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Editorial on the Research Topic

Fractional Calculus and Its Applications in Physics

Fractional calculus is deeply related to the dynamics of complicated real-world problems. Fractional
operators are non-local and describe several natural phenomena in a better and systematic manner.
Manymathematical models are accurately governed by fractional order differential equations. Since
the classical mathematical models are special cases of the fractional order mathematical models, it
implies that the results for the fractional mathematical model are more general and more accurate.
The fractional derivatives and integrals are very helpful for engineers, mathematicians, scientists,
and researchers working with the real-life phenomena. Thus, this Research Topic Ebook contains
some recent investigations demonstrating the depth and breadth of ongoing studies in the area of
fractional calculus and its applications in physics. It contains nine articles from 40 authors from all
over the world.

Prakash and Verma presents a user-friendly technique using the theory of Adomian
decomposition technique to obtain the analytical solutions of the Newell–Whitehead–Segel
equations of fractional order. The fractional Newell–Whitehead–Segel equation finds its
applications to interpret the formation of the stripe patterns in two-dimensional (2-D) systems.
The authors show that the numerical results derived with the aid of the suggested scheme are
very accurate.

Shat et al. present a fractional extension of the Laguerre differential equation. The authors used
the conformable derivative of order 0 < α < 1. The authors used the Frobenius scheme together
with the fractional power series expansion to derive two linearly independent solutions of the
problem. The authors derive the fractional Laguerre functions in closed forms, and establish their
orthogonality results.

Gill et al. show the computable solution of the advection-dispersion equation of the arbitrary
order pertaining to Hilfer–Prabhakar fractional operator as well as the Laplace operator of
fractional order. The technique for obtaining the solution is a mixed approach using the application
of Sumudu and Fourier transforms. The authors derive the solution in compact and graceful
forms in the form of the generalized Mittag–Leffler function, which is compatible for numerical
evaluation of the results.

Hristov presents both the theory and formulation of linear viscoelastic response functions
and their reasonable connection with the Caputo–Fabrizio (CF) fractional operator by using the
Prony series decomposition (PSD). The author discusses the problem of interconversion with
power and exponential laws and pays very special attention on the PSD approach, the connected
interconversion problems, and the presentation of the viscoelastic constitutive equations in the
form of CF operator of arbitrary order.

Cattani extends the sinc-fractional derivative to the Hilbert space established on Shannon
wavelets. The author defines some novel operators of arbitrary order by using the concept of
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wavelets. The author’s main work is to study the localization and
compression nature of wavelets when working with operators of
non-integer order.

Turalska and West present mathematical concept of the
dynamical decision-making model and renewal events, and
subordinate the nature of the individual to the mean field nature
of the network. The authors proved that the dynamics of the
individual is obtained by using the theory of subordination to be
a tempered fractional differential equation. The authors reported
the exact solution of fractional differential equation in the form
of Mittag–Leffler function and computed the numerical results.

Chen et al. show that the Lévy flight is more effective than the
Brownian motion if the targets are sparse. The authors consider
that every flight of the forager is possibly interrupted by some
unknown factors, such as hurdles on the direction of flight,
natural opponents in the vision distance, and limitations in the
energy storage for every flight, and suggested the tempered Lévy
distribution p(l)∼ e−ρll−µ. The authors validate both theoretical
inspection and simulation outcomes and that a higher searching
coherence can be achieved if the lower values of ρ or µ are
selected. The authors demonstrate that by considering the flight
time as the waiting time, the master equation (ME) of the
random searching procedure can be determined. The authors
construct two distinct kinds of MEs: one is the classical diffusion
equation and second is the tempered diffusion equation of
fractional order.

Agarwal et al. apply the fractional operators suggested
by Marichev–Saigo–Maeda containing Appell function and
establish many novel results of extended Lommel–Wright

function. The authors also report that by using some integral
transforms on the derived results, many more new and known
results can be obtained.

Calcagni discusses the recent plans and agendas to be carried
out in order to establish a workable definition of scale-dependent
fractional operators and their applications to field theory and
gravity. The author investigates distinct kinds of multifractional
Laplacians and their properties.
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After motivating the need of a multiscale version of fractional calculus in quantum gravity,

we review current proposals and the program to be carried out in order to reach a

viable definition of scale-dependent fractional operators. We present different types of

multifractional Laplacians and comment on their known or expected properties.

Keywords: quantum gravity, fractional calculus, fractional derivatives, multiscale geometry, multifractional

spacetimes

1. INTRODUCTION

A branch of theoretical physics which has been attracting considerable attention in the last years is
quantum gravity. Several independent theories, models and hypotheses are gathered under this
broad name, from string theory to asymptotic safety, from non-local to loop quantum gravity,
from causal dynamical triangulations to causal sets, and so on [1–4]. Most of these proposals aim
to conciliate classical general relativity with the laws of quantum mechanics, in order to unify all
forces of Nature under the same framework and to solve some problems left open in the traditional
paradigms (for instance, the big-bang and cosmological constant problems [3]).

A surprising feature emerging from this variegated landscape is that the properties of spacetime
geometry, such as the spectral or Hausdorff dimension and the way particles diffuse, change with
the probed scale in all quantum gravities [5–7]. This so-called dimensional flow seems to be a
manifestation of the impossibility to perform infinitely precise time and distance measurements
in geometries with intrinsic uncertainties of quantum or stochastic origin [8, 9]. Some of these
findings were made possible by assuming dimensional flow by default and treating spacetime
geometry as fundamentally scale dependent. This general method can be embodied in a class of
theories, calledmultifractional, where classical and quantum fields live on a spacetime characterized
by a scale hierarchy, anomalous transport and correlation properties, and a multifractal geometry
[10]. Surprisingly, all these features emerge automatically by assuming a slow dimensional flow at
large scales (dimension in the infrared almost constant) [10, 11].

One can encode a multiscale geometry in the dynamics of particles and fields in several ways.
The one followed by multifractional theories is a change in the integro-differential structure [12].
Integrals (such as dynamical actions) and derivatives (in kinetic terms) acquire a non-trivial scale
dependence that can be illustrated in the prototype example of the scalar field theory

S =

∫

d̺(x)

[

1

2
φKφ − V(φ)

]

, (1)

where ̺(x) is the spacetime measure, K is a kinetic operator, and V is the scalar potential. In
the standard case and in the absence of gravity (which will be ignored here), ̺(x) = dDx is the
usual Lebesgue measure in D topological dimensions and K = 2 = ∂µ∂µ is the second-order
Laplace–Beltrami operator. In the presence of dimensional flow, if the measure is factorizable in
the coordinates (an assumption to make the problem tractable) then it takes the unique form [11]

̺(x) =
∏

µ

dqµ(xµ) , qµ(xµ) = xµ
+

+∞
∑

n=1

ℓ
µ
n

αµ,n
sgn(xµ)

∣

∣

∣

∣

xµ

ℓ
µ
n

∣

∣

∣

∣

αµ,n

Fn(x
µ) , (2)
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where

Fω(x
µ) = 1+ Aµ,n cos

(

ωµ,n ln

∣

∣

∣

∣

xµ

ℓ
µ
∞,n

∣

∣

∣

∣

)

+ Bµ,n sin

(

ωµ,n ln

∣

∣

∣

∣

xµ

ℓ
µ
∞,n

∣

∣

∣

∣

)

,

(3)

all indices µ are inert (there is no Einstein summation
convention), the first factor 1 in Equation (1) is optional [11] (it
can be set to zero in the stochastic version of the theory [9]), ℓ

µ
n

and ℓ
µ
∞,n are 2D length scales for each n, and αµ,n,Aµ,n, Bµ,n, and

ωµ,n are 4D real constants for each n.
Since the measure is factorized, in the following we can focus

the discussion on the one-dimensional model

S =

∫

dq(x)

[

1

2
φKφ − V(φ)

]

,

q(x) ≃ x+
ℓ∗

α
sgn(x)

∣

∣

∣

∣

x

ℓ∗

∣

∣

∣

∣

α

Fω(x) , (4)

where ℓ∗ = ℓ1, all µ indices are omitted and we can also ignore
terms subleading both in the infrared and in the ultraviolet; this
corresponds to consider only the n = 1 term in Equations (2) and
(3).

In this paper, we will study the properties of three versions
of the kinetic operator K, expanding on the proposals sketched
in Calcagni [10]. Since, in the context of quantum gravity, the
integration measure is uniquely defined independently of the
type of derivatives in the Lagrangian as in Equation (4) [11],
here we are not interested in the formal properties of “multiscale
integrals,” the inverse of multiscale derivatives. Some of these
operators are known, as is the case of Equations (5) and (35)
below [10], while in the case of Equations (28) and (29) they
are unknown and will require further work. On the other hand,
there is no inverse operator for a linear combination of operators
with different inverse, such as Equation (24). In all these cases, for
our purposes it is sufficient to study the properties of multiscale
derivatives with respect to the ordinary Lebesgue measure dx
while, at the same time, taking into account the measure weight
by inserting weight factors in the definitions of such derivatives
to make them self-adjoint with respect to the measure.

2. Q-DERIVATIVES

While there is a unique parametric form of the measure q(x),
there is more freedom in the choice of kinetic operator K. It
turns out that there are three viable possibilities. One is a theory
with so-called weighted derivatives, but this can be reduced to a
system with ordinary derivatives and the spectral dimension of
spacetime is constant in that case [10]. Another possibility is the
second-order operator [13]

K = ∂2q , ∂q :=
∂

∂q(x)
=

1

v(x)

∂

∂x
, (5)

where v(x) = q′(x) := ∂xq(x) and q(x) is given by Equation (2).
This “q-derivative” has a number of highly desirable properties:

1. It is multiscale, since the scale hierarchy is already encoded in
the measure weight v(x).

2. Its composition law is very simple:

∂2q := ∂q∂q = (∂q)
2
−

v′

v3
∂x . (6)

3. It is linear. For any f and g in a suitably defined functional
space,

∂q(f + g) = ∂qf + ∂qg (7)

4. Its kernel is trivial and given by a constant:

∂q1 = 0 . (8)

5. The Leibniz rule is extremely simple. For any f and g in a
suitably defined functional space,

∂q(fg) =

1

v
(f ′g + fg′)

= (∂qf ) g + f (∂qg) . (9)

6. Integration by parts is straightforward. For any f and g in a
suitably defined functional space,

∫

dq f ∂qg
(9)
=

∫

+∞

−∞

dx v
1

v
(fg)′ −

∫

dq (∂qf ) g

= −

∫

dq (∂qf ) g , (10)

where we threw away boundary terms. Consequently, K is
self-adjoint:

∫

dq f ∂2q g =

∫

dq (∂2q f ) g . (11)

Notice that, in principle, these rules hold for an arbitrary q(x),
although in our case this profile is fixed as in Equation (4).

3. FRACTIONAL DERIVATIVES

The third extant multifractional theory is the least explored, but
also the most interesting because it employs fractional calculus.
This is by far the most obvious tool to implement an anomalous
scaling in the geometry. The application of fractional derivatives
to multiscale theories is not an easy task. Before seeing why, let us
recall some basic aspects of fractional calculus.

There are different versions of fractional derivatives [14–16]1

and one must make a choice suitable for quantum gravity [12]. In
particular, we believe that one cannot renounce to have a trivial
kernel (Equation 8). Two fractional derivatives with this property
are the Liouville derivative

∞∂α f (x) :=

1

Ŵ(m− α)

∫

+∞

−∞

dx′
θ(x− x′)

(x− x′)α+1−m
∂mx′ f (x

′),

m− 1 6 α < m , (12)

1For bibliographic references, see [10, 12]. More recent applications and solving

methods can be found in Baleanu et al. [17], Yang et al. [18], Sun et al. [19], Baleanu

et al. [20, 21] and Inc et al. [22].
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and the Weyl derivative

∞∂̄α f (x) :=

1

Ŵ(m− α)

∫

+∞

−∞

dx′
θ(x′ − x)

(x′ − x)α+1−m
∂mx′ f (x

′)

m− 1 6 α < m , (13)

where θ is Heaviside’s step function. Obviously, these operators
act linearly on f and∞∂α

x 1 = 0 = ∞∂̄α1. One can also check that

∞∂α
∞∂β

= ∞∂α+β and ∞∂̄α
∞∂̄β

= ∞∂̄α+β (these fractional
derivatives commute) and that the Leibniz rule is

∞∂α(fg) =

+∞
∑

j=0

(

α

j

)

(∂ jf )(∞∂α−jg),

(

α

j

)

=

Ŵ(1+ α)

Ŵ(α − j+ 1)Ŵ(j+ 1)
, (14)

and the same expression for the Weyl derivative, where ∂α−j
=

Ij−α are integrations for j > 1. Also, integration by parts with the
Liouville derivative generates the Weyl derivative, and vice versa:

∫

+∞

−∞

dx f ∞∂αg =

∫

+∞

−∞

dx (∞∂̄α f ) g . (15)

3.1. Complicated Leibniz Rule
The importance to have the standard Leibniz rule (Equation 9)
can be appreciated when trying to do physics with fractional
calculus. In the theory with q-derivatives, integration by
parts does not produce extra contributions and the kinetic
terms

∫

dqφ∂2qφ or −

∫

dq ∂qφ∂qφ are completely equivalent.

Therefore, the equation of motion ∂2qφ − V,φ = 0 can
be determined easily by applying the variational principle on
Equation (4). On the other hand, suppose we choose another type
of multiscale derivative D such that K = D

2 and its Leibniz rule
is more complicated:

D(fg) = (Df ) g + f (Dg)+ X , (16)

where X = X(f , g; x) is a function of f , g, their ordinary
derivatives and the coordinate x. For consistency, if the kernel
of D is trivial (D1 = 0), then X(f , 1; x) = X(1, f ; x) = 0 for any
f . In particular, if g = Dh, then

fD2h = D(fDh)− X(f ,Dh; x)− (Df )Dh

= [D(fDh)−D(hDf )− X(f ,Dh; x)+ X(Df ,Dh; x)]

+ (D2f ) h = :Y(f , h; x)+ (D2f ) h . (17)

Therefore, when varying the action (Equation 4) with respect to
φ one gets

δS

δφ
=

∫

dq

(

1

2
δφD2φ +

1

2
φD2δφ − δφV,φ

)

(17)
=

∫

dq

[

δφ(D2φ − V,φ)+
1

2
Y(φ, δφ; x)

]

. (18)

Assuming that one could repeatedly integrate Y by parts to write
it as Y = 2δφ Z(φ, x) up to some boundary term, we would end
up with a dynamical equation

D
2φ − V,φ + Z(φ, x) = 0 (19)

characterized by a term Z that can considerably hinder the study
of solutions.

This is the main obstacle that prevented so far to consider
multiscale theories with derivatives different from Equation
(5) (barring the mathematically trivializable case of weighted
derivatives). In fact, the only derivative with anomalous scaling
such that X = 0 in the Leibniz rule (Equation 16) is the q-
derivative [23]. Genuine fractional derivatives always have X 6=

0.

3.2. Self-Adjoint Laplacian
Although X 6= 0, one could still obtain a clean integration
by parts if, thanks to miraculous cancellations, Y were a total
derivative or Z were zero on shell. This possibility is suggested
by Equation (15), which implies that, for any combination

D̃
α
:= c∞∂α

+ c̄∞∂̄α , (20)

one has

∫

dx f (c∞∂α
+ c̄∞∂̄α)g =

∫

dx g(c̄∞∂α
+ c∞∂̄α)f .

For instance, if c = −c̄ = 1/22,

∫

dx f D̃αg = −

∫

dx (D̃α f ) g , D̃
α
=

1

2
(∞∂α

− ∞∂̄α) .

(21)
In the limit α → 1, ∞∂1 = ∂ and ∞∂̄1 = −∂ , so that
limα→1 D̃

α
= ∂ . Therefore, we can define an operator self-

adjoint with respect to any measure weight v(x):

Kα = D
α
D

α , D
α
:=

1
√

v
D̃

α
(√

v ·

)

, (22)

so that

∫

dx v fKαg =

∫

dx (
√

vf )D̃α
D̃

α(
√

vg)

= −

∫

dx [D̃α(
√

vf )]D̃α(
√

vg)

=

∫

dx [D̃α
D̃

α(
√

vf )](
√

vg)

=

∫

dx v (Kα f ) g . (23)

Note that other, complex-valued choices of c = (c̄)∗ may be more
convenient when studying the spectrum of eigenvalues of these
operators [24].

4. MULTIFRACTIONAL DERIVATIVES:

THREE PROPOSALS

At this point, we can try to extend fractional calculus to a
multiscale setting. We have found three ways to do that.

2A sign error in a similar expression in Calcagni [10] is corrected here.
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4.1. Explicit Multiscaling
The most direct mean to induce a hierarchy of scales and
a variable anomalous scaling is to consider a superposition
of fractional derivatives of different order α [24]. In the
mathematical literature, several authors [25–32] did propose
a continuous superposition, the distributed-order fractional

derivatives D : =

∫ 1
0 dαm(α) ∂α , where m(α) is a distribution

on the interval [0, 1]. However, from previous experience in
quantum gravity it may be more convenient, or just sufficient,
to take a sum instead of an integral:

K = D
2 , D :=

∑

n

gnD
αn , (24)

where gn = gn(ℓn) are some constant coefficients and D
αn is

defined in Equations (22) and (21). A non-trivial dimensional
flow is generated by just one scale, i.e., a sum of two terms:
D = ∂+g∗D

α . The equation ofmotion from the action (Equation
4) with kinetic operator (Equation 24) is

D
2φ − V,φ = 0 . (25)

This formulation of a multiscale theory with fractional
derivatives is not exempt from problems. The operator D

2

consists of many terms, even in the simplest case of only one
scale where D2 is made of seven pieces (ignoring weight factors),
∂2 + 2g∗D̃

α+1
+ g2

∗
D̃

α
D̃

α
= ∂2 + g∗(∞∂α+1

− ∞∂̄α) +

(g2
∗
/4)(∞∂2α − ∞∂α

∞∂̄α
− ∞∂̄α

∞∂α
+ ∞∂̄2α). Therefore, the

dynamics (Equation 25) is deceptively clean and hides a rather
messy multiorder fractional differential structure which may be
very difficult to solve analytically. This eminently practical issue
could be very important, or even fatal, at the time of studying the
dynamics. To bypass it, one could consider another version of the
kinetic operator [24]:

K =

∑

gnD̄
2αn , D̄

2αn
:=

1

2

1
√

v
(∞∂2αn + ∞∂̄2αn )

(√

v ·

)

,

(26)
wherem = 2 in Equations (12) and (13):

(∞∂2α + ∞∂̄2α)f (x) =

1

Ŵ(2− 2α)

∫

+∞

−∞

dx′
[

θ(x− x′)

(x− x′)2α−1
+

θ(x′ − x)

(x′ − x)2α−1

]

∂2x′ f (x
′)

=

1

Ŵ(2− 2α)

∫

+∞

−∞

dx′

|x− x′|2α−1
∂2x′ f (x

′) . (27)

At the classical level, the great advantage of Equation (26) is
that, in the single-scale case, it consists of just three terms
∂2 + (g∗/2)(∞∂2α + ∞∂̄2α) (again, weight factors are ignored)
instead of seven. However, this K is not quadratic, since D̄2α

6=

D̄
α
D̄

α , which can lead to problems when quantizing the theory
in Hamiltonian formalism: the kinetic term is not the square of a
momentum operator.

At present, it is not clear which definition between Equations
(24) and (26) will be more viable in the long run. They differ
only in transient terms that can be dropped both at large

and small scales, so that classically they give rise to the same
physics. However, both have the added inconvenience of leading
to a virtually symmetryless dynamics [10], a further point of
concern if we want to do field theory and gravity with this
formalism.

4.2. Implicit Multiscaling
The multiscaling characterizing Equation (24) is of a twofold
nature, an explicit one in the sum over αn and an implicit one
in the measure weight v(x). These two structures have been
combined independently and we imposed that the sum over αn

in the combination of fractional derivatives is the same sum over
αn inside v(x). There is nothing wrong with this construction,
but there may be a more elegant formulation where the scale
hierarchy is all included within the measure q(x) [10]. Noting
that the denominator (x − x′)α in Equations (12) and (13) for
m = 1 (0 < α < 1) is the ultraviolet part of the profile in
Equation (4), we can generalize those definitions as a left and
right multifractional q-derivative:

qD :=

∫

+∞

−∞

dx′
θ(x− x′)

q(x− x′)

∂

∂x′
, (28)

qD̄ :=

∫

+∞

−∞

dx′
θ(x′ − x)

q(x− x′)

∂

∂x′
, (29)

where, again, the profile q(x) is uniquely given by Equation
(2). These expressions are similar to the so-called variable-order
fractional derivatives proposed by Lorenzo and Hartley [30],
although in our case q(x− x′) is completely fixed.

The kinetic operator in Equation (4) is then

K =

1
√

v

[

1

2
(qD − qD̄)

]2
(√

v ·

)

. (30)

To understand the dynamics, we first need to spell out the
properties of these derivatives. At short scales, q(x−x′) ∼ |x−x′|α

and Equations (28) and (29) reduce to the Liouville and Weyl
derivatives, respectively:

small scales (ℓ ≪ ℓ∗): qD ∼ ∞∂α , qD̄ ∼ ∞∂̄α , (31)

while at large scales q(x − x′) ∼ x − x′ and Equations (28) and
(29) give

large scales (ℓ ≫ ℓ∗): qD ≃ ∂ , qD̄ ≃ −∂ . (32)

We have not made a formal proof of these statements, but
it should not be difficult. The Leibniz and integration-by-
parts rules are also unknown but they should coincide with
those of Weyl and Liouville fractional derivatives in the limit
of small scales or in any plateau region of dimensional flow
(q ∼ xαn ).

Therefore, we expect a complicated Leibniz and integration-
by-parts rules everywhere at all scales of dimensional flow,
except in plateau regions where a clean integration by parts of
the type (Equation 15) emerges. For this reason, a variational
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principle valid at all scales may be ill defined in this case
and an exact form of the equations of motion may be
out of reach, although their asymptotic form at plateaux
is obviously given by the limit of Equation (25) for one
exponent α.

These considerations could eventually select the
multifractional derivatives with explicit multiscaling as a
simpler tool in quantum gravity, since they yield exact equations
of motion.

4.3. Multiscale Differentials
A third alternative is to introduce a multiscale differential based
on the geometric coordinate (Equation 2) or its simplified version
in Equation (4) [10]:

dq(x) = q(dx) , (33)

which is a linear combination of the usual and fractional [12]
differentials, dq ∼ dx + d|x|α + . . . = dx + |dx|α + . . . . [In D
dimensions, this differential generates the line element dq(s) =
√

gµνdqµ(xµ)⊗ dqν(xν) = q(ds) =

√

gµνqµ(dxµ)⊗ qν(dxν),
where gµν is the metric.] The operator D is a superposition of
ordinary and fractional derivatives of the form (to be taken as
indicative; coefficients are ignored)

d = dqD ∼ dx ∂ + |dx|α∂α
+ . . . . (34)

The following multiscale derivative and Laplacian are then
defined implicitly:

D : =

d

dq
, K = D

2 . (35)

These operators are invariant under translations, since Dx−x̄ =

Dx, while K is invariant also by “q-boosts” [10]. Therefore,
this theory has more symmetries than the theories with
multifractional derivatives with explicit or implicit multiscaling.

In any plateau of dimensional flow, dq ≃ (dx)αn and D ≃

d
(dx)αn

= D̃
αn . Notice that D ≃ ∂q in the near-infrared limit d →

d where the non-linear part of q is subdominant. Therefore, the
theory with q-derivatives can be regarded as an approximation
of the theory with multiscale derivatives (and, presumably, also
of the other two theories with fractional derivatives) when the
anomalous scaling effects are weak. The experimental constraints
on the scales and parameters of the theory with q-derivatives

might thus miss some important effects present in the fractional
versions of the multiscale paradigm.

To determine the Leibniz and integration-by-parts rules, one
should first define the operator D appearing in the differential
d = dqD. Again, we expect these rules to reduce to the usual
ones in the infrared and to those of fractional derivatives in
the ultraviolet. Since the operator (Equation 24) with explicit
multiscaling is already a well-defined linear combination of
fractional derivatives, we reach the same conclusion of the
previous section, namely, that the operator (Equation 24) may be
the best candidate for the concrete realization of multifractional
theories with fractional derivatives. However, the main problem
of the definitions (33) and (35) is that they are too abstract, which
is the reason why we used qualitative expressions marked by “∼.”
Understanding their actual properties will require more work.

5. CONCLUSIONS

In this paper, we have further analyzed the proposals of Calcagni
[10] for a multifractional calculus with viable applications
to field theory and gravity. Without the pretense of being
rigorous, we have considered some properties of scale-dependent
derivative operators which, in physical applications to quantum
gravity, are interpreted to encode the multiscaling of the
underlying anomalous geometry. The conclusion is that the
most promising multifractional theory possibly is the one with
explicit multiscaling in fractional derivatives. However, only a
full systematic study of the properties of all these operators
will be able to confirm which is the most viable Laplacian
from a theoretical and practical point of view. The value of the
complex coefficients in Equation (20) will be especially important
to determine a well-defined calculus and spectral theory [24].
We will analyze the associated dynamics in detail in a future
publication.
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In this paper, the operators of fractional integration introduced by Marichev-Saigo-

Maeda involving Appell’s function F3(·) are applied, and several new image formulas

of generalized Lommel–Wright function are established. Also, by implementing some

integral transforms on the resulting formulas, few more image formulas have been

presented. We can conclude that all derived results in our work generalize numerous

well-known results and are capable of yielding a number of applications in the theory of

special functions.

Primary: 44A20 Transforms of special functions; 65R10 For numerical methods; 26A33

Fractional derivatives and integrals; Secondary: 33C20 Generalized hypergeometric

series, pFq; 33E50 Special functions in characteristic p (gamma functions, etc.); 2010

AMS classification by MathSciNet

Keywords: Marichev-Saigo-Maeda fractional integral operators, generalized Lommel–Wright function,

generalized Fox–Wright function, generalized hypergeometric series, integral transform

1. INTRODUCTION AND PRELIMINARIES

Fractional calculus (FC) represents a complex physical phenomenon in a more accurate and
efficient way than classical calculus. In recent years, many researchers [1–7] have used fractional
order integral models in real-world problems in various fields of science and technology. There
exists several definitions of fractional order integrals in the literature that can be used to solve the
fractional integral equations involving special functions. For an exhaustive literature review, one
may refer to the paper by Srivastava and Saxena [8].

The generalized functions such as Bessel, Lommel, Struve, and Lommel–Wright functions have
originated from concrete problems in applied fields of sciences viz mechanics, physics, engineering,
astronomy, etc.

The generalized Lommel–Wright function J
ϕ,m
ω,ϑ (z) is defined by de’Oteiza et al. [9] and is

represented in the following manner:

J
ϕ,m
ω,ϑ (z) = (z/2)ω+2ϑ

∞
∑

k=0

(−1)k(z/2)2k

(Ŵ(ϑ + k+ 1))mŴ(ω + kϕ + ϑ + 1)

= (z/2)ω+2ϑ
1ψm+1[(1, 1); (ϑ + 1, 1)

︸ ︷︷ ︸

m−times

, (ω + ϑ + 1,ϕ);−z2/4]
(1.1)

z ∈ C\(−∞, 0], ϕ > 0, m ∈ N, ω,ϑ ∈ C,

12
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where pψq denotes the Fox–Wright generalized hypergeometric
function which is defined as given in Srivastava and Karlsson [10,
p. 21] and Kilbas et al. [11, P. 56]

pψq

(

(a1,A1), ...(ap,Ap);
(b1,B1), ..., (bq,Bq);

z

)

=

∞
∑

n=0

5
p
j=1Ŵ(aj + nAj)

5
q
j=1Ŵ(bj + nBj)

zn

n!
,

(1.2)
where ai, bj ∈ C and Ai,Bj ∈ R = (−∞,∞); Ai,Bj 6= 0,

i = 1, 2, ..., p, j = 1, 2, ..., q,
q

∑

j=1
Bj −

p
∑

j=1
Aj > −1.

A useful generalization of the Lommel–Wright function
and its special cases, J

ϕ
ω(z)J

ϕ
ω,ϑ (z), depending on the arbitrary

fractional parameter ϕ > 0 presents a fractional order extension
of the Bessel function Jω(z).

Prieto et al. [12] studied some useful results in the theory
of fractional calculus operators of generalized Lommel–Wright
function. The convergence of series involving generalized
Lommel–Wright function was studied by Konovska [13].

When m = 1, the following generalization of the Bessel
function, introduced by Pathak [14] is obtained as a special case
of generalized Lommel–Wright function (1.1) (see e.g., [15, p.
353]):

J
ϕ
ω,ϑ (z) = J

ϕ,1
ω,ϑ (z)

=

( z

2

)ω+2ϑ
∞
∑

k=0

(−1)k
(

z
2

)2k

Ŵ(ϑ + k+ 1)Ŵ(ω + kϕ + ϑ + 1)
, (1.3)

z ∈ C\(−∞, 0], ϕ > 0, ω,ϑ ∈ C.

On takingm = 1,ϕ = 1, and ϑ =
1
2 in (1.1), we obtain the Struve

function Hω(·) (see e.g., [16, p. 28, Equation (1.170)])

Hω(z) = J1,1ω,1/2

=

( z

2

)ω+1
∞
∑

k=0

(−1)k
(

z
2

)2k

Ŵ(k+ 3
2 )Ŵ(k+ ω +

3
2 )
z,ω ∈ C.(1.4)

If we take m = 1,ϕ = 1, and ϑ = 0 in (1.1), it gives the
relationship with the Bessel function as follows (see e.g., [16, p.
27, Equation (1.161)]):

Jω(z) = J1,1ω,0(z) =

∞
∑

k=0

(−1)k(z/2)ω+2k

Ŵ(ω + k+ 1)k!
(1.5)

z,ω ∈ C, z 6= 0, ℜ(ω) > −1.

A generalization of the hypergeometric fractional integrals,
including the Saigo operators [17, 18] has been introduced by
Marichev [19]. The details of these fractional operators have been
found in Samko et al. [5, p. 194, Equation (10.47)] and later
extended and studied by Saigo and Maeda [20, p. 393, Equation
(4.12) and Equation (4.13)] in terms of complex order Appell
function F3(·) of two variables (see [10, p. 23]) in the kernel

F3(ζ , ζ
′

, ̺, ̺
′

; η; x; y)

=

∞
∑

m,n=0

(ζ )m(ζ
′

)n(̺)m(̺
′

)n

(η)m+n

xm

m!

yn

n!
, (max{|x|, |y|} < 1).

(1.6)

The Appell function F3 reduces to the Gauss hypergeomatric
function 2F1 and satisfies the system of two linear partial
differential equations of the second order as follows (see [10, p.
301, Equation 9.4]):

F3(ζ , η − ζ , ̺, η − ̺; η; x; y) = 2F1(ζ , ̺; η; x+ y− xy). (1.7)

Further, it is easy to see that

F3(ζ , 0, ̺, ̺
′

, η; x, y) = 2F1(ζ , ̺; η; x) (1.8)

and

F3(0, ζ
′

, ̺, ̺
′

, η; x, y) = 2F1(ζ
′

, ̺
′

; η; y). (1.9)

In this paper, we develop and study the image formulas involving
the generalized Lommel–Wright function using fractional
calculus integral operators. We use the generalized Marichev-
Saigo-Maeda fractional integral operators, involving the Appell
function, defined as follows:
(

I
ζ ,ζ

′

,̺,̺′ ,κ
0+ f

)

(x) =
x−ζ

Ŵκ

∫ x

0
(x− t)κ−1t−ζ

′

× F3

(

ζ , ζ
′

, ̺, ̺′; κ; 1−
t

x
, 1−

x

t

)

f (t)dt,

ℜ(κ) > 0, ζ , ζ
′

, ̺, ̺′, κ ∈ C, x > 0

(1.10)

and
(

I
ζ ,ζ

′

,̺,̺′ ,κ
0− f

)

(x)

=

x−ζ

Ŵκ

∫

∞

x
(t − x)κ−1t−ζF3

(

ζ , ζ
′

, ̺, ̺′; κ; 1−
x

t
, 1−

t

x

)

f (t)dt,

ℜ(κ) > 0, ζ , ζ
′

, ̺, ̺′, κ ∈ C, x > 0.

(1.11)

respectively.
The power functions of left-hand sided and right-hand sided

Marichev-Saigo-Maeda fractional integral operators as given in
the Equations (1.10) and (1.11) (see Saigo et al. [6, 20]) are given
by

(

I
ζ ,ζ

′

,̺,̺′ ,κ
0+ tχ−1

)

(x)

=

Ŵ(χ)Ŵ(χ + κ − ζ − ζ
′

− ̺)Ŵ(χ + ̺
′

− ζ
′

)

Ŵ(χ + ̺
′

)Ŵ(χ + κ − ζ − ζ
′

)Ŵ(χ + κ − ζ
′

− ̺)
xχ+κ−ζ−ζ

′

−1,

(1.12)

where ζ , ζ
′

, ̺, ̺′, κ ∈ C, x > 0 and if ℜ(κ) > 0,ℜ(χ) >
max{0,ℜ(ζ + ζ

′

+ ̺ − κ),ℜ(ζ
′

− ̺
′

)}.

(

I
ζ ,ζ

′

,̺,̺′ ,κ
0− tχ−1

)

(x)

=

Ŵ(1− χ − κ + ζ + ζ
′

)Ŵ(1− χ + ζ + ̺
′

− κ)Ŵ(1− χ − ̺)

Ŵ(1− χ)Ŵ(1− χ + ζ + ζ
′

+ ̺ + ̺
′

− κ)Ŵ(1− χ + ζ − ̺)

× xχ−ζ−ζ
′

+κ−1,

(1.13)

where ζ , ζ
′

, ̺, ̺′, κ ∈ C are such that ℜ(κ) > 0 and ℜ(χ) <
1+min{ℜ(−̺),ℜ(ζ + ζ

′

− κ),ℜ(ζ + ̺
′

− κ)}.

Frontiers in Physics | www.frontiersin.org August 2018 | Volume 6 | Article 7913

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles


Agarwal et al. A Remark on the Fractional Integral Operators

1.1. Relation Among the Operators
In this section, we recall some relationships between the
fractional integral operators.

If we set ζ
′

= 0 then in view of the formula (1.8),
the relationship between Marichev-Saigo-Maeda and the Saigo
fractional integral operators is found by Saxena and Saigo [6, p.
93, Equation (2.15)] as

(

I
ζ ,0,̺,̺

′

,η
0,x f

)

(x) =
(

I
η,ζ−η,−̺
0,x f

)

(x), (ℜ(η) > 0) (1.14)

and

(

I
ζ ,0,̺,̺

′

,η
x,∞ f

)

(x) =
(

I
η,ζ−η,−̺
x,∞ f

)

(x), (ℜ(η) > 0), (1.15)

where the general operators I
ζ ,0,̺,̺

′

,η
0,x and I

ζ ,0,̺,̺
′

,η
0,x reduce,

respectively, to the Saigo operators I
ζ ,̺,η
0,x and I

ζ ,̺,η
x,∞ [17] defined

as follows:

(

I
ζ ,̺,η
0,x f

)

(x) =

x−ζ−̺

Ŵ(ζ )

∫ x

0
(x− t)

ζ−1
2

×F1

(

ζ + ̺,−η; ζ ; 1−
t

x

)

f (t)dt, (ℜ(ζ ) > 0)

(1.16)

and

(

I
ζ ,̺,η
x,∞ f

)

(x) =

∫

∞

x
(t − x)ζ−1t−ζ−̺2

×F1

(

ζ + ̺,−η; ζ ; 1−
x

t

)

f (t)dt, (ℜ(ζ ) > 0)

(1.17)

where integrals in (1.16) and (1.17) exist.
Let ζ , ̺, η,χ ∈ C with ℜ(ζ ) > 0. Then the following power

function formulas involving the Saigo operators hold true:

(

I
ζ ,̺,η
0,x tχ−1

)

(x) =
Ŵ(χ)Ŵ(χ + η − ̺)

Ŵ(χ − ̺)Ŵ(χ + η + ζ )
xχ−̺−1, (1.18)

ℜ(χ) > max
{

0,ℜ(̺ − η)
}

and

(

I
ζ ,̺,η
x,∞ tχ−1

)

(x) =
Ŵ(1− χ + ̺)Ŵ(1− χ + η)

Ŵ(1− χ)Ŵ(1− χ + ζ + ̺ + η)
xχ−̺−1,

(1.19)

(ℜ(χ) < 1+min
{

ℜ(̺),ℜ(η)
}

).

On replacing ̺ = −ζ in the operators I
ζ ,̺,η
0,x (·) and I

ζ ,̺,η
x,∞ (·), these

reduce to the Riemann-Liouville and the Weyl fractional integral
operators, respectively, by means of the following relationships
(see Kilbas [11]):

(

R
ζ
0,xf

)

(x) =
(

I
ζ ,−ζ ,η
0,x f

)

(x) (1.20)

and
(

W
ζ
x,∞f

)

(x) =
(

I
ζ ,−ζ ,η
x,∞ f

)

(x). (1.21)

The Riemann-Liouville fractional integral operator and the Weyl
fractional integral operator are defined as follows (see e.g., [21]):

(

R
ζ
0,xf

)

(x) =
1

Ŵ(ζ )

∫ x

0
(x− t)ζ−1f (t)dt, (ℜ(ζ ) > 0)

(1.22)
and

(

W
ζ
x,∞f

)

(x) =
1

Ŵ(ζ )

∫ x

0
(t − x)ζ−1f (t)dt, (ℜ(ζ ) > 0),

(1.23)
provided both the integrals converge.

The operators I
ζ ,̺,η
0,x (·) and I

ζ ,̺,η
x,∞ (·) reduce to Erdélyi–Kober

fractional integral operators on setting ̺ = 0 as follows:

(

E
ζ ,η
0,x f

)

(x) =
(

I
ζ ,0,η
0,x f

)

(x), (1.24)

and
(

K
ζ ,η
x,∞f

)

(x) =
(

I
ζ ,0,η
0,x f

)

(x), (1.25)

where the Erdélyi–Kober type fractional integral operators are
defined as follows (see [22]):

(

E
ζ ,η
0,x f

)

(x) =
x−ζ−η

Ŵ(ζ )

∫ x

0
(x− t)ζ−1tηf (t)dt, (ℜ(ζ ) > 0)

(1.26)
and

(

K
ζ ,η
x,∞f

)

(x) =
xη

Ŵ(ζ )

∫

∞

x
(t − x)ζ−1t−ζ−ηf (t)dt, (ℜ(ζ ) > 0),

(1.27)
The function f (t) is constrained so that both the defining
integrals (1.26) and (1.27) converge.

The Beta transform (see, e.g.[23]) of a complex valued function
f (t) of a real variable t is defined as follows:

B{f (t) : a, b} =

1
∫

0

ta−1(1− t)b−1f (t) dt, (1.28)

ℜ(t) > 0, ℜ(a),ℜ(b) > 0.

Beta transform of the power function tχ−1 is given by:

B
{

tχ−1
; a, b

}

=

∫ 1

0
ta+χ−2(1− t)b−1dt

=

Ŵ(a+ χ − 1)Ŵ(b)

Ŵ(a+ χ + b− 1)
, ℜ(t) > 0, ℜ(a),ℜ(b) > 0.

(1.29)

The Pδ - transform of a complex valued function f (t) of a real
variable t denoted by Pδ[f (t); s] is a function F(s) of a complex
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variable s, valid under certain conditions on f (t), (given below is
defined as (see Kumar [24])

Pδ[f (t); s] = F(s) =

∫

∞

0
[1+ (δ − 1)s]−

t
δ−1 f (t)dt, δ > 1.

(1.30)
Here f (t) as a function is integrable over any finite interval (a, b),
0 < a < t < b; there exists a real number c such that

(i) if b > 0 is arbitrary, then
∫ Υ

b e−ctf (t)dz tends to a finite limit
as Υ → ∞

(ii) for arbitrary a > 0,
∫ a
ω
|f (t)dt| tends to a finite limit

as ω → 0+, then the Pδ-transform Pδ[f (t); s] exists for

ℜ

(

ln[1+(δ−1)s]
δ−1

)

> c for s ∈ C.

Pδ - transform of the power function tχ−1 is given by

Pδ[z
χ−1

; s] =

{

δ − 1

ln[1+ (δ − 1)s]

}χ

Ŵ(χ),

χ ∈ C, ℜ(χ) > 0, δ > 1.

(1.31)

Pδ-transform has found many applications. The pathway
transforms are the paths going from the binomial form

ln[1+ (δ − 1)s]−
t
δ−1 to the exponential from e−st . In Pδ-

transform, the variable t is shifted from the binomial factor

ln[1+ (δ − 1)s]−
t
δ−1 to the exponent, Hence, this form is more

suitable for obtaining translation, convolution, etc. Recently,
Agarwal et al. [25] found the solution of non-homogeneous time
fractional heat equation and fractional Volterra integral equation
using integral transform of pathway type. Also, Srivastava
et al. [26] and [27] found some results involving generalized
hypergeometric function and generalized incomplete gamma
function by using Pδ-transform.

If we take δ → 1 in Equation (1.30), the Pδ-transform reduces
to Laplace integral transform (Sneddon [23]):

L
[

f (t); s
]

=

∞
∫

0

e−ts f (t)dz; , ℜ(s) > 0. (1.32)

The following relationship between the Pδ-transform is defined
by (1.30) and the classical Laplace transform is defined by (1.32)

Pδ[f (t) : s] = L

[

f (t) :
ln[1+ (δ − 1)s]

δ − 1

]

, (δ > 1) (1.33)

or, equivalently,

L[f (t) : s] = Pδ

[

f (t) :
e(δ−1)s

− 1

δ − 1

]

, (δ > 1), (1.34)

which can be applied to convert the table of Laplace
transforms into the corresponding table of Pδ-transforms and
vice versa.

The following integral formula involving the Whittaker
function (seeMathai et al. [16, p. 56]) is used in finding the image
formula:

∞
∫

0

tτ−1e−
t
2Wσ ,η(t) dt =

Ŵ(τ + η + 1
2 )Ŵ(τ − η +

1
2 )

Ŵ(τ − σ +
1
2 )

, (1.35)

(σ ∈ C, ℜ(τ ± η) > −1/2).

The Whittaker function (see e.g., Mathai et al. [16, p. 22]) is
defined by

Wσ ,η(z) =

Ŵ(−2η)

Ŵ( 12 − σ − η)
Mσ ,η(z)+

Ŵ(2η)

Ŵ( 12 − σ + η)
Mσ ,−η(z)

= Wσ ,−η(z), (1.36)

σ ∈ C, ℜ(1/2+ η ± σ ) > 0

where

Mσ ,η(z) = zη+
1
2 e−

z
2 1F1

(

1

2
− σ + η; 2η + 1; z

)

,

ℜ(1/2+ η ± σ ) > 0, |argz| < π .

(1.37)

2. IMAGE FORMULA ASSOCIATED WITH

FRACTIONAL INTEGRAL OPERATORS

Here, we establish image formulas for the generalized Lommel–
Wright function involving Saigo-Maeda fractional integral
operators (1.10) and (1.11), in terms of the Fox–Wright
function.

Theorem 2.1. Let ζ , ζ
′

, ̺, ̺′, κ ,ϑ ∈ C,m ∈ N, ϕ > 0 and x > 0
be such that

ℜ(κ) > 0, ℜ(ω) > −1,

ℜ(χ + ω) > max{0,ℜ(ζ + ζ
′

+ ̺ − κ),ℜ(ζ
′

− ̺
′

)}
(2.1)

then there holds the formula

I
ζ ,ζ

′

,̺,̺′ ,κ
0+

[

tχ−1J
ϕ,m
ω,ϑ (tz)

]

(x) = xA−ζ−ζ
′

+κ−1
( z

2

)ω+2ϑ

4ψ4+m







(A, 2), (A+ κ − ζ − ζ
′

− ̺, 2), (A+ ̺
′

− ζ
′

, 2), (1, 1)

(A+ ̺
′

, 2), (A+ κ − ζ − ζ
′

, 2), (A+ κ − ζ
′

− ̺, 2), (ω + ϑ + 1,ϕ), (ϑ + 1, 1)
︸ ︷︷ ︸

m−times

−

(zx)2

4







(2.2)

where A = χ + ω + 2ϑ .

Proof: Under the conditions stated with the Theorem 2.1, by
taking the fractional integral of (1.1) using the equation (1.10)
therein and changing the order of integration and summation,
we get

I
ζ ,ζ

′

,̺,̺′ ,κ
0+

[

tχ−1J
ϕ,m
ω,ϑ (tz)

]

(x)

=

∞
∑

k=0

(−1)k( z2 )
ω+2ϑ+2kŴ(k+ 1)

(Ŵ(ϑ + k+ 1))mŴ(ω + kϕ + ϑ + 1)k!

× I
ζ ,ζ

′

,̺,̺′ ,κ
0+

(

tω+2ϑ+2k+χ−1
)

(x) (2.3)
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Further, applying the result (1.12) with χ replaced by χ + ω +

2ϑ + 2k, we obtain

I
ζ ,ζ

′

,̺,̺′ ,κ
0+

[

tχ−1J
ϕ,m
ω,ϑ (tz)

]

(x)

= xA−ζ−ζ
′

+κ−1
( z

2

)ω+2ϑ
∞
∑

k=0

(−1)kŴ(A+ 2k)Ŵ(k+ 1)

Ŵ(A+ ̺
′

+ 2k)(Ŵ(ϑ + 1+ k))m

×

Ŵ(A+ κ − ζ − ζ
′

− ̺ + 2k)Ŵ(A+ ̺
′

− ζ
′

+ 2k)

Ŵ(A+ κ − ζ
′

− ̺ + 2k)Ŵ(ω + ϑ + 1+ ϕk)Ŵ(A+ κ − ζ − ζ
′

+ 2k)

×

(zx)2k

4kk!
(2.4)

Here A = χ + ω + 2ϑ .
Interpreting the right-hand side of the above equation, in view

of the definition (1.2), we arrive at the result (2.2).

Theorem 2.2. Let ζ , ζ
′

, ̺, ̺′, κ ,ϑ ∈ C,m ∈ N, ϕ > 0 and x > 0
be such that

ℜ(κ) > 0, ℜ(ω) > −1,

ℜ(χ − ω) > 1+min{ℜ(−̺),ℜ(ζ + ζ
′

− κ),ℜ(ζ + ̺
′

− κ)}
(2.5)

then there holds the formula

I
ζ ,ζ

′

,̺,̺′ ,κ
0−

[

tχ−1J
ϕ,m
ω,ϑ (z/t)

]

(x) = xκ−ζ−ζ
′

−A
( z

2

)ω+2ϑ

4ψ4+m













(A− κ + ζ + ζ
′

, 2), (A+ ζ + ̺
′

− κ , 2),
(A− ̺, 2), (1, 1)

(A, 2)(A+ ζ + ζ
′

+ ̺′ − κ , 2), (A+ ζ − ̺, 2),
(ω + ϑ + 1,ϕ), (ϑ + 1, 1)

︸ ︷︷ ︸

m−times

−

z2

4x2













(2.6)

where A = 1− χ + ω + 2ϑ .

Proof: Under the conditions stated with the Theorem 2.2, on
making use of the definitions (1.11) and (1.1) and changing the
order of integration and summation, we have

I
ζ ,ζ

′

,̺,̺′ ,κ
0−

[

tχ−1J
ϕ,m
ω,ϑ (z/t)

]

(x)

=

∞
∑

k=0

(−1)k( z2 )
ω+2ϑ+2kŴ(k+ 1)

(Ŵ(ϑ + k+ 1))mŴ(ω + kϕ + ϑ + 1)k!

× I
ζ ,ζ

′

,̺,̺′ ,κ
0−

(

tχ−ω−2ϑ−2k−1
)

(x) (2.7)

Here, on applying the formula (1.13) with χ replaced by χ−ω−

2ϑ − 2k, we obtain

I
ζ ,ζ

′

,̺,̺′ ,κ
0−

[

tχ−1J
ϕ,m
ω,ϑ (z/t)

]

(x)

= xκ−ζ−ζ
′

−A
( z

2

)ω+2ϑ
∞
∑

k=0

(−1)kŴ(A− ̺ + 2k)

Ŵ(A+ 2k)(Ŵ(ϑ + k+ 1))m

×

Ŵ(k+ 1)Ŵ(A− κ + ζ + ζ
′

+ 2k)Ŵ(A+ ζ + ̺
′

− κ + 2k)

Ŵ(A+ ζ − ̺ + 2k)Ŵ(ω + kϕ + ϑ + 1)Ŵ(A+ ζ + ζ
′

+ ̺′ − κ + 2k)

×

(z)2k

(4x2)kk!
(2.8)

where A = 1− χ + ω + 2ϑ .

So in view of the definition of the generalized Lommel–Wright
function given by (1.1), the Equation (2.8) leads to the result
(2.6).

For m = 1 and in the light of Equation (1.3), Theorem 2.1
leads to the following corollaries:

Corollary 2.1. Under the conditions stated with the Equation
(2.1), the following image formula

I
ζ ,ζ

′

,̺,̺′ ,κ
0+

[

tχ−1J
ϕ,1
ω,ϑ (zt)

]

(x) = xA−ζ−ζ
′

+κ−1
( z

2

)ω+2ϑ

× 4ψ5













(A, 2), (A+ κ − ζ − ζ
′

− ̺, 2),

(A+ ̺
′

− ζ
′

, 2), (1, 1)

(A+ ̺
′

, 2), (A+ κ − ζ − ζ
′

, 2), (A+ κ − ζ
′

− ̺, 2),

(ω + ϑ + 1,ϕ), (ϑ + 1, 1)

−

(zx)2

4













(2.9)

A = χ + ω + 2ϑ , for generalized Bessel function J
ϕ,1
ω,ϑ (zt) holds

true.

Corollary 2.2. Under the conditions stated with the Equation
(2.5), the image formula

I
ζ ,ζ

′

,̺,̺′ ,κ
0−

[

tχ−1J
ϕ,1
ω,ϑ (z/t)

]

(x)

= xκ−ζ−ζ
′

−A
( z

2

)ω+2ϑ

× 4ψ5













(A− κ + ζ + ζ
′

, 2), (A+ ζ + ̺
′

− κ , 2),
(A− ̺, 2), (1, 1)

(A, 2)(A+ ζ + ζ
′

+ ̺′ − κ , 2), (A+ ζ − ̺, 2),
(ω + ϑ + 1,ϕ), (ϑ + 1, 1)

−

z2

4x2













(2.10)

A = 1 − χ + ω + 2ϑ , for generalized Bessel function J
ϕ,1
ω,ϑ (z/t)

holds true.

If we take m = 1, ϕ = 1, and ϑ =
1
2 in (2.2), then we obtain

the corresponding results for the Struve function Hω(·) [16] as

Corollary 2.3. Under the conditions stated with the Equation
(2.1), the following image formula

I
ζ ,ζ

′

,̺,̺′ ,κ
0+

[

tχ−1Hω(zt)
]

(x)

= xA−ζ−ζ
′

+κ−1
( z

2

)ω+1

× 4ψ5













(A, 2), (A+ κ − ζ − ζ
′

− ̺, 2),

(A+ ̺
′

− ζ
′

, 2), (1, 1)

(A+ ̺
′

, 2), (A+ κ − ζ − ζ
′

, 2),

(A+ κ − ζ
′

− ̺, 2), (ω +
3
2 , 1), (

3
2 , 1)

−

(zx)2

4













(2.11)

A = χ + ω + 1, for Struve function Hω(zt) holds true.
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Corollary 2.4. Under the conditions stated with the Equation
(2.5), the following image formula

I
ζ ,ζ

′

,̺,̺′ ,κ
0−

[

tχ−1Hω(z/t)
]

(x)

= xχ−ω−ζ−ζ
′

+κ−2
( z

2

)ω+1

× 4ψ5











(A− κ + ζ + ζ
′

, 2), (A+ ζ + ̺
′

− κ , 2),
(A− ̺, 2), (1, 1)

(A, 2)(A+ ζ + ζ
′

+ ̺′ − κ , 2), (A+ ζ − ̺, 2),

(ω +
3
2 , 1), (

3
2 , 1)

−

z2

4x2











(2.12)

where A = 2− χ + ω, for Struve function Hω(z/t) holds true.

2.1. Special Cases
(1) On taking ϕ = 1, m = 1, ϑ = 0, and z = 1 in Theorem 2.1,
we obtain the image formula for the Bessel function considered
by Purohit et al. [28, Theorem 1].

Corollary 2.5. Under the conditions stated with the Equation
(2.1), the following image formula

I
ζ ,ζ

′

,̺,̺′ ,κ
0+

[

tχ−1Jω(t)
]

(x)

=

xχ+ω−ζ−ζ
′

+κ−1

2ω

× 3ψ4













(χ + ω, 2), (χ + ω + κ − ζ − ζ
′

− ̺, 2),

(χ + ω + ̺
′

− ζ
′

, 2)

(χ + ω + ̺
′

, 2), (χ + ω + κ − ζ − ζ
′

, 2),

(χ + ω + κ − ζ
′

− ̺, 2), (ω + 1, 1)

−

x2

4













(2.13)

for Bessel function Jω(t) holds true.

(2) Further, on taking ϕ = 1,m = 1, and ϑ = 0 in Theorem 2.2,
we arrive the right-sided image formula for the Bessel function
considered by Purohit et al. [28, Theorem 2].

Corollary 2.6. Under the conditions stated with the Equation
(2.5), the image formula

I
ζ ,ζ

′

,̺,̺′ ,κ
0−

[

tχ−1Jω(1/t)
]

(x)

=

xκ−ζ−ζ
′

−1+χ−ω

2ω

× 3ψ4

[

(1− χ + ω − κ + ζ + ζ
′

, 2), (1− χ + ω + ζ + ̺
′

− κ , 2), (1− χ + ω − ̺, 2)

(1− χ + ω, 2)(1− χ + ω + ζ + ζ
′

+ ̺′ − κ , 2), (1− χ + ω + ζ − ̺, 2), (ω + 1, 1)
−

1

4x2

]

(2.14)

for Bessel function Jω(1/t) holds true.

3. IMAGE FORMULAS ASSOCIATED WITH

INTEGRAL TRANSFORMS

In this section, we obtain the theorem involving the results
obtained in previous sections associated with the integral

transforms such as Beta transform, pathway transform, Laplace
transform, and Whittaker transform.

3.1. Image Formulas for Beta Transform
Theorem 3.1. Let ζ , ζ

′

, ̺, ̺′, κ ,ϑ ∈ C,m ∈ N, ϕ > 0, and x > 0
be such that

ℜ(l) > 0, ℜ(n) > 0 ℜ(κ) > 0, ℜ(ω) > −1,

ℜ(χ + ω) > max{0,ℜ(ζ + ζ
′

+ ̺ − κ),ℜ(ζ
′

− ̺
′

)}
(3.1)

then the following Beta transform formula holds:

B

[

I
ζ ,ζ

′

,̺,̺′ ,κ
0+

(

tχ−1J
ϕ,m
ω,ϑ (tz)

)

(x) : l, n

]

=

xA−ζ−ζ
′

+κ−1Ŵ(n)

2ω+2ϑ

5ψ5+m

















(A, 2), (A+ κ − ζ − ζ
′

− ̺, 2),

(A+ ̺
′

− ζ
′

, 2), (C − n, 2)(1, 1)

(A+ ̺
′

, 2), (A+ κ − ζ − ζ
′

, 2), (A+ κ − ζ
′

− ̺, 2),

(ω + ϑ + 1,ϕ), (C, 2), (ϑ + 1, 1)
︸ ︷︷ ︸

m−times

−

x2

4

















(3.2)
Here A = χ + ω + 2ϑ and C = l+ ω + 2ϑ + n.

Proof: For our convenience, let the left-hand side of the formula
(3.2) be denoted by ς . Applying (1.28) to Equation (3.2), we get

ς =

∫ 1

0
zl−1(1− z)n−1

[

I
ζ ,ζ

′

,̺,̺′ ,κ
0+

(

tχ−1J
ϕ,m
ω,ϑ (tz)

)

(x)

]

dz.

Here, applying Equation (2.2) to the integral, we obtain the
following expression

ς =

∫ 1

0
zl−1(1− z)n−1zω+2ϑ x

A−ζ−ζ
′

+κ−1

2ω+2ϑ

×

∞
∑

k=0

(−1)kŴ(A+ 2k)Ŵ(k+ 1)

Ŵ(A+ ̺
′

+ 2k)Ŵ(A+ κ − ζ − ζ
′

+ 2k)

×

Ŵ(A+ ̺
′

− ζ
′

+ 2k)Ŵ(A+ κ − ζ − ζ
′

− ̺ + 2k)

Ŵ(A+ κ − ζ
′

− ̺ + 2k)Ŵ(ω + ϑ + 1+ ϕk)(Ŵ(ϑ + 1+ k))m

×

(zx2)k

4kk!
dz

Here A = χ + ω + 2ϑ .
Interchanging the order of integration and summation, we

have
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ς =

xA−ζ−ζ
′

+κ−1

2ω+2ϑ

∞
∑

k=0

Ŵ(A+ 2k)Ŵ(A+ κ − ζ − ζ
′

− ̺ + 2k)

Ŵ(A+ κ − ζ − ζ
′

+ 2k)Ŵ(A+ κ − ζ
′

− ̺ + 2k)

×

Ŵ(A+ ̺
′

− ζ
′

+ 2k)Ŵ(k+ 1)(−1)k

Ŵ(A+ ̺
′

+ 2k)Ŵ(ω + ϑ + 1+ ϕk)(Ŵ(ϑ + 1+ k))m
(x2)k

4kk!
×

∫ 1

0
zl+ω+2ϑ+2k−1(1− z)n−1dz

=

xA−ζ−ζ
′

+κ−1

2ω+2ϑ

∞
∑

k=0

Ŵ(l+ ω + 2ϑ + 2k)Ŵ(n)Ŵ(A+ 2k)Ŵ(A+ κ − ζ − ζ
′

− ̺ + 2k)

Ŵ(l+ ω + 2ϑ + 2k+ n)Ŵ(A+ ̺
′

+ 2k)Ŵ(A+ κ − ζ − ζ
′

+ 2k)

×

Ŵ(A+ ̺
′

− ζ
′

+ 2k)Ŵ(k+ 1)

Ŵ(A+ κ − ζ
′

− ̺ + 2k)Ŵ(ω + ϑ + 1+ ϕk)(Ŵ(ϑ + 1+ k))m
×

(−x2)k

4kk!

(3.3)

Interpreting the right-hand side of the above equation, in the
view of the definition (1.2), we arrive at the required result (3.2).

Theorem 3.2. Let ζ , ζ
′

, ̺, ̺′, κ ,ϑ ,ω ∈ C,m ∈ N, ϕ > 0, and
x > 0 be such that

ℜ(κ) > 0, ℜ(ω) > −1, ℜ(l) > 0, ℜ(n) > 0,

ℜ(χ − ω) > 1+min{ℜ(−̺),ℜ(ζ + ζ
′

− κ),ℜ(ζ + ̺
′

− κ)}

(3.4)

then the following Beta transform formula holds:

B

[

I
ζ ,ζ

′

,̺,̺′ ,κ
0−

(

tχ−1J
ϕ,m
ω,ϑ (z/t)

)

(x) : l, n

}

=

xκ−ζ−ζ
′

−AŴ(n)

2ω+2ϑ

× 5ψ5+m

















(A− κ + ζ + ζ
′

, 2), (A+ ζ + ̺
′

− κ , 2),

(A− ̺, 2), (C − n, 2), (1, 1)

(A, 2)(A+ ζ + ζ
′

+ ̺′ − κ , 2), (A+ ζ − ̺, 2),

(ω + ϑ + 1,ϕ), (C, 2), (ϑ + 1, 1)
︸ ︷︷ ︸

m−times

−

1

4x2

















(3.5)

where A = 1− χ + ω + 2ϑ and C = l+ ω + 2ϑ + n.

Proof: The proof of the fractional integral formula (3.5) is similar
to the proof of the formula (3.2) given in Theorem 3.1.

Remark 3.1.

(1) For m = 1, Theorem 3.1 and Theorem 3.2 leads to the
corresponding results for fractional integral of generalized Bessel
function defined by (1.3).
(2) If we take m = 1, ϕ = 1, and ϑ =

1
2 in (3.2) and (3.5),

we get the corresponding results for fractional integral of Struve
function defined in (1.4).
(3) On taking m = 1, ϕ = 1, and ϑ = 0, in (3.2) and (3.5), we
get the results for fractional integral of Bessel function defined
in (1.5).

3.2. Image Formulas for Pδ-Transform
Theorem 3.3. Let ζ , ζ

′

, ̺, ̺′, κ ,χ ,ϑ ∈ C,m ∈ N, ϕ >

0, ℜ(χ) > 0, ℜ(s) > 0, δ > 1, and x > 0 be such that

ℜ(κ) > 0, ℜ(ω) > −1, ℜ(s) > 0,

ℜ(χ + ω) > max{0,ℜ(ζ + ζ
′

+ ̺ − κ),ℜ(ζ
′

− ̺
′

)}
(3.6)

then the following Pδ-transform formula holds:

Pδ

[

zl−1

(

I
ζ ,ζ

′

,̺,̺′ ,κ
0+ tχ−1J

ϕ,m
ω,ϑ (tz)

)

(x) : s

]

=

(

3(δ; s)
)l+ω+2ϑ xA−ζ−ζ

′

+κ−1

2ω+2ϑ

× 5ψ4+m





















(A, 2), (A+ κ − ζ − ζ
′

− ̺, 2),

(A+ ̺
′

− ζ
′

, 2), (l+ ω + 2ϑ , 2), (1, 1)

(A+ ̺
′

, 2), (A+ κ − ζ − ζ
′

, 2),

(A+ κ − ζ
′

− ̺, 2),

(ω + ϑ + 1,ϕ), (ϑ + 1, 1)
︸ ︷︷ ︸

m−times

−

(3(δ; s)x)2

4





















(3.7)

where A = χ + ω + 2ϑ and3(δ; s) =
(

δ−1
ln[1+(δ−1)s]

)

.

Proof: For our convenience, we let the left-hand side of the
formula (3.7) be denoted asΞ . Applying (1.30) to Equation (3.2)
we get,

Ξ =

∫

∞

0
[1+ (δ − 1)s]−

z
δ−1 zl−1I

ζ ,ζ
′

,̺,̺′ ,κ
0+

(

tχ−1J
ϕ,m
ω,ϑ (tz)

)

(x)dz

Here, applying Equation (2.4) to the integral, we obtain the
following expression:

Ξ =

xA−ζ−ζ
′

+κ−1

2ω+2ϑ

∞
∑

k=0

(−1)kŴ(A+ 2k)Ŵ(A+ κ − ζ − ζ
′

− ̺ + 2k)

Ŵ(A+ ̺
′

+ 2k)Ŵ(A+ κ − ζ − ζ
′

+ 2k)Ŵ(A+ κ − ζ
′

− ̺ + 2k)

Ŵ(A+ ̺
′

− ζ
′

+ 2k)Ŵ(k+ 1)

Ŵ(ω + ϑ + 1+ ϕk)(Ŵ(ϑ + 1+ k))m
(x)2k

4kk!
×

∫

∞

0
[1+ (δ − 1)s]−

z
δ−1 zω+2ϑ+2k+l−1dz
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Here making use of the result (1.31) and interchanging the order
of integration and summation, we obtain,

Ξ =

(

3(δ; s)
)l+ω+2ϑ xA−ζ−ζ

′

+κ−1

2ω+2ϑ

∞
∑

k=0

Ŵ(A+ 2k)Ŵ(A+ κ − ζ − ζ
′

− ̺ + 2k)

Ŵ(A+ ̺
′

+ 2k)Ŵ(A+ κ − ζ − ζ
′

+ 2k)

×

Ŵ(ω + 2ϑ + 2k+ l)Ŵ(A+ ̺
′

− ζ
′

+ 2k)Ŵ(k+ 1)(−1)k

Ŵ(A+ κ − ζ
′

− ̺ + 2k)Ŵ(ω + ϑ + 1+ ϕk)(Ŵ(ϑ + 1+ k))m
{3(δ; s)x}2k

4kk!
(3.8)

where A = χ + ω + 2ϑ and3(δ; s) =
(

δ−1
ln[1+(δ−1)s]

)

.

In view of the definition (1.2), we arrive at the required result
(3.7).

Theorem 3.4. Let ζ , ζ
′

, ̺, ̺′, κ ,ϑ ∈ C,m ∈ N, ϕ > 0 ℜ(χ) >
0, ℜ(s) > 0, δ > 1, and x > 0 be such that

ℜ(κ) > 0, ℜ(ω) > −1, ℜ(s) > 0,

ℜ(χ − ω) > 1+min{ℜ(−̺),ℜ(ζ + ζ
′

− κ),ℜ(ζ + ̺
′

− κ)}
(3.9)

then the following Pδ- transform formula holds:

Pδ

(

zl−1

[

I
ζ ,ζ

′

,̺,̺′ ,κ
0− tχ−1J

ϕ,m
ω,ϑ (z/t)

]

(x) : s

)

=

(

3(δ; s)
)l+ω+2ϑ xχ−ω−2ϑ−ζ−ζ

′

+κ−1

2ω+2ϑ

× 5ψ4+m

















(A− κ + ζ + ζ
′

, 2), (A+ ζ + ̺
′

− κ , 2),

(A− ̺, 2), (l+ ω + 2ϑ , 2), (1, 1)

(A, 2)(A+ ζ + ζ
′

+ ̺′ − κ , 2), (A+ ζ − ̺, 2),

(ω + ϑ + 1,ϕ), (ϑ + 1, 1)
︸ ︷︷ ︸

m−times

−

{3(δ; s)}2

4x2

















(3.10)

where A = 1− χ + ω + 2ϑ and3(δ; s) =
{

δ−1
ln[1+(δ−1)s]

}

.

Proof: Our demonstration of the Pδ-transform of generalized
Lommel–Wright function (3.10) is based upon the known result
(2.6).

A limit case of the Theorems 3.3 and 3.4 when δ → 1 yields
the following corollaries for the Laplace transform in view of the
(1.32).

Corollary 3.1. Under the conditions stated with the Equation
(3.6), the following Laplace transform formula holds true:

Pδ

(

zl−1

(

I
ζ ,ζ

′

,̺,̺′ ,κ
0+ tχ−1J

ϕ,m
ω,ϑ (tz)

)

(x) : s

)

=

xA−ζ−ζ
′

+κ−1

sl 2ω+2ϑ

× 5ψ4+m

















(A, 2), (A+ κ − ζ − ζ
′

− ̺, 2), (A+ ̺
′

− ζ
′

, 2),

(l+ ω + 2ϑ , 2), (1, 1)

(A+ ̺
′

, 2), (A+ κ − ζ − ζ
′

, 2), (A+ κ − ζ
′

− ̺, 2),

(ω + ϑ + 1,ϕ), (ϑ + 1, 1)
︸ ︷︷ ︸

m−times

−

x2

s2l4

















(3.11)

where A = χ + ω + 2ϑ .

Corollary 3.2. Under the conditions stated with the Equation
(3.9), the following Laplace transform formula holds true:

Pδ

(

zl−1

[

I
ζ ,ζ

′

,̺,̺′ ,κ
0− tχ−1J

ϕ,m
ω,ϑ (z/t)

]

(x) : s

)

=

xχ−ω−2ϑ−ζ−ζ
′

+κ−1

sl 2ω+2ϑ

× 5ψ4+m















(A− κ + ζ + ζ
′

, 2), (A+ ζ + ̺
′

− κ , 2),

(A− ̺, 2), (l+ ω + 2ϑ , 2), (1, 1)

(A, 2)(A+ ζ + ζ
′

+ ̺′ − κ , 2), (A+ ζ − ̺, 2),

(ω + ϑ + 1,ϕ), (ϑ + 1, 1)
︸ ︷︷ ︸

m−times

−

1

s2l 4x2















(3.12)

where A = 1− χ + ω + 2ϑ .

Remark 3.2.

(1) On taking m = 1, Theorems 3.3 and 3.4 lead to the
Pδ-transform formulas for fractional integrals of generalized
Bessel function.

(2) A limit case of the Theorems 3.3 and 3.4, when δ → 1 and
m = 1, yields the Laplace transform formulas for fractional
integrals of generalized Bessel function.

(3) On taking m = 1, ϕ = 1, and ϑ =
1
2 , Theorems 3.3 and

3.4 yield the Pδ-transform formulas for fractional integrals of
Struve function.

(4) A limit case of Theorem 3.3 and 3.4, when δ → 1 and
m = 1, ϕ = 1, and ϑ =

1
2 , yield the Laplace transform

formulas for fractional integrals of Struve function.
(5) On taking m = 1, ϕ = 1, and ϑ = 0, Theorem 3.3 and 3.4

yield the corresponding results for fractional integrals of Bessel
function.

(6) A limit case of Theorem 3.3 when δ → 1 and m = 1, ϕ =

1, and ϑ = 0 yield the corresponding Laplace transform
formulas for fractional integrals of Bessel function.

3.3. Image Formulas for Whittaker

Transform
Theorem 3.5. Let ζ , ζ

′

, ̺, ̺′, κ ,ϑ , η, σ ∈ C, m ∈ N, ϕ > 0, and
x > 0 be such that

ℜ(κ) > 0,ℜ(ω) > −1, ℜ(τ ± η) > −1/2,

ℜ(χ + ω) > max{0,ℜ(ζ + ζ
′

+ ̺ − κ),ℜ(ζ
′

− ̺
′

)}
(3.13)

then the following Whittaker transform formula holds:
∫

∞

0
zσ−1e−z/2

[

Wσ ,ηI
ζ ,ζ

′

,̺,̺′ ,κ
0+

(

tχ−1J
ϕ,m
ω,ϑ (zt)

)

(x)

]

dz

=

xA−ζ−ζ
′

+κ−1

2ω+2ϑ

6ψ5+m



















(A, 2), (A+ κ − ζ − ζ
′

− ̺, 2), (A+ ̺
′

− ζ
′

, 2),

(E+ η, 2), (E− η, 2), (1, 1)

(A+ ̺
′

, 2), (A+ κ − ζ − ζ
′

, 2), (A+ κ − ζ
′

− ̺, 2),

(ω + ϑ + 1,ϕ), (E− σ , 2), (ϑ + 1, 1)
︸ ︷︷ ︸

m−times

−

x2

4



















(3.14)

Frontiers in Physics | www.frontiersin.org August 2018 | Volume 6 | Article 7919

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles


Agarwal et al. A Remark on the Fractional Integral Operators

where A = χ + ω + 2ϑ and E = τ + ω + 2ϑ + 1/2.

Proof: For simplicity, let ̟ be the left-hand side of the formula
(3.14). Applying (1.35) to Equation (3.14), we have

̟ =

∫

∞

0
zσ−1e−z/2Wσ ,η

[

I
ζ ,ζ

′

,̺,̺′ ,κ
0+

(

tχ−1J
ϕ,m
ω,ϑ (zt)

)

(x)

]

dz.

(3.15)
Here, applying Equation (2.2) to the integral, we obtain the
following expression:

̟ =

∫

∞

0
zσ+ω+2ϑ−1e−z/2Wσ ,η

[

xA−ζ−ζ
′

+κ−1

2ω+2ϑ

∞
∑

k=0

Ŵ(A+ 2k)Ŵ(A+ κ − ζ − ζ
′

− ̺ + 2k)

Ŵ(A+ ̺
′

+ 2k)Ŵ(A+ κ − ζ − ζ
′

+ 2k)

×

Ŵ(A+ ̺
′

− ζ
′

+ 2k)Ŵ(k+ 1)(−1)k

Ŵ(A+ κ − ζ
′

− ̺ + 2k)Ŵ(ω + ϑ + 1+ ϕk)(Ŵ(ϑ + 1+ k))m

×

(zx)2k

4kk!

]

dz

whereA = χ+ω+2ϑ . Interchanging the order of integration and
summation, we have

̟ =

xA−ζ−ζ
′

+κ−1

2ω+2ϑ

∞
∑

k=0

Ŵ(E+ η + 2k)Ŵ(E− η + 2k)Ŵ(A+ κ − ζ − ζ
′

− ̺ + 2k)

Ŵ(E− σ + 2k)Ŵ(A+ κ − ζ
′

− ̺ + 2k)

×

(−1)kŴ(A+ 2k)Ŵ(A+ ̺
′

− ζ
′

+ 2k)Ŵ(k+ 1)

Ŵ(A+ ̺
′

+ 2k)Ŵ(A+ κ − ζ − ζ
′

+ 2k)Ŵ(ω + ϑ + 1+ ϕk)(Ŵ(ϑ + 1+ k))m
x2k

4kk!
(3.16)

where A = χ + ω + 2ϑ and E = τ + ω + 2ϑ + 1/2.
Interpreting the right-hand side of the above equation, in view of
the definition (1.2), we arrive at the required result (3.14).

Theorem 3.6. Let ζ , ζ
′

, ̺, ̺′, κ ,ϑ , η, σ ∈ C,m ∈ N, ϕ > 0, and
x > 0 be such that

ℜ(κ) > 0, ℜ(ω) > −1, ℜ(τ ± n) > −1/2,

ℜ(χ − ω) > 1+min{ℜ(−̺),ℜ(ζ + ζ
′

− κ),ℜ(ζ + ̺
′

− κ)}
(3.17)

then there holds the formula

∫

∞

0
zσ−1e−z/2Wσ ,η

[(

I
ζ ,ζ

′

,̺,̺′ ,κ
0− tχ−1J

ϕ,m
ω,ϑ (zt)

)

(x)

]

dz

=

xχ−ω−2ϑ−ζ−ζ
′

+κ−1

2ω+2ϑ

6ψ5+m

















(A− κ + ζ + ζ
′

, 2), (A+ ζ + ̺
′

− κ , 2),
(A− ̺, 2), (E+ η, 2), (E− η, 2), (1, 1)

(A, 2)(A+ ζ + ζ
′

+ ̺′ − κ , 2), (A+ ζ − ̺, 2),
(ω + ϑ + 1,ϕ), (E− σ , 2), (ϑ + 1)

︸ ︷︷ ︸

m−times

−

1

4x2

















(3.18)

where A = 1− χ + ω + 2ϑ and E = τ + ω + 2ϑ + 1/2.

Proof: We can establish the result given in Theorem 3.6 similar to
the proof of Theorem 3.5.

Remark 3.3.

(1) For m = 1, Theorems 3.5 and 3.6 lead to the corresponding
results for fractional integral of generalized Bessel function
defined in (1.3).

(2) If we take m = 1, ϕ = 1, and ϑ =
1
2 , Theorems 3.5 and 3.6

yield the corresponding results for fractional integral of Struve
function defined in (1.4).

(3) On taking m = 1, ϕ = 1, and ϑ = 0, Theorems 3.5 and 3.6
yield the corresponding results for fractional integral of Bessel
function defined in (1.5).

4. SPECIAL CASES AND CONCLUDING

REMARKS

In this section, we consider some special cases of our main results
involved in Theorems 2.1–3.6 which can be obtained by setting

ζ
′

= 0. These interesting corollaries of our results involve the

Saigo fractional integral operators I
ζ ,̺,η
0,x and I

ζ ,̺,η
x,∞ and can be

deduced from the Theorems 2.1–3.6 by appropriately applying
the relationships given in the definitions (1.16) and (1.17). If we
set ̺ = −ζ in the Theorems 2.1–3.6, then from the relationships
(1.20) and (1.21) we obtain the corresponding results for the
Riemann–Liouville and the Weyl fractional integral operators,
respectively. Again, if we put ̺ = 0 in the Theorems 2.1–
3.6, then from the relationships (1.24) and (1.25) we obtain
the analogous results for Erdélyi-Kober type fractional integral
operators.

In our present investigation, we establish the relationship
between well-known fractional integral operators with novel
integral transforms. The results obtained here are useful in
deriving at various image formulas. The results presented here
are very generic and can be specialized to give further potentially
interesting and useful formulas involving fractional integral
operators.
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Optimal random foraging strategy has gained increasing concentrations. It is shown

that Lévy flight is more efficient compared with the Brownian motion when the targets

are sparse. However, standard Lévy flight generally cannot be followed in practice. In

this paper, we assume that each flight of the forager is possibly interrupted by some

uncertain factors, such as obstacles on the flight direction, natural enemies within the

vision distance, and restrictions in the energy storage for each flight, and introduce the

tempered Lévy distribution p(l) ∼ e−ρ l l−µ. It is validated by both theoretical analyses and

simulation results that a higher searching efficiency can be derived when a smaller ρ or

µ is chosen. Moreover, by taking the flight time as the waiting time, the master equation

of the random searching procedure can be obtained. Interestingly, we build two different

types of master equations: one is the standard diffusion equation and the other one is

the tempered fractional diffusion equation.

Keywords: optimal random search, foraging, tempered Lévy distribution, master equation, tempered fractional

derivative

1. INTRODUCTION

One common approach to the animal movement patterns is to use the scheme of optimizing
random search [1–3]. In a random search model, single or multiple individuals search a landscape
to find targets whose locations are not known a priori, which is usually adopted to describe the
scenario of animals foraging for food, prey or resources. The locomotion of the individual has a
certain degree of freedom which is characterized by a specific search strategy such as a type of
randomwalk and is also subject to other external or internal constraints, such as the environmental
context of the landscape or the physical and psychological conditions of the individual. It is
assumed that a strategy that optimizes the search efficiency can evolve in response to such
constraints on a random search, and themovement is a consequence of the optimization on random
search.

Many researchers have concentrated on the study of different animals’ foraging movements. It
is shown that when the environment contains a high density of food items, foragers tend to adopt
Brownian walks, characterized by a great number of short step lengths in random directions that
maintain foragers in a small portion of the available space [4, 5]. In contrast, when the density of
food items is low, individuals tend to exhibit Lévy flights, where larger step lengths occasionally
occur and relocate the foragers in the environment. Due to the fact that the density of food items is
often low, many animals behave a Lévy flight when foraging and their movements have been found
to fit closely to a Lévy distribution (power law distribution) with an exponent close to 2 [6, 7]. For
instance, the foraging behavior of the wandering albatross on the ocean surface was found to obey
a power law distribution [8]; the foraging patterns of a free-ranging spider monkey in the forests
was also found to be a power law tailed distribution of steps consistent with Lévy walks [9, 10].

22
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On this basis, researchers mainly consider two issues: one
is to model the foraging behavior as a Lévy flight and the
other one is to study the searching efficiency theoretically or
experimentally. It is assumed that the forager takes a random
walk according to the distribution p(l) ∼ l−µ, 1 < µ < 3.
Then it is proven that the highest searching efficiency can be
obtained when µ is close to 2 for the non-destructive case (the
same target site can be visited many times). While the searching
efficiency is higher when µ tends to 1 for the destructive case
(the target site found by the forager becomes undetectable in
subsequent flights). Later, many more complex situations are
considered. Due to the fact that foragers are always searching
in a bounded area, Dybiec et al. [11] and Zhao et al. [12]
studied the searching efficiency of Lévy flight in a bounded
area. Kerster et al. [5] took the spatial memory of foragers
into consideration and concluded that the spatial information
influenced the foraging behavior significantly according to the
experimental results. Interestingly, it was claimed that the
Lévy flight foraging behavior can also be interpreted by a
composite search model [13, 14]. The model consists of an
intensive search phase, followed by an extensive phase, if no
food is found in the intensive phase. Particularly, Zeng and
Chen [15] considered the waiting time between two successive
flights and formulated the master equation for such foraging
behavior.

Though many studies have proven that it is usually more
efficient to utilize Lévy flight foraging strategy, standard Lévy
flight cannot be followed in practice because of many uncertain
factors. For instance, the forager may encounter obstacles or
natural enemies and extremely large flight distance cannot be
reasonable due to the restriction of the forager’s flight ability.
In this paper, we take these conditions into consideration and
temper the Lévy distribution with an exponential decaying
function, which results in a tempered Lévy distribution p(l) ∼

e−ρll−µ. It is then shown that a higher searching efficiency will
be derived when a smaller ρ or µ is chosen, both by simulation
and theoretical analyses. Further, two different types of master
equations are derived: one is the standard diffusion equation and
the other one is the tempered fractional diffusion equation. Since
the first and second order moments exist, the foraging movement
will finally result in a Gaussian motion, which indicates that
the tempered fractional diffusion equation is in fact another
expression for the standard diffusion.

The remainder of the paper is organized as follows. Section 2
provides the basic foraging model and some basic results are
also given. In section 3, we study the searching efficiency when
a tempered Lévy distribution is considered. Two different types
of master equations are derived in section 4 after treating the
flight time as the waiting time. The paper is concluded in
section 5.

2. BASIC DEFINITIONS AND MODEL
DESCRIPTION

In this section, we mainly recall the original model and basic
results of Lévy flight optimal random search. Assume that

target sites are uniformly distributed and the forager behaves as
follows

(1) If a target site lies within a “direct vision” distance rv, then the
forager moves on a straight line to the nearest site. A finite
value of rv, no matter how large, models the constraint that
no forager can detect a target site located an arbitrarily large
distance away.

(2) If there is no target site within a distance rv, then the
forager chooses a direction uniformly and a distance lj from
a probability distribution. It then incrementally moves to the
new point, constantly looking for a target within a radius
rv along its way. If it does not detect a target, it stops after
traversing the distance lj and chooses a new direction and
a new distance lj+1; otherwise, it proceeds to the target as
rule (1).

In the case of non-destructive foraging, the forager can visit
the same target site many times. In the case of destructive
foraging, the target site found by the forager becomes
undetectable in subsequent flights. Let λ be the mean free
path of the forager between two successive target sites [for
two dimensions λ = (2rvφ)

−1 where φ is the target-site area
density].

On the basis of above behaviors, assume that the flight distance
is distributed as the Lévy distribution

p
(

l
)

∼ l−µ, l ≥ rv, 1 < µ < 3. (1)

As shown in Figure 1 where η is the searching efficiency defined
as (7), researchers find that µ ≈ 2 and µ → 1 will result in
an optimal searching efficiency for the non-destructive case and
destructive case, respectively. For more details about the model
and existing results, one may refer to the works of Viswanathan
et al. [6, 7] and references therein.

FIGURE 1 | Searching efficiency of standard Lévy flight for different mean free

path λ: (A) the destructive case, (B) the nondestructive case.
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3. SEARCHING EFFICIENCY WITH A
TEMPERED LÉVY FLIGHT

In almost all the existing literatures about Lévy flight foraging, it
is assumed that the flight distance at each step is independently
distributed as (1). Distribution (1) is power-law decaying, which
indicates that a large jump length will appear more frequently
compared with the traditional Gaussian distribution. In practical
foraging, after the forager determines the flight distance at some
step, the flight will be interrupted by some unknown reasons,
such as obstacles on the flight direction, natural enemies in the
vision distance, and restrictions in the energy storage for each
flight. Because of these reasons, we can assume that the flight
distance is distributed as

p
(

l
)

∼ e−ρll−µ, rv ≤ l, ρ > 0, µ ≥ 1, (2)

which indicates that the forager can keep the flight direction
with the probability of an exponential distribution. Figures 2, 3
show the probability density function (pdf) of a tempered Lévy
distribution for different µ and ρ respectively. One can find that
the density decreases slower with a smaller µ or a smaller ρ,
which means that a larger jump length is more likely to happen.
Particularly, the µ = 0 case in Figure 2 is included to show that
the tempered Lévy distribution always has a shorter tail than the
pure µ = 0 Lévy distribution. The ρ = 0 case in Figure 3 is the
Lévy distribution which has a heavier tail compared with other
cases.

Remark 1:The difference between (1) and (2) is that the power
law distribution is tempered by an exponential decaying e−ρl.
The exponential part e−ρl can be viewed as the probability density
that the forager can keep its flight direction before he completes
one flight in the existence of some unknown factors and ρ is
determined by the environment. Because Lévy distribution is
now tempered by e−ρl, the first and second order moments of

FIGURE 2 | Probability density for tempered Lévy distribution with ρ = 0.5 for

different µ.

distribution (2) exist for arbitrary µ ∈ R. In the paper, we will
discuss the problem in a wider rangeµ ∈ [1,∞) rather than (1, 3)
for the Lévy distribution.

3.1. The Non-destructive Case
In this part, we will borrow the idea from Viswanathan et al. [6]
to optimize the searching efficiency. Given the pdf of the flight
distance as (2), the mean flight distance can be calculated as

〈

l
〉

=

∫ λ
rv
e−ρ|x|

|x|−µ+1dx+λ
∫

∞

λ e−ρ|x|
|x|−µdx

∫

∞

rv
e−ρ|x|

|x|−µdx

=

Ŵup(ρrv ,2−µ)−Ŵup(ρλ,2−µ)+λρŴup(ρλ,1−µ)

ρŴup(ρrv ,1−µ)

(3)

where, the incomplete gamma function Ŵup is defined as

Ŵup (x, u) =

∫

∞

x
tu−1e−tdt. (4)

Remark 2: In Viswanathan et al. [6], the Lévy distribution
is truncated by the mean free path λ because it is assumed
that the forager must find a target after flight for distance
λ. Different from the idea in Viswanathan et al. [6], we
assume that the flight distance may be truncated according
to an exponential distribution which is used to describe the
probability of encountering some uncertain factors. In this
paper, the truncation is also considered when calculating the
mean flight distance since the jump length may be larger
than the mean free path. We have also to declare that the
mean free path is generally very large since the targets are
sparse and the decaying speed of tempered Lévy distribution
is much faster. Thus, the integral of λ

∫

∞

λ
e−ρ|x|

|x|−µdx is very
small such that it almost has no influence on the searching
efficiency.

Let N be the mean number of flights taken by a Lévy forager
while traveling between two successive target sites. Since the first

FIGURE 3 | Probability density for tempered Lévy distribution with µ = 1 for

different ρ.
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and second order moments of tempered Lévy distribution exist,

the trajectory of the forager will result in a Brownian motion.

According to the existing results by Viswanathan et al. [6], for
the non-destructive case, it follows that the mean flight number

between two successive targets can be estimated as

Nn ≈

(

λ2

2D

)

1
2

(5)

where, D is the diffusion constant. According to the standard
diffusion equation in section 4, it is found that the diffusion
constant D =

a
2b
, where a is the second order moment of flight

distance and b is the mean of the waiting time. Since we do not
take the time into consideration, one can conclude that Nn is

proportional to
(

λ2

a

)
1
2
. Here, a can be calculated as

a =

∫

∞

rv

e−ρll2−µdl = ρµ−3Ŵup (ρrv, 3− µ) . (6)

Based on the above analyses, we can then calculate the searching
efficiency which is defined as

η =

1

N
〈

l
〉 . (7)

Take rv as 1 when simulating and the results for different mean
free path λ are shown in Figure 4. Following observations can be
drawn

(1) For fixed mean free path λ and ρ, a smaller µ will result in a
higher searching efficiency.

(2) For fixed mean free path λ and µ, a smaller ρ will result in a
higher searching efficiency.

FIGURE 4 | Searching efficiency ηλ for different order µ and ρ: the

non-destructive case with different λ.

(3) The mean free path λ almost has no influence on the choice
of µ and ρ to derive the highest searching efficiency.

As interpreted in the existing papers, the Lévy distribution
can lead to a higher efficiency in a sparse area due to the higher
probability of large jump lengths. For this issue, a smaller µ

or ρ will both decrease the decaying speed of the probability
density, which means that the large jump lengths are more likely
to appear. Hence, observations (1) and (2) can be explained since
frequently large jump lengths can help covering a wider range
where it is more likely to find a target in a sparse area. Generally,
the density of target site is sparse in practice whichmeans that λ is
usually large. Due to the exponential decaying of tempered Lévy
distribution, the value of λ

∫

∞

λ
e−ρ|x|

|x|−µdx is quite small and
almost has no influence on the searching efficiency. It can then
explain why the results of Figure 4 with different λ are similar.

One can also interpret the observations from the practical
perspective. As discussed before, the tempered item e−ρl can be
viewed as the probability density that the forager can keep its
flight direction before he completes one flight in the existence
of some unknown factors. Thus, a smaller ρ means that the
probability of a forager to encounter some uncertain factors is
lower and the foraging efficiency should be higher.

3.2. The Destructive Case
For the destructive case, the mean number N can be expressed as

Nd ≈

λ2

2D
. (8)

Similar to the non-destructive case, one can then calculate the
searching efficiency using (7). The results are shown in Figure 5,
which is very similar to the non-destructive case. It is found that
a smaller µ or ρ will both result in a higher search efficiency.

FIGURE 5 | Searching efficiency ηλ for different order µ and ρ: the destructive

case with different λ.
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The mean free path λ almost has no influence on the optimal
choice of parameters µ and ρ. We have shown that for the Lévy
distribution, µ → 1, where a large jump length appears more
likely, will lead to a higher searching efficiency. Thus, a smaller ρ

andµwill also result in a larger searching efficiency because large
jump lengths are more likely to happen.

Remark 3: According to the results in Figure 6 where we
obtain the mean flight number after averaging 100 independent
runs, one can find that a larger variance will lead to a smaller
mean flight number. Moreover, it is shown that there is a linear
property between them with a correlation coefficient −0.9781,
which indicates that the estimation of mean flight number is fine.

3.3. Numerical Results
We also implement an experiment for validate the theoretical
analyses. Consider a 200× 200 area and 50 targets are uniformly
distributed in this area. The vision distance is rv = 1 and the
total flight distance is no longer than 10, 000 which can be viewed
as the flight capability of the forager. The searching efficiency is
estimated as Nnum

Ltotal
where Nnum is the number of found targets

and Ltotal is the total flight distance. From Figure 7 where the
searching efficiency is derived by averaging 100 independent
runs, one can find that a smaller ρ andµwill both lead to a higher
searching efficiency, which is consistent with the theoretical
analyses. Because a larger µ will make the density function
decrease quickly, the range of jump lengths is then very tight.
Thus, the searching efficiency is very close for a large µ where
the jump lengths are all around the vision distance rv. Figures 8–
10 give some typical foraging procedures for different parameters
and one can find that all of them perform a Brownian motion
which can be verified by the statistic results of averaging 100
independent generated jump lengths in Figure 11. Additionally,
larger jump lengths frequently appear in Figure 8 compared with
the other two figures, for which the searching efficiency is the
highest. It is also shown in Figure 11, where larger jump lengths
are most likely to appear for the λ = 0.5 and µ = 1 case.

FIGURE 6 | The relation between the mean flight number and the variance of

the tempered Lévy distribution.

Remark 4: In this paper, we numerically generate the jump
lengths distributed as a tempered Lévy distribution and Figure 12
shows the actual density function and the statistic result of
generated jump lengths. It is found that the statistic result is
very close to the actual density function. We have to declare here
that all the foraging procedures in Figures 8–10 will result in a
Brownian motion because of the Central Limit Theorem.

Remark 5: Some conclusive remarks can be drawn as
follows

1) Tempered Lévy model is to assume the uncertain factors
during the foraging procedure may happen according to
an exponential distribution. Whenever such uncertain factor
happens, the forager has to stop its flight, which seems like
that the flight distance is truncated.

2) If we take ρ = 0, the tempered Lévy fight will reduce to the
standard Lévy flight.

FIGURE 7 | Experimental results of searching efficiency for different λ and µ.

FIGURE 8 | A typical example of foraging procedure with λ = 0.5 and µ = 1.
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FIGURE 9 | A typical example of foraging procedure with λ = 1 and µ = 1.

FIGURE 10 | A typical example of foraging procedure with λ = 0.5 and µ = 3.

3) According to the results in Figure 5, it is found that a
smaller ρ leads to a higher searching efficiency. In fact,
the searching efficiency with standard Lévy distribution is
higher than the truncated Lévy distribution. It is easy to
understand since the forager will have a higher searching
efficiency if there is no interruption during the foraging
procedure.

4. MASTER EQUATIONS

In the previous, we have not taken the flight time into
consideration. Assume that the flight speed v is constant during
the foraging process and treat the flight time between two flights
as the waiting time. Then, the pdf of waiting time is the same
as the flight distance with a scaling parameter v, which can be

FIGURE 11 | The statistic property of jump length with different λ and µ.

FIGURE 12 | The actual tempered Lévy density function with ρ = 0.5 and

µ = 1 and the statistic results of generated jump lengths.

expressed as

p (t) ∼ e−
ρ
v tt−µ, t ≥

rv

v
. (9)

Let us introduce the Laplace transform for the waiting time as

9 (s) =

∫

∞

rv/v
e−stp (t) dt. (10)

The famous Montroll-Weiss Equation [16] in Fourier-Laplace
space is in the following form

P
(

k, s
)

=

1− 9 (s)

s

1

1−W
(

k
)

9 (s)
, (11)
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where W(k) is the Fourier transform for the flight distance in
two dimensions which will be discussed later. Now consider the
extreme distribution of 9(s) with s → 0. It is followed that

9 (s) =
∫

∞

rv/v e
−stp (t) dt

=

∫

∞

rv/v (1− st + o (s)) p (t) dt

= 1− bs+ o (s) ,

(12)

where, b is the mean of flight time t and o(·) means the higher
order infinitesimal. In the following, we will present two different
types of master equations for this foraging procedure via different
treatments to the extreme distribution ofW(k) with k → 0.

4.1. The Standard Diffusion Equation Case
Assume that the searching direction θ is uniformly distributed
in the interval [0, 2π). If the waiting time and the flight distance
are independent, then the flight distance of the forager in two
dimensions can be formulated as (x, y) = (l cos θ , l sin θ) and the
following Fourier transform holds

W
(

k
)

=
1
2π

∫ 2π
0

∫

∞

rv
eil(k1 cos θ+k2 sin θ)p

(

l
)

dldθ

=
1
2π

∫ 2π
0

∫

∞

rv

(

1+ il2 +

(

il2
)2

+ o
(

22
)

)

p
(

l
)

dldθ

= 1+ 1
2π

∫ 2π
0

∫

∞

rv

(

il2
)2
p
(

l
)

dldθ + o
(

22
)

= 1+ a
2

(

(

ik1
)2

+

(

ik2
)2

)

+ o
(

22
)

(13)

where, k1 and k2 are the Fourier variables, k = (k1, k2), 2 =

k1 cos θ + k2 sin θ and a is the second order moment of the flight
distance.

Substitute (12) and (13) into theMontroll-Weiss equation and
ignore the higher order infinitesimal, yielding,

P
(

k, s
)

=
b

bs− a
2 (ik1)

2
−

a
2 (ik2)

2

=
1

s− a
2b ((ik1)

2
+(ik2)2)

.
(14)

Perform inverse Fourier-Laplace transform and one can derive
the master equation

∂

∂t
p
(

x, y, t
)

=

a

2b

∂2

∂x2
p
(

x, y, t
)

+

a

2b

∂2

∂y2
p
(

x, y, t
)

. (15)

Remark 6: Unlike the master equation derived by Zeng and
Chen [15], the master equation in this study is a normal diffusion
equation since the first and second order moments exist. We
have to mention that the master equation proposed by Zeng
and Chen [15] should also be standard diffusion equation rather
than fractional diffusion differential equation since the Lévy
distribution is truncated by the mean free path λ. Moreover,
the master equation should be two-dimensional rather than one-
dimensional.

4.2. The Tempered Fractional Diffusion
Equation Case
In this subsection, our purpose is to express the master equation
as a tempered fractional diffusion equation and we have restrict
µ varies from 1 to 2 to derive the tempered fractional derivative
expression. The vector jump length can be described as l2,

where 2 = (cos θ , sin θ). From Equation (7.9) in the book of
Meerschaert and Sikorskii [17], it shows that

W
(

k
)

=

∫

‖2‖=1

∫

∞

rv
eik·l2p

(

l
)

dlM
(

d2
)

= 1+
∫

‖2‖=1

∫

∞

rv

(

eik·l2 − 1
)

p
(

l
)

dlM
(

d2
)

= 1+ C
∫

‖2‖=1

[

(

λ − ik · 2
)µ−1

− λµ−1
]

M
(

d2
)

,

(16)

where k·2 = k1 cos θ+k2 sin θ ,M(d2) is a uniform distribution
on a unit circle, and C is a constant relevant to coefficients ρ

and µ.
Substitute (12) and (16) into the Montroll-Weiss Equation

(11) and ignore the higher order infinitesimal, yielding,

P
(

k, s
)

=

1

s− C
b

∫

‖2‖=1

(

λ − ik · 2
)µ−1

− λµ−1M
(

d2
)

. (17)

Define

λ
∇

α
Mf (x) =

∫

‖2‖=1

λDα
Mf (x)M

(

d2
)

(18)

where,

λDα
2f (x) =

α

Ŵ (1− α)

∫

∞

0

[

g (t) − g (t − r)
]

e−λrr−α−1dr (19)

with g (t) = f (x+ t2) is the generator form for vector tempered
fractional derivative.

Inverse (17) to derive the master equation

∂p (L, t)

∂t
=

C

b
λ
∇

µ−1
M p (L, t) , (20)

where, L is a vector (x, y).
Remark 7: Since the first order and second order moments

of tempered Lévy distribution exist, the resulting standard
diffusion equation (15) makes sense. Interestingly, we borrow
the idea from Meerschaert and Sikorskii [17] and give another
expression of the master equation, where vector tempered
fractional derivative is used. In this paper, we do not give detailed
proof for the derivation of vector tempered fractional derivative
and one can refer to Chapter 6 and 7 in the book of Meerschaert
and Sikorskii [17]. All these indicate that tempered fractional
diffusion equation is in fact a different expression of the standard
diffusion.

5. CONCLUSION

In this paper, we consider the optimal random foraging whose
flight distance is distributed according to a tempered Lévy
distribution p(l) ∼ e−ρll−µ. It is found that a higher searching
efficiency can be derived when we choose a smaller ρ or µ, which
results in a slower decaying speed. Furthermore, we obtain the
master equation of the random foraging. A standard diffusion
equation is derived since the first and second order moments
of the distribution for flight distance exist. Using the definition
of tempered fractional derivative, a vector tempered fractional
diffusion equation is then derived, which can be viewed as
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a special expression for the standard diffusion. A promising
research topic can be directed to finding the optimal searching
strategy for other types of flight distance distributions.
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The relation between the behavior of a single element and the global dynamics of its

host network is an open problem in the science of complex networks. We demonstrate

that for a dynamic network that belongs to the Ising universality class, this problem can

be approached analytically through a subordination procedure. The analysis leads to a

linear fractional differential equation of motion for the average trajectory of the individual,

whose analytic solution for the probability of changing states is a Mittag-Leffler function.

Consequently, the analysis provides a linear description of the average dynamics of an

individual, without linearization of the complex network dynamics.

Keywords: fractional calculus, subordination, inverse power law, complex networks, control

1. INTRODUCTION

The last decade has witnessed the blossoming of two quite different strategies for the mathematical
modeling of the complex systems, which are network science [1–3] and fractional calculus [4–6].
The widespread adoption of the network science perspective to study phenomena such as epidemic
spreading of diseases [7], neuronal avalanches [8], or social dynamics [9] derives from the fact
that these systems are composites of many simpler, interconnected, and dynamically interacting
elements. Similarly, popularization of fractional calculus in research that concerns physical
processes that are characterized by long-termmemory and spatial heterogeneity [10, 11] stems from
its particular mathematical formulation, based on a definition of the nonlocal differentiation and
integration operators. Therefore, since memory effects and heterogeneity are frequently observed
in biological, social, and man-made systems [12, 13], the application of fractional calculus in the
domain of complex networks is a natural step toward providing novel analytical tools that are
capable of addressing research questions arising in the field.

Despite the simplicity of their basic building blocks, complex systems, such as cooperative
animal behavior [14], the flow of highway traffic [15], or the cascades of load shedding on power
grids [16], are characterized by rich self-emergent behavior. However, since in most cases, solving
a system of coupled nonlinear equations that trace the dynamics of a network composed of N units
is not possible, the primary focus of investigations into complex networks has been on their global
behavior [17]. This approach follows the path taken by classical statistical physics, with Boltzmann’s
realization that the description of the state of a gas or a solid state could be only achieved on the
scale of the entire system [18]. Analogously, the ability to characterize the global behavior of a
complex network comes at a price of not being able to quantify the dynamics of the components
that give rise to it. Typically, one attempts to infer the global dynamics by averaging the behavior
of single elements within the system, following a bottom-up approach of the mean field theory (see
Figure 1).

30
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FIGURE 1 | Typical description of the dynamics arising from the interaction of

numerous basic elements over a complex network that focuses on the global

behavior of the system (left). Such an approach, however, comes with a price

of not being able to quantify dynamics of individual elements within the system.

In this paper, we address this problem by adopting statistical properties of the

macroscopic dynamics in order to infer the behavior of individual units.

In this paper, we address this issue by posing the inverse
question. Rather than inferring the global dynamics by
combining the behavior of single elements within the dynamical
system, we ask whether it is possible to construct a description of
the dynamics of the individual elements, provided information
about the network’s global behavior. We approach the problem
by considering statistical properties of the global variable.

Frequently, the macrovariables observed in complex networks
display emergent properties of spatial and/or temporal scale-
invariance. These are manifested by, for example, the inverse
power scaling of waiting-time probability density functions
(PDFs) between events, such as communication instances in
human interactions or occurrence of earthquakes. At the
same time, the inverse power laws (IPLs) that characterize
the emergent macroscopic behavior are reminiscent of particle
dynamics near a critical point, where a dynamic system
undergoes a phase transition [19]. However, despite the advances
made by the renormalization group approach and self-organized
criticality theories that have shown how scale-free phenomena
emerge at critical points, the issue of determining how the
emergent properties influence the microdynamics of individual
units of the system remains open.

Herein, we address the problem of quantifying the response
of an individual unit to the dynamics of the collective. This is
done by taking advantage of the fractional calculus apparatus,
whose utility arises from its ability to seamlessly incorporate
the IPL statistics into its dynamics. The phase transitions that
characterize many complex systems suggest the wisdom of using
a generic model from the Ising universality class to characterize
system dynamics. It is then possible to demonstrate that the
individual trajectory response to the collective dynamics of the
system is described by a linear fractional differential equation.
This is achieved through a subordination procedure without the
necessity of linearizing the underlying dynamics. Following this
procedure, it is shown that the analytic solution to the linear

fractal differential equation retains the influence of the nonlinear
network dynamics on the behavior of the individual. Moreover,
the solution to the fractional equation of motion suggests a new
direction for designing mechanisms to control the dynamics of
complex networks.

In section 2, we sketch out the mathematics of the dynamical
decision making model (DMM), introduce renewal events, and
subordinate the behavior of the individual to the mean field
behavior of the network. In section 2.2, the dynamics of the
individual is determined from the subordination theory to be a
tempered fractional differential equation. The exact solution to
this equation is given by an attenuated Mittag-Leffler function,
which is fitted to the numerical solution of the DMM equation.
In section 4, we discuss some implications of the high quality
convergence of the analytical and numerical results of this
complex network.

2. COMPLEX NETWORK DYNAMICS

As demonstrated by Grinstein et al. [20], any discrete system,
defined by means of local interactions, with symmetric
transitions between states and randomness that originate from
the presence of a thermal bath or internal causes belongs to the
universality class of kinetic Ising models. One such system is
the DMM [21–23] and is the one we implement herein. Each
individual unit si of the model is a stochastic oscillator and can
be found in either of the two states, +1 or −1. The dynamics are
defined in terms of the probability of an individual to be in either
state, and it is modeled by the coupled two-state master equation,

dp(t)

dt
= g0 [I− 21] p(t), (1)

where I and 1 are the 2×2 identity and unit matrices, respectively.
The probability of being in one of the two states (+1,−1),
p(t) = [p1(t), p2(t)]

⊺, defines a Markovian telegraph noise, with
symmetric and constant rate of changing states 0 < g0 < 1.

Positioning N such individuals at the nodes of a complex
network introduces coupling between them [21, 22], which, here,
is limited to the nearest neighbor interactions. The influence
that unit si experiences due to the presence of its neighbors is
expressed by a modification of its transition rate

g
(i)
12 (t) = g0 exp

[

−

K

M(i)

(

M
(i)
1 (t)−M

(i)
2 (t)

)

]

,

g
(i)
21 (t) = g0 exp

[

K

M(i)

(

M
(i)
1 (t)−M

(i)
2 (t)

)

]

, (2)

which becomes a time dependent variable. Here, K is the strength
of the coupling between nodes, 0 < K < ∞, constant for all
nodes in the network. The variable M(i) denotes the degree of

the node i, and M
(i)
1,2(t) denotes, respectively, the count of the

nearest neighbors in states si(K, t) = 1 and si(K, t) = −1 at

time t. As single units si change their states, quantities M
(i)
1 (t)

andM
(i)
2 (t) fluctuate in time, while their sum is always conserved

M
(i)
1 (t) +M

(i)
2 (t) = M(i). In this paper, we consider the case of a
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regular two-dimensional lattice, whereM(i)
= 4 and 0 ≤ M

(i)
1,2(t)

for all the nodes. The single unit in isolation corresponds to the
case of K = 0. When the coupling constant K > 0, a unit in state
+1(−1) makes a transition to the state −1(+1) faster or slower
according to whether M

(i)
2 (t) > M

(i)
1 (t) or M

(i)
1 (t) > M

(i)
2 (t),

respectively.
Time-dependent transition rates modify the two-state master

(Equation 1) to take the form

dp(i)(t)

dt
= Gi(t)p

(i)(t), (3)

where the matrix of rates Gi(t) is defined as

Gi(t) =

(

−g
(i)
12 (t) g

(i)
21 (t)

−g
(i)
21 (t) g

(i)
12 (t)

)

, (4)

and p(i)(t) is the probability of the element i = 1, 2, ...,N in the

network at time t and is normalized such that p
(i)
1 (t)+p

(i)
2 (t) = 1

for every i.
Dynamics of an entire network is described by a

system of N such coupled equations, resulting in a highly
nonlinear system [23], containing 6N dynamic variables
(

p
(i)
1 (t), p

(i)
2 (t), g

(i)
12 (t) , g

(i)
21 (t) ,M

(i)
1 (t),M

(i)
2 (t)

)

. This number of

coupled variables prevents the successful application of analytic
methods, as these are usually adopted to solve problems that
involve only a few coupled time-dependent differential equations.
Instead, extensive numerical calculations are supplemented by
an analytic formulation of the evolution of a global variable.

As depicted in Figure 2B, the global behavior of the model,
defined by the fluctuations of the mean field variable

ξ (K, t) =
1

N

N
∑

i=1

si(K, t), (5)

shows a pronounced transition as a function of the control
parameter K. While in Figure 2A, the single elements appear
to be essentially unchanged by their interactions with the rest
of the network, the global variable shifts from a configuration
dominated by randomness to one in which strong interactions
give rise to long-lasting majority states shown in Figure 2B. Note
that the origin of the random fluctuation in the DMM is the finite
size of the network, which has nothing to do with the thermal
fluctuations in the Ising model of magnetization.

To characterize the changes in the temporal properties of the
micro- and macro-variables, we evaluate the survival probability
function, 9 (τ), of time intervals τ between consecutive events
defined as changes of the state or crossing of the zero-axis, for
the single element or the global variable, respectively. These
calculations unveil modest deviations of 9 (τ) for a single
individual from the exponential form, 9 (τ) = exp

(

−g0τ
)

,
that characterizes single non-interacting elements, as shown in
Figure 2C. Clearly, the influence of the network on the behavior
of the individual does not appear to induce a significant change
in the latter. Despite such a modest change in the behavior of the
individual, the global variable manifests IPL statistics, as depicted

FIGURE 2 | Behavior of a discrete, two-state dynamic unit on a

two-dimensional lattice. Temporal evolution and corresponding survival

probability 9(τ ) for the transitions between two states for the single unit si (t) of

the system, presented on panels (A,C), respectively, are compared with the

behavior and statistical properties of the global order parameter ξ (t), showed

on panels (B,D). Simulations were performed on a lattice of size N = 50× 50

nodes, with periodic boundary conditions, for g0 = 0.01 and increasing values

of the control parameter K. Blue, red, and green lines correspond to K = 1.50,

1.70, and 1.90, respectively. The critical value of the control parameter is

KC ≈ 1.72. Black dashed line on the plots of 9(τ ) denotes an exponential

distribution, with the decay rate g0.

in Figure 2D. Thus, the following question arises: To what extent
are individual opinions within a complex network influenced by
the network dynamics?

2.1. Renewal Events
Many physical processes, for example earthquakes, radioactive
decay, and social processes, such as making a decision, can
be viewed as particular events. A characteristic property of an
event is that it’s onset can be precisely localized in time, even
if its occurrence has extended consequences in space. Thus, the
dynamics of a process characterized by events is described in
terms of the probability of an event occurring, rather than by a
more traditional Hamiltonian approach.

The process of event occurrence is characterized by the
waiting-time PDFψ (τ), which specifies the distribution of times
between consecutive events. The probability for an event to occur
in the short time interval [t, t + dt] is given by

ψ (t) dt = Pr
(

t < τ < t + dt
)

, (6)

where τ is measured from the occurrence of the previous event.
Consequently, one can define the survival probability 9 (τ) as
the probability that no event occurs up to the time since the last
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event as

9 (τ) ≡

∞
∫

τ

ψ (t) dt. (7)

As a consequence of this integral, the waiting-time PDF can be
written as

ψ (t) = −

d9 (t)

dt
, (8)

and the PDF ψ (τ) is a properly normalized function,

∞
∫

0

ψ (τ) dτ = 1,

since it is assumed that an event occurs somewhere within the
time interval (0,∞). It is also true that no event occurs at time
t = 0, which means that the survival probability9 (0) = 1.

A particular class of events can be defined, renewal events, that
reset the clock of the system to an initial state instantaneously
after their occurrence. After a renewal event takes place, the
system evolves in time independently of whatever occurred
earlier, having no memory of previous instances in which such
an event occurred. Some examples of renewal events found in
physics include anomalous diffusion of tagged particles inside
living cells, blinking quantum dots, and defects arising in the
weak turbulence regime of liquid crystals.

The renewal character of events is captured by the probability
of n events occurring as follows. First, one assumes that an event
occurs at time t = 0, thus, ψ0 (t) = δ (t). Next, the first event
occurs at time t > 0, taking place with the probability ψ1 (t) =
ψ (t) . Subsequently, the probability for event n in a sequence to
occur at time t is expressed in terms of probabilities of earlier
events by the correlation chain condition

ψn (t) =

t
∫

0

ψn−1

(

t′
)

ψ1

(

t − t′
)

dt′. (9)

Frequently, experimentally observed waiting-time PDFs are
exponential, but quite often in complex networks they are IPLs.
For the purpose of this paper, we define the waiting-time PDF in
terms of the hyperbolic distribution

ψ (t) =
(µ− 1)Tµ−1

(T + t)µ
. (10)

If the events are generated by an ergodic process, thenµ > 2, and
the first moment of the hyperbolic PDF is

〈t〉 =

∞
∫

0

tψ (t) dt =
T

µ− 2
. (11)

In the framework of renewal theory, Equation (11) denotes the
average time that one would have to wait between successive
events. However, when µ < 2, the process is non-ergodic, and
the mean value of the distribution diverges. In the non-ergodic
case, T becomes a characteristic time scale of the process.

2.2. Subordination of Time
The notion of different clocks associated with different
physical systems arises naturally in physics; the linear Lorentz
transformation in relativistic physics being probably the most
familiar example. Thanks to the recent availability of time-
resolved data, biological, and social sciences have also started
adopting the notion of multiple clocks, distinguishing between
cell-specific and organ-specific clocks in biology and person-
specific and group-specific clocks in sociology. Of course, the
notion of subjective and objective time dates back to the middle
of the nineteenth century with the introduction of the empirical
Weber-Fechner law [24].

However, the striking difference between the clocks of classical
physics and natural sciences is that the relations between the
latter clocks are nonlinear. While the global activity of an organ,
such as the brain or the heart, might be characterized by quite
regular, often periodic fluctuations, the activity of single neurons
demonstrates burstiness and noisiness. Similarly, in a society,
people operate according to their individual schedules, not always
being able to perform particular actions in the same global time
frame. Thus, owing to the stochastic behavior of one or both
clocks, a probabilistic transformation between times is necessary.
An example of such a transformation is the subordination
procedure.

We begin by defining two clocks. The first clock records
a discrete operational time n, which measures the time T(n)
of an individual. The second clock records the continuous
chronological time t, which measures the time T(t) that a system
of individuals have agreed upon. If each advancement of the
discrete clock n is thought of as an event, then the relation
between the operational time and chronological time can be
given by the waiting-time PDF of those events in chronological
time ψ(t). Assuming a renewal property for events, as given by
chain condition from renewal theory (Equation 9), one can relate
operational time to chronological time by

〈T (t)〉 =

∞
∑

n=1

t
∫

0

9
(

t − t′
)

ψn

(

t′
)

T (n) dt′. (12)

Every advancement of the operational clock is an event, which
in the chronological time occurs at time intervals drawn from
the renewal waiting-time PDF. Because of this randomness, one
needs to sum over all events, and the result is an average over
many realizations of the transformation.

As an example, consider the behavior of a two-state
operational clock, whose evolution is shown in Figure 3. In
operational time, the clock switches back and forth between
its two states at equal unit time intervals. In chronological
time, however, this regular behavior is significantly distorted.
In the figure, the time transformation was taken to be an
IPL PDF of waiting times. Thus, a single time step in the
operational time corresponds to a time interval being a random
number drawn from ψ(t) in chronological time. The long
tail of the IPL PDF leads to especially strong distortions of
the operational time trajectory, since there exist a non-zero
probability of drawing very large time intervals between events.
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FIGURE 3 | The upper curve is the regular transition between the two states of the individual in operational time. The lower curve is the subordination of the transition

times to an IPL PDF to obtain chronological time.

However, since the transformation between the operational and
chronological time scales involves a random process, one needs
to consider infinitely many trajectories in the chronological
time, which leads to the average behavior of the clock in
the chronological time denoted in Equation (12) by the
bracket.

We note that the time subordination procedure can also be
used to model communication delays in the system. However,
contrary to frequently used approaches, where individual units
of the system are subordinated to model the interaction delay,
here, we adopt the statistics of the macroscopic variable to
derive the behavior of the interacting individual units. The

coupling between units causes them to deviate from the Poisson
behavior of an individual non-interacting unit. However, as
illustrated in Figure 2, the time scale of interacting units is
orders of magnitude that are smaller than the time scale
of the macroscopic variable. Thus, we use the statistical
properties of the macroscopic variable to provide a first-order
estimate of the single unit dynamics. As such, we adopt a
top-down approach, which is different from the bottom-up
approach adopted for the consideration of communication
delays.

3. COMPLEX NETWORK SUBORDINATION

To determine the network’s influence on the dynamics of
the individual, we adapt the subordination argument of the
preceding section and relate the time scale of the macro-variable
ξ (K, t) to the time scale of the micro-variable si(K, t). The two-
state master equation for a single isolated individual in discrete

time n in steps of1τ is

ϕ (n+ 1)− ϕ (n) = −g01τϕ (n) , (13)

where the notations ϕ (n) = ϕ (n1τ) and ϕ = p1 − p2 depict
the difference in probabilities for the typical individual to assume
one of the two states. The solution to this discrete equation is

ϕ (n) = (1− g01τ )
nϕ (0) , (14)

which, in the limit g01τ << 1, becomes an exponential.
However, when the individual is a part of a network, the dynamics
are not so simple.

Adopting the subordination interpretation, we define the
discrete index n as an individual’s operational time that is
stochastically connected to the chronological time t, in which the
global behavior is observed. We assume that the chronological
time lies in the interval (n − 1)1τ ≤ t ≤ n1τ and,
consequently, the equation for the average dynamics of the
individual probability difference is given by [25]

〈ϕ (t)〉 =

∞
∑

n=1

t
∫

0

9
(

t − t′
)

ψn

(

t′
)

ϕ (n) dt′. (15)

Here, the time t in the waiting-time PDF ψ(t) is determined
from the derivative of the survival probability. The empirically
determined analytic expression for the survival probability is

9 (t) =

(

T

T + t

)µ−1

e−ǫt . (16)
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The dominant behavior of the empirical survival probability is
an IPL as indicated in Figure 2D. However, at early times, the
probability of not making a transition approaches the constant
value of one; at late times, the probability of not making a
transition at a given time decays exponentially; it is in the middle
range, where the probability is an IPL. The extent of the IPL
range of the survival probability is determined by the empirical
values of T,µ, and ǫ, and from Figure 2D, the value of ǫ is
seen to become smaller as the control parameter K increases.
The IPL functional form of the PDF results from the behavior
of the survival probability9 (τ) of the global variable depicted in
Figure 2D, with µ = 3/2.

Using a renewal theory argument, Pramulkkul et al. [25]
show that Equation (15) expressed in terms of Laplace transform
variables indicated bŷf (u) for the time-dependent function f (t)
has the form

〈ϕ̂ (s)〉 =
ϕ (0)

u+ ǫ + λ0̂8(u+ ǫ)
(17)

where λ0 ≡ g01τ and ̂8(u+ ǫ) is the Laplace transform of the
Montroll-Weiss memory kernel [25, 26],

̂8(u+ ǫ) =
(u+ ǫ) ̂ψ (u+ ǫ)

1− ̂ψ (u+ ǫ)
. (18)

Note that u is replaced by u + ǫ in the Laplace transforms,
because the exponential truncation of the empirical survival
probability shifts the index on the Laplace transform operation.
The asymptotic behavior of an individual in time is determined
by considering the waiting-time PDF as u → 0,

̂ψ (u+ ǫ) ≈ 1− Ŵ (1− α)Tα (u+ ǫ)α ; 0 < α = µ− 1 < 1,
(19)

so that Equation (17) reduces to

〈ϕ̂ (u)〉 =
ϕ (0)

u+ ǫ + λα (u+ ǫ)1−α
. (20)

The inverse Laplace transform of Equation (20) yields the
tempered rate equation

(∂t + ǫ)
α
〈ϕ (t)〉 = −λα 〈ϕ (t)〉 , (21)

where the operator ∂
µ−1
t [·] is the Caputo fractional derivative for

0 < α = µ− 1 < 1 [11] and

λT =

[

g01τ/Ŵ (2− µ)
]

1
µ−1 . (22)

Note that owing to the dichotomous nature of the states, 〈ϕ (t)〉

is the average opinion of the individual si(K, t).
The solution of the asymptotic fractional master equation

(Equation 21) for a randomly chosen unit within the network
is given by an exponentially attenuated Mittag-Leffler function
(MLF):

〈

ϕ(t))
〉

= ϕ(0))Eα
(

− (λt)α
)

exp [−ǫt] (23)

and the MLF is defined by the series

Eα(z) ≡

∞
∑

n=0

zn

Ŵ (nα + 1)
. (24)

The MLF is a stretched exponential at early times and an IPL
at late times, with α = µ − 1 being the IPL index in both
domains.

3.1. Comparisons With Numerics
We test the above analysis with numerical simulations of the
dynamic network on a two-dimensional lattice with nearest-
neighbor interactions in all three regions of DMM dynamics:
subcritical, critical, and supercritical. The time-dependent
average opinion of a randomly chosen individual is presented
in Figure 4, where the average is taken over 104 independent
realizations of the dynamics in the subcritical, critical, and
supercritical regimes.

FIGURE 4 | The probability difference
〈

ϕ(t)
〉

estimated as an average over an ensemble of 104 independent realizations of single element trajectories. Each trajectory

corresponds to evolution of a randomly selected node within a N = 100× 100 lattice network, with g0 = 0.01 and the same initial condition si (0) = 1. The parameter

values for the numerical data are given in Figure 2 and from left to right K = 1.0 (A), 1.7 (B), 2.5 (C), respectively. The fit of the exponentially truncated MLF to the

numerical calculations is summarized in Table 1.

Frontiers in Physics | www.frontiersin.org October 2018 | Volume 6 | Article 11035

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles


Turalska and West Fractional Dynamics of Individuals in Complex Networks

TABLE 1 | The probability difference
〈

ϕ(t)
〉

of Figure 4 is fitted with the MLF using

an algorithm developed by Podlubny [27].

K = 1.00 K = 1.70 K = 2.50

µ 1.8920 1.8050 1.5580

λ 0.0147 0.0206 0.0293

ǫ 4.00× 10−3 1.40× 10−11 5.58× 10−12

R21 0.9910 0.9667 0.9725

Assuming T = 0.10, 1τ = 1, and g0 = 0.01, the parameters of an analytical solution are

µ = 3/2 and λ = 0.0318.

A comparison with the exponential form of
〈

ϕ(t)
〉

for an
isolated individual indicates that the influence of the network on
the individual’s dynamics clearly persists for increasingly longer
times with increasing values of the control parameter within the
network. The parameters µ and λ of Equation (23) obtained
through fitting numerical results of Figure 4 with the MLF are
summarized in Table 1. It is evident that the influence of the
network dynamics on the individual is greatest at long times. The
deviation of the analytic solution from the numerical calculation
is evident for values of the control parameter at and below
the critical value. The analytical prediction is least reliable at
extremely long times in the subcritical domain. Consequently,
the response of the individual to the group mimics the group’s
behavior most closely when the control parameter is equal to or
greater than the critical value.

4. DISCUSSION

Herein, the subordination procedure provides an equivalent
description of the average dynamics of a single individual
within a complex network, in terms of a linear fractional
differential equation. The fractional rate equation is solved
exactly, determining the Poisson statistics of the isolated
individual becomes attenuated Mittag-Leffler statistics, owing to
the interaction of that individual with the other members of a
complex dynamic network.

1Adjusted goodness of fit, R2 = 1 −
SSreg/(n−κ)

SStot/(n−1)
, is defined as the ratio of the sum

of squared residues for the nonlinear fit with the MLF (SSreg ) and for the fit to the

average value of data points (SStot), where n is the number of data points and κ is

the number of free parameters being estimated.

Consequently, an individual’s simple random behavior, when
isolated, is replaced with behavior that might serve a more
adaptive role in social networks. We conjecture that the
behavior of the individual is generic, given that the DMM
network dynamics belong to the Ising universality class.
Members of this universality class share the critical temporal
behavior [28] that drives the subordination process. It is
the renewal property of the event statistics, which, through
the subordination process, gives rise to the linear fractional
master equation for the typical individual’s dynamics. The
solution to the tempered fractional rate equation manifests the
subsequent robust behavior of the individual; it remains to
be determined just how robust the behavior of the individual
is relative to control signals that might be driving the
network.

As pointed out by Liu et al. [29], the ultimate understanding
of complex networks is reflected in the ability to control them.
Recent observations of the interconnectedness of infrastructure
networks [30], facilitating the spread of failures [31] or the
tight coupling between banking institutions, posing a danger
to the stability of global financial system [32], demonstrate the
importance of developing a systematic approach to influence
and/or control the complex networks. The analysis presented
here provides an alternative attempt to address this need
directly. Subordination suggests a way to impose the conditions
of traditional control theory [33] onto the complex network
dynamics by, first, expressing the underlying nonlinear network
dynamics in the form of a linear fractional equation of motion.
This approach at addressing control will be pursued in a future
publication.
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In this paper the sinc-fractional derivative is extended to the Hilbert space based on

Shannon wavelets. Some new fractional operators based on wavelets are defined. One

of the main task is to investigate the localization and compression properties of wavelets

when dealing with the non-integer order of a differential operator.
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1. INTRODUCTION

In recent years, fractional calculus has been growing fast both in theory and applications to many
different fields. Several classical and fundamental problems have been revised by using fractional
methods, thus showing unexpected new results [1–3], while more and more new problems were
shaped to fit the theoretical models of fractional calculus [4–7].

In fractional calculus is based on two universally accepted principles: the first one is that the
definition of fractional derivative is not unique, thus giving raise to a neverending controversial
debate on the best fractional operator. The second principle is that, although the missing
uniqueness of the fractional operator, fractional calculus is an essential tool for a deeper and more
comprehensive investigation of complex , non-linear , local, or non-local problems.

Therefore according to the suitable choice of the fractional differential operator, there follows
a corresponding model of analysis so that the physical model and the corresponding physical
interpretation of the results it strongly depends on the chosen fractional operator.

In some recent papers [8–15] the classical Lie symmetry analysis has been combined with
the Riemman-Liouville fractional derivative to solve time fractional partial differential equations.
In these papers, Lie point symmetries have been used to convert a fractional partial differential
equation into a non-linear ordinary differential equation, that can be solved by suitable methods.
Some fractional operators have been used also to study non-differentiable functions [see e.g., [16]
some of them are more suitable for the analysis of non-differentiable sets, or fractal sets like the
Cantor fractal set [4–7] Some fractional operators have been specially defined to analyze complex
functions [17–19]. For instance the chaotic decay to zero of the complex ζ -Riemann function was
easily shown by using a suitable fractional derivative [19].

Among the many interesting definitions of fractional operators, some Authors have recenlty
proposed a fractional differential operator based on the sinc-function [20]. This function is very
popular in the signal analysis, also because it is a localized function with slow decay. Moreover, it is
the fundamental basic function for the definition of the so-called Shannon wavelet theory, i.e., the
multiscale analysis on Shannon wavelets [21–26].

This paper will focus on the definition of a fractional derivative by the Shannon wavelets.
These functions belong to a special family of wavelets which have a sharp compact support in the

38
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frequency space, so that their Fourier transform are box-
functions in frequencies. This is a great advantage because, the
frequency domain of a signal can be easily decomposed in terms
of scaled box-functions.

Wavelet theory has been growing very fast so that there
has been also a wide spreading of wavelets for the solution
of theoretical and applied problems. However, alike the
various definition of fractional operators there exist also many
different families of wavelets and this missing uniqueness
it might be considered as a drawback because of the
arbitrary choice. Nevertheless all families of wavelets enjoy
two fundamental properties their localization in time (or
frequency) and the multiscale decomposition. Due to their
localization they can be used to detect, and single out,
localized singularities and/or peaks, while the multiscale
property enable to decompose the approximation space into
separate scales [27]. Thanks to these properties wavelets have
been used to solve non-linear problems and moreover they
are the most suitable tool for the analysis of multiscale
problems.

The sinc-fractional operator will be generalized in order
to compute the fractional derivative of the L2(R)-functions
belonging to the Hilbert space defined by the Shannon wavelet.
In doing so, we will be able to compute the fractional
derivative of these functions by knowing only their wavelet
coefficients. Moreover, with this approach we will be able to
decompose the fractional derivative at different scales, thus
showing the influence of a given scale in multiscale physical
problems.

The organization of this paper is as follows: Preliminary
remarks on fractional operators are given in section 2. In section
3 the sinc fractional derivative, as given by Yang et al. [20] is
described. Section 4 gives the basic properties on the multiscale
approximation defined on Shannon wavelet. The differential
properties of the functions belonging to the Hilbert space based
on Shannon wavelet are given in section 5, together with the
explicit form of the integer order derivatives (see also [24, 26]).
Section 6 deals with the sinc-fractional derivative on the Hilbert
space based on Shannon wavelets , i.e., sinc-fractional derivative
of functions which can be represented as Shannon wavelet
series.

2. PRELIMINARY REMARKS

In this section some of the most popular definition of fractional
derivatives [28–30] are given.

Let us start with the Riemann-Liouville derivative.

Definition 1. The Riemann-Liouville integral of fractional order
ν ≥ 0 of a function f (x), is defined as

(

Jν f
)

(t) =



















1

Ŵ(ν)

∫ t

0
(t − τ )ν−1f (τ )dτ , ν > 0,

f (t), ν = 0.

The Riemann-Liouville fractional operator Jα has the following
properties:

(a) Jα
(

Jβ f (t)
)

= Jβ
(

Jα f (t)
)

,

(b) Jα
(

Jβ f (t)
)

= Jα+β f (t),

(c) Jαtν =

Ŵ (ν + 1)

Ŵ (α + ν + 1)
tν+α , α,β ≥ 0, ν > −1

(d) Jνeλt =

1

νŴ(ν)
eλttν , ν > 0 ,

(e) Jνc =

c

νŴ(ν)
tν , ν > 0 .

From this definition there follows the corresponding derivative
according to the following:

Definition 2. Riemann-Liouville fractional derivative of order
α > 0 is defined as

DαRLf (t) =
dn

dtn
Jn−α f (t), n ∈ N, n− 1 < α ≤ n. (2.1)

The main problem with this derivative is the unvanishing value
for a constant function, therefore it was proposed by Caputo the
following [28, 29].

Let f (x) ∈ C
n be a n-differentiable function, α a positive value,

then

Definition 3. The α-order Caputo fractional derivative is defined
as

DαCf (x) =



























dnf (x)

dxn
, 0 < α ∈ N,

1

Ŵ(n− α)

∫ x

0

f (n)(τ )

(x− τ )α−n+1
dτ , t > 0, 0 ≤ n− 1

< α < n.

where n is an integer, x > 0, and f ∈ C
n.

It can be easily shown that:

(a) JαDαCf (x) = f (x)−

n−1
∑

k=0

f (k)(0+)
xk

k!
, t > 0.

(b) DαCJ
α f (x) = f (x).

(c) DαCt
n
=











0, for n ∈ N0 and α < n,

Ŵ(n+ 1)

Ŵ(n− α + 1)
tn−α , otherwise.

(d) DαCD
β
Cf (x) = D

β
CD

α
Cf (x) .
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3. SINC-FRACTIONAL DERIVATIVE

Riemann-Liouville (RL) and Caputo (C) derivatives are the most
popular derivatives and have been used in many applications
(see e.g., [2, 3, 16, 18, 25, 26, 29, 31–41]), nevertheless they
both suffer for some unavoidable drawbacks. In particular, the
RL-derivative is unvanishing when f (x) 6= constant while the
C-derivative is defined on a singular kernel. Because of that,
in recent years many efforts were devoted to find some more
flexible non-singular derivatives. Moreover, due to the fact that
the fractional derivative is not univocally defined, there have been
proposed many alternative interesting new definitions.

Indeed the more general fractional derivative with a given
kernel K(x,α), which generalizes the C-derivative is:

Dα f (x) =



















dnf (x)

dxn
, 0 < α ∈ N,

∫ x

0
f (n)(τ )K(x− τ ,α)dτ , x > 0, 0 ≤ n− 1 < α < n.

(3.1)
The kernel should be defined in a such a way that at least the two
conditions

lim
α→0

K(x−τ ,α) = 1, lim
α→1

K(x−τ ,α) = δ(x−τ ) (3.2)

hold true, moreover, in order to be a non-singular kernel, it
should be also

lim
x→τ

K(x− τ ,α) 6= 0, ∀α . (3.3)

Although there are several definitions of derivatives they all
depend on a kernel. In particular, it can be easily seen that the
C-derivative [42], the Caputo-Fabrizio (CF) derivative [34], and
the Atangana-Baleanu (AB) derivative [43] are some special cases
of (3.1) corresponding respectively to the kernels:

(C) K(x− τ ,α) =

1

Ŵ(n− α)
(x− τ )n−α−1

(CF) K(x− τ ,α) =

M(α)

1− α
e−

α
1−α (x−τ )

(AB) K(x− τ ,α) =

B(α)

1− α
Eα

(

−

α

1− α
(x− τ )

)

,

(3.4)

where the Mittag-Leffler function is taken as

Eα(x)
def
=

∞
∑

k=0

xαk

Ŵ(αk+ 1)
.

It can be easily shown that all kernels (3.4) fulfill (3.2) while only
(CF) and (AB) fulfill also the condition (3.3).

3.1. The Yang-Gao-Terneiro

Machado-Baleanu Fractional Derivative

[20]
With respect to the integration variable τ all kernels (3.4) have a
decay to zero, in a such way that for a bounded f (n)(x) the integral
(3.1)2 converges.

Among the non-singular kernels with decay to zero a
fractional derivative based on a sinc-function kernel was recently
defined by Yang, Gao, TerneiroMachado, and Baleanu (YGTMB)
[20].

The sinc-function, defined as Yang et al.[20]

sinc x
def
=

sinπx

πx
, (3.5)

owns a quite large amount of nice properties, so that it became
a fundamental tools in applied science and signal analysis. In
particular, it was shown (see e.g., [20]) that, for a given x

lim
α→0

1

α
sinc

( x

α

)

= δ(x) (3.6)

being δ(x) the Dirac-delta function

δ(x) =







0, x 6= 0

1, x = 0 .

More in general from (3.6) it is

lim
α→0

1

α
sinc

(

x− τ

α

)

= δ(x− τ ) . (3.7)

By using the sinc-function, we have the following definition of
the sinc fractional derivative [20].

Definition 4 (Yang-Gao-Tenreiro Machado-Baleanu). The
YGTMB fractional derivative is defined as Yang et al. [20]

DαYGTMBf (x)
def
=

αP(α)

1− α

∫ x

a
sinc

α(x− τ )

1− α
f (n)(x)dτ , 0 ≤ n− 1

< α < n .

(3.8)

We can see that also this kernel

(S) K(x− τ ,α) =
αP(α)

1− α
sinc

α(x− τ )

1− α
(3.9)

belongs to the class of kernels (3.1). It can be also shown that this
kernel fulfills the conditions (3.2),(3.3) (see [20]) being

lim
α→0

αP(α)

1− α
sinc

α(x− τ )

1− α
= 1, lim

α→1

αP(α)

1− α
sinc

α(x− τ )

1− α
= δ(x− τ ) ,

and the normalization constant factor P(α) is such that

lim
α→0

[K(x,α)P(α)] = lim
α→1

[K(x,α)P(α)] = 1
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In particular, there follows from (3.8)

DαYGTMBf
(n)(x) =











f (n−1)(x)− f (n−1)(0), α = 0

f (n)(x) , α = 1
(0 ≤ n− 1 < α < n).

3.1.1. Polynomial Approximation of the Kernel
The sinc kernel (3.9) can be written also as an infinite product as
follows. Starting from the known product:

sin x = x

∞
∏

k=1

(

1−
x2

k2π2

)

by taking into account (3.5) it is

sinc x =

sin(πx)

πx
=

1

��πx
�

�(πx)

∞
∏

k=1

(

1−
(πx)2

k2π2

)

so that

sinc x =

∞
∏

k=1

(

1−
x2

k2

)

It should be noticed that in the interval [−1, 1] the sinc-function
can be approximated by

sinc x ∼
=

n
∏

k=1

(

1−
x2

k2

)

so that if we define as the error of approximation

ε(n) =

∣

∣

∣

∣

∣

sinc x−

n
∏

k=1

(

1−
x2

k2

)

∣

∣

∣

∣

∣

we have
max ε(1) ≤ 0.14, max ε(2) ≤ 0.08, max ε(3) ≤

0.055, max ε(4) ≤ 0.04,
so that already with n = 1:

sinc x ∼
=

(

1− x2
)

the error of approximation in [−1, 1] is less that 15%.
It should be noticed that with this approximation the

YGTMB-derivative (3.8) becomes

DαYGTMB∗ f (x) =
αP(α)

1− α

∫ x

a

[

1−
α2

(1− α)2
(x− τ )2

]

f (n)(x)dτ ,

≤ n− 1 < α < n

that is

DαYGTMB∗ f (x) =

αP(α)

1− α

[

f (n−1)(x)− f (n−1)(0)
]

−

α3P(α)

(1− α)3
∫ x

a
(x− τ )2f (n)(x)dτ , 0 ≤ n− 1 < α < n

By assuming as a normalization factor

P(α) =
(1− α)3

α

we get

DαYGTMB∗f (x) = (1− α)2
[

f (n−1)(x)− f (n−1)(0)
]

− α3

∫ x

a
(x− τ )2f (n)(x)dτ , 0 ≤ n− 1 < α < n

so that the fractional derivative can be seen as the interpolation
between the function and its derivative (as shown e.g., in Cattani
[25, 26]).

3.2. Sinc Fractional Derivative With

Unbounded Domain
Let us consider the integral of sinc function over the unbounded
domain [−∞, ∞]. By a direct computation it can be shown that

∫

∞

−∞

sinπx

πx
dx = 1,

∫ 1

−1

sinπx

πx
dx ∼

= 1.17

so that the sinc-function is a function mainly localized around
the origin. In fact, the sinc function is known as a function with
a decay to zero, therefore we can extend the definition (3.8)
over the unbounded domain R so that we can define the sinc
fractional derivative as the YGTMB fractional derivative on the
unbounded domain R, that is

Definition 5 (sinc fractional derivative). The sinc fractional
derivative DαS of a function f (x) is defined as

DαS f (x)
def
=

αP(α)

1− α

∫

∞

−∞

sinc
α(x− τ )

1− α
f (n)(x)dτ , 0 ≤ n−1<α<n

(3.10)
where the normalization factor P(α) is chosen to fulfill conditions
(3.2), (3.3) and the kernel is

K(x− τ ,α) =
αP(α)

1− α
sinc

α(x− τ )

1− α
.

In particular, we can also assume

α

1− α
= 2β

so that

α =

2β

1− 2β
, β = log2

α

1− α

and the derivative (3.10) can be written as

D
β
S f (x)

def
= −2β

∫

∞

−∞

sinc (2βτ − 2βx)f (n)(τ )dτ , 2β ≤

n

n+ 1
.

(3.11)

Frontiers in Physics | www.frontiersin.org October 2018 | Volume 6 | Article 11841

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles


Cattani Sinc-Fractional Operator on Shannon Wavelet Space

4. SHANNON WAVELETS

The sinc-function plays a fundamental role also in wavelet theory.
In fact, the basic functions (scaling and wavelet) of the so-called
Shannon wavelets (see e.g., [21–26]) can be defined by the sinc
(3.5). In this section, some remarks on Shannon wavelets and
connection coefficients are shortly summarized.

4.1. Preliminary Remarks
Shannon wavelet theory (see e.g., [21–24]) is based on the scaling
function ϕ(x), also known as sinc function, and the wavelet
function ψ(x) respectively defined as















































ϕ(x) = sinc x
def
=

sinπx

πx
=

eπ ix − e−π ix

2π ix
.

ψ(x) =

sin 2π(x− 1
2 )− sinπ(x− 1

2 )

π(x− 1
2 )

=

e−2 iπ x
(

−i+ eiπ x
+ e3 iπ x

+ i e4 iπ x
)

2π
(

x− 1
2

) .

(4.1)

The second function can be expressed in terms of the first, as

ψ(x) = 2ϕ(2x− 1)− ϕ(x−
1

2
) (4.2)

The families of translated and dilated Shannon scaling functions
[21–24], are

ϕn
k
(x) = 2n/2ϕ(2nx− k) = 2n/2

sinπ
(

2nx− k
)

π
(

2nx− k
)

= 2n/2
eπ i(2

nx−k)
− e−π i(2

nx−k)

2π i
(

2nx− k
) ,

=

2n/2

2π i
(

2nx− k
)

∞
∑

s=0

π sis

s!

[

1− (−1)s
] (

2nx− k
)s

=

2n/2

2π i
(

2nx− k
)

∞
∑

s=0

π sis

s!
(1− eπs)

(

2nx− k
)s

= 2n/2−1
∞
∑

s=1

π s−1is−1

s!

[

1− (−1)s
] (

2nx− k
)s−1

.

(4.3)
By a direct computation it can be easily shown that this series can
be also written as

ϕnk (x) = 2n/2
∞
∑

s=0

(−1)s
π2s

(2s+ 1)!

(

2nx− k
)2s

(4.4)

that is

ϕnk (x) = 2n/2
∞
∑

s=0

(−1)s
π2s

(2s+ 1)!

2s
∑

j=0

(

2s

j

)

(2nx)j(−k)2s−j (4.5)

In the special case when k = 0, from (4.4) we have

ϕn0 (x) = 2n/2
∞
∑

s=0

(−1)s
π2s

(2s+ 1)!
22nsx2s (4.6)

while for the translated instances at the zero scale n = 0 we obtain
from (4.4)

ϕk(x)
def
= ϕ(x− k) =

∞
∑

s=0

(−1)s
π2s

(2s+ 1)!

(

x− k
)2s

(4.7)

Analogously, the translated and dilated instances of the Shannon
wavelets are

ψn
k
(x) = 2n/2

sin 2π(2nx− k− 1
2 )− sinπ(2nx− k− 1

2 )

π(2nx− k− 1
2 )

,

=

2n/2

2π(2nx− k− 1
2 )

2
∑

r=1

i1+rerπ i(2
nx−k)

− i1−re−rπ i(2nx−k) .

(4.8)
or, by taking into account (4.2)

ψn
k (x) = 2ϕn+1

k
(x)− ϕnk (x−

1

2
) (4.9)

and Equation (4.3), it is

ψn
k
(x) = 2n/2

∞
∑

s=1

π s−1is−1

s!

[

1− (−1)s
] (

2nx− k
)s−1

− 2n/2−1
∞
∑

s=1

π s−1is−1

s!

[

1− (−1)s
]

(

2n(x−
1

2
)− k

)s−1

.

From (4.9), by taking into account (4.4), it is

ψn
k (x) = 2n/2

∞
∑

s=0

(−1)s
π2s

(2s+ 1)!

{

23/2
(

2n+1x− k
)2s

−

[(

2nx− k
)

− 2n−1
]2s

}

(4.10)

so that at the zero scale n = 0 it is

ψk(x)
def
= ψ0

k (x) = ψ(x− k) =

∞
∑

s=0

(−1)s
π2s

(2s+ 1)!

{

23/2

(

2x− k
)2s

−

[

(

x− k
)2s

−

1

2

]2s
}

and, at the origin k = 0

ψn(x)
def
= ψn

0 (x) = 2n/2
∞
∑

s=0

(−1)s
π2s

(2s+ 1)!

{

23/2
(

2n+1x
)2s

−

(

2nx− 2n−1
)2s

}

.
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By assuming,

ϕ00(x) = ϕ(x) , ψ0
0 (x) = ψ(x) , ϕ0k (x) = ϕk(x) = ϕ(x− k),

ψ0
k (x) = ψk(x) = ψ(x− k),

and taking into account (4.4),(4.10) the fundamental functions
ϕ(x), ψ(x), can be expressed as the power series



























ϕ(x) =

∞
∑

s=0

(−1)s
π2s

(2s+ 1)!
x2s

ψ(x) =

∞
∑

s=0

(−1)s
π2s

(2s+ 1)!

[

22s+3/2x2s −

(

x−
1

2

)2s
]

.

(4.11)

4.2. Properties of the Shannon Wavelet
Shannon wavelets enjoy some interesting properties. In
particular, when they are evaluated at some special points they
assume some very simple expressions. For instance, according to
(4.3), it is

ϕk(h) = ϕh(k) = ϕ(h− k) = ϕ(k− h) = δkh, (h, k ∈ Z),
(4.12)

so that

ϕk(h) = δkh =







0, h 6= k, (h, k ∈ Z)

1, h = k, (h, k ∈ Z)

Analogously we have [24]

ψn
k
(h) = (−1)2

nh−k 21+n/2

(2n+1h− 2k− 1)π
, (2n+1h− 2k− 1 6= 0)

ψn
k
(x) = 0, x = 2−n

(

k+
1

2
±

1

3

)

, (n ∈ N, k ∈ Z)

lim
x→2−n(h+ 1

2 )
ψn
k (x) = −2n/2δhk,

(4.13)
being,

ψ0
k (0) = (−1)k+1 2

(2k+ 1)π

and since k ∈ Z, 2k+ 1 6= 0.
It can be shown (see e.g., [25]) that both scaling and wavelet

functions are bounded, being:

max[ϕk(xM)] = 1, xM = k, (4.14)

max[ψn
k (xM)] = 2n/2

3
√

3

π
, xM =



















−2−n

(

k+
1

6

)

2−n−1

3
(18k+ 7),

(4.15)

and

lim
x→±∞

ϕnk (x) = 0, lim
x→±∞

ψn
k (x) = 0.

4.3. Shannon Wavelets in Fourier Domain
In order to define the multiscale analysis, based on Shannon
wavelets, we need to define the Hilbert space of functions that
can be reconstructed by them. The Shannon scaling function
owns a very simple expression in the Fourier domain, therefore
it would be easier to define the scalar product in Fourier domain.
To this purpose we define the Fourier transform of the function
f (x) ∈ L2(R), and its inverse transform as

̂f (ω) = ̂f (x)
def
=

1

2π

∫

∞

−∞

f (x)e−iωxdx, f (x) =

∫

∞

−∞

̂f (ω)eiωxdω .

The Fourier transform of (4.1) give us [23]



















ϕ̂(ω) =

1

2π
χ(ω + 3π) =

{

1/(2π), −π ≤ ω < π

0, elsewhere

̂ψ(ω) =

1

2π
eiω/2

[

χ(2ω)+ χ(−2ω)
]

(4.16)
with

χ(ω) =

{

1, 2π ≤ ω < 4π
0, elsewhere .

The Fourier transform fulfills many interesting properties and
among them the following:

f̂ (ax) =
1

a
̂f (
ω

a
), ̂f (x− b) = e−ibω̂f (ω),

d̂n

dxn
f (x) = (iω)n̂f (ω).

(4.17)

So that for the dilated and translated instances of scaling/wavelet
function, in the frequency domain, are



















ϕ̂n
k
(ω) =

2−n/2

2π
eiωk/2

n
χ(ω/2n + 3π)

̂ψn
k
(ω) =

2−n/2

2π
eiω(k+1/2)/2n

[

χ(ω/2n−1)+ χ(−ω/2n−1)
]

.

(4.18)
For the integer order derivatives of scaling and wavelet, according
to (4.17), it is

d̂ℓ

dxℓ
ϕnk (x) = (iω)ℓϕ̂nk (ω),

̂dℓ

dxℓ
ψn
k (x) = (iω)ℓ̂ψn

k (ω) (4.19)

and, thanks to (4.18), we get































d̂ℓ

dxℓ
ϕnk(x) = (iω)ℓ

2−n/2

2π
eiωk/2

n
χ(ω/2n + 3π),

̂dℓ

dxℓ
ψn

k(x) = (iω)ℓ
2−n/2

2π
eiω(k+1/2)/2n

[

χ(ω/2n−1)

+χ(−ω/2n−1)
]

.

(4.20)
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The simple form of these derivative will help us to easily define
also the fractional derivatives of these functions. Moreover, as
we will see in the next section they form a basis for the L2(R)-
functions.

4.4. Wavelet Analysis and Synthesis
Both families of Shannon scaling and wavelet are L2(R)-
functions, therefore for each f (x) ∈ L2(R) and g(x) ∈ L2(R),
the inner product is defined as

〈

f , g
〉 def
=

∫

∞

−∞

f (x) g (x)dx , (4.21)

where the bar stands for the complex conjugate. By taking into
account the Parseval theorem

∫

∞

−∞

f (x) g (x)dx = 2π

∫

∞

−∞

̂f (ω) ĝ (ω)dω,

it is

〈

f , g
〉 def
=

∫

∞

−∞

f (x) g (x)dx = 2π

∫

∞

−∞

̂f (ω) ĝ (ω)dω = 2π
〈

̂f , ĝ
〉

,

(4.22)
Shannon wavelets fulfill the following orthogonality properties
(for the proof see e.g., [23, 24])

〈

ψn
k (x) ,ψ

m
h (x)

〉

= δnmδhk ,
〈

ϕ0k (x) ,ϕ
0
h (x)

〉

= δkh ,
〈

ϕ0k (x) ,ψ
m
h (x)

〉

= 0, m ≥ 0 , (4.23)

δnm, δhk being the Kroenecker symbols.
Let B ⊂ L2(R) the set of functions f (x) in L2(R) such that the

integrals



















αk
def
= 〈f (x),ϕk(x)〉

(4.22)
=

∫

∞

−∞

f (x)ϕ0
k
(x)dx

βn
k

def
= 〈f (x),ψn

k (x)〉
(4.22)
=

∫

∞

−∞

f (x)ψn
k
(x)dx ,

(4.24)

exist with finite values, then it can be shown [23, 24, 27, 44], that
the series

f (x) =

∞
∑

h=−∞

αh ϕh(x)+

∞
∑

n=0

∞
∑

k=−∞

βnkψ
n
k (x) , (4.25)

converges to f (x). So that each function f (x) ∈ B ⊂ L2(R) can be
expressed as the wavelet series (4.25), and it is fully characterized
by the wavelet coefficient αh ,β

n
k
.

According to (4.22) the coefficients can be also computed in
the Fourier domain [24] so that, together with (4.24) we can

alternatively use the integrals











































αk =

∫ π

−π

̂f (ω)eiωkdω ,

βn
k
= 2−n/2

[

∫ 2n+1π

2nπ

̂f (ω)eiω(k+1/2)/2ndω

+

∫

−2nπ

−2n+1π

̂f (ω)eiω(k+1/2)/2ndω

]

.

(4.26)

In the frequency domain, Equation (4.25) gives [24]

̂f (ω) =

1

2π
χ(ω + 3π)

∞
∑

h=−∞

αhe
iωh

+

1

2π
χ(ω/2n−1)

∞
∑

n=0

∞
∑

k=−∞

2−n/2βnk e
iω(k+1/2)/2n

+

1

2π
χ(−ω/2n−1)

∞
∑

n=0

∞
∑

k=−∞

2−n/2βnk e
iω(k+1/2)/2n .

When the upper bound for the series of (4.25), is finite, then we
have the approximation

f (x) ∼=

K
∑

h=−K

αh ϕh(x)+

N
∑

n=0

S
∑

k=−S

βnkψ
n
k (x) . (4.27)

The error of the approximation has been estimated in Cattani
[24, 26].

5. CONNECTION COEFFICIENTS AND

DERIVATIVES

Let us assume that a function f (x) ∈ B, so that f (x) is a function
belonging to the Hilbert space based on Shannon wavelets and
thus being represented in the form of (4.25). In this section
we will give the explicit form of the n-order integer derivative
f (n)(x) and the sinc fractional order derivative DαS f (x). In order
to get these derivatives we need to compute the ℓ-th integer order
derivatives of the Shannon family (scaling and wavelet functions)
ϕh(x),ψ

n
k
(x) and the sinc-fractional derivative. The Equations

(4.20) already give us the expression of the ℓ-order derivative in
the Fourier domain. In the following sections we will give the
explict form of these derivatives also in the space domain.

5.1. Integer Order Derivatives of the

Shannon Wavelets
It can be shown that the integer order derivatives of the Shannon
family can be expressed as orthogonal wavelet series [23, 24, 26]
as follows:
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Definition 6. The integer n-order derivative of the Shannon
scaling and wavelet functions are



























dℓ

dxℓ
ϕh(x) =

∞
∑

k=−∞

λ
(ℓ)
hk
ϕk(x) ,

dℓ

dxℓ
ψm
h (x) =

∞
∑

n=0

∞
∑

k=−∞

γ (ℓ)mn
hk ψ

n
k (x) ,

(5.1)

being

λ
(ℓ)
kh

≡

〈

dℓ

dxℓ
ϕ0k (x) ,ϕ

0
h (x)

〉

, γ (ℓ)nm
kh ≡

〈

dℓ

dxℓ
ψn
k (x) ,ψ

m
h (x)

〉

,

(5.2)
the connection coefficients [21, 23, 45–50].

It should be noticed that the connection coefficients are not
symmetric. In fact it is

〈

dℓ

dxℓ
ϕ0k (x),ϕ

0
h(x)

〉

=

dℓ

dxℓ

〈

ϕ0k (x),ϕ
0
h(x)

〉

−

〈

ϕ0k (x),
dℓ

dxℓ
ϕ0h(x)

〉

,

and by taking into account (4.23), there follows that

λ
(ℓ)
kh

= −λ
(ℓ)
hk

h 6= k

Analogously we have for the coefficients

γ (ℓ)nm
kh = −γ (ℓ)nm

hk

The connection coefficients can be easily computed so that it can
be shown [21, 23, 24]

Theorem 1. The connection coefficients (5.2)1 of the Shannon
scaling functions ϕk(x) are

λ
(ℓ)
kh

=























(−1)k−h+ℓ iℓ

2π

ℓ
∑

s=1

ℓ!π s

s![i(k− h)]ℓ−s+1

[

(−1)s − 1
]

, k 6= h

iℓπℓ+1

2π(ℓ+ 1)

[

1+ (−1)ℓ
]

, k = h ,

(5.3)
when ℓ ≥ 1. When ℓ = 0, it is

λ
(0)
kh

= δkh .

For the proof see e.g., [23].
Analogously, by defining the sign-function µ(x) = sign(x), it

can be shown that

Theorem 2. The connection coefficients (5.2)2 of the Shannon
wavelets ψn

k
(x) are



















































γ (ℓ)nm
kh

= µ(h− k)δnm

{

ℓ+1
∑

s=1

(−1)[1+µ(h−k)](2ℓ−s+1)/2 ℓ!iℓ−s πℓ−s

(ℓ− s+ 1)! |h− k|s
(−1)−s−2(h+k)2nℓ−s−1

×

{

2ℓ+1
[

(−1)4h+s
+ (−1)4k+ℓ

]

− 2s
[

(−1)3k+h+ℓ
+ (−1)3h+k+s

] }

}

, k 6= h

γ (ℓ)nm
kh

= δnm

[

iℓ
πℓ2nℓ−1

ℓ+ 1
(2ℓ+1

− 1)(1+ (−1)ℓ)

]

, k = h

(5.4)

for ℓ ≥ 1, and

γ (0)nm
kh = δkhδ

nm (5.5)

ℓ = 0 respectively.

For the proof see [23].
As a consequence of Equations (5.3),(5.8) the ℓ-order

derivative of the basic functions (4.11) are



















































dℓ

dxℓ
ϕ(x) =

∞
∑

k=−∞

λ
(ℓ)
0k
ϕk(x),

dℓ

dxℓ
ψ(x) =

∞
∑

n=0

∞
∑

k=−∞

γ (ℓ)0n
0hψ

n
h (x)

=

∞
∑

h=−∞

γ (ℓ)00
0hψ

0
h (x),

(5.6)

with

λ
(ℓ)
0k

=























(−1)k+ℓ
iℓ

2π

ℓ
∑

s=1

ℓ!π s

s!(ik)ℓ−s+1

[

(−1)s − 1
]

, k 6= 0

iℓπℓ+1

2π(ℓ+ 1)

[

1+ (−1)ℓ
]

, k = 0 ,

(5.7)
and


























































γ (ℓ)00
0h

= µ(h)

{

ℓ+1
∑

s=1

(−1)[1+µ(h)](2ℓ−s+1)/2

×
ℓ!iℓ−s πℓ−s

(ℓ−s+1)! |h|s
(−1)−s−2h2−s−1

×

{

2ℓ+1
[

(−1)4h+s

+(−1)ℓ
]

− 2s
[

(−1)h+ℓ + (−1)3h+s
] }

}

, h 6= 0

γ (ℓ)00
0h

=

[

iℓ
πℓ2−1

ℓ+ 1
(2ℓ+1

− 1)(1+ (−1)ℓ)

]

, h = 0

(5.8)

In particular it is

λ(ℓ)
def
= λ

(ℓ)
00 =

iℓπℓ+1

2π(ℓ+ 1)

[

1+ (−1)ℓ
]

(5.9)

It can be easily shown that λ(ℓ) = 0 for odd ℓ so that we have

λ(ℓ) =







(−1)s
π2s

2s+ 1
, ℓ = 2s

0 , ℓ = 2s+ 1
(s = 1, 2, . . .) (5.10)
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For instance according to (5.6), (5.7) a good approximation of the
2nd order derivative of ϕ(x) is

d2

dx2
ϕ(x) ∼

=

2
∑

k=−2

λ
(ℓ)
0k
ϕk(x) = −

1

2
ϕ−2(x)+ 2ϕ−1(x)−

1

3
π2ϕ(x)

+2ϕ1(x)−
1

2
ϕ2(x) .

Also for higher derivatives with high amplitude, the
approximation is quite good. For instance according to (5.6),
(5.7) for the 7-th derivative of ϕ(x) a quite good approximation
is obtained with 15 terms

dℓ

dxℓ
ϕ(x) ∼=

7
∑

k=−7

λ
(ℓ)
0k
ϕk(x)

5.2. Properties of Connection Coefficients
The connection coefficients own many interesting properties like
e.g., the following for the scaling functions

Theorem 3. The connection coefficients (5.3) are defined
recursively by

λ
(ℓ+1)
kh

=



















ℓ+ 1

k− h
λ
(ℓ)
kh

− (−1)k−h i
ℓπℓ+1

k− h
[(−1)ℓ + 1], k 6= h

iπ
ℓ+ 1

ℓ+ 2
λ
(ℓ)
kh

+

(−i)ℓ+1πℓ+1

ℓ+ 2
, k = h ,

(5.11)

Proof: see [26].
Analogously for the coefficients γ .

Theorem 4. The connection coefficients (5.8) are recursively given
by the matrix at the lowest scale level:

γ (ℓ)nn
kh = 2ℓ(n−1)γ (ℓ)11

kh . (5.12)

Proof : see [26].
Moreover we can easily check that

γ (2ℓ+1)nn
kh = −γ (2ℓ+1)nn

hk , γ (2ℓ)nn
kh = γ (2ℓ)nn

hk .

5.3. Taylor Series
By using the connection coefficients, and taking into account that
the basic functions, according to (5.1), are C∞-functions, it is easy
to show the following theorem:

Theorem 5. Let f (x) ∈ B ⊂ L2(R) the ℓ ≥ 1 order derivative is
given by

f (ℓ)(x) =

∞
∑

h,k=−∞

αh λ
(ℓ)
hk
ϕk(x)+

∞
∑

n,m=0

∞
∑

k,s=−∞

βnk γ
(ℓ)mn

sk ψ
m
s (x)

(5.13)
where the coefficients αh, β

n
k
are given by (4.24) (or (4.26)) and the

connection coefficients are given by (5.3), (5.8).

Proof : The proof easily follows from Equations (4.25), (5.1).
2

Theorem 6. If f (x) ∈ Bψ ⊂ L2(R) and f (x) ∈ C
S the Taylor series

of f (x) in x0 is

f (x) = f (x0)+

∞
∑

r=1





∞
∑

h, k=−∞

αh λ
(r)
hk
ϕk(x0)

+

∞
∑

n=0

∞
∑

k, s=−∞

2r(n−1)βnk γ
(r)11

skψ
n
s (x0)





(x− x0)
r

r!

(5.14)

being αh and β
n
k
given by (4.24), (4.26).

Proof: From (4.25), the ℓ-order derivative (ℓ ≤ S) is

f (ℓ)(x) =

∞
∑

h=−∞

αh
dℓ

dxℓ
ϕh(x)+

∞
∑

n=0

∞
∑

k=−∞

βnk
dℓ

dxℓ
ψn
k (x) ,

(5.1)
=

∞
∑

h=−∞

αh

∞
∑

k=−∞

λ
(ℓ)
hk
ϕk(x)+

∞
∑

n=0

∞
∑

k=−∞

βnk

∞
∑

m=−∞

∞
∑

s=−∞

γ (ℓ)mn
sk ψ

m
s (x) ,

=

∞
∑

h, k=−∞

αh λ
(ℓ)
hk
ϕk(x)+

∞
∑

n,m=0

∞
∑

k, s=−∞

βnk γ
(ℓ)mn

sk ψ
m
s (x) ,

so that by taking into account (5.12) the proof follows.
2

By a suitable choice of the initial point x0 Equation (5.14) can
be simplified. For instance, at the integers, x0 = j, (j ∈ Z),
according to Equations (4.12), (5.12) it is

f (x) ∼
= f (j)+

S
∑

r=1





∞
∑

h=−∞

αh λ
(r)
hj

+

∞
∑

n=0

∞
∑

k,s=−∞

2r(n−1)+1+n/2

(2n+1h− 2s− 1)π
βnk γ

(r)11
skψ

n
s (h)





(x− j)r

r!

In particular, for x0 = j = 0, Equation (5.14) gives

f (x) = f (0)+

∞
∑

r=1





∞
∑

h,k=−∞

αh λ
(r)
hk
ϕk(0)+

∞
∑

n=0

∞
∑

k, s=−∞

2r(n−1)βnk γ
(r)11

skψ
n
s (0)





xr

r!

= f (0)+

∞
∑

r=1





∞
∑

h=−∞

αh λ
(r)
h0

+

∞
∑

n=0

∞
∑

k, s=−∞

2r(n−1)βnk γ
(r)11

skψ
n
s (0)





xr

r!

(5.15)
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and since

ψn
s (0) = (−1)s

21+n/2

(−2s− 1)π
, (−2k− 1 6= 0)

we get

f (x) = f (0)+

∞
∑

r=1

[

∞
∑

h=−∞

αh λ
(r)
h0

+

∞
∑

n=0

∞
∑

k,s=−∞

(−1)s+12n(r+1/2)+1−r

(2s+ 1)π
βn
k
γ (r)11

sk

]

xr

r!

(5.16)

with λ
(r)
h0

given by (5.7) and γ (r)11
sk

by (5.8) respectively. So that
each function f (x) ∈ B ⊂ L2(R), can be easily expressed as a
power series, when the finite values of the wavelet coefficients αh,
βn
k
are given, according to (4.24),(4.26).
There follows, in particular, the Taylor power series for the

basic functions ϕ(x), ψ(x):































ϕ(x) = 1+

∞
∑

r=1





∞
∑

h=−∞

λ
(r)
h0





xr

r!

ψ(x) = −

2

π
+

∞
∑

r=1





∞
∑

n=0

∞
∑

k,s=−∞

(−1)s+12n(r+1/2)+1−r

(2s+ 1)π
δnkγ

(r)11
sk





xr

r!

(5.17)

being ψ(0) = −

2

π
, according to (4.1).

For a fixed r the series

3r def
=

∞
∑

h=−∞

λ
(r)
h0
, r ≥ 1, h 6== 0

is converging, as can be easily shown by using Equation (5.7). In
particular it is

λ
(1)
h0

= −

(−1)h

h
, λ

(2)
h0

= −2
(−1)h

h2
, λ

(3)
h0

= (−1)h
(

π2

h
−

6

h3

)

,

λ
(4)
h0

= (−1)h
(

4π2

h2
−

24

h4

)

, λ
(5)
h0

= (−1)h
(

π4

h
−

20π2

h3
+

120

h5

)

λ
(6)
h0

= −(−1)h
(

6π4

h2
−

120π2

h4
+

720

h6

)

, . . .

Moreover, since for odd r it is3(r)
= 0 while for even r it is

32r
= 2

∞
∑

h=0

λ
(r)
h0
, r ≥ 1, h 6== 0

so that ϕ(x) can be written as the power series

ϕ(x) =

∞
∑

r=0

3r

r!
xr , (30 def

= 1)

The first (approximated) values of the coefficients3 are:

30
= 1, ,31

= 0.69, ,32
= 1.64, ,33

= −1.43, ,

34
= −9.74, ,35

= 6.19

In particular, the Taylor series for the wavelet function ψ(x) can
be also easily computed as follows:

ψ(x) = ψ(0)+

∞
∑

ℓ=1

(

dℓψ(x)

dxℓ

)

x=0

xℓ

ℓ!

(5.1),(5.6)
= −

2

π
+

∞
∑

ℓ=1





∞
∑

k=−∞

γ (ℓ)00
0kψ

0
k (0)





xℓ

ℓ!

(4.13)
= −

2

π
+

∞
∑

ℓ=1





∞
∑

k=−∞

γ (ℓ)00
0k(−1)k+1 2

(2k+ 1)π





xℓ

ℓ!

that is

ψ(x) = −

2

π
+

∞
∑

ℓ=1





∞
∑

k=−∞

(−1)k+1 2

(2k+ 1)π
γ (ℓ)00

0k





xℓ

ℓ!

(5.18)

6. SINC-FRACTIONAL DERIVATIVES FOR

THE FUNCTIONS F(X) ∈ B ⊂ L2(R)

The sinc fractional derivative (3.10) is defined by a sinc kernel
over an infinite domain. Although the sinc-function is the basic
function for Shannon wavelet, this kernel is not a Shannon
scaling function for the reason that the sinc function depends
on the fractional (non-integer) order of derivative. On the other
hand as shown by the Equation (5.13) the n-integer order
derivative can be written as a linear combination of ϕk(x), ψ

m
k
(x).

Therefore, in order to give an explicit form to (3.10) as a function
of Shannon wavelet and connection coefficients, we need to
compute the scalar products of Shannon scaling and wavelet with
sinc-function.

6.1. Scalar Products of the Shannon

Scaling and Wavelet Functions With

Sinc-Function
In this section we consider the scalar product of the sinc
function with the Shannon scaling and wavelet functions and
corresponding derivatives. We need these products to compute
the sinc fractional derivatives.

6.1.1. Scalar Product of the Shannon Scaling

Function With Sinc-Function
Let us assume a, b ∈ R and show the following theorem:

Theorem 7. The scalar product ot the scaling functions ϕk(τ )with
the sinc-function is

〈sinc (aτ − b),ϕk(τ )〉 =



















2π

a
sinc (b+ k), a ≥ 1

2π

a2
sinc

(b+ k)

a
, a < 1 .

(6.1)
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Proof: It is by definition

〈sinc (aτ − b),ϕk(τ )〉 =

∫

∞

−∞

sinc (aτ − b)ϕk(τ )dτ .

According to (4.22) this product can be easily done in the Fourier
domain,

〈sinc (aτ − b),ϕk(τ )〉 = 2π〈 ̂sinc (aτ − b), ϕ̂k(τ )〉

from where by using the properties (4.17) it is

̂sinc (aτ − b) =
1

a
̂sinc (

ω

a
)e−ibω , ̂sinc (

ω

a
)
(4.16)
=

1

2π
χ(
ω

a
+ 3π)

so that by taking into account (4.18)1

〈sinc (aτ − b),ϕk(τ )〉 = 2π
1

a

1

2π
〈e−ibωχ(

ω

a
+ 3π), e−ikωχ(ω + 3π)〉 .

The integral can be easily computed, being

〈e−ibωχ(
ω

a
+ 3π), e−ikωχ(ω + 3π)〉

=

∫

∞

−∞

e−i(b+k)ωχ(
ω

a
+ 3π)χ(ω + 3π)dω〉 .

There follows that, if
1

a
≤ 1 it is

∫

∞

−∞

e−i(b+k)ωχ(
ω

a
+ 3π)χ(ω + 3π)dω =

∫

∞

−∞

e−i(b+k)ωχ(ω + 3π)dω

=

∫ π

−π

e−i(b+k)ωdω = 2πsinc (b+ k) .

While for
1

a
> 1 it is

∫

∞

−∞

e−i(b+k)ωχ(
ω

a
+ 3π)χ(ω + 3π)dω =

∫

∞

−∞

e−i(b+k)ωχ(
ω

a
+ 3π)dω

=

∫ π
a

−
π
a

e−i(b+k)ωdω =

2π

a
sinc

(b+ k)

a
.

From where there easily follows the result (6.1).
2

In particular, according to (4.17), it is

̂
sinc

α(x− τ )

1− α
=

̂
sinc

α

α − 1
(τ − x)

(4.17)
= e−i α

α−1 xω
̂

sinc

(

α

α − 1
τ

)

that is

̂
sinc

α(x− τ )

1− α
=

α − 1

α
e−i α

α−1 xω ̂sinc

(

α − 1

α
ω

)

.

Since we have

̂sinc (τ )
(4.16)
=

1

2π
χ(ω + 3π)

there follows

̂
sinc

α(x− τ )

1− α
=

1

2π

α − 1

α
e−i α

α−1 xωχ

(

α − 1

α
ω + 3π

)

so that, by taking

a =

α

α − 1
, b =

α

α − 1
x

from (6.1) we get

〈

sinc

(

α

α − 1
τ −

α

α − 1
x

)

,ϕk(τ )

〉

=



















2π(α − 1)

α
sinc

(

α

α − 1
x+ k

)

, α ≥ 1

2π(α − 1)2

α2
sinc

(

x+ k
α − 1

α

)

, α < 1 .

(6.2)

Analogously we can give an explicit form to the scalar product of
the integer n-order derivative.

Theorem 8. The scalar product of the n-th order derivative

ϕ
(n)
k

(τ ) with the sinc-function is

〈sinc (aτ − b),ϕ
(n)
k

(τ )〉 =























∫ π

−π

(iω)ne−i(b+k)ωdω, a ≥ 1

∫ π
a

−
π
a

(iω)ne−i(b+k)ωdω, a < 1

(6.3)

Proof: It is

〈sinc (aτ − b),ϕ
(n)
k

(τ )〉 =

∫

∞

−∞

sinc (aτ − b)ϕ
(n)
k

(τ )dτ .

According to (4.22) this product can be easily done in the Fourier
domain,

〈sinc (aτ − b),ϕ
(n)
k

(τ )〉 = 2π〈 ̂sinc (aτ − b),
̂
ϕ
(n)
k

(τ )〉

from where by using the properties (4.17) it is

̂sinc (aτ − b) =

1

2πa
e−ibωχ(

ω

a
+ 3π) ,

̂
ϕ
(n)
k

(τ ) = (iω)nϕ̂k(τ ) = (iω)ne−ikωχ(ω + 3π)

so that by taking into account (4.18)1

〈sinc (aτ − b),ϕ
(n)
k

(τ )〉

= 2π
1

a

1

2π
〈e−ibωχ(

ω

a
+ 3π), (iω)ne−ikωχ(ω + 3π)〉 .

The integral can be easily computed, being

〈e−ibωχ(
ω

a
+ 3π), e−ikωχ(ω + 3π)〉
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=

∫

∞

−∞

(iω)ne−i(b+k)ωχ(
ω

a
+ 3π)χ(ω + 3π)dω〉 .

There follows that, if
1

a
≤ 1 it is

∫

∞

−∞

(iω)ne−i(b+k)ωχ(
ω

a
+ 3π)χ(ω + 3π)dω

=

∫

∞

−∞

(iω)ne−i(b+k)ωχ(ω + 3π)dω

=

∫ π

−π

(iω)ne−i(b+k)ωdω .

While for
1

a
> 1 it is

∫

∞

−∞

(iω)ne−i(b+k)ωχ(
ω

a
+ 3π)χ(ω + 3π)dω

=

∫

∞

−∞

(iω)ne−i(b+k)ωχ(
ω

a
+ 3π)dω

=

∫ π
a

−
π
a

(iω)ne−i(b+k)ωdω .

From where there easily follows the result (6.1).
2

In particular, for the first derivative it is

∫ π

−π

(iω)e−i(b+k)ωdω =

2π

b+ k

[

sinc (b+ k)− cos(b+ k)π
]

and

∫ π
a

−
π
a

(iω)ne−i(b+k)ωdω =

2π

a(b+ k)

[

sinc
b+ k

a
− a cos

b+ k

a
π

]

so that

〈sinc (aτ − b),ϕ′k(τ )〉

=



















2π

b+ k

[

sinc (b+ k)− cos(b+ k)π
]

, a ≥ 1

2π

a(b+ k)

[

sinc
b+ k

a
− a cos

b+ k

a
π

]

, a < 1 .

(6.4)

In general the scalar product of the n-order derivative (with n >
1) is given by the lengthly computation of the integrals (6.3). In
the next section we will see that this computation can be avoided
by using the connection coefficients.

6.1.2. Scalar Product of the Shannon Wavelets With

Sinc Function
Analogously, for the derivative of the wavelet function it can be
easily shown that

Theorem 9. Let a, b ∈ R, the scalar product ot the wavelet
functions ψn

k
(τ ) with the sinc-function is

〈sinc (aτ − b),ψn
k (τ )〉 = Ŵn

k (τ , a, b)
def
=

2n/2+1

aπ(2n+1b− 2k− 1)
×

×































0 , a < 1

sin

(

1

2
a(2b− 2−n(1+ 2k))

)

π + cos(−2nb+ k)π , 2n < a < 2n+1

sin
(

−2n+1b+ 2k
)

π + cos(−2nb+ k)π , 2n+1
≥ a .

(6.5)

Proof: It is

〈sinc (aτ − b),ψn
k (τ )〉 =

∫

∞

−∞

sinc (aτ − b)ψn
k (τ )dτ .

According to (4.22) this product can be easily done in the Fourier
domain,

〈sinc (aτ − b),ψn
k (τ )〉 = 2π〈 ̂sinc (aτ − b), ̂ψn

k
〉

from where by using the properties (4.17), it is

̂sinc (aτ − b) =
1

a

1

2π
χ(
ω

a
+ 3π)e−ibω

so that by taking into account (4.18)2

〈sinc (aτ − b),ψn
k (τ )〉 =

2−n/2

2aπ

〈

e−ibωχ(
ω

a
+ 3π), eiω(k+1/2)/2n

[

χ(ω/2n−1)+ χ(−ω/2n−1)
]〉

that is

〈sinc (aτ − b),ψn
k (τ )〉 =

2−n/2

2aπ

〈

eiω(k+1/2−2nb)/2nχ(
ω

a
+ 3π),

[

χ(ω/2n−1)+ χ(−ω/2n−1)
]〉

.

Let us notice that the value of the scalar product (and then
of the integral) depends on the non-vanishing values of the
characteristic function. On the other hands the characteristic
function χ depends on the values a, n , k. In fact the non-
vanishing values of the characteristic functions are

χ(
ω

a
+ 3π) = 1, if −aπ < ω < aπ

χ(ω/2n−1) = 1, if 2nπ < ω < 2n(2π)

χ(−ω/2n−1) = 1, if −2n(2π) < ω < −2nπ .

There follow three cases:

1. aπ < π . In this case a < 1, the characteristic functions have
some disjoint intervals and the scalar product vanishes

〈

eiω(k+1/2−2nb)/2nχ(
ω

a
+ 3π),

[

χ(ω/2n−1)+ χ(−ω/2n−1)
]

〉

= 0 .
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2. 2nπ < aπ < 2n(2π). Here we have 2n < a < 2n+1 the
integral becomes

〈

eiω(k+1/2−2nb)/2nχ(
ω

a
+ 3π),

[

χ(ω/2n−1)+ χ(−ω/2n−1)
]〉

=

=

∫

−2nπ

−aπ
eiω(k+1/2−2nb)/2ndω +

∫ aπ

2nπ
eiω(k+1/2−2nb)/2ndω

=

2n+2

2n+1b− 2k− 1

[

sin

(

1

2
a(2b− 2−n(1+ 2k))

)

π + cos(−2nb+ k)π

]

.

3. 2n(2π) ≤ aπ . We have 2n+1
≤ a so that the integral is

〈

eiω(k+1/2−2nb)/2nχ(
ω

a
+ 3π),

[

χ(ω/2n−1)+ χ(−ω/2n−1)
]

〉

=

=

∫

−2nπ

−2n+1π

eiω(k+1/2−2nb)/2ndω +

∫ 2n+1π

2nπ
eiω(k+1/2−2nb)/2ndω

=

2n+2

2n+1b− 2k− 1

[

sin
(

−2n+1b+ 2k
)

π + cos(−2nb+ k)π
]

.

From where we obtain (6.5). 2

6.2. Sinc-Fractional Derivative of Functions

f(x) ∈ B ⊂ L2(R)
In order to define the sinc-fractional derivative for the functions
f (x) ∈ B, according to the reconstruction formula (4.25) we
need to compute the sinc-fractional derivative of the scaling and
wavelet functions. These derivatives are given by the following
theorems.

Theorem 10. The sinc-fractional derivative (3.10) of the scaling
function ϕk(x) is

DαSϕh(x) = −2πP(α)

∞
∑

k=−∞

λ
(n)
hk

×



















sinc

(

α

α − 1
x+ k

)

, α ≥ 1

α − 1

α
sinc

(

x+
α

1− α
k

)

, α < 1

(6.6)

Proof : Starting from the definition (3.10) of the sinc-derivative
it is

DαSϕh(x)
(3.10)
=

αP(α)

1− α

∫

∞

−∞

sinc
α(x− τ )

1− α

dn

dτn
ϕh(τ )dτ , (6.7)

According to (4.22), the derivatives (6.7), can be written also as
scalar product,

DαSϕh(x) =
αP(α)

1− α

〈

sinc
α(x− τ )

1− α
,

dn

dτn
ϕh(τ )

〉

, (6.8)

From here by using the integer order derivatives (5.1) we

DαSϕh(x) =
αP(α)

1− α

∞
∑

k=−∞

λ
(n)
hk

〈

sinc
α(x− τ )

1− α
, ϕk(τ )

〉

, (6.9)

So that the computation of the sinc-fractional derivative of a
function, that can be expressed as wavelet series, is reduced to
the computation of the scalar product:

〈

sinc
α(x− τ )

1− α
, ϕk(τ )

〉

, 0 ≤ n− 1 < α < n (6.10)

which is given by (6.1) with

a =

α

α − 1
, b =

α

α − 1
x .

It can be easily seen that these inequalities imply

a ≥ 1 H⇒ α ≥ 1, a < 1 H⇒ α < 1 .

From these inequalities, by taking into account (6.1),(6.9), there
easily follows (6.6).

2

Analogously, we have for the Shannon wavelet fractional
derivatives the following

Theorem 11. The sinc-fractional derivative (3.10) of the Shannon
wavelets ψm

h
(x) is

DαSψ
m
h (x) =

αP(α)

1− α

∞
∑

s=0
∞
∑

k=−∞

γ (n)ms
hk

2s/2+1(α − 1)

απ(2s+1 α
α−1 − 2k− 1)

×

×



















































0, a < 1

sin

(

1

2

α

α − 1
(2

α

α − 1
x− 2−s(1+ 2k))

)

π

+ cos(−2s α
α−1x+ k)π , 2s < a < 2s+1

sin
(

−2s+1b+ 2k
)

π + cos(−2sb+ k)π , 2s+1
≥ a

(6.11)

Proof : From the definition (3.10) it is

DαSψ
m
h (x)

(3.10)
=

αP(α)

1− α

∫

∞

−∞

sinc
α(x− τ )

1− α

dn

dτn
ψm
h (τ )dτ , (6.12)

According to (4.22), this derivative can be written also as scalar
product,

DαSψ
m
h (x) =

αP(α)

1− α

〈

sinc
α(x− τ )

1− α
,

dn

dτn
ψm
h (τ )

〉

, (6.13)

so that by taking into account (5.1) which gives the integer order
derivatives it is

DαSψ
m
h (x) =

αP(α)

1− α

∞
∑

s=0

∞
∑

k=−∞

γ (n)ms
hk

〈

sinc
α(x− τ )

1− α
, ψ s

k(τ )

〉

, (6.14)

and using (6.5) we get (6.11).
2
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Equations (6.6) and (6.11) enable us to compute explicitly the
sinc-fractional derivative of any function belonging to the Hilbert
space B ⊂ L2(R). In fact, let f (x) ∈ B a function such that it
can be represented as the wavelet series (4.25). Its sinc-fractional
derivative can be computed according to

Theorem 12. The sinc-fractional derivative of the wavelet
representation (4.25) of function f (x) ∈ B ⊂ L2(R), is given by

DνS f (x) = −2πP(ν)

∞
∑

h=−∞

αh

∞
∑

k=−∞

λ
(n)
hk

×



















sinc

(

ν

ν − 1
x+ k

)

, ν ≥ 1

ν − 1

ν
sinc

(

x+
ν

1− ν
k

)

, ν < 1

+

νP(ν)

1− ν

∞
∑

m=0

∞
∑

k=−∞

βmh

∞
∑

s=0
∞
∑

k=−∞

γ (n)ms
hk

2s/2+1(ν − 1)

νπ(2s+1 ν
ν−1 − 2k− 1)

×

×







































































0 , ν < 1

sin

(

1

2

ν

ν − 1
(2

ν

ν − 1
x− 2−s(1+ 2k))

)

π

+ cos(−2s
ν

ν − 1
x+ k)π , 2s < ν < 2s+1

sin

(

−2s+1 ν

ν − 1
x

+2k

)

π + cos(−2s ν
ν−1x+ k)π , 2s+1

≥ ν

(6.15)

with 0 ≤ n− 1 < ν < n.

Proof : Let us start from Equation (3.10), and the
representation (4.25), because of the linearity of the operator we
have

DνS f (x) =

∞
∑

h=−∞

αh D
ν
Sϕh(x)+

∞
∑

m=0

∞
∑

k=−∞

βmh DνSψ
m
h (x)

where the wavelet coefficients αh, β
m
h

are given by (4.24) [or
(4.26)]. From here, by using (6.6) and (6.11), we get (6.15).

2

In particular, with n = 1 we have

Theorem 13. The sinc-fractional derivative of the wavelet
representation (4.25) of function f (x) ∈ B ⊂ L2(R), with order
0 < ν < 1, is

DνS f (x) = 2πP(ν)
1− ν

ν

∞
∑

h=−∞

αh

∞
∑

k=−∞

λ
(1)
hk
sinc

(

x+
ν

1− ν
k

)

,

0 < ν < 1

(6.16)

Proof : Follows directly from Equation (6.15).

6.3. Example: Fractional Derivative of the

Gaussian Function
In order to show the efficiency of the proposed method for
the computation of a fractional derivative, let us consider the

function e−x2 . A good approximation of this function, in terms
of Shannon wavelet expansion (4.25), can be obtained as

e−x2 ∼
=

1
∑

h=−1

αhϕh(x)+

0
∑

n=0

1
∑

h=−1

βnhψ
n
h (x)

∼
= α−1ϕ−1(x)+ α0ϕ(x)+ α1ϕ1(x)+

+ β0
−1ψ

0
−1(x)+ β

0
0ψ

0
0 (x)+ β

0
1ψ

0
1 (x)

where

α−1 = α1 = 0.123, α0 = 0.30, ψ0
−1 = ψ0

1 = 0.004, ψ0
0 = 0.001 .

If we neglect also the detailed coefficients βn
k
the approximate

Shannon wavelet representation is

e−x2 ∼
= 0.123 ϕ−1(x)+ 0.30 ϕ(x)+ 0.123 ϕ1(x) .

From (6.16) we have

DνSe
−x2 ∼

= 2πP(ν)
1− ν

ν

1
∑

h=−1

αh

1
∑

k=−1

λ
(1)
hk
sinc

(

x+
ν

1− ν
k

)

,

0 < ν < 1 .

The matrix λ
(1)
hk
, according to (5.3) is

λ
(1)
−1−1 = λ

(1)
00 = λ

(1)
11 = 0 , λ

(1)
0−1 = −λ

(1)
−10 = λ

(1)
10 = −λ

(1)
01 = 1 ,

λ
(1)
−11 = −λ

(1)
1−1 =

1

2

so that by simplifying we get

DνSe
−x2 ∼

= 2πP(ν)
1− ν

ν
(α0 −

1

2
α1)

[

sinc

(

x−
ν

1− ν

)

−sinc

(

x+
ν

1− ν

)]

, 0 < ν < 1

that is

DνSe
−x2 ∼

= 0.47πP(ν)
1− ν

ν

[

sinc

(

x−
ν

1− ν

)

−sinc

(

x+
ν

1− ν

)]

, 0 < ν < 1 .

CONCLUSION

Sinc function is playing a fundamental role in mathematics and
physics. Due to the many properties of this function it deserves a
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special role in applications. In recent years some Authors have
proposed [20] a fractional derivative based on this function.
Moreover a wavelet theory based on the sinc function has been
settled thus extending themany features of the Sinc. In this paper
the sinc-fractional derivative has been extended to the Shannon
wavelet space, in order to give the explicit analytical form of the
fractional derivatives of functions belonging to the wavelet space.
It has been shown that the sinc-fractional derivative is the most

natural and suitable choice of fractional operator when dealing
with functions that can be represented as Shannon wavelet
series.
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The study addresses the physical background and modeling of linear viscoelastic

response functions and their reasonable relationships to the Caputo-Fabrizio fractional

operator via the Prony (Dirichlet series) series decomposition. The problem of

interconversion with power-law and exponential (single and multi-term functions) has

been discussed. Special attentions have been paid on the Prony series decomposition

approach, the related interconversion problems and the expression of the viscoelastic

constitutive equations in terms of Caputo-Fabrizio fractional operator.
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Nothing is done in a vacuum; we must all stand on our forefathers to better ourselves and the world

around us.

(Sir Isaac Newton, in his letter to rival Robert Hooke in 1676)

Science is built up of facts, as a house is built of stones; but an accumulation of facts is no more a science

than a heap of stones is a house.

(Henri Poincare)

1. INTRODUCTION

This article addresses the physical background of modeling of dissipative phenomena, precisely
response functions such as stress-strain relationships in the framework of the linear viscoelasticity
and their reasonable relationships to the Caputo-Fabrizio fractional operator [1] via the Prony
(Dirichlet series) series decomposition [2].

The appearance of the new definition of fractional derivatives with non-singular kernels was
provoked by needs to model dissipative transport processes in many new materials appearing in
modern technologies [1]. Recently the main achievements, especially results related to diffusion
problems, were analyzed Hristov in [3] and we will avoid the thorough browsing and comments
of published results (see also the rich list of reference in Hristov [3]). In the context of diffusion
problems it was demonstrated that the Caputo-Fabrizio operator appears naturally in diffusion
models [3, 4] when the flux-gradient relationship is expressed by a Jeffrey relaxation kernel and the
Maxwell-Cattaneo concept of flux.

At the same time the Caputo-Fabrizio fractional operator was criticized [5–7] with points of view
based on the classical fractional calculus with singular power-lawmemory kernel andwith examples
from the signal processing [6] and to some extent touching formal rheological relationship [5].
Despite the mathematical exactness of the counterexamples they do not focus the attention on the
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Hristov Linear Viscoelastic Responses

physical basis leading to exponential memory kernels. As a
matter of fact, we need a clear answer what really this new
operator models and how it appears in the modeling of physical
problems, despite the fact that some properties known from the
classical fractional calculus, such as the index law [6] , are not
satisfied.

1.1. Motivation of This Study
The analysis done here and the principle task are oriented to
modeling of viscoelastic constitutive relationships in terms of
Caputo-Fabrizio operator naturally appearing through Prony
series decomposition [2] of stress relaxation functions and not
obeying power-law behaviors. That is, we focus on viscoelastic
materials with dynamics which cannot be modeled with the
classical fractional derivatives of Riemann-Liouville and Caputo
[8].

This introduction avoids huge citations of works on Caputo-
Fabrizio operators since without understanding of the physical
background and the logic of its appearance any analysis
of models created by formalistic fractionalization (see the
comments in Hristov et al. [3]) is unproductive. Moreover,
to the author personal experience as editor many manuscripts
devoted to applications of the Caputo-Fabrizio derivative in
formalistically fractionalized existing models are directly rejected
by the reviewers with motivations based of the opinions in
the criticizing articles [5–7]. This situation resembles that
in the Catch 22 movie without perspective for escape. The
existing situation is a consequence of some main reasons: (1)
The Caputo-Fabrizio operator does not hold some properties
such as the semi-groups, which are existing with the classical
fractional derivatives with singular kernels, the strange form of
the associated fractional integral and these issues cast doubts
when it is applied inadequately (in blind manner) to various
functions in a manner known from the integer-order calculus.
(2) The formalistic approach by simple replacements of integer
or fractional order (with singular kernels) derivatives with the
Caputo-Fabrizio operator in existing models without taking into
account the physics behind. (3) Last but not least, the human
factor of author’s rivaling which is dividing the scientific society
into competing groups rejecting the achievements of each other.
All these elements of the current situation create a discouraging
atmosphere and disbelieve that this new fractional operator really
cannot model natural phenomena and actually stops the further
research, generally among the young researchers highly aspiring
publications of submitted manuscripts.

The deep physics behind the fractional operator with
exponential kernel (and the author’s long time experience in
science) motivated this study and the efforts are oriented to show
that the existing knowledge and models, as well as techniques
of data treatment, in the framework of linear viscoelasticity,
lead naturally to formulation of the Caputo-Fabrizio fractional
operator. This is in the context of the Sir Isaac Newton quote
at the beginning of the article: the steps ahead on the shoulder
of existing facts and results on the road to creations of new
information are natural ways and actually the exciting moments
in the beautiful journey in the world of science.

1.2. Aim and Paper Organization
This article is organized as follows: section 3 presents briefly
the main properties of the Caputo-Fabrizio operator that will
be used further in the analysis of the viscoelastic problems.
Section 3 addresses the constitutive equations of viscoelasticity
based on the Boltzmann superposition principle [9] and fading
memory approach incorporated the hereditary stress and strain
integrals. The principle problems of the quality and choice of
the response function are discussed and the main properties
requited are outlined in section 3.3. The interconversion of
relaxation and creep response functions is discussed in section
4: the linear and non-linear scale-invariant (power-law) (related
to application of Riemann-Liouville and responses are analyzed.
Section 5 focuses on decompositions of experimental response
functions by Prony series leading to discrete spectra and the
related interconversions by examples with single term, two-
terms and multi-term responses of exponential type, as well as
interconversion of relaxation and creep compliance expressed
as Prony series. Section 6 demonstrates how the constitutive
equations (based on the Maxwell model) can be expressed in
terms of the Caputo-Fabrizio fractional operator. The subsection
6.3 demonstrates that approximation of the response function
by Bessel functions (of Maxwell-like materials) of first kind
and expressed as infinite Dirichlet series naturally leads to
incorporation of the Caputo-Fabrizio operator in the constitutive
equations. Section 7 demodulates briefly how constitutive
relationship (following the idea of Bagley and Torvik) with two
fractional operators of Caputo-Fabrizio (of different orders) can
be formulated.

2. CAPUTO -FABRIZIO OPERATOR

2.1. Definition
The Caputo -Fabrizio operator is defined as [1]

cfD
α
t f (t) =

M (α)

1− α

t
∫

0

exp

[

−

α (t − s)

1− α

]

df (s)

dt
ds, 0 < α < 1

(1)
In Equation (1) M (α) is a normalization function such that
M (0) = M (1) = 1. This definition is of Caputo-type
because there is a convolution of the derivative df (t)/dt. The
explanations in [1] relate the development of Equation (1) to the
classical Caputo derivative [8] bymechanistic replacements of the
singular kernel (by a non-singular exponential kernel) and the
normalization function (see the explanations in Hristov [3].

From Equation (1) it follows that if f (t) = C = const., then

cfD
α
t C = 0 as in the classical Caputo derivative [8]. Actually,

Equation (1) is a convolution of f (t) and the convolution operator
K [1]

K = exp

[

−

α

1− α
(t − s)

]

d

ds
(2)
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The integration by parts in Equation (1) results in an alternative
form Caputo et al. [10]

c
cfD

α
t =

1

1− α
f (t) −

α

1− α

t
∫

a

f (s) exp

[

−

α (t − s)

1− α

]

ds, t > a

(3)
Futher, the integer order differentiation of c

cf
Dα
t follows the rule

[1]

c
cfD

(α+n)
t f (t) = c

cfD
α
t

(

D
(n)
t f (t)

)

, n > 0, α ∈ [0, 1] (4)

The associated fractional integral is Hristov [3] and Losada and
Nieto [11]

c
cfD

(α+n)
t f (t) = c

cfD
α
t

(

D
(n)
t f (t)

)

, n > 0, α ∈ [0, 1] (5)

With the assumption that M (α) = 1 used by Caputo
and Fabrizio [1, 10]. The second definition of Losada and
Nieto [11] is

cfD
α
t f (t) =

1

1− α

t
∫

0

exp

[

−

α (t − s)

1− α

]

df (s)

dt
ds (6)

Hereafter we will use the definition (Equation 6).

2.2. Laplace Transform
The Laplace transform of CFD

α
t with a = 0 has the following

Laplace transform LT given with p variable [1] taking into
account the general rule of Laplace transform of a convolution,
namely

LT

[

c
cfD

α
t f (t)

]

=

1

1− α
LT

[

f (t)
]

LT

[

exp

(

−

α

1− α
t

)]

(7)

Hence,

LT

[

c
cfD

α
t f (t)

]

=

pLT
[

f (t) − f (0)
]

p+ α
(

1− p
) (8)

2.3. Fractional Derivative of Elementary

and Transcendental Functions
Linear function f (t) = Ct [1]

c
cfD

α
t [Ct] =

1

1− α

t
∫

0

C exp

[

−

α

1− α
(t − s)

]

ds =

C

α

[

1− exp

(

−

α

1− α
t

)]

, 0 < α ≤ 1 (9)

Power-Law function f (t) = Ctβ [3, 12].

For f (t) = Ctβ and β > 0 the fractional derivative c
cf
Dα
t

[

Ctβ
]

is

c
cfD

α
t t

β
=

(

Cβtβ−1
) 1

α

[

1− exp

(

−

α

1− α

)

t

]

(10)

For α = 1 the expression (Equation 10) reduces to the classical
(integer-order) result Cβtβ−1.
Exponential function f (t) = exp (βt) [3, 12]

c
cfD

α
t exp (βt) =

β exp (βt) − exp (−At)

β + α (1− β)
, A =

α

1− α
(11)

For α → 1 the second exponential term in the nominator
of Equation (11) goes to zero and therefore c

cfD
α
t exp (βt)

︸ ︷︷ ︸

α→1

→

β exp (βt) .
For β < 0 we have

c
cfD

α
t exp (−βt) =

−β exp (−βt) + exp(−At)

A− β
(12)

For α → 1 the second exponential term in the nominator of
Equation (12) goes to zero and therefore c

cfD
α
t exp (−βt)

︸ ︷︷ ︸

α→1

→

−β exp (−βt) .

2.4. Caputo-Fabrizio Fractional Operator:

Determination of the Fractional Parameter
In the Caputo-Fabrizio operator there is formal ambiguity
because the stretched time is multiplied by a dimensional
factor α/(1− α) which should have a dimension s−1. This
contradicts the definition of the fractional order (parameter)
because physically α is dimensionless. The answer given in [3, 13]
resolved the problem by nondimesionalization of the exponential
function by help of characteristic time scale of the relaxation
process t0 (the maximum time of the experiment in the sense of
the rheological tests discussed here) , namely

exp
(t − s)

τ
= exp

(t/t0 − s/t0 )

τ/t0
= exp

(

t̄ − s̄
)

τ̄
(13)

The nondimensalization does not change the meaning of the
exponential relaxation function but avoid any doubts about the
definition of the fractional order α as [3, 13].

1− α

α
=

τ

t0
⇒ α =

1

1+ τ/t0
(14)

and relates it to data that can be really recovered from
experimental data, such the relaxation and retardation times (see
the sequel)

The relationship (Equation 14) says that for τ/t0 = 1 we get
α = 1/2. Further, depending on the ratio τ/t0 we may have
fractional orders roughly arranged in two groups [14]: a) when
0 ≤ τ/t0 ≤ 1 we have fractional orders α ∈ [0.5, 1.0] and
the relaxation time τ is shorter than the macroscopic process
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observation time t0, and b) 1 ≤ τ/t0 < ∞ the fractional
orders are α ∈ (0, 0.5] since the relaxation time τ is larger than
the macroscopic process observation time t0. Qualitatively, for
τ/t0 < 1 the relaxations could be considered as fast (rapid)
relaxations, while τ/t0 > 1 is related to slow relaxations (see
in Hristov [14] the comments of numerical values of Prony
decomposition and relaxation times)

Last to this point, but not least, as it was commented in
Hristov [14], the ratio τ/t0 is not integer and expressing the
memory kernel as exp

[

−β
(

t̄ − s̄
)]

where β = (τ/t0 )−1
=

α/(1− α) we get a fractional operator. Therefore, the memory
kernel of the Caputo-Fabrizio operator is controlled by a non-
integer parameter in the context of what is needed to say that this
operator is fractional, despite the fact that it does not repeat exactly
the properties of the Classical Riemann-Liouville and Caputo
derivatives.

3. CONSTITUTIVE EQUATIONS OF

VISCOELASTICITY: FADING MEMORY

APPROACH

3.1. Boltzmann Superposition Principle and

Fading Memory Concept
The fading memory concept relating the flux to its gradient, for
simple materials [15–17], is expressed by the following relation
relating the flux and the gradient , namely

j (x, t) = −D0∇C (x, t) − D′

t
∫

−∞

R (t − τ)∇C (x, τ) dτ (15)

This definition is actually the Boltzmann linear superposition
functional (Equation 16))

ϕ (x, t) = m [vx (x, t)]+ λ

t
∫

0

R (t, τ) vx (τ ) dτ (16)

relating the present state of the flux to its history [9, 16–18]
through the influence function (memory kernel) R (t, z) during
the time interval defined by τ . In Equation (16) m and λ are
transport coefficients (diffusivities) with real physical meanings
as it will be demonstrated in the sequel.

Thememory function could be unbounded and scale invariant
such as R (t, τ) = t−µ with integration singularity at or bounded
and not scale invariant such as R (t, τ) = e−t/τ (see the analysis
in Hristov [14] and the comments further in this article).

3.2. Stress-Strain Viscoelasticity Response

and Hereditary Integral Construction and

Response Functions
The linear theory of elasticity [19] (chapter 1) considers the stress
in a sheared solid body as a quantity proportional to the shear,
while in the liquids the shearing stresses are proportional to
the rate of shear . Most solid materials, for example polymers,

compromising both effects are called viscoelastic. When a slab of
solid material under a shearingmotion caused by a step change in
the stress load applied to it (Heaviside unit step function H0 (t))
exhibits a strain (in one dimension) [19] (chapter 1)

ε (t) = ε0H0 (t) (17)

With perfect elastic behavior of the body [19] σ (t) = σ0H0 (t)
for t > 0. On the contrary, in an ideal viscous fluid the stress
is infinite and for t > 0 and the strain is ε (t) = (σ0/η ) t,
thus introducing the coefficient of viscosity η. Real materials do
not shear with infinite speeds that is the reason of the concept
of a finite relaxation time τ [19]. Precisely, in solids the stresses
attain finite values for long times. In contrast, in viscous fluids the
stresses approach zero.

The task of this study addresses the functional representations
of the viscoelastic material responses, that is : 1) the stress
relaxation function R

(

k, t
)

, that is the stress history due to a shear
step of size ε, and 2) the creep function C (t) (shear history) due
to unit stress σ applied. In the linear viscoelastic theory [19] the
responses can be approximated as R (ε, t) = G (t) ε + O

(

ε3
)

and C (σ , t) = J (t) σ + O
(

σ 3
)

, thus defining the linear stress
relaxation modulus G (t) and the linear creep compliance J (t).
The common mechanistic models explaining the behavior of
viscoelastic materials utilize linear springs and dashpots coming
from the Maxwell interpretation [20–22] and modeling the pure
elastic behavior and the pure viscous state, correspondingly.

Superposition of single-step material responses results in
functional relationships of stress and strain in the linear
viscoelasticity concept [19] incorporating the a time lag in G (t)
and J (t) through hereditary stress (Equation 18) and creep
integrals (Equation 19), namely

σ (t) =

t
∫

0

G (t − s)dε (s) (18)

ε (t) =

t
∫

0

J (t − s)dσ (s) (19)

Both σ (t) a and ε (t) are causal functions and therefore the lower
terminals in Equations (18, 19) are set at t = 0.

Applying the fading memory concept [9, 20] it is possible to
relate the instantaneous responses G∞ and J∞ corresponding to
equilibrium states (for long times) when the effects of memory
terms (convolution integrals) fade out, namely

σ (t) = G∞ +

t
∫

0

G (t − s)dε (s) (20)

ǫ (t) = J∞ −

t
∫

0

J (t − s)dσ (s) (21)
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3.3. Response Function: General

Properties and Requirements
For a linear isotropic viscoelastic body exerting uniaxial stress the
Boltzmann superposition principle formulates the constitutive
equation relating the strain responses by help of the following
hereditary integral [23]

σ (t) =

t
∫

0

G (t − s)
dε (s)

dτ
ds (22)

The relaxation function G (t) should decrease monotonically
and account for short and long-time strains, thus the condition
(Equation 23) should be obeyed [24–26]

(−1)n
∂n

∂tn
G (t) ≥ 0, n = 1, 2, ... (23)

Coleman and Noll, in their article on foundation principles of
linear viscoelasticity [27], point out that there is no universal
approach in definition of unique relaxation function R (s) [the
fading memory R (s) in Equation (15) its is equivalent to G (s) in
Equation (22) . Despite this, two principle features are required
to be obeyed by R (s):

1) R (s) is defined for 0 ≤ s < ∞ and R (s) > 0, and
2) R (s) decays monotonically to zero for large s , that is

lims→∞srR (s) = 0.

Boltzmann (1874) in [9] (see also [14, 27]) suggested twomemory
functions widely applied so far, namely

a) Generalized power-law memory function R (s) =

sr(s+ 1)−µ of order r when r < µ. For r = 0 the memory
function R (s) is unbounded (singular) at t0+ and this scale
invariant kernel forms the constructions of the classical fractional
integrals and derivatives [8].

b) Ordinary memory kernel , bounded at t0+ as exponential
function e−βs , which is not invariant with respect to the time scale.
The definition of Caputo-Fabrizio fractional operator utilizes this
memory kernel.

The adequate mathematical structure in the construction of
the relaxation (memory) function is the main problem that
should be resolved in the modeling of viscoelastic responses.
Generally, the relaxation function should adequately describe
the natural process and therefore its structure should be tested
(defined)by a data conversion algorithm (by fitting experimental
data). Despite this intuitive and to greater extent logical approach
the response function should satisfy some requirement defined
in Garbarski [28] and Winter [29], and summarized in Table 1;
with some author’s comments related to application of fractional
operators in the viscoelastic constitutive equations. Further, in
the response of viscoelastic material to strain excitation, the stress
relaxation spectrum (relaxation modulus) provides complete
information concerning the time-dependent part of the material
response. In the opposite situation, with materials undergoing
stress excitations the retardation spectra (the compliances) [30]
provide the required information. Hence, if the spectra are

known it is possible to calculate the response of any excitation
[20].

Besides, the thermodynamic theory of linear viscoelastic
materials was developed extensively in the sixties of the last
century [31]. In this context, the second law of thermodynamics
yields severe restrictions on the constitutive properties [32–34].
This problem is beyond the scope of the present analysis but
we may say that when the constitutive equation (Equation 20)
contains exponential kernel it is compatible to second law of
thermodynamics [34].

The principle relaxation functions used and the applicability
of the aforementioned requirements will be analyzed next.

4. INTERCONVERSION OF RELAXATION

AND CREEP: PROBLEM AND POWER-LAW

RESPONSES

4.1. Interconversion Problem
In the linear viscoelastic materials the relationships between
the creep compliance J(t) and the relaxation response G(t)
are expressed as convolution integrals in accordance with the
Boltzmann superposition principle [9] (see Equations 20, 21)

With the Laplace transforms of Equations (20, 21) we get
equivalent relationships in the p -space (p is the transform
variable)

σ
(

p
)

= pG
(

p
)

ε
(

p
)

, ε
(

p
)

= pJ
(

p
)

σ
(

p
)

(24)

Hence, we may recast Equation (24) as

σ
(

p
)

ε
(

p
) = pG

(

p
)

,
σ

(

p
)

ε
(

p
) =

1

pJ
(

p
) (25)

Equating the right-hand sides of Equation (25) we get an implicit
fundamental relationship

G
(

p
)

J
(

p
)

=

1

p2
⇒ J (t − s)G (t) =

t
∫

o

G (t − s) J (s) ds = t

(26)
with the constraints that

G (t0+) J (t0+) = G (t → ∞) J (t → ∞) (27)

Explicit form of Equation (26) can be obtained if the
analytical forms of either G (t) orJ (t) is known. Examples of
interconversion related to power-law and exponential memory
kernels are discussed in the sequel.

4.2. Scale-Invariant (Power-Law) Response
4.2.1. Physical Preliminaries Related to the

Power-Law Response
Relatively short-time relaxation history modeled by time-
dependent power-law can be observed in the time evolution
of G (t) from zero to the end of the time of observation t0
[19]: commonly at the beginning of the relaxation process (short
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TABLE 1 | Response function desired properties.

Properties of the Response function [28] Properties of the data conversion

algorithm [29]

Comments (present work)

1 Be as simple as possible due to consequent

practical applications

Good fit of the experimental data

2 Should be positive and monotonically

decreasing since non-monotonically decreasing

functions have no physical meanings.

Avoidance of overfitting, that is the algorithm

should be able to find optimum amount of

details (i.e., parameter)

3 After integration the function should be

convergent to a limited value at infinite time

The format of the relaxation function should not

be predetermined. It has to be freely adjustable

during the data fitting

This is a general comment but working with

fractional derivatives we have a limitation of

kernels (response functions) that can be use

4 To have a simple Laplace transform The resulting material parameter should have

physical meaning

5 Flexible to be adjusted to experimental data

taken from relaxation tests.

Minimization of truncation error

6 To allow calculations of consequent parameters

of the viscoelastic relaxations such as spectra,

moduli, etc.

Checking the of experimental data quality This important since the parameter

determinations are ill-posed problems

7 Possibility to be tabulated if analytical

representation is not possible

For practical use R (s) should be expressed by

a function or a sum which can be easy

integrable in various viscoelastic models and

calculations

8 The integral of the spectrum should be

convergent to a finite value

For practical reasons the number of

parameters should small as much as possible

This point is very important in the construction

of relaxation kernels of fractional operators

times) and along the long tail (long times). The power law is scale-
invariant. Materials exhibiting such behavior are called power-
law viscoelastic materials [35–42] and can be easily detected
by the linear behaviors of J (t) ∼ tp and G (t) ∼ t−p in
logarithmic scales [43]. Actually, we have to memorize that this
type of relaxation was modeled in the article of Caputo (1967)
where the construction of the Caputo derivative was conceived
[44]. The power-law functional relationships of the relaxation
and the compliance, actually are the reasons to recognize the
integral and derivatives of the classical fractional calculus [8] as
adequate modeling tools since they are based on the same type
of kernels [39, 42, 45], known also as weak singular kernels. As
commented by Tschoegl [20] the scaling relationship G (t) ∼

t−p is a fractional version of the Trouton law σ (t) = ηε̇ (t).
Here, we have to mention that Metzler et al. [39] discussing
relaxations of filled /polymers stated that non-exponential (non-
Debay) relaxation implies memory (Sic!). We may consider this
declarative opinion (the results of Glockle and Nonnemacher
[46]) as adequate to the situation in the 90s of the last century,
when fractional calculus was only related to power-law kernels
[47].

Moreover, as a valuable analysis showing when the power-
law is the adequate response function we refer to Chapter 5 of
Findley et al. [48] where it is clearly demonstrated that for many
materials the power-law response function tµ with µ < 0.5 [48]
is a good short-time approximation for materials such as plastics,
metals and concrete. For short-time loading the creep of many
different rigid plastics with sufficient accuracy can be presented
as linear power-law ε = ε0+ε+t

µ, whereµ is stress-independent
and nearly temperature-independent, too. The same approach
following from the linear approximation approach of Pipkin [19]

is commented in 3.2 . In this case the corresponding retardation
spectrum is Findley et al. [48]

ϕ (t) ≡
µ

Ŵ (1− µ)
tµ−1

≡ t−α , 0 < α = 1− p < 1 (28)

The function (Equation 28) may be considered as continuum
spectrum of material retardation times proportional to t−α . From
this position, the step from Equation (28) toward modeling of the
relaxation processes by the classical Riemann-Liouville derivative
is straightforward. In this context, Bagley and Torvik [49] using
(Equation 28) demonstrated that following constitutive equation
holds

σ (t) = G1
RLDα

t

[

k (t)
]

=

G1

Ŵ (1− α)

d

dt

t
∫

0

k (t − s)

αk
ds, t > 0

(29)
After application of the Leibniz rule to Equation (29) the result is

σ (t) =
1

Ŵ (1− α)

t
∫

0

G1

tα
dk (t − s)

dt
ds+ G (t) k (0) (30)

For ε (0) = 0, since no strain at t = 0 exists we get

σ (t) =
1

Ŵ (1− α)

t
∫

0

G1

(t − s)α
dk (s)

ds
ds = G1

RLDα
t k (t) , t > 0

(31)
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Then, for G1 = G0 = const. the stress relaxation modulus G (t)
and the creep compliance J (t) are

G (t) =
G1

Ŵ (1− α)
t−α , J (t) =

1

G1

1

Ŵ (1− α)
tα (32)

4.2.2. Example 1. Interconversion of Power-Law

Relaxation and Creep: Linear Case
Here, we consider again the power-law response in the context
of the response function interconversion and in the sense of the
relationships (Equations 26, 27). With G (t) = At−µ , where
A is a data fitting coefficient and 0 < µ < 1 , the Laplace
transform in Equation (26) provides a power-law creep (Equation
33) compliance [50]

G (t) =
G1

Ŵ (1− α)
t−α , J (t) =

1

G1

1

Ŵ (1− α)
tα (33)

Following Hanyga, neither experimental nor theoretical reasons
lead to the assumption that the creep rate function and the
stress relaxation function are bounded and regular at t = 0
[26]. The same point of view is valid for the unbounded kernels
singular at t = 0 [14]. In the seminal study of Boltzmann
[9] the value of α = 1 was suggested. The condition 0 <

α < 1 comes from the fact that for α > 1 we get an infinite
propagation speed [26]. Actually, the idea to apply fractional
calculus, as is demonstrated by the model developed in the
foundation studies of Scott-Blair [51–53] and Bagley and Torvik
[49] comes from the experimental (empirical) findings of Nutting
[54, 55]: precisely, for some viscoelastic materials the power-law
relationship [ε (t)/Const ] ∼ σ ntα is satisfied. Consequently, we
may obtain (Equation 32).

Since the power-law relaxation is not the main problem
discussed in this work, at the end of this point, we refer to the
study of Carillo and Giorgi [56] (section 4 in this chapter) where
it is clearly demonstrated that the response of the materialmay be
for short-time or as long tail (for long times) modeled by time-
dependent power-law function. Here, we may repeat again (see
the comments in Hristov [14], too) that, if the power-law is not
exhibited by the material response functions then it is inadequate
to apply the power-law memory kernels.

4.2.3. Example 2.Interconversion of Power-Law

Relaxation and Creep: Non-linear Case
If the material exhibits a non-linear viscoelastic behavior, for
instance, as commented by Lakes et al. [50], that is

σ (t) =

t
∫

0

G [(t − s) , ε (s)]
dε

ds
ds,

ε (t) =

t
∫

0

J [(t − s) , σ (s)]
dσ

ds
ds (34)

The relaxation function G (t, ε) can be expressed as a sum
of products, precisely sum of products of functions of time

and functions of strain, that is Lakes and Vanderby [50]
G (t, ε) = Gt (t) g (ε) . Assuming no interaction between the
steps (immediate and delayed Heaviside steps) strains in the
summation series and may write [50]

σc = ε (0)G (t, s) +

N
∑

i=0

1εiG (t − ti, ε) (35)

Consequently, the creep compliance is

1 = J (0)G (t, ε) +

t
∫

0

G [(t − s) , ε (s)]
dJ (s)

ds
ds (36)

and for the linear case we will obtain the relationship (Equation
26).

To have explicit form of these relationships, if we assume a
power-law approximation in time [50] J (σ , t) = A (σ ) tµ, that is
J (σ , t) =

(

g1 + g2σ + g3σ
2
+ ...

)

tµ, then we get

1 = J (0)G (t, ε) +

t
∫

0

G [(t − s) , ε (s)]
dJ (s)

ds
ds (37)

G (t, ε) =
[

f1t
−µ

+ f2ε (t) t−2µ
+ f3t

−3µ
]

(38)

The nonlinear material exhibits a relaxation response which
contains a sum of power-law terms, as given in equation
(Equation 38) (see more comments in Lakes and Vanderby [50]).

Hereafter, non-linear behavior generally related to
temperature-dependent and aging viscoelastic materials will not
be discussed since the principle task of the present analysis is to
show the correct origin and the physical background leading to
the formulation of the Caputo-Fabrizio fractional operator.

5. INTERCONVERSION OF NON

POWER-LAW RELAXATION AND CREEP

5.1. Non Power-Law Response: Relaxation

Curve Approximation
The selection of approximation function which would fit
the experimental points depends on the type of materials
and would be established by simple trial error process. In
this context, two principle issues arise when experimental
data for linear viscoelastic materials should be treated [57]:
(1) Appropriate relaxation curve approximation and (2)
interconversion problem. The experimental data are commonly
taken in the time-domain (or frequency-domain) tests. Now,
we stress the attention on discrete spectrum approximation by
Prony series [2] where the condition for the monotonicity of the
functions (see the sequel) is satisfied.
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5.2. Discrete Relaxation Spectrum by

Prony Series Decompositions and Relevant

Interconversions
Unlike the linear elasticity, where the material functions are
related algebraically, the relationships in the linear viscoelasticity
are time-dependent, as already was demonstrated in the previous
section of the article. One known method is to find the
unknown functions G (t) and J (t) by fitting the data points by
a known function. However, when the focus is on the adequate
construction of a fractional operator with a memory kernel
obeying all mandatory conditions imposed on it,then the choice
of approximating function is highly restricted. If the power-law
is not the adequate choice then a series approximation is the
more suitable solution. Since we address the construction of the
Caputo-Fabrizio operator,thus it is natural to tackle data fitting by
series of exponential terms (matching the function of the desired
memory kernel) known as Prony series (also as Dirichlet series
[58]).

5.2.1. Prony Series Decompositions
The viscoelastic relaxation function can be expressed by a discrete
relaxation spectrum through a decomposition as a Prony series
gP (t)with Nφ terms [25, 59–64] with rate constants βi, namely

gP (t) = g∞ +

Nφ
∑

i=1

gie
−βit

= g∞ +

Nφ
∑

i=1

gie
−

t
τi , βi =

1

τi
≥ 0

(39)
or through normalized weights (amplitudes or normalized
relaxation moduli) λi [21, 59] as

gP (t)

g∞
= 1+

Nφ
∑

i=1

λgi
(

e−βit
− 1

)

, λgi =
gi

g∞
(40)

In Equations (39, 40) the parameters g∞ and gi are equilibrium
(at large times) values and the relaxation moduli (stiffness),
respectively, are constrained according to Brinson and Brinson
[21]

g∞ +

Nφ
∑

1

gi = 1 (41)

The Prony series components have spectral strength gi and
relaxation time τi. This is the so-called discrete Prony series
representation known also as discrete relaxation spectrum [20, 65–
69]. Besides, the series approximation (Equation 39) may be
substituted in formulation of the materials law such as Maxwell,
Kelvin Voigt, etc. The relaxation time τi associated with the ith
element is related to the characteristic time of the spring-damper
(dashpot) element and can be defined as the ratio of the viscosity
over the elastic modulus, that is τi = gi/λi [68].

The first derivative of the Prony series (Equation 42) for t = 0
is finite, a fact irrespective of the number of terms used in the
approximation.

dφ

dt
=

d

dt

Nφ
∑

i=1

gie
−βit (42)

As commented by Bradshaw and Brinson [57], an exact solution
of interconversion problem is possible if the known function is
approximated by Prony series where all coefficients are positive
[using the forms (Equation 39, 40) ] and the basic interconversion
relationship (Equation 26) is satisfied. In this case, by applying
Laplace transform solutions, the resulting Prony series are
analytically exact [70–73].

The Prony series approximations lead to the generalized
Maxwell viscoelastic body (known also as Maxwell-Wiechert
model) with Nφ spring-dashpot elements in parallel. The Prony
series decompositions are applicable to any viscoelastic models
through their time-dependent shear and bulk moduli [74–76].
For a deep thermodynamic analysis of such type of materials
termed viscoelastic solids of exponential type (VESET) we refer to
works of Fabrizio et al. [32, 33].

A common step in approximation by the truncated
exponential sums is the definition of preliminary stipulated
decay rates βi , in a logarithmic scale that is , for Nφ = 4 , for
instance β1...4 = 100, 10, 1, 0.1 [77]. This approach, is useful
because the corresponding fractional parameters in the αi in
this case can be easily calculated (see further Equation 65) as
α1...4 = 0.009, 0.09, 0.5, 0.9, respectively. Alternatively, fixing
the points (in normal or logarithmic scale) ti along the time axis
we may define the corresponding βi = 1/τi.

The parameter estimation is important and the first step
was done in the seminal work of Prony (1795) [2] and several
algorithms have been developed among them: graphically by
log− log plots [78, 79], least squares method [80–82], nonlinear
optimization methods [83], genetic based algorithm [84], from
the continuous relaxation time spectrum [68, 72], logarithm
equidistant distribution of relaxation times (known as R-
method) [68, 77, 85], quasi-linearization for multi-exponential
decay curves fitting [86], etc.

The number of the exponential terms in Equation (39)
depends on the accuracy of data fitting. Commonly fourth-order
Prony series fit adequately the stress-relaxation data in cases of
non-linear viscoelastic behaviors [62, 87–93], while long-term
relaxation tests need 10-15 terms [76, 85, 94–100]. In general, the
problem corresponds to identifications of the kernel of an integral
Fredholm equationwhich, actually, is ill-posed problem [68, 101–
103] requiring Tikhonov regularization [104]. Comments on
the required terms in the Prony decomposition are available
in [14].

5.3. Examples of Interconversions With

Exponential Terms
5.3.1. Example 3. Interconversion of a Single

Exponential Model [105]
For a single exponential model (the Maxwell model) the
relaxation and creep functions are

G1 = 1+ g1 exp

(

−

t

τ1

)

(43)
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J1 = 1− j1 exp

(

−

t

λ1

)

(44)

The condition (Equation 27) is automatically satisfied, while for
t = 0 in (Equation 43) (and taking into account ;Equation 27) the
results is

G1 (0) J1 (0) =
(

1+ g1
) (

1− j1
)

= 1 (45)

The Laplace transforms of (Equations 43, 44) lead to an equation
that should be solved

[(

1+ g1
) (

1− j1
)

− 1
]

p2 +

[

g1

λ1
−

j1

τ1

]

p = 0 (46)

Since (Equation 46) should be satisfied for all p it follows that
τ1 = j1λ1 and this condition with (Equation 46) leads to
Anderssen et al. [105]

5.3.1.1. Interconversion from relaxation to creep

j1 =
g1

1+ g1
, λ1 = τ1

(

1+ g1
)

(47)

5.3.1.2. Interconversion from creep to relaxation

g1 =
j1

1− j1
, τ1 = λ1

(

1− j1
)

(48)

More details related to the sensitivities and relative errors of these
two interconversions are available in Anderssen et al. [105]

5.3.2. Example 4. Interconversion of a Double

Exponential Model [105]
In this case the relaxation and creep functions are

G2 (t) = 1+ g1 exp

(

−

t

τ1

)

+ g2 exp

(

−

t

τ 2

)

(49)

J2 (t) = 1− j1 exp

(

−

t

λ1

)

+ j2 exp

(

−

t

λ2

)

(50)

The values of the relaxation times τi are zeros of

1

τ
+

j1

(τ − λ1)
+

j2

(τ − λ2)
= 0 (51)

and consequently

τ1τ2 = Kλ1λ2, K =

1

1+ j1 + j2
< 1 (52)

5.3.3. Example 5. Interconversion of Multi-Term

Exponential Model [105]
By Prony decomposition the relaxation and creep functions can
be generally presented through discrete spectra as Anderssen
et al. [105]

GN (t) = G∞ +

N
∑

i=1

gi exp

(

−

t

τi

)

, gi ≥ 0 (53)

JN (t) = J∞ −

N
∑

i=1

ji exp

(

−

t

λi

)

, ji ≥ 0 (54)

The inverse times, that is the relaxation times τi and the
retardation times λi satisfy

0 < τ1 < τ2 < ...τN , 0 < λ1 < λ2 < ...λN (55)

The advantage of this (Prony decomposition) approach is that the
monotonicity is automatically satisfied [105]

The attempts to solve (Equation 26) address many approaches
for either J(t) or G(t) depending on the experimental data
available [30, 106–109]

Now we recall that the Caputo-Fabrizio fractional operator
[1, 3, 4, 10, 110] uses an exponential kernel matching the basic
element of the Prony series.

5.3.4. Example 6. Interconversion of Prony Series of

Relaxation and Creep
With Prony decomposition of the relaxation spectrum, the next
step is to determine the creep modulus (compliance) J(t). The
interconversion equation (Equation 56) simple gives [22, 70, 71,
105, 111, 112].

[G (t) ∗ J (t)] =

t
∫

0

G (t − s)J (s) ds = [J (t) ∗ G (t)] = t (56)

As a rule in the rheological studies, the discrete exponential
models for G (t) and J (t), corresponding to associated relaxation
and creep spectra H (τ ) and L (τ ) [105] (as sums of delta
functions ) are used that assures the monotonic behavior
automatically and we have

G (t) = G (∞) +

∞
∫

0

exp

(

−

t

τ

)

H (τ )

τ
dτ , H (τ ) ≥ 0 (57)

J (t) = J (0) +

∞
∫

0

exp

(

−

t

τ

)

L (τ )

τ

dτ = J (∞) −

∞
∫

0

exp

(

−

t

τ

)

L (τ )

τ
dτ (58)
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The constraint imposed [70, 105] by (Equations 26, 27) (see also
Equation 56) allows H (τ ) to be defined as function of L (τ ) and
vice versa. We will skip this general problem solved in [105] and
to some extent demonstrated by Example 3 and 4, and will focus
the attention on the discrete approximation of the relaxation (and
compliance) spectra by Prony series.

The Prony series approximation of the stress relaxation (in a
normalized form) is

GN (t) = g0 +

N
∑

i=1

gi exp

(

−

t

τi

)

, g0 > 0, gi ≥ 0, τi ≥ 0

(59)
The corresponding form of J (t) is

JN (t) = j0 −

N
∑

i=1

ji exp

(

−

t

λi

)

, j0 > 0, ji ≥ 0, λi ≥ 0

(60)
The inverse times, that is the relaxation times τi and the
retardation times λi satisfy the inequalities (Equation 55). The
attempts to solve (Equation 56) address many approaches for
either J(t) or G(t) depending on the type of experimental data
available [30, 106–109].

6. CAPUTO-FABRIZIO OPERATOR IN THE

CONSTITUTIVE VISCOELASTIC

EQUATIONS

6.1. Relaxation Function in Terms of

Caputo-Fabrizio Operator
Thus, applying the Prony approximation of the relaxation curve
and substituting (Equation 61) in the convolution integral
(Equation 22) the following approximation is obtained [14, 113]

σ =

t
∫

0

Ei exp

(

−

t − s

τi

)

dε

ds
ds (61)

Since we operate with a Prony series, that is with a finite sum
of exponentials, then the inversion of the summation and the
integral yields [113]

σ (t) =

t
∫

0

N
∑

i=0

Eie
−

(t−s)
τi

dε

ds
ds =

N
∑

i=0

Ei





t
∫

0

e
−

(t−s)
τi

dε

ds
ds



 (62)

Thus, the memory effect from the convolution integral can be
easy incorporated in each term of the Prony series [99],namely

σ (t) =

N
∑

i=0

Eiki (t), ki (t) =

t
∫

0

e
−

(t−s)
τi

dε

ds
ds (63)

The finite sum of N + 1 terms σi (t) leads directly to the
generalized Maxwell model, that is at any time t we have

σi (t) = Eiki (t) (64)

σi (t) is a product of the spring modulus Ei and its current strain
ki (t), which to some extent could be considered as a hidden
material variable. The clear physical meaning of this result is
that the strain ki (t) at a given time t is expressed as convolution
integral with an exponential kernel [14]. Therefore, the model
parameters that should be defined, following the approximation
of the right-hand side of (Equation 62), are [14, 113] : the single
separate spring stiffness E0 and the spring stiffness Ei as well as the
relaxations time τi of each i−th Maxwell element.

6.2. Relationships of the Relaxation Time

Spectrum and Fractional Order Spectrum
As it was mentioned at the beginning, the fractional parameter
α is related to the dimensionless relation time as α =

1/(1− τ/t0 ) . Since we have a spectrum of relaxation times τi,
then the spectrum of the fractional orders (parameters) is

αi =
1

1− τi/t0
(65)

Therefore, ki (t) can be expressed in a form related to the
construction of the Caputo-Fabrizio operator, namely

ki (t) = (1− αi)





1

1− αi

t
∫

0

e
−

α1
1−αi

(t̄−s̄) dε

ds̄
ds̄





= (1− αi)D
αi
t ε (t) (66)

6.2.1. Stress Relaxation in Terms of Caputo-Fabrizio

Operator
Thus, the constitutive equation of the stress relaxation can be
presented as Hristov [14]

σ (t) =

N
∑

i=0

Ei (1− αi)D
αi
t ε (t) (67)

Now, we turn on the determination of the spectrum of fractional
orders αi = τi/t0 . From experimental data fittings there
are a limited number of numerical values of relaxation times
τi. Now, the principle problem at issue is the determination
of the characteristic time t0. Since the experiments last limited
times then we may assume that t0 equal the elapsed time
te of the experiments. The literature data concerning Prony
decompositions reveal (see the analysis in [14]) that the
relaxation times form two groups (see the comments at the
begging when the fractional order determination of the Caputo-
Fabrizio operators was commented):: (1) relaxation times less then
the elapsed time τi < te ⇒ τi/te ≤ 1 and (2) relaxation time
greater than the elapsed time τi > te ⇒ τi/te ≥ 1 .
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Consequently, addressing the fractional orders αi we have: i)
fast relaxations for αi ∈ [0.5−1) corresponding to τi/te ≤ 1 and
ii) slow relaxations for αi ∈ (0− 0.5] when τi/te ≥ 1. Numerical
examples supporting this estimates are reported in Hristov [14]

6.2.2. Creep Compliance in Terms of Caputo-Fabrizio

Operator
By analogy of the stress relaxation expression in terms of
Caputo-Fabrizio derivative, we may transform the Prony series
decomposed compliance (Equation 54) as

JN (t − s) =

N
∑

i=0

ji exp

(

−

t − s

λi

)

=

N
∑

i=0

ji

{

exp

[

−

βi

1− βi

(

t̄ − s̄
)

]}

,

λ̄i =
λi

t0
=

1− βi

βi
(68)

where λ̄i = λi/t0 are the scaled (dimensionless) retardation
times.

Hence, with the construction of the convolution integral
describing the strain history we have

t
∫

0

J (t − s)
dσ

dt
⇒

t
∫

0

N
∑

i=0

ji

{

exp

[

−

βi

1− βi

(

t̄ − s̄
)

]}

dσ (s̄)

ds̄ds̄ =

N
∑

i=0

jici (t) (69)

ci (t) =

t
∫

0

exp

[

−

βi

1− βi

(

t̄ − s̄
)

]

dσ (s̄)

ds̄
ds̄ (70)

Thus, the strain history is

ε (t − s) =

N
∑

i=1

ji (1− βi)

[

1

1− β
ci (t)

]

=

N
∑

i=1

ji (1− βi)D
β
t σ (t)

(71)

Then, the strain can be expressed as

ε (t) = J∞ −

N
∑

i=1

ji (1− βi) ci (t) = J∞ −

N
∑

i=1

ji (1− βi)D
βi
t σ (s)

(72)
where

D
βi
t σ (s) =







1

(1− βi)

t
∫

0

exp

[

−

βi

1− βi
(t − s)

]







dσ (s)

ds
(73)

Therefore,(Equation 73) defines a Caputo-Fabrizio operators
with respect to σ (t) and the fractional order βi is related to the
scaled retardation time λ̄i ( from the spectrum) as

βi =
1

1+ λi/t0
(74)

6.3. Description of Maxwell-Type

Viscoelastic Media With Material

Responses Modeled by Bessel Functions

in Terms of Caputo-Fabrizio Operators
In the last two years (2016-2017) an interesting approach
was developed by the group around Professor Mainardi [114–
119] which could be considered as attempts to generalize
the relaxation functions in the linear viscoelastic models, an
approach also investigated in Colombaro et al. [120] and Guisti
and Colombaro [121]. The main idea comes from the possibility
to represent the relaxation function in a viscoelastic Maxwell-
type body by infinite discrete spectrum with times related to the
zeros of Bessel functions of the first kind [118, 119]. Here we
will present some key points of these studies,in the context of the
ideas developed in this article, that is to show the incorporation
of the Caputo-Fabrizio operators in the relaxation functions
expressed as infinite Dirichlet series (or infinite Prony series as
the authors of these studies defined them).

The analysis developed in Colombaro et al. [114], Colombaro
et al. [115], Colombaro and Guisti [116], Colombaro et al. [117],
Guisti and Mainardi [118], and Guisti and Mainardi [119] is
based on the power series representation of the modified Bessel
function of the fist kind as Abramowitz and Stegun [122]

Iν (z) =
( z

2

)ν
∞
∑

k=0

1

k!Ŵ
(

ν + k+ 1
)

( z

2

)2k
(75)

with an asymptotic representation

Iν (z) ∼
ez

√

2π

1
√

z
, |z| → ∞,

∣

∣arg z
∣

∣ <
π

2
(76)

Now, if the function Fν (t) has a Laplace transform [118]

F̄ (s) =
2 (ν + 1)

s
√

s

Iν+1

(√

s
)

Iν
(√

s
) (77)

It can be presented in the time domain as Guisti and Mainardi
[118]

Fν (t) = 1− 4 (ν + 1)

∞
∑

n=1

exp
(

−j2ν,nt
)

j2ν,n
, t > 0 (78)

which is an expression as Dirichlet series, locally integrable,
positive and increasing function for t > 0 [118], that is

Fν (t) ∼ 4 (ν + 1)

√

t
√

π
, t > 0+ (79)
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because for s → ∞ from Equation (77) we have

F̄ν (s) ∼ 2 (ν + 1) s−
3
2 , Re {s} → +∞ (80)

If the F̄ν (s) is considered as a part of the Laplace transformation
of the relaxation memory function 8ν (t) ( here we use the
original notations as that used in Guisti andMainardi [118]), that
is 8̄ν (s) = sF̄ν (s) , we have

8̄ν (s) = sF̄ν (s) =
2 (ν + 1)

√

s

Iν+1

(√

s
)

Iν
(√

s
) , ν > −1 (81)

In the time domain the relaxation function 8ν (t) is [recall
equation (Equation 78)]

8ν (t) =
dFν (t)

dt
= 4 (ν + 1)

∞
∑

n=1

exp
(

−j2ν, nt
)

(82)

Now, let us turn on to the interconversion problem. From σ (s) =
sḠν (s) ε̄ (s) as it is suggested [118] that

σ (s) = sḠν (s) ε̄ (s) = 1− 8̄ν (s) ε̄ (s) (83)

In the time domain the relaxation modulus G (t) is

G (t) = 1−

t
∫

0

8ν (τ )dτ = 1− 4 (ν + 1)

∞
∑

n=1

exp
(

−j2ν, nt
)

j2ν,n

(84)
Skipping details in calculation, the creep memory function
denoted as 9̄ (s) in the Laplace domain is Colombaro et al. [114],
Colombaro and Guisti [116], and Guisti and Mainardi [119]

9̄ (s) =
2 (ν + 1)

√

s

Iν+1

(√

s
)

Iν+2

(√

s
) , ν > −1 (85)

and

1+ 9̄ (s) =
1

1− 8̄ (s)
(86)

which follows from the interconversion relationships.
For further deep reading in this elegant mathematical studies

we refer to Colombaro et al. [114], Colombaro and Guisti [116],
Colombaro et al. [117], Guisti andMainardi [118], andGuisti and
Mainardi [119] where it is was demonstrated that the asymptotic
behaviors of the viscoelastic responses in the so-called Bessel
medium are (precisely in Colombaro et al. [114])

8ν(t) ∝
2(ν + 1)
√

π
t−1/2, t → 0

8ν(t) ∝ 4(ν + 1)exp(0− j2ν,1t), t → ∞

(87)

9ν(t) ∝
2(ν + 1)
√

π
t−1/2, t → 0

9ν ∝ 4(ν + 1)(ν + 2), t → ∞

(88)

which actually follows from Equation (79).
The main idea to use a relaxation function expressed by

modified Bessel functions of first kind comes from the possibility
to calculate the sum of the infinite series of reciprocal positive
zeros of the Bessel functions Jν [118], namely

Sν =

∞
∑

n=1

1

j2ν,n
=

1

4 (ν + 1)
, ν > −1 (89)

With (Equation 89) the relaxation modulus becomes [118]

G (t) = 4 (ν + 1)

∞
∑

n=1

exp
(

−j2ν,nt
)

j2ν,n
(90)

Hence, the relaxation modulus is represented as an infinite
Dirichlet series which are absolutely converging, which actually
represent a discrete spectrum where the stiffness of the nth

element (spring-dashpot) is

BEn =

(

1/j2ν,n
)

(the prefix B means Bessel) and the relaxation times are τn =

1/j2ν,n . That is, in the context of the analysis done in this study,
we have

G (t) = 4 (ν + 1)

∞
∑

n=1

BEn exp

(

−

t

τn

)

(91)

Therefore, we get an expression in terms of an infinite sum
of exponential functions, as in the Prony approximations, but
now the relaxation times are defined by the zeros of the Bessel
function. If a time scale t0 of modeled relaxation process exists,
then nth dimensionless relaxation time is 0 < τn/t0 ≤ 1, as it
was demonstrated several times with the Prony series. Now, let
us consider that τn/t0 = (1− βn)/βn ,where 0 < β < 1 and
then we may re-write (Equation 91) as

G (t) = 4 (ν + 1)

∞
∑

n=1

BEn exp

(

−

βn

1− βn
t̄

)

, 0 < t̄ = t/t0 < 1

(92)
Then, the construction the convolution integral of the stress
relaxation with G (t) yields

σ (t) =

t
∫

0

G (t − s)
dε (s)

ds
ds
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=

t
∫

0

4 (ν + 1)

∞
∑

n=1

BEn exp

[

−

βn

1− βn

(

t̄ − s̄
)

]

dε (s)

ds
ds

(93)

Interchanging the orders of the summation and the integral in
equation (Equation 93) , we get

σ (t) = 4 (ν + 1)

∞
∑

n=1

BEn

t
∫

0

exp

[

−

β

1− β

(

t̄ − s̄
)

]

dε (s)

ds
ds

(94)
Further, the step toward incorporation of the Caputo-Fabrizio
operator is straightforward, namely

σ (t) = 4 (ν + 1)

∞
∑

n=1

BEn (1− βn)







1

1− βn

t
∫

0

exp

[

−

βn

1− βn

(

t̄ − s̄
)

]

dε (s)

ds
ds







(95)

or in a compact form as

σ (t) = 4 (ν + 1)

∞
∑

n=1

BEn (1− βn) BD
βn
t [ε (t)],

βn =

1

1− τn/t0
, τn = 1/j2ν,n (96)

with the condition

σ (t) = 4 (ν + 1)

∞
∑

n=1

BEn (1− βn) = 1 (97)

Here BD
βn
t (•) denotes a Caputo-Fabrizio fractional operator

with a fractional order βn based on the positive zeros of Jv.
Now, the naturally question coming to mind is: How

this result can be applied to real data related to the stress
relaxation and creep compliance of real viscoelastic materials?
Unfortunately, no answers to this question exist in all works
dealing with so-called Bessel media [114–119]. The first problem
immediately appearing is: how the relaxation times τn = 1/j2ν,n
can be related to the real data? As mentioned in several points
of this article, the relaxation times corresponds to measurements
taken at equidistantly distributed (in normal scale or logarithmic
scale) points along the time axis. How, this real approach could
be related to the zeros of the Bessel function is a question
still remaining open. The second problem comes from the
impossibility to work with infinite sum in (Equations 90 , 95 ,
and 97) . Actually, all computer simulations should use finite
number of terms that immediately leads to truncated Dirichlet
series obeying the condition (Equation 97). This immediately,
transforms the approximation of the relaxation function to
approximation through Prony series, but the first problem
formulated above, still remains unanswered.

Actually, the approximation by Prony series or infinite
Dirichlet series, generally speaking, is an approach considering
approximations of Non-Debye responses (relaxations) by
superpositions of sub-processes (as Debye relaxations) with
different relaxation times (an approach widely applied in the
relaxation processes in glass transitions [123], for instance).

7. FINAL COMMENTS

The ideas and results developed in this work focused on
the new fractional operator conceived in [1, 10] (2015)
naturally appearing when we stayed on the shoulders of two
classical results: the Prony series (1795) [2] and the Boltzmann
superposition principle (1864) [9].

It was demonstrated that in many cases there are viscoelastic
materials which experimental behaviors exhibit strong departures
from the power-law. In such cases it is natural to rise the
questions about the adequate modeling of the dynamic processes
in such media and to ask for new fractional operators. This is,
actually, the same question raised by Bagley and Torvik [49,
124] who in case of power-law media suggested the constitutive
relationship

σ (t) = E0ε (t) + E1 � D
µ
t [ε (t)] , 0 < µ < 1 (98)

Following Bagley and Torvik [49, 124] for a homogeneous
viscoelastic materials the constitutive equation is

σ (t) +

N
∑

m=1

bmD
βmσ = E0ε (t) +

N
∑

n=1

EnD
αmε (t) (99)

In (Equation 99) the derivatives have power-law kernels
(Riemann-Liouville derivatives), which for N = 1 (one-term
series of fractional derivatives) results in the simple expression

σ (t) + bDβσ (t) = E0ε (t) + E1D
αε (t) (100)

containing two fractional derivatives with different orders.
This article does not focus on development of different

viscoelastic models based on the Caputo-Fabrizio fractional
operator since this is out of its scope and draws new problems
to be resolved. Despite this, if the kernels in the convolution
integrals departure from the power-lawwemay consider a similar
(formally) constitutive equation, namely

σ (t) +

N
∑

i=1

bi
[

CFDβiσ
]

= E0ε (t) +

N
∑

i=1

Ei
[

CFDαiε (t)
]

(101)

where, following the main idea of the Prony decompositions
of the relaxation and the compliance, the series of fractional
order of both sides of the equation have equal numbers of terms.
Following [20, 107] the retardation times λi are satisfying the
conditions

τ1 < λ1 < .... < τi < λi < ...τN < λN (102)
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Therefore, from αi = 1/(1+ τi/t0 ) and βi = 1/(1+ λi/t0 )

it follows from Equation (102) that the fractional orders should
satisfy the inequalities

0 < β1 < α1 < ... < βi < αi < ... < βN < αN < 1 (103)

The example of Renardy [125] (see also [26] and [14]), related
to polymer rheology, reveals that a discrete relaxation spectrum
with accumulation point at zero behaves as a power-law for short
times, namely

∞
∑

i=0

exp(−iγ ξ ) → t
−

1
γ , t → 0, γ > 1 (104)

Thus, in the asymptotic case (for t → 0 ) we may expect that the
model (Equation 101) would converge to the model (Equation
100).

If we suggest only, for example, that N = 1, which actually is
a departure of the main idea of Prony series, we have

σ (t) + bCFDβσ = E0ε (t) + E1
CFDαε (t) , 1 > β > α > 0

(105)

This equation contains two fractional derivatives of different
orders as in Equation (100). For instance, fractional viscoelastic
models containing fractional derivatives and operators of two
different order are thoroughly analyzed in Rossikhin and
Shitikova [126] and Rossikhin and Shitikova [127] in the
light of power-law materials. All these formal similarities and
dissimilarities provoke new ideas that should be resolved.

To recapitulate, actually, we demonstrated that the Caputo-
Fabrizio fractional operator naturally appears in the constitutive
viscoelastic equations based on hereditary integrals when the
material responses do not match the power-law. Moreover, it
plays the same role as the fractional operators (derivatives) based
on power-law memory kernels when they are inapplicable. At
this moment the task of this study is accomplished and a lot of
future works would be developed starting from results obtained
here.
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The objective of this article is to present the computable solution of space-time

advection-dispersion equation of fractional order associated with Hilfer-Prabhakar

fractional derivative operator as well as fractional Laplace operator. The method followed

in deriving the solution is that of joint Sumudu and Fourier transforms. The solution is

derived in compact and graceful forms in terms of the generalized Mittag-Leffler function,

which is suitable for numerical computation. Some illustration and special cases of main

theorem are also discussed.

Keywords: space-time fractional advection-dispersion equation, Fourier transforms, Sumudu transforms, Hilfer-

Prabhakar fractional derivative, fractional laplacian operator, Mittag-Leffler function
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INTRODUCTION

In the last decade, considerable interest in fractional differential equations has been stimulated
due to their numerous applications in the areas of physics, biology, engineering, and other areas.
Several numerical and analytical methods have been developed to study the solutions of nonlinear
fractional partial differential equations, for details, refer to the work in [1–6]. Fractional equations
have enabled the investigation of the nonlocal response of multiple phenomena such as diffusion
processes, electrodynamics, fluid flow, elasticity, and many more. Nowadays, fractional derivatives
have gained a significant development to model some real life phenomena in the form of partial
differential equations or the ordinary equations. Several researchers have performed the numerical
simulation for fractional problems and revealed their applications in different directions include
[7–12] and references therein. The exchange of heat, mass and momentum are considered to be
the fundamental transfer phenomena in the universe. The mathematical framework for heat and
mass transfer are of same kind, basically encompass by advection-dispersion equation. In recent
work many authors have demonstrated the depth of mathematics and related physical issues of
advection-dispersion equations. Schumer et al. [13] gave physical interpretation of space-time
fractional advection-dispersion equation. Space-time fractional advection-dispersion equations are
generalizations of classical advection-dispersion equations. The use of Hilfer-Prabhakar fractional
derivative operator is gaining importance in physics because of their specific properties. The
objective of this paper is to derive the solution of Cauchy type generalized fractional advection
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dispersion equation (18), associated with the Hilfer-Prabhakar
fractional derivative. This paper provides an elegant extension of
results, given earlier by Haung and Liu [14], Haubold et al. [15],
Saxena et al. [16], and Agarwal et al. [17].

RESULTS REQUIRED IN THE SEQUEL

In early 90s,Watugala [18] introduced Sumudu transform, which
is defined as,

A =

{

f (t) /∃M, τi > 0, i = 1, 2
∣

∣f (t)
∣

∣

≤ Me
|t|
τj if t ∈ (−1)j

×[0, ∞)

}

. (1)

for all real t ≥ 0 the Sumudu transform of function f (t) ∈ A is
defined as,

S
[

f (t) ; u
]

= F (u) =

∫

∞

0

1

u
e−

t
u f (t) dt, u ∈ (−τ1, τ2) (2)

inversion formula of (2), is given by

S−1 [F (u)] = f (t) =
1

2π i

∫ γ+i∞

γ−i∞
e
t
u F (u) du, (3)

where γ being a fixed real number.
Among others, the Sumudu transform was shown to have

units preserving properties, and hence may be used to solve
problems without resorting to the frequency domain. Further
details and properties about this transform can be found in
Belgacem [19], Belgacem et al. [20], and Katatbeh and Belgacem
[21].

For a function u (x, t) , the Fourier transform of with respect
to x is defined by

F [u (x, t)] = u∗ (η, t) =

∫

∞

−∞

eiηxu (x, t) dx, (−∞ < η < ∞)

(4)

and for the function u∗ (η, t), inverse Fourier transform with
respect to η is given by the formula

F−1
[

u∗ (η, t)
]

= u (x, t) =
1

2π

∫

∞

−∞

e−iηxu∗ (η, t) dη. (5)

For more details of Fourier transform, see [Debnath and Bhatta
[22]].

Mittag-Leffler function of two parameters is studied by
Wiman [23] as

Eα, β (z) =
∑

∞

n=0

zn

Ŵ(αn+ β)
, α, β ∈ C, R (α) > 0. (6)

Mittag-Leffler function of three parameter introduced by
Prabhakar [24] as

E
γ

α, β (z)=
∑

∞

n=0

Ŵ(γ + n)

Ŵ(γ )Ŵ(αn+ β)

zn

n!
, α, β , γ ∈ C, R (α) > 0.(7)

Riemann-Liouville fractional integral (right-sided) of order α is
defined in [25]

Iαa (u (x, t)) =
RL
a D−α

t (u (x, t)) =
1

Ŵ(α)

∫ t

a
(t − τ)α−1u (x, t) dτ ,

(t > a) , R (α) > 0. (8)

The right sided Riemann-Liouville fractional derivative of order
α defined as

RL
a Dα

t (u (x, t)) =

(

d

dt

)n
(

In−α
a u (x, t)

)

(R (α) > 0,

n = [R (α)]+ 1) , (9)

here [x] is the integral part of x.
Caputo [26], introduced fractional derivative of order R (α) >

0 as

C
0D

α
t (u (x, t)) =











1
Ŵ(m−α)

∫ t
0

um(x, τ)

(t−τ)α+1−m dτ ,

m− 1 < α ≤ m, R (α) > 0, m ∈ N,
∂m

∂tm u (x, t) , if α = m, (10)

The Sumudu transform of (10) is given in [27], as

S
[

0D
α
t u (x, t) ; s

]

= s−α ū (x, s) −
∑m−1

k=0

u(k)u (x, 0)

uα−k
,

(m− 1 < α ≤ m) (11)

where ū (x, s) is the Sumudu transform of u (x, t).
Hilfer [28], gave a fractional derivative operator of two

parameters µ and ν , which is generalization of (9) and (10), in
the form

0D
µ,ν
0+ (u (x, t)) = I

ν(1−µ)
t

∂

∂t

(

I
(1−ν)(1−µ)
0+ u (x, t)

)

, 0 < µ < 1

and 0 ≤ ν ≤ 1 (12)

For ν = 0, equation (12) reduces into (9) and for ν = 1, equation
(12) reduces into (10).

The Sumudu transform of (12) is given in [29], as

S
[

0D
µ,ν
0+ (u (x, t)) ; s

]

= s−α ū (x, s) −
∑m−1

k=0
sk−m+ν(m−µ) ∂k

∂xk
(

I
(1−ν)(1−µ)
0+ u (x, 0+ )

)

, (13)

(m− 1 < µ ≤ m) .

Where the initial value term I
(1−ν)(1−µ)
0+ u (x, 0+ ) involves the

Riemann-Liouville fractional derivative operator of order (1 −

ν)(1− µ) as t → 0+ .
A generalization of Hilfer derivate is given in [30], known as

Hilfer-Prabhakar derivative, is defined as:
Let µ ∈ (0, 1) , ν ∈ [0, 1], and let f . belongs to the set

of locally integrable real valued functions i.e., f ∈ L1[o, b], 0 <

t < b ≤ ∞, f ∗ e
−γ (1−ν)
ρ, (1−ν),ω

(.) ∈ AC1[0, b]. The Hilfer-Prabhakar

derivative is defined by

0D
γ ,µ,ν
ρ,ω.0+ (u (x, t)) = E

−γ ν

ρ, ν(1−µ),ω,0+

∂

∂t

(

E
−γ (1−ν)
ρ, (1−ν)(1−µ),ω,0+
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u (x, 0+)) , (14)

where γ , ω ∈ R, ρ > 0, and where E0ρ,0,ω,0+f = f . We observe

that (14) reduces to the Hilfer derivative for γ = 0. The Sumudu
transform of this derivative operator (14) is given in [31], in the
form:

S
[

0D
γ ,µ,ν
ρ,ω,0+ (u (x, t)) ; s

]

=

s−µ
(

1− ωsρ
)γ
ū (x, s) − sν(1−µ)−1

(

1− ωsρ
)γ ν

[

E
−γ (1−ν)
ρ, (1−ν)(1−µ),ω,0+

(x, 0+)

]

(15)

For details of this derivative, refer to the work in [30, 31].
Brockmann and Sokolov [32], defined a fractional Laplace

operator as:

1
λ
2 =

1

2 cos
(

πλ
2

)

{

−∞Dλ
x + xD

λ
∞

}

, (0 < λ ≤ 2) ,

where the operators are defined by

−∞Dλ
x

(

u(x)
)

=

1

k− λ

∫ x

−∞

uk (u)

(x− u)λ+1−k
du ,

(

k = [λ]+ 1
)

,

and

xD
λ
∞

(

u(x)
)

=

1

k− λ

∫

∞

x

uk (u)

(x− u)λ+1−k
du ,

(

k = [λ]+ 1
)

.

The Fourier transform of1
λ
2 is given in [32], as

F
{

1
λ
2 (u (x, t)) ; k

}

= −

∣

∣k
∣

∣

λ
F {u (x, t)} , (0 < λ ≤ 2) . (16)

Inverse Sumudu transform of the following function is directly
applicable in this sequel:

In the complex plane C, for any R (α) > 0, R (β) > 0, and
ω ∈ C

S−1
[

uγ−1
(

1− ωuβ
)

−δ
]

= tγ−1Eδ
β , γ

(

ωtβ
)

. (17)

SPACE-TIME FRACTIONAL

ADVECTION-DISPERSION EQUATION

Here we will find, the solution of the generalized space-time
Advection-Dispersion equation (18) under the conditions given
in (19) and (20). Our main findings in the form of the following
Theorem 3.1 and Corollary 3.2.

Theorem 3.1.Consider the generalized fractional order space-
time advection-dispersion equation of Cauchy type

0D
γ ,µ,ν
ρ,ω,t (u (x, t)) = −ηDxu (x, t) + ς1

λ
2 (u (x, t)) , (18)

where λ ∈ (0, 2] x ∈ R, t ∈ R+, µ ∈ (0, 1) , ν ∈ [0, 1] ,
with initial condition,

E
−γ (1−ν)
ρ, (1−ν)(1−µ),ω,0+

u (x, 0+) = g (x) , γ , ω, x ∈ R, ρ > 0, (19)

and boundary condition

lim
|x|→∞

u (x, t) = 0, t > 0, (20)

where 1
λ
2 is the Laplace operator of fractional order λ, λ ∈

(0, 2] . The positive constant η represent the average fluid
velocity and ς (positive constant) represent the dispersion
coefficient. Subject to the above constraints, solution of equation
(18), is

u (x, t) =

∑

∞

n=0

tν(1−µ)+nµ−1

2π

∫

∞

−∞

e−ikxg
(

k
)

(

iηk− ς
∣

∣k
∣

∣

λ
)n

E
γ (n−ν)

ρ, ν(1−µ)+nµ

(

ωtρ
)

dk. (21)

Proof: First, take the Fourier transform of equation (18) with
respect to the space variable x, then

0D
γ ,µ,ν
ρ,ω,t

(

u∗
(

k, t
))

= ηiku∗
(

k, t
)

− ς
∣

∣k
∣

∣

λ
u∗

(

k, t
)

, (22)

u∗
(

k, t
)

represent Fourier transform of u (x, t) . Again, apply
Sumudu transform on (22) with respect to time variable t, we get

s−µ
(

1− ωsρ
)γ
u∗

(

k, s
)

− sν(1−µ)−1
(

1− ωsρ
)γ ν

(23)
[

E
−γ (1−ν)
ρ, (1−ν)(1−µ),ω,0+

u
(

k, 0+
)

]

= iηku∗
(

k, s
)

− ς
∣

∣k
∣

∣

λ
u∗

(

k, s
)

,

where S
[

u
(

k, t
)

; s
]

= ū
(

k, s
)

.
Solve equation (23), by using conditions (19)-(20), we get

{

s−µ
(

1− ωsρ
)γ

− iηk+ ς
∣

∣k
∣

∣

λ
}

u∗
(

k, s
)

= sν(1−µ)−1

(

1− ωsρ
)γ ν

g(k),

⇒ u∗
(

k, s
)

=

sν(1−µ)−1(1− ωsρ)γ ν

{

s−µ(1− ωsρ)γ − iηk+ ς
∣

∣k
∣

∣

λ
} g(k). (24)

On taking inverse Sumudu transform of equation (24), and after
little simplification, apply result (17), it gives

u∗
(

k, t
)

=

∑

∞

n=0

(

iηk− ς
∣

∣k
∣

∣

λ
)n

g
(

k
)

tν(1−µ)+nµ−1

E
γ (n−ν)

ρ, ν(1−µ)+nµ

(

ωtρ
)

. (25)

Taking inverse Fourier transform of (25), get our required result
(21).

This completes the proof of the theorem 3.1.
0n taking η = 0, ς =

ih
2m in Theorem 3.1, we arrive at:

Corollary 3.2. Consider the following one dimensional space-
time Schrödinger equation of fractional order, for a free nature
particle of massm is

0D
γ ,µ,ν
ρ,ω,t (u (x, t)) =

ih

2m
1

λ
2 (u (x, t)) , (26)

where λ ∈ (0, 2] , x ∈ R, t ∈ R+, µ ∈ (0, 1) , ν ∈ [0, 1] ,
with initial condition

E
−γ (1−ν)
ρ, (1−ν)(1−µ),ω,0+

u (x, 0+) = g (x) , γ , ω ∈ R, ρ > 0, (27)
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and boundary condition

lim
|x|→∞

u (x, t) = 0, t > 0, (28)

where 1
λ
2 is same as we defined earlier and h = 6.625 ×

10−27erg s = 4.21 × 10−21Mev s is the Planck constant. Subject
to the above constraints, solution of equation (26), is

u (x, t) =

∑

∞

n=0

tν(1−µ)+nµ−1

2π

∫

∞

−∞

e−ikxg
(

k
)

(

−

ih

2m

∣

∣k
∣

∣

λ

)n

E
γ (n−ν)

ρ, ν(1−µ)+nµ

(

ωtρ
)

dk. (29)

Proof: For obtaining the solution of Corollary 3.2, we follow
same procedure, as we used in the proof of Theorem 3.1, and after
little simplification, finally we obtain the desired result (29).

ILLUSTRATION

Example 4.1. To describe solute transport in aquifers, consider
the following generalized fractional advection dispersion
equation

0D
γ ,µ,ν
ρ,ω,t (u (x, t)) = −Dxu (x, t) + u′1

λ
2 (u (x, t)) , (30)

with initial condition

E
−γ (1−ν)
ρ, (1−ν)(1−µ),ω,0+

u (x, 0+) = e−x, 0 < x < 1, t > 0, (31)

and boundary condition

lim
|x|→∞

u (x, t) = 0, t > 0, (32)

where µ′
=

d
ν′L and we consider a dimensionless parameter,

called Peclet number, Pe =
1
µ′

where L is the packing length.

The Peclet number determines the nature of the problem, that
is, the Peclet number is low for dispersion-dominated problems
and is large for advective dominated problems, d is the dispersion
coefficient

[

L2T−1
]

and ν′ is the Darcy velocity
[

LT−1
]

.
Our interest is in the solution of (30), for this we follow same

procedure, as we applied in the proof of Theorem 3.1, and after
little simplification, finally we obtain

u (x, t) =

∑

∞

n=0

tν(1−µ)+nµ−1

2π

∫

∞

−∞

e−ikxg
(

k
)

(

ik− µ′

∣

∣k
∣

∣

λ
)n

E
γ (n−ν)

ρ, ν(1−µ)+nµ

(

ωtρ
)

dk (33)

Here u (x, t) represent the analytical expression of solute

concentration and g
(

k
)

=
1

√

2π

[

e−(1+ik)
−1

1+ik

]

.

Example 4.2. Consider the generalized fractional order space-
time advection-dispersion equation

0D
γ ,µ,ν
ρ,ω,t (u (x, t)) = −Dxu (x, t) + u′1

λ
2 (u (x, t)) , (34)

with the initial condition

E
−γ (1−ν)

ρ, (1−ν)(1−µ),ω,0+u (x, 0+) = δ (x) , (35)

Here δ(x) is Dirac-delta function and boundary condition

lim
|x|→∞

u (x, t) = 0, t > 0, (36)

The solution of (34) can be obtained by same technique as we
applied in proof of Theorem 3.1

u (x, t) =

∑

∞

n=0

tν(1−µ)+nµ−1

2π

∫

∞

−∞

e−ikx
(

ik− µ′

∣

∣k
∣

∣

λ
)n

E
γ (n−ν)

ρ, ν(1−µ)+nµ

(

ωtρ
)

dk. (37)

SPECIAL CASES

Some interesting special cases of Theorem 3.1 are enumerated
below:

If we set γ = 0, in (14), then Hilfer-Prabhakar derivative
reduces to Hilfer derivative (12), and the Theorem 3.1 reduces to:

(I). Consider the generalized fractional order space-time
advection-dispersion equation of Cauchy type

0D
µ,ν
t (u (x, t)) = −ηDxu (x, t) + ς1

λ
2 (u (x, t)) , (38)

where (0 < λ ≤ 2) , x ∈ R, t ∈ R+, µ ∈ (0, 1) , ν ∈ [0, 1] ,
with initial condition

I
(1−ν)(1−µ)
0+ u (x, 0+) = g (x) , x ∈ R, (39)

and boundary condition

lim
|x|→∞

u (x, t) = 0, t > 0. (40)

For obtaining the solution of (38), follow same procedure as
we used in the proof of theorem 3.1, and use (13), after little
simplification, obtain the following

u (x, t) =

tν(1−µ)+µ−1

2π

∫

∞

−∞

e−ikxg
(

k
)

E1µ, ν(1−µ)+µ

((

iηk− ς
∣

∣k
∣

∣

λ
)

tµ
)

dk . (41)

Again, use convolution theorem of the Fourier transform to (41),
then we get solution of (38), in term of Green’s function as

u (x, t) =

∫

∞

−∞

G
(

x− k, t
)

g
(

k
)

dk.

Here Green’s function is given as

G (x, t) =

tν(1−µ)+µ−1

2π

∫

∞

−∞

e−ikxE1µ, ν(1−µ)+µ

((

iηk− ς
∣

∣k
∣

∣

λ
)

tµ
)

dk.

If we set ν = 1 in (12), then Hilfer fractional derivative reduces
to Caputo fractional derivative operator (10) and the equation
(38), yields the following:

(II). Consider the generalized fractional order space-time
advection-dispersion equation of Cauchy type

Frontiers in Physics | www.frontiersin.org January 2019 | Volume 6 | Article 15173

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles


Gill et al. Generalized Space-Time Fractional Advection-Dispersion Equation

0D
µ
t (u (x, t)) = −ηDxu (x, t) + ς1

λ
2 (u (x, t)) , (42)

where (0 < λ ≤ 2) , x ∈ R, t ∈ R+, µ ∈ (0, 1) ,
with initial condition

u (x, 0+) = g (x) , x ∈ R, (43)

and boundary condition

lim
|x|→∞

u (x, t) = 0, t > 0. (44)

For obtaining the solution of (42), follow same procedure as
we used in the proof of theorem 3.1, and use (11), after little
simplification, obtain the following

u (x, t) =
1

2π

∫

∞

−∞

e−ikxg
(

k
)

E1µ, 1

((

iηk− ς
∣

∣k
∣

∣

λ
)

tµ
)

dk. (45)

Again, use convolution theorem of the Fourier transform to (45)
then we get solution of (42), in term of Green’s function as

u (x, t) =

∫

∞

−∞

G
(

x− k, t
)

g
(

k
)

dk.

Here Green’s function is given as

G (x, t) =
1

2π

∫

∞

−∞

e−ikxE1µ, 1

((

iηk− ς
∣

∣k
∣

∣

λ
)

tµ
)

dk.

(III). On giving suitable value to the parameters involved in
Theorem 3.1, we can obtained same results, earlier given by
Haung and Liu [14], Haubold et al. [15], Saxena et al. [16], and
Agarwal et al. [17].

CONCLUSION

In this paper, we have presented a solution of generalized space-
time fractional advection-dispersion equation. The solution has
been developed in terms of Mittag-Leffler function with the help
of Sumudu transform and Fourier transform. We can develop
the efficient numerical techniques to find solution of various
fractional partial differential equations arising in various fields by
considering these analytic solutions as base. For future research,
the methodology presented in this paper can serve as a good
working template to solve any fractional advection-dispersion
equations in higher dimensions.
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The Fractional Laguerre Equation:
Series Solutions and Fractional
Laguerre Functions

Rasha Shat 1, Safa Alrefai 1, Islam Alhamayda 1, Alaa Sarhan 1 and Mohammed Al-Refai 1,2*

1Department of Mathematical Sciences, United Arab Emirates University, Al Ain, United Arab Emirates, 2Department of

Mathematics, Yarmouk University, Irbid, Jordan

In this paper, we propose a fractional generalization of the well-known Laguerre

differential equation. We replace the integer derivative by the conformable derivative

of order 0 < α < 1. We then apply the Frobenius method with the fractional power

series expansion to obtain two linearly independent solutions of the problem. For certain

eigenvalues, the infinite series solution truncate to obtain the singular and non-singular

fractional Laguerre functions. We obtain the fractional Laguerre functions in closed forms,

and establish their orthogonality result. The applicability of the new fractional Laguerre

functions is illustrated.

Keywords: fractional differential equations, Laguerre equation, conformable fractional derivative, series solution,

Frobenius method

1. INTRODUCTION

In recent years, there are interests in studying fractional Sturm-Liouville eigenvalue problems.
For instance, the fractional Bessel equation with applications was investigated in Okrasinski and
Plociniczak [1, 2], where the fractional derivative is of the Riemann-Liouville type. In AbuHammad
and Khalil [3] the authors solved the fractional Legendre equation with conformable derivative and
established the orthogonality property of the fractional Legendre functions. The applications of
the fractional Legendre functions in solving fractional differential equations, were illustrated in
Kazema et al. [4] and Syam and Al-Refai [5]. In this project we propose the following fractional
generalization of the well-known Laguerre differential equation

xαDα
0D

α
0 y+ (1− xα)Dα

0 y+ λy = 0,
1

2
< α < 1, x > 0, (1.1)

where Dα
0 is the conformable derivative of order α. The conformable derivative was introduced

recently in Khalil et al. [6], and below are the definition and main properties of the derivative.

Definition 1.1. For a function f :(0,∞) → R, the conformable derivative of order 0 < α ≤ 1 of f
at x > 0, is defined by

(Dα
0 f )(x) = lim

ǫ→0

f (x+ ǫx1−α)− f (x)

ǫ
,

and the derivative at x = 0 is defined by (Dα
0 f )(0) = limx→0+ (D

α
0 f )(x).

The conformable derivative is a local derivative which has a physical and a geometrical
interpretations and potential applications in physics and engineering [7, 8]. It satisfies the nice
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properties of the integer derivative such as, the product rule, the
quotient rule, and the chain rule, and it holds that

1. Dα
0C = 0, C ∈ R,

2. Dα
0 x

p
= p xp−α ,

3. Dα
0 sin(

1
α
xα) = cos( 1

α
xα),

4. Dα
0 cos(

1
α
xα) = − sin( 1

α
xα),

5. Dα
0 e

1
α
xα

= e
1
α
xα

.
6.

∫ a
0 f (x)dα(x) =

∫ a
0 xα−1f (x)dx.

For more details about the conformable derivative we refer the
reader to Abdeljawad [9] and Khalil et al. [6]. We mention here
that even though the conformable is a nonlocal derivative (see
[10, 11]), the simplicity and applications of the derivative make
it of interests. Also, the applications of the obtained Fractional
Leguerre functions are indicated in this manuscript. The rest
of the paper is organized as follows: In section 2, we apply the
Frobenius method together with the fractional series solution to
solve the above equation and to obtain the fractional Laguerre
functions. In section 3, we establish the orthogonality result of the
fractional Laguerre functions and present the fractional Laguerre
functions for several eigenvalues. Finally, we close up with some
concluding remarks in section 4.

2. THE SERIES SOLUTION

The series solution is commonly used to solve various types of
fractional differential equations (see [12–16]). Since x = 0, is α-
regular singular point of Equation (1.1), see [17], we apply the
well-known Frobenius method to obtain a solution of the form

y =

∞
∑

n=0

anx
α(n+r),

where the values of r will be determined. We have

Dα
0 y =

∞
∑

n=0

α(n+ r)anx
α(n+r−1),

= αa0rx
α(r−1)

+

∞
∑

n=0

α(n+ r + 1)an+1x
α(n+r),

xαDα
0 y =

∞
∑

n=0

α(n+ r)anx
α(n+r),

Dα
0D

α
0 y =

∞
∑

n=0

α2(n+ r)(n+ r − 1)anx
α(n+r−2),

xαDα
0D

α
0 y =

∞
∑

n=0

α2(n+ r)(n+ r − 1)anx
α(n+r−1),

= α2r(r − 1)a0x
α(r−1)

+

∞
∑

n=0

α2(n+ r + 1)(n+ r)an+1 x
α(n+r).

By substituting the above results in Equation (1.1) we have

0 = α2r(r − 1)a0x
α(r−1)

+

∞
∑

n=0

α2(n+ r + 1)(n+ r)an+1 x
α(n+r)

+ αa0rx
α(r−1)

+

∞
∑

n=0

α(n+ r + 1)an+1x
α(n+r)

−

∞
∑

n=0

α(n+ r)anx
α(n+r)

+ λ

∞
∑

n=0

anx
α(n+r).

The coefficients of xα(r−1) will lead to

a0αr

(

α(r − 1)+ 1

)

= 0. (2.1)

Because α 6= 0, and a0 = 0, will lead to the zero solution, we have

r = 0, r = 1−
1

α
. (2.2)

We start with r = 0, we have

α2n(n+ 1)an+1 + α(n+ 1)an+1 − αnan + λan = 0,

or

an+1 =
αn− λ

α(n+ 1)(αn+ 1)
an, n ≥ 0. (2.3)

Lemma 2.1. The coefficients an in Equation (2.3) satisfy

an+1 =

n
∏

j=0
(jα − λ)

αn+1(n+ 1)!
n
∏

j=0
(jα + 1)

a0, n ≥ 0. (2.4)

Proof: The proof can be easily obtained by iterating the recursion
in (2.3) and applying induction arguments.

Remark 2.1. For α = 1, the recursion relation in (2.4) will
reduce to

an+1 =
−λ(1− λ)(2− λ) · · · (n− λ)

[(n+ 1)!]2
a0, (2.5)

which is exactly the recursion relation that has been obtained in
solving the Laguerre equation with integer derivative.

For r = −
1
α
+ 1, we have for n ≥ 0,

an+1 =

α(n+ r)− λ

α(n+ r + 1)(α[n+ r]+ 1)
an,

=

α(n+ 1)− (λ + 1)

α(n+ 1)(α[n+ 2]− 1)
an. (2.6)

By iterating the recursion in (2.6) and applying induction
arguments, we have
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Lemma 2.2. The coefficients an in Equation (2.6) satisfy

an+1 =

n+1
∏

j=1
(jα − [λ + 1])

αn+1(n+ 1)!
n+2
∏

j=2
(jα − 1)

a0, n ≥ 0. (2.7)

Remark 2.2. By applying the Frobenius method to the regular
Laguerre equation with integer derivative α = 1, we obtain only
one value of r = 0, which produces only one solution. Here with
the fractional case, we obtain two values of r = 0, 1 − 1

α
, that will

produce two linearly independent solutions of the problem as we
will see later.

Now, in Equation (2.4), if we choose α = αm and λ = λm
such that

mαm = λm,

for some integerm, then

am+1 = am+2 = · · · = 0,

and the infinite series solution will truncate to obtain the
finite sum

u(x) =

m
∑

n=0

anx
nαm

= a0

(

1+

m
∑

n=1

n−1
∏

j=0
(jαm − λm)

αn
mn!

n−1
∏

j=0
(jαm + 1)

xnαm
)

= a0L
0
m,αm

(x),

where L0m,αm
(x) is the non-singular fractional Laguerre function

of orderm. Since

n−1
∏

j=0

(jαm − λm) =

n−1
∏

j=0

(jαm −mαm) =

n−1
∏

j=0

αm

n−1
∏

j=0

(j−m)

= αn
m

n−1
∏

j=0

(j−m),

then

L0m,αm
(x) = 1+

m
∑

n=1

n−1
∏

j=0
(j−m)

n!
n−1
∏

j=0
(jαm + 1)

xnαm . (2.8)

Analogously, in Equation (2.7), if we choose α = αm and λ = λm
such that

mαm = λm + 1,

then

am = am+1 = · · · = 0,

and the infinite series solution will truncate to obtain the solution

u(x) =

m−1
∑

n=0

anx
αm(n−

1

αm
+1)

= x−1
m−1
∑

n=0

anx
αm(n+1)

= a0L
1
m−1,αm

(x),

where

L1m−1,αm
(x) = x−1

(

xα
m +

m−1
∑

n=1

n
∏

j=1
(jαm − (λm + 1))

αn
mn!

n+1
∏

j=2
(jαm − 1)

xαm(n+1)

)

,

= xαm−1

(

1+

m−1
∑

n=1

n
∏

j=1
(jαm −mαm)

αn
mn!

n+1
∏

j=2
(jαm − 1)

xαmn

)

,

= xαm−1

(

1+

m−1
∑

n=1

n
∏

j=1
(j−m)

n!
n+1
∏

j=2
(jαm − 1)

xαmn

)

, (2.9)

is the fractional singular Laguerre function of orderm− 1.

Remark 2.3. If we substitute αm = 1, then

L0m,1(x) = L1m,1(x) = 1+

m
∑

n=1

n−1
∏

j=0
(j−m)

n!
n−1
∏

j=0
(j+ 1)

.

Since
n−1
∏

j=0
(j+ 1) = n!, and

n−1
∏

j=0
(j−m) = (−1)n m!

(m−n)!
, we have

L0m,1(x) = L1m,1(x) = 1+

m
∑

n=1

(−1)mm!

(n!)2(m− n)!
,

which is the expansion of the Laguerre polynomial Lm(x).

3. THE FRACTIONAL LAGUERRE

FUNCTIONS

We start with the orthogonality property of the fractional

Laguerre functions

(

Lm,αm (x)

)

,m = 0, 1, 2, · · · . Here by

Lm,αm (x) we mean the non-singular and singular Laguerre
functions obtained in (2.8) and (2.9).

Theorem 3.1. The fractional Laguerre functions
(

Lm,αm (x)
)

,m =

0, 1, 2, · · · are orthogonal on (0,∞) with respect to the weight

function µ(x) = e−
xα

α ,i.e.,

∫

∞

0
e−

xα

α Lm,αm (x)Ln,αn (x)dx = 0, m 6= n.
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Proof: One can easily prove that Equation (1.1) can be
written as

Dα
0

(

xe−
xα

α Dα
0 y

)

= −λx1−αe−
xα

α y. (3.1)

Thus, the equation is of a special type of the fractional Sturm-
liouville eigenvalue problem

Dα
0

(

p(x)Dα
0 y

)

+ q(x)y = −λw(x)y,

FIGURE 1 | A plot of L00,α , L
0
1,α , L

0
2,α , L

0
3,α for α = 0.8.

FIGURE 2 | A plot of L10,α , L
1
1,α , L

1
2,α , L

1
3,α for α = 0.8.

FIGURE 3 | A plot of L02,α , for α = 0.8, 0.9, 0.99, 1.
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where p(x) = xe−
xα

α , q(x) = 0 and w(x) = x1−αe−
xα

α . Using the
fractional Lagrange Identity obtained in Al-Refai and Abdeljawad
[18], we have

− (λm − λn)

∫

∞

0
w(x)Lm,αmLn,αndα(x)

= p(x)

(

Ln,αnD
α
0Lm,αm − Lm,αmD

α
0Ln,αn

)∣

∣

∣

∣

∞

0

. (3.2)

We have p(0) = 0, and

lim
x→∞

x1−αe−
xα

α

(

Ln,αnD
α
0Lm,αm − Lm,αmD

α
0Ln,αn

)

(x) = 0.

Thus the right hand side of Equation (3.2) equals zero which
together with λm 6= λn will lead to

∫

∞

0
w(x)Lm,αmLn,αndα(x) =

∫

∞

0
x1−αe−

xα

α Lm,αm (x)Ln,αn (x)x
α−1dx

=

∫

∞

0
e−

xα

α Lm,αm (x)Ln,αn (x)dx = 0,

(3.3)

and hence the result.

Remark 3.1. Since the fractional Laguerre functions are
orthogonal, they can be used as a basis of the spectral method
to study fractional differential equations analytically and
numerically. They also can be used as a basis of the fractional
Gauss-Laguerre quadrature for approximating the value of
integrals of the form

∫

∞

0
e−

xα

α f (x)dx.

Remark 3.2. New types of improper integrals are determined
using the orthogonality property which are not known before,
such as

∫

∞

0
(1− xα)e−

xα

α dx = 0, L00,α0 (x) = 1, L01,α1 (x) = 1− xα1 ,

∫

∞

0
x2(α−1)(1−

1

2α − 1
xα)e−

xα

α dx = 0,

L10,α0 (x) = xα0−1, L11,α1 (x) = xα1−1(1−
1

2α1 − 1
xα1 ),

In the following we present the singular and non-singular
fractional Laguerre functions of several orders.

L00,α0 (x) = 1,

L01,α1 (x) = 1− xα1

L02,α2 (x) = 1− 2xα2
+

1

α2 + 1
x2α2

L03,α3 (x) = 1− 3xα3
+

3

α3 + 1
x2α3 −

1

(α3 + 1)(2α3 + 1)
x3α3 .

L10,α0 (x) = xα0−1,

L11,α1 (x) = xα1−1(1−
1

2α1 − 1
xα1 ),

L12,α2 (x) = xα2−1(1−
2

2α2 − 1
xα2

+

1

(2α2 − 1)(3α2 − 1)
x2α2 ),

L13,α3 (x) = xα3−1

(

1−
3

2α3 − 1
xα3

+

3

(2α3 − 1)(3α3 − 1)
x2α3

−

1

(2α3 − 1)(3α3 − 1)(4α3 − 1)
x3α3

)

.

Figures 1, 2 depict the non-singular and singular fractional
Laguerre functions of several orders for α = 0.8. Figure 3 depicts
L02,α for several values of α. One can see that, as α approaches
1, the non-singular fractional Laguerre functions approach the
Laguerre polynomial of degree 2.

4. CONCLUSION

We have considered the fractional Laguerre equation with
conformable derivative. We obtained two linearly independent
solutions using the fractional series solution and Frobenius
method. The first non-singular solution is analytic on (0,∞),
and the second singular solution has a singularity at x = 0.
For certain eigenvalues, these infinite solutions truncate to obtain
the fractional Laguerre functions. Because of the orthogonality
property of the fractional Laguerre functions, they can be used
as a basis of the spectral method to study fractional differential
equations, or as a basis of the Gauss-Laguerre quadrature for
evaluating certain integrals. The obtained results coincide with
the ones of the regular Laguerre polynomials as the derivative
α approaches 1.
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The aim of the present work is to devote a friendly approach based on Adomian

decomposition method (ADM) to find the numerical solution of the time-fractional

Newell-Whitehead-Segel equation. Newell-Whitehead-Segel equation plays an efficient

role in non-linear systems which describe the appearance of the stripe patterns in two

dimensional systems. The numerical results obtained by proposedmethod are compared

with exact solution for different values of fractional order α. Plotted graph illustrate the

efficiency and accuracy of the proposed technique.
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INTRODUCTION

Fractional calculus is a field of applied mathematics, three centuries old as the conventional
calculus. Fractional calculus deals with derivatives and integrals of arbitrary orders. During the last
decade, superb improvements have been visualized in the field of fractional calculus, very popular
amongst science and engineering community. In recent year, differential equation containing
fractional order derivatives has been contributed in various fields of science and engineering
[1–4] such as diffusion equation, polarization, electro-magnetic waves, visco elasticity, electrode-
electrolyte heat conduction, finance [5], control theory, biomedical engineering, biology [6] etc. In
order to achieve the goal of highly accurate solution, many authors illustrate various techniques
such as Adomian decomposition method [7], Finite difference method [8], Generalized differential
transform method [9], Finite element method [10], Fractional differential transform method [11],
Homotopy perturbationmethod [12, 13], Iterative methods [14], Variational iterationmethod [15],
Homotopy analysis method [16], Differential quadrature method [17], Homotopy perturbation
Sumudu transform method [18], Homotopy analysis transform method [19], Local fractional
homotopy perturbation Sumudu transform method and Local fractional reduced differential
transform method [20], Homotopy analysis Sumudu transform method [21] etc.

Recently various author used a new fractional derivative with Mittag-Leffler type kernel
by different numerical method like Laplace decomposition method [22] and iterative method
[23] etc.

The Newell-Whitehead-Segel equation model is the interaction of the effect of the diffusion
term with the non-linear effect of the reaction term. Fractional Newell-Whitehead-Segel equation
is written as

uα
t = kuxx + au− buq, t > 0, 0 < α ≤ 1, (1.1)
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where a, b and k > 0 are real numbers and q is a positive integers.
First term on the left hand side in Equation (1.1) uα

t represent
the variation of u(x, t) with time at a fixed location, first term
on the right hand side uxx represent the variation of u(x, t) with
spatial variable at a specific time and term au − buq takes into
account the effect of the source term. The function u(x, t) may be
non-linear distribution of temperature in an infinitely thin and
long rod or fluid flow as a velocity in an infinitely long pipe with
narrow diameter.

Mostly two types of patterns are observed. First is the roll
pattern in which cylinders form by fluid stream lines. These
cylinders may be bend and form spiral like patterns. Second
pattern is the hexagonal in which liquid flow is divided into honey
comb cells. The same patterns, stripes and hexagons appear
in different physical system. For example, stripes patterns are
notice in human fingerprints, on zebra skin and in a visual
cortex. Hexagonal patterns are obtained from the propagation of
laser beams through a non-linear medium and in systems with
chemical reaction and diffusion species [24].

Recently Newell-Whitehead-Segel equations were solved by
S. S. Nourazar, M. Soori, and A. Nazari-Golshan by homotopy
perturbation method [25], A. Prakash andM. Kumar [26] by He’s
variational iteration method. Also fractional model of Newell-
Whitehead-Segel were solved by Kumar et al. [27] and Prakash
et al. [28] by homotopy analysis Sumudu transform method
and fractional variational iteration method, respectively. But
fractional model of Newell-Whitehead-Segel has not been solved
by Adomian decomposition method. Adomian decomposition
method is very powerful and efficient numerical method for
handling non-linear fractional model. Adomian decomposition
method (ADM) demonstrates fast convergence of the solution
and therefore provides several significant advantages. This
method attacks directly on non-linear term, in a straightforward
fashion without using linearization, discretization, perturbation
or any other restrictive assumption. Many studies have shown
that few terms of decomposition series provide numerical result
of high degree of accuracy which makes the method powerful
when compared with other existing numerical techniques.

The outline of this paper is as follow. First section is
introductory, in the Basic Definition of Fractional Calculus the
basic definition of fractional calculus is discussed, in Proposed
Adomian Decomposition Method solution process of non-linear
Newell-Whitehead-Segel equation by Adomian decomposition
method is discussed, in Error Analysis of The Proposed Method
error analysis of proposed technique is discussed, in Application
of ADM to Fractional Newell-Whitehead-Segel Equation five
test examples of fractional Newell-Whitehead-Segel equation
are given to elucidate the proposed method ADM and in last
Conclusion of the work is drawn.

BASIC DEFINITION OF FRACTIONAL
CALCULUS

In this section, we will introduce the basic definitions
and properties of fractional calculus used to describe the
proposed schemes.

Definition 2.1. A real function f (t) , t > 0, is said to be in the
space Cα , ǫ αR, if there exists a real number p, (p > α), such
that f (t) = tpf1 (t) , where f1(t) ǫ C[0, ∞) and it is said to be in
the space Cm

α iff (m) ǫ Cα , mǫN
⋃

{0} .
Definition 2.2. The Riemann-Liouville fractional integral of

order α ≥ 0, of a function f (t) ǫCβ , β ≥ −1 is defined as
[29–31]:

Jα f (t) =
1

Ŵ (α)

∫ t

0

f (τ )

(t − τ)1−α
dτ =

1

Ŵ(α + 1)

∫ t

0
f (τ )(dτ )α ,

J0f (t) = f (t) .

For the Riemann-Liouville fractional integral, we have

Jαtβ =

Ŵ(β + 1)

Ŵ(β + α + 1)
tα+β ,

where Ŵ. is the well-known Gamma Function.
Definition 2.3. The Caputo fractional derivative of f (t) , f ∈

Cm
−1, m ∈ N, m > 0, is defined as [29–31]:

Dα f (t) = Im−αDmf (t) =
1

Ŵ(m− α)

∫ t

0
(t − x)m−α−1 fm (x) dx,

Wherem− 1 < α ≤ m.

PROPOSED ADOMIAN DECOMPOSITION
METHOD

In this section, we illustrate the basic idea of the Adomian
Decomposition method (ADM) for the time-fractional Newell-
Whitehead-Segel equation.

Consider time-fractional Newell-Whitehead-Segel equation as

uα
t = kuxx + au− buq, t > 0, 0 < α ≤ 1, (3.1)

where a, b and k > 0 are real numbers and q is a positive integers
with initial condition

u (x, 0) = f (x, t) .

Applying the operator Jαt on both sides of (3.1), we have

u (x, t) =

∑m−1

k=0

(

∂ku

∂tk

)

t=0

tk

Ŵ
(

k+ 1
)+Jαt f (x, t)

−Jαt
(

kuxx + au− buq
)

. (3.2)

Next, we decompose the unknown function u (x, t) into sum of
an infinite number of components given by the series

u (x, t) =
∑

∞

n=0
un(x, t), (3.3)

and the non-linear term can be decomposed as

buq =
∑

∞

n=0
An, (3.4)
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where An are Adomian polynomial, given by

An =

1

Ŵ(n+ 1)
[
dn

dλn
{b
∑

∞

n=0
λiui (x, t)}

q
]λ=0, (3.5)

where n = 0, 1, 2, 3, . . . . . . .
Components u0, u1, u2, u3, u4, . . . . are determined by

substituting (3.3), (3.4), and (3.5) into (3.2) leading to

∑

∞

n=0
un (x, t) =

∑m−1

k=0

(

∂ku

∂tk

)

t=0

tk

Ŵ
(

k+ 1
)+Jαt f (x, t)

−Jαt {k(
∑

∞

n=0
un (x, t))

xx
+ a(

∑

∞

n=0
un (x, t))+

∑

∞

n=0
An}.

(3.6)

This can be written as

u0 + u1 + u2 + . . . =
∑m−1

k=0

(

∂ku

∂tk

)

t=0

tk

Ŵ
(

k+ 1
)+Jαt f (x, t)

−Jαt [k
(

(u0)xx + (u1)xx + (u2)xx + . . .
)

+ a(u0 + u1 + u2 + . . .)

+ (A0 + A1 + A2 + A3 + . . .)].

Adomian method uses the formal recursive relations as:

u0 =
∑m−1

k=0

(

∂ku

∂tk

)

t=0

tk

Ŵ
(

k+ 1
)+Jαt f (x, t) ,

un+1 = −Jαt {k(un)xx + aun + An}, n ≥ 0. (3.7)

ERROR ANALYSIS OF THE PROPOSED
METHOD

Theorem 4.1. If we can find a constant 0 < ε < 1 such that
∥

∥um+1(x, t)
∥

∥

≤ ε
∥

∥um(x, t)
∥

∥ for each value of m. Moreover, if
the truncated series

∑r
m=0 um(x, t) is employed as a numerical

solution u(x, t), then the maximum absolute truncated error is
determined as

∥

∥

∥
u (x, t) −

∑r

m=0
um (x, t)

∥

∥

∥
≤

εr+1

(1− ε)
‖u0 (x, t)‖ .

Proof.We have

∥

∥

∥
u (x, t) −

∑r

m=0
um(x, t)

∥

∥

∥
=

∥

∥

∥

∑

∞

m=r+1
um(x, t)

∥

∥

∥

≤

∑

∞

m=r+1

∥

∥um(x, t)
∥

∥

≤

∑

∞

m=r+1
εm
∥

∥u0(x, t)
∥

∥

≤ (ε)r+1
[

1+ (ε)1 + (ε)2 + . . .
] ∥

∥u0(x, t)
∥

∥

≤

εr+1

(1− ε)
‖u0 (x, t)‖ .

Which proves the theorem.

APPLICATION OF ADM TO FRACTIONAL
NEWELL-WHITEHEAD-SEGEL EQUATION

In this section, five test examples of fractional Newell-
Whitehead-Segel equation demonstrate the efficiency of
proposed ADM.

Ex. 5.1. We study the linear time-fractional Newell-
Whitehead-Segel equation

ut
α
= uxx − 2u, t > 0, 0 < α ≤ 1, (5.1)

with initial condition

u (x, 0) = ex. (5.2)

Applying the operator Jαt on both side of above defined problem,
we have

u (x, t) =
∑1−1

k=0

(

∂ku

∂tk

)

t=0

tk

Ŵ
(

k+ 1
) + Jαt {uxx − 2u}.

This gives the following recursive relation:

u0 (x, t) =
∑1−1

k=0

(

∂ku

∂tk

)

t=0

tk

Ŵ
(

k+ 1
) ,

un+1(x, t) = Jαt {(un)xx − 2un}, n ≥ 0.

u0 = ex,

u1 = −ex
tα

Ŵ(α + 1)
,

u2 = ex
t2α

Ŵ(2α + 1)
,

u3 = −ex
t3α

Ŵ (3α + 1)
,

∞
∑

n=0

un (x, t) =ex − ex
tα

Ŵ (α + 1)
+ ex

t2α

Ŵ (2α + 1)

−ex
t3α

Ŵ (3α + 1)
+ . . . ,

Now, for the standard case when α = 1, we get u (x, t) =

ex−t , which is the exact solution of the classical Newell-
Whitehead-Segel equation as obtained by HPM [25] and VIM
[26]. Here the numerical results obtained by ADM upto eight
terms of approximation and exact solution as shown in Figures 1,
2 are almost identical. It can be observed that as the value of t
increases, u decreases, and as x increases, u also increases. Hence,
the accuracy of ADM can be enhanced by increasing the number
of iterations.

Ex. 5.2. We study the non-linear time-fractional Newell-
Whitehead-Segel equation

uα
t = uxx + 2u− 3u2, t > 0, 0 < α ≤ 1, (5.3)

with initial condition

u (x, 0) = η. (5.4)
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FIGURE 1 | Surface represents eight order approximate solution for α = 1, for

Ex. 5.1.

FIGURE 2 | Surface represents exact solution for α = 1, for Ex. 5.1.

Applying the operator Jαt on both side of above defined problem,
we have

u (x, t) =
∑1−1

k=0

(

∂ku

∂tk

)

t=0

tk

Ŵ
(

k+ 1
) + Jαt {uxx + 2u+ An}.

This gives the following recursive relation:

u0 (x, t) =
∑1−1

k=0

(

∂ku

∂tk

)

t=0

tk

Ŵ
(

k+ 1
) ,

un+1(x, t) = Jαt {(un)xx + 2un + An}, n ≥ 0.

u0 = η

u1 = η(2− 3η)
tα

Ŵ(α + 1)
,

u2 = 2η (2− 3η) (1− 3η)
t2α

Ŵ(2α + 1)
,

u3 = 2η (2− 3η) (18η2
− 12η + 2)

t3α

Ŵ(3α + 1)

−3η2(2− 3η)2
Ŵ (2α + 1)

Ŵ (α + 1)2
t3α

Ŵ (3α + 1)
,

u4 = −12η2 (2− 3η)
(

18η2
− 12η + 2

) t4α

Ŵ (4α + 1)

+18η3(2− 3η)2
Ŵ (2α + 1)

Ŵ (α + 1)2
t4α

Ŵ (4α + 1)

−12η2 (2− 3η)2 (1− 3η)
Ŵ (3α + 1)

Ŵ (α + 1) Ŵ (2α + 1)

t4α

Ŵ (4α + 1)

+4η (2− 3η) (18η2
− 12η + 2)

t4α

Ŵ(4α + 1)

−6η2(2− 3η)2
Ŵ (2α + 1)

Ŵ (α + 1)2
t4α

Ŵ (4α + 1)
+ . . .

∞
∑

n=0

un (x, t) = η + η (2− 3η)
tα

Ŵ (α + 1)

+2η (2− 3η) (1− 3η)
t2α

Ŵ (2α + 1)

+2η (2− 3η)
(

18η2
− 12η + 2

) t3α

Ŵ (3α + 1)

−3η2(2− 3η)2
Ŵ (2α + 1)

Ŵ(α + 1)2
t3α

Ŵ (3α + 1)

−12η2 (2− 3η)
(

18η2
− 12η + 2

) t4α

Ŵ (4α + 1)

+18η3(2− 3η)2
Ŵ (2α + 1)

Ŵ(α + 1)2
t4α

Ŵ (4α + 1)

−12η2(2− 3η)2 (1− 3η)
Ŵ (3α + 1)

Ŵ (α + 1) Ŵ (2α + 1)

t4α

Ŵ (4α + 1)

+4η (2− 3η) (18η2
− 12η + 2)

t4α

Ŵ(4α + 1)

−6η2(2− 3η)2
Ŵ (2α + 1)

Ŵ(α + 1)2
t4α

Ŵ (4α + 1)
+ . . .

In particular when α = 1, we get the solution in the form

u (x, t) = η + η (2− 3η) t + 2η (2− 3η) (1− 3η)
t2

Ŵ (3)

+2η (2− 3η)
(

27η2 − 18η + 2
) t3

Ŵ (4)

+12η (2− 3η)

(

−54η3 + 54η2 − 14η +

2

3

)

t4

Ŵ (5)
. . . . . . ,
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FIGURE 3 | Comparison of approx. sol. for different values of α and exact sol.

at α = 1, for Ex. 5.2.

Which converge to the exact solution of the classical Newell-
Whitehead-Segel equation very fastly [25, 26].

u (x, t) =
−2
3 ηe2t

−
2
3 + η − ηe2t

.

Figure 3 shows the comparison of approximate solution for
different value of fractional order α = 0.25, 0.50, 0.75, 1
and exact solution at α = 1, when η = 1. It is observed
from the Figure 3 that there is a good agreement between
exact solution and approximate solution at α = 1. It is also
noticed that solution depends on the time-fractional derivative.
Accuracy and efficiency can be enhanced by increasing the
number of iterations.

Ex. 5.3. We study the non-linear time-fractional Newell-
Whitehead-Segel equation.

uα
t = uxx + u− u2 = 0, t > 0, 0 < α ≤ 1, (5.5)

With initial condition,

u (x, 0) =
1

(1+ e
x
√

6 )
2
. (5.6)

Applying the operator Jαt on both side of above equation, we get

u (x, t) =
∑1−1

k=0

(

∂ku

∂tk

)

t=0

tk

Ŵ
(

k+ 1
) + Jαt {uxx + u+ An}.

This gives the following recursive relation:

u0 (x, t) =
∑1−1

k=0

(

∂ku

∂tk

)

t=0

tk

Ŵ
(

k+ 1
) ,

un+1(x, t) = Jαt {(un)xx + 2un + An}, n ≥ 0.

u0 =
1

(1+ e
x
√

6 )
2
,

u1 =
5

3

e
x
√

6

(1+ e
x
√

6 )
3

tα

Ŵ(α + 1)
,

u2 =
25

18
(
e

x
√

6

(

−1+ 2e
x
√

6

)

(

1+ e
x
√

6

)4
)

t2α

Ŵ(2α + 1)
,

u3 = {

25

18

1
(

1+ e
x
√

6

)5
[
8

6
(e

x
√

6 )2 − 4(e
x
√

6 )3

+

(

8

6
(e

x
√

6 )
2
−

(e
x
√

6 )

6

)

(

1+ e
x
√

6

)

+

4

6
(e

x
√

6 )
2
−
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In particular when α = 1, we get the solution in the form
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FIGURE 4 | Comparison of approx. sol. for different values of fractional order

α and exact sol. at α = 1, for Ex. 5.3.
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Which converge to the exact solution of the classical Newell-
Whitehead-Segel equation very fastly [25].

u (x, t) =
1

(
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x
√

6
−

5
6 t
)2

.

Figure 4 shows the comparison of third order approximate
solution for different value of fractional order α = 0.25, 0.50,
0.75, 1 and exact solution at α = 1, for x = 1. It is observed
from the Figure 4 that there is a good agreement between
exact solution and approximate solution at α = 1. It is also
noticed that solution depends on the time-fractional derivative.
Accuracy and efficiency can be enhanced by increasing the
number of iterations.

Ex. 5.4. We study the non-linear time-fractional Newell-
Whitehead-Segel equation

uα
t = uxx + u− u4 = 0, t > 0, 0 < α ≤ 1, (5.7)

with initial condition
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Applying the operator Jαt on both side of above equation, we have
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Taking α = 1, we get the solution in the form
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FIGURE 5 | Comparison of approx. sol. for different values of α and exact sol.

at α = 1, for Ex. 5.4.
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Which converge to the exact solution of the classical Newell-
Whitehead-Segel equation very fastly [25, 26].
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Figure 5 shows the comparison of third order approximate
solution for different value of fractional order α =

0.25, 0.50, 0.75, 1 and exact solution at α = 1 for x = 1.
It is observed from the Figure 5 that there is a good agreement
between exact solution and approximate solution at α = 1.
It is also noticed that solution depends on the time-fractional
derivative. Accuracy and efficiency can be enhanced by increasing
the number of iterations.

Ex. 5.5. We study the nonlinear time-fractional Newell-
Whitehead-Segel equation of the form

uα
t = uxx + 3u− 4u4 = 0, t > 0, 0 < α ≤ 1, (5.9)

with initial condition

u (x, 0) =
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. (5.10)
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Applying the operator Jαt on both side of above defined problem,
we have
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FIGURE 6 | Comparison of approx. sol. for different values of fractional order

α and exact sol. at α = 1, for Ex. 5.5.
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Taking α = 1, we get the solution in the form

u (x, t) =
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which converge to the exact solution of the classical Newell-
Whitehead-Segel equation very fastly [25, 26].

u (x, t) =

√
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e
√
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e
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6x
+ e(

√

6
2 x− 9

2 t)
.

Figure 6 shows the comparison of third order
approximate solution for different value of fractional order
α = 0.25, 0.50, 0.75, 1 and exact solution at α = 1, for

x = 1. It is observed from the Figure 6 that there is a good

agreement between exact solution and approximate solution at
α = 1. It is also noticed that solution depends on the time-
fractional derivative. Accuracy and efficiency can be enhanced by
increasing the number of iterations.

CONCLUSION

In this article, we have successfully applied the ADM to
obtain the approximate analytic solutions of fractional model
of Newell-Whitehead-Segel equation. The plotted graph and
numerical result shows the accuracy of proposed method.
We observed an excellent agreement between ADM and
the exact solution. The results reveal that ADM is an
efficient and computationally very attractive approach to
investigate non-linear fractional model. Therefore, ADM can
be further applied to solve various types of linear and
non-linear fractional model arising in the field of science
and engineering.
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