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Genome-Wide Association Studies (GWAS) are widely used in the genetic dissection 
of complex traits. Most existing methods are based on single-marker association in 
genome-wide scans with population structure and polygenic background controls. 
To control the false positive rate, the Bonferroni correction for multiple tests is 
frequently adopted. This stringent correction results in the exclusion of important 
loci, especially for GWAS in crop genetics. To address this issue, multi-locus GWAS 
methodologies have been recommended, i.e., FASTmrEMMA, ISIS EM-BLASSO, 
mrMLM, FASTmrMLM, pLARmEB, pKWmEB and FarmCPU.

In this Research Topic, our purpose is to clarify some important issues in the 
application of multi-locus GWAS methods. Here we discuss the following subjects:

First, we discuss the advantages of new multi-locus GWAS methods over the 
widely-used single-locus GWAS methods in the genetic dissection of complex traits, 
metabolites and gene expression levels.
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Secondly, large experiment error in the field measurement of phenotypic values for 
complex traits in crop genetics results in relatively large P-values in GWAS, indicating 
the existence of small number of significantly associated SNPs. To solve this issue, a 
less stringent P-value critical value is often adopted, i.e., 0.001, 0.0001 and 1/m (m is 
the number of markers). Although lowering the stringency with which an association 
is made could identify more hits, confidence in these hits would significantly drop. 
In this Research Topic we propose a new threshold of significant QTN (LOD=3.0 or 
P-value=2.0e-4) in multi-locus GWAS to balance high power and low false positive rate.

Thirdly, heritability missing in GWAS is a common phenomenon, and a series of 
scientists have explained the reasons why the heritability is missing. In this Research 
Topic, we also add one additional reason and propose the joint use of several GWAS 
methodologies to capture more QTNs. Thus, overall estimated heritability would 
be increased. 

Finally, we discuss how to select and use these multi-locus GWAS methods.

Citation: Zhang, Y.-M., Jia, Z., Dunwell, J. M., eds. (2019). The Applications of New 
Multi-Locus GWAS Methodologies in the Genetic Dissection of Complex Traits.  
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Editorial on the Research Topic

The Applications of New Multi-Locus GWAS Methodologies in the Genetic Dissection of

Complex Traits

Since the establishment of the mixed linear model (MLM) method for genome-wide association
studies (GWAS) by Zhang et al. (2005) and Yu et al. (2006), a series of new MLM-based methods
have been proposed (Feng et al., 2016). These methods have been widely used in genetic dissection
of complex and omics-related traits (Figure 1), especially in conjunction with the development of
advanced genomic sequencing technologies. However, most existing methods are based on single
marker association in genome-wide scans with population structure and polygenic background
controls. To control false positive rate, Bonferroni correction for multiple tests is frequently
adopted. This stringent correction results in the exclusion of important loci, especially for large
experimental error inherent in field experiments of crop genetics. To address this issue, multi-
locus GWAS methodologies have been recommended, i.e., mrMLM (Wang et al., 2016), ISIS EM-
BLASSO (Tamba et al., 2017), pLARmEB (Zhang et al., 2017), FASTmrEMMA (Wen et al., 2018a),
pKWmEB (Ren et al., 2018), and FASTmrMLM (Zhang and Tamba, 2018). Here we summarize
their advantages and potential limitations for using these methods (Table 1).

MULTI-LOCUS GENOME-WIDE ASSOCIATION STUDIES FOR
COMPLEX TRAITS

Comparison of GWAS Methodologies
Our methodological papers have showed their advantages in terms of quantitative trait nucleotide
(QTN) detection power and QTN effect estimation accuracy over existing methods (Wang et al.,
2016; Tamba et al., 2017; Zhang et al., 2017; Ren et al., 2018; Wen et al., 2018a). This conclusion
has been echoed in a number of other applied studies in this Research Topic. For example, Ma
et al. and Zhang et al. indicated that mrMLM, FASTmrEMMA, pLARmEB, and ISIS EM-BLASSO
outperform the R package GAPIT, with ISIS EM-BLASSO being the most powerful multi-locus
approach. Xu et al. compared one single-locus method (GEMMA) and three multi-locus methods
(FASTmrEMMA, FarmCPU, and LASSO) in the genetic dissection of starch pasting properties
in maize. As a result, FASTmrEMMA detected the most QTNs (29), followed by FarmCPU (19)
and LASSO (12), and GEMMA detected the least QTNs (7). In the genetic dissection of salt
tolerance traits in rice, Cui et al. compared all the sixmulti-locus approaches and identified themost
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FIGURE 1 | The pipeline framework of genome-wide association studies and their application.

co-detected QTNs from ISIS EM-BLASSO. Peng et al. used our
six multi-locus GWAS methods to analyze 20 free amino acid
levels in kernels of bread wheat (Triticum aestivum L.) and
found the reliability and complementarity of these methods.
In the detection of small-effect QTNs for fiber-quality related
traits in the early-maturity varieties of upland cotton, Su et al.
claimed that the multi-locus GWAS methods are more powerful
and robust than the MLM method in TASSEL v5.0. Hou et al.
demonstrated that 20 QTNs were associated with drought stress
response using mrMLM, while three QTNs were associated with
resistance to Verticillium wilt using EMMAX. Although the
above studies have shown the advantages of multi-locus GWAS
methods over single-locus GWAS methods, Chang et al., He
et al., Li et al., and Xu et al. recommended the combination
of single-locus methods and/or multi-locus methods to improve
the detection power and robustness of GWAS, and Cui et al.
recommended adding a bin analysis to the models or developing
a hybrid method that merges the results from different methods.
Our previous results in the analysis of real and simulated dataset
support the above recommendations.

In addition, Liu et al. adopted four multi-locus GWAS
algorithms (mrMLM, FASTmrEMMA, ISIS EM-BLASSO, and
pLARmEB) to dissect the genetic foundation for fiber quality and
yield component traits in RILs. As a result, a significant number

of QTNs were found to coincide with the physical regions of
the confidence intervals of reported QTLs, demonstrating the
effectiveness and feasibility of multi-locus GWAS methods in
RILs.

The Critical P-Value or LOD Score for
Significant QTN
In single-locus GWAS, one key concern is the high false positive
rate (FPR). To reduce FPR, Bonferroni correction is frequently
applied in the single-locus methods, including EMMAX (Kang
et al., 2010), GEMMA (Zhou and Stephens, 2012), ECMLM (Li
et al., 2014), and MLM (Yu et al., 2006). In human genetics,
the genome-wide significance P-value threshold of 5 × 10−8 has
become a standard for common-variant GWAS (Barsh et al.,
2012; Fadista et al., 2016; Chang et al., 2018). However, this
correction or the critical P-value in human genetics is too
stringent to detect certain associated loci for complex traits
in crop genetics. To address this issue, a modified Bonferroni
correction has been proposed; in other words, the number of
markers (m) in the correction formulas is replaced by the effective
number of markers (me) (Wang et al., 2016; Guan et al.). In real
data analysis in crop genetics, some subjective and less stringent
P-value thresholds for significant level are frequently applied
owing to large experimental error, i.e., 1/m (m is the number
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TABLE 1 | Comparison of single- and multi-locus GWAS methodologies.

Single-locus GWAS Multi-locus GWAS*

QTN detection power Low High

P-value threshold of significant QTN 5 × 10−8 (human genetics for common variants) 0.05/m

∼ 1/m (crop genetics; m is no. of markers)

2 × 10−4 (or LOD = 3.0)

False positive rate Low (with Bonferroni correction) Low (with LOD = 3.0 or P = 2 × 10−4)

Multiple test correction Yes No

Polygenic background control Yes Yes (First step); No (Second step; all the potential

genes have been included)

Population structure control Yes Yes

SNP effect Fixed Random

No. of variance components Two (polygenic background and residual variances) Three (QTN, polygenic background and residual

variances; First step)

Multi-locus genetic model No Yes (second step)

How to reduce no. of variances a) To fix the polygenic-to-residual variance ratio

b) To estimate residual variance along with fixed effects

a) To fix the polygenic-to-residual variance ratio

(1∼5)

b) To estimate residual variance along with fixed

effects (1∼4)

c) Let the number of non-zero eigenvalues of XCX
T
C

be one (3∼5)

d) To whiten the covariance matrix of polygenic K

and noise (3∼5)

Running time Fast (GEMMA & EMMAX), slow (EMMA) Fast (2, 6), slow (5), moderate (others)

Software GEMMA: http://www.xzlab.org/software.html

EMMAX: http://genetics.cs.ucla.edu/emmax

mrMLM: https://cran.r-project.org/web/packages/

mrMLM/index.html

mrMLM.GUI: https://cran.r-project.org/web/

packages/mrMLM.GUI/index.html Parallel

calculation with multiple CPU; quickly read big

datasets; graphical user interface (GUI); To

continuously run the programs for multiple traits

*mrMLM, FASTmrMLM, FASTmrEMMA, pLARmEB, pKWmEB, and ISIS EM-BLASSO are marked by 1, 2, 3, 4, 5, and 6 respectively.

of markers) (Li et al.; Xu et al.), 10−5 (Misra et al.), and 10−4

(Chang et al.). To balance high QTN detection power and low
false positive rate, Xu et al. replaced Bonferroni correction by
a less stringent criterion (1/m) for GEMMA, and a satisfactory
result was achieved in their Monte Carlo simulation studies.

Theoretically, correction for multiple tests is unnecessary in
multi-locus GWAS because all the potential genes or loci for
complex traits are fitted to a single linear model and their effects
are estimated and tested simultaneously. For example, 0.05 was
chosen as the P-value threshold in QTN detection of Khan
et al. (2018). Although relaxing the stringency of significance
level in multi-locus GWAS can identify more hits, confidence
in these hits will drop significantly. Thus, Segura et al. (2012)
and Liu et al. (2016) imposed Bonferroni correction on QTN
detection in their multi-locus GWAS methods. Our results
indicated that Bonferroni correction in multi-locus GWAS of
(Segura et al., 2012) and Liu et al. (2016) may be too stringent,
while the cutoff of 0.05 in multi-locus GWAS of Khan et al.
(2018) may be too relaxed due to the fact that a significance
level of 0.05 can result in a high false positive rate. Lü et al.
simply used LOD score ≥ 5 as a threshold for QTN detection
in their multi-locus GWAS. Based on our studies, we proposed
using LOD = 3.0 (or P = 0.0002) as a cutoff in multi-locus
GWAS to balance the high power and low false positive rate for
QTN detection.

Heritability Missing in GWAS
Heritability missing is a common issue in GWAS (Maher, 2008).
Human geneticists ascribe heritability missing to a few reasons,
including rare alleles, gene-by-gene and gene-by-environment
interactions, and miniature genetic effects of DNA variants that
can hardly reach the level of genome-wide significance (Eichler
et al., 2010). In our opinion, the stringent threshold in genome-
wide detection is also a factor, because certain QTNs cannot
meet the significant level if such P-value cutoff is applied. This
viewpoint is supported by the simulation results of Xu et al.

In most GWAS methodologies, the genotypes of a SNP, for
example, QQ, Qq, and qq, are conventionally coded as 2, 1, and
0, respectively. Thus, the estimated QTN effect is actually the
average effect of allelic substitution, being a + (q − p)d. Let
a + (q − p)d = 0, then d = a/(p − q). Where p takes different
values, such as p = 0.1, 0.3, 0.5, 0.7, and 0.9, so d = −1.25 a,
−2.5 a,∞, 2.5 a, and 1.25 a, respectively, indicating the difficulty
in the detection of QTNs with over-dominance. This may be
another reason for the heritability missing.

New methodologies have been proposed to handle heritability
missing, for example, GCTA (Yang et al., 2011) and GREML-
LDMS (Yang et al., 2015). In this Research Topic, we suggest that
part of the missing heritability may be regained by using multi-
locus GWAS methods, since more QTNs can be detected and
overall estimated heritability will be increased.
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HOW TO DETERMINE RELIABLE QTNS
AND MINE RELIABLE CANDIDATE GENES?

How to Determine Reliable QTNs?
Firstly, when several multi-locus methods are used to analyze
a same dataset, the QTNs identified by multiple approaches
are usually reliable. For example, all the 31 genomic regions
associated with four photosynthesis related traits were detected
by at least three multi-locus methods in Lü et al., five QTNs
associated with forage quality-related traits were detected by
at least two methods in Li et al., and all the common
QTNs either between single-locus methods and multi-locus
methods, or across several multi-locus methods were declared
in Misra et al. Secondly, the QTNs near previously reported
trait-associated genes should be reliable. For example, the
QTNs around genes GRMZM2G163761, GRMZM2G412611, and
GRMZM2G066749 likely contribute to the callus regenerative
capacity (Ma et al.), the QTNs around genes GRMZM2G032628
(ae1) and GRMZM2G392988 may be associated with starch
biosynthesis (Xu et al.), and theQTNs around genesGh_D102255
and Gh_A13G0187 perhaps participate in cellular activities for
fiber elongation (Liu et al.). Finally, the QTNs identified across
various environments (locations and/or years) are also reliable,
i.e., Liu et al. identified 57 QTNs that were associated with
cotton fiber quality and yield components in at least two
environments; Hu et al. repeatedly detected 39 QTNs clusters
to be associated with 14 agronomic traits in 122 barley doubled
haploid lines in multiple environments; Zhang et al. repeatedly
detected 22 common QTNs to be associated with protein
content in 144 soybean four-way recombinant inbred lines in 20
environments.

How to Mine Reliable Candidate Genes?
All known genes in the regions around reliable QTNs potentially
contribute to the traits of interest. However, only a subset
of them may be reliable candidate genes which are worthy
of further investigation. We can use homolog (previously
reported genes) in other species, e.g., Arabidopsis thaliana, to
mine reliable candidate genes in these regions. For example,
WOX2 in Arabidopsis has been reported to increase the rate
of resistant seedlings from transformed immature embryos in
maize and, therefore, the homologous gene GRMZM2G108933
might play an important role in controlling maize callus
regeneration (Ma et al.). Bioinformatics approaches, such as
the KEGG pathway analytic tool, may be used for mining
reliable candidate genes and relevant gene networks. For
example, two genes (LOC_Os01g45760 and LOC_Os10g04860)
are found to be involved in auxin biosynthesis in rice using
KEGG (Cui et al.). Experimental validations are often needed
to confirm the associations between these candidate genes
and the traits of interest. For instance, RNA-seq analysis and
qRT-PCR experiments verified that four genes (RD2, HAT22,
PIP2, and PP2C) are associated with drought tolerance in
cotton (Hou et al.); genomic DNA sequencing showed that
two candidate genes BnaA08g08280D and BnaC03g60080D are
different between the high- and low-oleic acid lines (Guan
et al.). The combined use of GWAS and experimental validation

has great potential for detection of new genes and their
biological functions. For example, a new geneGRMZM2G065083
was found by Xu et al. to play a critical role in starch
biosynthesis in maize by being involved in the gluconeogenesis
process, hexose biosynthetic and metabolic process, and glucose-
6-phosphate isomerase activity, providing insights into the
molecular mechanism underlying the pasting properties of maize
starch.

Important genes may be missed if we only select consensus
QTNs identified by more than one methodology or in more
than one experiment/environment. In practice, we found that
some QTNs detected by only one multi-locus method or
one environment may lead to important discoveries. These
QTNs may be used to mine candidate genes through network
analysis using bioinformatics analysis and/or experimental
validation.

How to Make Use of the GWAS Results?
The main product of GWAS includes the detected QTNs and
the candidate genes nearby. Three approaches are available
for applying these results to breeding programs. Firstly, one
can organize the detected QTN-allele matrix as the population
genetic constitution to facilitate the selection of optimal crosses.
For example, the top 10 optimal crosses were predicted according
to their 95th percentile weighted average values (Khan et al.,
2018). Secondly, we can develop SSR markers around the reliable
QTNs and utilize them in marker assisted selection of crops (Li
et al., 2018). Thirdly, all the SNPs that are significantly associated
with the trait of interest can be used for improving genome
selection (He et al.; He et al., 2019).

Figure 1 summarizes how to design a GWAS to identify QTNs
and mine candidate genes, of which the biological functions may
be further investigated or validated at a molecular level.

FUTURE PERSPECTIVES

It is becoming common to use multiple statistical methods to
detect major quantitative trait loci (QTLs) in the linkage analyses
of complex traits. Thus, we recommend using a few GWAS
methods, especially several multi-locus GWAS methods which
do not need correction for multiple comparisons, to investigate
complex traits. However, not all QTNs can be identified by
all these methods, posing difficulties for using these GWAS
results. This may be ascribed to the fact that the various
GWAS models are based upon different genetic or statistical
assumptions. Possible solutions have been provided in this
editorial to compare the results from various GWAS models and
screen for candidate QTNs or genes, facilitating the subsequent
validation or application.

Interaction at different omics levels, including QTL-by-
environment and QTL-by-QTL interactions, can be detected
with various software programs in linkage analysis. Nevertheless,
methods and software programs with comparable function are
quite limited in GWAS, especially for the studies of quantitative
traits in natural populations where large numbers of genomic
markers are analyzed. The number of variables in GWAS
models will increase sharply if interactions are considered,
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challenging both computational efficiency and detection power.
Multicollinearity among highly saturated and linked markers
is another issue in GWAS, which impairs the efficiency and
accuracy of the current statistical methods. Innovative strategies
are needed to distill many thousands of variables by removing the
redundant genomic markers such that the computational burden
and impact frommulticollinearity can be reduced and the studies
of interactions made more feasible.

Zhang et al. (2018) showed that the explained heritability
increases with sample size in GWAS, and also estimated that the
required sample size may range from a few hundred thousand
to multiple millions to account for most of the heritability. The
samples used in crop genetics, however, is often small, therefore,
increasing sample size in crop GWAS has a great potential in
future research.

With the rapid advances in various technologies, other types
of omic data, including transcriptomic, proteomic, metabolomic
and epigenetic data, have been recently exploited in crop research
(Peng et al.; Wen et al., 2018b). These multi-omic variables
may be treated as additional traits in GWAS, which promises to
reduce knowledge gap between genotype and phenotype and will
eventually benefit selective breeding. For example, omic-traits

(at various layers) that are mapped to the same genomic locations
with agronomic traits will provide multi-dimensional insights

of genetic architectures and the underlying biological pathways.
We believe multi-locus GWASmethodologies will become useful
and popular tools for analysis of omics big datasets and help
understand the mysterious world of genetics.
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The regenerative capacity of the embryonic callus, a complex quantitative trait, is one of

the main limiting factors for maize transformation. This trait was decomposed into five

traits, namely, green callus rate (GCR), callus differentiating rate (CDR), callus plantlet

number (CPN), callus rooting rate (CRR), and callus browning rate (CBR). To dissect

the genetic foundation of maize transformation, in this study multi-locus genome-wide

association studies (GWAS) for the five traits were performed in a population of 144 inbred

lines genotyped with 43,427 SNPs. Using the phenotypic values in three environments

and best linear unbiased prediction (BLUP) values, as a result, a total of 127, 56, 160,

and 130 significant quantitative trait nucleotides (QTNs) were identified by mrMLM,

FASTmrEMMA, ISIS EM-BLASSO, and pLARmEB, respectively. Of these QTNs, 63

QTNs were commonly detected, including 15 across multiple environments and 58

across multiple methods. Allele distribution analysis showed that the proportion of

superior alleles for 36 QTNs was <50% in 31 elite inbred lines. Meanwhile, these

superior alleles had obviously additive effect on the regenerative capacity. This indicates

that the regenerative capacity-related traits can be improved by proper integration of

the superior alleles using marker-assisted selection. Moreover, a total of 40 candidate

genes were found based on these common QTNs. Some annotated genes were

previously reported to relate with auxin transport, cell fate, seed germination, or

embryo development, especially, GRMZM2G108933 (WOX2) was found to promote

maize transgenic embryonic callus regeneration. These identified candidate genes will

contribute to a further understanding of the genetic foundation of maize embryonic callus

regeneration.
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INTRODUCTION

As one of the main crops for animals and humans, maize
(Zea mays L.) is an important target for genetic manipulation
(Zhang et al., 2014; Li et al., 2016). However, during maize
transformation, difficulty in embryonic callus induction and
regeneration, which occurs in most elite lines, presents a
major bottleneck (Shen et al., 2012, 2013; Ge et al., 2016).
Previous studies have suggested that both genotypes and
exogenous hormones affect embryonic callus induction from
maize immature embryos, such as abscisic acid (ABA), indole
acetic acid (IAA), and gibberellic acid (GA3) widely considered
to play important roles in callus formation (Jiménez and
Bangerth, 2001; Ge et al., 2016). Genetic research has suggested
that embryonic callus induction is controlled by nuclear genes
in maize (Schlappi and Hohn, 1992). Furthermore, eight
quantitative trait loci (QTL) and three epistatic interactions were
found to control type I callus formation in a maize recombinant
inbred line (RIL) population (Krakowsky et al., 2006). In previous
studies, some transcription factors and microRNAs in hormone
signal transduction pathways were found to regulate the process
of embryonic callus induction (Shen et al., 2013; Ge et al.,
2016). To date, research exploring callus regenerative capacity
has mainly focused on Arabidopsis, rice, wheat, maize, and other
plants. In Arabidopsis, PLT genes (PLETHORA) were proved
to modulate the regenerative capacity by a two-step mechanism
(Kareem et al., 2015). First, PLT3, PLT5, and PLT7 activated the
expression of root stem cell regulators PLT1 and PLT2 to establish
pluripotency and form shoot progenitors. Then, PLT3, PLT5,
and PLT7 up-regulated the expression of shoot-promoting factor
Cup-shaped cotyledon1 (CUC1) and Cup-shaped cotyledon2
(CUC2) to complete the shoot regeneration process. Inhibitor of
cyclin-dependent kinase (ICK), a cyclin-dependent kinase (CDK)
inhibitor, has been shown to enhance the regenerative capacity
of Arabidopsis embryonic callus (Cheng et al., 2015). Moreover,
WUSCHEL-related homeobox 5 (WOX5) expression in the
quiescent center (QC) is considered as a marker of the root stem
cell niche in Arabidopsis (Sarkar et al., 2007). In addition, as an
AP2/ERF transcription factor, wound induced dedifferentiation1
(WIND1) promoted the Arabidopsis shoot regeneration by up-
regulating the expression of enhancer of shoot regeenration1
(ESR1) gene which encoded another AP2/ERF transcription
factor (Iwase et al., 2015, 2017). For wheat, genes controlling
green shoot re-differentiation were mapped to chromosomal
sites 3A, 5B, 2D, and 1B (Szakács et al., 1988). Additionally,
QTL mapping showed that two QTLs on chromosomes 1 and
9 control green shoot re-differentiation in rice, with the latter
considered to be a major locus (Ping et al., 1998). Nishimura
et al. (2005) observed a main QTL encoding ferredoxin-nitrite
reductase (NiR) which is responsible for regenerate ability in
rice. Recently, WUSCHEL-related homeobox 2 (WOX2) and
Baby Boom (BBM) genes were introduced into maize by genetic
transformation, which resulted in the increased rate of resistant
seedlings from transformed immature embryos (Lowe et al.,
2016). So far, the genetic basis of plant regeneration has not been
well understood especially for maize, in which few functional
genes have been revealed to directly control embryonic callus

regeneration. Therefore, more systematic studies are required to
reveal the genetic basis of maize embryonic callus regenerative
capacity.

Genome-wide association analysis (GWAS) is a useful tool
in the dissection of complex traits (Abdel-Ghani et al., 2013;
Pace et al., 2015). Using mixed linear model (MLM) and general
linear model (GLM), 4 and 263 significant SNPs were found to be
associated with root architecture traits at maize seedling stage,
respectively. More specifically, GRMZM2G153722, which is
located on chromosome 4, was found to contain nine significant
SNPs that are likely expressed in the roots and shoots (Pace
et al., 2015). When using GWAS, several genes that modulate
maize leaf architecture were identified in a nested association
mapping (NAM) population (Tian et al., 2011). GWAS also
aided in the identification of 74 candidate genes associated with
maize oil biosynthesis (Li et al., 2013). Furthermore, another
study identified a total of 51 SNPs significantly associated
with maize leaf blight by adopting a NAM population, with
most of the candidate genes reported in previous studies as
relating to plant disease resistance (Kump et al., 2011). To
our knowledge, there is no study that has utilized GWAS
when detecting the embryonic callus regenerative capacity
until now.

In this study, fourmulti-locus GWAS approaches were used to
dissect the genetic foundations for the five regenerative capacity-
related traits in a natural population containing rich genetic
information across multiple environments. Our objectives were:
(i) to understand the significance of genotype, environment,
and genotype × environment on traits relating to regenerative
capacity; (ii) to identify significant quantitative trait nucleotides
(QTNs) and candidate genes that modulate the five traits and
resolve the genetic basis of maize embryonic callus regenerative
capacity; and (iii) to analyze and compare the detection powers
of different methods and identify the optimal multi-locus GWAS
approach. To our knowledge, this is the first comprehensive
study aimed at understanding the genetic basis of maize
embryonic callus regenerative capacity using multi-locus GWAS
approaches.

MATERIALS AND METHODS

Plant Materials and Phenotypic Data
Analysis
In a previous study, we examined the embryonic callus induction
rate in immature embryos from a natural maize population of 362
inbred lines, with 144 of the lines exhibiting efficient induction
(Table S1) and thus they were used to detect regenerative
capacity. The details of planting and culturing processes were
described by Zhang et al. (2017b). Herein, five regeneration
ability-related traits, namely, embryonic green callus rate (GCR),
callus differentiating rate (CDR), callus plantlet number (CPN),
callus rooting rate (CRR), and callus browning rate (CBR), were
examined (the features of the five traits were shown in Figure 1).
The data were transformed as previously described with the GCR,
CDR, CRR, and CBR values calculated by sin−1√p and the CPN
value calculated by

√
p+ 1, with p being the initial value (Zhang
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et al., 2017b). The analysis of variance (ANOVA), phenotypic
correlation, BLUP values and broad-sense heritability (H2

B) were
all completed in our previous study (Zhang et al., 2017b).

Genotypic Data Analysis
Genomic DNA was extracted from mixed leaf tissues from eight
plants per line using the CTABmethod (Zhang et al., 2016). All of
the accessions were genotyped using the Illumina MaizeSNP50
BeadChip containing 56,110 SNPs (http://support.illumina.
com/array/array_kits/maizesnp50_dna_analysis_kit/downloads.
html). A total of 43,427 SNPs across 10 chromosomes remained
after quality filtering (Figure S1), with SNPs having a missing
rate >20%, heterozygosity >20%, and minor allele frequency
(MAF) <0.05 deleted. These 43,427 SNPs were subsequently
used for calculating the population structure and kinship and to
perform GWAS.

Population Structure, Linkage
Disequilibrium, and Multi-Locus
Association Studies
STRUCTURE 2.3.4 was used to estimate subgroup numbers
within the population structure (Q matrix) (Evanno et al., 2005).
Among the 43,427 SNPs, 5,000 high quality SNPs with a rare
allele frequency (RAF) >20% were randomly selected for the
estimating panel. Based on the subgrouping results, the obtained
evaluated data were used for further analysis.

TASSEL 4.0 was utilized to analyze linkage disequilibrium
(LD) (Bradbury et al., 2007), with the LD decay calculated by
plotting r2 onto the genetic distance in base pairs with a cutoff
of r2 = 0.2. The LD decay was calculated using only markers
that remained after quality filtering. Additionally, the Loiselle
kinship coefficients between inbred lines in a panel (K matrix)
were calculated using SpAGeDi software (Hardy and Vekemans,
2002).

In this study, four multi-locus GWAS approaches were used
to detect significant QTNs for five embryonic callus regenerative
capacity-related traits (mrMLM v2.1, https://cran.r-project.org/
web/packages/mrMLM/index.html), including mrMLM (Wang
et al., 2016), FASTmrEMMA (Wen et al., 2017), ISIS EM-
BLASSO (Tamba et al., 2017), and pLARmEB (Zhang et al.,
2017a). Owing to the fact that these multi-locus methods were
more powerful and accurate than the single-locus MLMmethods
in their simulation experiments, thus we adopted these multi-
locus methods in this study. Moreover, Q- and K-matrices were
applied to correct the population structure and Loiselle kinship
coefficients that were calculated between inbred lines. The setting
parameters for these methods were as follows: (i) mrMLM,
critical P-value of 0.01 in rMLM and critical LOD score of 3.0 in
mrMLM (Wang et al., 2016); (ii) FASTmrEMMA, critical P-value
of 0.005 in first step of FASTmrEMMA and critical LOD score
of 3.0 in the last step of FASTmrEMMA (Wen et al., 2017); (iii)
ISIS EM-BLASSO, critical P-value of 0.0002 in ISIS EM-BLASSO
(Tamba et al., 2017); and (iv) pLARmEB, critical LOD score of 3.0
in pLARmEB and the number of potentially associated variables
for each chromosome: 143 (“144–1”) (Zhang et al., 2017a).

Superior Allele Analysis and Annotation of
Candidate Genes
For QTNs (RefGen_v2) that were detected consistently in
multiple environments or methods, a superior genotype was
determined based on the effect value of each significant QTN.
For each QTN, the superior allele percentage in these elite inbred
lines was equal to number of lines containing superior alleles
divided by the total line number. For each line, the proportion
of superior alleles in these QTNs was calculated as superior allele
number divided by total QTN number. A heat map visualizing
the percentage of superior alleles was obtained in the R (heatmap
package) program (Mellbye and Schuster, 2014).

Herein, the QTNs which locate in gene regions were
used to identify the candidate genes. Furthermore, the
corresponding candidate genes of the consistent QTNs that
were stably expressed in multi-environment or multi-method
were annotated by performing a GENE search on the NCBI
website (RefGen_v2) (https://www.ncbi.nlm.nih.gov/).

Real-Time PCR for Candidate Genes
Four candidate genes GRMZM2G108933 (WOX2),
GRMZM2G066749, GRMZM2G163761, and GRMZM2G371033
were randomly selected for identification of expression levels
at different regeneration stages (0 d, 3 d, 6 d, and 9 d) by
quantitative real-time PCR analysis (qPCR, ABI 7500 real-
time PCR System, Torrance, CA, USA). Firstly, RNA samples
were extracted using TRIZOL reagent (Invitrogen, Beijing,
China) and RNase-free DNase (Takara, Beijing, China). Then,
cDNA was obtained by PrimeScript RT Reagent Kit With
gDNA Eraser (TaKaRa, Beijing, China). Moreover, the primers
were designed using the software Primer Premier 5.0. The
detailed PCR amplification programmes were described as
Shen et al. (2012), and the 2−11Ct method was used for
calculating the expression levels (Schefe et al., 2006). Here,
Actin 1 (GRMZM2G126010) was used as the reference
gene.

RESULTS

Phenotype for Regenerative
Capacity-Related Traits
The phenotypes for CBR, CDR, CPN, CRR, and GCR have been
described by Zhang et al. (2017b), readers are encouraged to refer
to the original study (Zhang et al., 2017b). The results were briefly
described here. The average values for the above five traits across
three environments were 37.70, 17.30, 1.28, 11.50, and 43.16
with the standard deviations 26.99, 17.52, 0.51, 14.25 and 24.94,
respectively. Additionally, the heritability (h2B) of the five traits
ranged from 47.09 to 78.91%, suggesting that genetic effects play
an important role in the formation of these traits. A significantly
positive correlation was observed between CDR and CPN, while
a significantly negative correlation was found between CBR and
GCR (P = 0.01). The high correlation coefficient between the
BLUP value and the phenotypic value in a single environment
(>0.9) indicated the reliability of the phenotypic values for most
of the traits (Figure S2; Zhang et al., 2017b).
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FIGURE 1 | Features of the five traits. The traits include CBR (callus browning rate), CDR (callus differentiating rate), CPN (callus plantlet number), CRR (callus rooting

rate), and GCR (green callus rate).

Linkage Disequilibrium Decay in the
Population
To obtain the average distance of LD decay, 43,427 SNPs were
adopted. As shown in Figure S3, r2 decreased gradually with
increased distance. However, the r2-value reached a plateau when
it decreased to a certain level. The corresponding distance was
considered as the average distance of LD decay in this population.
Herein, the average LD decay distance was 220 kb (r2 = 0.2),
which is consistent with a previous study (Zhang et al., 2016).
Moreover, the distance was greater than the average distance
between markers of 48 kb, thus indicating sufficient coverage.

Population Structure
A subset of 5,000 high quality SNPs were randomly chosen to
define the subpopulations within the panel of 144 lines. Delta K
(1K) was calculated using STRUCTURE 2.3.4 (Figure 2A; K =

2–9), with two subpopulations (selected K = 2) presented based
on 1K-values (Figure 2B). These two subgroups contained 109
(75.69%) and 35 (24.31%) lines (Table S1), respectively. The
larger subpopulation included tropical, temperate, and mixed
germplasms, while the other was composed of mostly temperate
lines (Table S1).

QTNs Detected by Multi-Locus GWAS
Methods
Four multi-locus GWAS approaches were utilized in this study.
A total of 127, 56, 160, and 130 significant QTNs were identified
in mrMLM, FASTmrEMMA, ISIS EM-BLASSO, and pLARmEB,
respectively, for five traits across three environments and the
BLUP model (Figures 3, 4, Figure S4, Tables S2–S5). Among
them, 26, 29, 27, 16, and 29 QTNs were identified for CBR, CDR,
CPN, CRR, and GCR, respectively, in multi-location and BLUP
model by mrMLM method (Figure 3A; Table S2). When using
FASTmrEMMA, the number of QTNs detected for the five traits
were 14, 13, 7, 11, and 11, respectively (Figure 3B; Table S3). The
ISIS EM-BLASSO method also identified 29, 37, 26, 31, and 37
QTNs for the above five traits (Figure 3C; Table S4). Moreover,
29, 28, 25, 27, and 21 QTNs were identified for the above five
traits, respectively, using the pLARmEB approach (Figure 3D;
Table S5).

We further analyzed the common QTNs that were co-
identified in at least two of the environments (or environments
and BLUP model) using a certain multi-locus GWAS approach.
A total of 15 common QTNs were identified by combination of

these four methods (Table 1). Among them, six, two, eight, and
three environment-stable QTNs were identified using mrMLM,
FASTmrEMMA, ISIS EM-BLASSO, and pLARmEB method,
respectively (Table 1). These common QTNs were separately
located on chromosomes 1, 2, 3, 4, 5, 7, 8, and 9, with LOD
values ranging from 3.06 to 9.40 (Table 1). The proportion of
phenotypic variance explained (PVE) by each QTN ranged from
1.83 to 19.26% (Table 1). Furthermore, three, four, two, six, and
four common QTNs were found significantly associated with
CBR, CDR, CPN, CRR, and GCR, respectively (Table 1).

When comparing the results across different methods, 58
QTNs were consistently identified by two or more methods
(Table 2), and they were associated with the CBR (15), CDR
(13), CPN (11), CRR (9), and GCR (16) traits (Figure 4;
Table 2). Especially, three QTNs (SYNGENTA15901, SYN39155,
and SYN32084) were found to be significantly associated with
CBR, CDR, and CDR, respectively, in all the multi-locus methods
(Table 2). Meanwhile, the average LOD-values and PVE ranges
of the three QTNs for the CBR (5.69; 4.77–13.19%), CDR
(4.68; 3.10–6.45%), and CDR (7.61; 2.65–7.25%) traits were also
generated (Table 2).

Remarkably, 10 QTNs were co-detected not only in multi-
environment (including environment and the BLUP model)
but also by different methods (Table 3). Among these QTNs,
the three QTNs (SYNGENTA15901, SYN39155, and SYN32084)
were detected by all the methods as well as in BLUP model
and CZ (Table 3). Furthermore, two other QTNs (SYN8267
and PZE-107005556) that are associated with CBR and CRR
were identified by three methods and in two environments. The
remaining six QTNs were associated with CPN, CRR, and GCR,
and they were identified by two methods and found in two
locations (Table 3).

Distribution of Superior Alleles in Elite
Inbred Lines
The 63 common QTNs, detected in multiple environments or
using multiple methods, were considered as important QTNs
associated with regenerative capacity-related traits. Since 31 elite
inbred lines were included in the constructed panel, this enabled
us to evaluate the utilization of superior alleles during maize
breeding. Herein, the allele associated with a higher phenotypic
value was defined as the superior allele for each of the traits,
except for CBR and CRR, because callus browning and callus
rooting are both disadvantageous phenotypes for regeneration.

Frontiers in Plant Science | www.frontiersin.org April 2018 | Volume 9 | Article 56115

https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/plant-science#articles


Ma et al. GWAS for Embryonic Callus Regeneration

FIGURE 2 | Population structure estimates based on 43,427 SNPs distributed across 10 chromosomes. (A) Plot of lnP(D), with 1K calculated for K = 2–9.

(B) Population structure estimates (K = 2), the areas of the two colors (green and red) illustrate the proportion of each subgroup.

FIGURE 3 | Number of detected QTNs for the five traits across three environments and BLUP model in four methods. The traits include CBR (callus browning rate),

CDR (callus differentiating rate), CPN (callus plantlet number), CRR (callus rooting rate), and GCR (green callus rate). CZ, JH, and YJ denote the population planted in

Chongzhou (2015), Jinghong (2014), and Yuanjiang (2015), respectively. The approaches utilized included (A) mrMLM, (B) FASTmrEMMA, (C) ISIS EM-BLASSO, and

(D) pLARmEB.

As described in Table 4, the superior allele percentages for the
QTNs ranged from 0.00 to 96.67% in the elite lines, with 27 of the
QTNs containing ≥50% superior alleles while the remaining 36
QTNs contained <50% (Figure 5; Table 4). Three QTNs (PZE-
101213720, PZE-103108199, and PZE-108021239) had superior
allele percentages >80%, while eight (PZE-104066682, PZE-
103049772, PZE-101220149, PZE-107024505, PZE-102109640,
PZE-109067144, PZE-109121058, and PZE-109066380) had
percentages <10% (Figure 5; Table 4).

Moreover, 18 of the elite lines that contained 26–40 superior
alleles showed higher phenotypic values, with increased
percentages of 109.81% (CDR), 32.91% (CPN), and 75.63%

(GCR), relative to the other 13 elite lines that contained 10–25
superior alleles (Table 5 and Table S6). However, for CBR
and CRR, the 18 elite lines that contained between 26 and 40
superior alleles had the averaged phenotypic values of 34.17
and 9.68, respectively, which were 26.08 and 28.55% lower
than the other 13 elite lines that contained 10–25 superior
alleles (Table 5 and Table S6). These findings suggest that the
superior alleles have obviously additive effects on regenerative
capacity. Therefore, the maize callus regenerative capacity can
be improved by increasing the numbers of superior alleles in
the lines with low regenerative capacities by marker assisted
selection (MAS). Among them, CDR and GCR are the most
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attractive traits for MAS modification due to them having the
most significant enhancement effect. In addition, we found some
lines with high regenerative capacity shared common superior

FIGURE 4 | Comparison of the number of detected QTNs from the four

methods. The four methods are mrMLM, FASTmrEMMA, ISIS EM-BLASSO,

and pLARmEB. The traits include CBR (callus browning rate), CDR (callus

differentiating rate), CPN (callus plantlet number), CRR (callus rooting rate),

and GCR (green callus rate). Total: denotes the total QTN number for each trait

and Stable: denotes the number of stably expressed QTNs across multiple

methods for each trait.

alleles, such as lines 178, 18-599, and DH40 which all contained
the superior alleles of SYN15872, PZE-104024889, PZE-
103108199, PZE108057325, PZE-101096007, PZE-101223466,
PZE-108021239, PUT-163a-31909945-2005, PZE-106043314,
PZE-102109721, SYN11739, SYN8144, SYN18315, PZE-
102186765, SYN31996, PZE-104025174, and PZE-110088629
(Figure 5). This suggested these superior alleles may play an
important role in callus regeneration process. All these findings
will be more useful in the application of superior alleles in maize
breeding.

Candidate Genes Determined Based on
Common QTNs
According to the 63 common QTNs, we further focused on
the associated candidates. The results showed that a total of
40 candidate genes were obtained based on the B73 genome
(RefGen_v2, Table 6). Among them, 8, 11, 7, 8, and 13 candidate
genes were associated with CBR, CDR, CPN, CRR, and GCR,
respectively (Table 6). Moreover, one QTN correlated with the
CDR trait was associated with GRMZM2G589579 and had the
largest LOD-value of 16.25 (Tables 2, 6). Based on the functional
annotations, these genes were mainly classified as transcription
factors and kinases (Table 6). Specifically, seven genes were
located on chromosomes 1, 2, 3, and 6, with each associated
with two of the regeneration capacity-related traits (Table 6).
In detail, gene models GRMZM2G108933, GRMZM2G072264,

TABLE 1 | Stably expressed QTNs for the five traits in each method across three environments and BLUP model.

Method Trait Environment and BLUP Marker Chromosome Marker position (bp) QTN effect LOD score r2 (%)a

mrMLM CBR YJ, BLUP PZE-109066380 9 109,317,272 −16.82, −8.67 5.61, 3.23 13.92, 15.08

CDR CZ, BLUP SYN15872 8 161,523,427 −6.45, −2.16 5.18, 4.75 8.44, 5.45

CPN CZ, BLUP PZE-101220149 1 271,749,865 −0.28, −0.11 8.26, 4.42 14.86, 8.27

CZ, BLUP SYN39155 3 2,446,145 0.12, 0.06 3.85, 3.06 5.86, 5.14

CRR CZ, BLUP PZE-101160089 1 202,300,686 −14.92, −3.37 8.18, 8.28 16.38, 19.26

GCR YJ, BLUP SYNGENTA13688 2 5,681,488 −7.20, −6.40 4.26, 4.08 7.55, 9.82

FASTmrEMMA CBR CZ, BLUP SYNGENTA15901 7 5,038,808 21.95, 5.60 7.63, 3.74 13.19, 4.77

GCR CZ, BLUP PZE-104024889 4 28,985,737 −14.27, −7.42 3.31, 3.66 6.48, 5.99

ISIS EM-BLASSO CBR CZ, BLUP SYN8267 4 169,213,008 −10.11, −1.80 5.36, 3.14 10.05, 1.83

CDR CZ, BLUP SYN32084 1 256,515,262 5.76, 2.51 6.35, 8.87 7.25, 6.09

CZ, BLUP SYN39155 3 2,446,145 4.47, 1.69 4.76, 4.59 4.68, 3.10

CZ, JH PZE-107024505 7 26,451,809 −5.72, −4.80 3.54, 4.09 5.14, 4.39

CRR CZ, BLUP PZE-101160089 1 202,300,686 −8.84, −1.97 3.26, 5.38 6.23, 6.74

CZ, BLUP SYN35026 5 1,946,471 −3.60, −0.83 3.28, 4.72 3.07, 4.09

YJ, BLUP PZE-107005556 7 3,824,391 −4.20, −0.75 6.29, 3.90 7.74, 3.76

GCR CZ, JH PZE-102138070 2 186,820,524 8.49, 8.27 6.33, 9.02 10.12, 12.43

pLARmEB CRR CZ, BLUP SYN35026 5 1,946,471 −8.14, −1.35 7.37, 9.40 17.27, 6.53

JH, BLUP PZE-107005556 7 3,824,391 −4.03, −0.70 4.47, 3.43 4.80, 2.00

GCR YJ, BLUP PZE-104068814 4 136,958,099 −4.17, −3.01 3.18, 3.82 2.69, 4.74

Traits include CBR (callus browning rate), CDR (callus differentiating rate), CPN (callus plantlet number), CRR (callus rooting rate), and GCR (green callus rate).

JH, CZ, and YJ denote the population planted in Jinghong (2014), Chongzhou (2015), and Yuanjiang (2015), respectively.

a r2 (%), phenotypic variation of traits explained by each QTN.
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TABLE 2 | Stably expressed QTNs for the five traits among different multi-methods.

Trait Method (1, 2, 3, 4)a Marker Chromosome Maker position (bp) LOD score r2 (%)b

CBR 1, 3, 4 PZE-102138070 2 186,820,524 5.68, 3.92, 6.73 9.48, 5.00, 11.56

1, 4 PZE-108009888 8 10,298,512 5.78, 3.17 8.01, 4.60

1, 3 PZE-110088629 10 138,832,523 3.85, 3.35 5.43, 2.65

1, 3 PZE-103123331 3 181,066,730 3.29, 4.53 6.40, 3.58

1, 2, 3 SYN6514 3 196,351,287 3.56, 4.05, 7.36 3.63, 6.32, 8.30

1, 3, 4 SYN7221 2 6,200,684 3.75, 11.83, 5.94 7.76, 10.78, 6.22

1, 2 PZE-109067144 9 110,459,334 3.27, 3.14 2.59, 4.92

1, 2, 3, 4 SYNGENTA15901 7 5,038,808 3.69, 3.74 10.75,4.77 (13.19)

(7.63),7.03, 5.84 12.35, 11.39

1, 3 PZE-102109721 2 141,363,433 4.18, 5.46 3.64, 4.91

2, 3 PZE-102151093 2 197,600,202 5.56, 6.37 10.24, 12.66

2, 3, 4 PZE-101213720 1 264,163,677 4.65, 6.84, 4.20 6.88, 11.24, 6.73

2, 3, 4 SYN8267 4 169,213,008 5.19, 3.14 8.43, 1.83

(5.35),7.29 (10.05), 16.35

2, 4 PZE-101152052 1 19,548,4495 4.16, 6.94 6.30, 4.76

2, 4 PZE-108020924 8 19,855,121 3.75, 13.53 4.89, 9.52

3, 4 PZE-104067972 4 134,998,323 4.90, 9.53 4.89, 7.06

CDR 1, 4 PZE-106032634 6 75,630,749 16.15, 4.43 18.87, 5.68

1, 2, 3, 4 SYN39155 3 2,446,145 4.73, 5.07, 4.59 4.85, 6.45, 3.10

(4.76), 4.05 (4.68), 4.21

1, 2, 3, 4 SYN32084 1 256,515,262 4.04, 3.05, 8.87 5.89, 2.65, 6.09

(6.35), 8.74 (7.25), 5.19

1, 2, 3 PZE-101216827 1 267,908,158 3.48, 4.33, 6.19 4.77, 4.23, 3.25

1, 2 SYN11739 9 9,965,031 4.92, 3.66 14.28, 8.27

1, 3 SYN31996 6 163,506,361 3.13, 3.86 9.16, 3.58

1, 3 PZE-108002411 8 2,512,300 16.25, 4.97 14.64, 6.03

1, 4 PZE-101096007 1 94,367,481 4.86, 4.45 3.72, 5.66

1, 3 PZE-102109640 2 141,173,773 7.67, 5.68 4.86, 5.53

3, 4 PZE-104025174 4 29,335,471 9.52, 3.01 7.33, 0.89

3, 4 PZE-106036875 6 84,672,851 4.31, 6.72 1.97, 4.40

3, 4 PUT-163a-31909945-2005 6 110,706,817 4.29, 3.58 2.04, 4.30

3, 4 SYN8144 10 142,358,869 4.21, 4.09 3.31, 5.42

CPN 1, 3, 4 PZE-106032634 6 75,630,749 7.88, 4.58, 4.56 14.66, 7.12, 0.62

1, 3 PZE-101220149 1 271,749,865 4.42 (8.26), 4.96 8.27 (14.86), 6.35

1, 3 SYN39155 3 2,446,145 3.06 (3.85), 4.20 5.14 (5.86), 3.04

1, 3, 4 PZE-108105282 8 159,954,599 3.88, 6.55, 5.42 6.91, 5.57, 1.57

1, 4 PZE-108057325 8 102,454,042 3.07, 6.36 5.32, 0.47

1, 3 PZE-104066682 4 131,771,972 7.49, 3.31 17.57, 8.73

1, 3 PZE-106043314 6 93,212,668 6.64, 3.46 9.61, 4.20

1, 2, 3 PZE-102186765 2 230,884,488 9.11, 7.26, 6.50 12.45, 0.30, 9.41

2, 3 PZE-109062403 9 104,884,301 6.36, 13.00 16.33, 14.58

3, 4 PZE-103049772 3 54,177,469 6.93, 12.72 14.03, 12.98

1, 3 SYN29447 5 213,294,101 3.29, 6.18 5.79, 6.17

CRR 2, 3 SYN18315 1 252,377,691 7.13, 7.27 12.37, 9.45

2, 3 PZE-106008760 6 25,291,385 6.76, 4.44 13.33, 6.04

2, 4 PZE-101085779 1 75,627,286 4.81, 7.65 10.52, 6.47

2, 3 SYN28088 5 68,653,887 4.18, 6.13 6.74, 5.74

2, 3 PZE-106000504 6 1,234,387 3.04, 4.17 4.13, 2.57

(Continued)
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TABLE 2 | Continued

Trait Method (1, 2, 3, 4)a Marker Chromosome Maker position (bp) LOD score r2 (%)b

2, 3, 4 PZE-107005556 7 3,824,391 4.13, 3.90 (6.29) 9.14, 3.76 (7.74)

3.43(4.47) 2.00(4.80)

3, 4 SYN35026 5 1,946,471 4.72 (3.28) 4.09 (3.07)

9.40 (7.37) 6.53 (17.27)

3, 4 PZE-105122012 5 179,270,149 5.07, 7.25 4.17, 4.70

3, 4 SYN18708 1 21,466,619 5.18, 4.33 4.15, 3.11

GCR 1, 3 SYN32084 1 256,515,262 3.99, 4.08 6.10, 4.35

1, 3 SYNGETA13688 2 5,681,488 4.08 (4.26), 4.96 9.82 (7.55), 5.25

1, 3, 4 PZE-109121058 9 154,807,596 8.07, 7.71, 5.76 13.73, 11.26, 8.20

1, 3, 4 PZE-103123331 3 181,066,730 3.42, 4.03, 7.25 6.67, 7.75, 5.46

1, 3 PZE-108010908 8 11,504,308 4.61, 6.26 6.88, 6.58

1, 4 SYN37974 2 10,782,867 3.25, 6.41 7.78, 10.77

2, 3 PZE-103108199 3 169,053,554 3.28, 5.74 4.47, 6.96

2, 3 PZE-104024889 4 28,985,737 3.66 (3.31), 4.93 5.99 (6.48), 5.90

2, 4 PZE-104069507 4 138,153,696 5.14, 4.45 10.42, 14.05

2, 4 PZE-101106628 1 110,914,630 4.86, 5.53 15.03, 9.59

3, 4 SYN7221 2 6,200,684 4.70, 3.42 3.57, 3.82

3, 4 PZE-109081358 9 129,514,761 5.86, 6.96 3.98, 9.62

3, 4 PZE-101223466 1 274,722,612 9.02, 7.28 12.32, 8.94

3, 4 PZE-102138070 2 186,820,524 6.33 (9.02), 6.42 10.12 (12.43), 9.73

3, 4 SYN21743 9 1,347,687 7.10, 5.60 9.66, 7.20

3, 4 PZE-108021239 8 20,231,393 4.19, 4.09 4.87, 5.42

Traits include CBR (callus browning rate), CDR (callus differentiating rate), CPN (callus plantlet number), CRR (callus rooting rate), and GCR (green callus rate).
aMethod numbers correspond to (1) mrMLM, (2) FASTmrEMMA, (3) ISIS EM-BLASSO, and (4) pLARmEB.
br2 (%), phenotypic variation of traits explained by each QTN.

The values in parentheses denote the means for QTNs in different environments.

TABLE 3 | Stably expressed QTNs in both multi-environment (including BLUP model) and multi-method.

Trait Marker Method (1, 2, 3, 4)a Environment and BLUP LOD score

CBR SYNGENTA15901 1, 2, 3, 4 BLUP and CZ (2) 3.74 and 7.63

SYN8267 2, 3, 4 BLUP and CZ (3) 3.14 and 5.35

CDR SYN39155 1, 2, 3, 4 BLUP and CZ (3) 4.59 and 4.76

SYN32084 1, 2, 3, 4 BLUP and CZ (3) 8.87 and 6.35

CPN PZE-101220149 1, 3 BLUP and CZ (1) 4.42 and 8.26

SYN39155 1, 3 BLUP and CZ (1) 3.06 and 3.85

CRR PZE-107005556 2, 3, 4 BLUP and YJ (3, 4) 3.90 and 6.29, 3.43 and 4.47

SYN35026 3, 4 BLUP and YJ (3, 4) 4.72 and 3.28, 9.40 and 7.37

GCR SYNGETA13688 1, 3 BLUP and YJ (1) 4.08 and 4.26

PZE-104024889 2, 3 BLUP and CZ (2) 3.66 and 3.31

PZE-102138070 3, 4 CZ and YJ (3) 6.33 and 9.02

Traits include CBR (callus browning rate), CDR (callus differentiating rate), CPN (callus plantlet number), CRR (callus rooting rate), and GCR (green callus rate).
aMethod numbers correspond to (1) mrMLM, (2) FASTmrEMMA, (3) ISIS EM-BLASSO, and (4) pLARmEB.

JH, CZ, and YJ denote the population planted in Jinghong (2014), Chongzhou (2015), and Yuanjiang (2015), respectively.

and GRMZM2G026095 were individually correlated with both
CBR and GCR, while GRMZM2G309660 was associated with
CBR and CRR (Table 6). Moreover, GRMZM2G163761 was

correlated with CDR and GCR, while GRMZM2G097959
and GRMZM5G835276 were associated with CDR and CPN
(Table 6).
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TABLE 4 | Distribution of superior alleles in stably expressed QTNs among 31elite inbred lines.

QTN Superior

alleles

Percentage (%)a QTN Superior

alleles

Percentage (%)a QTN Superior

alleles

Percentage (%)a

PZE-101213720 GG 96.67 SYN15872 AA 54.84 PZE-108002411 AA 32.26

PZE-103108199 TT 83.87 PUT-163a-31909945-2005 GG 53.33 PZE-102186765 CC 32.26

PZE-108021239 GG 80.65 PZE-106043314 GG 53.33 PZE-106036875 CC 32.26

SYN18315 CC 76.67 SYN18708 TT 51.61 PZE-101216827 CC 26.67

SYN31996 CC 75.86 PZE-108010908 CC 50.00 PZE-108105282 CC 25.81

SYN35026 AA 74.19 PZE-104025174 CC 50.00 PZE-109062403 AA 25.81

SYN32084 AA 73.33 PZE-109081358 CC 48.39 SYN29447 AA 24.14

PZE-102109721 GG 73.33 SYN28088 CC 46.67 SYN8267 AA 24.14

SYN8144 CC 70.00 SYN21743 TT 43.33 PZE-108009888 GG 19.23

PZE-106008760 GG 67.74 SYN37974 CC 42.86 PZE-108020924 CC 16.67

PZE-107005556 AA 67.74 PZE-104067972 CC 40.00 PZE-106032634 GG 13.33

PZE-110088629 CC 65.52 PZE-102151093 GG 40.00 PZE-101160089 TT 12.90

SYN39155 GG 64.52 PZE-101152052 AA 38.71 SYNGENTA13688 AA 12.90

PZE-101096007 GG 63.33 PZE-106000504 AA 38.71 PZE-104066682 GG 9.68

PZE-103123331 AA 63.33 SYNGENTA15901 CC 38.71 PZE-103049772 GG 9.68

SYN11739 GG 61.29 PZE-104068814 AA 38.71 PZE-101220149 GG 9.68

PZE-101223466 GG 60.00 PZE-108057325 TT 35.71 PZE-107024505 TT 7.14

PZE-104024889 AA 60.00 PZE-101085779 CC 35.71 PZE-102109640 AA 6.45

PZE-101106628 TT 58.62 SYN6514 GG 33.33 PZE-109067144 GG 6.45

PZE-102138070 TT 58.62 PZE-105122012 CC 33.33 PZE-109121058 CC 3.23

PZE-104069507 GG 56.67 SYN7221 AA 32.26 PZE-109066380 TT 0.00

aPercentage (%) was calculated as: (superior allele number within the 31 elite inbred lines/total allele number for the 31 elite inbred lines) × 100%.

Expression Patterns of Candidate Genes
To detect the responses of the candidate genes to callus
regeneration, two lines 141 (with high regenerative capacity) and
ZYDH381-1 (with low regenerative capacity) were submitted
to qRT-PCR analysis for four randomly selected genes at three
regenerative stages (3 d, 6 d, and 9 d) and CK (0 d). Among
these genes,WOX2was up-regulated at all of the stages compared
to 0 d in 141 and ZYDH381-1. However, the expression level
of WOX2 in line 141 was higher than that in ZYDH381-1 at
each of the stages. Besides, the expression peak occurred at
3 d in 141, which was at 6 d in ZYDH381. These indicate
that WOX2 was more susceptive in the response of callus
regeneration in 141 (Figure 6A). GRMZM2G066749 was down-
regulated at every of regenerative stage when compared with
0 d in 141, whereas it was slightly up-regulated in ZYDH381-
1. Interestingly, the expression level of GRMZM2G066749 in
141 was much higher than that in ZYDH381-1 at all of the
stages including 0 d (Figure 6B). However, the expression levels
of GRMZM2G163761 and GRMZM2G371033 were generally
higher in ZYDH381-1 than those in 141 (Figures 6C,D). These
findings suggested that the difference of expression patterns in
different lines could be an important factor which influenced the
regenerative capacity of embryonic callus.

DISCUSSION

Population Selection
A population of 144 inbred lines was used for the present study,
which is slightly smaller than in other maize GWAS studies

(Pace et al., 2014, 2015; Zhang et al., 2016). This is due to
the specialty of these maize callus regenerative ability-related
traits, which are based on the embryonic callus induction. In
our previous study, 362 inbred lines were utilized to identify
embryonic callus induction, and only 144 lines had a relatively
efficient induction. Therefore, the present study is based on
a comparatively small maize population. Moreover, population
structure analysis showed that this novel population was divided
into two subpopulations. The average LD decay distance was
220 kb (r2 = 0.2), which was relatively consistent with the
distance obtained for the initial population of 362 inbred
lines (Zhang et al., 2016). This finding indicates that the
average LD decay distance is almost stable despite the reduced
population size. Additionally, some QTNs for the five traits
were co-identified in different methods and multi-environment
(in Results section). Of particular interest is the candidate gene
WOX2 (in Candidate Gene Functions in Callus Regenerative
Capacity section), which has been proven to promote the
formation of resistant seedlings after callus transformation. These
findings confirm the reasonability of the population structure
used for this study.

Advantages of the New Multi-Locus GWAS
Approaches
Previous studies have dissected some complex traits using a GLM
or MLM based on a single-locus GWAS (Zhang et al., 2005;
Yu et al., 2006; Pace et al., 2015). However, both of these two
models have procedural limitations. GLMhas a high false positive
rate (FPR) because this model does not correct the population
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FIGURE 5 | Heat map of the superior alleles distribution for the 63 QTNs in 31 elite inbred lines. Red and White colors represent superior and inferior alleles,

respectively. Black box means the superior alleles distribution for the 63 QTNs in high-regeneration lines 18-599, 178, and DH40. AA, TT, GG, and CC represent the

genotypes for common superior alleles in 18-599, 178, and DH40.

structure (Q) or polygenic background (K; Korte and Farlow,
2013). In the MLM, the correction of Q and K is so stringent
that many significant loci are missed, especially small-effect loci
(Wang et al., 2016). In recent years, researchers developed some
multi-locus methodologies to address these limitations, such as
mrMLM, FASTmrEMMA, ISIS EM-BLASSO, and pLARmEB
(Wang et al., 2016; Tamba et al., 2017; Wen et al., 2017; Zhang
et al., 2017a), and they were used in this study. In these newmulti-
locus methods, the significance level was set to a LOD score = 3,
which was equivalent to P= 0.0002 (Wang et al., 2016). However,
in the single-locus MLM GWAS methods, the significance
threshold is generally set to P = 0.05/m (m is the number of
markers), thus the multi-locus GWASmethods are less stringent.
Furthermore, FPRs for these four multi-locus GWAS approaches
were smaller than in the single-locus MLM GWAS methods and
other multi-locus GWAS methods (Wang et al., 2016; Tamba
et al., 2017;Wen et al., 2017; Zhang et al., 2017a). Therefore, these
methods were considered effective alternative approaches (Wang
et al., 2016; Tamba et al., 2017; Wen et al., 2017; Zhang et al.,

2017a). In this study, 127, 56, 160, and 130 significant QTNs were
found for the five traits using mrMLM, FASTmrEMMA, ISIS
EM-BLASSO, and pLARmEB, respectively (Figure 3; Tables S2–
S5). However, only one and six significantly associated SNPs were
detected when using MLM (R package GAPIT) and FarmCPU (R
package FarmCPU; PCA+K, where PCA and K were calculated
by GAPIT and SpAGeDi, respectively) models, respectively
(P = 0.05/43427 = 1.15 × 10−6; Table S7). This suggested
that these multi-locus methods were more powerful when used
for detecting the QTNs for regeneration-related traits of maize.
Furthermore, some stably expressed QTNs were commonly
detected in multiple environments (or between environment
and the BLUP model) (Table 1) and a total of 58 common
QTNs were identified by multiple methods (Table 2). These
evidence verified the reliability of these newmulti-locusmethods.
Comparison of the four methods illustrates that ISIS EM-
BLASSO is slightly more powerful than the other three methods
(Figure 3). Additionally, the running time for these fourmethods
when using the data generated herein are as follows: mrMLM >
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TABLE 5 | Phenotypic values of different numbers of superior alleles for the five

traits among the common QTNs within the 31 elite lines.

Trait Mean

phenotypic value

in three

environments

Mean

phenotypic value

in three

environments

Increased

percentage (%)

(contain 10–25

superior alleles)

(contain 26–40

superior alleles)

CBR 46.22 34.17 −26.08

CDR 11.30 23.70 109.81

CPN 1.09 1.45 32.91

CRR 13.54 9.68 −28.55

GCR 27.14 47.66 75.63

Traits include CBR (callus browning rate), CDR (callus differentiating rate), CPN (callus

plantlet number), CRR (callus rooting rate), and GCR (green callus rate).

FASTmrEMMA > pLARmEB > ISIS EM-BLASSO (Figure S5).
Notably, the validated functional geneWOX2 (mentioned above)
was commonly detected in multiple methods for both CBR and
GCR. These findings suggest that the most robust approach
enabling the identification of the most interesting candidate
genes is to use a combination of the methods utilized herein.

Application of Superior Alleles in Maize
Breeding
When examining the common QTNs within the 31 elite
inbred lines, 36 of the 63 QTNs contained <50% superior
alleles (Table 4), suggested that these alleles were not effectively
selected during artificial selection. A possible reason is that
maize regenerative ability was not previously a main breeding
focus. Instead, breeding efforts have focused on yield-related
traits, plant type-related traits, resistance-related traits, and high
quality-related traits. In the remaining 27 common QTNs,
superior alleles proportions ≥50% was observed, with three
of these QTNs (PZE-101213720, PZE-103108199, and PZE-
108021239) having proportions >80% (Table 4). These findings
suggest that in some cases, these superior alleles must be linked
with traits of interest for breeders and thus were maintained
during artificial selection.

The results presented herein show that the identified superior
alleles exhibited additive effects on the regenerative capacity.
Furthermore, this study focused on the number of superior alleles
in several popular inbred lines (Zheng 58, PH4CV, and PH6WC),
whose high yields and high combining abilities were outstanding
(Barker, 2005; Ma et al., 2014; Li et al., 2017). The results showed
that for each line, the superior allele proportion was <50% in
the 63 QTNs (Figure 5, Table S6). Future studies could focus
on these lines acquiring more super alleles and an improved
regenerative ability that will contribute to the establishment of
callus regeneration and a transformation system. These findings
also enable the furthering of gene functional research in these
lines.

We further investigated the distribution of these superior
alleles in those lines that failed to induce the callus. As a result,
the proportions of the superior alleles in different lines ranged

from 20.64 to 57.14% and the average value was 40.27%, which
was very similar to the averaged proportion (40.96%) of superior
alleles in the 144 inducible lines. In addition, the averaged
proportion of superior alleles for WOX2 (PZE-103123331)
was 69.29 and 70.14%, respectively, in the uninduciable and
induciable lines (these data were not provided). These suggested
that these QTNs associated with callus regeneration were
probably not involved in the induction of embryonic callus.

Candidate Genes Involved in Callus
Regenerative Capacity
Based on the identified common QTNs, 40 candidate
genes were identified, with several previously reported
to be associated with transgenic callus regeneration,
auxin transport, cell fate, seed germination, or
embryo development (Table 6). These gene included
GRMZM2G108933, GRMZM2G130442, GRMZM2G315375,
GRMZM2G163761, GRMZM2G412611, GRMZM2G066749,
and GRMZM2G371033. GRMZM2G108933, which was
associated with CBR and CDR, was annotated to WOX2,
an embryonic transcription factor (Nardmann et al., 2007)
(Table 6). In Arabidopsis, WOX5 is closely associated with the
root stem cell niche (Sarkar et al., 2007). In the recent year,WOX2
(a homologous gene to GRMZM2G108933) was introduced into
maize by genetic transformation, and it increased the rate of
resistant seedlings from transformed immature embryos (Lowe
et al., 2016). These findings suggest that GRMZM2G108933
could be an important functional gene controlling maize callus
regeneration by inhibiting callus browning and promoting
callus differentiation. GRMZM2G130442 (associated with
GCR) and GRMZM2G315375 (associated with CRR) are
thought to regulate plant embryo development, which is
consistent with their assigned associations herein (Table 6). As a
member of the HD-Zip (homeo domain-leucine zipper) family,
GRMZM2G130442 was annotated to the Zea mays outer cell
layer (ZmOCL) family (Table 6), which has been reported to
play roles in defining different regions of the epidermis during
embryonic development and it controls the maintenance of
cell-layer identity in meristematic regions (Ingram et al., 2000).
GRMZM2G315375, known as br2, encodes P-glycoproteins
(PGPs) (Table 6), which has been implicated in auxin transport.
Meanwhile, auxin is widely accepted to be one of the most
important hormones for embryo dedifferentiation (Pasternak
et al., 2002). Moreover, Cassani et al. (2011) proposed that the
interaction between br 2 and br 3 results in an alteration in
embryo development. Regeneration is a process involving callus
re-differentiation and it is similar to embryo development, but
the opposite of embryo dedifferentiation (Yang et al., 2012).
Therefore, these findings suggest that GRMZM2G130442 and
GRMZM2G315375 could be modulators of callus regeneration.

Gene model GRMZM2G163761 was annotated to KIP1
(knotted interacting protein1) and was associated with CDR and
GCR (Table 6). Smith et al. (2002) reported that cell fate in
the shoot apical meristem is influenced by the transcriptional
regulation from the association of KIP and KN1 (knotted
1), a three amino acid loop extension (TALE) class of
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TABLE 6 | Candidate genes based on the stable commonly expressed QTNs.

Trait Marker Chromosome Position (bp) Candidate genes (v2) Annotation

CBR GCR PZE-103123331 3 181,066,730 GRMZM2G108933 (WOX2) WUSCHEL related homeobox 2

CBR GCR SYN7221 2 6,200,684 GRMZM2G072264 RNA-binding (RRM/RBD/RNP motifs) family protein

GCR CBR PZE-102138070 2 186,820,524 GRMZM2G026095 Tuliposide A-converting enzyme 1, chloroplastic

CBR CRR SYN6514 3 196,351,287 GRMZM2G309660 Unknown

CDR GCR SYN32084 1 256,515,262 GRMZM2G163761 kip1 (knotted interacting protein1)

CPN CDR SYN39155 3 2,446,145 GRMZM2G097959 GTP binding

CDR CPN PZE-106032634 6 75,630,749 GRMZM5G835276 Alpha-L-fucosidase 2

CBR SYNGENTA15901 7 5,038,808 GRMZM2G060866 Anther-specific proline-rich protein APG

CBR PZE-101213720 1 264,163,677 GRMZM2G123204 Adenylosuccinate synthetase, chloroplastic

CBR PZE-101152052 1 195,484,495 GRMZM2G138425 Hypothetical protein

CBR SYN8267 4 169,213,008 GRMZM2G383210 jmj21—JUMONJI-transcription factor 21

CDR SYN15872 8 161,523,427 GRMZM2G371033 sbp18 (SBP-transcription factor 18)

CDR PZE-101216827 1 267,908,158 GRMZM2G066749 dek35 (defective kernel35)

CDR SYN31996 6 163,506,361 GRMZM2G136219 Unknown

CDR PZE-108002411 8 2,512,300 GRMZM2G589579 ago4a (argonaute4a)

CDR PZE-101096007 1 94,367,481 GRMZM2G088524 mybr32 (MYB-related-transcription factor 32)

CDR PZE-106036875 6 84,672,851 GRMZM2G088930 Midasin

CDR PUT-163a-31909945-2005 6 110,706,817 GRMZM2G412611 Alpha-glucan water dikinase 1 chloroplastic

CDR SYN8144 10 142,358,869 GRMZM2G033724 Trypsin family protein

CPN PZE-108105282 8 159,954,599 GRMZM2G460576 Unknown

CPN PZE-104066682 4 131,771,972 GRMZM2G122983 Vacuolar protein sorting-associated protein 20 homolog 2

CPN PZE-106043314 6 93,212,668 GRMZM2G047969 Protein JASON

CPN PZE-102186765 2 230,884,488 GRMZM2G082302 Unknown

CPN SYN2944 5 213,294,101 GRMZM2G017868 Unknown

CRR PZE-101160089 1 202,300,686 GRMZM2G315375 br2 (brachytic2)

CRR SYN35026 5 1,946,471 GRMZM2G415491 rh3 (RNA helicase3)

CRR SYN18315 1 252,377,691 GRMZM2G165042 bhlh43 (bHLH-transcription factor 43)

CRR PZE-106008760 6 25,291,385 GRMZM2G168441 Putative HLH DNA-binding domain superfamily protein

CRR SYN28088 5 68,653,887 GRMZM2G168603 MDIS1-interacting receptor like kinase 1

CRR PZE-106000504 6 1,234,387 GRMZM2G137894 Pentatricopeptide repeat-containing protein At2g33760

CRR SYN18708 1 21,466,619 GRMZM2G004397 pco148373a Syntaxin/t-SNARE family protein

GCR PZE-104024889 4 28,985,737 GRMZM2G130442 ocl5a (outer cell layer5a)

GCR PZE-104068814 4 136,958,099 GRMZM2G034697 Phosphatidyl-N-methylethanolamine N-methyltransferase

GCR PZE-108010908 8 11,504,308 GRMZM2G112968 Unknown

GCR SYN37974 2 10,782,867 GRMZM2G068982 Methionine aminopeptidase

GCR PZE-103108199 3 169,053,554 GRMZM2G028252 Hypothetical protein

GCR PZE-104069507 4 138,153,696 GRMZM2G133226 Nucleotide/sugar transporter family protein

GCR PZE-101106628 1 110,914,630 GRMZM2G368632 Cysteine-rich receptor-like protein kinase 10

GCR PZE-101223466 1 274,722,612 GRMZM2G001869 Unknown

GCR PZE-108021239 8 20,231,393 GRMZM2G168933 Hypothetical protein

The traits include CBR (callus browning rate), CDR (callus differentiating rate), CPN (callus plantlet number), CRR (callus rooting rate), and GCR (green callus rate).

homeodomain. Another candidate gene, GRMZM2G412611,
which was correlated with CDR was annotated as an alpha-
glucan water dikinase 1, chloroplastic-like (Table 6). In wheat,
the suppression of glucan water dikinase in the endosperm
altered the wheat grain properties, germination, and coleoptile
growth (Bowerman et al., 2016). The CDR-associated gene,
GRMZM2G066749, was annotated to dek 35 (defective kernel
35) (Table 6). Clark and Sheridan (1988) demonstrated that dek
35 is pleiotropic when affecting endosperm, gametophyte, or

embryo development by using two non-allelic defective-kernel
mutants of maize. These findings indicate that the above genes
probably control the callus regenerative capacity by affecting cell
fate determination or development of somatic embryo.

CONCLUSIONS

In this study, four new multi-locus GWAS methods were used
to identify traits related to regenerative capacity. A total of
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FIGURE 6 | Expression levels of candidate genes at different regeneration stages. Here, 141 is a line with high regeneration and ZYDH381-1 IS the one with low

regeneration. (A–D) Represents the relative expression levels of GRMZM2G108933 (WOX2), GRMZM2G066749, GRMZM2G163761 and GRMZM2G371033,

respectively.

127, 56, 160, and 130 significant QTNs, respectively, were
identified in mrMLM, FASTmrEMMA, ISIS EM-BLASSO, and
pLARmEB for five traits across three environments and the
BLUP model. Among these QTNs, 63 were commonly detected
in multiple environments or using multiple methods. In total, 40
candidate genes were obtained based on the commonQTNs, with
several previously reported to correlate with transgenic callus
regeneration, auxin transport, or embryo development. For the
common QTNs, the percentages of superior alleles ranged from
0.00 to 96.67% within the 31 elite inbred lines. Further analysis
revealed that these superior alleles exhibit an additive effect on
the regenerative capability of the related traits. These findings
suggest that an improvement of the maize callus regenerative
ability can be achieved by integrating more superior alleles into
maize lines by MAS.
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BLUP model using the FASTmrEMMA method. The traits include CBR (callus

browning rate), CDR (callus differentiating rate), CPN (callus plantlet number), CRR

(callus rooting rate), and GCR (green callus rate). JH, CZ, and YJ denote the

population planted in Jinghong (2014), Chongzhou (2015), and Yuanjiang (2015),
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Table S4 | Significant QTNs for the five traits across three environments and the

BLUP model using the ISIS EM-BLASSO method. The traits include CBR (callus

browning rate), CDR (callus differentiating rate), CPN (callus plantlet number), CRR

(callus rooting rate), and GCR (green callus rate). JH, CZ, and YJ denote the
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Table S6 | Phenotypic value and superior allele numbers for the 31 elite lines for

each trait. The traits include CBR (callus browning rate), CDR (callus differentiating

rate), CPN (callus plantlet number), CRR (callus rooting rate), and GCR (green
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Stalk lodging resistance, which is mainly measured by stem diameter (SD), stalk

bending strength (SBS), and rind penetrometer resistance (RPR) in maize, seriously

affects the yield and quality of maize (Zea mays L.). To dissect its genetic

architecture, in this study multi-locus genome-wide association studies for stalk lodging

resistance-related traits were conducted in a population of 257 inbred lines, with tropical,

subtropical, and temperate backgrounds, genotyped with 48,193 high-quality single

nucleotide polymorphisms. The analyses of phenotypic variations for the above traits

in three environments showed high broad-sense heritability (0.679, 0.720, and 0.854,

respectively). In total, 423 significant Quantitative Trait Nucleotides (QTNs) were identified

bymrMLM, FASTmrEMMA, ISIS EM-BLASSO, and pLARmEBmethods to be associated

with the above traits. Among these QTNs, 29, 34, and 48 were commonly detected by

multiple methods or across multiple environments to be related to SD, SBS, and RPR,

respectively. The superior allele analyses in 30 elite lines showed that only eight lines

contained more than 50% of the superior alleles, indicating that stalk lodging resistance

can be improved by the integration of more superior alleles. Among sixty-three candidate

genes of the consistently expressed QTNs, GRMZM5G856734 and GRMZM2G116885,

encoding membrane steroid-binding protein 1 and cyclin-dependent kinase inhibitor

1, respectively, possibly inhibit cell elongation and division, which regulates lodging

resistance. Our results provide the further understanding of the genetic foundation of

maize lodging resistance.

Keywords: maize, stalk lodging resistance, multi-locus GWAS, QTNs, candidate gene

INTRODUCTION

Lodging is one of the most important factors threatening grain yield in maize, and can result in
reduced photosynthesis, nutrient transportation, and grain quality (Remison and Dele Akinleye,
1978). The annual yield losses caused by lodging are approximately 5–20% globally (Flintgarcia
et al., 2003). In some areas where strong wind and heavy rain occur frequently, the risk of lodging
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will significantly increase (Adelana, 1980). Some properties of the
stem itself are also strongly associated with lodging, such as the
structure and mechanical strength of the stem, and the number
of vascular bundles (Xu et al., 2017). In addition, Tesso and Ejeta
(2011) showed that stalk rot disease can reduce stem strength,
which further leads to lodging.

The most direct way to improve breeding populations for
quantitative traits is phenotypic selection, where the frequency
of favorable alleles is increased within a population over cycles of
selection. Previous studies on crop morphological traits showed
that plant stem diameter (SD), stalk bending strength (SBS), and
rind penetrometer resistance (RPR) are closely associated with
stalk lodging in the field (Kashiwagi et al., 2008; Hu et al., 2012,
2013). Furthermore, these three traits are significantly negatively
correlated with stalk lodging rate in the field (Ling, 2008). The
method for testing RPR involves the use of an electronic rind
penetrometer to penetrate the rind of the maize stalk, and the
maximum value of penetration is then indicated on the screen of
the instrument (Sibale et al., 1992). This method does not affect
maize seedling growth.

Genome-Wide Association Study (GWAS) is a very powerful
tool for dissecting the genetic basis of complex traits (Korte
and Farlow, 2013). To date, GWAS has been used to analyze
many agronomic traits such as leaf architecture, maize kernel
composition, plant height, oil biosynthesis in maize kernels
(Tian et al., 2011; Weng et al., 2011; Cook et al., 2012; Li
et al., 2013), and other traits, i.e., Some genetic research on
crop lodging has also been conducted using GWAS. Hu et al.
(2013) detected a complex polygenic inheritance for SBS-related
traits, including the maximum load exerted to breaking (Fmax),
the breaking moment (Mmax), and critical stress (σmax). A total
of seven quantitative trait loci (QTLs) explaining 65.7% of the
genotypic variance for these three traits. Ookawa et al. (2010)
used chromosome segment substitution lines (CSSL) to identify
an effective QTL, SCM2, for culm strength in rice, and the
near-isogenic line (NIL) carrying SCM2 showed enhanced culm
strength. Moreover, Lin et al. (2005) detected another six QTLs
for stem strength, culm wall thickness, pith diameter, and stem
diameter using a doubled-haploid (DH) population. Conversely,
GWAS for maize lodging has rarely been reported, and the
molecular mechanisms of variation for maize lodging-related
traits remain poorly understood.

Currently, the Bonferroni correction is applied to control
the false positive rate for single-marker GWAS, and some
important loci with small effects could be excluded by this
stringent correction. Multi-locus GWAS methodologies, such as
FASTmrEMMA, ISIS EM-BLASSO, mrMLM, pLARmEB, and
FarmCPU, have been shown to effectively resolve this issue.
The first four methods have higher power and accuracy for
quantitative trait nucleotide (QTN) detection and are more
suitable for genetic models (Liu et al., 2016; Wang et al., 2016;
Tamba et al., 2017; Wen et al., 2017; Zhang J. et al., 2017).
Additionally, a combination of various methods for multi-locus
GWAS has also been used to control the false positive rate (Wu
et al., 2016; Misra et al., 2017).

Our objectives were to (i) estimate the genetic variance and
heritability of SD, SBS, and RPR; (ii) estimate the correlations

between these three traits; (iii) detect significant quantitative
trait nucleotides (QTNS) for SD, RPR, and SBS in multiple
environments; (iv) dissect the genetic basis of variation of
lodging-related traits in maize, and (v) identify candidate genes
controlling maize stalk lodging-related traits.

MATERIALS AND METHODS

Phenotyping of Maize Lodging-Related
Traits
The SD, SBS, and RPR tests were conducted in an association-
mapping panel of 257 diverse inbred lines, which were collected
from tropical or subtropical and temperate regions (Li et al.,
2013). The names and pedigree information for this association
panel are presented in Table S1. The 257 inbred lines were
planted in three locations: Xishuangbanna (XSBN, N22◦0,
E100◦79′, Yunnan province, China, 2014), Bijie at Guizhou
(GZ, N27◦32′, E105◦29′, Guizhou province, China, 2014), and
Wenjiang (WJ, N30◦97, E103◦81′, Chengdu, Sichuan province,
China, 2014). The 257 inbred lines were sown in a randomized
complete block design in two replications. Each plot consisted of
a single row (14 plants) that was 3m in length and 0.75m from
the next row, and the plant density was approximately 62,000
individuals per hectare. Each line was grown in a single-row.

At the flowering stage, 10 plants from each line from each
replication were randomly selected for phenotyping and their
mean values were computed for the three traits: SD, SBS, and
RPR, as detailed in Wang L. M. et al. (2012). Briefly, a Vernier
caliper was used to measure the SD (mm) of the 15-cm region
above ground. A plant stalk strength appliance SY-S03 with a
measuring range from 5 to 500N and a resolution ratio of 0.1N
(Shijiazhuang Shiya Technology Co., Ltd) was used to measure
RPR and SBS, and the units of RPR and SBS are N/mm2 and N,
respectively.

Statistical Analysis of the Phenotype
SPSS version 21.0 (IBM, Armonk, NY, 2012) was used to analyze
the phenotypic data, including descriptive statistics (mean, range,
standard deviation, skewness, kurtosis) and the correlation
analysis. To obtain the best linear unbiased prediction (BLUP)
of the three lodging-related traits, the R package lme4 (version
3.4.2, https://www.r-project.org/) was fitted to each genotype:
Phenotype ∼ (1|Genotype) + (1|Repeat%in%Environment) +

(1|Genotype&Environment). Broad-sense heritability (h2) for
each trait was estimated as described by Knapp (Knapp et al.,
1985) as: h2 = σg

2/(σg2+σgy
2/r+σe

2/yr), where σg
2, σgy2, and σe

2

are genetic, genotype-by-environment interaction and residual
error variances, respectively, r is the number of replications, and y
is the number of environments. All the variances were calculated
using a general linear model in SPSS.

Genotyping and ML-GWAS
Using publicly available genotypic data from previous studies,
all the 257 lines of the association panel were genotyped using
the Maize SNP50 BeadChip (Illumine, San Diego, CA), which
contains 56,110 SNP loci (Ganal et al., 2011; Yang et al., 2011; Li
et al., 2012). A total of 48,193 high-quality SNPs with a minor
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allele frequency (MAF) ≥0.05 were used in this study (http://
www.maizego.org/Resources.html). A total of 500 SNPs for each
chromosome were randomly selected to calculate population
structure, as described by (Pritchard et al., 2009). Briefly, five
independent simulations with 500,000 Markov Chain Monte
Carlo (MCMC) replications and 5,000 SNPs were performedwith
the number of subpopulations (k) ranging from 1 to 12. The
results calculated by STRUCTURE software were submitted to
the website http://taylor0.biology.ucla.edu/structureHarvester/,
and the optimal k was inferred. The relative kinship (K matrix)
between the lines was calculated as previously described inWang
et al. (2016) and Zhang J. et al. (2017). Four multi-locus GWAS
methods including mrMLM, FASTmrEMMA, pLARmEB, and
ISIS EM-BLASSO were used in this study. All parameters were
set at default values (Wang et al., 2016; Tamba et al., 2017; Wen
et al., 2017; Zhang J. et al., 2017).

Annotation of Candidate Genes and
Pathway Enrichment Analysis
Those genes with common SNPs in the GWAS result were
selected as candidate genes. The maize inbred line B73
assembly v2 that was used as the reference genome for the
candidate gene analyses was publicly available on the MaizeGDB
genome browser (Andorf et al., 2010). The methods of Kyoto
Encyclopedia of Genes and Genomes (KEGG) pathways for these
candidate genes were annotated as described by Zhang Y. et al.
(2017).

RESULTS

Diversity and Heritability of the Three
Lodging-Related Traits
The phenotypic characteristics for SD, SBS, and RPR across
the three environments are shown in Table 1 and Figure 1. As
shown in Table 1, the skewness and kurtosis were less than 1
for SD and RPR, indicating that SD and RPR followed a normal
distribution. SBS was slightly skewed to the left (Figures 1A,C,E).
For the above three traits, the means of phenotypic values
decreased from XSBN, WJ, to GZ; the coefficients of variation
ranged from 11.87∼14.2, 36.42∼49.29, and 19.43∼23.45 (%),
respectively (Table 1, Figures 1B,D,F).

The results of correlation analysis were showed in Table 2.
Significant correlations between the traits across three
environments were observed. For example, the correlation
coefficients between SD and SBS in GZ, WJ, and XSBN were
0.762, 0.615 and 0.668 (P-values <0.01), respectively; the
correlations between SD and RPR across three environments
were relatively smaller (0.219 < r < 0.308, P < 0.01) than those
between SBS and RPR (0.507 < r < 0.652, P < 0.01). In addition,
a significant correlation between different environments was
observed for each of the three traits (Table 2).

In the analysis of variance for the three traits, highly
significant variations for genotypes (G) and environments
(E) and significant variation for genotype-by-environment
interaction were found (Table 3). This indicates the important

TABLE 1 | Phenotypic performance of the three lodging resistance-related traits in

257 inbred lines under three environments.

Trait Env. Mean Range SDD CV (%) Skew Kurt

SD GZ 13.62 9.23–19.44 1.93 14.20 0.43 −0.16

WJ 15.80 12.03–21.56 1.88 11.87 0.40 −0.26

XSBN 18.19 12.11–25.19 2.22 12.18 0.20 −0.06

SBS GZ 21.26 6.43–64.94 10.48 49.29 1.22 1.65

WJ 25.33 7.11–70.58 10.68 42.17 1.15 1.77

XSBN 32.25 7.91–70.84 11.74 36.42 0.70 0.32

RPR GZ 39.86 20.24–73.79 9.35 23.45 0.73 0.62

WJ 41.07 23.90–67.46 7.98 19.43 0.64 0.22

XSBN 45.03 27.54–79.79 8.87 19.70 0.82 1.39

SD (stalk diameter) is measured in the unit of millimeter (mm), SBS (stalk bending strength)

is measured in the unit of newton (N) and RPR (rind penetrometer resistance) is measured

in the unit of newton per square millimeter (N/mm2 ).

Env. Represents environments; GZ, WJ, and XSBN represent Guizhou, Wenjiang and

Xishuangbanna, respectively. SDD, standard deviation.

CV, coefficient of variation.

roles of both environment and G × E interaction. The broad-
sense heritabilities (h2) for SD, SBS, and RPR across the three
environments in the 257 inbred lines ranged from 0.679 (SD) to
0.854 (RPR), indicating the predominant role of genetic factors
for these traits (Table 3).

QTNs Identified by ML-GWAS
The 1K calculation of STRUCTURE indicated a peak (K = 2)
in the broken line graph reflecting the number of subpopulations
(K) (Figures S1A,B), indicating that the 257 maize inbred lines
could be divided into two subpopulations. Owning to significant
variations for each of the three lodging-related traits in 257
maize inbred lines across the three locations, BLUP values across
the three locations were also used for the GWAS. In total, 423
significant QTNs were identified at the critical logarithm of odds
(LOD) score (≥3) for these traits in the three environments using
mrMLM, FASTmrEMMA, PLARmEB and ISIS EM-BLASSO
(Table S2, Figure S2).

A total of 126 significant QTNs, mainly distributed on
chromosomes 1, 2, 3, 5, 6, 8, and 9, were detected to be associated
with SD (Table S2, Figure S2A). Among them, 29 QTNs were
common across the methods or the locations. The LOD of these
32 QTNs identified by mrMLM ranged from 3.03 to 6.25, and
the percentage of phenotypic variation explained by each QTN
(PVE) in GZ, WJ, XSBN, and BLUP was 30.96, 40.90, 44.21, and
54.38 (%), respectively. The LOD scores of the significant 21
QTNs identified by FASTmrEMMA ranged from 3.08 to 6.21,
and the PVE in GZ, WJ, XSBN, and BLUP for SD was 19.51,
20.51, 22.31, and 21.25 (%), respectively. For PLARmEB, the LOD
scores of the 43 QTNs ranged from 3.01 to 7.83 in GZ, WJ,
XSBN, and BLUP, and PVE was 13.84, 35.20, 31.17, and 36.84
(%), respectively. The LOD scores of the 66 QTNs detected by
ISIS EM-BLASSO ranged from 3.00 to 14.08, and the PVE in
GZ, WJ, XSBN and BLUP was 51.15, 41.37, 48.99, and 44.37 (%),
respectively.
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FIGURE 1 | Frequency distributions of SD (A), SBS (C), RPR (E) in 257 maize inbred lines and the boxplots for SD (B), SBS (D), RPR (F) in the three environments.

In total, 148 significant QTNs were correlated with SBS,
and were evenly distributed on 10 chromosomes under
the environments and BLUP model. Among them, 35
QTNs were common across the methods or the locations.
The LOD values of the 148 QTNs identified by mrMLM,
FASTmrEMMA, PLARmEB, and ISIS EM-BLASSO were
in the range of 3.01∼8.78, 3.32∼10.75, 3.09∼8.69, and
3.05∼12.18, respectively (Table S2, Figure S2B). Among
these QTNs, 43 identified by mrMLM explained 58.31, 53.47,

52.02, and 57.69 (%) of the phenotypic variation in GZ, WJ,
XSBN, and BLUP for SBS, respectively. Conversely, 26.98,
43.87, 17.02, and 26.10 (%) of the phenotypic variation was
separately explained by 28 QTNs using FASTmrEMMA.
Using PLARmEB, the PVE was 28.77, 30.40, 17.31, and
49.24 (%) in the different environments, respectively. The
PVE in GZ, WJ, XSBN, and BLUP for SBS was 53.88, 64.19,
56.12, and 49.64 (%), respectively, for the 73 QTNs by ISIS
EM-BLASSO.
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TABLE 2 | Phenotypic correlation coefficients between lodging resistance-related traits across three environments.

Trait SD SBS RPR

Environment GZ WJ XSBN GZ WJ XSBN GZ WJ XSBN

SD GZ 1

WJ 0.314** 1

XSBN 0.356** 0.568** 1

SBS GZ 0.762** 0.297** 0.255** 1

WJ 0.349** 0.615** 0.319** 0.524** 1

XSBN 0.300** 0.387** 0.668** 0.385** 0.485** 1

RPR GZ 0.219** 0.238** 0.131* 0.507** 0.381** 0.352** 1

WJ 0.078 0.308** 0.099 0.324** 0.652** 0.307** 0.661** 1

XSBN 0.036 0.279** 0.274** 0.283** 0.391** 0.614** 0.688** 0.644** 1

*,**Indicate significance level at P < 0.05 and 0.01, respectively.

Env. Represents environments; GZ, WJ, and XSBN represent Guizhou, Wenjiang, and Xishuangbanna, respectively.

TABLE 3 | Analysis of variance (ANOVA) for lodging resistance-related traits of

257 lines in three environments.

Trait Source of variation Mean square F Significance H2

SD Environment (E) 2,679.898 1,046.302 <0.01** 0.679

Genotype (G) 14.811 5.783 <0.01**

Replication 9.878 3.857 0.051

G × E 4.761 1.859 <0.01**

Residual Error 2.561 <0.01**

SBS Environment (E) 15,870.661 288.548 <0.01** 0.720

Genotype (G) 463.779 8.432 <0.01**

Replication 35.159 0.639 0.424

G × E 129.899 2.362 <0.01**

Residual Error 55.002 <0.01**

RPR Environment (E) 3,761.979 127.496 <0.01** 0.854

Genotype (G) 355.790 12.058 <0.01**

Replication 123.123 4.173 0.042*

G × E 51.886 1.758 <0.01**

Residual Error 29.507 <0.01**

*,**Indicate significance level at P < 0.05 and 0.01, respectively.

We detected a total of 149 RPR-associated QTNs with
LODs ranging from 3.01 to 14.39 in the three environments
and BLUP model, and were mainly located on chromosomes
1, 2, 4, 5, 7, 8, and 9 (Table S2, Figure S2C). And 47 QTNs
were common across the methods or the locations. Among
these, four QTNs were also detected in SBS traits. Of the 149
RPR-associated QTNs, 54, 31, 57, and 74 QTNs were separately
identified by mrMLM, FASTmrEMMA, PLARmEB, and ISIS
EM-BLASSO, which explained 60.91∼67.76, 23.53∼35.38,
30.90∼56.86, and 45.28∼63.77 (%) of the phenotypic variation,
respectively.

Verification of the Common QTNs by
Multi-Methods or Across Environments
A total of 107 QTNs were co-identified by at least two of
the methods or across different environments, among which

29, 34, and 48 were associated with SD, SBS, and RPR,
respectively (Table S3 and Figure 2). To verify the significance
of each common QTN, we divided the population into two
groups according to their allele types and compared the mean
phenotypic values between the two groups. For SD, the average of
the group containing the superior alleles was significantly greater
than the group containing inferior alleles, with the exception
of the SNPs SYN35339, SYN6428, PZE-102085765, and PZE-
101121408 (Table S4). As for SBS and RPR, the group with the
superior alleles showed a significantly larger mean than the group
with inferior alleles for every common SNP (Table S4). These
results verified the reliability and significance of the common
QTNs identified by these ML-GWAS methods.

Utilization of Superior Alleles in Elite Maize
Lines
Thirty elite inbred lines from China and America that
have excellent agronomic traits and serve as the parents of
commercialized hybrid varieties were included in the maize
population, which enabled us to evaluate the utilization of the
superior alleles for maize breeding. The results indicated that the
percentage of SD superior alleles in the elite lines ranged from
27.59 to 55.17% (Table S5). The lines with >15 superior alleles
indicated a significantly higher SD phenotypic value, with an
average of 14.50 in GZ, 16.75 in WJ, and 20.72 in XSBN, whereas
the lines with 0∼10 superior alleles had average SD values of
12.78, 14.13, and 16.61 in GZ, WJ, and XSBN, respectively
(Table S5, Figure 3A). The utilization of the SBS superior alleles
in the elite lines ranged from 25.71 to 65.71% (Table S5). The
phenotypic averages of the lines with >20 superior alleles were
30.56, 53.68, and 44.83 in GZ, WJ, and XSBN, respectively,
whereas those with 15∼20 superior alleles had a lower average
of 15.14, 15.87, and 25.85 in GZ, WJ, and XSBN, respectively
(Table S5, Figure 3B). As for RPR, the elite lines contained
29.17∼66.67% of the superior alleles (Table S5). The average RPR
in the lines with >30 superior alleles were 45.06, 50.69, and 49.01
in GZ, WJ, and XSBN, respectively; however, those lines with
<20 superior alleles had average RPR values of 29.05, 32.43, and
35.97 in GZ, WJ, and XSBN, respectively (Table S5, Figure 3C).
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FIGURE 2 | Repeatability and significance of the SNPs associated with the three lodging resistance-related traits in the three environments and BLUP. The

significance threshold is LOD = 3.0. (A–C) Represent SD, SBS, and RPR, respectively.

The results suggested that these superior alleles had an additive
effect on the lodging resistance-related traits. Further analysis
indicated that only eight of the 30 elite inbred lines hadmore than
50% utilization of all the superior alleles (Table S5, Figure 4),
implying that the superior alleles were not efficiently selected
during maize breeding. In future work, integrated utilization of
the superior alleles would be an efficient approach for lodging-
resistance breeding in maize by marker-assisted selection (MAS).

Candidate Genes Associated With
Common QTNs
To further understand the molecular basis of lodging-related
traits, we focused on the candidate genes that were directly
associated with the common QTNs. As a result, 19, 17,
and 30 candidate genes around their common QTNs were
found to be associated with SD, SBS, and RPR, respectively.
The annotations for the candidate genes are displayed in
Table S3, with seven transcription factors, eight kinase-related
proteins, and four transport proteins involved. These genes
mainly participate in metabolic pathway, genetic information
processing, environmental information processing, cellular
processes, and organismal systems (Table 4).

DISCUSSION

According to previous studies, the strength of the maize stalk
depends on the tissue and morphology, and the morphology of

the stalk is largely determined by themechanical stresses inmaize
(Von et al., 2015). SD, SBS, and RPR were demonstrated to show
potential as selective breeding indexes for improving lodging
resistance (Liu et al., 2011; Xiang et al., 2016). The heritability
and genetic models vary among different studies since the
calculations depend on the experimental populations, design, and
conditions (Lynch and Walsh, 1998). The genetic architecture
of lodging resistance-related traits has been illustrated in diverse
maize populations by linkage mapping. (Kashiwagi et al., 2008;
Hu et al., 2012, 2013). However, the genetic basis and the
molecular pathways underlying lodging resistance-related traits,
as well as the major genes associated with the traits, remain
largely unknown. In this study, we interpreted the natural
variation and revealed the genetic architecture of three lodging
resistance-related traits based on 257 maize inbred lines by ML-
GWAS analysis. And identified the candidate genes and their
possible pathways for stalk lodging resistance.

Genetic Basis of Lodging-Related Traits
In this study, the three lodging-related traits exhibited wide
phenotypic variation and were normally distributed. ANOVA
showed that the genetic effects and interactive effects between the
genetics and environment were both significant for these traits,
and the heritability (h2) was very high for SD, SBS, and RPR.
Previous studies on SD in different crops mainly focused on the
phenotypic correlations with stalk mechanical strength and the
identification of QTLs for SD, whereas the heritability of SD has
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FIGURE 3 | The phenotypic values in the maize elite inbred lines with different

numbers of superior alleles for SD (A), SBS (B), and RPR (C).

not been investigated (Lin et al., 2005; Kashiwagi et al., 2008). In
our study, h2 was 0.679 across the three environments for SD.
The Fmax,Mmax, and σmax can be used as tools to determine SBS
accreditation (Timoshenko and Gere, 1972). An h2 of 0.84 for
Fmax, was reported in rice, and in maize the h2 for Fmax, Mmax,
and σmax were 0.81, 0.79, and 0.75, respectively (Sun, 1987; Hu
et al., 2013). Both these estimates are in close agreement with
the estimates of SBS (h2 = 0.720) in our study (Table 3). The
h2 estimates were previously found to range from 0.81 to 0.92
for RPR in different maize populations (Flintgarcia et al., 2003;
Hu et al., 2012), which corroborates our value of 0.854 across
the three environments. In combination with previous results,
our findings suggest that all the measured lodging-related traits
showed high precision and that the three lodging resistance-
related traits generally exhibited high heritability.

Phenotypic correlations were observed among the three
lodging-related traits. For instance, the correlation coefficient
between SBS and RPR was 0.507 in GZ, 0.652 in WJ, and 0.614
in XSBN, respectively (Table S2). Meanwhile, we identified four
QTNs (PZE-101187823, SYN31353, PZE-105036664, and PZE-
107063605), all of which were associated with both SBS and RPR

(Table S3). The above results suggested that some genetic factors
were shared among these lodging resistance-related traits.

Common Candidate Genes Reveal the
Possible Molecular Basis of Lodging
Resistance
No previous studies have reported on GWAS for SD, SBS, and
RPR in maize. However, some studies have evaluated the QTLs.
Hu et al. (2013) detected two, three, and two QTLs for Fmax,
Mmax, and σmax, respectively, using 216 recombinant inbred
lines and 129 SSR markers. Among them, a QTL of σmax,

an important parameter for characterizing SBS, was located in
markers umc1993 and bulg1450. In the present research, a QTN
on Chr10 (position: 137282081 bp) for SBS locates exactly in the
interval of the σmax QTL reported by Hu et al. (2013) (Table S2).
The remaining QTNs in the present study are the first to be
reported as associated with lodging resistance-related traits in
maize.

Furthermore, we identified 63 common candidate genes
in total that were around common QTNs for lodging-related
traits. Notably, GRMZM5G856734 encodes Membrane steroid-
binding protein 1 (MSBP1) (Table S3), whose homologous gene
MSBP1 in Arabidopsis thaliana was proven to be involved in the
inhibition of cell elongation (Yang et al., 2005). Interestingly,
the candidate gene GRMZM2G116885 that encodes cyclin-
dependent kinase inhibitor 1 was associated with both SBS and
RPR. The homologous gene of GRMZM2G116885 in Arabidopsis
was reported to be involved in coordinated cell growth or cell
division (Bemis and Torii, 2007). It is generally known that
cell elongation and cell wall thickening regulate plant lodging
resistance (Fan et al., 2017). According to RNA-Seq data from
the previous study, the candidate genes GRMZM5G856734 and
GRMZM2G116885 had high expression levels in maize stems,
with the FPKM are 115.5 and 58.0, respectively (Sekhon et al.,
2012). In addition, more than 90% of the candidate genes
found in our study were expressed in maize stems, especially
the expression levels of GRMZM2G038126, GRMZM2G073934,
GRMZM2G058584, and GRMZM2G084181 were extremely high
(Table S3). The functional validation of these genes should be
addressed in future work.

Additionally, seven candidate genes were classified into
transcription factors based on their functional annotation,
including ethylene-responsive transcription factor 12, bHLH-
transcription factor 105, bHLH-transcription factor 65, GRAS
transcription factor, transcription factor VOZ1, and MYB 9
transcription factor (Table S3). Transcription factors are a group
of proteins that regulate targeted gene expression in particular
cells at a certain time, and are vital for cell division, growth,
and death (Latchman, 1997; Riechmann and Meyerowitz, 1998;
Guilfoyle and Hagen, 2007).

The Superiority of the New ML-GWAS
Previous studies demonstrated that the single-locus GWAS was
useful to dissect complex agronomic trait by using general linear
models (GLMs) and mixed linear models (MLMs) (Zhang et al.,
2010; Wang M. et al., 2012). High false positive rates are an
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FIGURE 4 | The superior allele SNP distributions in the 30 maize elite inbred lines. Blue and white colors represent superior and inferior alleles, respectively.
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obvious shortcoming for GLMs, because there is no kinship
among materials as covariate (Pace et al., 2015). The screening
criteria of significance for single-locus GWAS is P = 0.05/m
(m is the number of markers) (Perneger, 1998). Owning to
large number of SNPs (Gordon et al., 2016), some important
loci might be excluded under the stringent criteria in MLM.
To remedy the shortcomings of the methods mentioned above,
ML-GWAS methods have recently been explored, including
mrMLM (Wang et al., 2016), pLARmEB (Zhang J. et al., 2017),
ISIS EM-BLASSO (Tamba et al., 2017), and FASTmrEMMA
(Wen et al., 2017). Several studies have individually analyzed
published data using themulti-locusmethods, and have indicated
that these methods constituted effective approaches with high
detection power and less stringent criteria (Wang et al., 2016;
Tamba et al., 2017; Wen et al., 2017; Zhang J. et al., 2017).
In our study, a total of 126, 77, 176, and 230 significant
QTNs were detected for three lodging-related traits using
mrMLM, FASTmrEMMA, pLARmEB, and ISIS EM-BLASSO,
respectively (Figure S2, Table S2). A comparison of the four
methods showed that ISIS EM-BLASSO was more powerful than
the other three multi-locus methods in the identification of
QTNs for lodging resistance-related traits (Table S2, Figure S2).
Furthermore, some stably expressed QTNs were detected in
the multi-environment and BLUP model using multi-methods
(Tables s2, s3). Notably, the candidate genes GRMZM5G856734
and GRMZM2G116885, were proven to inhibit cell elongation
and division, which regulates lodging resistance. However, only
4, 4, and 7 SNPs were detected for SD, SBS, and RPR, respectively,
from FarmCPU (R packages FarmCPU, K and PCA calculated
by SPAGeDi software and GAPIT package, respectively. The
threshold is P-value = 0.05/48193) (Table S6). In addition, six
of these SNPs were also be detected by ML-GWAS methods.
Using GAPIT (R packages GAPIT) method, only one SD-
associated SNP was found in XSBN, which was also detected
in the ML-GWAS methods (Table S6). Our study demonstrated
that improved efficiency and accuracy could be achieved by a
combination of the new multi-locus methods for identification
of lodging resistance-related QTNs in maize.

CONCLUSIONS

SD, SBS, and RPR were used in this study to dissect the
genetic basis of stalk lodging resistance in maize using ML-
GWASmethods. Among all the significantly associated QTNs for
the three traits, 107 were commonly identified across multiple
methods or environments. Around these common QTNs,
sixty-three candidate genes were responsive for maize lodging

resistance. These QTNs provide the important information for
the marker-assisted selection, and these candidate genes should
improve our understanding of the molecular basis of maize
lodging resistance.
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Figure S1 | Population structure of the 257 maize inbred lines based on 48,193

SNP markers. (A) Plot of delta.K against putative K ranging from 1 to 12. (B)

Stacked bar plot of ancestry relationship of the natural population.

Figure S2 | Manhattan plots showing all the significant SNPs associated with

lodging resistance-related traits using four ML-GWAS methods across three

environments and BLUP. (A–C) represent SD, SBS, and RPR, respectively. Points

of different colors represent different methods and environments.

Table S1 | Pedigree information of the maize accessions used in this study.

Table S2 | ML-GWAS detected significant signals associated with SD, SBS, and

RPR across the three environments and BLUP.

Table S3 | Repetitive SNPs and their information by ML-GWAS consistently

identified in multiple methods or environments.

Table S4 | Distribution of the important SNPs superior alleles in the 257 inbred

lines.

Table S5 | Distribution and utilization percentage of the important SNPs superior

alleles in the 30 maize elite inbred lines.

Table S6 | Significant signals associated with SD, SBS, and RPR, detected by

FarumCPU and GAPIT.
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Genome-wide association studies (GWAS) have been widely used to dissect the
complex biosynthetic processes of plant metabolome. Most studies have used single-
locus GWAS approaches, such as mixed linear model (MLM), and little is known
about more efficient algorithms to implement multi-locus GWAS. Here, we report a
comprehensive GWAS of 20 free amino acid (FAA) levels in kernels of bread wheat
(Triticum aestivum L.) based on 14,646 SNPs by six multi-locus models (FASTmrEMMA,
FASTmrMLM, ISISEM-BLASSO, mrMLM, pKWmEB, and pLARmEB). Our results
showed that 328 significant quantitative trait nucleotides (QTNs) were identified in total
(38, 8, 92, 45, 117, and 28, respectively, for the above six models). Among them, 66
were repeatedly detected by more than two models, and 155 QTNs appeared only
in one model, indicating the reliability and complementarity of these models. We also
found that the number of significant QTNs for different FAAs varied from 8 to 41,
which revealed the complexity of the genetic regulation of metabolism, and further
demonstrated the necessity of the multi-locus GWAS. Around these significant QTNs,
15 candidate genes were found to be involved in FAA biosynthesis, and one candidate
gene (TraesCS1D01G052500, annotated as tryptophan decarboxylase) was functionally
identified to influence the content of tryptamine in vitro. Our study demonstrated the
power and efficiency of multi-locus GWAS models in crop metabolome research and
provided new insights into understanding FAA biosynthesis in wheat.

Keywords: wheat, free amino acid (FAA), genome-wide association studies, multi-locus models, QTNs

INTRODUCTION

Genome-wide association studies (GWAS) have largely been applied to the genetic dissection of
complex traits in plants. With the landmark GWAS study of 107 phenotypes in Arabidopsis (Atwell
et al., 2010), numerous other studies have been successfully performed, including those addressing
the flowering time and grain yield in rice (Huang et al., 2012; Yang W. et al., 2014), salinity tolerance
in barley (Fan et al., 2016), male inflorescence size in maize (Wu et al., 2016), floret fertility in wheat
(Guo et al., 2017), and the reducing levels of cucurbitacin in cucumber domestication (Shang et al.,
2014). Of these studies, the mixed linear model (MLM) has been adopted most frequently owing
to its effective control of spurious associations (Yu et al., 2006). However, as a single-locus GWAS
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approach, MLM leads to missing some significant loci because
of the conservative Bonferroni correction (0.05/me, where me is
the number of effective markers) and the stringent criterion of
the significance test (Wang et al., 2016). To address this issue,
several multi-locus models have been developed, such as Bayesian
LASSO (Hoggart et al., 2008), ISISEM-BLASSO (Tamba et al.,
2017), pLARmEB (Zhang et al., 2017), and pKWmEB (Ren et al.,
2018). Because of the multi-locus nature, the obvious superiority
of these approaches is that no Bonferroni correction is demanded,
hence, a looser significance criterion can be adopted, and more-
powerful quantitative trait nucleotides (QTNs) can be detected
(Wang et al., 2016).

Plants produce a vast array of metabolites that provide
nutrition and medicine for humans (Saito and Matsuda,
2010; Chae et al., 2014). Unraveling the diversity of the
plant metabolome and its underlying mechanism has attracted
increasing research interest in the past decade (Schwab,
2003; De Luca et al., 2012). Recent research showed that GWAS
coupled with metabolome analysis (mGWAS) exhibited great
potential to dissect the genetic and biochemical bases of
metabolome diversity (Chan et al., 2011; Chen et al., 2014; Wen
et al., 2014). Similar to complex traits such as plant height and
grain weight, which are usually controlled by several loci with
small effects (Huang et al., 2010; Yang W. et al., 2014), the
production of plant metabolites is often controlled by pathways
composed of multiple genes. For instance, levels of primary
metabolites, such as amino acids, fatty acids and saccharides,
tend to be controlled by small effects loci (Angelovici et al.,
2013; Matsuda et al., 2015). Whereas, in contrast to primary
metabolites, the contents of secondary metabolites are always
controlled not only by a few major loci with large effects
but also by additional numerous loci with small effects (Chan
et al., 2010; Riedelsheimer et al., 2012). Although the single-
locus mGWAS models have succeeded in identifying a number
of genetic variants associated with thousands of metabolites,
this methodology ignores the joint effects of multiple genetic
markers on metabolites (Chan et al., 2010; Tamba et al., 2017).
Therefore, multi-locus models are a valuable alternative method
for mGWAS analysis.

Bread wheat or common wheat (Triticum aestivum L.) is
one of the most important crops worldwide and provides
approximately 20% of the energy, protein and dietary fiber
consumed for human (Ling et al., 2013). The improvement
of kernel quality has been a major target in breeding for a
long time (Nelson et al., 2006; Jin et al., 2016). Although the
seed amino acids are mainly present as components of storage
proteins, free amino acids (FAAs) can contribute significantly
to be the contents of limited essential amino acids in wheat
kernels (Angelovici et al., 2013). To improve the amino acid
compositions, both traditional plant breeding techniques and
new biotechnologies can be utilized (Fernie and Schauer, 2009).
Recently, with the rapid development of the next-generation
sequencing technologies, some key genes influencing FAA
concentrations have been identified in rice (Chen et al., 2016),
maize (Deng et al., 2017), and Arabidopsis (Angelovici et al., 2013)
via mGWAS, which showed great potential to accelerate breeding
for balanced AA compositions. However, to our knowledge, no

studies of dissecting genetic associations with FAA levels in wheat
have been reported.

Here, to understand the genetic bases underlying the natural
variation and the biosynthesis of FAAs in wheat kernels, we
detected the levels of 20 FAAs with an LC-MS platform (Chen
et al., 2013) from a highly diverse association panel of 182
accessions. We identified 328 significant QTNs (LOD > 3.0)
with six multi-locus mGWAS models and assigned 15 candidate
genes involved in FAA biosynthesis. As a proof of concept,
we functionally identified TraesCS1D01G052500 in vitro. Our
study proved the efficiency of multi-locus GWAS models
in metabolome research and provided new insights into
understanding of FAA biosynthesis in wheat, which may facilitate
metabolomics-based breeding for quality improvement.

MATERIALS AND METHODS

Plant Material
A highly diverse association panel of 182 Triticum aestivum L.
accessions, including both landraces and elite varieties
(Supplementary Table S1), was described as before (Liu J.
et al., 2017). All accessions were grown at Gaoyi in Hebei
province and Dezhou in Shandong province during the
2016–2017 cropping season. Field trials were conducted
in randomized complete blocks with three replicates at
each location. Each plot contained three 2 m rows spaced
20 cm apart. Field trials followed standard agronomic
wheat management practice. Ten mature seeds were
randomly collected and pooled for metabolic profiling
analysis.

Genotyping
Total genomic DNA was extracted from young leaves for SNP
arrays. The 182 accessions were genotyped using the Illumina
wheat 90 K SNP by Capital Bio Corporation, Beijing, China1.
Accuracy of SNP clustering was validated visually step by step.
Of the 81,587 SNPs, those with minor allele frequencies (MAFs)
< 0.05 and missing data >20% were excluded from further
analysis (Liu J. et al., 2017) to avoid spurious MTAs, finally, a
total of 14,646 SNPs were employed in the association panel
for GWAS analysis (Dong et al., 2016). The physical positions
of SNPs were obtained from the International Wheat Genome
Sequencing Consortium website (IWGSC)2.

Determination of AA Levels
A widely targeted metabolomic platform was applied to quantify
the FAA contents in mature wheat kernel samples as described
previously (Chen et al., 2013). The dried kernels were crushed
using a mixer mill (MM 400, Retsch) for 1.2 min at 29 Hz.
Then, 100 mg powder was weighted and extracted for 8 h at 4◦C
with 1.0 ml 70% aqueous methanol containing 0.1 mg/l lidocaine
(internal standard). Extracts were centrifuged at 10,000 g for
10 min, and filtrated (SCAA-104, 0.22 µm pore size; ANPEL,

1http://www.capitalbiotech.com/
2http://www.wheatgenome.org/
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Shanghai, China3 before LC–MS analysis. The HPLC conditions
as follow: column, shim-pack VP-ODS C18; solvent system,
water with 0.04% acetic acid and acetonitrile with 0.04% acetic
acid; gradient program, 0 min, 100:0 V/V, 20.0 min, 5:95 V/V,
22.0, 5:95 V/V, 22.1, 95:5 V/V, 25.0, 95:5 V/V; flow rate,
0.25 ml min−1; temperature, 40◦C; Injection volume, 5 µl. The
MS parameters as follow: ion spray voltage (IS) 5,500 V; source
temperature 500◦C; ion source gas I (GSI), gas II (GSII), curtain
gas (CUR) were set at 55, 60, and 25.0 psi, respectively, the
collision gas (CAD) was high. A specific set of MRM (multiple
reaction monitoring) transitions were monitored for each FAA
(Supplementary Table S2), each MRM transition was obtained
with a 5 ms pause time and 5 ms Dwell time, data were
processed by Analyst 1.5.1 software, peak areas were integrated
using a IntelliQuan algorithm. Endogenous concentrations of
FAAs were quantified by calculating the peak area in comparison
to standard curves obtained from authenticated standards
(purchased from Sigma-Aldrich). Calibration curves were drawn
by plotting at least four different concentrations of each FAA
standard according to the peak area (Dong et al., 2014).
Finally, to eliminate environmental effects, BLUPs (best linear
unbiased predictor) across two environments were used as the
phenotypic values for all subsequent analyses (Liu J. et al.,
2017).

GWAS Mapping
Free amino acid levels were simultaneously studied with a
single-locus GWAS model (MLM) and six multi-locus GWAS
models. The single-locus model was implemented by FaST-LMM
program (Lippert et al., 2011), while multi-locus models were
implemented by mrMLM (Wang et al., 2016), FASTmrMLM
(Tamba, 2017), FASTmrEMMA (Wen et al., 2017), ISISEM-
BLASSO (Tamba et al., 2017), pLARmEB (Zhang et al., 2017),
and pKWmEB (Ren et al., 2018). The critical threshold for
significantly associated SNPs was set at LOD > 3.0 for the six
multi-locus models, and P = 0.05/14,646 = 3.41 × 10−6 (or
− log10 P − value = 5.5, Bonferroni correction) for MLM.

Statistical Analysis
We used s/ȳ × 100 to calculate the values of coefficient variation
(CV, %) for each FAA, where s and ȳ are the standard deviation
(SD) and the mean of each FAA in the population, respectively.
Spearman’s rank correlation coefficient was used to calculate the
correlation between each pair of FAAs, and statistical significance
was obtained by using Student’s t-test.

In vitro Validation of Candidate Genes
Full-length cDNA of TraesCS1D01G052500 was amplified with
the primer using cDNA from Huaimai20 as a template. Clones
were digested with BamH I/EcoR I and directionally ligated to the
pre-digested pGEX-6p-1 vector. Error-free recombinant proteins
were expressed in BL-21 (DE3) competent cells after induced by
adding 0.1 mM isopropyl β-D-1-thiogalactopyranoside (IPTG)
and growing continually for 12 h at 16◦C. Cells were harvested
and suspended in the lysis buffer [contains 500 mM NaCl, 50 mM

3www.anpel.com.cn/

Tris-HCl (pH 8.0), 10% glycerol, 5 mM β-mercaptoethanol and
1 mM PMSF] and lysed by high pressure. The crude extract
was collected and clarified by centrifugation at 14,000 g for 1 h
at 4◦C, and the supernatant was stored at −80◦C for future
experiments.

The standard in vitro enzyme assay for the role of
TraesCS1D01G052500 (tryptophan as substrate) was performed
in a total volume of 20 µl containing 100 ppm PLP and
50 µM substrate in 50 mM Tris-HCl buffer (pH 8.0). After
incubating at 37◦C for 30 min, the reaction was stopped by
adding 60 µl of methanol. The reaction mixture was then filtered
through a 0.2 µm filter (Millipore) before being used for LC-MS
analysis.

Phylogenetic Analysis of Different Gene
Families
We use the CLUSTALW (version 1.83) program to align the
amino acid sequences and construct the neighbor-joining tree by
MEGA5. Bootstrap values from 1,000 times are indicated at each
node. Bar = 0.1 amino acid substitutions per site.

Enzyme Kinetics
To determine the kinetic difference between
TraesCS1D01G052500 and its homologs in rice (OsTDC1 and
OsTDC3), their activities were measured using 50 ng of purified
protein expressed from E. coli, with 10–1,250 µM different
tryptophan (Sigma) as substrates and a fixed concentration of
50 ppm PLP (Sigma) as co-factor. The kinetic parameters were
calculated using Michaelis–Menten model (SigmaPlot software,
version 14.0). All reactions were run in duplicate and repeated
twice.

RESULTS

Natural Variation of Free Amino Acids in
Wheat Kernel
To assess the phenotypic variation for FAAs in dry, mature
wheat kernels, the absolute levels of 20 FAAs (alanine, arginine,
asparagine, aspartic acid, glutamic acid, histidine, isoleucine,
leucine, lysine, methionine, phenylalanine, proline, serine,
serotonin, threonine, tryptamine, tryptophan, tyramine, tyrosine,
and valine in nmol/mg dry wheat kernels) were quantified
using LC-MS/MS as previously described (Chen et al., 2013).
Visualization of the FAA profiling was performed by hierarchical
cluster analysis (HCA), and accumulation of FAAs displayed
a distinct phenotypic variation according to their abundance
(Figure 1). Aspartic acid, glutamic acid, alanine and serine were
the most highly abundant FAAs, with average concentrations
of 0.37, 0.31, 0.30, 0.30 nmol/mg, respectively, while tyramine,
threonine, and tryptamine were the less abundant, with average
concentrations of 0.005, 0.02, 0.03 nmol/mg, respectively
(Supplementary Table S2). The content of each FAA varied
widely within the association panel, with variation ranging from
a 2.30-fold difference in tyrosine to a 30.36-fold difference in
proline and with the genetic coefficient variation (CV, %) ranging
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FIGURE 1 | Hierarchical cluster analysis (HCA) and the coefficient variation (CV, %) of the levels of FAAs in 182 wheat accessions. Each accession is visualized in a
single column, and each FAA is represented by a single row. Red indicates high level, whereas low FAA contents are shown in green.

TABLE 1 | Summary of significant QTNs identified by different models.

Model FASTmrEMMA FASTmrMLM ISISEM-BLASSO mrMLM pKWmEB pLARmEB MLM

Number of traits with significant QTNs 18 6 20 15 19 11 4

Number of QTNs 38 8 92 45 117 28 4

Average QTNs per trait 2.1 1.3 4.6 3.0 6.2 2.5 1

from 15.9 to 103.2, respectively (Figure 1 and Supplementary
Table S2). The relationships between 20 FAA values were
evaluated by Spearman’s rank correlation, and strong positive
correlations were identified between most of these FAAs, with
the exceptions of tryptamine and tryptophan (Supplementary
Table S3).

Associated Loci Mapped by Different
Models
To dissect the genetic basis of natural variation for FAA levels
in mature wheat kernels, GWAS was performed using seven
different models simultaneously. In total, 328 significant QTNs
were identified by six multi-locus models (FASTmrEMMA,
FASTmrMLM, ISISEM-BLASSO, mrMLM, pKWmEB, and
pLARmEB) at a critical threshold of LOD > 3.0 (Supplementary
Table S4), and the numbers of QTNs for the above six models
were 38, 8, 92, 45, 117, and 28 (Table 1), respectively. Of
these QTNs, 66 were detected by at least two different models;
some QTNs, such as the association between lysine and SNP
BS00003585_51 on chromosome 2B (747,603,047 bp), were
simultaneously mapped by five different models (Supplementary
Table S4). Only four significant SNP-trait associations were
identified by the single-locus model (MLM) (Table 1), and could
be also detected by some multi-locus models. Although 18 FAAs
were found by FASTmrEMMA to be significantly associated with
QTNs, the total number of QTNs is only 38, with an average of 2.1
QTNs per FAA. Comparatively, for the pKWmEB and ISISEM-
BLASSO models, the average QTNs per trait reached 6.2 and
4.6, respectively (Table 1). The phenotypic variation explained

by different loci varied from 0.1% (tyramine in pKWmEB) to
21.4% (aspartic acid in mrMLM), with an average of 5.6%.
We also found that the same QTN shows different effects to
explain the phenotypic variation in different models; for instance,
the association between arginine and SNP BS00022811_51 on
chromosome 7A (709,639,589 bp) with the r2 ranged from
0.1% in FASTmrEMMA to 19.7% in pKWmEB (Supplementary
Table S4).

The number of significant QTNs also varied widely among
different FAAs, ranging from 8 for tryptophan to 41 for
tyramine (Figure 2), indicating the complex genetic regulation
of FAAs. The chromosomal distribution of all identified QTNs
revealed that A genome had the greatest number of significant
associations, while only few QTNs were detected in the D
genome (Figure 2). Since QTNs were not distributed evenly
on the chromosomes (Deng et al., 2017), five QTN hotspots
were observed on chromosomes 2A, 4A, 6A, 7A, and 7B, with
the most obvious one being that more than 18 QTNs can
be detected between 7 FAAs and SNP RAC875_c1022_3059
(located at 595,984,457 bp on chromosome 4A) (Figure 2 and
Supplementary Table S4). The candidate genes underlying these
QTN hotspots could include transcriptional factors, transporters
or some other rate-limiting enzymes of the amino acid metabolic
pathway.

Candidate Genes Underlying QTNs
Notably, the 328 significantly QTNs facilitated the assignment
of candidate genes. To identify them, the flanking sequences
corresponding to the SNP markers significantly associated with
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FIGURE 2 | Chromosomal distribution of QTNs identified in this study. The x-axis indicates genomic locations by chromosomal order, and the significant QTNs are
plotted against genome location. Each row represents one QTN identified by a different model. The red arrows show the QTN hotspots.

TABLE 2 | Summary of 15 candidate genes significantly associated with FAA levels.

Traits Chr Lead SNP
position (bp)

r2 (%)a LOD Candidate geneb Annotation

Glutamic acid 1A 558,490,011 6.9 3.5 TraesCS1A01G390300 Glutamate receptor

Alanine 4A 595,984,457 15.6 5.7 TraesCS4A01G294100 Aminopeptidase

Asparagine 4B 14,124,082 6.1 4.1 TraesCS4B01G020000 Aminopeptidase

Tryptamine 1D 34,621,416 6.7 3.8 TraesCS1D01G052500 Tryptophan decarboxylase

Tyramine 3B 543,718,678 1.9 5.5 TraesCS3B01G340000 Tyrosine decarboxylase

Glutamic acid 5D 31,273,563 10.1 4.2 TraesCS5D01G031800 Amino acid transporter

Isoleucine 7A 660,464,837 15.9 5.7 TraesCS7A01G464900 Amino acid transporter

Tyrosine 2B 689,871,912 8.3 4.5 TraesCS2B01G493000 Amino acid permease

Arginine 7B 105,558,975 4.4 3.9 TraesCS7B01G093200 Amino acid permease

Methionine 3B 408,354,812 14.4 4.3 TraesCS3B01G253600 Amino acid transporter

Valine 4A 593,337,515 9.6 3.6 TraesCS4A01G287900 Peptide transporter

Tyramine 3B 582,466,573 17.0 4.9 TraesCS3B01G369800 Aminotransferase

Lysine 2A 41,237,242 9.2 4.5 TraesCS2A01G088600 Pyruvate decarboxylase

Histidine 2B 26,581,220 16.1 7.3 TraesCS2B01G053600 Pyruvate dehydrogenase

Lysine 2B 747,603,047 9.4 5.8 TraesCS2B01G553300 Shikimate kinase

aThe phenotypic variance explained by the corresponding locus. bA possible biological candidate gene in the locus or the nearest annotated gene to the lead SNP. More
information is listed in Supplementary Table S4.

FAA levels were used in BLASTx search against NCBI database4.
In most cases, the chemical structure combining with the existing
knowledge of the biosynthetic pathway of the amino acids
allowed the tentative assignment of a protein sequence that
is biochemically related to the associated FAAs. Notably, 15
candidate genes involved in FAAs anabolism or catabolism were
identified by mGWAS in this study (Table 2), based on the wheat
reference genome information (see footnote 2).

4http://www.ncbi.nlm.nih.gov/

A significant QTN between the levels of glutamic acid and
the SNP Excalibur_c35310_375 was identified on chromosome
1A; this SNP is located 0.5 Mb away from TraesCS1A01G390300
(encoding a putative glutamate receptor). The high homology
(58% identity at amino acid level) between TraesCS1A01G390300
and the glutamate receptor gene AtGLR3.5 (Teardo et al.,
2015) suggests that TraesCS1A01G390300 is likely the candidate
gene underlying this locus. The SNP RAC875_c1022_3059 was
significantly associated with 7 FAAs (Supplementary Table S4),
which is comprised a hotspot on chromosome 4A as mentioned
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FIGURE 3 | Homologous amino acid sequences of aminopeptidase gene family (A), tyrosine decarboxylase and tryptophan decarboxylase gene families (B), and
amino acid permease, amino acid transporter and peptide transporter gene families (C) from multiple species were collected and aligned. The neighbor-joining trees
were constructed using MEGA software and tested using bootstrap method at replication number of 1000. Phylogenetic analysis of different gene families assigned
in the study. Os, Oryza sativa; At, Arabidopsis thaliana; Pc, Petroselinum crispum; Ps, Papaver somniferum; Cr, Catharanthus roseus; Lb, Lactobacillus brevis; Bc,
Bacillus cereus.

above. The high sequence identity (61% at the amino acid
level) between adjacently located gene TraesCS4A01G294100
(0.4 Mb to SNP RAC875_c1022_3059) and AtAPM1 (Murphy
et al., 2002), an aminopeptidase in Arabidopsis, suggests that
TraesCS4A01G294100 is likely the candidate gene underlying
this QTN. Similarly, TraesCS4B01G020000 (also encoding a
putative aminopeptidase), was assigned as the candidate gene
underlying the content of asparagine. The associations were
further supported by phylogenetic analysis (Figure 3A).

Levels of tryptamine were significantly associated (LOD = 3.8)
with the SNP BS00012936_51 on chromosome 1D that is
1.0 Mb away from TraesCS1D01G052500, which encodes a
protein annotated as tryptophan decarboxylase, suggesting that
TraesCS1D01G052500 catalyzes the key step of tryptamine
biosynthesis. Similarly, TraesCS3B01G340000 (encoding
a putative tyrosine decarboxylase) was assigned as the
candidate gene underlying the levels of tyramine. The high
sequence identities between TraesCS1D01G052500 and OsTDC1
(88% at the amino acid level, Kanjanaphachoat et al., 2012),
TraesCS3B01G340000 and OsTyDC2 (79% at the amino acid
level, Kang et al., 2007) further supported the realness of these
QTNs (Figure 3B).

Six candidate genes putatively annotated as amino acid
transporters (AATs) or amino acid permeases (AAPs)
were identified by mGWAS (Table 2). We investigated the
phylogenetic relationships among the AATs (or AAPs) by
constructing the phylogenetic tree with a neighbor-joining

algorithm based on the amino acid sequences of these candidate
genes and a collection of nine reported genes (Dietrich et al.,
2004; Hirner et al., 2006; Meyer et al., 2006; Lee et al., 2007;
Yang H. et al., 2014; Santiago and Tegeder, 2016). As a result,
characterized AATs (or AAPs) were sorted into four major
clades (Figure 3C). Closer examination of the phylogeny
in clade III reveled that TraesCS5D01G031800 lies next to
AtCAAT2, AtCAAT3, and AtCAAT4, three cationic amino acid
transporters from Arabidopsis (Yang H. et al., 2014), consistent
with the significant QTN between the levels of glutamic acid
(a typical cationic amino acid) and TraesCS5D01G031800 locus
(Figure 3C and Supplementary Table S4). Our analysis also
placed TraesCS2B01G493000 and TraesCS7B01G093200 close
to AtAAP1, AtAAP6, and AtAAP8 (Hirner et al., 2006; Lee
et al., 2007; Santiago and Tegeder, 2016) within clade I, strongly
supporting the annotation of these candidates as AAPs in wheat
(Figure 3C). Moreover, the high sequence identities between
TraesCS3B01G253600 and AtGAT1 (63% at the amino acid level,
Meyer et al., 2006), TraesCS4A01G287900 and AtPTR2 (44%
at the amino acid level, Dietrich et al., 2004) provide further
evidence for these assignments (Figure 3C).

Functional Identification of Candidate
Genes
Although experimental validation of all candidate genes disclosed
by our mGWAS analyses is beyond the scope of a single study, we
nevertheless tried to show that such confirmation is possible. For
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FIGURE 4 | Functional identification of TraesCS1D01G052500 in vitro.
(A) The multi-locus GWAS results for the tryptamine level in different models.
(B) Gene model of TraesCS1D01G052500. The filled gray box represents
coding sequence, and the star represents the associated site. (C) LC-MS/MS
chromatograms of in vitro enzyme assays showing the enzyme activity of
recombinant TraesCS1D01G052500 (Down). Protein extract from E. coli
containing empty vector were used as a negative control (Up). (D) The
proposed pathway of tryptamine biosynthesis in wheat.

this purpose, we further characterized one candidate gene and
provided novel biochemical insight into the FAA biosynthesis in
wheat.

As mention above, the association between
TraesCS1D01G052500 and tryptamine levels suggests that
TraesCS1D01G052500 is the decarboxylase that catalyzes the
biosynthesis of tryptamine (Figures 3B, 4A,B). To characterize
the enzymatic properties of TraesCS1D01G052500, recombinant
protein was expressed with an N-terminal glutathione
S-transferase (GST) tag in E. coli BL-21 and the reaction
product was confirmed by commercial standard with LC-MS
(Figure 4C). An obvious TDC activity showed for tryptophan,
and its activity was not inhibited by tyrosine, indicating a high
level of substrate specificity toward tryptophan (Supplementary
Table S5). We further investigated the enzyme kinetics
of TraesCS1D01G052500 and its rice homologs (OsTDC1
and OsTDC3), all of them displayed similar Kcat values for
tryptophan (Supplementary Table S5), suggesting that the three

proteins have similar TDC activities. Based on these results, we
functionally identified TraesCS1D01G052500 as a decarboxylase
that catalyzes the biosynthesis of tryptamine from tryptophan in
wheat (Figure 4D), which further confirmed the correctness of
our GWAS results and the candidate gene assignment.

DISCUSSION

By coupling with the rapid development of LC-MS strategies,
more accurate contents of metabolites can be obtained, and larger
phenotypic variation can be observed (Chen et al., 2014). In this
study, most of the FAAs varied widely across the association
panel, such as proline with range of 30.4-fold (Supplementary
Table S2), indicating the complexity of the biosynthetic processes
of FAAs (Figure 1). The levels of lysine (an essential amino
acid) have huge phenotypic variation, with a CV (%) of 77.2,
implying the existence of a large number of alleles with high
genetic diversity in the wheat germplasms (Liu Y. et al., 2017).
Thus, identification of the favorable alleles and dissection of the
genetic architecture underlying the levels of FAA is beneficial for
improving the amino acid compositions in the future.

Dissecting the natural variation and the underlying genetic
bases of metabolism is essential for the improvement of
crop nutritional quality (Luo, 2015). Due to recent advances
in both high-throughput metabolic profiling and sequencing
technologies, mGWAS has been employed as a powerful strategy
to reveal the genetic and biochemical basis of crop metabolism
(Riedelsheimer et al., 2012; Wen et al., 2014; Matsuda et al., 2015).
So far, most of these studies have been carried out on maize
and rice. What’s more important, hundreds of significant loci
were identified for various metabolites of nutritional importance,
both of large effects and at high resolution, which facilitated
the identification of the candidate genes (Luo, 2015). Advanced
in developing the genomic toolbox (Jia et al., 2013; Ling et al.,
2013; Avni et al., 2017), Matros et al. (2017) quantified 76
leaf metabolites from 135 winter wheat lines and identified
several significant associations for six metabolic traits based
on 17,372 SNP markers. This confirmed the potential of the
mGWAS approach and provided the opportunity for a further
understanding of metabolic diversity in wheat. In our study,
we also mapped hundreds of QTNs for the levels of 20 FAAs
in a wheat diverse association panel, however, most of them
had very small effects, explaining the phenotypic variation with
an average of 5.6% (Supplementary Table S4). Obviously, the
limitations of mGWAS in wheat relate in part to the large size of
the genome and in part to the limited availability of sets of genetic
markers (Zhou et al., 2018), which leads to great difficulties to
confirm the candidate genes. These constraints could be gradually
complemented by applying new sequencing technologies and
developing additional genomic markers (Liu Y. et al., 2017), and
also, utilizing larger number of accessions and choosing more
comprehensive choices of germplasms can enhance the power of
mGWAS approaches, as demonstrated in rice and maize (Huang
et al., 2012; Riedelsheimer et al., 2012).

As usual, variation of primary metabolites tends to be
controlled by many small-effect loci. To increase the detection
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power of mGWAS, six multi-locus models were applied in this
study. Totally, 328 significant QTNs were identified, however,
only 4 SNP-trait associations were found with the single-locus
model (MLM) at P ≤ 3.41 × 10−6 (Table 1 and Supplementary
Table S3). These results indicated the power of these multi-locus
methods. Furthermore, the common QTNs appeared in different
models confirming the credibility of these multi-locus GWAS
approaches.

Based on these QTNs identified by the six multi-locus
methodologies, candidates that have not been identified
previously can be explored by searching for a protein or protein
cluster that is biochemically related to the associated FAAs
encoded at these loci. As a result, our mGWAS has allowed
the assignment of 15 candidate genes underlying FAA levels
(Table 2). The existing knowledge of plant FAA pathways, the
high sequence identities between them and known functions in
rice and Arabidopsis further confirmed these candidate genes.
Notably, the validation of TraesCS1D01G052500 was detected
only by the pKWmEB model (Figure 4), further demonstrating
the reliability and effectiveness of these multi-locus methods.

CONCLUSION

In this study, a comprehensive GWAS of 20 FAA levels based on
14,646 SNPs in bread wheat was performed by six multi-locus
models. Among 328 significant QTNs, 66 were detected by at
least two models, and 155 QTNs appeared only in one model.
Fifteen candidate genes were assigned to FAA biosynthesis, and

one candidate gene was functionally identified in vitro. This study
proved the power and reliability of multi-locus GWAS models
in plant metabolome research and provided new insights into
understanding FAA biosynthesis in wheat, which may facilitate
metabolomics-based breeding for quality improvement.
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Stress Biology, College of Life Science, Henan University, Kaifeng, China

Early-maturity varieties of upland cotton are becoming increasingly important for farmers

to improve their economic benefits through double cropping practices and mechanical

harvesting production in China. However, fiber qualities of early-maturing varieties are

relatively poor compared with those of middle- and late- maturing ones. Therefore,

it is crucial for researchers to elucidate the genetic bases controlling fiber-quality

related traits in early-maturity cultivars, and to improve synergistically cotton earliness

and fiber quality. Here, multi-locus genome-wide association studies (ML-GWAS) were

conducted in a panel consisting of 160 early-maturing cotton accessions. Each

accession was genotyped by 72,792 high-quality single nucleotide polymorphisms

(SNPs) using specific-locus amplified fragment sequencing (SLAF-seq) approach, and

fiber quality-related traits under four environmental conditions were measured. Applying

at least three ML-GWAS methods, a total of 70 significant quantitative trait nucleotides

(QTNs) were identified to be associated with five objective traits, including fiber length

(FL), fiber strength (FS), fiber micronaire (FM), fiber uniformity (FU) and fiber elongation

(FE). Among these QTNs, D11_21619830, A05_28352019 and D03_34920546 were

found to be significantly associated with FL, FS, and FM, respectively, across at least

two environments. Among 96 genes located in the three target genomic regions (A05:

27.95 28.75, D03: 34.52 35.32, and D11: 21.22 22.02 Mbp), six genes (Gh_A05G2325,

Gh_A05G2329, Gh_A05G2334, Gh_D11G1853, Gh_D11G1876, and Gh_D11G1879)

were detected to be highly expressed in fibers relative to other eight tissues by

transcriptome sequencing method in 12 cotton tissues. Together, multiple favorable QTN

alleles and six candidate key genes were characterized to regulate fiber development in

early-maturity cotton. This will lay a solid foundation for breeding novel cotton varieties

with earliness and excellent fiber-quality in the future.
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INTRODUCTION

Upland cotton (Gossypium hirsutum L.), a tetraploid plant, is
the most important natural-fiber crop. It is widely cultivated
in the world and supplies more than 95% of the global fiber
yield due to its extensive adaptive ability and high productivity
(Chen et al., 2007). Upland cotton cultivars can be divided
into early-, middle- and late- maturity varieties, according to
the duration of growth period. Early-maturity (short-season)
cotton is an ecological type with a relatively short growing
period (Yu et al., 2005; Song et al., 2015). It is suited for
wheat-cotton, barley-cotton and rape-cotton double cropping
patterns in cotton growing areas of Yellow River Region (YRR)
and Yangzi River Region (YZRR), and is also fit for single
cropping production in the early-maturity areas of Northwest
Inland Region (NIR) and the Northern Specific Early-Maturity
Region (NSEMR), with the short frost-free period in China
(Yu et al., 2005; Song et al., 2015). Additionally, mechanized
harvesting of cotton after good ripening is very common in
NIR. The cotton varieties appropriate for mechanical harvesting
should have earlier maturing characteristics, especially for early
and concentrated boll-opening traits, compared with those
suitable for manual harvesting (Bao et al., 2014; Feng et al.,
2017). Therefore, the early-maturity upland cotton varieties
are becoming more and more important in Chinese cotton
production.

Currently, farmers gained increased economic benefits
after using new production patterns of double cropping and
mechanical harvesting; whereas application of these cultivation
measures need early-maturity cotton (Du et al., 2015; Dai
et al., 2017; Lu et al., 2017). Owing to their great necessity,
a series of early-maturity cotton varieties, such as “Liaomian,”
“Zhongmiansuo,” and “Xinluzao,” were developed and released
in recent 40 years in China. However, their fiber qualities were
relatively poor compared with those ofmiddle- and late-maturity
cotton varieties. Therefore, it is crucial to improve fiber quality of
early-maturity cotton varieties.

To meet human higher needs for improving textile products,
it is also essential for researchers to focus on fiber-quality
improvement of early-maturity cotton in future. However, it
is difficult to improve fiber quality of early-maturity cotton by
means of traditional breeding strategy because of the significant
negative correlation between earliness and excellent-quality fiber
(Song et al., 2005; Fan et al., 2006). The rapid development of
genotyping techniques based on simple sequence repeat (SSR)
and single nucleotide polymorphism (SNP) markers provided an
alternative method to improve the efficiency of crop breeding.
Generally, marker-assisted selection (MAS) is a high-efficiency
and economical approach for modern breeding, compared with
the traditional phenotyping breeding (Lande and Thompson,
1990). Researchers have spent a great amount of time and
effort on mapping quantitative trait loci (QTL) by using linkage
analysis. Over the last two decades, a number of cotton earliness-
related QTL have been identified via linkage mapping (Fan et al.,
2006; Li et al., 2013; Jia et al., 2016). Compared to the studies
evaluating cotton earlymaturity, far toomany investigations have
been conducted to identify genetic signatures for fiber quality.

A recent meta-QTL analysis suggested that approximately one
thousand QTL for fiber-related traits have been detected in
intraspecific upland cotton populations (Said et al., 2015), and
a few near-term studies have added new QTL for cotton fiber
quality (Shang et al., 2015; Tan et al., 2015; Tang et al., 2015; Fang
X. et al., 2017).

A genome-wide association study (GWAS) is a wonderful
supplement to QTL mapping, and it has been widely used in
upland cotton in recent years (Su et al., 2016a, 2018; Fang L.
et al., 2017; Huang et al., 2017; Sun et al., 2017; Ma Z. et al.,
2018). Although there are a lot of reports on GWAS for cotton
earliness and fiber-quality related traits in the past ten years (Zeng
et al., 2009; Zhang et al., 2013; Cai et al., 2014; Nie et al., 2016; Su
et al., 2016a,b; Sun et al., 2017; Ma Z. et al., 2018), few GWAS
investigations have been conducted on fiber-quality related traits
in early-maturity upland cotton. In the previous studies, the
majority of QTL or quantitative trait nucleotides (QTNs) for fiber
quality are mainly derived from germplasms of G. barbadense
and late-maturity G. hirsutum, they are not convenient for use
in fiber-quality improvement of early-maturity cotton. Therefore,
it is needed to identify QTNs and candidate genes associated
with fiber quality in the panel consisting of early-maturity upland
cotton accessions.

To date, a lot of single-locus GWAS (SL-GWAS) have been
reported in upland cotton (Zeng et al., 2009; Zhang et al., 2013;
Nie et al., 2016; Su et al., 2016a,b,c; Sun et al., 2017; Ma Z. et al.,
2018). The SL-GWAS methods are involved in multiple testing,
and Bonferroni correction is frequently adopted to control the
false positive rate. However, this correction is very stringent,
thus some important loci cannot be detected, especially for
large error in the phenotypic measurement in field experiments
(Tamba et al., 2017). To overcome this issue, multi-locus GWAS
(ML-GWAS) methodologies have been developed. They include
mrMLM (Wang et al., 2016), FASTmrMLM (Tamba and Zhang,
2018), ISIS EM-BLASSO (Tamba et al., 2017), FASTmrEMMA
(Wen et al., 2017), pLARmEB (Zhang et al., 2017), and pKWmEB
(Ren et al., 2018). Additionally, to decrease the false positive rate,
a combination of several ML-GWAS methods have been applied
in previous studies (Wu et al., 2016; Misra et al., 2017; Ma L. et al.,
2018).

In this study, ML-GWAS for fiber-quality related traits were
conducted in a panel composed of 160 early-maturing cotton
accessions. The main objective of our study was to discover the
favorable QTN allelic variations and some potential candidate
genes controlling fiber quality in the early-maturity upland
cotton. This investigation will lay a foundation for breeding new
cotton varieties with earliness and excellent fiber quality in the
future.

MATERIALS AND METHODS

Plant Materials
A natural population consisting of 160 Chinese early-maturity
upland cotton accessions were generated (Table S1). These
accessions were sampled from the germplasm gene bank of
the Cotton Research Institute of the Chinese Academy of
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Agricultural Sciences (CRI-CAAS). The germplasms fell into
three groups based on cotton-planting regions in China.
Specifically, 81, 58, and 21 accessions were from the YRR, NIR
and NSEMR, respectively. All the accessions have relatively short
whole growing period (ranging from 100 to 120 days).

Field Experiments
A collection of 160 early-maturity upland cotton accessions was
evaluated under four environmental conditions (2 locations ×
2 years): Anyang, Henan, China (36.13◦N, 114.80◦E) in 2014
and 2015 (designated AY-2014 and AY-2015, respectively), and
Shihezi (SHZ), Xinjiang, China (44.52◦N, 86.02◦E) in 2014 and
2015 (designated SHZ-2014 and SHZ-2015, respectively). The
field experiments were arranged in a randomized complete block
design with three replications. At AY, each accession was sown
in a single-row plot with about 20 plants, while at SHZ, each
accession was planted in double-row plots with about 30 plants.
The field trials at SHZ were performed with drip irrigation
under plastic film conditions, whereas the plots at AY were
furrow irrigated as needed. The experimental field management
measures were full accordance with local agronomic practices.

Phenotyping and Data Analysis
After mature, a total of 20 naturally opened bolls, as a cotton
fiber sample, were handly picked from central part of the
plants from each accession in each replicate every year. Fiber
samples weighing 10∼15 g lint cotton were then measured for
fiber property determination using an HVI-MF 100 instrument
(User Technologies, Inc., USTER, Switzerland) at the Cotton
Fiber Quality Inspection and Testing Center of the Ministry of
Agriculture, Anyang, China. The following fiber-quality related
traits were evaluated: 50% fiber span length (FL, mm), fiber
strength (FS, cN.tex−1), fiber micronaire (FM), fiber uniformity
(FU, %) and fiber elongation (FE, %). The analysis of variance
(ANOVA) for phenotypic data was conducted using the SPSS22.0
software.

SNP Genotyping
Genomic DNA was isolated from young leaf tissue of all
accessions using a modified cetyltrimethylammonium bromide
(CTAB) method as described by Paterson et al. (1993). Reduced-
representation DNA sequences of 160 early-maturity cotton
accessions have been obtained by specific-locus amplified
fragment sequencing (SLAF-seq) approach with coverage of
approximate 5.50×. To mine the SNPs with higher quality, the
raw reads were mapped to the G. hirsutum L. TM-1 genome v
1.1 (Zhang et al., 2015) using BWA software (Li and Durbin,
2009). The GATK (McKenna et al., 2010), and SAMTools (Li
et al., 2009) packages were used for SNP calling. The filtered
SNPs, with a missing rate <10% and a minor allele frequency
(MAF) ≥ 0.05, were reserved and used for the subsequent
analysis.

Clustering Analysis, Population Structure
and Linkage Disequilibrium (LD) Analysis
A neighbor-joining phylogenetic tree among 160 individuals was
constructed using the filtered SNPs by the Tassel 5.2 software

(Bradbury et al., 2007). The population structure was analyzed
using a principal component analysis (PCA) approach with the
Tassel 5.2 program (Bradbury et al., 2007). LDs between SNPs
were estimated as the squared correlation coefficient (R2) of
alleles using the Tassel 5.2 tool (Bradbury et al., 2007). The
R2-values were calculated within a 0- to 10-cM window.

Genome-Wide Association Study and
Allelic Variation Analysis
Six ML-GWAS methods, including the mrMLM, FASTmrMLM,
FASTmrEMMA, pLARmEB, pKWmEB, and ISIS EM-BLASSO,
were used in this study. The mrMLM is a multi-locus model
including markers selected from the rMLM method with a
less stringent selection criterion (Wang et al., 2016). The
FASTmrMLM reduces the running time in mrMLM by more
than 50%, and also shows slightly high statistical power in
QTN detection, high accuracy in QTN effect estimation and
low false positive rate as compared to mrMLM (Tamba and
Zhang, 2018). FASTmrEMMA is a fast multi-locus random-
SNP-effect EMMA model, which is more powerful in QTN
detection and model fit (Wen et al., 2017). The pLARmEB
integrates least angle regression with empirical Bayes to perform
ML-GWAS under polygenic background control (Zhang et al.,
2017). The pKWmEB retains the high power of Kruskal–Wallis
test, and provides QTN effect estimates and effectively controls
false positive rate (Ren et al., 2018). The ISIS EM-BLASSO has
the highest empirical power in QTN detection and the highest
accuracy in QTN effect estimation, and it is the fastest, as
compared with EMMA and mrMLM (Tamba et al., 2017). All
parameters were set at default values, and the critical thresholds
of significant association for all the above six methods were set at
LOD = 3.00 (Wang et al., 2016; Tamba et al., 2017; Wen et al.,
2017; Zhang et al., 2017; Ren et al., 2018; Tamba and Zhang,
2018).

The phenotypic-effect value of each allelic variation was
calculated by the phenotypic data over the accessions with each
type, and box plots of the relative phenotypic data were produced
using the R software.

Prediction of Potential Candidate Genes
Putative candidate genes were identified by physical positions
of significant trait-associated SNP loci in the G. hirsutum L.
reference genomes v1.1 (Zhang et al., 2015). According to LD
decay distance, the interval for the prediction of candidate
genes for the significant SNP loci was determined. The genes
distributed in these regions were collected. Transcriptome
sequencing data from 12 upland cotton tissues (including
fiber in 5, 10, 20, 25 DPA (days post anthesis), root,
stem, leaf, torus, calycle, cotyledon, petal and pistil) were
available on the cotton website (https://cottonfgd.org/). Heat
maps of the putative candidate gene expression patterns
were drawn using the R package “pheatmap.” The biological
functions of putative candidate genes were annotated by gene
ontology (GO) items on the cotton website (https://cottonfgd.
org/).
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RESULTS

SNP Genotyping
To gain insight into the genetic bases of fiber-quality related
traits, 160 early-maturity upland cotton accessions were
performed using SLAF-seq, and a complete set of markers
containing 72,792 high-quality SNPs was explored by filtering
according to the stringent quality control. These detected
markers consisted of 47,594 and 25,198 SNPs in the At and Dt
chromosomes respectively, and were unevenly distributed on
all the 26 chromosomes of upland cotton. Moreover, the SNP
loci with maximal number were identified on chromosome

TABLE 1 | Statistics of SNPs.

Chr. Number of

SNPs

Density of

SNP (kb/SNP)

Chr. Number of

SNPs

Density of

SNP

(kb/SNP)

A01 4410 22.65 D01 1873 32.81

A02 3460 24.12 D02 1846 36.45

A03 3367 29.78 D03 1655 28.21

A04 2485 25.32 D04 1479 34.79

A05 3320 27.73 D05 1551 39.93

A06 4414 23.37 D06 1991 32.29

A07 3388 23.10 D07 1658 33.36

A08 4703 22.03 D08 2699 24.41

A09 2443 30.70 D09 1635 31.19

A10 5013 20.12 D10 2240 28.29

A11 3817 24.45 D11 2466 26.80

A12 2996 29.20 D12 2016 29.32

A13 3778 21.16 D13 2089 28.98

Chr., chromosome, according to the upland cotton reference genome (Zhang et al., 2015).

A10 (5013), while those with the minimal number were
detected on chromosome D04 (1479). The average marker
density was about one SNP per 28.10 kb genomic regions.
The greatest marker density was found on chromosome A10
with one SNP per 20.12 kb, while the smallest marker density
was seen in chromosome D05, with one SNP per 39.93 kb
(Table 1).

Phenotypic Variation
To examine whether significant phenotypic variances exist in the
fibers among the 160 upland cotton accessions, the five fiber-
quality related traits including FL, FS, FU, FM and FE were
examined. The results showed that the parameters of fibers from
different accessions were quite diverse (Table 2). For instance, the
FL ranged from 24.07 to 33.69mm, with a mean of 28.09mm, the
FS had a great variation ranging from 22.70 to 40.65 cN.tex−1,
and the FM from four environments varied from 2.50 to 6.00,
with an average value of 4.83. Additionally, the FU and FE
had wide distributions and variations (Table 2, Figure 1). These
results indicate that early-maturity cotton varieties had broad
variation in fiber-quality related traits under different planting
conditions.

We observed that the phenotypic values of FL and FS at
Anyang (AY) were significantly lower than those at Shihezi
(SHZ). By contrast, there were no significant differences in FM
and FU between the two locations. The FE values in AY-2014
were also strikingly lower than those in other environments
(Table 2, Figure 1). Furthermore, the statistically significant
differences (P < 0.001) were observed among genotypes,
environments, and the genotype × environment interactions on
all the five target traits (Table S2). These data suggest that the

TABLE 2 | Phenotypic distribution range of five fiber-quality related traits of 160 early-maturity upland cotton accessions.

Traits Environments Mean Min Max SD CV (%)

FL (mm) AY-2014 29.08 26.31 33.69 1.25 4.31

AY-2015 28.33 24.80 32.15 1.65 5.82

SHZ-2014 27.86 25.79 31.53 1.08 3.88

SHZ-2015 27.10 24.07 31.07 1.47 5.43

FS (cN.tex−1) AY-2014 30.40 26.07 39.43 2.22 7.31

AY-2015 28.75 22.70 40.65 3.15 10.97

SHZ-2014 29.85 25.94 40.54 2.24 7.51

SHZ-2015 26.07 22.87 34.47 2.44 9.35

FU (%) AY-2014 84.60 82.00 86.53 0.86 1.02

AY-2015 84.06 80.30 86.80 1.29 1.54

SHZ-2014 84.04 80.80 86.43 1.11 1.32

SHZ-2015 83.29 79.40 86.87 1.44 1.72

FM AY-2014 4.68 3.28 5.78 0.50 10.61

AY-2015 4.85 2.85 6.00 0.50 10.25

SHZ-2014 4.73 3.78 5.39 0.32 6.68

SHZ-2015 5.05 3.67 5.80 0.35 6.98

FE (%) AY-2014 6.30 6.10 6.53 0.09 1.39

AY-2015 6.78 6.50 7.05 0.12 1.77

SHZ-2014 6.74 6.50 6.93 0.08 1.22

SHZ-2015 6.68 6.40 6.93 0.12 1.79

FL, fiber length; FS, fiber strength; FM, fiber micronaire; FU, fiber uniformity; FE, fiber elongation; Max, maximum; Min, minimum; SD, standard deviation; CV, coefficient of variation; AY,

Anyang; SHZ, Shihezi.

Frontiers in Plant Science | www.frontiersin.org August 2018 | Volume 9 | Article 116951

https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/plant-science#articles


Su et al. ML-GWAS for Cotton Fiber Quality

FIGURE 1 | Phenotypic distributions of five fiber-quality related traits of 160 early-maturity upland cotton accessions in four cultivating environments.

five fiber-quality related traits were significantly influenced by the
environmental conditions.

Population Structure and Linkage
Disequilibrium Analysis
To understand the phylogenetic relationship of the 160 upland
cotton genotypes, a neighbor-joining phylogenetic tree was

conducted based on their genetic distances, which derived from
the SNP differences in these accessions. The population could
be divided into three different groups, designated pop I (YRR,
with 54 accessions), pop II (NIR, with 44 accessions) and pop
III (YRR, NIR and NSEMR, with 62 accessions), respectively
(Figure 2A). Furthermore, we found that there are an intimate
genetic relationship between NSEMR accessions and the early
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varieties from YRR and NIR, which were mainly assigned to pop
III, while the recent accessions from YRR and NIR belonged to
pop I and pop II, respectively. These findings imply that early-
maturity accessions in YRR and NIR might derive from NSEMR
varieties in upland cotton.

Next, the population structure of the panel was analyzed using
a PCA on the basis of the identified SNPs. Three conceivable
subpopulations were separated by PC1 and PC2 (Figure 2B).
Similarly, YRR, NIR and mixed group (YRR, NIR and NSEMR)
were respectively distinguished via PCA. Based on the results
from both the phylogenetic tree and PCA, the panel was
separated into three groups (Figures 2A,B).

To examine the LD decay distance in the panel, its decay
rate was estimated using the SNPs. The result showed that
the genome-wide LD decay rate of the natural population
was approximately 400 kb, where the R2 drops to half of the
maximum value (Figure 2C). Due to the average marker density
with one SNP per 28.10 kb (Table 1), we concluded that these
markers were sufficiently dense for detecting the associated
QTNs.

Multi-Locus Genome-Wide Association
Studies
A total of 70 significant QTNs were simultaneously detected
to be associated with the above five objective traits by at
least three multi-locus GWAS (ML-GWAS) methods (Table 3).
Among these QTNs, 16, 20, 9, 16, and 9 were found to be
associated with FL, FS, FM, FU, and FE, respectively. Among
the 70 significant QTNs, three were simultaneously presented
across at least two environments (Table 3). One (D11_21619830)
for FL, with a high proportion of total phenotypic variance
explained by the QTN (2.35∼11.07%), was found simultaneously
in the two planting environments (AY-2014 and SHZ-2014)
(Figure 3A, Table 3). Note that this QTN was detected by
three methods (mrMLM, ISIS EM-BLASSO and pLARmEB)

in AY-2014, and by four methods (mrMLM, FASTmrMLM,
pLARmEB and ISIS EM-BLASSO) in SHZ-2014. Another QTN
(A05_28352019) for FS was found by four methods (mrMLM,
FASTmrMLM, pLARmEB and pKWmEB) in AY-2014 and by
three methods (mrMLM, FASTmrMLM and pLARmEB) in
SHZ-2014 (Figure 3A, Table 3). Most meaningfully, the QTN
(D03_34920546) for FM was presented simultaneously in three
environments (AY-2014, AY-2015 and SHZ-2015), and was
detected at AY (2014 and 2015) by all the six ML-GWAS
methods (Figure 3A, Table 3). In conclusion, the three identified
QTNs (A05_28352019, D03_34920546 and D11_21619830),
might be some steady major QTNs controlling the target
traits.

Identification of Favorable Allelic Variations
To identify favorable alleles of QTNs for target traits, we focused
on the above 3 steady QTNs, which exhibited the maximum
LOD, –lg(P) value and phenotypic variation. The striking QTN
D11_21619830 presented three types of allele (AA, AG and
GG), and the accessions with the favorable allele AA (n = 112)
showed significantly higher FL than those with the GG (n = 26)
and AA (n = 20) alleles (Figure 3B). Moreover, we found
that QTN A05_28352019 had three types of allelic variation
AA, AG and GG, respectively, where the average FS of the
favorable allele GG (28.89 cN.tex−1) was higher than those of
the AA (26.26 cN.tex−1) and AG (26.98 cN.tex−1) (Figure 3B).
Additionally, the peak QTN (D03_34920546) had three allelic
variations (AA, AG and GG), and the accessions with the GG
variation showed higher FM than those with the alternate AA
variation. Considering themost excellent level of FM (3.70∼4.20)
for spinning, allele AA of the peak QTN could be regarded as
the favorable allele with the mean FM value of 4.28, whereas
the corresponding type GG was the unfavorable allele with the
mean FM value of 4.89 (Figure 3B). These findings indicated
that the fibers of the accessions with favorable allelic variations

FIGURE 2 | Phylogenetic tree, population structure and LD decay of 160 early-maturity upland cotton accessions. (A) Neighbor-joining phylogenetic tree of all cotton

accessions. The pop III was a mixed group including YRR, NIR and NSEMR. (B) Principal component analysis (PCA) of the association panel. (C) The entire genome

LD decay of the population.
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TABLE 3 | The significant QTNs for five fiber-quality related traits detected simultaneously by using three or more multi-locus GWAS methods.

Traits QTN ID Env. Pos.(Mb) Chr. LOD R2 (%) ML-GWAS

Methods

FL A02_8008893 AY-2014 8.01 A02 3.69–6.42 5.66–15.50 2, 3, 5

A07_14808135 AY-2014 14.80 A07 3.10–5.22 6.97–12.22 1, 2, 5, 6

A09_5999806 AY-2014 6.00 A09 3.23–7.46 2.47–12.33 1, 2, 4

A11_77306905 AY-2014 77.31 A11 3.90–6.75 2.11–9.81 1, 2, 4, 5

D01_38549510 AY-2014 38.55 D01 4.32–4.90 2.83–9.30 1, 2, 5

D03_37661749 AY-2014 37.66 D03 3.56–5.11 1.71–6.70 1, 2, 4, 5, 6

D08_44134483 AY-2014 44.13 D08 4.30–4.48 1.98–6.02 1, 2, 5

D11_21619830* AY-2014 21.62 D11 4.15–5.29 2.35–9.18 1, 3, 5

D03_41720764 AY-2015 41.72 D03 3.00–5.09 7.08–13.15 1, 2, 4, 6

A07_71351661 SHZ-2014 71.35 A07 4.95–5.94 2.84–11.07 1, 4, 5

D11_21619830* SHZ-2014 21.62 D11 3.99–5.45 2.79–11.32 1, 2, 3, 5

A01_20468506 SHZ-2015 20.47 A01 3.88–4.72 8.71–9.84 1, 3, 5

A07_5555999 SHZ-2015 5.56 A07 3.06–4.90 5.24–13.44 1, 2, 5, 6

A09_56201893 SHZ-2015 56.20 A09 3.07–5.07 2.22–6.81 2, 3, 4, 5, 6

D06_15590320 SHZ-2015 15.59 D06 3.23–5.64 2.31–6.62 2, 3, 4, 5, 6

D13_20291732 SHZ-2015 20.29 D13 3.01–3.49 10.41–17.71 2, 5, 6

FS A05_28352019* AY-2014 28.35 A05 4.21–6.09 4.73–14.91 1, 2, 5, 6

A01_3833158 AY-2015 3.83 A01 4.70–7.47 8.01–8.89 1, 5, 6

A11_48101548 AY-2015 48.10 A11 3.60–4.21 7.86–8.44 1, 2, 6

D01_53611999 AY-2015 53.61 D01 4.13–4.95 4.73–7.43 2, 5, 6

D08_54727428 AY-2015 54.73 D08 3.58–10.36 2.23–9.81 1, 2, 6

D08_63040058 AY-2015 63.04 D08 3.97–4.91 3.70–5.98 4, 5, 6

A05_28352019* SHZ-2014 28.35 A05 3.14–6.70 4.03–8.57 1, 2, 5

A05_81758788 SHZ-2014 81.76 A05 3.37–6.73 2.59–6.47 1, 2, 5, 6

A07_71351661 SHZ-2014 71.35 A07 3.14–7.25 3.36–6.33 1, 2, 4, 5

A08_71454278 SHZ-2014 71.45 A08 3.27–5.88 6.75–11.73 2, 5, 6

A09_30635120 SHZ-2014 30.64 A09 3.28–5.78 5.77–11.18 1, 2, 5

A11_85908613 SHZ-2014 85.91 A11 4.32–9.06 15.66–18.87 2, 3, 5

D01_17607059 SHZ-2014 17.61 D01 3.55–13.41 3.98–13.41 2, 5, 6

D06_15477129 SHZ-2014 15.48 D06 5.27–6.94 5.60–7.21 1, 2, 5

D07_45641817 SHZ-2014 45.64 D07 3.36–5.33 0.93–1.33 1, 2, 5

A09_56201893 SHZ-2015 56.20 A09 3.14–4.33 1.80–4.39 3, 4, 5

A13_60864258 SHZ-2015 60.86 A13 3.77–5.28 3.63–8.03 1, 2, 4

D01_53662824 SHZ-2015 53.66 D01 4.35–5.55 2.69–7.99 3, 5, 6

D06_15590320 SHZ-2015 15.59 D06 3.13–4.24 0.88–4.39 1, 2, 4, 5, 6

D12_51137790 SHZ-2015 51.14 D12 3.14–5.64 4.51–14.69 3, 5, 6

FM A03_97922050 AY-2014 97.92 A03 4.01–7.02 5.00–6.91 1, 2, 5, 6

A05_31842417 AY-2014 31.84 A05 3.04–5.46 3.53–15.10 1, 2, 3, 4, 5, 6

D03_34920546* AY-2014 33.49 D03 4.18–9.66 5.58–13.87 1, 2, 3, 4, 5, 6

D03_34920546* AY-2015 34.92 D03 9.31–12.88 16.69–29.90 1, 2, 3, 4, 5, 6

A06_5267401 SHZ-2014 35.27 A06 3.54–5.66 3.79–8.48 1, 3, 4, 6

D03_34920546* SHZ-2014 34.92 D03 3.86–5.26 5.89–17.95 1, 3, 5, 6

D09_23399960 SHZ-2014 23.40 D09 3.99–5.78 5.12–11.08 1, 2, 3

D11_1353254 SHZ-2014 1.35 D11 3.01–6.58 3.35–13.14 1, 2, 3, 4, 5

D04_42032569 SHZ-2015 42.03 D04 3.59–4.24 4.81–11.96 2, 3, 5

FU D07_43127704 AY-2014 43.13 D07 4.61–6.30 4.40–14.6 1, 2, 3, 4, 5

A01_84353970 AY-2015 84.35 A01 3.12–3.77 4.24–4.68 1, 3, 5

A05_65094242 AY-2015 65.09 A05 3.13–4.43 2.58–12.3 2, 3, 4

A05_81758788 AY-2015 81.76 A05 3.82–8.50 5.32–9.88 1, 2, 5

A09_577845 AY-2015 0.58 A09 3.57–5.04 2.34–4.94 1, 2, 3

A11_90350675 AY-2015 90.35 A11 4.13–5.03 3.10–3.89 1, 2, 3

(Continued)
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TABLE 3 | Continued

Traits QTN ID Env. Pos.(Mb) Chr. LOD R2 (%) ML-GWAS

Methods

D11_22135870 AY-2015 22.14 D11 3.00–6.25 4.17–6.68 1, 2, 5

D12_29952510 AY-2015 29.95 D12 3.77–4.33 5.70–9.85 3, 4, 5

A06_56710162 SHZ-2014 56.71 A06 3.51–5.14 4.32–12.49 1, 2, 3, 4, 5

A07_71351661 SHZ-2014 71.35 A07 3.32–4.12 4.68–7.58 1, 2, 3

A10_91235190 SHZ-2014 91.24 A10 4.00–8.37 6.79–12.89 1, 2, 3, 4, 5

D08_44134483 SHZ-2014 44.13 D08 3.00–6.49 4.30–9.44 1, 2, 3, 4, 5

D11_22044769 SHZ-2014 22.04 D11 3.34–7.46 9.50–23.35 1, 2, 4, 5, 6

A04_57215161 SHZ-2015 57.22 A04 3.54–4.07 11.12–15.91 1, 2, 6

D03_41720764 SHZ-2015 41.72 D03 4.05–6.07 6.67–9.88 1, 2, 3, 6

D10_56039747 SHZ-2015 56.04 D10 4.41–7.04 7.97–12.76 2, 3, 4, 5, 6

FE A11_77306905 AY-2014 77.31 A11 3.15–7.78 4.58–12.40 1, 2, 3, 4, 5, 6

D07_21396263 AY-2014 21.40 D07 6.24–7.56 5.81–10.32 1, 2, 5

D07_43127704 AY-2014 43.13 D07 4.15–6.40 1.47–6.99 1, 3, 5, 6

A01_60422471 AY-2015 60.42 A01 3.67–5.88 3.65–17.78 1, 2, 4

A05_22406870 AY-2015 22.41 A05 3.148–3.80 0.83–8.12 1, 2, 5

A09_46286411 AY-2015 46.29 A09 3.84–6.68 7.93–10.45 1, 2, 4

D01_53662824 AY-2015 53.66 D01 3.28–6.24 7.09–14.52 1, 3, 4, 6

D04_32424503 AY-2015 32.42 D04 3.02–8.53 3.35–5.79 1, 2, 3, 5

A09_56201893 SHZ-2015 56.20 A09 3.40–4.12 4.75–12.57 3, 4, 6

FL, fiber length; FS, fiber strength; FM, fiber micronaire; FU, fiber uniformity; and FE, fiber elongation; QTN, quantitative trait nucleotide; Env., Environment; Chr., chromosome; Pos.,

position; AY, Anyang; SHZ, Shihezi. LOD value indicates the significance levels and R2 (%) indicates the percentage of phenotypic variation explained by each QTN.

mrMLM, FASTmrMLM, ISIS EM-BLASSO, FASTmrEMMA, pLARmEB and pKWmEB are marked by 1 to 6, respectively.

*Indicates the significant QTNs presented simultaneously across at least two environments

were clearly improved compared to those of the accessions with
unfavorable allelic variations.

Prediction of Candidate Genes
The genomic regions (±400 kb around the associated QTNs)
of QTN-linked candidate genes were adopted according to
the genome-wide LD decay distances (about 400 kb) in this
study. Thus, three target regions of the candidate genes
were determined as A05: 27.95–28.75, D03: 34.52–35.32, and
D11: 21.22–22.02 Mbp, and a total of 29, 32 and 35 genes
were presented respectively in the above regions, according
to upland cotton reference genome v1.1 (Zhang et al., 2015;
Table S3). Furthermore, we observed that the expression of
72 genes of them was clearly increased in 12 cotton tissues
using RNA-Seq (Figure 4). Among these genes, Gh_A05G2325,
Gh_A05G2329, Gh_A05G2334, Gh_D11G1853, Gh_D11G1876,
and Gh_D11G1879, were highly expressed in the fiber. Notably,
Gh_A05G2334 was dominantly expressed in all the four
fiber samples; Gh_D11G1853 was mainly expressed in fibers
of 20 and 25 DPA; and Gh_D11G1876 and Gh_A05G2325
was preferentially expressed in fiber of 25 DPA; whereas
Gh_A05G2329 and Gh_D11G1879 had the maximum expression
level in the fibers of 5 and 10 DPA, respectively. Also, the
transcriptional abundances of Gh_D03G1012 and Gh_A05G2335
were slightly higher in fibers than in the other tissues (Figure 4).
These results suggest that the six genes (Gh_A05G2325,
Gh_A05G2329, Gh_A05G2334, Gh_D11G1853, Gh_D11G1876,

and Gh_D11G1879) might play important roles in controlling
fiber quality of early-maturity upland cotton.

To further understand thoroughly the above six putative
candidate genes for target traits, their biological functions
were annotated by gene ontology (GO) items. Three genes
(Gh_A05G2334, Gh_D11G1876, and Gh_D11G1879) were
annotated as transcription factors, such as sequence-specific
DNA binding, DNA-binding transcription factor activity and
regulation of transcription (Table 4). Gh_A05G2334 encoded the
agamous-like MADS-box protein AGL11 which likely plays roles
in many aspects of plant growth and development (Rounsley
et al., 1995). These results indicate that the putative candidate
genes may regulate fiber development by DNA-binding
transcription factors in early-maturity upland cotton.

DISCUSSION

The Origin and Domestication of Chinese
Early-Maturity Upland Cotton
To exploit the limited natural resources and increase economic
income of cotton producers, it is especially necessary to make
use of the double cropping systems and mechanical harvesting
in the major cotton growing regions in China. Thus, early-
maturity cotton cultivars are needed. Indeed, early-maturity
cotton varieties are attracting much attention from many cotton
growers and breeders. Fiber characters are complicated and
comprehensive traits regulated by a lot of QTL and influenced
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FIGURE 3 | Local Manhattan plot (top), and box plots for the fiber-quality related traits (bottom). (A) Manhattan plots of FL, FS, and FM on chromosome A05, D03,

and D11, respectively. (B) Box plots of the significant QTNs (D11_21619830, A05_28352019, and D03_34920546). Each dot represents an SNP. The vertical dashed

lines indicate the genomic region containing the significant QTNs. The red and blue circles mark the significant QTNs.

easily by many external factors (Ulloa and Meredith, 2000). Its
related traits for example FL, FS, and FM are more important
for the spinning industry. Previous investigations had shown that
FL and FS have significant negative correlations with earliness
in cotton. Thus, the early-maturity cotton varieties have much
lower fiber quality than late-maturity ones. Sun et al. (2017)
reported the association panel including early-, middle- and late-
maturity cotton varieties have a big phenotypic variation of the
FL (22.07∼35.56mm) and FS (22.69∼36.80 cN.tex−1). In this
study, FL of the panel ranged from 24.07 to 33.69mm, with a
mean of 28.09mm; while the FS had a great variation ranging
from 22.70 to 40.65 cN.tex−1. These findings indicate that FL of
our association population of the early-maturity cotton has small
distribution ranges compared with the previous results.

Although China is one of the largest nations producing
and consuming cotton in the world, it is not an upland
cotton domestication country (Zhang et al., 2013). The early
cotton varieties were primarily developed by using introduced
varieties (Zhang et al., 2013). King cultivar from America is the
ancestor of the Chinese early-maturity upland cotton. Most of
Chinese early-maturity cotton varieties of the early stage, such as
“Jinmian1,” “Heishanmian1,” “Liaomian1,” “Zhongmiansuo10,”
and “Xinluzao10,” were all derived from “Guannong1,” which

had a breeding pedigree from the King cultivar. In this study,
the association panel contained the above-mentioned core
germplasms, and consisted of more than 80% of the Chinese
early-maturity cotton varieties. Thus, it can represent the wide
genetic diversity of Chinese early-maturity upland cotton. In
the early stage, the Chinese early-maturity cotton varieties
were developed by utilizing the core germplasms from NSEMR
(“Jinmian1,” “Heishanmian1” and “Liaomian1). On the basis of
the clustering of phylogenetic tree and PCA of the study, along
with breeding history, the early-maturity cotton could be divided
into three groups, designated pop I (the recent accessions from
YRR), pop II (the recent accessions from NIR) and pop III
(the NSEMR varieties and the early germplasms from YRR and
NIR), respectively. These findings suggest that early-maturity
accessions in YRR and NIR might derive from the NSEMR early
varieties in Chinese upland cotton.

Comparison of Our GWAS Results With
QTL or QTNs Detected in Previous Studies
In the recent 30 years, many QTL have been mapped, and
some fiber-quality QTL hotspots have been discovered by a
comparative meta-analysis (Said et al., 2015). It has been shown
that chromosome D11 (c24) has the most prominent cluster

Frontiers in Plant Science | www.frontiersin.org August 2018 | Volume 9 | Article 116956

https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/plant-science#articles


Su et al. ML-GWAS for Cotton Fiber Quality

FIGURE 4 | Heat map of expression level of the 72 genes in 12 upland cotton tissues. The red indicates high expression, and the blue shows low expression.
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TABLE 4 | The biological function annotations of the six putative candidate genes for five fiber-quality related traits.

Gene ID Name Chr. Description Function annotations

Gh_A05G2325 A05 Non-specific lipid-transfer

protein 2

Gh_A05G2329 A05

Gh_A05G2334 AGL11 A05 Agamous-like MADS-box

protein AGL11

DNA binding; DNA-binding transcription factor activity;

regulation of transcription; protein dimerization activity

Gh_D11G1853 ephx3 D11 Epoxide hydrolase 3

Gh_D11G1876 GBF1 D11 G-box-binding factor 1 DNA-binding transcription factor activity; regulation of

transcription; sequence-specific DNA binding; nutrient

reservoir activity

Gh_D11G1879 ATHB-40 D11 Homeobox-leucine zipper

protein ATHB-40

DNA binding; DNA-binding transcription factor activity;

regulation of transcription; transcription regulatory region

sequence-specific DNA binding

Function annotations of putative candidate genes were conducted by gene ontology (GO) items on the cotton website (https://cottonfgd.org/); Chr.: Chromosome.

carrying FL, FE and FS QTL hotspots between CIR026 and
NAU2407b. A hotspot cluster A07 (c7) carrying FL and FS
QTL between E1M7_80 and CG05a has also been found (Said
et al., 2015). Another cluster carrying FE, FL and FM QTL
hotspots on D01 (c14) between CIR246 and G1012 has been
identified; and the region between E5M4_480 and pAR544
harbors a hotspot cluster carrying FS QTL on chromosome D03
(c16) (Said et al., 2015). Additionally, some stable QTL for FS
on A07 (Chr.07) have been identified by QTL mapping (Tan
et al., 2015; Fang X. et al., 2017). Similarly, a few associated
SNP loci with fiber quality have been detected via GWAS in
upland cotton (Table S4). Among the identified FL-associated
SNPs, most of markers were located on chromosome A10 and
D11, such as A10_65694094, A10_65696540, D11_24030081
and D11_24030087. Recent reports have shown a number of
cluster_A07 SNPs for FS are distributed in genome region A07:
71.99–72.25 Mbp (Sun et al., 2017; Ma Z. et al., 2018). In
addition, we also found the major genomic region (D11:24.03–
24.10 Mbp) consisting of nine SNP loci associated with FL, which
was previously detected (Su et al., 2016a).

In the current study, we characterized the significant
QTNs (D11_21619830, A05_28352019 and D03_34920546) for
fiber-quality related traits. These QTNs were detected using
several new ML-GWAS methods in at least two environments.
Compared with the mapped QTL of the previous studies, the
QTN D11_21619830 was located in the region of QTL hotspot
clusters for fiber quality. Compared with the associated loci
of previous GWAS, these associated QTNs were excluded in
the genomic regions of the previous reports. Therefore, these
identified SNPs may be novel QTNs controlling fiber quality in
our association population of early-maturity cotton.

Superiority of the New Multi-Locus GWAS
Most of previous studies have focused on genetic bases of some
complicated traits using general linear model (GLM) and mixed
linear model (MLM) based on a single-locus GWAS (SL-GWAS)
(Yu et al., 2006; Zhang et al., 2010). However, both of these
models have certain shortcomings. A big false positive incidence
is the uppermost disadvantage of GLM because polygenic kinship

is not considered (Korte and Farlow, 2013). In MLM, the
stringent P threshold (P = 0.05/n, n is the number of SNPs)
leads to missing many significant QTNs, particularly small-effect
QTNs (Wang et al., 2016). To make up for deficiencies of GLM
andMLM, somemulti-locus GWAS (ML-GWAS)methodologies
have been developed, such as mrMLM (Wang et al., 2016),
FASTmrMLM (Tamba and Zhang, 2018), FASTmrEMMA (Wen
et al., 2017), ISIS EM-BLASSO (Tamba et al., 2017), pLARmEB
(Zhang et al., 2017), and pKWmEB (Ren et al., 2018). Compared
with the conventional SL-GWAS MLM methods, these ML-
GWAS methods are more powerful and have the advantages
of accuracy. Thus, we adopted the ML-GWAS methods in this
study.

In addition, the significant threshold of these new ML-GWAS
methods is set to a LOD score= 3, which is equal to –lg(P)= 3.70
(Wang et al., 2016). Although the standards are less stringent in
the ML-GWAS methods than in the SL-MLM ones, their false
positive rates are effectively reduced (Wang et al., 2016; Tamba
et al., 2017; Wen et al., 2017; Zhang et al., 2017; Ren et al.,
2018; Tamba and Zhang, 2018). Thus, theML-GWAS approaches
are considered more effective, practical and alternative. In this
study, 70 QTNs significantly associated with five fiber-quality
related traits were simultaneously identified in three or more
ML-GWAS methods (Table 3). Further investigation showed
that three stably expressed QTNs were commonly detected
in multiple environments (Table 3). However, no significantly
associated QTN was found when using the Tassel 5.0 in MLM
[PCs + K, –lg(P) = –lg(0.05/72792) = 6.16]. These data suggest
that theML-GWASmethods are more powerful and robust when
applying to detect the small-effect QTNs for fiber-quality related
traits of upland cotton.

CONCLUSION

In this study, a total of 70 significant QTNs were simultaneously
detected to be associated with five objective traits by three
or more methods. Among these QTNs, D11_21619830,
A05_28352019 and D03_34920546, significantly associated
with FL, FS, and FM, respectively, were simultaneously
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presented across at least two environments. Furthermore,
favorable allelic variations of the three QTNs and 96 genes
contained in the three target genomic range were mined.
Among these, six genes highly expressed in the fibers might be
candidate genes identified by RNA-Seq method. In summary,
many favorable QTN alleles and six candidate genes were
identified to modulate fiber development in early-maturity
upland cotton. This will lay a solid basis for breeding
earliness and excellent fiber-quality cotton varieties in the
future.
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A major breeding target in Upland cotton (Gossypium hirsutum L.) is to improve the fiber

quality. To address this issue, 169 diverse accessions, genotyped by 53,848 high-quality

single-nucleotide polymorphisms (SNPs) and phenotyped in four environments, were

used to conduct genome-wide association studies (GWASs) for fiber quality traits using

three single-locus and three multi-locus models. As a result, 342 quantitative trait

nucleotides (QTNs) controlling fiber quality traits were detected. Of the 342 QTNs, 84

were simultaneously detected in at least two environments or by at least two models,

which include 29 for fiber length, 22 for fiber strength, 11 for fiber micronaire, 12 for fiber

uniformity, and 10 for fiber elongation. Meanwhile, nine QTNs with 10% greater sizes

(R2) were simultaneously detected in at least two environments and between single- and

multi-locus models, which include TM80185 (D13) for fiber length, TM1386 (A1) and

TM14462 (A6) for fiber strength, TM18616 (A7), TM54735 (D3), and TM79518 (D12) for

fiber micronaire, TM77489 (D12) and TM81448 (D13) for fiber uniformity, and TM47772

(D1) for fiber elongation. This indicates the possibility of marker-assisted selection in future

breeding programs. Among 455 genes within the linkage disequilibrium regions of the

nine QTNs, 113 are potential candidate genes and four are promising candidate genes.

These findings reveal the genetic control underlying fiber quality traits and provide insights

into possible genetic improvements in Upland cotton fiber quality.

Keywords: GWAS, multi-locus model, fiber quality, Upland cotton (Gossypium hirsutum L.), QTN, candidate gene

INTRODUCTION

Cotton produces a fine natural fiber that is an important raw material for the textile industry.
In recent years, technology development in the textile industry has been more rapid than
improvements in the quality of cotton fiber, resulting in an inability to meet the industry needs,
which include stronger, thinner, and more regular cotton fibers. China is the largest cotton
producing country in the world, with the yield of Chinese cotton cultivars being equal to or
slightly higher than those developed in the USA and Australia. However, the fiber qualities of the
Chinese cotton cultivars, especially fiber strength (FS), are not as good (Wang et al., 2009). Upland
cotton (Gossypium hirsutum L.) (2n = 4x = 52), one of the 50 Gossypium species and the leading
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natural fiber crop, produces more than 95% of the total cotton
because of its high yield and wide adaptability (Chen et al., 2007).
Improving the fiber quality is a major breeding target in Upland
cotton.

Traditional breeding methods play important roles in cotton
breeding. Predecessors bred a number of high-quality resource
materials by hybridization, backcrossing, and other means using
high fiber quality genes from Sea Island cotton (Gossypium
barbadense) (Liang, 1999; Zhang et al., 2012). However, there
still exists a negative correlation between fiber quality and yield,
and complex correlated relationships among fiber quality traits
(Miller and Rawlings, 1967; Smith and Coyle, 1997), which
leads to the consequences that yield and quality, and individual
fiber quality index, could not be simultaneously improved using
traditional breeding strategies. The application of molecular
markers that are closely linked to or significantly associated
with the target quantitative trait loci (QTLs), for marker-assisted
selection (MAS), can transform traditional phenotypic selection
into direct genotypic selection, thereby improving the selection
efficiency (Lee, 1995; Mohan et al., 1997). Therefore, it is
important to elucidate the molecular genetics of cotton fiber
qualities using molecular marker technology.

Association mapping based on linkage disequilibrium (LD) is
a powerful tool for dissecting the genetic bases of complex plant
traits. In contrast to the traditional linkage mapping, association
mapping can effectively associate genotypes with phenotypes
in natural populations and simultaneously detect many natural
allelic variations in a single study (Huang and Han, 2014). Its
high resolution, cost efficiency, and non-essential pedigrees have
allowed association mapping to be applied in the dissection
of many important cotton phenotypes, such as yield and its
components (Mei et al., 2013; Zhang et al., 2013; Jia et al., 2014;
Qin et al., 2015), fiber quality (Abdurakhmonov et al., 2008, 2009;
Zhang et al., 2013; Cai et al., 2014; Qin et al., 2015; Nie et al.,
2016), early maturity (Li et al., 2016a), disease resistance (Mei
et al., 2014; Zhao et al., 2014), salt resistance (Saeed et al., 2014;
Du et al., 2016), plant architecture (Li et al., 2016b), and seed
quality (Liu et al., 2015). All of those studies, however, were based
on using a limited number of simple sequence repeat markers
(SSRs). The genetic bases of the quantitative traits could not be
fully revealed at the genome-wide level.

As there is wide application of high-density genotyping
platforms, the development of numerous single nucleotide
polymorphism markers (SNPs) makes it possible to dissect
the genetic architecture of quantitative traits through the
genome-wide association studies (GWASs). Presently, GWAS
has been successfully employed for several major crops, such
as rice (Spindel et al., 2016), maize (Xu et al., 2017), wheat
(Zegeye et al., 2014), barley (Visioni et al., 2013), oat (Newell

Abbreviations: FASTmrEMMA, fast multi-locus random-SNP-effect EMMA; FE,
Fiber elongation; FL, Fiber length; FM, Fiber micronaire; FS, Fiber strength; FU,
Fiber uniformity; GLM, general linear model; GWAS, Genome-wide association
study; ISIS EM-BLASSO, Iterative modified-Sure Independence Screening EM-
Bayesian LASSO; LD, Linkage disequilibrium; MAS, Marker-assisted selection;
MLM, Mixed linear model; mrMLM, multi-locus RMLM; QTLs, Quantitative trait
loci; QTN, quantitative trait nucleotide; SNP, Single-nucleotide polymorphism;
SSR, Simple sequence repeat.

et al., 2011), rapeseed (Zhou et al., 2017), soybean (Zhang
J. et al., 2015), peanut (Zhang et al., 2017), and sorghum
(Morris et al., 2013). For cotton fiber quality, Su et al. (2016b)
performed a GWAS of fiber quality traits using 355 Upland
cotton accessions and 81,675 SNPs developed from specific-
locus amplified fragment sequences. They detected 16, 10, and
7 SNPs significantly associated with fiber length (FL), FS, and
fiber uniformity (FU), respectively. In the study by Islam et al.
(2016), the fiber quality data and 6,071 SNPs generated through
genotyping-by-sequencing and 223 SSRs of 547 recombinant
inbred lines were used to conduct a GWAS. One QTL cluster
associated with four fiber quality traits, which include short fiber
content, FS, FL, and FU, on chromosome A7 was identified and
validated. Additionally, using the first commercial high-density
CottonSNP63K array, Gapare et al. (2017) identified 17 and 50
significant SNP associations for FL and fiber micronaire (FM),
respectively. Sun et al. (2017) and Huang et al. (2017) detected
46 and 79 significant SNPs, respectively, associated with several
fiber quality traits. The above studies allowed the unraveling of
the genetic architecture of fiber quality traits in cotton at the
genome-wide level. However, the GWAS performed was based
on the single-locus models, such as the general linear model
(GLM) and the mixed linear model (MLM) (Bradbury et al.,
2007). Multiple tests require that the test number undergoes
a Bonferroni correction. The typical Bonferroni correction
is often too conservative, which results in many important
loci associated with the target traits being eliminated because
they do not satisfy the stringent criterion of the significance
test.

The multi-locus models are better alternatives for GWASs
because they do not require the Bonferroni correction, and
thus more marker-trait associations may be identified. Recently,
several new multi-locus GWAS models, such as multi-locus
RMLM (mrMLM, Wang et al., 2016), fast multi-locus random-
SNP-effect EMMA (FASTmrEMMA, Wen et al., 2017), and
Iterative modified-Sure Independence Screening EM-Bayesian
LASSO (ISIS EM-BLASSO, Tamba et al., 2017), were developed.
In this study, several models, including the single-locus and
multi-locus models, were simultaneously used for the GWAS
of fiber quality traits in Upland cotton based on a recently
developed CottonSNP80K array (Cai et al., 2017), and the
candidate genes were further identified. The results provide an
insight into the complicated genetic architecture of the fiber
quality traits in Upland cotton and reveal the whole-genome
quantitative trait nucleotides (QTNs) for MAS in future breeding
programs.

MATERIALS AND METHODS

Plant Materials
A total of 169 Upland cotton accessions were examined in
the present study, including 62 and 25 from ecological cotton-
growing areas of the Yellow and Yangtze Rivers, respectively,
in addition to 50 from Northwestern China, 22 from Northern
China, and 10 from other countries (Supplementary Table S1).
These accessions were elite cultivars originating in, or introduced

Frontiers in Plant Science | www.frontiersin.org August 2018 | Volume 9 | Article 108362

https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/plant-science#articles


Li et al. GWAS of Cotton Fiber Quality Traits

to, China. All accessions showed stable inheritances after many
generations of self-pollination.

Experimental Design and Trait
Investigation
All materials were planted in the two different ecological cotton-
growing areas of China, the Yellow River (Xinxiang City, Henan
Province) and Northwestern China (Shihezi City, Xinjiang
Province) during 2012 and 2013. The experiment adopted a
randomized complete block design with single row plots and
two replications. In Xinxiang, 14–16 plants were arranged in
each row, with a row length of 5m and a row interval of 1.0m.
In Shihezi, 38–40 plants were arranged in each row, with a
row length of 5m and a row interval of 0.45m. Local normal
management was carried out for all activities. For descriptive
purposes, the four environments, 2012 Xinxiang, 2013 Xinxiang,
2012 Shihezi, and 2013 Shihezi, are designated as E1, E2, E3, and
E4, respectively.

Lint fiber samples of ∼15 g, taken from each row, were
sent to the Fiber Quality Testing Center of the Institute of
Cotton Research, Chinese Academy of Agricultural Sciences for
the determination of fiber qualities (HVISPECTRUM, HVICC
calibration level). Altogether, five fiber quality traits—FL (mm),
FS (cN/Tex), FM, FU (%), and fiber elongation (FE, %), were
investigated. To reduce environmental errors, the best linear
unbiased predictors (BLUPs) for the five traits per genotype were
estimated using the lme4 package (Bates et al., 2011). The BLUP
values and single environments were used for the GWAS.

SNP Genotype Calling
Genomic DNA of each accession was extracted from young
leaf tissues for genotyping using the DNAsecure Plant Kit
(TIANGEN). A CottonSNP80K array containing 77,774 SNPs
(Cai et al., 2017), which was recently developed based on the
sequencing of “TM-1” (Zhang T. Z. et al., 2015) and the re-
sequencing of 100 different cultivars in Upland cotton, with
5× coverage on an average (Fang et al., 2017), were applied
to genotype the 169 accessions. The image files were saved
and analyzed using the GenomeStudio Genotyping Module
(v1.9.4, Illumina). All 77,774 SNPs corresponded to the three
separate signal clusters, AA, AB, and BB. However, from an
evolutionary point of view, the polyploid cotton originated from
an interspecific hybridization event between A- and D-genome
diploid species around 1–2 million years ago, and the two extant
progenitor relatives diverged from a common ancestor around
5–10 million years ago (Wendel and Cronn, 2003). In addition,
Upland cotton is a type of cross-pollinated allotetraploid crop
with a 10–15% natural hybridization rate. Thus, some SNPs in
Upland cotton could contain five genotypes (AAAA, AAAB,
AABB, ABBB, and BBBB). When these genotyping signals gather
> 3 clusters, the automatic SNP calling can produce errors;
therefore, we confirmed the genotypes of these loci using a
manual adjustment method as described by Cai et al. (2017).
Thus, a more accurate clustering file was produced to improve
the genotyping efficiency levels for the samples.

Population Structure and LD Estimation
Only SNPs with minor allele frequencies ≥0.05 and integrities
≥50% were used for population structure and LD analyses. The
population structure was assessed using ADMIXTURE software
(Alexander et al., 2009). To explore the population structure
of the tested accessions, the number of genetic clusters (k)
was predefined as 2–10. This analysis provided the maximum
likelihood estimates of the proportion of each sample derived
from each of the k sub-populations, and the corresponding Q-
matrix was obtained for the subsequent GWAS. To determine the
mapping resolution for GWAS, an LD analysis was performed for
Upland cotton accessions. Pair-wise LD values between markers
were calculated as the squared correlation coefficient (r2) of
alleles using the GAPIT software (Lipka et al., 2012).

GWAS
The GWAS was performed using six models, including three
single-locus models: GLM (Bradbury et al., 2007), MLM
(Bradbury et al., 2007), and compressed mixed linear model
[CMLM; (Zhang et al., 2010)], and three multi-locus models:
mrMLM (Wang et al., 2016), FASTmrEMMA (Wen et al., 2017),
and ISIS EM-BLASSO (Tamba et al., 2017). In short, the GLM
corrects only the population structure; the MLM corrects both
population structure and kinship relationship among individuals;
and the CMLM is equivalent to the MLM when individuals are
clustered into groups based on kinship and the ratio of polygenic
to residual variances is fixed by genome scanning. The three
multi-locus models include two steps. The first step is to select all
the potentially associated SNPs. In the next step, all the selected
SNPs are included into onemodel, then their effects are estimated
by empirical Bayes, and finally all the non-zero effects are
further evaluated using the likelihood ratio test. FASTmrEMMA
whitens the covariance matrix of the polygenic matrix K and
environmental noise. In ISIS EM-BLASSO, an iterative modified
sure independence screening along with SCAD algorithm was
used to select potentially associated SNPs. In the three single-
locus GWASs, significant levels of marker-trait association were
set at an adjusted P-value of 1/n, after the Bonferroni correction
(Cai et al., 2017; Sun et al., 2017), where n was the total number
of SNPs used in GWAS. The Manhattan plots were drawn using
the R package qqman (Turner, 2014). In the three multi-locus
GWASs, the critical P-values were set at 0.01, 0.005, and 0.01 for
mrMLM, FASTmrEMMA, and ISIS EM-BLASSO, respectively,
in the first step. In the second step, all the critical LOD scores
for significance were set at 3.0. The SNPs that met the above
standards were identified as significant trait-associated QTNs.

Identification of Candidate Genes
The R software package “LDheatmap” was used to determine
the LD heatmaps surrounding the significant trait-associated
QTNs. Based on the G. hirsutum “TM-1” genome (Zhang T.
Z. et al., 2015), the genes within the LD decay distance on
either side of the significant trait-associated SNPs were mined.
To investigate the functions of these genes, RNA-seq datasets
with two biological repetitions of 12 vegetative and reproductive
tissues (root, stem, leaf, ovules from −3, −1, 0, 1, and 3 days
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post-anthesis, and fibers from 5, 10, 20, and 25 days post-
anthesis) of G. hirsutum “TM-1,” were downloaded from the
NCBI SRA database under accession code PRJNA248163 (http://
www.ncbi.nlm.nih.gov/sra/?term=PRJNA248163; Zhang T. Z.
et al., 2015). Normalized fragments per kilobase of transcript
per million fragments mapped (FPKM) values were calculated
to indicate the expression levels of these genes. The average of
the two biological replicates was recorded as the final FPKM
value. A heatmap of the expression patterns—based on FPKM
values—of genes was created using Mev 4.9 (Saeed et al.,
2003). Further gene annotations were performed from several
databases for non-redundant protein sequences (ftp://ftp.ncbi.
nih.gov/blast/db/FASTA; Altschul et al., 1997), gene ontology
(http://www.geneontology.org; Ashburner et al., 2000), Cluster
of Orthologous Groups of proteins (http://www.ncbi.nlm.nih.
gov/COG; Tatusov et al., 2000), and the Kyoto Encyclopedia
of Genes and Genomes (ftp://ftp.genome.jp/pub/kegg/; Kanehisa
et al., 2004).

RESULTS

Phenotypic Variations in Fiber Quality
Traits
Phenotypic values for five fiber quality traits of the 169 accessions
in four environments (Supplementary Table S2) were used for
the variation analysis. The phenotypic evaluation revealed a
broad variation range among accessions. Descriptive statistics of
phenotypic variation for the five fiber quality traits are listed in
Table 1. The mean FL were 27.90, 28.52, 29.23, and 29.08mm,
respectively, in the four experiments. The minimum FL was
22.43mm in E2, and the maximum FL was 34.48mm in E3.
Analogously, the other four traits of FS, FM, FU, and FE,
exhibited values in the range of 23.40–39.90 cN/Tex, 2.10–6.03,
78.10–88.90%, and 5.70–7.50%, with means of 29.03 cN/Tex,
4.53, 84.53, and 6.59%, respectively. The CV ranges for FL, FS,
FM, FU, and FE in the four environments were 4.69–5.40%, 6.85–
9.52%, 8.87–15.73%, 1.34–1.74%, and 0.91–3.88%, respectively,
and the average CVs for the same were 4.96, 8.59, 11.18, 1.52,
and 2.81%, respectively. These data indicated different degrees
of diversity in fiber quality traits in the natural population. The
frequency distributions of the phenotypes (Figure 1) showed
that the fiber quality traits exhibited the genetic characteristics
of quantitative traits with continuous distributions across
different environments. Furthermore, some of the traits exhibited
multimodal or partial distributions, suggesting that the main
effect genes/QTNs related to the target traits could exist in cotton
genome.

Characteristics of Polymorphic SNPs
The genotypes of 169 accessions were examined using Illumina
GenomeStudio software. Only the SNPs with minor allele
frequencies ≥0.05, and integrities ≥50% in the population, were
used for screening polymorphic loci. Thus, 53,848 high-quality
SNPs were obtained out of 77,774. Their characteristics are
summarized in Table 2 and Supplementary Figure S1. These
SNPs were not evenly distributed across the G. hirsutum
genome, and there were 28,454 and 25,394 SNPs in the A

TABLE 1 | Descriptive statistics of phenotypic values of five fiber quality traits in

four environments.

Traita Envb Min Max Average Std CV (%)

FL (mm) E1 23.18 31.32 27.90 1.36 4.86

E2 22.43 33.06 28.52 1.39 4.87

E3 24.20 34.48 29.23 1.58 5.40

E4 24.91 34.40 29.08 1.36 4.69

FS (cN/Tex) E1 23.80 37.80 28.16 2.68 9.52

E2 23.50 38.70 30.14 2.82 9.35

E3 23.40 35.20 28.23 1.93 6.85

E4 24.30 39.90 29.58 2.56 8.66

FM E1 3.67 6.00 5.05 0.45 8.87

E2 3.38 5.84 4.96 0.46 9.19

E3 2.10 6.03 3.93 0.62 15.73

E4 2.59 5.21 4.17 0.46 10.92

FU (%) E1 79.50 86.15 83.28 1.20 1.45

E2 81.20 87.70 85.08 1.14 1.34

E3 78.10 88.30 85.12 1.48 1.74

E4 80.90 88.90 84.64 1.30 1.54

FE (%) E1 6.00 7.35 6.57 0.23 3.56

E2 6.50 6.90 6.71 0.06 0.91

E3 5.80 7.50 6.80 0.26 3.88

E4 5.70 6.80 6.29 0.18 2.90

aFL, fiber length; FS, fiber strength; FM, fiber micronaire; FU, fiber uniformity; FE, fiber

elongation.
bE1, E2, E3, and E4 indicate four environments: 2012 Xinxiang, 2013 Xinxiang, 2012

Shihezi, and 2013 Shihezi, respectively.

and D subgenomes, respectively. The average marker density
was approximately one SNP per 38.02 kb. In the A subgenome,
chromosome A6 had the most markers (2,982), with a marker
density of one SNP per 34.60 kb, and A4 had the least
markers (1,050), with a marker density of one SNP per
59.92 kb. In the D subgenome, chromosome D6 had the
most markers (3,128), with a marker density of one SNP
per 20.55 kb, and D4 had the least markers (1,040), with a
marker density of one SNP per 49.48 kb. The polymorphism
information content values ranged from 0.255 to 0.309 among
chromosomes, and themean polymorphism information content
values of the A and D subgenomes were 0.285 and 0.284,
respectively.

Population Structure and LD
To estimate the number of sub-populations in the population
of 169 Upland cotton accessions, a population structure analysis
was performed using the 53,848 SNPs. The results indicated
that the minimum number of cross-validation errors was k = 6,
which was thus determined to be the optimum k; and the
testing accessions could be separated into six sub-populations
(Figure 2A). The varietal population in this study was considered
to be not highly structured and could be used for further
association mapping. Thus, the corresponding Q-matrix from
k = 6 was obtained for the subsequent GWAS. An LD analysis
showed that the average LD decay distance for each of the 26
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FIGURE 1 | Frequency of the five fiber quality traits in 169 Upland cotton accessions. FL, fiber length; FS, fiber strength; FM, fiber micronaire; FU, fiber uniformity; FE,

fiber elongation; E1, E2, E3, and E4 indicate four environments: 2012 Xinxiang, 2013 Xinxiang, 2012 Shihezi, and 2013 Shihezi, respectively.

chromosomes ranged from 38.56 to 669.65 kb, and the average
LD decay distance of all of the chromosomes (i.e., Upland
cotton genome) was estimated to be 444.99 kb, with half of the
maximum of mean r2-values (Figure 2B).

GWAS for Fiber Quality Traits
Three single-locus GWAS models: GLM, MLM, and CMLM,
and three multi-locus GWAS models: mrMLM, FASTmrEMMA,
and ISIS EM-BLASSO, were used to identify the marker–trait
associations. In single-locus GWAS, the SNPs with –log10P≥4.73
(P = 1/53,848) were regarded as significant trait-associated
SNPs. In multi-locus GWAS, the SNPs with LOD scores greater
than 3.0 were regarded as significant trait-associated SNPs.
Based on these criteria, 342 QTNs for fiber quality traits
were detected using the values of individual environments
(including BLUP) and the six models (Supplementary Table S3).
To obtain reliable results, only the QTNs simultaneously
detected in at least two environments, or by at least two
models (either single-locus or multi-locus), were displayed.
Finally, 84 QTNs controlling fiber quality traits were obtained
(Table 3).

Based on FL, 29 QTNs were detected. Five SNPs, including
TM10103, TM10107, TM10110, TM10764, and TM39339,
located on A5 and A11, were significantly associated with the
E2, E3, and/or BLUP values by a single-locus GWAS, and this
explained 11.76–16.67% of the phenotypic variations. 22 SNPs,
including TM119, TM3930, and TM4397, located on A1, A2,
A5, A6, A7, A8, A9, A10, A11, A12, D1, D5, D10, and D13,
were significantly associated with the E1, E2, E3, E4, and/or
BLUP values by a multi-locus GWAS, and this explained 3.14–
23.57% of the phenotypic variations. Two SNPs, TM57840, and
TM80185, respectively located on D5 and D13, were significantly

associated with the E1, E2, E3, and/or BLUP values by both
single-locus and multi-locus GWAS, which explained 10.35–
14.46% of phenotypic variations in single-locus GWAS and 3.94–
36.66% in multi-locus GWAS.

Based on FS, 22 QTNs were detected. Five SNPs, including
TM10764, TM14418, TM14424, TM20073, and TM21123,
located on A5, A6, and A7, were significantly associated
with the E1, E2, E3, E4, and/or BLUP values by a single-
locus GWAS, thus explaining 7.56–15.16% of the phenotypic
variations. Additionally, 12 SNPs, including TM5639, TM10540,
and TM29912, located on A2, A5, A8, A9, A12, D1, D5,
D9, and D10, were significantly associated with the E1, E2,
E3, E4, and/or BLUP values by a multi-locus GWAS, thus
explaining 1.37–25.24% of the phenotypic variations. Five
SNPs, including TM1386, TM5421, TM14462, TM21135, and
TM79685, respectively located on A1, A2, A6, A7, and D12,
were significantly associated with the E1, E2, E3, E4, and/or
BLUP values by both single-locus and multi-locus GWASs, and
this explained 8.81–11.64% of the phenotypic variations in the
single-locus GWAS and 6.32–23.95% in the multi-locus GWAS.

Based on FM, 11 QTNs were detected. Two SNPs, TM10764
and TM18615, respectively located on A5 and A7, were
significantly associated with the E1, E2 and/or BLUP values
by a single-locus GWAS, and this explained 3.49–12.24% and
10.74–12.04% of the phenotypic variations. Five SNPs, TM22010,
TM33781, TM42632, TM55481, and TM57773, located on A8,
A10, A12, D4, and D5, respectively, were significantly associated
with the E1, E2, E3, and/or BLUP values by a multi-locus GWAS,
thus explaining 0.96–10.54% of the phenotypic variations. Four
SNPs, TM18616, TM19501, TM54735, and TM79518, located on
A7, D3, and D12, were significantly associated with the E1, E2,
E3, and/or BLUP values by both single-locus and multi-locus
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GWASs, thus explaining the phenotypic variations of 10.94–
12.72% in the single-locus GWAS and 5.70–53.97% in the multi-
locus GWAS.

Based on FU, 12 QTNs were detected. One SNP, TM41077,
located on A12, was significantly associated with the E1 and

TABLE 2 | Summary of the SNPs in 26 chromosomes of Gossypium hirsutum.

Chr. Chr. size

(kb)

No. of

SNPs

SNP density

(kb/SNP)

Polymorphism information

content value

A1 99884.70 2371 42.13 0.301

A2 83447.91 1392 59.95 0.283

A3 100263.00 1744 57.49 0.277

A4 62913.77 1050 59.92 0.284

A5 92047.02 2575 35.75 0.300

A6 103170.40 2982 34.60 0.294

A7 78251.02 2125 36.82 0.290

A8 103626.30 2870 36.11 0.281

A9 74999.93 2439 30.75 0.277

A10 100866.6 2037 49.52 0.274

A11 93316.19 1915 48.73 0.280

A12 87484.87 2051 42.65 0.283

A13 83159.57 2903 28.65 0.285

D1 61456.01 1860 33.04 0.284

D2 67284.55 2371 28.38 0.307

D3 46690.66 1394 33.49 0.276

D4 51454.13 1040 49.48 0.282

D5 61933.05 1595 38.83 0.286

D6 64294.64 3128 20.55 0.275

D7 55312.61 2708 20.43 0.300

D8 65894.14 2273 28.99 0.309

D9 50995.44 2227 22.90 0.255

D10 63374.67 1734 36.55 0.290

D11 66087.77 1408 46.94 0.274

D12 59109.84 1968 30.04 0.273

D13 60534.30 1688 35.86 0.280

BLUP values by a single-locus GWAS, and this explained 11.38–
11.64% of the phenotypic variations. Eight SNPs, including
TM18205, TM19379, and TM43826, located on A6, A7, A13,
D2, D5, D8, and D10, were significantly associated with the
E1, E2, E3, E4, and/or BLUP values by a multi-locus GWAS,
thus explaining 2.13–24.32% of the phenotypic variations. Three
SNPs, TM11317, TM77489, and TM81448, respectively located
on A5, D12, and D13, were significantly associated with the E1,
E4, and/or BLUP values by both single-locus and multi-locus
GWASs, thus explaining the phenotypic variations of 10.28–
14.53% in the single-locus GWAS and 5.29–26.18% in the multi-
locus GWAS.

Based on FE, 10 QTNs were detected. Nine SNPs, including
TM13701, TM37254, and TM42798,r located on A6, A11, A12,
A13, D1, D7, D10, and D11, were significantly associated with
the E1, E2, E3, E4, and/or BLUP values by a multi-locus GWAS,
thus explaining 3.59–34.06% of the phenotypic variations. One
SNP, TM47772, located on D1, was significantly associated with
the E1 and/or E3 values by both single-locus and multi-locus
GWASs, thus explaining 14.55% of the phenotypic variations
in the single-locus GWAS and 4.54–19.68% in the multi-locus
GWAS.

Identification and Expression of Candidate
Genes for Fiber Quality
Among the 84 QTNs, nine QTNs—TM80185 (D13) associated
with FL, TM1386 (A1) and TM14462 (A6) associated with FS,
TM18616 (A7), TM54735 (D3), and TM79518 (D12) associated
with FM, TM77489 (D12) and TM81448 (D13) associated with
FU, and TM47772 (D1) associated with FE, were simultaneously
detected in at least two environments, and by both single-
locus and multi-locus GWASs (Supplementary Figures S2–S6),
indicating that they were more stable. Considering the LD decay
distance of the Upland cotton population used in this study, the
regions within 400-kb on either side of the nine QTNs were
used for the further identification of candidate genes. The LD
analysis showed that a high LD level existed among the SNPs
within 400-kb upstream and downstream of the nine QTNs in

FIGURE 2 | Population structure (A) and linkage disequilibrium decay (B) of 169 Upland cotton accessions. The accessions were divided into six sub-populations (the

minimum number of cross-validation errors occurred when k = 6). Genome-wide average linkage disequilibrium decay was estimated in each of the 26 chromosomes

and in all chromosomes.
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TABLE 3 | Significant fiber quality trait-associated QTNs simultaneously detected in at least two environments or by at least two models.

Traita SNP Position (bp) Alleles Chr. Single-locus GWAS Envd Multi-locus GWAS Envd

–log10P R2 (%)b Modelc LOD R2 (%)b Modelc

FL TM10103 3462099 T/G A5 5.10–5.41 12.02–13.71 G E2, E3, Blup

TM10107 3488471 A/G A5 4.82–6.71 14.02–16.67 G, M, C E2, E3, Blup

TM10110 3505884 C/G A5 5.09–5.42 11.76–13.47 G E2, E3, Blup

TM10764 15474110 A/G A5 4.85–4.85 14.69–14.69 M, C Blup

TM39339 81827835 T/A A11 5.16–5.22 12.19–13.28 G E2, Blup

TM119 2771681 T/C A1 3.36–4.06 7.81–10.32 MR, I E1

TM3930 3420685 T/C A2 5.62–6.50 10.18–11.20 MR, I E1

TM4397 13758183 A/G A2 6.62–8.35 7.49–10.46 F, MR, I E2

TM10319 5874999 A/C A5 3.25–3.26 7.01–10.98 MR, I E1

TM10453 8801892 A/G A5 4.69–6.05 5.66–10.20 MR, I E1, E2

TM10454 8829389 T/C A5 6.70–7.87 9.33–9.56 I E3, Blup

TM10976 21365948 A/G A5 4.55–4.71 17.78–23.57 MR, I E4

TM18271 99455219 T/C A6 3,79–6.14 5.47–6.56 F, I E3

TM19208 14663920 T/G A7 3.17–3.92 13.87–14.71 MR, I E2

TM27227 60265814 A/G A8 3.73–3.78 11.70–12.84 I E3, E4

TM28899 77587957 A/G A8 5.06–6.10 10.45–15.84 MR, I E1

TM31735 41160852 T/C A9 4.06–6.05 3.33–5.15 F, I E1, Blup

TM33839 1954843 A/G A10 3.38–4.83 5.42–11.24 MR, I E1, Blup

TM37371 13595750 A/G A11 4.70–6.37 3.14–4.03 MR, I E2

TM42899 81101484 T/A A12 4.69–5.08 5.07–5.35 MR, I E1

TM47849 1787530 T/C D1 3.42–6.08 3.35–7.98 F E1, Blup

TM57343 16937262 A/G D5 5.14–6.56 5.34–8.33 MR, I E3

TM58061 32206837 A/C D5 3.78–4.92 4.43–6.03 MR, I E2

TM58758 59288520 T/C D5 3.25–5.70 6.30–12.46 MR, I E1, E3

TM75008 58123221 T/C D10 4.36–6.86 5.50–6.46 F, I Blup

TM75026 58453007 A/G D10 3.33–4.19 4.17–5.60 F, MR, I E3

TM81924 55032877 A/C D13 3.33–4.95 5.70–8.16 MR, I E2

TM57840 30021662 A/G D5 4.88 10.35 G E2 8.45–10.39 28.29–36.66 MR, I E2

TM80185 3106437 A/G D13 4.96–5.42 13.08–14.46 G E1, E3 3.28–6.88 3.94–8.88 F, I E1, Blup

FS TM10764 15474110 A/G A5 4.94–6.26 10.48–15.16 G, M, C E1, E2, E3, Blup

TM14418 30941574 T/C A6 4.80–4.85 7.56–9.05 G E1, E3

TM14424 31197620 T/C A6 4.85–4.96 7.71–9.24 G E1, E3

TM20073 28183664 T/G A7 5.72–5.82 10.83–11.65 G E3, Blup

TM21123 70595913 A/G A7 4.83–5.30 8.61–8.67 G E4, Blup

TM5639 80304252 T/C A2 3.24–4.95 10.82–25.24 MR, I E4

TM10540 11387213 T/G A5 3.19–7.74 5.03–15.89 MR, I E2, Blup

TM29912 101941614 T/A A8 3.10–5.43 2.67–3.93 F, I E3, Blup

TM33273 65822047 A/C A9 5.44–5.75 17.75–22.20 MR, I E2

TM42806 78617984 A/G A12 3.23–3.52 11.50–12.06 MR, I E2

TM47849 1787530 T/C D1 4.09–5.33 1.37–6.90 F, I E2, E3,

Blup

TM57401 18161586 A/G D5 5.48–8.15 8.96–10.25 MR, I E1

TM58758 59288520 T/C D5 4.38–6.25 3.85–19.66 MR, I E2, E3,

Blup

TM58839 61435904 T/G D5 3.03–4.22 3.13–7.34 F, I E1, Blup

TM72234 38761458 A/G D9 3.64–4.23 10.77–15.12 MR, I E4

TM74995 57945654 A/T D10 4.21–4.23 14.26–19.43 MR, I E4

TM75026 58453007 A/G D10 3.64–5.53 3.94–7.84 I E3, Blup

TM1386 41010954 T/C A1 5.49–5.59 9.30–10.14 G E1, Blup 5.21 23.95 I E2

(Continued)
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TABLE 3 | Continued

Traita SNP Position (bp) Alleles Chr. Single-locus GWAS Envd Multi-locus GWAS Envd

–log10P R2 (%)b Modelc LOD R2 (%)b Modelc

TM5421 75968294 A/G A2 4.87 10.20 G E4 4.27–5.68 8.46–9.59 MR, F, I E4

TM14462 32121709 T/C A6 4.83–5.68 10.27–11.64 G E1, E2, Blup 5.03 6.32 I E2

TM21135 70682969 A/G A7 5.02 10.09 G E3 5.27–5.63 12.14–20.86 MR, I E3

TM79685 53877369 T/G D12 4.82 8.81 G E1 5.40 9.23 I E1

FM TM10764 15474110 A/G A5 4.75–5.35 3.49–12.24 G, M, C E2, Blup

TM18615 3643524 T/C A7 5.04–5.80 10.74–12.04 G, M, C E1

TM22010 5162186 A/T A8 3.20–5.33 4.71–8.20 F, MR, I E3

TM33781 65693 A/G A10 3.48–7.61 4.75–10.54 MR, I E1, Blup

TM42632 75299391 T/C A12 3.02–3.39 3.12–3.94 F, I E1

TM55481 2866176 A/G D4 3.00–5.66 0.96–3.34 MR, I E1, E2,

Blup

TM57773 27544038 A/G D5 3.30–4.56 2.93–3.96 I E1, Blup

TM18616 3646710 A/C A7 5.11–5.52 10.94–12.16 G, M, C E1 7.55–8.78 22.06–39.50 MR, I E1, Blup

TM19501 21060224 A/G A7 4.84 11.05 G E2 3.50 13.06 MR E2

TM54735 30908501 T/C D3 4.76 11.33 G Blup 4.00–9.64 5.70–16.76 F, MR, I E3, Blup

TM79518 51416454 T/G D12 4.89–5.64 11.79–12.72 G, M, C E3, Blup 5.44–8.17 27.75–53.97 MR, I E3, Blup

FU TM41077 26645691 G/C A12 4.75–4.85 11.38–11.64 G E1, Blup

TM18205 98260650 T/C A6 3.36–4.77 7.64–10.52 MR, I E1

TM19379 18309921 T/C A7 3.67–6.80 2.13–3.57 I E3, Blup

TM43826 15282624 A/G A13 3.90–5.05 8.07–8.57 MR, I Blup

TM51438 21650323 A/G D2 3.79–5.63 8.19–13.93 MR, I Blup

TM57831 29951748 A/G D5 3.21–5.27 5.68–13.73 MR, I Blup

TM58758 59288520 T/C D5 5.47–6.05 17.07–17.26 I E2, E3

TM67147 4674102 T/C D8 3.07–3.13 9.82–15.67 MR, I E1

TM74995 57945654 A/T D10 4.21–8.56 14.26–24.32 MR, I E4, Blup

TM11317 28285041 A/G A5 5.09 12.82 G Blup 4.70 7.79 F Blup

TM77489 3329594 T/C D12 4.88 13.36 G Blup 3.74–4.13 5.29–6.66 F E1, Blup

TM81448 45426771 C/G D13 4.76–6.35 10.28–14.53 G, M, C E4, Blup 7.85 26.18 MR E4

FE TM13701 2630501 T/C A6 4.22–4.47 20.05–20.68 MR, I Blup

TM37254 7081938 A/G A11 4.23–4.74 6.05–6.06 F, I E2

TM42798 78429684 C/G A12 3.39–5.30 4.81–7.21 F E1, E3

TM43034 84964849 A/C A12 3.66–5.80 15.22–15.30 MR, I E1

TM43327 3481958 A/G A13 3.38–4.24 9.21–10.04 MR, I E2

TM48070 5563241 A/G D1 3.25–4.10 3.59–5.91 MR, I Blup

TM63323 4045155 T/C D7 4.35–5.89 32.47–34.06 MR, I E4

TM74999 57965498 A/G D10 4.17–4.77 7.41–8.20 MR, F E4

TM77062 58739941 A/C D11 4.13–4.34 17.94–21.38 MR, I E2

TM47772 723752 T/C D1 5.68 14.55 G E3 3.34–7.75 4.54–19.68 MR, F, I E1, E3

aFL, fiber length; FS, fiber strength; FM, fiber micronaire; FU, fiber uniformity; FE, fiber elongation.
bR2 (%) means phenotypic variation explained by marker.
cG, M, C, MR, F, and I represent GLM, MLM, CMLM, mrMLM, FASTmrEMMA, and ISIS EM-BLASSO, respectively.
dE1, E2, E3, E4, and Blup indicate 2012 Xinxiang, 2013 Xinxiang, 2012 Shihezi, 2013 Shihezi, and best linear unbiased predictor, respectively.

D13 (Figure 3A) for FL, A1 (Figure 3B) and A6 (Figure 3C)
for FS, A7 (Figure 3D), D3 (Figure 3E), and D12 (Figure 3F)
for FM, D12 (Figure 3G) and D13 (Figure 3H) for FU, and D1
(Figure 3I) for FE. Multiple LD blocks were included in almost
all of the LD regions except those in A6 (Figure 3C). As a result,
455 genes were around the above nine QTNs. The normalized
FPKM values of 455 genes, representing their expression levels,
are displayed in Supplementary Table S4. To investigate which

genes were responsible for fiber quality, only those genes that
presented greater expression levels in ovules and/or fiber during
their developmental stages, while being less expressed in root,
stem, and leaf, were used for further functional analyses. Thus,
113 genes, marked in bold in Supplementary Table S4, were
obtained. A heatmap of the expression patterns of these genes
with hierarchical clustering based on FPKM values is shown in
Figure 4. Considering that the five fiber quality traits are directly

Frontiers in Plant Science | www.frontiersin.org August 2018 | Volume 9 | Article 108368

https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/plant-science#articles


Li et al. GWAS of Cotton Fiber Quality Traits

FIGURE 3 | Genomic location of nine QTNs simultaneously detected in at least two environments, by both single-locus GWAS and multi-locus GWAS, and LD

heatmaps surrounding nine QTNs for (A) fiber length (FL) on chromosome D13, (B,C) fiber strength (FS) on chromosomes A1 and A6, (D–F) fiber micronaire (FM) on

chromosomes A7, D3, and D12, (G,H) fiber uniformity (FU) on chromosome D12 and D13, and (I) fiber elongation (FE, %) on chromosome D1.

related to fiber development and are significantly positively
correlated with each other, these genes were merged into a group
for a systematic summary according to the functional annotation
from the non-redundant protein, gene ontology, Cluster of
Orthologous Groups of proteins, and the Kyoto Encyclopedia of
Genes and Genomes analyses (Supplementary Table S5). These

113 genes could be classified into 10 categories (Figure 5),
which include 9 in “Cellular component/cell division” (A), 19
in “Substance transport and metabolism” (B), 19 in “RNA
Transcription” (C), 11 in “Translation, ribosomal structure and
biogenesis” (D), 6 in “Defense/resistance-responsive” (E), 3 in
“Post-translational modification, protein turnover, chaperones”
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FIGURE 4 | Heatmap of expression patterns of 113 genes with hierarchical

clustering based on FPKM values. These genes presented higher expression

levels in ovules and/or fiber during their developmental stages, while being less

expressed in root, stem, and leaf. The values in the horizontal color bar are

automatically generated in Mev 4.9 according to the FPKM values; red

indicates high expression, and green indicates low expression.

(F), 2 in “Energy production and conversion” (G), 19 in
“Putative and uncharacterized proteins” (H), 23 in “General
function prediction only” (I), and 2 in “Function unknown”
(J). Several promising candidate genes were found through
further bioinformatics analyses. Gh_D13G1461 is homologous
to Arabidopsis AT1G50660, which is the predicted protein
sequence for the BRANCHLESS TRICHOMES gene, a key
positive regulator of trichome branching (Marks et al., 2009;
Kasili et al., 2015). Gh_D12G0232 is homologous to Arabidopsis
AT2G03500, which encodes a nuclear localized member of
the MYB family of transcriptional regulators. The MYB
transcription factor plays a role in cotton fiber and trichome
development (Machado et al., 2009). Cellulose is the main
component of cotton fiber. Gh_D01G0052 and Gh_D12G0240
are both homologous with Arabidopsis AT1G09790, which is
annotated as a COBRA-like protein 6 precursor. In Arabidopsis
thaliana, the COBRA is involved in determining the orientation
of cell expansion, playing an important role in cellulose
deposition (Roudier et al., 2005). Thus, the four genes
might be promising candidate genes for improving the fiber
quality.

DISCUSSION

Large Numbers of High-Quality SNPs
Ensure Effective GWAS in Cotton
Association mapping is a powerful tool in dissecting the genetic
basis of plant complex traits. Prior to the availability of next-
generation sequencing techniques; however, SSR markers were
mainly used to detect molecular markers associated with the
target traits. Due to a limited number of markers, the genetic
basis of the quantitative traits could not be fully revealed at the
genome-wide level. With the wide application of high-density
genotyping platforms, the development of numerous SNPsmakes
it possible to perform GWASs of the genetic bases of complex
traits. In cotton, the SNPs developed from next-generation
sequencing methods, such as specific-locus amplified fragment
sequencing and genotyping-by-sequencing, were used to perform
GWASs for lint percentage (Su et al., 2016a), fiber quality (Islam
et al., 2016; Su et al., 2016b), early maturity (Su et al., 2016c), and
Verticillium wilt resistance (Li T. et al., 2017). Furthermore, the
first commercial high-density CottonSNP63K array, developed
from 13 different discovery sets that represent a diverse range
of G. hirsutum germplasm, as well as five other species,
provided a new resource for the genetic dissection of cotton’s
quantitative traits (Hulse-Kemp et al., 2015). Presently, based
on the CottonSNP63K array, the GWASs have been performed
to unravel the agronomically and economically important traits
in cotton, including yield components, fiber quality, growth
period, plant height, and stomatal conductance (Gapare et al.,
2017; Huang et al., 2017; Sun et al., 2017). Compared with
CottonSNP63K, the recently developed CottonSNP80K array is
more useful for dissecting the genetic architecture of important
traits in Upland cotton because the SNP loci in the array benefited
from the whole-genome sequencing of G. hirsutum acc. TM-1
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FIGURE 5 | Functional classification of 113 candidate genes, which presented higher expression levels in ovules and/or fiber during the stages of their development,

while being less expressed in root, stem, and leaf.

(Zhang T. Z. et al., 2015) and 1,372,195 intraspecific non-
unique SNPs identified by the re-sequencing of G. hirsutum
accessions (Fang et al., 2017). In addition, each SNP marker
in the CottonSNP80K array is addressable, which avoids the
disturbances caused by homeologous/paralogous genes. The
diverse application tests indicate that CottonSNP80K played
important roles in germplasm genotyping, varietal verification,
functional genomics studies, and molecular breeding in cotton
(Cai et al., 2017). In this study, 53,848 high-quality SNPs out
of 77,774 from the CottonSNP80K array, accounting for 69.24%
of all loci, were screened in our experimental accessions. The
large number of high-quality SNPs will be very conducive to
unravel the genetic architecture of the target traits through
GWASs.

Combining Single- and Multi-Locus
GWASs Can Improve the Power and
Robustness of GWAS
With the development of molecular quantitative genetics, a
large number of association mapping methods have emerged
for the genetic dissection of complex traits in plants (Feng
et al., 2016). However, the methods used in most of the
previous studies are single-locus analysis approaches based
on a fixed-SNP-effect mixed linear model under a polygenic
background and population structure controls. These methods
require a Bonferroni correction for multiple tests. To control
the experimental error at a genome-wide level of 0.05, the
significance level for each test should be adjusted by 0.05/n
(n is the total number of SNPs). The use of stringent
probability thresholds reduces the risk of accepting false
positives but does not reduce the risk of rejecting true
positives caused by setting the very high thresholds. Multi-
locus models, such as Bayesian LASSO (Yi and Xu, 2008),
penalized Logistic regression (Hoggart et al., 2008), adaptive
mixed LASSO (Wang et al., 2010), and EBAYES LASSO (Wen
et al., 2015), can improve the efficiency and accuracy of QTL
detection in GWAS. An obvious advantage of these models
is that no Bonferroni correction is required because of the

multi-locus nature. In particular, several recently developed
multi-locus models, including mrMLM (Wang et al., 2016),
FASTmrEMMA (Wen et al., 2017), and LASSO (ISIS EM-
BLASSO) (Tamba et al., 2017), have been demonstrated as
having the highest power and accuracy levels for QTL detection
when compared with some former methods. As the inheritance
of quantitative traits is complex and the number of markers
is several times larger than the sample sizes, it is necessary
to simultaneously use multiple methods for GWAS. Several
examples can be found in previous studies. Li H. G. et al. (2017)
performed a GWAS to reveal the genetic control underlying
the branch angle in rapeseed by simultaneously using a single-
locus model, MLM, and a multi-locus model, mrMLM. As a
result, more than 55% of the loci identified using mrMLM
overlapped part or most of the region of those obtained using
MLM. Misra et al. (2017) determined the genetic basis of
cooked grain length and width in rice using four GWAS
methods—EMMAX, mrMLM, FASTmrEMMA, and ISIS EM-
BLASSO. Thus, employing integrated single-locus and multi-
locus GWAS models led to the verification of the significance
of the underlying target regions, GWi7.1 and GWi7.2, and
simultaneously identified the novel candidate genes. In this
study, using three single-locus and three multi-locus models,
342 significant QTNs were identified. More loci were identified
using multi-locus models than using single-locus models, and
15 loci were simultaneously identified in both single-locus and
multi-locus models (Supplementary Table S3). These findings
demonstrated the reliability of association analysis consequences
and the practicality of combining single-locus and multi-locus
GWASs to improve the power and robustness of association
analyses.

Stable QTNs for Fiber Quality Traits
Detected in Our GWAS
The marker loci/QTLs that are detected across multiple
populations, environments and/or mapping methods, are highly
stable and can enhance the efficiency and accuracy of the MAS
(Su et al., 2010; Li et al., 2013). In cotton, using linkage mapping,
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TABLE 4 | 12 QTNs controlling fiber quality traits identified in both this and previous studies.

Traita GWAS in this study Previous studies

Maker associated Chr. Position (bp) Marker linkaged/associatedb Chr. Position (bp) References

FL TM58426 D5 52167190 BNL4047 (AM) D5 51715146∼51715301 Sethi et al., 2017

TM72875 D9 47994726 DPL0395 (LM), MGHES-55 (AM) D9 48340706∼48340931,

48074891∼48075112

Sun et al., 2012; Iqbal and

Rahman, 2017

FS TM5639 A2 80304252 HAU880 (LM) A2 80045222∼80045391 Wang et al., 2013

TM21292 A7 72067994 i18340Gh, i44206Gh, i39753Gh,

i02033Gh, i02034Gh, i02035Gh,

i02037Gh, i49171Gh, i37604Gh (AM)

A7 71993462∼72249786 Sun et al., 2017

TM43422 A13 5198708 i30934Gh (AM) A13 5168143 Sun et al., 2017

TM63860 D7 14495698 BNL3854 (LM) D7 14236226∼14236344 An et al., 2010

TM74995 D10 57945654 TM74991 (LM) D10 57899125 Tan et al., 2018

FM TM52959 D2 60834004 NAU2353 (LM) D2 60579477∼60579638 Sun et al., 2012

FU TM72633 D9 44334923 MGHES-6 (AM) D9 44634167∼44634349 Iqbal and Rahman, 2017

TM74995 D10 57945654 TM74991 (LM) D10 57899125 Tan et al., 2018

FE TM3939 A2 3531460 BNL1434 (AM) A2 3419328∼3419575 Kantartzi and Stewart,

2008; Sethi et al., 2017

TM56516 D4 47872954 i12839Gh (AM) D4 47872770 Sun et al., 2017

TM72628 D9 44115527 BNL1030 (AM) D9 43992085∼43992321 Kantartzi and Stewart, 2008

TM74999 D10 57965498 TM74991 (LM) D10 57899125 Tan et al., 2018

TM80198 D13 3477308 NAU2730 (LM) D13 3582661∼3582860 Sun et al., 2012

aFL, fiber length; FS, fiber strength; FM, fiber micronaire; FU, fiber uniformity; FE, fiber elongation.
bAM and LM mean association mapping and linkage mapping, respectively.

Jia et al. (2011) located five QTLs for boll weight and lint
percentage that were stably expressed in several environments
by two mapping methods. Li et al. (2012) identified two QTLs
for the node of the first fruiting branch and its height by two
mapping methods. Sun et al. (2012) identified two QTLs for
FS, which were simultaneously detected in four environments.
Cai et al. (2014) performed association mapping of fiber quality
traits and identified 70 significantly associated marker loci, of
which 36 and four coincided with previously reported QTLs
identified using linkage and association mapping populations,
respectively. Here, 342 QTNs significantly associated with the
fiber quality traits were detected using the values of individual
environments (including BLUPs) and the six models. However,
to obtain reliable results, only the QTNs simultaneously detected
in at least two environments or by at least two models were
displayed, and thus, 84 QTNs controlling the fiber quality traits
were obtained. Of them, 29 were for FL, 22 were for FS, 11
were for FM, 12 were for FU, and 10 were for FE. These
QTNs are highly stable and can potentially be used in the
MAS of target traits. Additionally, nine QTNs, TM80185 (D13)
for FL, TM1386 (A1) and TM14462 (A6) for FS, TM18616
(A7), TM54735 (D3), and TM79518 (D12) for FM, TM77489
(D12) and TM81448 (D13) for FU, and TM47772 (D1) for
FE, were simultaneously detected in at least two environments,
and by both single-locus and multi-locus GWASs. These nine
QTNs also exhibited high phenotypic contributions of more than
10% in either a single-locus or multi-locus GWAS. Therefore,
they could be given priority for MAS in future breeding
programs.

Comparison of Our GWAS With the Results
in Previous Studies
Presently, several QTLs/markers related to cotton fiber qualities
have been identified using linkage mapping and association
mapping in previous studies (Shen et al., 2005; Abdurakhmonov
et al., 2008, 2009; Kantartzi and Stewart, 2008; An et al., 2010;
Sun et al., 2012, 2017; Wang et al., 2013; Zhang et al., 2013;
Cai et al., 2014; Qin et al., 2015; Islam et al., 2016; Li C. et al.,
2016; Nie et al., 2016; Su et al., 2016b; Gapare et al., 2017;
Huang et al., 2017; Iqbal and Rahman, 2017; Ma et al., 2017;
Sethi et al., 2017; Tan et al., 2018). We compared the 342 QTNs
detected in our GWAS (Supplementary Table S3) with SNPs
and SSRs linked to/associated with QTLs for the same traits
identified in previous studies by electronic PCR (e-PCR) based
on their physical locations on the genome sequence (Zhang T.
Z. et al., 2015). The markers linked to/associated with QTLs
for the same traits that were located within the same region
of ∼400 kb, were regarded as the same loci. Thus, 12 QTNs
detected in our GWAS corresponded to previously reported
SNPs and SSRs detected based on linkage and/or association
mapping (Table 4). Specifically, two QTNs for FL, TM58426
(D5) and TM72875 (D9), corresponded to BNL4047 (Sethi
et al., 2017) and DPL0395 (Sun et al., 2012)/MGHES-55 (Iqbal
and Rahman, 2017), respectively; five QTNs for FS, TM5639
(A2), TM21292 (A7), TM43422 (A13), TM63860 (D7), and
TM74995 (D10), corresponded to HAU880 (Wang et al., 2013),
i18340Gh/i44206Gh/i39753Gh/i02033Gh/i02034Gh/i02035Gh/
i02037Gh/i49171Gh/i37604Gh (Sun et al., 2017), i30934Gh
(Sun et al., 2017), BNL3854 (An et al., 2010), and TM74991
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(Tan et al., 2018), respectively; one QTN for FM, TM52959
(D2), corresponded to NAU2353 (Sun et al., 2012); two QTNs
for FU, TM72633 (D9) and TM74995 (D10), corresponded to
MGHES-6 (Iqbal and Rahman, 2017) and TM74991 (Tan et al.,
2018), respectively; five QTNs for FE, TM3939 (A2), TM56516
(D4), TM72628 (D9), TM74999 (D10), and TM80198 (D13),
corresponded to BNL1434 (Kantartzi and Stewart, 2008; Sethi
et al., 2017), i12839Gh (Sun et al., 2017), BNL1030 (Kantartzi
and Stewart, 2008), TM74991 (Tan et al., 2018), and NAU2730
(Sun et al., 2012), respectively. The 15 QTNs controlling the
fiber quality, which were simultaneously detected in different
populations with different genetic backgrounds, can potentially
be used in the MAS of target traits.

Candidate Genes for Fiber Quality Traits
The identification of stable marker loci/QTLs could provide
useful information for MAS. Candidate gene analyses are
necessary for further gene cloning and functional verifications.
Some candidate genes related to cotton fiber quality have
already been identified using the GWAS approach. Islam et al.
(2016) identified candidate genes related to fiber quality by
gene expression and amino acid substitution analysis and
suggested that the Gh_A07G2049 (GhRBB1_A07) gene is a
candidate for superior fiber quality in Upland cotton. Sun
et al. (2017) identified 19 promising candidate genes related
to FL and FS, of which, Gh_A07G1758 could play a key
role in the formation of cotton fiber, while Gh_D03G0294
and Gh_D05G1451 could play different roles during fiber
development. In the study of Su et al. (2016b), three
potential candidate genes, CotAD_22823, CotAD_22824, and
CotAD_22825, for FL were identified, and the two peak
SNPs (rsDt7:25931998 and rsDt7:25932026) associated with FL
were positioned within one of the introns of CotAD_22823.
In this study, 455 candidate genes surrounding the nine
QTNs, which were simultaneously detected in at least two
environments, were identified by both single-locus and multi-
locus GWASs. Of the 455 candidate genes, 113 were highly
expressed in ovules and/or fiber during their development,
while being less expressed in root, stem, and leaf, suggesting
that these genes might potentially affect the formation and
development of cotton fiber, and thus contribute to fiber
quality. These genes were categorized based on their functional
characteristics from several databases. We cannot accurately
determine which genes are directly related to fiber quality
based on the data of this study. However, the results will
provide useful information for future works. Cotton fiber
development shares many similarities with the trichomes of
Arabidopsis leaves in cellular and genetic features (Serna and
Martin, 2006). Further, bioinformatics analyses indicated that the
four genes, Gh_D13G1461, Gh_D12G0232, Gh_D01G0052, and
Gh_D12G0240, may be promising candidate genes for improving
the fiber quality. However, the formation of cotton fiber is a
complicated physiological and biochemical process that might
involve a large number of structural, regulatory, and biochemical
pathway-related genes. Therefore, the functions of many genes in
cotton remain to be elucidated.

CONCLUSION

This research reported the GWAS of fiber quality traits in Upland
cotton based on a recently developed CottonSNP80K array.
A total of 342 QTNs controlling the fiber quality traits were
detected via three single-locus and three multi-locus models. Of
these QTNs, 84 were simultaneously detected in at least two
environments or by at least two models. Further, nine QTNs
were simultaneously detected in at least two environments, and
by both single- and multi-locus models. 12 QTNs corresponded
to previously reported SNPs and SSRs. In total, 455 candidate
genes were identified within 400-kb upstream and downstream
of the above nine QTNs based on the genome sequence of
Upland cotton. Among these genes, 113 might potentially
affect the formation and development of cotton fiber and
four might be promising candidate genes for improving fiber
quality.
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Plant height (PH) and the number of nodes on the main stem (NN) serve as major plant
architecture traits affecting soybean seed yield. Although many quantitative trait loci
for the two traits have been reported, their genetic controls at different developmental
stages in soybeans remain unclear. Here, 368 soybean breeding lines were genotyped
using 62,423 single nucleotide polymorphism (SNP) markers and phenotyped for the
two traits at three different developmental stages over two locations in order to identify
their quantitative trait nucleotides (QTNs) using compressed mixed linear model (CMLM)
and multi-locus random-SNP-effect mixed linear model (mrMLM) approaches. As a
result, 11 and 13 QTNs were found by CMLM to be associated with PH and NN,
respectively. Among these QTNs, 8, 3, and 4 for PH and 6, 6, and 8 for NN were
found at the three stages, and 3 and 6 were repeatedly detected for PH and NN. In
addition, 34 and 30 QTNs were found by mrMLM to be associated with PH and NN,
respectively. Among these QTNs, 11, 13, and 16 for PH and 11, 15, and 8 for NN
were found at the three stages. A majority of these QTNs overlapped with the previously
reported loci. Moreover, one QTN within the known E2 locus for flowering time was
detected for the two traits at all three stages, and another that overlapped with the Dt1
locus for stem growth habit was also identified for the two traits at the mature stage.
This may explain the highly significant correlation between the two traits. Our findings
provide evidence for mixed major plus polygenes inheritance for dynamic traits and
an extended understanding of their genetic architecture for molecular dissection and
breeding utilization in soybeans.

Keywords: soybean, genome-wide association study, quantitative trait nucleotide, plant height, number of nodes
on the main stem, dynamic development

INTRODUCTION

Soybean (Glycine max L. Merr.) is an important source of plant protein and oil for human
consumption. Improving seed yield is the major target for soybean breeders. Plant architecture
can strongly affect the suitability and productivity of seed yield in agricultural crops (Li R. et al.,
2014). Plant height (PH) and the number of nodes on the main stem (NN) as key plant type
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traits have obvious effects on the seed yield of soybean because
they are related to some important characteristics such as lodging
and adaptability (Chapman et al., 2003; Liu et al., 2011). PH and
NN are highly correlated with some other soybean agronomic
traits such as days to flowering (DF) and days to maturity
(DM), which are thought to be mainly adaptive traits in response
to the photoperiod, allowing each cultivar to adapt to limited
geographic regions (Zhang et al., 2004, 2015; Panthee et al., 2007).

Plant height and NN are complex traits governed by many
quantitative trait loci (QTL) in soybeans (Lee et al., 1996; Zhang
et al., 2004; Liu et al., 2011, 2013; Yao et al., 2015; Cao et al.,
2017). To date, more than 200 and 30 QTLs for PH and NN have
been reported on SoyBase1 via linkage mapping. Recently, a study
showed that highly significant correlations were observed among
yield-related traits such as PH and NN. In addition, 23 novel
QTLs and 8 QTL hotspots were identified for yield and quality-
related traits by QTL analysis in a soybean RILs population. In
particular, most loci associated with these traits were co-located in
the same genomic region on three chromosomes (Chr04, Chr06,
and Chr19), which was consistent with the results of phenotypic
correlation analysis (Liu et al., 2017). Fang et al. (2017) identified
245 loci for 84 agronomic traits via genome-wide association
studies (GWAS) in 809 soybean accessions and further dissected
the genetic networks underlying the phenotypic correlations of
traits. Of these traits, PH and NN exhibited a significant positive
correlation. Some major genes were also cloned to reveal the
molecular mechanism of PH and NN. Two known loci, Dt1 for
stem growth habit and E2 for DF, were involved in regulating
PH and NN and other agronomic traits in soybeans (Kato et al.,
2015; Zhang et al., 2015). Dt1 plays a primary role in determinate
stem varieties and has an epistasis effect on the Dt2 locus, another
stem growth habit locus involved in the development of PH in
soybeans (Bernard, 1972; Liu et al., 2016). The E2 locus encodes
a homolog of GIGANTEA, which regulates the expression of CO
and FT in Arabidopsis and controls soybean flowering through
regulating GmFT2a (Watanabe et al., 2011). On the other hand,
a target trait such as PH or NN performs dynamically when
plants grow gradually. However, the phenotypes of PH and
NN were mostly investigated at the mature stage. Sun et al.
(2006) reported that different QTL architectures have been found
for PH at the different developmental stages through linkage
mapping. Although several studies of the developmental behavior
of quantitative traits have been reported in soybeans (Vodkin
et al., 2004; Li W. et al., 2007; Xin et al., 2008; Teng et al., 2009),
the genetic architecture of dynamic development behavior of
complex traits remains to be further explored.

With the wide application of next-generation sequencing
techniques, high-throughput single nucleotide polymorphism
(SNPs) have been discovered and utilized to construct high-
resolution genetic maps and to conduct GWAS (Hyten et al.,
2008; Michael and VanBuren, 2015; Song et al., 2016). GWAS
is a powerful approach because it takes full advantage of all
recombination events that occur in the evolutionary process of
a natural population. It has been successfully used to explore the
genetic basis for a broad range of complex traits in many plant

1www.soybase.org

species such as Arabidopsis (Atwell et al., 2010; Horton et al.,
2012), rice (Huang et al., 2010; Yang et al., 2014), maize (Kump
et al., 2011; Li H. et al., 2013), and soybean (Hwang et al., 2014;
Sonah et al., 2015; Zhou et al., 2015; Zhang et al., 2016; Chang and
Hartman, 2017).

The mixed linear models (MLMs) have been widely used
for GWAS. The compressed MLM (CMLM) was also utilized
to reduce computing time and to improve statistical power for
quantitative trait nucleotide (QTN) detection (Zhang et al., 2010).
Nevertheless, the current GWAS methods such as MLM and
CMLM are mainly based on the single-locus genome-wide scan,
which often requires correction for multiple tests. The typical
Bonferroni correction is so conservative that some small-effect
loci may not reach the significance threshold. With the rapid
development of statistical methods, several multi-locus GWAS
approaches have been developed to improve the power of QTN
detection (Cho et al., 2010; Segura et al., 2012; Moser et al.,
2015). The obvious advantage of these methods is no Bonferroni
correction due to the nature of multi-locus methods. Recently,
Wang et al. (2016) proposed a new multi-locus random-SNP-
effect mixed linear model (mrMLM) method to improve the
power and accuracy of GWAS. Differing from the other multi-
locus methods, the mrMLM is a two-stage method. At the
first stage, the SNP effect is viewed as being random, and all
the potentially associated markers are selected by a random-
SNP-effect MLM with a modified Bonferroni correction for
significance test. At the second stage, all the selected markers are
placed into one model and all the non-zero effects are further
detected by a likelihood ratio test for QTN identification.

Summer-planting soybean is a major soybean crop grown
in the region between the Yangtze River and the Huai River
in the southern region of middle China, an important soybean
production area. Although the genetic architecture of some
agronomic traits such as PH was reported in our previous
study (Cao et al., 2017) in the summer planting soybean, the
genetic bases of dynamic PH and NN for them remain largely
unknown. The aim of this study was to dissect the genetic basis
of PH and NN at three different developmental stages in 368
summer planting soybean genotypes using the GWAS strategy.
Our findings will provide useful genetic information for soybean
molecular breeding.

MATERIALS AND METHODS

Plant Materials, Field Trials and
Phenotypic Evaluation
A soybean breeding line (SBL) population containing 368
accessions was established to service the local soybean breeding.
All these pure lines were obtained from the National Center for
soybean improvement, Nanjing Agricultural University, Nanjing,
China. All experimental materials were planted at Jiangpu (JP)
(32◦12′N and 118◦37′E) and Fengyang (FY) (32◦47′N and
117◦19′E) Station in Jiangsu and Anhui province, respectively,
on June 20, 2011. At each location, the experimental design was
a randomized complete block with 50 cm × 50 cm hill plots
and three replications. The phenotypes for PH and NN were
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measured at the three different developmental stages over two
locations: Stage 1 (35 days after the emergence of seedlings), Stage
2 (50 days after the emergence of seedlings) and Stage 3 (90 days
after the emergence of seedlings). All the phenotypes were named
PH1, PH2 and PH3 for PH, and NN1, NN2 and NN3 for NN. PH
and NN were the averages of three measurements per plot.

Statistical Analysis
The analysis of variance (ANOVA) was performed for all traits
using the PROC GLM procedure of SAS version 9.3 (SAS
Institute, Inc., Cary, NC, United States). The model for the
phenotype of a trait was yijk = µ+ Gi + Ej + GEij + Rk(j) + eijk

where µ is the total mean, Gi is the effect of the ith genotype,
Ej is the effect of the jth environment, GEij is the interaction
effect between the ith genotype and the jth environment, Rk(j)
is the effect of the kth block within the jth environment, and
eijk is a random error following N(0, σ2

e ). Descriptions of
all traits were determined by the mean of each trait over
two locations. The broad-sense heritability (h2) was calculated
as: h2

= σ2
g/

(
σ2

g + σ2
ge/n+ σ2

e/nr
)

for combined environments

and h2
= σ2

g/
(
σ2

g + σ2
e

)
for an individual environment, where

σ2
g is the genotypic variance, σ2

ge is the genotype by environment
interaction variance, σ2

e is the error variance, n is the number
of environments, and r is the number of replications. Variance
components and correlation coefficients were estimated by the
PROC VARCOMP and CORR procedure of SAS, respectively. To
minimize the effects of environmental variation, the best linear
unbiased predictors (BLUPs) of individual lines for each trait
were calculated using the R package lme4 (Bates et al., 2015).

Genotyping, SNPs Polymorphism and
Haplotype Block Estimation
High-throughput SNPs were generated by RAD-seq. The quality
control of sequencing data and methods of calling variations are
described in our previous study (Li et al., 2016). A total of 62423
SNPs with a minor allele frequency (MAF) ≥ 5% were used for
further analysis in the present study.

The MAF of the SNPs was calculated using VCFtools software
(Danecek et al., 2011). Haplotype blocks were estimated using
pLINK V1.90 software (Purcell et al., 2007) with the command
option –blocks, following the default algorithm as described by
Gabriel et al. (2002). The visualization of haplotype blocks was
carried out with the R package LDheatmap (Shin et al., 2006). The
estimated parameters for SNPs polymorphism were displayed
using circos (Krzywinski et al., 2009).

Linkage Disequilibrium Estimation
Linkage disequilibrium (LD) between pairwise SNPs was
calculated as the squared correlation coefficient (r2) of alleles
using the linkage disequilibrium tools option of RTM-GWAS
V1.1 software (He et al., 2017). The r2 value was calculated for
all pairwise SNPs with a 100 kb summary bin setting within
the 5 Mb distance and then averaged across the whole genome.
Because of the substantial difference in recombination rate

between euchromatic and heterochromatic regions, the r2 value
was calculated separately for the two chromosomal regions. The
physical length of the euchromatic and heterochromatic regions
for each chromosome was defined as in the G. max 1.0 reference
genome. The LD decay rate was measured as the chromosomal
distance at which the average pairwise r2 dropped to half its
maximum value (Huang et al., 2010). Only r2 for SNPs with
pairwise distances less than 5 Mb in either the euchromatic or
heterochromatic region was used to draw the average LD decay
figure by R script.

Population Structure and Principal
Component Analysis
Filtering SNPs used the –indep-pairwise command option of
pLINK. The pruned data were then used to estimate population
structure using ADMIXTURE V1.3.0 software (Alexander et al.,
2009). In the ADMIXTURE setting, the number of clusters (K)
was set from 1 to 10 initially; then, each Q and the relevant
P-value was estimated. The most likely number of subpopulations
was determined using the method described in Evanno et al.
(2005). A principal component analysis (PCA) of whole-genome
SNPs was performed using EIGENSOFT V5.0.2 software (Price
et al., 2006) smartpca program, and the first two eigenvectors
were plotted in two dimensions. The neighbor-joining tree was
constructed using TASSEL V5.2 software (Bradbury et al., 2007).

Genome-Wide Association Studies
After excluding SNPs with an MAF < 5%, 62423 SNPs were
retained for 368 soybean accessions. To minimize false positives
and increase statistical power, the population structure (Q) and
kinship (K) matrix were estimated for the population. For the
MLM, both the regular MLM and compressed CMLM involve
the Q and K matrices as a fixed effect and random effect, where
the Q matrix was replaced by the principal components (PCs)
in CMLM. CMLM was implemented by the R package GAPIT
(Genome Association Prediction Tool) V2 (Tang et al., 2016).
Another R package, mrMLM V2.1, representing the mrMLM
method was adopted (Wang et al., 2016). Thus, GWAS was
conducted by combining the CMLM and mrMLM methods in
this study. The critical threshold of significance for SNP-trait
association was set at a P-value = 1.0× 10−4 in CMLM according
to the empirical value and at a LOD value of 3 in mrMLM. A QTN
was defined as a haplotype block possessing SNPs identified as
significantly associated with a trait (Schneider et al., 2016). The
QTNs were named following the nomenclature described by
McCouch et al. (1997). In addition, the abbreviation was used
for the loci associated with the traits at the different stages. Thus,
qPH(NN)(1,2,3)-10-1 indicated a locus located on chromosome
10 associated with both PH and NN at all three stages.

Prediction of Candidate Genes
Genes annotated in G. max Williams 82 reference gene model
1.0 were used as the source of candidate genes. The prediction
of candidate genes mainly referred to the genes with a known
function in soybeans related to the trait or the orthologs in
Arabidopsis.
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TABLE 1 | Descriptive statistics for plant height (cm) and number of nodes on the main stem at three stages over two environments in the SBL population.

Trait Stage Mean SD Minimum Maximum Skewness Kurtosis CV (%) FG FE FR(E) FG × E h2 (%)

PH 1 50.48 9.95 27.97 90.22 0.80 1.06 19.70 9.99∗∗∗ 84.43∗∗∗ 24.33∗∗∗ 1.53∗∗∗ 84.97

2 65.96 10.41 39.53 109.00 0.53 1.17 15.78 6.90∗∗∗ 271.97∗∗∗ 35.33∗∗∗ 1.63∗∗∗ 76.57

3 74.39 12.45 41.28 109.06 0.13 −0.12 16.74 8.14∗∗∗ 664.00∗∗∗ 36.17∗∗∗ 1.85∗∗∗ 77.70

NN 1 10.21 1.32 7.67 15.94 0.84 0.74 12.88 7.39∗∗∗ 52.21∗∗∗ 11.19∗∗∗ 1.28∗∗ 83.10

2 12.86 1.29 8.97 16.89 0.21 0.25 10.06 5.59∗∗∗ 717.53∗∗∗ 19.38∗∗∗ 2.27∗∗∗ 60.00

3 14.58 1.59 9.58 20.39 0.16 0.74 10.91 5.41∗∗∗ 2323.61∗∗∗ 17.10∗∗∗ 1.76∗∗∗ 68.07

FG, FE, FR(E) and FG × E represent the F-values for genotypic, environmental, block effects and genotype × environment interaction, respectively. Broad-sense heritability:

h2
= σ 2

g /
(
σ 2

g + σ2
ge/n+ σ

2
e /nr

)
, where σ 2

g is the genotypic variance, σ 2
ge is the genotype by environment interaction variance, σ 2

e is the error variance, n is the number

of environments, r is the number of replications. ∗∗P < 0.001, ∗∗∗P < 0.0001.

RESULTS

Trait Performance of the Tested
Population
The phenotypic characteristics of PH and NN for the 368 soybean
lines are shown in Table 1. Averaged over two environments,
PH and NN showed a large variation at the three different
stages with range values of 27.97–109.06 (cm) and 7.67-20.39,
respectively. The absolute values of kurtosis and skewness
were approximately 1 for both PH and NN (Supplementary
Figure S1). Significant positive correlations were observed for
PH and NN among the three stages and between PH and NN
(Supplementary Figure S2) (r > 0.60, P < 0.0001). PH1 and
PH3 were moderately correlated with NN3 and NN1 at r = 0.49
and 0.48, P< 0.0001, respectively. Analysis of variance (ANOVA)

FIGURE 1 | Characterization of the SNPs in the soybean genome. (A) Minor
allele frequency of SNPs across the whole genome. (B) Distribution of LD
blocks (>50 kb) in the whole genome. (C) Chromosomal region with
pericentromeric regions in a darker color and whole chromosome in a lighter
color (distance unit is Mb).

indicated that there were significant differences in the effects of
genotypes, environments, and their interactions for the traits at
all stages. Additionally, a relatively high heritability (≥60%) was
estimated for PH and NN at all stages, indicating that the genetic
effects play a primary role in the performance of PH and NN.

Characterization of the SNPs, Population
Structure, LD, and LD Haplotype Block
Estimation
A total of 62423 SNPs with an MAF ≥ 0.05 were used for
further analyses, with an average marker density of 1 SNP
every 16.42 kb genome-wide, varying across chromosomes from
29.39 kb per SNP on chromosome 5 to 10.51 kb per SNP
on chromosome 15. The MAF and haplotype block (>50 kb)
for the population characteristics are presented in Figure 1.
The most likely K-value was K = 3 based on the analysis
of population structure (Figure 2A), which suggested that the
overall population could be divided into three subpopulations.
This result was also supported by the phylogenetic analysis
(Figures 2B,C) and PCA (Figure 2D). The LD decay rate of the
population was estimated at 400 kb in euchromatin, where r2

dropped to half of its maximum value (r2 = 0.23) (Figure 3).
In heterochromatin, however, r2 did not drop to half of its
maximum value until 3.5 Mb. The haplotype analysis showed that
62423 SNPs were grouped into 5697 haplotype blocks. The size of
the blocks ranged from 6 bp to 200 kb across the whole genome.
The distribution of haplotype blocks is shown in Supplementary
Figure S3.

GWAS for the Traits via CMLM
Genome-wide association studies was conducted using the
BLUPs of individual performance over two environments. A total
of 11 loci for PH and 13 loci for NN were identified in the
CMLM association panel at the suggestive significance level
(P = 1 × 10−4). There were 8, 3, and 4 loci for PH and 6, 6,
and 8 loci for NN at the three developmental stages. Three and
six loci were detected for PH and NN at more than two stages,
respectively (Table 2 and Figure 4). Notably, two major loci
associated with PH and NN were identified under the Bonferroni
correction for multiple tests (0.05/N) (bold in Table 2). qPH
(NN)(1,2,3)-10-1 was identified on chromosome 10 at all stages,
while qPH(NN)3-19-1 was identified on chromosome 19 only at
the last stage.
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FIGURE 2 | Population structure of 368 soybean accessions. (A) Calculation of the true K of the SBL population according to Evanno et al. (2005).
(B) A neighbor-joining tree of the tested accessions that could be divided into three subpopulations. (C) Population structure was estimated by ADMIXTURE. Three
colors represent three subpopulations, respectively. Each vertical column represents one individual and each colored segment in each column represents the
percentage of the individual in the population. (D) PCA plot of the 368 accessions; two-dimensional scales were used to reveal population stratification.

The haplotype analysis showed that the peak SNPs for
these two major loci were located within the two haplotype
blocks named H2842 and H5441. Three main haplotypes (total
frequency > 80%), H2842-1, H2842-2, and H2842-3, were
identified for H2842, whose frequencies were 19.02, 58.42, and
10.87%, respectively, and two main haplotypes, H5441-1 and
H5441-2, were identified for H5441, with frequencies of 46.47%
and 33.70%, respectively. We further analyzed the effect of these
haplotypes for PH and NN. The results showed that there were
significant differences for both PH and NN among the main
haplotypes of H2842 or H5441 (Supplementary Figure S4). The
LD and haplotype blocks for these two major loci are presented
in Figure 5.

GWAS for Traits via mrMLM
To validate the reliability of the loci determined by the CMLM
method and identify more loci associated with PH and NN, a
multi-locus random effect MLM method was used to conduct
GWAS.

Thirty-four loci for PH and 30 loci for NN were identified
using the MRMLM method. Among them, 11, 13, and 16 loci

for PH and 11, 15, and 8 loci for NN were detected at the
three developmental stages (Tables 3, 4 and Figure 6). Due to
the differential genetic control of PH and NN at the different
stages, further comparative analysis showed that qPH1(2)-10-1,
qPH1(2)-13-5 and qPH2(3)-7-1, qPH2(3)-9-3, qPH2(3)-10-1 and
qPH2(3)-13-1 were commonly detected for PH at the first and
last two stages, respectively (bold in Table 3). qNN1(2)-10-1,
qNN1(2)-14-1 and qNN2(3)-10-1, qNN2(3)-13-3 were commonly
detected for NN at the first and last stages, respectively (bold
in Table 4). It was clear that there were many differential loci
for both PH and NN among the different stages. Similar to
the CMLM results, qPH (NN)(1,2,3)-10-1 as a major locus was
identified and shared for PH and NN at three stages. The
same peak SNP (Gm10_44346474, MAF = 0.41) could explain
13, 8, and 10% of the phenotypic variation for PH and 7,
4, and 11% of the phenotypic variation for NN at the three
stages, respectively. qPH (NN)3-19-1(3), another major locus, was
detected for both PH and NN at the last stage. The same peak SNP
(Gm19_44938780, MAF = 0.35) could explain 8 and 9% of the
phenotypic variation for PH and NN at the last stage, respectively.
In addition to these two major loci, qPH1-4-1, qPH1-6-2, and
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FIGURE 3 | Average LD decay rates in euchromatic and heterochromatic
regions of the whole genome. The mean LD decay rate was estimated as the
squared correlation coefficient (r2) using all pairs of SNPs located within 5 Mb
of physical distance in euchromatic (red) and heterochromatic (green) regions
in the SBL population.

qPH1-14-1 for PH and qNN1-4-1, qNN2-13-3, and qNN1-14-
1 for NN were validated by the MRMLM method. Moreover,
four loci, qPH1-4-1, qPH1-6-2, qPH2-13-1, and qPH1-14-1 for
PH and qNN1-4-1, qNN1-6-1, qNN3-13-2, and qNN1(2)-14-1
for NN, were co-located in the same genomic regions. Some
novel loci were identified for PH and NN via the MRMLM
method compared with the CMLM method and are shown in
Tables 3, 4.

Prediction of Candidate Genes
To predict candidate genes for loci significantly associated with
both PH and NN, we selected the putative genes tagged by
the most significant SNPs. Two major loci coassociated with
PH and NN pinpointed the known genes. E2(Glyma10g36600),
encoding a homolog of GIGANTEA (GI) protein, is one
of the key genes regulating soybean flowering and maturity
by regulating GmFT2a (Watanabe et al., 2011). It was
found 370 kb upstream of the peak SNP (Gm10_44346474,
MAF = 0.41) of qPH1-10-1 (qNN1-10-1) on Gm10, which
was associated with both PH and NN at all three stages
(Tables 3, 4). Dt1 (Glyma19g37890) is a homolog of Arabidopsis
TERMINAL FLOWER1 (TFL1) and plays a primary role
in the soybean stem growth habit (Bernard, 1972). It was
found 41 kb upstream of the peak SNP (Gm19_44938780,
MAF = 0.35) of qPH3-19-1 (qNN3-19-3) on Gm19, which
was associated with both PH and NN at the last stage. In
addition to these two major loci, we predicted the candidate
genes for two other loci associated with both PH and NN.
A putative gene, Glyma04g40640, was found 35 kb from

the peak SNP (Gm04_46671367, MAF = 0.11) of qPH1-4-
1 (qNN1-4-1) on Gm04, which was associated with both
PH and NN at the first stage. It was homologous to
Arabidopsis APRR5, which is involved in various circadian-
associated biological events such as flowering time in long-day
photoperiod conditions and red light sensitivity of seedlings
during early photomorphogenesis (Kamioka et al., 2016). The
putative gene Glyma13g06811 was identified 125 kb from
the peak SNP (Gm13_6859748, MAF = 0.46) of qPH2-13-
1(qNN3-13-2) on Gm13, which was associated with both
PH and NN at the second and third stages, respectively.
It is homologous to Arabidopsis AGAMOUS-LIKE 8 (AGL8),
which is a MADs-box transcription factor involved in various
biological events such as flower and fruit development and the
maintenance of inflorescence meristem characteristics (Ma et al.,
1991).

DISCUSSION

Linkage Disequilibrium and the
Statistical Method Are of Great
Significance in GWAS
Genome-wide association studies are a powerful tool to elucidate
the genetic architecture for complex quantitative traits in crops
(Morris et al., 2013; Su et al., 2016; Sun et al., 2017). The mapping
resolution and statistical power are the main considerations in
GWAS. LD is one of the factors limiting the mapping resolution
of GWAS. The recombination rate is one of the major factors
affecting LD extension and is different between euchromatic
and heterochromatic regions (Zhang et al., 2015). Previous
studies suggested that there was a very diverse range of LD
values in different crops and different chromosomal regions in
a specific crop (Li Y.H. et al., 2014; Sonah et al., 2015; Zhang
et al., 2015). Similar to previous studies, a large difference in
LD decay rate was also observed between the euchromatin
(400 kb) and heterochromatin regions (3.5 Mb) of soybeans in
this study. A longer LD has been observed in self-pollinated
crops such as soybean compared to cross-pollinated crops such
as maize (Li et al., 2016). A previous study also reported a
longer LD for the chromosomes involved in the domestication
process. The QTLs for domestication traits such as seed weight
and flowering were mapped in these regions (Li Y.H. et al.,
2013).

Another concern with GWAS is the statistical method. In
the present study, the CMLM method was used for the single-
locus GWAS. Consistent with the previous study, we also found
that the CMLM method could take less computing time than
regular MLM and reduce false positive results simultaneously
(Zhang et al., 2015). However, the single-locus GWAS methods
often need correction for multiple tests. For instance, the typical
Bonferroni correction corrects an α = 0.05 to α = 0.05/m,
where m is the number of statistical tests performed. For
a GWAS with 500,000 markers, the statistical significance
threshold for an association would be corrected to 1e−7, such
that no or a few loci could reach the significance threshold
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FIGURE 4 | Manhattan plots and quantile–quantile plots for PH1 (A), PH2 (B), PH3 (C), NN1 (D), NN2 (E), and NN3 (F) over three stages in the SBL population.
The major loci for PH3 (left) and NN3 (right) in their Manhattan plots were located on chromosomes 10 and 19, respectively (G).
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TABLE 2 | Quantitative trait nucleotides (QTNs) associated with PH and NN via CMLM in the SBL population.

Trait QTN Chr SNP Position (bp) Allele MAF −Log10 Pa R2b R2c Effect Known QTLS
d

PH qPH1-4-1 4 Gm04_46680158 46680158 T/C 0.10 4.35 0.35 0.38 −3.71 5-4

qPH1-6-1 6 Gm06_43710729 43710729 G/A 0.27 4.15 0.35 0.38 −3.08 3-2,6-3

qPH1-10-1 10 Gm10_44226599 44226599 A/C 0.13 4.48 0.35 0.38 3.03 18-2,19-2

qPH1-10-2e 10 Gm10_44346474 44346474 A/T 0.41 9.26 0.35 0.42 3.57 E2

qPH1-10-3 10 Gm10_44550928 44550928 C/T 0.33 4.45 0.35 0.38 −2.36 18-2,19-2

qPH1-10-4 10 Gm10_45479097 45479097 C/T 0.11 4.13 0.35 0.38 3.31

qPH1-14-1 14 Gm14_926343 926343 G/A 0.21 4.29 0.35 0.38 2.40 34-6

qPH1-19-1 19 Gm19_44544574 44544574 A/G 0.36 4.58 0.35 0.38 −2.53 1-1

qPH2-4-1 4 Gm04_46680158 46680158 T/C 0.10 4.04 0.29 0.32 −3.36 5-4

qPH2-10-2 10 Gm10_44346474 44346474 A/T 0.41 8.07 0.29 0.36 3.13 E2

qPH2-10-3 10 Gm10_44550928 44550928 C/T 0.33 4.45 0.29 0.32 −2.24 18-2,19-2

qPH3-10-2 10 Gm10_44346474 44346474 A/T 0.41 8.52 0.25 0.33 3.80 E2

qPH3-19-2 19 Gm19_44938780 44938780 C/T 0.35 6.39 0.25 0.31 3.74 Dt1

qPH3-19-3 19 Gm19_45721414 45721414 G/T 0.33 4.25 0.25 0.29 −2.62 3-1,4-2,6-1

qPH3-20-1 20 Gm20_41211643 41211643 G/T 0.12 4.02 0.25 0.29 3.03 28-1

NN qNN1-4-1 4 Gm04_46680158 46680158 T/C 0.10 4.33 0.34 0.37 −0.46

qNN1-6-1 6 Gm06_31222865 31222865 C/T 0.10 4.85 0.34 0.38 −0.52 4-2

qNN1-10-1 10 Gm10_44346474 44346474 A/T 0.41 7.99 0.34 0.40 0.41 E2

qNN1-14-1 14 Gm14_926343 926343 G/A 0.21 4.35 0.34 0.37 0.30

qNN1-18-1 18 Gm18_3716679 3716679 T/C 0.21 4.32 0.34 0.37 0.39

qNN1-19-1 19 Gm19_45415096 45415096 C/A 0.20 4.30 0.34 0.37 −0.34

qNN2-4-1 4 Gm04_46680158 46680158 T/C 0.10 4.53 0.29 0.33 −0.27

qNN2-6-1 6 Gm06_31222865 31222865 C/T 0.10 4.08 0.29 0.32 −0.28 4-2

qNN2-10-1 10 Gm10_44346474 44346474 A/T 0.41 6.95 0.29 0.35 0.22 E2

qNN2-10-2 10 Gm10_45479097 45479097 C/T 0.11 4.44 0.29 0.33 0.25

qNN2-13-1 13 Gm13_38510582 38510582 T/G 0.13 4.84 0.29 0.33 0.21

qNN2-14-1 14 Gm14_926343 926343 G/A 0.21 4.02 0.29 0.32 0.17

qNN3-10-1 10 Gm10_44346474 44346474 A/T 0.41 6.83 0.25 0.31 0.11 E2

qNN3-13-2 13 Gm13_31053641 31053641 T/C 0.25 4.09 0.25 0.29 −0.09 1-8

qNN3-13-1 13 Gm13_38510582 38510582 T/G 0.13 4.46 0.25 0.29 0.10

qNN3-19-2 19 Gm19_44558007 44558007 C/A 0.34 4.77 0.25 0.29 −0.09

qNN3-19-3 19 Gm19_44938780 44938780 C/T 0.35 7.36 0.25 0.32 0.13 Dt1

qNN3-19-4 19 Gm19_45295148 45295148 C/G 0.39 4.61 0.25 0.29 0.09

qNN3-19-1 19 Gm19_45384848 45384848 A/G 0.40 4.10 0.25 0.29 −0.08

qNN3-19-5 19 Gm19_45727395 45727395 G/A 0.39 4.48 0.25 0.29 −0.09

aNegative log10-transformed P-value of the suggestive. bThe contribution rate of the model without SNP. cThe contribution rate of the model with SNP. dBased on the
QTL list on SoyBase (www.soybase.org). eThe QTNs shown in bold indicate that they reach the significance threshold based on the Bonferroni correction.

after the correction. Such a situation is not always suited to
the nature of complex traits. A previous study showed that
no significantly associated locus for soybean seed weight was
detected, possibly for this reason (Fang et al., 2017). Wang
et al. (2016) also reported that some small-effect loci were
not significantly associated with the traits in the single-locus
approach under the Bonferroni correction but significantly
associated with that in the mrMLM method. Actually, the small-
effect loci should not be neglected in the genetic system of
complex traits. Fortunately, several multi-locus GWAS methods
have already been reported in previous studies (Segura et al.,
2012; Wang et al., 2016), where no Bonferroni correction is
needed because of the multi-locus nature. Thus, the multi-
locus GWAS method may play an increasingly important role
in dissecting the genetic architecture of complex traits in the
post-association time.

Combination of CMLM and mrMLM
GWAS Methods to Identify the Major and
Minor Loci for PH and NN in the SBL
Population
Plant height and NN are quantitative traits controlled by
numerous loci in soybeans2. In the present study, 11 loci
for PH and 13 loci for NN were detected via the CMLM
method at the suggestive threshold level, only two of which
were identified after the Bonferroni correction. To confirm the
loci determined by the CMLM method and identify additional
loci for PH and NN, mrMLM as a multi-locus method was
used for GWAS in this study. As expected, we found 32 and
28 loci, except for two major loci, for PH and NN via the

2www.soybase.org
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FIGURE 5 | Candidate regions of the genome showing significant association signals near identified major loci for PH and NN. The top of each panel shows the
Manhattan plot indicating the level of SNP association with PH (A) or NN (B). Gray horizontal dashed lines indicate the genome-wide suggestive threshold. The
bottom of each panel shows the local LD of the chromosomal regions containing the peak SNP (SNP with the lowest P-value), whose position is indicated by a
green asterisk. Nearby haplotype blocks are outlined in black triangles.

mrMLM method. Some novel loci in comparison with that
obtained from the CMLM were located around the previously
reported QTLs. For PH, the loci qPH1-18-1 and qPH1-18-2
detected by the mrMLM method have been previously identified
by Sun et al. (2006), which were also located in the same
genomic regions of the known QTLs. However, only six loci
in addition to the two major loci, qPH1-4-1, qPH1-6-1, and
qPH1-14-1 for PH and qNN1-4-1, qNN1-14-1, and qNN2-13-1
for NN, identified at a suggestive threshold level (P = 10−4)
in CMLM were validated in mrMLM association panel. One
potential reason was that the mrMLM method improved the
power and accuracy for QTN detection due to the nature of the
statistical model. Thus, many novel loci were detected by the
mrMLM method. Another possible reason was that the relatively
stringent threshold still applied to the CMLM method. More
loci might be commonly detected in two association panels
if a lower threshold was adopted in the CMLM method, but
the false positive results might increase under such conditions.
Undoubtedly, mrMLM can identify not only the major loci but
also the minor loci for quantitative traits compared with the
CMLM method.

Genetic System of Dynamic PH and NN
in Summer Planting Soybeans
Many agronomic and yield-related traits such as PH and NN
were highly correlated in soybeans. Previously identified loci
for these traits usually co-located in the same genomic regions
(Malik et al., 2007; Liu et al., 2011, 2017; Fang et al., 2017).
Similarly, significant positive correlations were observed between
PH and NN at different stages in this study. Furthermore, six
loci, including major and minor loci, were shared for PH and
NN, suggesting that both PH and NN have a similar genetic
system controlled by major and minor loci. Previous studies
showed that the E2 and Dt1 loci have an effect on many

agronomic and yield-related traits in soybean (Liu et al., 2011;
Kato et al., 2015; Zhang et al., 2015). We also found that
PH and NN shared these two loci and further confirmed that
the genetic pattern of the E2 locus was different from that
of the Dt1 locus. The former was detected for both PH and
NN at all stages while the latter was only detected at the last
stage.

Plant height and NN in soybeans are dynamic traits, as
the phenotype changes constantly during the plant lifecycle.
However, studies of the genetic basis of PH and NN have
mainly measured the final PH and number of nodes on the
main stem, especially when the phenotype was investigated at
the mature stage. We accessed PH and NN in the summer-
planting accessions at three different stages, which included one
vegetative stage and two reproductive stages when plants were
in late vegetative growth, as well as the flowering and mature
stages, to reveal the genetic control underlying the dynamic PH
and NN based on the GWAS strategy in this study. A previous
report showed that the haplotype was more appropriate than
the single SNP to uncover the genetic variation and improve
the efficiency of breeding for target traits due to the existence
of multiple alleles (Hao et al., 2012). We identified the E2 and
Dt1 genes in two haplotype blocks. The analysis of haplotypes
revealed that the main haplotypes of these two haplotype blocks
were related to PH and NN over stages. Our results suggested that
E2 and Dt1, as the major loci, play different roles in regulating
the development of PH and NN at different stages. Nine and 20
novel loci were identified for PH and NN at different stages via
a new multi-locus GWAS method, respectively. Moreover, the
differential loci were identified for both PH and NN among the
different stages. These common and specific loci for PH and NN
at different stages unveil the genetic architecture underlying the
dynamic PH and NN. Although most of them have not been
confirmed yet, candidate genes were predicted for several loci
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TABLE 3 | QTNs associated with PH via mrMLM in the SBL population.

QTN Chr SNP Allele MAF Position (bp) Effecta LOD scoreb R2 Known QTLc

qPH1-4-1d 4 Gm04_46680158 T/C 0.10 46680158 −4.42 9.43 0.11 5-4

qPH1-5-1 5 Gm05_36588358 G/A 0.23 36588358 2.11 4.84 0.05 24-1

qPH1-6-1 6 Gm06_33125042 T/C 0.07 33125042 2.89 4.48 0.03 30-1

qPH1-6-2 6 Gm06_43710729 G/A 0.27 43710729 −2.52 5.64 0.07 3-2,6-3

qPH1-6-3 6 Gm06_48441344 A/G 0.19 48441344 1.76 6.01 0.03 38-1

qPH1-9-1 9 Gm09_38680990 C/T 0.45 38680990 1.20 3.73 0.02

qPH1-10-1e 10 Gm10_44346474 A/T 0.41 44346474 3.04 14.99 0.13 E2

qPH1-13-5 13 Gm13_41776586 C/T 0.05 41776586 3.04 4.11 0.03 39-1

qPH1-14-1 14 Gm14_1243675 A/G 0.21 1243675 1.92 4.59 0.04 34-6

qPH1-18-1 18 Gm18_7790416 T/C 0.34 7790416 −0.91 3.61 0.01 23-6

qPH1-18-2 18 Gm18_51243803 A/G 0.22 51243803 −1.66 3.26 0.03 26-12

qPH2-6-4 6 Gm06_13482496 G/A 0.36 13482496 −1.37 3.40 0.03

qPH2-7-1 7 Gm07_37502305 T/C 0.35 37502305 1.59 4.15 0.04 37-6

qPH2-8-1 8 Gm08_41977134 G/A 0.42 41977134 1.30 3.01 0.03

qPH2-9-2 9 Gm09_7987471 C/T 0.23 7987471 1.60 5.16 0.03 mqPH-009

qPH2-9-3 9 Gm09_41284917 G/A 0.05 41284917 2.42 3.55 0.02

qPH2-10-1 10 Gm10_44346474 A/T 0.41 44346474 2.21 7.67 0.08 E2

qPH2-13-1 13 Gm13_6859748 A/G 0.46 6859748 1.37 4.05 0.03 20-5

qPH2-13-2 13 Gm13_8246449 T/C 0.48 8246449 2.04 8.31 0.07 20-5

qPH2-13-3 13 Gm13_10898897 T/C 0.50 10898897 −1.57 5.56 0.04 26-11

qPH2-13-4 13 Gm13_28457573 T/G 0.06 28457573 −6.23 9.92 0.13 5-8,15-1

qPH2-13-5 13 Gm13_41776586 C/T 0.05 41776586 3.49 5.58 0.04 39-1

qPH2-14-2 14 Gm14_3056277 T/C 0.19 3056277 2.04 6.30 0.04 34-6

qPH2-20-1 20 Gm20_41211643 G/T 0.12 41211643 2.12 4.68 0.03 28-1

qPH3-2-1 2 Gm02_2328263 C/A 0.20 2328263 −3.03 9.85 0.06 9-3

qPH3-2-2 2 Gm02_46786754 C/T 0.47 46786754 −1.67 3.98 0.03 6-12

qPH3-3-1 3 Gm03_1920671 A/G 0.26 1920671 1.70 4.19 0.02

qPH3-3-2 3 Gm03_6757344 T/C 0.26 6757344 1.63 6.27 0.02

qPH3-6-5 6 Gm06_31222865 C/T 0.10 31222865 2.25 4.44 0.02 30-1

qPH3-7-2 7 Gm07_984279 C/G 0.09 984279 2.56 3.46 0.02

qPH3-7-1 7 Gm07_37502305 T/C 0.35 37502305 1.88 3.21 0.04 37-6

qPH3-8-2 8 Gm08_18166829 A/C 0.46 18166829 1.46 5.53 0.02

qPH3-9-3 9 Gm09_41284917 G/A 0.05 41284917 2.93 3.96 0.02

qPH3-10-2 10 Gm10_34971279 C/G 0.13 34971279 2.99 8.06 0.04

qPH3-10-1 10 Gm10_44346474 A/T 0.41 44346474 3.02 15.21 0.10 E2

qPH3-13-1 13 Gm13_6859748 A/G 0.46 6859748 1.93 6.83 0.04 20-5

qPH3-13-6 13 Gm13_27311661 G/C 0.29 27311661 2.89 9.19 0.08 5-8,15-1

qPH3-14-3 14 Gm14_10617104 A/G 0.39 10617104 1.32 4.43 0.02 34-6

qPH3-19-1 19 Gm19_44938780 C/T 0.35 44938780 −2.81 14.27 0.08 Dt1

qPH3-20-2 20 Gm20_27547938 G/A 0.33 27547938 3.00 12.48 0.09 16-1

aQuantitative trait nucleotide effect. bLOD value, the significant threshold for the transformed P-value. cThe QTLs located in the same region of reported QTLs. dThe QTN
identified for PH at the same stage by both methods are underlined in Table. eThe QTNs identified for PH at least two stages are displayed in bold in Table.

associated with both PH and NN, some of which are located in the
same regions as known QTLs for PH and NN in SoyBase. Further
studies should confirm these loci and identify candidate genes for
them.

CONCLUSION

More loci, including 34 loci for PH and 30 loci for NN, were
identified by the mrMLM method than by the single-locus

CMLM method. A few loci were commonly identified for PH
and NN via the two methods at the different developmental
stages. One stable locus that overlapped with the E2 gene was
identified for PH and NN at all three stages, while another
major locus, referred to as the Dt1 gene, was determined
at the last stage by both methods. Most loci were mainly
detected at only one or two of the examined developmental
stages. The dynamic PH and NN was controlled by a set
of specific loci and a few common loci in summer planting
soybeans.
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TABLE 4 | QTNs associated with NN via mrMLM in the SBL population.

QTN Chr SNP Allele MAF Position (bp) QTN effect LOD score R2 Known QTL

qNN1-2-1 2 Gm02_5017572 G/A 0.48 5017572 0.25 7.62 0.07

qNN1-4-1a 4 Gm04_46680158 T/C 0.10 46680158 −0.37 7.84 0.05

qNN1-5-1 5 Gm05_27229418 A/G 0.32 27229418 0.22 3.62 0.04

qNN1-6-1 6 Gm06_43710729 G/A 0.27 43710729 −0.26 3.90 0.05 1-3,1-4,2-1

qNN1-10-1b 10 Gm10_44346474 A/T 0.41 44346474 0.27 8.56 0.07 E2

qNN1-10-2 10 Gm10_45479097 C/T 0.11 45479097 −0.42 6.69 0.07

qNN1-14-1 14 Gm14_1243675 A/G 0.21 1243675 0.20 4.48 0.03

qNN1-15-1 15 Gm15_7957092 T/G 0.31 7957092 −0.25 5.99 0.06

qNN1-17-1 17 Gm17_38445432 T/G 0.23 38445432 0.18 3.93 0.02

qNN1-17-2 17 Gm17_38559614 T/C 0.07 38559614 −0.28 3.24 0.02

qNN1-19-1 19 Gm19_2487047 C/T 0.11 2487047 −0.27 3.60 0.03

qNN2-4-2 4 Gm04_9024569 T/C 0.39 9024569 0.16 8.26 0.07 5-1

qNN2-6-2 6 Gm06_14119587 C/T 0.06 14119587 0.18 3.28 0.02 7-2

qNN2-6-3 6 Gm06_17601986 C/A 0.18 17601986 −0.18 6.57 0.06 7-2

qNN2-6-4 6 Gm06_41843359 C/A 0.45 41843359 −0.09 3.02 0.02 1-3,1-4,2-1

qNN2-8-1 8 Gm08_18313651 T/A 0.17 18313651 0.13 4.01 0.03

qNN2-10-3 10 Gm10_4827909 G/A 0.08 4827909 −0.16 4.01 0.03

qNN2-10-1 10 Gm10_44378814 T/C 0.41 44378814 0.12 4.39 0.04 E2

qNN2-12-1 12 Gm12_8229718 C/T 0.23 8229718 0.11 3.08 0.02

qNN2-13-1 13 Gm13_7126248 C/A 0.42 7126248 0.13 6.71 0.05 1-6

qNN2-13-3 13 Gm13_38510582 T/G 0.13 38510582 0.14 3.73 0.02

qNN2-14-1 14 Gm14_1243675 A/G 0.21 1243675 0.12 3.99 0.03

qNN2-14-2 14 Gm14_1557061 C/T 0.20 1557061 0.12 3.06 0.03

qNN2-18-1 18 Gm18_8519411 C/T 0.34 8519411 0.16 6.78 0.07

qNN2-19-2 19 Gm19_45415096 C/A 0.20 45415096 0.15 4.77 0.04

qNN2-20-1 20 Gm20_40247542 G/A 0.32 40247542 0.09 3.24 0.02

qNN3-6-5 6 Gm06_50072605 A/G 0.46 50072605 0.05 5.68 0.04 1-3

qNN3-10-1 10 Gm10_44346474 A/T 0.41 44346474 0.09 11.42 0.11 E2

qNN3-11-1 11 Gm11_8556480 G/A 0.22 8556480 −0.08 6.94 0.06 3-3,3-4,3-5,3-6

qNN3-13-2 13 Gm13_6859748 A/G 0.46 6859748 0.05 5.09 0.03 1-6

qNN3-13-3 13 Gm13_38510582 T/G 0.13 38510582 0.08 4.30 0.03

qNN3-14-3 14 Gm14_11281151 T/C 0.40 11281151 0.08 7.22 0.08

qNN3-16-1 16 Gm16_27302091 A/T 0.18 27302091 0.06 4.28 0.03

qNN3-19-3 19 Gm19_44938780 C/T 0.35 44938780 −0.09 9.66 0.09 Dt1

aThe QTNs identified for NN at the same stage by both methods are underlined in Table. bThe QTNs identified for NN at least two stages are displayed in bold in Table.

FIGURE 6 | Venn diagrams for loci associated with PH (A) and NN (B) over three stages.
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Understanding the genetic function of the forage quality-related traits, including crude

protein (CP), neutral detergent fiber (NDF), acid detergent fiber (ADF), hemicellulose

(HC), and cellulose (CL) contents, is essential for the identification of forage quality

genes and selection of effective molecular markers in sorghum. In this study, we

genotyped 245 sorghum accessions by 85,585 single-nucleotide polymorphisms (SNPs)

and obtained the phenotypic data from four environments. The SNPs and phenotypic

data were applied to multi-locus genome-wide association studies (GWAS) with the

mrMLM software. A total of 42 SNPs were identified to be associated with the five

forage quality-related traits. Moreover, three and two quantitative trait nucleotides (QTNs)

were simultaneously detected among them by three and two multi-locus methods,

respectively. One QTN on chromosome 5 was found to be associated simultaneously

with CP, NDF, and ADF. Furthermore, 3, 2, 2, 5, and 2 candidate genes were identified

to be responsible for CP, NDF, ADF, HC, and CL contents, respectively. These results

provided insightful information of the forage quality-related traits and would facilitate the

genetic improvement of sorghum forage quality in the future.

Keywords: sorghum, GWAS, forage quality-related traits, mrMLM, QTNs

INTRODUCTION

Sorghum (Sorghum bicolor L.) is a popular crop worldwide, which is used a food source, animal
fodder, and raw material for alcoholic beverages and biofuels in industries (Paterson et al., 2009).
Most of the important agronomic traits are genetically controlled by quantitative trait loci (QTLs)
(Zou et al., 2012; Boyles et al., 2017). For example, the forage quality is an important quantitative
trait. Thus, understanding their genetic mechanism is essential for identifying the candidate genes
and selecting effective molecular markers in sorghum breeding.

The forage digestibility and crude protein (CP) content are the main focus for forage sorghum
breeding (Murray et al., 2008). Forage digestibility is mainly determined by the cellulose (CL),
hemicellulose (HC), and lignin contents (Wang H. et al., 2016), which are important components
of the neutral detergent fiber (NDF). On the other hand, acid detergent fiber (ADF) is a portion
of sorghum fiber and is obtained from acid detergent-treated forage. The two types of fibers, NDF
and ADF, are the two vital components of forage digestibility. Recently, the forage quality traits
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have been studied in sorghum and some related QTLs have been
identified (Murray et al., 2008; Shiringani and Friedt, 2011; Li
et al., 2015). However, these identified QTLs were observed to
be less sensitive due to the limitation of linkage analysis based on
bi-parental mapping populations.

Compared with the linkage analysis of bi-parental mapping
populations, genome-wide association studies (GWAS), which
is based on linkage disequilibrium (LD) and provided sufficient
genetic background information, have become a powerful
alternative for the investigation of quantitative traits. There
are three main strategies for GWAS. Firstly, a generalized
linear model (GLM) was proposed for the genetic analysis
of the quantitative traits (Price et al., 2006), but it did not
effectively control the polygenic background. Secondly, a mixed
linear model (MLM) was elaborated to take into account
the population structure and polygenic background using the
pedigree relationship or marker information (Zhang et al., 2005;
Yu et al., 2006). These methods involve a large calculation burden
due to the tremendous number of existing markers. Therefore,
a series of rapid detection methods were finally developed, such
as EMMA (Kang et al., 2008), FaST-LMM (Lippert et al., 2011),
GRAMMAR-Gamma (Svishcheva et al., 2012), ECMLM (Li et al.,
2014), SUPER (Wang et al., 2014), BOLT-LMM (Loh et al.,
2015), and FarmCPU (Liu et al., 2016). Although the above
methods have been widely adopted, the complex traits controlled
by multiple QTNs could not be effectively identified. To address
this issue, Zhang’s group has developed a series of multi-locus
GWAS methods, including mrMLM (Wang S. B. et al., 2016),
FASTmrMLM (Tamba et al., 2017), FASTmrEMMA (Wen et al.,
2017), ISIS EM-BLASSO (Tamba et al., 2017), pLARmEB (Zhang
et al., 2017), and pKWmEB (Ren et al., 2018).

In our study, we utilized the advantageous multi-locus GWAS
to investigate the sorghum forage quality-related traits. We
genotyped 245 sorghum accessions by using 85,585 single-
nucleotide polymorphisms (SNPs) and phenotyped them in the
four environments. The data were analyzed by the multi-locus
GWAS software, mrMLM.

MATERIALS AND METHODS

Plant Materials
The 245 sorghum accessions (Table S1) included 238 mini-core
collection sorghum and 7 breeding varieties. These accessions
were planted in the Fengyang campus of Anhui Science and
Technology University (Fengyang, China, 32◦52′ N, 177◦33′ E)
and Tengqiao town of Hainan Province (Tengqiao, China, 18◦24′

N, 109◦45′ E) in 2015 and 2016. All the experiments in the four
environments used a completely randomized block design with
three replicates. The aboveground parts were harvested when
70% accessions were at the heading stage. The harvested plants
were dried at 75◦C for three days. The plant material was then
milled using a grinder and filtered using a 0.5mm sieve.

Phenotypic Trait Evaluation and Data
Analysis
Seven hundred and thirty-five sorghum samples (3 replicates)
were measured for CP, CL, HC, NDF, and ADF using the

traditional chemical methods, and simultaneously scanned for
near-infrared (NIR) spectra with an AntarisTM II FT-NIR
Analyzer (Thermo, USA). A model was established using TQ
Analyst software based on the NIR spectra and the results
of the chemical analysis. The samples were then scanned for
NIR spectra, and their CP, CL, HC, NDF, and ADF were
calculated using the model. The mean of the phenotypic data
and the correlation coefficients were calculated using Microsoft
Excel.

DNA Extraction and RAD Sequencing
Total DNA was extracted using the DNAsecure Plant Kit
(Qiagen, Cat.No. DP320). All the samples were standardized
to 50 ng/µL, and 10 µL of each sample was digested with
the enzymes, PstI (CTGCAG) and MspI (CCGG), at 37◦C for
2 h and then at 65◦C for 20min. The digested samples were
ligated with the adapters from Illumina (San Diego, CA, USA).
The ligated samples were then pooled using the same volume
(10 µL) for PCR-amplification in a single tube. The fragment
length was analyzed using a Bioanalyzer (Agilent), and the PCR
products were quantified by a Qubit3.0 fluorometer (Invitrogen).
The GBS library was run on an Illumina Hiseq2500 (San Diego,
CA, USA).

RAD-seq Data and Population Structure
Analysis
The sequencing reads of the 245 samples were extracted from the
raw data of RAD-seq and filtered by using fastx_barcode_splitter
and fastq_quality_filter with parameters (-q 20 -p 80 -Q 33) of
fastx_toolkit-0.0.13.2 (http://hannonlab.cshl.edu/fastx_toolkit/).
The high-quality sequencing data were aligned using BWAMEM
(Li and Durbin, 2009). The software—samtools, mpileup, and
bcftools (Li et al., 2009), were then used to call the SNPs
from the alignment files of the 245 samples; these were kept
as the genotype of the sorghum population. These genotypic
data were used to calculate the population structure using the
fastSTRUCTURE software (Raj et al., 2014).

Genome-Wide Association Studies
The GWAS for the five forage quality-related traits (CP,
CL, HC, NDF, and ADF) was performed using six methods,
including mrMLM, FASTmrMLM, FASTmrEMMA, pLARmEB,
pKWmEB, and ISIS EM-BLASSO in the mrMLM software. The
main model used in this study in the mrMLM software is as
follows :y = Wα +Xβ +Zu+ ε , where y is an n× 1 phenotypic
vector of quantitative traits, and n is the number of accessions.
W = (ω1,ω2, · · · ,ωc) is an n × c matrix of covariates (fixed
effects), including a column vector of 1; the population structure
or principal components can be incorporated into W . Moving
on, α is a c× 1 vector of fixed effects, including the intercept,
and X is an n× 1 vector of marker genotypes. β ∼N(0, σ 2

β
)is the

random effect of putative QTN. Z is an n × m design matrix,
and u∼MVNm(0, σ 2

g K) is an m × 1 vector of polygenic effects.

K is a known n × n relatedness matrix. ε∼MVN(0, σ 2
e In) is an

n × 1 vector of residual errors, and σ
2
e is residual variance. In is

an n × n identity matrix, andMVN denotes multivariate normal
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distribution. An LOD score of 3 was used as the critical threshold
for significant QTNs for all the six methods.

Identification of Candidate Genes
Genes that were hit directly by the associated QTNs within a
50-kb stretch were selected to choose the candidate genes as
described in Upadhyaya et al. (2016). The physical locations
of the QTNs were recorded according to the assembly
genome (Sorghum_bicolor_NCBIv3) and the annotation GFF
file (https://www.ncbi.nlm.nih.gov/genome/108). The detailed
functions of the corresponding genes were annotated by
performing BLASTP search at the NCBI website, and the
candidate genes were assigned to different biological processes
based on the function of their homologs in other species in
literature or with the help of data in the Conserved Domains
Database. The selected candidate genes were associated with the
main QTNs of the five traits if they made a contribution (r2)
greater than 5%.

RESULTS

Phenotype Analysis
Extensive phenotypic variations of CP, CL, HC, NDF, and
ADF were observed in the 245 sorghum samples in the four
environments, including two locations in 2 years (Fengyang
and Tengqiao in 2015 and 2016, Table 1). The variation range
of the five traits was 1.5 to 3.5-fold: the phenotype values
of the CP content were 3.80 to 13.24% with 2.5 to 3.5-fold
variation. The NDF content varied from 0.38 to 0.75 g/g with

1.5 to 1.9-fold variation, while the ADF content varied from
0.18 to 0.52 g/g with a 1.8 to 2.2-fold variation. Lastly, the
HC and CL contents varied from 0.14 to 0.42 g/g and 0.12
to 0.45 g/g with 1.6 to 2.2-fold and 1.8 to 2.8-fold variations,
respectively.

The correlation coefficients between a pair of traits were
assessed. It was revealed that there were significant and positive
correlations between ADF, NDF, CL, and HC. However, they
correlated significantly but negatively with the CP phenotype,
except for HC in 2015fy, 2015hn, and 2016fy and NDF in the
2016fy environments (Table S2). These results indicated that the
four traits of ADF, NDF, HC, and CL could be genetically linked
or that some genes could play pleiotropic roles in controlling
these phenotypes.

RAD-Seq Genotyping And Population
Structure
A total of 85,585 SNPs were identified in the genotypes of the
245 accessions using RAD-seq (Table 2). Chromosome 1 had the
most SNP markers (11,719), while chromosome 10 had the least
(5,994). The highest SNP density was observed on chromosome
3 with 1.5 SNP markers per 10 kb, whereas the lowest density was
on chromosome 7 with 0.9 SNP markers per 10 kb. The average
density was 1.2 markers per 10 kb. Altogether, the genotyping
results were of high quality in this research. The population
structure was analyzed using the fastSTRUCTURE software.
The results showed that the best value for the number of sub-
populations was 5 (Figure 1), which was selected to perform
further GWAS analysis.

TABLE 1 | The statistical description for CP, CL, HC, NDF, and ADF in 245 sorghum accessions in the four environments.

Trait-environment Mean Range SD CV (%)

CP-2015fy 5.9005 3.25–11.25 0.950 16.10

CP-2015hn 8.5280 4.82–12.86 0.892 10.46

CP-2016fy 6.1888 3.80–10.41 0.640 10.34

CP-2016hn 8.7070 5.24–13.24 0.953 10.95

CL-2015fy 0.3219 0.1993–0.4504 0.0463 14.38

CL-2015hn 0.2787 0.1632–0.3914 0.0374 13.42

CL-2016fy 0.3115 0.2125–0.3851 0.0285 9.15

CL-2016hn 0.2661 0.1210–0.3453 0.0351 13.19

HC-2015fy 0.2592 0.1951–0.4165 0.0271 10.46

HC-2015hn 0.2653 0.1501–0.3298 0.0277 10.44

HC-2016fy 0.2365 0.1816–0.2992 0.0219 9.26

HC-2016hn 0.2613 0.1437–0.3185 0.0238 9.11

NDF-2015fy 0.6463 0.4327–0.7513 0.0692 10.71

NDF-2015hn 0.5999 0.3839–0.7414 0.0576 9.60

NDF-2016fy 0.6115 0.4734–0.7198 0.0434 7.10

NDF-2016hn 0.6024 0.4431–0.7282 0.0716 11.89

ADF-2015fy 0.3870 0.2376–0.5208 0.5340 13.80

ADF-2015hn 0.3341 0.2148–0.4687 0.0433 12.96

ADF-2016fy 0.3750 0.2501–0.4504 0.0382 10.19

ADF-2016hn 0.3124 0.1817–0.4096 0.0355 11.36

The unit of CP is % and that of the other four traits is g/g. Two locations: Fengyang (fy) and Tengqiao (hn); 2 years: 2015 and 2016.
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GWAS Using Six Multi-Locus Methods
Six methods in the mrMLM software were used for the detection
of QTNs. A total of 42 significant QTNs were detected for the
five forage quality-related traits (CP, CL, HC, NDF, and ADF)
across the four environments using six methods (Table 3). There
were 5, 3, 3, 24, and 7 QTNs that were associated with CP, CL,
HC, NDF, and ADF, respectively. Each trait was controlled by
multiple QTNs. The 5 SNPs associated with the CP content were
identified on chromosomes 2, 5, 7, and 9. The 3 SNPs associated
with the CL content were present on chromosomes 2, 5, and 8,
while the 3 SNPs associated with the HC content were located
on chromosomes 1 and 9. The 24 SNPs associated with NDF
were present on chromosomes 1, 2, 6, 7, 8, 9, and 10. Lastly,
the 7 SNPs associated with the ADF content were present on
chromosomes 3, 4, 5, 8, and 10. Among these QTNs, there were
4 significant QTNs, each of which was responsive for more than
one trait. The three traits of ADF, CL, and NDF were associated
with one QTN on chromosome 5 (RSS50197); both CL and
NDF were associated with two QTNs (RSS21890 and RSS76122);
ADF and CL were associated with one QTN (RSS68908) on
chromosome 8.

Among the above six methods, pLARmEB was the most
powerful and accountable for the identification of the 24 QTNs
that mainly contributed to the NDF content trait (17 QTNs);
however, their contributions were less than what were detected
by other methods, except for one major QTN (RSS17673), whose
contribution was greater than 5% (Table 3). The other methods
of PKWmEB, ISIS EM-BLASSO, FASTmrMLM, mrMLM, and
FASTmrEMA identified 12, 8, 8, 1, and 1 QTNs, respectively.
About 43% (13 of 30) of these SNPs included the major QTNs
(r2 > 5%). Besides, 3 QTNs (RSS50197, RSS21890, and RSS1510)
were detected simultaneously by 3 methods, and another 5 QTNs
(RSS35476, RSS83457, RSS76122, RSS22092, and RSS17673) were
identified simultaneously by 2 methods. The remaining QTNs
were detected by a single method, but most of them were
considered as reliable because of the high thresholds at which
they were detected.

Identification of Candidate Genes
The assembled sorghum genome and the annotation file from
NCBI were used to annotate the genes associated with the
significant QTNs. There were 14 candidate genes for five forage
quality-related traits. The NDF and CP content traits were
associated with five and three candidate genes, respectively.
The remaining 6 genes were related to the CL, HC, and ADF
content traits with each trait being associated with two genes
(Table 4).

For the CP content trait, one candidate gene that was
associated with the major QTN (RSS17673) encoded a
serine/threonine-protein kinase (Sobic.002G217100), which
was consistent with a previous study that concluded that
serine/threonine-protein kinases are involved in signal cascade
for nitrogen metabolism in plants (Champigny, 1995). Besides,
two candidate genes were identified for the CP content on
chromosomes 2 and 5 with one gene encoding a cysteine
proteinase and the other encoding an uncharacterized protein. In
addition, one main QTN associated with the CL content trait on

TABLE 2 | Number of SNPs on the 10 chromosomes of sorghum.

Chromosome Length (kb) No. of SNPs SNP density (SNP/10 kb)

1 80884.392 11,719 1.4

2 77742.459 11,040 1.4

3 74386.277 11,181 1.5

4 68658.214 8,900 1.3

5 71854.699 7,958 1.1

6 61277.060 8,266 1.3

7 65505.356 6,086 0.9

8 62686.529 6,731 1.1

9 59416.394 7,710 1.3

10 61233.695 5,994 1

chromosome 2 was identified, and the associated candidate gene
encoded a kinesin-like protein. The kinesin protein is reported to
be involved in the deposition of CL during secondary growth of
fiber cells in Arabidopsis (Kong et al., 2015). Furthermore, 5main
QTNs were detected in association with the NDF content; two
of these (RSS21890 and RSS50197) were co-localized with those
for the CL content trait. Therefore, the same two candidate genes
were identified for the NDF and CL content (Sobic.005G215300
and Sobic.002G390800). For the ADF content trait, 2 main QTNs
were detected on chromosomes 3 and 10, where both candidate
genes encoded a bHLH transcription factor (Sobic.003G272200
and Sobic.010G172100).

DISCUSSION

Genome-wide association study is an important alternative for
mapping quantitative traits. It has been applied rapidly and
extensively in plant research. These methods have been widely
adopted, but only a few QTNs for each complex trait have been
identified. In this study, we implemented the latest multi-locus
GWAS methods available in mrMLM (Wang S. B. et al., 2016;
Tamba et al., 2017; Wen et al., 2017; Zhang et al., 2017; Ren
et al., 2018), which can effectively overcome the above issue and
actively detect the QTNs associated with the quantitative traits.
Six methods in the mrMLM software were used to identify the
QTNs of five forage quality-related traits in sorghum. Of these
methods, pLARmEB detected the most significant QTNs, but
most of them contributed insignificantly to heritability (Table 3).
Most of the significant QTNs associated with the NDF content,
detected using pLARmEB, were observed to be in the 2015hn
(13 QTNs) and 2015fy (4 QTNs) environments (Table 3). This
result might be associated with the range of values for this
phenotypic trait (Table 1) and the difference of environments
between Hainan Tengqiao (18◦24′ N, 109◦45′ E) and Anhui
Fengyang (32◦52′ N, 177◦33′ E). The range of NDF-2015hn and
NDF-2015fy was 0.36 and 0.32, which was higher than that in
2016hn (0.28) and 2016fy (0.25), respectively (Table 1). Similar
conclusions can be drawn for other traits. It means that the
greater the difference in phenotype, the more favorable it is for
the detection of the associated QTNs. Hainan and Anhui are
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FIGURE 1 | Population structure of the 245 sorghum accessions.

located in the tropics and subtropics, respectively, where the
environment is particularly different in different climatic zones.
The previous study has revealed that the climatic conditions,
including temperature, water availability, and soil, are important
factors which affect the forage quality of sorghum (Hussin et al.,
2007). In our study, the QTN RSS50197 associated with the
ADF, CL, and NDF traits was uniquely detected in the same
environment of 2015fy by using three GWAS methods. The
above results revealed the influence of environment in QTN
detection. However, the latest methods of multi-locus GWAS
applied in our study are currently unable to detect the QTN-by-
environment interaction. Thus, we hope that in the future new
methods can be developed by the theoretical researchers.

According to the GWAS analysis, 5, 3, 3, 7, and 24 QTNs were
identified for CP, CL, HC, ADF, and NDF content, respectively.
Of the 5 candidate loci for the CP content, 2 were already
identified in the previous studies. The locus on chromosome 9
was mapped in the same region by Murray et al. (2008) and Li
et al. (2015) in sorghum as well. Of the 3 candidate loci for the CL
content, 2 were identified in the same region on chromosomes 2
and 8 by Murray et al. (2008) and Shiringani and Friedt (2011).
Similarly, of the 7 loci for the ADF content, 2 were mapped
on chromosome 4, which was in agreement with the report of
Shiringani and Friedt (2011). As for the 24 loci for the NDF
content, the 2 loci on chromosome 6 and 1 loci on chromosome
8 were also identified by Shiringani and Friedt (2011). More
importantly, several QTNs that were detected by the six methods
in this study were novel identifications for forage quality-related
traits in sorghum.

TheQTLs for theNDF or ADF content co-localized with those
for the CL or HC content, which has been reported previously

in sorghum. Cardinal et al. (2003) reported colocalization of
QTLs that are associated with the cell wall components, such as
lignin, NDF, and ADF in stalks of maize. Murray et al. (2008)
and Shiringani and Friedt (2011) also found colocalization of
QTLs associated with the CL, HC, NDF, and ADF content traits
in sorghum by QTL mapping. In this study, we detected 4 co-
localized QTNs: 1 for three traits and 3 for two traits. All of
these QTNs were associated with NDF or ADF and with CL
or HC. NDF is mainly composed of CL, HC, and lignin, while
ADF is composed of CL and lignin. The difference between
NDF and ADF is whether they have HC as a component or
not. Furthermore, we found that NDF and ADF significantly
correlated with CL or HC. It is reasonable that these QTNs were
co-localized.

Both NDF and ADF include CL and lignin. There are a
series of reports about the biosynthesis and signaling pathways
of CL and lignin in plants (Kim et al., 2013; McNamara et al.,
2015; Yoon et al., 2015; Chezem and Clay, 2016). In this
study, we identified 5 and 2 candidate genes for the NDF and
ADF content traits, respectively. Of these candidate genes, 1
gene (Sobic.001G378300) encoded a sucrose synthase, which
is an integral component of the CL synthesis mechanism.
Gerber et al. (2014) reported that deficient sucrose synthase
activity in developing wood does not specifically affect the
CL biosynthesis but causes an overall decrease in the cell wall
polymers. Furthermore, Poovaiah et al. (2014) reported
that the lignin content increases in all the transgenic
switchgrass lines, where sucrose synthase (PvSUS1) was
overexpressed.

Lignin, CL, and HC are the main components of secondary
cell walls (Zhong et al., 2011). Secondary cell wall biosynthesis
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TABLE 3 | QTNs for CP, CL, HC, NDF, and ADF in the four environments using six multi-locus GWAS methods.

Trait QTN Chr Pos (bp) Environment GWAS

Method Effect LOD r2 (%)

CP RSS17673 2 60877961 2016hn pKWmEB pLARmEB −0.7575 −0.0014 5.11 5.11 10.89 2.87E-05

RSS22092 2 74893615 2015fy pKWmEB pLARmEB −0.9453 −0.0014 4.17 3.31 9.37 1.28E-05

RSS48493 5 65128246 2016hn FASTmrEMMA 3.0389 4.56 5.82

RSS62628 7 56446694 2016hn EM_BLASSO −0.8022 3.95 4.53

RSS72060 9 564198 2015hn pLARmEB 0.002 3.63 3.61E-05

CL RSS21890 2 74389054 2015hn FASTmrMLM EM_BLASSO pKWmEB 0.0259 0.026 0.026 3.99 4.49 4.75 10.58 10.62 14.85

RSS50197 5 70141003 2015fy FASTmrMLM pKWmEB 3.05E-05 3.45E-05 3.17 3.17 5.77E-06 6.08

RSS68908 8 52710244 2016hn pLARmEB −0.0017 3.47 1.42E-02

HC RSS1510 1 7334364 2015hn FASTmrMLM EM_BLASSO pKWmEB 0.0273 0.0265 0.0265 5.32 5.36 5.36 7.70 7.27 10.37

RSS3431 1 16641334 2016hn EM_BLASSO −2.06E-05 3.14 3.55E-06

RSS76122 9 48549474 2016hn FASTmrMLM pKWmEB 0.025 0.026 4.93 3.33 5.24 7.74

NDF RSS973 1 5021420 2015fy pLARmEB −0.0011 9.61 9.00E-04

RSS2859 1 12968078 2015hn pLARmEB 0.0031 4.49 1.47E-02

RSS3945 1 19028439 2015hn pLARmEB −0.001 5.26 6.00E-04

RSS4300 1 21729035 2015fy FASTmrMLM −5.22E-05 3.91 5.72E-06

RSS7796 1 66643031 2015hn EM_BLASSO 0.0435 4.12 10.89

RSS14238 2 9529690 2015hn pLARmEB 0.0011 4.50 1.17E-03

RSS21890 2 74389054 2015hn pKWmEB 0.0419 4.80 15.72

RSS44026 5 4665028 2015fy FASTmrMLM −1.00E-04 3.70 2.00E-04

RSS50197 5 70141003 2015fy pKWmEB 0.0428 4.58 7.07

RSS54219 6 47408694 2015hn pLARmEB 0.0014 3.37 1.58E-03

RSS55031 6 49852623 2015hn pLARmEB −0.0013 4.35 1.24E-03

RSS58234 6 58636709 2015fy pLARmEB 0.002 3.80 1.89E-03

RSS61032 7 8098766 2015hn pLARmEB 0.0019 4.07 2.19E-03

RSS65142 7 65417969 2015hn pLARmEB 0.003 3.17 7.65E-03

RSS65800 8 2362643 2015hn pLARmEB 0.0012 3.64 1.15E-03

RSS65801 8 2362646 2015hn pLARmEB 0.0011 3.77 8.00E-04

RSS66600 8 5538354 2015hn pLARmEB 0.0017 3.28 2.12E-03

RSS68217 8 48827265 2015hn pLARmEB 0.0016 3.90 2.12E-03

RSS70856 8 60604340 2015fy pKWmEB 0.044 4.08 7.77

RSS72128 9 886296 2015hn pLARmEB 0.0013 3.46 5.00E-04

RSS72803 9 2831721 2015fy pLARmEB 0.002 3.61 4.72E-03

RSS76122 9 48549474 2016hn pKWmEB 0.0302 3.87 5.99

RSS79370 9 58586399 2015fy pLARmEB −0.0037 3.76 1.33E-02

RSS81889 10 12257429 2015hn pLARmEB −0.0012 3.15 2.21E-03

ADF RSS29915 3 60813170 2015fy mrMLM 0.0763 4.41 20.24

RSS35476 4 6415156 2015hn EM_BLASSO pKWmEB −0.0159 −9.00E-04 3.27 3.38 2.98 4.43

RSS40375 4 60973382 2015hn EM_BLASSO 0.0144 3.51 3.09

RSS50197 5 70141003 2015fy FASTmrMLM EM_BLASSO pLARmEB 0.0292 0.0292 0.0032 4.42 4.42 3.64 3.97 3.97 4.91E-02

RSS68908 8 52710244 2016hn pLARmEB −0.0018 3.44 1.41E-02

RSS79627 10 386174 2015fy pLARmEB 0.0047 3.10 0.28

RSS83457 10 50561994 2015hn FASTmrMLM pKWmEB 0.0178 0.0175 3.15 3.26 4.25 7.09

is positively regulated by NAD and MYB transcription factors
(Zhong and Ye, 2014; Chezem and Clay, 2016). Moreover,
studies have also identified several transcription factors (e.g.,
WRKY, ERF, and bHLH) that regulate the biosynthesis of
secondary walls (Kim et al., 2013; Taylor-Teeples et al., 2015;
Chezem and Clay, 2016). In this study, we identified a candidate

gene encoding a bHLH transcription factor for CL and two
bHLH genes for ADF. These transcription factors might also
be involved in the regulation of CL or lignin biosynthesis. The
function of the candidate genes identified in this work needs
to be studied further by transformation experiments in the
future.
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TABLE 4 | Candidate genes for CP, CL, HC, NDF, and ADF traits.

Trait Chr. QTNs Start End Gene Function

CP 2 RSS17673 60921089 60923833 Sobic.002G217100 Serine/threonine-protein kinase

2 RSS22092 74887469 74892115 Sobic.002G397001 Cysteine proteinase

5 RSS48493 65140867 65142310 Sobic.005G171700 Uncharacterized protein

CL 2 RSS21890 74372243 74384041 Sobic.002G390800 Kinesin-like protein

5 RSS50197 70130797 70134481 Sobic.005G215300 Laccase-15

HC 1 RSS1510 7364358 7367682 Sobic.001G095700 Transcription factor bHLH

9 RSS76122 48547319 48550332 Sobic.009G132000 Uncharacterized protein

NDF 1 RSS7796 66642749 66650461 Sobic.001G378300 Sucrose synthase

2 RSS21890 74372243 74384041 Sobic.002G390800 Kinesin-like protein

5 RSS50197 70130797 70134481 Sobic.005G215300 Laccase-15

8 RSS70856 60570342 60574129 Sobic.008G172200 Transcription factor TCP

9 RSS76122 48547319 48550332 Sobic.009G132000 Uncharacterized protein

ADF 3 RSS29915 60842731 60844801 Sobic.003G272200 Transcription factor bHLH

10 RSS83457 50554160 50558010 Sobic.010G172100 Transcription factor bHLH
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Photosynthesis is the basis of plant growth and development, and is seriously affected

by low phosphorus (P) stress. However, few studies have reported for the genetic

foundation of photosynthetic response to low P stress in soybean. To address

this issue, 219 soybean accessions were genotyped by 292,035 high-quality single

nucleotide polymorphisms (SNPs) and phenotyped under normal and low P conditions

in 2015 and 2016. These datasets were used to identify quantitative trait nucleotides

(QTNs) for photosynthesis-related traits using mrMLM, ISIS EM-BLASSO, pLARmEB,

FASTmrMLM, FASTmrEMMA, and pKWmEB methods. As a result, 159 QTNs within

31 genomic regions were found to be associated with four photosynthesis-related traits

under different P stress conditions. Among the 31 associated regions, five (q7-2, q8-1,

q9, q13-1, and q20-2) were detected commonly under both normal and low P conditions,

indicating the insensitivity of these candidate genes to low P stress; five were detected

only under normal P condition, indicating the sensitivity of these candidate genes to low P

stress; six were detected only under low P condition, indicating the tolerantness of these

candidate genes to low P stress; 20 were reported in previous studies. Around the 159

QTNs, 52 candidate genes were mined. These results provide the important information

for marker-assisted breeding in soybean and further reveal the basis for the application

of P tolerance to photosynthetic capacity.

Keywords: soybean, photosynthesis-related traits, phosphorus efficiency, multi-locus GWAS, QTNs, candidate

gene, mrMLM

INTRODUCTION

Phosphorus (P) is one of the main factors for plant growth because of its influence on cellular
phosphorylation events and the synthesis of DNA and RNA (Johnston et al., 2000; Khan et al.,
2009; Zhang et al., 2014b; Li et al., 2016). Nevertheless, the availability of P in soil is limited owing
to the formation of organic P complexes and the fixation of P by aluminum and ferrum oxides
(Vance et al., 2003; Wang et al., 2010). In the past decade, enormous efforts have been made in
the dissection of the genetic mechanisms for soybean P efficiency by evaluating factors such as P
concentration, root architecture (Ao et al., 2010), biomass (Li et al., 2005), and phosphatase activity
(Zhang et al., 2009). Although a series of quantitative trait loci (QTLs) across all 20 chromosomes
on the genome have been found to be associated with P efficiency in soybean (SoyBase, https://
soybase.org), QTLs underlying photosynthetic response to low P stress have rarely been studied.
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Plant productivity relies on photosynthesis, which is sensitive
to low P stress (Veneklaas et al., 2012). A number of
QTLs associated with photosynthesis-related traits have been
detected (Yin et al., 2010a,b; Hao et al., 2012). However, the
situation under the low P stress has not been considered.
Recently, linkage mapping studies showed a significant genetic
relationship between P efficiency and photosynthesis-related
traits, such as net photosynthetic rate and transpiration rate
(Li et al., 2016). In soybean, however, both the P efficiency
and photosynthesis-related traits are complex quantitative traits
controlled by polygenes, and most of them are genotype-specific
and environment-sensitive. So far, no pleiotropic QTL for the two
traits have been reported, mainly because of the relatively low
mapping resolution and smaller allele effect sizes.

More recently, genome-wide association study (GWAS) has
a great advantage in the dissection of genetic basis of complex
traits over linkage analysis: GWAS leverages the greater number
of historical recombination events, a greater number of alleles,
and broader genetic variation (Yu and Buckler, 2006). Up to now
this approach was widely used in multiple crops, for instance, in
rice (Huang et al., 2012), soybean (Zhang et al., 2014a,b), maize
(Mao et al., 2015; Wang et al., 2016c), and Arabidopsis thaliana
(van Rooijen et al., 2017).

The most popular method for GWAS is mixed linear model
(MLM) method (Zhang et al., 2005; Yu and Buckler, 2006). In
the past decade, many MLM-based methods have been proposed
to improve computational efficiency, such as CMLM (Zhang
et al., 2010) and ECMLM (Li et al., 2014). However, these models
are one-dimensional genome scan, which need the correction
for multiple tests. The typical Bonferroni correction is often
too conservative to identify many important loci with small
effects. To address this problem, Wang et al. (2016b) proposed
a multi-locus random-SNP-effect mixed linear model (mrMLM)
method without Bonferroni correction. And then, a series of
multi-locus GWAS methods have been proposed, such as ISIS
EM-BLASSO (Tamba et al., 2017), pLARmEB (Zhang et al.,
2017), FASTmrEMMA (Wen et al., 2018), FASTmrMLM (Tamba
and Zhang, 2018), and pKWmEB (Ren et al., 2018). These
methods not only improve the power and accuracy of GWAS
but also identify the small-effect quantitative trait nucleotides
(QTNs).

To reveal the genetic basis of photosynthetic response to low
P stress in soybean, in this study, four photosynthesis-related
traits under two P levels were measured for seedling plants in
hydroponics across two environments, 219 soybean accessions
were genotyped by 292,035 high-quality SNPs from NJAU 355K
Soy SNP array described by Wang et al. (2016a), and the two
datasets were used to conduct GWAS for the above four traits.
Because of the relatively smaller allelic effects, multi-locus GWAS
methods as mentioned above, rather than common GWAS
methods based on single marker analysis with a fixed-SNP-effect
MLM, were adopted in this study.

Our objectives were: (i) to estimate the genetic variance and
heritability of four photosynthesis-related traits under different
P conditions; (ii) to investigate the correlations among the four
traits under different P levels; (iii) to detect QTNs associated with
the above four traits; and (iv) to predict their candidate genes.

MATERIALS AND METHODS

Plant Materials and Hydroponics
Experiments
The population for GWAS was comprised of 219 soybean
accessions (including 195 landraces and 24 elite varieties) derived
from 26 provinces within six ecological regions in China (latitude
53 to 24◦N and longitude 134 to 97◦E; Wang and Gai, 2002).
The 219 soybean accessions were grown hydroponically and
measured by two independent experiments in 2015 and 2016
(E1 and E2). Hydroponics experiments and phenotyping were
conducted as previously described by Li et al. (2016). The
controlled conditions of hydroponics was 28/20◦C day/night
temperature and 10 h light/14 h dark photoperiod in artificial
climate chambers. The surfaces of the seeds were sterilized
with chlorine, and then, the seeds were sprouted in sterile
vermiculite. Next, regular soybean seedlings, whose cotyledons
were expanded completely, were selected. Then, the selected
seedlings were moved intomodified one-half Hoagland’s nutrient
solution supplemented with 500µM P (normal P, KH2PO4) for
3 days. Finally, one half of the seedlings were transferred into
modified one-half Hoagland’s nutrient solution supplemented
with 5µM P (low P) for 14 days, and the other half remained
in the normal P condition as controls.

The photosynthesis-related traits assessed were net
photosynthetic rate (Pn, µmol·m2

·s−1), transpiration rate
(Tr, g·m2

·h−1), stomatal conductance (Co, mmol·m−2
· s−1),

and intercellular carbon dioxide concentration (Ci, µL·L−1)
under different P conditions (normal P, low P, and the ratio of
low/normal P were abbreviated as NP, LP, and L/NP, respectively)
in 2015 (E1) and 2016 (E2). A LI-6400 portable photosynthesis
system was used to measure the above four traits (Li Cor Inc.,
Lincoln, NE, USA). The phenotyping used the upper third leaf
of three plants, and three replicates were measured per plant.
All the traits were measured at the second trifoliolate stage. A
total of 12 characteristics were analyzed in this paper: PnNP,
PnLP, PnL/NP represent the net photosynthetic rates under
normal P, low P, and the ratios of low/normal P, respectively;
and TrNP, TrLP, TrL/NP, CoNP, CoLP, CoL/NP, CiNP, CiLP,
CiL/NP represent the transpiration rates, stomatal conductance
and intercellular carbon dioxide concentrations under normal P,
low P, and the ratios of low/normal P, respectively.

Genotyping and Statistical Analysis of the
Phenotypes
Two hundred and nineteen soybean accessions were genotyped
by 292,035 SNPs derived from NJAU 355K Soy SNP array
described by Wang et al. (2016a). In other words, there was one
SNP per 3.3 kb along the 20 soybean chromosomes. In the present
study, SNPs with minor allele frequency (MAF) < 0.05 were
deleted. Based on this rule, a total of 201,994 SNPs were used for
the GWAS.

The ANOVA of the phenotypic data was carried out using the
PROC GLM of SAS version 9.2 (SAS Institute, Cary, NC, USA).
Genotype and environment were treated as fixed and random,
respectively. The broad-sense heritability (h2) was calculated as:
h2 = σ

2
g /σ

2
p , where σ

2
g is the genotypic variance, σ

2
p is the

Frontiers in Plant Science | www.frontiersin.org August 2018 | Volume 9 | Article 122699

https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/plant-science#articles


Lü et al. Multi-Locus GAWS for Photosynthesis-Related Traits

FIGURE 1 | Histogram of the frequency distributions for the four

photosynthesis-related traits in soybean under L/NP condition in 2015 and

2016.

phenotypic variance. SPSS Statistics 19.0 (SPSS, Inc., Chicago, IL,
USA) was used to analyze the correlation coefficients among the
four photosynthesis-related traits under different P conditions in
the soybean.

Genome-Wide Association Studies and
Prediction of Candidate Genes
Population structure of the 219 soybean accessions each with
201,994 SNPs was calculated using the STRUCTURE package
(Pritchard et al., 2009). The relative kinship (K matrix) between a
pair of accessions was calculated using the R package mrMLM.
GWAS was performed by the R package mrMLM with six
multi-locus GWAS methods: mrMLM (Wang et al., 2016b), ISIS
EM-BLASSO (Tamba et al., 2017), pLARmEB (Zhang et al.,
2017), FASTmrEMMA (Wen et al., 2018), FASTmrMLM (Tamba
and Zhang, 2018), and pKWmEB (Ren et al., 2018). In order to
get more accurate candidate genes, markers that met the criterion
of LOD score ≥ 5 were considered to be significantly associated
with the traits.

To mine the candidate genes related to soybean
photosynthesis response to low P stress, the predicted genes
around significantly associated QTNs were identified based on
the annotation in the soybean reference genome (Wm82.a2.v1)
in Phytozome v10.3 (http://phytozome.net). Then, the genes with
known function annotations underlying soybean photosynthesis-
related traits under different P conditions were selected as
candidate genes. In addition, we also selected the previously
reported QTLs from soybase (https://soybase.org) in the
associated genomic regions.

RESULTS

Phenotype for Photosynthesis-Related
Traits
All the four traits under different P conditions showed
approximately normal distributions (Figure 1 and Figure S1).
However, the four traits under the L/NP condition were far
away from normal distributions, indicating the existence ofmajor
QTNs. The coefficients of variation for the four traits under
different P conditions ranged from 13.99∼69.22% (Table 1). The
analysis of variance showed the significant differences for the four
traits between genotypes and between environments. The last two
results indicated that it is suitable for this population to conduct
multi-locus GWAS.

To investigate the correlation among the four photosynthesis-
related traits, simple correlations were calculated based on the
average values of the two experiments (Table 2 and Table S2).
The results showed that Co was very significantly and positively
correlated with Tr [r = 0.886 (NP) or 0.924 (LP)]; Ci was very
significantly and positively correlated with Pn [r = 0.394 (NP) or
0.500 (LP)]; Pn was significantly and negatively correlated with
Tr and Co (r = −0.100 and −0.108), respectively, under normal
P condition; Tr was significantly and negatively correlated with
Ci (r =−0.167) under normal P condition (Table 2).

Multi-Locus Genome-Wide Association
Studies for Photosynthesis-Related Traits
A total of 201,994 SNPs were selected with MAF ≥ 0.05
from 292,053 high-quality SNPs. The selected SNPs were used
to determine the number of sub-populations (k) using the
software STRUCTURE. As a result, the k-value was 3. The above
information along with four photosynthesis-related traits under
different P conditions (NP, LP, and L/NP) in 2015 (E1) and
2016 (E2) was used to conduct multi-locus GWAS using package
mrMLM. For all the traits, QTNs within approximately 5Mb or
less were viewed as caused by one common gene (Visscher et al.,
1996; Öckinger et al., 2006; Swanson-Wagner et al., 2009; Wang
et al., 2012). As a result, a total of 31 associated regions comprised
of 159 QTNs across all the 20 soybean chromosomes, except the
2, 3, 4, 5, and 10 chromosomes, were significantly associated with
the related traits at the critical LOD ≥ 5 (Table 3 and Figure 2).
All the 31 associated regions were identified by at least three
methods. The full list of significant QTNs from the six multi-
locus GWAS methods is presented in Table S2. Among the 159
QTNs, the numbers of QTNs detected under NP, LP, and L/NP
conditions were 59, 64, and 66, respectively; while the numbers
of QTNs associated with Co, Tr, Ci, and Pn were 56, 54, 35, and
31, respectively (Table S2).

Most of the 31 associated regions were detected under bothNP
and LP conditions, including the QTNs on chromosomes 1, 6, 7,
8, 9, 13, 14, 15, 18, and 20. Five of them, q7-2, q8-1, q9, q13-1, and
q20-2were more representative than others. q13-1was associated
with the four photosynthesis-related traits, Pn, Tr, Co, and Ci.
q8-1 was associated with Tr, Co, and Pn. q9 was associated with
Tr, Co, and Ci. Additionally, q8-1 and q9 were associated with
Tr under the L/NP conditions. q7-2 was associated with Pn and
Ci under LP conditions, while it was also associated with Tr and
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TABLE 1 | Descriptive statistical results for photosynthesis-related traits of soybean under different P conditions.

P levela Trait Year Mean Stdev Skewness Kurtosis Minimum Maximum CV(%)b Genotype Environment h2(%)c

NP Pn 2015 15.66 6.87 0.83 −0.25 3.06 34.38 43.8 ** ** 81.32

2016 19.00 7.54 0.51 −0.97 4.89 36.17 39.68

Tr 2015 3.11 1.61 1.58 3.62 0.85 10.67 51.82 ** ** 72.33

2016 4.79 2.51 0.46 −0.70 1.01 10.73 52.45

Co 2015 0.15 0.08 0.78 0.28 0.03 0.39 53.24 ** ** 78.66

2016 0.20 0.12 0.80 0.39 0.04 0.67 58.07

Ci 2015 391.97 138.66 1.54 3.11 131.02 972.15 35.37 ** ** 74.45

2016 301.55 43.09 0.29 2.68 131.02 444.70 14.29

LP Pn 2015 14.90 6.56 0.72 −0.76 4.10 31.79 44.0 ** ** 76.69

2016 16.99 8.48 0.50 −0.99 2.64 36.50 49.91

Tr 2015 3.14 1.84 1.95 5.08 0.80 11.78 58.76 ** ** 75.00

2016 4.53 2.73 0.84 −0.01 0.43 12.56 60.23

Co 2015 0.16 0.10 1.44 2.17 0.03 0.53 63.43 ** ** 80.83

2016 0.19 0.13 1.19 1.00 0.02 0.67 69.14

Ci 2015 410.08 139.91 1.76 3.71 130.76 954.63 34.12 ** ** 69.79

2016 312.03 43.65 0.68 0.76 213.21 457.05 13.99

L/NP Pn 2015 1.02 0.29 2.41 15.05 0.35 3.21 28.7 ** ** 47.58

2016 0.89 0.23 0.59 2.31 0.25 1.88 26.25

Tr 2015 1.16 0.64 2.31 7.30 0.26 4.39 55.4 ** ** 63.33

2016 1.03 0.49 2.19 7.55 0.14 3.59 47.26

Co 2015 1.29 0.89 2.49 7.47 0.27 5.75 69.2 ** ** 85.14

2016 1.09 0.72 3.09 14.28 0.09 5.75 66.19

Ci 2015 1.14 0.44 3.14 13.25 0.37 3.82 38.9 ** ** 91.73

2016 1.12 0.67 3.21 13.97 0.32 3.82 59.62

**: the 0.01 level of significance.
aP level: NP, LP, and L/NP represent the traits under normal P, low P, and the ratio of low and normal P, respectively.
bCoefficient of variation.
cbroad-sense heritability.

TABLE 2 | Correlations between four photosynthesis-related traits under different

P conditions.

LP/NP Pn Tr Co Ci

Pn 1.000 −0.100* −0.108* 0.394**

Tr 0.016 1.000 0.886** −0.167**

Co 0.015 0.924** 1.000 0.023

Ci 0.500** −0.096 0.073 1.000

Pearson correlation coefficients under NP and LP conditions were listed above and below

the diagonal, respectively.

* and **: the 0.05 and 0.01 levels of significance, respectively.

Co under NP conditions. q20-2 was associated with Pn and Co
under both NP and LP conditions, while it was also associated
with Tr and Ci under LP conditions. There were some regions
that were uniquely associated with one trait. For example, q17-2
was associated only with Ci, while q1-2 and q8-2 were associated
only with Pn, and both loci contain only one QTN. These QTNs
probably contribute to the genetic basis of photosynthesis and are
probably not significantly influenced by low P stress.

In addition, there were several QTNs identified uniquely
under NP or LP conditions and, therefore, they were considered

as NP-specific or LP-specific QTNs. For example, q8-3, q11-2,
q13-2, q16-1, and q20-3 on chromosomes 8, 11, 13, 16, and
20, respectively, were detected only under NP conditions. In
contrast, several LP-specific QTNs, q1-1, q7-1, q14-3, q15-2,
q16-2, and q19 on chromosomes 1, 7, 14, 15, 16, and 19,
respectively, were detected only under LP level, indicating that
the genes underlying these QTNs may be more likely to be
affected by low P stress. Moreover, most of the 31 loci were
detected under L/NP conditions, and the most representative
QTNs were q18-3 and q20-1, which were associated with all
four photosynthesis-related traits under the L/NP conditions.
Further research of these P condition-specific QTNs may supply
more understanding to the genetic basis of P tolerance to
photosynthetic capacity.

On the other hand, 13 of the 31 associated regions were
repeatedly detected more than 6 times across treatments, traits
or years, which are major QTNs (Figure 2; Table 3). These QTNs
could be used to assess the effect of low P stress on photosynthesis
in further analysis. As shown in Table 3, 13 QTNs (q6, q7-2,
q8-1, q8-3, q9, q13-1, q13-2, q14-3, q18-1, q18-2, q18-3, q20-1,
and q20-2) were mapped on chromosomes 6, 7, 8, 9, 13, 14,
18, and 20. In addition, comparative analyses showed that eight
major QTNs (q7-2, q8-1, q9, q13-2, q14-3, q18-2, q18-3, and
q20-1) were co-localized with the QTLs identified in previous
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TABLE 3 | Details of loci associated with photosynthesis-related traits via multi-locus GWAS in soybean.

Region

associateda
Chr.b SNP

associatedc
Pos. (bp)d No.e LOD r2 (%)f Position

intervals (bp)

Methodg Trait-year-treatmenth

q1-1 1 AX-93961332 951461 5 6.32 3.35 951461–1344144 1, 3, 5 TrLP_E1, CoLP_E1, TrL/NP_E2, CoL/NP_E1

q1-2 1 AX-93675249 50496989 1 11.37 8.83 50496989 1, 2, 3 PnLP_E2, PnNP_E2

q6 6 AX-93728015 12548698 7 9.18 11.51 12516126–12966564 1, 2, 3, 4, 5 TrLP_E1, CoLP_E2, TrNP_E2, CoNP_E2,

TrL/NP_E2, CoL/NP_E2

q7-1 7 AX-93926489 3402895 4 7.68 11.06 1787229– 3402895 1, 3, 5 CiLP_E2, CoL/NP_E1, CiL/NP_E1

q7-2 7 AX-93741303 9520676 7 6.55 4.46 6578651– 9520676 1, 2, 3, 5 PnLP_E2, CiLP_E2, TrNP_E2, CoNP_E2,

TrL/NP_E1, CoL/NP_E1, CoL/NP_E2

q8-1 8 AX-93753054 11620180 7 7.82 6.41 6955757–11620180 1, 2, 3, 4, 5 PnLP_E2, TrLP_E1, CoLP_E1, PnNP_E1,

CoNP_E1, CoNP_E2, TrL/NP_E1,

q8-2 8 AX-93929582 27620272 1 6.54 3.19 27620272 1, 2, 3, 4 PnLP_E2, PnNP_E2

q8-3 8 AX-93759645 43743823 6 9.87 9.64 41226360–46081608 1, 2, 4, 5, 6 PnNP_E1, PnNP_E2, TrNP_E2, CoNP_E2,

CiNP_E2, TrL/NP_E1, CoL/NP_E1, CiL/NP_E2

q9 9 AX-94066868 40240035 6 12.20 13.77 40188126–42709534 1, 2, 3, 4, 5 TrLP_E2, CoLP_E2, TrNP_E1, CoNP_E2,

CiNP_E1, TrL/NP_E1, TrL/NP_E2, CiNP_E2

q11-1 11 AX-94084631 6262749 4 8.13 7.09 6262749–9894114 2, 4, 5 PnNP_E1, PnNP_E2, CoL/NP_E2, CiL/NP_E1

q11-2 11 AX-94091690 32599188 4 6.92 9.87 32540598–34020885 2, 3, 4, 5 TrNP_E1, CoNP_E1, CiNP_E2, CoL/NP_E2,

CiL/NP_E2

q12 12 AX-93796430 1697221 2 8.18 7.24 613090–1697221 1, 3, 4, 5 CiNP_E2, CiL/NP_E2

q13-1 13 AX-94104819 18590366 4 28.95 6.31 15071765–18590366 1, 2, 3, TrLP_E1, CoLP_E1, CiLP_E1, PnNP_E1,

CiNP_E1, CoNP_E1, CoL/NP_E2

q13-2 13 AX-94287210 31003637 5 10.38 1.28 29481274–31003637 1, 3, 4, 5 PnNP_E2, TrNP_E2, PnL/NP_E1, TrL/NP_E1,

CiL/NP_E1, CiL/NP_E2

q14-1 14 AX-93820315 1059966 5 9.24 7.03 1059966–2165525 1, 2, 4, 5, 6 PnLP_E2, PnNP_E2, TrL/NP_E2, CoL/NP_E2,

CiL/NP_E2

q14-2 14 AX-94288085 4897088 4 21.44 7.25 4897088–7755174 1, 3, 4, 5 CoLP_E2, CiLP_E2, TrNP_E2, CoNP_E2, TrL/NP_E2

q14-3 14 AX-94129538 47514182 7 7.27 5.19 46008634–47723841 2, 3, 4, 5 PnLP_E1, CoLP_E1, PnL/NP_E1, PnL/NP_E2,

TrL/NP_E1, CiL/NP_E2

q15-1 15 AX-94134672 12611721 3 6.26 2.32 12227172–12611721 1, 3, 4 CoLP_E2, CoNP_E1, CoNP_E2, PnL/NP_E1

q15-2 15 AX-93841986 35259050 2 7.39 5.01 33719705–35259050 1, 2, 4, 5 PnLP_E2, TrLP_E2, CoLP_E2

q16-1 16 AX-93946322 179538 5 6.73 5.10 147918–2435036 1, 2, 4, 5 TrNP_E2, CoNP_E1, CoNP_E2, CiNP_E2

q16-2 16 AX-93947209 35210924 7 10.99 7.30 32784699–37003959 1, 2, 4, 5 TrLP_E1, TrLP_E2, CoLP_E1, CoLP_E2, CoL/NP_E2

q17-1 17 AX-94155900 5718961 4 11.38 9.51 5718961–5761052 2, 3, 5 CoLP_E2, PnNP_E1, TrNP_E2, CiL/NP_E1

q17-2 17 AX-94159333 15188572 2 7.19 8.91 15188572–15492731 2, 3, 4, 5 CiLP_E1, CiNP_E1

q17-3 17 AX-93866265 37701731 5 8.32 9.24 37615577–39224452 1, 2, 3, 4 TrLP_E1, PnNP_E1, TrNP_E2, TrL/NP_E2,

CoL/NP_E2

q18-1 18 AX-94166205 2982489 7 15.10 12.61 674420–3925002 2, 3, 4, 5 PnLP_E1, TrLP_E1, CiLP_E1, CiLP_E2, CiNP_E1,

TrL/NP_E2

q18-2 18 AX-93871255 9956907 6 9.86 15.88 5443584-9956907 1, 2, 3, 4, 5 PnLP_E1, TrLP_E1, TrLP_E2, CoLP_E2,

PnNP_E2, CoL/NP_E1

q18-3 18 AX-93883305 53037663 15 13.24 10.91 50663235- 55727445 1, 2, 3, 5, 6 PnLP_E2, TrLP_E2, CoLP_E1, PnNP_E2,

CoNP_E1, CoNP_E2, PnL/NP_E1, TrL/NP_E1,

CoL/NP_E1, CiL/NP_E1, CiL/NP_E2

q19 19 AX-93886366 2991135 4 8.17 9.02 2991135- 3374702 1, 4, 5, 6 TrLP_E1, TrLP_E2, CoLP_E1, CoLP_E2

q20-1 20 AX-94197533 1364621 6 8.20 6.22 455608-3145850 2, 3, 4, 5 CoLP_E1, PnL/NP_E1, TrL/NP_E1, TrL/NP_E2,

CoL/NP_E1, CiL/NP_E2

q20-2 20 AX-93956837 35089898 10 11.48 16.82 35089898-39987379 1, 2, 3, 5, 6 PnLP_E1, TrLP_E1, CoLP_E1, CiLP_E1,

PnNP_E1, CoNP_E1, PnL/NP_E2, TrL/NP_E1,

TrL/NP_E2, CoL/NP_E2

q20-3 20 AX-93910666 45122261 4 8.91 7.38 44049520- 46908248 1, 2, 3, 4 TrNP_E1, CoNP_E1, CiNP_E2, CoL/NP_E2

a QTN named by chromosome.
b Chromosome.
c QTNs that were significantly associated with the trait.
d QTN position (bp) on soybean genome assembly Glycine max Wm82.a1.v1.1 (www.phytozome.net).
e The number of significant QTNs detected in the region.
f The proportion of phenotypic variance explained by each QTN.
g The mrMLM, pKWmEB, pLARmEB, FASTmrMLM, ISIS EM-BLASSO, and FASTmrEMMA were marked from 1 to 6, respectively.
h The trait-year-treatment combination of QTN, for example, Pn, net photosynthetic rate; Tr, transpiration rate; Ci, intercellular carbon dioxide concentration; and Co, stomatal

conductance; followed by the treatments and environments. NP, LP and L/NP denote normal-P, low-P and the ratio of low/normal P condition, respectively. E1 and E2 denote 2015

and 2016, respectively.

The bold values denote major QTL.
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FIGURE 2 | Soybean chromosomes and QTLs for the studied traits under different P conditions. The outside/inside wheat-colored circle indicates the LOD/ r2 value

curve for the studied traits across environments. The outermost circle indicates the 20 soybean chromosomes; QTLs for the studied traits under different P conditions.

TABLE 4 | Summary of six multi-locus GWAS analysis for the four traits.

Case mrMLM pKWmEB pLARmEB FASTmrMLM ISIS EM-BLASSO FASTmrEMMA

No. QTNa 46 55 52 44 43 9

No. regionb 24 24 24 23 25 5

LOD 5.02∼11.48 5.11∼13.24 5.12∼28.95 5.03∼10.99 5.08∼11.38 5.02∼8.26

r2 (%)c 3.35∼16.82 3.49∼12.27 0.01∼13.77 0.62∼9.82 2.11∼16.04 5.06∼9.14

a The number of detected QTNs.
b The number of associated regions.
c The proportion of phenotypic variance explained by each QTN (%).

reports (Zhang et al., 2009, 2016; Li et al., 2016), including the
QTL harboring the P efficiency-related gene, GmACP1 (Zhang
et al., 2014b). These eight QTNs most likely play important roles
for P efficiency in soybean. For instance, the major QTN q8-1,
where the acid phosphatase encoding gene GmACP1 is located
and underlying variation in Pn, Tr, and Co, was stably detected
across traits and environments. The co-localization of GmACP1
with q8-1 demonstrates the high accuracy of the GWAS results in
this study.

Prediction and Preliminary Validation of
Candidate Genes
Although it is not easy to compare the results in different studies
with different genetic maps, we determined whether the 31

associated regions in the present study were situated at or near
the same position as previously identified QTLs by comparing
the chromosomal locations of these QTLs (https://soybase.org).
Twenty of the 31 regions were reported in previous studies
(Table S3), and some of them were associated with leaflet-related
traits (Yamanaka et al., 2001; Jun et al., 2014; Shim et al., 2015),
such as q7-2, q14-2, q18-2, and q20-2, which could be closely
related with photosynthesis.

To identify candidate genes affecting each trait, we
re-investigated the 159 QTNs detected in our study based
on the annotation of the soybean reference genome W82.a2.v1.
As a result, 52 annotated genes were found and listed in Table S4.
Most of them were previously associated with P efficiency. For
example, the gene cluster within the q8-1 region on chromosome
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8 (Glyma.08G114800, Glyma.08G115400, Glyma.08G123200,
Glyma.08G129200, Glyma.08G150800) was near the key P
efficiency-related gene, GmACP1 (Zhang et al., 2014b). Another
gene cluster within the q13-2 region on chromosome 13
(Glyma.13G181600, Glyma.13G192100, Glyma.13G194500,
and Glyma.13G196600) was near the protein kinase gene,
Glyma.13G161900 (Zhang et al., 2016). In particular, the gene
Glyma.13G196600, encoding NADPH: quinine oxidoreductase,
might participate in the metabolic processes involving phosphate
and photosynthesis.

The major gene cluster of q18-1 on chromosome 18
has three annotated genes in the region encoding DNA
polymerase alpha 2 (Glyma.18G009300), anaphase-promoting
complex/cyclosome 2 (Glyma.18G036900), and ALWAYS
EARLY4 (Glyma.18G040400), which is near a rubisco activase
gene Glyma.18G036400 (Li et al., 2016); these could have
significant effects on the regulation of photosynthetic capacity in
the soybean. In addition, there was also a single annotated gene
that had been reported previously. Glyma.12G023100, within
the q12 region on chromosome 12, encodes a Transmembrane
amino acid transporter family protein, which is physically close
to ribulose-bisphosphate carboxylases gene Glyma.12G061600
(Li et al., 2016).

DISCUSSION

Comparison of Six Multi-Locus GWAS
Methods
With the development of advanced genomic sequencing
technologies, GWAS has become a widely used method and
is popular for the genetic dissection of variation in complex
traits. While most complex traits are dominated by major genes
plus polygenes, the common GWAS using a one-dimensional
scanning model might not be able to detect associations with the
variation of polygenes because of the limitation of the model. A
better alternative is the multi-locus model GWAS (Wang et al.,
2016b). In the present study, six multi-locus GWAS methods
were used, and a total of 159 QTNs were found to be associated
with the four photosynthesis-related traits under different P
conditions (Table 4 and Table S2). Furthermore, 41 of the 159
QTNs were detected by at least two methods and all the 31
associated regions were detected by at least three methods. In
comparing the six multi-locus GWAS methods, we found that
only nine QTNs had been detected by FASTmrEMMA, while
more than 40 QTNs were detected by each of the other five
methods.

The maximum LOD scores were more than 10 except for
those from FASTmrEMMA, which was 8.26, smaller than the
other five methods. The maximum LOD score of pLARmEB
(28.95) was significantly larger than the LOD scores from
the other methods. Moreover, the minimum r2 (%) was 0.01
from pLARmEB, which may be meaningless. Meanwhile, the
minimum r2 (%) from FASTmrEMMA was 5.06, which was
significantly higher than those from the other methods, meaning
that FASTmrEMMA might detect major QTNs with the larger
effects. This outcome explains why there were fewer associated
QTNs from FASTmrEMMA than from the other five methods.

Novel QTNs and Potential Candidate
Genes of Interest
Among the 13 major QTNs, five (q6, q8-3, q13-1, q18-
1, and q20-1), which have not been reported in previous
studies, were considered as novel QTNs for photosynthesis
response to low P stress. It is worth noting that q20-
1 was associated with all four photosynthesis-related traits
under the L/NP conditions. Thus q20-1 might represent
another important novel QTN related to Photosynthesis.
In addition, two annotated genes within the q20-1 region
encoding a Mitochondrial substrate carrier family protein
(Glyma.20G004600) and a Cyclophilin-like peptidyl-prolyl cis-
trans isomerase family protein (Glyma.20G005600) were found in
our study. If possible, more research on these genes might reveal
their genetic mechanisms in future.

Another major QTN, q13-1, was associated with the four
photosynthesis-related traits under both NP and LP conditions.
This QTN was also reported previously for seed methionine
content and seed cysteine content (Panthee et al., 2006a,b).
Furthermore, one annotated gene Glyma.13G053400, within the
q13-1 region on chromosome 13, which encodes a Mitochondrial
substrate carrier family protein, was listed in Table S4. Thus, this
QTN could be a promising candidate locus for further study of
low P stress on photosynthetic efficiency.

Some annotated genes weren’t reported previously to
be associated with phosphate and photosynthetic metabolic
processes. For instance, one gene Glyma.14G029100, within
the q14-1 region on chromosome 14, encodes sucrose
phosphate synthase 3F. Two annotated genes encoding a
phosphate transporter (Glyma.11G087800) and a phospholipase
(Glyma.11G230100) might be involved in the metabolic process
of phosphate and photosynthesis.

Based on 292,035 high-quality SNPs in 219 soybean
accessions, 159 QTNs within 31 regions were identified to be
associated with four photosynthesis-related traits under different
P conditions. Importantly, genetic improvement simultaneously
for phosphorus efficiency and photosynthesis in soybean might
be carried out by selecting for a single large-effect QTN. The
associated regions and candidate genes detected in the present
study could be further tested for marker-assisted breeding
of soybean varieties for the application of P tolerance to
photosynthetic capacity.
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Cotton is an important industrial crop worldwide and upland cotton (Gossypium
hirsutum L.) is most widely cultivated in the world. Due to ever-increasing water deficit,
drought stress brings a major threat to cotton production. Thus, it is important to reveal
the genetic basis under drought stress and develop drought tolerant cotton cultivars.
To address this issue, in present study, 319 upland cotton accessions were genotyped
by 55,060 single nucleotide polymorphisms (SNPs) from high-density CottonSNP80K
array and phenotyped nine drought tolerance related traits. The two datasets were
used to identify quantitative trait nucleotides (QTNs) for the above nine traits using
multi-locus random-SNP-effect mixed linear model method. As a result, a total of
20 QTNs distributed on 16 chromosomes were found to be significantly associated
with six drought tolerance related traits. Of the 1,326 genes around the 20 QTNs,
205 were induced after drought stress treatment, and 46 were further mapped to
Gene ontology (GO) term “response to stress.” Taken genome-wide association study
(GWAS) analysis, RNA-seq data and qRT-PCR verification, four genes, RD2 encoding a
response to desiccation 2 protein, HAT22 encoding a homeobox-leucine zipper protein,
PIP2 encoding a plasma membrane intrinsic protein 2, and PP2C encoding a protein
phosphatase 2C, were proposed to be potentially important for drought tolerance in
cotton. These results will deepen our understanding of the genetic basis of drought
stress tolerance in cotton and provide candidate markers to accelerate the development
of drought-tolerant cotton cultivars.

Keywords: upland cotton, drought stress, genome-wide association study, single nucleotide polymorphism
(SNP), RNA-sequencing

INTRODUCTION

Cotton (Gossypium spp.) is the most important natural fiber crop and is also a significant oilseed
crop. The upland cotton (Gossypium hirsutum L.), which accounts for 95% of the annual cotton
production worldwide, is the most cultivated species. However, cotton production is limited by
various abiotic and biotic stresses. Of them, drought stress becomes a major threat to substantial
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loss of cotton yield due to the ever-increasing scarcity of water
around the world (Pettigrew, 2004). There is a urgent need to
ascertain the molecular and genetic basis underlying the cotton
response to drought stress and to develop cotton cultivars with
improved drought tolerance.

Quantitative trait loci (QTLs) mapping was an effective tool
which was generally used to reveal the genetic basis of complex
quantitative traits in cotton (Li C. et al., 2013; Fang et al., 2014;
Wang et al., 2014). However, using traditional molecular markers,
such as restriction fragment length polymorphism (RFLP) and
simple sequence repeat (SSR), only a few QTLs related to drought
stress were discovered in a wide region (Levi et al., 2009;
Saleem et al., 2015; Zheng et al., 2016) because of the narrow
genetic diversity and low map density in modern upland cotton
accessions (Fang et al., 2017; Huang et al., 2017; Sun et al., 2017).
In addition, these QTLs have not been applied to cotton breeding
either. Recently, with the development of functional genomics
and transcriptomics, a plenty of genes were found to be involved
in drought resistance, including protein kinases, transcription
factors and some structural genes (Ashraf et al., 2018). And
these factors are related to different signal transduction pathway
in response to drought stress. For example, GbMYB5 and
GhWRKY17 are positively involved in response to drought stress
(Yan et al., 2014; Chen et al., 2015), while a complete MAP kinase
cascade that phosphorylates and activates GhWRKY59 is involved
in abscisic acid (ABA)-independent signaling pathway to regulate
cotton drought responses (Li et al., 2017). And overexpression
of GhNAC2 can enhance root growth and improve tolerance to
drought in transgenic cotton and Arabidopsis (Gunapati et al.,
2016). Nevertheless, the functional verification for only few genes
related to drought tolerance was reported. How to excavate
more drought stress related genes accurately and effectively and
to utilize them for breeding drought-tolerant cotton cultivars
remain a big challenge.

Compared with traditional molecular markers, single
nucleotide polymorphisms (SNPs) are the most abundant DNA
variation distributed along the genome, with high density,
bi-allelic and co-dominant characteristics. Recent years, the
application of SNP arrays (Hulse-Kemp et al., 2015; Cai et al.,
2017), sequencing and re-sequencing (Li et al., 2015; Zhang
T. et al., 2015) for upland cotton accessions made it possible
to improve the resolution of genetic maps and the accuracy of
QTL mapping. Genome-wide association study (GWAS) is an
effective method, which can associate phenotypes with genotypes
in natural populations and reveal vast natural allelic variations
and candidate genes based on linkage disequilibrium (LD), and
have been widely used in crop plants, such as rice (Huang et al.,
2010; Yano et al., 2016), maize (Li H. et al., 2013; Yang et al.,
2014), and soybean (Zhang J. et al., 2015). Based on the rapid-
developed studies for genome-wide SNPs in cotton, GWAS
for several important agronomic traits has been performed.
Using CottonSNP63K SNP array and 719 diverse G. hirsutum
accessions, GWAS was conducted by integrating different
environment tests of fiber quality traits with the SNP genotyping
data, and forty-six SNPs were found to be significantly associated
with five fiber quality traits (Sun et al., 2017). Using the same
CottonSNP63K SNP array, 503 G. hirsutum accessions were

genotyped for a GWAS with sixteen agronomic traits, and a
total of 324 SNPs and 160 candidate quantitative trait nucleotide
(QTN) regions were found to be significantly associated with
these agronomic traits (Huang et al., 2017). With genome-wide
resequencing for 318 cotton landraces and modern improved
accessions or lines, 119 associated loci, including 71 for yield-
related traits, 45 for fiber qualities and three for resistance
to Verticillium wilt were identified by GWAS (Fang et al.,
2017). Similarly, with resequencing 267 cotton accessions, 19
candidate loci for fiber-quality-related traits were reported
(Wang et al., 2017). Recently, through integrating genotyping
variation and phenotyping data of 13 fiber-related traits across
12 environments for 419 diverse G. hirsutum accessions, 7,383
unique SNPs were found to be significantly associated with
these traits. The results showed that more associated loci were
identified for fiber quality than fiber yield, and fiber genes in the
D subgenome were more than those in the A subgenome (Ma
et al., 2018). These studies indicated that GWAS was suitable for
detecting QTNs of complex traits in plants. Nevertheless, GWAS
based on SNP markers and using large natural populations for
drought tolerance related traits has not been reported in cotton.

To determine the key QTN regions and candidate genes
significantly associated with cotton drought response, we
deployed GWAS of drought stress through integrating the
genotypic data of upland cotton accessions by the high-density
CottonSNP80K array analysis with their various phenotypic data
response to drought stress. Further, the candidate genes were
screened by integrating GWAS and gene expression data with
qRT-PCR confirmation. This study will provide not only elite
genetic resources with candidate SNPs but also key genes to
accelerate the drought stress improvement of upland cotton.

MATERIALS AND METHODS

Plant Materials
A total of 319 upland cotton accessions, with 306 cultivars/lines
collected from China and 13 landraces introduced from the
United States, were used in this study. The accessions in China
were mainly collected from four different ecological growing
regions: the Yellow River region (YRR, 183), the Yangtze River
region (YtRR, 82), the Northwestern inland region (NIR, 22), the
Northern China region, the specifically early maturation region
(NSEMR, 16), and three unknown origin cotton accessions
(Supplementary Table S1).

Phenotypic Analysis
In 2015 and 2017, the 319 upland cotton accessions were planted
in the green house with hydroponics and in the phytotron with
soil culture in Nanjing Agricultural University, Nanjing, Jiangsu
Province, China, respectively. Pilot experiments were performed
to screen the suitable concentrations of Polyethylene glycol 6000
(PEG 6000) for investigating the drought tolerance capacities of
different upland cotton accessions. As a result, 15% PEG 6000 was
used as drought stress treatment for water culture and 10% PEG
6000 for soil culture analysis.
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All the accessions were grown in 1/2 diluted Hoagland
solution (Hoagland and Arnon, 1950). At the stage of seedlings
with five leaves, the experimental plants were treated with 15%
PEG 6000 as drought stress, and plants only grown in 1/2 diluted
Hoagland solution as control. After 48 h, the indicators related to
drought tolerance were measured, including plant height (PH),
shoot dry matter (SDM), and root dry matter (RDM). At the
same time, top second leaf of the plants were sampled to measure
proline content (PC), superoxide dismutase activities (SOD),
malonaldehyde content (MDA) and soluble sugar content (SS). In
addition, seeds from 319 upland cotton accessions were planted
in nursery soil with 10% PEG 6000 solution as drought stress
treatment and only watering as control. After 7 days, hypocotyl
length (HL) and germination percentage (GP) were measured.
For water culture experiments, we selected six seedlings with
the relatively uniform growth for each treatment. Each two as a
biological replicate, and together three biological replicates were
set to investigate the traits, including PH, SDM, RDM, PC, SOD,
MDA, and SS. For soil culture experiments, we selected 12 well-
developed seeds as a biological replicate for each treatment, with
three biological replicates to measure HL and GP.

PH was measured by the length from cotyledonary node to
top of the plant. SDM and RDM were measured by weight
of aboveground and underground part of the plant after
drying at 65◦C, respectively. PC was determined by acidic
ninhydrin reaction as previously described by Bates et al.
(1973). SOD activities were determined by measure inhibition
of photochemical reduction of nitro blue tetrazolium (NBT)
according to the method of Beyer and Fridovich (1987). MDA
content was determined by a modified thiobarbituric acid (TBA)
reaction (Hodges et al., 1999). SS content was determined by
the colorimetric method using anthrone reagent according to
Odjegba and Fasidi (2006). HL was measured by the length
of hypocotyl. GP was calculated by ratio of germinated seeds
number and planted seeds number.

Factor Analysis
For the drought tolerance evaluation, factor analysis was
performed using SPSS software1. Kaiser–Meyer–Olkin (KMO)
measurement and Bartlett’s statistic were calculated to determine
the selected variables. Factors were extracted by the cumulative-
contribution-rate-more-than-85% rule and comprehensive
evaluation of the drought tolerance based on factor scores (Chen,
2013).

SNP Genotyping
Genomic DNA of the 319 cotton accessions was extracted
according to the method described by Paterson et al. (1993).
A CottonSNP80K array containing 77,774 SNPs (Cai et al.,
2017), was used to genotype the 319 accessions. Qualified DNA
was hybridized to the array following the Illumina protocols.
The Illumina iScan array scanner was used to scan arrays,
and GenomeStudio Genotyping software (V2011.1, Illumina,
Inc.) was employed to cluster SNP alleles and genotyping. All
77,774 SNPs were tested and manually adjusted as described by

1http://www.spss.com.cn/

Cai et al. (2017). The SNP data set with a calling rate < 0.9 and
MAF < 0.05 was further filtered, and the high quality data was
used for subsequent analysis.

Population Characteristics and Linkage
Disequilibrium Analysis
PLINK V1.90 software2 was used to conduct the similarity
analysis and clustering of 319 cotton accessions. Based on the
distance matrix data (1-IBS, identity-by-state), phylogenetic trees
were constructed using TASSEL 5.0 software3, and visually edited
by Figtree software4. The IBS matrix data was used to conduct
principal component analysis (PCA). The correlation coefficient
(r2) of alleles was calculated to measure linkage disequilibrium
(LD) in each group level using PLINK V1.90, and LD blocks
containing SNP loci associated with target traits were generated
using the R software package “LD heatmap.”

GWAS and Identification of Candidate
Genes
A total of 55,060 SNPs (calling rate ≥ 0.9 and MAF ≥ 0.05)
were used for GWAS. To explore the SNP-trait association, multi-
locus random-SNP-effect mixed linear model (mrMLM) (Wang
S.B. et al., 2016) was employed using the R package “mrMLM”
with the following parameters: Critical P-value in rMLM: 0.001;
Search radius of candidate gene (Kb): 100; Critical LOD score in
mrMLM: 3. And the Q+K model was used. Population structure
(Q) matrix was calculated using admixture 1.3 with k = 3, and
kinship (K) matrix was calculated by the R package “mrMLM”.
Putative candidate genes were identified flanking 500 Kb of
peak SNPs (the most significant SNPs). Gene ontology (GO)
analysis was implemented using AgriGO5, and candidate genes
in “response to stress” terms were selected for further analysis.

Transcriptome Sequencing and
Quantitative Real-Time PCR Analysis
The seedlings of upland cotton genetic standard line, G. hirsutum
acc. TM-1, with two simple leaves and one heart-shaped leaf, was
treated with 15% PEG. The cotton leaf samples were collected
in different time-points after treating 0, 6, 12, 24, 48, and 72 h,
respectively. Total RNA was extracted from these samples using
the Biospin plant total RNA extraction kit (Bioer Technology
Co., Ltd.). After pre-processing the RNA-seq data with an NGS
QC toolkit (Patel and Jain, 2012), the reads were mapped to the
G. hirsutum TM-1 genome using a Tophat spliced aligner with
default parameters (Trapnell et al., 2009). The genome-matched
reads from each library were assembled with Cufflinks (Trapnell
et al., 2012). Cuffmerge was then used to merge the individual
transcript assemblies into a single transcript set. Lastly, Cuffdiff
was used to detect differentially expressed genes (DEGs) with
a cutoff of 0.05 q-value. Three biological replicates from each
sample were used for all RNA-seq experiments.

2http://www.cog-genomics.org/plink2/
3https://tassel.bitbucket.io/
4http://tree.bio.ed.ac.uk/
5http://bioinfo.cau.edu.cn/agriGO/analysis.php
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For quantitative real-time PCR (qRT-PCR) analysis, first-
strand cDNA was synthesized using the reverse transcription
polymerase reaction system (Promega, United States) and
adjusted to ∼100 ng/µL with a One Drop Spectrophotometer
OD-1000+ (OneDrop, Nanjing, China). qRT-PCR was deployed
on an ABI 7500 real-time PCR system6. The qRT-PCR
amplification program previously described by Provenzano and
Mocellin (2007) was used. The relative expression level was
calculated using the 2−1CT method (Livak and Schmittgen, 2001)
with three biological and technical replicates, respectively. The
expression level of GhHis3 (Accession No. AF024716) was used as
an internal control (Gutierrez et al., 2008). All the primers were
summarized in Supplementary Table S2.

Statistical Analysis
Correlation analysis among drought tolerance traits was
performed using SPSS software, ∗ and ∗∗ present the significant
differences at the 5% and 1% levels, respectively. qRT-PCR data
was analyzed using Excel software and shown as the mean ± SD.
Multiple comparison in one-way ANOVA was conducted by LSD
method at the 0.05 and 0.01 levels, which were marked by ∗ and
∗∗, respectively.

RESULTS

Phenotypic Variation in Drought
Tolerance Related Traits
To evaluate the phenotypic variation under drought stress in
the natural population, the seeds or seedlings of 319 upland
cotton accessions were treated in PEG stress and in well-watered
controls. Nine traits related to drought stress tolerance were
measured, including HL and GP at germinating stage; PH, SDM,
RDM, PC, SOD activities, MDA content and SS content at
seedling stage, respectively. The mean and extreme values of
five drought-tolerance traits were lower under drought stress
than that in control plants and four traits showed higher values
under drought stress condition than that in control plants.
The coefficients of variation (CV, %) of nine drought tolerance
related traits ranged from 11.77 (HL) to 95.89 (PC) under
drought stress, and 11.79 (HL) to 92.70 (PC) under well-watered
condition, respectively. Furthermore, it showed higher CV value
under drought stress treatment than that in control for most
drought-tolerance related traits, indicating the wide variation
under drought stress among cotton accessions used in this study
(Table 1).

The relative values of the nine drought-tolerance traits
were further calculated using the ratio of the phenotypic
effects value under drought stress and that under well-
watered control condition. Relative values of each trait were
conformed to Gaussian distribution (Supplementary Figure S1).
To explore the relationships among nine drought-tolerance
traits, correlation analysis was conducted. As a result, relative
PH (RPH), relative SDM (RSDM) and relative RDM (RRDM)
showed significant and positive correlation each other. We also

6http://www.lifetechnologies.com

detected a significant and positive correlation among different
biochemical index, involved in relative PC (RPC), relative MDA
(RMDA), relative SS (RSS), and relative SOD (RSOD). In
addition, relative HL (RHL) showed significant and positive
correlation with relative GP (RGP) and RSDM. However, both
RHL and RSDM showed a significant and negative correlation
with RPC, RMDA, and RSS, respectively (Table 2).

Comprehensive Evaluation of Drought
Tolerance
In order to identify the drought tolerance of 319 cotton
accessions, factor and cluster analyses were performed with
relative values of nine drought-tolerance traits. The KMO value
was 0.634 (>0.5), and the Bartlett’s statistic value p < 0.05,
indicating that the raw data was suitable for factor analysis. A six-
factor solution that accounted for 89.45% of the total variance
was obtained (Supplementary Table S3) (Chen, 2013). Factor
1 represented the biochemical index factor at seedling stage,
including RPC, RMDA, and RSS. Factor 2 was regarded as the
physiological index factor, including RPH and RSDM. Factors
3–6 represented RSOD, RHL, RGP, and RRDM, respectively
(Supplementary Table S4). In addition, the F factor composite
score for the drought-tolerance of each cotton accession was
calculated by six F factors. Based on drought tolerance capacity
with different F factors, cluster analysis showed that the 319
upland cotton accessions were divided into four groups. Totally,
16, 75, 207, and 21 accessions were clustered into advanced,
medium, sensitive and extremely sensitive types to drought
stress tolerance with F factor ranging from 0.818 to 1.938,
0.239 to 0.742, −0.637 to 0.209, −1.385 to −0.655, respectively
(Supplementary Table S1).

Genetic Variation Based on SNPs
We genotyped 319 upland cotton accessions using the
CottonSNP80K array. GenomeStudio software (V2011.1,
Illumina, Inc.) was used to genotype with a manual corrected
clustering file (Cai et al., 2017). The genotypic data revealed
that these cotton accessions possessed a high average call
rate of 99.39%. With low-quality (call rate < 90% and minor
allele frequency < 0.05) loci filtered, a final set of 55,060 SNPs
was obtained, with 30,075 and 24,985 SNPs in the At and Dt
subgenomes, respectively. These SNP markers were distributed
over the entire genome, expect chromosomes A02, A03, and
A04 with less SNP density. In addition, the polymorphism
information content (PIC) values ranged from 0.263 to 0.389
among chromosomes, and the mean PIC value of the At and Dt
subgenomes was 0.338 and 0.334, respectively (Table 3).

Population Structure and Linkage
Disequilibrium
Principal component analysis and neighbor-joining tree were
conducted to infer population stratification. A pairwise distance
matrix derived from a modified Euclidean distance for all
polymorphic SNPs was calculated to construct neighbor-joining
trees using TASSEL 5.0 software. As a result, the 319 accessions
could be clustered into four groups, which contained 61, 33,
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TABLE 1 | Statistics of various traits related to drought tolerance.

Traits Control PEG treatment

Minimum Maximum Mean SD CV(%) Minimum Maximum Mean SD CV (%)

PH (cm) 19.46 38.57 28.11 3.96 14.11 14.47 30.41 23.00 3.32 14.43

SDM (g) 0.20 0.74 0.42 0.10 24.57 0.04 0.49 0.28 0.08 30.06

RDM (g) 0.03 0.19 0.09 0.03 36.52 0.01 0.11 0.05 0.02 40.35

PC (µg/g.FW) 2.96 253.23 42.12 39.04 92.70 14.42 4451.77 833.79 799.55 95.89

SOD (U/g.FW) 14.81 163.95 75.23 27.20 36.15 19.16 635.79 156.96 76.48 48.73

MDA (nmoL/g.FW) 8.68 34.79 15.37 3.82 24.87 10.73 86.80 26.55 11.12 41.87

SS (mg/g.FW) 3.16 22.84 6.30 1.86 29.55 4.89 72.32 20.57 11.78 57.27

HL (cm) 3.07 7.33 5.22 0.62 11.79 2.50 6.08 4.25 0.50 11.77

GP (%) 19.44 100.00 79.07 13.98 17.68 13.89 97.22 73.24 13.99 19.10

PH, plant height; SDM, shoot dry matter; RDM, root dry matter; PC, proline content; SOD, superoxide dismutase activity; MDA, malonaldehyde content; SS, soluble
sugar content; HL, hypocotyl length; GP, germination percentage; SD, standard deviations; CV, coefficient of variation; FW, fresh weight.

TABLE 2 | Correlation analysis of drought tolerance traits.

RPH RSDM RRDM RPC RSOD RMDA RSS RHL RGP

RPH –

RSDM 0.733∗∗ –

RRDM 0.262∗∗ 0.203∗∗ –

RPC −0.063 −0.106∗ 0.051 –

RSOD −0.154∗∗ −0.073 0.011 0.242∗∗ –

RMDA −0.091 −0.111∗ 0.112∗ 0.621∗∗ 0.555∗∗ –

RSS −0.074 −0.121∗ 0.002 0.554∗∗ 0.333∗∗ 0.596∗∗ –

RHL 0.041 0.142∗∗ −0.015 −0.145∗∗ −0.030 −0.181∗∗ −0.128∗ –

RGP −0.005 −0.069 0.000 0.024 0.011 −0.007 −0.042 0.127∗ –

RPH, relative plant height; RSDM, relative shoot dry matter; RRDM, relative root dry matter; RPC, relative proline content; RSOD, relative superoxide dismutase activity;
RMDA, relative malonaldehyde content; RSS, relative soluble sugar content; RHL, relative hypocotyl length; RGP, relative germination percentage.
∗ and ∗∗: the 5% and 1% levels of significance, respectively.

87, and 138 accessions, respectively. We found that the four
clustered groups had no relationships with their geographic
origin (Figure 1A and Supplementary Table S1). Further,
clustering data in the phylogenetic tree matched to PCA results
well (Figure 1B). We also performed linkage disequilibrium
(LD) analysis using PLINK software and evaluated Pairwise
LD using squared allele frequency correlations (r2). The LD
rate declining to half its maximum value was 980 Kb, with
>1000 Kb in At and 760 Kb in Dt subgenome, respectively
(Figure 2).

Genome-Wide Association Studies
The GWAS was conducted for the nine traits related to
drought tolerance using mrMLM method with Q+K model.
Twenty SNPs were found to be significantly associated with
six drought tolerance related traits, with both 10 SNPs located
on At and Dt subgenome (Table 4). In detail, there were
three SNPs located on chromosomes A10, D01, and D13 for
RRDM, explaining 22.66% of the total phenotypic variation.
For RHL, six SNPs were identified on chromosomes A11,
A04, A09, D04, D06, and D09, explaining 50.94% of the total
phenotypic variation. Two SNPs for RPC were detected on
chromosomes A11 and D07, explaining 11.51% of the total
phenotypic variation. Two SNPs for RSS were identified on

chromosomes D11 and D12, explaining 40.61% of the total
phenotypic variation. Four SNPs for RSDM were identified on
chromosomes A03, A05, A06, and D06, explaining 29.85% of the
total phenotypic variation. For RPH, three SNPs were identified
on chromosomes A05, A08, and D12, explaining 26.08% of the
total phenotypic variation. The widespread associated loci in
different chromosomes indicated that the genetic basis of drought
tolerance is complex.

Candidate Genes Associated With
Significant SNPs Region
Candidate genes involved in the 20 significant SNP loci
were further mined by referring the LD value in the study.
With flanking 500 kb of the significantly associated SNPs
and G. hirsutum TM-1 genome (Zhang T. et al., 2015) as
reference, 1,326 candidate genes with 630 in At and 696
in Dt subgenome were identified. The number of candidate
genes associated with six traits was predicted. We found 398
candidate genes from significant SNP regions associated with
RHL, while only 70 candidate genes with RPC (Table 4).
These results implied that HL was involved in a complex
process regulated by more regulators while the regulation
of PC was relatively specific. GO analysis indicated that
1,226 candidate genes could be mapped to GO background
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TABLE 3 | Summary of high quality SNPs by genotyping analysis using CottonSNP80K array.

Chr. Total SNPs Filtered SNPs Chr. size (Mb) Density of SNP (Kb/SNP) PIC

A01 3500 2365 99.88 42.23 0.372

A02 1996 1410 83.45 59.18 0.349

A03 2466 1792 100.26 55.95 0.348

A04 1434 1055 62.91 59.63 0.362

A05 3384 2485 92.05 37.04 0.352

A06 4698 2525 103.17 40.86 0.287

A07 3070 2132 78.25 36.7 0.340

A08 7773 4967 103.63 20.86 0.286

A09 3621 2440 75 30.74 0.332

A10 2964 2035 100.87 49.57 0.330

A11 2897 1890 93.32 49.38 0.325

A12 3040 1994 87.48 43.87 0.355

A13 4340 2985 79.96 26.79 0.356

D01 2339 1852 61.46 33.19 0.359

D02 2985 2350 67.28 28.63 0.378

D03 1889 1321 46.69 35.34 0.263

D04 1272 1019 51.45 50.49 0.355

D05 2041 1596 61.93 38.8 0.339

D06 4037 3191 64.29 20.15 0.316

D07 3472 2617 55.31 21.13 0.326

D08 2898 2256 65.89 29.21 0.389

D09 2938 2147 51 23.75 0.296

D10 2130 1701 63.37 37.25 0.338

D11 1866 1409 66.09 46.91 0.335

D12 2562 1911 59.11 30.93 0.324

D13 2162 1615 60.53 37.48 0.322

Chr, chromosome; PIC, polymorphism information content.

FIGURE 1 | Population structure of 319 upland cotton accessions. (A) Neighbor-joining tree of 319 cotton accessions in the panel. Cultivars and Landraces are
shown by blue and orange line, respectively. (B) PCA plots of the accessions.
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TABLE 4 | Summary of SNPs associated with drought tolerance traits.

Traits SNP IDs Chr. Pos. (Mb) QTN effect LOD score r2 (%) Number of candidate genes

RRDM TM36896 A10 100.64 −0.6333 3.41 14.57 59

TM82142 D13 58.86 −0.5046 3.71 4.82 103

TM50155 D01 59.85 −0.3164 4.47 3.27 91

RHL TM37191 A11 6.02 0.0631 4.86 14.14 84

TM9833 A04 60.55 0.0246 6.21 8.60 83

TM55926 D04 10.80 0.0192 4.23 4.30 44

TM30039 A09 2.63 0.0244 3.40 2.76 51

TM72632 D09 44.33 −0.0398 4.21 16.88 81

TM62940 D06 60.15 −0.0253 3.71 4.26 55

RPC TM66782 D07 54.23 −19.9393 4.34 6.35 67

TM38632 A11 59.82 −17.9695 3.47 5.16 3

RSS TM77502 D12 3.61 −1.1742 3.89 19.60 69

TM75380 D11 4.17 1.2065 3.67 21.01 93

RSDM TM7846 A03 90.78 1.0222 3.56 5.03 33

TM10434 A05 8.42 1.217 4.92 6.28 130

TM13658 A06 1.84 0.597 4.73 2.59 76

TM59389 D06 8.06 −1.1709 3.26 15.95 49

RPH TM11090 A05 23.64 −0.0826 4.53 5.54 48

TM29675 A08 96.79 −0.0545 3.26 2.11 63

TM77685 D12 6.01 0.0905 3.27 18.43 44

Chr, chromosome; Pos, position; QTN, quantitative trait nucleotide. RRDM, relative root dry matter; RHL, relative hypocotyl length; RPC, relative proline content; RSS,
relative soluble sugar content; RSDM, relative shoot dry matter; RPH, relative plant height.

FIGURE 2 | Genome-wide linkage disequilibrium (LD) decay in all cotton
accessions. Different colors show the LD decay estimated in different
subgenomes.

in G. hirsutum, which were involved in several biological
processes significantly associated with drought stress, such
as root system development, regulation of transport, water
transport and response to stress. Further, we focused on
the GO term “response to stress” (SR), which contained
189 candidate genes (Figure 3A). Of them, many genes had
been reported to play important roles in drought tolerance,
such as RD2, PIP2, PP2C, and LEA (Aroca et al., 2006;
Samota et al., 2017; Baek et al., 2018; Magwanga et al.,
2018), and some key transcription factors, WRKY, NAC, and

MYB (Wei et al., 2017; Kiranmai et al., 2018; Negi et al.,
2018).

Transcriptome Analysis and
Identification of Elite Alleles
RNA-seq analysis was performed to further explore elite alleles
which contributed to drought tolerance. RNA samples were
collected from leaves of G. hirsutum acc. TM-1 at 0, 6, 12, 24, 48,
and 72 h post treatment of 15% PEG. In total, 18 separate libraries
were generated with three biological replicates of each sample.
The reads generated by the Illumina Hiseq2000 were initially
processed to remove adapter sequences and low-quality bases.
Approximately 0.82 billion valid reads, each 150 nucleotides
long, and roughly 40.8 Gb of nucleotides were obtained. We
investigated the expression level of all 1,326 candidate genes
[log2(RPKM+1) > 1] from GWAS analysis, and found that
205 were differential expression genes (DEGs) with significant
induced expression under drought stress condition compared
with untreated control. Among these DEGs, 46 were annotated
to “response to stress” in GO dataset and other 159 were novel
candidate genes (Figure 3A and Supplementary Table S5).
For these 46 DEGs, up-regulated genes are more than down-
regulated genes after stress-treated time points (Figure 3B). Some
up-regulated genes were positively related to stress tolerance
such as RD2 (Samota et al., 2017), and a few down-regulated
gene were reported to be negatively related to stress tolerance
such as PIP2 (Macho et al., 2018). In addition, other 143
candidate genes involved in GO term “response to stress” were
not induced by drought stress (Figure 3A and Supplementary
Figure S2).
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FIGURE 3 | Transcriptome analysis and identification of elite alleles. (A) Distribution of the differentially expressed genes (DEGs) and response to stress genes (SR).
(B) Statistics of the up-regulated and down-regulated DEGs annotated as response to stress.

We combined the GWAS and drought-induced RNA-seq data
to explore elite alleles involved in drought tolerance. As a result,
four genes were further identified for potential drought tolerance.
Within the association signal at D12: 3609663 which explaining
approximately 19.60% of the phenotypic variation of RSS, we
identified 69 candidate genes. The RNA-seq data showed that
one of these genes, which encoded a response to desiccation 2
protein and named as RD2 (Gh_D12G0260), was continuously

up-regulated in all five time points, especially in 72 h post PEG
treatment (Figure 4). Another gene within association signal
at D11: 4173831, which explaining approximately 21.01% of
the phenotypic variation of RSS, was also continuously up-
regulated after PEG treatment. This gene encodes a homeobox-
leucine zipper protein, named HAT22 (Gh_D11G0526), which
has been reported to be related to plant stress tolerance
(Liu et al., 2016) (Figure 5). Within the association signal at

FIGURE 4 | Genome-wide association study (GWAS) for drought-tolerance and identification of the candidate gene RD2 on chromosome D12. (A) Local Manhattan
plot (top) and LD heat map (bottom). The red dot indicates the SNP related to the drought-tolerance trait. The arrow indicates the location of RD2. (B) The
expression level of the candidate gene RD2 calculated via RNA-Seq. (C) The relative expression level (REL) of the candidate gene RD2 calculated via qRT-PCR.
(D) Differences of relative soluble sugar content (RSS) among two haplotypes. ∗∗ means the 1% level of significance.
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FIGURE 5 | Genome-wide association study for drought-tolerance and identification of the candidate gene HAT22 on chromosome D11. (A) Local Manhattan plot
(top) and LD heat map (bottom). The red dot indicates the SNP related to the drought-tolerance trait. The arrow indicates the location of HAT22. (B) The expression
level of the candidate gene HAT22 calculated via RNA-Seq. (C) The relative expression level (REL) of the candidate gene HAT22 calculated via qRT-PCR.
(D) Differences of relative soluble sugar content (RSS) among two haplotypes. ∗∗ means the 1% level of significance.

D01: 59846909, which explaining approximately 3.27% of the
phenotypic variation of RRDM, we identified a gene down-
regulated after drought stress, encoding a plasma membrane
intrinsic protein 2 (PIP2, Gh_D01G2086), which was involved in
root water uptake and tissue hydraulic conductance (Macho et al.,
2018) (Figure 6). Another gene within association signal at D04:
10799426, explaining approximately 4.30% of the phenotypic
variation of RHL, was also down-regulated after PEG treatment.
This gene encodes a protein phosphatase 2C, named PP2C
(Gh_D04G0612), which negatively regulate ABA signaling and
stress responses (Baek et al., 2018) (Figure 7). In order to validate
the reliability of the RNA-seq data, we conducted qPCR assay and
confirmed their expression patterns, which were kept consistent
in all four candidate genes (Figures 4–7).

DISCUSSION

Drought is a serious global problem restricting agricultural
development. Previous studies on cotton drought-tolerance

mainly pay attention to a single period of cotton development
or a small number of indexes or accessions (Chen et al., 2013;
Zheng et al., 2014; Ranjan and Sawant, 2015). In this study, 319
upland cotton accessions were collected with a high geographical
diversity for genome-wide association studies. A total of nine
traits related to drought-tolerance were measured containing
two traits at the germinating stage (HL and GP), and seven
traits at the seedling stages (PH, SDM, RDM, PC, SOD, MDA,
and SS). Proline content has the largest CV, which means
that proline content is sensitive to drought stress, and can be
regarded as one of the most important trait related to drought
tolerance. When suffered drought stress, plants can adapt in
three ways: physiological responses such as reducing growth
rates, molecular responses such as the increased expression
in ABA biosynthetic genes, and biochemical responses such
as accumulation of stress metabolites like proline, glutathione,
glycinebetaine, polyamines and so on (Fang and Xiong, 2015).
Accumulation of proline content, which can increase plant cell’s
osmotic pressure and retard plant losing water, is an efficient
mechanism to improve drought tolerance. Hypocotyl length
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FIGURE 6 | Genome-wide association study for drought-tolerance and identification of the candidate gene PIP2 on chromosome D01. (A) Local Manhattan plot
(top) and LD heat map (bottom). The red dot indicates the SNP related to the drought-tolerance trait. The arrow indicates the location of PIP2. (B) The expression
level of the candidate gene PIP2 calculated via RNA-Seq. (C) The relative expression level (REL) of the candidate gene PIP2 calculated via qRT-PCR. (D) Differences
of relative root dry matter (RRDM) among two haplotypes. ∗ and ∗∗ mean the 5% and 1% levels of significance, respectively.

associated to the most of SNPs and genes (Table 4), indicates that
germinating stage is one of the most sensitive stages of cotton,
just like sesame (Li et al., 2018). Based on drought tolerance
capacity with different F factors, cluster analysis grouped the 319
upland cotton accessions as four types: 16 advanced drought-
tolerant accessions, 75 medium drought-tolerant accessions, 207
drought-sensitive accessions and 21 extremly drought-sensitive
accessions. In our previous report for salt-tolerance of 304 upland
cotton accessions, we detected that 43 accessions were advanced
salt-tolerance, 114 medium salt-tolerance, and 147 salt-sensitive
(Du et al., 2016). Compared to the salt tolerance, there were
relatively few drought-tolerant accessions and need to be further
improved for drought tolerance in cotton breeding.

On the basis of the phylogenetic and PCA analysis, we
classified the 319 accessions into four groups. However, it showed
no obvious relationship with their geographic origin and this
result was consistent with most previous study in Upland cotton
(Cai et al., 2017; Sun et al., 2017). LD analysis of upland
cotton in this study showed that the LD rate declining to half
its maximum value was 980 Kb, it is longer than most other
crops, such as rice (167 Kb) (Huang et al., 2012) and soybean

(420 Kb) (Zhou et al., 2015). The speed of LD decay determines
the capacity and resolution of marker-trait association mapping,
and the causes of LD mainly including mutation, population
bottlenecks, founder effects, drift, selection, migration and
population admixture (Morrell et al., 2005; Mackay and Powell,
2007). We speculated that the short history and relatively high
rate of self-fertilization of upland cotton breeding in China led to
the slower LD decay, implying the more narrow genetic diversity
of upland cotton accessions.

Drought tolerance is a complex trait and is regulated by
polygenes with small effect. Common GWAS methods are all
based on a fixed-SNP-effect mixed linear model (MLM) and
single marker analysis, which require Bonferroni correction for
multiple tests. When the number of markers is extremely large,
the test is too strict. In cotton, combined the resequenced SNP
data and phenotyping variation data, GWAS was performed
using EMMAX method and the significance threshold was
estimated as approximately P = 10−6. As a result, three loci
associated with resistance to Verticillium wilt were identified
(Fang et al., 2017), implying that mixed linear model with single
marker analysis is too strict in GWAS for complex trait such as
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FIGURE 7 | Genome-wide association study for drought-tolerance and identification of the candidate gene PP2C on chromosome D04. (A) Local Manhattan plot
(top) and LD heat map (bottom). The red dot indicates the SNP related to the drought-tolerance trait. The arrow indicates the location of PP2C. (B) The expression
level of the candidate gene PP2C calculated via RNA-Seq. (C) The relative expression level (REL) of the candidate gene PP2C calculated via qRT-PCR.
(D) Differences of relative hypocotyl length (RHL) among two haplotypes. ∗ and ∗∗ mean the 5% and 1% levels of significance, respectively.

disease resistance. Multi-locus mixed linear model compresses
the markers by the rMLM method and used the selected SNPs
to further associate with traits by mrMLM method. Also due
to the multi-locus nature, no multiple test correction is needed.
So it shows the good effect for complex traits. Here, we used
mrMLM of Wang S.B. et al. (2016) and the CottonSNP80K array,
genome-wide association studies of drought-tolerance traits with
natural population of upland cotton accessions were conducted,
and 20 QTNs for drought-tolerance traits were identified.
These associated loci were widely distributed across the entire
genome and the candidate genes around the loci involved in
many biological process, such as root system development,
regulation of transport, water transport and response to stress.
It demonstrates that drought stress response is controlled by
multiple loci and numerous genes.

Compared to yield and fiber quality traits of cotton (Fang
et al., 2017; Sun et al., 2017; Ma et al., 2018), the number of
reported loci associated with drought tolerance is much fewer.

Previous studies have identified several drought-tolerance QTLs
in cotton. Based on the progenies from the cross of G. hirsutum
cv. Siv’on and G. barbadense cv. F-177, a total of 33 QTLs
were identified under water-limited environments, including five
QTLs for different physiological traits, 11 for plant productivity
and 17 for fiber quality, respectively (Saranga et al., 2001).
In another study, a vast number of QTLs from 42 different
studies were surveyed by comprehensive meta QTL analysis,
including 132 QTLs for fiber strength, 26 for boll weight, six
for gossypol, four for fruiting banch number, five for osmotic
potential, three for chlorophyll and so on (Said et al., 2013).
However, compared to the GWAS analysis based on high density
SNPs, the low density markers and the wide QTL regions
showed limitation in identification and utilization of elite genes,
especially for marker-assisted selection (MAS) breeding (Zhou
et al., 2015). The present study makes progresses in revealing loci
related to drought-tolerance traits and identifying SNP loci and
candidate genes for drought tolerance. In other studies, using 240
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maize accessions and high-density markers, 61 significant SNPs
related to drought tolerance were detected by GWAS analysis
(Thirunavukkarasu et al., 2014). In rice, through integrating 175
upland rice accessions with 150,325 SNPs, 13 SNP markers and
50 genes associated with yield under drought conditions were
identified, further, 10 genes related to drought and abiotic stress
tolerance were verified (Pantalião et al., 2016). These studies
could be exploited to discover drought tolerance mechanism and
contribute to breeding the drought tolerance varieties in crops.

Genetic basis of drought tolerance is complex. Previous
studies have reported many genes that are responsive to drought
stress in many plants (Song X. et al., 2016; Wang N. et al.,
2016; Ma et al., 2017). However, it is difficult to identify
candidate genes from the enormous gene pool. In present
study, we performed GWAS to identify elite QTNs in natural
population and further screen candidate genes by combining
with RNA-seq data. As a result, 46 candidate genes with both
annotated as response to stress and differential expression under
drought stress were selected. Of these genes, RD2, encoding
a response to desiccation protein, was a key gene for cotton
drought tolerance. In rice, expression analyses showed that
both RD1 and RD2 genes up-regulated under drought stress
due to seed-priming, and RD2 was increased more significantly
than RD1 in tolerance to drought stress, especially on priming
with paclobutrazol in drought-tolerant plant and with salicylic
acid in drought-sensitive plant (Samota et al., 2017). Another
candidate gene HAT22, which also named ABIG1 and encoded
a homeobox protein, is a member of the HD-Zip II family.
Expression of HAT22 mRNA increased under drought and ABA
treatment. There was less leaf yellowing in HAT22 mutants
than wild type plants with drought conditions. Moreover, some
stress related genes such as ABA and ethylene response loci
were regulated by HAT22 (Liu et al., 2016). In the plasma
membrane, PIPs are the most plentiful aquaporins with two
types, PIP1 and PIP2. There are five and eight isoforms of
PIP1 and PIP2 in Arabidopsis thaliana, respectively. Generally,
PIP1 proteins behave a low efficiency for water transport
while PIP2 proteins in plant have a high capacity for water
transport (Maurel et al., 2008). Previous studies showed that
PP2Cs played a crucial role in regulation of signal transduction
pathways. PP2Cs are negative regulators of stress-induced MAPK
pathways, ABA signaling and receptor kinase signaling. In
turn, expression of PP2C was transcriptionally controlled by
developmental signals, ABA and stress response (Schweighofer
et al., 2004). Abscisic acid (ABA) is an important plant hormone,
and regulates plant development and resistance to biotic and
abiotic stresses. It controls transpirational water loss by regulating
the stomatal opening and closure to resist drought stress.
Moreover, ABA can increase plant cell’s osmotic pressure, and
expedite chlorophyll breakdown and leaf senescence (Wilkinson
and Davies, 2002). By detecting the 46 candidate genes, we
found most of them involved in ABA signal pathway and
were reported to be related to drought response, such as
PIP2, HK1, GOLS1, and ADC2 (Zhai et al., 2010; Héricourt
et al., 2016; Song C. et al., 2016; Macho et al., 2018),
indicating ABA signal pathway play crucial roles in response
to drought tolerance in cotton. In summary, identification of

more drought-tolerance related genes/QTLs enlarges new insight
into mechanisms of drought response, and high-throughput
genotyping platforms are powerful tools for complex traits
dissection and development of drought tolerance varieties in
future cotton breeding.

CONCLUSION

We genotyped 319 upland cotton accessions using the
CottonSNP80K array and phenotyped nine drought-
tolerance related traits. By SNP-trait GWAS, we identified
20 SNPs significantly associated with drought-tolerance
traits. Integrating the GWAS and RNA-seq data with
qRT-PCR verification, we identified four candidate
genes RD2, HAT22, PIP2, and PP2C for improving
drought stress. Our study provides valuable information
to explore molecular mechanisms underlying cotton
drought tolerance, and supplies new resource for the
improvement of drought-tolerance in future cotton breeding
efforts.
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FIGURE S1 | Phenotypic distributions for drought-tolerance traits. RPH, relative
plant height; RSDM, relative shoot dry matter; RRDM, relative root dry matter;
RPC, relative proline content; RSOD, relative superoxide dismutase activity;
RMDA, relative malonaldehyde content; RSS, relative soluble sugar content; RHL,
relative hypocotyl length; RGP, relative germination percentage. Gaussian curve is
shown in orange line for each trait.

FIGURE S2 | Expression pattern of the candidate genes involved in drought
response. (A) Genes were annotated as stress response by Go analysis and also
differential expression under drought stress. (B) Genes were not annotated as
stress response by Go analysis but differential expression under drought stress.
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(C) Genes were annotated as stress response but not induced expression under
drought stress. The scales represent the fold change value of gene expression
level.

TABLE S1 | Information on 319 cotton accessions used in this study.

TABLE S2 | Primers used in this study.

TABLE S3 | Eigenvalues of six principal components and their contribution and
accumulative contribution.

TABLE S4 | Loading matrix of each in six principal components.

TABLE S5 | Information on 46 candidate genes related to stress response with
significantly differential expression under drought stress.
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Maize starch plays a critical role in food processing and industrial application.
The pasting properties, the most important starch characteristics, have enormous
influence on fabrication property, flavor characteristics, storage, cooking, and baking.
Understanding the genetic basis of starch pasting properties will be beneficial for
manipulation of starch properties for a given purpose. Genome-wide association studies
(GWAS) are becoming a powerful tool for dissecting the complex traits. Here, we carried
out GWAS for seven pasting properties of maize starch with a panel of 230 inbred lines
and 145,232 SNPs using one single-locus method, genome-wide efficient mixed model
association (GEMMA), and three multi-locus methods, FASTmrEMMA, FarmCPU, and
LASSO. We totally identified 60 quantitative trait nucleotides (QTNs) for starch pasting
properties with these four GWAS methods. FASTmrEMMA detected the most QTNs
(29), followed by FarmCPU (19) and LASSO (12), GEMMA detected the least QTNs (7).
Of these QTNs, seven QTNs were identified by more than one method simultaneously.
We further investigated locations of these significantly associated QTNs for possible
candidate genes. These candidate genes and significant QTNs provide the guidance
for further understanding of molecular mechanisms of starch pasting properties. We
also compared the statistical powers and Type I errors of the four GWAS methods
using Monte Carlo simulations. The results suggest that the multi-locus method is more
powerful than the single-locus method and a combination of these multi-locus methods
could help improve the detection power of GWAS.

Keywords: maize, starch, pasting properties, GWAS, multi-locus

INTRODUCTION

Maize (Zea mays L.) is the world’s most important crop for food, feed and industrial materials.
Starch is the principal constituent of maize kernels, which accounts for approximately 70% of the
kernel weight (Liu N. et al., 2016). Benefitting from its characteristics such as slow tendency of
retrogradation and low pasting temperature (PTP), maize starch serves as an essential ingredient
for industrial production of food, and has been widely used to thicken sauces or soups and make
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corn syrup and other sugars (Yang Z. et al., 2014). Recently, great
progress has been made in dissection of starch content in maize
kernels (Wang et al., 2015; Li et al., 2018). However, further
improvements in starch quality are needed to meet demands
of food processing and industrial application. The pasting
properties are important characteristics of starch, determining
the starch quality and functionality. Dissection the genetic basis
of pasting properties will facilitate the improvement of starch
quality in maize.

Genome-wide association studies (GWAS) provide the
opportunity to decipher genetic architectures of complex traits
in crops (Zhu et al., 2008). Owing to the rapid linkage
disequilibrium (LD) decay and abundant diversity, maize is
an ideal species to perform GWAS. GWAS have successfully
analyzed many important traits, such as kernel oil biosynthesis,
plant height and disease resistance in maize (Kump et al.,
2011; Li et al., 2013). Some statistical models have been
developed to conduct GWAS. Mixed linear model (MLM) has
become the most popular approach with the ability to consider
population structure and family relatedness (Zhang et al., 2005;
Yu et al., 2006). Based on the MLM framework, some single-
locus approaches have been proposed to alleviate the heavy
computational burden, such as EMMAX (Kang et al., 2008),
P3D (Zhang et al., 2010), FaST-LMM (Lippert et al., 2011),
and genome-wide efficient mixed model association (GEMMA)
(Zhou and Stephens, 2012). However, the single-locus model
testing one locus at a time fails to match the true genetic
model of complex traits that are controlled by numerous loci
simultaneously. Additionally, multiple test corrections for critical
values are usually required to control false positive rates for
single-locus GWAS. The commonly used Bonferroni correction
is so conservative that lots of true loci may be neglected. To
overcome these problems, multi-locus GWAS methods have been
recommended because these methods consider the information
of all loci simultaneously and multiple test corrections are not
required because of the multi-locus nature (Wang et al., 2016).
Several multi-locus methods, such as FASTmrEMMA, ISIS EM-
BLASSO, FASTmrMLM, pLARmEB, pKWmEB, LASSO, and
FarmCPU, have been proved to be more powerful than single-
locus methods (Liu X.L. et al., 2016; Tamba et al., 2017; Xu et al.,
2017; Zhang et al., 2017; Ren et al., 2018; Wen et al., 2018).

There have been a few studies focusing on the genetic
basis of pasting properties in maize starch. Zhang et al. (2004)
suggested that SSIIa of maize affected the starch structure and
physiochemical properties. Wilson et al. (2004) used association
mapping to evaluate six candidate genes involved in starch
synthesis and found that ae1 and sh2 were associated with starch
pasting properties. Xu et al. (2014a) detected the associations
of sequence variants of the ZmBT1 gene with seven pasting
properties. Yang Z. et al. (2014) identified seven quantitative
trait nucleotides (QTNs) in coding regions of Zmisa2 underlying
pasting properties of maize starch and proposed that these
markers may be potentially utilized for marker-assisted selection.
However, all of the above studies were based on specific candidate
genes involved in kernel starch biosynthesis. Therefore, more
comprehensive studies are required to further understand the
molecular mechanisms of starch pasting properties. To our

knowledge, GWAS for pasting properties of maize starch have not
been reported up to now.

In this study, a worldwide collection of 230 inbred lines were
genotyped with 145,232 SNPs using genotyping-by-sequencing
(GBS) technology. Starch pasting properties including peak
viscosity (PV), trough viscosity (TV), final viscosity (FV),
breakdown viscosity (BD), setback viscosity (SB), pasting time
(PT), and PTP were measured for the 230 lines using the Rapid
Visco Analyser (RVA). The main objectives of this study were
to (i) identify loci that are significantly associated with pasting
properties of maize starch using single-locus and multi-locus
GWAS methods, and (ii) compare three multi-locus methods
(FASTmrEMMA, LASSO, and FarmCPU) with one single-locus
method (GEMMA) in terms of their detection powers and Type
I errors.

MATERIALS AND METHODS

Plant Materials
In this study, an association panel of 230 maize lines collected
from the tropical, subtropical or temperate zone, representing a
wide range of diversity, was used for GWAS. All the materials
were planted with a randomized block design of three repetitions
in the field of Sanya, Hainan province. At the four-leaf stage,
young leave tissues were collected from each line and preserved
at −80◦C. DNA was extracted from the freeze-dried leave tissues
with the modified CTAB method (Fulton et al., 1995). After
harvest, mature kernels of five randomly selected plants in each
line were collected and used for evaluation of starch pasting
properties.

Genotyping
The panel of 230 maize inbred lines was genotyped using a GBS
strategy. The ApeK1 restriction enzyme was used for library
preparation, and GBS was performed on an Illumina platform
by Novogene Bioinformatics Institute, Beijing, China. After
quality control, a total of 145,232 high-quality SNPs with minor
allele frequency (MAF) above 2% and missing rate below 20%
remained to perform GWAS.

Measurement of Starch Pasting
Properties
The pasting properties of maize starch were evaluated using RVA
(Model 3D, Newport Scientific, Sydney, NSW, Australia). Three
grams of starch obtained from each line was mixed with 25 ml
of distilled water in the RVA canister. The RVA profile took a
heat–hold–cool temperature cycle as follows: (1) set at 50◦C as
the starting temperature and maintained for 1 min; (2) heated to
95◦C and held at 95◦C for 2.5 min; and (3) cooled to 50◦C and
kept at 50◦C for 1.4 min. The total processing time was about
12 min. The pasting properties were determined using a fixed
paddle rotation at the speed of 160 r/m. The RVA parameters
were recorded in centipose (cP). The pasting parameters obtained
from the pasting curve including PV, TV, FV, PTP, PT and their
derived parameters, BD and SB were recorded for all the inbred
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lines. The average value of three biological replicates from each
line was obtained for data analysis.

Genome-Wide Association Analysis
In this study, GWAS were performed in the association panel
composed of 230 diverse maize inbred lines with 145,232 high-
quality SNPs. The decay distance of LD across the whole genome
was determined by software PopLDdecay1. Principle component
analysis (PCA) was used to control for population structure.
Both single-locus and multi-locus methods were used to identify
significant QTNs for seven starch properties. GEMMA was
used for single-locus GWAS, and FASTmrEMMA (Wen et al.,
2018), LASSO (Xu et al., 2017), and FarmCPU (Liu X.L. et al.,
2016) were used for multi-locus GWAS. GEMMA was developed
based on the framework of MLM, which takes advantage of
eigen decomposition to substantially increase the computational
speed. GEMMA was implemented in the software GEMMA.
FASTmrEMMA is a multi-locus two-stage GWAS method,
combining the MLM and the expectation and maximization
empirical Bayes (EMEB) method. In the first stage, the marker
effects were treated as random and a small number of markers
were selected, and then in the second stage, the selected markers
were fitted into a multi-locus model and estimated using the
EMEB method. FASTmrEMMA was implemented in the R
package mrMLM. LASSO is a powerful multi-locus approach,
but it lacks a default method to perform a significance test.
Here, we used our previously proposed Bayesian algorithm
to approximately estimate the variance of each marker effect
and then used a Wald test to obtain the significant test for
each marker. Details about this algorithm were given in Xu
et al. (2017). The LASSO method was implemented in the
R package glmnet and our own R program. The FarmCPU
method is a commonly used GWAS method at present, which
effectively eliminates confounding and improves statistical power
for MLM methods by using the fixed effect model and random
effect model iteratively. FarmCPU was implemented in the R
package FarmCPU. All parameters were set at default values. The
significantly associated QTNs were determined by the LOD value
exceeding three for FASTmrEMMA and LASSO, and the P-value
less than 1/m (m is the number of markers) for GEMMA and
FarmCPU. To mine candidate genes based on the detected QTNs
for the pasting properties, we used gene annotation and ontology
information available in maizeGDB2 and Phytozome database3.

Simulation Experiments
To investigate the powers and Type I errors of the single-
locus and multi-locus GWAS methods, we carried out a Monte
Carlo simulation experiment using the genotypic data of 230
maize inbred lines. We assigned eight QTL located on the first
eight chromosomes. The assigned QTL totally explained 56%
of the phenotypic variation. The detailed description of the
eight QTL is presented in Table 1. Both the polygenic variance
and residual error variance were set at one. The population

1https://github.com/BGI-shenzhen/PopLDdecay
2http://maizegdb.org
3https://phytozome.jgi.doe.gov

structure effect was added according to the first five principal
components determined from the genotypic data. These principal
components contributed to 10% of the phenotypic variance. The
phenotype was simulated with the contribution of the genetic
effect of simulated QTL, polygenic effect, residual effect, and
population structure effect. The simulations were replicated 200
times and the four GWAS methods, FASTmrEMMA, FarmCPU,
LASSO, and GEMMA, had been used to analyze the simulated
data. The statistical power for a simulated QTL was defined
as the fraction of the 200 replicates where the LOD score of
the QTL was larger than three for the FASTmrEMMA and
LASSO methods and the P-value of the QTL was less than 1/m
for GEMMA and FarmCPU. Type I error was defined as the
ratio of false positives out of all markers not assigned a QTL
effect. Each QTL within 1 kb of the assigned QTL was counted
as a real QTL.

RESULTS

Phenotypic Variations and Heritability
The descriptive statistics of the seven pasting properties for the
230 maize inbred lines are listed in Table 2. The average values for
PV, TV, BD, FV, SB, PT, and PTP are 1,200.22, 1,004.04, 196.18,
1,980.36, 976.33, 5.46, and 81.24 with the standard deviations
334.56, 225.29, 141.77, 427.17, 314.40, 0.42, and 2.14, respectively.
Substantial variations among genotypes are observed for the
seven pasting properties, and pasting properties vary significantly
among different lines. Also, variance components were estimated
using the restricted maximum likelihood (REML) analysis (Xu
et al., 2014b). The narrow sense heritability, defined as the ratio
of additive genetic variance to total phenotypic variance, ranges
from 0.46 for PT to 0.77 for TV (Table 2). These results indicate
that the phenotypic variations of starch pasting properties are
mainly affected by genetic factors, and therefore this panel can
be used for further genetic analyses. To determine the correlation
among the seven pasting properties, the Pearson’s correlation
coefficients were calculated. The results of the correlation analysis
are illustrated in Figure 1. All the pairwise correlations between
any two pasting properties exhibit significantly positive or
negative correlations except three correlations between PT and
TV, between PT and SB, and between SB and PTP.

TABLE 1 | Information for the eight simulated QTL.

QTL Chromosome Position (bp) MAF Effect R2,a (%)

QTL1 1 14898058 0.335 0.569 4

QTL2 2 19326559 0.16 0.842 4

QTL3 3 20532172 0.307 1.041 6

QTL4 4 13181343 0.452 0.667 6

QTL5 5 15819352 0.204 0.935 8

QTL6 6 27154881 0.378 0.766 8

QTL7 7 16672999 0.085 1.564 10

QTL8 8 22685122 0.217 1.028 10

aProportion of the total phenotypic variation explained by the QTL.
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TABLE 2 | Phenotypic performance, variance component, and heritability of seven pasting properties of maize starch.

Mean ± SD Range Genetic variance Residual variance Heritability F value

PV (cP) 1,200.22 ± 334.56 494.5–2,272 115,459.13 50,143.19 0.70 2.11∗∗

TV (cP) 1,004.04 ± 225.29 463.5–1,737 63,071.08 18,425.03 0.77 2.28∗∗

BD (cP) 196.18 ± 141.77 2.5–783.5 15,269.62 11,891.91 0.56 1.96∗∗

FV (cP) 1980.36 ± 427.17 920–3411 155519.10 99828.04 0.61 2.12∗∗

SB (cP) 976.33 ± 314.40 319–1930 108176.00 41637.66 0.72 2.40∗∗

PT (min) 5.46 ± 0.42 4.6–7 0.11 0.13 0.46 3.26∗∗

PTP (◦C) 81.24 ± 2.14 75.55–87.28 3.40 2.86 0.54 2.71∗∗

∗∗ Indicates significance level at P < 0.01. PV, peak viscosity; TV, trough viscosity; BD, breakdown viscosity; FV, final viscosity; SB, setback viscosity; PT, pasting time;
PTP, pasting temperature.

FIGURE 1 | The pairwise correlation analysis among seven pasting properties of maize starch. Upper diagonal: Pearson correlation coefficients between every two
traits; Lower diagonal: Scatter plots of correlations between every two traits. Asterisk (∗) indicates significance level at P < 0.05; Double asterisks (∗∗) indicates
significance level at P < 0.01. PV, peak viscosity; TV, trough viscosity; BD, breakdown viscosity; FV, final viscosity; SB, setback viscosity; PT, pasting time; PTP,
pasting temperature.

Population Structure and Linkage
Disequilibrium
In this study, PCA was used to correct for population structure.
PCA plots of this association population are illustrated in
Figure 2. According to the scree plot, the variance of principle
component score decreases quickly until the fifth principle
component (Figure 2B). Therefore, we selected the first five
principal components to control the population structure. All
filtered SNPs were used to determine LD decay. A monotonic
decrease in LD is found with increasing distance (Figure 3). At
r2 = 0.2, the overall LD decay decreases dramatically to 10 kb.

The genome-wide LD decay distance is about 250 kb at the cut-off
of r2 = 0.1.

GWAS for Starch Pasting Properties
In this study, GWAS were conducted for 230 maize inbred
lines with 145,232 SNPs using four methods and the results
are listed in Table 3. A total of 60 significant QTNs are
identified for seven starch properties from the four GWAS
methods. FASTmrEMMA detects the most QTNs (29), followed
by FarmCPU (19) and LASSO (12), GEMMA detected the least
QTNs (7). The numbers of significant QTNs detected for starch
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FIGURE 2 | Genetic structure of maize inbred lines. (A) Plot of the first two principal components of 230 inbred lines. (B) Scree plot showing the selection of
principal components for GWAS.

properties PV, TV, BD, FV, SB, PT, and PTP are 14, 10, 8, 12, 12, 6,
and 5, respectively, from all the four methods. The corresponding
numbers of the significant QTNs are 8, 6, 5, 3, 6, 1, and 4
from FASTmrEMMA; 2, 4, 2, 7, 4, 2, and 1 from FarmCPU;
2, 2, 0, 1, 3, 3, and 1 from LASSO; and 2, 0, 1, 1, 1, 2, and 0
from GEMMA. The largest QTN detected by FASTmrEMMA,
FarmCPU, LASSO, and GEMMA explains 9.35, 14.96, 1.03,
and 12.03(%) of the phenotypic variation, respectively. Among
these significant QTNs, seven QTNs appear to control more
than one trait (pleiotropic effect). For example, three QTNs
(SNP_2_190495578, SNP_9_138239683, and SNP_4_89429269)
have significant effects on PV and TV. Both SNP_6_109456130

and SNP_7_160060597 are associated with PV and BD. The
correlations between PV and TV as well as between PV and BD
are significant.

When comparing the results across different methods,
only seven common QTNs are identified by more than one
method simultaneously. Among these QTNs, SNP_2_9506602
is detected across three GWAS methods (FarmCPU, LASSO,
and GEMMA); SNP_9_103241537 and one pleiotropic QTN
(SNP_4_89429269) are identified by FASTmrEMMA and
FarmCPU simultaneously; SNP_4_144401228 is detected by
FASTmrEMMA and LASSO; SNP_9_109684667 is detected by
LASSO and GEMMA; SNP_3_12888452 is detected by FarmCPU

Frontiers in Plant Science | www.frontiersin.org September 2018 | Volume 9 | Article 1311126

https://www.frontiersin.org/journals/plant-science/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/plant-science#articles


fpls-09-01311 September 4, 2018 Time: 9:42 # 6

Xu et al. GWAS of Starch Pasting Properties

FIGURE 3 | Linkage disequilibrium decay across the whole genome of the association panel. The blue horizontal line shows the LD threshold for the association
panel (r2 = 0.1).

and LASSO. SNP_7_173235732 associated with SB and FV are
detected by FASTmrEMMA and FarmCPU, respectively.
Note that the estimated effects and R2 values (proportion of
phenotypic variance explained by the QTL) of the co-identified
QTNs detected by different methods are completely different,
whereas the signs of effects for these co-identified QTNs for
the same trait are consistent. For example, the estimated effects
of SNP_2_9506602 are −0.177, −0.057, and −0.244, and the
corresponding R2 values are 5.14, 0.53, and 9.74(%) for trait PT
when using FarmCPU, LASSO, and GEMMA, respectively. All
the three methods demonstrate that this QTN has the negative
effect on PT.

Simulation Studies for GWAS
Simulation experiments were performed to compare the
statistical powers and Type I errors of the four GWAS methods.
The statistical powers of detecting the simulated QTL calculated
based on 200 simulations are given in Table 4. The average
powers for FASTmrEMMA, FarmCPU, LASSO, and GEMMA
were 55.19, 43.31, 53.69, and 40.44(%), respectively, indicating
the highest average power of FASTmrEMMA. However, different
methods may be suitable for detection of different QTL. For
example, FASTmrEMMA has the highest power for detecting

QTL1, QTL4, QTL5, QTL6, and QTL8 but the lowest power for
detecting QTL7. LASSO is the best method for detecting QTL2
and QTL3, whereas it is the worst method for detecting QTL1.
GEMMA has the lowest power of detecting all the simulated
QTL, but it is the most efficient method for detecting QTL7.
Type I errors for all the four methods are also listed in Table 4.
LASSO has the lowest Type I error, followed by GEMMA and
FASTmrEMMA, and FarmCPU has the highest Type I error. The
Type I errors of the four methods are under 0.0001 with the same
order of magnitude. Overall, the Type I errors are well controlled
for all the four approaches, and the three multi-locus approaches
are more powerful than the single-locus approach.

DISCUSSION

In this study, we compared statistical powers of FASTmrEMMA,
FarmCPU, LASSO, and GEMMA using real and simulation data.
Simulation experiments based on the genotypic data of 230 maize
inbred lines illustrate that the multi-locus approach is more
powerful than single-locus approach in most cases, especially
for loci with small effect that explain less than six percent of
phenotypic variance. Although single-locus methods have been
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TABLE 3 | Significantly associated QTNs identified by four GWAS methods for seven pasting properties of maize starch.

Trait Marker Alleles Chr Pos FASTmrEMMA FarmCPU LASSO GEMMA

Effect R2 (%) Effect R2 (%) Effect R2 (%) Effect R2 (%)

PV SNP_2_190495578# C/A 2 190495578 256.70 7.05

SNP_2_42359599 A/G 2 42359599 −131.53 2.87

SNP_2_51001688 A/C 2 51001688 −191.54 5.03

SNP_3_171824570# G/T 3 171824570 126.17 2.46

SNP_4_64845133 A/G 4 64845133 193.04 2.81

SNP_4_89429269# G/A 4 89429269 134.34 3.09

SNP_5_26160368 T/A 5 26160368 −234.93 11.13

SNP_5_26160478 C/A 5 26160478 −234.29 11.64

SNP_6_109456130# A/C 6 109456130 −116.84 7.12

SNP_6_164038368 C/A 6 164038368 −51.80 0.46

SNP_7_160060597# A/G 7 160060597 174.52 2.79

SNP_8_147208913 C/T 8 147208913 −133.38 5.05

SNP_9_138239683# C/A 9 138239683 −68.33 1.03

SNP_9_58569771 C/T 9 58569771 210.21 3.01

TV SNP_2_190495578# C/A 2 190495578 148.11 5.18

SNP_2_75175274 A/G 2 75175274 −163.45 3.19

SNP_4_144401228∗ A/G 4 144401228 −141.31 4.68 −30.63 0.88

SNP_4_89429269#∗ G/A 4 89429269 103.79 4.07 54.80 4.56

SNP_5_168661067 G/C 5 168661067 −76.75 4.19

SNP_8_104430223 T/C 8 104430223 163.65 7.19

SNP_9_138239602 G/C 9 138239602 −102.16 4.94

SNP_9_138239683# C/A 9 138239683 −44.03 0.94

SNP_10_12091187 A/G 10 12091187 −103.99 3.72

SNP_10_142948941 A/G 10 142948941 48.76 3.85

BD SNP_1_241610826 C/T 1 241610826 −33.08 4.33

SNP_1_825561 C/T 1 825561 93.47 3.56

SNP_4_146006182 G/A 4 146006182 73.78 3.74

SNP_6_109456130# A/C 6 109456130 −58.28 9.86

SNP_7_160060597# A/G 7 160060597 76.06 2.95

SNP_9_142242612 C/T 9 142242612 −49.54 2.53

SNP_10_138051694 G/C 10 138051694 82.38 10.28

SNP_10_9143566 G/T 10 9143566 −83.04 5.87

FV SNP_1_283390691 T/C 1 283390691 106.83 5.53

SNP_2_51001706 C/T 2 51001706 −273.07 6.02

SNP_5_160490300 A/G 5 160490300 −142.99 5.16

SNP_5_160866262 T/C 5 160866262 167.30 6.97

SNP_5_213796937 A/G 5 213796937 −96.09 3.71

SNP_6_107223456 G/C 6 107223456 −206.80 12.03

SNP_6_115373488 G/A 6 115373488 175.34 3.14

SNP_7_173235732# T/G 7 173235732 130.23 5.04

SNP_8_124259102 A/C 8 124259102 −64.27 0.51

SNP_8_154309867 G/T 8 154309867 150.77 6.61

SNP_9_113510544 G/A 9 113510544 264.83 3.48

SNP_9_83760699 A/T 9 83760699 143.42 3.60

SB SNP_1_168229057 C/T 1 168229057 −40.57 0.44

SNP_2_27401698 G/T 2 27401698 −37.77 0.31

SNP_2_46177221 G/A 2 46177221 147.63 2.52

SNP_6_104663091 A/C 6 104663091 115.82 9.30

SNP_6_124651063 G/A 6 124651063 −63.76 3.81

SNP_6_158401136 G/C 6 158401136 −72.23 3.41

SNP_7_173235732# T/G 7 173235732 186.23 4.73

SNP_7_48994000 A/G 7 48994000 −166.31 5.17

(Continued)

Frontiers in Plant Science | www.frontiersin.org September 2018 | Volume 9 | Article 1311128

https://www.frontiersin.org/journals/plant-science/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/plant-science#articles


fpls-09-01311 September 4, 2018 Time: 9:42 # 8

Xu et al. GWAS of Starch Pasting Properties

TABLE 3 | Continued

Trait Marker Alleles Chr Pos FASTmrEMMA FarmCPU LASSO GEMMA

Effect R2 (%) Effect R2 (%) Effect R2 (%) Effect R2 (%)

SNP_8_38060255 T/C 8 38060255 −148.06 2.91

SNP_9_103241537∗ G/C 9 103241537 213.43 9.35 81.24 5.44

SNP_9_109684667∗ C/A 9 109684667 41.66 0.54 181.03 10.19

SNP_10_143879663 G/A 10 143879663 163.20 4.53

PT SNP_2_79885513 T/C 2 79885513 0.31 10.34

SNP_2_9506602∗ T/C 2 9506602 −0.18 5.14 −0.06 0.53 −0.24 9.74

SNP_3_219463585 T/A 3 219463585 −0.10 4.67

SNP_4_211011498 T/C 4 211011498 −0.07 0.54

SNP_5_59630329 G/C 5 59630329 −0.07 0.58

SNP_8_22655499 T/A 8 22655499 0.34 5.00

PTP SNP_2_80464203 C/T 2 80464203 1.36 2.24

SNP_3_12888452∗ G/C 3 12888452 1.58 14.96 0.27 0.42

SNP_3_171824570# G/T 3 171824570 −1.26 6.02

SNP_4_193530385 T/G 4 193530385 −1.36 3.71

SNP_4_71048778 A/G 4 71048778 −1.27 3.32

# Indicates the QTN identified across different traits. ∗ Indicates the QTN identified across different methods.

TABLE 4 | Statistical powers (%) of eight simulated QTL and Type I error rates for
four GWAS methods drawn from 200 replicated simulation experiments.

QTL FASTmrEMMA FarmCPU LASSO GEMMA

QTL1 52.5 22.5 5.5 6

QTL2 20.5 15.5 39 0

QTL3 55 46 62 41

QTL4 47 11.5 9 2.5

QTL5 92 61 83.5 60

QTL6 58 57 51 50

QTL7 20.5 65 92.5 94

QTL8 96 68 87 70

Type I error 6.99E-05 7.17E-05 4.70E-05 6.58E-05

widely used to identify genetic variants in many crop species,
they neglect the overall effects of multiple loci and suffer from
the problem of multiple test corrections for critical values. Several
investigators have compared statistic powers of multi-locus
and single-locus methods and demonstrated that multi-locus
methods perform better than single-locus methods. Wen et al.
(2018) compared FASTmrEMMA with single-locus approaches
including EMMA, SUPER, CMLM, and ECMLM using a series of
simulation studies and found that FASTmrEMMA has the highest
power and accuracy. Xu et al. (2017) showed that the multi-
locus LASSO method has higher statistical power and lower
Type I error than GEMMA. Liu X.L. et al. (2016) demonstrated
that FarmCPU improves statistical power compared to GLM,
MLM, CMLM, FaST-LMM-Select across multiple species, such as
Arabidopsis thaliana, human and maize. In previous simulation
studies, Bonferroni multiple test correction was used for single-
locus method. However, it may be too strict to use Bonferroni
correction (0.05/m) as the cut-off as not all loci are independent
(Yang N. et al., 2014). To avoid missing the relevant loci,
we replaced Bonferroni correction by a less stringent criterion

(1/m) for GEMMA. The results of simulation showed that
Type I error of GEMMA with 1/m as the cut-off was well
controlled and similar to that of three multi-locus methods.
Additionally, the permutation method is commonly used to
adjust for multiple tests, which yields reliable outcome but
requires a lot of time for huge samples (Churchill and Doerge,
1994). Fortunately, no multiple test correction is required for
FASTmrEMMA and LASSO because all markers are fitted
to a single model and all effects are estimated and tested
simultaneously.

In the real data analysis, a total of 29, 19, 12, and 7 significant
QTNs were identified for seven pasting properties of maize
starch using FASTmrEMMA, FarmCPU, LASSO, and GEMMA,
respectively. FASTmrEMMA detected the most QTNs, while
GEMMA detected the least, which was consistent with the
results of the simulation that FASTmrEMMA performed the
best for detection of most QTL and GEMMA performed the
worst. Unexpectedly, there was no significant QTN detected
by these four methods simultaneously, and only seven QTNs
were detected by more than one method. This situation could
be explained by the simulation studies. From the simulation
results, none of these methods were found to achieve very
high power for detecting all the simulated QTL and different
methods may be suitable for identification of different QTL.
For example, FASTmrEMMA possessed good performance for
most QTL, whereas it was not efficient for simulated QTL7
with the largest effect and lowest MAF. LASSO performed
well for detecting large QTL but poorly for small QTL. Each
method has its own advantages and limitations. LASSO is
computationally efficient, but fails to handle a large number of
markers. FASTmrEMMA is powerful in detection of QTL and
accurate in effect estimation of QTL. However, FASTmrEMMA
is a two-step combined method. The first step is to select a small
fraction of makers and then apply these markers to perform
multi-locus analyses in the second step. This method has an
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issue in how to determine the suitable thresholds in the first
step. To improve the power of GWAS, it is better to use a
combination of these methods, and the QTL detected by multiple
methods may be more reliable. Recently, Zhang et al. (2018)
and Ma et al. (2018) also proposed that using a combination
of multiple multi-locus methods could improve the efficiency
for detecting the QTL underlying lodging resistance-related and
regeneration-related traits of maize. Genome-wide association
studies have been applied to dissect genetic architectures of
several complex traits in maize (Xiao et al., 2017). However,
no previous studies have focused on GWAS for starch pasting
properties in maize. Here, we performed GWAS for seven pasting
properties in a panel of 230 maize inbred lines genotyped with
145,232 SNPs and identified 60 significant QTNs using single-
locus and multi-locus GWAS methods. Notably, the detected
loci may not be the real causative loci due to false positives
caused by LD or population structure. To understand the
molecular basis of pasting properties, we further investigated
locations of associated QTNs for possible candidate genes. The
candidate genes within 250 kb downstream and upstream of
the identified QTNs and their orthologs in Arabidopsis and
rice are presented in Supplementary Table S1. According to
functional annotations, these candidate genes were primarily
categorized as protein kinases, glycosyltransferases, glycosidases,
hydrolases, and transcription factors. The transcription factors
included E2F, BHLH, TFIIH, MYB, bZIP, and HSF superfamily.
Some of the candidate genes or their homologous genes
are known genes linked to starch biosynthesis. For example,
GRMZM2G032628 (ae1) encodes starch branching enzyme,
which is a downstream gene involved in the final product
of starch biosynthesis (Dolezal et al., 2014). It was reported
that ae1 was significantly associated with pasting properties of
maize starch (Wilson et al., 2004). The homologous gene SUS3
of GRMZM2G392988 in Arabidopsis has been reported to be
involved in starch biosynthesis within seed coat and embryo
(Angeles-Nunez and Tiessen, 2010). Several candidate genes are
annotated as glycosyltransferases, which formed the important
catalytic mechanism to synthesize and break the glycosidic
bonds in oligosaccharides, disaccharides, and polysaccharides
(Li et al., 2018). To better understand the potential biological
functions of these candidate genes, we performed the gene
ontology (GO) analysis for these genes using clusterProfiler (Yu
et al., 2012). The GO analysis revealed that these genes were
significant enriched in 16 GO terms (P-value <0.01), which were
classified into three main types containing biological process,
molecular function, and cellular component (Supplementary
Figure S1). Under the first type, the most significant GO terms
are gluconeogenesis process and hexose biosynthetic process,
which play important roles in starch biosynthesis. Under the
second type, these genes were significant related to chorismate
synthase activity and glucose-6-phosphate isomerase activity.
Under the third type, several genes were involved in photosystem.
We also found that some candidate genes were involved in
multiple functions. For example, GRMZM2G065083 are involved
in gluconeogenesis process, hexose biosynthetic and metabolic
process and glucose-6-phosphate isomerase activity. However,
these genes were not found to be known genes involved in

starch biosynthesis pathway, indicating that our study of the
molecular mechanisms underlying pasting properties of maize
starch is incomplete. These identified QTNs and candidate
genes provide foundation for further functional studies to
dissect the genetic mechanism manipulating maize pasting
properties.

CONCLUSION

In this study, single-locus and multi-locus GWAS methods were
used to identify loci associated with starch pasting properties
in maize. A total of 60 significant QTNs were detected for
seven pasting properties, of which 29, 19, 12, and 7 QTNs
were detected using FASTmrEMMA, FarmCPU, LASSO, and
GEMMA, respectively. These QTNs could be utilized for further
genetic and breeding studies to regulate starch pasting properties.
Additionally, we compared four GWAS methods for their
detection powers and Type I errors based on simulation studies
and found that the multi-locus method is more powerful than
the single-locus method and the combination of these multi-
locus methods could help improve the statistical power of current
GWAS.

AUTHOR CONTRIBUTIONS

CX and ZY designed the research plan. YX, TY, YZ, SY, PL, JL,
and SX performed the experiments. YX and PL analyzed the data.
YX wrote the paper. All authors read and approved the final
manuscript.

FUNDING

This work was supported by the National Key
Technology Research and Development Program of MOST
(2016YFD0100303), the National Natural Science Foundation
of China (31801028, 31601810, and 81700822), the China
Postdoctoral Science Foundation (137070445), the Yangzhou
University Innovation Cultivation Foundation (135030066), the
Priority Academic Program Development of Jiangsu Higher
Education Institutions, the Natural Science Foundations of
Jiangsu Province (BK20150010), the Innovative Research Team
of Ministry of Agriculture, and the Qing-Lan Project of Jiangsu
Province.

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found online
at: https://www.frontiersin.org/articles/10.3389/fpls.2018.01311/
full#supplementary-material

FIGURE S1 | Distribution of significant GO terms (P-value < 0.01).

TABLE S1 | Candidate genes for QTNs significantly associated with starch
pasting properties in maize and their homologous genes in Arabidopsis and rice.

Frontiers in Plant Science | www.frontiersin.org September 2018 | Volume 9 | Article 1311130

https://www.frontiersin.org/articles/10.3389/fpls.2018.01311/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fpls.2018.01311/full#supplementary-material
https://www.frontiersin.org/journals/plant-science/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/plant-science#articles


fpls-09-01311 September 4, 2018 Time: 9:42 # 10

Xu et al. GWAS of Starch Pasting Properties

REFERENCES
Angeles-Nunez, J. G., and Tiessen, A. (2010). Arabidopsis sucrose synthase 2 and 3

modulate metabolic homeostasis and direct carbon towards starch synthesis in
developing seeds. Planta 232, 701–718. doi: 10.1007/s00425-010-1207-9

Churchill, G. A., and Doerge, R. W. (1994). Empirical threshold values for
quantitative trait mapping. Genetics 138, 963–971.

Dolezal, A. L., Shu, X., Obrian, G. R., Nielsen, D. M., Woloshuk, C. P., Boston, R. S.,
et al. (2014). Aspergillus flavus infection induces transcriptional and physical
changes in developing maize kernels. Front. Microbiol. 5:384. doi: 10.3389/
fmicb.2014.00384

Fulton, T. M., Chunwongse, J., and Tanksley, S. D. (1995). Microprep protocol for
extraction of DNA from tomato and other herbaceous plants. Plant Mol. Biol.
Report. 13, 207–209.

Kang, H. M., Zaitlen, N. A., Wade, C. M., Kirby, A., Heckerman, D., Daly,
M. J., et al. (2008). Efficient control of population structure in model
organism association mapping. Genetics 178, 1709–1723. doi: 10.1534/genetics.
107.080101

Kump, K. L., Bradbury, P. J., Wisser, R. J., Buckler, E. S., Belcher, A. R., Oropeza-
Rosas, M. A., et al. (2011). Genome-wide association study of quantitative
resistance to southern leaf blight in the maize nested association mapping
population. Nat. Genet. 43, 163–168. doi: 10.1038/ng.747

Li, C., Huang, Y., Huang, R., Wu, Y., and Wang, W. (2018). The genetic
architecture of amylose biosynthesis in maize kernel. Plant Biotechnol. J. 16,
688–695. doi: 10.1111/pbi.12821

Li, H., Peng, Z., Yang, X., Wang, W., Fu, J., Wang, J., et al. (2013). Genome-wide
association study dissects the genetic architecture of oil biosynthesis in maize
kernels. Nat. Genet. 45, 43–50. doi: 10.1038/ng.2484

Lippert, C., Listgarten, J., Liu, Y., Kadie, C. M., Davidson, R. I., and Heckerman, D.
(2011). FaST linear mixed models for genome-wide association studies. Nat.
Methods 8, 833–U894. doi: 10.1038/Nmeth.1681

Liu, N., Xue, Y., Guo, Z., Li, W., and Tang, J. (2016). Genome-wide association
study identifies candidate genes for starch content regulation in maize kernels.
Front. Plant Sci. 7:1046. doi: 10.3389/fpls.2016.01046

Liu, X. L., Huang, M., Fan, B., Buckler, E. S., and Zhang, Z. W. (2016). Iterative
usage of fixed and random effect models for powerful and efficient genome-
wide association studies. PLoS Genet. 12:e1005767. doi: 10.1371/journal.pgen.
1005767

Ma, L., Liu, M., Yan, Y., Qing, C., Zhang, X., Zhang, Y., et al. (2018). Genetic
dissection of maize embryonic callus regenerative capacity using multi-locus
genome-wide association studies. Front. Plant Sci. 9:561. doi: 10.3389/fpls.2018.
00561

Ren, W. L., Wen, Y. J., Dunwell, J. M., and Zhang, Y. M. (2018). pKWmEB:
integration of Kruskal-Wallis test with empirical Bayes under polygenic
background control for multi-locus genome-wide association study. Heredity
120, 208–218. doi: 10.1038/s41437-017-0007-4

Tamba, C. L., Ni, Y. L., and Zhang, Y. M. (2017). Iterative sure independence
screening EM-Bayesian LASSO algorithm for multi-locus genome-wide
association studies. PLoS Comput. Biol. 13:e1005357. doi: 10.1371/journal.pcbi.
1005357

Wang, S. B., Feng, J. Y., Ren, W. L., Huang, B., Zhou, L., Wen, Y. J., et al.
(2016). Improving power and accuracy of genome-wide association studies via
a multi-locus mixed linear model methodology. Sci. Rep. 6:19444. doi: 10.1038/
srep19444

Wang, T. T., Wang, M., Hu, S. T., Xiao, Y. N., Tong, H., Pan, Q. C., et al. (2015).
Genetic basis of maize kernel starch content revealed by high-density single
nucleotide polymorphism markers in a recombinant inbred line population.
BMC Plant Biol. 15:288. doi: 10.1186/S12870-015-0675-2

Wen, Y. J., Zhang, H., Ni, Y. L., Huang, B., Zhang, J., Feng, J. Y., et al.
(2018). Methodological implementation of mixed linear models in multi-locus
genome-wide association studies. Brief. Bioinform. 19, 700–712. doi: 10.1093/
bib/bbw145

Wilson, L. M., Whitt, S. R., Ibanez, A. M., Rocheford, T. R., Goodman, M. M.,
and Buckler, E. S. (2004). Dissection of maize kernel composition and starch

production by candidate gene association. Plant Cell 16, 2719–2733. doi: 10.
1105/tpc.104.025700

Xiao, Y. J., Liu, H. J., Wu, L. J., Warburton, M., and Yan, J. B. (2017). Genome-
wide association studies in maize: praise and stargaze. Mol. Plant 10, 359–374.
doi: 10.1016/j.molp.2016.12.008

Xu, S., Yang, Z., Zhang, E., Jiang, Y., Pan, L. A., Chen, Q., et al. (2014a). Nucleotide
diversity of maize zmbt1 gene and association with starch physicochemical
properties. PLoS One 9:e103627. doi: 10.1371/journal.pone.0103627

Xu, S., Zhu, D., and Zhang, Q. (2014b). Predicting hybrid performance in rice
using genomic best linear unbiased prediction. Proc. Natl. Acad. Sci. U.S.A. 111,
12456–12461. doi: 10.1073/pnas.1413750111

Xu, Y., Xu, C., and Xu, S. (2017). Prediction and association mapping of agronomic
traits in maize using multiple omic data. Heredity 119, 174–184. doi: 10.1038/
hdy.2017.27

Yang, N., Lu, Y., Yang, X., Huang, J., Zhou, Y., Ali, F., et al. (2014). Genome
wide association studies using a new nonparametric model reveal the genetic
architecture of 17 agronomic traits in an enlarged maize association panel. PLoS
Genet. 10:e1004573. doi: 10.1371/journal.pgen.1004573

Yang, Z., Zhang, E., Jiang, Y., Xu, S., Pan, L., Chen, Q., et al. (2014). Sequence
polymorphisms in Zmisa2 gene are significantly associated with starch pasting
and gelatinization properties in maize (Zea mays L.). Mol. Breed. 34, 1833–1842.
doi: 10.1007/s11032-014-0142-z

Yu, G., Wang, L. G., Han, Y., and He, Q. Y. (2012). clusterProfiler: an R package
for comparing biological themes among gene clusters. OMICS 16, 284–287.
doi: 10.1089/omi.2011.0118

Yu, J., Pressoir, G., Briggs, W. H., Bi, I. V., Yamasaki, M., Doebley, J. F., et al.
(2006). A unified mixed-model method for association mapping that accounts
for multiple levels of relatedness. Nat. Genet. 38, 203–208. doi: 10.1038/ng1702

Zhang, J., Feng, J. Y., Ni, Y. L., Wen, Y. J., Niu, Y., Tamba, C. L., et al. (2017).
pLARmEB: integration of least angle regression with empirical Bayes for
multilocus genome-wide association studies. Heredity 118, 517–524. doi: 10.
1038/hdy.2017.8

Zhang, X., Colleoni, C., Ratushna, V., Sirghie-Colleoni, M., James, M. G., and
Myers, A. M. (2004). Molecular characterization demonstrates that the Zea
mays gene sugary2 codes for the starch synthase isoform SSIIa. Plant Mol. Biol.
54, 865–879. doi: 10.1007/s11103-004-0312-1

Zhang, Y., Liu, P., Zhang, X., Zheng, Q., Chen, M., Ge, F., et al. (2018). Multi-locus
genome-wide association study reveals the genetic architecture of stalk lodging
resistance-related traits in maize. Front. Plant Sci. 9:611. doi: 10.3389/fpls.2018.
00611

Zhang, Y. M., Mao, Y., Xie, C., Smith, H., Luo, L., and Xu, S. (2005). Mapping
quantitative trait loci using naturally occurring genetic variance among
commercial inbred lines of maize (Zea mays L.). Genetics 169, 2267–2275.
doi: 10.1534/genetics.104.033217

Zhang, Z., Ersoz, E., Lai, C.-Q., Todhunter, R. J., Tiwari, H. K., Gore, M. A., et al.
(2010). Mixed linear model approach adapted for genome-wide association
studies. Nat. Genet. 42, 355–360. doi: 10.1038/ng.546

Zhou, X., and Stephens, M. (2012). Genome-wide efficient mixed-model analysis
for association studies. Nat. Genet. 44, 821–824. doi: 10.1038/ng.2310

Zhu, C., Gore, M., Buckler, E. S., and Yu, J. (2008). Status and prospects
of association mapping in plants. Plant Genome 1, 5–20. doi: 10.3835/
plantgenome2008.02.0089

Conflict of Interest Statement: The authors declare that the research was
conducted in the absence of any commercial or financial relationships that could
be construed as a potential conflict of interest.

Copyright © 2018 Xu, Yang, Zhou, Yin, Li, Liu, Xu, Yang and Xu. This is an open-
access article distributed under the terms of the Creative Commons Attribution
License (CC BY). The use, distribution or reproduction in other forums is permitted,
provided the original author(s) and the copyright owner(s) are credited and that the
original publication in this journal is cited, in accordance with accepted academic
practice. No use, distribution or reproduction is permitted which does not comply
with these terms.

Frontiers in Plant Science | www.frontiersin.org September 2018 | Volume 9 | Article 1311131

https://doi.org/10.1007/s00425-010-1207-9
https://doi.org/10.3389/fmicb.2014.00384
https://doi.org/10.3389/fmicb.2014.00384
https://doi.org/10.1534/genetics.107.080101
https://doi.org/10.1534/genetics.107.080101
https://doi.org/10.1038/ng.747
https://doi.org/10.1111/pbi.12821
https://doi.org/10.1038/ng.2484
https://doi.org/10.1038/Nmeth.1681
https://doi.org/10.3389/fpls.2016.01046
https://doi.org/10.1371/journal.pgen.1005767
https://doi.org/10.1371/journal.pgen.1005767
https://doi.org/10.3389/fpls.2018.00561
https://doi.org/10.3389/fpls.2018.00561
https://doi.org/10.1038/s41437-017-0007-4
https://doi.org/10.1371/journal.pcbi.1005357
https://doi.org/10.1371/journal.pcbi.1005357
https://doi.org/10.1038/srep19444
https://doi.org/10.1038/srep19444
https://doi.org/10.1186/S12870-015-0675-2
https://doi.org/10.1093/bib/bbw145
https://doi.org/10.1093/bib/bbw145
https://doi.org/10.1105/tpc.104.025700
https://doi.org/10.1105/tpc.104.025700
https://doi.org/10.1016/j.molp.2016.12.008
https://doi.org/10.1371/journal.pone.0103627
https://doi.org/10.1073/pnas.1413750111
https://doi.org/10.1038/hdy.2017.27
https://doi.org/10.1038/hdy.2017.27
https://doi.org/10.1371/journal.pgen.1004573
https://doi.org/10.1007/s11032-014-0142-z
https://doi.org/10.1089/omi.2011.0118
https://doi.org/10.1038/ng1702
https://doi.org/10.1038/hdy.2017.8
https://doi.org/10.1038/hdy.2017.8
https://doi.org/10.1007/s11103-004-0312-1
https://doi.org/10.3389/fpls.2018.00611
https://doi.org/10.3389/fpls.2018.00611
https://doi.org/10.1534/genetics.104.033217
https://doi.org/10.1038/ng.546
https://doi.org/10.1038/ng.2310
https://doi.org/10.3835/plantgenome2008.02.0089
https://doi.org/10.3835/plantgenome2008.02.0089
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/plant-science/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/plant-science#articles


fpls-09-01067 September 17, 2018 Time: 15:31 # 1

ORIGINAL RESEARCH
published: 13 September 2018
doi: 10.3389/fpls.2018.01067

Edited by:
Yuan-Ming Zhang,

Huazhong Agricultural University,
China

Reviewed by:
Hongde Qin,

Hubei Academy of Agricultural
Sciences, China

Xinlian Shen,
Jiangsu Academy of Agricultural

Sciences (JAAS), China

*Correspondence:
Hongwei Geng

hw_geng@163.com
Wankui Gong

gongwankui@caas.cn
Youlu Yuan

yuanyoulu@caas.cn

†These authors have contributed
equally to this work

Specialty section:
This article was submitted to

Plant Breeding,
a section of the journal

Frontiers in Plant Science

Received: 03 May 2018
Accepted: 02 July 2018

Published: 13 September 2018

Citation:
Liu R, Gong J, Xiao X, Zhang Z, Li J,

Liu A, Lu Q, Shang H, Shi Y, Ge Q,
Iqbal MS, Deng X, Li S, Pan J,

Duan L, Zhang Q, Jiang X, Zou X,
Hafeez A, Chen Q, Geng H, Gong W

and Yuan Y (2018) GWAS Analysis
and QTL Identification of Fiber Quality

Traits and Yield Components
in Upland Cotton Using Enriched

High-Density SNP Markers.
Front. Plant Sci. 9:1067.

doi: 10.3389/fpls.2018.01067

GWAS Analysis and QTL
Identification of Fiber Quality Traits
and Yield Components in Upland
Cotton Using Enriched High-Density
SNP Markers
Ruixian Liu1,2†, Juwu Gong1,2†, Xianghui Xiao1,2†, Zhen Zhang2, Junwen Li2, Aiying Liu2,
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Xianyan Zou2, Abdul Hafeez2, Quanjia Chen1, Hongwei Geng1* , Wankui Gong2* and
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1 Xinjiang Research Base, State Key Laboratory of Cotton Biology, Xinjiang Agricultural University, Urumqi, China, 2 State Key
Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China,
3 School of Biotechnology and Food Engineering, Anyang Institute of Technology, Anyang, China

It is of great importance to identify quantitative trait loci (QTL) controlling fiber quality
traits and yield components for future marker-assisted selection (MAS) and candidate
gene function identifications. In this study, two kinds of traits in 231 F6:8 recombinant
inbred lines (RILs), derived from an intraspecific cross between Xinluzao24, a cultivar
with elite fiber quality, and Lumianyan28, a cultivar with wide adaptability and high yield
potential, were measured in nine environments. This RIL population was genotyped by
122 SSR and 4729 SNP markers, which were also used to construct the genetic map.
The map covered 2477.99 cM of hirsutum genome, with an average marker interval of
0.51 cM between adjacent markers. As a result, a total of 134 QTLs for fiber quality
traits and 122 QTLs for yield components were detected, with 2.18–24.45 and 1.68–
28.27% proportions of the phenotypic variance explained by each QTL, respectively.
Among these QTLs, 57 were detected in at least two environments, named stable
QTLs. A total of 209 and 139 quantitative trait nucleotides (QTNs) were associated with
fiber quality traits and yield components by four multilocus genome-wide association
studies methods, respectively. Among these QTNs, 74 were detected by at least two
algorithms or in two environments. The candidate genes harbored by 57 stable QTLs
were compared with the ones associated with QTN, and 35 common candidate genes
were found. Among these common candidate genes, four were possibly “pleiotropic.”
This study provided important information for MAS and candidate gene functional
studies.

Keywords: upland cotton, QTL, multilocus GWAS, QTN, candidate gene, fiber quality traits, yield components
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INTRODUCTION

Cotton is an important cash crop that provides major natural
fiber supply for textile industry and human daily life. Four species
in Gossypium, namely G. herbaceum (A1), G. arboreum (A2),
G. hirsutum (AD1), and G. barbadense (AD2), are cultivated
ones. G. hirsutum (2n = 4x = 52, genome size: 2.5 Gb)
(Li et al., 2014, 2015; Wendel and Grover, 2015; Zhang et al.,
2015), also called upland cotton, has a high yield potential,
whereas fair fiber quality attributes (Cai et al., 2014), thus making
it most widely cultivated and utilized worldwide, approximately
accounting for 95% of global cotton fiber production (Chen et al.,
2007). Along with the progress of technologies in textile industry
and improvement of human living standard, the demand for
cotton fiber supply not only increases in quantity but also is
required in a diverse combination of various qualities such
as high strength, natural color, various lengths, and fineness.
Fiber quality traits and yield components are quantitative and
controlled by multiple genes (Said et al., 2013), yet most of which
were negatively correlated with each other (Shen et al., 2007;
Wang H. et al., 2015). Therefore, it is difficult to improve all these
traits simultaneously by traditional breeding programs, even after
time-consuming and laborious efforts were put (Shen et al., 2005;
Lacape et al., 2009; Jamshed et al., 2016; Zhang et al., 2016).
The rapid development of applied genome research provides an
effective tool for improving plant breeding efficiency, a typical
example of which is the marker-assisted selection (MAS) and
genome selection through the molecular markers closely linked
to target genes or quantitative trait loci (QTLs).

Currently, plenty of intraspecific segregating populations of
G. hirsutum are constructed targeting various traits in upland
cotton, and many QTLs are identified, including those for fiber
quality traits (Shen et al., 2005; Sun F.D. et al., 2012; Fang et al.,
2014; Xu et al., 2014; Tan et al., 2015; Wang H. et al., 2015;
Jamshed et al., 2016; Li et al., 2016; Yang et al., 2016; Liu et al.,
2017; Zhang Z. et al., 2017), yield components (Xia et al., 2014;
Wang H. et al., 2015; Zhang et al., 2016; Liu et al., 2017), drought
tolerances (Levi et al., 2011), disease resistances (Jiang et al., 2009;
Ulloa et al., 2013; Zhao et al., 2014; Palanga et al., 2017), early
maturity (Stiller et al., 2004; Li et al., 2012, 2013), and plant
morphological traits (Tang and Xiao, 2014; Qi et al., 2017).

A genome-wide association studies (GWAS) is also an
effective approach for connecting phenotypes and genotypes
in plants, and helps us to avoid the difficulty of screening
large biparental mapping populations, so it is widely applied
to various studies (Thornsberry et al., 2001; Flint-Garcia et al.,
2005; Maccaferri et al., 2005; Eizenga et al., 2006; Zhu et al.,
2008; Jia et al., 2014; Nie et al., 2016) to identify quantitative
trait nucleotides (QTNs) for complex traits (Zhao et al., 2011;
Fernandes et al., 2012; Segura et al., 2012; Spindel et al., 2015).
It has been successfully applied to Arabidopsis thaliana (Atwell
et al., 2010; Horton et al., 2012), rice (Huang et al., 2010; Zhao
et al., 2011), corn (Kump et al., 2011; Samayoa et al., 2015),
and soybean (Dhanapal et al., 2015; Zeng et al., 2017), and
many QTNs and their candidate genes have been identified
for various ecological and agricultural traits. More recently, it
has also been used in cotton (Abdurakhmonov et al., 2008;

Kantartzi and Stewart, 2008; Zeng et al., 2009; Cai et al., 2014;
Mei et al., 2013; Zhang et al., 2013; Su et al., 2016; Huang
et al., 2017; Sun et al., 2017). To better understand the genetic
architecture of fiber quality traits and yield components in
upland cotton, we genotyped an intraspecific recombinant inbred
lines (RILs) using enriched high-density markers of both single-
nucleotide polymorphisms (SNPs) based on the CottonSNP80K
arrays (Cai et al., 2017) and simple sequence repeats (SSRs).
To obtain reliable QTLs and their candidate genes, we tried to
use two strategies. One was linkage-map-based QTL mapping,
in which a high coverage genetic linkage map was constructed
with HighMap software and QTLs were mapped using composite
interval mapping (CIM); the other was GWAS along with four
multilocus GWAS methods (Wang et al., 2016; Tamba et al., 2017;
Wen et al., 2017; Zhang J. et al., 2017). The results in the study
could be worthy for further studies not only in molecular-assisted
breeding through MAS but also in functional gene validations,
which is of great significance to the improvement of cotton fiber
quality and yield.

MATERIALS AND METHODS

Plant Materials
An RIL population of 231 lines was developed from a cross
between two homozygous upland cotton cultivars, Lumianyan28
(LMY28), a commercial transgenic cultivar with high yield
potential and wide adaptability developed by the Cotton Research
Center of Shandong Academy of Agricultural Sciences as a
maternal line, and Xinluzao24 (XLZ24), a high fiber quality
upland cotton cultivar with long-staple developed by XinJiang
KangDi company as a paternal line.

The RIL development was briefed as follows: the cross between
LMY28 and XLZ24 was made in the summer growing season
in 2008 in Anyang, Henan Province. F1 were planted and self-
pollinated in the winter growing season in 2008 in Hainan
Province. In the spring of 2009, 238 F2 plants were grown and
self-pollinated, and F2:3 seeds were harvested in Anyang (Kong
et al., 2011). Of the 238 F2:3 lines, 231 were self-pollinated in
each generation until F2:6. Then single plant selection was made
from each of the 231 F2:6 lines to form the F6:7 population. The
F6:7 population was planted in plant rows and self-pollinated to
construct the F6:8 RIL population. All the generations beyond F6:8
are regarded as F6:8 for convenience of analysis. The target traits
of the F6:8 RIL population were evaluated in Henan (Anyang,
2013, 2014, 2015, and 2016, designated as 13AY, 14AY, 15AY,
and 16AY, respectively), Shandong (LinQing, 2013 and 2014,
designated as 13LQ and 14LQ, respectively), Hebei (Quzhou
2013, designated as 13QZ), and Xinjiang (Kuerle 2014 and Alaer
2015, designated as 14KEL and 15ALE, respectively), and a
randomized complete block design with two replications was
adopted in all nine environmental evaluations. A single-row
plot with 5-m row length, 0.8-m row spacing, and 0.25-m plant
spacing was adopted in 13AY, 13LQ, 13QZ, 14AY, 14LQ, 15AY,
and 16AY, whereas a two-narrow-row plot with 3-m row length,
0.66/0.10-m alternating row spacing, and 0.12-m plant spacing
were adopted in 14KEL and 15ALE.
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Phenotypic Detection and Data Analysis
Thirty naturally opened bolls from each plot were hand-
harvested on the inner fruiting nods from middle to upper
branches. Yield component traits, including boll weight (BW, g),
lint percentage (LP, %), and seed index (SI, g), were evaluated.
No less than 15 g fibers were sampled to evaluate the fiber
quality traits, including fiber length (FL, mm), fiber strength
(FS, cN tex−1), and fiber micronaire (FM). The evaluations
were conducted using HFT9000 (Premier Evolvics Pvt. Ltd.,
India) instruments with HVICC Calibration in the Cotton
Quality Supervision, Inspection and Testing Center, Ministry of
Agriculture, Anyang, Henan Province, China.

One-way analysis of variance (ANOVA) between parents and
the descriptive statistics for the RIL population was conducted
using Microsoft Excel 2016, and correlation analysis was
performed using SPSS 20.0 (SPSS, Chicago, IL, United States).
Integrated ANOVA across nine environments along with the
heritability of all the traits was conducted using ANOVA function
in the QTL IciMapping software.

DNA Extraction and Genotyping
Genomic DNA was extracted from fresh leaves of parents and 231
RILs with a modified cetyltrimethyl ammonium bromide (CTAB)
method (Song et al., 1998). The DNA was used both for SSR
screening and CottonSNP80K array hybridization.

A total of 9668 pairs of SSR primer pool, which contained
a variety of sources including NAU, BNL, DPL, CGR, PGML,
SWU, and CCRI, were used to screen the polymorphisms
between parents. The primer information was also available at the
CottonGen Database1. PCR amplification and product detection
were conducted according to the procedures described by Zhang
et al. (2005). The polymorphic primers between the parents were
used to genotype the population, and the SSR markers that were
codominant and had a unique physical location in the reference
genome were used to construct the linkage map.

The cottonSNP80K array, which contained 77,774 SNPs (Cai
et al., 2017), was used to genotype the parents and the 231
RILs. The genotyping was conducted according to the Illumina
suggestions (Illumina Inc., San Diego, CA, United States) (Cai
et al., 2017). After genotyping, the raw data were filtered based on
the following criteria (Zhang Z. et al., 2017): first, any or both of
the SNP loci of parents were missing (69,395 SNPs were remained
after filtering); second, the loci had no polymorphism between
parents (15,128 loci were remained); third, the loci of any of
the parent were heterozygous (7480 SNPs were remained); forth,
the missing rate of SNPs in the population was more than 40%
(Hulse-Kemp et al., 2015) (7479 loci were remained); and finally,
the segregation distortion of SNPs reached criteria of P < 0.001
(5202 loci were remained). Subsequently, the remaining SNP
markers were applied to the genetic map construction after
converting into the “ABH” data format as SSR.

Genetic Map Construction
The remaining SSR and SNP markers were divided into the
26 chromosomes based on their position on the physical map

1http://www.cottongen.org

of the upland cotton (TM-1) genome database (Zhang et al.,
2015). Then, the genetic linkage map was constructed using the
HighMap software with multiple sorting and error-correcting
functions (Liu et al., 2014). Map distances were estimated using
Kosambi’s mapping function (Kosambi, 1943).

The significance of segregation distortion markers (SDMs;
P < 0.05) was detected using the chi-square test. The regions
containing at least three consecutive SDMs were defined as
segregation distortion regions (SDRs) (Zhang et al., 2016). The
distribution of SDMs and SDRs, and the size of SDRs on the map
were analyzed.

QTL Mapping and Genome-Wide
Association Studies
The Windows QTL Cartographer 2.5 software (Wang et al.,
2012) was employed using the CIM method with a mapping
step of 1.0 cM and five control markers (Zeng, 1994) for
QTL identification. The threshold value of the logarithm of
odds (LOD) was calculated by 1000 permutations at the 0.05
significance level. QTLs, identified in different environments
and had fully or partially overlapping confidence intervals, were
regarded as the same QTL. The QTL detected in at least two
environments was regarded as a stable one. Nomenclature of QTL
was designated following Sun’s description (Sun F.D. et al., 2012).
MapChart 2.3 (Voorrips, 2002) was used to graphically represent
the genetic map and QTL.

Quantitative trait nucleotides for the target traits were
identified by four multilocus GWAS methods. The first one is
mrMLM (Wang et al., 2016), in which calculate Kinship (K)
matrix model was used, with critical P-value of 0.01, search
radius of the candidate gene of 20 kb, and critical LOD score
for significant QTN of 3. The second one is FASTmrEMMA
(Wen et al., 2017), with restricted maximum likelihood, in which
calculate K matrix model was used, critical P-value of 0.005,
and critical LOD score for significant QTN of 3. The third
one is ISIS EM-BLASSO (Tamba et al., 2017), with critical P-
value of 0.01. The fourth one is pLARmEB (Zhang J. et al.,
2017); each chromosome selected 50 potential associations at
a critical LOD score of 2 with variable selection through
LAR.

QTL Congruency Comparison With
Previous Studies
Previous QTLs for the target traits were detected and downloaded
in the CottonQTLdb database2 (Said et al., 2015). The QTLs
sharing similar genetic positions (spacing distance < 15 cM) were
regarded as common or same QTL. The physical positions of a
QTL were identified in the CottonGen database3. When a QTL in
the current study shared the same physical region as the previous
QTL, it was regarded as a repeated identification of the previous
QTL; otherwise, the QTL in the current study was regarded as a
new one.

2http://www.cottondb.org
3http://www.cottongen.org
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The Candidate Genes Identification
Candidate genes harbored in the stable QTLs were searched and
identified based on their confidence intervals in the following
steps: The markers including the closest flanking ones in the
confidence interval of a QTL were identified. The physical
interval of that QTL was determined based on the physical
position of its markers in the upland cotton (TM-1) genome4

(Zhang et al., 2015). All the genes in the physical interval were
identified as candidate genes.

Candidate genes associated with QTNs in the multilocus
GWAS analysis were confirmed based on the location of QTNs
in the upland cotton (TM-1) reference genome (Zhang et al.,
2015). The gene in which the QTL was located was considered
as the candidate gene. But when the physical location of a QTN
was between two genes, both of the genes were considered as
candidate genes.

RESULTS

Phenotypic Evaluation of the RIL
Populations
The one-way ANOVA between parents in nine environments
showed that a significant difference for FS at the 0.001 level
and no significant differences for the other traits were observed
(Table 1). The descriptive statistical analysis showed that all traits
in the RIL population performed transgressive segregations, with
approximately normal distribution in all the nine environments
(Table 1). The integrated ANOVA of the RILs across nine
environments also revealed significant variations for all traits
among the RILs (Supplementary Table S1).

Most of the traits exhibited medium–high heritability across
nine environments (Supplementary Table S2). Correlation
analysis showed that significant or very significant positive
correlations were observed between the trait pairs of FL–FS, FL–
SI, FS–SI, FM–LP, FM–BW, and SI–BW; and significant negative
correlations were observed between the pairs of FL–FM, FL–LP,
FS–FM, FS–LP, BW–LP, and SI–LP. In addition, FL–BW showed
a significant or very significant positive correlation in three
environments, whereas no significant correlation was observed
in the remaining six environments (Table 2).

Genetic Map Construction
The genetic linkage map totally covered 2477.99 cM of the
upland cotton genome with an average adjacent marker interval
of 0.51 cM (Figure 1 and Table 3). It contained 4851 markers,
including 4729 SNP and 122 SSR loci, with uneven distributions
in the At and Dt subgenomes as well as on 26 chromosomes.
A total of 3300 markers were mapped in the At subgenome,
covering a genetic distance of 1474.63 cM with an average
adjacent marker interval of 0.45 cM. On the other hand, a total
of 1551 markers were mapped in the Dt subgenome, covering a
genetic distance of 1003.36 cM with an average adjacent marker
interval of 0.65 cM. At the chromosome level, chr08 contained

4http://mascotton.njau.edu.cn/info/1054/1118.htm

the maximum number of markers (481 markers), spanning a
genetic distance of 142.55 cM with an average adjacent marker
interval of 0.32 cM. chr17 contained the minimum number
of markers (19 markers), spanning a total genetic distance of
60.60 cM with an average adjacent marker interval of 3.56 cM.
Gap analysis revealed that there were 33 gaps (≥10 cM), of which
19 were in the At subgenome with the largest of 22.68 cM on
chr07, whereas 14 were in the Dt subgenome with the largest of
42.23 cM on chr17. chr11, chr16, chr19, chr20 and chr24 had no
gap larger than 10 cM.

Segregation Distortion
There were a total of 1,563 SDMs (32.22%) (P < 0.05), which
were unevenly distributed at both subgenome and chromosome
levels (Tables 3 and Supplementary Table S3). One thousand
and sixty-one SDMs were found in the At subgenome, whereas
502 in the Dt subgenome. chr08 had the maximum number of
SDMs of 237 (15.16% of total SDMs). The SDMs formed 110
SDRs, of which 66 were in the At subgenome whereas 44 in the
Dt subgenome. chr05 contained the maximum number of SDRs
of 10. There was no SDR in chr03 and chr17.

Collinearity Analysis
The reliability of the genetic map was usually assessed by
comparing it with the physical maps of the upland cotton (TM-
1) reference genome (Zhang et al., 2015). The results of the
collinear analysis are shown in Figure 2. The results revealed
an overall good congruency between the linkage map and
its physical one, while there also existed some discrepancies
between the two on chr03, chr06, chr08, and chr13 in the
At subgenome and on chr15, chr16, chr17, chr19, chr22,
chr23, and chr26 in the Dt subgenome. The collinearity in
subgenomes revealed that the At subgenome showed a better
compatibility between the linkage and the physical maps than the
Dt subgenome did.

QTL Mapping for Fiber Quality Traits and
Yield Components
A total of 256 QTLs (Supplementary Table S4), 134 for fiber
quality traits, and 122 for yield components, were identified
across nine environments using the CIM algorithm, with 1.68–
28.27% proportions of the phenotypic variance (PV) explained by
each QTL. Fifty-seven stable QTLs (Figure 3 and Supplementary
Table S4) were identified in at least two environments, of
which 32 were for fiber quality traits and 25 for yield
components.

Fiber Length
A total of 36 QTLs for FL were identified on 21 chromosomes
except chr02, chr04, chr09, chr10, and chr25, among which 7
were stable (Figure 3 and Supplementary Table S4). In these
stable QTLs, qFL-chr17-1 was identified in three environments,
and could explain 3.95–5.36% proportions of the observed PV.
In its marker interval of TM53503–TM53577, there harbored 88
candidate genes. The stable QTLs, qFL-chr05-1, qFL-chr06-2,
qFL-chr11-1, qFL-chr16-1, qFL-chr19-1, and qFL-chr26-1, could
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TABLE 1 | The results of the statistical analysis of the parents and the RIL population.

Traita Env.b Parents RIL population

XLZ24c LMY28d Range P-value Min. Max. Range Mean SD Var. Skew. Kurt.

FL 13AY 29.72 29.23 0.49 0.06 28.12 32.52 4.40 30.54 0.92 0.03 −0.13 −0.44

13LQ 30.85 29.57 1.28 27.86 33.05 5.19 30.31 1.02 0.03 0.28 −0.10

13QZ 29.04 28.28 0.75 27.29 33.61 6.32 29.60 1.16 0.04 0.52 0.72

14AY 31.43 29.44 2.00 28.85 33.65 4.80 31.26 1.00 0.03 0.11 −0.36

14KEL 29.77 29.69 0.09 28.35 34.07 5.72 31.14 1.04 0.03 0.35 0.23

14LQ 30.80 30.40 0.40 28.90 34.05 5.15 31.27 1.04 0.03 0.15 −0.30

15AY 29.95 26.85 3.10 26.15 31.60 5.45 29.06 1.06 0.04 −0.12 −0.35

15ALE 29.10 29.20 −0.10 26.60 31.80 5.20 29.05 1.08 0.04 0.22 −0.31

16AY 28.95 28.80 0.15 28.40 34.05 5.65 30.55 0.99 0.03 0.61 1.02

FS 13AY 33.95 30.45 3.50 < 0.001∗∗∗ 29.15 39.30 10.15 33.39 1.90 0.06 0.44 −0.03

13LQ 30.15 27.55 2.60 27.20 36.25 9.05 32.14 1.82 0.06 0.01 −0.26

13QZ 31.65 29.20 2.45 28.10 39.10 11.00 32.69 2.05 0.06 0.43 −0.16

14AY 31.95 29.45 2.50 28.55 36.85 8.30 32.42 1.55 0.05 0.18 0.01

14KEL 31.55 29.15 2.40 27.65 37.70 10.05 32.02 1.75 0.05 0.46 0.49

14LQ 30.40 29.10 1.30 28.80 37.50 8.70 32.77 1.60 0.05 0.36 0.23

15AY 33.75 28.60 5.15 27.85 39.65 11.80 33.48 2.10 0.06 0.09 0.21

15ALE 31.25 27.90 3.35 26.90 35.15 8.25 30.92 1.64 0.05 0.07 −0.14

16AY 32.80 27.85 4.95 28.75 38.05 9.30 32.98 1.67 0.05 0.21 0.08

FM 13AY 4.49 4.48 0.00 0.46 2.96 5.42 2.46 4.26 0.50 0.12 −0.08 −0.42

13LQ 3.91 4.41 −0.50 2.25 5.32 3.07 3.91 0.59 0.15 −0.31 −0.15

13QZ 5.09 4.70 0.40 2.74 5.58 2.84 4.29 0.61 0.14 −0.43 −0.36

14AY 4.79 4.65 0.14 3.50 5.62 2.12 4.59 0.40 0.09 −0.12 −0.21

14KEL 4.58 4.56 0.02 3.56 5.28 1.72 4.43 0.34 0.08 0.04 −0.17

14LQ 5.30 4.85 0.45 3.60 5.50 1.90 4.74 0.38 0.08 −0.36 −0.11

15AY 4.65 4.95 −0.30 3.50 5.60 2.10 4.55 0.39 0.09 −0.12 −0.20

15ALE 4.60 4.30 0.30 4.00 5.55 1.55 4.86 0.32 0.07 −0.20 −0.60

16AY 5.30 4.70 0.60 3.65 5.80 2.15 4.77 0.41 0.09 −0.22 −0.06

BW 13AY 5.47 5.79 −0.32 0.16 4.40 7.20 2.80 5.93 0.50 0.08 −0.29 0.34

13LQ 5.26 5.58 −0.33 3.76 7.07 3.31 5.55 0.69 0.12 −0.27 −0.57

13QZ 5.03 5.61 −0.58 3.12 6.87 3.75 5.11 0.77 0.15 −0.24 −0.40

14AY 5.68 6.13 −0.46 5.24 7.88 2.64 6.39 0.50 0.08 0.16 0.00

14KEL 6.04 6.16 −0.12 4.65 7.41 2.76 6.23 0.53 0.09 −0.21 0.19

14LQ 6.23 6.42 −0.19 4.80 8.12 3.32 6.80 0.62 0.09 −0.49 0.32

15AY 5.44 5.65 −0.21 4.21 6.69 2.48 5.41 0.42 0.08 0.05 0.65

15ALE 4.91 5.00 −0.08 4.97 7.22 2.25 5.99 0.43 0.07 0.20 −0.21

16AY 5.47 5.81 −0.34 4.62 7.81 3.19 6.27 0.54 0.09 −0.08 0.28

LP 13AY 41.87 39.01 2.86 0.15 29.56 43.56 14.00 37.82 2.33 0.06 −0.45 0.88

13LQ 38.53 36.95 1.59 29.02 42.59 13.57 36.36 2.38 0.07 −0.02 0.13

13QZ 37.93 36.52 1.41 27.09 42.97 15.88 35.61 3.06 0.09 −0.22 0.09

14AY 44.48 42.13 2.35 35.70 46.73 11.03 41.16 1.99 0.05 −0.15 0.00

14KEL 43.07 39.10 3.97 33.34 46.03 12.69 39.62 2.21 0.06 −0.10 0.08

14LQ 42.74 42.42 0.32 33.96 48.51 14.55 41.14 2.39 0.06 −0.14 0.34

15AY 47.08 44.53 2.55 31.56 47.15 15.59 40.80 2.42 0.06 −0.58 1.69

15ALE 43.42 41.96 1.46 38.10 48.66 10.56 44.33 1.92 0.04 −0.49 0.53

16AY 41.59 40.24 1.36 34.09 46.83 12.74 39.49 2.30 0.06 0.29 0.04

SI 13AY 10.60 11.00 −0.40 0.68 9.39 14.44 5.05 11.80 1.03 0.09 0.11 −0.31

13LQ 10.66 11.63 −0.97 9.23 14.18 4.95 11.84 1.05 0.09 0.22 −0.43

13QZ 12.2 11.48 0.76 9.31 15.20 5.89 12.21 1.17 0.10 0.11 −0.05

14AY – – – – – – – – – – –

(Continued)
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TABLE 1 | Continued

Traita Env.b Parents RIL population

XLZ24c LMY28d Range P-value Min. Max. Range Mean SD Var. Skew. Kurt.

14KEL 11.53 11.97 −0.45 10.09 14.80 4.71 12.28 1.08 0.09 0.21 −0.76

14LQ – – – – – – – – – – –

15AY 9.55 9.85 −0.30 8.25 12.55 4.30 10.26 0.84 0.08 0.19 −0.24

15ALE 9.92 9.77 0.15 8.73 13.40 4.67 10.47 0.89 0.09 0.45 0.06

16AY 12.55 12.13 0.43 10.13 15.35 5.22 12.55 1.01 0.08 0.24 0.03

aFL, fiber length; FS, fibers strength; FM, fiber micronaire; BW, weight; LP, lint percent; SI, seed index. b13AY, Anyang in 2013; 13LQ, Linqing in 2013; 13QZ, Quzhou
in 2013; 14AY, Anyang in 2014; 14KEL, Kerle in 2014; 14LQ, Linqing in 2014; 15AY, Anyang in 2015; 15ALE, Alaer in 2015; 16AY, Anyang in 2016. cXinluzao24.
dLumianyan28.

explain 12.13–13.83, 6.35–6.62, 5.15–9.41, 5.24–6.23, 4.65–5.07,
and 4.56–5.59% proportions of the observed PVs, respectively.
In their marker intervals of CICR0262, TM18200–TM18321,
TM39956–TM39953, TM66757–NAU3563, TM57055–TM5
7082, and TM77259–TM77261, there harbored 2, 141, 15, 309,
65, and 1 candidate genes, respectively.

Fiber Strength
Forty-six QTLs for FS were identified on 19 chromosomes except
chr02, chr03, chr14, chr17, chr18, chr22, and chr23, among
which 10 were stable (Figure 3 and Supplementary Table S4).
In these stable QTLs, qFS-chr07-2 was identified in all nine
environments, and could explain 5.81–19.47% proportions of the
observed PV. In its marker interval of DPL0852–DPL0757, eight
candidate genes were harbored. qFS-chr16-3 was identified in
five environments, and could explain 4.28–6.45% proportions of
the observed PV. In its marker interval of SWU2707–DPL0492,
342 candidate genes were harbored. qFS-chr01-2 and qFS-chr20-
5 were identified in three environments, and could explain
5.32–8.86 and 4.50–5.90% proportions of the observed PVs,
respectively. In their marker intervals of TM379–TM404 and
NAU4989–TM73152, 20 and 7 candidate genes, respectively,
were harbored. qFS-chr07-1, qFS-chr11-1, qFS-chr11-2, qFS-
chr13-1, qFS-chr20-1, and qFS-chr24-1 were identified in
two environments, and could explain 5.97–6.21, 4.87–5.59,
5.26–7.21, 5.74–10.69, 2.91–8.18, and 5.11–5.43% proportions
of the observed PVs, respectively. In their marker intervals
of TM19848–TM19875, TM37826–TM37828, TM37897–
TM37935, TM43230–TM43229, TM75088–TM75100, and
TM67152–TM67146, 4, 1, 29, 1, 8, and 6 candidate genes,
respectively, were harbored.

Fiber Micronaire
Fifty-two QTLs for FM were identified on 21 chromosomes
except chr02, chr12, chr17, chr23, and chr26, among which
15 were stable (Figure 3 and Supplementary Table S4).
In these stable QTLs, qFM-chr07-1 and qFM-chr13-1 were
identified in six environments, and could explain 5.51–24.45
and 4.73–8.88% proportion of the observed PV, respectively. In
their marker intervals of DPL0852–DPL0757 and TM43230–
TM43241, 8 and 15 candidate genes, respectively, were harbored.
qFM-chr01-2 was identified in five environments, and could
explain 3.94–6.17% proportions of the observed PVs. In

its marker interval, one marker of TM3451 was exclusively
contained and two candidate genes were harbored. qFM-chr19-
1 and qFM-chr19-2 were identified in four environments,
and could explain 4.57–8.54 and 5.19–8.20% proportions of
the observed PVs, respectively. In their marker intervals of
TM57055–TM57057 and TM56813–TM56753, 4 and 161
candidate genes, respectively, were harbored. qFM-chr14-
1, qFM-chr15-1, and qFM-chr24-2 were identified in three
environments, and could explain 4.18–6.53, 4.45–5.35, and
4.25–4.69% proportions of the observed PVs, respectively.
In their marker intervals of TM50241–TM50231, CGR5709–
TM50087, and TM67152–TM67125, 13, 1, and 18 candidate
genes, respectively, were harbored. qFM-chr03-1, qFM-chr05-1,
qFM-chr10-1, qFM-chr11-4, qFM-chr14-3, qFM-chr15-2, and
qFM-chr20-2 were identified in two environments, and could
explain 3.89–5.18, 4.13–4.42, 4.66–5.16, 4.22–4.30, 4.52–4.54,
3.75–5.95, and 4.47–5.02% proportions of the observed PVs,
respectively. In their marker intervals of TM7008–TM7102,
TM10798–TM10805, TM33784–TM33813, TM39510–
TM39490, TM52033–TM52031, TM50087–TM50082, and
TM75041–TM75030, 125, 6, 100, 8, 1, 5, and 44 candidate genes,
respectively, were harbored.

Boll Weight
A total of 53 QTLs for BW were identified on 25 chromosomes
except chr15, among which 7 were stable (Figure 3 and
Supplementary Table S4). In these stable QTLs, qBW-chr24-
1 was identified in three environments, and could explain
4.13–6.99% proportions of the observed PVs. In its marker
interval of TM67152–TM67127, 18 candidate genes were
harbored. qBW-chr04-2, qBW-chr05-5, qBW-chr06-3, qBW-
chr07-4, qBW-chr20-1, and qBW-chr21-4 were identified in
two environments, and could explain 3.77–5.74, 4.28–6.42,
3.87–4.07, 7.62–8.08, 5.56–8.12, and 6.05–7.26% proportions of
the observed PVs, respectively. In their marker intervals of
TM9831–TM9827, TM10953–TM10979, TM14514–TM14509,
DPL0852, NAU4989–CICR0002, and TM76018–TM75887, 6,
59, 23, 2, 7, and 119 candidate genes were harbored,
respectively.

Lint Percentage
A total of 39 QTLs for LP were identified on 20 chromosomes
except chr02, chr12, chr15, chr17, chr23, and chr24, among
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TABLE 2 | Correlation analysis between fiber quality and yield component traits in
the RIL population.

Traita Environmentb FL FS FM LP BW

FS 13AY 0.271∗∗

13QZ 0.510∗∗

13LQ 0.139∗

14AY 0.600∗∗

14KEL 0.642∗∗

14LQ 0.513∗∗

15ALE 0.660∗∗

15AY 0.466∗∗

16AY 0.534∗∗

FM 13AY −0.209∗∗ −0.587∗∗

13QZ −0.226∗∗ −0.576∗∗

13LQ −0.051 −0.348∗∗

14AY −0.417∗∗ −0.486∗∗

14KEL −0.449∗∗ −0.378∗∗

14LQ −0.413∗∗ −0.463∗∗

15ALE −0.539∗∗ −0.353∗∗

15AY −0.383∗∗ −0.425∗∗

16AY −0.369∗∗ −0.566∗∗

LP 13AY −0.285∗∗ −0.204∗∗ 0.366∗∗

13QZ −0.225∗∗ −0.271∗∗ 0.454∗∗

13LQ −0.169∗ −0.088 0.430∗∗

14AY −0.259∗∗ −0.179∗∗ 0.220∗∗

14KEL −0.424∗∗ −0.421∗∗ 0.351∗∗

14LQ −0.311∗∗ −0.278∗∗ 0.360∗∗

15ALE −0.373∗∗ −0.226∗∗ 0.352∗∗

15AY −0.149∗ −0.088 0.044

16AY −0.189∗∗ −0.202∗∗ 0.336∗∗

BW 13AY 0.178∗∗ −0.294∗∗ 0.352∗∗ −0.197∗∗

13QZ 0.006 −0.343∗∗ 0.543∗∗ 0.123

13LQ 0.127 −0.373∗∗ 0.544∗∗ 0.052

14AY 0.122 0.085 0.240∗∗ −0.137∗

14KEL 0.064 0.276∗∗ −0.089 −0.352∗∗

14LQ 0.060 −0.046 0.300∗∗ −0.061

15ALE 0.237∗∗ 0.225∗∗ −0.078 −0.146∗

15AY 0.134∗ −0.037 0.320∗∗ −0.259∗∗

16AY −0.050 −0.199∗∗ 0.379∗∗ −0.142∗

SI 13AY 0.284∗∗ 0.275∗∗ −0.299∗∗ −0.619∗∗ 0.324∗∗

13QZ 0.245∗∗ 0.250∗∗ −0.159∗ −0.467∗∗ 0.294∗∗

13LQ 0.187∗∗ 0.202∗∗ −0.267∗∗ −0.541∗∗ 0.094

14AY – – – – –

14KEL 0.307∗∗ 0.453∗∗ −0.102 −0.597∗∗ 0.565∗∗

14LQ – – – – –

15ALE 0.402∗∗ 0.418∗∗ −0.179∗∗ −0.470∗∗ 0.670∗∗

15AY 0.299∗∗ 0.363∗∗ −0.182∗∗ −0.309∗∗ 0.332∗∗

16AY 0.158∗ 0.336∗∗ −0.192∗∗ −0.256∗∗ 0.107

aFL, fiber length; FS, fibers strength; FM, fiber micronaire; BW, weight; LP, lint
percent; SI,seed index. b13AY, Anyang in 2013; 13LQ, Linqing in 2013; 13QZ,
Quzhou in 2013; 14AY, Anyang in 2014; 14KEL, Kerle in 2014; 14LQ, Linqing
in 2014; 15AY, Anyang in 2015; 15ALE, Alaer in 2015; 16AY, Anyang in 2016.
∗ Indicate significance at the 0.05 level. ∗∗ Indicate significance at the 0.01 level.

which nine were stable (Figure 3 and Supplementary
Table S4). In these stable QTLs, qLP-chr10-1 was identified

in five environments, and could explain 4.44–8.80%
proportions of the observed PVs. In its marker interval of
DPL0468–CGR5624, 148 candidate genes were harbored.
qLP-chr04-1 was identified in four environments, and could
explain 3.81–4.50% proportions of the observed PVs. In
its marker interval of TM9862–TM9831, 217 candidate
genes were harbored. qLP-chr26-2 was identified in three
environments, and could explain 3.98–5.34% proportions
of the observed PVs. In its marker interval of TM77259–
TM77267, 3 candidate genes were harbored. qLP-chr03-1,
qLP-chr06-2, qLP-chr08-1, qLP-chr11-1, qLP-chr22-1, and
qLP-chr25-3 were identified in two environments, and could
explain 2.69–2.83, 3.76–6.32, 4.43–6.02, 3.91–4.75, 3.61–
4.26, and 4.77–7.64% proportions of the observed PVs,
respectively. In their marker intervals of TM6006–TM6010,
TM18161–TM18322, TM29470–TM29463, TM39443–
TM39427, TM55461–TM55466, and TM63143–TM63142,
1, 141, 26, 12, 16, and 1 candidate genes, respectively, were
harbored.

Seed Index
A total of 30 QTLs for SI were identified on 16 chromosomes
except chr01, chr14, chr15, chr18, chr21, chr22, chr23, chr24,
chr25, and chr26, among which nine were stable (Figure 3 and
Supplementary Table S4). In these stable QTLs, qSI-chr07-2
was identified in five environments, which could explain
4.83–28.27% of the observed PVs. In its confidence interval
of DPL0852–DPL0757, there harbored 8 candidate genes. qSI-
chr16-1 was identified in four environments, which could explain
4.24–6.91% of the observed PVs. In its confidence interval
of TM66717–TM66737, there harbored 19 candidate genes.
qSI-chr10-1, qSI-chr10-2, and qSI-chr11-2 were identified in
three environments, which could explain 6.67–7.83%, 4.28–
6.50%, and 4.35–6.01% of the observed PVs, respectively. In
their confidence intervals of DPL0468, TM36374–TM36487, and
TM37826–TM37828, there harbored 2, 87, and 1 candidate
genes, respectively. qSI-chr04-2, qSI-chr07-1, qSI-chr11-3, and
qSI-chr13-2 were identified in two environments, which could
explain 4.57–5.23%, 5.59–8.50%, 5.52–5.66%, and 3.37–5.29% of
the observed PVs, respectively. In their confidence intervals of
TM9702–TM9697, TM19691–TM19898, TM37970–TM39953,
and TM43247–TM43263, there harbored 8, 39, 73, and 11
candidate genes, respectively.

GWAS for Fiber Quality Traits and Yield
Components
A total of 209 and 139 QTNs were identified by four
multilocus GWAS methods to be associated with fiber
quality and yield component traits, respectively, in the
current study (Supplementary Table S6). Among these
QTNs, 74 were simultaneously found by at least two
algorithms or in two environments (Supplementary
Table S6), each with 0.15–47.17% proportions of the observed
PVs explained, and a total of 104 candidate genes were
mined.
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FIGURE 1 | The genetic linkage map constructed by the SNP marker and SSR marker.

TABLE 3 | Detailed information of the genetic map.

Chr. Number
of SSRs

Number
of SNPs

Total
markers

Total
distance

(cM)

Average
distance

(cM)

Largest
gap
(cM)

Number of
gaps

(>10 cM)

Number of
SDMsa

Percentage
of SDMs

(%)

SDRb

number
χ2-value P-value

Chr01 2 234 236 112.38 0.49 15.83 2 90 38.14 3 2.17 0.46

Chr02 1 60 61 57.22 0.97 12.51 2 11 18.03 1 1.56 0.51

Chr03 6 304 310 85.26 0.28 11.59 1 3 0.97 0 0.75 0.56

Chr04 1 225 226 98.49 0.44 11.56 1 22 9.73 3 0.83 0.51

Chr05 15 279 294 163.46 0.57 10.44 1 138 46.94 10 3.93 0.22

Chr06 2 185 187 85.28 0.46 18.77 1 80 42.78 6 2.63 0.36

Chr07 11 220 231 145.52 0.66 22.68 2 44 19.05 5 2.09 0.38

Chr08 9 472 481 142.55 0.32 17.20 2 237 49.27 5 3.69 0.28

Chr09 3 222 225 107.03 0.49 15.63 2 96 42.67 8 2.83 0.25

Chr10 3 100 103 78.66 0.78 10.30 1 36 34.95 6 2.66 0.31

Chr11 2 203 205 109.13 0.57 7.68 0 97 47.32 6 3.06 0.22

Chr12 10 387 397 157.24 0.41 12.57 1 107 26.95 6 2.44 0.42

Chr13 7 337 344 132.40 0.40 11.47 3 100 29.07 7 2.70 0.45

At 72 3228 3300 1474.63 0.45 22.68 19 1061 32.15 66 – –

Chr14 4 315 319 112.26 0.36 12.16 2 161 50.47 9 3.37 0.25

Chr15 1 123 124 69.36 0.64 25.46 1 5 4.03 1 0.79 0.44

Chr16 4 51 55 53.91 0.98 8.83 0 26 47.27 2 2.70 0.26

Chr17 0 19 19 60.60 3.56 42.23 2 0 0.00 0 1.00 0.46

Chr18 1 57 58 45.05 0.79 18.45 2 9 15.52 1 1.39 0.47

Chr19 5 235 240 103.53 0.44 9.79 0 44 18.33 7 1.59 0.40

Chr20 12 133 145 84.74 0.59 6.37 0 32 22.07 4 1.70 0.36

Chr21 7 143 150 127.93 0.87 18.09 1 97 64.67 8 4.15 0.18

Chr22 1 92 93 83.17 0.92 24.89 2 32 34.41 5 2.43 0.31

Chr23 1 93 94 57.14 0.63 15.88 1 6 6.38 1 0.84 0.53

Chr24 7 106 113 57.89 0.52 9.26 0 40 35.40 3 2.46 0.28

Chr25 3 79 82 87.29 1.06 13.29 2 20 24.39 1 2.17 0.38

Chr26 4 55 59 60.49 1.06 10.09 1 30 50.85 2 3.64 0.23

Dt 50 1501 1551 1003.36 0.65 42.23 14 502 32.37 44 – –

Total 122 4729 4851 2477.99 0.51 42.23 33 1563 32.22 110 – –

aSDM, segregation distortion marker. bSDR, segregation distortion region.
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FIGURE 2 | Collinearity between the genetic map (left) and the physical map (right). At, collinearity of the At subgenome; Dt, collinearity of the Dt subgenome.

Fiber Quality Traits
A total of 68, 65, and 76 QTNs were found to be associated with
FL, FS, and FM, respectively, and the corresponding 110, 99, and
126 candidate genes were identified. In these QTNs, 11 for FL,
17 for FS, and 22 for FM were simultaneously associated by at
least two algorithms or in two environments, and each could
explain 0.15–29.10, 1.43–47.17, and 2.54–41.39% proportions of
the observed PVs, respectively.

Yield Components
A total of 51, 50, and 38 QTNs were found to be associated
with BW, LP, and SI, respectively, and the corresponding 82, 83,
and 65 candidate genes were identified. In these QTNs, 9 for
BW, 5 for LP, and 10 for SI were simultaneously associated by
at least two algorithms or in two environments, and each could
explain 3.41–28.76, 3.00–22.49, and 1.21–38.73% proportions of
the observed PVs, respectively.

Candidate Genes Annotation
A total of 2133 candidate genes, among which 621 were for FL,
426 for FS, 510 for FM, 234 for BW, 565 for LP, and 323 for
SI, were identified from stable QTL (Supplementary Table S5),
and 506 candidate genes, among which 110 for FL, 99 for FS,
126 for FM, 82 for BW, 83 for LP, and 65 for SI, were identified
from GWAS (Supplementary Table S6). Annotation analysis
of the 35 common genes from these two candidate gene pools
revealed that 33 of them had annotation information, whereas
8 had unknown function (Supplementary Table S7). In the
gene ontology (GO) analysis of the candidate gene for fiber
quality (Supplementary Table S8), 24, 17, and 29 candidate genes
were identified in the cellular component, molecular function,
and biological process category, respectively. In the cellular

component category, three main brackets of cell (six genes),
cell part (six genes), and organelle (five genes) were enriched,
whereas in the molecular function category, two main brackets
of binding (eight genes) and catalytic activity (six genes), and
in biological process category, four main brackets of metabolic
process (seven genes), single-organism process (seven genes),
cellular process (five genes), and response to stimulus (five
genes) were, respectively, enriched (Figure 4A). In gene ontology
(GO) analysis of the candidate gene for yield components
(Supplementary Table S10), 19, 13, and 27 candidate genes
were identified in the cellular component, molecular function,
and biological process category, respectively. In the cellular
component category, three main brackets of cell (five genes),
organelle (five genes), and cell part (five genes) were enriched,
whereas in the molecular function category, two main brackets
of binding (six genes) and catalytic activity (five genes), and in
the biological process category, four main brackets of single-
organism process (seven genes), metabolic process (five genes),
cellular process (five genes), and localization (four genes) were,
respectively, enriched (Figure 4B). Kyoto encyclopedia of genes
and genomes (KEGG) analysis indicated that six candidate genes
for fiber quality were involved in 10 pathways and two candidate
genes for yield were involved in six pathways (Supplementary
Tables S9, S11).

DISCUSSION

The High-Density Genetic Map
Construction and Its Reliability
The development of high-throughput sequencing technology
enabled its applications in genotyping the accessions of both
natural populations for GWAS and segregating ones for map
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FIGURE 3 | The annotation of the common candidate genes in GO analysis. (A) Fiber quality traits. (B) Yield components.

FIGURE 4 | The chromosome-wise distribution of stable QTL for fiber quality traits and yield components.
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construction and QTL identification to be accumulated to
agricultural important crops (Huang et al., 2010; Kump et al.,
2011; Dhanapal et al., 2015; Zeng et al., 2017). SNPs provided
abundant genetic variation loci at the genome level and much
improved the genome coverage and marker saturation when
they were applied to genetic map construction (Agarwal et al.,
2008; Hulse-Kemp et al., 2015; Cai et al., 2017). At present,
two sets of SNP arrays were developed for Gossypium (Hulse-
Kemp et al., 2015; Cai et al., 2017). Different from the first set
of CottonSNP63K arrays (Hulse-Kemp et al., 2015; Zhang Z.
et al., 2017), which was developed by international consortium
of several different studies (Hulse-Kemp et al., 2015), the
CottonSNP80K array (Cai et al., 2017) was developed from
the re-sequencing of 100 upland cotton cultivars and the TM-
1 genome database (Zhang et al., 2015). Even though both
sets were successfully applied in upland cotton linkage map
construction and QTL identifications (Hulse-Kemp et al., 2015;
Cai et al., 2017; Zhang Z. et al., 2017; Tan et al., 2018), the
second set could have a higher genotyping accuracy, better
coverage, and representative of hirsutum genome (Cai et al.,
2017; Tan et al., 2018). In the current study, a linkage map was
constructed mainly using SNP markers from the CottonSNP80K
array in combination with SSR ones. The map spanned a total
genetic length of 2477.99 cM, containing 122 SSR and 4729
SNP markers, with an average marker interval of 0.51 cM
between adjacent markers. Compared with previous SSR maps
(Shappley et al., 1998; Shen et al., 2005; Sun F.D. et al., 2012;
Wang X. et al., 2015), the current map contained more markers
and were more effective in map construction (Liu et al., 2015;
Li et al., 2016; Zhang et al., 2016; Zhang Z. et al., 2017; Tan
et al., 2018), and exhibited a high consistency with the
genomic distribution of the SNP array, which demonstrated its
representativeness in map construction (Figure 2; Cai et al.,
2017).

The reliability of the genetic map is also estimated by gap size,
collinearity, and segregation distortion analyses (Figure 2 and
Table 3). Although the development of SNP markers was based
on the CottonSNP80K array, a few chromosomes still had a large
gap or uneven distribution of makers (Li et al., 2016; Zhang Z.
et al., 2017). Totally, there were 33 gaps larger than 10 cM, of
which the largest one was of 42.23 cM on chr17 and there were
only 19 markers mapped on it. The result of collinearity between
the genetic map and the G. hirsutum (TM-1) reference genome
indicated accuracy and quality of the map.

The segregation distortion is recognized as strong
evolutionary force in the process of biological evolution
(Taylor and Ingvarsson, 2003), which was also a common
phenomenon in the study of genetic mapping (Shappley et al.,
1998; Ulloa et al., 2002; Jamshed et al., 2016; Zhang et al.,
2016; Tan et al., 2018). The current study observed that 32.22%
of the total mapping markers were SDMs (P < 0.05). The
maximum SDMs were on chr08, where there were 237 SDMs
of the total 481 markers, forming five SDRs (Figure 1). This
was in consistency with the SSR map constructed from the
F2 population of the same parents of the current study (Kong
et al., 2011). However, some studies observed an increase of
the SDM ratio from F2 generation to the completion of RILs

(Tan et al., 2018). This phenomenon was influenced by plenty
of factors, including genetic drift (Shen et al., 2007) of mapping
population, pollen tube competition, preferential fertilization
of particular gametic genotypes, and others (Zhang et al., 2016;
Zhang Z. et al., 2017; Tan et al., 2018). In the current study,
some chromosomal uneven distribution of QTLs in SDR versus
normal regions was also observed in chr01, chr06, chr07, chr10,
chr16, chr19, and chr20. These facts implied an impact of the
selections being imposed during the construction of the RIL
population.

Linkage and Association Analyses for
Fiber Quality Traits and Yield
Components
The QTLs detected in this study were compared with those
in previous studies. As a result, 22 QTLs for FL, 25 QTLs
for FS, 31 QTLs for FM, 36 QTLs for BW, 22 QTLs for
LP, and 19 QTLs for SI in this study were coincided in the
same physical regions of QTLs identified in previous studies
(indicated with asterisks in Supplementary Table S4). The
remaining could possibly be novel QTLs, of which 21 were stable
ones, namely qFL-chr11-1, qFL-chr16-1, qFL-chr19-1, qFL-
chr26-1, qFS-chr01-2, qFS-chr16-3, qFS-chr20-1, qFS-chr20-5,
qFM-chr01-2, qFM-chr03-1, qFM-chr10-1, qFM-chr14-1, qFM-
chr19-1, qBW-chr20-1, qLP-chr03-1, qLP-chr22-1, qLP-chr25-3,
qLP-chr26-2, qSI-chr07-1, qSI-chr10-1, and qSI-chr16-1. Even
though in the phenotypic evaluations of the population, the
phenotypic differences between the two parents did not reach
the significant level except that of FS, transgressive segregation
in the RILs and significant differences among RILs indicated
that the parents might harbor different favorable alleles for
the target traits. QTL identification results well illustrated such
presuppositions as these different favorable alleles contributed
greatly to the similarity or nonsignificant differences between
the two parents. These alleles could be addressed through
map construction and detected in QTL identification. The high
heritability of the target traits also enhanced the reliability of the
QTL identification.

In addition, four multilocus GWAS algorithms were applied
to the association of QTNs with the target traits, and their results
were compared with the previous identified QTLs (Said et al.,
2015). The results confirmed that quite a ratio of QTNs were
coincided in the physical regions of the confidence intervals of
reported QTLs in the database, namely 43 QTNs for FL, 44 QTNs
for FS, 51 QTNs for FM, 40 QTNs for BW, 34 QTNs for LP,
and 25 QTNs for SI (indicated with asterisks in Supplementary
Table S6). The remaining QTNs could possibly be novel QTNs,
of which 27 were associated by at least two algorithms or in
two environments. These loci could be of great significance
for cotton molecular-assisted breeding, particularly the loci of
TM9941 and TM54893, which were identified both by multiple
algorithms and in multiple environments for more than one
target trait.

Based on linkage disequilibrium, GWAS is an effective genetic
analysis method to dissect the genetic foundation of complex
traits in plants in natural populations. The four multilocus
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GWAS algorithms provided promising alternatives in GWAS.
Usually, GWAS needed a large panel size with sufficient marker
polymorphism (Bodmer and Bonilla, 2008; Manolio et al., 2009),
and was effective to identify major loci while ineffective to rare
or polygenes (Asimit and Zeggini, 2010; Gibson, 2012) in the
population. Linkage analysis in segregating populations could
effectively eliminate the false-positive results, which was a built-
in defect of GWAS in natural populations. But linkage analysis
usually identified large DNA fragments, which made it difficult
to further study the initial identification results. In the current
study, both GWAS and linkage analysis were applied in the
segregating RILs to study the correlations between genotypes and
phenotypes. When comparing the results of GWAS to the QTLs
of both previous studies (Said et al., 2015) and current study,
common loci (genes) (Supplementary Table S7) demonstrated
the effectiveness and feasibility of multilocus GWAS methods
to address the correlation between genotypes and phenotypes
in segregating RILs. Especially under the condition of increased
marker density and improved genome coverage, the accuracy
of QTN identification in GWAS would also increase. The
increased accuracy probably rendered the application of GWAS
in segregating population to have a higher effect on the observed
PVs, sometimes even higher than that of QTL on the PVs in
linkage analysis, which was usually low in natural populations.

Congruency and Function Analysis of
Candidate Genes
In this study, candidate genes were identified independently
both from the physical region in the marker intervals of the
QTLs, which were identified by CIM (Zeng, 1994) in WinQTL
Cartographer 2.5 (Wang et al., 2012), and from the physical
position of the QTNs, which were associated by multilocus
GWAS algorithms. As the CIM algorithm gave not only the QTL
position where the highest LOD value located, but also a marker
interval of that QTL, the physical regions where the marker
interval resided by QTL/QTN were used to search the candidate
genes around the QTLs. To avoid redundant genes, the markers,
which resided far away from the physical positions of the rest in
the same confidence interval, were discarded for consideration
of candidate gene searching. This increased the accuracy of
the functional analysis of the candidate genes harbored in the
confidence intervals of QTLs.

When comparing both candidate gene lists, even if they were
not completely consistent, they still revealed a good congruency
of candidate gene identification from both algorithms of
QTL/QTN; namely, three congruent candidate genes for FL,
seven for FS, nine for FM, five for BW, eight for LP, and
nine for SI were identified (Supplementary Table S7). Further
analysis of these candidate genes indicated that 1 for FL, 17 for
FS, and 2 for FM (indicated with asterisks in Supplementary
Table S6) were congruent with some previous reports (Huang
et al., 2017; Sun et al., 2017). Two candidate genes, Gh_D102255
(a protein kinase superfamily gene) and Gh_A13G0187 (actin
1 gene), which were for fiber quality, were also reported to
participate in fiber elongation (Li et al., 2005; Huang et al.,
2008). Gh_A07G1730 and Gh_D03G0236 belonged to a WD40

protein superfamily were mainly involved in yield formation in
the current study, and might be related to a series of functions
(Sun Q. et al., 2012; Gachomo et al., 2014). Gh_D11G1653 (myb
domain protein 6) functioned in BW formation, whereas reports
indicated that several members of MYB family were involved
in fiber development (Suo et al., 2003; Machado et al., 2009;
Sun et al., 2015; Huang et al., 2016). Findings in the current
study also indicated that some candidate genes could possibly
be “pleiotropic,” namely Gh_A07G1744 for FS, FM, and SI;
Gh_A07G1745 for FS and FM; Gh_A07G1743 for BW and SI; and
Gh_D08G0430 for FM and BW. These candidate genes could be
of great significance for further studies including functional gene
cloning as well as cultivar development.

CONCLUSION

The enriched high-density genetic map, which contained 4729
SNP and 122 SSR markers, spanned 2477.99 cM with a marker
density of 0.51 cM between adjacent markers. A total of 134
QTLs for fiber quality traits and 122 for yield components were
identified by the CIM, of which 57 are stable. A total of 209 and
139 QTNs for fiber quality traits and yield components were,
respectively, associated by four multilocus GWAS algorithms, of
which 74 QTNs were detected by at least two algorithms or in two
environments. Comparing the candidate genes harbored in 57
stable QTLs with those associated with the QTN, 35 were found
to be congruent, 4 of which were possibly “pleiotropic.” Results
in the study could be promising for future breeding practices
through MAS and candidate gene functional studies.
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The textural attributes of cooked rice determine palatability and consumer acceptance.

Henceforth, understanding the underlying genetic basis is pivotal for the genetic

improvement of preferred textural attributes in breeding programs. We characterized

diverse set of 236 Indica accessions from 37 countries for textural attributes, which

includes adhesiveness (ADH), hardness (HRD), springiness (SPR), and cohesiveness

(COH) as well as amylose content (AC). A set of 147,692 high quality SNPs resulting from

genotyping data of 700K high Density Rice Array (HDRA) derived from the Indica diversity

panels of 218 lines were retained for marker-trait associations of textural attributes using

single-locus (SL) genome wide association studies (GWAS) which resulted in identifying

hotspot on chromosome 6 for AC and ADH attributes. Four independent multi-locus

approaches (ML-GWAS) including FASTmrEMMA, pLARmEB, mrMLM, and ISIS_EM-

BLASSO were implemented to dissect additional loci of major/minor effects influencing

the rice texture and to overcome limitations of SL-based GWAS approach. In total 224

significant quantitative trait nucleotide (QTNs) were identified using ML-GWAS, of which

97 were validated with at least two out of the four multi-locusmethods. The GWAS results

were in accordance with the very significant negative correlation (r = −0.83) observed

between AC and ADH, and the significant correlation exhibited by AC (r < 0.4) with HRD,

SPR, and COH. The novel haplotypes and putative candidate genes influencing textural

properties beyond AC will be a useful resource for deployment into the marker assisted

program to capture consumer preferences influencing rice texture and palatability.

Keywords: rice texture, multi-locus GWAS, quantitative trait nucleotide, amylose content, adhesiveness,

cohesiveness, springiness, hardness

INTRODUCTION

Texture is an important attribute of consumer’s acceptance criteria and thus quality evaluation of
texture is a critical step in breeding. High range of phenotypic textural variability exist in rice which
are described as sticky, soft, dry, firm, and hard. These textural attributes appeals to be of interest to
different segment of rice consumers across the globe (Kaosa-Ard and Juliano, 1991). For instance,
Japanese and Chinese like the soft or sticky short rice grain, while consumers from Middle East,
United States and the Latin America prefer non-sticky firm rice. While the widely preferred target
of consumers of India and Pakistan favor soft and fluffy rice varieties (Lyon et al., 2000; Champagne
et al., 2010), consumers from Bangladesh, Sri Lanka, Indonesia and Myanmar prefer hard textured
rice varieties.
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The texture of rice is primarily influenced by the structure
and composition of starch in the rice grain. Cooking and eating
quality are among the most important components of grain
quality routinely assessed in rice breeding programs by three
main physicochemical characteristics such as amylose content
(AC), gel consistency (GC), and gelatinization temperature (GT)
(Ramesh et al., 2000; Zhao and Fitzgerald, 2013; Kong et al.,
2015; Cuevas et al., 2016). Primarily, AC is considered as key
determinant of rice eating quality (Juliano, 1992). Rice varieties
with no or low AC is being linked to sticky and soft texture,
respectively (He et al., 1999). Rice cultivars within high AC range
showed variable textural attributes (Champagne et al., 1999,
2010). Thus additional parameters such as GC and GT were
considered to unravel the degree of hardness (Bhattacharya and
Juliano, 1985; Juliano, 1992; Shi et al., 1997; He et al., 1999; Lyon
et al., 2000). Though, routine quality parameters found to be
useful in predicting cooking quality, these predictive methods do
not give sufficient information about the totality of rice textural
attributes (Anacleto et al., 2015). Hence, there is a need to explore
or develop other rice grain quality metrics which can be used
to further differentiate rice texture (Juliano, 1985; Reddy et al.,
1994).

Rice texture is regarded as a multidimensional sensory
property that perceived by mouth feel characteristic features due
to mechanical chewing, rheological, and surface attributes of
a product perceptible by means of auditory receptors (Lawless
and Heymann, 2010). Mechanical textural attributes of cooked
rice such as hardness, cohesiveness, stickiness, and springiness
can be characterized by a trained descriptive sensory panel.
However, texture assessment pipeline through sensory is not
routinely applied during selections of breeding lines because
of the low throughput, nature of subjectivity, high cost of
training and requirement of maintaining a descriptive panel
(Sesmat and Meullenet, 2001). This is particularly true for
breeding line selection at the early stages of a rice varietal
improvement program, where thousands of lines were subjected
for selection. Hence, understanding grain texture has focused on
semi-throughput methodologies such as instrumental methods
that correlate well with scores reported by sensory panels
for the different textural characters (Meullenet et al., 1998;
Champagne et al., 1999; Ramesh et al., 2000; Bett-Garber et al.,
2001; Mestres et al., 2011). Texture Profile Analysis (TPA) is
an instrumental method in which cooked rice grains undergo
two compression cycles, mimicking the first and second bites
on a food sample and thereby providing information on the
mechanical responses such as hardness (HRD), adhesiveness
(ADH), springiness (SPR), and cohesiveness (COH) (Stokes et al.,
2013). Force-related textural properties of cooked rice can be
measured using Texture Analyzer instrument which generate
quantitative data, inexpensive, and the results are reproducible
and reliable (Ramesh et al., 2000; Mestres et al., 2011).

High diversity in textural properties of rice has been reported
(Bao et al., 2006). Like most grain quality traits, phenotypic
variation in rice texture is quantitatively inherited (Hori et al.,
2016). The genetic complexity of rice texture has been unraveled
using classical QTL mapping. Through conventional QTL
mapping, TPA parameters have been associated with quantitative

trait loci (QTLs) on chromosomes 4 and 5 (HRD), 1 and
7 (ADH), and 8 (SPR) in a recombinant inbred mapping
population whose individuals have low AC (Cho et al., 2010). So
far these reported QTLs influencing texture have not been fine
mapped and candidate genes not identified yet. These findings
are notable because AC, coded by theWaxy gene in chromosome
6, is known to correlate positively with HRD and negatively with
ADH (Suwannaporn et al., 2007); yet, no significant associations
were reported by Cho et al. (2010), indicating that other genes
are contributing to these textural attributes in cooked rice. This
warrants the need of precise and robust statistical approaches for
efficient capturing major with minor effect loci influencing the
rice texture, which would pave the way to better understand the
underlying genetic architecture.

More recently, genome wide association studies (GWAS)
has become the state-of-art method to link genotypic variation
to corresponding differences in phenotype, with the aim of
dissecting the genetic basis of complex trait in various crops
(Ingvarsson and Street, 2011; Xiao et al., 2017). GWAS offers high
resolution-mapping by utilizing the historical recombination
events, which leverages it with identification of key allelic variants
and haplotypes in the underlying candidate genes. Nevertheless,
single locus approach fails to consider the integrated effect
of multiple markers under specific loci (Wang et al., 2016;
Tamba et al., 2017). Moreover, using too conservative Bonferroni
correction minimizes the likelihood to detect many important
small effect loci (Wen et al., 2018). These issues have been
addressed by efficiently utilizing themulti-locus GWAS approach
in recent studies (Segura et al., 2012; Liu et al., 2016; Wang et al.,
2016; Tamba et al., 2017; Wen et al., 2018; Zhang et al., 2018).

In addition to single locus genomewide association, themulti-
locus GWAS methods were performed in the present study
to overcome the limitations of single locus–based GWAS and
to define the genetic basis of cooked rice texture and grain
amylose content traits in Indica diversity lines. Furthermore,
we conducted targeted gene-based association study using the
available SNPs in the neighborhood region, which led to the
construction of haplotypes showing phenotypic variation for the
texture component traits.

MATERIALS AND METHODS

Plant Materials
A total of 236 diverse Indica accessions were selected from the
rice diversity panels (RDP) (McCouch et al., 2016) by ensuring
that the days to maturity is close between all entries, which
did not exceed 140 days. These germplasm lines have been
grown at the Robert S. Zeigler Experiment Station (ZES) of the
International Rice Research Institute (IRRI), Laguna, Philippines
(14◦N, 121◦E) during the 2014 dry season and wet season in
randomized block design in three replications. Standard uniform
field and crop management procedures have been adopted
based on IRRI standard procedure across all of the replicates.
Harvesting was done in the month of May/June depending
upon their maturity time. After harvesting, standard IRRI drying
method was followed in order to attain 12–14% seed moisture
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content. Subsequently, seeds were stored in the brown double-
layer seed paper bags inside the seed storage room maintained at
18◦C with optimum relative humidity.

Sample Processing
Paddy rice samples were dehulled using THU-35A test dehusker
(Satake Corp., Japan) and brown rice was milled through
Grainman 60-230-60-2AT instrument, (Grain Machinery Mfg.
Corp., USA) to produce white milled rice samples. A portion
from each sample corresponding to 100 unbroken grains was
used for texture profile analyses (TPA) and the rest of samples
were ground to a fine powder using Cyclone Sample Mill 3010-
030, Udy Corp, USA. The resulted homogenized rice flour was
further used for estimating amylose content (AC).

Amylose Content Measurement
AC determination was based on iodine colorimetric reaction
using method of ISO 6647 (International Organization for
Standardization, 2007) on milled rice flour. Briefly, gelatinized
flour suspension was injected into the glass transition lines
of a San++ Segmented Flow Analyser (SFA) system (Skalar
Analytical B.V., The Netherlands) and allowed to react with
iodine to form amylose-iodine complex (K-I2). The absorbance
of the sample’s containing K-I2 complex was estimated at 620 nm
wavelength and subsequently, AC was quantified with standards
by plotted against the standard curve.

Texture Profile Analysis (TPA)
Twenty-five whole polished rice grains per sample of accession
were washed thrice, soaked for 30min in Milli-Q water (1mL)
for 15min in a test tube. The samples were heated to boiling
point for 20min and kept at 50◦C prior to avoid retrogradation.
Textural parameters of the cooked rice (hardness, cohesiveness,
springiness, and adhesiveness) were analyzed according to the
method described by Lyon et al. (2000) with modifications. The
Ta.XT-Plus Texture Analyzer (Stable Micro Systems Ltd., Surrey,
UK), equipped with a 35-mm aluminum cylinder probe with a 5-
kg load cell, was used. The probe was positioned 15mm above
the base. Three intact cooked rice kernels were placed parallel
with each other on the aluminum plate base under the center
of the probe and compressed to 90% of their original height.
The TPA force-deformation curve was obtained using a two-cycle
compression test. The instrument is set with a test and post-
test speed of 0.5mm s−1. Values of HRD (peak force of the first
compression by the height of first curve), ADH (Negative force
area under the first bite), COH (A2/A1), and SPR (T2/T1) were
obtained and processed using Exponent Lite Software (version
3.0.5.0). ADH was recorded as negative numbers to indicate the
direction of the probe’s movement. Hence, adhesiveness values
were reported in absolute values. Texture experiments were
conducted in triplicate with three biological replications. For
further details, refer Supplementary Note 1.

Genotyping Dataset
A 700K high Density Rice Array (HDRA) SNP genotyping set
developed by an Affymetrix Custom Gene Chip Array from a
SNP discovery dataset (McCouch et al., 2016) was used to develop
genotyping information from the panel of 236 cultivars. A total of

distinct 218 diverse germplasm lines were selected from the panel
of 236 cultivars after following the standard filtering criterion
with a missing rate of not more than 10% (mind 10%, geno 10%)
and a minor allele frequency of at least 5%. This resulted into
the consideration of final set of 147,692 high quality SNPs for
conducting GWAS.

Single-Locus and Multi-Locus Genome
Wide Association Studies (GWAS)
Mixed linearmodel based EMMAx (Kang et al., 2010) was carried
out to conduct single locus (SL)-GWAS pipeline (Butardo et al.,
2017). WarpedLMM (Fusi et al., 2014) was used to transform
the phenotype to fulfill the normally distributed phenotype
data for conducting the mixed linear model based approach.
EMMAx-kin function was used to create the kinship matrix.
Furthermore, Manhattan plot and Q-Q plot were created using
the R package qqman (Turner, 2018). The Bonferroni corrected
p-value [−log10(P) = 6.47; P = 0.05/147692] was used as a
threshold p-value. Nevertheless, since few loci have surpassed this
threshold, significant SNPs above suggestive line at p-value of
utmost 1e-5 were extracted as set of significant SNPs identified
from SL-GWAS approach. Linkage Disequilibrium (LD)-plot
and beta-effects of SNPs were plotted using combination of
Haploview (Barrett et al., 2005) and Rscript. Targeted associations
were done for the selected genes based on LD block and defined
significant level. Annotations of candidate genes are based on
MSUv7 annotation. Genetic regions identified from SL-GWAS
approach were validated using at least two independent methods
of ML-GWAS.

Four different methods namely FASTmrEMMA (Wen et al.,
2018), pLARmEB (Zhang et al., 2017), mrMLM (Wang et al.,
2016), and ISIS_EM-BLASSO (Tamba et al., 2017) were used
to conduct multi-locus GWAS on 218 diverse germplasm
with 147,692 high quality SNPs. All parameters used at their
default values of respective method (Misra et al., 2017). A
SearchRadius parameter (bin) (https://cran.r-project.org/web/
packages/mrMLM/mrMLM.pdf) size of 20 SNPs was used as
parameter to run the multi-locus association using algorithms
mrMLM and FASTmrMLM. A threshold criterion of LOD of
3 and above was used to get the final set of significant SNPs.
In house perl script was used to identify the overlapping genes
with significant LOD score SNPs. SNPEff (Cingolani et al.,
2012) was used for identifying the functional annotation of the
respective SNP. Through implication of multi-locus GWAS and
targeted associations, the boxplots were created to visualize the
phenotype distribution among constructed haplotypes. Using R
program, boxplots depicting phenotype distributing ranges were
plotted for the respective textural traits. Multiple-t-test (pair-
wise comparison) was implemented to identify the boxplot with
significant phenotypic value at the significant level of P ≤ 0.05.

RESULTS

Correlations Between AC and Texture
Affecting Traits
Texture profile of 236 Indica diversity lines was evaluated.
However, owing to follow high quality genotypic information
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upon filtering, a total of 218 diversity lines originated from
35 countries were selected to study AC and texture associated
traits encompassing ADH, COH, HRD, and SPR. The pattern of
phenotypic values for AC and ADH was skewed as many Indica
germplasm found to be enriched for intermediate and high AC.
Conversely, broad range of phenotypic values was observed for
HRD, COH, and SPR attributes (Figure S1). Cor function with
Pearson’s method was used to detect the correlation and corrplot
was used to create the plot.

AC exhibited a high negative correlation with ADH
(r = −0.83, P = 2.2E−16), which supports the fact that low
amylose rice accessions tends to be stickier (Figure 1). Although,
AC was considered as a key selection criterion for predicting
cooked rice texture in normal breeding practices, HRD showed
weak positive correlation with AC (r = 0.39, P = 3.05E−09).
Moreover, we did not observe significant correlation between
AC with other textural attributes viz. COH and SPR. Instead, we
observed a positive correlation within 3 textural attributes such
as COH, HRD, and SPR (r > 0.59, P = 2.2E−16; Figure 1).

Genetic Dissection of Texture Related
Traits Using Single-Locus Genome Wide
Association Studies (SL-GWAS)
To identify the large effect genetic regions of textural attributes
in cooked rice and to delineate its interrelationship with AC,
single-locus (SL) GWAS was performed using EMMAx (Kang
et al., 2010) for marker trait associations in 218 germplasm
lines using high quality 147,692 SNPs from the high density
rice array (HDRA) panel of 700K SNPs (McCouch et al.,
2016). A total of 131 loci were associated [above suggestive
lines; −log10(P) ≥ 5] with texture-related traits. Among them
the prominent peak on chromosome 6 associated with highly
heritable traits AC (h2 = 0.86) and ADH (h2 = 0.86) (Figure 2),
as indicated with the threshold value of significance by a red
horizontal line in the Manhattan plot at –log10(P-value) = 6.39.
HRD is another highly heritable trait (h2 = 0.82), a significant
region [–log10(P) > 5; blue suggestive line] was detected
on chromosome 8 (Figure 3). Genetic association of SPR
found for loci on chromosome 2, 6, and 9 were statistically
significant (Figure 4). No QTN significantly associated with
cohesiveness was detected utilizing SL-GWAS (Figure S2).
Therefore, we furthermore employed multi-locus GWAS to
reveal the significant loci including the small-effect loci
(Figure 5).

Genetic Dissection of Textural Attributes
Employing Multi-Locus -Genome Wide
Association Studies (ML-GWAS)
For identifying novel associations and validation of loci
detected using SL-GWAS, the multi-locus (ML) model approach
was followed utilizing four independent methods namely
FASTmrEMMA (Wen et al., 2018), pLARmEB (Zhang et al.,
2017), mrMLM (Wang et al., 2016), and ISIS_EM-BLASSO
(Tamba et al., 2017). The multi-locus method pLARmEB
identified the highest number (90) of associated SNPs, followed
by ISIS-EM-BLASSO (57). The lowest number of SNPs linked

FIGURE 1 | Correlations among different grain quality attributes contributing

to texture including the amylose content. Pearson method was used to

calculate the correlation. Adhesiveness (ADH) and amylose content (AC)

inversely correlated. No correlation was observed between AC other textural

parameters cohesiveness (COH), hardness (HRD) and springiness (SPR).

to texture related-traits was obtained with the FASTmrEMMA
method (Tables S1, S2). A total of 173 quantitative trait
nucleotides (QTNs) associated with texture attributes including
AC, ADH, COH, HRD, and SPR were identified on all 12
chromosomes (Tables S1, S2). Notably, highly associated 10
QTNs identified with SL-GWAS method were validated using
ML-GWAS methods (Table 1). These candidate genes includes
QTNs on chromosome 2 regulating SPR (LOC_Os02g39630) and
chromosome 4 QTN (LOC_Os04g55780) associated with ADH.
An 87kb fine-mapped region (25.38–25.46Mb) on chromosome
eight identified QTN (LOC_Os08g40080) linked with HRD.
Interestingly, hot spot QTLs on chromosome 6 co-located
for two traits linking ADH textural trait (LOC_Os06g04169,
LOC_Os06g04200, LOC_Os06g04530, intergenic region
covering LOC_Os06g38564-LOC_Os06g38580) with AC
(LOC_Os06g04000, LOC_Os06g04200, LOC_Os06g04290)
validated using SL-GWAS and ML-GWAS methods (Table 1).

In addition, we observed a number of unique 38 QTNs
associated with texture identified by two or more independent
methods of ML-GWAS (Table 2) indicated with green dots
in the Manhattan plot, which could not be otherwise
detected by SL-GWAS due to adoption of higher threshold
criterion (Figure 2). ML-GWAS enabled detection of 3
QTNs regulating both AC and ADH on chromosome 1
(LOC_Os01g09680), chromosome 4 (LOC_Os04g55780), and
major effect genetic loci LOC_Os06g04200 from chromosome six
encompassing the GBSS1 (Waxy) gene (Table 2, Figures 2A,B).
Additionally, a highly significant SNP found on chromosome 12
(LOC_Os12g22020, intronic splice variant) being associated with
COH (LOD score of 6.35 with r2 value of 12.05) and SPR (LOD
score of 4.96 with r2 value of 2.89). Additional SNPs associated
with ADH was identified on chromosome 1 (LOC_Os01g17402)
with a highly significant SNP of splice variant in Cyclin B1-3
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FIGURE 2 | Single-locus (SL) and multi-locus (ML)-GWAS for AC and ADH. (A) Manhattan plot showing QTNs identified from SL-GWAS showed in gray/black and

ML-GWAS QTNs highlighted in green dot within the Manhattan plot. Genome-wide significant threshold line [–log10(P) = 6.47] is drawn as red, whereas suggestive

line is represented by blue line at –log10(P) of 5. (B) Linkage Disequilibrium (LD) plot with tagged SNPs from the pool of significant SNPs over suggestive line were

plotted. A total of 8 blocks were identified based on D′ threshold criterion equal to 0.8. The –log10(P) values was plotted as bar plot with positive effect as black bars

and negative effect with red bars where width of bars represent the phenotypic effect size termed as beta effect. The overlapping genes were plotted in the top most

lane (C–E). Targeted gene associations for LOC_Os06g04169, LOC_Os06g04200, and LOC_Os06g04330 present in second, third and fifth LD-block, respectively.

Gene structure with significant SNPs and phenotype distribution as boxplot were presented. An asterisks (*) represented the haplotype with significant phenotypic

value (at significance level of P ≤ 0.05) using pair wise t-test.
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FIGURE 3 | Genetic regions identified through ML-GWAS and SL-GWAS for hardness (HRD). (A) Manhattan plot showing the multi-locus associations (QTNs with

LOD ≥3; highlighted as green dots) overlaid with SL-GWAS QTNs (black/gray) for HRD. (B) Circos representing the physical positioning of 12 chromosomes with

locus IDs of significant QTNs identified in ML-GWAS, followed by depiction of LOD score in the innermost circle. (C) Phenotypic distribution of haplotypes shown as

boxplot for selected genes identified from ML-GWAS method. Haplotypes showing significant HRD values were highlighted with an asterisks (*) (at the significance

level of P ≤ 0.05) using pair wise t-test.

and on chromosome 5 (LOC_Os05g26850, promoter region
of unknown gene), identified by all four multi-locus methods
(Table 2).

Major Genomic Region Determines the
Adhesiveness (ADH) and Amylose Content
(AC)
AC being the starch component, it is one of the key
determinants of the cooking and eating quality. In cooked
form, AC negatively influences the ADH (Figure 1). Major
genetic region of ∼490 kb candidate genomic region (1.54–
2.0Mb) possessing 8 LD-blocks on chromosome 6 has been
mapped for both ADH and AC, confirmed using both SL-GWAS
and ML-GWAS methods (Table 1, Figures 2A,B, Figure 3).
Interestingly, this fine mapped genetic region on chromosome
6 was consistently identified when GWAS has been conducted
across wet and dry seasons (Figure S3). Notably, multi-loci
GWAS detected moderate to high effect significant SNPs from
LD blocks 2, 3, and 5 defining the variations for AC and
ADH (Figure 2B). Furthermore, haplotypes identified from LD-
block 2 and 3 contributed in distinguishing samples from

high/intermediate amylose classes with low AC (Figures 2C,D),
whereas allelic variants from LD-block 5 differentiates lines
possessing intermediate AC with low AC (Figure 2E). Most
haplotypes showing the high AC (>25%) were observed as less
adhesive (low magnitude) as reflected in the haplotypes from
LD-block 2 and 3. Likewise, haplotypes fixed for intermediate
AC, showed moderate variations for ADH. Contrastingly,
low AC samples showed high ADH values, as observed in
LD-block 5. Targeted-gene association study of the potential
candidate genes (LOC_Os06g04169 encoding beta-hydrolase,
LOC_Os06g04200 identified as GBSS1 and LOC_Os06g04330
annotated as Phosphotransferase) distinguished different AC
and ADH classes of phenotypes (Figures 2C,E, Table S2), were
validated by two independent methods such as ML-GWAS and
SL-GWAS. For the candidate gene LOC_Os06g04169, haplotype
CGC were found to be correlated to low AC and high ADH
phenotypes and its alternative haplotype (TAC/TAT/TGC/TGT)
containing lines were correlated to possess high AC and low
ADH (Figure 2C). Haplotype (CCT/TCT) identified from the
LOC_Os06g04200 were correlated to low AC and high ADH
phenotypes and its alternative haplotypes (CTG/CTT/TTG)
containing lines found to possess high AC and low ADH
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FIGURE 4 | Genetic regions identified through ML-GWAS and SL-GWAS for springiness (SPR). (A) Manhattan plot representing the multi-locus associations (QTNs

with LOD ≥3; highlighted as green dots) overlaid with SL-GWAS QTNs (black/gray) for SPR. (B) Circos representing the physical positioning of 12 chromosomes with

locus IDs of significant QTNs identified in ML-GWAS, followed by depiction of LOD score in the innermost circle. (C) Phenotypic distribution of haplotypes shown as

boxplot for selected genes identified from ML-GWAS method. Haplotypes showing significant SPR values were highlighted with an asterisks (*) (at the significance

level of P ≤ 0.05) using pair wise t-test.

(Figure 2D).Within LOC_Os06g04200 (granule bound starch
synthase I), the high effect QTN at position 1765761 (LOD
> 11) lying at splice junction of exon 1 detected using
FASTmrEMMA and pLARmEB significantly affected both AC
and ADH values (Table S2). Additionally, splice junction QTNs
along with other two QTNs identified in GBSS1 showed
variable level of allele frequencies (Table S3). Conversely,
haplotypes from candidate gene LOC_Os06g04330 explained
the variations among intermediate and low AC classes
(Figure 2E).

Utilizing the SL and ML-GWAS, prominent association
signals were identified for ADH alone from chromosome 4
(LOC_Os04g55780), which is linked negatively with ADH trait
with a beta value of −0.42 identified using SL-GWAS and
confirmed using two independent methods of ML-GWAS with
LOD scores of 3.2 and 6.4. In addition, a total 11 QTNs
were identified for ADH but not linked to AC, which are
identified from at least two independent methods of ML-GWAS
(Figure 5). These candidate loci of major effect QTNs affecting
ADH trait located on chromosome 1 (LOC_Os01g09680 and
LOC_Os01g55070 with r2 value of 2.53 and 1.65, respectively),
chromosome 4 (LOC_Os04g16260 with r2 value of 1.38),
chromosome 5 (LOC_Os05g26850 with r2 value of 3.05),
chromosome 7 (LOC_Os07g26990 with r2 value of 1.29),
chromosome 9 (LOC_Os09g07890 with r2 value of 1.32),
chromosome 10 (LOC_Os10g22590 with r2 value of 1.27),
and chromosome 11 (LOC_Os11g39680 with r2 value of 1.10)

(Table 2). Using four different methods, multi-locus GWAS
yielded highly significant (LOD > 10) SNP with splice variant
in candidate gene LOC_Os01g17402 and in the promoter region
of LOC_Os05g26850, explaining high heritable phenotypic
variation for traits AC and ADH (Table S2). Among them
highly significant snp_05_15589585 (c.-2404T>A) present in the
upstream of LOC_Os05g26850 (unclassified) on chromosome 5
showed prominent association with ADH using different ML-
GWAS methods, while it was not significant under SL-GWAS
(Table S2).

Additional 11 QTNs were identified to influence AC but
not linked to ADH confirmed from two or more independent
methods of ML-GWAS. With the exception of 3 QTNs
(LOC_Os05g24190, LOC_Os06g33360, and LOC_Os08g32520),
many of them were turned out to be minor effect QTNs
with low r2 value. The major effect QTN affecting AC namely
snp_06_19437296 has a non-synonymous nucleotide change
(C>T) in the candidate gene LOC_Os06g33360 lead to amino
acid change (Ala>val) (Table 2).

Genetic Dissection of Hardness (HRD),
Cohesiveness (COH), and Springiness
(SPR) as Components of Textural Attributes
The key components determining the cooked rice texture
include the HRD, COH, and SPR, which showed higher
correlations among each other (Figure 1), but not linked to
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FIGURE 5 | Physical map of strongly associated QTNs on rice chromosomal maps identified using ML-GWAS methods. The represented QTNs on map includes

either QTNs jointly identified using SL- and ML-GWAS, or spotted in at least two independent ML-GWAS methods, mapped at their physical positions on 12

chromosomes. On the left, scale indicates the base pair (bp) distance. Publicly available texture QTL information from Cho et al. (2010) have been mapped, and were

highlighted as vertical red colored bars aligning with respective physical positions on the map. Horizontal bars (in pink color) on chromosomal maps represent the

position of centromere.

AC variation in the grain. Significant QTN on chromosome
8 with SNP (C181>T) found in the promoter region of
LOC_Os08g40080 influence HRD, validated by both SL-
GWAS and ML-GWAS methods (Table 1). For HRD,
multi-locus GWAS yielded 9 significant QTNs identified
on chromosomes 2 (LOC_Os02g39630, LOC_Os02g50230),
chromosome 5 (LOC_Os05g21010, intergenic region interval

LOC_Os05g47790-LOC_Os05g47810), chromosome 7
(intergenic interval LOC_Os07g27390-LOC_Os07g27400),
chromosome 10 (LOC_Os10g10580), chromosome 11
(LOC_Os11g38020) and chromosome 12 (LOC_Os12g03160,
LOC_Os12g17750) (Table 2, Figure 3B). These QTNs were
identified as major QTNs with higher genetic heritability, which
are validated by two or more independent methods namely,
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FASTmrEMMA, ISIS_EM-BLASSO, mrMLM, and pLARmEB
(Table 2, Figure 3B). Of the 9 QTNs associated with hardness,
none of the QTNs was identified to affect both hardness and AC.
A prominent QTN snp_12_10170782 (C>T) was identified in
the promoter region of LOC_Os12g17750 (unknown function)
identified for influencing hardness using three independent
methods pLARmEB, ISIS_EM-BLASSO, mrMLM with LOD
score of 6.3, 8.7, and 10.24 (Table 2 and Table S2). For the
candidate gene LOC_Os12g17750, reference haplotype CTAC
being abundant in major Indica germplasm with intermediate
hardness and its alternative haplotype TCCG representing
lines depicted higher hardness value (Figure 3C). Likewise,
additional QTNs representing missense mutations such as
snp_05_12361761 leading to amino acid change (Val>Ile) in
candidate LOC_Os05g21010 and snp_12_1204320 (Gly>Asp)
was detected in LOC_Os12g03160, associated with HRD trait
(Table 2).

Genetic basis of springiness textural trait was defined through
SL-GWAS on chromosome 2 (LOC_Os02g39630) validated
using ML-GWAS approach (Table 1, Figure 4). Additional
QTN identified through SL-GWAS resulted in identifying a
locus LOC_Os09g34340 with contrasting haplotypes (CGCA
with higher value of SPR and CACG with lower value of
SPR). Employing ML-GWAS approach 5 additional QTNs
were identified and among them LOC_Os12g22020 locus
was defined by contrasting haplotype TCCAGGAGG with
higher SPR value and alternative haplotype TCCGAGGGG
containing lines possess lower SPR (Figure 4). We also identified
snp_01_3464018 causing premature termination at start codon
of the candidate locus LOC_Os01g07330 (unclassified), which
exhibited the distinct haplotypes showing variation for the SPR
(Figure 4C). Moreover, the extreme haplotypes detected for
ADH, HRD, and SPR also showed the consistent phenotype
across wet and dry seasons (Figure S4).

For COH, we observed significant snp_10_13693521 located
downstream of LOC_Os10g26370 validated through ISIS_EM-
BLASSO, FASTmrEMMA multi-locus GWAS methods with
LOD score value of 3.7 and 5.7 (Table 2). Additional QTN
snp_12_12385384 identified from ISIS_EM-BLASSO was found
to associate very significantly with COH (LOD 6.35 with r2 12.05)
and SPR (LOD 4.95 with r2 2.88).

Kyota Encyclopedia of Genes and Genomes (KEGG) analysis
was conducted to identify the functional categories across
all the QTNs identified. A total of 40 candidate genes with
functional information were mined, of which 17 were involved in
genetic information processing, whereas the rest of the candidate
genes were involved in other cellular and metabolic processes
(Figure S6).

DISCUSSION

Interlinking Amylose Content Variation
With Textural Attributes
Texture of cooked rice plays a pivotal role in consumer
acceptability; henceforth researchers continuously develop
strategies to predict texture of cooked rice. AC is widely explored

to capture the diversity of rice quality (Anacleto et al., 2015) in
rice breeding programs. The challenge lies when rice varieties
within similar AC quality class are easily differentiated by
consumers (Champagne et al., 1999, 2010), and thus secondary
traits derived based on AC versus GT or AC versus GC will be
prioritized. This situation highlights the importance of secondary
assays that could further differentiate rice varieties into distinct
quality classes. It is assumed that rice varieties within the same
AC and GC ranges are distinguished from each other for textural
attributes. Mega varieties which have been developed during
1965–1990 were found to possess unique textural attributes,
which cannot be distinguished alone by AC. Hence revealing
textural attributes is a crucial step in fine-tuning product profiles
for capturing major rice markets tend to distinguish rice within
intermediate and high AC. Multi-modal descriptive sensory
description is the ultimate reference to distinguish textural
features of rice varieties (Anacleto et al., 2015). However, it is
difficult to routinely implement descriptive sensory methods to
capture textural preferences for selecting breeding material from
rice improvement programs due to large number of samples, low
throughput methodology. Thus to develop and deliver selection
tools to breeders, there is a need to bridge proxy grain quality
selection tools (AC) with instrumental based TPA analysis and
predict textural ideotypes from diverse germplasm (Champagne
et al., 1999).

TPA is an semi-throughput approach used to measure
the mechanical response during a double compression, which
mimics first and second bite of a food sample (Stokes et al., 2013).
Until now, attempts have been made to correlate instrumental
texture profiles with various rice quality predictors (Ohtsubo
et al., 1990; Champagne et al., 1999, 2004). Among textural
attributes, HRD is considered as an important attribute of
cooked rice texture strongly affect the consumer acceptance
(Perez et al., 1979; Li et al., 2016). We employed highly
diverse Indica germplasm enriched with intermediate to high
AC to generate phenotyping data of various textural attributes
using TPA (Figure 1). These results suggest a week positive
correlation between AC and HRD (Figure 1). This is differed
with the outcome of previous studies where HRD showed very
significant positive correlation with AC (Perez et al., 1979; Bao
et al., 2004; Li et al., 2016, 2017). These results have proved
inconsistent and at times coincidental, most likely because of
utilization of small sample sets to establish associations. In
addition, the samples are most likely not representative of
covering the entire breadth and depth of the diversity of Indica
germplasm.

Our results delineated that AC was negatively correlated with
the ADH (r = −0.83). Previous studies reported that low AC
value with higher amylopectin content increase the stickiness in
cooked rice (Juliano, 1992; Reddy et al., 1993; Windham et al.,
1997; Li et al., 2016). Additionally, AC displayed non-significant
correlation with COH, SPR, which is in agreement with the
Cho et al. (2010). These results suggested that AC is not the
sole determinant of cooked rice texture, and it is important to
equally consider other component textural attributes viz. HRD,
COH, and SPR. Moderate to high correlations exist among
HRD, COH, and SPR traits, which suggest the existence of
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interdependence among these three textural traits. To support
future breeding programs, we need to dissect genetics and
leverage the gene discovery attempts toward crop improvement
of textural attributes.

Dissecting the Genetic Basis of Texture
Related Traits
Genetic dissection of the textural attributes has been explored
in previous studies using Japonica/Indica biparental mapping
population (Bao et al., 2002, 2004; Cho et al., 2010). Nevertheless,
studies involving high resolution dissection of genetic basis of
important texture related traits are very limited. To estimate
the heritability, we have measured amylose content from two
independent years and used this phenotyping data to identify
the genetic regions. We identified the same genomic regions on
chromosome 6, regulating amylose content across two season
data with higher heritability’s values (h2 = 0.85 and 0.86),
reflecting the consistency across both seasons (Figure S3). As
the selected diversity panel showed high phenotypic variation
for amylose, which influences texture, we have used the data
for textural parameters from 2014 dry season (in randomized
complete block design) for conducting the GWAS. The texture
based phenotyping data were generated from nine technical
replicates. In this approach we have considered the ample
replications to ensure the phenotype consistency and explored
the diversity population covering vast range of phenotypic
variation for textural attributes to define its genetic basis. In
present study, AC and ADH have reflected the high narrow sense
heritability (h2 = 0.86). Thus the defined genetic region will be
an added value. Furthermore, notably AC and ADH showed high
degree of correlation and overlapping genetic region influenced
by both traits. Likewise, HRD (h2 = 0.82) and COH (h2 = 0.68),
showed higher heritable values from the RDP than that observed
in previous studies dealing with biparental mapping populations
(Bao et al., 2002; Cho et al., 2010). In addition, we selected
the accessions possessing the haplotypes exhibiting the extreme
phenotypes for adhesiveness, hardness and springiness, and
phenotyped for different textural attributes in the seed lots
collected from two different seasons. As a result, we identified
the values from both of the seasons close and comparable to each
other (Figure S4). These results further confirmed that genetic
componentmajorly regulating the textural trait is highly heritable
and less affected by the environmental effects. In addition, we
have utilized days to maturing data as covariate and re-run
single locus GWAS for AC and four textural attributes. All the
genetic regions identified for textural attributes using SL-GWAS
peaks for AC, ADH, HRD, and SPR remains significant, when
we run with days to maturity as covariate (refer Figure S5).
Through this approach we rule out any influence of days to
maturity on texture in the currently studied core collection
panel.

EMMA algorithm has been extensively used to dissect the
complex traits due to its robustness and reliability. Furthermore
EMMA model corrects for confounding effects of subpopulation
structure and relatedness between individuals (Kang et al., 2008;

Kumar et al., 2015; Campbell et al., 2017). Application of single-
locus scan approach under polygenic background with diverse
population structure controls do not facilitate the detection of
small effect QTNs, as the model fails to consider the integrated
effect of multiple markers under specific loci (Zhang et al.,
2018). Alternative and more powerful approaches for marker-
trait association have been developed to address the shortcomings
of one dimensional scan. Hence in the present study we
used four multi-locus model approaches FASTmrEMMA (Wen
et al., 2018), pLARmEB (polygenic-background-control-based
least angle regression plus empirical Bayes) (Zhang et al., 2017),
mrMLM (Wang et al., 2016), and ISIS_EM-BLASSO (Tamba
et al., 2017) to conduct GWAS analysis in order to capture
minor QTNs related to texture traits. A total of 224 SNPs
associated with AC and textural attributes such as ADH, COH,
HDR, and SPR were defined using ML-GWAS method. When
comparing the four multi-locus methods, a high number of
97 SNPs were validated with at least 2 out of the four multi-
locus methods. Among them 48 novel loci were defined to
influence texture attributes. Among the implementedML-GWAS
methods, pLARmEB and ISIS EM-BLASSO detected the higher
number of significant QTNs. The same observation was made
in the recent study (Sant’ana et al., 2018), who reported a high
number of trait-associated SNPs using two methods. On the
other hand (Ma et al., 2018), acknowledge the robustness of ISIS
EM-BLASSO than the other three methods (FASTmrEMMA,
pLARmEB, mrMLM). More than half of the QTN detected
were specific to one of the four methods used. Thus validation
accounted by combinatory approaches of ML-GWAS methods
has been considered in our study for interpreting biological
inferences of rice texture.

Using the efficient mixed-model association we identified 10
robust QTNs with major effect QTNs significantly associated
with texture-related traits validated using SL-GWAS and ML-
GWAS approaches. To discover medium and small effect
QTNs, we used confirmatory validation through at least
two independent methods of ML-GWAS approaches. Unlike
SL-associations, ML-association approaches are considered as
effective in taking the joint effects of multiple genetic markers
into account and avoid any stringent criterion leading to
likelihood of missing out functionally relevant genomic loci
(Wang et al., 2016; Tamba et al., 2017; Wen et al., 2018). Indeed,
although, no SNP significantly associated QTNs were identified
for cohesiveness using SL-GWAS and mrMLM methods, we
detected putative genomic regions underlying COH using three
other ML-GWAS methods. Multi-locus GWAS has gained
popularity with a growing number of studies reporting the use of
this approach (Misra et al., 2017; Ma et al., 2018; Sant’ana et al.,
2018; Zhang et al., 2018) to perform marker-trait association.
Some of the distinct advantages of multi-locus GWAS over
single-locus GWAS are their power, accuracy in QTN effect
estimation, reduced rate of false positives (Wang et al., 2016;
Tamba et al., 2017; Ma et al., 2018).

We identified a well characterized major effect QTN affecting
AC and ADH within GBSS1 region confirmed through SL- and
ML-GWAS, particularly loci at the 5′-splice site of first intron
(Figure 2), which is in agreement with previous reports (Hsu
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et al., 2014; Yang et al., 2014; Wang et al., 2017). Furthermore,
two additional SNPs were detected for regulating AC, earlier
identified by Butardo et al. (2017) for determining AC. In
addition to GBSS1, within the hot spot QTL of chromosome
6 linking AC with ADH textural attribute we identified
additional loci influencing texture traits. For instance, haplotypes
derived from candidate genes encoding alpha/beta-hydrolases,
which belongs to largest group of structurally related enzymes
(Holmquist, 2000) and uncharacterized phosphotransferase,
explicitly showed the phenotypic variation with AC and ADH
traits. Notably, adjacent region of GBSSI reflected the variations
for ADHhas been reported previously but the candidate loci were
not unraveled (Wang et al., 1995; Isshiki et al., 1998). This may
be attributed to low resolution owing to limited recombination
events observed in case of bi-parental population.

Besides GBSSI, we did not detect the QTNs from candidates
involved in starch biosynthesis, namely starch synthase IIa
(SSIIa) (Umemoto et al., 2002; Nakamura et al., 2005), starch
branching enzyme (SBE IIb) (Nishi et al., 2001; Tanaka et al.,
2004; Nakata et al., 2018), as the RDP panel employed in
the present study belongs to indica population. From the past
studies, variation in SSIIa alleles were identified by exploring
inter species genetic variation between indica compared to
japonica, due to enrichment of the intermediate amylopectin
chains (DP 12–24) (Umemoto et al., 2002, 2004). Similarly,
SBEIIb revealed to possess different alleles in two subgroups
indica and japonica (Luo et al., 2015). Allelic variants of
both of the genes can markedly distinguish respective favored
allele in indica vs. japonica germplasm. In the present study,
underlying large effect candidate genes influencing ADH alone,
but not AC, related to the identification of candidate gene
metallic protease involved in the protein degradation and the
allergenic protein, which might potentially involve in regulation
of the structural proteins determining texture of cooked rice.
In previous studies, protein content was correlated negatively
with the adhesiveness (Lyon et al., 2000) and other rice texture
attributes (Champagne et al., 1999; Martin and Fitzgerald, 2002).
Besides the textural traits being highly correlated among each
other, we also detected common QTNs between AC and ADH
(Tables 1, 2). Additionally, several significant SNPs involved in
textural attributes found to influence alternative splicing were
identified in this study, which suggests the importance of post-
transcriptional regulation. Since most of the genes involved in
the core regulatory pathways, the functional characterization
of novel candidate genes with non-synonymous amino acid
alteration influencing various textural attributes of ADH, HRD,
and COH traits will be worth exploring its functional validation
through transgenic studies. These novel haplotypes defined in the
present study will serve as important genetic resource for future
breeding strategies to capture textural attributes.

In summary, our findings addressed the underlying genetic
basis of rice texture attributes. We found considerable
phenotypic variations in texture attributes (adhesiveness,
hardness, springiness, cohesiveness, and amylose content)

among the 218 indica accessions. Highly negative correlation
between amylose content and adhesiveness was observed,
which could explain the fact that rice with low amylose is
stickier. We identified multiple major/minor QTNs linked
with rice cooking properties using SL-GWAS, followed by
ML-GWAS using 4 independent methods (FASTmrEMMA,
ISIS_EM-BLASSO, mrMLM, and pLARmEB). An important
hot spot QTLs on chromosome 6 where QTNs for ADH
co-localized with QTNs for AC were identified. Furthermore,
a fine mapped genetic region on chromosome 8 affecting
HRD was identified. The use of different models increased the
number of variations captured across the diverse germplasm
lines. Multi-locus model using different methods could
overcome the limitations of single-locus analysis. Furthermore,
this integrative approach has enabled the identification of
novel small and large effect putative potential candidate
genes and diagnostic haplotypes, which subsequently on
validation, potentially be deployed in breeding to improve rice
texture.
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Improving the salt-tolerance of direct-seeding rice at the seed germination stage is a
major goal of breeders. Efficiently identifying salt tolerance loci will help researchers
develop effective rice breeding strategies. In this study, six multi-locus genome-
wide association studies (GWAS) methods (mrMLM, FASTmrMLM, FASTmrEMMA,
pLARmEB, pKWmEB, and ISIS EM-BLASSO) were applied to identify quantitative trait
nucleotides (QTNs) for the salt tolerance traits of 478 rice accessions with 162,529
SNPs at the seed germination stage. Among the 371 QTNs detected by the six
methods, 56 were identified by at least three methods. Among these 56 QTNs, 12,
6, 7, 4, 13, 12, and 12 were found to be associated with SSI-GI, SSI-VI, SSI-MGT,
SSI-IR-24h, SSI-IR-48h, SSI-GR-5d, and SSI-GR-10d, respectively. Additionally, 66
candidate genes were identified in the vicinity of the 56 QTNs, and two of these
genes (LOC_Os01g45760 and LOC_Os10g04860) are involved in auxin biosynthesis
according to the enriched GO terms and KEGG pathways. This information will be
useful for identifying the genes responsible for rice salt tolerance. A comparison of
the six methods revealed that ISIS EM-BLASSO identified the most co-detected QTNs
and performed best, with the smallest residual errors and highest computing speed,
followed by FASTmrMLM, pLARmEB, mrMLM, pKWmEB, and FASTmrEMMA. Although
multi-locus GWAS methods are superior to single-locus GWAS methods, their utility
for identifying QTNs may be enhanced by adding a bin analysis to the models or by
developing a hybrid method that merges the results from different methods.

Keywords: multi-locus, GWAS, QTNs, salt tolerance, rice

INTRODUCTION

A genome-wide association studies (GWAS) represents a powerful option for the genetic
characterization of quantitative traits, and has been widely used for analyzing agronomic traits
related to plants. Numerous genetic variants for complex traits have been identified based on
single-locus GWAS methods, such as empirical Bayes, efficient mixed model association (EMMA),
genome-wide efficient mixed linear model association (GEMMA), settlement of mixed linear

Abbreviations: GI, germination index; GR-10d, germination rate at the 10th day; GR-5d, germination rate at 5th day; IR-
24h, imbibition rate at 24 h; IR-48h, imbibition rate at 48 h; MGT, mean germination time; N, normal condition; S, salt stress
condition; SSI, stress-susceptibility index; VI, vigor index.
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model under progressively exclusive relationship (SUPER), and
mixed linear model (MLM) (Kang et al., 2008; Zhou and
Stephens, 2012; Wang et al., 2014, 2016a). Although the statistical
power of quantitative trait nucleotide (QTN) detection improves
after controlling the polygenic background, most of the small
effects associated with complex traits are still not captured by
single-locus GWAS methods.

In a single-locus GWAS model, markers are tested individually
in a one-dimensional genome scan. Moreover, the multiple test
correction for the critical value of a significance test should be
considered. Bonferroni correction is widely used to modify the
threshold value to control the false positive rate (FPR). However,
this type of correction method is so conservative that true QTNs
may be eliminated. Therefore, the best way to solve this problem
is to develop a multi-locus GWAS method that does not require
a multiple test correction. Multi-locus GWAS methods involve
a multi-dimensional genome scan, in which the effects of all
markers are simultaneously estimated. Many penalized multi-
locus GWAS methods have been developed, including the least
absolute shrinkage and selection operator (LASSO), empirical
Bayes LASSO, and adaptive mixed LASSO (Yi and Xu, 2008;
Cho et al., 2009, 2010; Wu et al., 2009; Ayers and Cordell, 2010;
Wang et al., 2010; Giglio and Brown, 2018). These methods
can minimize some marker effects to zero when the number of
single nucleotide polymorphisms (SNPs) is not much larger than
the sample size. However, the rapid development of sequencing
technologies has enabled the detection of many SNPs (i.e., the
number of SNPs is hundreds of times larger than the sample
size). Thus, the available methods for minimizing marker effects
are ineffective. One option for addressing this issue involves
decreasing the number of SNPs. Dr. Zhang’ lab developed an R
package called mrMLM, which includes the following six multi-
locus GWAS methods: mrMLM, FASTmrMLM, FASTmrEMMA,
pLARmEB, pKWmEB, and ISIS EM-BLASSO. All of these
methods involve two-step algorithms. During the first step, a
single-locus GWAS method is applied to scan the entire genome,
and putative QTNs are detected according to a less stringent
critical value, such as P < 0.005 or P < 1/m, where m is the
number of markers. During the second step, all selected putative
QTNs are examined by a multi-locus GWAS model to detect true
QTNs (Wang et al., 2016a,b; Tamba et al., 2017; Zhang et al.,
2017; Ren et al., 2018; Wen et al., 2018a,b; Zhang and Tamba,
2018). The mrMLM package solves the problem associated with
co-factor selection in the multi-locus GWAS model when there
are many markers.

Rice (Oryza sativa L.), which is one of the most important
cereal crops worldwide, is sensitive to salt stress. With the
increasing salinization of soils, salt stress is becoming a key
abiotic factor limiting rice production that rice breeders must
overcome (Hu et al., 2012). Developing salt-tolerant rice cultivars
is an efficient way to minimize crop loss. Over the past several
years, high density SNPs have been used to detect variants with
GWAS methods to improve rice varieties (Han and Huang, 2013;
Chen et al., 2014; Yang et al., 2014; Wei et al., 2017). However,
most traits related to abiotic stress tolerance are controlled by
several polygenes that are undetectable in single-locus GWAS
models (Lee et al., 2003; Cui et al., 2015). Therefore, we should

apply multi-locus GWAS methods to identify loci related to salt
tolerance. In this study, 478 rice accessions, each with seven salt
stress susceptibility index (SSI)-related traits, and 162,529 SNPs
were used to conduct a multi-locus GWAS. Our objectives were
to identify the significant QTNs related to salt tolerance and
provide recommendations regarding the selection of a multi-
locus GWAS method by comparing the differences among the six
multi-locus methods included in the mrMLM package.

MATERIALS AND METHODS

Rice Phenotypic Data Related to Salt
Tolerance
We analyzed 478 rice accessions from 46 countries and
regions regarding seven salt tolerance-related traits at the seed
germination stage in a multi-locus GWAS. Phenotypic data were
collected for control and stress-treated plants incubated in a
growth chamber, with two independent experiments conducted
for the control and stress treatments. Each independent
experiment involved a randomized block design with two
replicates. The dataset was published by Shi et al. (2017), and
the seven salt tolerance-related traits were VI, GI, germination
rate (GR) at days 5 and 10, MGT, and imbibition rate (IR) at
24 and 48 h. All salt tolerance-related traits were measured for
plants treated with 60 mM NaCl or water (control) as follows:
IR (mg/g) was calculated as IR = (W2 −W1)/W1 × 1000 at 24
and 48 h after starting the incubation, where W1 represents the
dry seed weight and W2 represents the imbibed seed weight;
GR was calculated as GR = Nt/N0 × 100% at days 5 and 10,
where Nt is the number of germinated seeds at day t and N0 is
the total number of seeds; GI was calculated as GI =

∑
(Gt/Tt),

where Gt is the accumulated number of germinated seeds at day
t and Tt is the time (in days); MGT was calculated as MGT =∑

TiNi/
∑

Ni, where Ni is the number of newly germinated
seeds at day t and Ti is the time (in days); VI was calculated
as VI = GI × SL, where SL is the average shoot length of 10
germinated seeds at day 10. The salt tolerance level of rice
during the germination stage was estimated with the following
equation: SSI = (1− Ys/Yp)/D, where Ys is the performance of
an individual under the stress condition, Yp is the performance
of an individual under the normal condition, and D is the
stress intensity, which was calculated as D = 1− (

∑
Ys/

∑
Yp).

Finally, 21 traits were included in this study. The abbreviated
names of these 21 traits are provided in the abbreviations list.

Genotyping and Multi-Locus GWAS
The 478 rice accessions analyzed in this study were from the
3K rice genome project. The 3K rice genome project 404K
coreSNP dataset from the Rice-Seek Database was downloaded
from http://snp-seek.irri.org/_download.zul (Alexandrov et al.,
2015). We used the PLINK program (version 1.9) (Purcell et al.,
2007) to obtain a subset of 162,529 SNPs with a minor allele
frequency > 5% and a missing data ratio < 0.1 for association
analyses. The kinship matrix (K matrix) was calculated based
on the genotype marker information described by Xu (2013).
The mrMLM package, including six multi-locus GWAS methods,
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was downloaded from http://cran.r-project.org/web/packages/
mrMLM/index.html. Default values were used for all parameters.

Annotation of Candidate Genes and
Pathway Enrichment Analysis
Synonymous and non-synonymous SNPs and SNPs associated
with large-effect changes were annotated using the snpEff
program (version 4.0) (Cingolani et al., 2012) based on the gene
models of the annotated Nipponbare reference genome (IRGSP
1.0) (Kawahara et al., 2013). All putative SNPs located within
genes and annotation details have been published (Kawahara
et al., 2013). Enriched gene ontology (GO) terms and Kyoto
Encyclopedia of Genes and Genomes (KEGG) pathways were
identified using the agriGO (version 2.0) (Tian et al., 2017) and
EXPath 2.0 (Chien et al., 2015) programs, respectively.

RESULTS

Heritability and Variance
The heritability and residual errors estimated by the six multi-
locus GWAS methods are presented in Table 1. The narrow sense
heritability ranged from 0.17 for S_MGT and 0.57 for S_IR_48h.
A comparison of the residual errors among the six multi-locus
GWAS models revealed that the residual error estimated by
FASTmrEMMA was the largest under the normal condition
when the phenotypic variation was larger than 10. Under
the salt stress condition, the largest residual errors for traits
S_IR_24h and S_IR_48h were observed from FASTmrEMMA.
Regarding the SSI-related traits, the largest residual error was
estimated by FASTmrEMMA. The salt tolerance level was
evaluated according to the SSI-related traits. Lower SSI values
indicated a higher tolerance to salt stress. The results of the
correlation analyses of the seven SSI-related traits are presented
in Figure 1A. There were significant positive correlations among
SSI_VI, SSI_GR_5d, SSI _GR_10d, and SSI_GI. The correlation
coefficients between SSI-VI and the other three SSI-related traits,
namely SSI_GR_5d, SSI_GR_10d, and SSI_GI, were 0.91, 0.91,
and 0.96, respectively. Meanwhile, the correlation coefficients for
SSI_GR_5d, SSI_GR_10d, and SSI_GI were 0.89, 0.95, and 0.96,
respectively. The high correlation among the four SSI-related
traits implied that some novel loci might be simultaneously
detected for different traits.

QTNs Associated With Salt Tolerance at
the Germination Stage Identified by a
Multi-Locus GWAS
Using the six multi-locus GWAS methods in the mrMLM
package (Supplementary Table S1), we identified 371 significant
QTNs for the salt tolerance-related traits (SSI-VI, SSI-GR,
SSI-IR, SSI-MGT, and SSI-GI) based on a logarithm of odds
(LOD) threshold of ≥3. Of these QTNs, 41, 41, 27, 63, 56,
41, and 151 were found to be associated with SSI-GI, SSI-VI,
SSI-MGT, SSI-IR-24h, SSI-IR-48h, SSI-GR-5d, and SSI-GR-10d,
respectively, with the QTNs explaining 0.57 ∼ 9.80, 0.54 ∼ 8.97,
0.64 ∼ 8.21, 0.01 ∼ 4.94, 0.37 ∼ 8.93, 0.9 ∼ 6.72, and 0.7 ∼ 6.08

(%) of the phenotypic variations, respectively [i.e., phenotypic
variation explained (PVE) values] (Supplementary Table S1 and
Supplementary Figure S1). Additionally, 3, 9, and 22 QTNs were
associated with four, three, and two salt tolerance-related traits,
respectively, which explained the high correlation among SSI_VI,
SSI_GR_5d, SSI _GR_10d, and SSI_GI (Figure 1B).

In this study, 110 and 56 QTNs were co-detected by at
least two and three methods, respectively (Supplementary
Table S2 and Table 2). Among the 56 QTNs, 12 that
were located on chromosomes 1, 2, 3, 6, 8, 9, 11, and
12 were identified to be associated with SSI-GI, of which
11 were identified by ISIS EM-BLASSO, while 10, 9, 8, 7,
and 3 were detected by FASTmrMLM, mrMLM, pKWmEB,
pLARmEB, and FASTmrEMMA, respectively. Four of the 12
QTNs were simultaneously detected by five methods. Of these
four QTNs, rs3_29294598, rs6_30827714, and rs8_24915626,
were simultaneously detected by mrMLM, FASTmrMLM,
pLARmEB, pKWmEB, and ISIS EM-BLASSO, with PVE values
of 2.45 ∼ 5.01, 1.19 ∼ 2.82, and 1.44 ∼ 4.48 (%), respectively.
Meanwhile, rs8_27233581 was simultaneously detected by
mrMLM, FASTmrMLM, FASTmrEMMA, pKWmEB, and ISIS
EM-BLASSO, with a PVE value of 2.28 ∼ 6.28 (%). Six QTNs
related to SSI-VI were detected on chromosomes 5, 6, 8, 10,
and 11, five of which were identified by mrMLM and pKWmEB,
with LOD values of 3.22 ∼ 7.16 and 3.11 ∼ 7.11, respectively.
Only one QTN was detected by ISIS EM-BLASSO, with an
LOD value of 8.59. Seven QTNs located on chromosomes
1, 2, 4, 6, 9, and 11 were correlated with SSI-MGT. All
seven of these QTNs were detected by ISIS EM-BLASSO and
pKWmEB, with LOD values of 3.18 ∼ 7.97 and 3.54 ∼ 6.62,
respectively. The mrMLM, FASTmrMLM, FASTmrEMMA, and
pLARmEB methods detected 3, 5, 1, and 2 QTNs related to SSI-
MGT, respectively. Among the seven QTNs, rs1_15357371 was
identified by all methods, except for mrMLM, with a PVE value
of 2.95 ∼ 5.64 (%). For SSI-IR-24h, four significant QTNs were
detected on chromosomes 4, 6, and 9 by mrMLM, pKWmEB,
and ISIS EM-BLASSO, with LOD values of 6.97 ∼ 18.97,
3.42 ∼ 7.16, and 3.90 ∼ 10.18, respectively. Two of these QTNs
were identified by FASTmrMLM, while none of the QTNs were
detected by FASTmrEMMA and pLARmEB. Thirteen QTNs
located on chromosomes 1, 2, 3, 4, 6, 7, 10, 11, and 12 were
associated with SSI-IR-48h, including 10 that were detected by
ISIS EM-BLASSO, with LOD values of 3.54 ∼ 10.0, and nine
QTNs that were identified by FASTmrMLM, pLARmEB, and
pKWmEB, with LOD values of 3.29 ∼ 6.51, 3.58 ∼ 6.1, and
5.04 ∼ 9.04, respectively. The mrMLM and FASTmrEMMA
methods separately detected eight and six QTNs, with LOD
values of 3.14 ∼ 6.68 and 3.39 ∼ 6.97, respectively. Of the
13 QTNs, rs1_5453364, rs11_28865880, and rs12_19111880
were identified by all six methods, with PVE values of
0.86 ∼ 2.16, 1.38 ∼ 4.83, and 0.62 ∼ 2.97 (%), respectively.
Moreover, 12 QTNs associated with SSI-GR-5d were detected
on chromosomes 1, 3, 5, 7, 8, 9, 10, and 11. Of these QTNs,
nine, eight, seven, six, six, and four QTNs were separately
detected by pLARmEB, FASTmrMLM, mrMLM, pKWmEB,
FASTmrEMMA, and ISIS EM-BLASSO, respectively, with LOD
values of 3.26 ∼ 7.57, 3.61 ∼ 5.96, 3.03 ∼ 6.43, 3.34 ∼ 6.13,
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TABLE 1 | Phenotypic variance, estimated residual error, and heritability of 21 rice traits.

Trait PV Heritability (%) Residual error

FASTmrEMMA FASTmrMLM ISIS EM-BLASSO mrMLM pKWmEB pLARmEB

S_GI 0.17 42 0.13 0.13 0.11 0.10 0.12 0.13

S_VI 2.64 41 2.11 1.63 1.39 1.55 1.48 1.70

S_MGT 1.03 17 0.85 0.74 0.72 0.86 0.66 0.85

S_IR_24h 53351.6322 51 36552.52 23546.99 22673.23 26406.72 21410.21 24658.42

S_IR_48h 52655.13 56 32734.46 24011.68 21900.10 23275.70 24914.75 19703.57

S_GR_5d 1158.11 34 900.85 935.09 690.32 765.26 746.93 815.23

S_GR_10d 1233.41 35 844.53 961.70 893.90 796.73 719.22 907.11

N_GI 0.07 43 0.05 0.04 0.04 0.04 0.04 0.04

N_VI 5.84 34 3.72 3.10 3.00 3.86 2.72 3.18

N_MGT 0.82 50 0.57 0.48 0.36 0.41 0.43 0.49

N_IR_24h 63786.10 55 41714.56 30057.04 26812.22 28640.95 30489.47 31072.55

N_IR_48h 66260.99 48 44506.99 30736.87 23802.86 34238.02 32400.73 26220.37

N_GR_5d 452.67 27 326.57 307.38 233.09 330.44 267.86 285.44

N_GR_10d 86.61 31 66.58 58.11 48.46 59.51 51.38 52.48

SSI_GI 0.41 33 0.31 0.25 0.22 0.27 0.25 0.28

SSI_VI 0.10 22 0.08 0.06 0.05 0.08 0.06 0.07

SSI_MGT 4.07 32 3.61 3.02 2.57 2.75 2.66 3.22

SSI_IR_24h 199.2613 15 176.41 164.03 143.96 23.17 121.67 173.06

SSI_IR_48h 13.76 42 10.59 8.46 6.62 7.95 7.18 8.67

SSI_GR_5d 0.54 27 0.44 0.40 0.32 0.39 0.30 0.38

SSI_GR_10d 0.4509 34 0.34 0.31 0.23 0.30 0.24 0.28

FIGURE 1 | Correlation among SSI-related traits (A) and a Venn diagram of the QTNs for four SSI-related traits (B) estimated by a multi-locus GWAS.

3.26 ∼ 6.57, and 3.09 ∼ 5.76, respectively. Three of the 12
QTNs, rs3_4264086, rs5_29609065, and rs11_27392033, were
detected by five methods, with PVE values of 1.42 ∼ 4.47,
1.07 ∼ 4.65, and 0.96 ∼ 3.86 (%), respectively. For SSI-
GR-10d, 12 QTNs were detected on chromosomes 1, 2, 4,
6, 7, 8, 9, 10, and 11. Of these 12 QTNs, rs10_22754603
and rs11_27380577 were identified by five methods, with

PVE values of 0.93 ∼ 3.08 and 1.11 ∼ 4.4 (%), respectively
(Table 2).

Validation of the Common QTNs
Among the 56 QTNs, 14 were identified by at least five
methods, of which four, three, two, four, and one were
associated with SSI_GI, SSI_GR_5d, SSI_GR_10d, SSI_IR_48h,
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TABLE 2 | Significant QTNs for SSI-related traits in rice co-detected by at least three multi-locus GWAS methods.

Trait SNPs1 Chromosome Position QTN effect LOD score PVE (%)2 Method3

SSI_GI rs1_11882948 1 11882948 0.1 ∼ 0.11 3.67 ∼ 4.68 0.98 ∼ 1.55 2,3,5

rs2_22250136 2 22250136 −0.16 ∼ −0.09 3.27 ∼ 4.43 0.61 ∼ 2.19 1,2,3,4

rs2_24480757 2 24480757 0.08 ∼ 0.08 3.66 ∼ 4.01 0.98 ∼ 1.5 2,3,6

rs3_29294598 3 29294598 0.08 ∼ 0.17 3.97 ∼ 6.21 2.45 ∼ 5.01 1,2,3,5,6

rs6_30827714 6 30827714 −0.13 ∼ −0.09 3.15 ∼ 6.15 1.19 ∼ 2.82 1,2,3,5,6

rs8_7832802 8 7832802 0.1 ∼ 0.21 3.48 ∼ 4.94 2.17 ∼ 4.69 1,3,4,6

rs8_24915626 8 24915626 0.09 ∼ 0.16 3.12 ∼ 7.04 1.44 ∼ 4.48 1,2,3,5,6

rs8_25014297 8 25014297 −0.35 ∼ −0.21 5.31 ∼ 10.4 4.56 ∼ 8.91 1,2,3,6

rs8_27233581 8 27233581 0.1∼0.29 3.71 ∼ 7.67 2.28 ∼ 6.28 1,2,3,4,6

rs9_5893568 9 5893568 0.05 ∼ 0.08 3.17 ∼ 3.43 0.57 ∼ 1.09 2,3,5

rs11_17680260 11 17680260 0.19 ∼ 0.26 6.74 ∼ 10.53 4.9 ∼ 9.8 1,3,5,6

rs12_21121298 12 21121298 −0.13 ∼ −0.09 3.04 ∼ 4.35 1.03 ∼ 2.06 1,2,5

SSI_VI rs5_29590002 5 29590002 −0.1 ∼ 0.09 3.5 ∼ 4.36 1.26 ∼ 5.77 1,2,4,5

rs6_26952785 6 26952785 0.1 ∼ 0.11 3.89 ∼ 8.59 3.22 ∼ 3.57 1,3,6

rs8_27233581 8 27233581 0.06 ∼ 0.13 5.12 ∼ 5.45 2.38 ∼ 5.17 1,4,5,6

rs10_2806159 10 2806159 0.08 ∼ 0.12 3.16 ∼ 5.42 1.85 ∼ 3.55 1,2,6

rs10_11718859 10 11718859 −0.13 ∼ 3.56 4.28 ∼ 6.36 1.74 ∼ 3.2 2,4,5,6

rs11_17680260 11 17680260 0.07 ∼ 0.1 3.12 ∼ 5.68 3.03 ∼7.16 1,5,6

SSI_MGT rs1_15357371 1 15357371 0.43 ∼ 1.37 4.07 ∼ 6.54 2.95 ∼ 5.64 2,3,4,5,6

rs2_23991498 2 23991498 0.26 ∼ 0.33 3.06 ∼ 6.62 1.61 ∼ 3.48 2,3,5,6

rs4_13696726 4 13696726 −0.98 ∼ −0.44 3.54 ∼ 6.03 1.79 ∼ 4.88 1,3,6

rs6_27962052 6 27962052 −0.43 ∼ −0.26 3.75 ∼ 4.55 1.06 ∼ 4.81 1,2,3,6

rs9_4258702 9 4258702 −0.53 ∼ −0.41 5.71 ∼ 7.96 2.76 ∼ 3.35 2,3,6

rs9_11450011 9 11450011 −0.36 ∼ −0.31 3.18 ∼ 5.53 1.94 ∼ 3.55 2,3,6

rs11_24660808 11 24660808 −0.79 ∼ −0.44 3.3 ∼ 4.19 2.47 ∼ 2.88 1,3,6

SSI_IR_24h rs4_31794832 4 31794832 2.59 ∼ 3.07 3.9 ∼ 6.97 0.11 ∼ 2.65 1,3,6

rs6_5699431 6 5699431 2.33 ∼ 4.08 3.42 ∼ 10.18 0.09 ∼ 6.9 1,2,3,6

rs9_12353804 9 12353804 −4.57 ∼ −3.5 4.95 ∼ 18.97 0.3 ∼ 5.3 1,3,6

rs9_6746183 9 6746183 −10.84 ∼ −4.22 3.29 ∼ 16.12 0.97 ∼ 5.91 1,2,3,6

SSI_IR_48h rs1_2103242 1 2103242 0.64 ∼ 0.96 3.39 ∼ 6.24 1.46 ∼ 3.92 1,2,4

rs1_5453364 1 5453364 −1.26 ∼ 0.48 3.23 ∼ 6.79 0.86 ∼ 3.51 1,2,3,4,5,6

rs1_31748567 1 31748567 −0.83 ∼ −0.56 4.04 ∼ 6.43 0.98 ∼ 3.55 1,3,5,6

rs2_24073194 2 24073194 −0.62 ∼ 0.72 3.58 ∼ 5.04 0.62 ∼ 2.2 3,5,6

rs3_20204466 3 20204466 0.89 ∼ 1.02 3.81 ∼ 6.73 0.82 ∼ 2.76 3,5,6

rs4_4695323 4 4695323 −1.5 ∼ −0.78 3.29 ∼ 5.61 1.48 ∼ 1.9 2,3,6

rs4_31202952 4 31202952 −0.67 ∼ −0.52 3.43 ∼ 5.63 1.61 ∼ 2.37 1,2,3

rs6_1459330 6 1459330 0.62 ∼ 1.1 3.34 ∼ 5.38 1.51 ∼ 1.71 1,2,4

rs7_21649301 7 21649301 1.08 ∼ 1.6 4.4 ∼ 6.08 1 ∼ 3.78 1,2,5

rs10_10209541 10 10209541 0.67 ∼ 1.03 3.54 ∼ 6.61 1.51 ∼ 3.98 3,5,6

rs11_28865880 11 28865880 0.7 ∼ 1.65 5.83 ∼ 10 1.38 ∼ 4.83 1,2,3,4,5,6

rs12_7176832 12 7176832 −1.43 ∼ −0.84 4.43 ∼ 8.64 1.2 ∼ 4.91 2,3,4,5,6

rs12_19111880 12 19111880 −1.66 ∼ −0.66 3.14 ∼ 7.23 0.62 ∼ 2.97 1,2,3,4,5,6

SSI_GR_5d rs1_11882948 1 11882948 0.12 ∼ 0.15 3.03 ∼ 3.94 1.69 ∼ 1.99 1,2,6

rs1_22648607 1 22648607 0.17 ∼ 0.23 4.49 ∼ 6.57 1.36 ∼ 1.85 3,5

rs3_4264086 3 4264086 0.11 ∼ 0.21 3.97 ∼ 6.43 1.42 ∼ 4.47 1,2,4,5,6

rs3_29294598 3 29294598 0.1 ∼ 0.11 3.59 ∼ 3.61 1.34 ∼ 1.72 2,5

rs5_29609065 5 29609065 0.08 ∼ 0.22 3.34 ∼ 5.74 0.96 ∼ 3.86 1,2,4,5,6

rs7_1171356 7 1171356 0.15 ∼ 0.28 4.48 ∼ 4.77 3.26 ∼ 3.58 1,4

rs8_24915626 8 24915626 0.11 ∼ 0.15 3.31 ∼ 4.1 1.5 ∼ 3.01 2,3,5

rs8_27233581 8 27233581 0.09 ∼ 0.28 3.09 ∼ 4.66 1.36 ∼ 3.33 3,4,6

rs9_8174432 9 8174432 0.1 ∼ 0.15 3.26 ∼ 4.23 1.29 ∼ 2.84 1,2,5

rs9_21139613 9 21139613 0.11 ∼ 0.19 3.58 ∼ 5.02 1.61 ∼ 4.79 1,5,6

rs10_11718859 10 11718859 −0.23 ∼ −0.11 4.32 ∼ 5.76 1.17 ∼ 2.5 2,3,4,5

(Continued)
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TABLE 2 | Continued

Trait SNPs1 Chromosome Position QTN effect LOD score PVE (%)2 Method3

rs11_27392033 11 27392033 −0.31 ∼ 0.12 3.93 ∼ 6.37 1.07 ∼ 4.65 1,2,4,5,6

SSI_GR_10d rs1_3401561 1 3401561 −0.24 ∼ −0.14 3.21 ∼ 4.65 2.29 ∼ 6.08 1,3,5

rs1_11882948 1 11882948 0.1 ∼ 0.12 3.35 ∼ 4.56 1.31 ∼ 1.72 2,3,6

rs2_8009453 2 8009453 0.08 ∼ 0.15 3.34 ∼ 4.96 1.18 ∼ 3.31 1,2,3

rs2_22247315 2 22247315 −0.17 ∼ −0.12 3.54 ∼ 6.51 0.95 ∼ 3.19 3,5,6

rs4_19568498 4 19568498 0.16 ∼ 0.21 5.39 ∼ 6.37 1.9 ∼ 2.96 2,3,6

rs6_26597879 6 26597879 0.11 ∼ 0.13 3.83 ∼ 5.41 2.44 ∼ 2.82 2,3,5

rs7_3788168 7 3788168 0.22 ∼ 0.23 5.46 ∼ 7.54 2.54 ∼ 3.59 2,3,6

rs7_22276671 7 22276671 0.09 ∼ 0.1 3.65 ∼ 4.66 1.57 ∼ 2.33 2,3,6

rs8_24915626 8 24915626 0.13 ∼ 0.14 3.88 ∼ 5.8 2.07 ∼ 3.16 1,2,3

rs9_21139613 9 21139613 0.1 ∼ 0.18 3.55 ∼ 8.69 1.92 ∼ 4.59 1,2,5,6

rs10_22754603 10 22754603 0.08 ∼ 0.17 3.46 ∼ 5.94 0.93 ∼ 3.08 1,2,3,5,6

rs11_27380577 11 27380577 −0.21 ∼ −0.13 3.24 ∼ 7.31 1.11 ∼ 4.4 1,2,3,5,6

1SNPs in bold font are pleiotropic QTNs which were detected associate with multiple traits.
2PVE: Phenotypic variation explained.
31:mrMLM; 2:FASTmrMLM; 3:ISIS EM-BLASSO; 4:FASTmrEMMA; 5:pLARmEB; 6:pKWmEB.

and SSI_MGT, respectively. We divided the population into two
groups according to allelic genotypes to test whether the mean
phenotypes of the two groups were significantly different. The
mean value of the group carrying the favorable allele was less than
that of the other group (Figure 2).

GO and KEGG Pathway Enrichment
Analyses
According to the Nipponbare reference genome, the 371
identified QTNs for traits related to salt tolerance were part of
or were adjacent to 581 genes (Supplementary Table S1). These
genes were significantly enriched for GO biological processes
related to the plant lipid metabolic process and transmembrane
transport process (Supplementary Table S3). They were also
significantly enriched for the plant tryptophan metabolism
pathway (P < 0.03). Moreover, two genes (LOC_Os01g45760
and LOC_Os10g04860) were associated with auxin biosynthesis.
A total of 66 genes were identified around the 56 QTNs
based on the enriched GO terms and KEGG pathways as
well as the functional annotations (Supplementary Table S4).
This information may be very useful for identifying the genes
responsible for salt tolerance in rice.

DISCUSSION

Multi-locus GWAS models, which are relatively close to the true
genetic models of plants and animals, are superior to single-
locus GWAS models because of their higher statistical power
and lower FPR (Segura et al., 2012; Wang et al., 2016a). These
models were developed by geneticists, who added the polygenic
effect and population structure to the single-locus GWAS model
to decrease the bias in effect estimations by controlling the
genetic background (Zhang et al., 2005; Yu et al., 2006; Zhang
et al., 2010). Although advancements in the single-locus GWAS
models have improved the detection accuracy to some extent, the
multiple test correction for the threshold value of the significance

test in single-locus models (e.g., Bonferroni correction) is too
stringent to capture all true QTNs. Another unavoidable problem
is that single-locus GWAS methods are inappropriate when the
target traits are controlled by a series of polygenes. In this study,
478 rice accessions with 162,529 SNPs were used to identify
QTNs for traits related to salt tolerance based on six multi-locus
GWAS methods. We compared the QTNs identified by the multi-
locus GWAS methods in our study with the previously reported
QTNs detected by the efficient mixed-model EMMA eXpedited
(EMMAX) program comprising a single-locus GWAS method.
The comparison revealed that four of the previously reported
six QTNs related to SSI-VI were detected by a multi-locus
GWAS, and two QTNs associated with SSI-MGT overlapped
with the previously reported QTNs. Additionally, 12, 4, 13,
12, and 12 QTNs separately associated with SSI-GI, SSI-IR-
24h, SSI-IR-48h, SSI-GR-5d, and SSI-GR-10d, respectively, were
simultaneously detected by at least three multi-locus GWAS
methods. In contrast, none of the QTNs associated with the five
traits were identified by a single-locus GWAS method. These
observations were as expected, and can be explained by the
following two points: (i) salt tolerance is a quantitative genetic
characteristic that is controlled by multiple genes with small
effects, which are difficult to detect in a single-locus GWAS model
(Wang et al., 2011; Kumar et al., 2015); (ii) some true QTNs
for traits related to salt tolerance are missed by a single-locus
GWAS model because of an overly conservative critical value.
Furthermore, our results suggest that a multi-locus GWAS model
may be useful for detecting loci with small effects.

In this study, we used six multi-locus GWAS methods
included in the mrMLM package to detect QTNs. The six
methods involve two-step algorithms, and marker effects are
treated as random effects in each method. However, each method
has its own characteristics. We observed that mrMLM detected
the most QTNs (Supplementary Table S1), but this method has
one shortcoming. When the number of putative QTNs is much
larger than the sample size, the multi-locus model in this method
will be over-fitted. The residual error estimated by mrMLM was
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FIGURE 2 | Boxplot for validating 14 co-detected QTNs (A–N). For each QTN, the population was divided into two groups according to allele types. The X-axis
represents the two alleles for each QTN, while the Y-axis corresponds to the phenotype.

much smaller than that estimated by the five other methods
(Table 1). During the first step, 7,588 QTNs with a threshold
value P < 0.01 were selected, which is 16 times larger than the
sample size. Over-fitting may occur when too many variables
are added to a multi-locus model. This issue was solved by
using FASTmrMLM, in which the least angle regression (LARS)
algorithm is implemented between the first single-locus scanning
step and the EM-Empirical Bayes estimation in the second step.
The LARS algorithm (Efron et al., 2004) is a flexible method for
selecting variables, and can be applied in the lars package1. In
this method, n−1 variables (n is the number of samples), which
are most likely associated with the target traits, are added to the
multi-locus model.

The FASTmrEMMA method detected the fewest QTNs.
This method involves an approximation algorithm in
which the covariance matrix of the polygenic matrix K and
environmental noise are whitened by a matrix transformation
to increase the computing speed. In the pLARmEB method,
the same transformed model as that used in FASTmrEMMA is
implemented to control the polygenic background, and the LARS
algorithm is applied to select potential SNPs related to the target
trait for the subsequent multi-locus GWAS detection. Among
the six multi-locus GWAS methods, ISIS-EM-BLASSO had the
shortest running time and the smallest estimated residual errors
(Supplementary Figure S2 and Table 1). In the first step of

1http://cran.r-project.org/web/packages/lars/

this method, an iterative-modified sure independence screening
(ISIS) approach is used to decrease the number of SNPs to
a moderate level, after which the Expectation-Maximization
(EM)-Bayesian least absolute shrinkage and selection operator
(BLASSO) is used to estimate all of the selected SNP effects
to detect true QTNs. The last method, pKWmEB, is a non-
parametric method, in which a Kruskal–Wallis test and the LARS
algorithm are used to identify potential SNPs. All identified
markers are added to the multi-locus model to detect true QTNs.

The two-step multi-locus GWAS methods included in this
study significantly improved the statistical power and decreased
the FPR. Moreover, ISIS EM-BLASSO identified the most co-
detected QTNs, followed by pKWmEB, while FASTmrEMMA
identified the fewest QTNs (Table 2). Additionally, ISIS EM-
BLASSO performed best, with the smallest estimated residual
errors and highest computing speed. However, selecting an
appropriate critical value is still problematic for the two-step
multi-locus GWAS model. A threshold value that is too stringent
will lead to the omission of loci information, whereas a relaxed
threshold value will result in numerous loci being selected, which
may lead to the over-fitting of multi-locus models. A simple
solution to this problem involves developing a hybrid method
that combines the results from different methods. Directly
decreasing the number of SNPs instead of applying a single-locus
GWAS scanning step represents another potential solution. We
are currently developing a new bin analysis method that can be
applied to any type of population. In the bin analysis method,
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the number of markers is decreased, but the information for all
markers is fully retained. Adding a bin analysis to the multi-locus
GWAS model represents a new option.

CONCLUSION

In this study, six multi-locus GWAS methods were used to detect
loci related to rice salt tolerance at the seed germination stage.
A total of 371 QTNs were identified, with 56 QTNs co-detected
by at least three methods. Moreover, 66 genes were identified
in the vicinity of the 56 QTNs based on functional annotations.
Two of these genes (LOC_Os01g45760 and LOC_Os10g04860)
are involved in auxin biosynthesis according to the enriched GO
terms and KEGG pathways. These observations may be useful for
identifying the genes responsible for rice salt tolerance.
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The agronomic traits, including morphological and yield component traits, are important

in barley breeding programs. In order to reveal the genetic foundation of agronomic

traits of interest, in this study 122 doubled haploid lines from a cross between cultivars

“Huaai 11” (six-rowed and dwarf) and “Huadamai 6” (two-rowed) were genotyped by

9680 SNPs and phenotyped 14 agronomic traits in 3 years, and the two datasets

were used to conduct multi-locus genome-wide association studies. As a result, 913

quantitative trait nucleotides (QTNs) were identified by five multi-locus GWAS methods

to be associated with the above 14 traits and their best linear unbiased predictions.

Among these QTNs and their adjacent genes, 39 QTNs (or QTN clusters) were repeatedly

detected in various environments and methods, and 10 candidate genes were identified

from gene annotation. Nineteen QTNs and two genes (sdw1/denso and Vrs1) were

previously reported, and eight candidate genes need to be further validated. The Vrs1

gene, controlling the number of rows in the spike, was found to be associated with

spikelet number of main spike, spikelet number per plant, grain number per plant, grain

number per spike, and 1,000 grain weight in multiple environments and by multi-locus

GWAS methods. Therefore, the above results evidenced the feasibility and reliability of

genome-wide association studies in doubled haploid population, and the QTNs and their

candidate genes detected in this study are useful for marker-assisted selection breeding,

gene cloning, and functional identification in barley.

Keywords: genome-wide association study, barley, multi-locus model, doubled haploid population, quantitative

trait nucleotide, candidate gene

INTRODUCTION

Barley (Hordeum vulgare L, 2n = 2x = 14), one of the first domesticated grains in the Fertile
Crescent (Zohary et al., 2012), has been used widely as animal feed, human health foods, and a
source of beer. Its yield and quality are the most important breeding objectives in crop breeding
programs.

Most agronomic traits, such as plant height- and yield-related traits, are controlled by
quantitative trait loci (QTLs) in barley, so it is difficult to obtain their genetic foundation and
molecular mechanism. Plant height and its component traits serve as major plant morphological
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traits affecting barley seed yield. An appropriate plant height is
a prerequisite for obtaining the desired yield in barley-breeding
programs. To date, more than 30 types of dwarfing or semi-
dwarfing genes have been detected, while only a few have been
successfully used in barley breeding program, such as uzu and
sdw1/denso (Jia et al., 2009; Ren et al., 2010, 2013). Moreover,
a large number of QTLs for plant height related traits were
reported to be located on all the seven chromosomes (Sameri
et al., 2006; Baghizadeh et al., 2007; Wang et al., 2010; Ren
et al., 2014). Grain yield is the key trait for the breeder in barley
breeding program, therefore, the yield related traits including
spike number per plant (SP), grain number per plant (GP), grain
weight per plant (GWP), and 1,000 grain weight (TGW), have
gained more attentions in the genetic dissection of yield related
traits. A huge number of QTLs for yield related traits were
detected to be located across all the chromosomes (Li et al., 2005;
Sameri et al., 2006; Baghizadeh et al., 2007; Wang et al., 2010,
2016a; Ren et al., 2013).

Traditionally, QTL mapping has been widely applied in
the genetic dissection of quantitative traits in barley (Zhuang
et al., 1997; Li et al., 2005, 2007; Peng et al., 2011). As the
development of DNA sequencing technologies, it is relatively easy
to obtain high-density SNP genotypes for association mapping
(AM) population, which offers a huge convenience for genomic
and genetic research in different species. Therefore, genome-
wide association studies (GWAS) present a powerful tool to
reconnect the complex quantitative traits with their genes. Due
to the development of cheaper, faster and higher-throughput
molecular markers, AM has been widely used for mapping QTLs
and genes in many crops, such as maize, soybean, rice, barley and
wheat (Huang et al., 2010; Yang et al., 2010; Pasam et al., 2012;
Hu et al., 2015). In comparison with traditional QTL mapping,
AM has three obvious advantages, including shorter construction
time, much higher mapping resolution and a greater number
of alleles (Zhang et al., 2005; Yu and Buckler, 2006). In barley,
AM has been widely applied for complex traits including disease
resistance (Massman et al., 2011), drought tolerance (Varshney
et al., 2012;Wójcik-Jagła et al., 2018), salinity tolerance (Fan et al.,
2016) and especially agronomic traits (Gawenda et al., 2015; Xu
et al., 2018).

Beside for natural population, nowadays GWAS have been
widely applied to the genetic analysis for complex traits in family-
based populations, such as nested association mapping (NAM)
and multi-parent advanced generation intercross (MAGIC)
populations, and proved to be powerful tool for uncovering the
basis of key agronomic traits in maize and barley (Tian et al.,
2011; Cook et al., 2012; Maurer et al., 2015, 2016). Moreover,
there are also successful cases that combine linkage analysis
with GWAS in several bi-parental segregation populations, such
as recombinant inbred line (RIL) population (Lu et al., 2010;
Reif et al., 2010). For single segregating population, successful
but fewer cases were performed using GWAS (Gao et al., 2015;
Henning et al., 2016; Liu et al., 2018). Henning et al. (2016)
conducted GWAS for downy mildew resistance in a segregating
population of “Teamaker” × USDA 21422M in hop (Humulus
lupulus L.), Gao et al. (2015) determined the location of TTKSK
resistance in the 108 doubled haploid (DH) lines using a GWAS

method implemented by R package rrBLUP (Endelman, 2011),
and Liu et al. (2018) used two strategies (QTL mapping and
GWAS) to reveal the genetic bases of fiber quality traits and
yield components in 231 RILs. Therefore, it is feasible to use
GWAS to dissect the genetic foundations of complex traits
in single bi-parental segregating population. A combination of
linkage and association methodologies should provide the more
accurate and powerful approach for revealing the genetic bases of
complex traits (Ott et al., 2011). Association mapping of drought
tolerance-related traits was performed in barley to complement a
traditional bi-parental QTL mapping study in Wójcik-Jagła et al.
(2018).

The objectives of this study were to: (a) use GWAS to further
dissect the genetic foundations for main agronomic traits in
our previous studies of Ren et al. (2013, 2014) and Wang et al.
(2016a), and compare the quantitative trait nucleotide (QTN)
results with those in previous studies, (b) evaluate if GWAS is
feasible and reliable in the genetic dissection of complex traits
in DH population, and (c) mine the candidate genes in the
regions of the QTNs. The outcome of this study will providemore
precise and complete information for further gene cloning, and
marker-assisted selection in barley breeding.

MATERIALS AND METHODS

Plant Materials and Field Experiments
One hundred and twenty-two DH lines, derived from a cross
between barley cultivar “Huaai 11” (six-rowed and dwarfing)
and barley cultivar “Huadamai 6” (two-rowed), was used in this
study. The details of the materials and field experiments were
described in the previous studies of Ren et al. (2010, 2013, 2014)
and Wang et al. (2016a).

Phenotyping Data
Fourteen agronomic traits for the above DH population were
measured in 2008–2009, 2009–2010, and 2011–2012, and all the
three datasets had been reported by Ren et al. (2013, 2014) and
Wang et al. (2016a). These traits included plant height (PH),
first internode length (IL1), second internode length (IL2), third
internode length (IL3), fourth internode length (IL4), main spike
length (MSL), spike number per plant (SP), spikelet number of
main spike (SMS), spikelet number per plant (SLP), grain number
per plant (GP), grain number per spike (GS), grain weight per
plant (GWP), grain weight per spike (GWS), and 1,000 grain
weight (TGW). All the details have been described in Ren et al.
(2013, 2014).

The best linear unbiased predictions (BLUPs) for each trait of
3 years were calculated using the R package Lme4 (Bates et al.,
2014) with the following model: y = lmer (Trait ∼ (1|Genetype)
+ (1|Year)). The three single-year phenotypic values (Ren et al.,
2013, 2014; Wang et al., 2016a) and their BLUP values were used
for GWAS. The results of phenotype statistics of BLUP for each
trait were summarized in Table S1.

Genotyping Data
All the above DH lines were genotyped by 10,367 polymorphic
SNPs. After excluding low quality SNP markers, 9680 SNPs were
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used in this study. Base on the recent genome sequence release in
barley (Ibsc, 2016; Beier et al., 2017; Mascher et al., 2017), all the
SNP markers were aligned to the most reliable genome position
(http://webblast.ipk-gatersleben.de/barley_ibsc/). The Vrs1 locus
controlling row number of barley was integrated with SNP
markers for GWAS. All the above information has been described
in Ren et al. (2016).

GWAS
Q matrix was calculated by STRUCTURE software (Falush
et al., 2003), and the optimal K was inferred in Figure S1. The
kinship (K) matrix between the lines was calculated as previously
described in Wang et al. (2016b). All the 9680 SNPs for the
above 122 DH lines were used to conduct GWAS for the above
14 traits in 3 years and their BLUP values using five multi-
locus GWAS methods, including mrMLM (Wang et al., 2016b),
FASTmrMLM (Zhang and Tamba, 2018), FASTmrEMMA (Wen
et al., 2018), pLARmEB (Zhang et al., 2017) and ISIS EM-
BLASSO (Tamba et al., 2017), which were included in the R
package mrMLM v3.1 (https://cran.r-project.org/web/packages/
mrMLM/index.html). All parameters in GWAS were set at
default values. The critical thresholds of significant association
for the five methods were set as LOD= 3 (or P-value= 2× 10−4;
Wang et al., 2016b).

The significant QTNs, repeatedly detected in at least two
environments ormethods, were viewed as reliable. The associated
regions on chromosomes, repeatedly located on same or similar
traits in at least 2 years or methods, were viewed as reliable QTN
clusters. These QTNs (or clusters) were named as “qtn (qtnc)” +
trait name abbreviation + chromosome + detected QTL order
on chromosome.

Phenotypes Difference Corresponding to
QTNs
For each QTN, all the DH lines were firstly divided into two
groups based on their QTN genotypes, then t-test was used to
test the phenotypic difference between the two genotypes.

Identification of Candidate Genes
According to the recent genome sequence release of barley (Ibsc,
2016; Beier et al., 2017; Mascher et al., 2017) and the gene
annotation information (http://plants.ensembl.org/Hordeum_
vulgare/Info/Index and https://www.uniprot.org/uniprot), some
genes around reliable QTNs (or clusters) were selected
for each trait. By combining gene annotation information,
protein domain function in database and previous reports,
and expressional information (http://barlex.barleysequence.org),
then, candidate genes for each trait were mined.

RESULTS

GWAS for 14 Agronomic Traits
Using five multi-locus GWASmethods in the R package mrMLM
v3.1, GWAS for 14 agronomic traits were performed. A total of
913 significant QTNs were found to be associated with the 14
agronomic traits in 3 years and their BLUP values (Table S2). The
number of significant QTNs varied across various traits, ranging

from 4 for 2012_IL4 to 37 for BLUP_PH (Figure 1; Table S2), the
chromosomal distribution of all identifiedQTNs revealed that 2H
had the maximum number of significant QTNs, which weren’t
evenly distributed on the genome, and five QTN hotspots on
chromosomes 2H, 3H, 6H, and 7H were observed (Figures 1, 2).

The significant QTNs repeatedly detected by multiple
methods were list in Table S3. The reliable QTNs (or clusters) for
14 agronomic traits were summarized in Table 1. Totally, there
were 39 reliable QTNs (or clusters) for 14 agronomic traits [8 for
PH, 4 for IL1, 1 for IL2, 2 for IL3, 3 for IL4, 4 for MSL, 2 for SP, 2
for SMS, 3 for SLP, 3 for TGW, 2 for GP, 3 for GS, 1 for GWS, and
1 QTN cluster for (GP-GWP-GWS)].

The QTNs for Plant Height and Its Components Traits
Six reliable QTNs and two reliable QTN clusters, distributed
on four chromosomes, were significantly associated with PH
(Table 1; Figure 2). Six reliable QTNs for PH, qtnPH-1H-
1 (1H: 554,371,992 bp), qtnPH-2H-1 (2H: 540,094,243 bp),
qtnPH-3H-2 (3H: 651,696,476 bp), qtnPH-7H-1 (7H: 81,959,684
bp), qtnPH-7H-2 (7H:108,670,637 bp), and qtnPH-7H-3 (7H:
622,802,079 bp), located on chromosome 1H, 2H, 3H, 7H,
7H, and 7H, explained 0.63–4.07, 2.82–4.64, 3.13–9.03, 1.07–
2.39, 2.31–6.07, and 0.69–2.68% of total phenotypic variation,
respectively. Two reliable QTN clusters for PH, qtncPH-2H-
2 (2H: 560,195,592–564,116,957 bp) and qtncPH-3H-1 (3H:
631,870,705–633,068,955 bp), were identified in at least 2 years
and methods, explained 2.12–3.79 and 2.15–7.23% of total
phenotypic variation, respectively (Tables 1, S3).

4, 1, 2, and 3 reliable QTNs (or clusters) were found
to be associated with plant height component traits IL1,
IL2, IL3, and IL4, respectively. For IL1, qtncIL1-7H-4, close
to qtnPH-7H-1 (7H: 81,959,684 bp) for PH, was located
on 7H (81,889,341–84,350,472 bp) accounting for a highest
phenotypic variation (3.53–22.62%) among the four QTNs and
QTN clusters (Table 1). For IL2, qtnIL2-7H-6 on chromosome
7H: 258,071,311 bp, explained phenotypic variation of 25.82–
55.77%. For IL3, qtncIL3-3H-3 was located at 3H: 631,342,028–
636,535,362 bp, close to the region of qtncPH-3H-1 (3H:
631,870,705–633,068,955 bp) for PH, accounting for 4.88–
21.70% of the phenotypic variation. qtncIL3-6H-1 located on
the chromosome 6H (16,165,407–17,542,081 bp), explained
phenotypic variation of 1.89–3.68%. For IL4, qtncIL4-3H-4 (3H:
631,870,705–636,535,362 bp), co-located in the same region of
qtncIL3-3H-3 for IL3 and qtncPH-3H-1 for PHmentioned above,
explained 5.73–15.97% of phenotypic variation. Therefore, the
region on chromosome 3H: 631,342,028–636,535,362 bp is
a more credible QTN cluster for PH and the components
traits, regulating the PH through controlling IL3 and IL4
(Table 1). Another QTN cluster for IL4, qtncIL4-2H-4 on 2H
(4,629,895–4,950,022 bp) explained less (1.79–6.02%) phenotypic
variation, while QTN qtnIL4-7H-7 (7H: 360793216 bp) showed
a high explanation (6.10–19.57%) for IL4 (Tables 1, S3;
Figure 2).

The QTNs for Spike and Yield Related Traits
Main spike length (MSL): Three reliable QTNs and one QTN
cluster were detected for MSL. Among which, qtnMSL-2H-7
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FIGURE 1 | Chromosomal distribution of QTNs identified in this study. The x-axis indicates genomic locations by chromosomal order, and the significant QTNs are

plotted against genome location. Each row represents one QTN identified by a different method. The red arrows show the QTN hotspots.

located on chromosome 2H: 727,985,438 bp, was repeatedly
detected not only in three environments and BLUP values but
also by multiple methods to be significantly associated with MSL,
and explained phenotypic variation about 2.09–18.16% (LOD
score: 3.29–22.92; Tables 1, S3; Figure 2).

Spikelet number of main spike (SMS): qtnSMS-2H-9 referred
to Vrs1 (the morphological markers for row number of barley),
located at 2H (position: 652,030,802 bp), was identified in all the
situations and methods to be significantly associated with SMS
(Tables 1, S3), accounting for the largest phenotypic variation
(65.07–90.41%). As already known, Vrs1, a gene controlling
row number of barley, was validated controlling row number
in the DH population derived from a cross between the six-
rowed barley cultivar “Huaai 11” and the two-rowed barley

cultivar “Huadamai 6.” Thus, Vrs1 should control the spike
related traits, such as SMS and SLP. Moreover, qtnSMS-2H-
8 (2H: 535,680,815 bp) with minor effect was associated with
SMS (Table 1).

Spikelet number per plant (SLP): One reliable QTN qtnSLP-
2H-10 (2H: 649,558,019 bp) and one reliable QTN clusters
qtncSLP-2H-11 (2H: 652,030,802–653,982,961 bp) close to Vrs1
(2H: 652,030,802 bp) were identified in multiple environments
and by multiple methods to be significantly associated with SLP,
explaining high proportions of total phenotypic variation, 14.87–
55.05 and 8.97–80.30%, respectively. The reliable QTN cluster
qtncSLP-4H-1 with a minor effect (2.82–4.14%), mapped on
the region 15,498,372–16,168,735 bp of chromosome 4H, was
detected in 2 years and the BLUP (Tables 1, S3; Figure 2).

Frontiers in Plant Science | www.frontiersin.org November 2018 | Volume 9 | Article 1683175

https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/plant-science#articles


Hu et al. GWAS for Agronomic Traits

FIGURE 2 | Chromosomes location of reliable QTLs for 14 agronomic traits in both previous studies (Ren et al., 2013, 2014; Wang et al., 2016a) and the current

studies. The peak positions of previous QTLs were used for mapping, Genetic distance scale in physic position (Mb) is placed at left margin. Green is for the QTLs

detected in Ren et al. (2013, 2014), black is for the QTLs Wang et al. (2016a), red is for the QTNs and QTNs clusters of current study, the region of QTNs clusters was

marked with red on the bar, the cyan is for the candidate genes.

Spike number per plant (SP): Two reliable QTN clusters for
SLP were detected. qtncSP-2H-12, located on 2H: 648,821,931–
652,030,802 bp overlapping with Vrs1, was detected in three
environments and BLUP value and by multiple methods to be
associated with SP, accounting for 7.61–52.32% of the phenotypic
variation. qtncSP-2H-13, located on chromosome 2H (Position:
662,335,248–663,628,734 bp), was detected in two environments
and by multiple methods to be associated with SP, explaining
6.49–11.95% of the phenotypic variation (Tables 1, S3; Figure 2).

Grain number per plant (GP) and grain number per spike
(GS): The QTN cluster qtncGP-2H-14 with a high proportion
of total phenotypic variation (19.56–37.44%), located at 2H:
649,558,019–650,438,830 bp, was detected in 2010 and BLUP
value to be associated with GP. The qtncGP-2H-15 with a
high explanation (3.41–34.59%), close to Vrs1 (2H: 652,030,802–
652,604,015 bp), was detected in three environments and
by multiple methods to be associated with GP (Table 1).
One small-effect QTN on 4H (Position: 596,447,744 bp),
was detected in 2009 to be significantly associated with GP.
Meanwhile, this QTN was also detected for GWP and GWS
(Table 1). One QTN cluster and two QTNs were detected for
GS in at least two environments and by multiple methods.
The qtncGS-2H-16 (2H: 649,558,019–651,399,477 bp), close
to Vrs1, showed a high proportion of phenotypic variation
(9.77–71.5%) for GS. The qtnGS-2H-17 referred to Vrs1 (2H:
652,030,802 bp) was significantly associated with GS, explaining
a high percentage (49.99–72.25%) of the phenotypic variation.

The reliable QTN qtnGS-2H-18, located at chromosome 2H
(Position: 764,361,924 bp), was significantly associated with
GS in 2009 and 2010 and multiple methods, accounting
for 1.06–10.05% of the phenotypic variation (Tables 1, S3;
Figure 2).

Grain weight per plant (GWP) and grain weight per spike
(GWS): One QTN on 4H (Position: 596,447,744 bp) was found
to be associated with GP, GWP and GWS with 3.97–9.17%
proportions for the phenotypic variation. The QTN qtnGWS-
2H-19, derived from the same associated SNP 2_625783669 (2H:
764,361,924 bp) as GS, was detected for GWS in 2009 and 2010
and by multiple GWAS methods with 0.74–6.25% proportion of
phenotypic variation (Tables 1, S3; Figure 2).

1,000 grain weight (TGW): three reliable QTNs were detected
for TGW. The qtnTGW-2H-20, located at Vrs1 (2H: 652,030,802
bp), was significantly associated with TGW in multiple
environments and GWAS methods, explaining high percentage
(32.77–56.66%) of the phenotypic variation. The qtnTGW-3H-
5 (3H: 272,283,784 bp) and qtnTGW-7H-8 (7H: 72,344,563
bp) were significantly associated with TGW, explaining 2.19–
4.39 and 4.39–11.22% of the phenotypic variation, respectively
(Tables 1, S3; Figure 2).

Phenotypic Difference Corresponding to
QTNs
According to the QTN genotypes, all the DH lines were divided
into two different groups to test whether the significant difference
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TABLE 1 | Reliable QTNs and QTN clusters for 14 agronomic traits using multi-locus GWAS methods.

QTN (QTN

cluster)a
Trait Marker

associated

Physic position

(bp)

LOD score r2 (%) Year Previous QTL

qtnPH-1H-1 PH 1_463006138 1H: 554371992 3.39–7.64 0.63–4.07 2010, 2012, BLUP

qtnPH-2H-1 PH M_1999039_472 2H: 540094243 5.54–16.21 2.82–4.64 2010, BLUP

qtncPH-2H-2 PH 2_447773331–

M_1663886_573

2H: 560195592–

564116957

3.51–12.47 2.12–3.79 2009, 2010, BLUP

qtncPH-3H-1 PH 3HL_37004393–

3_511749149

3H: 631870705–

633068955

3.38–15.96 2.15–7.23 2009, 2010, 2012, BLUP Qcl3-13, Qitw3-13,

Qith3-13 (Ren et al., 2014)

qtnPH-3H-2 PH 2HS_32409186 3H: 651696476 4.18–16.72 3.13–9.03 2009, 2010, 2012, BLUP Qifo3-14 (Ren et al., 2014)

qtnPH-7H-1 PH 7HS_12212266 7H: 81959684 3.33–9.13 1.07–2.39 2009, BLUP qIN3-7HS, qIN4-7HS

(Sameri et al., 2009)

qtnPH-7H-2 PH 7HS_33062962 7H: 108670637 3.72–6.60 2.31–6.07 2009, 2010, BLUP qIN3-7HS, qIN4-7HS

(Sameri et al., 2009)

qtnPH-7H-3 PH M_249593_1037 7H: 622802079 3.38–10.17 0.69–2.68 2012, BLUP

qtnIL1-1H-2 IL1 M_173442_1610 1H: 285199675 4.31–5.02 2.20–4.69 2012, BLUP

qtnIL1-2H-3 IL1 2_399823529 2H: 521774247 3.23–5.44 2.26–5.96 2012, BLUP

qtncIL1-7H-4 IL1 7HS_21829337–

7_95992736

7H: 81889341–

84350472

3.21–14.46 3.53–22.62 2009, 2010, 2012, BLUP qIN3-7HS, qIN4-7HS

(Sameri et al., 2009)

qtnIL1-7H-5 IL1 7_575487388 7H: 627311039 3.11–7.81 1.60–6.27 2012, BLUP

qtnIL2-7H-6 IL2 M_114215_455 7H: 258071311 3.13–7.27 25.82–55.77 2012, BLUP

qtncIL3-3H-3 IL3 3HL_37004393–

3_511668322

3H: 631870705–

636535362

3.01–21.75 4.88–21.70 2009, 2010, 2012, BLUP Qith3-13 (Ren et al., 2014)

qtncIL3-6H-1 IL3 6_14536026–

6_18118681

6H: 16165407–

17542081

3.15–6.71 1.89–3.68 2009, 2012, BLUP

qtncIL4-2H-4 IL4 M_1778358_754–

2_4900503

2H: 4629895–

4950022

3.58–5.09 1.79–6.02 2009, 2010

qtncIL4-3H-4 IL4 3HL_37004393–

3_511668322

3H: 631870705–

636535362

5.69–14.07 5.73–15.97 2009, 2010, 2012, BLUP Qifo3-14 (Ren et al., 2014)

qtnIL4-7H-7 IL4 7HL_11281033 7H: 360793216 3.00–3.46 6.10–19.57 2012, BLUP Qifo7-7 (Ren et al., 2014)

qtnMSL-1H-3 MSL 1_35132055 1H: 20685614 3.21–6.62 1.49–3.46 2010, BLUP

qtnMSL-2H-5 MSL 2_447773331 2H: 560195592 3.99–8.37 2.92–6.35 2010, BLUP

qtncMSL-2H-6 MSL 2_522610509–

2HL_34260490

2H: 648821931–

651436685

3.61–10.16 1.57–4.65 2009, 2010, 2012, BLUP

qtnMSL-2H-7 MSL 2_600749073 2H: 727985438 3.29–22.92 2.09–18.16 2009, 2010, 2012, BLUP Qmsl2-7 (Wang et al.,

2016a)

qtnSMS-2H-8 SMS 2_406934594 2H: 535680815 3.62–12.96 3.14–5.39 2009, 2010, BLUP Qsms2-1 (Wang et al.,

2016a)

qtnSMS-2H-9 SMS Vrs1 2H: 652030802 6.24–82.16 65.07–90.41 2009, 2010, 2012, BLUP Qsms2-7 (Wang et al.,

2016a)

qtnSLP-2H-10 SLP 2_524762464 2H: 649558019 4.51–21.01 14.87–55.05 2009, 2010 Qslp2-6 (Wang et al.,

2016a)

qtncSLP-2H-11 SLP Vrs1–

2HL_17075593

2H: 652030802–

653982961

3.32–51.41 8.97–80.30 2009, 2010, 2012, BLUP Qslp2-6 (Wang et al.,

2016a)

qtncSLP-4H-1 SLP 4_16553551–

M_1605646_794

4H: 15498372–

16761959

3.26–9.76 2.82–4.14 2009, 2010, BLUP Qslp4-2 (Wang et al.,

2016a)

qtncSP-2H-12 SP 2_522610509–

Vrs1

2H: 648821931–

652030802

4.02–30.41 7.61–52.32 2009, 2010, 2012, BLUP

qtncSP-2H-13 SP 2_531255437–

M_124056_833

2H: 662335248–

663628734

3.73–7.32 6.49–11.95 2009, 2012

qtncGP-2H-14 GP 2_524762464–

M_1589358_1352

2H: 649558019–

650438830

3.46–17.05 19.56–37.44 2010, BLUP Qgp2-2 (Wang et al., 2016a)

qtncGP-2H-15 GP Vrs1–

2_527241334

2H: 652030802–

652604015

3.42–16.71 3.41–34.59 2009, 2012, BLUP Qgp2-2 (Wang et al., 2016a)

qtncGS-2H-16 GS 2_524762464–

2_527636020

2H: 649558019–

651399477

3.04–17.50 9.77–71.50 2009, 2012, BLUP

qtnGS-2H-17 GS Vrs1 2H: 652030802 11.28–48.96 49.99–72.25 2010, 2012, BLUP Qgs2-4 (Wang et al., 2016a)

(Continued)
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TABLE 1 | Continued

QTN (QTN

cluster)a
Trait Marker

associated

Physic position

(bp)

LOD score r2 (%) Year Previous QTL

qtnGS-2H-18 GS 2_625783669 2H: 764361924 3.48–5.87 1.06–10.05 2009, 2010

qtnGWS-2H-19 GWS 2_625783669 2H: 764361924 3.29–7.37 0.74–6.25 2009, 2010

qtn(GP-GWP-

GWS)-4H-2

GP,

GWP,

GWS

4_497278091 4H: 596447744 3.04–6.81 3.97–9.17 2009

qtnTGW-2H-20 TGW Vrs1 2H: 652030802 4.82–49.42 32.77–56.66 2009, 2010, BLUP Qtgw2-1, Qtgw2-2 (Wang

et al., 2016a)

qtnTGW-3H-5 TGW 3HS_23539468 3H: 272283784 3.88–5.98 2.19–4.39 2010, BLUP

qtnTGW-7H-8 TGW 7HS_10887541 7H: 72344563 6.27–13.16 4.39–11.22 2010, BLUP Qtgw7-4 (Wang et al.,

2016a)

aReliable QTNs and QTN clusters which was detected at least in 2 years environments and multiple GWAS methods; b, physic position of chromosome based on the blast result for

the sequence of marker in barley genome database (http://webblast.ipk-gatersleben.de/barley_ibsc/).

of corresponding phenotypes of the QTN genotypes exist using
t-test. Here, six reliable QTNs were used to underlying the
phenotypes difference as an example. The details were showed
in Figure 3.

Among six QTNs, three yield related QTNs (qtnSMS-2H-9 for
SMS, qtnGS-2H-17 for GS, and qtnTGW-2H-20 for TGW) had
the significant differences of phenotypic averages between their
two genotypes in all four environments (Figures 3A–C), and
three PH related QTNs (qtnPH-7H-2, qtnIL2-7H-6, and qtnMSL-
2H-7) had the significant differences in all four environments
(Figures 3D–F), indicating their reliability. It was worth noting
that the qtnMSL-2H-7 and qtnSMS-2H-9 was detected in all
the four environments, the qtnPH-7H-2, qtnTGW-2H-20, and
qtnGS-2H-17 was only detected in three environments, and
the qtnIL2-7H-6 was detected only in 2012 and the BLUP
(Table 1).

Identification of Candidate Genes Around
Reliable QTNs (or Clusters)
According to the recently released genome sequence of barley
(Ibsc, 2016; Beier et al., 2017; Mascher et al., 2017) and the
gene annotation information, ten candidate genes for the
traits of interest were detected around the reliable QTNs and
QTN clusters (Table 2). The chromosomal distribution of
candidate genes was showed in Figure 2. Among which, two
genes correspond to the previously reported genes, such as
sdw1/denso and Vrs1, while eight candidate genes were new and
their functions were derived from the annotated information,
which need to be further validated (Table 2). Among eight
new genes, HORVU3Hr1G090970, HORVU7Hr1G040290,
HORVU7Hr1G058360, and HORVU3Hr1G096010 are
related to plant height and its component traits, encoding
SAM-dependent_Mtases, Alpha-mannosidase, DHHC-
cysteine-rich domain S-acyltransferase and Homeobox-like,
respectively. HORVU2Hr1G113880, HORVU2Hr1G094080,
HORVU2Hr1G126690, and HORVU4Hr1G075070 are associated
with spike and yield related traits, encoding AP2-like ethylene-
responsive transcription factor, BTB/POZ domain protein,
Acyl-CoAN-acetyltransferase and Patatin, respectively (Table 2).

DISCUSSION

Previously Reported and Novel QTNs
Detected With Multi-Locus GWAS Analysis
The comparison between the reliable QTNs (or clusters) for
the main agronomic traits and the reliable QTLs in previous
studies (Ren et al., 2010, 2013, 2014; Wang et al., 2016a) were
conducted (Table 1; Figure 2). According to the physic positions
of associatedmarkers, the reliable QTNs (or clusters) in this study
were integrated to the physic map with the reliable QTLs using
MapChart 2.32 (Voorrips, 2002; Figure 2). Among 39 reliable
QTNs (QTN clusters) detected by GWAS, 19 were located on the
same regions of QTLs in previous studies (Sameri et al., 2009;
Ren et al., 2014; Wang et al., 2016a), while 20 reliable QTNs
(QTN clusters) including some minor effect QTNs were novel
(Table 1). Totally, 8 of 18 QTNs (QTN clusters) associated with
plant height related traits, were same as those in previous studies
(Sameri et al., 2009; Ren et al., 2014), and 10 were new. For spike
and yield related traits, 11 of 21 QTNs (QTN clusters) were the
same as the QTLs in Wang et al. (2016a), the others were new in
the current study (Table 1).

Among 8 previously reported QTNs (QTN clusters) for PH
related traits, QTN clusters qtncPH-3H-1 (3H: 631,870,705–
633,068,955 bp), qtncIL3-3H-3 (3H: 631,870,705–636,535,362
bp), and qtncIL4-3H-4 (3H: 631,870,705–636,535,362 bp),
located on the hotspot of 3H (Figure 2), were significantly
associated with PH, IL3, and IL4, respectively (Table 1). Close
to the region of the QTNs clusters, Qcl3-13 for CL (the
length from the ground to the collar equal PH minus MSL),
Qitw3-13 for IL2, Qith3-13 for IL3, and Qifo3-14 for IL4
were detected close to the region of SSR markers Bmag13
(Position: 608,671,381 bp) and Bmag877 (Position: 657,045,459
bp) on 3H, respectively (Ren et al., 2014). Moreover, qIN6-
3HL was detected to be significantly associated with IN6
(sixth internode) between Bmag13 (3H: 608,671,381 bp) and
e06m30.8.3 in Sameri et al. (2009). Compared to the physical
positions of the QTLs with those of QTNs, the QTN clusters
for PH, IL3, and IL4 should correspond to the QTL Qcl3-13
for CL, Qith3-13 for IL3, and Qifo3-14 for IL4, respectively
(Ren et al., 2014; Table 1).
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FIGURE 3 | The difference of phenotypes between two kinds of genotypes for each of the six QTNs. (A): SMS at qtnSMS-2H-9, (B): GS at qtnGS-2H-17, (C): TGW

at qtnTGW-2H-20, (D): PH at qtnPH-7H-2, (E): IL2 at qtnIL2-7H-6, (F): MSL at qtnMSL-2H-7. **Significant difference at P < 0.01.

The qtnPH-7H-1 (7H: 81,959,684 bp), qtnPH-7H-2 (7H:
108,670,637 bp), and qtncIL1-7H-4 (7H: 81,889,341–84,350,472
bp) were detected in same region of chromosome 7HS to be
significantly associated with PH and IL1, respectively. These
three QTNs are likely the same to the two QTLs qIN3-7Hs and
qIN4-7Hs identified between markers HVCMA (7H: 75,227,158
bp) and ABG701 (7H: 90,406,550 bp) in Sameri et al. (2009)
(Table 1). No consistent QTLs were detected in the region of
these QTNs by Ren et al. (2014). It seems that GWAS can detect
more minor QTNs for interesting traits than traditional QTL
analysis.

Among 11 previously reported QTNs (or clusters) for spike
and yield related traits, it is worth noting that most were
located close to the region of Vrs1 gene. Four QTNs and three
QTN clusters, such as qtnSMS-2H-9 (2H: 652,030,802 bp) for
SMS, qtnGS-2H-17 (2H: 652,030,802 bp) for GS, qtnTGW-2H-20
(2H: 652,030,802 bp) for TGW, qtnSLP-2H-10 (2H: 649,558,019
bp) and qtncSLP-2H-11 (2H: 652,030,802–653,982,961 bp) for
SLP, and qtncGP-2H-14 (2H: 649,558,019–650,438,830 bp) and
qtncGP-2H-15 (2H: 652,030,802–652,604,015 bp) for GP were
detected at Vrs1 (2H: 652,030,802 bp) and the nearby region
of 2H with highly phenotypic variation (Table 1; Figure 2),

which was consistent with the QTLs detected in Wang et al.
(2016a), including Qsms2-7 (2H: 652,507,869 bp) for SMS, Qgs2-
4 (2H: 651,436,685 bp) for GS, Qtgw2-1 (2H: 652,507,869 bp)
and Qtgw2-2 (2H: 652,508,158 bp) for TGW, Qslp2-6 (2H:
651,436,685 bp) for SLP, and Qgp2-2 (2H: 651,436,685 bp) for
GP (Table 1; Figure 2). Moreover, QTNs (or clusters) qtnMSL-
2H-7 (2H: 727,985,438 bp), qtnSMS-2H-8 (2H: 535,680,815 bp),
qtncSLP-4H-1 (4H: 15,498,372–16,761,959 bp), and qtnTGW-7H-
8 (7H: 72,344,563 bp) were consistent with the QTLs Qmsl2-7
(2H: 724,577,184 bp), Qsms2-1 (2H: 541,758,123 bp), Qslp4-2
(4H: 24,332,575 bp), and Qtgw7-4 (7H: 71,957,427 bp) of Wang
et al. (2016a) (Table 1; Figure 2).

For 20 novel reliable QTNs (QTN clusters) detected
by multi-locus GWAS, most had minor effects (Table 1).
It is worth noting that qtnIL2-7H-6 was a novel QTN
associated with IL2 accounting for a higher proportion of
phenotypic variation (22.85–55.77%). And the candidate gene
HORVU7Hr1G058360 (7H: 258,860,422–258,866,854 bp), close
to qtnIL2-7H-6 (7H: 258,071,311 bp), may involve in regulating
IL2. For other minor effect QTNs (QTN clusters), three reliable
candidate genes (HORVU2Hr1G094080, HORVU2Hr1G126690,
and HORVU4Hr1G075070) were identified to be close to the
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TABLE 2 | Candidate genes around the reliable QTNs and QTN clusters.

QTN (QTN

cluster)a
Trait Marker Physic position

(bp)b
candidate genec Physic position (bp) Annotationd

qtncPH-3H-1 PH 3HL_37004393–

3_511749149

3H: 631870705–

633068955

HORVU3Hr1G090980,

HORVU3Hr1G090970

3H:

634,077,598–634,081,600,

3H:

634,071,757–634,080,040

sdw1/denso, GA20-oxidases;

SAM-dependent_Mtases, like

PvSAMS

qtncIL3-3H-3 IL3 3HL_37004393–

3_511668322

3H: 631870705–

636535362

HORVU3Hr1G090980,

HORVU3Hr1G090970

3H:

634,077,598–634,081,600,

3H:

634,071,757–634,080,040

sdw1/denso, GA20-oxidases;

SAM-dependent_Mtases, like

PvSAMS

qtncIL4-3H-4 IL4 3HL_37004393–

3_511668322

3H: 631870705–

636535362

HORVU3Hr1G090980,

HORVU3Hr1G090970

3H:

634,077,598–634,081,600,

3H:

634,071,757–634,080,040

sdw1/denso, GA20-oxidases;

SAM-dependent_Mtases, like

PvSAMS

qtnPH-7H-2 PH 7HS_33062962 7H: 108670637 HORVU7Hr1G040290 7H:108834015–108839990 AMS1p, Alpha-mannosidase

qtnIL2-7H-6 IL2 M_114215_455 7H: 258071311 HORVU7Hr1G058360 7H:

258,860,422–258,866,854

DHHC-cysteine-rich domain

S-acyltransferase

qtnPH-3H-2 PH 2HS_32409186 3H: 651696476 HORVU3Hr1G096010 3H:

651,659,644–651,663,119

Homeobox-like, SANT/Myb

qtnSMS-2H-9 SMS Vrs1 2H: 652030802 HORVU2Hr1G092290 2H:

652,031,058–652,032,990

Vrs1, Homeobox

qtncSLP-2H-11 SLP Vrs1–

2HL_17075593

2H: 652030802–

653982961

HORVU2Hr1G092290 2H:

652,031,058–652,032,990

Vrs1, Homeobox

qtncGP-2H-15 GP Vrs1–

2_527241334

2H: 652030802–

652604015

HORVU2Hr1G092290 2H:

652,031,058–652,032,990

Vrs1, Homeobox

qtnGS-2H-17 GS Vrs1 2H: 652030802 HORVU2Hr1G092290 2H:

652,031,058–652,032,990

Vrs1, Homeobox

qtnTGW-2H-20 TGW Vrs1 2H: 652030802 HORVU2Hr1G092290 2H:

652,031,058–652,032,990

Vrs1, Homeobox

qtnMSL-2H-7 MSL 2_600749073 2H: 727985438 HORVU2Hr1G113880 2H:730027508–730030208 AP2-like ethylene-responsive

transcription factor

qtncSP-2H-13 SP 2_531255437–

M_124056_833

2H: 662335248–

663628734

HORVU2Hr1G094080 2H:

662,298,334–662,300,891

BTB/POZ

qtnGS-2H-18 GS 2_625783669 2H: 764361924 HORVU2Hr1G126690 2H:

764,279,329–764,290,102

Acyl-CoA N-acetyltransferase

qtnGWS-2H-19 GWS 2_625783669 2H: 764361924 HORVU2Hr1G126690 2H:

764,279,329–764,290,102

Acyl-CoA N-acetyltransferase

qtn(GP-GWP-

GWS)-4H-2

GP,

GWP,

GWS

4_497278091 4H: 596447744 HORVU4Hr1G075070 4H:

596,446,043–596,448,382

Patatin

aReliable QTNs and QTN clusters which were detected at least in 2 years environments and multiple GWAS methods; bPhysic position of chromosome based on the blast result for the

sequence of marker in barley genome database (http://webblast.ipk-gatersleben.de/barley_ibsc/); cCandidate gene was acquired from http://plants.ensembl.org/Hordeum_vulgare/

Info/Index; dAnnotation information was from the database http://plants.ensembl.org/Hordeum_vulgare/Info/Index and https://www.uniprot.org/uniprot.

region of qtncSP-2H-13, qtnGS-2H-18 (or qtnGWS-2H-19), and
qtn(GP-GWP-GWS)-4H-2, respectively (Table 2). Therefore, the
novel QTNs (QTN clusters) by multi-locus GWAS were reliable,
even with minor effect. In other words, multi-locus GWAS
can detect more minor effect QTNs than traditional QTL
analysis.

The comparison between QTLs in previous studies (Sameri
et al., 2009; Ren et al., 2013, 2014; Wang et al., 2016a) and
in current study indicated that the consistent results should
be much more reliable, which is valuable for further gene
cloning and molecular marker assistant selection for breeding.
Meanwhile, it illustrated that GWAS is feasible and reliable to
detect significant associations for complex quantitative traits

in DH population. Moreover, some new QTNs with minor
effects were detected, suggesting that GWAS should be a good
complementary to traditional QTLmapping. The combination of
linkage and association analysis should provide themore accurate
and powerful approach for reveling the genetic base of complex
quantitative traits (Ott et al., 2011).

Two Previous Reported Genes Reveal the
Reliability of Multi-Locus GWAS
HORVU3Hr1G090980 (3H: 634,077,598–634,081,600 bp) was
identified on the region (3H: 631,870,705–636,535,362 bp) of
three QTN clusters for plant height related traits (qtncPH-3H-1
for PH, qtncIL3-3H-3 for IL3, and qtncIL4-3H-4 for IL4; Table 2;
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Figure 2). This geneHORVU3Hr1G090980 correspondeds to the
previously reported gene sdw1/denso, which was a semi-dwarf
gene encoding a gibberellin 20-oxidase enzyme in barley (Jia
et al., 2009; Xu et al., 2017). It was clarified that GA 20-oxidases
encoded by sdw1/denso affected the plant height involving in
the later steps of GA biosynthesis (Spielmeyer et al., 2004; Jia
et al., 2009; Xu et al., 2017; Table 2). Therefore, the association
between three QTN clusters and three height related traits (PH,
IL3, and IL4) might be the effect of the gene sdw1/denso. Vrs1
(2H: 652,030,802 bp) was detected to be associated with SMS
(qtnSMS-2H-9), GS (qtnGS-2H-17), and TGW (qtnTGW-2H-
20) with high proportion of phenotypic variation in multiple
environments and by multi-locus GWAS methods in current
study (Tables 1, 2). Around the gene Vrs1, moreover, five
QTNs (or clusters), including qtnSLP-2H-10 (2H: 649,558,019
bp) and qtncSLP-2H-11 (2H: 652,030,802–653,982,961 bp)
for SLP, qtncGP-2H-14 (2H: 649,558,019–650,438,830 bp),
and qtncGP-2H-15 (2H: 652,030,802–652,604,015 bp) for
GP, and qtncSP-2H-12 (2H: 648,821,931–652,030,802 bp)
for SP, were detected in multiple situations and by multi-
locus GWAS methods with high proportion of phenotypic
variation (Table 1; Figure 2). Vrs1, controlling row number
of barley, encodes homeobox and profoundly affects barley
spike morphology (Komatsuda et al., 2007). The identification
of the reliable QTNs (or clusters) around two previously
reported genes using multi-locus GWAS further revealed the
reliability of multi-locus GWAS in bi-parental segregation
population.

Novel Candidate Genes Reveal the
Possible Molecular Basis of Plant Height-
and Yield-Related Traits
Gene HORVU3Hr1G090970 (3H: 634,071,757–634,080,040 bp),
encoded a S-adenosylmethionine (SAM)-dependent-MTases,
which was identified on the region (3H: 631,870,705–636,535,362
bp) of three QTN clusters for plant height related traits
(qtncPH-3H-1 for PH, qtncIL3-3H-3 for IL3, and qtncIL4-
3H-4 for IL4; Table 2; Figure 2). It was reported that SAM
biosynthetic pathways affects lignin biosynthesis in switchgrass
(Panicum virgatum L.; Bai et al., 2018; Table 2). Cystathionine
c-synthase (CGS) is the first committed enzyme for the
biosynthesis of Met that can be metabolized to SAM, CGS-
RNAi transgenic switchgrass lines showed much shorter plant
height and internode length (Bai et al., 2018). Therefore,
HORVU3Hr1G090970 might be a new semi-dwarf gene
in barley.

HORVU7Hr1G008720, was identified at 7H:108,834,015–
108,839,990 bp, which was 0.15Mb from the QTN qtnPH-7H-
2 for PH, encoding Alpha-mannosidase like AMS1p (Table 2;
Figure 2). Alpha-mannosidase is the component of cell wall,
involving in cell wall biosynthesis or modification, which
participated in the cell growth of internodes with pectinesterase
and alpha-xylosidase in plant (Wu and Cao, 2008). Moreover,
Alpha-mannosidase is the member of cytoplasm-to-vacuole
targeting (Cvt) pathway with AuTophaGy8 (ATG8) gene, and
soybean transgenic lines over-expressed GmATG8c showed

higher plant height than the wild type (Xia et al., 2012).
Therefore, HORVU7Hr1G008720 should be a reliable candidate
gene, which affected PH by regulating the cell growth as AMS1p
does.

HORVU7Hr1G058360 at 7H: 258,860,422-258,866,854 bp was
close to qtnIL2-7H-6 (7H: 258,071,311 bp) for IL2, encoding a
S-acyltransferase with DHHC-cysteine-rich domain (Table 2;
Figure 2). DHHC-cysteine-rich domain S-acyltransferase
proteins are involved in plant development and stress responses
in Arabidopsis (Li et al., 2016). AtPAT10 is an S-acyl transferase,
which affects the vascular development through controlling the
cell division and expansion in Arabidopsis. AtPAT10 mutants
are semi-dwarfed, and the reduction of plant height is due
to the reduced length of the internodes, which appears to be
the result of reduction in both cell number and cell size in
these tissues (Qi et al., 2013). Therefore, HORVU7Hr1G058360
is a reliable candidate gene regulating the IL2 as AtPAT10
dose.

HORVU3Hr1G096010 (3H: 651,659,644–651,663,119 bp)
encoding homeobox-like protein with SANT/MYB domain,
was close to the QTN qtnPH-3H-2 (3H: 651,696,476 bp) for
PH (Table 2; Figure 2). Homeobox gene was reported to be
involved in the regulation of morphological development
in plants, homeobox gene OSH15 affects the architecture of
internodes resulting in d6 dwarf plants (Sato et al., 1999).
Moreover, the RAD gene in Arabidopsis, encoding small
plant-specific single SANT/MYB domain protein, affects the
growth and development of Arabidopsis. Overexpression of
the RAD gene can repress Arabidopsis growth, resulting in
dwarfing and delaying flowering (Baxter et al., 2007; Zhang et al.,
2011). Thus, HORVU3Hr1G096010 is a reliable candidate gene
regulating plant height as the function of homeobox gene or
RAD gene.

For main spike length (MSL), HORVU2Hr1G113880
corresponding to Cly1 gene, was identified at 2H:730,027,508–
730,030,208 bp, which was 3Mb from the QTN qtnMSL-2H-7
(2H: 727,985,438 bp) for MSL (Table 2; Figure 2). Cly1
encodes for an AP2-protein that inhibits development
of flower (Nair et al., 2010; Terzi et al., 2017). HvAP2
regulates the length of a critical developmental window
required for the elongation of the inflorescence internodes
in barley (Houston et al., 2013). Therefore, the association
between qtnMSL-2H-3 and MSL might be the effect of
Cly1 gene.

For spike number per plant (SP), HORVU2Hr1G094080
(2H: 662,298,334–662,300,891 bp), encoding a protein with
BTB/POZ domain (Broad complex, Tramtrack, Bric à brac,
Pox virus and Zinc finger), was detected about 40Kb from
the QTN cluster qtncSP-2H-13 (2H: 662,335,248–663,628,734
bp; Table 2; Figure 2). HvCul4 gene encodes a BLADE-ON-
PETIOLE-like (BOP-Like) protein containing BTB/POZ
domain, which shares high similarity with Arabidopsis
BOP1 and BOP2 (Tavakol et al., 2015; Jost et al., 2016).
It was reported that HvCul4 controlled the tiller and leaf
pattern in barley (Tavakol et al., 2015; Jost et al., 2016), and
Arabidopsis BOP1 and BOP2 acted at boundary regions to
regulate axillary development and leaf morphogenesis (Ha

Frontiers in Plant Science | www.frontiersin.org November 2018 | Volume 9 | Article 1683181

https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/plant-science#articles


Hu et al. GWAS for Agronomic Traits

et al., 2004). In addition, according to the barley expression
database from Barlex (http://barlex.barleysequence.org),
HORVU2Hr1G094080.1 showed highest level of expression
in developing inflorescences. Therefore, candidate gene
HORVU2Hr1G094080 performed the similar function as
HvCul4, BOP1, and BOP2 to control the spike number per
plant (SP).

For grain number per spike (GS) and grain weight per
spike (GWS), marker 2_625783669 (2H: 764,361,924 bp)
was detected significantly associated with these 2 traits.
HORVU2Hr1G126690 (2H: 764,279,329–764,290,102 bp),
encoding a protein with N-acetyltransferase domain, was
detected about 83Kb from the marker 2_625783669 (Table 2;
Figure 2). OsSNAT1 encodes N-acetyltransferase1, it was
reported that overexpression of T2 homozygous OsSNAT1
in rice increased panicle number and seed weight per plant,
while decreased spikelet numbers per panicle under paddy field
conditions (Lee and Back, 2017). Moreover, the expression
of HORVU2Hr1G126690.4 is much higher in developing
inflorescences than in other tissues according to the barley
expression database from Barlex (http://barlex.barleysequence.
org). Thus, the candidate gene HORVU2Hr1G126690 may
affect the GS and GWS through the similar function of
OsSNAT1.

Marker 4_497278091 (4H: 596,447,744 bp) was significant
associated with GP, GWP, and GWS. HORVU4Hr1G075070 (4H:
596,446,043–596,448,382 bp), encoding Patatin, was detected at
4_497278091 (Table 2). Overexpression of a patatin-like protein
in Camelina sativa (Li et al., 2015) or in Arabidopsis (Li et al.,
2013) reduced growth and overall seed production, but increased
seed oil content. Therefore, HORVU4Hr1G075070 is a reliable
candidate gene which might affect GP, GWP and GWS as the
function of patatin-like gene.

Among the above ten candidate genes, two were previously
reported, such as sdw1/denso and Vrs1, eight were new,
which were derived from the annotated information. Based
on the annotations of these candidate genes, homologous
genes or proteins with same function or function domain
were reported to be regulated the corresponding traits in
barley, Arabidopsis and rice. The reliable QTNs and QTN
clusters for these traits may be the effect of the candidate
genes with similar function as the homologous genes or
proteins does. The functions of eight reliable candidate genes
need to be further validated. In summary, it is feasible and
reliable to use multi-locus GWAS in bi-parental segregation
populations.

The New Multi-Locus GWAS for
Bi-Parental Segregation Population
Traditionally, segregation populations were used for QTL
analysis, and GWAS are commonly used in natural populations.
Nowadays, as the development of high-throughput SNP markers
and high-throughput phenotypes, GWAS have been widely
applied to the genetic analysis for complex traits in family-
based populations (such as NAM and MAGIC populations)
and proved to be powerful tool for uncovering the basis of

key agronomic traits in maize and barley (Tian et al., 2011;
Cook et al., 2012; Maurer et al., 2015, 2016). However, for
single segregating population, successful but fewer cases were
performed using GWAS (Gao et al., 2015; Henning et al.,
2016; Liu et al., 2018). It indicated that GWAS for segregating
population are feasible. However, high false positive rate is an
obvious problem in the traditional single-locus GWAS using
general linear models (GLMs) and mixed linear models (MLMs)
(Zhang et al., 2010; Pace et al., 2015). And the P threshold
(P = 0.05/n, n is the number of SNPs) leads to missing
many significant QTNs, particularly small-effect QTNs (Wang
et al., 2016b). Some multi-locus GWAS methodologies, such
as mrMLM (Wang et al., 2016b), FASTmrMLM (Zhang and
Tamba, 2018), FASTmrEMMA (Wen et al., 2018), ISIS EM-
BLASSO (Tamba et al., 2017), pLARmEB (Zhang et al., 2017),
and pKWmEB (Ren et al., 2018) have been developed to
remedy the shortcomings mentioned above. These multi-locus
GWAS methods have been used to analyze the published data,
indicated that these methods constituted effective approaches
with high detection power and less stringent criteria (Wang
et al., 2016b; Tamba et al., 2017; Zhang et al., 2017; Wen
et al., 2018). Totally, five multi-locus GWAS methods were
used in our study, which improved the detection power and
accuracy of QTNs for interesting traits. Moreover, the QTNs
(QTN clusters), which were repeatedly detected in multiple
environments and GWAS methods, were selected as reliable
QTNs (QTN clusters). This greatly improved the accuracy
of the association results and reduced its false positive,
and more small-effect QTNs were detected within a certain
rate of false positive. In addition, the t-test results of the
phenotypic difference corresponding to QTNs, demonstrated
that GWAS have the more stringent threshold of significance
than t-test, and the advantages of accuracy and false positive
controlling. In our study, 39 reliable QTNs and QTN clusters
were detected, among which 10 reliable candidate gene
were identified. Meanwhile, several new reliable QTNs with
small-effect were also detected, which were different from
the previous reports (Table 1). There was a limitation to
identify candidate genes for all the reliable QTNs and QTN
clusters, especially the small-effect ones, based on the imperfect
annotation database of barley. However, these results indicated
that multi-locus GWAS methods are feasible and reliable for
DH population, and good complementary to traditional QTL
mapping for the detection of new reliable QTNs even with small-
effect. which will provide more useful information for future
works.

CONCLUSIONS

Available online at: In this study, fivemulti-locus GWASmethods
were performed for 14 main agronomic traits in 122 doubled
haploid (DH) lines. Thirty-nine reliable QTNs and/or QTN
clusters were repeatedly detected in multiple environments and
methods 10 candidate genes for the interest traits were detected,
19 QTNs and two genes (sdw1/denso and Vrs1) were previously
reported, and eight candidate genes need to be further validated.

Frontiers in Plant Science | www.frontiersin.org November 2018 | Volume 9 | Article 1683182

http://barlex.barleysequence.org
http://barlex.barleysequence.org
http://barlex.barleysequence.org
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/plant-science#articles


Hu et al. GWAS for Agronomic Traits

The results validated the feasibility and reliability of GWAS in
DH population and the good complementary to traditional QTL
analysis. All the results will facilitate elucidating genetic basis
of agronomic traits and improving marker-assisted selection
breeding in barley.
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Xiaocui Tian1,2, Zhixi Tian3, Wen-Xia Li1,2* and Hailong Ning1,2*

1 Key Laboratory of Soybean Biology in the Chinese Ministry of Education, Northeast Agricultural University, Harbin, China,
2 Northeastern Key Laboratory of Soybean Biology and Breeding/Genetics in the Chinese Ministry of Agriculture, Northeast
Agricultural University, Harbin, China, 3 State Key Laboratory of Plant Cell and Chromosome Engineering, Institute
of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China, 4 College of Agronomy, Jilin
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Protein content (PC), an important trait in soybean (Glycine max) breeding, is controlled
by multiple genes with relatively small effects. To identify the quantitative trait nucleotides
(QTNs) controlling PC, we conducted a multi-locus genome-wide association study
(GWAS) for PC in 144 four-way recombinant inbred lines (FW-RILs). All the FW-RILs
were phenotyped for PC in 20 environments, including four locations over 4 years
with different experimental treatments. Meanwhile, all the FW-RILs were genotyped
using SoySNP660k BeadChip, producing genotype data for 109,676 non-redundant
single-nucleotide polymorphisms. A total of 129 significant QTNs were identified by five
multi-locus GWAS methods. Based on the 22 common QTNs detected by multiple
GWAS methods or in multiple environments, pathway analysis identified 8 potential
candidate genes that are likely to be involved in protein synthesis and metabolism in
soybean seeds. Using superior allele information for 22 common QTNs in 22 elite and
7 inferior lines, we found higher superior allele percentages in the elite lines and lower
percentages in the inferior lines. These findings will contribute to the discovery of the
polygenic networks controlling PC in soybean, increase our understanding of the genetic
foundation and regulation of PC, and be useful for molecular breeding of high-protein
soybean varieties.

Keywords: protein content, soybean, multi-locus GWAS, QTNs, four-way recombinant inbred lines

INTRODUCTION

Soybean [Glycine max (L.) Merr.] is a globally important high-protein crop, with protein
accounting for about 40% of the seed’s dry weight. Soybean is one of humans’ main sources of
dietary protein; therefore, breeding high-protein varieties of soybean is an ongoing, important
objective of plant breeders. The efficiency of plant breeding has been greatly accelerated by the
emergence of molecular markers and molecular technology, such as random amplified polymorphic
DNA, restriction fragment length polymorphism, amplified fragment length polymorphism, simple
sequence repeats, specific-locus amplified fragment, and single-nucleotide polymorphism (SNP).
For genome-wide association studies (GWAS) in soybean, the acquisition of a large number of
molecular markers is extremely important (Song et al., 2013), and SNPs are well suited for such
analyses because of their high densities throughout the genome (Gaur et al., 2012).
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Breeders and molecular geneticists have routinely used
populations derived from biparental crosses for development of
new varieties and mapping quantitative trait loci (QTLs) for
traits of interest. However, the richness of allelic and phenotypic
variation in biparental inter-mated populations is somewhat
limited. To overcome this limitation, animal breeders have
developed the multi-parental inter-mated population design, for
example by using a population descended from eight mouse
strains (Yalcin et al., 2005). Recently, multi-parent advanced
generation inter-cross (MAGIC) lines have also been developed
in plants, including wheat (Triticum aestivum; Huang et al.,
2012; Mackay et al., 2014), maize (Zea mays; Dell’Acqua et al.,
2015), Arabidopsis thaliana (Kover et al., 2009), barley (Hordeum
vulgare; Sannemann et al., 2015), tomato (Solanum lycopersicum;
Pascual et al., 2015), and rice (Oryza sativa; Bandillo et al., 2013;
Meng et al., 2016a,b). MAGIC populations have more diverse
alleles than bi-parental populations, which increases genetic
variation. However, obtaining a MAGIC population is labor
intensive because of the repeated crossing and requires large
population sizes to include recombinants for all the desirable
traits. An intermediate design, the four-way cross population, is
easier to obtain while providing some of the same benefits as an
eight-way cross population.

In recent years, GWAS with high-density SNPs have emerged
as very powerful tools for dissecting the genetic basis of complex
traits. This approach has been applied to MAGIC populations
of many crop plants (Bandillo et al., 2013; Pascual et al., 2015;
Meng et al., 2016a,b) but not, as of yet, to soybean. As in soybean,
either biparental populations or natural populations have been
used in all previous QTL mapping studies (Li et al., 2018; Wang
et al., 2018). This previous research indicates that PC in soybean
is a typical quantitative trait controlled by multiple genes with
relatively small genetic effects, whose identification will require
a more efficient method to detected QTLs. Multi-locus GWAS is
a suitable method for identifying significant QTNs, especially for
relatively small effects; it also has a low false positive rate, and has
been used in many studies (Liu et al., 2016; Wang et al., 2016;
Tamba et al., 2017; Zhang Y. et al., 2017; Wen et al., 2018).

In this study, we used 144 recombinant inbred lines
(FW-RILs) from a four-way cross, which were genotyped by
SNPs and phenotyped seed protein content (PC) in different
environments. We then combined these data to identify
significant QTNs for PC in soybean using multi-locus GWAS
methods. The objective was to find common QTNs that were
identified by multiple methods or in multiple environments and
then deduce potential candidate genes and identify elite lines
in the FW-RIL population, as a means to accelerate molecular
breeding to increase PC in soybean.

MATERIALS AND METHODS

Plant Materials
Four soybean varieties, Kenfeng14 (PC 41.08%), Kenfeng15
(PC 41.42%), Kenfeng19 (PC 43.06%), and Heinong48 (PC
43.55%), were used to construct a four-way recombinant
inbred line (FW-RIL) population. Among these, Kenfeng14,

Kenfeng15, and Kenfeng19 were bred by the Heilongjiang
Academy of Agricultural Reclamation and derived from the
crosses Suinong 10× Changnong 5, Suinong 14× Kenjiao 9307,
and Hefeng 25 × (Kenfeng 4 × Gong 8861-0), respectively; and
Heinong48 was bred by Heilongjiang Academy of Agricultural
Science and derived from the cross Ha 90-6719 × Sui
90-5888.

First, two single crosses, Kengfeng14 × Kenfeng15 and
Kenfeng19 × Heinong48, were carried out in Harbin
(45.75◦N, 126.63◦E), Heilongjiang Province, China,
and the F1 seeds were harvested in 2008. Second, a
cross was conducted between two sets of single-cross
F1 seeds, and F1 seeds of the resulting four-way cross
(Kengfeng14 × Kenfeng15) × (Kenfeng19 × Heinong48)
were harvested in 2009. Third, the four-way cross F1 seeds were
self-crossed for six generations continuously by alternate sowing
in Yacheng (17.5◦N, 109.00◦E), Hainan Province, China, in the
winter and in Harbin in the summer from 2010 to 2014, using the
single-seed descent method to select single seeds from individual
plants in each generation. Finally, a total of 144 FW-RILs were
obtained for this study.

Field Experiment and Phenotype Data
Collection
The four parental lines and 144 FW-RILs were planted in 20
environments with different locations, years, seedling densities,
fertilizers, and sowing dates. The detailed planting schedule is
summarized in Supplementary Table S1. All plant materials
in each environment were grown in three-row 5 m × 0.7 m
plots in a completely randomized block design with three
replications. The experimental plots were managed identically
to local soybean crops. Ten plants from the middle of the
plots for each line (four parents and 144 FW-RILs) were
harvested and the seeds threshed separately for each of the
20 environments. The total PC of seeds (dry seeds, with
water content of about 10%) was determined in three random
samples from mixed seed of each line by the near-infrared
analyzer (Infratec 1241, Foss, Denmark) at the Key Laboratory
of Soybean Biology of the Chinese Education Ministry at the
Northeast Agricultural University in China. The calibration
regression technique was Partial Least Square (PLS), which
involved combining spectral data with laboratory data (Kjeldahl
method) to calculate seed PC, described by the percentage of
seed weight. The phenotypic values given for each parental and
FW-RIL used in this study were all the mean values of three
repetitions.

Statistical Analyses of Phenotypic Data
Mean, standard deviation, minimum, maximum, range,
skewness, kurtosis, and coefficient of variation (CV)
for FW-RILs in each environment were calculated.
A correlation analysis between each pair of environments
was performed. Analysis of variance (ANOVA) for single
environment and jointly multiple environments was
conducted with “varietal effect model of genotype” and
“environment + genotype + environment × genotype
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interaction,” respectively, and the broad-sense heritability
(h2) was estimated by the following equation:

h2
= σ2

G/(σ2
G + σ2

GE/e+ σ2/er)

where σ2
G is the genotypic variance, σ2

GE is the variance due to the
genotype× environment interaction, σ2 is the error variance, e is
the number of environments, and r is the number of replications
within an environment. The statistical analysis was implemented
by SAS 9.2 (SAS Institute, Cary, NC, United States).

Genotyping
Juvenile leaves from parents and FW-RIL plants were collected,
frozen in liquid nitrogen, and immediately ground into powder.
Total genomic DNA was extracted using the CTAB method
(Doyle et al., 1990) and eluted in 50 µl deionized water.
The DNA concentration was determined using a UV752N
spectrophotometer (Shanghai Jingke Science Instrument Co.
Ltd.) and was diluted to 100 ng ± 1 ng in deionized water.
SNP genotyping was performed at Beijing Boao Biotechnology
Co. Ltd, using the SoySNP660K BeadChip. A total of 109,676
SNPs across 20 chromosomes remained after quality filtering; the
SNP markers identified were filtered for minor allele frequency
(MAF > 0.05), and the maximum missing sites per SNP
was < 10% (Belamkar et al., 2016). Heterozygous loci were then
marked as missing to obtain better estimates of marker effects,
and the SNP markers were re-filtered using the same filtering
criteria and used for the next analysis of population structure,
kinship, and GWAS.

Analysis of Population Structure and
Linkage Disequilibrium
The analysis of population structure was performed with the
software STRUCTURE 2.3.4 (Pritchard et al., 2000). For each
run, the number of burn-in iterations was 10,000, followed by
2000 Markov chain Monte Carlo (MCMC) replications after
burn-in. The admixture and allele frequencies correlated models
were considered in the analysis. Ten impended iterations were
used in the STRUCTURE analysis. The hypothetical number
of subpopulations (K) ranged from 1 to 10. The best K was
identified according to Evanno et al. (2005) using STRUCTURE
HARVESTER (Earl and Vonholdt, 2012).

TASSEL 5.0 was utilized to analyze linkage disequilibrium
(LD) (Bradbury et al., 2007) by analyzing r2 values of all pairs
of SNPs located within 10 Mb physical distance, the LD decay
trend was found following regression of the negative natural
logarithm, and the physical distance of LD decay was estimated
as the position where r2 dropped to half of its maximum value.

Genome-Wide Association Studies
The software mrMLM.GUI (version 3.0) was used to perform the
GWAS. Five multi-locus GWAS methods within mrMLM.GUI
were used to identify significant QTNs, including mrMLM
(Wang et al., 2016), FASTmrMLM (Tamba et al., 2017),
FASTmrEMMA (Wen et al., 2018), pLARmEB (Zhang J. et al.,
2017), and ISIS EM-BLASSO (Tamba et al., 2017). The critical
P-value parameters for these methods at the first stage were set

to 0.01 except for FASTmrEMMA, where the critical P-value
was set to 0.005, and the critical LOD score was set to 3
for significant QTN at the last stage. All these five methods
involved the population structure and kinship matrices in this
study, and the kinship matrix was calculated with the software
mrMLM.GUI 3.0.

Superior Allele Analysis
We considered the QTNs we detected from multiple
environments or by multiple methods as common QTNs.
Based on the effect values of each common QTN and the
genotype for code 1, we could determine the superior alleles of
each QTN. If the effect value of the QTN is positive, the genotype
for code 1 is the superior allele; if the effect value is negative,
another genotype is the superior allele. For each QTN, the
superior allele percentage in the 144 FW-RILs was equal to the
number of lines containing the superior allele divided by the total
number of lines. For each line, the proportion of superior alleles
in these QTNs was calculated as the number of superior alleles
divided by the total number of QTNs. A heat map visualizing the
percentage of superior alleles was obtained in the R (heatmap
package) program (Mellbye and Schuster, 2014).

Identification of Potential Candidate
Genes
The search for potential candidate genes based on the common
QTNs detected by multiple methods or in multiple environments
was performed using four steps. First, the intervals that include
each common QTN were selected on the Phytozome website1.
These intervals were determined by the rate of LD decay.
Second, genes highly expressed in the form process of seed
protein through the Bio-Analytic Resource for Plant Biology
(BAR) website2 were identified. Third, based on the experimental
data in the Plant Expression Database (PLEXdb) website3, the
differentially expressed genes among high and low protein lines
were identified from the above high expression genes. Finally, all
the differentially expressed genes were put together for analysis
of pathways on the Kyoto Encyclopedia of Genes and Genomes
(KEGG) website4, and potential candidate genes were identified
by the result of pathway analysis.

RESULTS

Protein Content Phenotype
We measured the PC phenotypes of the parents and the
144 FW-RILs in 20 environments, which are presented in
Supplementary Table S2 and Supplementary Figure S1.
Graphing the average value for PC of each line in 20
environments revealed that the 144 lines show extensive
variation in PC (Supplementary Figure S1). Examination
of the values (Supplementary Table S2) showed that the

1https://phytozome.jgi.doe.gov
2http://www.bar.utoronto.ca
3http://www.plexdb.org
4http://www.kegg.jp
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FIGURE 1 | Frequency distribution of seed protein content under 20 environments.

parental lines Kenfeng14 and Kenfeng15 had lower PC than
Kenfeng19 and Heinong48 in all 20 environments. And the
“Range” (Range = PCMax – PCMin) of the four parents in 20
environments was from 1.70 to 4.04%; the “Range” of FW-RILs
was 5.20–11.56%, representing a large difference in PC, especially
in FW-RILs. Kurtosis and skewness (absolute value) were less
than 1, indicating the continuous normal distribution of the PC
values (Supplementary Table S2 and Figure 1). We found a
high coefficient of variation in PC across all the environments.
The ANOVA results of parents and FW-RILs both indicated that
extremely significant variation exists in genotype, environment,
and genotype-by-environment (Tables 1, 2). The mean square
values for the genotype-by-environment interaction were all less
than the mean square values of genotype, and the estimated
broad-based heritability was high, being 85.46%. The correlation
coefficients between each pair of environments were almost
all positive, and many were significant or extremely significant
(Supplementary Table S3), indicating high consistency across
various environments.

Population Structure and LD
To define the subpopulations within the panel of 144 lines, as
described by Pritchard et al. (2009), we selected 5375 of the
109,676 SNPs that had better polymorphisms and were randomly
distributed across the 20 soybean chromosomes. Delta K (1K)
was calculated using STRUCTURE 2.3.4 (Figure 2A; K = 1–10),

TABLE 1 | Joint ANOVA of PC of parent lines in multiple environments.

Source DF SS MS F Pr > F

Replication 2 5.55 2.77 6.59 0.0018

Environment 19 155.86 8.20 19.49 < 0.0001

Genotype 3 271.22 90.41 214.80 < 0.0001

Genotype ∗ Environment 57 50.02 0.877 2.08 0.0002

Error 158 66.50 0.42

revealing the presence of two subpopulations (selected K = 2)
based on 1K values (Figure 2B). These two subgroups contained
53 (36.81%) and 91 (63.19%) lines.

We analyzed the r2 values of all pairs of SNPs located
within 10 Mb of each other and determined the LD decay
trend based on regression to the negative natural logarithm. As
shown in Supplementary Figure S2, r2 decreased gradually with
increased distance, and the LD decay distance was estimated
at 1.2 Mb, where r2 dropped to half of its maximum value
(0.45). Because the population used in this study is derived
from parents, the speed of LD decay is slower and the
LD decay distance is much longer than that of a natural
population.

QTNs Detected by Multi-Locus GWAS
Methods
We identified 19, 18, 12, 37, and 43 significant QTNs for PC using
mrMLM, FASTmrMLM, FASTmrEMMA, pLARmEB, and ISIS
EM-BLASSO, respectively, and 10, 11, 10, 2, 1, 2, 3, 6, 11, 10,
0, 8, 4, 9, 9, 7, 1, 5, 12, and 8 significant QTNs, respectively, in
the 20 environments (Figure 3 and Supplementary Table S4).
No significant QTN was detected in the eleventh environment
(E11).

We further checked the common QTNs across multiple
environments. As discussed above, only one such common QTN
was identified in three environments (Table 3). The single QTN
(AX-157298785) was located on chromosome 18, with the LOD
values ranging from 4.02 to 5.33 (Table 3). The proportion
of phenotypic variance explained (PVE) by the QTN ranged
from 8.40 to 11.02%, and the QTN direction of effect (positive
or negative) was consistent across different environments and
different methods (Table 3).

Comparing the results across the different approaches, we
found that 22 common QTNs (including AX-157298785) were
identified simultaneously by at least two approaches (Table 4);
these were located on chromosomes 1, 2, 3, 4, 6, 7, 9, 10,

Frontiers in Plant Science | www.frontiersin.org November 2018 | Volume 9 | Article 1690189

https://www.frontiersin.org/journals/plant-science/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/plant-science#articles


fpls-09-01690 November 19, 2018 Time: 14:40 # 5

Zhang et al. Detecting Soybean Protein Content QTNs

TABLE 2 | Joint ANOVA of PC of FW-RILs in multiple environments and heritability.

Source DF SS MS F Pr > F Variance component

Replication 2 1, 304.62 652.31 11, 639.60 < 0.0001 0.25

Environment 19 1, 893.98 99.681 1, 778.72 < 0.0001 0.23

Genotype 143 4, 565.61 31.93 569.70 < 0.0001 0.50

Genotype ∗ Environment 2,436 12, 408.82 5.09 90.89 < 0.0001 1.68

Error 5,196 291.19 0.06 0.06

h2 0.85

FIGURE 2 | Population structure based on 5375 SNPs distributed across 20 chromosomes. (A) Plot of 1K calculated for K = 1–10. (B) Population structure (K = 2);
the areas of the two colors (green and red) illustrate the proportion of each subgroup.

12, 14, 16, and 18. Their LOD values ranged from 3.06 to
6.90, the proportion of PVE by each QTN ranged from 3.84
to 19.21%, and the direction of effect (positive or negative)

of each QTN was also consistent across the different methods
(Table 4). Of the 22 common QTNs, 12, 5, and 5 were
identified simultaneously by 2, 3, and 4 approaches, respectively.
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FIGURE 3 | (A) The total numbers of significant QTNs detected in 20 environments across 5 methods. (B) The total numbers of significant QTNs detected using
each of 5 multi-locus GWAS methods in 20 environments.

TABLE 3 | Stable expressed QTNs identified in multiple environments and by multiple methods.

Methoda Env Marker Chr Marker position QTN effect LOD score r2(%)b

1,1 E14,E20, AX-157298785 18 6,620,851 −0.39, −0.40, 4.21, 4.02, 10.78, 11.02,

2,3 E14,E14, −0.29, −0.67, 4.32, 4.43, 5.86, 7.78,

5,5 E14,E16 −0.34, −0.39 4.56, 5.33 8.40, 10.48

amrMLM, FASTmrMLM, FASTmrEMMA, pLARmEB, and ISIS EM-BLASSO were indicated by 1 to 5, respectively. br2 (%), proportion of total phenotypic variation explained
by each QTN.

Among the five methods, ISIS EM-BLASSO detected the highest
number of common QTNs (Figure 4A), and among the
combinations of two methods, FASTmrMLM combined with
pLARmEB detected the highest number of common QTNs
(Figure 4B).

We found only one stable QTN that was identified not
only in multiple environments but also by multiple methods
(Table 3): AX-157298785, located on chromosome 18, which was
detected by mrMLM, FASTmrMLM, FASTmrEMMA, and ISIS
EM-BLASSO in environments E14, E16, and E20, with LOD

values ranging from 4.02 to 5.33 and PVE values ranging from
5.86 to 11.02% (Table 3).

Distribution of Superior Alleles in the
FW-RILs
Based on the PC averages in 20 environments for each
FW-RIL, we found that 22 lines had higher phenotypic
values (43.07–44.21%) and 7 lines had lower phenotypic values
(40.60–40.98%) (Table 5). For each of the 22 elite lines,
the percentages of superior alleles (PSA) across 22 common

Frontiers in Plant Science | www.frontiersin.org November 2018 | Volume 9 | Article 1690191

https://www.frontiersin.org/journals/plant-science/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/plant-science#articles


fpls-09-01690 November 19, 2018 Time: 14:40 # 7

Zhang et al. Detecting Soybean Protein Content QTNs

TABLE 4 | Common QTNs for seed protein content in soybean across different multi-methods.

Methoda Marker Chr Position (bp) QTN effect LOD score r2 (%)b

2,3 AX-157088197 1 2,142,538 0.24,0.51 3.06,3.15 5.41,5.50

2,5 AX-157514742 1 5,244,469 0.41,0.44 4.76,4.76 8.58,9.99

2,4 AX-157393800 1 36,630,129 0.53,0.61 4.17,5.49 6.39,8.57

2,3,4 AX-157197609 2 19,981,350 −0.34,−0.65,−0.38 3.38,3.36,3.81 8.06,6.14,9.58

3,5 AX-157074676 2 43,036,996 −0.64,−0.30 3.65,3.10 5.59,4.83

2,4 AX-157487767 3 28,963,194 0.45,0.47 4.72,3.90 4.74,5.30

2,3,4,5 AX-157594705 4 47,793,555 −0.35,−0.65,−0.42,−0.35 3.94,3.24,5.26,4.40 6.97,5.61,9.85,6.96

1,2,4,5 AX-157397239 4 47,801,472 −0.32,−0.27,−0.23,−0.25 3.13,3.07,3.43,3.73 9.42,6.54,4.75,5.88

1,2,4,5 AX-157489326 6 48,361,864 0.43,0.34,0.42,0.31 3.78,4.26,6.53,3.37 11.81,7.50,11.14,6.19

1,4 AX-157083233 6 49,396,770 −0.78,−0.51 3.20,3.65 19.21,6.67

1,3,4,5 AX-157462104 7 20,724,011 0.82,1.35,0.65,0.50 4.64,4.97,5.90,3.21 15.18,9.83,9.58,5.78

1,2,5 AX-157506141 9 34,120,396 −0.56,−0.44,−0.41 4.02,4.03,3.63 12.36,7.81,6.79

3,5 AX-157570733 10 43,785,659 0.75,0.34 5.09,3.88 9.27,7.63

4,5 AX-157566978 12 1,258,280 −0.24,−0.36 3.65,4.52 3.84,8.50

3,5 AX-157069070 12 10,655,900 0.83,0.42 4.24,5.50 8.30,8.67

4,5 AX-157357710 12 11,111,913 −0.61,−0.62 6.90,5.32 9.83,12.74

2,4,5 AX-157217990 14 7,160,557 −0.23,−0.24,−0.23 3.42,3.22,3.63 4.79,5.45,4.92

1,4 AX-157512649 16 24,057,874 0.31,0.24 3.16,3.44 7.00,4.09

1,5 AX-157168337 16 28,693,806 0.64,0.37 4.66,3.94 14.20,5.23

1,3,5 AX-157333937 18 2,064,407 0.56,0.96,0.48 3.56,4.33,4.23 11.90,8.54,8.58

1,2,4 AX-157443296 18 6,597,875 −0.49,−0.36,−0.38 3.83,4.26,5.12 15.96,8.71,9.88

1,2,3,5 AX-157298785 18 6,620,851 −0.39(−0.40),−0.29,
−0.67,−0.34 (−0.39)

4.21 (4.02),4.32,
4.43,4.56,(5.33)

10.78(11.02),5.86,
7.78,8.40 (10.48)

amrMLM, FASTmrMLM, FASTmrEMMA, pLARmEB, and ISIS EM-BLASSO were indicated by 1–5, respectively. br2 (%), proportion of total phenotypic variation explained
by each QTN. Bold text indicates the QTNs appeared to be near QTLs associated with protein content in soybean that had been mapped in earlier studies.

FIGURE 4 | (A) The number of common QTNs detected by different methods and (B) different combinations of methods. Method numbers correspond to (1)
mrMLM, (2) FASTmrMLM, (3) FASTmrEMMA, (4) pLARmEB, and (5) ISIS EM-BLASSO.

QTNs ranged from 36 to 82% (Table 5), 91% (20 of the
22 lines) showed PSAs of ≥50%, and only 9% showed PSAs
of <50%. For each of the 7 lines with lower phenotypic
values, the PSAs ranged from 32 to 50% (Table 5), only 2
lines (28%) had PSAs of ≥50%, and the remaining 5 (71%)
had PSAs of <50%. Thus, the elite lines with higher PC
have more superior alleles than the lines with lower PC
(Figure 5).

Based on the superior allele information for the 22 common
QTNs in 29 lines, the PSAs for each QTN ranged from 36 to 95%
in the 22 elite lines, with 16 QTNs showing≥ 50% superior alleles
while the remaining 6 QTNs showed < 50%. The range of PSAs
for each QTN was 0–71% in the 7 lines with lower phenotypic

values; 8 of the QTNs had PSAs ≥ 50% and the remaining 14
QTNs had PSAs < 50% (Table 6 and Figure 6). The number of
QTNs with ≥50% superior alleles was higher in the 22 elite lines
than in the 7 inferior lines. Based on these results, we can easily
find elite lines by identifying superior alleles for application in
breeding higher PC soybean.

In addition, we found some common superior alleles in
multiple elite lines: for example, the seven lines HN54, HN37,
HN46, HN47, HN40, HN45, and HN103 all contained the
superior alleles AX-157506141, AX-157168337, AX-157514742,
AX-157397239, AX-157570733, and AX-15719760 (Figure 6),
and the superior allele AX-157506141 occurred in 21 of the 22
elite lines. We suspect that common superior alleles may have a
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TABLE 5 | Phenotypic averages of seed protein content and proportion of
superior alleles in 29 lines across 22 common QTNs.

Line PC (%) PSA (%) Line PC (%) PSA (%)

HN54 44.21 82 HN67 44.19 55

HN37 43.26 77 HN98 43.01 55

HN46 44.01 77 HN41 43.10 50

HN47 43.27 77 HN48 43.55 50

HN40 43.40 73 HN58 43.13 50

HN45 43.54 73 HN93 43.03 45

HN103 44.20 68 HN20 43.34 36

HN24 43.07 64 HN2 40.69 50

HN74 43.42 64 HN112 40.60 50

HN118 43.11 64 HN65 40.98 45

HN142 43.14 64 HN17 40.66 36

HN60 43.06 59 HN32 40.81 36

HN69 43.43 59 HN75 40.60 36

HN91 43.20 59 HN106 40.71 32

HN35 43.43 55

Bold font indicates the 7 lines with lower protein contents, and non-bold font
indicates the 22 lines with higher protein contents.

particularly strong influence on PC. In further research, we hope
to make use of this information to breed better soybean using
marker-assisted selection.

Potential Candidate Genes Determined
Based on Common QTNs
We used the LD decay distance to select potential candidate genes
within a specific distance of each common QTN. Because of the

nature of the population (i.e., derived from parents), the LD
decay distance is large, so we determined the range of potential
candidate genes according to the position of the fastest decay
rate. In Supplementary Figure S2B, we can see that LD decays
fastest before 200 kb, and then tends to flatten, so we searched for
potential candidate genes in the interval of 100 kb on either side
of each QTN. Following the four steps described in the Materials
and Methods, a total of 288 genes were found in these intervals
and 96 genes were expressed highly in seed at the form process
of seed protein. Among the 96 genes, 34 genes were differentially
expressed among high and low protein lines, and these 34 genes
were used to do pathway analysis.

From the annotation data, we found that 17 of 34 genes
(51.4% of the genes we submitted) were previously annotated
in 14 pathways and 3 protein families in the KEGG database
(Supplementary Tables S5, S6 and Figure 7). Of these, 8 were
considered potential candidate genes based on the information
of their annotation and functions in metabolic pathways (Table 7
bold text).

DISCUSSION

In this study, we employed multi-locus GWAS with an FW-RIL
population of the MAGIC population type to identify QTNs
related to PC of soybean. Twenty-two common QTNs were
detected by multiple methods or in multiple environments
(Tables 3, 4). Based on the SoyBase database and the results
of recent studies, 12 of the 22 common QTNs appeared to
be near QTLs associated with PC in soybean that had been
mapped in earlier studies (Lee et al., 1996; Brummer et al.,

FIGURE 5 | Distribution of superior allele percentages and the PC in the 29 high- and low-PC lines.
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TABLE 6 | Superior alleles and their proportions of 22 common QTNs in 22 elite and 7 inferior lines.

QTN Superior allele PSA (%)a PSA (%)b QTN Superior allele PSA (%)a PSA (%)b

AX-157506141 CC 95 71 AX-157074676 GG 64 71

AX-157514742 CC 82 29 AX-157489326 TT 59 57

AX-157168337 TT 77 57 AX-157594705 GG 59 29

AX-157393800 AA 77 43 AX-157487767 AA 50 57

AX-157462104 GG 77 43 AX-157570733 TT 50 29

AX-157298785 GG 73 43 AX-157512649 GG 45 71

AX-157397239 AA 73 29 AX-157197609 AA 45 14

AX-157443296 CC 68 57 AX-157069070 TT 41 57

AX-157088197 GG 68 43 AX-157333937 CC 41 14

AX-157566978 AA 68 43 AX-157083233 TT 36 29

AX-157217990 TT 68 14 AX-157357710 AA 36 0

a Indicates the percentage of superior allele of each common QTN in 22 elite lines. b Indicates the percentage of superior allele of each common QTN in 7 inferior lines.

FIGURE 6 | Heat map of the superior allele distribution for the 22 common QTNs in the 29 high- and low-PC lines. Blue and white colors represent superior and
inferior alleles, respectively.

1997; Csanádi et al., 2001; Jun et al., 2008; Lu et al., 2013;
Mao et al., 2013; Pathan et al., 2013; Hwang et al., 2014; Qi
et al., 2014; Vaughn et al., 2014; Warrington et al., 2015): AX-
157074676, AX-157594705, AX-157397239, AX-157489326, AX-
157462104, AX-157506141, AX-157069070, AX-157357710, AX-
157217990, AX-157570733, AX-157566978, and AX-157168337
(Table 4, bold text). This indirectly confirmed the accuracy of
our QTN detection. The remaining ten QTNs in this study
were new (Table 4, non-bold text). For this population, the
detection of significant QTNs is not only a way to identify the
genes related to PC, but can also identify good lines based on
the superior allele information to support breeding high PC
soybean.

Based on the 22 common QTNs detected here and
their pathway annotation, we have identified 8 genes that
may be related to protein anabolism (Table 7, bold text).
Glyma.03G100800 is intimately involved in the biosynthesis

of amino acids, and the pentose phosphate pathway which
it is involved in also indirectly affects the biosynthesis of
proteins (Xu et al., 2018). Glyma.10G207300, Glyma.14G081600,
and Glyma.12G019300 are mainly involved in the proteasome
pathway and work as protease to degrade proteins to small
peptides and amino acids, so we think that these three genes
are closely related to protein degradation. Glyma.18G071100
may play an important role in protein anabolism; it participates
in the process of glycosylation in endoplasmic reticulum,
and the function of glycosylation is to enable proteins to
resist the digestive enzymes, so as to protect protein from
degradation (Jayaprakash and Surolia, 2017). Glyma.12G112900
is a kind of riboflavin synthase and it participates in the
biosynthesis of riboflavin, which plays an important role
in energy metabolism including carbohydrate, protein and
fat metabolism (Tuan et al., 2014; Zhao et al., 2014).
Glyma.18G071300 participates in RNA transport, and this
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FIGURE 7 | Information on pathways and orthologous protein families of 17 genes. (A) shows the information on pathway. (B) shows the information on orthologous
protein families.

process is essential in protein synthesis; as we know, it
mainly carries amino acids into ribosomes and synthesizes
proteins under the guidance of mRNA. Glyma.18G028600
is a kind of translocation protein, and it mainly works in
post-translational transport and post-translational modification
in the process of protein synthesis, so it plays an important
role in protein synthesis (Kwon et al., 1999). Based on these
8 genes, further work will be needed to determine which of
these actually significantly affect PC in soybeans, and then

to identify the target genes. This information can be used as
the basis for further exploration of the gene network for the
trait.

In recent years, GWAS has been widely applied to crop
plants such as rice (Huang et al., 2010; Ma et al., 2016), maize
(Tian et al., 2011), and soybean (Li et al., 2018), and the
model mainly used for GWAS is mixed linear model (MLM).
It belongs to single-locus GWAS, for which the screening
criterion for significance is P = 0.05/m (where m is the number
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TABLE 7 | Details of 17 genes annotated in the KEGG database.

QTN name Gene namea Chromosome Position KO
number

Annotation

AX-157088197 Glyma.01G020900 chr01 2104937..2109784 K00083 E1.1.1.195; cinnamyl-alcohol dehydrogenase [EC:1.1.1.195]

AX-157514742 Glyma.01G046000 chr01 5317206..5321170 K21734 SLD; sphingolipid 8-(E/Z)-desaturase [EC:1.14.19.29]

AX-157487767 Glyma.03G100800 chr03 28980378..28988564 K00948 PRPS; ribose-phosphate pyrophosphokinase [EC:2.7.6.1]

AX-157397239 Glyma.04G206300 chr04 47880082..47890343 K21594 GUF1; translation factor GUF1, mitochondrial [EC:3.6.5.-]

AX-157570733 Glyma.10G207100 chr10 43860713..43863694 K01373 CTSF; cathepsin F [EC:3.4.22.41]

AX-157570733 Glyma.10G207300 chr10 43879369..43883196 K16298 SCPL-IV; serine carboxypeptidase-like clade IV [EC:3.4.16.-]

AX-157566978 Glyma.12G017200 chr12 1212436..1217081 K17790 TIM22; mitochondrial import inner membrane translocase subunit TIM22

AX-157566978 Glyma.12G018000 chr12 1252709..1256330 K04683 TFDP1; transcription factor Dp-1

AX-157566978 Glyma.12G018800 chr12 1321415..1326705 K1542 PPP4R2; serine/threonine-protein phosphatase 4 regulatory subunit 2

AX-157566978 Glyma.12G019300 chr12 1354109..1356766 K11599 POMP; proteasome maturation protein

AX-157357710 Glyma.12G112900 chr12 11064160..11065437 K00793 ribE; riboflavin synthase [EC:2.5.1.9]

AX-157357710 Glyma.12G113400 chr12 11135703..11140450 K19355 MAN; mannan endo-1,4-beta-mannosidase [EC:3.2.1.78]

AX-157217990 Glyma.14G081600 chr14 7064342..7068643 K03030 PSMD14; 26S proteasome regulatory subunit N11

AX-157333937 Glyma.18G027100 chr18 2033839..2038697 K05857 PLCD; phosphatidylinositol phospholipase C, delta [EC:3.1.4.11]

AX-157333937 Glyma.18G028600 chr18 2154790..2160008 K00685 ATE1; arginyl-tRNA—protein transferase [EC:2.3.2.8]

AX-157443296 Glyma.18G071100 chr18 6667467..6671661 K12275 SEC62; translocation protein SEC62

AX-157443296 Glyma.18G071300 chr18 6687583..6692093 K12880 THOC3; THO complex subunit 3

Bold font indicates the genes which correlate with the protein anabolism in soybean according to our deduction. a Indicates the gene which correlates with the QTN
(before the gene in the same row).

of markers) (Perneger, 1998). For a large number of SNPs,
some important loci may be undetectable under this screening
criterion.

In this study, we also used MLM to carry out the GWAS of
soybean PC, with the calculation of population structure based
on STRUCTURE 2.3.4 and the calculation of kinship and GWAS
based on TASSEL 5.0. However, we did not detect any significant
SNPs using the model. We believe that this was related to the
screening criteria of single-locus GWAS and to the type of target
trait as well as the population type. In light of this negative
result, we tried changing the screening criteria, and replaced the
strict Bonferroni correction with a less stringent false discovery
rate (FDR) correction. The q-values were equal to the P-values
adjusted with the Benjamini and Hochberg (2000) procedure; we
used the cut-off of q < 0.05 and P < 0.0001as the threshold value

to identify significant QTNs. Based on these screening criteria, we
still did not find significantly associated SNP markers. To further
reduce the stringency of the screening criteria, we next tried using
a P-value of < 0.0001 directly as a cut-off without any corrections.
With this criterion, a total of 15 SNP markers were identified with
1 cluster (bold text in Table 8). The range for the one cluster was
83.40 kb.

Because of the nature of single-locus methods, even if we
identified these significant SNP markers under less stringent
screening methods, we lack confidence about our ability to
control for the false positive rate of results obtained without the
correction for multiple tests. A previous study yielded a similar
outcome to ours (Fang et al., 2017), so it seems evident that
the single-locus method is not always suitable for detecting the
genetic basis of complex traits.

TABLE 8 | Details of significant SNPs detected by MLM with screening critical P < 0.0001.

Environment Chr Physical
position (bp)

Physical
distance (kb)

P-value No. of QTNs
(MLM)a

No. of QTNs
(multi-locis

GWAS)b

E6 1 5,703,406 2.82E-05 1 1

E19 8 43,712,243 1.17E-04 1 1

E4 13 1,147,825 9.80E-05 1 0

E12 14 15,013,495 1.35E-04 1 0

E12 16 5,609,879 1.12E-04 1 0

E19 16 28,008,354 1.07E-04 1 2

E6 18 5,396,919 3.54E-05 1 0

E16 18 6,590,065 -
6,673,462

83.40 6.01E-05 - 1.35E-04 8 11

Total 15 15

aNumber of QTNs detected by MLM model. bNumber of QTNs detected by multi-locus GWAS methods.
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To make up for the shortcomings of the above methods,
multi-locus GWAS methods have recently been explored,
including the five methods we used in this study: mrMLM
(Wang et al., 2016), FASTmrMLM (Tamba et al., 2017),
FASTmrEMMA (Wen et al., 2018), pLARmEB (Zhang J. et al.,
2017), and ISIS EM-BLASSO (Tamba et al., 2017). Using the
five methods, we detected a total of 19, 18, 12, 37, and 43
significant QTNs, respectively (Figure 3B and Supplementary
Table S4). The differences in the numbers of QTNs detected
by the five methods are presumed to be due to the different
principles underlying the different methods: even though all
five are two-stage combined approaches, they differ in the
models and methods for screening and estimation. Because
the main purpose of this study required the most accurate
QTNs possible, we felt it desirable to take into consideration
the results of all five methods, and took QTNs detected by
multiple methods as the credible QTNs to use in further
experiments. This practice adds an extra screening to the multi-
locus GWAS approach and thus makes us more confident about
the results.

Based on the data from the QTNs we detected, we found that
the absolute values of QTN effects were all relatively low, in the
range of 0.17–1.35, which indirectly explained why we could not
detect significant QTNs by MLM with the standard Bonferroni
correction. Thus, the greatest advantage of the multi-locus
GWAS approach was its ability to find loci with relatively small
effects. In addition, the multi-locus GWAS method was more
suitable for the FW-RIL population used in this study than
single-locus GWAS. This is because the single-locus GWAS
method is generally based on SNPs for which there are only
two alleles at one locus, meaning that the multi-allelic variation
that exists at some genetic loci in the FW-RIL population
cannot be detected. However, the multi-locus GWAS method
overcomes this limitation: because it is based on a multi-locus
and multi-allele model, it can identify genome-wide QTNs in a
more comprehensive fashion along with the multiple alleles. This
is the other reason that we were able to detect significant QTNs
with the multi-locus GWAS method.

SUMMARY

Combining five multi-locus GWAS methods, we identified
22 common QTNs, including one stable expression QTN
AX-157298785. Around these QTNs, 8 potential candidate genes
were identified. Moreover, we selected elite lines for breeding
higher seed protein content.
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FIGURE S1 | The mean values of seed protein content for 144 lines and 4 parents
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FIGURE S2 | Linkage disequilibrium (LD) decays in the four-way recombinant line
(FW-RIL) population. (A) The LD decay rate was estimated as the squared
correlation coefficient (r2) using all pairs of SNPs located within 10 Mb of physical
distance. The dashed line in red indicates the position where r2 dropped to half of
its maximum value, and the dashed line in green indicates the position where r2

dropped fast and then tended to flatten. (B) Enlarged display of the area in the
purple frame in (A).

TABLE S1 | Summary of details of planting conditions in field experiments.

TABLE S2 | Statistical characteristics of protein content in the parents and the
FW-RIL populations grown in twenty environments.

TABLE S3 | The correlation analysis between each pair of environment.

TABLE S4 | Significant QTNs for seed protein content across 20 environments
using the five multi-locus GWAS methods.

TABLE S5 | The information of pathways of 17 genes annotated in the KEGG
database.

TABLE S6 | The information of orthologous protein families of 17 genes annotated
in the KEGG database.
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Brassica napus L. is a widely cultivated oil crop and provides important resources

of edible vegetable oil, and its quality is determined by fatty acid composition and

content. To explain the genetic basis and identify more minor loci for fatty acid

content, the multi-locus random-SNP-effect mixed linear model (mrMLM) was used

to identify genomic regions associated with fatty acid content in a genetically diverse

population of 435 rapeseed accessions, including 77 winter-type, 55 spring-type,

and 303 semi-winter-type accessions grown in different environments. A total of 149

quantitative trait nucleotides (QTNs) were found to be associated with fatty acid content

and composition, including 34 QTNs that overlapped with the previously reported loci,

and 115 novel QTNs. Of these, 35 novel QTNs, located on chromosome A01, A02,

A03, A05, A06, A09, A10, and C02, respectively, were repeatedly detected across

different environments. Subsequently, we annotated 95 putative candidate genes by

BlastP analysis using sequences from Arabidopsis thaliana homologs of the identified

regions. The candidate genes included 34 environmentally-insensitive genes (e.g.,CER4,

DGK2, KCS17, KCS18, MYB4, and TT16) and 61 environment-sensitive genes (e.g.,

FAB1, FAD6, FAD7, KCR1, KCS9, KCS12, and TT1) as well as genes invloved in the

fatty acid biosynthesis. Among these, BnaA08g08280D and BnaC03g60080D differed

in genomic sequence between the high- and low-oleic acid lines, and might thus be the

novel alleles regulating oleic acid content. Furthermore, RT-qPCR analysis of these genes

showed differential expression levels during seed development. Our results highlight the

practical and scientific value of mrMLM or QTN detection and the accuracy of linking

specific QTNs to fatty acid content, and suggest a useful strategy to improve the fatty

acid content of B. napus seeds by molecular marker-assisted breeding.

Keywords: Brassica napus L., candidate genes, GWAS, mrMLM, fatty acid content

INTRODUCTION

Rapeseed (Brassica napus L.) is one of the most important oil crops in the world, providing not only
edible vegetable oil but also its potential use in lubricants and biofuels (Saeidnia and Gohari, 2012).
However, the physical, chemical, and nutritional qualities of rapeseed oil depend mainly on its fatty
acid composition, which consists approximately of 60% oleic acid (C18:1), 4% palmitic acid (16:0),
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and 2% stearic acid (18:0) (Bauer et al., 2015; Wen et al.,
2015). Rapeseed oil is considered by many nutritionists to be
ideal for human nutrition and superior to many other plant
oils (Zhao et al., 2008; Qu et al., 2017), as it can be heated to
high temperatures without smoking (Miller et al., 1987), and
reduces levels of undesirable low-density lipoprotein cholesterol
in the blood plasma, reducing the risk of arteriosclerosis (Chang
and Huang, 1998). Optimizing the fatty acid composition is an
important breeding objective for rapeseed cultivar development.

In B. napus, fatty acid metabolism is influenced by both
genotype and environmental factors. Efforts to improve the
oil quality have yielded many high oleic acid Brassica lines,
including B. rapa (Tanhuanpää et al., 1996), B. carinata (Velasco
et al., 1997), and B. napus (Pleines and Friedt, 1989; Fei
et al., 2012). Further, oleic acid concentrations >70% have
already been achieved in rapeseed through hybrid breeding
methods (Zhang et al., 2009). Fatty acid content is a typical
quantitative trait controlled by multiple genes that regulate
its desaturation (Wang et al., 2015; Chen et al., 2018), and
numerous quantitative trait loci (QTLs) for fatty acids have
been mapped to all 19 chromosomes of B. napus, with most
being found on chromosomes A01, A02, A03, A08, A10, C03,
A04, A07, A09, C01, C06, and C08 (Burns et al., 2003; Zhao
et al., 2008; Liu and Li, 2014; Bauer et al., 2015; Lee et al.,
2015; Teh, 2015; Wen et al., 2015; Javed et al., 2016). With
the increasing availability of whole-genome-sequences and SNP
array development, association mapping represents a powerful
approach for dissecting the genetic basis of complex quantitative
traits at high resolution, which could significantly increase the
precision of estimating QTL locations (Meuwissen and Goddard,
2000). Recently, genome-wide association studies (GWAS) have
been performed to detect the genetic variation associated with
important agronomic traits in rapeseed using the Illumina
Infinium Brassica 60K SNP array (Delourme et al., 2013; Li
et al., 2014; Lu et al., 2014; Hatzig et al., 2015; Luo et al., 2015),
including seed weight and quality (Li et al., 2014), seed oil content
in a panel of 521 rapeseed accessions (Liu et al., 2016), and
the composition of seven fatty acids (Qu et al., 2017). Although
these studies have revealed loci for associated with fatty acid
traits, no beneficial alleles have been detected within the B. napus
accessions.

Numerous studies showed that FATTY ACID DESATURASE
2 (FAD2) is the major gene responsible for the desaturation of
oleic acid to linolenic acid (Hu et al., 2006; Peng et al., 2010;
Yang et al., 2012), and four paralogs of FAD2 were previously
identified in B. napus (Scheffler et al., 1997; Yang et al., 2012).
These paralogs were mainly expressed in the developing seeds,
suggesting possible roles in controlling oleic acid content in
B. napus (Xiao et al., 2008). In addition, KCS18, is known to play
a crucial role in regulating erucic acid biosynthesis in B. napus
(Wang et al., 2008; Wu et al., 2008; Li et al., 2014). However, the
identified QTL were not cloned and undertaken for contributing
to the minor fatty acids. Furthermore, the genetic basis of fatty
acid synthesis is still unclear.

The multi-locus random-SNP-effect mixed linear model
(mrMLM) is emerged as a powerful tool for quantitative trait
nucleotide (QTN) detection and QTN effect estimation for

complex traits (Wang et al., 2016; Li et al., 2017; Chang
et al., 2018; Peng et al., 2018). For example, Li et al. (2017)
detected 38 significantly-associated loci and identified numerous
highly-promising candidate genes (e.g., TAC1, SGR1, SGR3, and
SGR5), for branch angle across 472 rapeseed accessions. Zhang
et al. (2018) identified 127 significant QTNs for stalk lodging
resistance-related traits using mrMLM in a population of 257
maize inbred lines. As reported byMa et al. (2018), 127 significant
QTNs with maize embryonic callus regenerative capacity were
identified in a population of 144 maize inbred lines, and many
candidate genes were reported to relate with auxin transport, cell
fate, seed germination, or embryo development, respectively. In
the present study, we analyzed the fatty acid composition in 77
winter varieties, 55 spring varieties, and 303 semi-winter varieties
of rapeseed grown in three environments, and genotyped all of
the accessions using the high-through Brassica 60K SNP array
(Clarke et al., 2016). Then, 32,543 SNPs from the 60K SNP array
were used for genome-wide association analysis usingmrMLM.
In total, 149 QTNs were identified using mrMLM, suggesting
that this is an effective model for identifying candidate genes
underlying complex traits. Subsequently, 95 candidate genes were
annotated using BlastP against A. thaliana homologs, providing
insight into the genetic control of fatty acid content in B. napus.
Furthermore, novel fatty acid content-associated SNPs identified
here may be useful for marker-based breeding programs aimed at
improving the fatty acid content of B. napus seeds.

MATERIALS AND METHODS

Plant Materials
A diversity panel consisting of 55 spring, 77 winter, and 303 semi-
winter rapeseed accessions (B. napus; Supplementary Table S1)
was used for the association analysis. These accessions were
grown in three growing seasons (2015–2016, 2016–2017, and
2017–2018) in Beibei (106.38◦E, 29.84◦N), Chongqing, China.
Three rows of 10–12 plants per accession were established in
the experimental fields with a randomized complete block design
and three replications. Self-pollinated seeds were harvested from
plants at complete physiological maturity and used for the fatty
acid analysis.

Fatty Acid Measurement and Statistical
Analysis
Seeds (200mg) were homogenized with a pestle and extracted
in 2mL petroleum ether:ether (1:1) for 40min, and methylated
with 1mL KOH/methanol (0.4mol L−1). The supernatants
separated by adding distilled water were identified by gas-liquid
chromatography on aModel GC-2010 (Shimadzu, Kyoto, Japan).
Chromatographic analysis was carried out using a fused silica
capillary column DB-WAX (30m × 0.246mm × 0.25 um) with
default parameters (Qu et al., 2017). Fatty acid profiles were
calculated as a percentage of total fatty acids in the seeds, and
optimized with an R script of the best linear unbiased prediction
(BLUP) (Merk et al., 2012). The resulting values for each
accession were used in the association analysis. All experiments
were performed in triplicate, and the mean, standard deviation
(SD), coefficient of variation (CV), and minimum (Min) and
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maximum (Max) values of the oleic acid content were calculated
using SPSS 15.0 (IBM Corp, Armonk, NJ, USA).

SNP Genotyping Data Acquisition and
Analysis
The methods used for SNP genotyping and mapping were
described in previous reports of Li et al. (2014) and Liu
et al. (2016). Using the Brassica 60K Illumina R© Infinium SNP
array (Clarke et al., 2016), the genotype of each accession was
generated at the National Subcenter of Rapeseed Improvement
in Wuhan (Huazhong Agricultural University, Wuhan, China).
The low quality SNPs (call frequency <0.9 and a minor allele
frequency ≤0.05) were filtered in all accessions. In addition,
SNPs not accurately mapped to the B. napus genome were
excluded. The probe sequences of 52,157 SNPs were used to
perform a local BlastN search against the B. napus “Darmor-bzh”
reference genome (version 4.1, http://www.genoscope.cns.fr/
brassicanapus/data/; Chalhoub et al., 2014) using our previously
published method (Wei et al., 2015). In total, 32,543 SNPs were
analyzed further.

The Q matrix of population structure was calculated by a
Bayesian model-based analysis in STRUCTURE 2.1 (Pritchard
et al., 2000) with published parameters of Falush et al. (2003)
and Qu et al. (2017). The optimal number of K values (K = 2;
Supplementary Figure S1) was determined using the Evanno
method (Evanno et al., 2005). The Q matrix was selected as the
fixed covariate in the subsequent association analysis (Gajardo
et al., 2015). To visualize genetic relatedness among all genotypes,
the principal component analysis (PCA) was constructed using
the GCTA tool (Yang et al., 2011). The relative kinship matrix
for each association panel was calculated using SPAGeDi (Hardy
and Vekemans, 2002), and the negative values were defined as
zero between two individuals, following the method of Yu et al.
(2006).

Genome-Wide Association Analysis
The mrMLM significantly improved the power and precision of
the GWAS, which was previously used in B. napus (Li et al., 2017).
Therefore, the multi-locus GWAS method (mrMLM, https://
cran.r-project.org/web/packages/mrMLM.GUI/index.html) was
performed to evaluate the trait-SNP association analysis in
this study (Wang et al., 2016). Moreover, the phenotypic and
genotypic datasets, kinship (K), and population structure (Q)
were imported into the R package mrMLM, and significantly
associated SNPs were identified by mrMLM with the critical log
of odds (LOD) score of 3.0 (p = 0.0002) (Wang et al., 2016).
The QTNs were named using the nomenclature described by
McCouch et al. (1997). For example, q-C16:0-A03-1 indicated the
first locus located on chromosome A03 associated with palmitic
acid.

Candidate Gene Prediction
Candidate genes were identified using significant SNP markers,
which were detected using mrMLM (Wang et al., 2016).
The association regions and 100-kb region upstream or
downstream of peak SNPs associated with fatty acid content
were identified based on the physical distance of chromosomes

of significant associated-trait SNPs in the B. napus “Darmor-
bzh” genome (version 4.1; Chalhoub et al., 2014). Subsequently,
putative candidate genes were predicted according to the
annotation of the SNP-tagged genome regions and confirmed
by BlastP searches against the Arabidopsis genome with an
E-value ≤1E-10. The function of these candidate genes was
further annotated using the Kyoto Encyclopedia of Genes
and Genomes (KEGG) database (https://www.genome.jp/kegg/
pathway.html). Highly-orthologous genes involved in fatty acid
biosynthesis were analyzed further, which were defined as the
environment-insensitive and -sensitive genes according to the
frequency detected between the different ecological genotypes
and environments. To identify the directed functional genes for
fatty acid, sequences of these candidate genes, isolated from
plants with higher- and lower fatty acid levels, were aligned using
ClustalW (Thompson et al., 1994) implemented in Geneious
4.8.5 software (Biomatters, Auckland, New Zealand).

Analysis of the Expression Profiles of
Candidate Fatty Acid-Associated Genes
Total RNA was extracted from the seeds of B. napus cultivar
Zhongshuang No. 11 (ZS11) at 15 developmental stages (3–49
days after pollination) using the RNAprep Pure Plant Kit
(Tiangen Biotech, Beijing, China), following the manufacturer’s
instructions. The cDNA library construction and RNA
sequencing were performed using Novogene Bioinformatics
Technology (Beijing, China). Transcriptome sequencing datasets
were deposited in the BioProject database (BioProject ID
PRJNA358784). The data were analyzed as previously described
(Qu et al., 2015), and the expression profiles of the candidate
genes were quantified in terms of fragments per kilobase of exon
per million mapped fragments (FPKM), using Cufflinks with
default parameters (Trapnell et al., 2012). These transcriptome
datasets were previously deemed suitable for selecting candidate
genes (Zhou et al., 2017). Candidate genes were validated
using RT-qPCR analysis. Three biological replicates and three
technical replicates were performed on a CFX96 Real-Time
PCR system (Bio-Rad, Laboratories, Hercules, CA, USA), and
the expression levels of candidate genes were calculated using
the 2−11Ct method (Zhou et al., 2017). Hence, the expression
values of the 106 candidate genes were normalized by Log2
(expression values). Heatmaps of the candidate genes were
drafted using HemI 1.0 (http://hemi.biocuckoo.org/). The
specific primer sequences used in this study were obtained from
the qPCR Primer Database (Lu et al., 2017) and are listed in
Supplementary Table S3.

RESULTS

Phenotypic Variation and Correlation
Among Different Rapeseed Genotypes
Extensive variation in fatty acid content was observed between
rapeseed plants of different genotypes grown in over 3 years
(Table 1). The content of palmitic acid, stearic acid and linolenic
acid varied slightly among the different ecotypic rapeseed
accession at different years. For example, the mean palmitic acid
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TABLE 1 | Statistical analysis of fatty acid content in different ecological types of rapeseed grown in different environments.

Fatty acid Env. Min. Max. Mean ± SD CV(%) Skewness Kurtosis FG FE

Palmitic acid 16Sp 2.93 5.44 3.92 ± 0.07 13.27 0.15 0.29 7.65** 4.82*

17Sp 2.53 5.49 3.99 ± 0.09 17.29 0.05 −0.19

18Sp 3.03 5.14 4.18 ± 0.07 10.77 −0.36 0.19

16Win 2.77 5.06 4.04 ± 0.06 12.13 −0.35 0.18 6.81** 3.38*

17Win 2.66 5.78 4.09 ± 0.08 16.14 0.20 −0.45

18Win 2.92 5.15 4.12 ± 0.05 10.44 −0.26 0.26

16Semi 3.19 6.10 4.89 ± 0.07 12.07 −0.80 0.64 7.10** 26.45**

17Semi 2.86 5.29 4.38 ± 0.06 14.16 −0.75 −0.46

18Semi 2.69 5.04 4.20 ± 0.06 14.52 −0.93 −0.30

Stearic acid 16Sp 0.92 2.94 1.85 ± 0.06 13.78 0.13 −0.07 5.57** 39.73**

17Sp 1.04 1.96 1.42 ± 0.03 15.49 0.43 −0.21

18Sp 0.24 0.79 0.33 ± 0.03 13.64 −0.01 −0.69

16Win 0.70 3.98 1.86 ± 0.07 13.87 0.78 1.04 9.62** 17.99**

17Win 0.55 3.46 1.47 ± 0.05 12.65 1.16 3.42

18Win 0.05 0.80 0.36 ± 0.03 58.33 0.00 −0.90

16Semi 0.09 1.06 0.62 ± 0.03 13.87 −0.68 0.23 8.97** 26.96**

17Semi 1.05 2.89 2.08 ± 0.05 12.60 −0.45 −0.81

18Semi 0.58 2.83 1.91 ± 0.05 16.18 −0.68 −0.25

Oleic acid 16Sp 14.49 74.02 56.37 ± 2.53 33.30 −1.22 −0.10 9.39** 309.73**

17Sp 14.69 72.21 53.16 ± 2.65 36.98 −1.15 −0.36

18Sp 23.09 69.20 50.29 ± 1.86 25.33 −0.80 −0.40

16Win 10.97 76.03 56.49 ± 2.34 36.38 −1.27 −0.04 7.33** 179.39**

17Win 10.65 76.19 53.73 ± 2.45 39.96 −1.08 −0.53

18Win 11.78 76.17 52.24 ± 1.99 30.88 −1.07 −0.20

16Semi 10.66 71.37 52.89 ± 1.73 27.15 −1.75 1.75 9.97** 269.64**

17Semi 14.12 73.65 52.94 ± 1.88 34.91 −0.95 −0.77

18Semi 7.91 83.00 49.29 ± 2.11 40.62 −0.87 −0.77

Linoleic acid 16Sp 11.68 26.15 17.38 ± 0.42 17.89 0.50 −0.09 8.67** 3.57*

17Sp 10.98 28.32 18.76 ± 0.54 21.54 0.37 −0.20

18Sp 11.20 24.41 18.13 ± 0.45 17.21 −0.27 −0.52

16Win 11.34 27.61 17.13 ± 0.31 15.70 0.52 1.75 5.30** 3.21*

17Win 10.07 26.87 17.87 ± 0.44 21.66 0.24 −0.54

18Win 10.92 23.10 17.31 ± 0.33 15.60 −0.05 −0.64

16Semi 12.66 28.07 22.34 ± 0.44 16.47 −0.72 0.10 5.57** 69.05

17Semi 11.34 22.86 17.92 ± 0.29 15.85 −0.73 −0.51

18Semi 10.41 21.42 16.79 ± 0.29 16.62 −0.72 −0.64

Linolenic acid 16Sp 4.90 10.04 7.39 ± 0.16 16.37 0.09 −0.55 6.82** 35.98**

17Sp 6.73 12.15 9.12 ± 0.16 12.83 0.23 −0.09

18Sp 5.95 14.61 9.34 ± 0.22 15.95 0.51 2.45

16Win 2.15 11.41 7.45 ± 0.19 12.82 −0.15 0.62 7.16** 23.34**

17Win 6.26 11.36 8.75 ± 0.12 12.11 −0.08 −0.35

18Win 5.60 11.13 8.79 ± 0.15 13.42 −0.03 0.02

16Semi 8.31 12.31 10.02 ± 0.11 9.08 0.36 −0.04 6.85** 35.01**

17Semi 6.54 12.06 8.84 ± 0.11 12.78 0.30 −0.25

18Semi 6.88 11.69 8.84 ± 0.10 10.52 0.70 0.92

Eicosenoic acid 16Sp 1.92 17.16 3.58 ± 0.72 50.00 1.20 0.09 9.27** 9.41**

17Sp 2.31 17.03 3.10 ± 0.68 63.55 1.35 0.48

(Continued)

Frontiers in Plant Science | www.frontiersin.org January 2019 | Volume 9 | Article 1872203

https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/plant-science#articles


Guan et al. GWAS for Fatty Acid Contents

TABLE 1 | Continued

Fatty acid Env. Min. Max. Mean ± SD CV(%) Skewness Kurtosis FG FE

18Sp 2.91 16.30 6.96 ± 0.54 53.30 0.92 −0.25

16Win 1.12 18.05 3.07 ± 0.58 166.12 1.35 0.39 4.76** 12.92**

17Win 2.01 16.81 2.47 ± 0.51 183.00 1.54 0.98

18Win 2.21 16.95 6.09 ± 0.45 60.10 1.17 0.32

16Semi 1.01 15.54 4.51 ± 0.43 79.60 1.56 1.70 7.33** 6.77**

17Semi 0.78 19.44 4.88 ± 0.61 122.75 0.96 −0.52

18Semi 0.22 22.34 7.42 ± 0.68 86.52 0.69 −0.80

Erucic acid 16Sp 2.42 53.41 25.82 ± 4.00 69.25 0.06 −1.50 7.99** 9.618**

17Sp 1.19 52.77 13.42 ± 1.95 101.64 1.22 0.34

18Sp 0.00 36.13 10.38 ± 1.53 100.96 1.26 0.28

16Win 3.04 52.83 32.92 ± 3.73 54.28 −0.41 −1.41 9.35** 28.95**

17Win 0.24 40.70 10.90 ± 1.40 107.34 1.30 0.31

18Win 0.00 38.61 10.15 ± 1.54 123.05 1.11 −0.37

16Semi 0.00 37.65 5.82 ± 1.40 199.83 1.90 1.93 6.24** 35.21**

17Semi 0.00 42.92 10.11 ± 1.57 152.92 1.11 −0.62

18Semi 0.00 48.58 12.15 ± 1.77 138.52 1.01 −0.74

Env., environment; Min., Minimum; Max., Maximum; SD, standard deviation; CV, coefficient of variation; Sp, Spring-type rapeseed; Win, Winter-type rapeseed; Semi, Semi-winter-type

rapeseed; 16, 17, and 18 represent the 2016, 2017, and 2018 growing seasons in Chongqing, China, respectively. FG and FE : the F-values for genotypes and environments, respectively.

* and **: the 0.05 and 0.01 levels of significance, respectively.

content varied from 2.53 to 5.49% in spring rapeseed, 2.66 to
5.78% in winter rapeseed, and 2.69 to 6.10% in semi-winter
rapeseed. The stearic acid content varied from 0.24 to 2.94%
in spring rapeseed, 0.05 to 3.98% in winter rapeseed, and 0.09
to 2.89% in semi-winter rapeseed. The linolenic acid content
varied from 4.90 to 14.61% in spring rapeseed, 2.15 to 11.41%
in winter rapeseed, and 6.54 to 12.31% in semi-winter rapeseed.
However, considerable quantitative variation was found for the
content of oleic acid, linoleic acid, eicosenoic acid, and erucic
acid. For instance, the mean oleic acid content ranged from
14.49 to 72.21% in spring rapeseed, 10.65 to 76.19% in winter
rapeseed, and 7.91 to 83.00% in semi-winter rapeseed; the linoleic
acid content ranged from 10.98 to 28.32%, 10.07 to 27.61%, and
10.41 to 28.07% in spring, winter, and semi-winter rapeseed,
respectively, the eicosenoic acid content were ranged from 1.92 to
17.16%, 1.12 to 18.05%, and 0.22 to 22.34% in spring, winter and
semi-winter rapeseed, respectively, and the erucic acid content
ranged from 0 to 53.41 µmol g−1, 0 to 52.83 µmol g−1, and 0
to 48.58 µmol g−1 in spring, winter and semi-winter rapeseed,
respectively (Table 1). Moreover, the largest CV (coefficient of
variation) was found among the oleic acid, eicosenoic acid, and
erucic acid content in different ecotypic rapeseed at different
environments, ranging from 25.33 to 40.62, 50.00 to 183.00%,
and 54.28 to 199.83%, respectively (Table 1), indicating that
extensive variation was widely detected in the panel of accessions.
In addition, the phenotypic values of fatty acid content were
displayed among the ecotypic rapeseed accessions at different
years (Figures 1A–U, Table 1). Of these, the palmitic acid, stearic
acid, linoleic acid, and linolenic acid content were normally
distributed, but the eicosenoic, oleic, and erucic acids content
were skewed for three genotypic populations in different years
(Figures 1A–U). Plants with higher oleic acid content were more

common than those with lower content for each ecological type
of rapeseed (Figures 1G–I). Analysis of variance (ANOVA) was
performed among the spring, winter, and semi-winter rapeseed
ecological types in different years, and showed that genotype and
environment have significant effects on the fatty acid content of
rapeseed (Table 1).

Genome-Wide Association Analysis of
Fatty Acid via mrMLM
For palmitic acid (C16:0) content, 11 QTNs were detected
on chromosomes A01, A03, A04, A06, A07, A08, C01, and
C03, respectively (Table 2). Of these, three consensus QTNs (q-
C16:0-A06, q-C16:0-A08-2, and q-C16:0-C03-2) were commonly
detected for palmitic acid among different ecotypic rapeseed and
ecotypic rapeseed cultivated in different years, providing useful
information for searching for candidate genes associated with
palmitic acid biosynthesis. However, q-C16:0-A01, q-C16:0-A04,
q-C16:0-A06, and q-C16:0-A07 were mainly found in the spring-
type and all 3 years, and other QTNs were detected among
different ecotypic rapeseed and years (Table 2).

For stearic acid (C18:0) content, a total of 9 QTNs were
resolved and distributed on A03, A06, A08, A09, A10, and C03,
respectively (Table 3). Among them, two QTNs, q-C18:0-A08,
and q-C18:0-C03-2, were detected in different ecotypic rapeseed
and environments, and others were detected in different ecotypic
rapeseed grown in at least two different environments.

For oleic acid (C18:1) content, 21 QTNs were detected
and distributed throughout of the B. napus genome, including
chromosomes A01, A02, A03, A05, A08, A09, C01, C02, C03,
C04, C05, C07, C08, and C09, respectively (Table 2). Of these,
seven QTNs (q-C18:1-A08-3, q-C18:1-A08-4, q-C18:1-A09, q-
C18:1-C03, q-C18:1-C04, q-C18:1-C08, and q-C18:1-C09) were
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FIGURE 1 | The frequency distribution of fatty acid contents in the different rapeseed accessions grown in different environments. The percentage indicates the

proportion of the total dry weight of the seed represented by fatty acid composition. Sp, Spring-type rapeseed; Win, Winter-type rapeseed; Semi, Semi-winter-type

(Continued)

Frontiers in Plant Science | www.frontiersin.org January 2019 | Volume 9 | Article 1872205

https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/plant-science#articles


Guan et al. GWAS for Fatty Acid Contents

FIGURE 1 | rapeseed; 16, 17, and 18 represent the 2016, 2017, and 2018 growing seasons in Chongqing, China. (A–C) The frequency distribution of Palmitic acid

contents in Spring-type, Winter-type, and Semi-winter-type rapeseed; (D–F) The frequency distribution of Stearic acid contents in Spring-type, Winter-type, and

Semi-winter-type rapeseed; (G–I) The frequency distribution of Oleic acid contents in Spring-type, Winter-type, and Semi-winter-type rapeseed; (J–L) The frequency

distribution of Linoleic acid contents in Spring-type, Winter-type, and Semi-winter-type rapeseed; (M–O) The frequency distribution of Linolenic acid contents in

Spring-type, Winter-type, and Semi-winter-type rapeseed; (P–R) The frequency distribution of Eicosenoic acid contents in Spring-type, Winter-type, and

Semi-winter-type rapeseed; (S–U) The frequency distribution of Erucic acid contents in Spring-type, Winter-type, and Semi-winter-type rapeseed.

co-localized in the same genomic regions of A08, A09, C03, C04,
C08, and C09 using mrMLM and the PCA+K model (Qu et al.,
2017). These seven QTNs were considered the major candidate
regions for oleic acid content.

For linoleic acid (C18:2) content, fourteen QTNs were
detected and mapped on chromosomes A01, A03, A04, A06,
A07, A08, A09, A10, C01, C03, C05, C07, and C09, respectively
(Table 2). Of these, q-C18:2-A08-2, q-C18:2-A09, q-C18:2-C03,
and q-C18:2-C07 were identified in our previous research (Qu
et al., 2017).

For linolenic acid (C18:3) content, a total 48 QTNs were found
and covered almost the whole B. napus genome (Table 2). Among
them, seven highly identical QTNs distributed on chromosome
A01, A02, A05, A06, A08, A09, and C02, along with other minor
loci could be identified in different ecotypic rapeseed accessions
in at least 1 year of growth (Table 2).

For eicosenoic acid (C20:1) content, 30 QTNs were obtained,
including seven QTNs that overlapped with previously published
QTNs (Qu et al., 2017), and were distributed on chromosome
A01, A04, A06, A08, C03, C07, and C09, respectively (Table 2).
The novel loci for eicosenoic acid content also displayed
marked variation among the different ecotypic rapeseeds and
environments.

For erucic acid (C22:1) content, 16 QTNs were detected
and mapped on chromosome A01, A02, A03, A06, A08, A09,
A10, C02, C03, C05, C07, and C08, respectively (Table 2). Of
these, two QTNs (q-C22:1-A08 and q-C22:1-C03) had been
widely considered as the major genetic regions of A08 and C03,
consistent with the findings of published works (Li et al., 2014;
Lee et al., 2015; Xu et al., 2015; Qu et al., 2017). In addition, two
QTNs (q-C22:1-A09-1 and q-C22:1-C08-1) associated with erucic
acid content were also detected in different ecotypic rapeseed and
environments (Table 2), indicating that mrMLM is a powerful
and accurate tool to detect QTNs and estimate the effect of QTNs
on complex traits.

In all, 149 QTNs associated with fatty acid content were
detected using mrMLM (Table 2, Supplementary Table S2),
while only 62 associated regions were detected using the PCA
+ K model in TASSEL 5.2.1 (Qu et al., 2017). Among these,
34 QTNs were overlapped, including the association regions on
A08 and C03, which had been widely reported previously (Wang
et al., 2015; Liu et al., 2016; Qu et al., 2017), indicating that these
results were credible and reproducible. In addition, 115 novel
loci were identified for fatty acids via mrMLM compared with
MLM (PCA+K; Table 2), indicating that a multi-locus random
effect MLM method was better able to detect QTNs of complex
quantitative traits. Furthermore, of these, 30.43% novel QTNs
(35/115) were repeatedly detected for fatty acid content among
different ecotypic rapeseed accessions and environments, located

on chromosome A01, A02, A03, A05, A06, A09, A10, and C02,
respectively (bold in Table 2), and other novel QTNs (80/115)
were found for fatty acid content in a single environment.
Among these QTNs, 29 were simultaneously detected in
three ecotypic rapeseed, with greater QTN variation in spring
and semi-winter rapeseed (Figure 2, Supplementary Table S2).
Our results provideinsight into the mechanism underlying
fatty acid composition, and lay the foundation for marker
assisted selection in breeding projects for improved rapeseed
genotypes with high oil quality and an ideal fatty acid
composition.

Identification of Candidate Genes
To predict candidate genes for loci significantly associated with
fatty acid content, the reported and repeadly detected novel
QTNs were used to confirm the genomic regions in the B. napus
“Darmor v4.1” reference genome (Chalhoub et al., 2014). We
identified five environment-insensitive and fifteen environment-
sensitive association regions and screened for candidate genes
within these regions. Subsequently, we extracted gene sequences
within the GWAS peaks in candidate association regions, and
identified 95 putative genes that possibly influence fatty acid
content (Table 3). Of these, 63.16% candidate genes (60/95) were
screened in the overlapping and repeatedly detected association
regions, while the remaining genes (35/95) were detected on
the single QTN regions (Table 3). Using peak SNPs on A08
and C03 (Bn-A08-p13066424 and Bn-scaff_15794_3-p89999,
respectively), 9 and 4 candidate genes were selected in the
association regions on each chromosome, respectively (Table 3).
BnaA08g11130D and BnaC03g65980D are putative paralogs of
3-ketoacyl-CoA synthase 18 (KCS18), while BnaA08g11140D and
BnaC03g66040D are putative paralogs of KCS17 (Table 3), based
on comparisons of the physical positions of genes associated
with erucic acid traits in a GWAS (Wu et al., 2008; Li et al., 2014;
Lee et al., 2015; Xu et al., 2015), indicating that there is a strong
correlation between GWAS peak regions and candidate genes.
In addition, the putative candidate genes were characterized
and annotated, such as 3-methylcrotonyl-CoA carboxylase
(MCCB, BnaA08g11650D), TRANSPARENT TESTA16
(TT16, BnaA09g05410D, and BnaC02g42240D), and MYB4
(BnaC03g60080D), which might be environment-insensitive
genes located on chromosome A06, A09, and C02
respectively (Table 3). Of these, 17 genes had been identified that
might be involved in the fatty acid pathway, and 12 members
were annotated for fatty acid metabolism in KEGG analysis
(Table 3).

The expression of candidate genes in low-frequency
association regions identified in this study were influenced
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TABLE 2 | Quantitative trait nucleotides (QTNs) associated with fatty acid content in B. napus accessions grown in different environments.

QTN Chr SNP associated Position (bp) –log10(P) Environment

q-C16:0-A01 A01 Bn-A01-p22085117 18711173 8.54 16Sp, 17Sp, 18Sp

q-C16:0-A03-1 A03 Bn-A03-p20145024 19008703 9.93 17Sp, 17Semi

q-C16:0-A03-2 A03 Bn-A03-p28560659 27022904 5.13 16Win, 17Sp

q-C16:0-A04 A04 Bn-A04-p14687930 15158346 6.72 16Sp, 17Sp, 18Sp

q-C16:0-A06 A06 Bn-A06-p16071214 17559622 5.68 16Sp, 17Sp, 18Sp

q-C16:0-A07 A07 Bn-A07-p10430301 11624458 7.78 17Sp, 18Sp

q-C16:0-A08-1 A08 Bn-scaff_16110_1-p214256 5357890 7.78 16Win, 17Sp, 18Sp, 18Semi

q-C16:0-A08-2 A08 Bn-A08-p13379983 11124385 7.70 16Win, 16Semi, 17Sp, 17Semi, 18Semi, 18Win

q-C16:0-C01 C01 Bn-A01-p12593802 16875948 15.26 17Win, 18Sp

q-C16:0-C03-1 C03 Bn-scaff_17298_1-p1471882 23560777 6.12 16Win, 17Win

q-C16:0-C03-2 C03 Bn-scaff_15794_3-p108033 55728615 8.09 16Sp,16Win, 16Semi, 17Sp, 17Semi, 18Semi

q-C18:0-A03-1 A03 Bn-A03-p21942870 20741914 6.65 16Semi, 18Win

q-C18:0-A03-2 A03 Bn-A03-p27339890 25582011 10.02 16Win, 17Sp

q-C18:0-A06 A06 Bn-A06-p6341389 5792362 5.22 17Sp, 18Sp

q-C18:0-A08 A08 Bn-A08-p10068904 8070062 5.39 16Win, 16Semi, 17Sp, 17Semi, 18Semi, 18Win

q-C18:0-A09-1 A09 Bn-A09-p3234323 3135040 5.30 16Semi, 17Sp, 18Win

q-C18:0-A09-2 A09 Bn-A09-p7329993 5542359 7.85 16Sp, 17Sp, 17Win

q-C18:0-A10 A10 Bn-A10-p13965313 13956813 11.41 16Sp, 17Sp

q-C18:0-C03-1 C03 Bn-scaff_17298_1-p779577 23106957 5.67 16Win, 17Sp, 17Win

q-C18:0-C03-2 C03 Bn-scaff_17457_1-p493971 53921047 6.00 17Semi, 18Sp

q-C18:1-A01-1 A01 Bn-A01-p2825565 2327566 8.27 16Semi, 18Sp

q-C18:1-A01-2 A01 Bn-A01-p26369651 20893064 11.54 17Sp, 18Sp

q-C18:1-A02-1 A02 Bn-A02-p10591779 7458917 7.37 16Semi, 18Sp, 18Win

q-C18:1-A02-2 A02 Bn-A02-p21061002 18906336 11.48 16Sp, 18Sp

q-C18:1-A02-3 A02 Bn-A02-p22386317 20775741 5.74 17Sp, 18Sp

q-C18:1-A03 A03 Bn-A03-p20369417 19241578 6.16 17Semi, 18Semi

q-C18:1-A05 A05 Bn-A05-p20425452 18636249 11.54 17Sp, 18Sp

q-C18:1-A08-1 A08 Bn-A08-p4077507 3476858 7.15 16Semi, 17Semi, 18Win

q-C18:1-A08-2 A08 Bn-A08-p7814432 6786988 7.38 16Semi, 17Semi, 18Semi, 18Win

q-C18:1-A08-3 A08 Bn-A08-p10068904 8070062 12.15 16Sp, 16Win, 16Semi, 17Sp, 17Win, 17Semi,

18Sp, 18Win, 18Semi

q-C18:1-A08-4 A08 Bn-A08-p12820786 10587675 13.42 16sp, 16Win, 16Semi, 17sp, 17Win, 17Semi, 18Sp,

18Semi

q-C18:1-A08-5 A08 Bn-scaff_24726_1-p33555 14029706 8.52 16Sp, 17Sp

q-C18:1-A09 A09 Bn-A09-p3051349 2971334 7.53 16Sp, 16Win, 17Semi, 18Win, 18Semi

q-C18:1-C01 C01 Bn-scaff_21015_1-p34786 32559311 13.22 16Sp, 16Semi, 18Sp

q-C18:1-C02 C02 Bn-scaff_16139_1-p1277806 45267495 8.71 16Sp, 16Win, 17Sp, 17Win, 18Semi

q-C18:1-C03 C03 Bn-scaff_15794_3-p89999 55717350 10.88 16Win, 16Sp, 16Semi, 17Sp, 17Win, 18Win

q-C18:1-C04 C04 Bn-scaff_16394_1-p1090896 32408105 6.18 17Sp, 17Semi, 18Sp

q-C18:1-C05 C05 Bn-scaff_20901_1-p1505546 2515848 11.54 16Semi, 18Sp

q-C18:1-C07 C07 Bn-scaff_16069_1-p431757 36777489 8.45 16Win, 17Sp, 18Sp, 18Win

q-C18:1-C08 C08 Bn-scaff_16361_1-p2793822 30283886 12.95 16Semi, 17Sp, 17Win, 18Sp

q-C18:1-C09 C09 Bn-scaff_16456_1-p415818 35068732 9.32 17Win, 18Sp

q-C18:2-A01 A01 Bn-A01-p4167795 3847687 7.15 17Semi, 18Sp

q-C18:2-A03 A03 Bn-A03-p20369417 19241578 7.04 17Semi, 17Sp

q-C18:2-A04 A04 Bn-A04-p14687930 15158346 8.26 17Sp, 18Sp

q-C18:2-A06 A06 Bn-A06-p22331680 21365690 5.08 17Sp, 18Sp

q-C18:2-A07 A07 Bn-A07-p14682292 22343999 6.88 17Sp, 18Win

q-C18:2-A08-1 A08 Bn-scaff_16110_1-p214256 5357890 12.18 16Semi, 17Sp, 17Semi
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TABLE 2 | Continued

QTN Chr SNP associated Position (bp) –log10(P) Environment

q-C18:2-A08-2 A08 Bn-A08-p14351709 12051686 12.18 16Semi, 17Sp, 17Semi, 18Semi, 18Win

q-C18:2-A09 A09 Bn-A09-p36112515 33233968 7.01 16Sp, 18Sp

q-C18:2-A10 A10 Bn-A10-p14179334 14175178 15.95 16Sp, 17Sp

q-C18:2-C01 C01 Bn-A08-p9268915 32559113 7.22 16Win, 18Sp

q-C18:2-C03 C03 Bn-scaff_15794_3-p108033 55728615 7.06 16Semi, 18Win, 17Semi, 18Semi

q-C18:2-C05 C05 Bn-scaff_16414_1-p863783 1091070 6.60 17Sp, 18Sp

q-C18:2-C07 C07 Bn-scaff_15705_1-p2274493 35279701 5.25 18Sp, 18Win

q-C18:2-C09 C09 Bn-scaff_18944_1-p566719 19915878 12.18 16Sp, 17Sp

q-C18:3-A01-1 A01 Bn-A01-p5243181 4826424 13.86 17Semi, 18Semi

q-C18:3-A01-2 A01 Bn-A01-p15090383 12600997 10.52 18Semi, 18Sp

q-C18:3-A01-3 A01 Bn-A01-p24431478 20229832 13.03 16Sp, 18Semi

q-C18:3-A02-1 A02 Bn-scaff_15714_1-p1537912 929885 12.25 17Win, 18Semi

q-C18:3-A02-2 A02 Bn-A02-p18101171 17261238 15.65 18Sp, 18Semi

q-C18:3-A03-1 A03 Bn-A03-p7011746 6295737 10.52 18Semi, 18Sp

q-C18:3-A03-2 A03 Bn-A03-p16162908 15257414 13.69 17Semi, 18Sp, 18Semi

q-C18:3-A03-3 A03 Bn-A03-p23609377 22177215 8.3 18Semi, 18Sp

q-C18:3-A04-1 A04 Bn-A04-p2765547 2466391 15.18 18Sp, 18Semi

q-C18:3-A04-2 A04 Bn-A04-p7629926 8963652 8.82 18Sp, 18Semi

q-C18:3-A04-3 A04 Bn-A04-p15296217 15753636 11.33 18Semi, 18Sp

q-C18:3-A05-1 A05 Bn-A05-p461633 571525 6.67 17Semi, 18Semi

q-C18:3-A05-2 A05 Bn-A05-p10939740 9532568 12.67 18Sp, 18Semi

q-C18:3-A05-3 A05 Bn-A05-p14206169 16030064 14.04 18Sp, 18Semi

q-C18:3-A06-1 A06 Bn-A06-p73924 60018 15.95 18Semi, 18Sp

q-C18:3-A06-2 A06 Bn-A06-p5535537 5007675 6.51 18Sp, 18Semi

q-C18:3-A06-3 A06 Bn-A06-p22331680 21365690 13.54 17Semi, 18Sp, 18Semi, 18Win

q-C18:3-A07-1 A07 Bn-Scaffold012966-p76 12552424 14.04 18Sp, 18Semi

q-C18:3-A07-2 A07 Bn-scaff_19937_1-p20028 21340943 8.18 17Semi, 18Semi, 18Sp

q-C18:3-A08-1 A08 Bn-A08-p2274232 1778991 10.52 18Sp, 18Semi

q-C18:3-A08-2 A08 Bn-A08-p6828857 5776774 6.55 16Sp, 17Semi, 18Semi

q-C18:3-A08-3 A08 Bn-A08-p15239790 12798553 6.43 17Semi, 18Semi, 18Win

q-C18:3-A08-4 A08 Bn-A05-p8245454 17667610 8.73 18Win, 18Semi

q-C18:3-A09-1 A09 Bn-A09-p2323366 1519271 14.04 18Sp, 18Semi

q-C18:3-A09-2 A09 Bn-A09-p24113289 23069752 10.68 17Semi, 18Semi, 18Sp

q-C18:3-A09-3 A09 Bn-A09-p31492693 29184323 14.04 18Sp, 18Semi

q-C18:3-A10-1 A10 Bn-A10-p3909275 913569 13.5 16Sp, 17Win, 18Sp, 18Semi

q-C18:3-A10-2 A10 Bn-A10-p7118112 8703408 14.56 17Semi, 18Semi

q-C18:3-A10-3 A10 Bn-A10-p16837056 16640509 13.5 16Sp, 18Semi, 18Sp, 18Win

q-C18:3-C01 C01 Bn-scaff_15838_5-p850445 3684748 14.95 16Sp, 17Semi, 18Semi

q-C18:3-C02 C02 Bn-scaff_18675_1-p230717 22324250 15.18 17Win, 16Sp, 18Semi, 18Sp

q-C18:3-C03 C03 Bn-scaff_26505_1-p5590 28729268 14.88 17Win, 18Semi

q-C18:3-C04-1 C04 Bn-scaff_16564_1-p236601 11168988 9.57 17Semi, 18Semi

q-C18:3-C04-2 C04 Bn-scaff_15779_1-p94004 30153296 13.19 16Sp, 17Semi, 18Semi

q-C18:3-C04-3 C04 Bn-scaff_16139_1-p785412 43939995 12.25 17Semi, 18Semi, 18Sp

q-C18:3-C05-1 C05 Bn-scaff_20901_1-p1719394 2295884 5.68 17Semi, 18Semi

q-C18:3-C05-2 C05 Bn-Scaffold000324-p108 8698912 7.29 18Sp, 18Win

q-C18:3-C05-3 C05 Bn-scaff_16454_1-p884909 21537168 9.06 16Sp, 18Sp

q-C18:3-C06-1 C06 Bn-scaff_17454_1-p225095 8428072 7.31 18Semi, 18Sp

q-C18:3-C06-2 C06 Bn-scaff_23957_1-p175042 30652290 15.26 16Sp, 17Semi, 18Semi, 18Sp

q-C18:3-C07-1 C07 Bn-scaff_22310_1-p321188 7983992 8.36 17Semi, 18Sp, 18Semi

q-C18:3-C07-2 C07 Bn-scaff_19106_1-p463047 18601376 10.61 17Semi, 18Semi
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TABLE 2 | Continued

QTN Chr SNP associated Position (bp) –log10(P) Environment

q-C18:3-C07-3 C07 Bn-scaff_16110_1-p2168404 42696563 10.29 17Semi, 18Win, 18Semi

q-C18:3-C08-1 C08 Bn-scaff_16174_1-p1445094 23687956 6.74 17Semi, 18Semi

q-C18:3-C08-2 C08 Bn-scaff_16445_1-p2523413 34371202 15.11 16Sp, 17Win, 18Sp, 18Semi

q-C18:3-C09-1 C09 Bn-scaff_20903_1-p300819 16920322 8.82 18Sp, 18Semi

q-C18:3-C09-2 C09 Bn-scaff_16297_1-p392549 23679499 6.01 18Semi, 18Sp

q-C18:3-C09-3 C09 Bn-scaff_20972_1-p160691 32990956 13.3 18Sp, 18Semi

q-C20:1-A01-1 A01 Bn-A01-p4167795 3847687 15.18 16Semi, 18Sp

q-C20:1-A01-2 A01 Bn-A01-p26369651 20893064 14.54 17Sp, 18Sp

q-C20:1-A02-1 A02 Bn-A02-p11284285 8292886 10.66 16Sp, 18Sp, 18Win

q-C20:1-A02-2 A02 Bn-A02-p21061002 18906336 13.65 17Sp, 18Sp

q-C20:1-A03-1 A03 Bn-A03-p16565487 15689355 13.20 18Semi, 18Sp

q-C20:1-A03-2 A03 Bn-A03-p27337536 25579664 14.40 16Win, 17Win, 18Sp

q-C20:1-A04 A04 Bn-A04-p14687930 15158346 9.40 17Sp, 18Sp

q-C20:1-A05-1 A05 Bn-A05-p5100352 4920148 7.95 16Win, 18Sp

q-C20:1-A05-2 A05 Bn-A05-p20425452 18636249 14.54 17Sp, 18Sp

q-C20:1-A06-1 A06 Bn-A06-p853722 1082917 6.01 16Semi, 17Sp, 17Win, 18Sp

q-C20:1-A06-2 A06 Bn-A06-p21116438 20562931 6.04 17Sp, 18Sp

q-C20:1-A07 A07 Bn-A07-p20230189 21986980 5.54 16Semi, 18Sp

q-C20:1-A08-1 A08 Bn-A08-p2711497 2151791 8.08 16Semi, 18Sp, 18Semi, 18Win

q-C20:1-A08-2 A08 Bn-A08-p13066424 10878218 13.82 16Sp, 16Semi, 16Win,17Sp, 17Semi, 18Semi,

18Sp

q-C20:1-A09-1 A09 Bn-A09-p26874249 24934319 9.82 18Sp, 18Semi, 18Win

q-C20:1-A09-2 A09 Bn-A09-p35656352 32788000 5.92 17Sp, 17Win

q-C20:1-A10-1 A10 Bn-A10-p13965313 13956813 14.54 16Sp, 17Sp, 18Sp

q-C20:1-C01 C01 Bn-scaff_17827_1-p963588 7866768 9.07 17Sp, 18Sp

q-C20:1-C02 C02 Bn-scaff_16139_1-p1267317 45277206 5.60 16Semi, 17Win

q-C20:1-C03-1 C03 Bn-scaff_17636_1-p3673 38484538 6.81 16Win, 17Win

q-C20:1-C03-2 C03 Bn-scaff_15794_3-p89999 55717350 12.34 16Sp, 16Semi, 16Win, 17Sp, 17Win, 18Win

q-C20:1-C04-1 C04 Bn-scaff_16394_1-p987099 32288653 12.72 17Sp, 17Semi, 18Sp

q-C20:1-C04-2 C04 Bn-scaff_15585_1-p276555 44214027 14.54 17Sp, 18Sp

q-C20:1-C05-1 C05 Bn-scaff_21338_1-p467919 11924522 6.42 16Win, 18Sp

q-C20:1-C05-2 C05 Bn-scaff_22099_1-p251444 24830406 13.97 16Semi, 17Sp, 18Sp

q-C20:1-C05-3 C05 Bn-A07-p541617 36934827 14.54 16Win, 17Sp, 18Sp

q-C20:1-C07 C07 Bn-scaff_16069_1-p431757 36777489 6.14 16Semi, 18Sp, 18Win

q-C20:1-C08 C08 Bn-scaff_21269_1-p121333 36981334 14.40 16Win, 17Sp, 18Sp

q-C20:1-C09-1 C09 Bn-scaff_17174_1-p62030 13393631 14.54 16Semi, 18Sp

q-C20:1-C09-2 C09 Bn-scaff_16456_1-p453404 35037965 15.18 16Win, 17Sp, 18Sp

q-C22:1-A01 A01 Bn-A01-p2825565 2327566 8.45 16Sp, 16Win, 16Semi, 18Sp

q-C22:1-A02-1 A02 Bn-scaff_16565_1-p1062007 6923746 6.36 18Sp, 18Win

q-C22:1-A02-2 A02 Bn-A02-p22386317 20775741 7.59 17Sp, 18Sp

q-C22:1-A03-1 A03 Bn-A03-p1923025 1541003 5.54 17Win, 18Win

q-C22:1-A03-2 A03 Bn-A03-p20417630 19283838 6.46 16Win, 17Semi, 18Sp

q-C22:1-A06 A06 Bn-A06-p21501350 20200573 5.11 16Sp, 18Sp

q-C22:1-A08 A08 Bn-A08-p13066424 10878218 12.38 16Sp,16Win, 16Semi, 17Sp, 17Win, 17Semi, 18Sp,

18Win, 18Semi

q-C22:1-A09-1 A09 Bn-A09-p3029767 2949844 9.43 17Sp, 17Win, 18Win, 18Semi, 18Sp

q-C22:1-A09-2 A09 Bn-A09-p27109839 25110047 5.45 17Sp, 17Win, 18Sp

q-C22:1-A10 A10 Bn-A10-p5819027 5451194 10.32 16Sp, 18Sp

q-C22:1-C02 C02 Bn-scaff_16139_1-p1051077 45458213 5.84 17Semi, 18Semi, 18Win
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TABLE 2 | Continued

QTN Chr SNP associated Position (bp) –log10(P) Environment

q-C22:1-C03 C03 Bn-scaff_17457_1-p493971 53921047 6.70 16Sp, 16Win, 16Semi, 17Sp, 17Win, 18Win

q-C22:1-C05 C05 Bn-scaff_18181_1-p1691104 6103006 8.95 16Sp, 18Sp

q-C22:1-C07 C07 Bn-scaff_15705_1-p1673044 34945104 6.66 17Win, 18Win

q-C22:1-C08-1 C08 Bn-A08-p6162660 14268534 5.89 17Win, 18Win

q-C22:1-C08-2 C08 Bn-scaff_16361_1-p2793822 30283886 8.57 17Sp, 18Sp

Chr, Chromosome; Sp, Spring-type rapeseed; Win, Winter-type rapeseed; Semi, Semi-winter-type rapeseed; 16, 17, and 18 represent the 2016, 2017, and 2018 growing seasons in

Chongqing, China, respectively. QTNs with underline were overlapped with those detected by Qu et al. (2017), and QTNs with bold font were identified in at least two ecotypic rapeseed

and/or environments.

by the genotype and environments, and 61 environment-
sensitive genes were obtained by comparing these regions
with the B. napus reference genome (Chalhoub et al., 2014),
including GDSL (GDSL-like Lipase), GAPA (Glyceraldehyde
3-phosphate dehydrogenase A), KCS21, FAD3, FAD7, FAD6
fatty acid biosynthesis 1 (FAB1), acyl-activating enzyme
17 (AAE17), long chain acyl-CoA synthetase 9 (LACS9),
oleosin 2 (OLEO2), beta-ketoacyl reductase 1 (KCR1), and
trigalactosyldiacylglycerol2 (TGD2) (Table 3). Of these, some
genes (e.g., TT16 and TT1) were predicted to be associated
with oleic acid content in B. napus (Lian et al., 2017; Qu
et al., 2017); however, novel loci were also identified, including
MYB67, OLEO2, KCS21, FAD3, KCR1, TT1, and TGD2
(Table 3). Among these genes, 12 putative gene members
were identified in previous research, and 14 gene members
were enriched in fatty acid pathways in the KEGG database
(Table 3).

Oleic acid is a monounsaturated fat beneficial for human
health that contributes to the nutritional and economic value of
rapeseed oil. To provide insight into the genetic control of oleic
acid content, we therefore aligned 95 gene sequences from the
different rapeseed accessions, and identified nucleotides in the
intronic regions of BnaA08g08280D and BnaC03g60080D that
show significant differences between the high- and low-oleic acid
lines (Figure 3).

Expression Patterns of Candidate Genes
We assessed the relative expression levels of the candidate genes
during seed development of B. napus variety ZS11 (Figures 4, 5),
which had a high oleic acid content and low erucic acid. The
expression levels of the environment-insensitive genes showed
no obvious variation during seed development, but KCS18
(BnaA08g11130D and BnaC03g65980D), and BnaC02g42910D
showed higher expression levels during the middle stages of seed
development (Figure 4), indicating that they might contribute
to the accumulation of oleic acid during the middle stages
of seed development. In addition, TT16 (BnaA09g05410D and
BnaC02g42240D) and BnaC02g42240D were expressed at high
levels in the early stages of seed development, while other genes
showed low expression levels throughout seed development
(Figure 4).

However, we found that the expression levels of the
environment-sensitive genes varied throughout seed
development (Figure 5). For example,OLEO2 (BnaC04g32530D)

was highly expressed in the middle and late stages of seed
development, while the expression of KCS9 (BnaC07g05570D)
peaked in the early and middle stages (Figure 5). In
addition, BnaA01g29500D and TT4 (BnaA02g30320D)
were mainly expressed in the middle stages of seed
development, but KCR1 (BnaA02g13310D) and TTG1
(BnaC07g29950D) showed high expression levels throughout
seed development (Figure 5). Furthermore, other genes
displayed different patterns of expression throughout seed
development.

DISCUSSION

In B. napus, seeds fatty acids are mainly composed of palmitic,
stearic, oleic, linoleic, linolenic eicosenoic, and erucic acids,
which determine the rapeseed oil quality. Enhancing the oleic
acid content and quality of rapeseed through modifying its
fatty acid composition has become an important breeding goal.
However, previous studies identified the effect of putative fatty
acid genes and the interaction of genotype and environment
on the fatty acid content of rapeseed (Zhao, 2002; Zhao et al.,
2005, 2008; Wen et al., 2015). Here, we report that fatty
acid content also varies significantly among different rapeseed
ecological types (spring, winter, and semi-winter rapeseed
varieties) and environments (Figure 1, Table 1), indicating the
complexity of the biosynthetic processes underlying fatty acid
content in rapeseed. Interestingly, accessions with high oleic acid
content were common amongst the different rapeseed ecological
types (Figures 1G–I), possibly because these accessions are
artificially selected in breeding projects aimed at producing
rapeseed with high oleic acid content. Therefore, identifying
the relationship between favorable alleles and environments
will be beneficial for improving the fatty acid content of
rapeseed.

With the development of genome sequencing and
computational technologies, the Illumina Infinium Brassica
60K SNP array has been developed and widely used for the
genome-wide association analysis of B. napus as well as the
analysis of some trait-associated genomic regions and candidate
genes (Li et al., 2014; Qian et al., 2014; Gajardo et al., 2015; Hatzig
et al., 2015; Lee et al., 2015; Wei et al., 2015; Gacek et al., 2017;
Qu et al., 2017). Furthermore, the MLM (Q+K and PCA+K)
was found to be a powerful model for GWAS in these previous
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studies (Yu et al., 2006; Zhao et al., 2011; Xu et al., 2015; Li
et al., 2016; Qu et al., 2017). In the present study, the mrMLM
was employed for a GWAS, which is confirmed as a precise
and powerful tool for analyzing phenotypic and genotypic
information derived from numerous accessions and SNPs (Wang
et al., 2016; Li et al., 2017). In the present study, 149 QTNs
significantly associated with fatty acid content were identified
using the mrMLM (Table 2, and Supplementary Table S3).
Of these, 34 associated SNPs overlapped with those obtained
using MLM (Qu et al., 2017), indicating that the association
analysis was reliable; however, eight novel association regions

FIGURE 2 | Venn diagram analysis of QTNs for fatty acids in different ecotypic

rapeseed.

containing 35 QTNs were simultaneously detected among
different ecotypic rapeseed grown in different environments,
strongly suggesting that mrMLM is more powerful to detect
SNPs associated with complex traits than MLM in GWAS.
In addition, 29 QTNs for fatty acids were simultaneously
detected in spring, winter and semi-winter rapeseed (Figure 2),
indicating that the orthologous genes for fatty acid might be
better identified using these singinficant QTNs. Furthermore,
more QTNs associated with fatty acids were identified from
the sping and semi-winter type than in winter rapeseed
(Figure 2), indicating that the fatty acids were associated with
their genotype. These results might be helpful for elucidating
the mechanism that determines fatty acid composition in
B. napus.

In B. napus, fatty acid variation is controlled by multiple
genes (Zhao et al., 2008; Wen et al., 2015). In this study,
we categorized the candidate genes as either environment-
insensitive or -sensitive genes, according to the published
results and their detection frequency between the rapeseed
genotypes grown in the different environments. A total of
95 candidate genes were identified with known functions
in the fatty acid biosynthesis pathway. Of these, 34 were
environment-insensitive genes (Table 3), including KCS18,
which is known to play a crucial role in regulating erucic acid
biosynthesis in B. napus (Wang et al., 2008; Wu et al., 2008; Li
et al., 2014), and the putative KCS18 paralogs BnaA08g11130D
(Chromosome A08) and BnaC03g65980D (Chromosome C03),
which are most highly expressed during the middle to late
stages of seed development (Figure 4), suggesting that they
are key genes regulating the accumulation of fatty acids in
rapeseed oil. In addition, CER4 encodes an alcohol-forming
fatty acyl-coenzyme A reductase (Rowland et al., 2006), and
KCS17 is known to be involved in the biosynthesis of saturated
fatty acids (Tresch et al., 2012) and would therefore be expected

FIGURE 3 | Multiple alignments of candidate gene sequences between the high- and low-oleic acid B. napus accessions. (A) BnaA08g08280D; (B) BnaC03g60080D.

H-number and L-number indicates the high- and low-oleic acid B. napus accessions, respectively. The oleic aicd contents represents by the mean values.

Frontiers in Plant Science | www.frontiersin.org January 2019 | Volume 9 | Article 1872214

https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/plant-science#articles


Guan et al. GWAS for Fatty Acid Contents

FIGURE 4 | Comparative expression analysis of environment-insensitive genes associated with fatty acid content during seed development. The abbreviations above

the heatmap indicate the different developmental stages of the seeds from B. napus ZS11 (defined in Supplementary Table S4). The expression values of the

candidate genes were calculated using three biological replicates with three technical replicates and normalized by Log2 (mean expression values). The “scale” function

in R was used to normalize the relative expression levels (R = log2/mean expression values). The heatmap was generated using Heatmap Illustrator 1.0 (HemI 1.0).

to be more highly expressed during seed development. We
found that the putative orthologs of KCS17 (BnaA08g11140D
and BnaC03g66040D) and CER4 (BnaC03g66380D) were
associated with fatty acid content in B. napus, but the
expression of BnaA08g11140D and BnaC03g66040D, putative
KCS17 paralogs, was downregulated during seed development
(Figure 4), suggesting that functional segregation exists among
the different paralogs of the ancestral KCS17 gene, which has
been reported previously in the B. napus genome (Chalhoub
et al., 2014). In addition, the environment-insensitive genes,
including DGK2 (BnaC02g42690D and BnaC02g42700D),
HCS1 (BnaA09g06170D), MYB4 (BnaC03g60080D), and TT16
(BnaA09g05410D and BnaC02g42240D), might also been
involved in fatty acid biosynthesis (Tasseva et al., 2004; Deng
et al., 2012; Yang et al., 2012; Chen et al., 2013). Most of
the environment-insensitive genes were steadily expressed
throughout seed development (Figure 4), and these might
be the major factors regulating oleic acid accumulation in

B. napus. Furthermore, 12 environment-insensitive genes were
enriched in the fatty acid biosynthesis pathway according to
KEGG pathway analysis (Table 3). Importantly, the nucleotide
sequences of BnaA08g08280D and BnaC03g60080D differed
between the high- and low-oleic acid lines (Figure 3), but these
differences were all located in the intronic regions. Furthermore,
61 environment-sensitive genes showed wide variation in
expression during seed development (Table 3, Figure 5), and
these could be divided into early, middle, and late expression
genes, respectively. For example, BnaA06g31040D showed high
expression levels in the early stages of seed development, KCS9
(BnaC07g05570D) peaked at the early and middle stages, OLEO2
(BnaC04g32530D) had high expression during the middle and
late stages, and BnaA01g29500D, and TT4 (BnaA02g30320D)
expression markedly increased in the middle stages (Table 3,
Figure 5). Several other candidate genes, including putative
homologs of FAD (3, 6, and 7), KCS (9, 12, and 21), KCR1, and
LACS9, were found to be associated with fatty acid biosynthesis
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FIGURE 5 | Comparative expression analysis of environment-sensitive genes associated with the fatty acid content during seed development. The abbreviations

above the heatmap indicate the different developmental stages of the seeds from B. napus ZS11 (defined in Supplementary Table S5). The expression values of the

candidate genes were calculated using three biological replicates with three technical replicates and normalized by Log2 (mean expression values). The “scale” function

in R was used to normalize the relative expression levels (R = log2/mean expression values). The heatmap was generated using Heatmap Illustrator 1.0 (HemI 1.0).

(Peng et al., 2010; Tresch et al., 2012; Yang et al., 2012; Lai
et al., 2017; Shi et al., 2017), but their contribution remains to
be confirmed by further studies (Table 3). In addition, 14 gene
members were involved in the fatty acid metabolism confirmed
by KEGG database analysis (Table 3). However, there is no
clear evidence indicating that these genes control the fatty acid
content in B. napus.

In summary, 149 QTNs for fatty acid content (including
34 reported and 115 novel loci) were detected, strongly
demonstrating that mrMLM is a powerful and suitable tool
for detecting QTNs for fatty acid content in rapeseed. Among
these putative candidate genes, 63.16% (60/95) and 36.84%
(35/95) were distributed on overlapping and isolated QTNs,
respectively. Based on the pervious reports, 29 genes are
involved in the fatty acid biosynthesis, and 26 gene members
were enriched in the fatty acid pathway by the KEGG
pathway database, indicating that mrMLM is an accurate

tool to estimate the effect of QTNs on complex traits.
Whether these genes exert significant regulatory effects on the
fatty acid content of the seeds remains to be investigated.
Hence, further studies are needed. Our findings provide useful
candidate genes for the marker-assisted selection and breeding
of rapeseed lines with increased oleic acid content in the
seed.
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Pasmo is one of the most widespread diseases threatening flax production. To identify

genetic regions associated with pasmo resistance (PR), a genome-wide association

study was performed on 370 accessions from the flax core collection. Evaluation of

pasmo severity was performed in the field from 2012 to 2016 in Morden, MB, Canada.

Genotyping-by-sequencing has identified 258,873 single nucleotide polymorphisms

(SNPs) distributed on all 15 flax chromosomes. Marker-trait associations were identified

using ten different statistical models. A total of 692 unique quantitative trait nucleotides

(QTNs) associated with 500 putative quantitative trait loci (QTL) were detected from six

phenotypic PR datasets (five individual years and average across years). Different QTNs

were identified with various statistical models and from individual PR datasets, indicative

of the complementation between analytical methods and/or genotype × environment

interactions of the QTL effects. The single-locus models tended to identify large-effect

QTNs while the multi-loci models were able to detect QTNs with smaller effects. Among

the putative QTL, 67 had large effects (3–23%), were stable across all datasets and

explained 32–64% of the total variation for PR in the various datasets. Forty-five of

these QTL spanned 85 resistance gene analogs including a large toll interleukin receptor,

nucleotide-binding site, leucine-rich repeat (TNL) type gene cluster on chromosome 8.

The number of QTL with positive-effect or favorite alleles (NPQTL) in accessions was

significantly correlated with PR (R2
= 0.55), suggesting that these QTL effects are mainly

additive. NPQTLwas also significantly associatedwithmorphotype (R2
= 0.52) andmajor

QTL with positive effect alleles were present in the fiber type accessions. The 67 large

effect QTL are suited for marker-assisted selection and the 500 QTL for effective genomic

prediction in PR molecular breeding.

Keywords: pasmo resistance, quantitative trait loci (QTL), quantitative trait nucleotides (QTNs), fiber, linseed, core

collection, flax, Linum usitatissimum
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INTRODUCTION

Flax (Linum usitatissimum L.) is an important economic crop
for both linseed and stem fiber. As of 2011, flax was the third
largest textile fiber crop and the fifth largest oil crop in the
world, with Canada being the world’s largest exporter of flax
seeds (You et al., 2017). Pasmo, caused by Septoria linicola (Speg.)
Garassini, is one of the most widespread diseases threatening flax
production. Infected plants show brown circular lesions on leaves
and brown to black banding patterns alternating with green
healthy tissue on stems. Pasmo infects flax plants from seedling
to maturity, but it is most acute during ripening under high
humidity and high temperature conditions. During flowering,
yield losses in susceptible varieties can reach up to 75% despite
fungicide application (Hall et al., 2016). Pasmo also negatively
affects seed and fiber quality. Despite the slow improvements
made in pasmo resistance (PR) through breeding, developing
resistant varieties remains the most efficient and environmentally
friendly approach to prevent yield losses caused by the disease.

Conventional breeding approaches have been widely used
to incorporate genetic variations to improve agronomic traits
and introduce durable resistance to diseases in flax (Soto-Cerda
et al., 2014b). The availability of the latest molecular tools allows
the rapid identification of genes of interest and the selection
of individuals carrying favorable genes, and may well-serve to
improve breeding efficiency. Development of molecular markers
associated with host resistance to pathogens is paramount
to marker-assisted selection (MAS), enhancing the power of
selection in plant breeding by combining the advantages of
high precision and reduced cost (Kumar et al., 2011). MAS
for disease resistance is routinely applied for a number of
plant-pathogen systems to select resistant genotypes (Miedaner
and Korzun, 2012). To date, no genetic study on flax PR
has been reported despite the identification of more than one
million single nucleotide polymorphisms (SNPs) from a flax core
collection (You et al., unpublished data) that constitute a suitable
genotypic dataset to detect marker-trait associations (MTAs)
through genome-wide association studies (GWAS).

GWAS commonly estimate the statistical significance of
MTAs in a diverse genetic panel that can lead to the identification
of causal genes underlying phenotypes. GWAS with high-
throughput genotyping are advantageous over traditional
biparental population analyses, such as rapid processing of large
mapping populations, high abundance of molecular markers, and
identification of causal loci at a higher resolution (Goutam et al.,
2015; Ogura and Busch, 2015). GWAS have been successfully
applied to the identification of MTAs for many important flax
agronomic traits (Soto-Cerda et al., 2014a,b; Xie et al., 2017; You
et al., 2018b). The effectiveness of GWAS in identifying MTAs
for disease resistance traits is exemplified in wheat for fungal
diseases, such as Fusarium head blight (FHB) (Buerstmayr et al.,
2009), leaf and stem rusts (Liu et al., 2017).

In general, population structure can be represented by
proportions of individuals from subpopulations, regularly called
the Q matrix (Larsson et al., 2013), or alternatively principal
components (PCs) (Reich et al., 2008; Stich et al., 2008; Zhang
et al., 2009) derived from genome-wide molecular markers. The

relationships among individuals of a population are represented
by a kinshipmatrix (K). False positiveMTAs generally result from
two indirect factors: population structure and kinship among
individuals (Price et al., 2006; Liu et al., 2016). Two statistical
models have been widely used to reduce false positives. The first is
the General Linear Model (GLM) or Q model (Price et al., 2006)
in which the population structure is fitted as fixed effect. The
second is the Mixed Linear Model (MLM) (Yu et al., 2006) that
additionally fits kinship as random effect, hence its alternative
name, the Q + K model. Theoretically, MLM methods correct
the inflation from small polygenic effects, effectively controlling
the population stratification bias (Wen et al., 2017); thus, some
reports show that the Q+Kmodel outperforms the independent
Q and K only models (Liu et al., 2016). The computational
burden ofMLMs remains amajor issue. Somemethods have been
proposed to improve computational efficiency including Efficient
Mixed-Model Association (EMMA) (Kang et al., 2008) and
Genome-Wide Efficient Mixed-Model Association (GEMMA)
(Zhou and Stephens, 2012).

GLM and MLMs are single-locus methods that perform
one-dimensional genome scans by testing one marker at
a time using stringent multiple test corrections (such as
Bonferroni) as significance threshold. As such, these methods
have relatively low power to detect the polygenes with small
effects that underlay most quantitative traits. Thus, Multi-Locus
Mixed-Model (MLMM) (Segura et al., 2012) was proposed to
simultaneously test multiple markers. Alternative and powerful
multi-locus methods have been proposed to identify quantitative
trait nucleotides (QTNs) with small effects, such as the multi-
locus random-SNP-effect Mixed Linear Model (mrMLM) (Wang
et al., 2016; Li et al., 2017), the FAST multi-locus random-
SNP-effect EMMA (FASTmrEMMA) (Wen et al., 2017), the
polygene-background-control-based Least Angle Regression plus
Empirical Bayes (pLARmEB) (Zhang et al., 2017), the Iterative
modified-Sure Independence Screening EM-Bayesian LASSO
(ISIS EM-BLASSO) (Tamba et al., 2017), and the integration
of Kruskal–Wallis test with Empirical Bayes under polygenic
background control (pKWmEB). These multi-locus methods do
not rely on stringent Bonferroni correction (Ren et al., 2017);
the algorithms underlying these statistical models substantially
increase the statistical power and reduce Type 1 error and
running time (Wang et al., 2016; Li et al., 2017; Ren et al., 2017;
Tamba et al., 2017; Wen et al., 2017; Zhang et al., 2017). An
additional multi-locus model, called Fixed and random model
Circulating Probability Unification (FarmCPU) (Liu et al., 2016)
divides theMLMM into a fixed effect model (FEM) and a random
effects model (REM) and uses them iteratively. Its advantages
are improved statistical power and reduction of the confounding
between population structure, kinship, and QTN (Liu et al.,
2016).

To find QTL associated with field PR, we performed GWAS
using a diverse genetic panel of 370 accessions of the flax
core collection (Diederichsen et al., 2012; Soto-Cerda et al.,
2013) and 258,873 SNPs identified from this population (You
et al., unpublished data). Seven multi-locus and three single-
locus statistical methods were evaluated with the PR datasets
from 5 consecutive years to determine the suitable statistical
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methods for detecting putative QTL with large or small effects
and environmental stability.

MATERIALS AND METHODS

Genetic Panel for GWAS
A diverse genetic panel of 370 cultivated flax accessions from
the core collection (Diederichsen et al., 2012; Soto-Cerda et al.,
2013) was used. The core collection was assembled from the
world collection of 3,378 flax accessions, collected from 39
countries and corresponding to 11 geographical origins defined
as North America, South America, Eastern Asia, Western Asia,
Southern Asia, Central, and Eastern Europe, Western Europe,
Southern Europe, Northern Europe, Oceania, and Africa. This
panel contained 17 landraces, 85 breeding lines, 232 cultivars,
and 36 accessions of unknown improvement status that were
grouped into two morphotypes: 80 fiber and 290 linseed (You
et al., 2017).

Phenotyping of Pasmo Resistance and
Statistical Analysis
The 391 accessions were evaluated for field PR in the same
pasmo nursery from 2012 to 2016 at Agriculture and Agri-
Food Canada, Morden Research and Development Center’s
farm, Morden, Manitoba, Canada. A type-2 modified augmented
design (MAD2) (Lin and Poushinsky, 1985) was used for the field
trials (You et al., 2017). Each accession was seeded during the
second or third week of May every year. Approximately 200 g of
pasmo-infested chopped straw from the previous growing season
was spread between rows as inoculum when plants were ∼30-
cm tall. A misting system was operated for 5min every half hour
for 4 weeks, except on rainy days, to ensure conidia dispersal and
disease infection and development. PR was assessed on leaves and
stems of all plants in a single row plot using a pasmo severity
(PS) scale of 0–9 (Table 1). Field assessments were conducted
at the early (P1) and late flowering stages (P2, 7–10 days after
P1), the green boll stage (P3, 7–10 days after P2), and the early
brown boll stage (P4, 7–10 days after P3). In 2014 and 2015,
only the first three field assessments were conducted because
early maturity of the plants did not allow for a fourth rating. A
rating of 0–2 is considered resistant (R), 3–4 moderately resistant
(MR), 5–6 moderately susceptible (MS), and 7–9 susceptible (S).
The statistical analysis for the phenotypic data was performed
as described in You et al. (2013). A total of 370 accessions that
had complete phenotypic data and sequence data were used for
GWAS (Table S1).

The variance components for pasmo severity were estimated
using the linear mixed effects “lmer” model in R package “lme4.”
All effects of variance components were treated as random and
the following linear model was used:

Xij = µ + Gi + Yj + (GY)ij + εij, i = 1, 2, . . . , n and

j = 1, 2, . . . ,m,

where n and m are the number of genotypes and years,
respectively, Xij is the observed pasmo severity, µ is the overall
mean, Gi is the effect resulting from the ith genotype, Yj is the

TABLE 1 | Criteria for field assessment of pasmo severity on a scale of 0–9.

Severity score Criteria

0 No sign of pasmo, the most vigorous

1 <10 leaf area or/and stem area affected by pasmo

2 10–20% leaf area or/and stem area affected by pasmo

3 21–30% leaf area or/and stem area affected by pasmo

4 31–40% leaf area or/and stem area affected by pasmo

5 41–50% leaf area or/and stem area affected by pasmo

6 51–60% leaf area or/and stem area affected by pasmo

7 61–70% leaf area or/and stem area affected by pasmo

8 71–80% leaf area or/and stem area affected by pasmo

9 >80% leaf area or/and stem area affected by pasmo

Assessment of pasmo severity is based on all plants in a single row plot.

effect resulting from the jth year, (GY)ij is the effect resulting from
genotype× year (environment) interaction, and εij is the residual
error (effect resulting from the experimental error).

Resequencing and SNP Discovery of the
Core Collection
Genotyping by sequencing (GBS) methodology was employed
to genotype all individuals of the core collection. The Illumina
HiSeq 2000 platform (Illumina Inc., San Diego, USA) was
used to generate 100-bp paired-end reads with ∼15.5 ×

genome equivalents of the reference genome. All reads from
each individual of the population were aligned to the scaffold
sequences of the flax reference genome (Wang et al., 2012) using
BWA v0.6.1(Jo and Koh, 2015) with base-quality Q score in
Phred scale >20 and other default parameters. The alignment
file for each individual was used as input for SNP discovery
using the software package SAMtools (Li et al., 2009). All
variants were further filtered to get a set of high-quality SNPs
as previously described (Kumar et al., 2012). The coordinates
of SNPs were then converted to the chromosome scale of
the flax pseudomolecules v2.0 upon its release (You et al.,
2018a). All procedures were implemented in the AGSNP pipeline
(You et al., 2011, 2012) and its updated GBS version (Kumar
et al., 2012). The detected SNPs were further filtered with
minor allele frequency (MAF) > 0.05 and SNP genotyping rate
≥ 60%. To minimize contribution from regions of extensive
strong linkage disequilibrium (LD), a single SNP was retained
per 200-kb window when pairwise correlation coefficients (r2)
among neighboring SNPs were >0.8 (International HapMap,
2005; Huang et al., 2010), resulting in a total of 258,873 SNPs.
Missing SNPs (on average 14.13% of a missing data rate) were
imputed using Beagle v.4.2 with default parameters (Browning
and Browning, 2007).

Genome-Wide Association Study and
Validation
GWAS analyses were conducted separately for combinations
of the 5 individual years and the 5-years average datasets
with 10 single- and multi-locus methods (Table 2). Kinship
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TABLE 2 | Statistical methods used for GWAS.

Statistical model Q matrix or PCs Threshold for QTNs GWAS software References

GLM First six PCs Bonferroni correction MVP v1.0.1 Price et al., 2006

MLM First six PCs Bonferroni correction MVP v1.0.1 Yu et al., 2006

FarmCPU First six PCs Bonferroni correction MVP v1.0.1 Liu et al., 2016

GEMMA None needed Bonferroni correction GEMMA v0.96 Zhou and Stephens, 2012

mrMLM From Frappe LOD ≥ 3 mrMLM v3.0 Wang et al., 2016

FASTmrEMMA From Frappe LOD ≥ 3 mrMLM v3.0 Wen et al., 2017

ISIS EM-BLASSO From Frappe LOD ≥ 3 mrMLM v3.0 Tamba et al., 2017

pLARmEB From Frappe LOD ≥ 3 mrMLM v3.0 Zhang et al., 2017

pKWmEB From Frappe LOD ≥ 3 mrMLM v3.0 Ren et al., 2017

FASTmrMLM From Frappe LOD ≥ 3 mrMLM v3.0 https://cran.r-project.org/web/

packages/mrMLM/index.html

The kinship matrix used for each method was calculated using the module implemented in the corresponding software. PC, principal component; QTN, quantitative trait nucloetide.

genetic relationship matrices were estimated using the protocol
suggested by each GWAS software package. The population
structure of the 370 accessions was estimated using Frappe
(http://med.stanford.edu/tanglab/software/frappe.html) or PCs
as determined by principal component analysis (PCA) using
MVP in the R package (https://github.com/XiaoleiLiuBio/MVP).
Using Frappe, the 370 accessions of the flax core collection were
grouped into five sub-populations that corresponded to two
major morphotypes (fiber and oil) and different geographical
regions (Table S1).

For GLM, MLM and FarmCPU, the first six PCs, accounting
for 33.04% of the total variation, were chosen as covariates to
measure population structure (Figure S1). GEMMA was also
compared with the regular MLM methods because it does not
require a Q matrix. The threshold of significant associations for
all four of these methods was determined by a critical P-value
(α = 0.05) subjected to Bonferroni correction, i.e., the corrected
P-value = 1.93 × 10−7 (0.05/258,873 SNPs). GWAS analyses
for the GLM, MLM, and FarmCPU were performed using
the R package MVP (https://github.com/XiaoleiLiuBio/MVP)
and for GEMMA using the GEMMA software (https://github.
com/genetics-statistics/GEMMA). The additional six multi-locus
methods were conducted with default parameters using the
R package mrMLM (https://cran.r-project.org/web/packages/
mrMLM/index.html) (Table 2). Because these six methods are
implemented in the same mrMLM R package and developed by
the same research team, we refer to them as “mrMLMmethods.”
A log of odds (LOD) score of three was used to detect robust
association signals for these six methods.

After putative QTNs were identified, we performed QTN
analysis to obtain sets of QTNs/QTL. The procedure is
summarized in Figure 1. First, we tested the significance of
the difference in PS between two alleles of a QTN (henceforth
called QTN effect) in all accessions. Statistically significant
differences served to validate the QTNs. Wilcox non-parametric
tests were performed using the R function wilcox.test to remove
the non-significant QTNs at a 5% probability level. The direction
(positive or negative) of QTN effects were subsequently assessed.
Only QTNs with consistent effect directions in all PS datasets

were considered valid and were retained. Such QTNs were
grouped into QTL by calculating linkage disequilibrium (D′)
between pairs of QTNs on the same chromosomes using
plink v1.9 (https://www.cog-genomics.org/plink2). Neighboring
QTNs with D′

> 0.8 were grouped into the same QTL (Twells
et al., 2003; Grassmann et al., 2017). For each such defined QTL,
the QTN of the largest average R2 over all datasets was chosen
as a representative or tag for the QTL. R2 were calculated based
on simple regressions of QTNs on PS because they represent
the proportion of the total variation of PS explained by the
QTNs/QTL.

Statistically stable QTL were those significant across all six PS
datasets. Multiple regressions of all stable QTL were fitted to each
of the six PS datasets using a forward stepwise regression to select
QTL with significant contributions to PS. Six regression models
were obtained for the six PS datasets. OnlyQTL existing in at least
three regression models were considered to be statistically stable
with relatively large effects.

To test QTL effect additivity, the number of QTL with
positive-effect or favorite alleles (NPQTL) in all accessions was
tallied. A QTL with positive-effect or favorite allele (PQTL)
in a given accession was called if this accession possessed a
positive effect allele for that QTL. In the case of the PS trait (PS
rating is opposite to resistance), alleles with positive signs are
associated with lower PR. A simple regression of NPQTL on PS
in the population was calculated. Correlations of NPQTL with
PS in the six PS datasets were calculated using the R function
“cor.”

Resistance Gene Analogs (RGAs)
Co-localized With QTL
A total of 1,327 RGAs have been identified in the flax
pseudomolecule (You et al., 2018a). To predict candidate
resistance genes co-localized with QTL, the RGAs within 200 kb
of a QTL’s flanking region were considered.

Evaluation of the Flax Core Collection
The extreme pasmo resistant and susceptible accession subsets
and all 370 accessions were evaluated based on the identified
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FIGURE 1 | Diagram of stable and large-effect quantitative trait loci (QTL) associated with flax pasmo resistance. NPQTL: the number of QTL with positive-effect

alleles.

stable and large-effect QTL. Two extreme subsets of 23
resistant (R) and 23 susceptible (S) were selected based on PS
ratings. Two-dimensional cluster analysis for accessions and
the QTL were performed. The Euclidean distances between
accessions or between QTL were calculated based on QTL
genotypes (positive alleles as 1 and alternate alleles as 2)
using the “dist” function with the “euclidean” method in
R. The Ward algorithm in the function “hclust” of the R
package stats was employed for hierarchical cluster analysis.
Dendrograms and heat maps were created with the R package
Complexheatmap.

RESULTS

Pasmo Resistance
PS ratings increased with growth stage and peaked at the final
evaluation stage every year (Figure 2; Table S2), supporting
the adoption of the final stage data for analysis. Significant
correlations of PS ratings across years were observed (Table 3)
but were largely affected by year and genotype× year interaction
(Table S3). The variance of genotype × year interaction
accounted for 24.23% of the total variation of PS (Table S4).
Thus, datasets from all individual years and the 5-years average
were used for GWAS analyses.
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FIGURE 2 | Violin plots of pasmo severity observed in various growth stages in 2012 (A), 2013 (B), 2014 (C), 2015 (D), and 2016 (E).

TABLE 3 | Spearman correlation coefficients of pasmo severity between years

(2012–2016).

2012 2013 2014 2015 2016

2012 1 0.56** 0.54** 0.44** 0.62**

2013 1 0.51** 0.49** 0.60**

2014 1 0.76** 0.70**

2015 1 0.70**

2016 1

**Significant at 1% probability level.

Identification of PR QTL
A total of 719 putative QTNs were identified using the three
single-locus and seven multi-locus methods for the six PS
datasets (Table S4). To further statistically check the significance
of QTNs, a Wilcox non-parametric test was conducted for the six
datasets separately. A total of 27 QTNs were removed because
they were not significant in all six datasets. The remaining
692 QTNs were merged into a total of 500 QTL based on the
linkage disequilibrium D′ criteria between contiguous QTNs.
GLM detected multiple significant QTNs in the same QTL region
while in most cases a QTN corresponded to a QTL for other
single-locus and multi-locus methods (Table 4). Tag QTNs were
selected to represent each QTL for downstream analyses.

Of the three single-locus methods, MLM identified only one
QTL (R2 = 15.02%) while GEMMA detected six with an average
R2 of 11.13%. GLM identified the largest number of QTL (209) or
QTNs (346) of all methods and these had relatively large effects
with an average R2 of 5.57%, ranging from 0.48 to 15.02%.

TABLE 4 | Comparison of QTN/QTL identification for different statistical models.

Statistical No. of No. of No. of non- Average R2

model QTL QTNs significant R2 (%) range (%)

identified identified QTNs

GLM 209 346 2 5.57 0.48–15.02

MLM 1 1 0 15.02 N/A

GEMMA 6 6 0 11.13 3.59–15.02

mrMLM 97 99 7 2.75 0.36–15.02

FASTmrEMMA 60 62 2 2.82 0.25–6.92

ISIS

EM-BLASSO

97 98 8 2.91 0.29–12.68

pLARmEB 118 120 8 2.69 0.22–12.68

pKWmEB 95 95 5 2.93 0.25–12.68

FASTmrMLM 125 125 3 2.69 0.25–15.02

FarmCPU 22 22 3 5.09 0.42–15.02

QTL differed depending on the statistical methods. QTL
detected by at least twomethods accounted for a small proportion
of overall QTL (Tables S4, S5). The mrMLM methods detected
more common QTL than the other methods, e.g., 45 QTL
in common with pLARmEB and FASTmrMLM and 32 with
ISIS EM-BLASSO and pKWmEB (Table 5). Multi-locus methods
detected more small-effect QTL than the single-locus methods
(Table 4). Six mrMLM methods could identify more QTL
with smaller effects (average R2 of 2.80%) than FarmCPU
(average R2 of 5.09%) owing to the high stringency of the
Bonferroni correction used in FarmCPU. Generally, QTL with
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TABLE 5 | Number of common QTNs and QTL identified by any two statistical models.

Statistical model GLM MLM GEMMA FASTmrEMMA FASTmrMLM ISIS EM-BLASSO mrMLM pKWmEB pLARmEB

MLM 1 (1)

GEMMA 6 (6) 1 (1)

FASTmrEMMA 8 (5) 0 (0) 0 (0)

FASTmrMLM 17 (12) 1 (1) 2 (2) 26 (18)

ISIS EM-BLASSO 18 (15) 0 (0) 3 (3) 13 (9) 33 (23)

mrMLM 18 (11) 1 (1) 5 (5) 17 (14) 33 (27) 18 (13)

pKWmEB 24 (17) 0 (0) 3 (3) 17 (12) 34 (30) 34 (32) 27 (19)

pLARmEB 20 (13) 0 (0) 2 (2) 26 (15) 50 (45) 31 (20) 29 (24) 32 (27)

FarmCPU 13 (13) 1 (1) 2 (2) 1 (1) 3 (3) 5 (4) 7 (6) 5 (4) 5 (4)

Values in parentheses are the number of QTL corresponding to QTNs.

TABLE 6 | QTNs/QTL for pasmo severity identified using phenotypic data from 5

consecutive years and their mean with ten statistical models.

Dataset No. of No. of No. of non- Average R2

QTL QTNs significant R2 (%) range (%)

identified identified QTNs

Mean 240 362 4 5.26 0.28–15.02

2012 82 98 12 3.68 0.22–15.02

2013 92 100 8 3.26 0.32–15.02

2014 114 138 7 4.7 0.42–15.02

2015 65 72 4 2.86 0.27–15.02

2016 85 100 3 4.46 0.39–15.02

TABLE 7 | Number of common QTNs/QTL identified from any two datasets.

Dataset mean 2012 2013 2014 2015

2012 33 (30)

2013 28 (25) 6 (4)

2014 62 (52) 16 (11) 11 (10)

2015 18 (14) 3 (2) 5 (2) 6 (3)

2016 45 (36) 10 (6) 7 (6) 14 (11) 7 (7)

Values in parentheses are the number of QTL corresponding to QTNs.

large effects were identified by both GLM and mrMLM methods
(Table S4).

QTL also differed across individual year datasets (Tables 6,
7, S5) but most (240) were identified from the mean dataset
which comprised two to four timesmore QTL than the individual
year datasets (Table 6). This is indicative of strong gene ×

environment interactions and reinforces the representability of
the mean dataset for QTL identification.

Validation of PR QTL
Additional validation was warranted for the identified
QTNs/QTL. Of the 500 QTL, 134 were detected in all six
PS datasets and explained 27.4–60.9% of the total variation;
they are considered stable. By construction of forward stepwise
multiple regression models, 67 out of the 134 stable QTL were

detected in at least three regression models; they explained
31.5–64.2% of the total variation in individual datasets: this is
comparable or slightly greater than that of the 134 QTL set.
The 67 QTL subset represents the non-redundant and large
effect QTL as each of them could explain 3.3–23.4% of the
total variation (Table 8). QTL with similar contributions but
that were highly correlated and/or that had small effects were
excluded.

The tally of the PQTL in the 370 accessions ranged from 3
to 60 per accession (Table S6). NPQTL were compared between
two extreme subsets of 23 resistant (R) and 23 susceptible (S),
respectively. Notably, all accessions of the R group belong to the
fiber type and those of the S group were oilseed type. The R
group, with an average PS rating of 3.2, contained an average
of 42.5 PQTL per accession ranging from 14 to 60; the S group,
with an average PS rating of 8.3, averaged only 9.4 PQTL per
accession (Figure 3). Significant negative correlations between
NPQTL and PS were observed in all six datasets (r = −0.45
to −0.74) (Figures 4A–F), with the highest negative correlation
being with the mean PS rating dataset (r =−0.74) (Figure 4F).

Association of PR and Its QTL With Flax
Morphotype
A significant correlation between PS and morphotype (r = 0.49,
p < 0.00001) was observed, showing that fiber accessions
were more resistant to pasmo (Figure 5A). NPQTL were
also significantly correlated with morphotypes (r = −0.65,
p< 0.00001) (Figure 5B). Chi-square tests of independence were
performed to identify PQTL alleles specifically belonging to a
morphotype. For each QTL, the positive-effect allele was assigned
a value of 0 and the alternate allele, a value of 1. Similarly, fiber
type accessions were assigned 0 and linseed accessions 1. The
chi-square test results indicated that most PQTL alleles were
significantly associated with fiber type accessions (Table S7). For
eight (8, 13, 14, 17, 21, 54, 55, and 63) of the 67 major QTL,
between 80 and 100% of the PQTL were present in the fiber
accessions; this was particularly acute for QTL 43 and 44 that
were almost exclusive to the fiber germplasm. For the remaining
57 QTL, the PQTL were detected in fiber accessions (11–63 out
of 80 fiber accessions) but were also found in many linseed
accessions.
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TABLE 8 | Stable and large-effect QTL associated with pasmo resistance.

QTL Tag QTN Chr Pos SNP Effect R2 Gene/annotation

1 Lu1-9232234 1 9232234 G/A −0.91 16.17

2 Lu1-28707496 1 28707496 G/A −0.54 5.70 Lus10006052/RLK, Lus10006056/RLK, Lus10006057/RLK, Lus10006067/RLK

3 Lu2-3803775 2 3803775 C/T 0.36 3.32

4 Lu3-19643168 3 19643168 G/A −1.97 12.82 Lus10008221/TNL, Lus10008222/TNL, Lus10008230/RLP

5 Lu3-20781286 3 20781286 A/C −1.83 14.63

6 Lu3-22688547 3 22688547 C/G −0.89 8.98 Lus10033291/RLK

7 Lu4-37769 4 37769 G/A −1.36 11.23

8 Lu4-13306407 4 13306407 A/G 0.89 4.58 Lus10015729/RLK

9 Lu4-13779313 4 13779313 T/C −1.73 13.72

10 Lu4-14576826 4 14576826 A/G 0.42 7.99 Lus10041509/RLK, Lus10041512/TM-CC

11 Lu4-14615685 4 14615685 A/T −0.65 10.85 Lus10041509/RLK, Lus10041512/TM-CC

12 Lu4-14738243 4 14738243 G/T −0.61 12.64

13 Lu4-17204590 4 17204590 C/A 0.64 5.17 Lus10004040/RLK, Lus10009107/TNL, Lus10009108/TX, Lus10009109/NBS,

Lus10020794/TM-CC

14 Lu4-17214936 4 17214936 G/T 0.70 5.81 Lus10004040/RLK, Lus10009107/TNL, Lus10009108/TX, Lus10009109/NBS,

Lus10020779/CNL, Lus10020794/TM-CC

15 Lu5-1554121 5 1554121 T/A −0.67 7.75 Lus10004719/TNL, Lus10004726/CNL, Lus10004727/TN

16 Lu5-1650980 5 1650980 C/G −0.81 6.61 Lus10004719/TNL, Lus10008486/RLK, Lus10008491/RLK

17 Lu5-3575865 5 3575865 C/G −0.49 9.64

18 Lu5-4604607 5 4604607 A/G −0.56 6.58 Lus10034787/TM-CC, Lus10034790/RLK, Lus10034795/RLK

19 Lu5-4858045 5 4858045 C/T −1.87 12.83

20 Lu5-13500692 5 13500692 G/A −1.40 11.9 Lus10029802/RLK, Lus10029810/TX

21 Lu6-2081466 6 2081466 T/C 0.68 8.30 Lus10017611/RLK

22 Lu6-5837358 6 5837358 C/T −1.18 9.36

23 Lu6-14738507 6 14738507 C/T −2.01 13.34 Lus10014441/RLP

24 Lu6-15455712 6 15455712 A/G −1.42 9.63 Lus10021003/RLK, Lus10021022/RLK

25 Lu6-15506450 6 15506450 A/G −1.81 12.62 Lus10021022/RLK

26 Lu7-2452981 7 2452981 C/T −0.53 6.30 Lus10012159/RLK

27 Lu7-2453965 7 2453965 T/C −0.56 7.03 Lus10012159/RLK

28 Lu7-2491132 7 2491132 G/A −0.56 8.05 Lus10012159/RLK

29 Lu8-14317356 8 14317356 A/T −0.98 14.32 Lus10016612/RLP, Lus10016620/RLK

30 Lu8-15830073 8 15830073 C/T −0.82 8.48

31 Lu8-15837449 8 15837449 A/T −1.20 8.24

32 Lu8-15841885 8 15841885 T/C −1.15 8.35

33 Lu8-15963249 8 15963249 A/G −1.70 14.22

34 Lu8-16366918 8 16366918 C/T −1.38 10.90 Lus10022340/RLK, Lus10022345/RLK, Lus10022351/CNL

35 Lu8-17270785 8 17270785 C/G −1.08 9.59 Lus10000591/TM-CC

36 Lu8-17749357 8 17749357 G/A −1.23 10.16 Lus10011039/RLP, Lus10011064/RLP

37 Lu8-18251174 8 18251174 G/A −1.45 10.38 Lus10007812/TNL, Lus10007813/TNL, Lus10007814/TNL, Lus10007821/TNL,

Lus10007822/TNL, Lus10007823/OTHER, Lus10007825/TNL, Lus10007826/TNL,

Lus10007828/TNL, Lus10007829/OTHER, Lus10007830/NL, Lus10007831/TNL,

Lus10007836/TNL, Lus10007852/TX

38 Lu8-18447612 8 18447612 T/C −1.41 11.66 Lus10007790/TNL, Lus10007795/TM-CC, Lus10007808/TNL, Lus10007809/NL,

Lus10007810/TNL, Lus10007811/TNL, Lus10007812/TNL, Lus10007813/TNL,

Lus10008540/RLK

39 Lu8-23104696 8 23104696 C/A −1.80 16.53 Lus10018470/TX

40 Lu8-23142500 8 23142500 T/C −1.56 13.34 Lus10018459/RLK, Lus10018470/TX

41 Lu9-1258326 9 1258326 T/A −1.62 16.01

42 Lu9-1430465 9 1430465 G/C −0.69 10.76 Lus10004333/RLK

43 Lu9-1896658 9 1896658 G/A −1.94 17.12

44 Lu9-4333365 9 4333365 C/A −2.22 23.39 Lus10040315/TM-CC

45 Lu9-6270376 9 6270376 A/G −0.81 14.34 Lus10031043/RLK, Lus10031058/TM-CC

(Continued)
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TABLE 8 | Continued

QTL Tag QTN Chr Pos SNP Effect R2 Gene/annotation

46 Lu9-15527375 9 15527375 G/A −1.07 6.76

47 Lu9-16348319 9 16348319 C/T −0.37 4.64

48 Lu9-19857367 9 19857367 G/A −1.70 12.67 Lus10011917/RLK

49 Lu10-8700793 10 8700793 A/G −0.53 12.10 Lus10039958/RLP

50 Lu11-3330783 11 3330783 A/T −1.11 7.09 Lus10042097/TM-CC

51 Lu12-474480 12 474480 C/T 0.51 8.33 Lus10020016/CNL

52 Lu12-1621325 12 1621325 T/A −1.90 9.41 Lus10023391/RLK

53 Lu12-2719326 12 2719326 C/T −0.62 9.90 Lus10006971/TM-CC

54 Lu12-5552631 12 5552631 C/A 0.92 7.10

55 Lu12-5795458 12 5795458 A/G 0.54 9.67 Lus10037786/TM-CC

56 Lu12-5819991 12 5819991 C/G 0.35 6.90 Lus10037786/TM-CC

57 Lu12-15686833 12 15686833 A/G −1.65 13.90

58 Lu12-16056974 12 16056974 A/C −1.26 11.26 Lus10043083/RLK

59 Lu12-16358216 12 16358216 G/A 0.32 4.25 Lus10027856/RLP

60 Lu13-1919638 13 1919638 G/A −1.55 13.67 Lus10026845/TX

61 Lu13-2016767 13 2016767 C/G −0.38 5.12 Lus10026845/TX

62 Lu13-11860250 13 11860250 G/A −0.96 9.65

63 Lu13-13051094 13 13051094 G/C 0.68 7.96

64 Lu13-14299019 13 14299019 A/G 0.39 8.28 Lus10034637/RLK, Lus10034642/RLK

65 Lu15-976617 15 976617 T/A −1.65 16.08 Lus10011216/TX, Lus10011223/RLK, Lus10011229/TM-CC

66 Lu15-995626 15 995626 T/A −0.44 6.27 Lus10011216/TX, Lus10011223/RLK, Lus10011229/TM-CC

67 Lu15-8714776 15 8714776 C/G −0.98 15.04

RLK, receptor-like protein kinase; RLP, receptor-like protein; TM-CC, transmembrane coiled-coil protein; NBSl, nucleotide-binding site domain; LRR, leucine-rich repeat; Toll/interleukin-1

receptor-like domain; CNL, CC–NBS–LRR; TNL, TIR-NBS-LRRs; TN, TIR–NBS; TX, TIR–unknown.

Evaluation of the Flax Core Collection With
QTL
Based on the 67 core QTL of the flax collection, bi-
dimensional cluster analyses were conducted using tag QTNs
as representatives of the QTL. The 370 accessions grouped
into four clusters (Figure 6). Cluster 1 with 269 accessions
and Cluster 2 with 35 were mostly susceptible to pasmo
(PS ratings of 6.6 ± 1.0 and 6.5 ± 1.1, respectively). Most
accessions (243) of Cluster 1 and all accessions of Cluster 2 were
linseed type. Cluster 3 comprised 40 moderately susceptible
(PS ratings of 5.0 ± 1.1) accessions including 11 of linseed.
Cluster 4 contained 26 accessions, of which, 25 were fiber
type and only one was a linseed; they were resistant to pasmo
(PS ratings of 3.7 ± 1.1). The number of PQTL were 14.2 ±

4.0, 14.2 ± 1.7, 27.7 ± 5.8, and 47.1 ± 6.7 for Clusters 1–4,
respectively. The 26 resistant accessions of Cluster 4 represent an
important germplasm for PR breeding. This resistant germplasm
included 14 of the 23 accessions in Figure 3 and CN101114,
CN101115, CN101119, CN101237, CN101241, CN101296,
CN101367, CN101395, CN101396, CN18987, CN98150, and
CN98903.

The 67 QTL were clustered into four sub-groups. Group
1 included 13 QTL widely distributed across the germplasm
(68.27% of the accessions) but with relatively low QTL effects
(average R2 of 8.31%, ranging from 3.32 to 10.85%) (Figure 6;
Table S7). Groups 2 and 3 contained 7 and 11 QTL, respectively.
Present in 31.08% of the accessions, these QTL had an average

R2 of 9.23%, ranging from 4.64 to 16.17%. The 36 QTL of
Group 4 had an average R2 of 11.93%, ranging from 6.61 to
23.39% and contributing to the majority of the PR. These QTL
were mostly found in the resistant accessions of Cluster 4 which
amounts to a mere 9.70% of the germplasm. CN101367 with
43 QTL and CN19001 with 49 are good examples of resistant
germplasm.

Resistance Gene Analogs Co-localized
With QTL
Among the 67 stable and large-effect QTL, 45 co-localized with
85 RGAs within the pre-defined 200Kb QTL flanking window.
Four types of RGAs were harbored at these loci: receptor like
protein (RLP), receptor like kinase (RLK), nucleotide-binding
site (NBS) coding genes (including TNL, TX, CNL, NL, TN, NBS,
and others), and transmembrane- coiled coil protein (TM-CC)
(Sekhwal et al., 2015). The majority of the RGAs were RLKs with
36.47%, followed by TNLs with 22.35% (Figure 7), including a
TNL cluster associated with QTL 37 and 38 on chromosome 8
(Table 8). Additional TNL-type RGA clusters co-localized with
QTL 13 and 14 on chromosome 4 and QTL 15 and 16 on
chromosome 5. An RLP gene (Lus10039958) located only 56
bp downstream of QTN Lu10-8700793 (QTL 49) exemplifies
close linkage between the RGA and the QTL identified in this
study. A TNL gene (Lus10007812) located 99Kb downstream
of QTN Lu8-18251174 (QTL 37) was the farthest RGA from its
QTL.
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FIGURE 3 | QTL genotypes, pasmo resistance and severity, and morphotypes of two extreme subsets representing 23 resistant and 23 susceptible accessions,

respectively.

DISCUSSION

Pasmo Resistance in the Core Collection
Pasmo is widespread throughout all flax growing regions (Halley
et al., 2004), but no flax cultivars are truly resistant to pasmo
(Diederichsen et al., 2008). Evaluation of pasmo disease response
revealed a range of resistance levels in the core collection
(You et al., 2017) and, consistent with previous observations,
no immune or highly resistant flax varieties were identified.
However, some accessions displayed a relatively high level of
resistance to pasmo and had high NPQTL (Figure 3; Table S1).
For example, CN19001, a fiber type from the Netherlands, and
CN101367, a linseed accession from Georgia, had respective 5-
years average PS ratings of 2.0 and 1.8 and possessed 49 and
43 NPQTL, respectively. These accessions of fiber and linseed
lineages are good parents for improvement of flax resistance
through direct hybridization with elite varieties. Moderately
resistant and moderately susceptible lines accounted for 6.49–
21.35 and 20.81–42.16% of all accessions in the association panel

depending on the years, respectively. Due to the quantitative
nature of the disease, this germplasm also holds potential in
breeding through the pyramiding of QTL with smaller effects, a
strategy that has been successful in improving FHB resistance in
wheat (Buerstmayr et al., 2009).

The fiber accessions were generally more resistant to pasmo
than the linseed accessions, not surprisingly considering that
fiber flax is cultivated for its stem fibers whose quality is greatly
affected by the disease. From flowering to maturity, the dark
brown to black bands that appear on the stems of infected
plants can reduce the quality of the fiber (Colhoun and Muskett,
1943). The relatively higher level of resistance of the fiber type is
likely a reflection of artificial selection and possibly independent
domestication of the fiber flax lineage (Fu et al., 2012). The
transfer of PR from fiber to linseed types can be considered,
particularly in schemes where faster recovery of the recurrent
linseed types can be achieved bymarker-assisted backcrossing for
example.
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FIGURE 4 | Box plots of the number of QTL with positive-effect alleles (NPQTL) in relation to pasmo severity during 2012-2016 (A–E) and average pasmo severity

across 5 years (F); ** indicates statistical significance at the 1% probability level.

FIGURE 5 | Box plots of pasmo severity (A) and the number of QTL with

positive-effect alleles (NPQTL) (B) in relation to morphotypes.

Pasmo resistance levels also varied significantly among
genotypes from different geographical origins (You et al., 2017).
Rainfall accumulation from June to August was significantly
and positively associated with pasmo incidence and severity
(Halley et al., 2004). Therefore, natural selection might be the
main evolutionary pressure resulting in geographic variation.
Accessions from India and Pakistan were the most susceptible
of the core collection; this is not surprising considering that the

environmental conditions of the flax growing regions of India are
not conducive to the disease development (Diederichsen et al.,
2008). On the other hand, accessions from Europe were the
most resistant, a reflection of the fiber type predominance of
the European germplasm (You et al., 2017) that have historically
been under higher selection pressure for PR. North America
appears to have the largest proportion of moderately susceptible
and susceptible accessions (63 and 55) of the diversity panel,
in agreement with its almost exclusive linseed germplasm (You
et al., 2017). The most resistant Canadian linseed breeding
line, CN101536, is only moderately resistant with an average
PS of 4.4. Therefore, the incorporation of PR from linseed
accession CN101367 from Georgia, as earlier noted, would
benefit the improvement of PR in linseed. Interestingly, the East
Asian mixed fiber and linseed germplasm is globally moderately
resistant, in agreement with the long history of domestication for
PR (Millam et al., 2005).

The PS of moderately resistant and susceptible accessions
varied considerably across years, indicating a strong genotype
× environment interaction. The low but significant correlations
between the phenotypic data from any 2 years suggest the
presence of interactions. In addition, the variance component
analysis showed that the genotype × environment interaction
accounted for a large proportion of the total variation. The
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FIGURE 6 | Cluster analysis of the association panel based on a set of 67 stable large-effect QTL. The accessions were grouped into four clusters and the QTL were

assigned to four sub-groups. Tag QTNs of QTL were chosen for analysis. QTL with positive-effect alleles (PQTL) in the accessions are indicated in red; blue indicates

the absence of PQTL. NPQTL, the number of QTL with positive-effect alleles.

FIGURE 7 | Class distribution of resistance gene analogs (RGAs) located

within 200Kb flanking regions of QTL.

interaction partially resulted in different QTL identified in
datasets from different years. QTL contribution to PR might
marginally differ from year to year, stressing the need for multi-
environment phenotyping to identify environment-specific QTL.

Methods Comparison
In this study, few QTL were detected by the single-locus methods
MLM and GEMMA, likely as a consequence of the stringent
corrected probability threshold (1.93 × 10−7); the third single-
locus method GLM and the multi-locus methods identified

greater numbers of QTL. The numbers of QTL identified by GLM
and mrMLM methods were similar while FarmCPU detected
comparatively fewer. The phenotypic variance explained by
the QTL (R2) is also an important criterion of comparison.
Both single and multi-locus methods identified some QTL with
large effects (Table 4). However, most small-effect QTL were
detected only when multi-locus methods were used. Although
few QTL were common between methods, a large proportion
of common QTL was observed among mrMLM methods. Thus,
the complementarity between different methods is significant,
and, in light of our results, the combined utilization of various
statistical models is highly recommended for the identification of
all potential QTL with both large and small effects.

Evaluation of Pasmo QTL in the Core
Collection and Breeding Applications
Identification of QTL associated with PR can potentially facilitate
their incorporation into elite germplasm, especially in North
America where linseed is the main type for production (You
et al., 2017). Several large-effect QTL/tag QTNs were noted,
including QTL 44/Lu9-4333365 (R2

= 23.39%), QTL 43/Lu9-
1896658 (R2

= 17.12%), QTL 39/Lu8-23104696 (R2
= 16.53%),

and QTL 1/Lu1-9232234 (R2 = 16.17%). These were mostly
present in resistant accessions as PQTL (Table 8) and they hold
potential for MAS.

Although the large-effect QTL may be useful for MAS, a large
number of small-effect QTL would be beneficial for genomic
prediction (GP). GP using genome-wide markers to predict
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breeding values of target traits is a promising alternative method
to MAS for low heritability traits including PR (Lipka et al.,
2015; Poland and Rutkoski, 2016). Compared to conventional
phenotypic selection, GP can accelerate genetic gains for early
selection (Newell and Jannink, 2014). The accuracy and efficiency
of GP models for flax PS were evaluated with three sets of
QTL: 500 (SNP-500QTL), 134 (SNP-134QTL), and 67 (SNP-
67QTL) which are developed in this study (He et al., 2018).
The GP model built with SNP-500QTL achieved a prediction
accuracy of 0.92 while the use of 134 and 67 QTL yielded
accuracies of 0.75 and 0.76, respectively (He et al., 2018). The
similar accuracies of the two smaller sets were expected because
SNP-67QTL is essentially a non-redundant set of SNP-134QTL.
These predictions serve as additional validation of the QTL
identified herein and simultaneously illustrate the effectiveness
of prediction models that include a full complement of large and
small-effect QTL including environment-specific QTL.

Candidate Genes for Pasmo Resistance
Functional annotation of the QTL identified herein revealed
85 RGAs co-located with 45 large-effect QTL. Of them, two
RGAs, Lus10031043/RLK and Lus10020016/CNL corresponding
to QTL 45/Lu9-6270375 and QTL 51/Lu12-474480, respectively,
may be associated with two orthologous resistance genes in
Arabidopsis (Xiang et al., 2008; Saijo et al., 2009). The RLK
gene Lus10031043 is an ortholog to AT5G20480.1 in Arabidopsis,
which encodes a predicted leucine-rich repeat receptor kinase
(LRR-RLK) and functions as the receptor for bacterial pathogen-
associated molecular patterns (PAMPs) EF-Tu (EFR). The LRR-
RLK EFR recognizes the bacterial epitopes elf18, derived from
elongation factor-Tu, and triggers the plant’s immune response
(Saijo et al., 2009). The Pseudomonas syringae effector AvrPto
is reported to bind receptor kinases, including Arabidopsis EFR
(LRR-RLK EFR), to inhibit plant PAMP-triggered immunity and,
to subsequently trigger strong immune responses (Xiang et al.,
2008). The flax CNL gene Lus10020016 (RPM1) is orthologous
to RPM1 (AT3G07040.1) in Arabidopsis. RPM1 contains an
N-terminal tripartite nucleotide binding site and a C-terminal
tandem array of leucine-rich repeats and confers resistance to P.
syringae strains that carry the avirulence genes avrB and avrRpm1
(https://www.arabidopsis.org/). The RPM1 gene enables dual
specificity to pathogens expressing either of two unrelated P.
syringae avirulence genes (Grant et al., 1995). The above findings
hint at Lus10031043 and Lus10020016 as potential candidate
genes for PR.

CONCLUSION

Using 10 statistical methods, a total of 500 QTL, including
67 stable and large-effect QTL and many additional small

effect and environment-specific QTL were identified for PS,
using a diversity panel of 370 flax accessions genotyped with
258,873 genome-wide SNPs and phenotyped in the field during
5 consecutive years. The large number of QTL identified in
this study illustrates the complex genetic basis for PR in flax
through a demonstration of its quantitative genetic nature and
its sensitivity to environments. Multi-locus methods were able
to detect small-effect QTL whereas the single-locus methods
tended to identify fewer QTL of large effect. Various statistical
methods identified mainly different sets of QTL, indicating the
value of employing different statistical methods and multiple
environment phenotypic data to capture themost comprehensive
set of QTL: large, small and environment-specific. Combined
utilization of multiple statistical methods is advantageous to
identify QTL with small effects for traits with a complex
genetic base and low heritability. The high correlation observed
between PS and flax morphotype indicated that the fiber
germplasm contains most of the PS QTL and constitutes
an important genetic resource for flax PR breeding. The 67
large-effect QTL have potential in MAS and the 500 QTL
set can be exploited for effective GP for improving pasmo
resistance.
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