media platforms), which would benefit subsequent
test takers, jeopardizing the validity and fairness of the test. Studies have shown the severe and
negative impact of compromised items (Chang and Zhang, 2002, 2003; Davey and Nering, 2002;
McLeod et al., 2003; Yi et al., 2008; Guo et al., 2009; Zhang et al., 2012). Items administered
frequently are vulnerable to leakage, and many methods have been proposed to control item
exposure to protect test security (Sympson and Hetter, 1985; Stocking, 1994; Stocking and Lewis,
1995; Mills and Stocking, 1996; Hetter and Sympson, 1997; Way, 1998; Chang and Zhang, 2002,
2003; Davey and Nering, 2002; Chen et al., 2003). Sympson-Hetter (SH) method (Sympson and
Hetter, 1985) is one of the widely used applications of this strategy. SH method needs an upper
cutoff proportion (e.g., 20%) as a parameter. Only those items that are exposed to <20% of all test
takers can be selected. This way, SH method is able to prevent the over exposure of an item to
the public, which in return reduces the potential damage caused by the item compromise. Since
then, researchers have developed many exposure-control strategies following the same direction.
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Although these methods are generally effective in keeping items
from being over exposed, they are only preventive measures
and do not directly address the problem of items that have
been compromised.

Alternatively, many methods have been developed to
proactively detect item preknowledge (McLeod et al., 2003;
Belov et al., 2007; Belov and Armstrong, 2010, 2011; Obregon,
2013; Belov, 2014). These methods allow testing practitioners to
determine whether an examinee has preknowledge of a set of
suspicious items by comparing the estimates of the examinee’s
ability with and without suspicious items. As examples, Drasgow
et al. and Armstrong et al. proposed detection methods using
likelihood-based person fit statistics (Drasgow et al., 1985;
Armstrong et al., 2007), Levine and Dragsgow proposed another
method based on Neyman-Pearson lemma (Levine and Drasgow,
1988), and Belov et al. proposed to use Kullback-Leibler
divergence for detection (Belov and Armstrong, 2011). However,
in practice, there are two major limitations with the application
of these methods. First, it is difficult to identify a set of suspicious
items without context or prior information, especially when
considering that the item set varies from examinee to examinee.
Second, these methods rely heavily on the estimation of the test-
taker’s ability. When the true ability of the test taker is known,
the method usually performs well. In practice, however, the test-
taker’s true ability is unknown and needs to be estimated. In
the case of severe item leakage, the estimation of an individual’s
ability can become biased, which in turn can lead to inefficiency
in detecting item preknowledge.

The above-mentioned proactive methods focus on individual-
level test statistics, but in recent years, several item-level
sequential methods have been proposed to detect compromised
items in computerized adaptive testing (CAT) (Zhang, 2014;
Zhang and Li, 2016; Choe et al., 2018). These methods focus on
monitoring the change of the expected probability of getting a
correct response for an item. To enhance the sensitivity of the
detection procedure, they suggest imposing a moving window
to select a group of responses from the nth response to the
(n + m)th, where n is the starting point of the window and m
is the size of window. Then a hypothesis test is performed to tell
whether the expected probabilities of getting an item correct are
the same before and within this window. The item will be flagged
as compromised if the change is significant. One advantage
of this sequential algorithm is that it is computationally fast
and hence can be used for real-time detection. Existing studies,
however, are limited in several ways and warrant further study.
First, these methods require specification of the best window
size, which may be challenging for test professionals. Second,
the simulation considers only the scenario where the expected
probability of a correct response has a sharp increase after an
item is compromised. The utility of these methods in the face
of a gradual change of the expected probability is unknown.
Third, the current sequential detection method can only tell
when the leakage is detected but cannot estimate when the
item is compromised, from which test practitioners can review
the impact of the leakage and re-evaluate test-takers’ ability
estimation. For example, an item compromised at day t1 can be
detected as an compromised item at day t2. There is a t2 − t1

lag in between before a significant conclusion could be drawn. In
this case, t2 is the detection day, which is known. And t1 is the
compromised day which is not known.

Therefore, there is need for a new, flexible method to
account for various item-leaking processes in real life, where
compromised items can spread at different rates and item leakage
can result from many causes. The new method should be able to
detect leakage under different scenarios, and provide an estimate
of when an item is leaked.

First, compromised items may spread at different speeds,
and the expected probability of correctly response to an item
may not jump abruptly to a fixed, high value. For example, a
posting on a popular social media website could quickly spread
preknowledge of an item, whereas sharing within a small group
of acquaintances might result in slower spreading. Therefore,
to make the sequential detection approach more robust, it
is important to develop a flexible method that takes these
underlying dynamics into consideration.

Second, there are many probable causes of item leakage. A
common scenario as detailed above could involve a test taker
who posts the items received on a website, where future test
takers could gain preknowledge on those items. A more severe
case is organized item theft, which has been discussed in Yi
et al. (2008). In this case, profit-driven organizations may send
thieves to take the exam at the early stage in a testing window.
The thieves will intentionally memorize the items they receive,
aiming to profit from disclosing the items to future test takers.
In the “random item leakage" scenario, the time when an item
becomes compromised is random. In the “organized item theft"
scenario, on the other hand, the leakage usually happens at
the very beginning of a testing window. When investigating
the performance of detection methods, these different scenarios
should be considered.

We therefore propose a newmethod for proactive detection of
compromised items that largely addresses the stated limitations
of existing approaches. Our method uses generalized linear
modeling with complementary log-log transformation (cloglog)
as the link function, and it takes the potential leaking mechanism
into consideration. Compared with existing methods, it has the
following advantages: (1) It can handle more complicated item
leakage mechanisms, both fast and slow; (2) Unlike existing
sequential approaches, it does not need a moving window to
boost the detection sensitivity, and thus saves the trouble of
determining the best window size; instead, it improves the
detection accuracy by utilizing complete testing information.
(3) It enables the estimation of the “compromise time,” i.e.,
the time point at which the item was compromised. (4) It
is computationally more efficient compared with those item
preknowledge detection methods since it does not depend on the
selection of suspicious items.

The model is validated by both simulation data and real
data in practice. For simulation, the test is performed with
simulations under different scenarios and parameters. The
simulated datasets are generated as diverse as possible. First,
the model we use for simulating data is purposefully designed
to differ from our model for leakage detection, in order to
test the robustness of our leakage detection method when
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the underlying leaking mechanism is unknown. Second, our
simulation covers two distinct leakage scenarios, organized item
theft and random item leakage. Third, for each simulation
scenario, we investigated the values of the leakage rate in a wide
range, in order to mimic different spread speeds in practice.
In addition of all simulation studies above, we also showed an
application of our proposed method to a real large-scale testing
dataset. Both studies, i.e., simulation and real data, perform
well. In our study, an application based on the estimation of
the compromised day, t1, is also proposed, which successfully
links the compromised item detection with the person-level
preknowledge detection. Simulation results show that t1 can
provide important information for the preknowledge detection
in CAT and significantly improve the accuracy of the person’s
ability estimation.

2. METHODS

We detect compromised items by monitoring the responses
of test takers. When an item is compromised, the expected
probability for test takers to answer it correctly will increase.
Instead of assuming all responses to always be correct (Yi et al.,
2008) or to be a constant probability (Zhang, 2014) immediately
after an item becomes compromised in simulation, we propose a
gradual change model as a function of time, hereafter referred
to as the leakage model. The leakage model acknowledges the
fact that responses to a compromised item may not always be
correct right after its compromise. Instead, as more people are
exposed to this compromised item over time, the probability for
the item to be correctly answered will gradually increase to 1. This
increase can be slow or fast, depending on the rate parameter.
When this rate is large, our model will degrade to the previous
models mentioned above.

2.1. Generalized Linear Model for Detection
In computerized adaptive testing, the probability for a test taker
to give a correct response to an uncompromised item can be
modeled by a three-parameter logistic (3PL) item response theory
(IRT) model (Lord, 1980):

P(U = 1|θ) = c+ (1− c)
1

1+ e−1.7a(θ−b)
, (1)

where θ is the latent ability of a test taker, a is the discrimination
parameter, b is the difficulty parameter, and c is the pseudo-
guessing parameter. It has been shown (Birnbaum, 1968) that
the item will be assigned to test takers whose provisional ability
estimate is close to

θ0 = b+
ln(1+

√
1+8c
2 )

1.7a
, (2)

when the maximum item information method is used to select
the next item. The expected probability for test takers to answer
the item correctly is (1+

√
1+ 8c)/4. Thus, the probability to

answer the target item correctly should fluctuate roughly around
this expected probability. When an item is compromised, the
expected probability will increase accordingly. In practice, since

the ability estimate may not be sufficiently accurate at the
beginning of the test, the expected probability to correctly answer
the item might not be exactly (1+

√
1+ 8c)/4 initially. On the

other hand, to control the potential damage from item thieves
during high stakes exams, an item exposure control component
will be implemented, which is a random factor on top of the
item selection criterion. Therefore, it is rare that the very item
expected to exhibit the largest Fisher information would actually
be selected and administered. One of the items with higher
information will, though. As the test progresses, however, and if
the item pool is sufficiently large, the expected probability should
hold, a property that could be used to detect the compromised
item. A similar idea was also discussed in Zhang (2014).

In this study, the proposed detection algorithm concerns only
the time series of responses of a single item, and all items are
treated independently. Unless stated otherwise, we will use a
representative item to hereafter illustrate the detection model.

Suppose the expected probability for a test taker to answer
this item correctly is 1 − πt on day t (i.e., the probability to get
an incorrect answer is πt). Therefore, the number of incorrect
answers yt should approximately follow a binomial distribution,
yt ∼Bin (nt ,πt), where nt is the total number of examinees taking
this item on day t. Thus, the overall log-likelihood for all T testing
days for the item of interest is

l = log L =

T
∑

t=1

[

yt logπt + (nt − yt) log(1− πt)
]

, (3)

where t = 1, 2, · · · ,T. Please note that although we are using
days as the unit of t for illustration, t actually can be any time
units. For example, t can be hours instead as long as there are
enough samples within the time interval.

In order to design an effective model to detect the leakage
pattern in real data, we worked with the researchers in the
large-scale testing company in this study. Figure 1 shows four
typical curves from the empirical data analysis. These curves
are selected from a large-scale operational CAT program that
has 2905 items records. The item pool was rotated every 10
days in order to secure the test from item compromise (For
more information of this dataset, please see section REAL DATA
APPLICATION). The error bars are the 95% confidence interval
of the probability of incorrect response of that day, which is

calculated by 1.96

√

π̂(1−π̂)
n (Agresti, 2013). Figure 1A is an item

without leakage. Figures 1B,C represent the leakage with two
different leakage rates: slow and fast. Figure 1D shows a scenario
where the expected probability goes back up after a significant
decrease. For both Figures 1B,C, a sigmoid-shaped pattern curve
could be used to model the probability change. For scenario
d, although the probability goes back after a significant dip,
this scenarios should also be flagged out as well, since: (1) in a
continuous test, we can only make our decision based on the
data we have at hand. (2) a significant decrease of the expected
probability should always be alarmed and carefully investigated,
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FIGURE 1 | Representative Curves for Different Scenarios. (A) Item without any leakage; (B) Item with slow leakage; (C) Item with fast leakage; (D) Item with leakage

that goes back thereafter.

to enhance the security of the test. In this case, a sigmoid-
shaped pattern curve can also be used to model the part before
it goes back.

To detect the gradual change of the expected probability, two
possible methods could be used to model the probability πt as a
function of time: logit

logit
πt

π0
= β(t − t0), (4)

or cloglog

cloglog
πt

π0
= β(t − t0), (5)

where π0 is the expected probability before leakage and β is
a coefficient that controls the speed of the leakage. Here t0 is
the point at which the item is compromised. Figure 2 illustrates
the shape of πt under different combinations of π0 and β for
both logit and cloglog functions. In general, πt decreases in a
sigmoid manner when β is negative, and a larger absolute value
of β corresponds to a faster decrease, suggesting a faster leakage
of the compromised item. In the beginning, πt presumably
changes relatively faster than later in the test cycle. This is
when some test takers who are eager to obtain preknowledge
of the compromised item would like to take the test, since the
compromised item likely is still available. In such case, it will
induce a faster drop of probability of incorrect response when
leakage starts. For this reason, the asymmetry of the cloglog
function is favored in this study and will be selected to model
πt . When t = t0, πt = π0(1− e−1), which is around 0.63 of
the expected probability before leakage. Note that Equation 5 is
actually equivalent to the following model

cloglog
πt

π0
= βt + α. (6)

That is, log(−log(1− πt
π0
)) = βt + α, which gives

πt = π0(1− e−e
βt+α

). (7)

For a compromised item, a negative β is expected. Therefore,
the problem of detecting a compromised item is converted to
performing the following hypothesis test:

H0 :β = 0 vs. Ha :β < 0. (8)

Note that our test is one-sided, since a positive beta corresponds
to an increasing πt , which is not a desired pattern we want to
flag out.

In order to perform the hypothesis test, we need β̂ , as
well as the estimate of its variance or standard error. β̂
and σ̂β are obtained via maximum likelihood estimation.
Since there is no closed form analytical solution, we use the
coordinate-wise Newton-Raphson method to obtain a numerical
solution. Compared with the conventional Newton-Raphson that
updates all model parameters at the same time, the proposed
method successfully avoids the calculation of the inverse of the
Hessian matrix, which can be near-singular and cause numerical
instability. Our approach has proved to be efficient and stable in
all our simulation studies.

Let 9 be the coefficients in our model that need to be
estimated. We have 9 = (ψ1,ψ2,ψ3)

T , where ψ1 = π0, ψ2 = β

and ψ3 = α. In this way, we can use one general symbol 9 to
represent all three parameters. The steps of the coordinate-wise
Newton-Raphson algorithm are as follows:

1. Initialize model parameters with random starting values. We

use π
(0)
0 = 0.5, β(0) = 0 and α

(0) = 0 for all our
simulation studies.

2. Update 9 by updating each of its elements consecutively.
That is,
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FIGURE 2 | Comparison of link functions with logit and cloglog transformations.

(a) First, keep β̂ and α̂ unchanged, update π̂0;
(b) Then, keep π̂0 and α̂ unchanged, update β̂ ; and
(c) Third, keep π̂0 and β̂ unchanged, update α̂.

Each of the above updates is given by

ψ̂k ← ψ̂k −

∂ l(9)
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∣
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9=9̂

. (9)

(See the Appendix for more details about this equation.)
3. Repeat Step 2 until convergence. The convergence is checked

by calculating the change of the log-likelihood after each
iteration. If the change is less than a threshold, e.g., 0.001,
the model has converged. Then the element of the Fisher
information matrix (see Appendix for detail) is

[Ik1k2 (π0,β ,α)] = −E
[∂

2l(π0,β ,α)

∂ψk1∂ψk2

]

, (10)

where k1, k2 = 1, 2, 3. According to the co-factor method of
getting the inverse matrix of I, we have

σ̂β =

√

I11 · I33 − I13 · I31

det(I)
. (11)

Given β̂ and σ̂β , the Wald statistic is given by

z =
β̂ − β0

σ̂β

∼ N(0, 1). (12)

When the null hypothesis is rejected (one-sided test), the item
will be flagged as compromised. The time from when the item
starts to leak, i.e., the “compromised time,” to when a leaked
item is flagged, is defined as “detection lag.” This definition of
detection lag is the same as that in Zhang (2014) and Shao
et al. (2015). Note that the compromised time, denoted as tc, is

unknown in real applications. We propose an estimate of it, t̂c, as
the time when πt drops to a certain percentage, say ǫ, of π0. Based
on our model in Equation 7, it is easy to show that

t̂c =
ln(ln 1

1−ǫ )− α̂

β̂

. (13)

Especially, we use ǫ = 90%. The bias of this estimate is defined as
the “estimation lag”.

Further, the variance of t̂c is given by

var(t̂c) =
(∂ t̂c

∂α̂

,
∂ t̂c

∂β̂

) · 6̂ ·

(

∂ t̂c
∂α̂

∂ t̂c
∂β̂

)

, (14)

where 6̂ is the variance-covariance matrix of (α̂, β̂), and

∂ t̂c

∂α̂

= −
1

β̂

,

∂ t̂c

∂β̂

=
α − ln(ln 1

1−ǫ )

β̂
2

.

The elements of 6̂ can be easily estimated by the inverse matrix
of I, similar to how the variance of β is derived in Equation 11.

2.2. Leakage Simulation Model
Our primary goal for introducing a different leakage model
is to test the effectiveness of the proposed detection method
with unknown underlying leakage rates. The leakage simulation
model should have these two features: (1) After the item is
compromised, the expected probability to get a correct response
will increase; (2) The spread rates of the compromised item may
differ across items. In this study, the leaking process is simulated
using an exponential function as follows,

P(a test taker already knows the answer|λ, t0) = 1− e−λ(t−t0),
(15)
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where λ is the leakage parameter that regulates how fast the item
will be exposed to the public, t0 is the time point at which the
item is compromised, and t − t0 is the time interval since the
item was first compromised. The probability for any test taker
to have item preknowledge is a function of t, or P(t). Therefore,
after integration with the 3PL IRT model, the overall probability
for a test taker to correctly answer an item can be captured in a
mixture model as follows:

P(U = 1|θ , λ, t0) = (1− e−λ(t−t0))+ e−λ(t−t0) ·
[

c+ (1− c)
1

1+ e−1.7a(θ−b)

]

. (16)

If the test taker already knows the answer to the item due to
item preknowledge, the response process is described by the first
component of Equation 16, which is 1 − e−λ(t−t0). Otherwise,
the process follows the 3PL IRT model with a probability of
e−λ(t−t0). Therefore, the total expected probability for a test taker
to correctly answer the item is given by Equation 16. Again, the
first component of Equation 16 is a function of time and therefore
captures the leakage process, where λ controls the speed of the
leakage. For example, given a moderate leakage parameter λ and
a compromise time point t0, responses to the compromised item
will contain increasingly more 1 s (i.e., correct responses), as
time t increases. With a large λ, the responses will almost always
be 1 after item compromise, as assumed by previous studies (Yi
et al., 2008). Thus, the gradual change model is more flexible
and general.

Note that, in this study, simulation model is only used to test
the detectionmodel, not to detect the leakage. Compared with the
detection model, simulation model is more complex with extra
parameters including a person’s ability θ . Although we can also
use the leakage model to fit the curve and run the hypothesis test
thereafter, a simultaneous estimation of person’s ability will make
the fitting less efficient than the detection model. Since we only
care about the detection of probability curve’s leakage pattern,
the proposed detection model is more straightforward and easier
to converge.

3. SIMULATION DESIGN

Simulation studies are conducted to investigate the performance
of the proposed detection method. The parameters in our
simulation were chosen according to previous publications (du
Toit, 2003; Yi et al., 2008; Zhang, 2014). A total of 400 randomly
generated items serve as the item pool. The underlying IRTmodel
is 3PL with item parameters generated as follows:

a ∼ lognormal(0, 0.5), b ∼ N(0, 1), c ∼ U(0, 0.25). (17)

The discrimination parameters are generated by lognormal
distribution. An exposure control procedure is implemented
to prevent items from being over-exposed and to protect test
security. The exposure rate for an item is defined as

ρ =
# of times an item has been administered

total number of test takers
. (18)

In this study, the exposure control parameter is set to be 0.2,
meaning only items with exposure rate lower than 0.2 are eligible
for administration. Items in the bank belong to three content
areas with percentages 40, 30, and 30%, respectively. Test length
is set at 40. A content control procedure is implemented in the
simulation to ensure that 40, 30, and 30% of items are selected
from each content area for every test taker (i.e., 16, 12, and
12, respectively). The item with the lowest exposure rate in the
desired content area will be selected as the first item for the
incoming test taker. A sample of 500 test takers (θs) are generated
each day to take the exam, whose abilities follow standard normal
distribution. The simulation is replicated 10 times and all the
distribution figures presented in the remainder of this paper are
generated based on results aggregated over replications.

A test item could become compromised for a variety
of reasons. The interest of this study is to investigate the
effectiveness of the detection algorithm in general. In order to
achieve this goal, we studied two common scenarios, which form
the core of this paper:

1. Organized item theft. Organized item theft is one of the most
severe item leakage scenarios in computer-based testing (Yi
et al., 2008). Since organized theft usually occurs early in
one testing window for maximal gain, 20 item thieves are
randomly generated in the first 4 days of the exam cycle. A
simple assumption that each thief can randomly remember 10
items is used here, although professional item thieves could
remember more. The items will be treated as compromised
when they are remembered. Leakage simulation model will be
applied thereafter.

2. Random item leakage. Some test takers simply share the items
that they have memorized with the public. In this instance, the
leakage could occur any time. For the purpose of this study,
20 such item sharers are randomly selected during one testing
window. A testing window is so defined that no item pool
maintenance such as rotation or replenishment occurs within
that window. In other words, the item bank remains the same
throughout the window. In this study, the testing window
is set to be 30 days (one month). In practice, this number
highly depends on the operation of testing company. It might
not be a fixed value even for the same test. For simulation,
we use monthly rotation to demonstrate the methodology.
On average, we assume each item sharer could remember at
random 10 out of the 40 items and share these with the public.
Usually the motivation to share items is weak near the end
of a testing window. For this reason, this simulation study
assumes that such random sharing behavior happens only in
the first 25 days.

For each test taker, the first item is selected from the item

bank that has the lowest exposure rate at that time from
the desired content areas. The probability of the test taker to

give a correct answer to the target item is calculated based

on the mixture leakage model (Equation 16). Then a uniform

distributed random number will be generated within (0, 1). If
its value is less than the mixture probability, the response will
be 1 (i.e., a correct answer). Otherwise, the response will be
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0. The expected a posterior (EAP) method (Bock and Mislevy,
1982) is used to estimate an individual’s ability given this
person’s previous responses. After the first item, the standard
CAT procedure using maximum item information method
(Lord, 1980) is adopted to select the next item according to
the estimated θ̂ .

In some extreme cases, the probability of getting an item
correctly after it is compromised is 1 for all test takers. But, in
practice, item leakage could be a gradual change process. In this
study, leakage parameter λ (see Equation 15) are set to be 0.05,
0.1, 0.3, 0.5, 0.7, 1, and 1.5 to regulate the differential speed of item
leakage. When λ is large, e.g., λ = 1.5, the simulation represents
a severe leakage scenario, in which nearly all responses will be
correct once an item has been compromised.

4. RESULTS

As illustrated in the Method section, the proposed leakage
detection model intentionally uses Equation 7, which differs
from the true underlying model (Equation 16) that is used to
generate the item responses. Parameter λ controls the speed of
leakage. The days to reach the probability’s half-drop can be
approximately estimated by − 1

λ
log(0.5), which are around 14,

1.4, and 0.5 when λ is 0.05, 0.5, 1.5, respectively.

4.1. Organized Item Theft
Asmentioned earlier, this study assumes that all item thieves have
taken the test in the first 4 days within a testing window. Table 1
shows the results of detection accuracy and corresponding type-I
error in this case. Detection accuracy is defined as the proportion
of compromised items correctly identified as such. Type-I error
is the proportion of uncompromised items that are incorrectly
identified as compromised items.

accuracy =
# of compromised items that are correctly flagged

# of total compromised items

(19)

type-I error =

# of items that are incorrectly flagged as compromised items

# of total uncompromised items

(20)

For a desired 95% confidence interval, the detection accuracy is
about 99% for those λs larger than 0.05. When λ = 0.05, the
detection accuracy drops to 93.70%. This is because λ = 0.05
represents a very slow leakage process, which is hard to detect
within the 30-day window. On the other hand, the type-I errors
for all λs are well controlled at ∼5%, consistent with the desired
95% confidence interval. Figure 3 represents the distribution of
the detected date of item compromise for different λs within
the 30-day window. Overall, when λ is small, the distribution
shows large variability. When λ is large, the detection is rather
accurate, i.e., pinpointing compromise within the first 4 days. In
addition, when λ = 0.05, the distribution of detected dates for
compromised items shows a significant portion of items being
truncated by the end of the 30-day testing window. Figure 3

TABLE 1 | Detection accuracy and Type-I error for organized item theft (standard

error is given in parenthesis).

Leakage rate (λ) Accuracy (%) Type-I error (%)

0.05 93.70 (0.54) 4.49 (0.37)

0.10 99.86 (0.09) 6.56 (0.56)

0.30 99.93 (0.06) 7.67 (0.70)

0.50 99.43 (0.27) 4.09 (0.76)

0.70 99.61 (0.13) 4.89 (0.74)

1.00 99.04 (0.16) 4.99 (0.34)

1.50 98.85 (0.26) 4.32 (0.83)

provides a direct explanation why the detection accuracy is only
93.70% when λ is small. It is expected that, given more time,
more compromised items would be detected and the detection
accuracy would be higher.

Table 2 shows the detection lag and the estimation lag.
According to Table 2, the mean detection lag is more than 10
days when λ is small (0.05 and 0.10 in our study). When λ ≥
0.3, the detection lag drops to ∼4 days. The probabilities for a
coming test taker to have preknowledge of the item are estimated
using Equation 15 with λ and average detection lag. Although the
detection lag for small λ is large, the impact of the large lag is
actually smaller than the cases with large λs. On the other hand,
the estimation lag is about 1 day for all λs. All the above results
are obtained using ǫ = 90% in Equation 13. When ǫ = 85%
or ǫ = 95% is used, the estimation lag is slightly worse yet still
quite comparable.

Figure 4 shows the distribution of items that are incorrectly
flagged as compromised (type-I error) as a function of item
difficulty, at different leakage rates. It suggests that, in general,
easier items are much more prone to type-I error. Since most
of the test takers could correctly answer an easy item without
any preknowledge, the majority of the responses will be 1 s
regardless of item leakage. In this case, the detection algorithm
will capitalize on the randomness of item responses, which in
turn triggers more false positives.

Further, given the estimation of an item compromise point,
test practitioners could re-evaluate a test-taker’s ability by
removing the responses to the suspicious items from ability
estimation. Suspect items are defined as those compromised
items administered to test takers who take the test after the
item compromise point. For example, if an item is flagged as
being compromised on day 3 and it was assigned to a test
taker on day 4, this item will be classified as a suspicious item
for that test taker. Figure 5 compares the ability estimation
with and without suspicious items. The results indicate that,
after removing the suspicious items, the ability estimation is
significantly better than the one in which all items are used,
as evidenced by higher correlation between true and estimated
ability, and smaller RMSE in ability estimates. Figure 5C shows
the effective number of items for ability estimation, meaning the
number of items left after removing suspicious items. Under the
organized item theft scenario, the effective test length could drop
to as low as 22 items, which is about half of the original test length
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FIGURE 3 | Distribution of the detection day for organized item theft.

TABLE 2 | Detection lag and estimation lag for organized item theft (standard

error is given in parenthesis).

Leakage

rate (λ)

Detection lag

(days)

Estimation

lag (days)

Probability of

preknowledge

0.05 17.47 (0.16) 0.61 (0.19) 0.58

0.10 10.61 (0.11) –0.46 (0.11) 0.65

0.30 4.69 (0.06) –0.95 (0.04) 0.76

0.50 3.47 (0.05) –1.07 (0.03) 0.82

0.70 3.03 (0.05) –1.13 (0.02) 0.88

1.00 3.11 (0.08) –1.07 (0.02) 0.96

1.50 4.96 (0.14) –1.00 (0.01) 1.00

40. Since the number of effective items will affect the accuracy
of the ability estimation, it is expected that the estimation
should be more accurate when λ is small (when there are more
effective items left, as shown in Figure 5C), corresponding to
an increase in correlation and decrease in RMSE as shown in
Figures 5A,B.

4.2. Random Item Leakage
Results from studying the random item leakage conditions
show common patterns with those of the organized item theft
conditions. However, unlike the scenario of organized item theft,
random item leakage does not always start at the beginning of
the item bank rotation. The leakage can occur any time before
the rotation of the item pool. Therefore, more data are available
before the leakage. This part of the study examines how themodel
performs under such a scenario. Table 3 shows the detection
power when random item leakage happens in the first 25 days.

As with organized item theft, the detection accuracy is very
close to 100% when λ ≥ 0.3. Due to the shortage of detection
time when λ is small, the detection accuracy drops significantly
given the 30-day simulation window. Therefore, it is difficult
to effectively detect slow leaking items when the compromise
date is close to the end of the test cycle. For example, if a test
taker decides to share the test items assigned to him/her at
day 25, πt will not change much from day 25 to 30 when λ is
small. When λ is large, however, a significant change of πt could
still be observed within 5 days. Figure 6 shows the distribution
of the detection days under the random leakage conditions.
Compared with Figure 3, the distribution has large variability.
The truncation of the detection day is severe in this case when
λ is small.

Table 4 shows the detection lag and the estimation lag of
the compromise time for random item leakage. The detection
lags are about 1 day shorter than in the case of organized
item theft, which suggests the model works better for the
random leakage scenario. This is because, for the organized
item theft scenario, the detection could not start until day 4,
since all the item theft is assumed to happen in the first 4
days. As a consequence, for those items compromised at day
1, the earliest detection day is day 4 (i.e., the lowest possible
lag is 3 days). On the other hand, although the assumption
of organized item theft affects the detection lag, it does not
significantly affect the estimated compromise time very much.
The method used to estimate the item compromise time shows
similar results in both scenarios, which is about 1 day. Similar
to Figures 4, 7 also shows that most of the type-I errors are
related to those easy items under random leakage scenario
as well.
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FIGURE 4 | Item distribution of Type-I error items for organized item theft.

FIGURE 5 | Ability Estimation with/without Suspicious Items for Organized Item Theft. (A) correlation of estimated θ̂ with true θ ; (B) RMSE of estimated θ̂ ; (C) effective

number of items after removing suspicious items. (X axis is log scale).

Figure 8 compares the ability estimation with and without
those suspicious items. Similar to the scenario of organized
item theft, the ability estimation is significantly improved
after removing suspicious items. Figure 8C shows that the
effective test length is about four items longer than the other
scenario above.

5. REAL DATA APPLICATION

In this study, we demonstrate the use of the proposed methods
with real data from a large-scale operational CAT program
that offers continuous testing. Item response data for about 10
days from two operational item pools are used for the analysis.
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There are 2905 items in total and only 32 items are flagged
as being compromised, with nominal alpha level at 0.05. This
result indicates that this operational testing program is rather
secure, with only slightly over 1% (32 out of 2905) of potential
leakage detected. Although the nominal Type-I error is 0.05,
the empirical alpha level may be different due to many factors,
e.g., the short testing interval (10 days). For all four typical
curves illustrated in Figure 1, dashed lines indicate when the
leakage is detected by our proposed method. There are 14, 4,
and 8 flagged items, respectively, in Types b, c and d. Since
the method is designed to monitor the probability change
sequentially, information after the detection (dashed line) is not
used for fitting the model. In contrast to Types b and c, Type
d items are challenging to interpret. They may not necessarily
be compromised but the large fluctuation that triggered the flag
for these items suggests testing practitioners should investigate
further these items closely in case there is a leakage. The Type

TABLE 3 | Detection accuracy and Type-I error for random item leakage (standard

error is given in parenthesis).

Leakage rate (λ) Accuracy (%) Type-I error (%)

0.05 67.63 (2.61) 2.02 (0.44)

0.10 87.00 (1.98) 4.54 (0.43)

0.30 96.64 (1.03) 5.14 (0.92)

0.50 98.80 (0.33) 4.67 (1.27)

0.70 99.13 (0.50) 4.85 (0.50)

1.00 99.79 (0.10) 5.22 (0.90)

1.50 99.74 (0.14) 4.01 (0.83)

d scenario might indicate group preknowledge of the item of
interest. One conjecture is that those who cheat often also
attempt to time the item pool rotation. For example, they try to
schedule and take tests as soon as they have certain amount of
preknowledge of items after the pool rotation, to improve their
chance of seeing some of the leaked items before the pool rotates
again. Since future responses are not foreseen and we can only
draw conclusions based on the response data currently at hand,
in practice, once an item is flagged (no matter if it is Type b, c, or
d), it should be removed from the item pool at least temporarily.
When an item is flagged, one cannot be sure if its probability
curve will eventually go back up or not. Test practitioners need
to balance between being conservative and liberal. Given the
importance of test security, if only a small number of items are
flagged as being potentially compromised, the cost to exclude
those items from test administration is limited so the choice
is obvious.

6. MODEL COMPARISON

We compare our proposed detection method with the existing
method (Zhang, 2014), using both simulation data and real data.
Zhang’s sequential model requires setting of two parameters, the
length of burn-in period and the size of the moving window.
We follow Zhang’s simulation study and set them as 150 and 50,
respectively. Our proposed cloglog detection model, on the other
hand, contains no tuning parameters and the detection starts
automatically at day 4 since the model has three coefficients to fit.

First, we apply Zhang’s detection model to our simulation
data with a leakage process taken into consideration. Tables 5,
6 summarize the results on the random leakage scenario and the

FIGURE 6 | Distribution of the detection day for random item leakage.
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organized theft scenario, respectively. Firstly, we notice that in
all scenarios, the type-I error is much larger than the α value,
the nominal type-I error. For example, under α = 0.05, the
type-I error is larger than 70% under every simulation scenario.
This means that Zhang’s method did a poor job in controlling
the type-I error. Secondly, even if we ignore the inflation of
type-I error, Zhang’s method still has a lower power than our
method. The difference in power of the two methods is especially
large when the leakage rate is small. For example, under the
random leakage scenario with a low leakage rate (λ = 0.05),
the power of our method is 67.63%, while Zhang’s method
is 37.44% when the type-I error is reasonably low (< 2%
achieved under α = 0.0001). This agrees with our expectation:
sliding-window-based methods are not as efficient in capturing
slow leakage as methods that describe and utilize the shape of
probability change.

TABLE 4 | Detection lag and estimation lag for random item leakage (standard

error is given in parenthesis).

Leakage

rate (λ)

Detection

lag

(days)

Estimation

lag (days)

Probability of

preknowledge

0.05 12.42 (0.15) 0.66 (0.16) 0.46

0.10 7.76 (0.08) 0.18 (0.08) 0.54

0.30 3.88 (0.05) –0.90 (0.05) 0.69

0.50 3.00 (0.04) –1.00 (0.04) 0.78

0.70 2.66 (0.04) –1.16 (0.04) 0.84

1.00 2.38 (0.04) –1.14 (0.03) 0.91

1.50 2.64 (0.07) –1.17 (0.03) 0.98

We also apply Zhang’s sequencial method to the real dataset
we used in the section of “Real Data Application”. Figure 9 shows
how the number of items flagged as compromised increases as the
nominal type-I error level increases. Strange enough, while the
number of leaked items flagged by our method shows a roughly
linear increase as the nominal α value increases, the number
of leaked items flagged by Zhang’s method shows a dramatic
increase when the nominal type-I error is in the range of 0.02
and 0.05. When α is 0.05, Zhang’s method flagged over 600 items
as compromised, which is more than 20% of the entire item pool.
Although it is hard to make any conclusive statement on a real
dataset with no knowledge about which items are truly leaked,
based on results from our simulation study it is not completely
unreasonable to suspect that this high rate of detection may be
due to severe inflation of the type-I error.

7. CONCLUSION AND DISCUSSION

In this study, we have proposed a general detection model that
considers the practical dynamics of the item leaking process.
The method shows, through all our simulation studies, a strong
detection power for various leakage rates with well-controlled
type-I error. The model also provides a way to estimate the time
point at which an item is compromised, which may be helpful for
testing practitioners to better secure the testing process.

The goal of our method is to detect the item leakage
for various leakage rates with unknown underlying leaking
processes. Therefore, the simulation model of the leakage is
purposefully designed to differ from the compromised item
detection model. The results show that the proposed model
for detection performs very well under such scenarios, which

FIGURE 7 | Item distribution of Type-I error items for random item leakage.
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FIGURE 8 | Ability Estimation with/without Suspicious Items for Random Item Leakage. (A) correlation of estimated θ̂ with true θ ; (B) RMSE of estimated θ̂ ;

(C) effective number of items after removing suspicious items. (X axis is log scale).

TABLE 5 | Application of Zhang’s sequential method to random leakage scenario.

Leakage rate α = 0.05 α = 0.01 α = 0.001 α = 0.0001

Accuracy(%) Type-I(%) Accuracy(%) Type-I(%) Accuracy(%) Type-I(%) Accuracy(%) Type-I(%)

0.05 99.68 89.87 94.50 48.36 73.95 8.90 37.44 1.58

0.1 99.87 84.29 98.08 42.37 91.78 9.75 71.31 2.95

0.3 99.40 77.97 99.31 39.00 97.18 9.30 90.51 2.98

0.5 99.93 77.89 99.74 37.83 98.01 8.56 92.05 2.75

0.7 99.94 74.96 99.68 32.80 97.78 6.79 93.06 2.46

1.0 100.00 76.40 99.41 35.60 96.81 8.11 91.46 2.46

1.5 99.93 74.40 99.01 32.38 95.74 7.47 91.36 1.98

TABLE 6 | Application of Zhang’s sequential method to organized theft scenario.

Leakage rate α = 0.05 α = 0.01 α = 0.001 α = 0.0001

Accuracy(%) Type-I(%) Accuracy(%) Type-I(%) Accuracy(%) Type-I(%) Accuracy(%) Type-I(%)

0.05 100.00 81.81 99.81 36.89 91.75 9.04 44.80 2.63

0.1 99.93 72.07 98.86 36.41 95.32 9.66 56.41 3.89

0.3 99.93 75.37 99.93 40.17 92.22 11.56 64.05 4.51

0.5 99.93 76.72 99.63 41.27 90.39 11.92 61.03 3.10

0.7 99.68 79.17 99.65 42.74 83.88 10.96 60.33 2.80

1.0 99.54 76.60 96.63 40.86 80.73 9.96 61.54 2.56

1.5 99.19 77.48 93.23 43.83 74.96 10.34 56.59 1.88

is a strong indicator of the generality and powerfulness of our
detection method. Estimates of both detection accuracy and
detection lag are close to the expected value when the leakage rate

is not too small. When the leakage is very slow, we have observed
a longer detection lag time. The impact of this lag, however, can
be quite mild in real data applications: When λ is small, the
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FIGURE 9 | Number of items that are flagged as compromised with different α

for two models.

change in probability of getting a correct answer is not large even
with a relatively large detection lag. Further, this lag is inevitable:
Determining whether an item is compromised when the leakage
is slow is intrinsically difficult, no matter what method is used.

The assumption of the detection model is that, given an
infinitely long testing window, all test takers eventually will be
aware of the compromised item and hence be able to respond
correctly, which is implicit in Equation 7. In practice, it may
be the case that some portion of test takers will not gain any
preknowledge of the items, no matter the length of long the
testing window. Therefore, the probability of correctly answering
a compromised item ultimately may never reach 100%. In that
case, we can generalize our method to cover such a scenario as
follows:

cloglog
πt − πe

π0 − πe
= βt + α ⇒ πt = πe + (π0 − πe)(1− e−e

βt+α
),

(21)
where one more parameter πe is introduced to represent the
expected upper asymptote after the item has been compromised.
The πe could be any value between [0, π0].When πe=0, themodel
reduces to the simplifiedmodel in Equation 7. It will be our future
work to implement this more general model.

The validation of themodel was performed both by simulation
and real data. Through the simulation study we were able to
generate different leakage dynamics and test the effectiveness of
our proposed method in these scenarios. Note that, although
both models control the leakage speed, the parameter β in the
detection model is not mathematically related to the λ in the
simulation model. Actually, our proposed method essentially
focuses on detecting the leakage pattern. As long as the overall
pattern of the expected probability curve is similar to what we
proposed, the method should work. We also applied the method
to real data to demonstrate its utility in practice.

The simulation study shows that our proposed method is
powerful and reliable when applied to CAT using the maximum

item information method for item selection. But the method is
not limited to a particular item selection method. Letting g(θ)
represent the distribution of an individual’s ability assigned to
an item, the expected probability for a correct response of this
item is:

E(P(θ |a, b, c)) =

∫ ∞

−∞

P(θ |a, b, c)g(θ)dθ = F(a, b, c). (22)

The expected probability, therefore, does not depend on the
distribution of θ . Different item selection algorithms provide
different g(θ), but will still lead to a constant expected probability
of a given item. Furthermore, this method can also be applied to
a non-CAT scenario. Compared with the CAT scenario, where
individual’s abilities fluctuate around the item difficulty, the
distribution of non-CAT is expected to bemore spread out. Since,
for the CAT scenario, only test takers whose estimated abilities
are close to a certain value (see Equation 2) will be assigned to
this item, the distribution of their abilities is less variable than the
original g(θ). Therefore, it is expected that more data are required
if this detection model is applied, in order to draw a statistically
significant conclusion.

Although the time unit in this study is set at the day level, its
selection is very flexible and can be set at finer levels if necessary.
The best way to select a time unit depends on the property of
the test of interest and expert judgment of experienced testing
practitioners. For example, given a large number of scheduled
test takers per day, the time unit could be further divided by
hourly increments. This would allow for more time points to be
used for model fitting, subsequently leading to higher detection
sensitivity. On the other hand, instead of aggregating the data
by time, one could also choose to aggregate the data by a fixed
number of item responses, e.g., every 20 responses. In addition,
the type-I error for the hypothesis test is set to be 0.05 in this
study, following convention. In practice, the cutoff could be
chosen per test practitioners’ preference as well.

Our study shows that the ability estimation θ̂ can be
significantly improved by removing the responses of suspicious
items. A potential future study is to apply our method to
determine whether or not an examinee has preknowledge of
some test items. This could be accomplished by comparing the
ability estimates derived with and without the suspicious items
(i.e., items that are flagged by our method). As mentioned in
the introduction, many individual-level preknowledge detection
methods essentially compare the ability estimates obtained from
the secure vs. suspicious test items (Belov, 2016). Our method
allows practitioners to identify a set of suspicious items, which
is critical to the success of those individual-level detection
methods. A retest may be necessary for those test takers
whose ability estimates significantly differ with and without
suspicious items.

Comparing with the existing sequential method (Zhang,
2014), our method shows large performance boosts in all our
simulation data with a variety of leakage rates. On real data,
although it is impossible to evaluate and compare the true
performance of different methods, our method does not show
the apparently erroneous shape of the curve of how the number
of flagged items changes according to the nominal Type-I error.
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Further, Zhang’s method asks the user to set the window size
parameter, which can be almost unfeasible, our method does not
have such tuning parameters.
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APPENDIX

According to the chain rule of differentiation, the deduction could be divided into two parts: First derive the log-likelihood toward πt ;
then calculate the derivative of πt toward model parameters π0, β and α. Therefore, for convenience, let 9 = (π0,β ,α)

T and let

l = log L =

T
∑

t=1

[

yt logπt + (nt − yt) log(1− πt)
]

=

T
∑

t=1

f (πt , nt , yt), (A1)

where f (πt , nt , yt) is function of πt , nt , yt . Then we have,
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(A2)

where k = 1, 2, 3 and t = 1, 2, . . . ,T. In addition, from equation 3 we get,
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(A3)

For convenience, let

� =
π0 − πt

π0
⇒ πt = π0(1−�), (A4)

from both equations A2 and A3, we finally get, for π0
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and for β ,
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and for α,
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and the derivatives for cross terms are,






































∂
2
πt

∂π0∂β
= t · eβt+α · e−e

βt+α
=

t(π0 − πt)

π0
· log

π0

π0 − πt
= −t� · log�

∂
2
πt

∂π0∂α
= eβt+α · e−e

βt+α
=
π0 − πt

π0
· log

π0

π0 − πt
= −� · log�

∂
2
πt

∂β∂α

= π0t · e
βt+α · e−e

βt+α
· (1− eβt+α) = t(π0 − πt) · log

π0

π0 − πt
· (1− log

π0

π0 − πt
)

= −tπ0� · log� · (1+ log�)

(A8)

Frontiers in Psychology | www.frontiersin.org 15 April 2019 | Volume 10 | Article 829301

https://www.frontiersin.org/journals/psychology
https://www.frontiersin.org
https://www.frontiersin.org/journals/psychology#articles


Liu et al. Compromised Item Detection for CAT

Therefore, the Fisher information matrix is,

[Ijk(π0,β ,α)] = −E
[∂

2l(π0,β ,α)

∂ψj∂ψk

]

. (A9)

Take equation A2 into equation A9, and we have,
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the Fisher information matrix could be simplified to

[Ijk(π0,β ,α)] =
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Adaptive learning systems have received an increasing attention as they enable to provide

personalized instructions tailored to the behaviors and needs of individual learners. In

order to reach this goal, it is desired to have an assessment system, monitoring each

learner’s ability change in real time. The Elo Rating System (ERS), a popular scoring

algorithm for paired competitions, has recently been considered as a fast and flexible

method that can assess learning progress in online learning environments. However, it

has been argued that a standard ERS may be problematic due to the multidimensional

nature of the abilities embedded in learning materials. In order to handle this issue, we

propose a system that incorporates a multidimensional item response theory model

(MIRT) in the ERS. The basic idea is that instead of updating a single ability parameter

from the Rasch model, our method allows a simultaneous update of multiple ability

parameters based on a compensatory MIRT model, resulting in a multidimensional

extension of the ERS (“M-ERS”). To evaluate the approach, three simulation studies were

conducted. Results suggest that the ERS that incorrectly assumes unidimensionality

has a seriously lower prediction accuracy compared to the M-ERS. Accounting for both

speed and accuracy in M-ERS is shown to perform better than using accuracy data only.

An application further illustrates themethod using real-life data from a popular educational

platform for exercising math skills.

Keywords: multidimensional IRT, Elo rating system, adaptive practice, speed-accuracy trade-off, e-learning

INTRODUCTION

Over the past decade adaptive learning systems have received an increasing attention as they enable
to provide instructions tailored to the behaviors, needs, and learning pace of individual learners. In
this way the learners can benefit from more personalized learning items. Therefore, it is desired for
the systems to have a learner modeling method that keeps track of the learner’s cognitive states and
its evolution in a timely and flexible manner. In the context of computerized adaptive testing (CAT;
van der Linden, 2000) the use of item response theory (IRT) is a common method to model the
relationship between the learner’s ability level and their responses to different measurable items.

As originally intended for high-stakes standardized tests, studies related to CAT primarily zooms
in on how to increase the precision of the examinee’s ability level estimate by successively rendering
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most informative items, or how to decrease the number of test
items while maintaining a high level of precision in estimating
the ability level. Because typically no feedback is given during
the test, the true ability level is not expected to evolve. The
idea of CAT also can be applied to learning environments in
which learners interact with items, toward computerized adaptive
practice (CAP; Klinkenberg et al., 2011). An a-priori expectation
is that the learners in a learning environment, unlike in a testing
environment, tend to develop their knowledge by interacting
with the items rendered (and by getting feedback on their
responses), and their true ability levels consequently evolve in
real time. Therefore, a first step toward the goal of the adaptive
learning system of optimizing the learning gain is tracing the
learners’ ability evolution in a fast and accurate manner.

In the context of intelligent tutoring systems (ITS), there
are specialized approaches for tracing the learner’s mastery of
knowledge. A representative example is Bayesian knowledge
tracing (BKT; Corbett and Anderson, 1994). In BKT, the learner’s
knowledge state is represented by a set of multiple binary latent
variables that indicate mastery or non-mastery of the skills.
The probability of having mastered each skill is estimated by
binary measurement outcomes (correct or incorrect responses
to items) and iteratively updated by using the rule of Bayes.
Similar to CAT, however, the methods require a calibration
on large samples using some nontrivial estimation techniques
(expectation-maximization algorithm, or exhaustive search) that
require high computational power (Papousek et al., 2014;
Pálanek, 2016).

To that extent, an interesting alternative that can be
considered for tracking the learner’s ability evolution is the
Elo rating system (ERS; Elo, 1978). The ERS was originally
developed for calculating relative skill levels of players in chess
performances, and the method also has widely been used in sport
statistics for paired competitions (e.g., major league baseball).
More recently, the ERS has been applied to various contexts
of educational and psychological studies (e.g., Attali, 2014;
Brinkhuis et al., 2015). In regard of its application to online-
learning environment, the paired competition can be thought of
as an interaction between the learner and the item. In general,
the ERS algorithm is formulated to update the learner ability and
item difficulty parameters from the Rasch model. To be specific,
once a learner has responded to an item, the ERS updates the
individual learner’s ability level estimate that was based on his
or her previous trajectory. Given the learner’s current ability
level, the next item is chosen by its difficulty level. A practical
strength of this approach is that the method is conceptually fast
and readily implementable in any software.

Several articles compared the performance of ERS with that
of traditional IRT modeling to explore whether its parameter
estimation is as accurate as the traditional approach. Maris and
Van der Maas (2012) showed that the ability estimates updated
from ERS method is highly correlated with the expected a
posteriori (EAP) estimates from an IRT model when a speed-
accuracy trade-off scoring rule was used. Studies also compared
the performance of ERS with alternative methods for estimating
item difficulties. For example, Wauters et al. (2012) compared
the quality of the ERS-based item difficulty estimates with those

based on maximum likelihood procedures, proportion correct,
and human judgementmethods, and found that the ERS provides
reliable results with a sample size of 200 learners. Similarly,
Pálanek (2016) provided evidence that there is a high correlation
between ERS-based item difficulty estimates and joint maximum
likelihood-based estimates.

Researchers (e.g., Klinkenberg et al., 2011; Savi et al., 2015;
Braithwaite et al., 2016; Coomans et al., 2016; Hofman et al.,
2018) also provided empirical evidence in favor of the ERS, by
means of massive log data from Maths Garden, a CAP system
where the learner ability and item difficulty levels are updated
on the fly. Park et al. (2018) proposed a method to alleviate the
cold-start in adaptive learning systems—the problem that for new
learners we do not have an idea of their ability and therefore
the adaptive learning environment might not perform well until
the learner made a substantial number of items. The authors
proposed using an explanatory IRT model based on learner-item
interaction data and learner features (e.g., age, gender, or learning
disability) and estimate the learners initial ability levels and their
ability changes while not engaged in the learning environment.

Despite the increasing number of studies applying the ERS
in adaptive learning systems, in the majority of these studies,
the ERS is intended to track just a single broad ability. In
contrast, monitoring multiple abilities not only forms the basis
of learners’ understanding of the material, but also provides
direct information to educational researchers and instructors
as to the areas that learners need to improve upon (Ferrini-
Mundy and Schmidt, 2005). Therefore, identifying his or her
progress onmore fine-grained ability dimensions would imply an
important advancement of the adaptive learning system, because
of the sheer amount of information about the learner’s learning
state. Doebler et al. (2015) and Pálanek (2016) proposed an
improved ERS algorithm for tracking multiple dimensions of
ability. Yet, their methodological focus is still on situations where
items are allowed to load on only one of the multiple ability
dimensions in the answering process. More recently, Chen et al.
(2018) and Tang et al. (2018) used a Markov decision process
to track multiple dimensions of ability. In these studies, the
learner’s ability was modeled by a set of multiple binary latent
variables that indicate mastery or non-mastery of the skills while
a reinforcement learning approach was proposed to recommend
personalized items.

In the current article, therefore, we propose to address these
issues by using a multidimensional IRT (MIRT) model to track
the (continuous) ability parameter estimates within ERS. The
basic idea is that instead of assuming a unidimensional trait of
item responses, our approach will assume that a single item may
involve more than one ability parameters. Therefore, we extend
the standard ERS that updates a single ability parameter based on
the Rasch model, and will allow to have a simultaneous update
on multiple ability parameters based on a compensatory MIRT
model (“M-ERS”).

In the next section we give more details on the methodological
framework of the ERS and its application to educational settings.
We then propose our method (“M-ERS”) that is formulated to
update multiple abilities. Next, we will evaluate the performance
of our method through three simulation studies. Furthermore,
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the method will be demonstrated using a real application
of learning data obtained from an educational platform for
children’s math ability development. We end with conclusions
and implications.

ELO RATING SYSTEM

The ERS is originally rooted in the Bradley Terry Luce (BTL;
Bradley and Terry, 1952) model, a probabilistic model that
predicts the outcome of players in a type of paired competitions.
Specifically, the expected outcome that one player defeats his or
her opponent is formulated as follows:

Pij = P
(

i defeats j
)

=
θi

θi + θj
, (1)

where θi and θj represent the ratings (e.g., latent traits) of players
i and j, respectively. By setting up θi = eθi , Equation (1) can be
transformed to a logistic function of the difference between θi and
θj, which comprises of the expected outcome of the ERS. That is,

Pij = P
(

i defeats j
)

=
exp(θi − θj)

1+ exp(θi − θj)
(2)

Likewise, both the BTL model and the ERS are based on the
probability of winning a competition; however, the latter method
is additionally intended to supply easy-to-compute updates as
new outcomes are observed. In other words, the ERS takes an
algorithmic heuristic to easily update the expected outcome for
the next iteration, based upon the estimated latent trait (i.e., θi

and θj) at the current iteration. Kiraly and Qian (2017) showed
that the derivative of a likelihood function for Equation (2)
based on a single data point produces the following updating
component for the ERS algorithm:

∂ l
(

θi, θj
∣

∣Yij

)

∂θi
= Yij

(

1− Pij
)

−
(

1− Yij

)

Pij = Yij − Pij, (3)

where l
(

θi, θj
∣

∣Yij

)

= Yij log Pij + (1− Yij)log(1− Pij).
In sum, given the observations for a competition between

players i and j, the estimates of θi and θj are updated
simultaneously. Specifically,

θ̂i = θ̂i + K
{

Yij − Pij
}

for a player i,

θ̂j = θ̂j − K
{

Yij − Pij
}

for a player j. (4)

In the equation above, the term
{

Yij − Pij
}

can be viewed as the
discrepancy between what is expected and what is observed. In
fact, the ERS can be viewed as a type of the stochastic gradient
descent (SGD; Robbins and Monro, 1951) algorithm where
the updating rule in the system corresponds to the update of
parameters along the error gradient (Pálanek, 2016). The update
will be larger if the current parameter setting produces a large
discrepancy. Note that K is a step size that defines to what extent
the ability estimate can be affected by the difference between the
current and expected responses for the student p.

APPLICATION TO ADAPTIVE
LEARNING SYSTEMS

In adaptive learning environments, the paired competition
occurs when the learner interacts with the learning material
(=item). The ERS process can be applied as follows. Consider
θi(t) be an ability of a learner i (unidimensional continuous
variable) after solving an item at measurement occasion t. Also,
suppose Yij(t) be the learner i outcome for item j measured at
measurement occasion t, where the outcome is dichotomously
scored (0 = incorrect; 1 = correct answer to the item).
Then the ERS for updating the ability parameter takes the
following sequence:

θ̂i(t) = θ̂i(t−1) + K
{

Yij(t) − Pij(t)
}

for a learner i

β̂j(t) = β̂j(t−1) − K
{

Yij(t) − Pij(t)
}

for an item j, (5)

where θ̂i(t−1) is the ability estimate at the previous measurement

time t−1 for the learner i, β̂j(t−1) is the item difficulty estimate
at the previous measurement time t−1 for the item j, and Pij(t)
is the expected response for the current measurement occasion
t. Consequently, a learner interacting with a very difficult item
risks losing a little bit of ability level in case of failure, with
the possibility of gaining much greater ability level in case of
success. Several studies have explored the optimal step size K for
the ERS for student modeling. Wauters et al. (2012) suggested
using a constant step size, K = 0.4 in the context of educational
data. On the other hand, other studies (e.g., Glickman, 1999;
Klinkenberg et al., 2011; Papousek et al., 2014; NiŽnan et al.,
2015) proposed that the step size needs to decrease as a function
of a total number of item answered and therefore the system gains
more information about the learner’s true ability level.

In Equation (5), it is possible that the outcome Yij(t) can be
scored by considering whether the learner completed the item
within the allotted limit. Maris and Van der Maas (2012) derived
a scoring rule that accounts for response time and accuracy,
and applied it within ERS. While the ERS can be used to
gradually obtain reliable estimates of both student’s abilities and
item difficulties, adaptive item sequencing can be more efficient
if we could start from a pre-calibrated item bank, including
information on item difficulty and possibly other characteristics
of items, and from which items with undesired characteristics are
excluded (van Groen et al., 2014). In this case, β̂j(t) in Equation
(5) needs not be updated.

MULTIDIMENSIONAL EXTENSION OF THE
ERS (M-ERS)

In this section we propose an extended version of the ERS that
enables the system to track multidimensional abilities in real
time. Specifically, the proposed algorithm can handle two types
of dimensional structures in the item bank–(a) “within-item
dimensionality” where a single item can be associated with more
than one task ability; as well as (b) “between-item dimensionality”
where a set of items is associated with multiple abilities, while
each item measures only one of those abilities.
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Suppose an adaptive learning environment contains an item
bank that is designed to measure a total of M-dimensional

abilities i.e., θi = (θi1, . . . , θiM)
′

for a student i. The
multidimensional dichotomous logistic model (Reckase, 1985)
that describes the probability of a correct answer to item j can be
formulated by either conjunctive or compensatory assumptions
about how the latent abilities are combined. In a conjunctive
model assumption, it is assumed that the learner should have each
of the relevant abilities in order to answer an item correctly. The
probability of a correct response therefore is a joint product of
the inverse logit function of the difference between each of the
abilities and the corresponding item difficulty:

Pij = P
(

Yij = 1
)

=
∏M

m=1

exp(αjm[θim − βj])

1+ exp(αjm[θim − βj])
, (6)

where P
(

Yij = 1
)

indicates the probability of a correct answer,
θim is the mth ability parameter of the learner i (m = 1, . . . ,M),
αjm is the item discrimination of the item j corresponding to
mth ability dimension, and βj denotes the overall difficulty level
of the item j. On the other hand, in a compensatory model, on
the other hand, it is assumed that the lack of one ability can be
compensated by greater level of another ability, as follows:

Pij = P
(

Yij = 1
)

=
exp(

∑M
m=1 αjmθim − βj)

1+ exp(
∑M

m=1 αjmθim − βj)
. (7)

The difference between the observed and the expected
performance Pij based on the multidimensional IRT models is
used to update the ability parameters after each item response.
Specifically, the Pij within ERS for the m-th ability for person i
on measurement occasion t is updated as follows:

θ̂im(t) = θ̂im(t−1) + Dm(t) K
{

Yij(t) − Pij(t)
}

β̂j(t) = β̂j(t−1) − Dm(t) K
{

Yij(t) − Pij(t)
}

, (8)

where Dm(t) is a weight to specify whether the mth ability is
indicated by the item given at t-th step. For the ability that
is indicated by the item, Dm(t) equals 1. For the ability that is
not indicated by the item, the weight takes values between zero
and one.

SIMULATION STUDY

To explore the performance of the M-ERS method in terms of
estimating the real-time evolution of multidimensional ability
parameters for individual learners, we apply the method to data
generated under a variety of conditions. In accordance with our
research questions, the simulation study consists of three parts.
In Study 1, we examine the result of a standard ERS that naively
assumes the unidimensionality of ability parameter, where in fact
data involve a multidimensional ability. In Study 2, we explore
the performance of the M-ERS in relation to the total number of
items answered. In Study 3, we investigate the performance of the
modified M-ERS in which both response time and accuracy data
are incorporated.

TABLE 1 | Patterns of multidimensionality (a sample of 15 items from two

item banks).

Item ID βj Item bank 1 Item bank 2

θ1 θ2 θ3 θ1 θ2 θ3

1 −2.534 1 . . 1 . .

2 −2.21 1 . . 1 . .

3 1.326 1 . . 1 . .

4 0.253 1 . . 1 . .

5 1.275 1 . . 1 . .

6 0.089 1 . . 1 . .

7 −0.001 1 1 . . 1 .

8 −1.256 1 1 . . 1 .

9 2.242 1 1 . . 1 .

10 −1.556 1 1 . . 1 .

11 2.213 1 1 . . 1 .

12 −3.3 1 . 1 . . 1

13 0.753 1 . 1 . . 1

14 −2.246 1 . 1 . . 1

15 −1.156 1 . 1 . . 1

“1” indicates that the item loads on the dimension.

Item Bank
Following the literature on the MIRT (e.g., Adams et al., 1997;
Hartig and Höhler, 2008), we consider two loading structures to
determine patterns of the multidimensionality. Specifically, two
types of item banks are created– (a) when items are allowed to
load onmore than a single ability dimension (“Item bank 1”); and
(b) when items are allowed to load on only one of the multiple
ability dimensions (“Item bank 2”). Each of them includes 200
operational items, measuring a total of three dimensions. Item
bank 1 consists of a primary dimension θ1 indicated by all the
items, and two auxiliary dimensions, θ2 and θ3, indicated by 35%
of items and the 25% of the remaining items. In Item bank 2, each
item involves only one out of the three dimensions. Specifically,
40% of items involves the 1st dimension, 35% of them involves
the 2nd dimension, and the remaining 25% of them involves the
3rd dimension (as an illustration, Table 1 gives a sample of 15
items from two item banks). Based on each item bank, data are
generated under a compensatory IRT model with difficulty and
discrimination parameters, mimicking realistic test items:

Pij = P
(

Yij = 1
)

=
exp

(

∑3
m=1 αmjθjm − βj

)

1+ exp
(

∑3
m=1 αmjθjm − βj

) , (9)

where the generating parameter values for the difficulty and the
slope parameters are drawn from βj ∼ N(0, 1) and αmj ∼

U(0.5, 2), where j = 1,. . . , 200 (items) andm =1, 2, 3 (dimensions
of ability).

Persons
A total of n = 250 learners are considered in the simulation
studies. The population distribution of ability parameters is taken
to be N(µ,6), where µ=(1, 1, 1)′. In 6, all variances are equal to
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1 and the three bivariate correlations are equal: dimensions were
independent (ρmm′ = 0.0), weakly correlated (ρmm′ = 0.2), or
moderately correlated (ρmm′ = 0.5).

A total of 6 data sets were generated by following 6 scenarios
(2 patterns of dimensionality × 3 correlations among ability
dimensions). In each condition, the M-ERS method will be used
to update the three ability parameter estimates for each learner as
he or she attempts on a sequence of items. We assume that each
learner is assigned a sequence of 200 items that are randomly
selected. That is, item sequences are varied across learners. In
M-ERS, in Equation (7), the expected response is estimated by
using a compensatory IRT model with a constraint that the slope
parameters αmj’s are equal to 1 for simplicity (the inclusion of
different loadings is a logical further extension). That is,

P
(

Yij(t) = 1
)

=
exp

(

∑3
m=1 θjm − βj

)

1+ exp
(

∑3
m=1 θjm − βj

) .

In the equation, we use step size K that linearly decreases as
a function of a total number of items answered between the
maximum value of 0.4 and the minimum value of 0.1. Note
that we assume that item difficulty parameters are considered as
known (based on a calibration study), and the difficulty estimates
therefore will not be further updated within the M-ERS.

STUDY 1: PREDICTION ACCURACY OF A
STANDARD ERS AND M-ERS

In the first study, we explore the extent to which the
unidimensional ability assumption embedded in a standard ERS
has an impact on the prediction accuracy (in terms of the learners’
future responses), when the truth is that the responses to the
learning items involve three-dimensional ability parameters. As
seen in Equation (8), predictions of the responses of learners
can be achieved by using the ERS algorithm based on the
known item parameters and the learner ability estimate(s)
predicted by the preceding step. The prediction accuracy is
calculated by classifying the expected response (= Pij(t)) with
a certain cut-point into the observed response (= Yij(t)) on
measurement occasion t. To evaluate the quality of predictions,
we use a Receiver Operating Characteristic curve (ROC). The
ROC curve represents the relation between true positive rates
[=TP/(TP + FN)] and false positive rates [FP/(FP + FN)] at
various probability cut-off points. In case of totally random
predictions, the Area Under Receiver Operating Characteristic
curve (AUROC) is approximately equal to 0.5.

Figure 1 visualizes the ROC curves, comparing the
performances of a standard ERS and the M-ERS. Each panel
in the figure includes 6 curves, representing a combination
of simulation conditions (2 patterns of dimensionality × 3
correlations among ability parameters). The x-axis and y-axis
indicate the false positive rate and the true positive rate. Note
that the best possible prediction method would yield a point
in the upper left corner or coordinate (0, 1) of the ROC space,
representing 100% sensitivity and specificity. Therefore, results
from the two panels suggest that M-ERS outperforms the

FIGURE 1 | Receiver operating characteristic (ROC) curves for a

standard ERS and M-ERS. Note. Each panel includes six ROC curves

representing a total of 6 simulation conditions (2 patterns of dimensionality × 3

correlations among ability parameters).

TABLE 2 | Area Under ROC curve (AUROC) for a standard ERS and M-ERS.

Item bank 1 Item bank 2

Standard ERS M-ERS Standard ERS M-ERS

ρ = 0.0 0.5197 0.8038 0.5216 0.7850

ρ = 0.2 0.5204 0.8070 0.5324 0.7900

ρ = 0.5 0.5496 0.8157 0.5494 0.7893

Average 0.5299 0.8088 0.5345 0.7881

standard ERS in all six simulated scenarios. Table 2 summarizes
the area under the ROC curves (AUROC). In case of M-ERS,
the AUROCs are much higher than the expected values using
random predictions (i.e., 0.5 for AUROC). It is seen that the
AUROCs for M-ERS are 0.8088 and 0.7881 for Item banks 1 and
2, respectively. However, the standard ERS generally reveals only
performs marginally better than the random predictions (i.e.,
0.5299 for Item bank 1 and 0.5345 for Item bank 2).

STUDY 2: ABILITY PARAMETER
ESTIMATION AS A FUNCTION OF
NUMBER OF ITEMS ANSWERED

In the second study, we investigate the performance of M-
ERS as a function of the total number of items answered.
We also examine the effect of different simulation conditions
(i.e., dimensionality patterns and correlations among true three
ability parameters) on the ability parameter estimation. To
evaluate the quality of the ability estimation, the estimated ability
parameters are summarized by mean squared error (MSE). In
particular, the differences between the true and estimated abilities
at measurement occasion t are squared, and averaged over the
entire sample size of new students. That is, for the learner i at the
measurement occasion t:

MSE(θ̂m(t)) =

∑N
i=1 (θ̂im(t) − θim(t))

2

N
(10)
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FIGURE 2 | Result of 3-dimensional ability estimation across the number of items answered. Cor, correlations between dimensions; D1, 1st dimension; D2, 2nd

dimension; D3, 3rd dimension.

Figure 2 includes line plots demonstrating the performances of
the M-ERS for two different patterns of dimensionality. Each
panel in the figure represents a different simulation condition
with the patterns of dimensionality (Item banks 1 and 2) and
the true correlations among ability parameters (ρmm′ = 0.0,
0.2, and 0.5), with a total number of items answered being on
the x-axis and the MSEs on the y-axis. The three lines in each
panel comprise the squared difference between the θ̂im(t) and
θim(t) averaged across n = 250 individual learners for the three
dimensions (“D1,” “D2,” and “D3” in the legend). Remind that the
three panels on the left-hand side summarize the performance of
the M-ERS method for Item bank 1 that exhibits one primary
dimensions plus two auxiliary dimensions (Item bank 1). The

other three on the right-hand side are based on the data where
each item involves only a single dimension. See the section of
“Study Design” for more details.

Overall, results suggest that that the MSEs tend to decrease
as the total number of items answered increases. The finding
is common to all three dimensions (“D1,” “D2,” and “D3”),
but the speed of decrease varies by the number of items the
ability dimension involves. For Item bank 1 (column left), it
is seen that MSE for the 1st dimension (on which all items
load) reveals a dramatic decrease while the first 20 items are
answered (to around 0.2). Similarly, though more gradually,
MSEs for 2nd and 3rd dimensions (on which only 35 and 25%
of the items load) also tend to decrease. In these two auxiliary
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dimensions, however, the MSE does not reach 0.2, even up to
200 items.

For Item bank 2 (column right), on the other hand, the
degrees of the decreasing trends are extremely similar among
the three dimensions. This can be explained by the fact that
the three dimensions involve a similar amount of items i.e., 40,
35, and 25% of items load on the D1, D2, and D3, respectively.
For moderate scenarios, in particular, the difference becomes
extremely tiny. It is seen that the true correlations among
ability parameters do not have an impact on MSEs across any
measurement occasions.

As an alternative way to check the performance of M-ERS,
Figure 3 compares the ability estimates of 250 learners after 200
Elo-updates with the expected a posteriori (EAP) ability estimates
obtained by fitting a compensatory IRT approach. Overall, ability
estimates from EAP and M-ERS are highly correlated, regardless
of any simulation conditions and the ability dimensions. The
correlation coefficients (3 dimensions × 2 item banks × 3
correlation among true abilities) range from 0.967 to 0.990.
Note that the EAP estimates are the results of an analysis that
requires responses of many persons on many items, and is
computing-intensive and therefore cannot be used on the fly.
Therefore, the EAP estimates are used here as a benchmark,
but they cannot be considered as a viable alternative for the
ERS approach.

STUDY 3: M-ERS FOR
SPEED-ACCURACY TRADEOFF

There have been an increasing number of studies (e.g., Tuerlinckx
and De Boeck, 2005; van der Linden, 2007; De Boeck et al., 2017)
that account for response time as well as response accuracy in
order to model the ability parameter. Of several statistical and
psychological approaches to the response time modeling (van
der Linden, 2009), one of the promising methods is to model
response time and accuracy from the measurement perspective
by two-step procedures; specifically, (a) setting up a scoring
rule and (b) fitting a proper statistical model that conforms
scores of the type. Klinkenberg et al. (2011) showed that the
ERS method outperforms a standard CAT method (specifically,
Eggen and Verschoor, 2006) when the speed-accuracy trade-
off scores [so called high speed high stake (HSHS)] and the
corresponding model were used. We do not know studies
that model multidimensional ability trajectories based on both
response time and accuracy within ERS. Therefore, we aim
to explore the incorporation of the HSHS scoring rule in the
proposed M-ERS method.

According to the HSHS scoring rule, the observed scores can
be calculated as follows: Sij = (2Yij − 1)(d − Tij), where Yij is
an accuracy for the learner i’s response to the item j, d is a time
limit, and Tij is an time spent for the learner i until answering
the item j. In this expression the residual time i.e., (d − Tij)
can compensate or penalize for the learner, corresponding to the
learner’s accuracy to the item. In particular, for a correct response
(i.e., Yij = 1), the learner will gain the residual time as a score.
Similarly, for an incorrect response (i.e., Yij = 0), the score will

FIGURE 3 | Relations between EAP and M-ERS estimates.

be reduced by the same amount. In current study, the maximum
time given each item (= d) is restricted to be 1, so the residual
time simply reflects the proportion of time left. Such a scoring
scheme is especially useful to control for the case that the learner
guesses instantaneously guess the given item (a quick incorrect
answer). The expectation of the trade-off score, E(Sij), for an item
that is based on three abilities can naturally be extended from
a unidimensional version in Maris and Van der Maas (2012).
That is,

E
(

Sij
)

=
exp

(

2(
∑3

m=1 θim − βj)
)

+ 1

exp
(

2(
∑3

m=1 θim − βj)
)

− 1
−

1
(

∑3
m=1 θim − βj

) ,

(11)

where m =1, 2, 3 (abilities). Specifically, the E
(

Sij
)

in Equation
(10) provides the expected HSHS score for learner i’s to solve the
item j.

We conduct a simulation study to compare this approach
with the M-ERS method based on the accuracy data only. The
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TABLE 3 | Comparing IRT-based ERS algorithms for correctness vs. trade-off

score (correctness and speediness combined).

ρ = 0.0 ρ = 0.2 ρ = 0.5

|Bias| MSE |Bias| MSE |Bias| MSE

ITEM BANK 1

θ̂1 Accuracy 0.009 0.300 0.008 0.286 0.009 0.289

Speed-accuracy 0.008 0.245 0.008 0.232 0.007 0.213

θ̂2 Accuracy 0.010 0.364 0.009 0.363 0.010 0.382

Speed-accuracy 0.009 0.306 0.009 0.298 0.009 0.307

θ̂3 Accuracy 0.010 0.400 0.010 0.395 0.010 0.392

Speed-accuracy 0.009 0.337 0.009 0.336 0.009 0.332

ITEM BANK 2

θ̂1 Accuracy 0.008 0.291 0.008 0.294 0.008 0.290

Speed-accuracy 0.008 0.245 0.008 0.251 0.008 0.252

θ̂2 Accuracy 0.008 0.299 0.008 0.290 0.008 0.291

Speed-accuracy 0.008 0.260 0.008 0.245 0.008 0.252

θ̂3 Accuracy 0.009 0.337 0.009 0.353 0.009 0.315

Speed-accuracy 0.008 0.299 0.009 0.310 0.008 0.278

|Bias|, absolute value of the bias averaged over learners and items; MSE, a mean squared

error averaged over learners and items.

entire data-generating process follows what is described in the
section “Study Design.” The response time data is generated for
each learner who solves each item, using a formula for expected
response time from Maris and Van der Maas (2012), where the
time limit for each item is consistently set at 1-min. Like in studies
1 and 2, the simulation conditions are combinations of patterns
of dimensionality (Item banks 1 and 2) and the true correlations
among ability parameters (ρmm′ = 0.0, 0.2, and 0.5).

Table 3 comprises two tables that compare the performance
of two M-ERS method when only accuracy data are used
(“Accuracy”) or both speed and accuracy data (“Speed-
Accuracy”) are used. Overall results suggest that M-ERS for
speed-accuracy data shows smaller MSE, regardless of any
simulation conditions.

REAL DATA ANALYSIS

Description
For illustrative purposes, we used a dataset collected from a web-
based learning platform, “Number Sense” (Linsen et al., 2016)
developed by KU Leuven, Belgium. It was designed as an item-
based e-learning environment for 6- to 8-year-old children and
includes approximate number discrimination tasks, symbolic
comparison tasks, and symbolic and non-symbolic number
line estimation tasks. In particular, current data were collected
between Fall 2017 and Spring 2018, during one school year.
It includes data from 299 students’ responses to 330 items in
total. Among the items, 168 of them are designed to measure
(a) comparison ability and the remaining 162 items are designed
to measure (b) number line estimation ability. There were no
items that require both. All responses to the items are scored
for accuracy i.e., the binary scale (correct/incorrect). Current log
data do not include response times.

For the purpose of obtaining item parameters, data from
200 out of 299 students were used to fit a MIRT formula i.e.,

P
(

Yij = 1
)

=
exp(θj1+θj2−βj)

1+exp(θj1+θj2−βj)
, where θi1 and θi2 reflect abilities

in relation to the comparison and number line estimation,
respectively. The remaining 99 students were used to illustrate
the Elo algorithm. For the estimation procedure with this training
set, the MCMC algorithm is implemented with R 3.3.3 (R Core
Team, 2013). More specifically, JAGS (Plummer, 2015) was
implemented by an R package “R2jags” (Su and Yajima, 2015) that
provides wrapper functions for the Bayesian analysis program.
For each analysis with the JAGS, four chains were run, and
each ran for 10,000 iterations. We used a thinning parameter
of four and used the first half as burn-in. (Gelman and Rubin’s,
1995) statistics are used for a convergence diagnostic. Results of
the Bayesian inference show that the posterior predictive mean
for the correlation between the comparison and number line
estimation abilities (i.e., θi1 and θi2) was approximately ρ̂ =

0.13. The posterior predictivemeans for item discriminations and
difficulties (i.e., α̂mj and β̂j) were used as known item parameters,
and where therefore not updated within the Elo algorithm.

Results
Figure 4 shows the resulting ability trajectory of two randomly
chosen students by fitting a standard ERS and the M-ERS.
As in the simulation result, the figure presents the impact of
assuming unidimensionality or multidimensionality of the ability
parameter. It is noticeable that the ability estimates obtained by
a standard ERS are in general greater than the two-dimensional
ability estimates from the M-ERS. Based on the similarity
of the Number Sense data to the data we generated in the
simulation and the results we found there, we can suspect that
the unidimensional ERS ability estimates for the Number Sense
items are biased (upward), and the M-ERS has removed the bias.
That implies that ignoring the multidimensional data structure
may cause considerable bias in ability trajectory estimation in the
learning environment, and therefore in a suboptimal adaptivity
of the learning environment. After a longer sequence of items
in the session, however, it is shown that the gaps among four
approaches tend to be negligible.

CONCLUSION

In this paper, we have proposed an MIRT-based ERS method
to address a dynamic estimation of the learner’s progress in an
adaptive practice environment where the learning items exhibit a
multidimensional ability criteria. The model combines the idea
of using a compensatory MIRT model to predict the learner
performance with a fast and heuristic algorithm for tracking his
or her irregular trend of ability parameters through the ERS.

First, we have shown that there occurs a considerable error
in terms of updating the ability changes, when a unidimensional
IRT is used in ERS when the truth is that there is a
multidimensionality in a set of items. We have shown that the
error in estimating the ability parameters can be alleviated with
the compensatory IRT in ERS. Second, we have shown that at the
initial step of learning, the error of ability estimates are bigger
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FIGURE 4 | Example of ability estimates for a student by standard ERS and M-ERS.

where each individual item involves more than one dimensions,
as compared to the case where the item purely involves one
of the multiple dimensions. However, we have found that the
error has been noticeably reduced as more items are rendered.
Third, we have extended the M-ERS method for the trade-off
scores between response time and accuracy. Results show that
bias and MSE of ability estimates are smaller when the HSHS
(i.e., the speed-accuracy trade-off scoring that gives penalty for
guessing) was incorporated in M-ERS than using the accuracy
data only.

We believe that our approach offers the possibility to improve
adaptivity when applied in an adaptive environment. In our
simulation study, the items were chosen randomly across
measurement occasions for each student, but it is also possible
to administer items that optimize the item selection criteria. For
example, the item can be chosen such that its difficulty level is as
close as possible to the learner’s current ability (e.g., 50% chance
of answering correctly). In the ERS based on the IRT formula,
such an item selection strategy can be flexibly adjusted to avoid
too easy (e.g., 90% chance of answering correctly) or too hard
(e.g., 25% chance of answering correctly) items to individual
learners. That means that the ERS can provide a flexible item
sequencing tool for adaptivity in which a series of items are
updated in real time based on their ability or knowledge levels
(Wauters et al., 2010).

Another idea that may arise when considering to deal with
ability estimation in ERS is to handle the cold-start problem i.e.,
the system does not know a new learner’s ability level in the
beginning of learning stage, when the new learner comes into
the e-learning system for the first time. The cold start problem
may also occur when a learner leave the e-learning system for a
while and return (i.e., between-session period) because external
effects could lead to the ability level change. Finally, the current
simulation study shows a few limitations. For instance, the true
ability was assumed to be constant over time, although it tends to
evolve in learning environments. Including a time trend can add
additional challenges, such as the determination of a step size that

is large enough to keep track of the evolving ability but not too
large in order to avoid very instable ability estimates.

Nevertheless, we believe the results of current study provide
valuable information about how to efficiently follow up estimate
multidimensional ability changes in the e-learning environments
in order to alleviate concerns about the ERS and catalyze the
usefulness of the e-learning system in educational settings.
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Complex problem-solving (CPS) ability has been recognized as a central 21st century

skill. Individuals’ processes of solving crucial complex problems may contain substantial

information about their CPS ability. In this paper, we consider the prediction of duration

and final outcome (i.e., success/failure) of solving a complex problem during task

completion process, by making use of process data recorded in computer log files.

Solving this problem may help answer questions like “how much information about an

individual’s CPS ability is contained in the process data?,” “what CPS patterns will yield a

higher chance of success?,” and “what CPS patterns predict the remaining time for task

completion?” We propose an event history analysis model for this prediction problem.

The trained prediction model may provide us a better understanding of individuals’

problem-solving patterns, which may eventually lead to a good design of automated

interventions (e.g., providing hints) for the training of CPS ability. A real data example

from the 2012 Programme for International Student Assessment (PISA) is provided

for illustration.

Keywords: process data, complex problem solving, PISA data, response time, event history analysis

1. INTRODUCTION

Complex problem-solving (CPS) ability has been recognized as a central 21st century skill of
high importance for several outcomes including academic achievement (Wüstenberg et al., 2012)
and workplace performance (Danner et al., 2011). It encompasses a set of higher-order thinking
skills that require strategic planning, carrying out multi-step sequences of actions, reacting to a
dynamically changing system, testing hypotheses, and, if necessary, adaptively coming up with
new hypotheses. Thus, there is almost no doubt that an individual’s problem-solving process data
contain substantial amount of information about his/her CPS ability and thus are worth analyzing.
Meaningful information extracted from CPS process data may lead to better understanding,
measurement, and even training of individuals’ CPS ability.

Problem-solving process data typically have a more complex structure than that of panel data
which are traditionally more commonly encountered in statistics. Specifically, individuals may
take different strategies toward solving the same problem. Even for individuals who take the
same strategy, their actions and time-stamps of the actions may be very different. Due to such
heterogeneity and complexity, classical regression and multivariate data analysis methods cannot
be straightforwardly applied to CPS process data.

Possibly due to the lack of suitable analytic tools, research on CPS process data is limited. Among
the existing works, none took a prediction perspective. Specifically, Greiff et al. (2015) presented a
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case study, showcasing the strong association between a specific
strategic behavior (identified by expert knowledge) in a CPS
task from the 2012 Programme for International Student
Assessment (PISA) and performance both in this specific task
and in the overall PISA problem-solving score. He and von
Davier (2015, 2016) proposed an N-gram method from natural
language processing for analyzing problem-solving items in
technology-rich environments, focusing on identifying feature
sequences that are important to task completion. Vista et al.
(2017) developed methods for the visualization and exploratory
analysis of students’ behavioral pathways, aiming to detect
action sequences that are potentially relevant for establishing
particular paths as meaningful markers of complex behaviors.
Halpin and De Boeck (2013) and Halpin et al. (2017) adopted
a Hawkes process approach to analyzing collaborative problem-
solving items, focusing on the psychological measurement of
collaboration. Xu et al. (2018) proposed a latent class model that
analyzes CPS patterns by classifying individuals into latent classes
based on their problem-solving processes.

In this paper, we propose to analyze CPS process data from
a prediction perspective. As suggested in Yarkoni and Westfall
(2017), an increased focus on prediction can ultimately lead us
to greater understanding of human behavior. Specifically, we
consider the simultaneous prediction of the duration and the
final outcome (i.e., success/failure) of solving a complex problem
based on CPS process data. Instead of a single prediction, we
hope to predict at any time during the problem-solving process.
Such a data-driven prediction model may bring us insights
about individuals’ CPS behavioral patterns. First, features that
contribute most to the prediction may correspond to important
strategic behaviors that are key to succeeding in a task. In this
sense, the proposed method can be used as an exploratory data
analysis tool for extracting important features from process data.
Second, the prediction accuracy may also serve as a measure of
the strength of the signal contained in process data that reflects
one’s CPS ability, which reflects the reliability of CPS tasks from
a prediction perspective. Third, for low stake assessments, the
predicted chance of success may be used to give partial credits
when scoring task takers. Fourth, speed is another important
dimension of complex problem solving that is closely associated
with the final outcome of task completion (MacKay, 1982).
The prediction of the duration throughout the problem-solving
process may provide us insights on the relationship between
the CPS behavioral patterns and the CPS speed. Finally, the
prediction model also enables us to design suitable interventions
during their problem-solving processes. For example, a hint may
be provided when a student is predicted having a high chance to
fail after sufficient efforts.

More precisely, we model the conditional distribution of
duration time and final outcome given the event history up
to any time point. This model can be viewed as a special
event history analysis model, a general statistical framework for
analyzing the expected duration of time until one or more events
happen (see e.g., Allison, 2014). The proposed model can be
regarded as an extension to the classical regression approach.
The major difference is that the current model is specified over
a continuous-time domain. It consists of a family of conditional

models indexed by time, while the classical regression approach
does not deal with continuous-time information. As a result, the
proposed model supports prediction at any time during one’s
problem-solving process, while the classical regression approach
does not. The proposed model is also related to, but substantially
different from response time models (e.g., van der Linden,
2007) which have received much attention in psychometrics in
recent years. Specifically, response time models model the joint
distribution of response time and responses to test items, while
the proposed model focuses on the conditional distribution of
CPS duration and final outcome given the event history.

Although the proposed method learns regression-type models
from data, it is worth emphasizing that we do not try to
make statistical inference, such as testing whether a specific
regression coefficient is significantly different from zero. Rather,
the selection and interpretation of the model are mainly justified
from a prediction perspective. This is because statistical inference
tends to draw strong conclusions based on strong assumptions on
the data generation mechanism. Due to the complexity of CPS
process data, a statistical model may be severely misspecified,
making valid statistical inference a big challenge. On the other
hand, the prediction framework requires less assumptions and
thus is more suitable for exploratory analysis. More precisely,
the prediction framework admits the discrepancy between
the underlying complex data generation mechanism and the
prediction model (Yarkoni and Westfall, 2017). A prediction
model aims at achieving a balance between the bias due to this
discrepancy and the variance due to a limited sample size. As
a price, findings from the predictive framework are preliminary
and only suggest hypotheses for future confirmatory studies.

The rest of the paper is organized as follows. In Section 2, we
describe the structure of complex problem-solving process data
and then motivate our research questions, using a CPS item from
PISA 2012 as an example. In Section 3, we formulate the research
questions under a statistical framework, propose a model, and
then provide details of estimation and prediction. The introduced
model is illustrated through an application to an example item
from PISA 2012 in Section 4. We discuss limitations and future
directions in Section 5.

2. COMPLEX PROBLEM-SOLVING
PROCESS DATA

2.1. A Motivating Example
We use a specific CPS item, CLIMATE CONTROL (CC)1,
to demonstrate the data structure and to motivate our
research questions. It is part of a CPS unit in PISA 2012
that was designed under the “MicroDYN” framework (Greiff
et al., 2012; Wüstenberg et al., 2012), a framework for the
development of small dynamic systems of causal relationships for
assessing CPS.

In this item, students are instructed to manipulate the panel
(i.e., to move the top, central, and bottom control sliders; left side
of Figure 1A) and to answer how the input variables (control

1The item can be found on the OECD website (http://www.oecd.org/pisa/test-

2012/testquestions/question3/)
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FIGURE 1 | (A) Simulation environment of CC item. (B) Answer diagram of CC item.

sliders) are related to the output variables (temperature and
humidity). Specifically, the initial position of each control slider
is indicated by a triangle “N.” The students can change the top,
central and bottom controls on the left of Figure 1 by using
the sliders. By clicking “APPLY,” they will see the corresponding
changes in temperature and humidity. After exploration, the
students are asked to draw lines in a diagram (Figure 1B)
to answer what each slider controls. The item is considered
correctly answered if the diagram is correctly completed. The
problem-solving process for this item is that the students must
experiment to determine which controls have an impact on
temperature and which on humidity, and then represent the
causal relations by drawing arrows between the three inputs
(top, central, and bottom control sliders) and the two outputs
(temperature and humidity).

PISA 2012 collected students’ problem-solving process data
in computer log files, in the form of a sequence of time-
stamped events. We illustrate the structure of data in Table 1 and
Figure 2, where Table 1 tabulates a sequence of time-stamped
events from a student and Figure 2 visualizes the corresponding
event time points on a time line. According to the data, 14
events were recorded between time 0 (start) and 61.5 s (success).
The first event happened at 29.5 s that was clicking “APPLY”
after the top, central, and bottom controls were set at 2, 0, and
0, respectively. A sequence of actions followed the first event
and finally at 58, 59.1, and 59.6 s, a final answer was correctly
given using the diagram. It is worth clarifying that this log
file does not collect all the interactions between a student and
the simulated system. That is, the status of the control sliders
is only recorded in the log file, when the “APPLY” button
is clicked.

The process data for solving a CPS item typically have two
components, knowledge acquisition and knowledge application,
respectively. This CC item mainly focuses the former, which
includes learning the causal relationships between the inputs
and the outputs and representing such relationships by drawing
the diagram. Since data on representing the causal relationship
is relatively straightforward, in the rest of the paper, we focus
on the process data related to knowledge acquisition and only
refer a student’s problem-solving process to his/her process of
exploring the air conditioner, excluding the actions involving the
answer diagram.

TABLE 1 | An example of computer log file data from CC item in PISA 2012.

Time Event

0 Start.

29.5 Set top, central, and bottom controls at 2, 0, and 0, respectively,

and click APPLY.

32.4 Set top, central, and bottom controls at 0, 0, and 0, respectively,

and click APPLY.

35.2 Click RESET.

36.2 Set all three controls at 0, and click APPLY.

.

.

.
.
.
.

58 Connecting ”top control” with ”temperature.”

59.1 Connecting ”central control” with ”humidity.”

59.6 Connecting ”bottom control” with ”humidity.”

61.5 Success.

Intuitively, students’ problem-solving processes contain
information about their complex problem-solving ability,
whether in the context of the CC item or in a more general
sense of dealing with complex tasks in practice. However, it
remains a challenge to extract meaningful information from
their process data, due to the complex data structure. In
particular, the occurrences of events are heterogeneous (i.e.,
different people can have very different event histories) and
unstructured (i.e., there is little restriction on the order and time
of the occurrences). Different students tend to have different
problem-solving trajectories, with different actions taken at
different time points. Consequently, time series models, which
are standard statistical tools for analyzing dynamic systems, are
not suitable here.

2.2. Research Questions
We focus on two specific research questions. Consider an
individual solving a complex problem. Given that the individual
has spent t units of time and has not yet completed the task,
we would like to ask the following two questions based on
the information at time t: How much additional time does the
individual need? And will the individual succeed or fail upon the
time of task completion?
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FIGURE 2 | Visualization of the structure of process data from CC item in

PISA 2012.

Suppose we index the individual by i and let Ti be the total
time of task completion and Yi be the final outcome. Moreover,
we denote Hi(t) = (hi1(t), ..., hip(t))

⊤ as a p-vector function of
time t, summarizing the event history of individual i from the
beginning of task to time t. Each component of Hi(t) is a feature
constructed from the event history up to time t. Taking the above
CC item as an example, components ofHi(t) may be, the number
of actions a student has taken, whether all three control sliders
have been explored, the frequency of using the reset button, etc.,
up to time t. We refer to Hi(t) as the event history process of
individual i. The dimension p may be high, depending on the
complexity of the log file.

With the above notation, the two questions become to
simultaneously predict Ti and Yi based onHi(t). Throughout this
paper, we focus on the analysis of data from a single CPS item.
Extensions of the current framework to multiple-item analysis
are discussed in Section 5.

3. PROPOSED METHOD

3.1. A Regression Model
We now propose a regression model to answer the two questions
raised in Section 2.2. We specify the marginal conditional models
of Yi and Ti given Hi(t) and Ti > t, respectively. Specifically,
we assume

P(Yi = 1|Hi(t),Ti > t) = 8(b11hi1(t)+ · · · + b1phip(t)), (1)

E(log(Ti − t)|Hi(t),Ti > t) = b21hi1(t)+ · · · + b2phip(t), (2)

and

Var(log(Ti − t)|Hi(t),Ti > t) = σ
2, (3)

where 8 is the cumulative distribution function of a standard
normal distribution. That is, Yi is assumed to marginally follow
a probit regression model. In addition, only the conditional
mean and variance are assumed for log(Ti − t). Our model
parameters include the regression coefficients B = (bjk)2×p and

conditional variance σ
2. Based on the above model specification,

a pseudo-likelihood function will be devived in Section 3.3 for
parameter estimation.

Although only marginal models are specified, we point out
that the model specifications (1) through (3) impose quite strong
assumptions. As a result, the model may not most closely
approximate the data-generating process and thus a bias is likely
to exist. On the other hand, however, it is a working model that
leads to reasonable prediction and can be used as a benchmark
model for this prediction problem in future investigations.

We further remark that the conditional variance of log(Ti− t)
is time-invariant under the current specification, which can be
further relaxed to be time-dependent. In addition, the regression
model for response time is closely related to the log-normal
model for response time analysis in psychometrics (e.g., van der
Linden, 2007). The major difference is that the proposed model is
not a measurement model disentangling item and person effects
on Ti and Yi.

3.2. Prediction
Under the model in Section 3.1, given the event history, we
predict the final outcome based on the success probability
8(b11hi1(t) + · · · + b1phip(t)). In addition, based on the
conditional mean of log(Ti − t), we predict the total time at time
t by t + exp(b21hi1(t) + · · · + b2phip(t)). Given estimates of B
from training data, we can predict the problem-solving duration
and final outcome at any t for an individual in the testing sample,
throughout his/her entire problem-solving process.

3.3. Parameter Estimation
It remains to estimate the model parameters based on a training
dataset. Let our data be (τi, yi) and {Hi(t) : t ≥ 0}, i = 1, ...,N,
where τi and yi are realizations of Ti and Yi, and {Hi(t) : t ≥ 0} is
the entire event history.

We develop estimating equations based on a pseudo
likelihood function. Specifically, the conditional distribution of
Yi givenHi(t) and Ti > t can be written as

f1(y|Hi(t), τ > t; b1) = 8(b⊤1 Hi(t))
y(1− 8(b⊤1 Hi(t)))

1−y,

where b1 = (b11, ..., b1p)
⊤. In addition, using the log-normal

model as a working model for Ti − t, the corresponding
conditional distribution of Ti can be written as

f2(τ |Hi(t), τ > t; b2, σ ) =
1

(τ − t)σ
√
2π

(4)

exp

(

−
(log(τ − t)− (b⊤2 Hi(t)))

2

2σ 2

)

,

where b2 = (b21, ..., b2p)
⊤. The pseudo-likelihood is then

written as

L(B, σ ) =

N
∏

i=1

J
∏

j=1

(

f1(yi|Hi(tj), τi > tj; b1)f2(τi|Hi(tj), τi > tj; b2, σ )
)1{τi>tj} ,

(5)
where t1, ..., tJ are J pre-specified grid points that spread out
over the entire time spectrum. The choice of the grid points will
be discussed in the sequel. By specifying the pseudo-likelihood
based on the sequence of time points, the prediction at different
time is taken into accounting in the estimation. We estimate
the model parameters by maximizing the pseudo-likelihood
function L(B, σ ).

In fact, (5) can be factorized into

L(B, σ ) = L1(b1)L2(b2, σ ),
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where

L1(b1) =

N
∏

i=1

J
∏

j=1

(f1(yi|Hi(tj), τi > tj; b1))
1{τi>tj} , (6)

and

L2(b2, σ ) =

N
∏

i=1

J
∏

j=1

(f2(τi|Hi(tj), τi > tj; b2, σ ))
1{τi>tj} . (7)

Therefore, b1 is estimated by maximizing L1(b1), which takes the
form of a likelihood function for probit regression. Similarly, b2
and σ are estimated by maximizing L2(b2, σ ), which is equivalent
to solving the following estimation equations,

N
∑

i=1

J
∑

j=1

1{τi>tj}

(

log(τi − tj)− b⊤2 Hi(tj)
)

hik(tj) = 0, k = 1, ..., p,

(8)
and

N
∑

i=1

J
∑

j=1

1{τi>tj}

(

σ
2 − (log(τi − tj)− b⊤2 Hi(tj))

2
)

= 0. (9)

The estimating equations (8) and (9) can also be derived directly
based on the conditional mean and variance specification of
log(Ti−t). Solving these equations is equivalent to solving a linear
regression problem, and thus is computationally easy.

3.4. Some Remarks
We provide a few remarks. First, choosing suitable features
into Hi(t) is important. The inclusion of suitable features
not only improves the prediction accuracy, but also facilitates
the exploratory analysis and interpretation of how behavioral
patterns affect CPS result. If substantive knowledge about a
CPS task is available from cognition theory, one may choose
features that indicate different strategies toward solving the task.
Otherwise, a data-driven approach may be taken. That is, one
may select a model from a candidate list based on certain cross-
validation criteria, where, if possible, all reasonable features
should be consider as candidates. Even when a set of features has
been suggested by cognition theory, one can still take the data-
driven approach to find additional features, which may lead to
new findings.

Second, one possible extension of the proposed model is
to allow the regression coefficients to be a function of time t,
whereas they are independent of time under the current model.
In that case, the regression coefficients become functions of time,
bjk(t). The current model can be regarded as a special case of
this more general model. In particular, if bjk(t) has high variation
along time in the best predictive model, then simply applying the
current model may yield a high bias. Specifically, in the current
estimation procedure, a larger grid point tends to have a smaller
sample size and thus contributes less to the pseudo-likelihood
function. As a result, a larger bias may occur in the prediction

at a larger time point. However, the estimation of the time-
dependent coefficient is non-trivial. In particular, constraints
should be imposed on the functional form of bjk(t) to ensure a
certain level of smoothness over time. As a result, bjk(t) can be
accurately estimated using information from a finite number of
time points. Otherwise, without any smoothness assumptions, to
predict at any time during one’s problem-solving process, there
are an infinite number of parameters to estimate.Moreover, when
a regression coefficient is time-dependent, its interpretation
becomes more difficult, especially if the sign changes over time.

Third, we remark on the selection of grid points in the
estimation procedure. Our model is specified in a continuous
time domain that supports prediction at any time point in
a continuum during an individual’s problem-solving process.
The use of discretized grid points is a way to approximate the
continuous-time system, so that estimation equations can be
written down. In practice, we suggest to place the grid points
based on the quantiles of the empirical distribution of duration
based on the training set. See the analysis in Section 4 for an
illustration. The number of grid points may be further selected by
cross validation.We also point out that prediction can be made at
any time point on the continuum, not limited to the grid points
for parameter estimation.

4. AN EXAMPLE FROM PISA 2012

4.1. Background
In what follows, we illustrate the proposed method via an
application to the above CC item2. This item was also analyzed in
Greiff et al. (2015) and Xu et al. (2018). The dataset was cleaned
from the entire released dataset of PISA 2012. It contains 16,872
15-year-old students’ problem-solving processes, where the
students were from 42 countries and economies. Among these
students, 54.5% answered correctly. On average, each student
took 129.9 s and 17 actions solving the problem. Histograms of
the students’ problem-solving duration and number of actions
are presented in Figure 3.

4.2. Analyses
The entire dataset was randomly split into training and testing
sets, where the training set contains data from 13,498 students
and the testing set contains data from 3,374 students. A predictive
model was built solely based on the training set and then its
performance was evaluated based on the testing set. We used
J = 9 grid points for the parameter estimation, with t1 through
t9 specified to be 64, 81, 94, 106, 118, 132, 149, 170, and
208 s, respectively, which are the 10% through 90% quantiles
of the empirical distribution of duration. As discussed earlier,
the number of grid points and their locations may be further
engineered by cross validation.

4.2.1. Model Selection
We first build a model based on the training data, using a
data-driven stepwise forward selection procedure. In each step,

2The log file data and code book for the CC item can be found online: http://www.

oecd.org/pisa/pisaproducts/database-cbapisa2012.htm.
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FIGURE 3 | (A) Histogram of problem-solving duration of the CC item. (B) Histogram of the number of actions for solving the CC item.

we add one feature into Hi(t) that leads to maximum increase
in a cross-validated log-pseudo-likelihood, which is calculated
based on a five-fold cross validation. We stop adding features
into Hi(t) when the cross-validated log-pseudo-likelihood stops
increasing. The order in which the features are added may serve
as a measure of their contribution to predicting the CPS duration
and final outcome.

The candidate features being considered for model selection
are listed in Table 2. These candidate features were chosen to
reflect students’ CPS behavioral patterns from different aspects.
In what follows, we discuss some of them. For example, the

feature Ii(t) indicates whether or not all three control sliders have
been explored by simple actions (i.e., moving one control slider

at a time) up to time t. That is, Ii(t) = 1 means that the vary-

one-thing-at-a-time (VOTAT) strategy (Greiff et al., 2015) has
been taken. According to the design of the CC item, the VOTAT

strategy is expected to be a strong predictor of task success. In

addition, the feature Ni(t)/t records a student’s average number
of actions per unit time. It may serve as a measure of the student’s
speed of taking actions. In experimental psychology, response
time or equivalently speed has been a central source for inferences
about the organization and structure of cognitive processes (e.g.,
Luce, 1986), and in educational psychology, joint analysis of
speed and accuracy of item response has also received much
attention in recent years (e.g., van der Linden, 2007; Klein Entink
et al., 2009). However, little is known about the role of speed
in CPS tasks. The current analysis may provide some initial
result on the relation between a student’s speed and his/her CPS
performance. Moreover, the features defined by the repeating of
previously taken actions may reflect students’ need of verifying
the derived hypothesis on the relation based on the previous
action or may be related to students’ attention if the same actions
are repeated many times. We also include 1, t, t2, and t3 in
Hi(t) as the initial set of features to capture the time effect. For
simplicity, country information is not taken into account in the
current analysis.

Our results on model selection are summarized in Figure 4

and Table 3. The pseudo-likelihood stopped increasing after 11
steps, resulting a final model with 15 components in Hi(t). As
we can see from Figure 4, the increase in the cross-validated
log-pseudo-likelihood is mainly contributed by the inclusion
of features in the first six steps, after which the increment

TABLE 2 | The list of candidate features to be incorporated into the model.

Feature Explanation

1. Ni (t) Number of actions taken up to time t.

2. Ni (t)/t Frequency of actions up to time t.

3. 1{Ni (t)>0} Indicator of whether an action has been taken before time t.

4. Si (t) Number of simple actions (i.e., moving one control slider at a

time)

taken up to time t.

5. Si (t)/t Frequency of simple actions up to time t.

6. 1{Si (t)>0} Indicator of whether a simple action has been taken before

time t.

7. Ii (t) An indicator function, Ii (t) = 1 if all three control sliders

have been explored via simple actions up to time t and

Ii (t) = 0, otherwise.

8. Ri (t) Number of RESET used up to time t.

9. Ri (t)/t Frequency of RESET up to time t.

10. 1{Ri (t)>0} Indicator of whether RESET has been used before time t.

11. RPi (t) Number of times that previously taken actions (excluding

RESET)are repeated.

12. RPi (t)/t Frequency of repeating previously taken actions (excluding

RESET).

13. 1{RPi (t)>0} Indicator of repeating previously taken actions (excluding

RESET).

is quite marginal. As we can see, the first, second, and sixth
features entering into the model are all related to taking simple
actions, a strategy known to be important to this task (e.g.,
Greiff et al., 2015). In particular, the first feature being selected
is Ii(t), which confirms the strong effect of the VOTAT strategy.
In addition, the third and fourth features are both based on
Ni(t), the number of actions taken before time t. Roughly, the
feature 1{Ni(t)>0} reflects the initial planning behavior (Eichmann
et al., 2019). Thus, this feature tends to measure students’
speed of reading the instruction of the item. As discussed
earlier, the feature Ni(t)/t measures students’ speed of taking
actions. Finally, the fifth feature is related to the use of the
RESET button.

4.2.2. Prediction Performance on Testing Set
We now look at the prediction performance of the above model
on the testing set. The prediction performance was evaluated
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FIGURE 4 | The increase in the cross-validated log-pseudo-likelihood based on a stepwise forward selection procedure. (A–C) plot the cross-validated

log-pseudo-likelihood, corresponding to L(B, σ ), L1(b1), L2(b2, σ ), respectively.

TABLE 3 | Results on model selection based on a stepwise forward selection

procedure.

Step Var.add Lik Lik.out Lik.dur

0. 1, t, t2, t3 –72241.7 –63867.9 –8373.7

1. Ii (t) –70663.0 –62856.1 –7806.9

2. 1{Si (t)>0} –70058.3 –62617.0 –7441.4

3. 1{Ni (t)>0} –69744.9 –62315.2 –7429.7

4. Ni (t)/t –69672.7 –62237.6 –7435.1

5. 1{Ri (t)>0} –69601.3 –62239.9 –7361.4

6. Si (t)/t -69547.6 –62226.8 –7320.8

7. RPi (t)/t –69522.5 –62205.1 –7317.4

8. 1{RPi (t)>0} –69507.0 -62190.0 –7317.0

9. Ri (t) –69500.8 –62191.9 –7308.9

10. Ni (t) –69499.4 –62192.6 –7306.8

11. RPi (t) –69498.5 –62191.8 –7306.7

The columns “Lik,” “Lik.out,” and “Lik.dur” give the value of the cross-validated log-

pseudo-likelihood, corresponding to L(B, σ ), L1 (b1 ), L2 (b2, σ ), respectively.

at a larger set of time points from 19 to 281 s. Instead of
reporting based on the pseudo-likelihood function, we adopted
two measures that are more straightforward. Specifically, we
measured the prediction of final outcome by the Area Under the
Curve (AUC) of the predicted Receiver Operating Characteristic
(ROC) curve. The value of AUC is between 0 and 1. A larger AUC
value indicates better prediction of the binary final outcome, with
AUC = 1 indicating perfect prediction. In addition, at each time
point t, we measured the prediction of duration based on the root
mean squared error (RMSE), defined as

√

√

√

√

∑N+n
i=N+1 1{τi>t}(τi − τ̂i(t))2
∑N+n

i=N+1 1{τi>t}

,

where τi, i = N + 1, ...,N + n, denotes the duration of students
in the testing set, and τ̂i(t) denotes the prediction based on
information up to time t according to the trained model.

Results are presented in Figure 5, where the testing AUC
and RMSE for the final outcome and duration are presented. In
particular, results based on the model selected by cross validation
(p = 15) and the initial model (p = 4, containing the initial
covariates 1, t, t2, and t3) are compared. First, based on the
selected model, the AUC is never above 0.8 and the RMSE
is between 53 and 64 s, indicating a low signal-to-noise ratio.
Second, the students’ event history does improve the prediction
of final outcome and duration upon the initial model. Specifically,
since the initial model does not take into account the event
history, it predicts the students with duration longer than t
to have the same success probability. Consequently, the test
AUC is 0.5 at each value of t, which is always worse than the
performance of the selected model. Moreover, the selected model
always outperforms the initial model in terms of the prediction of
duration. Third, the AUC for the prediction of the final outcome
is low when t is small. It keeps increasing as time goes on and
fluctuates around 0.72 after about 120 s.

4.2.3. Interpretation of Parameter Estimates
To gain more insights into how the event history affects
the final outcome and duration, we further look at the
results of parameter estimation. We focus on a model
whose event history Hi(t) includes the initial features
and the top six features selected by cross validation. This
model has similar prediction accuracy as the selected model
according to the cross-validation result in Figure 4, but
contains less features in the event history and thus is easier
to interpret. Moreover, the parameter estimates under this
model are close to those under the cross-validation selected
model, and the signs of the regression coefficients remain
the same.

The estimated regression coefficients are presented in Table 4.
First, the first selected feature Ii(t), which indicates whether all
three control sliders have been explored via simple actions, has
a positive regression coefficient on final outcome and a negative
coefficient on duration. It means that, controlling the rest of the
parameters, a student who has taken the VOTAT strategy tends
to be more likely to give a correct answer and to complete in a
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FIGURE 5 | A comparison of prediction accuracy between the model selected by cross validation and a baseline model without using individual specific event history.

TABLE 4 | Estimated regression coefficients for a model for which the event

history process contains the initial features based on polynomials of t and the top

six features selected by cross validation.

Feature b̂1 b̂2

1. 1 3.1× 10−1 4.8

2. t −5.9× 10−3 −2.7× 10−3

3. t2 3.1× 10−6 −4.5× 10−7

4. t3 1.7× 10−8 3.5× 10−8

5. Ii (t) 5.2× 10−1 −8.4× 10−1

6. 1{Si (t)>0} 6.8× 10−1 −2.1× 10−1

7. 1{Ni (t)>0} −3.1× 10−1 −6.6× 10−1

8. Ni (t)/t −1.1 −1.4

9. 1{Ri (t)>0} 3.7× 10−1 3.8× 10−2

10. Si (t)/t 3.0 7.9× 10−1

shorter period of time. This confirms the strong effect of VOTAT
strategy in solving the current task.

Second, besides Ii(t), there are two features related to taking
simple actions, 1{Si(t)>0} and Si(t)/t, which are the indicator of
taking at least one simple action and the frequency of taking
simple actions. Both features have positive regression coefficients
on the final outcome, implying larger values of both features
lead to a higher success rate. In addition, 1{Si(t)>0} has a negative
coefficient on duration and Si(t)/t has a positive one. Under this
estimated model, the overall simple action effect on duration is

b̂25Ii(t) + b̂261{Si(t)>0} + b̂2,10Si(t)/t, which is negative for most
students. It implies that, overall, taking simple actions leads to
a shorter predicted duration. However, once all three types of
simple actions have been taken, a higher frequency of taking
simple actions leads to a weaker but sill negative simple action
effect on the duration.

Third, as discussed earlier, 1{Ni(t)>0} tends to measure the
student’s speed of reading the instruction of the task and Ni(t)/t
can be regarded as a measure of students’ speed of taking actions.
According to the estimated regression coefficients, the data
suggest that a student who reads and acts faster tends to complete

the task in a shorter period of time with a lower accuracy.
Similar results have been seen in the literature of response time
analysis in educational psychology (e.g., Klein Entink et al., 2009;
Fox and Marianti, 2016; Zhan et al., 2018), where speed of
item response was found to negatively correlated with accuracy.
In particular, Zhan et al. (2018) found a moderate negative
correlation between students’ general mathematics ability and
speed under a psychometric model for PISA 2012 computer-
based mathematics data.

Finally, 1{Ri(t)>0}, the use of the RESET button, has positive
regression coefficients on both final outcome and duration. It
implies that the use of RESET button leads to a higher predicted
success probability and a longer duration time, given the other
features controlled. The connection between the use of the
RESET button and the underlying cognitive process of complex
problem solving, if it exists, still remains to be investigated.

5. DISCUSSIONS

5.1. Summary
As an early step toward understanding individuals’ complex
problem-solving processes, we proposed an event history analysis
method for the prediction of the duration and the final outcome
of solving a complex problem based on process data. This
approach is able to predict at any time t during an individual’s
problem-solving process, which may be useful in dynamic
assessment/learning systems (e.g., in a game-based assessment
system). An illustrative example is provided that is based on a
CPS item from PISA 2012.

5.2. Inference, Prediction, and
Interpretability
As articulated previously, this paper focuses on a prediction
problem, rather than a statistical inference problem. Comparing
with a prediction framework, statistical inference tends to draw
stronger conclusions under stronger assumptions on the data
generation mechanism. Unfortunately, due to the complexity
of CPS process data, such assumptions are not only hardly
satisfied, but also difficult to verify. On the other hand, a
prediction framework requires less assumptions and thus is more
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suitable for exploratory analysis. As a price, the findings from the
predictive framework are preliminary and can only be used to
generate hypotheses for future studies.

It may be useful to provide uncertainty measures
for the prediction performance and for the parameter
estimates, where the former indicates the replicability of the
prediction performance and the later reflects the stability
of the prediction model. In particular, patterns from a
prediction model with low replicability and low stability
should not be overly interpreted. Such uncertainty measures
may be obtained from cross validation and bootstrapping
(see Chapter 7, Friedman et al., 2001).

It is also worth distinguishing prediction methods based on
a simple model like the one proposed above and those based
on black-box machine learning algorithms (e.g., random forest).
Decisions based on black-box algorithms can be very difficult to
understood by human and thus do not provide us insights about
the data, even though they may have a high prediction accuracy.
On the other hand, a simple model can be regarded as a data
dimension reduction tool that extracts interpretable information
from data, which may facilitate our understanding of complex
problem solving.

5.3. Extending the Current Model
The proposed model can be extended along multiple directions.
First, as discussed earlier, we may extend the model by allowing
the regression coefficients bjk to be time-dependent. In that case,
nonparametric estimation methods (e.g., splines) need to be
developed for parameter estimation. In fact, the idea of time-
varying coefficients has been intensively investigated in the event
history analysis literature (e.g., Fan et al., 1997). This extension
will be useful if the effects of the features in Hi(t) change
substantially over time.

Second, when the dimension p of Hi(t) is high,
better interpretability and higher prediction power
may be achieved by using Lasso-type sparse estimators

(see e.g., Chapter 3 Friedman et al., 2001). These
estimators perform simultaneous feature selection and
regularization in order to enhance the prediction accuracy
and interpretability.

Finally, outliers are likely to occur in the data due to
the abnormal behavioral patterns of a small proportion
of people. A better treatment of outliers will lead to
better prediction performance. Thus, a more robust
objective function will be developed for parameter
estimation, by borrowing ideas from the literature of robust
statistics (see e.g., Huber and Ronchetti, 2009).

5.4. Multiple-Task Analysis
The current analysis focuses on analyzing data from a single
task. To study individuals’ CPS ability, it may be of more
interest to analyze multiple CPS tasks simultaneously and
to investigate how an individual’s process data from one
or multiple tasks predict his/her performance on the other
tasks. Generally speaking, one’s CPS ability may be better
measured by the information in the process data that is
generalizable across a representative set of CPS tasks than
only his/her final outcomes on these tasks. In this sense,
this cross-task prediction problem is closely related to the
measurement of CPS ability. This problem is also worth
future investigation.
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Cognitive diagnostic computerized adaptive testing (CD-CAT) aims to take full advantage

of both cognitive diagnosis (CD) and CAT. Cognitive diagnostic models (CDMs) attempt

to classify students into several attribute profiles so as to evaluate their strengths and

weaknesses while the CAT system selects items from the item pool to realize that goal

as efficiently as possible. Most of the current research focuses on developing the item

selection strategies and uses a fixed-length termination rule in CAT. Nevertheless, a

variable-length termination rule is more appropriate than the fixed-length rule in order to

bring out the full potential of CD-CAT. The current study discussed the inherent issue

of instability over different numbers of attributes with the previous termination rules

(the Tatsuoka rule and the two-criterion rule), proposed three termination rules from

the information theory perspective, and revealed the connection between the previous

methods and one of the information-based termination rules that will be discussed,

further demonstrating the instability issue. Two simulation studies were implemented to

evaluate the performance of these methods. Simulation results indicated that the SHE

rule demonstrated strong stability across different numbers of attributes and different

CDMs and should be recommended for application.

Keywords: computerized adaptive testing, cognitive diagnostic model, information theory, Shannon entropy,

Kullback–Leibler distance, variable-length CD-CAT

INTRODUCTION

The goal of cognitive diagnosis is to obtain the students’ status of mastering specific attributes
measured by items in psychological and educational assessment. In recent decades, various
cognitive diagnosis models (CDMs) have been developed to evaluate the attribute profiles or latent
classes for each student, which designates whether each of the measured attributes or skills has been
mastered (Tatsuoka, 1983; Mislevy et al., 2000; Junker and Sijtsma, 2001; Rupp et al., 2010).

One main application of CDM that has been published by many researches is in combination
with computerized adaptive testing (CAT), which can be termed as cognitive diagnostic
computerized adaptive testing (CD-CAT; Cheng, 2009; Huebner, 2010). The major benefit of CAT
is that a tailored test can be generated for each individual via selecting items from the item pool
according to their responses to previous items. Generally speaking, CAT will get the same precision
of ability estimation as a traditional paper and pencil test by using fewer items. In other words, CAT
can provide a high-efficient estimate for latent trait of interest (Weiss and Kingsbury, 1984). Thus, it
is obvious that CD-CATmay have a performance comparable to ItemResponse Theory (IRT)-CAT.
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To date, numerous studies have been done to examine the
property of CD-CAT (Cheng, 2009; Wang et al., 2011, 2012;
Wang, 2013; Kaplan and de la Torre, 2015; Zheng and Wang,
2017). However, most previous studies focused on proposing
item selection strategies and almost used the fixed-length rule
to stop the CD-CAT. It is possible to implement a needlessly
long test to some students and an undesirably short test to others
when the fixed-length termination rule is adopted. Consequently,
it often leads to different measurement precision for different
students. In practice, onemay prefer that every student has nearly
the same degree of estimate precision, which is a major strength
of CAT over non-adaptive testing (Weiss and Kingsbury, 1984).
The termination rule issue in CD-CAT has begun to attract
some attention from researchers. Tatsuoka (2002) suggested that
the CD-CAT stops when the examinee’s posterior probability
of a given attribute profile exceeded 0.80 (hereafter denoted as
the Tatsuoka rule). Hsu et al. (2013) proposed a two-criterion
termination rule by adding another criterion to the Tatsuoka rule.
Cheng (2008)mentioned the possibility of proposing termination
rules from the information theory perspective, but no theoretical
explanation or empirical study was provided. The current study
demonstrates the derivation of three termination rules from the
information theory perspective and evaluates the termination
rules using simulation studies.

In the following, first, the previous methods (i.e., the Tatsuoka
rule and the two-criterion rule) for variable-length CD-CAT
are summarized and their inherent issue of instability over
different numbers of attributes will be discussed. Second, we
introduce three information-based termination rules for CD-
CAT. The connection between the previous methods and one
of the information-based termination rules is shown, which
further demonstrates the instability issue. Third, following this,
two simulation studies are conducted to assess the performance
of the new termination rules over different numbers of
attributes and CDMs with regard to the instability issue. Finally,
some important issues in variable-length termination rules will
be discussed.

THE PREVIOUS RULES FOR
VARIABLE-LENGTH CD-CAT AND THEIR
ISSUES

To our knowledge, two termination rules for CD-CAT have
been proposed, namely, the Tatsuoka rule and the two-criterion
rule, respectively. Tatsuoka (2002) suggested that a CD-CAT
stops when the examinee’s posterior probability of a given
attribute profile exceeded 0.80, i.e., the posterior probability of
one latent class (PPLS) is bigger than 0.80. The principle is that
the more peaked the posterior probability distribution is, the
more dependable the classification is (Huebner, 2010). Inspired
by the Tatsuoka rule, Hsu et al. (2013) recommended to add
another criterion for the second largest PPLS. Thus, the modified
termination rule for variable-length CD-CAT using the following
two criteria were proposed:

Criterion 1: CD-CAT will be stopped when the largest PPLS is
not smaller than a predetermined value (e.g., 0.70).

Criterion 2: CD-CAT will be stopped when the largest PPLS is
not smaller than a predetermined value (e.g., 0.70) and the second
largest PPLS is not larger than a predetermined value (e.g., 0.10).

The key of the two-criterion rule is to determine the threshold
for the second largest PPSL. The following formula can be used
to determine the lower bound and upper bound for the second
largest PPSL.

P2nd =
1− P1st

2K − 1
+

(2K − 2)× (1− P1st)× d

2K − 1
, 0 ≤ d ≤ 1 (1)

where P1st and P2nd are the prespecified largest and second
largest PPSL, K represents the number of attributes, and d is the
weighted value for P2nd. Based on the simulation results, Hsu
et al. (2013) offered two suggestions:

1. One can set the value of P1st as high as 0.90 or 0.95 if the high-
stakes tests are implemented. Thus, only Criterion 1 will be
needed and Criterion 2 is not necessary.

2. One can set the value of P1st at 0.70 or lower, and the d value
can be set between 0.25 and 0.50, or simply set P2nd = 0.10 if
the low-stakes tests are implemented.

The Tatsuoka rule is intuitive and simple, but with an increase
in the number of attributes, which leads to the exponential
increase of the number of attribute profile, it discards more
and more information contained in the other attribute profiles
since it only cares about the one with the largest probability
mass. It is a sensible conjecture that there is an unstable issue
with the Tatsuoka rule, namely, the realized accuracy of the
attribute profile estimate might not be consistent across different
numbers of attributes under the same model by implementing
the Tatsuoka rule. Hsu et al. (2013) recognized this fact and
attempted to solve this issue by setting a lower and upper bound
for the second largest PPSL. One of the factors that influence
the determination of the second largest PPSL is the number of
attributes. But the fine-tuning of the second largest PPSL is of
ad hoc nature, which makes the implementation difficult. The
practical recommendation for d or P2nd taking a value of 0.1 can
ameliorate this problem, but it was made based on the simulation
study for only the case of six attributes and it may bring the
instability issue again.

The current study proposes some new termination rules from
the information perspective and evaluates their performance
for different numbers of attributes under two major CDMs.
Statistically speaking, the development of termination rules for
CD-CAT aims to identify some statistical tools that describe
certain characteristics of the posterior distribution of cognitive
profiles. Both Tatsuoka and Hsu and his associates used the
point(s) in the distribution with the largest concentration of the
probability mass and discarded the remaining, and thus their
methods can be labeled as a partial information approach. It
is also worth pointing out that Tatsuoka did not carry out any
empirical simulation study on the termination rule he proposed
and Hsu et al. (2013) did not explore the performance of the
two-criterion rule for different numbers of attributes, although
it is an important factor in Equation (1). Another more powerful
tool that describes a distribution is information indexes, which
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can capture the characteristics of the whole distribution and
thus can be considered as a full information approach. The
major advantage of the new methods is that they incorporate the
information of several attributes easily and they are expected to
provide a simple consistent termination rule without demanding
delicate fine-tuning as the two-criterion rule requires.

INFORMATION THEORY FOR CDM AND
INFORMATION-BASED TERMINATION
RULES FOR CD-CAT

Information Theory for CDM
A brief introduction to information theory, which is heavily
borrowed from Cover and Thomas (2012) and Chang et al.
(2016), is given below. Since the models involved in cognitive
diagnosis are discrete, only the discrete version of various
information indexes is presented where possible.

Information was first introduced by Fisher (1925). An
important development in the information theory, introduced by
Shannon (1948), was that of entropy. Shannon entropy is used to
describe the uncertainty in the distribution of a random variable.
Specifically, its value becomes maximum when distribution is
uniform and minimum when distribution is a single point mass.
In cognitive diagnosis, we need to classify an examinee into
a certain attribute profile, so the posterior distributions were
expected to be a point mass. This means the smaller the Shannon
entropy value is, the more accurate the classification is. Let
αc = (αc1,αc2, ...,αcK) (c = 1, ..., 2K) be the attribute profile
of examinees, and there were 2K attribute profiles totally. Let
π = (π1,π2, . . . ,π2K ) represent the posterior probability vector,
and the element πc is corresponding probability for αc. Note that

πc > 0 (c = 1, . . . , 2K), and
∑2K

c=1 πc = 1. The Shannon entropy
of π is expressed as follows:

H(π) =
∑2K

c=1
πc log(1/πc) (2)

The notion of entropy was extended to relative entropy by
Kullback and Leibler (1951) and thus it was also denoted as the
Kullback–Leibler (KL) distance. The relative entropy KL(p||q)
measures the divergence between distributions p and q. Cover
and Thomas (2012) gave the original expression for the KL

distance, i.e., KL(p||q) = Ep

[

log
p(x)
q(x)

]

. KL distance is non-

negative and equals zero if distributions p and q are identical and
becomes large as the distributions diverge. In cognitive diagnosis,
the KL distance between Yij conditioning on estimated attribute

profile f (Yij|
⌢

α) and the conditional distribution of Yij given
another attribute profile αc, i.e., f (Yij|αc), is expressed as follows:

KLj(
⌢

α||αc) =

1
∑

y=0

log





P(Yij = y|
⌢

α)

P(Yij = y|αc)



P(Yij = y|
⌢

α) (3)

where Yij is the response of 1 (correct) and 0 (incorrect) to item j
for examinee i. The larger the KL index value is, themore accurate
the classification is.

The distinct difference between Shannon entropy and KL
distance is that Shannon entropy uses some absolute values to
describe one distribution while the KL distance tries to capture
the distance between two distributions; thus, we can develop
information-based terminations rules from this absolute-vs.-
relative perspective.

INFORMATION-BASED TERMINATION
RULES FOR CD-CAT

Some work has been done to develop item selection algorithms
for CD-CAT from the information perspective (Xu et al., 2003;
Cheng, 2009). The derivation of the termination rules from the
information perspective is straightforward and can be obtained
by simply replacing the random variable by the posterior
distribution of the attribute profiles. The information-based
termination rules suggest that a test can stop when:

a) The Shannon entropy of the posterior distribution becomes
reasonably small (denoted as the SHE rule):

H(gt) < ε (4)

where gt is the corresponding posterior distribution when
an examinee answers t items. ε ∈ R+ is a very small
positive number. The SHE rule is equivalent to verify that the
uncertainty of the posterior distribution has been reduced to a
prescribed absolute level (obviously, this falls into the category
of the absolute approach). Most of the posterior mass density
is more concentrated and a few points (attribute profiles
in CDM) occupy majority of the probability in posterior
distribution. Because we hope one attribute profile will take up
most of the probability, the CD-CAT test stops when Equation
(4) is satisfied.

b) The KL distance (relative entropy) between two adjacent
posterior distributions becomes small enough (denoted as the
KL-distance rule):

D(gt||gt−1) < ε (5)

where gt−1 is the posterior distribution of attribute profiles
after (t−1) items have been administered. The rationale for
the KL-distance rule is that if the posterior distribution change
between responding t items and (t−1) items is negligible, the
final attribute profile will be confirmed. Thus, the CD-CAT
test stops when Equation (5) is satisfied.

c) The change of Shannon entropy for the adjacent posterior
distributions becomes reasonably small (denoted as the SHE-
difference rule):

∣

∣H(gt)−H(gt−1)
∣

∣

< ε (6)

The SHE-difference rule and the KL-distance rule follow
a similar line of thinking and both of them fall into the
category of the relative approach. Both of them involve the
comparison of the two adjacent posterior distributions with
the test stopping when the difference between the posterior
estimate and the immediate previous one is small enough to
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reach a predetermined level; i.e., the posterior estimate for the
true attribute profile cannot be significantly improved given
the current estimate and item selection method.

In summary, the above three information-based rules introduced
in this section can fall into two categories: an absolute approach
and a relative approach. The SHE rule is an absolute approach
while the other two are relative approaches.

THE CONNECTION AND DIFFERENCE
BETWEEN THE PREVIOUS RULES AND
THE SHE RULE

The Tatsuoka rule and the two-criterion rule can be re-expressed
as the SHE rule. This reformulation can further demonstrate
the issues with the previous methods discussed above. For the
Tatsuoka rule, P1st is required to be larger than 0.8. This is
equivalent to the following:

1) The addend for P1st in the SHE rule is required to be
smaller than

0.8 ∗ loge(
1

0.8
) = 0.179 (7)

2) The remaining probabilities excluding P1st satisfies the
assumption that

2K−1
∑

i=1

Pi = 1− 0.8 = 0.2 (8)

In other words, if the preset value for P1st has been set at
0.8, the remaining 2K−1 attribute profiles share the rest of
probability. In the worst case, the 2K−1 attribute profiles share
0.2 equally, which signifies that they are equally probable. Thus,
the Shannon entropy value of this probability distribution equals

0.8∗loge(
1
0.8 )+( 0.2

2K−1
∗loge(

2K−1
0.2 ))∗(2K−1). In the best scenario,

the second largest PPSL (P2nd) takes all the probability mass 0.2,
i.e., the remaining probabilities are all 0s; the Shannon entropy
value of this probability distribution equals 0.8 ∗ loge(

1
0.8 )+ 0.2 ∗

loge(
1
0.2 ) = 0.5.

Two important observations can be made. First, a certain
termination criterion value of the Tatsuoka rule corresponds to
an interval of the SHE rule, and the range only depends on the
number of attributes. Table 1 shows the various ranges and the
lower (upper) bound in the SHE rule under different numbers of
attributes when P1st is set at 0.7 or 0.8 in the Tatsuoka rule.

As shown in Table 1, the lower bound is always a constant
when P1st is set at a fixed value. However, the upper bound and
the range of Shannon entropy rely on the number of attributes.
Specifically, with the increase of the attribute number, the upper
bound and range become larger. Consequently, for one particular
Tatsuoka rule criterion, the larger the range is, the more possible
values the classification accuracy can take.

Second, there is considerable overlap for the interval for two
neighboring Tatsuoka rule values. For example, the lower and
upper bounds are 0.611 and 2.273, respectively, when P1st =

TABLE 1 | Correspondence between the Tatsuoka and the SHE rule under

different numbers of attributes.

P1st Number of

attributes

Shannon entropy

Lower

bound

Upper

bound

Range

0.7 4 0.611 1.423 0.812

5 0.611 1.641 1.030

6 0.611 1.854 1.243

7 0.611 2.064 1.453

8 0.611 2.273 1.662

0.8 4 0.500 1.042 0.542

5 0.500 1.187 0.687

6 0.500 1.329 0.829

7 0.500 1.469 0.969

8 0.500 1.609 1.109

0.7 (K = 8), and the values become 0.5 and 1.609 when P1st =
0.8 (K = 8). The size of overlaps is 0.998 (= 1.609–0.611). The
overlap implies that the finalized classification accuracy might
be similar or reversed (a higher classification accuracy rate for
a lower criterion) for two different Tatsuoka rule criteria, which
is undesirable.

It is clear that the Tatsuoka rule is not as refined as the SHE
rule. The final realized classification accuracy of one particular
criterion from the Tatsuoka rule may vary depending on how
many attributes there are. This correspondence between the two
methods further reveals the root cause of the instability issue with
the Tatsuoka rule.

A similar reformulation can be done for the two-criterion rule.
The two-criterion rule with P1st = 0.7 and P2nd = 0.1, in terms of
the SHE rule, is equivalent to the following:

1) The addend for the P1st in the SHE rule is smaller than

0.7 ∗ loge(
1

0.7
) = 0.250 (9)

2) The addend for the P2nd and other addends in the SHE rule
are smaller than

0.1 ∗ loge(
1

0.1
) = 0.230 (10)

3) The remaining probabilities excluding P1st and P2nd satisfy the
assumption that.

2K−2
∑

i=1

Pi = 1− 0.7− 0.1 = 0.2 (11)

Following the same line of reasoning, correspondence between
the two-criterion rule and the SHE rule under different numbers
of attributes can also be derived.Table 2 shows the various ranges
and the lower (upper) bounds in the SHE rule under different
numbers of attributes when P1st is set at 0.7 or 0.8 and P2nd is
fixed at 0.1 in the two-criterion rule.
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TABLE 2 | Correspondence between the two-criterion rule and the SHE rule

under different numbers of attributes.

P1st P2nd Number of

attributes

Shannon entropy

Lower

bound

Upper

bound

Range

0.7 0.1 4 0.802 1.343 0.541

5 0.802 1.489 0.687

6 0.802 1.630 0.828

7 0.802 1.771 0.969

8 0.802 1.910 1.108

0.8 0.1 4 0.639 0.910 0.271

5 0.639 0.982 0.343

6 0.639 1.053 0.414

7 0.639 1.123 0.484

8 0.639 1.193 0.554

TABLE 3 | The taxonomy for the termination rules.

Partial information Full information

Absolute approach Tatsuoka rule

Two-criterion rule

SHE rule

Relative approach – SHE-difference rule

KL-distance rule

Similar observations can be made, although there is some
reduction in the size of the corresponding SHE interval for the
two-criterion rule and their overlap.

In summary, all the termination rules can be summarized in
a new taxonomical framework as in Table 3. It provides a basis
for better understanding and discussion of the advantages and
disadvantages of all methods, and the following two simulation
studies will be designed to evaluate the absolute-vs.-relative and
partial-vs.-full information comparison, respectively.

SIMULATION STUDIES

The DINA and Fusion Model
Two commonly used CDMs are the fusion model (Hartz, 2002)
and the Deterministic Input; Noisy And gate (DINA) model
(Junker and Sijtsma, 2001). An essential component underlying
CDMs is theQ-matrix (Tatsuoka, 1983). Assume a test contains J
items and K attributes, theQ-matrix is usually defined as a J × K
matrix. The element that is related to the kth attribute for the jth
item can be written as qjk. qjk = 1 if item jmeasures the attribute
k, and qjk = 0 otherwise.

The DINA model assumes that only when the examinee has
mastered all attributes required by the item can he respond
correctly. In fact, two possible behaviors, namely, “slip” and
“guess,” may occur when examinees respond to the items. Slip
represents that the examinee gives an incorrect response to the
item even though (s)he has mastered all the required attributes
of this item, and guess indicates that the examinee gives a correct

response to the item even though (s)he has not mastered all the
required attributes of this item. With these characteristics, the
correct response probability to the jth item for the ith examinee is

P(Yij = 1|αi) = (1− sj)
ηijgj

1−ηij
(12)

where αi = (αi1,αi2, ...,αiK) is the attribute profile of examinee
i. αik = 1 if ith examinee possesses attribute k, and αik = 0
otherwise. sj and gj are the slip parameter and guess parameter,

respectively. ηij =
∏K

k=1 αik
qjk is a latent variable that represents

the examinee i’s ideal response to item j. Note that if examinee
i has mastered all the required attributes of item j, ηij = 1;
otherwise, ηij = 0.

To introduce the fusion model, two types of item parameters
are needed to be defined first: a) the parameter π

∗
j denotes

the probability of correct response to item j if examinees have
mastered all measured attributes, and b) the parameter r∗

jk

denotes the penalty for not having mastered attribute k of item
j. Thus, the correct response probability in the fusion model
arrives as

P
(

Yij = 1|αi,πj
∗, rjk

∗, cj
)

= πj
∗

K
∏

k=1

rjk
∗(1−αik)qjkPcj (θi) (13)

where Pcj (θi) is the Rasch model in which the item difficulty
parameter is cj and θi is the ability parameter for examinee
i to explain the additional contribution except those specified
attributes in theQ-matrix. Usually, Pcj (θi) is set at 1 (Henson and
Douglas, 2005; McGlohen and Chang, 2008; Wang et al., 2011).
With this constraint, the fusion model becomes the Reduced
Reparameterized Unified Model [R-RUM; (Hartz, 2002)]. This
practice is adopted in this study.

Item Selection Method
Xu et al. (2003) introduce the KL distance into CD-CAT and
use the KL index as an item selection strategy. In order for KL
distance to be able to indicate item j’s global discrimination power

between f (Yij|
⌢

α) and all possible attribute profiles, the KL index

was proposed to describe the sum of KL distance between f (Yij|
⌢

α)
and all f (Yij|αc)s:

KLj(
⌢

α) =

2K
∑

c=1





1
∑

y=0

log





P(Yij = y|
⌢

α)

P(Yij = y|αc)



P(Yij = y|
⌢

α)



 (14)

where K is the number of attributes, and there will be 2K possible
attribute profiles.

The item with the maximum KL value, given the attribute
profile of

⌢

α, will be administered from the item pool.
Furthermore, to feature the different importance of different
attribute profiles, the supplement in Equation (14) is weighted
by the posterior probability, and this modification can be called
PWKL information (Cheng, 2009). The selection criterion in
PWKL information is expressed as follows:

PWKLj(
⌢

α) =

2K
∑

c=1







1
∑

y=0



log





P(Yij = y|
⌢

α)

P(Yij = y|αc)



 P(Yij = y|
⌢

α)



g(αc|yt−1)







(15)
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where g(αc|yt−1) = p(αc)
∏t−1

j=1 P(Yij = 1|αc)
yij [1− P(Yij

= 1|αc)]
1−yij is the posterior probability of αc, p(αc) is the prior

probability, and yt−1 is the response vector for examinee i on
previous t – 1 items.

Study 1: Absolute vs. Relative Approach
Design
The item pool consisted of 300 items and no maximum test
length was imposed in order to investigate the performance of
all methods without any constraints. Each attribute was set to
be measured by 40% of all items and make sure that each item
at least measured one attribute. For the DINA model, the sj and
gj parameters were both generated from U(0.05, 0.25). For the
fusion model, the item parameters π

∗
j and rjk

∗ were generated
from U(0.75, 0.95) and U(0.2, 0.95), respectively (Henson and
Douglas, 2005). A total of 2,000 examinees were generated
assuming that every examinee has 50% probability of mastering
each attribute. That is, there were 64 equally distributed attribute
profiles in the population if a test measured six attributes.

The major goal of this simulation was to evaluate the stability
of absolute and relative approaches across different numbers of
attributes and different CDMs. Three factors were manipulated
in this study. First, there were two models used in the study:
the DINA model and the fusion model. Second, the number of
attributes varied from 4 to 8. Finally, three information-based
termination rules were investigated. The Tatsuoka rule and the
two-criterion rule as partial information absolute methods were
also included as baselines. For the SHE-difference rule and KL-
distance rule, there were five levels for ε : 0.01, 0.05, 0.1, 0.15, and
0.2. Levels for ε were set at 0.3, 0.6, 0.9, 1.2, 1.5, and 1.8 for the
SHE rule. The termination criterion for the Tatsuoka rule P1st was
set as either 0.5, 0.6, 0.7, 0.8, or 0.9, while for the two-criterion
method, the criterion for P2nd to be set as 0.1 was added as well.
Thus, there were (5+ 5+ 5+ 5+ 6)× 5× 2 = 260 conditions.

The major dependent variables were the same as in Hsu
et al. (2013). Say: (a) classification accuracy of attribute profiles,
pattern correct classification rate (PCCR), calculated as the
percentage of examinees whose attribute profiles were estimated
correctly. For the interpretation of the result, we care more about

TABLE 4 | Classification accuracy for attribute profile and test length using the Tatsuoka rule.

#Attribute P1st DINA FM

M SD Max Min PCCR M SD Max Min PCCR

4 0.9 7.1 2.1 20 3 0.941 12.7 5.2 42 6 0.926

0.8 5.5 1.6 18 2 0.869 9.9 4.2 33 5 0.869

0.7 4.5 1.1 14 2 0.780 7.3 2.7 23 4 0.779

0.6 4.3 0.9 11 2 0.739 6.4 2.4 31 4 0.725

0.5 4.1 0.7 5 2 0.752 5.7 2.0 15 3 0.665

5 0.9 9.3 2.8 27 4 0.934 17.6 7.3 95 7 0.922

0.8 7.6 2.2 21 3 0.863 13.9 5.2 41 5 0.853

0.7 6.8 2.0 17 3 0.799 11.1 4.1 41 5 0.788

0.6 5.5 1.1 14 3 0.737 9.4 3.6 28 4 0.714

0.5 5.2 1.0 14 3 0.698 7.5 2.6 28 3 0.664

6 0.9 12.9 12.3 300 5 0.935 23.1 15.3 300 9 0.923

0.8 10.6 10.3 300 4 0.856 18.0 7.5 70 7 0.855

0.7 8.7 2.7 24 4 0.773 15.5 6.5 59 6 0.777

0.6 7.2 1.8 25 4 0.732 11.4 4.2 38 5 0.705

0.5 6.4 1.0 15 4 0.679 11.4 4.5 37 4 0.657

7 0.9 19.4 15.0 300 6 0.925 31.9 25.0 300 9 0.931

0.8 14.2 12.8 300 6 0.842 24.5 11.8 117 8 0.853

0.7 9.9 2.2 21 6 0.757 18.4 5.4 57 10 0.765

0.6 10.6 3.9 44 5 0.723 16.9 6.9 73 6 0.703

0.5 8.0 1.7 21 4 0.672 14.6 6.0 56 6 0.649

8 0.9 33.8 17.3 300 6 0.926 45.3 40.3 300 10 0.926

0.8 24.1 14.9 300 6 0.845 33.3 25.1 300 9 0.847

0.7 13.9 4.9 43 5 0.767 25.7 13.7 131 7 0.764

0.6 11.5 3.8 36 5 0.708 22.2 10.6 115 7 0.712

0.5 11.3 3.9 34 5 0.672 20.4 10.2 100 6 0.632

#Attribute, the number of attributes; P1st, the largest PPLS.
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TABLE 5 | Classification accuracy for attribute profile and test length using the two-criterion rule.

#Attribute P1st P2nd DINA FM

M SD Max Min PCCR M SD Max Min PCCR

4 0.9 0.1 7.1 2.1 20 3 0.941 12.7 5.2 42 6 0.926

0.8 0.1 5.5 1.7 18 2 0.867 9.9 4.2 48 5 0.878

0.7 0.1 4.8 1.3 14 3 0.793 7.7 3.0 24 3 0.777

0.6 0.1 4.2 0.7 7 2 0.761 6.7 2.7 26 4 0.760

0.5 0.1 4.2 0.8 8 1 0.796 7.3 2.8 24 4 0.773

5 0.9 0.1 9.3 2.8 27 4 0.934 17.6 7.3 95 7 0.922

0.8 0.1 7.6 2.2 21 3 0.871 13.8 5.4 51 5 0.842

0.7 0.1 6.8 1.9 20 3 0.792 11.3 4.6 44 5 0.780

0.6 0.1 6.0 1.6 17 3 0.765 9.1 3.7 35 4 0.721

0.5 0.1 6.1 1.8 22 3 0.776 9.4 3.6 27 4 0.732

6 0.9 0.1 12.9 13.5 300 5 0.941 23.1 15.3 300 9 0.913

0.8 0.1 10.5 7.3 300 4 0.832 18.3 8.0 108 8 0.856

0.7 0.1 8.5 2.5 28 3 0.787 14.2 8.3 47 6 0.774

0.6 0.1 7.7 2.3 22 3 0.759 13.6 5.9 96 5 0.735

0.5 0.1 7.4 2.1 26 4 0.744 11.0 4.2 42 5 0.697

7 0.9 0.1 19.4 15.0 300 6 0.912 31.9 25.0 300 9 0.929

0.8 0.1 14.2 12.8 300 5 0.850 25.5 17.8 300 8 0.837

0.7 0.1 10.0 7.5 26 6 0.792 18.5 14.6 50 10 0.753

0.6 0.1 10.3 3.7 37 5 0.730 17.2 9.5 105 6 0.709

0.5 0.1 8.0 1.9 28 4 0.675 16.1 7.8 78 6 0.699

8 0.9 0.1 33.8 17.3 300 6 0.917 45.3 40.3 300 10 0.938

0.8 0.1 25.6 14.9 300 6 0.824 34.0 29.8 300 10 0.853

0.7 0.1 12.4 3.6 35 6 0.787 24.7 12.8 164 8 0.750

0.6 0.1 12.4 4.1 38 6 0.706 23.6 12.5 177 7 0.732

0.5 0.1 10.8 3.5 32 5 0.657 20.4 10.9 114 7 0.656

P1st, the largest PPLS; P2nd, the second largest PPLS.

the stability of PCCR for one particular termination criterion for
different numbers of attributes and CDMS than PCCR itself; and
(b) the test length at the end of the CD-CAT.

Results
Tables 4–8 show the PCCR values and the concerned statistics,
such as mean (M), standard deviation (SD), maximum (Max),
and minimum (Min) of the test length at the end of the CD-CAT
across all examinees. The results are summarized as the following.

In terms of the performance of the absolute and relative
approaches across different numbers of attributes, the methods
from the absolute approach maintained better stability than
those from the relative approach across different numbers of
attributes. Table 6 showed that the classification accuracy for
different numbers of attributes was approximately the same
for both models except when the number of attributes was
small (namely, four or five attributes). Figure 1 is the visual
representation of this result for the DINA model. Tables 4,
5 indicate that the Tatsuoka rule and the two-criterion rule
presented a very similar trend in terms of stability of the
classification accuracy across different numbers of attributes. In

contrast, those in the relative approach were severely influenced
by the number of attributes. Tables 7, 8 indicate that each
termination criterion from either the SHE-difference rule or
the KL-distance rule produced differential classification accuracy
for different numbers of attributes under both models. For
example, as shown in Figure 2, under the DINA model, the most
conservative termination criterion, 0.01, from the KL-distance
rule produced 5% difference in PCCR for four to eight attributes
(from 0.998 to 0.945) while themost liberal termination criterion,
0.20, yielded even a more prominent gap of 20% for four to eight
attributes (from 0.864 to 0.664). Similar results can be readily
identified in the fusion model.

In the aspect of cross-model stability, the differential
performance between the absolute and relative approach was
even more striking. Take the SHE rule and the KL-distance
rule as an example. Figures 3, 4 show the classification accuracy
for the SHE rule and KL-distance rule under the DINA and
fusionmodels for eight attributes. The SHE rule produced similar
classification accuracy for both models under all the different
termination criteria while the KL-distance rule yielded drastically
different classification accuracy for the two models.
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TABLE 6 | Classification accuracy for attribute profile and test length using the SHE rule.

#Attribute ε DINA FM

M SD Max Min PCCR M SD Max Min PCCR

4 0.3 8.4 2.7 21 4 0.977 14.8 5.7 63 7 0.974

0.6 6.4 1.8 16 3 0.899 11.0 4.1 30 5 0.901

0.9 5.7 1.7 19 3 0.856 9.8 3.4 38 5 0.848

1.2 4.4 0.9 12 3 0.790 6.8 2.4 19 4 0.782

1.5 3.9 0.9 10 2 0.734 6.5 2.4 21 3 0.722

1.8 2.9 0.6 5 2 0.379 4.7 1.6 15 3 0.550

5 0.3 10.6 3.2 28 5 0.976 18.9 7.3 69 8 0.963

0.6 8.8 2.8 25 4 0.900 15.3 6.4 57 6 0.911

0.9 7.5 2.4 25 3 0.858 13.8 5.2 44 6 0.842

1.2 7.1 1.9 21 4 0.793 11.0 4.3 36 5 0.782

1.5 6.5 1.7 17 3 0.743 9.5 3.6 32 4 0.723

1.8 4.6 0.8 9 3 0.546 7.8 2.6 26 4 0.644

6 0.3 12.8 7.4 300 6 0.973 17.7 15.7 300 10 0.959

0.6 11.4 3.3 26 5 0.915 23.1 10.9 136 8 0.908

0.9 10.5 3.1 25 5 0.859 18.8 7.5 74 6 0.849

1.2 8.6 2.6 30 4 0.792 15.2 5.7 60 6 0.775

1.5 8.0 2.6 24 3 0.743 13.3 5.0 43 6 0.727

1.8 6.8 1.9 20 3 0.671 13.5 5.7 62 5 0.685

7 0.3 15.7 3.6 37 8 0.971 30.0 13.8 300 16 0.961

0.6 14.1 3.4 38 7 0.901 24.2 11.5 300 13 0.900

0.9 11.8 2.7 28 7 0.857 21.9 6.2 51 11 0.856

1.2 10.0 2.0 25 6 0.789 19.7 6.1 61 10 0.774

1.5 9.0 1.9 25 6 0.743 16.4 4.8 47 9 0.727

1.8 9.7 3.2 33 4 0.680 16.5 6.6 55 6 0.683

8 0.3 20.0 6.7 58 7 0.974 46.4 24.6 194 11 0.967

0.6 16.9 5.7 54 6 0.907 40.7 24.3 205 9 0.915

0.9 15.9 6.1 51 6 0.858 32.4 18.5 231 10 0.860

1.2 14.7 5.2 50 6 0.792 29.5 17.8 240 8 0.776

1.5 13.3 5.0 52 5 0.742 25.3 11.8 120 8 0.730

1.8 12.6 4.8 50 6 0.682 22.6 10.6 122 7 0.690

ε is the symbol in Equations (4)–(6).

In summary, the absolute approach, two previous methods,
and the SHE rule did a much better job than the relative approach
in terms of stability across differing numbers of attributes and
different CDMs.

Simulation study 1 also provided some preliminary result for
the partial-vs.-full information comparison. Within the absolute
approach, the full information approach (the SHE rule) was
slightlymore consistent with respect to the classification accuracy
than the partial information approaches (the Tatsuoka rule and
the two-criterion rule). More interestingly, there are reversed
classification accuracies for both the Tatsuoka rule and the
two-criterion rule. For example, Table 4 shows that for the
DINA model with four attributes, the classification rate for the
termination criterion 0.6 is 0.739, which is smaller than 0.752, the
one for the criterion 0.5. The two-criterion rule suffered from this

problem for both models with four and five attributes as shown
in Table 5.

To further reveal the differential performance between the
partial-vs.-full information approaches, Study 2 attempted to
explore this issue under a more realistic application setting with
a larger number of attributes.

Study 2: Full vs. Partial Information
Design
Study 2 aimed to investigate the performance of the absolute
full information approach (the SHE rule) and the absolute
partial information approach (the two-criterion rule) for a large
number of attributes. As shown from the results of the study 1,
classification accuracies were certainly high when termination
criteria were set at stringent levels; we do not expect too much
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TABLE 7 | Classification accuracy for attribute profile and test length using the SHE-difference rule.

#Attribute ε DINA FM

M SD Max Min PCCR M SD Max Min PCCR

4 0.01 14.0 3.9 39 7 0.998 24.4 8.2 74 6 0.972

0.05 10.7 3.1 34 5 0.987 15.8 5.7 39 4 0.896

0.10 9.8 2.6 26 4 0.967 9.6 4.6 30 3 0.749

0.15 9.4 2.8 22 2 0.946 6.3 3.3 25 3 0.630

0.20 7.9 2.2 21 2 0.927 6.5 2.6 17 3 0.672

5 0.01 17.8 5.0 45 5 0.993 28.2 10.7 106 4 0.942

0.05 12.7 3.6 29 5 0.975 16.3 6.7 49 4 0.794

0.10 11.6 3.2 29 5 0.926 12.1 4.9 37 2 0.712

0.15 10.5 3.3 25 3 0.877 6.3 3.8 24 2 0.536

0.20 8.4 2.1 19 3 0.857 5.6 3.3 19 2 0.503

6 0.01 20.5 6.0 56 7 0.985 31.7 13.3 113 4 0.903

0.05 14.1 4.7 36 4 0.906 18.1 8.0 58 2 0.746

0.10 13.4 4.6 32 2 0.864 11.2 5.6 36 2 0.599

0.15 12.3 3.5 28 4 0.859 6.0 3.0 24 2 0.433

0.20 10.1 3.5 25 2 0.766 5.3 3.7 27 2 0.353

7 0.01 23.8 5.2 60 9 0.992 40.1 13.4 103 7 0.914

0.05 17.7 4.2 42 7 0.956 22.1 8.9 54 6 0.744

0.10 16.1 3.6 38 8 0.912 16.2 6.3 39 5 0.599

0.15 14.8 3.3 36 7 0.903 8.5 4.9 28 4 0.403

0.20 12.6 3.3 25 4 0.826 3.9 2.2 21 2 0.211

8 0.01 26.9 9.1 72 5 0.931 37.8 20.2 158 2 0.793

0.05 16.9 6.5 45 3 0.787 17.2 9.8 76 2 0.539

0.10 11.1 5.9 36 2 0.542 10.3 5.9 43 2 0.404

0.15 9.7 4.8 31 3 0.485 5.4 2.8 26 2 0.218

0.20 8.2 3.9 24 2 0.433 4.1 2.0 21 2 0.229

difference among these methods which echoes the first practical
recommendation for P1st and P2nd from Hsu et al. (2013). In
order to better investigate the performance of full and partial
information approaches with respect to stability, more liberal
termination criteria should be adopted. The termination criteria
for the SHE rule were changed to 1.6, 1.8, and 2.0. The three
termination criteria for the two-criterion rule were 0.6, 0.7, and
0.8. In addition, from a practical perspective, the number of
attributes can be as many as 14 (McGlohen and Chang, 2008;
Jang, 2009; Roman, 2009), and the classification accuracy of the
attribute profile is not necessarily as high as 0.8 or even 0.9 since
formative assessment is usually low-stakes. Hence, the number of
attributes was set to be either 8, 10, or 12. Thus, the performance
of the termination rules under these conditions carries a practical
implication. Since there are more attributes, a larger item pool
is needed for the simulation. The item pool used in study 2 was
generated in the same way as in study 1 except that it consisted
of 1,000 items instead of 300 items. Due to the large number of
attributes, it might take a lot of items for some examinees to finish
the test, so the maximum number of items an examinee can take
in a CD-CAT test was set to 100, which was 10% of the total
number of items.

The basic setup for study 2 was similar to that for
study 1. There were three factors in this simulation
study: CDMs, number of attributes, and termination
rules. The major dependent variables were the same as
in study 1. The ratio of examinees who reached the
maximum test length as a confounding variable was
also reported.

Results
Tables 9, 10 summarize the results for the simulation. The 12-
attribute condition showed that the proportions of examinees
reaching the maximum test length in the two-criterion rule were
higher than those in the SHE rule under both models in the
corresponding conditions. Beyond that, most results indicated
that the proportions of examinees attaining the maximum test
length were small under a variety of conditions in the study,
so this confounding variable was well-controlled. The effect
of the proportion of examinees using the maximum length
stopping rule will be discussed in detail in the Discussion section.
The eight-attribute condition can be considered as a partial
replication study of study 1 since the only difference is the bank
size, which increased from 300 to 1,000. The results for this
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TABLE 8 | Classification accuracy for attribute profile and test length using the KL-distance rule.

#Attribute ε DINA FM

M SD Max Min PCCR M SD Max Min PCCR

4 0.01 10.3 2.8 26 5 0.998 15.6 5.4 50 8 0.978

0.05 8.7 2.6 28 4 0.962 11.1 4.4 37 5 0.890

0.10 6.7 2.0 20 4 0.913 8.8 3.2 28 4 0.790

0.15 6.2 2.0 23 4 0.886 4.5 2.2 15 2 0.528

0.20 6.1 1.7 17 4 0.864 3.9 1.4 10 2 0.516

5 0.01 13.3 3.9 36 6 0.988 23.1 8.4 65 8 0.966

0.05 10.5 3.3 30 4 0.939 14.4 5.0 46 6 0.896

0.10 8.7 2.7 27 4 0.884 10.3 3.6 29 3 0.738

0.15 7.6 2.2 24 3 0.843 7.2 2.1 17 3 0.642

0.20 7.5 2.1 19 4 0.809 4.2 1.5 12 2 0.435

6 0.01 15.8 4.5 56 6 0.985 26.5 10.0 92 10 0.953

0.05 12.5 3.4 34 3 0.934 17.9 6.1 42 7 0.851

0.10 9.6 2.6 25 3 0.830 11.9 4.1 36 3 0.678

0.15 9.3 2.4 25 3 0.800 5.6 3.2 19 2 0.401

0.20 8.5 2.0 24 2 0.768 5.6 1.8 14 2 0.386

7 0.01 17.2 3.9 36 10 0.976 29.7 8.2 86 16 0.931

0.05 14.0 3.1 41 8 0.905 18.4 5.3 60 6 0.740

0.10 11.3 2.7 29 7 0.809 9.4 3.4 27 5 0.466

0.15 10.0 2.3 25 6 0.772 7.0 2.3 19 4 0.408

0.20 9.8 2.2 23 6 0.743 3.4 2.1 14 2 0.170

8 0.01 21.4 6.1 51 10 0.945 39.5 13.0 92 13 0.912

0.05 16.0 4.5 45 8 0.887 22.0 6.6 55 5 0.710

0.10 12.6 3.6 33 4 0.747 14.4 4.1 40 2 0.574

0.15 12.1 3.2 32 3 0.688 6.8 3.3 22 2 0.289

0.20 11.1 2.5 25 2 0.664 3.8 2.4 13 2 0.152

FIGURE 1 | Stability of the SHE rule across different numbers of attributes in

the DINA model.

condition were very similar to those from study 1 and thus
the possible confounding bank effect was also eliminated from
study 2.

FIGURE 2 | Stability of the KL-distance rule across different numbers of

attributes in the DINA model.

This simulation produced similar results for the two rules
under the large number of attributes to study 1. The SHE
rule demonstrated strong stability across both the number of
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FIGURE 3 | Stability of the SHE rule across different models for eight

attributes.

attributes and the CDMs while the two-criterion rule had some
irregularity for some conditions. The classification accuracy for
the three numbers of attributes was almost equal to 0.73, 0.70, and
0.65, respectively, for three termination criteria (1.6, 1.8, and 2.0).
However, some termination criteria from the two-criterion rule
yielded different classification accuracies for different numbers
of attributes. For example, for the termination criterion P1st =
0.6, the classification accuracy under the DINA model was 0.747,
0.706, and 0.677, respectively, for three different numbers of
attributes (8, 10, and 12). Similar results can be easily identified
for the fusion model.

In terms of cross-model constancy, the SHE rule also
presented strong stability of classification accuracy. The two-
criterion rule improved, but there were also inconsistencies of
classification accuracy between the DINA model and the fusion
model. The biggest difference was equal to 0.061 (= 0.738–
0.677), which appeared on the condition of P1st = 0.6 and
12 attributes.

DISCUSSION

Cognitive diagnostic assessment (CDA) informs an examiner
about the attribute mastery pattern of every student so
that designing effective remedial interventions in formative
instruction can be administered (Leighton and Gierl, 2007a; Cui
et al., 2012). CD-CAT as the computerized adaptive version of
the CDA needs a flexible termination rule that can stop the test
at an appropriate level to achieve that goal. This study provided
a theoretical derivation of information-based termination rules
proposed by Cheng (2008) and demonstrated the instability issue
with previous methods from the information theory perspective.
Two multi-factor simulation studies were conducted to evaluate
the new three termination rules.

Some important observations can be made. The first point
worth noting is that not all the full information methods
outperform the previous methods, and the absolute full
information method, the SHE rule, is the best with regard
to the cross-attribute and cross-model stability. From the two
simulation studies, we identified the termination criteria for the

FIGURE 4 | Stability of the KL-distance rule across different models for eight

attributes.

termination rule ranging from 0.3 to 1.8, which could produce
a smooth decreasing trend of the estimate accuracy from about
0.97–0.6. The classification accuracy was not affected by the
number of attributes (if it is more than five) or by the models.
This implies that the SHE rule is a very flexible and effective
method to stop the variable-length CD-CAT.

Then, there are some common problems shared by the
Tatsuoka rule and the two-criterion rule. First, they are affected
by the number of attributes, although their between-model
performances are decent. Some careful consideration must be
given with regard to the number of attributes for the item pool.
Second, if some liberal criteria are used, such as P1st is 0.6, 0.7,
or 0.8 for large numbers of attributes, the problem of instability
across different numbers of attributes is exacerbated. This reflects
the inherent problem with the partial information rules. In CDA,
the number of attribute patterns increases exponentially with the
number of attributes. For a large number of attributes, the partial
information rules do not have an effective control and thus there
is a wide range of classification accuracy for differing numbers of
attributes, although they, as members of the absolute approach,
can guarantee a lower bound of the classification accuracy as the
SHE rule does.

Lastly, the use of the maximum test length rule, in
combination with the variable-length termination rule, and
the proportion of examinees using this rule are important in
the variable-length CD-CAT application. As noted above, the
number of attribute profiles increases exponentially with that of
attributes. When the number of attributes is large, the number
of attribute profiles is so huge that it will take a lot of items—in
some instances, even the entire item pool—for some examinees to
satisfy the requirement prescribed by the termination rule. Thus,
it is necessary to set the maximum test length even if a variable-
length termination rule is adopted, and this treatment is often
imposed in real CAT programs. It is also necessary to monitor
the proportion of examinees hitting the maximum test length. If
that proportion is high, then there might be some problems that
merit further investigation, such as the criterion for the variable-
length termination rule being too conservative, or there not being
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TABLE 9 | Summary statistics for the SHE rule.

#Attribute ε DINA FM

M SD Max Min %(ML) PCCR(P) M SD Max Min %(ML) PCCR(P)

8 1.6 12.4 3.2 32 5 0 0.732 18.6 6.2 53 7 0 0.737

1.8 11.1 2.8 32 4 0 0.682 17.0 6.1 59 7 0 0.708

2.0 10.2 3.1 30 4 0 0.640 16.4 5.9 52 6 0 0.654

10 1.6 16.9 7.6 100 7 0.3 0.733 28.2 11.2 100 10 0.05 0.739

1.8 15.3 6.1 100 6 0.15 0.692 27.7 11.5 95 9 0 0.710

2.0 15.3 6.3 100 6 0.15 0.642 26.5 10.0 88 8 0 0.652

12 1.6 27.2 20.2 100 8 6 0.733 42.3 18.1 100 13 2 0.733

1.8 26.2 20.9 100 8 6.4 0.691 37.3 16.7 100 12 1 0.709

2.0 23.6 17.6 100 9 4 0.645 39.6 17.6 100 11 1 0.653

%(ML) = %(Max Length), the ratio of examinees attaining the maximum test length; PCCR(P), the pattern correct classification rate for examinees who finished the CD-CAT using

termination rules.

TABLE 10 | Summary statistics for the two-criterion rule.

#Attribute P1st P2nd DINA FM

M SD Max Min %(ML) PCCR(P) M SD Max Min %(ML) PCCR(P)

8 0.8 0.1 13.0 3.8 34 6 0 0.829 23.5 8.0 67 9 0 0.843

0.7 0.1 11.9 3.5 33 6 0 0.801 20.3 7.1 64 7 0 0.787

0.6 0.1 10.3 2.6 25 4 0 0.747 17.6 6.3 54 7 0 0.709

10 0.8 0.1 21.3 12.7 100 8 2 0.849 33.7 13.3 100 12 0.2 0.843

0.7 0.1 18.6 12.4 100 8 1.8 0.768 30.1 12.8 100 10 0.1 0.779

0.6 0.1 17.8 13.4 100 7 2.2 0.706 27.3 11.9 91 10 0 0.683

12 0.8 0.1 31.0 23.6 100 11 9.7 0.858 48.3 20.6 100 13 4.9 0.867

0.7 0.1 30.7 25.5 100 11 11.2 0.750 43.5 19.1 100 12 3.2 0.784

0.6 0.1 26.3 23.1 100 9 8.4 0.677 40.3 18.2 100 11 1.8 0.738

enough high-quality items in the pool. One possible solution to
this issue is to make use of the attribute hierarchical structure
(Leighton and Gierl, 2007b) to cut down the number of possible
attribute profiles and then construct an informative prior for the
distribution of the attribute profile.

Several issues require further investigation. In real testing
situations, different CDMs, different item selection algorithms,
item exposure control methods, content and attribute balancing,
and item pool quality are all possible elements that could affect
the performance of all the rules; more simulation studies are
needed to investigate these situations. In the current study,
we only used the DINA and fusion model as examples and
the result with regard to the cross-model stability should be
interpreted with caution. We carefully chose the two models
that are the two ends of the spectrum of the existing CDMs
and a similar conclusion regarding the SHE rule is expected for
other models, but further study in this aspect is still warranted.
Although two simulation studies were conducted, some real-life
data studies are also necessary to investigate the performance
of these termination rules in real situations. In addition, as
one anonymous reviewer pointed out, the simulated examinees
would answer an average of only 26% of the items correctly

using the procedure described in the first simulation study based
on the DINA model with eight attributes. There could be some
reasons for this, such as the quality of item pool, the Q-matrix
of test, distribution of attribute profiles in the population, and
CDMs. An interesting study in the future is to investigate how
the generation procedures of examinees’ attribute profiles affect
the classification accuracy and responses.
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A log-linear cognitive diagnostic model (LCDM) is estimated via a global optimization

approach- differential evolution optimization (DEoptim), which can be used when the

traditional expectation maximization (EM) fails. The application of the DEoptim to LCDM

estimation is introduced, explicated, and evaluated via a Monte Carlo simulation study

in this article. The aim of this study is to fill the gap between the field of psychometric

modeling and modern machine learning estimation techniques and provide an alternative

solution in the model estimation.

Keywords: differential evolution optimization, cognitive diagnostic model, LCDM, estimation, EM algorithm

Assessments have been widely used in education as a part of a summative program for many
purposes, such as evaluating whether students have reached the desired proficiency level and
determining whether students should be given a scholarship. However, in the past decades,
stakeholders have shown a strong interest in the information of students’ strengths and weaknesses
of their knowledge and skills. This has led to fruitful exploration in the field of psychometrics of
how to extract diagnostic information to enhance classroom instruction and learning. Cognitive
diagnostic models (CDMs) are a set of psychometric models developed to identify whether a
student masters a set of fine-grained skills, such as addition, subtraction, multiplication, and
division in math ability assessments. For example, question “2+4–1” measures addition and
subtraction, and “4× 2/3”measures multiplication and division. Although it seems straightforward
to conclude that a student may not master addition or subtraction if s\he fails 2+4–1, it is
indeed much more complicated in practice in that students may answer a question correctly by
guessing or fail a question due to carelessness. As a result, formal psychometric models such as
CDMs should be employed for data analysis to make sure the inferences are valid. In addition to
educational testing, CDMs are useful in psychological measurement. For example, the literature
indicates that neuro-vegetative symptoms are a general construct that contains three attributes:
depression (DEP), fatigue (FAT), and sleeplessness (SLE; Rabinowitz et al., 2011). Using CDMs
allows researchers/practitioners to investigate the attributes of a given patient. Among the item
data types, a binary scale is the most common one that has been adopted in many surveys and
measures.

Prior to the data analysis using CDMs, whether a skill is required for answering a question
needs to be determined by content experts and/or cognitive psychologists and specified in a binary
matrix (Q-matrix; Tatsuoka, 1983) as illustrated in Table 1 such that theory-granted structure can
be applied to the measurement of interest. Rows of the Q-matrix represent questions and columns
represent skills. Element 1 indicates that the skill is measured by the question and 0 indicates that
the sill is not measured.
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TABLE 1 | A Q-matrix sample.

Skill 1 Skill 2 Skill 3

Question 1 1 0 0

Question 2 1 0 1

Question 3 0 1 1

Question 4 1 1 0

Recent advances in modeling development have produced
several general CDMs, such as the Log-linear CDM (LCDM;
Henson et al., 2009) and, equivalently, the generalized
Deterministic Input; Noisy “And” gate model (G-DINA; de
la Torre, 2011). The LCDM provides great flexibility such as
(1) subsuming most latent variables, (2) enabling both additive
and non-additive relationships between skills and questions
simultaneously, and (3) syncing with other psychometric
models. Rupp et al. (2010, p. 163) proved that LCDM can be
constrained to core CDMs such as Deterministic Input; Noisy
“And” gate (DINA; Junker and Sijtsma, 2001) model, Noisy
Input; Deterministic “And” gate (NIDA; Junker and Sijtsma,
2001) model, and the Reduced Reparameterized Unified Model
(RRUM; Hartz, 2002), and Deterministic Input; Noisy “Or” gate
(DINO, Templin and Henson, 2006) model.

The LCDM is essentially a restricted latent class model (Day,
1969; Wolfe, 1970; Titterington et al., 1985), and mathematically,
it can be defined as:

P
(

Yp = yp
)

=

C
∑

c=1

(

vc

I
∏

i=1

π

ypi
ci (1− π ci)

1−ypi

)

, (1)

where yp = (yp1, yp2, . . . , ypI) is the binary response vector of
person p on a test comprised of I items, and element ypi is the
response on item i. vc is the probability of membership in latent
class c, and πci is the probability of correct response to item i by
person p from latent class c. The log-likelihood of observing item
responses of N persons can be expressed as

L =

N
∑

p=1

log

{

C
∑

c=1

(

vc

I
∏

i=1

π

ypi
ci (1− π ci)

1−ypi

)}

. (2)

Further, Equation 2 can also be converted to:

L =

N
∑

p=1

log

{

C
∑

c=1

(

exp

(

log(vc)+ log(

I
∏

i=1

π

ypi
ci (1− π ci)

1−ypi )

))}

,

(3)
where log(

∏I
i=1 π

ypi
ci (1− π ci)

1−ypi ) can be replaced by
∑I

i=1 log(π
ypi
ci (1− π ci)

1−ypi ) due to the mathematical property
of log operation.

Assume the number of attributes is A, the mastery
profile of the attributes for a random person is denoted by
α= (α1, α2, . . . , αA), where element αa is either 1 or 0. In total,
there are 2A possible attribute profiles and correspondingly 2A

latent classes. For example, when A=4, a person with attribute
profile α= (1, 1, 1, 0) has mastered the first three attributes
except the last one. As illustrated in Table 1, a Q-matrix of
size I∗A is necessary for a LCDM, where the (i, a) element qia
is 1 when item i measures attribute a and 0 otherwise. The
conditional probability of person p with attribute profile αc

answering item i correctly can be written by

πci = P
(

ypi = 1
∣

∣

αc) =
exp

(

λi,0 + λ
T
i h
(

αc,qi
))

1+ exp
(

λi,0 + λ
T
i h
(

αc,qi
)) , (4)

where qi is the set of Q-matrix entries for item i, λi,0 is the
intercept parameter, where λi represents a vector of length 2

A−1
that contains main effect and interaction effect parameters of
item i, and h

(

αc,qi
)

is a vector of the same length with linear

combinations of the αc and qi. Particularly, λ
T
i h
(

αc,qi
)

can be
expanded to:

λ
T
i h
(

αc,qi
)

=

A
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a=1

λi,1,(a)αcaqia+

A−1
∑

a=1

A
∑

a
′
>a

λi,2,(a,a
′
)αcaαca

′ q
ia
qia′ + . . . ,

(5)
where λi,1,(a) and λi,2,(a,a′) are the main effect for attribute αa

and the two-way interaction effect for αa and αa′ . Since elements
of αc and qi are binary, h

(

αc,qi
)

contains binary elements,
which indicate effects that are estimates of interest. For an
item measuring n attributes, n-way interaction effects should be
specified in h

(

αc,qi
)

. Table 2 provides a sample of a measure
with three attributes: the first item that measures one attribute
only (i.e., α1) has two estimates, where the third item which is
associated with all given attributes contains eight estimates.

LCDM ESTIMATION

Traditionally, estimating LCDMs refers to the expectation
maximization (EM) algorithm (Bock and Aitkin, 1981) that
maximizes the marginal likelihood; this is the most commonly-
seen algorithm in the CDM literature. In addition to the EM
algorithm, Markov chain Monte Carlo (MCMC) techniques can
be, theoretically, used to estimate the LCDM, but to date its
application remains upon simpler CDMs such as the DINA
model (da Silva et al., 2017; Jiang and Carter, 2018a). This
study focuses on the EM algorithm due to its practicality
and popularity. The EM algorithm is an intertwined updating
mechanism consisting of E- and M-steps. With the provisional
item parameter and probability of membership estimates from
iteration t-1 (i.e., λs and vs), the posterior class probability for
person p can be obtained in the E-step by

H
(

C = c
∣

∣

∣
Yp=y

p

)

=
vc
∏I

i=1 π

ypi
pi

(

1− πpi

)1−ypi

∑C
c=1 vc

∏I
i=1 π

ypi
pi

(

1− πpi

)1−ypi
(6)

Based on Equation (6), the expected number of persons in latent
class c and the expected number of persons in latent class c who
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TABLE 2 | A 3-item sample of expressions of a log-linear cognitive diagnostic model.

Item α1 α2 α3 Expanded λi,0+λ
T
i
h
(

αc,qi
)

expression Shortened expression

1 1 0 0 λ1,0 + λ1,1 (1) + λ1,2 (0) + λ1,3 (0) + λ1,12 (1×0) +

λ1,13 (1×0) + λ1,23 (0×0) + λ1,123 (1×0×0)

λ1,0 + λ1,1 (1)

2 0 1 1 λ2,0 + λ2,1 (0) + λ2,2 (1) + λ2,3 (1) + λ2,12 (0×1) +

λ2,13 (0×1) + λ2,23 (1×1) + λ2,123 (0×1×1)

λ2,0 + λ2,2 (1) + λ2,3 (1) + λ2,23 (1)

3 1 1 1 λ3,0 + λ3,1 (1) + λ3,2 (1) + λ3,3 (1) + λ3,12 (1×1) +

λ3,13 (1×1) + λ3,23 (1×1) + λ3,123 (1×1×1)

λ3,0 + λ3,1 (1) + λ3,2 (1) + λ3,3 (1) +

λ3,12 (1) + λ3,13 (1) + λ3,23 (1) + λ3,123 (1)

answer item i correctly can be obtained by:

nc =

N
∑

p=1

H
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∣

∣
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Yp=y

p

)

, and

rci =

N
∑

p=1

ypiH
(
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∣

∣

∣
Yp=y

p

)

,

respectively. In the M-step, the following function is maximized
with respect to item parameters λ:

ℓ =

I
∑

i=1

2A
∑

c=1

[

rci logπci + (nc − rci) log (1− π ci)
]

,

and the probability of membership is updated by

νc =

∑N
p=1H

(

C = c
∣

∣

∣
Yp=y

p

)

N
.

Maximizing objective function ℓ usually requires Newton
or Fisher scoring methods, where first- and second-order

derivatives i.e., ∂L
∂λ

· ( ∂
2L

∂λ
2 )

−1
where the first component is a vector

and the second component is a matrix) of the objective function

are needed. If ∂
2L

∂λ
2 becomes 0, the iteration process will stop and

therefore fail to converge.
As a restricted latent class models, LCDM estimation faces

the risk of local maxima (Jin et al., 2016). Theoretically, to
obtain valid and accurate estimates, the model estimation should
converge at a global maximum of the likelihood function,
however, the mixture component of a mixture model is likely
to trap the aforementioned EM updates to local maxima.
In addition, label switching can occur and therefore lead to
a misinterpretation of an estimation. For instance, a person
mastering all attributes of interest can be mistakenly labeled as
one with zero-mastery. Basing on the traditional EM approach,
Rupp et al. (2010) add constraints to the parameter estimates
(e.g., ensuring main effects are non-negative); this constraint
approach substantially reduces the risks of local maxima and
label switching (Lao and Templin, 2016). Using Mplus (Muthén
and Muthén, 2013), a commercial software designed for latent
variable modeling that by default deploys the traditional EM
approach, Templin and Hoffman (2013) outline the procedures
to specify syntax with parameter constraints for the LCDM
estimation. Note that in the LCDM estimation, the EM approach

in Mplus is turned into an accelerated version, meaning its
updating steps are replaced with Quasi-Newton and Fisher
scoring, this, however, still falls under the family of the traditional
EM algorithm. Although Templin and Hoffman’sMplus practice
has been implemented in many published works and is proved
to be efficient (see Bradshaw and Templin, 2014; Li et al.,
2016; Ravand, 2016 for example), it is still not avoiding the
convergence failure issue: Templin and Bradshaw (2014) conduct
a simulation study with vast conditions each of which was
replicated 500 times, where the result shows the numbers of
converged replications range from 330 to 447. To avoid the
convergence issue while maintaining the properties of the EM
approach, we introduce a machine-learning technique named
Differential Evolution to estimate LCDMs.

DIFFERENTIAL EVOLUTION

Global optimization under machine-learning umbrella has
gained tremendous attention from researchers, mathematicians
as well as professionals in the field of engineering, finance,
and scientific areas (Mohamed et al., 2012). Many applications
of this kind impose complex optimization problems such
traditional estimation techniques based upon derivatives become
cumbersome or even impossible. To avoid the mathematical
deriving procedures yet provide reliable solutions to complex
models, Differential Evolution (DE) is invented (Storn and Price,
1997), developed, and applied to practice in different fields
(e.g., Paterlini and Krink, 2006; Das et al., 2008; Rocca et al.,
2011). Inspired by Darwinian evolution that entails the idea of
mutation, crossover, and selection, DE is an enhanced version of
derivative-free evolutionary algorithms and has been recognized
as a simple yet efficient optimization approach in solving a variety
of benchmark problems. The complete DE algorithm cycle can be
found in Figure 1; in particular, the algorithm starts by sampling
D candidate solutions to the problem of interest, where each
candidate solution can be either a scalar or a vector (if there
are more than one estimate). The mutation procedure takes
place by performing simple arithmetic operations (i.e., addition,
subtraction, and multiplication) among the existing solutions
(namely parent solutions). The resultant mutation outcomes
are then crossed over with the parent solutions to produce
new candidate (offspring) solutions. Finally, in a one-to-one
selection process of each pair of offspring and parent vectors,
candidate solutions that fit the model better are passes into the
next evolutionary cycle. This cycle iterates until the estimation
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FIGURE 1 | The iterative cycle of differential evolution algorithm.

converge. Mathematical and algorithmic details can be found in
the following paragraph.

Let R be the number of estimates, λLO and λHI be the lower
and the upper limits (vectors) of the parameters of the estimates,
and G(·) be the objective function. Initial candidate solutions
λd = (λd1, λd2, . . . , λdR) for d = 1, 2,. . . , D can be generated by
(1) randomly drawing samples from certain distribution(s) or (2)
specifying values with educated guesses, where D is the number
of candidate solutions. Mutation procedure can be achieved via
different strategies: (1) DE /rand/ 1, (2) DE/current-to-rest/1, and
(3) DE/best/1. In particular, for a given set of candidate solutions
λd for d= 1, 2,. . . ,D, themutation outcomesmd can be calculated
as:

DE/rand/1 md = λδo+Fd
∗(λδ1−λδ2 )

DE/current − to− rest/1 md = λδo+Fd
∗(λbest−λδ2 )

+Fd
∗(λδ1−λδ2 )

DE/best/1 md = λbest+Fd
∗(λδ1−λδ2 )

Where δo, δ1, and δ2 are distinct integers uniformly sampled from
1 to D, λδ1−λδ2 is the difference vector that would be used to
mutate two selected parent candidates (e.g., DE/rand/1), λbest is
the best candidate solution at the current iteration, and finally
Fd is the mutation scaling factor that is randomly drawn from
a uniform distribution on the interval (0, 1). Some md may
be produced beyond the constraints set by λlo and λhi; some
effective solutions to the violation include (1) re-generating a
candidate solution until it is valid and (2) setting penalty to
the objective function. If an element r in a candidate solution
encounter the boundary issue, a quick fix by setting the violating
elements to be the middle between boundaries and the that of
its parent solution. That is, mdr=

λLOr+λdr
2 for mdr < λLOr and

mdr=
λHIr+λdr

2 for mdr > λHIr . After obtaining md from the
mutation procedure, a “binomial” crossover operation forms the
offspring candidate solutions: let CR be a crossover probability
that controls the fraction of the elements that are copied from
the parent candidate solution and udr be a candidate solution,
if a random number zr sampled from a uniform distribution
(0, 1) is smaller than CR, the element r of the offspring of

udr is mdr , and λdr otherwise. The default CR is usually set to
0.5 for a balanced stochastic move. Finally, if G(ud) is better
than G(λd), ud would replace λd to serve as a parent solution
for the next iteration. The DE algorithm can be tailored to a
parallel computing platform; technically each candidate solution
can be calculated in an independent computational unit such that
queuing time can be shortened. That said, instead of sequentially
updating the candidate solutions, a parallel DE algorithm can
perform simultaneous updates.

To illustrate how the DE algorithm functions, an example of
a simple regression estimation is provided here. Let independent
variable x= [22, 14, 15, 12, 10, 26, 11, 28] and dependent variable

y = [44, 29, 30, 27, 24, 51, 25, 56] resulting in β̂ = [4.98,
1.78] with the ordinary least squares (OLS) estimator. Using the
DE algorithm in this case sets the objective function G(λ) to

−1∗
∑
(

y − ŷ
)2
, which ideally should be maximized to −7.19

according to the OLS result. To keep the demonstration simple,
let the number of candidate solutions D= 3 and initial values for
λ1, λ2, and λ3 were arbitrarily set to [2, 1], [−3, 5], and [1, 2].
At the initial iteration, the best solution was [1, 2] asG(λ3)=−24
whereG(λ1) andG(λ2) were−2400 and−21672. Therefore, λbest

at this stage became λ3. With certain random draws for a given
mutation calculation (e.g., DE/best/1),m1,m2, andm3 happened
to be [3.5, 0.8], [−1, 3.5], and [2, 1.8]. Let CR = 0.5, if a random
generation produced z1 =0.7 and z2 =0.4 for example, the first
offspring u1became [3.5, 1] by taking elements from λ1 and m1.

This resulted in G(u1)= −2022, which is larger than G(λ1), and
therefore the new λ1 would be replaced by u1.On the other hand,
if u3 became [1, 1.8] which produced G(u1)= −116.8, then the
λ3 remained still. This process continues until G(λ) converges to
−7.19.

In this paper, we integrated the DE into the EM algorithm
to estimate LCDMs1 To make the proposed approach easy
to follow, we name it EM-DEoptim algorithm from here.
Especially, the method for updating item parameters within
the M-step is replaced by the DE algorithm, while the rest
of the EM procedures remain identical. To be concrete, the
objective function that the EM-DEoptim maximizes is Equation
3, given vc for each latent class is known. As the DE is a

1The snippet code can be found https://alabama.box.com/s/

cbuxetk19b1pk1invi1gnbqxd8hw5fij.
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stochastic and global optimization technique, the EM-DEoptim
is expected to encounter fewer occurrences of the local maxima
problem than the traditional EM algorithm (Celeux et al.,
1996). In addition, as addressed above, the EM-DEoptim is
based upon derivative-free framework such that it can be easily
fitted to arbitrarily customized LCDMs without re-deriving the
gradient functions nor re-approximating information matrix.
For example, if constraining the main effects of Item i and
Item i’ to be equal while still allowing others to be estimated
freely is needed, the EM-DEoptim algorithm can handle the
situation by simply assigning the same labels to the constrained
parts in the likelihood function expression, where the traditional
EM algorithm needs altering the derivatives. This advantage
can effectively prevent the aforementioned un-differentiable
situations. Last but not least, the computational speed of the
EM-DEoptim algorithm, although not outperform the traditional
EM algorithm in a singular operation environment, can be
substantially improved via parallel computing facilities that are
naturally suited to modern machine-learning-based techniques.

SIMULATION STUDY

We conducted a simulation study to demonstrate the utility
of the EM-DEoptim algorithm. Specifically, the study involved
two investigations: the number of times that the traditional EM
algorithm fails and the comparison between the EM-DEoptim
algorithm and the traditional EM algorithm in terms of the
parameter recovery. In the simulation study, the numbers of
attributes A were set to 3, 4, 5. The Q-matrix was randomly
generated: when there were 3 attributes (A = 3), a balanced Q-
matrix in which each item measures either one or two attributes
was utilized; similarly, at the condition of 4 and 5 attributes, each
item measures two to three attributes. The number of items I
was set to 30 and the number of persons N was set to 300. The
attributes were generated via two steps: continuous values were
initially generated from a multinormal distribution MV (0, 6)
of which the diagonal elements of 6 were constrained to 1 and
the off-diagonal values (i.e., correlations between attributes) were
randomly drew from a uniform distribution ranging from 0.7 to
0.9, and these continuous values were further converted onto the
binary scale by comparing the values with zero (i.e., 1 if the value
is larger than zero and 0 otherwise). Finally, the item parameters
were specified to two level: high-quality group that sets main
effects = 2, intercepts = −1.5, and interaction effects = 0.5, and
low-quality group that makes main effects = 0.2, intercepts =
−0.5, and interaction effects= 0.1.

The traditional EM algorithm was realized via the package
CDM (George et al., 2016; alternatively, one can choose the
package GDINA by Ma and de la Torre, 2018), where the EM-
DEoptim algorithm was executed in R (R Core Team, 2018). The
stop criterion in CDM was set to 1,000 iterations or the change
of likelihood value <0.001, where the EM-DEoptim algorithm
was forced to stop if the iteration number reaches to 1,000
or the likelihood value remains identical for 10 iterations. In
this study, the DE configurations were set to default (Ardia
et al., 2011): DE/current-to-rest/1 with Fd = 0.8, CR = 0.5, and

500 candidate solutions, where ± 20 is used to constrain the
parameter estimates. The machine used was Dell Precision 3520
with 16GB RAM and a 2.90 GHz i7-7820 4-core Intel processor.
The study was replicated for 200 times.

The dependent variables in this part of the study are (1) the
number of convergence failure of the EM algorithm, (2) relative
bias (RBIAS) and root mean squared error (RMSE), and (3)
the attribute classification accuracy measured by each attribute
and each profile. Overall, there was only two failed convergence
failures when the item quality was high, where the low-quality
item parameters led to seven failures: two cases in the situation
of A = 4 and five cases when A = 5. On the other hand, EM-
DEoptim had no unexpected terminations during the iterations.
Table 3 shows the attribute classification accuracy rates. Both
algorithms produced very similar results, where some patterns
can be discovered: (1) the more attributes the estimation face,
the less accurate the attribute estimates are yielded, (2) the higher
the item parameter quality is, the more accurate the attribute
estimates are produced, and (3) the profile accuracy is more
sensitive to the item parameter quality.

Similar to the attribute estimates, the item parameter recovery
presented similar pattern for both algorithms as listed in Table 4.
The biases and MSEs were higher when (1) the number of
attributes was larger and (2) the item parameter quality is
higher. In addition, main effect estimates were more accurate and
efficient than both interaction and intercept effects. This finding
is not uncommon in complex psychometric models (Jiang et al.,
2016). When the item parameter quality is low, and/or the
number of attribute is large (e.g., 5), the EM-DEoptim performed
better than the traditional EM algorithm. An important reason
is that the boundary constraints imposed by the EM-DEoptim
algorithm can limit the estimates into a certain range. Although
not a main focus of the studies, the computing speed showed a
substantial difference: the average time (in seconds) for 3-, 4-,
and 5 attributes were 4.45, 22.55, and 78.64 for the traditional
EM algorithm, while the EM-DEoptim took 61.22, 354.18, and
1228.76.

REAL DATA APPLICATION

The dataset used in this session is an assessment of a health
profession administered to 3491 test takers (Jiang and Raymond,
2018). The number of items is 200 each of which measures

TABLE 3 | attribute accuracy rate of the simulation study.

EM DE-EMoptim

A Quality Attribute Profile Attribute Profile

3 High 0.848 0.634 0.847 0.642

4 High 0.816 0.505 0.821 0.489

5 High 0.768 0.336 0.755 0.342

3 Low 0.516 0.104 0.517 0.104

4 Low 0.509 0.039 0.513 0.044

5 Low 0.504 0.017 0.468 0.013
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TABLE 4 | Item parameter estimates of the simulation study.

RBIAS EM EM-DEoptim

A Quality Main Intercept Interaction Main Intercept Interaction

3 High −0.433 −0.270 −1.896 −0.463 −0.280 −1.196

4 High −1.744 −0.948 −5.036 −1.740 −0.938 −4.106

5 High −1.906 −0.957 −4.975 −1.906 −0.957 −2.675

3 Low −5.389 −8.906 −2.160 −2.389 −4.406 −1.960

4 Low −9.526 −9.950 −3.696 −8.626 −7.950 −4.026

5 Low −11.99 −6.419 −10.027 −9.495 −5.419 −7.027

RMSE EM EM-Deoptim

3 High 6.346 2.124 8.349 6.890 1.924 4.336

4 High 14.576 5.035 15.679 15.079 6.422 13.853

5 High 21.643 6.230 26.327 18.223 7.360 18.707

3 Low 15.423 11.630 18.478 12.863 12.112 18.481

4 Low 22.512 15.165 26.064 19.299 16.865 17.446

5 Low 25.410 15.109 15.319 16.506 14.409 14.319

FIGURE 2 | Three sample items of the health profession test.

one attribute. Therefore, there are five attributes in total: the
knowledge of radiation biology (Items #1-45), the knowledge of
equipment operation (Items #46-67), the image acquisition and
evaluation capacity (Items #68-112), the knowledge of imaging
procedures (Items #113-162), and ethics (Items #163-200). Three
samples of the items can be found in Figure 2.

Two common model fit indices are reported as: (1): mean
of absolute deviations in observed and expected correlations
(MADcor; DiBello et al., 2007) is 0.041 and standardized mean
square root of squared residuals (SRMSR; Maydeu-Olivares,
2013; Maydeu-Olivares and Joe, 2014) is 0.05. Overall, the model
has an adequate fit. Note that more model fit indices such as
χ
2-like statistics (Orlando and Thissen, 2000) are recommended.

This paper focuses on the estimation. More model fit details can
be found in Hu et al. (2016) and Sorrel et al. (2017).

Rounding the number of digits to three after the decimal
point, one can see that 16 classes are nearly empty and therefore
are labeled as “others” in Figure 3 (see Jiang and Carter, 2018b
for more visual aids). Nearly 40% of the test takers master all
five attributes. According to Templin and Bradshaw (2014), many
empty classes indicate potential hierarchies of attribute structure,
however, the parameter estimates can be relatively robust
even the non-hierarchical modeling is adopted here. Figure 4
shows the distributions of the parameter estimates grouped by
parameter types and attribute identifications. Attribute #3 had
the highest means of both intercepts and main effects: 2.65 and
1.79. The means of intercepts and main effects of Attribute #5
were−1.05 and 0.20.

To compare the estimates with other estimation approaches,

we also implemented a Bayesian technique-Hamiltonian Monte

Carlo-to the analysis by adopting uninformative priors for both

item parameters and the class membership probability: the mean
and standard deviation for item parameters were 0 and 20, while

the Dirichelet prior parameters were all set to 1 (see Jiang and

Carter, 2018a for details). The correlations of item parameter
estimates were relatively high: 0.77, 0.84, and 0.69 for intercept,

main effect, and interaction effects. On the other hand, the

attribute agreement was lower than that of the item parameter
estimates: the average ratio for all attributes was 0.67, where the

value dropped to 0.39 when it comes to the match of the class

membership classification. This makes sense as the Dirichelet
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FIGURE 3 | Estimated class probabilities via LCDM.

FIGURE 4 | Item parameter estimates of the health profession test.
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prior had forced the assignment on each latent class and therefore

the result tended to be more different from those that were fully

determined by the EM algorithm.

DISCUSSION AND CONCLUSION

The purpose of this paper is to propose a machine-learning
based algorithm for the estimation of LCDMs. In particular,
the proposed estimator is a combination of the EM framework
and the DEoptim algorithm, which has been popular in neural
networks and business analytics fields. The performance of the
proposed algorithm is evaluated through a simulation study
of which the results indicate that it is an appropriate option
to handle LCDM estimation task. This paper, however, does
not suggest that the proposed algorithm should replace the
EM algorithm in practice; at the situations where the EM
algorithm fails to produce estimates due to the unsuccessful
derivative updates, the EM-DEoptim algorithm can be an
alternative.

The proposed EM-DEoptim algorithm and the traditional EM
algorithm implemented in Mplus produced virtually identical
parameter estimates, and the former seems less frequently to
fail. The average computational time for Mplus estimation
with the multiple-core option is 15min. The difference is
caused by the features of the algorithms: the EM algorithm
based upon Quasi-Newton and Fisher scoring updates estimates
with directional steps (i.e., the iteration always leads to better
solutions), while the DEoptim part is truly stochastic such
that the updating procedures may be wasted. Even though

the DEoptim mechanism is fundamentally less directional than
Quasi-Newton and Fisher scoring, The EM-DEoptim algorithm
perform cannot very similar to the EM algorithm. Theoretically,
the EM-DEoptim algorithm can be many times faster than what
it is now if the entire function is constructed in C++ or Fortran;
currently only the DEoptim is implemented in C++ through
the package RcppDE, where the entire algorithm is written in
base R software scripting language. Research has shown that
using compiler package with R often takes less than half of time
executing the same function than that of without packages (e.g.,
Aruoba and Fernández-Villaverde, 2015). In addition, given the
DEoptim algorithm is composed of basic calculation, performing
the proposed algorithm in a vectorization approach and therefore
with graphics processing units (GPUs) is expected to accelerate
the estimations.
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In joint models for item response times (RTs) and response accuracy (RA), local item

dependence is composed of local RA dependence and local RT dependence. The two

components are usually caused by the same common stimulus and emerge as pairs.

Thus, the violation of local item independence in the joint models is called paired local

item dependence. To address the issue of paired local item dependence while applying

the joint cognitive diagnosis models (CDMs), this study proposed a joint testlet cognitive

diagnosis modeling approach. The proposed approach is an extension of Zhan et al.

(2017) and it incorporates two types of random testlet effect parameters (one for RA and

the other for RTs) to account for paired local item dependence. The model parameters

were estimated using the full Bayesian Markov chain Monte Carlo (MCMC) method.

The 2015 PISA computer-based mathematics data were analyzed to demonstrate the

application of the proposed model. Further, a brief simulation study was conducted to

demonstrate the acceptable parameter recovery and the consequence of ignoring paired

local item dependence.

Keywords: cognitive diagnosis models, response time models, response times, local item dependence, testlet,

DINA model, PISA

INTRODUCTION

Nowadays, it becomes a common practice to collect response time (RT) data as the computer-
based tests are applied to large-scale assessments. RT represents the amount of time a respondent
spends on an item. It serves as an additional source of information about the working speed
of a respondent as well as the time intensity of an item. In the past few decades, a number
of studies have been done to model the RTs. Before the year of 2007, the RT modeling studies
such as Thissen (1983), Verhelst et al. (1997), and Wang and Hanson (2005) were motivated by
the speed-accuracy trade-off (Luce, 1986). However, this trade-off only reflected a within-person
relationship between speed and accuracy (van der Linden, 2009) where, given a fixed set of items,
a respondent’s speed is dependent on his or her accuracy. Therefore, the relationship between
speed and accuracy should be modeled at a higher level. To this end, van der Linden (2007)
proposed a hierarchical modeling framework to explain the higher-level relationship between
speed and accuracy. In this framework, RTs and RA were separately modeled at the first level
whereas two correlational structures were modeled at the second level. The correlational structures
accounted for either the dependence between person latent speed and latent ability parameters
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and that between item accuracy-related and item time-related
parameters. A comparison study suggested that the hierarchical
modeling framework yielded more reasonable outcomes in both
real and simulated data than other RTmodeling approaches (Suh,
2010). The hierarchical modeling framework was generalized
to integrate different measurement models due to its flexible
nature (e.g., Klein Entink et al., 2009a,b; Wang et al., 2013; Meng
et al., 2015; Molenaar et al., 2015; Wang and Xu, 2015; Fox and
Marianti, 2016). However, almost all the previous studies in RT
modeling were based on unidimensional item response theory
(IRT) models but none used multidimensional measurement
models.

Multidimensional tests and cognitive diagnostic assessments
become more and more prevalent given the increasing demand
for diagnostic test feedback containing refined information.
In general, cognitive diagnostic assessments aim at evaluating
respondent’s mastery status (e.g., mastery or non-mastery) of
latent skills or attributes. This information can be provided
to teachers or clinicians so that they can determine the
remedial instructions or targeted interventions accordingly.
Although numerous cognitive diagnosis models (CDMs) have
been developed (for review, see Rupp et al., 2010) based on
various cognitive and psychological assumptions, almost all of
them only utilized information on RA. Recently, Zhan et al.
(2017) proposed a joint cognitive diagnosis modeling approach
to simultaneously model RTs and RA. In the study of Zhan
et al. (2017), the deterministic-inputs, noisy “and” (DINA)
model (Macready and Dayton, 1977; Haertel, 1989; Junker and
Sijtsma, 2001) and the lognormal RT model (van der Linden,
2006) were used as the measurement models for RA and RTs,
respectively. A higher-order latent structure (de la Torre and
Douglas, 2004) was introduced to account for the relationship
between latent attributes and a continuous higher-order latent
ability. Furthermore, a bivariate normal distribution was used
to model the relationship between the higher-order latent ability
and the latent speed. A similar approach was proposed by
Minchen (2017). Unlike Minchen’s approach, Zhan et al. (2017)’s
approach explicitly modeled the correlation between different
item parameters (i.e., within-item characteristic dependency;
Fox, 2010; Zhan et al., manuscript submitted for publication) by
assuming that they followed a multivariate normal distribution.

A key assumption in the joint models of RA and RTs is
local item dependence. Specifically, the observed RA responses
are conditionally independent of each other given an individual
score in latent ability or a specific latent attribute mastery status,
which is denoted as local RA independence; in the meanwhile,
all the RTs are conditionally independent of each other given
the an individual score in latent speed, which is denoted as
local RT independence. In other words, in the joint models,
local item independence is composed of local RA independence
and local RT independence, which is known as paired local
item independence. However, the assumption of local item
independence is often violated in educational tests, resulting in
local item dependence. One of the most common scenarios that
lead to local item dependence is the presence of testlet, where
several items are based on a common context (Wainer and Kiely,
1987).

A testlet is defined as a cluster of items that share a common
stimulus. The local item dependence resulted from a testlet
is called testlet effect. Testlet has been widely adopted in
educational tests. For example, in a reading comprehension test,
a testlet is formed when a bundle of items are based on the
same reading passage. The testlet design makes the assessment
process more efficient (DeMars, 2012). While responding to the
items within the same testlet, the students only need to process
the scenario once and the context information can be applied to
all the items in the testlet. However, the testlet design makes it
more difficult to measure student’s reading ability as the student’s
performance may be affected by their knowledge or interest in
the reading passage content besides their reading ability (Yen,
1993). Thus, item responses within the same testlet may be locally
dependent on each other.

Testlet response theory modeling (Wang and Wilson, 2005;
Wainer et al., 2007) is one of the most popular approaches to
handle testlet effect or local item dependency. As a bi-factor
multidimensional IRT model (DeMars, 2006; Li et al., 2006), the
testlet response theory model assumes that all the item responses
are accounted for by a common factor of latent ability, while
the responses within a testlet are further explained by a random
testlet effect factor. It has been demonstrated that the presence of
testlet effect affects model parameter estimates, equating process,
and test reliability estimates (e.g., Sireci et al., 1991; Bradlow et al.,
1999; Wang and Wilson, 2005; Wainer et al., 2007; Jiao et al.,
2012, 2013; Zhan et al., 2014; Jiao and Zhang, 2015; Tao and Cao,
2016). However, all the studies above only addressed the local RA
dependence but none accounted for the local RT dependence.

As aforementioned, the paired local item independence is
composed of local RA independence and local RT independence.
Given that the item clusters which cause local RA dependence
would also result in local RT dependence, and local RA
dependence and local RT dependence should emerge in pairs.
Thus, the violation of paired local item independence is
called paired local item dependence. In other words, local RA
dependence and its corresponding local RT dependence are
caused by the same stimulus but are reflected in different forms
(i.e., RA and RTs). To address the paired local item dependence
in the IRT framework, Im (2017) proposed a hierarchical
testlet model, in which local RA dependence was handled by a
testlet response theory model whereas local RT dependence was
handled by a lognormal RT testlet model.

In cognitive diagnosis, however, only a few studies focused on
accounting for local RA dependence (e.g., Hansen, 2013; Zhan
et al., 2015; Hansen et al., 2016), and, to our knowledge, none
examined local RT dependence. As aforementioned, the joint
CDMs assume paired local item independence. Thus, the purpose
of this study is to extend the joint cognitive diagnosis modeling
approach (Zhan et al., 2017) in order to address the potential
paired local item dependence in RTs and RA. The rest of the
paper starts with a review of the testlet-DINA model (Zhan et al.,
2015) and the lognormal RT testlet model (Im, 2017). Then the
proposed joint testlet-DINA model is introduced. It is followed
by a real data analysis using the Program for International
Student Assessment (PISA) 2015 computer-based mathematics
data, which serves to demonstrate the application of the proposed
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model. Finally, a brief simulation study is presented used to
demonstrate the model parameter recovery and the consequence
of ignoring paired local item dependence.

JOINT TESTLET COGNITIVE DIAGNOSIS
MODELING

The Testlet-DINA Model
To account for the local RA dependence in cognitive diagnosis,
Hansen (2013) and Hansen et al. (2016) proposed a higher-
order, hierarchical CDM which can be viewed as a combination
of the two-tier item factor model (Cai, 2010) and the log-linear
CDM (Henson et al., 2009). Like the two-tier item factor model,
Hansen’s model could only account for local RA dependence
which was resulted from a single source. Zhan et al. (2015)
proposed two within-item multidimensional testlet effect CDMs
which was able to account for local RA dependence that was
resulted from multiple sources simultaneously (Rijmen, 2011;
Zhan et al., 2014). The two models included a compensatory
model which allowed attributes to compensate each other and a
non-compensatory model which assumed that respondents need
tomaster all the required attributes in order to have a high correct
response probability. For simplicity, the testlet-DINA model in
this study only refers to the non-compensatory model, which is
written as

logit(P(Yni = 1)) = βi + δi

∏K

k=1
α
qik
nk

+
∑M

m=1
uimγnm, (1)

where Yni denotes the dichotomous response of person n to item
i; αn = (αn1, . . . , αnK)

′denotes person n’s attribute pattern, K
is the number of required attributes; βi and δi are the intercept
and interaction parameters for item i, respectively; The Q-matrix
(Tatsuoka, 1983) is an I-by-K confirmatory matrix with element
qik indicating whether the attribute k is required to correctly
answer the item i (i.e., qik = 1 if the attribute is required,
and 0 otherwise); γnm ∼ N(0, σ 2

γm
)is the RA testlet effect of

the mth testlet, which represents the interaction effect between
person n and items within testlet m on RA. Usually, the value of
σ
2
γm
indicates the magnitude of testlet effect (Wang and Wilson,

2005; Wainer et al., 2007). A large variance is associated with a
large testlet effect. All the γnms are assumed to be independent
with each others; LetM be the total number of testlets in the test,
the U-matrix (Zhan et al., 2014) is an I-by-M confirmatorymatrix
with element uim indicating whether item i belongs to testlet m
(i.e., uim = 1 if item i belongs to testletm, and 0 otherwise).

Obviously, when all elements in the U-matrix equal to 0
(means no tesltet in the test) or all σ

2
γm

= 0 (means no testlet
effect), the testlet-DINA model reduces to the reparameterized
DINA model (DeCarlo, 2011; von Davier, 2014).

The Lognormal RT Testlet Model
To account for the local RT dependence, Im (2017) proposed the
lognormal RT testlet model. The lognormal RT testlet model is
an extension of the regular lognormal RTmodel (van der Linden,
2006) by introducing a random testlet effect parameter, but it can
also be taken as a special case of the multidimensional lognormal
RT model (Zhan et al., manuscript submitted for publication).

Let Tni be the observed RT of person n to item i, the lognormal
RT testlet model can be expressed as

Tni ∼ f (tni; τn,λnm,ωi, ξi)

=
ωi

tni
√
2π

exp(−
1

2
(ωi(log tni − (ξi − τn − λnm)))

2), (2)

where logtni be the logarithm of RT, which is used to transform
the positively skewed distribution of RT to a more symmetric
shape; τn be the latent speed of person n; ξi be the time-intensity
of item i; ωi be the discriminating power of item i, which can
be treated as a time-kurtosis parameter; λnm ∼ N(0, σ 2

λm
)be the

mth RT testlet effect parameter to address local RT dependence,
which represents the interaction between person n and items
within testlet m in RT. The larger the variance, the larger the
testlet effect is. All λnms are assumed to be independent of each
other.

Equation (2) can be extended to account for potential within-
item multidimensional testlet effect

Tni ∼ f (tni; τn,λn,ωi, ξi)

=
ωi

tni
√
2π

exp(−
1

2
(ωi(log tni − (ξi − τn −

∑M

m=1
uimλnm)))

2

),

(3)

where all the parameters have been defined above. Equation (3)
is regarded as the within-item multidimensional testlet effect
lognormal RT model, which can be seen as a special case of the
multidimensional lognormal RT model (Zhan et al., manuscript
submitted for publication). For simplicity, Equation (3) can be
equivalently expressed as

logTni ∼ N(ξi − τn −
∑M

m=1
uimλnm,ω

−2
i ). (4)

When there is only one source of local RT dependence, the
within-item multidimensional testlet effect lognormal RT model
reduces to the lognormal RT testlet model (Im, 2017). Further,
when all the elements in the U-matrix equal to 0 or σ

2
λm

= 0for all
testlets, the within-itemmultidimensional testlet effect lognormal
RT model reduces to the regular lognormal RT model (van der
Linden, 2006).

The Joint Testlet-DINA Model
The joint testlet-DINA model is specified as follows: Yni and
logTni are separately modeled at the first level following the
convention of joint cognitive diagnosis modeling approach
and the hierarchical testlet model; a higher-order latent
structural model is used to account for the relationship between
binary latent attributes and a continuous higher-order latent
ability; further, at the higher level, three variance-covariance
structures are imposed to model the dependencies among person
parameters, item parameters, and testlet effect parameters. A
graphical representation of the joint testlet-DINA model is given
in Figure 1.

First, the testlet-DINA model (Equation 1) and the within-
item multidimensional testlet effect lognormal RT model
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FIGURE 1 | A graphical representation of the joint testlet-DINA model.

(Equation 4) are used as the measurement models for RA and
RTs, respectively.

Then, the higher-order latent structural model is used to link
the correlated attributes, which is given by

logit(P(αnk = 1)) = νkθn − κk, (5)

where P(αnk = 1) is the probability of mastery of attribute k
by person n; θn is a higher-order (general) ability of person n,
which is assumed to follow a standard normal distribution for
identification purpose; and νk and κk are the slope and difficulty
parameters for attribute k.

Further, item parameters are assumed to follow a trivariate
normal distribution

9 i =





βi

δi

ξi



 ∼ N









µβ

µδ

µξ



 ,6item



 . (6)

Additionally, since the residual error variance,ω−2
i , is assumed to

be independently distributed (Zhan et al., 2017), it is not included
in 9 i.

Likewise, person parameters are assumed to follow a bivariate
normal distribution

2n =

(

θn

τn

)

∼ N

((

µθ

µτ

)

,6person

)

. (7)

In addition, testlet effect parameters in testlet m are assumed to
follow a bivariate normal distribution

Ŵnm =

(

γnm

λnm

)

∼ N

((

0
0

)

,6testlet,m

)

. (8)

If there are M testlets, there will be M bivariate normal
distributions. In addition, it should be noted that, in the proposed
model, the uim in RT model (Equation 3) has the same value
as the uim in RA model (Equation 1) because of the paired

local item dependence. In summary, Equations (1, 4–8), together,
constitute the joint testlet-DINA model. Constraints are set for
identification purpose (i.e., µθ = 0, σ 2

θ
= 1;µτ = 0). The first

two constraints are consistent with those set in the higher-order
latent trait model while the third removes the tradeoff between ξi

and τn from a lognormal model. After addressing the paired local
item dependence, four conditional independence assumptions
are made: the αnk are conditionally independent given θn; the Yni

are conditionally independent given αn and γnm; the logTni are
conditionally independent given τn and λnm; and Yni and logTni

for a particular item i are conditionally independent given person
parameters and testlet effect.

Bayesian Parameter Estimation
Parameters in the joint testlet-DINA model can be estimated
using the full Bayesian approach with the Markov chain Monte
Carlo (MCMC) method. In this study, free software JAGS
(Version 4.3.0; Plummer, 2015) was used to estimate the
parameters. JAGS uses a default option of the Gibbs sampler
(Gelfand and Smith, 1990). Sample code were presented in
Appendix. A tutorial of using JAGS for Bayesian CDM estimation
can be found in Zhan (2017).

To begin with, under the assumption of local independence,
Yni, logTni and αnk are independently distributed, which is
written as

Yni ∼ Bernoulli(P(Yni = 1)),

logTni ∼ N(ξi − τn −
∑M

m=1
uimλnm,ω

−2
i ),

αnk ∼ Bernoulli(P(αnk = 1)).

The priors of item parameters are assumed to be a trivariate
normal distribution, written as





βi

δi

ξi



 ∼ N









µβ

µδ

µξ



 ,6item



 ,ω−2
i ∼ InvGamma(1, 1). (9)
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Further, the hyper priors are specified as

µβ ∼ N(−2.197, 2),

µδ ∼ N(4.394, 2)I(µδ > 0),

µξ ∼ N(3, 2),

6item ∼ InvWishart(Ritem, 3),

where Ritem is a tridimensional identity matrix.
The priors of person parameters are set as

(

θn

τn

)

∼ N

((

0
0

)

,6person

)

.

As suggested by Zhan et al. (2017), the Cholesky decomposition
of the 6person is used

6person = 1person1
′
person

where

1person =

(

1 0
ϕ ψ

)

is a low triangular matrix with positive entries on the diagonal
and unrestricted entries below the diagonal; 1’person is the
conjugate transpose of 1person. The priors of the elements in
1person are specified as ϕ ∼ N(0, 1),ψ ∼ Gamma(1, 1).

Then, the priors of the higher-order structural parameters are
specified as

κk ∼ N(0, 4), νk ∼ N(0, 4)I(νk > 0).

In addition, the priors of testlet effect parameters in testlet m are
specified as

(

γnm

λnm

)

∼ N

((

0
0

)

,6testlet,m

)

,

with the hyper priors of 6testlet,m ∼ InvWishart(Rtestlet,m, 2),
where Rtestlet,m is a two-dimensional identity matrix for
testletm.

Finally, the posterior mean and the posterior mode are used as
the estimates for the continuous parameters (e.g., βi, δi, θn, and
τn) and categorical parameters (e.g., αnk), respectively.

REAL DATA ANALYSIS

Data
In this study, the PISA 2015 computer-based mathematics data
were used. 17 computer-scored dichotomous items from M1
and M2 testing clusters were selected and used in the analysis.
The complete-case method was implemented to handle the
missing data. That is, only the respondents without missing
values in any of the 17 items were used. As a result, the
dataset used for analysis contained the dichotomous response
data and continuous RT data for 8,606 respondents from
58 countries/economies. The natural logarithm of RTs (i.e.,

log RTs) were used for modeling. According to the PISA
2015 mathematics assessment framework (OECD, 2016), 11
attributes were assessed, including change and relationships
(α1), space and shape (α2), quantity (α3), uncertainty and data
(α4), personal (α5), occupational (α6), societal (α7), scientific
(α8), formulating situations mathematically (α9), employing
mathematical concepts, facts, procedures and reasoning (α10),
and interpreting, and applying and evaluating mathematical
outcomes (α11). The first four attributes are associated with
the mathematical content knowledge that is targeted for use
in the items. The next four attributes are associated with
the mathematical context that is needed to place additional
demands on the problem-solver (Watson and Callingham,
2003; OECD, 2016). The last three attributes are associated
with the mathematical processes that connect the context of
the mathematics problem with problem-solving (OECD, 2016).
In addition, the 17 items contained four testlets, namely,
population pyramids (m1), diving (m2), cash withdrawal (m3),
and chair lift (m4). Only one source of local item dependence
was considered in this study (i.e., an item only belongs to
one testlet). The Q-matrix and the U-matrix are presented in
Table 1.

Analysis
In addition to the joint testlet-DINA model, the joint responses
and times DINA (denoted as the JRT-DINA) model (Zhan et al.,
2017) was also used to fit the data for comparison purpose. The
JRT-DINA model can be seen as a special case of the joint testlet-
DINA model where all random testlet effect parameters are set
to be zero. For both models, two Markov chains with random
starting points were used and 10,000 iterations were run for each
chain. The first 5,000 iterations in each chain were discarded as
burn-in. In order to save space in memory1, the thinning interval
was set to be five. As a result, 2,000 iterations were retained
for model parameter inferences. The potential scale reduction
factor (PSRF; Brooks and Gelman, 1998) was computed to assess
the convergence of each parameter. PSRF values lower than 1.1
or 1.2 were used as convergence criteria in previous studies
(Brooks and Gelman, 1998; de la Torre and Douglas, 2004). In
this study, the PSRFs were generally lower than 1.05, indicating
good convergence in the specific setting.

The AIC (Akaike, 1974), BIC (Schwarz, 1978), and DIC
(Spiegelhalter et al., 2002) were computed for model comparison.
Posterior predictive model checking (PPMC; Gelman et al.,
2014) was used to evaluate model-data fit. Posterior predictive
probability (PPP) values near 0.5 indicate that there are no
systematic differences between the observed and predicted
values, suggesting an adequate model-data fit. As the research in
the absolute model-fit statistics for joint models was limited, this
study followed Zhan et al. (2017) to evaluate the model fit of the
RA and RT models separately. The sum of the squared Pearson
residuals for person n and item i (Yan et al., 2003) was used as a
discrepancy measure to evaluate the overall fit of the RA model,

1All calculations were conducted on a laptop with 32GB of memory. Insufficient

space of memory was caused by no thinning.
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TABLE 1 | Q- and U-matrix for PISA 2015 computer-based mathematics items.

Items Q-matrix U-matrix

α1 α2 α3 α4 α5 α6 α7 α8 α9 α10 α11 m1 m2 m3 m4

CM033Q01 1 1 1

CM474Q01 1 1 1

CM155Q01 1 1 1 1

CM155Q04 1 1 1 1

CM411Q01 1 1 1 1

CM411Q02 1 1 1 1

CM803Q01 1 1 1

CM442Q02 1 1 1

CM034Q01 1 1 1

CM305Q01 1 1 1

CM496Q01 1 1 1 1

CM496Q02 1 1 1 1

CM423Q01 1 1 1

CM603Q01 1 1 1

CM571Q01 1 1 1

CM564Q01 1 1 1 1

CM564Q02 1 1 1 1

Blank means “0.”

TABLE 2 | Models fit for PISA 2015 computer-based mathematics.

Model −2LL AIC BIC DIC NP ppp_RA ppp_RT

Joint testlet-DINA 387466 387648 388291 525481 91 0.486 0.547

JRT-DINA 414438 414596 415154 530742 79 0.521 0.539

−2LL,−2 log-likelihood; AIC, Akaike’s information criterion; BIC, Bayesian information criterion; NP, number of parameters; ppp, posterior predictive p-value; RA, item response accuracy;

RT, item response time.

which is written as

D(Yni;αn, βi, δi) =

N
∑

n=1

I
∑

i=1

(

Yni − P(Yni = 1)
√
P(Yni = 1)(1− P(Yni = 1))

)

2

,

where P(Yni = 1) has the same definition as that in Equation (1).
On the other hand, the sum of the standardized error function
of logTni for person n and item i (Marianti et al., 2014; Fox and
Marianti, 2017) was used as a discrepancy measure to evaluate
the overall fit of the RT model, which is given by

D(logTni; ξi, τn,ωi)

=

N
∑

n=1

I
∑

i=1

(

ωi(logTni − (ξi − τn −
∑M

m=1
uimλnm))

)2

.

Results
The joint testlet-DINA model was favored based on the
AIC, BIC, and DIC, as is shown in Table 2. In addition,
the likelihood deviances (i.e., −2 log likelihood or −2LL)
of these two models were 387,466 and 414,438, respectively
(1 −2LL = 26,972, df = 12, p < 0.001). Therefore, the

TABLE 3 | Item mean vector and variance and covariance matrix estimates for

PISA 2015 computer-based mathematics items.

µitem 6item β δ ξ

µβ −1.232 (0.278) β 1.436 (0.558) −0.645 −0.700

µδ 2.394 (0.231) δ −0.749 (0.384) 0.938 (0.377) 0.450

µξ 4.197 (0.113) ξ −0.408 (0.198) 0.212 (0.146) 0.236 (0.092)

Covariance in lower triangular matrix and correlation coefficient in upper triangular matrix,

respectively, in 6 item; standard error (standard deviation of the posterior distribution) is in

parentheses; β, item intercept; δ, item interaction; ξ, item time-intensity.

joint testlet-DINA model fitted the data significantly better
than the JRT-DINA model, indicating that paired local item
dependence existed among items within testlets. In the joint
testlet-DINA model, the PPP values of the RA model and
the RT model were 0.486 and 0.547, respectively, which
indicated an adequate model-data fit. Thus, only the results
pertaining to the joint testlet-DINA model are discussed next
(the difference between two models see Figures S1, S2 in
Appendix).
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Table 3 presents the estimated item mean vector and the
estimated item variance-covariance matrix. ρβδ was estimated to
be −0.645, which means that higher item intercept parameters
were associated with lower item interaction parameters. ρβξ

and ρδξ were estimated to be −0.700 and 0.450, respectively,
indicating that items with higher intercept parameters tended
to have lower time-intensity parameters; by contrast, items with
higher interaction parameters tended to be have higher time-
intensity parameters. Further, Figure 2 presents the estimated
item parameters. All the βi estimates were negative except
the 1st and the 13th items, which means that the guessing

probabilities (i.e.,
exp(βi)

1+exp(βi)
) of these two items were higher

than 0.5.
Table 4 presents the estimated person variance and covariance

matrix. ρθτ was estimated to be −0.196, which means that

a low negative correlation was observed between the higher-
order ability and the latent speed parameters. The negative

correlation was consistent with the results in Zhan et al. (2017).
One reasonable explanation is that low-ability respondents

lack motivation in taking the low-stakes test (Wise and
Kong, 2005). Thus, the low-ability respondents may have
shorter RTs and a greater number of incorrect responses
than the high-ability respondents. In addition, the variance
of latent speed was quite small (i.e., 0.073), which means
the variability in latent speed among all respondents was
small.

Table 5 presents the four estimated testlet effect
variance-covariance matrices. As aforementioned, a larger
variance of testlet effect parameters indicates a larger testlet
effect. The variances of the four RA testlet effect parameters
were estimated to be 0.438, 0.260, 2.800, and 0.414, respectively.
Compared to the variance of the latent trait (i.e., 1.00), the
RA testlet effects ranged from small to large2. By contrast, the
variances of the four RT testlet effect parameters were estimated
to be 0.110, 0.083, 0.226, and 0.212, respectively. Although the
RT testlet effects were small in terms of the absolute values,
their ratios to the variance of latent speed (i.e., 0.073) were

TABLE 4 | Person variance and covariance matrix estimates for PISA 2015

computer-based mathematics items.

6person θ τ

θ 1 −0.196

τ −0.053 (0.004) 0.073 (0.001)

Covariance in lower triangular matrix and correlation coefficient in upper triangular

matrix, respectively; standard error (standard deviation of the posterior distribution) is in

parentheses.

2According to previous studies (e.g., Wainer and Wang, 2000; Wang and Wilson,

2005), the value of 0.25, 0.5, and 1.0 is corresponding to small, moderate, and large

testlet effect, respectively.

FIGURE 2 | Item parameter estimates for PISA 2015 computer-based mathematics items. β, item intercept; δ, item interaction; ξ, item time-intensity; ω, item

time-kurtosis.

TABLE 5 | Testlet effect variance and covariance matrix estimates for PISA 2015 computer-based mathematics items.

m1: population pyramids m2: diving m3: cash withdrawal m4: chair lift

6testlet γ λ γ λ γ λ γ λ

γ 0.438 (0.072) −0.268 0.260 (0.070) −0.065 2.800 (0.220) 0.022 0.414 (0.067) −0.187

λ −0.059 (0.012) 0.110 (0.007) −0.010 (0.010) 0.083 (0.005) 0.018 (0.022) 0.226 (0.008) −0.056 (0.013) 0.212 (0.008)

Covariance in lower triangular matrix and correlation coefficient in upper triangular matrix, respectively; standard error (standard deviation of the posterior distribution) is in parentheses.
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around 1.507, 1.137, 3.096, and 2.904, respectively, indicating
that the RT testlet effects were large in this dataset. In addition,
low correlation was observed between each pair of RA testlet

effect and RT testlet effect, indicating that these two types of

testlet effects were separable. This is an unexpected result. A
moderate or a high correlation was expected since, theoretically
speaking, local RA dependence and local RT dependence should
be caused by the same stimulus. More practical evidence needs
to be accumulated from future studies to explain the results.

Figure 3 presents the posterior mixing proportions of the
20 most frequent attribute patterns out of the 2,048 possible
attribute patterns. Only 73 patterns were observed in the
estimated attribute profiles. Attribute pattern (11111111111) was
the most prevalent with a percentage of 40.19%; the second
most prevalent pattern was (10100100000) with a percentage of
23.41%.

A BRIEF SIMULATION STUDY

Design and Data Generation
Abrief simulation study was conducted to examine the parameter
recovery of the proposed model and the consequence of ignoring
the potential paired local item dependence in analysis. The
simulated dataset contained 1,000 respondents and 30 items

measuring five attributes. The Q-matrix is presented in Figure 4.
The last 20 items were evenly divided into 4 testlets. Specifically,
testlet 1 consisted of items 11∼ 15, testlet 2 consisted of items 16
∼ 20, testlet 3 consisted of items 21∼ 25, and testlet 4 consisted of
items 26 ∼ 30. For simplicity, the four pairs of RA and RT testlet
effects were generated from a same bivariate normal distribution,

(

γnm

λnm

)

∼ N

((

0
0

)

,

(

0.50
−0.25 0.50

))

,

where ργλ = −0.5. Typically, setting the testlet effect as 0.5
indicates a moderate testlet effect (Wang and Wilson, 2005;
Wainer et al., 2007). In addition, each item was assumed to
belong to only one testlet. Item parameters were generated from
a trivariate normal distribution,





βi

δi

ξi



 ∼ N









−2.197
4.394
4.000



 ,





1.00
−0.80 1.00
−0.25 0.15 0.25







 ,

where ρβδ = −0.8, ρβξ = −0.5, and ρδξ = 0.3, which were set
according to the estimates from the real data analysis (Zhan et al.,
2017); ωi were generated from N(2, 0.25). Person parameters

FIGURE 3 | Posterior mixing proportions for PISA 2015 computer-based mathematics items. only the 20 most frequent attribute patterns are displayed.

FIGURE 4 | K-by-I Q’ matrix for simulation study. blank means “0,” gray means “1”.
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FIGURE 5 | Bias for item parameter in simulation study. Jt, joint testlet-DINA model; JRT, JRT-DINA model; β, item intercept; δ, item interaction; ξ, item time-intensity;

ω, item time-kurtosis.

FIGURE 6 | Root mean square error (RMSE) for item parameter in simulation study. Jt, joint testlet-DINA model; JRT, JRT-DINA model; β, item intercept; δ, item

interaction; ξ, item time-intensity; ω, item time-kurtosis.

were generated from a bivariate normal distribution,

(

θn

τn

)

∼ N

((

0
0

)

,

(

1.00
−0.25 0.25

))

,

where ρθτ = −0.5. For higher-order structural parameters, νk

= 1.5 for all the attributes and κk = (−1.0, −0.5, 0.0, 0.5, 1.0),
indicating moderate correlations among attributes. The mastery
status of each person on each attribute was generated from a
Bernoulli distribution with the parameter, P(αnk = 1) which was
computed based on Equation (5).

Analysis
Thirty replications were implemented. Both the joint testlet-
DINA model and the JRT-DINA model were fit to the simulated

data. In each replication, the number of chains, burn-in
iterations, and post-burn-in iterations were consistent with
those in the real data analysis. Convergence was well achieved
(see Figure S3 in Appendix). The bias and root mean square
error (RMSE) were used to evaluate parameter recovery, which

were calculated as bias(υ̂) =
∑R

r=1
υ̂r−υ

R and RMSE(υ̂) =
√

∑R
r=1

(υ̂r−υ)2

R , where υ̂ and υ are the estimated and true
value of model parameters, respectively; R is the number of
replications. In addition, the correlation between the true and
estimated value of model parameters was computed. In terms
of the classification accuracy, the attribute correct classification
rate (ACCR) and pattern correct classification rate (PCCR)

were computed as ACCR =

∑R
r=1

∑N
n=1 Wnk

R×N and PCCR =
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∑R
r=1

∑N
n=1

∏K
k=1 Wnk

R×N , where Wnk = 1 if αnk = α̂nk, and Wnk = 0
otherwise.

Results
In all the 30 replications, the joint tesltet-DINA model
was favored by AIC, BIC and DIC, which indicates that
the three fit indices can select the best-fitting model
correctly.

Figures 5, 6 display the recovery of the item parameters
for the two models. According to the results of the last
20 items with testlet structure, the performance of the JRT-
DINA model was significantly affected by the paired local item
dependence. Specifically, ignoring paired local item dependence
in analysis would result in overestimation of item intercept
parameters, underestimation of item interaction parameters, and
underestimation of item time-kurtosis parameters. However, it
had little effect on the recovery of item time-intensity parameters.
In addition, most of the 10 items without testlet structure had
smaller absolute bias in parameter estimates from the joint
testlet-DINA model than from the JRT-DINA model; the RMSE
of the parameter estimates from the joint testlet-DINAmodel was
equal to or smaller than those from the JRT-DINAmodel.Table 6
further summarizes the item parameter recovery by presenting
the mean absolute bias, the mean RMSE, and the correlation
between estimated and true values of all the items. Again, it
can be seen that ignoring the paired local item dependence
mainly affected the recovery of item time-kurtosis parameters. In
addition, the item RT parameters were recovered better than the
item RA parameters in joint models.

Figures 7, 8 display the recovery of the person parameters
for the two models. The two models performed similarly on
recovering the higher-order ability parameter. In terms of the
latent speed parameters, the bias was similar for the two models,
but the RMSE from the JRT-DINAmodel was significantly larger
than that from the joint testlet-DINA model. The results indicate
that ignoring the paired local item dependence in analysis would

result in large variability in latent speed parameters but had little
effect on the recovery of higher-order ability parameters. Table 7
further summarizes the recovery of person parameters. The two
models mainly differed in the mean RMSE of latent speed across
person. In addition, the recovery of latent speed parameters was
better than that of the higher-order ability parameters.

Table 8 presents the recovery of individual attributes and
attribute patterns. The joint testlet-DINA model was higher than
the JRT-DINA model in both ACCR and PCCR, which indicates
that ignoring the paired local item dependence would slightly
reduce attribute and pattern correct classification rates (PCCRs).

Table 9 presents the recovery of item, person and testlet
variance-covariancematrices. First, in terms of the item variance-
covariance matrix, the bias was similar for the two models, but

TABLE 6 | Summary of the item parameter recovery in simulation study.

Index Item parameter Joint testlet-DINA JRT-DINA

MA_Bias β 0.025 0.127

δ 0.029 0.225

ξ 0.004 0.004

ω 0.017 0.572

M_RMSE β 0.158 0.214

δ 0.277 0.374

ξ 0.029 0.029

ω 0.052 0.591

Correlation β 0.986 0.982

δ 0.958 0.946

ξ 0.999 0.999

ω 0.973 0.123

MA_Bias, mean absolute value of bias across all items; M_RMSE, mean value of root

mean square error across all items; Correlation, correlation between estimated and true

values of all items; β, item intercept; δ, item interaction; ξ, item time-intensity; ω, item

time-kurtosis; JRT-DINA, joint responses and times DINA model.

FIGURE 7 | Bias for person parameter in simulation study. Jt, joint testlet-DINA model; JRT, JRT-DINA model; θ, higher-order latent ability; τ , latent speed.
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FIGURE 8 | Root mean square error (RMSE) for person parameter in simulation study. Jt, joint testlet-DINA model; JRT, JRT-DINA model; θ, higher-order latent ability;

τ , latent speed.

TABLE 7 | Summary of the person parameter recovery in simulation Study.

Index Item parameter Joint testlet-DINA JRT-DINA

MA_Bias θ 0.088 0.088

τ 0.020 0.026

M_RMSE θ 0.593 0.595

τ 0.137 0.175

Cor θ 0.803 0.801

τ 0.961 0.939

MA_Bias, mean absolute value of bias across all persons; M_RMSE, mean value of root

mean square error across all persons; Correlation, correlation between estimated and true

values of all persons; θ, higher-order latent ability; τ , latent speed.

TABLE 8 | Attribute and pattern correct classification rate in simulation study.

Analysis model ACCR PCCR

α1 α2 α3 α4 α5

Joint testlet-DINA 0.974 0.961 0.968 0.973 0.980 0.872

JRT-DINA 0.974 0.961 0.967 0.973 0.979 0.870

ACCR, attribute correct classification rate; PCCR, pattern correct classification rate.

the RMSE from the joint testlet-DINA model was larger than
that from the JRT-DINAmodel. Second, the latent speed variance
was recovered better in the joint testlet-DINA model than in the
JRT-DINA model. Third, all the four testlet variance-covariance
matrices were well recovered. The recovery of the RT testlet effect
variance parameters was better than that of the RA testlet effect
variance parameters.

Table 10 presents the recovery of item mean vector
components and higher-order structural parameters. The

item mean vector component estimates from the joint testlet-
DINA model had smaller absolute bias and RMSE than those
from the JRT-DINA model. The two models performed similarly
on recovering the higher-order structural parameters. The
results indicate that ignoring the paired local item dependence in
analysis would result in less precise itemmean vector component
estimates, but had little effect on the higher-order structural
parameter recovery.

Overall, the model parameters of the joint testlet-DINA
model were well recovered by using the proposed MCMC
estimation algorithm. Additionally, ignoring the paired local
item dependence in analysis would result in biased model
parameter estimates and lower correct classification rates.
Specifically, it would result in overestimation of item intercept
parameters, underestimation of item interaction parameters, and
underestimation of item time-kurtosis parameters. It would lead
to less precise estimates of latent speed parameters and item
mean vector components. It would also reduce attribute and
PCCRs. However, it had little effect on the recovery of item time-
intensity parameters, the higher-order ability parameters, or the
higher-order structural parameters.

CONCLUSION AND DISCUSSION

To address the paired local item dependence in RT and RA
when applying the joint CDMs, this study proposed a joint testlet
cognitive diagnosis modeling approach. As an extension of the
joint cognitive diagnosis modeling approach (Zhan et al., 2017),
the proposed approach modeled the relationship between each
pair of RA testlet effect and RT testlet effect using correlational
structure. Specifically, the testlet-DINA model and the within-
item multidimensional testlet effects lognormal RT model were
adopted as the RA model and RT model, respectively. The
model parameters were estimated using the full Bayesian MCMC
method. The 2015 PISA computer-based mathematics data were
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TABLE 9 | Recovery of Variance and Covariance Matrices in Simulation Study.

Parameter Joint testlet-DINA JRT-DINA

Bias RMSE Bias RMSE

6 item Variance of intercept σ
2
β

0.043 0.230 −0.032 0.208

Covariance of intercept and interaction σβδ −0.001 0.211 0.057 0.202

Covariance of intercept and time-intensity σβξ −0.008 0.096 0.004 0.089

Variance of interaction σ
2
δ

0.035 0.253 −0.033 0.242

Covariance of interaction and time-intensity σδξ 0.007 0.099 −0.004 0.089

Variance of time-intensity σ
2
ξ

0.062 0.088 0.062 0.088

6person Covariance of ability and speed σθτ 0.004 0.020 0.003 0.021

Variance of speed σ
2
τ

−0.001 0.010 0.019 0.022

6testlet,1 Variance of 1st RA testlet effect σ
2
γ1 −0.010 0.098

Covariance of 1st pair of testlet effects σγ1λ1 0.008 0.048

Variance of 1st RT testlet effect σ
2
λ1 0.002 0.032

6testlet,2 Variance of 2nd RA testlet effect σ
2
γ2 0.013 0.104

Covariance of 2ndt pair of testlet effects σγ2λ2 0.000 0.038

Variance of 2nd RT testlet effect σ
2
λ2 0.009 0.028

6testlet,3 Variance of 3rd RA testlet effect σ
2
γ3 0.005 0.108

Covariance of 3rd pair of testlet effects σγ3λ3 0.009 0.034

Variance of 3rd RT testlet effect σ
2
λ3 0.006 0.025

6testlet,4 Variance of 4th RA testlet effect σ
2
γ4 0.014 0.107

Covariance of 4th pair of testlet effects σγ4λ4 −0.003 0.041

Variance of 4th RT testlet effect σ
2
λ4 0.008 0.028

RMSE, root mean square error.

TABLE 10 | Recovery of item mean vector and higher-order structural parameters.

Parameter Joint testlet-DINA JRT-DINA

Bias RMSE Bias RMSE

µitem Mean intercept µβ −0.001 0.178 0.110 0.204

Mean interaction µδ −0.006 0.214 −0.229 0.311

Mean time-intensity µξ 0.012 0.094 0.013 0.095

κ Difficulty of attribute 1 κ1 0.008 0.114 0.008 0.119

Difficulty of attribute 2 κ2 0.002 0.108 0.002 0.107

Difficulty of attribute 3 κ3 −0.010 0.111 −0.010 0.111

Difficulty of attribute 4 κ4 0.048 0.121 0.048 0.119

Difficulty of attribute 5 κ5 0.007 0.103 0.002 0.099

ν Slope of attribute 1 ν1 −0.006 0.151 −0.006 0.150

Slope of attribute 2 ν2 0.049 0.191 0.052 0.198

Slope of attribute 3 ν3 −0.007 0.190 −0.008 0.189

Slope of attribute 4 ν4 0.105 0.230 0.106 0.227

Slope of attribute 5 ν5 −0.056 0.170 −0.060 0.168

RMSE, root mean square error.

analyzed to demonstrate the application of the proposed model.
The real data analysis results are summarized as follows: (a)
a negative correlation was observed between the higher-order
ability and latent speed; (b) a negative correlation was observed

between the item intercept parameters and the item time-
intensity parameters; (c) a positive correlation was observed
between the item interaction parameters and the item time-
intensity parameters; (d) the magnitude of RA testlet effects
varied from small to large whereas the magnitude of RT testlet
effects was large; and (e) low correlation coefficients between the
RA and RT testlet effects were found. Overall, most results in this
real data analysis were consistent with those in Zhan et al. (2017)
that used PISA 2012 computer-based mathematics data. Further,
a simulation study was conducted to examine model parameter
recovery of the proposed model and the consequence of ignoring
testlet effects. The results indicated that the model parameters of
the proposedmodel can be well recovered. Additionally, ignoring
the paired local item dependence in analysis would result in
biased model parameter estimates and low individual correct
classification rates.

Despite the promising results, further research is needed.
First, only a DINA-based testlet model and a lognormal RT-
based testlet model were used for illustration in this study. In
the future study, other CDMs (e.g., von Davier, 2008; Henson
et al., 2009; de la Torre, 2011) and RT models (e.g., Klein Entink
et al., 2009b; Wang et al., 2013) can be used as the measurement
models of RA and RTs. Second, in this study, the proposed model
was evaluated using a brief simulation where only a limited
number of factors were manipulated. More factors (e.g., test
length, number of attributes, magnitude of testlet effects, etc.)
and replications are recommended in future studies. Third, the
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model-data fit of RA and RT models was evaluated separately
because of the lack of model-data fit indices for the joint models.
In the future studies, absolutely model-fit indices designed for
joint models can be explored and further be applied to evaluate
the current modeling approach. Fourth, in educational and
psychological measurements, latent speed can be defined as the
ratio of the amount of labor spent on the items with respect
to time (van der Linden, 2011). Due to the multidimensional
nature of labors, latent speed may also be a multidimensional
concept, each dimension of which corresponds to a specific
type of labor. The latent speed was treated as a unidimensional
latent trait in this study although the RT testlet effect can be
regarded as a specific factor that is relevant to the working speed.
Recently, Zhan et al., Manuscript submitted for publication
proposed amultidimensional lognormal RTmodel to account for
the potential multidimensionality of latent speed. One possible
extension of the current joint modeling approach is to account
for the multidimensional latent speed. Fifth, as noted by one of
the anonymous reviewers, if there are many testlets, there will
be many bivariate covariance matrices to be estimated, leading
to large computational burden. Further exploration is needed to
deal with this challenging issue. Sixth, in this study, respondents
were assumed to be from the same population group, but, in
reality, they may be from different groups (e.g., male and female).
Multiple group joint modeling (e.g., Jiao et al., 2017) and mixture
modeling (e.g., von Davier, 2008) can be incorporated into the
current modeling approach in the future. Seventh, in practice,

students are nested within classrooms, and classrooms are further
nested within schools. Thus, multilevel modeling (e.g., Fox and

Glas, 2001; Jiao et al., 2012; Jiao and Zhang, 2015) extension
can also be a future direction. Finally, the generalizability of the
results from this study is limited given that only data from a low-
stakes test were analyzed. More empirical studies based on data
from other tests, especially high-stakes tests, are needed.
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Communication in a collaborative problem-solving activity plays a pivotal role in the

success of the collaboration in both academia and the workplace. Computer-supported

collaboration makes it possible to collect large-scale communication data to investigate

the process at a finer granularity. In this paper, we introduce a conditional transition profile

(CTP) to characterize aspects of each teammember’s communication. Based on the data

from a large-scale empirical study, we found that participants in the same team tend to

show similar CTP compared to participants from different teams. We also found that

team members who showed more “negotiation” after the partner “shared” information

tended to show more improvement after the collaboration while those who continued

sharing ideas while their partners were negotiating tended to improve less.

Keywords: collaborative problem solving, communication, transition matrix, stochastic process, assessment

1. INTRODUCTION

Technology advancement allows computer-supported collaboration to be widely adopted in
both academia and the workplace. Compared to face-to-face collaboration, online collaboration
significantly reduces the effort and cost of organizing joint work, making it ideal for a wide range
of collaborative activities (Stahl et al., 2006). The communication data in computer-supported
collaboration contain rich information regarding the collaboration process. Understanding the
communication process will help to identify pathways to more successful collaboration outcomes.
Such knowledge can further inform the development of real-time facilitation or intervention
mechanisms to scaffold the collaboration.

The analysis of communication data (or discourse analysis as it is often called in
the computer-supported collaborative learning (CSCL) community) usually starts with
the coding or labeling of each turn (or several turns that constitute large speech
units) of communications based on a framework (rubrics) being developed to address
specific research questions. For example, a number of coding frameworks have been
developed to analyze different aspects of the communications among team members, such
as the coding framework for collaborative problem solving (CPS) skills (Liu et al., 2015),
for the interactive patterns in collaboration (Andrews et al., 2017), for cohesion and
language (Graesser et al., 2004; Dowell et al., 2016), and for dialog acts (Allen and Core,
1997). Based on human-coded discourse, natural language processing (NLP) techniques can
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be employed to automate the annotation to an accuracy level that
is close to human coding (Rosé et al., 2008; Rus et al., 2015; Flor
et al., 2016; Hao et al., 2017a).

The codings of discourses are numerical representations of
the communication data and can be used as input variables
for developing higher level feature representations of the
communication process, or for developing statistical models of
the process. Given that the communication data and codings
often involve multiple interacting team members, it is of
interest to develop feature variables that characterize both team
performance and individual performance. Traditional discourse
analysis usually uses the frequency of different codings (e.g.,
Dowell et al., 2016) or sequence of codings (e.g., Hao et al.,
2016) as the high-level representations of the communication.
However, such representations fail to capture the information of
how a specific member responds to different types of utterances
from others throughout the communication process. To address
this issue, in this paper, we introduce a conditional transition
profile (CTP) approach to form representations of each team
member’s responses to different types of utterances (based on a
given coding framework) from other members. In collaborative
work, what one member says is important, but how a member
responds to the others’ utterances may contain more information
about the member’s skills in collaboration. The CTP approach
provides a quantitative measure of how a teammember responds
to other team members. To illustrate the effectiveness of the
method, we apply the CTP to data collected through a large-
scale online collaborative task from the ETS collaborative science
assessment prototype (ECSAP) project and show an example of
how the team members’ CTPs were related to their performance
improvements after the collaboration.

2. CONDITIONAL TRANSITION PROFILE

Suppose we have a coding framework that has k different
categories, the t-th turn of the communication can be
characterized by a k dimensional state vector Xt , with elements
either 0 or 1, indicating whether a given category is assigned
to this turn of discourse1. For coding frameworks that require
mutually exclusive codings, the state vector will have only one
element as 1 and all others as 0. The states in a communication
process can be considered from both the team level and the
individual level. At each level, the most straightforward measure
is the cumulative counts of the different states. A CPS profile
based on the counts of states at the team level has been introduced
to characterize the overall collaboration process of the team (Hao
et al., 2016). In this CPS profile, we considered the counts of
different states (unigram) and consecutive state pairs (bigram),
though the approach can be extended to include the counts of
n sequential states (n-gram). It has been shown that different
CPS profiles are related to different collaboration outcomes of the
team (Hao et al., 2016).

In the current paper, we further generalize the CPS profile
from characterizing the whole team process to characterizing

1In practice, the categories or states are assigned either by human coders or

automated coding algorithms.

TABLE 1 | Conditional transition profile of the communication.

State 1 State 2 State 3 · · ·

State 1 N11 N12 N13 · · ·

State 2 N21 N22 N23 · · ·

State 3 N31 N32 N33 · · ·

· · · · · · · · · · · · · · ·

The columns correspond to the states of the discourse from the targeted team member

and the rows correspond to the states of preceding discourses from the other team

members.

each team member’s communication process. The most
straightforward way to generalize the CPS profile is the direct
counts of different states from each team member instead of all
the team members. However, in a communication, what one
member (target teammember) says depends heavily on the other
members’ preceding discourses. As such, counting the states
of a target team member by conditioning on other partners’
preceding discourse states should encode more information
about the individual’s communicative moves in context than
merely counting all the states together. As such, we introduce a
conditional transition profile for each team member as follows.

For a sequence of coded discourses2, we can represent the
states of communication in Table 1, where the column name
indicates the states of the discourse from the targeted team
member and the rows indicate the states of the discourse from
the most immediate preceding discourse category from other
team members. The numbers in the cells are the counts of the
occurrences of the states specified by the corresponding row
and column names. It is worth noting that we consider only
the most immediate turns of discourses and ignore longer range
dependency, though the extension to longer range dependency
is straightforward. The reason for doing this is that the
majority of short online conversations do not display long range
dependency (some empirical evidence of this can be found inHao
et al., 2017a). The elements of a CTP are defined as follows,

C(Di|D̄j) = Nij (1)

where Di denotes the state (coding category) i of the discourse
from the targeted team member and D̄j, denotes the state j of
the immediately preceding discourse from other team members.
Here i runs for the columns and j runs for the rows. Nij is
the count of occurrences of the state in the corresponding cell.
Note that this matrix is very similar to the (weighted) adjacency
matrix widely used in graph theory, except that the latter is
traceless (Biggs, 1993).

In many practical applications, the relative ratios of the
categories are often considered important. A representation of
the ratios can be obtained by normalizing each cell of the table
by the sum of its row.

T(Di|D̄j) = Nij/

(

∑

i

Nij

)

(2)

2Table 2 shows an empirical example of coded discourses.
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We call this the normalized CTP. In practice, as some elements
could be zero due to a small sample size, so smoothing
techniques, such as Laplace smoothing (Schütze et al., 2008),
can be used to estimate the elements of the normalized
CTP as follows,

T(Di|D̄j) =
Nij + α

∑

i Nij + αk
(3)

where α > 0 is a smoothing parameter. We call the C(Di|D̄j)
as conditional transition profile and T(Di|D̄j) as normalized
conditional transition profile. Generally speaking, the C(Di|D̄j)
contains more information than T(Di|D̄j) as the latter can
be derived from the former but not the other way around.
T(Di|D̄j) characterizes the probability of the transition among
states and could be more generalizable than C(Di|D̄j) under
some circumstances. A reliable estimate of the elements in
T(Di|D̄j) requires that the number of the occurrences in each
cell should be large enough, which suggests that one may
want to use the C(Di|D̄j) instead of T(Di|D̄j) if the count
numbers are low. In the above definition of the CTP, we
consider the counts by conditioning only the most immediately
preceding turn by others. One can extend this to higher order
association for situations where long-range dependency prevails
in the communication.

It is worth noting that the normalized CTP resembles
the stochastic matrix (also known as Markov matrix) if the
underlying communication process is a discrete time Markov
process that meets the following condition (Van Kampen, 1992;
Grimmett and Stirzaker, 2001).

P(Xt|Xt−1, · · · ,X1) = P(Xt|Xt−1) (4)

where t denotes the tth step of the process. A transition matrix (or
stochastic matrix) P with elements

Pij(t) = P(Xt = xj|Xt−1 = xi) (5)

will characterize the transition structure of theMarkov process. If
aMarkov process is stationary (homogeneous), e.g., the following
equation holds for all t, i, and j:

P(Xt = xj|Xt−1 = xi) = P(X1 = xj|X0 = xi) (6)

and we can readily predict the probability of different states for

the (t+1)th turn based on the preceding turn and the initial turn
through the following equation,

Xt = Xt−1P = X0P
t (7)

One notable difference between the normalized CTP and the
stochastic matrix of Markov process is that the former is
not defined on a closed set of states as one team member’s
states are dependent on other team members’ states instead
of her own. As such, the (normalized) CTP introduced above
is more a way to numerically represent an aspect of the
coded communication process for each team member rather

than claiming the mathematical properties associated with the
stochastic matrix of a Markov process, though some methods
based on the stochastic matrix may still be borrowed to analyze
the normalized CTP.

In the next section, we will show how the CPT approach can
be used to characterize empirical communication data.

3. EMPIRICAL STUDY

3.1. Task and Data
We carried out the ECSAP project to explore the assessment
of communications in large-scale online CPS activities. The
goal is to investigate what CPS skills can be detected in the
communications and how these skills are related to collaboration
outcomes. The details of ECSAP are beyond the scope of this
paper, and we refer the readers to Hao et al. (2017b) for a
description of the study. The core part of the ECSAP is a
simulation-based task that allows two human participants to
collaborate through a chat window to complete a set of questions
and tasks about volcano science (Hao et al., 2015). Figure 1 shows
two screenshots of the simulation-based collaborative task. In
the simulation task, the participants were shown some tutorials
about the factors related to volcano eruption. Then, they were
asked to answer about fifteen questions, during which they
need to carry out some small experiments, such as deploying
seismometers around a virtual volcano to collect data, to assist
them in answering the questions. The first seven questions are
selected responses which allow us to impose a set of structured
system prompts to maximize the information elicitation. For
each of the seven questions, the system prompts each team
member to respond individually at first and then prompts the
team members to collaborate with each other to discuss their
answers via a chat window. After the collaboration, each member
is given a chance to revise her initial answer. By checking the
difference in the scores on the initial and revised answers, we
can calculate each person’s gain/loss from the collaboration. The
remaining eight questions require manipulation of the tools
in the simulation, which makes it more difficult to impose
the initial-discuss-revise procedure. They are not addressed
in the current analysis. In addition to this simulation-based
collaborative task, we also administered a general science
knowledge test (Rundgren et al., 2012) to each participant to
measure her content-relevant knowledge.

We collected data through a crowdsourcing data collection
platform, Amazon Mechanical Turk (Kittur et al., 2008). We
recruited 1,000 participants located in the United States with at
least one year of college education and randomly assigned them
into 500 dyads to complete the simulation-based collaborative
task. Seventy-eight percent of the participants were White, 7%
were Black or African American, 5% were Asian, 5% were
Hispanic or Latino, and 5% were multiracial. Half of the
participants are males and half are females, and the age ranges
from 25 to 54. Most of the participants have prior experience
of online communication, though not necessarily collaborative
problem solving. After removing the teams that did not complete
the task successfully, we were left with 474 dyads. In each
team’s response, there are about 80 turns of chat in total and
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FIGURE 1 | Two screenshots of the simulation-based collaborative task used in the ECSAP.

about 30 turns around the first seven questions. We noticed
that many teams did not precisely follow the initial-collaborate-
revise procedure we set forth and started some non-prompted
discussions when they were asked to answer alone. In our
analysis, we consider only the teams that have no more than two
non-prompted discussions. After this cut, we were left with 237
out of the 474 dyads. The analyses in this paper are based on this
subset unless otherwise stated.

The data from each collaborative session include both the
responses to the questions in the simulation and the text-
chat communication between the team members around each
question. The responses to the questions were scored based on
the rubrics shown in Zapata-Rivera et al. (2014). We developed a
framework for coding the communication data in CPS (Liu et al.,
2015) based on CSCL literature and the assessment frameworks
from PISA 2015 (Organization for Economic Co-operation
and Development, 2013) and ATC21S (Griffin et al., 2012).
This framework considers four skills, namely, sharing ideas,
negotiating ideas, regulating problem-solving and maintaining
communication, which have been identified to be highly relevant
to the CPS activity we are targeting. Each turn of the chat
communications was coded into one of the four categories of
skills based on our CPS framework. Table 2 shows some example
chats and states. Two human raters were trained on the CPS
framework, and they double-coded a subset of the discourse
data (15% of the data). The unit of coding is each turn of a
conversation or each conversational utterance. The inter-rater
agreement in terms of unweighted kappa is 0.67.

3.2. Methods
Given that there are about 30 turns of conversations in each
team and there are four different coding categories, the expected
count in each cell of the four by four matrix is relatively low—
about two. Therefore, we choose to use the CTP instead of the
normalized version in this paper. The central research question
we want to address is the usefulness of the CTP representation of
each participant’s communication process. As one aspect of this

TABLE 2 | Example of a part of annotated chat data from one teams.

Topic Member Chat State

IntroduceYourselves A Hi Maintaining

IntroduceYourselves B Hi, I’m Jennifer Maintaining

Question1A A chose b, cause its rocks

cracking that cause the high

frequency events

Sharing

Question1A B yes, same here Negotiating

Question1B A d sound right to you? Regulating

Question1B B I couldn’t remember, I

thought it was C

Regulating

Question1B A you are right Negotiating

QuestionsP2 B A and B? Regulating

QuestionsP2 A yes, that’s what i got Negotiating

QuestionsP3 A 52431? Regulating

QuestionsP3 B I was only sure about 5 and

1 being first and last

Sharing

QuestionsP3 B 4 is probably second to last Sharing

ExampleSeisQuestion1 B A? Regulating

ExampleSeisQuestion1 A picked a Sharing

ExampleSeisQuestion2 A thoughts? Regulating

ExampleSeisQuestion2 B b? Regulating

ExampleSeisQuestion2 A same Negotiating

ExampleSeisQuestion3 A obviously c Sharing

ExampleSeisQuestion3 B c Sharing

· · · · · · · · · · · ·

The topic column indicates the specific question around which the conversations

happened. The member column indicates which member in the dyadic team produced

the discourse.

question, we investigated whether such a representation of the
communication process is related to the participant’s gain or loss
as measured based on their total score changes between the initial
and revised responses. The hypothesis is that if the CTP is an
effective method for characterizing the collaboration process, it
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FIGURE 2 | Comparison of the total scores from participants who gain

effectively and ineffectively from the collaboration. A t-test shows that the two

groups have similar contents-relevant science knowledge.

should have implications for the collaboration outcomes. We try
the following two approaches to gain some in-depth knowledge
of the relationship between a team member’s communication
process and her outcome from the collaboration.

In the first approach, we started with the total score changes
and examine how the CTPs are different in different groups.
Specifically, we divide the participants into two groups, labeled
effective gain and ineffective gain. Each participant in the effective
gain group has a positive total score change while each in
the ineffective gain group has a negative or zero total score
change. One may notice that such a grouping may systematically
penalize people with higher content-relevant knowledge, as
they have a higher chance to have a correct initial response
to a given item, so it is not possible to further improve.
To ensure that we are considering people with comparable
content-relevant knowledge, we removed the participants who
correctly answered more than five of the seven questions in
their initial response. After controlling on this, we have 151
and 101 participants in the effective gain and ineffective gain
groups respectively. We verified that they have comparable
content-relevant knowledge by comparing their performance in
the general science knowledge test, as shown in Figure 2. The
findings from this approach may be useful in informing the
teaching or training of what features of the communication
process lead to more effective collaboration outcomes.

In the second approach, we started with the communication
process by clustering the participants based on their CTPs, then
examined the total score changes in each of the clusters. To
perform the cluster analysis, we flattened each CTP into a 16-
dimensional vector by appending rows one after another, then
calculated Euclidean distances based on the vectors between pairs
of participants as a similarity measure of their communication
processes. Based on this similarity measure, we first perform a
hierarchical clustering analysis using Ward linkage (Ward, 1963)
to cluster the participants and then examine the difference of the

FIGURE 3 | Distance distribution of team pairs and random pairs. A t-test

show that the two distributions’ means are significantly different.

outcomes in terms of the total score change in different clusters.
The findings from this approach can help to uncover similar
patterns from the communication process that are associated
with similar or different collaboration outcomes, which may also
lead to meaningful feedback for a better teaching or training
strategies for improving collaboration.

Both approaches may thus lead to actionable procedures
in practice to diagnose issues in a computer-supported
collaboration and provide feedback to better scaffold the
collaboration. For example, after an online collaboration, if we
found students who tend to respond to partners in a particular
way often show poor collaboration outcomes, we can design
coaching or training program to help them to change their
ways of communication to ways that are more likely to lead
to successful collaboration. The consistency of the findings
from the two approaches will substantiate the efficacy of the
CTP method for characterizing the communication process in
a collaborative activity; whether these characterizations support
effective feedback is beyond the scope of the present article.

4. RESULTS

Before we present the results corresponding to the two
approaches described above, we would like first to check whether
CTPs between team members are more similar compared
to those between random pairs of participants. Given the
interdependent nature of dyadic communication, we might
expect the CTPs between the team members to be more
correlated than those between random pairs of participants,
which can serve as a check of the plausibility of the CTP
approach. We carried out such an analysis based on the full
dataset, i.e., without taking out those teams with more than three
non-prompted conversations and show the results in Figure 3,
where we compare the Euclidean distance between the CTPs
from team members and random pairs. The result confirms
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FIGURE 4 | Mean and standard error of the CTPs correspond to the effective and ineffective gain groups. The p-values of pairwise t-tests for different CTP

components are also presented.

our hypothesis of the interdependence of the communication
between team members, which also lends support to the
effectiveness of the CTP approach for characterizing the team
member’s communication process.

The results from our first approach is shown in Figure 4,
where we compare each element of the CTPs corresponding to
the effective and ineffective gain groups via independent t-tests
(2-tailed)3. The results show that the effective gain group has
significantly more “negotiate” following the partner’s “share” and
“negotiate”, while the ineffective gain group shows significantly

3Note that multiple comparison happens in this case. As the Bonferroni correction

is well-known to be too stringent for discovery-oriented studies, we adopted the

False Discover Rate (FDR Benjamini and Hochberg, 1995) approach by setting the

level of FDR to 0.2, which means we tolerate 20% of the discoveries to be false.

At this FDR level, the adjusted p-value for significance is still 0.05 (which is a

coincidence).

more “share” following the partner’s “negotiate” and “maintain.”
This findings suggests that a person is more likely to demonstrate
improved performance if she shows more “negotiate” following
her partner’s “share” and “negotiate.” However, a person is
less likely to get an improved response if she shows more
“share” upon her partner’s “negotiate” and “maintain.” This
suggests the fact that negotiation is essential for gaining more
from a collaboration, while excessively sharing information
will contribute negatively, which is consistent with our earlier
findings at the team level (Hao et al., 2016).

For the second approach, we show the dendrogram of the
hierarchical clustering analysis in Figure 5. By examining the
distance among the clusters at different levels, we noted that
cutting the inter-cluster separations by the elbow point of the
inter-cluster distances leads to four clusters. Each cluster is
colored differently in Figure 5 and the number of members in
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FIGURE 5 | Dendrogram of the hierarchical clustering based on the Euclidean distance calculated from the CTPs. The horizontal dashed line is the distance cut

corresponding to the elbow point of the inter-cluster distances. The numbers in the bracket in the legend show how many participants are in each of the clusters.

FIGURE 6 | The effect size in terms of Cohen’s d between the CPTs of participants from each cluster and from all participants.

each cluster is shown in the legend. To gain more insight into
the differences among the four clusters, we compare their CTPs
against the CTP of the overall participants by looking at the effect

size in terms of Cohen’s d. A positive value implies the people
in that cluster show more conditional actions corresponding
to that cell than the overall population, while a negative value
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FIGURE 7 | The means and standard errors of the total score changes from

each cluster.

implies the other way around. The results are shown in Figure 6.
A general guideline (Sawilowsky, 2009) for interpreting the
effect size is that a Cohen’s d equal and greater than 0.8 is
considered large effect. Then, in each panel of Figure 6, readers
can identify how the corresponding cluster is different from the
overall participants. Such a plot can give readers a general sense
of the major difference between the clusters. Figure 7 further
shows the total score changes in each cluster. The participants
in cluster 2 show significantly more positive gain compared
to people in other clusters. Connecting back to Figure 6, one
can immediately identify the main feature of the cluster 3,
e.g., participants show more “negotiate” actions when partners
“share” information, which is consistent with the results from the
first approach.

5. CONCLUSION AND FUTURE WORK

In this paper, we introduced a CTP approach to characterize
individual team member’s communication process in computer-
supported collaborations. Based on a large-scale empirical
study and using two different approaches starting from
the collaboration outcome and the communication process
respectively, we show the CTP approach can effectively
characterize aspects of one’s communication process.

The purpose of the current study was to demonstrate the use
of the CTP matrix rather than examine collaboration patterns in
a controlled experiment. However, the results of applying CTP to
the empirical study suggest that RM’s one might try to negotiate
while his/her team partner is sharing and negotiating ideas with
him/her if he/she wants to gain more from the collaboration.
Just sharing ideas seems less likely to help you gain more from
collaboration, and even lead to worse outcomes if you do so while
your partner is negotiating with you. This finding is consistent
with our previous findings at the team level (Hao et al., 2016)
and findings in the CSCL literature (Scardamalia and Bereiter,
1994; Stahl, 2006). Moreover, such findings can be incorporated
into the teaching of collaborative problem solving skills, and

can also be included into real-time feedback mechanisms for
scaffolding collaboration.

Despite the effectiveness of CTP, the approach has several
known limitations. The first is that it does not capture timing
information that could contain useful information concerning,
for example, the participation and engagement of the team
members regarding their communication and collaboration.
Timing is often strongly dependent on the specific task design,
however, and its relationship with the other aspects of a
collaboration can vary significantly from task to task. As such,
a time-dependent version of the CTP with proper inclusion of
timing data may provide a better characterization of the process
in a given task situation but at the cost of reduced generalizability.

The second is that the CTP does not address possible random
errors of the states, such as those introduced during the coding
process. A future line of work that may help to improve
along this direction may be the introduction of hidden states
and emission probabilities to connect the hidden states to the
observed states to accommodate the random errors, as Hidden
Markov Models (Baum and Petrie, 1966).

The third is that the CTP may become very sparse if there are
many coding categories and multiple participants. The average
count of each element in the CTP scales down as 1/(nk2) with n
as the number of team members and k as the number of coding
categories. Users need to make sensible decisions regarding
whether to use this method if the communication sequence
is very short. A future line of work to address this limitation
could consider latent variable modeling, such as factor analysis,
though which one can identify a small set of factors to deal with
the sparsity.

Finally, the communication process data used in this paper
is relatively short, only about thirty turns on average when
considering the first seven questions. Though some statistically
significant effects have been detected at the subgroup level
(thanks to a large number of participants), it does not allow us
to reveal more details of each teammember’s process. In ongoing
work, we have collected new data using a task hosted on the ETS
Platform for Collaborative Assessment and Learning (Hao et al.,
2017c). The new task elicits over 120 turns of communication in
each team. We will report the findings based on the new data set
in future work.
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As one of the important 21st-century skills, collaborative problem solving (CPS) has
aroused widespread concern in assessment. To measure this skill, two initiative
approaches have been created: the human-to-human and human-to-agent modes.
Between them, the human-to-human interaction is much closer to the real-world
situation and its process stream data can reveal more details about the cognitive
processes. The challenge for fully tapping into the information obtained from this mode
is how to extract and model indicators from the data. However, the existing approaches
have their limitations. In the present study, we proposed a new paradigm for extracting
indicators and modeling the dyad data in the human-to-human mode. Specifically, both
individual and group indicators were extracted from the data stream as evidence for
demonstrating CPS skills. Afterward, a within-item multidimensional Rasch model was
used to fit the dyad data. To validate the paradigm, we developed five online tasks
following the asymmetric mechanism, one for practice and four for formal testing.
Four hundred thirty-four Chinese students participated in the assessment and the
online platform recorded their crucial actions with time stamps. The generated process
stream data was handled with the proposed paradigm. Results showed that the model
fitted well. The indicator parameter estimates and fitting indexes were acceptable, and
students were well differentiated. In general, the new paradigm of extracting indicators
and modeling the dyad data is feasible and valid in the human-to-human assessment
of CPS. Finally, the limitations of the current study and further research directions
are discussed.

Keywords: collaborative problem solving, process stream data, indicator extracting, dyad data,
multidimensional model

INTRODUCTION

In the field of education, some essential abilities named Key Competencies (Rychen and Salganik,
2003) or 21st Century Skills (Partnership for 21st Century Skills, 2009; Griffin et al., 2012) have
been identified. Students must master these skills if they want to live a successful life in the future.
Collaborative problem solving is one of the important 21st century skills. Since computers have
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substituted for workers to complete many explicitly rule-based
tasks (Autor et al., 2003), non-routine problem-solving
abilities and complex communication and social skills
are becoming increasingly valuable in the labor market
(National Research Council, 2011). This set of special skills
can be generalized as the construct of Collaborative Problem
Solving (Care and Griffin, 2017).

The importance of CPS has spurred researchers in the
educational area to assess and teach the skill. However, effectively
measuring CPS challenges the current assessment area (Wilson
et al., 2012; Graesser et al., 2017, 2018). Because of the complexity
of CPS, the traditional testing approaches, such as the paper-
pencil test, are inappropriate for it. Therefore, two initiative
approaches have been created and applied to the assessment
of CPS (Scoular et al., 2017), which are the human-to-human
mode and the human-to-agent mode. The human-to-human
mode was created by the Assessment and Teaching of 21st
Century Skills (ATC21S) project for measuring CPS (Griffin
and Care, 2014). It requires two students to collaborate and
communicate with each other to solve problems and achieve
a common goal. A computer-based testing system has been
developed to undisturbedly record students’ operation actions,
such as chatting, clicking buttons, and dragging objectives,
and to generate process stream data (also called log file data;
Adams et al., 2015). ATC21S also puts forward a conceptual
framework of CPS (Hesse et al., 2015), which includes social
and cognitive components. The social component refers to the
collaboration part of CPS and the cognitive component refers
to the problem solving part. Within the social dimension, there
are three strands that are participation, perspective taking, and
social regulation. The cognitive dimension includes two strands,
task regulation and learning and knowledge building. Each
strand contains several elements or subskills, and a total of 18
elements are identified in the framework. Indicators mapped
to the elements are extracted from the log file data, and then
are used to estimate individual ability (Adams et al., 2015).
The Programme for International Student Achievement (PISA)
employed the human-to-agent mode for the CPS assessment
in 2015 (OECD, 2017a). A computer-based testing system for
it has been developed, where computer agents are designed to
interact with test-takers. The agents can generate chat messages
and perform actions, and test-takers need to make responses
(Graesser et al., 2017; OECD, 2017b). These responses, like
answers of traditional multiple-choice items, can be directly used
to estimate individual CPS ability.

There are many discussions about which is the better way
to assess CPS between the two approaches. ATC21S takes the
view that the human-to-human interaction is more likely to
yield a valid measure of collaboration while the human-to-
agent interaction does not conform with the real-world situation
(Griffin et al., 2015). Graesser et al. (2017) indicate that the
human-to-agent mode provides consistency and control over the
social collaboration and that thus it is more suitable for the large-
scale assessment. Studies have also shown that each approach
involves limitations and have suggested further research to find
comprehensive conclusions (Rosen and Foltz, 2014; Scoular
et al., 2017). However, from the perspective of data collection,

process stream data generated by the human-to-human mode is
a record of the whole process of students’ actions in computer-
based assessment. Based on the data, researchers can reproduce
the process of how students collaborate and solve problems,
which provides insight into students’ cognitive processes and
problem solving strategies. In addition, technological advance
promotes researchers in assessment area to focus on the process
of solving problems or completing tasks, not just the test results.
For example, numerous studies of problem solving assessment
took a procedural perspective with the assistance of some
technology-based assessment systems (PIAAC Expert Group
in Problem Solving in Technology-Rich Environments, 2009;
Zoanetti, 2009; Greiff et al., 2013; OECD, 2013). These systems
could collect the process data and record problem-solving results
simultaneously. Thus, the assessment can reveal more about
students’ thinking process. By comparison, responses of multiple-
choice items in the human-to-agent mode can only provide
limited information. Therefore, we choose the human-to-human
mode in the current study.

However, process stream data cannot be directly used to
estimate individual ability. The theory of Evidence-centered
Design (ECD) indicates that measurement evidence must be
identified from these complicated data before latent constructs
are inferred (Mislevy et al., 2003). In the context of educational
assessment, existing methods for identifying measurement
evidence from process data can be classified into two types.
One type is derived from the field of machine learning and
data mining, such as Clustering and Classification (Herborn
et al., 2017; Tóth et al., 2017), Natural Language Processing
and Text Mining (He and von Davier, 2016; He et al., 2017),
Graphic Network models (Vista et al., 2016; Zhu et al., 2016), and
Bayesian Networks (Zoanetti, 2010; Almond et al., 2015). These
data-driven approaches aggregate process data to detect specific
behaviors or behavioral patterns that are related to problem-
solving outcomes as measurement evidence. Another type of
methods can be seen as the theory-driven behavior coding, which
means that specific behaviors or behavioral patterns in process
data are coded as indicators to demonstrate corresponding
skills. This approach was adopted in the CPS assessment of
ATC21S. ATC21S defined two categories of indicators: direct and
inferred indicators (Adams et al., 2015). Direct indicators can
be identified clearly, such as a particular action performed by
a student. Inferred indicators are related to sequential actions
that represent specific behavioral patterns (Adams et al., 2015).
The presence or absence of particular actions or behavioral
patterns is the direct evidence that can be used to infer
students’ abilities. If a corresponding action or behavioral pattern
exists in process stream data, the indicator is scored as 1.
Otherwise, it is scored as 0. From the perspective of measurement,
indicators play the role of traditional items for estimating
individual ability.

The theory-driven behavior coding seems effective to obtain
measurement evidence from process data, but there exists
a problem, that is, how to extract indicators for the dyad
members in the human-to-human assessment mode. The
ATC21S project adopted the asymmetric mechanism as the
basic principle for task design (Care et al., 2015), which is
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also called jigsaw (Aronson, 2002) or hidden-profiles (Sohrab
et al., 2015) in other research. The asymmetric design
means that different information and resources are assigned
to the two students in the same group so as to facilitate
collaborative activities between them. As a result, they will
perform different actions during the process of completing
tasks, such as different operations, chat messages, and work
products, and will generate their unique process stream data.
ATC21S only extracted the same indicators for the two students.
This means that the unique information contained in each
student’s process stream data is ignored, while this information
can demonstrate individual skills. Therefore, a comprehensive
strategy must be considered to address the complexity of
indicator extracting.

Another important problem related to the human-to-human
mode is the non-independence between the dyad partners
(Griffin et al., 2015). In the ATC21S project, two unacquainted
individuals are assigned to work on a common task together.
Because of the asymmetric design, they need to exchange
information, share resources, negotiate and manage possible
conflicts, and cooperate with each other. Each individual member
cannot progress through the tasks without his/her partner’s
assistance. This kind of dependence is called the dyad relationship
(Alexandrowicz, 2015). Therefore, a concerned issue is whether
the dyad dependence would affect individual scores (Griffin
et al., 2015). In the measurement, the dyad relationship violates
the local independence assumption of the measurement model.
The ATC21S project used the unidimensional Rasch model
and the multidimensional Rasch model in calibration (Griffin
et al., 2015), and neglected the dyad dependence. However,
group assessment has caught the attention of researchers in
the measurement field. New approaches and models have been
proposed for effective measurement within group settings (von
Davier, 2017). Methodologies, such as weighted analysis and
multilevel models, were suggested to allow group dependence
(Wilson et al., 2012). Wilson et al. (2017) utilized item response
models with and without random group effect to model dyad
data. Results indicated that the model with the group effect
fit better (Wilson et al., 2017). Andrews et al. (2017) used
the Andersen/Rasch (A/R) multivariate IRT model to explore
the propensities of dyads who followed certain interaction
patterns. Alexandrowicz (2015) proposed a multidimensional
IRT model to analyze dyad data in social science, in which
each individual member had their unique indicators. Researchers
have also proposed several innovative statistical models, such
as stochastic point process and Hawkes process, to analyze the
dyadic interaction (Halpin and De Boeck, 2013; von Davier
and Halpin, 2013; Halpin et al., 2017). Olsen et al. (2017)
extended the additive factors model to account for the effect
of collaboration in the cooperative learning setting. Besides,
computational psychometrics that incorporates techniques from
educational data mining and machine learning has been
introduced into the measurement of CPS (von Davier, 2017).
For example, Polyak et al. (2017) used Bayes’ rule and
clustering analysis in real-time analysis and post-game analysis,
respectively. However, there is no definite conclusion on how to
model the dyad data.

The Present Study
We agree with the view that the human-to-human interaction
is more likely to reveal the complexity and authenticity of
collaboration in the real world. Therefore, following the approach
of ATC21S, this study employed the human-to-human mode
in the assessment of CPS. Students were grouped in pairs
to complete the same tasks. The asymmetric mechanism was
adopted for task design. Particular actions or behavioral patterns
were identified as observable indicators for inferring individual
ability. Distinct from the ATC21S approach, we considered a
new paradigm for extracting indicators and modeling the dyad
data. The main work involved in this study can be classified
into three parts.

(1) Following the asymmetric mechanism, we developed five
tasks and integrated them into an online testing platform.
Process stream data were generated by the platform when
the test was going on.

(2) Because of the asymmetry of tasks, we hold that there
are unique performances of each member in the dyad
for demonstrating their individual skills. Therefore, we
extracted individual indicators for each dyad member based
on his/her unique process stream data. At the same time,
we also identified group indicators that reflected the dyad’s
contribution and wisdom.

(3) Based on the special design of indicators, we utilized a
multidimensional IRT model to fit the dyad data, in which
each dyad member was attached with their individual
indicators and group indicators.

DESIGN AND DATA

Conceptual Framework of CPS
The CPS framework proposed by ATC21S was adopted in this
study, while its detailed description can be seen in Hesse et al.
(2015). A total of 18 elements were identified. ATC21S has given a
detailed illustration of each element, including its implication and
different performance levels (Hesse et al., 2015). The specification
provides full insight into the complex skills. More importantly, it
serves as the criterion for identifying indicators in this study.

Task Design and Development
We developed five tasks in the present study. To complete each
task, two students needed to compose a group. These tasks were
designed following the asymmetric mechanism. The two students
would obtain different information and resources so they have to
cooperate with each other. The current assessment was planned
for 15-year-old students, and the problem scenarios of all tasks
were related to students’ daily life. To illustrate the task design,
one of these five tasks, named Exploring Air Conditioner, is
presented in Appendix. This task was adapted from the task
of Climate Control released by PISA2012 (OECD, 2012), which
was applied to the assessment of individual problem solving in a
computer-based interactive environment. We adapted it for the
context of CPS assessment.
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To capture students’ actions, we predefined a series of events
for each task, which can be classified into two types: common
and unique events. The common events refer to universal events
that would happen in all collaborative assessment tasks, such
as the start and the end of a task, chat messages. The unique
events occur in specific tasks due to the nature of the behaviors
and interactions elicited in these tasks (Adams et al., 2015).
Table 1 presents examples of event specifications for the task
of Exploring Air Conditioner. Each event is defined from four
aspects, including the event name, the student who might trigger
it, the record format, and the explanation for how to capture it.
The event specification plays an important role in the computer-
based interactive assessment. Firstly, the events represent the key
actions and system variables. These actions provide insight into
the cognitive process of performing the task. Secondly, the event
specification provides a uniform format for recording students’
behaviors, which is beneficial to explain the process stream data.

Based on the design of problem scenarios and event
specifications, the mainstream techniques of J2EE and MySQL
database were adopted for implementing the five tasks. Besides,
an online testing platform of multi-user architecture was
developed for delivery of all tasks, providing convenience for
user login, task navigation, and system administration. The
development of tasks and the testing platform followed
an iterative process of software development. With the
mature platform, students’ actions with time stamps could
be undisturbedly recorded into the MySQL database as the test
progressed, thus the process stream data could be generated.

Data Collection
Procedures
Before the test, we established a set of technical standards
for the computer device and internet access to choose schools
with perfect Information and Communication Technology (ICT)
infrastructure. Since most students and teachers are unfamiliar
with the web-based human-to-human assessment of CPS, a
special procedure of test administration was considered in the
present study. The whole testing process took 70 min, which was
divided into two stages. The practice stage was about 10 min,
during which examiners needed to illustrate to students what was
the human-to-human assessment of CPS. Meanwhile, one task
was used as an exercise to help students understand rules. After
the practice, the other four tasks were used as assessment tasks in
the formal test stage, and 60 min were assigned. Students were

demanded to follow the test rules just like what they did in a
traditional test, except that they needed to collaborate with their
partners via the chat box. Examiners only provided technological
assistance during the period. Student’s data generated in the
four assessment tasks would be used for indicator extracting and
subsequent data analysis.

Participants
Four hundred thirty-four students with an average age of
approximately 15 years old participated in the assessment,
including 294 students from urban schools and 140 students
from rural schools in China. All students possess basic ICT skills,
such as typing words, sending email, and browsing websites.
Since the present study does not focus on the problem of team
composition, all the students were randomly grouped in pairs and
each student was assigned to a role (A or B) in the group. During
the test, students would act as the same role and two members in
the dyad group were anonymous to each other.

Ethics Statement
Before we conducted the test, the study was reviewed and
approved by the research committee in Beijing Normal
University, as well as by the committee in local government.
The school teachers, students, and students’ parents had clear
understanding about this project and how the data were collected.
All the students were required to take the written informed
consent form to their parents and ask their parents to sign it if
they agreed with it.

Process Stream Data
As mentioned above, we predefined a series of events for each
task, which represent specific actions and system variables. When
the test was in progress, students’ actions with time stamps would
be fully recorded into a database and then process stream data
would be generated. Figure 1 presents a part of the process
stream data from the task of Exploring Air Conditioner, which
is exported from MySQL database. The process stream data is
constituted by all the events generated by dyad members from
the start to the end of tasks, including students’ actions, chat
messages and status changes of system variables. Each event was
recorded as a single row and tagged with the corresponding
student identifier, the task identifier, the event content, the role
of the actor in the dyad, and the time of the event.

TABLE 1 | Examples of events defined in the task of Exploring Air Conditioner.

Event type Event name Role Record format Explanation of capturing an action

Common events Task start A, B task start Record the start of a task

Task end A, B task end Record the end of a task

Chat A, B free-form chat messages Record the content of chat messages

Unique events Control A A controlA: status Record the action of changing the position of the slider in the control A

Control B A controlB: status Record the action of changing the position of the slider in the control B

Control C B controlC: status Record the action of changing the position of the slider in the control C

Control D B controlD: status Record the action of changing the position of the slider in the control D

Apply A, B apply: A or B Record the action of clicking the button of Apply
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FIGURE 1 | A part of process stream data from Exploring Air Conditioner.

Data Processing
Data processing included two steps. First, indicators that serve
as measurement evidence were identified and extracted from
process stream data. This procedure is an analogy to item
scoring in traditional tests. Second, to estimate individual ability
precisely, we used a multidimensional Rasch model to fit the
dyad data. The quality of indicators and the test was also
evaluated in this stage.

INDICATOR EXTRACTING

Rationale for Indicator Extracting
From the perspective of measurement, it is hard to directly
judge the skill level of each student based on the process stream
data. According to the theory of ECD (Mislevy et al., 2003),
measurement evidence must be identified from process stream
data for inferring latent ability. Since the abstract construct of
CPS has been deconstructed into concrete elements or subskills, it
is easier to find direct evidence for demonstrating these subskills
or elements than the whole construct. To build up the reasoning
chain from process stream data to assessment inference, a
theoretical rationale has been commonly taken in many process-
oriented assessments, which is that “students’ skills can be
demonstrated through behaviors which are captured in the form
of processes” (Vista et al., 2016). In other words, the observable
features of performance data can be used to differentiate test-
takers in high and low ability levels (Zoanetti and Griffin, 2017).

If the rules of behavior coding that link the process data and
inference are established, specific actions or sequential actions in
process stream data can be coded into rule-based indicators for
assessment (Zoanetti, 2010; Adams et al., 2015; Vista et al., 2016;
Zoanetti and Griffin, 2017). This procedure is called indicator
extracting in the current study.

In the present study, indicator extracting includes two steps.
First, the theoretical specification of indicators was set up, which
illustrates why each indicator can be identified and how to extract
it. Second, all the indicators were evaluated by experts and the
validated indicators were used to score process stream data. Thus,
the scoring results of each student were obtained.

Indicator Specification
Based on single events or sequential actions in process stream
data, we defined both direct and inferred indicators mapped to
elements of the CPS framework. The direct indicator could be
clearly identified from a single event, such as the success or failure
of a task and a correct or false response to a question. However,
the inferred indicator identified from a sequence of actions must
be rigorously evaluated. Table 2 outlines examples for illustrating
the specifications of inferred indicators.

As can be seen from Table 2, the specification of each indicator
includes five aspects. First, all indicators were named following
a coding rule. Taking the indicator ‘T1A01’ as an example, ‘T1’
represents the first task, ‘A’ represents that it is identified for
student A and is an individual indicator (‘G’ represents a group
indicator), and ‘01’ is a numerical code in the task. Then, the
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TABLE 2 | Examples of indicator specifications.

Indicator name Mapping element Definition of the indicator Algorithm Output

T1A01 Action The number of messages and actions
generated by student A, reflecting
his/her activeness in collaboration.

In the process stream data of student
A, count all the events that he/she
generated.

The count value.

T1G02 Interaction The number of interactive chat blocks
(A, B) between two students, reflecting
their interaction. Consecutive chats
without interrupted actions from the
same student are counted as one.
(e.g., A,B,A,B = 2 chat blocks;
AA,B,A,B = 2 chat blocks)

Step 1: Find all sequences of
consecutive chat messages without
any interrupted actions in the process
stream data of Student A and B.
Step 2: Count the number of chat
blocks in each chat sequence. Add one
to the value of the indicator if one chat
block is found.

The count value.

FIGURE 2 | The frequency distribution of T1A01.

mapping element shows what element of CPS this indicator is
related to. The definition provides a theoretical description of
why it can be identified. The algorithm elaborates the detailed
process of how to extract it from process stream data, which
is the basis for developing the scoring program. In the last
column of the table, the type of the scoring result is simply
described. There are two types of output: the count value and the
dichotomous value.

A New Paradigm of Extracting Indicators
Distinct from ATC21S, we defined two types of indicators, group
and individual indicators. The group indicators are used to
illustrate the underlying skills of the two students as a dyad,
reflecting the endeavor and contribution of the group. As the

indicator T1G02 in Table 2, the interactive conversation cannot
be completed by any individual member and it needs the
two students’ participation. Another typical group indicator is
identified from task outcomes, that is, the success or failure of
each task. The individual indicators are used to demonstrate the
underlying skills of the dyad members. Owing to the asymmetric
task design, the two members in a group would take different and
unique actions or sequential actions, which are used to identify
these indicators.

Indicator Validation and Scoring
We defined 8 group indicators and 44 individual indicators
(23 for student A and 21 for student B) across the four
assessment tasks. To reduce the errors of indicator specifications
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FIGURE 3 | A diagram of the within-item Rasch model for the dyad data.

caused by subjective judgment, indicators were validated by
means of expert evaluation. A five-member panel constituted
by domain and measurement experts were consulted to
evaluate all indicator specifications. Materials, including problem
scenario designs, event definitions, samples of process stream
data, and all indicator specifications, were provided to them.
Experts were demanded to evaluate whether the indicator
specifications were reasonable and to give suggestions for
modification. An iterative process including evaluation and
modification of indicator specifications was used. The process
was repeated until all experts agreed on the modified version
of all indicators.

Because it is unpractical to score process stream data of
all students by human rating, an automatic scoring program
was developed based on R language, according to the final
specifications of all indicators. We randomly selected 15
groups (30 students) from the sample and obtained their
scores separately by the scoring program and a trained
human rater. The Kappa consistency coefficient determining
the validation of the automatic scoring was calculated for
each dichotomously scored indicator. For a few indicators
with low Kappa values, we modified their scoring algorithm
until their consistency was acceptable. The final results of
Kappa consistency for all indicators were shown in Section

“Indicator Validation Results.” We did not use the Kappa
coefficient for indicators with count values, i.e., frequency-
based indicators, since the coefficient was based on categorical
data. Instead, the reliability of automatic scoring for these
indicators were rigorously checked by the research team. The
scoring results of each indicator, which were generated by
the scoring program and the human rater, were compared
based on the randomly selected data of 3 to 5 students. Once
there were any differences, we modified the scoring algorithm
until the automatic scoring results were the same as scores
given by the human rater. After the validation, the process
stream data of 434 participants were scored by the automatic
scoring program.

Conversion of Frequency-Based
Indicators
For model estimation, the count values of frequency-based
indicators needed to be converted into discrete values. Since the
unique nature of the scoring approach for process data, there
is little existing literature that could be used as a guide for the
conversion. ATC21S proposed several approaches (Adams et al.,
2015), and two of them were adopted in the study. Specifically,
we did the transformation by setting thresholds according to

TABLE 3 | Kappa consistency of indicators between the scoring program and the human rater.

Indicators Kappa coefficient Indicators Kappa coefficient Indicators Kappa coefficient

T1A03 0.659 T4A02 0.605 T4B03 0.852

T1A07 0.595 T1B03 1.000 T4B01 0.474

T1A09 0.857 T1B07 0.842 T1G01 0.857

T2A01 0.857 T1B09 0.471 T2G01 1.000

T3A04 0.587 T2B01 1.000 T3G01 0.789

T3A06 0.706 T3B04 1.000 T4G01 1.000

T4A03 0.700 T3B06 0.400

TABLE 4 | Model fit of the two-dimensional Rasch model.

Sample size Final deviance Separation reliability Reliability of dimension 1 Reliability of dimension 2 Correlation of dimension 1 and 2

217 12869.646 0.981 0.886 0.891 0.561
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the empirical frequency distribution or the meaning of count
values. First, some indicators were converted by setting cut-off
values according to their distributions from empirical data. For
instance, the frequency distribution of T1A01 (the first indicator
in Table 2), as shown in Figure 2, had a mean of 37.18 and
a standard deviation of 15.74. This indicator was mapped to
the element of Action in CPS framework and evaluated student
activeness in the task. Obviously, a more active student would
generate more behaviors and chats. Following the approach
of ATC21S (Adams et al., 2015), the cut-off value was set at
22, to which the mean minus a standard deviation (21.44)
was rounded up. Thus, students whose number of behaviors
and chats less than 22 (n < 22) got a score of 0, while
those with the number more than 22 (n ≥ 22) got a score
of 1. Second, some frequency-based indicators only contain
limited values and each count value was easily interpretable.
Thus, a particular value with special meaning could be set as
the threshold to transform the indicator. Based on the two
approaches, all frequency-based indicators were converted to
dichotomous or polytomous variables. Then, all indicators could
serve as evidence in the measurement model for inferring
students’ ability.

MODELING DYAD DATA

Model Definition
In the human-to-human assessment mode of CPS, two students
in the same group establish a dyad relationship; hence we call the
scoring results dyad data. As mentioned above, how to model the
dyad data is a central concern in the assessment of CPS (Wilson
et al., 2012; Griffin et al., 2015). Researchers have proposed a
number of models to account for the non-independence between
the dyad members, such as the multilevel IRT models (Wilson
et al., 2017), Hawkes process (Halpin and De Boeck, 2013), and
the multidimensional IRT models (Alexandrowicz, 2015). Since
group and individual indicators were simultaneously extracted
in this study, we employed a multidimensional IRT model to
fit the dyad data. The multidimensional model is the extension
of the unidimensional model when more than one latent trait
is assumed to exist in a test. Some researchers have employed
multidimensional IRT models to fit dyad data (Alexandrowicz,
2015). This enlightened us to apply the multidimensional model
to the human-to-human assessment of CPS, where two members
in a dyad are regarded as two different dimensions.

There are two types of multidimensional models: within-item
and between-item multidimensional models (Adams et al., 1997).
In this study, we chose the within-item multidimensional Rasch
model for the dyad data. As depicted in Figure 3, student A
and B are regarded as two dimensions, where the latent factor
A and B, respectively represent the CPS ability of the role A
and B. The indicator DA1, DA2, . . ., attached to factor A, are
individual indicators of student A. Similarly, DB1, DB2, . . ., are
individual indicators for student B. The indicator G1, G2, . . .,
are group indicators that are simultaneously attached to factor
A and B. Specifically, the Multidimensional Random Coefficients
Multinomial Logit Model (MRCMLM; Adams et al., 1997) was

adopted to fit the data and its formula is

P (Xik = 1;A,B, ξ |θ) =
exp

(
bikθ+ α

′

ikξ
)

∑Ki
k=1 exp

(
bikθ+ α

′

ikξ
) (1)

where θ is a vector representing the person’s location in a
multidimensional space and is equal to (θA, θB) in the current
study. The notations of A, B, and ξ represent the design
matrix, the scoring matrix, and the indicator parameter vector,
respectively. Xik = 1 represents a response in the kth category of
indicator i. The design matrix A is expressed as

A =



0 0 0 0
... 0 0 0

1 0 0 0
... 0 0 0

0 0 0 0
... 0 0 0

0 1 0 0
... 0 0 0

0 1 1 0
... 0 0 0

...
...
...
...
...
...
...
...

0 0 0 0
... 0 0 0

0 0 0 0
... 0 1 0

0 0 0 0
... 0 1 1



. (2)

where each row corresponds to a category of an indicator and
each column represents an indicator parameter. For example,
indicator 1 and 2 have two and three categories respectively,
which correspond to the first to second row and the third to fifth
row in the above matrix. The scoring matrix B specifies how the
individual and group indicators were attached to dimension θA
and θB, which is expressed as

B =



0 0
1 0
0 0
1 0
2 0
...
...

0 0
0 1
0 0
0 1
0 2
...
...

0 0
1 1
0 0
1 1
2 2
...
...



. (3)
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TABLE 5 | Results of indicator parameter estimates and fit.

Indicator Discrimination Difficulty Error MNSQ Confidence interval T

T1A01 0.24 −1.554 0.180 1.01 0.79 1.21 0.1

T1A04 0.34 −0.309 0.083 1.09 0.87 1.13 1.3

T1A07 0.42 0.139 0.142 0.95 0.93 1.07 −1.5

T1A09 0.26 1.189 0.163 0.99 0.84 1.16 −0.1

T2A01 0.46 −1.860 0.196 0.93 0.74 1.26 −0.5

T2A03 0.28 1.516 0.176 0.97 0.80 1.20 −0.3

T2A01 0.28 −0.723 0.149 0.99 0.89 1.11 −0.2

T3A01 0.39 −1.943 0.201 0.94 0.73 1.27 −0.4

T3A04 0.35 0.935 0.154 0.94 0.87 1.13 −0.9

T3A06 0.22 0.835 0.151 1.01 0.88 1.12 0.1

T3A01 0.15 −1.243 0.120 1.09 0.84 1.16 1.1

T3A02 0.15 0.048 0.084 1.30 0.88 1.12 4.5

T3A03 0.41 1.027 0.090 0.95 0.79 1.21 −0.4

T4A01 0.30 −1.681 0.190 0.98 0.76 1.24 −0.1

T4A03 0.50 0.655 0.151 0.88 0.90 1.10 −2.3

T4A04 0.38 0.794 0.154 0.92 0.88 1.12 −1.3

T4A01 0.44 0.408 0.116 0.94 0.83 1.17 −0.7

T4A02 0.39 0.412 0.147 0.94 0.91 1.09 −1.3

T4A03 0.49 −0.179 0.121 0.89 0.82 1.18 −1.3

T1B01 0.33 −1.781 0.193 0.95 0.75 1.25 −0.4

T1B04 0.25 −0.067 0.079 1.18 0.88 1.12 2.9

T1B07 0.31 0.077 0.141 0.99 0.93 1.07 −0.3

T1B09 0.36 1.025 0.157 0.96 0.86 1.14 −0.6

T2B01 0.39 −1.566 0.179 0.95 0.78 1.22 −0.4

T2B03 0.31 1.038 0.157 0.97 0.86 1.14 −0.4

T2B01 0.32 −0.896 0.152 0.96 0.87 1.13 −0.6

T3B01 0.36 −2.009 0.206 0.95 0.71 1.29 −0.3

T3B04 0.29 1.172 0.161 0.96 0.85 1.15 −0.5

T3B06 0.30 0.636 0.146 1.00 0.90 1.10 0.0

T3B01 0.22 −0.708 0.101 1.12 0.85 1.15 1.5

T3B02 0.04 0.036 0.085 1.34 0.88 1.12 5.0

T3B03 0.42 1.113 0.087 0.97 0.79 1.21 −0.3

T4B01 0.43 −1.748 0.193 0.96 0.75 1.25 −0.3

T4B03 0.37 0.329 0.145 0.96 0.92 1.08 −1.0

T4B01 0.22 −0.147 0.144 0.87 0.93 1.07 −3.8

T4B03 0.04 0.679 0.092 0.88 0.84 1.16 −1.5

T1G01 0.42 −0.277 0.080 1.18 0.87 1.13 2.6

T1G02 0.43 −0.035 0.076 1.18 0.88 1.12 2.9

T2G01 0.37 −0.439 0.043 1.10 0.82 1.18 1.1

T2G02 0.22 0.322 0.083 0.90 0.87 1.13 −1.4

T3G01 0.04 0.015 0.064 1.05 0.82 1.18 0.6

T3G02 0.50 0.163 0.061 1.07 0.83 1.17 0.8

T4G01 0.51 −0.157 0.070 1.01 0.81 1.19 0.1

T4G02 0.47 0.055 0.067 1.12 0.82 1.18 1.2

In Conquest, discrimination is the product moment correlation between the case scores on the indicator and the corresponding case raw scores.

where each row corresponds to a category of an indicator
and each column denotes a dimension. In the above
matrix B, for example, the first five rows denote that
the first indicator (scored as 0 or 1) and the second
indicator (scored as 0, 1, or 2) are individual indicators
scored on the first dimension (θA). The middle several
rows correspond to those individual indicators scoring
on the second dimension (θB). The last several rows

indicate those indicators measuring both dimensions, i.e.,
group indicators.

Calibration
Indicator calibration was performed by ConQuest 3.0, which
included two stages. At the first stage, all the indicators (44
individual indicators and 8 group indicators) were calibrated
with the one-parameter multidimensional Rasch model. Since
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the Rasch model only provides difficulty estimates, indicator
discrimination was calculated by the traditional CTT (Classical
Testing Theory) method in ConQuest. To evaluate the indicator
quality, we used some important indicator indexes, such as
discrimination, difficulty, and Infit mean square (Information
Weighted Mean Squared residual goodness of fit statistic,
often represented as MNSQ). In addition, researchers suggested
special sequential actions in the process of problem solving
were related to task performance (He and von Davier, 2016).
This enlightened us to use the correlation between procedural
indicator and the corresponding task outcome as a criterion for
evaluating indicator quality. It was assumed that good procedural
performance is always associated with a better outcome. After
comprehensive consideration, the indicators, of which the MNSQ
outside the range of 0.77 and 1.33, the discrimination and
correlation below zero, were excluded from the subsequent
analysis. In the second stage, the selected indicators were used to
estimate individual ability. Model fit indexes, indicator parameter
estimates, and the case distribution based on these indicators
provided by ConQuest were used to evaluate test quality.

RESULTS

Calibration is an exploratory process when it is carried out in test
development. For saving space, here we only present the results in
the second stage of calibration, which provides the final evidence
for the test quality. A total number of 36 individual indicators and
8 group indicators were calibrated in the second stage. The results
of calibration and indicator validation are as follows.

Indicator Validation Results
The interrater reliability of twenty dichotomously scored
indicators were validated by computing the Kappa consistency
between the scoring program and the human rater. The results
are shown in Table 3. According to the magnitude guideline, the
consistency was excellent with a Kappa value over 0.75 and was
fair to good with the value from 0.4 to 0.75 (Fleiss et al., 2013). As
seen in Table 3, all indicators’ Kappa value are over 0.4 and there
are 12 indicators with excellent Kappa consistency, indicating the
reliability of automatic scoring.

Model Fit
Model fit results are shown in Table 4. The sample size is
the number of dyad groups, indicating a total number of 217
groups (434 students) participated in the assessment. Separation
reliability describes how well the indicator parameters are
separated (Wu et al., 2007), and the value of 0.981 indicates
an excellent performance of test reliability. Dimension 1 and 2,
respectively represent student A and B. Reliability of dimensions
represents the degree of person separation. The value of 0.886
and 0.891 indicate that the test is sensitive enough to distinguish
students at high and low ability levels. Wright and Masters
(1982) showed that the indicator separation index and person
separation index could be respectively used as an index of
construct validity and criterion validity. Therefore, the results in
the present study indicate the adequate validity of the test. The

FIGURE 4 | The indicator and latent distribution map of two-dimensional
Rasch model. Each ‘X’ represents 1.4 cases.
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dimension correlation is calculated by estimated scores of student
A and B, and the value of 0.561 indicates that dyad members are
dependent on each other to a certain extent.

Indicator Parameter Estimates and Fit
Indicator parameter estimates and fit indexes are presented in
Table 5. The indicator difficulty estimates are within the range
of −2.0 to 1.156 and have an average value of −0.107. Indicator
discrimination, calculated by traditional CTT item analysis, falls
within the range from 0.22 to 0.51 for most indicators. The
MNSQ estimates and confidence interval are reported with T-
value, and the accepted value of MNSQ ranges from 0.77 to 1.33
(Griffin et al., 2015). The MNSQ values of most indicators fall
inside their confidence intervals and the absolute values of their
corresponding T statistics are smaller than 2.0. As can be seen, the
MNSQ of all indicators are reasonable and has an average value
of 1.0, indicating good indicator fit.

Indicator and Latent Distribution
ConQuest can output indicator and case distribution, in which
the indicator difficulty and the student ability are mapped to the
same logit scale. Figure 4 presents the distribution of indicator
difficulty and student ability in the second stage of calibration.
Dimension 1 and 2, respectively represent student A and B. Since
the mean of latent ability is constrained as zero in ConQuest,
students’ abilities are concentrated in the zero point of logit
scale and approximate a Gaussian distribution. On the right
of the map, indicators are dispersedly distributed from easy to
difficult. There are 8 indicators whose difficulty parameters are
below the lowest level of ability, indicating they were very easy
for all students.

Descriptive Analysis of Testing Results
Of the 434 participants, the minimum and maximum score
respectively are −2.17 logits and 2.15 logits. Student ability
estimates vary in the full range of 4.319 with a standard deviation
of 0.68, indicating that students were well differentiated by the
current assessment. Table 6 presents the descriptive statistics of
students’ ability of successful group and failure group in each task.
There are more students who successfully completed task 1 and
2 than those who failed, while the case is opposite for task 3 and
4. To some extent, this indicates the latter two tasks may be more
difficult than the former two tasks. In addition, in all tasks, the
mean ability of the students who successfully completed the task

is higher than that of the unfinished students. It is consistent with
common sense, indicating students’ ability estimation is reliable.

DISCUSSION

The current study employed a human-to-human interaction
approach initiated by the ATC21S project to measure the
collaborative problem solving construct. Following the
asymmetric mechanism, we designed and developed five
tasks which two students need to partner with each other to
work through. Moreover, we integrated the tasks into an online
testing platform. There are several reasons impelling us to
adopt the human-to-human interaction in the CPS assessment.
One advantage is that it approximates to the situation in real
life (Griffin et al., 2015) because it requires the real people to
collaborate with each other and provides an open environment,
such as a free-form chat box, for them to communicate.
More importantly, the process stream data obtained provide
informative insights into the process of collaboration and
problem solving.

The task design is crucial in the present study, which includes
the problem scenario design and the definition of events.
The problem scenario design aims to elicit students’ latent
ability of CPS effectively. Therefore, we adopted the asymmetric
mechanism for it, which required dyad members to pool their
knowledge and resources to achieve a common goal. The event
definition is about how to record students’ actions in the process
stream data. To solve it, we predefined a number of crucial events
that represent key actions and system variables for each task. They
are indispensable observations for understanding the process of
performing tasks and provide a uniform format for recording the
data stream. In addition, the technical architecture of tasks and
the testing platform are important for developing a stable test
system according to our experience, especially a well-constructed
multi-user synchronization mechanism.

To tap the rich information from the process stream data,
we need to identify indicators that could be mapped to the
elements of the conceptual framework as measurement evidence.
It has been found that particular sequential actions could be
used as rule-based indicators for assessment (Zoanetti, 2010;
Adams et al., 2015; Vista et al., 2016). Therefore, we identified
specific actions or sequential actions as markers of complex
problem solving process in the current study. However, distinct

TABLE 6 | Descriptive statistics of students’ ability of successful and failure group in each task.

N Minimum Maximum Mean Std. deviation

Failure group in task 1 156 −2.169 1.183 −0.237 0.626

Successful group in task 1 254 −2.029 2.149 0.184 0.647

Failure group in task 2 210 −2.169 1.521 −0.205 0.629

Successful group in task 2 222 −1.975 2.149 0.181 0.676

Failure group in task 3 352 −2.170 1.900 −0.139 0.636

Successful group in task 3 82 −0.784 2.149 0.572 0.549

Failure group in task 4 226 −2.169 1.267 −0.210 0.585

Successful group in task 4 148 −1.150 2.150 0.485 0.552
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from the ATC21S approach, we defined two kinds of indicators,
individual and group indicators, which reflect the underlying
skills of individuals and groups, respectively. Owing to the
asymmetry of resources, two members in a dyad would perform
differently and generate unique process stream data, while their
group performance would also be recorded. Therefore, we could
investigate the CPS ability at both the individual and group level.

Another problem concerned by the present study is how to
model the dyad data. ATC21S extracted the same indicators
for dyad members and the dyad data was modeled by
traditional methods. Hence, the local independence assumption
of the measurement model was violated. We adopted the two-
dimensional within-item Rash model to analyze the dyad data
based on the new paradigm of indicator extracting, taking
the dyad dependence into account. Results indicated that the
model fit well and that indicator parameters and participants
were separated well. All the indicator parameter estimates and
indicator fit indexes were also reasonable and acceptable. Along
with the logit scale, indicators were dispersedly distributed
from easy to difficult. In general, the results of data analysis
demonstrate that the new paradigm of extracting indicators and
modeling the dyad data is a feasible method for CPS assessment.

LIMITATION

As a tentative practice of CPS assessment, the current study also
has some limitations. First, most indicators identified in the study
are based on the events of operation actions, while students’ chat
messages are not utilized effectively. Chatting is the only way
for the two students to communicate in the human-to-human
interaction. Thus, the messages contain abundant information
that can be used as measurement evidence. However, extracting
indicators from chats requires the technique of semantic analysis.
We did not do that work due to our limitation of Chinese
semantic analysis. Second, for some elements in the conceptual
framework, such as audience awareness and transactive memory,
there are no indicators that can be mapped. This is because

it is unable to find corresponding sequential actions from
process stream data. It is necessary to extract more indicators
to ensure an effective measurement of CPS. Third, following
the ATC21S’ approach, we set up cut-off values for frequency-
based indicators based on their distributions of empirical data.
This choice of thresholds is tentative and further research is
needed for setting more accurate values. Fourth, in the present
study, we randomly assigned participants into dyad groups and
did not consider group composition, because the current work
focuses on how to extract indicators and model the dyad data.
However, it is obvious that the group composition would affect
the process and results of the collaboration. Further research can
consider employing advanced techniques to extract more reliable
indicators or exploring the strategies for student grouping.
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APPENDIX 1: THE TASK DESCRIPTION OF EXPLORING AIR CONDITIONER

The interface of each task is in a unified form as shown in Figure A1. For each student, an instruction is presented at the top of the
page to describe the problem scenario. A chat box for communication is in the right panel. Navigation buttons are placed at the bottom.

The task of Exploring Air Conditioner includes two pages. Figure A1 shows the first pages seen by the two students, respectively
in the task. There are four controls on an air conditioner, which correspond to the regulation of temperature, humidity, and swing.
Two students are demanded to explore the function of each control together. On the first page, student A can operate control A and
B, and student B can operate control C and D. The function panel showing the temperature, humidity, and swing levels is shared by
two students, which means the function status is simultaneously affected by two students’ operations. To complete the task, they have
to exchange information, negotiate strategies for problem solving and coordinate their operations. But above all, they must follow the
rule that “change one condition at a time.” After figuring out each control’s function, they can use the navigation button to jump to
the next page where students need to submit their exploration results.

FIGURE A1 | Screenshots of first pages in Exploring Air Conditioner.
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