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Editorial on the Research Topic

Comparative Endocrine Stress Responses in Vertebrates

The stress response in vertebrates is characterized by involving physiological regulatory systems
and a number of organs, tissues, and effector pathways in order to both respond to the stressor
effects and overcome the situation and recover homeostasis. Although differences in specific
mechanisms are encountered in different animal groups and even between interspecies and
intraspecies, the stress response involves an endocrine activation in all groups of vertebrates. Since
an increasing number of scientific works are currently published in this field, the idea of collecting
and reviewing such advances originated the initiative of a Topic Collection on the Comparative
Stress responses in Vertebrates. In the following set of papers, the readers will find out an interesting
update of the latest work in the field of the endocrine responses to stress in vertebrates, from general
approaches to specific contributions and methodological updates.Of course, it is not intended that
this Topic collection be exhaustive or complete, as many untreated aspects could be added, and
some vertebrate groups are not well-represented into the collection, but this overview is anyway
interesting to show what are some of the current working areas in this field.

Among the general approaches presented in this Topic collection, a novel contribution is
the concept of stressotope by Balasch and Tort, linking the adaptive set of responses of the
animal to particular biotopes associated with specific conditioning factors involving the maximum
overall stress responses across immune-neuroendocrine relevant physiological levels and scenarios,
including the characterization of behavioral response.

In relation with this stressotope concept, the work by Sánchez-Vázquez et al., deep into the
relationship among factors regulating the circadian rhythms in animals particularly under stress
situations, showing that not only a number of specific environmental factors are connected
to circadian rhythms, but also that the proper oscillations of the environmental factors are
significantly involved.

In another of the works in this Topic, Gómez-Boronat et al., investigating in daily cycles,
demonstrate that the misalignment of external cues such as day-night photocycles and feeding time
may temporarily alter fish homeostasis, thus involving a stress situation for the animals.

Other contributions make relevant insights in the comparative approach of endocrine stress
regulation in vertebrates. In the first one, Narayan and Vanderneut provided invaluable insights
into how wild koalas respond physiologically to environmental trauma and disease, a species not
often represented in the scientific literature of comparative stress responses. In addition, this paper
includes an applied aspect on howmethods of care, husbandry, and treatment can be used to reduce
the impacts of stressors with the ultimate aim of increasing the rehabilitation possibilities and future
release of this species in the wild.
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In another paper, Höglund et al. show the role of Tryptophan
and the associated metabolic pathways in the regulation of
serotonergic activity in the fish brain, a keymechanism intimately
associated to stress and behavioral responses of animals.
Numerous studies have shown that elevated dietary Trp has a
suppressive effect on aggressive behavior and post-stress plasma
cortisol concentrations in vertebrates. These effects are believed
to be mediated by the brain serotonergic system, even though
mechanisms involved are not well-understood.

Also regarding key components in the diet, the work
by Herrera et al., have looked at the studies on stress
attenuation in animals through diet or supplement components.
Other than the development of new technologies to monitor
and improve environmental conditions of farmed animals,
particularly fish, beneficial additives in the daily meal have
been included in order to mitigate the effects of husbandry
stressors. Immunological, nutritional, and metabolic changes
have been assessed in these trials, always associated to endocrine
regulation. The biochemical and physiological functionality of
those feed additives may strongly affect the stress response and,
even, such additives may act as neurotransmitters, hormone
precursors, energy substrates, or cofactors implying multi-
systematic andmulti-organic responses that modify the response
to stress.

Suarez-Bregua et al. focused their approach in a less studied
area in lower vertebrates as the endocrine relationship between
glucocorticoid metabolism and the parathyroid hormone family
peptides. The paper deeps into the response driven by these
hormones and other key regulators of mineral homeostasis in
connection with bone remodeling processes, which involves
important consequences in terms of harmonic growth and
skeletal deformities.

A more specific comparative work on the stress and endocrine
responses is presented by a group of researchers from Greece,
Norway, and The Netherlands. Thus, Samaras et al. focus on
the differential responses between two close warm water marine
aquacultured species, sea bass, and sea bream. In this paper,

they show how significant can be the species-specific molecular
and neuro-regional differences between two similar species
sharing many environmental and geographical conditions. This
points out how important can be the variability of specific
mechanisms between species, even from close-related groups,
though sharing the basic patterns of molecular and endocrine
molecules and pathways.

Finally, regarding key methodological contributions, the
paper by Aerts rises the importance of themethodological aspects
associated to the molecules currently chosen to define a stressed
status. He demonstrates that it is pivotal to know the involved
regulatory molecules and to understand how these molecules
are synthesized, regulated, and excreted, together with how these
molecules grasp their actions on a plethora of biological processes
in many organs and tissues.

Collectively, the Topic highlights current research areas and
future directions in the dynamic field of vertebrate stress
endocrinology. Beyond theoretical knowledge, the field of
research provides powerful tools to enable researchers to make
objective assessments of the physiological state of animals, to
understand how animals respond to environmental change and
human interventions.
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Institute for Water and Wetland Research, Radboud University, Nijmegen, Netherlands, 4Norwegian Institute for Water
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The present study aimed to compare effects of increasing chronic stress load on the

stress response of European seabass (Dicentrarchus labrax) and gilthead seabream

(Sparus aurata) to identify neuroendocrine functions that regulate this response. Fish

were left undisturbed (controls) or exposed to three levels of chronic stress for 3 weeks

and then subjected to an acute stress test (ACT). Chronic stress impeded growth and

decreased feed consumption in seabass, not in seabream. In seabass basal cortisol

levels are high and increase with stress load; the response to a subsequent ACT

decreases with increasing (earlier) load. Basal cortisol levels in seabream increase with

the stress load, whereas the ACT induced a similar response in all groups. In seabass and

seabream plasma α-MSH levels and brain stem serotonergic activity and turnover were

similar and not affected by chronic stress. Species-specific molecular neuro-regional

differences were seen. In-situ hybridization analysis of the early immediate gene cfos

in the preoptic area showed ACT-activation in seabream; in seabass the expression level

was not affected by ACT and seems constitutively high. In seabream, expression levels

of telencephalic crf, crfbp, gr1, and mr were downregulated; the seabass hypothalamic

preoptic area showed increased expression of crf and gr1, and decreased expression of

mr, and this increased the gr1/mr ratio considerably. We substantiate species-specific

physiological differences to stress coping between seabream and seabass at an

endocrine and neuroendocrine molecular level. Seabass appear less resilient to stress,

which we conclude from high basal activities of stress-related parameters and poor,

or absent, responses to ACT. This comparative study reveals important aquaculture,

husbandry, and welfare implications for the rearing of these species.

Keywords: allostasis, aquaculture, cortisol, CRF, repeated stress, serotonin
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INTRODUCTION

The concept of allostasis, which states that animals “achieve
constancy through change” [adjusting set points of regulatory
loops to prevailing needs; (1, 2)] is gaining popularity in fish stress
physiology. Allostasis involves synthesis of prior knowledge
with predicted current needs and resetting of one or more
physiological set points accordingly. A successful stress response
involves the reorganization of the organism’s energy budget, their
immune system, as well as neural and endocrine mechanisms to
successfully cope with a given stressor. The stress response then
results in a timely return to pre-stress conditions, and restoration
of homeostasis so-called eustress (3). If the response fails, or is
inadequate, allostatic overload will occur. This is usually seen
under chronic stress conditions when individuals are no longer
able to successfully cope with continued stress challenge (4).
The term “allostatic load” is used to describe the capacity of
an organism to cope with a certain challenge by acclimating
its behavior and physiology. Stress responses are meant to be
compensatory and adaptive, to allow the animal to overcome the
threat; when the animal succeeds in this we refer to stress as
eustress. However, when an animal is facing an intense or chronic
stress, the stress response might lose its adaptive significance,
become dysfunctional and ultimately result in adverse effects
such as inhibition of growth, failure to reproduce, and impeded
resistance to pathogens. This condition is called distress (3, 5–7).

The stress response in fish (in fact in any vertebrate) is initiated
by activating the hypothalamic–sympathetic axis followed by the
activation of the hypothalamus–pituitary gland–interrenal gland
(HPI) axis. The former results in the release of adrenaline and
noradrenaline to quickly induce hyperglycemia and fuel fight or
flight (3, 8). However, due to the rapid release and clearing of
catecholamines from the circulation [seconds tominutes; (9)] it is
difficult to obtain accurate data on the resting levels of adrenaline
and noradrenaline, and for that reason these parameters are
not commonly assayed. The endocrine stress steroid axis (HPI-
axis) will subsequently produce (hyperglycemic) cortisol to
guarantee energy for coping with the new conditions and
counteract changes in energy budgeting induced by the stressor.
Indeed, corticotrophin-releasing factor (CRF) is secreted from

the preoptic area [POA; (10–13)]. The axons of CRF-producing
cells project directly to pars distalis ACTH cells (12). CRF is
released there and will then bind the CRF-receptors (CRF1R)
located on the ACTH cells (12). This process is believed to
be modulated by CRF-binding-protein (CRF-BP), which binds
CRF and therefore reduces its bioavailability (12, 14, 15).
Hypothalamic CRF neurons also project to the pituitary pars
intermedia and induce release of α-melanophore-stimulating
hormone (α-MSH) (16, 17); in particular, increased constitutive
release under conditions of chronic stress (18, 19) may act as
corticotrope, lipolytic or anorexigenic signal (3).

Abbreviations: 5-HIAA, 5-hydroxyindoleacetic acid; 5-HT, 5-hydroxytryptamin;

α-MSH, alpha-melanocyte-stimulation hormone; crf, corticotropin-releasing

factor; crf-bp, corticotropin-releasing factor binding protein; gr1, glucocorticoid

receptor 1; HPI axis, Hypothalamus–Pituitary–Interrenal axis;mc2r, melanocortin

receptor type 2; mr, mineralocorticoid receptor; MRAPs, melanocortin receptor

associated proteins; POA, preoptic area; ACT, acute stress test.

ACTH acts via a specific melanocortin receptor type 2
(MC2R), expressed exclusively on interrenal cells in the head
kidney of fish (16, 20); this receptor acts as a dimer and is
associated with four melanocortin receptor associated proteins
[MRAPs; (21–23)]. MC2R activates pathways that result in
synthesis of cortisol from cholesterol and subsequent secretion to
the bloodstream (24). The mechanisms regulating its expression
are not yet fully described, but in seabass it seems that
exogenous cortisol administration can exert negative feedback
on mc2r gene expression (20). Cortisol, the single steroid
produced by interrenal cells in fish, signals in target tissues via
either a mineralocorticoid or several glucocorticoid receptors
(MR and GRs, respectively). Once cortisol is bound, these
transcription factors bind specific DNA sequences (GR- and
MR-responsive elements) in target-gene promoters and control
mineralocorticoid and glucocorticoid activities as required to
cope with imposed challenges (8, 25, 26).

The aim of the present study was to study the neuroendocrine
regulation of European seabass (Dicentrarchus labrax L.) and
gilthead seabream (Sparus aurata L.) upon exposure to different
intensities and types of chronic stress. These species constitute
the largest portion (approximately 90–95%) of theMediterranean
aquaculture production, and have high economic and societal
value. They, however, show often enigmatic differences in their
physiology (27), especially the responsiveness and susceptibility
to stress (28) and react differently to an acute stressor,
when previously exposed to chronic (crowding) stress (29–
33). Moreover, seabream seems more resilient than seabass
in terms of growth under stress (31, 32, 34). Based on that
and to study the effects of different stress loads on the
response and identify key neuroendocrine features that regulate
these differences between these species, seabass and seabream
were exposed to increasing levels of repeated stress episodes
combining common aquaculture stressors, such as confinement,
chasing and air-exposure (as a model for chronic stress) for 3
weeks and were then subjected to an acute stress test [ACT;
(35)]. Fish were sampled for “baseline values” and 1-h post-stress
to assess interrenal steroid production capacity. The general
performance of fish (food intake and growth) was monitored
over the experiment; levels of plasma cortisol and α-MSH were
quantified at the end of the experiment. In-situ hybridization
of the immediate early gene cfos was carried out to give
anatomical resolution in gene activity; then expression of a set
of key target genes in the telencephalon and preoptic area was
analyzed.

MATERIALS AND METHODS

Animals
Hatchery produced seabass (14-months-old) and seabream (12-
months-old) were provided by the Institute of Marine Biology,
Biotechnology and Aquaculture of the Hellenic Centre from
Marine Research (HCMR) and Forkys S.A. (Sitia, Greece),
respectively. In total 160 seabass of 28.69 ± 4.04 cm (mean ±
SD) fork length and 380 ± 83.1 g body mass and 160 seabream
with 25.05 ± 1.14 cm fork length and 322 ± 54.8 g body mass
were used. Fish were kept at HCMR in Gournes, Crete, Greece.
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Duplicate groups of fish were divided according to body weight
over eight cylindrical 500-L tanks with flow-through filtered
seawater at a final stocking density of 16.2 ± 0.2 kg m−3 for
seabass and 14.8 ± 0.3 kg m−3 for seabream. The fish were then
left to acclimatize for 3 weeks before the start of the experiment.
The water temperature was kept at 19◦C and the photoperiod was
set at 12L:12D. Fish were fed ad libitum during the experiment
and the quantity of the food consumed was measured daily per
tank (by collecting uneaten pellets within 1 h after feeding). The
feed used consisted of 44% protein and 19% lipids (Irida S.A.,
Greece).

Experimental Design
The experimental treatment consisted of exposing seabass and
seabream groups to three different chronic stress regimes, varying
in intensity, over a period of 21 (seabass) or 24 (seabream)
days (Table 1). The experiments were conducted in July 2013 for
seabass and October 2013 for seabream. The stressors used were
chosen in a way that they reflect common aquaculture practices
and have been previously shown to elicit stress responses in
both species. Specifically, these stressors were confinement (30,
36, 37), confinement and chasing (38, 39) and a combination
of confinement, chasing and air-exposure (28, 40) (Table 1).
In detail, the low stress regime consisted of subjecting fish
to a confinement stressor for 30min every 2nd day; this was
accomplished by lowering a net into the tank to decrease the
available space to 50% (doubling the density) while keeping a
constant water volume and similar water quality. The medium
stress regime consisted of subjecting fish to both confinement
(conducted as previously described) and chasing of the fish for
5min with a net every 2nd day. The high stress regime consisted
of confinement (to only 25% of the tank volume) for 30min,
chasing for 5min every 2nd day, and air exposure for 1min once
per week. These stressors were applied to the fish between 10.00
and 12.30 h.

Two days after the end of the chronic stress treatments 10
out of 20 fish per tank were immediately sampled (referred to
as T0 fish) after netting and deep anesthesia with 0.5% (v/v)
2-phenoxyethanol. Blood was drawn via heparinized syringes,
centrifuged (2,000 × g for 10min) and the plasma stored at
−80◦C until further analysis. The spinal cord was cut to kill the
fish and telencephalic, preoptic area and brainstem samples were

TABLE 1 | Stress applied to seabass and seabream for three different stress

loads.

Stress load

Stressor Time (min) Frequency Low Medium High

Confinement* 30 Every 2 days
√ √ √

Chasing 5 Every 2 days
√ √

Air exposure 1 Every 7 days
√

Confinement and chasing were performed once every 2 days; air-exposure was performed

once a week.

*Confinement in the Low and Medium stress groups was performed by restraining the fish

to 50% of the initial water volume, for the High stress group to 25% of the volume.

collected, snap-frozen in liquid N2, and stored at −80◦C. The 10
remaining fish were acutely stressed by subjecting them to a net
chase for 5min and then air-exposure for 1min. The fish were
then left undisturbed for 1 h [when the peak cortisol response
after stress is observed; (28, 37, 40–42)] and deeply anesthetized
before sampling (T1 fish), as explained above.

The laboratories of the Hellenic Centre for Marine Research
are certified and have obtained the codes for breeding and
husbandry of animals for scientific purposes (EL 91-BIO-03, EL
91-BIO-04). All procedures involving the handling and treatment
of fish were approved by the HCMR Institutional Animal care
and use committee in accordance to Greek (PD 56/2013) and
EU (Directive 63/2010) legislation on the care and use of
experimental animals following the principles of refinement,
replacement and reduction in animal experimentation.

Plasma Analysis
Plasma cortisol levels were determined by radioimmunoassay,
according to Gorissen et al. (43). Plasma α-MSH levels were
evaluated by radioimmunoassay using the L9 α-MSH antibody
(44). The antiserum shows 100% cross-reactivity with des-,
mono-, and di-acetyl α-MSH. Tracer α-MSH-peptide was labeled
with 125I through the iodogen method (45).

Brainstem 5-HT Neurochemistry
Frozen brain stems were homogenized in 4% (w/v) ice-cold
perchloric acid (PCA) containing 0.2% EDTA and 40 ng ml−1

epinine (deoxyepinephrine as an internal standard) with a
Potter–Elvehjem homogenizer. After centrifuging samples for
5min at 15,493 rcf, the supernatant was analyzed by high-
performance liquid chromatography (HPLC). The mobile phase
was; 12 µmol L−1 EDTA, 86 mmol L−1 sodium phosphate
and 1.4 mmol L−1 sodium octyl sulfate in deionized water
(resistance 18.2 M� cm−1), containing 7% acetonitrile; pH
was set to 3.1 with phosphoric acid. The system consisted
of a solvent delivery system (Shimadzu, LC-10AD, Kyoto,
Japan), an auto-injector (Famos, Spark), a reverse phase
column (4.6 × 100mm, H0ichrom, C18, 3.5mm) and an ESA
Coulochem II detector (ESA, Bedford, MA, USA) with two
electrodes at −40 and +320mV. A conditioning electrode
with a potential of +40mV was used to oxidize possible
contaminants before analysis. Brain stem concentrations of 5-
HT and the 5-HT metabolite 5-Hydroxyindoleacetic acid (5-
HIAA) were quantified by comparison with standard solutions of
known concentrations and corrected for recovery of the internal
standard using HPLC software (CSW, DataApex Ltd, Prague, the
Czech Republic). The 5-HT turnover was quantified by ratio of
5-HIAA/5-HT.

RNA Isolation
Brain tissue was dissected into telencephalon and preoptic area
using a stereo microscope, as per Madaro et al. (35, 46). Tissues
were homogenized in TRIzol reagent (Gibco BRL) according
to manufacturer’s instructions. RNA concentration and purity
were determined by measuring absorbance at 260 and 280 nm
with Nanodrop R© ND-1000 UV–Vis spectrophotometry (Peqlab,
Erlangen, Germany).
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Synthesis of cDNA
Synthesis of cDNA was performed as per Madaro et al. (35,
46). RNA (100–500 ng) was reverse-transcribed by a series of
incubations: 10min at 25◦C, followed by 50min at 42◦C and
15min at 70◦C; cDNAs were then diluted five times and stored
at−20◦C until further analysis.

Real-Time Quantitative PCR
Oligonucleotides used in the qPCR analysis are shown in Table 2.
To each diluted cDNA sample, 16 µl of a mix containing: 10
µl iQTM SYBR R© Green Supermix (2x) (Bio-Rad, Hercules, CA,

USA), 0.7 µl (10µM) primer forward, 0.7 µl (10µM) primer
reverse, 4.6µl DEPCH2Owas added. The amplification protocol
was carried out on a CFX96 TouchTM Real-Time PCR Detection
System (Bio-Rad, Hercules, CA, USA) and consisted of 3min at
95◦C, followed by 40 cycles of amplification (95◦C for 15 s and
60◦C for 1min). A melting curve was generated for each sample
to assess specificity of the PCR products.

In-situ Hybridization
For in-situ hybridization fish were sampled directly from their
holding tank (at basal conditions, n = 2/species) and 1 h post-
stress conditions (chasing for 5min and air exposure for 1min,
n= 2/species). All fish were quickly and deeply anesthetized with
1% (v/v) phenoxyethanol and fixed by vascular perfusion with 4%
PF in 0.1M Sørensen’s phosphate buffer (PB; 28mM NaH2PO4,
71mM Na2HPO4, pH 7.2). Dissected brains were post-fixed in
the same fixative for 16 h at 4◦C. The tissue was washed three
times 20min in PB, cryopreserved overnight in 25% sucrose in
PB at 4◦C, embedded in Tissue-Tek OCT-Compound (Sakura
Fintek) and stored at−80◦C until sectioning.

Adjacent transverse 12µm sections were cut with a Leica CM
1850 cryostat (Leica Microsystems, Wetzlar, Germany), collected
on SuperFrost Ultra Plus glasses (Menzel Glaser, Braunschweig,
Germany) and dried at 65◦C for 10min. Digoxigenin-labeled
riboprobes were prepared with a digoxigenin (DIG)-RNA

labeling mix following the manufacturer’s instructions (Roche
Diagnostics, Mannheim, Germany). The cfos ISH probes
for seabream and seabass were 542 and 467 nucleotides
long, respectively. Forward GGCTCGAGTTCATTCTCGCT
and reverse GTCGTTGCTGTTGCTTCCTC and
forward TCTGGGATGGTGGTCTGTGA and reverse
CCAGCCTTTGATCTCCTCGG primers were used to clone the
cfos probe primers in seabream and seabass, respectively. The
quality and quantity of the synthesized riboprobes were assessed
by agarose gel electrophoresis. Pretreatment and treatment
of sample for ISH was conducted as specified earlier (48).
The reaction with chromogen substrate (3.4 µl of nitroblue-
tetrazolium, 3.5 µl of 5-bromo-4-chloro-3-indoylphosphate
(Roche Diagnostics, Indianapolis, IN, USA) and 0.24 mg/ml
levamisole in visualization buffer) was carried out for 3–24 h in
darkness at room temperature (samples were routinely checked
to avoid overstaining). The reaction was terminated with stop
solution (10mM Tris-HCl, 1mM EDTA, 150mM NaCl, pH 8.0)
and tissue was mounted in ProLong Gold (Invitrogen, Carlsbad,
CA, USA). Photomicrographs were taken by a digital camera
(Leica DFC 320, Leica 350 FX) attached to a Leica DM 6000B
microscope using the LEICA APPLICATION SUITE, version
3.0.0 image acquisition and processing software.

Statistical Analysis
For plasma analyses and gene expression data, normal
distribution of data was tested with the D’Agostino and
Pearson omnibus normality test. Cortisol data were analyzed
using linear regression. Other plasma analyses were assessed by
two-way ANOVA, gene expression data and brain mono-amine
data were tested using one-way ANOVA. Significance of effects
were subsequently determined by Tukey’s post-hoc tests or
unpaired Student’s t-testing, where appropriate (α-level was
adjusted for multiple comparisons). For all statistical tests
P < 0.05 was taken as the fiducial limit, unless otherwise stated
(in case of multiple comparisons). All statistical analyses were

TABLE 2 | Primer sequences used in RT-qPCR for seabass and seabream.

Gene Forward primer 5′ to 3′ Reverse primer 5′ to 3′ Accession no

Seabass (D. labrax) crf CGCTACGAATGTCGGGCTAT GGGAGTTTTGGGTTTGGGGA JF274994

gr1 TCAGTGGCTTGCTCAAGGAG GGGCTTCTGCTGGTGAGAAT AY549305

mr CCTGTCTCCTCTATGAATGG AATCTGGTAATGGAATGAATGTC JF824641

elf1α CAAGGAGGGCAATGCCAGT GAGCGAAGGTGACGACCAT AJ866727

rpl17 TTGAAGACAACGCAGGAGTCA CAGCGCATTCTTTTGCCACT AF139590

pomca CAGAGACACCGATCATCCCG TCTTCAGGGAAAACCTCGGC AY691808

Seabream (S. aurata) crf CGCTACGAATGTCGGGCTAT GGGAGTTTTGGGTTTGGGGA KC195964

crf-bp GATTTCGTGCAGCTGTTGGG CAGCCGATCTTCATGTGGGT KC195965

gr1 AGTGCTCCTGGCTCTTCCTA GCTTCATCCGCTCCTCGTT DQ486890

mr CGCCTGGCTGGAAAGCAGATG GAGGTCAGGGGCAAAGTAGAGCAT (47)

elf1α TGGTGATGCTGCCATTGTC AGCCACTGTCTGCCTCAT AF184170

fau AGCCCAACTCTGCCATCA AATCCTGCCACCAGAACCT (47)

pomca1 CCGCTGCTCACGCTCTTC GGCTGCTCGTCTTCTGTCTCT (47)

The sequence for seabass crf-bp was not available at the time of experimentation.
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performed with GraphPad Prism 7.0 (GraphPad Software Inc.,
La Jolla, CA, USA).

RESULTS

Chronic Stress, Growth, and Food Intake in
Seabass and Seabream
In seabass growth decreased with increasing stress intensity, not
in seabream (Figures 1A,B). For feed consumption, there was
a significant interaction for seabass between stress and time
[F(6, 95) = 2.36; P = 0.037], with higher feed consumption in
controls compared to stressed groups in the 2nd and 3rd week
of the experiment (Figure 1C). In seabream, no differences in
feed consumption were observed among any of the groups
[F(3, 143) = 0.45; P = 0.717] (Figure 1D).

Plasma Cortisol, Stress Load and Acute
Stress Response
Regression analysis of seabass plasma cortisol showed a
significant effect of stress load on basal cortisol levels
[F(1, 75) = 27.03; P < 0.0001; R2 = 0.2649; Figure 2A], as well
as a significant effect of the ACT [F(1, 76) = 44.61; P < 0.0001;
R2 = 0.3699; Figure 2B]. Basal cortisol levels increased with
increasing stress load, whereas plasma cortisol after the ACT
decreased with increasing stress load. For seabream a significant
regression between stress load and plasma cortisol was found
for basal cortisol only [F(1, 77) = 8.86; P = 0.0039; R2 = 0.1032;

Figure 2C], not for plasma cortisol after the ACT [F(1, 76) = 3.55;
P = 0.0634; R2 = 0.04463; Figure 2D]. There were significant
interactions between chronic and acute stress in both species
[F(3, 147) = 29.27; P < 0.0001 for seabass, and F(3, 149) = 3.37;
P = 0.0178 for seabream].

Plasma α-MSH Levels and Chronic Stress
In both species no effect of chronic stress treatments on basal
plasma α-MSH was observed (data not shown), nor was any
interaction effect found between chronic and acute stressors.
Values varied around 270 pM for seabass and 250 pM for
seabream.

Monoamines in the Brain
In both species no effect of chronic stress on brain stem
monoamine content was observed (data not shown). 5-HT
turnover (as quantified by 5-HIAA/5HT ratio’s) ranged between
0.40 and 0.50 for seabream and 0.25 and 0.30 for seabass.

In-situ Hybridization of cfos
There were species-specific differences in the cfos mRNA
abundance in the preoptic area, particularly at basal levels. That
is, while no labeling of cfosmRNAwas seen in seabream samples,
in seabass high mRNA abundance was found in the preoptic
area. This suggests activation of the POA at basal conditions in
dependence of degree of stress load. Notably, cfos abundance
increased in seabream and remained high in seabass post-stress
(Figures 3A,B).

FIGURE 1 | Growth and daily food consumption in sea bass and seabream. Body mass gain in seabass (A) and seabream (B) in controls and after exposure to low,

medium or high chronic stress (mean + 1 SD; N = 2; n = 40). Daily food consumption of seabass (C) and seabream (D), expressed as gram dry food per kg of fish.

Two-way ANOVA showed significant differences between control and the rest of the groups in seabass (*P < 0.05).
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FIGURE 2 | Plasma cortisol in seabass (A,B) and seabream (C,D) in controls and after exposure to chronic stress, before (A,C) and after an acute stress test

(B,D). Data are expressed as mean ± SEM (N = 2; n = 20). Linear regression (solid line) results are shown in each panel. The 95% confidence interval is shown as

dashed lines.

FIGURE 3 | In-situ hybridization of cfos in seabass and seabream brain before (T0) and after acute stress (T1). Schematic representation of transverse brain sections

containing the POA in seabream (A) and seabass (B) illustrating cfos mRNA transcript abundance before (T0) and after acute stress (T1). The blue stars represent

labeled cells within each area.

Gene Expression in POA
In seabass, the gr1 and mr expressions had increased
and decreased, respectively, in the high stress group
compared to all other groups [gr1: F(3, 68) = 16.50;
P < 0.0001, mr: F(3, 68) = 25.94; P < 0.0001; Figures 4A,C].
Consequently, the gr1/mr ratio was significantly higher
in the high stress group compared to all other groups
[F(3, 68) = 47.60; P < 0.0001; Figure 4E]. In seabream
no significant differences were found in the expression

of gr1 and mr (Figures 4B,D) or in the gr1/mr ratios
(Figure 4F).

In seabass POA crf expression was affected by the intensity of
chronic stress [F(3, 68) = 8.974; P < 0.0001]. In this species the
expression of crf was higher in the high stress compared to the
control and medium stress groups (Figure 5A). In seabream, no
significant differences in crf and crf-bp expression were evident
between groups (Figures 5B,C). No primer sequence for crf-bp
in seabass was available at the time of these studies.
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FIGURE 4 | gr1 and mr gene expression in POA of seabass and seabream. Expression of gr1, mr and gr1/mr ratio in seabass (A,C,E) and in seabream (B,D,F) for

control fish and for groups previously subjected to chronic stress. Data are shown for individual fish; the black lines indicate the mean (N = 2; n = 20). One-way

ANOVA showed a significant effect of chronic stress; different letters indicate significant differences between groups (P < 0.05).

A significant correlation between gr1 and crf (Spearman
r= 0.570; P< 0.0001) was found for seabass, for all experimental
groups. For seabream there was no significant correlation
between these parameters (Spearman r =−0.1076; P = 0.379).

Gene Expression in Pituitary Gland
In seabass low, medium, and high levels of chronic stress
decreased transcript abundance of pomca [F(3, 57) = 5.434;
P = 0.002; Figure 6A]. In seabream no significant effect
of chronic stress on pomca1 expression was observed
[F(3, 68) = 1.574; P = 0.20; Figure 6B].

Gene Expression in Telencephalon
In seabass a high degree of variation in telencephalic gene
expression was observed and chronic stress further increased this
variation. No statistical differences existed in the expression of crf
and unlike the pattern in POA, the gr1/mr ratio was not affected
by chronic stress load (Figures 7A,C).

In seabream, telencephalic crf mRNA levels were significantly
lower in the highly stressed seabream compared to all others
[F(3, 72) = 5.03; P = 0.0033] while the gr1/mr ratio had decreased
as stress load increased (Figures 7B,D).

DISCUSSION

Insight in fish stress handling is crucial to guarantee
welfare and product quality in aquaculture and fisheries
(49). In the present study, we compared two fish species
with great relevance to Mediterranean aquaculture that
differ widely in their life history and stress handling
capacities.

It is well known that stress is energy consuming, leads to
decreased food consumption and thus growth in fish (50–
52). Indeed, the seabass decreased their feed consumption
due to chronic stress. Moreover, body mass decreased with
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FIGURE 5 | crf and crf-bp gene expression in POA of seabass and seabream.

Expression of crf in seabass (A) and in seabream (B), as well as crf-bp in

seabream (C), for control fish and for groups previously subjected to chronic

stress. Data are shown for individual fish; the black lines indicate the mean

(N = 2; n = 20). One-way ANOVA showed a significant effect of chronic stress;

different letters indicate significant differences between groups (P < 0.05).

increasing stress load. Both feed consumption and growth were
unaffected by a similar stress imposed on seabream. From these
observations, we conclude that the stress load in this study was

significant but not extreme and that seabream apparently are
more resilient.

In general, it is believed that reduced feeding intake induced
by stress is regulated by a combination of behavioral and
physiological adaptations to stress (53). These adaptations alter
energy expenditure allocation (50, 51), which may in turn lead to
growth reduction. Seabass individuals are sensitive to common
aquaculture practices such as tank cleaning, which can lead to
reduced feed intake for up to 3 days (54), and a significant
reduction in growth (51, 55). On the contrary, seabream seems to
bemore resilient to stress, and did not show differences in growth
between control and daily-stressed fish (32). Taken together our
data confirm earlier reports showing lower resilience of seabass
to stress compared to seabream.

Cortisol in fish combines glucocorticoid and
mineralocorticoid actions, by redistributing energy away from
growth and reproduction toward survival mechanisms including
regulation of hydromineral balance (8, 56, 57). Therefore, high
and persistent elevated concentrations of circulating cortisol
can affect a wide range of metabolic, immune and reproductive
functions (8, 25).

It is shown here that seabass subjected to increasing
intensity of (chronic) stress mildly elevate basal plasma cortisol
levels (range: 50–200 ng/ml; Figure 2) compared to controls;
remarkably, basal levels of cortisol in seabass are remarkably high
compared to the generally accepted “non-stress” level seen in
most fish (up to 20 ng/ml). Seabass is in general characterized
by high cortisol values and variation (27, 28, 39, 58, 59), and the
current results point out that chronic stress can further increase
these high (basal) cortisol levels.

The decreasing response in seabass to the ACTwith increasing
stress load history indicates that cortisol production capacity is
impeded when the stressor persists, the interrenal tissue becomes
exhausted (46, 60, 61). In other words, the stress intensity in
severely stressed fish exceeded their coping ability (62, 63),
the stress given presented an allostatic overload (3). Indeed,
repetitive common handling stress on this species, such as tank
cleaning (51) or exposure to high-density stress (30, 31) cause
changes in circulating cortisol levels. It seems therefore that
the intensity and type of the (chronic) stressor and the sum of
stressors imposed (e.g., handling, suboptimal water quality and
light conditions) need consideration in defining their effects on
cortisol response and stress regulation in seabass. In this respect,
small-scale laboratory experiments such as presented here are
highly informative in aquaculture policy making.

Contrary to what was observed in seabass, in seabream no
significant differences were observed in cortisol levels between
chronically stressed groups at basal conditions, and all groups
responded with increased cortisol to acute stress, and we take
this to indicate a healthy physiological functioning of the HPI
axis in this species and strong capability to handle stress. The
outcome of this comparative study makes us confident that the
stress imposed reflects (presumed) realistic conditions.

In our studies we did not bisect the pituitary gland into pars
distalis and pars intermedia, we did not isolate ACTH- or MSH-
cells, and therefore pomc expression levels shown could reflect
both ACTH and MSH activities. Only, in seabass we found an
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FIGURE 6 | pomca gene expression in pituitary gland of seabass and seabream. Expression of pomca in seabass (A) and in seabream (B), for control fish and for

groups previously subjected to chronic stress. Data are shown for individual fish; the black lines indicate the mean (N = 2; n = 20). One-way ANOVA showed a

significant effect of chronic stress in seabass only; different letters indicate significant differences between groups (P < 0.05).

FIGURE 7 | Gene expression in telencephalon of seabass and seabream. Expression of gr1/mr (A) and crf (C) in seabass and gr1/mr (B) and crf (D) in seabream for

controls and for groups previously subjected to chronic- low, medium, and high stress. Data are shown for individual fish; the black lines indicate the mean (N = 2;

n = 20). One-way ANOVA showed a significant effect of chronic stress; different letters indicate significant differences between groups (P < 0.05).

inhibitory effect of stress on pomc expression, while preoptic
crf expression was unaffected (low and medium stress) or up-
regulated (high stress); so pomc expression had increased either
to replenish POMC-derived protein stores or an as yet unknown
short feedback loop affects the pituitary gland under stress in this
fish.

Plasma α-MSH in some species may serve as modulator
of the stress response (40, 64), and particularly under chronic
stress conditions α-MSH may act as (mild) corticotrope (8, 18),
lipolytic, or anorexigenic signal (3). At present little is known
about plasma α-MSH actions on brain functioning in relation
to feeding; The option of plasma MSH as signal to brain
(stem) centers [α-MSH is a cyclic molecule which may easily
and passively pass the blood brain barrier; (65)] involved in

feeding control requires further studies. It has been reported for
Mozambique tilapia (Oreochromis mossambicus) that plasma α-
MSH is only regulated under chronic stress conditions, but not
after an acute stressor (66). In their studies on seabream, Arends
and colleagues air-exposed naïve fish for 3min and reported
a very high peak in cortisol level (1,400 vs. 414 nM in this
study after an ACT). These high cortisol levels correlated with
elevated MSH-levels (which we did not observe in the present
study) from which then was concluded that air-exposure has
a major effect on catecholaminergic pathways as ACTH was
not into play (40). Major differences in experimental design
(e.g., 1 vs. 3min air-exposure, chasing before air-exposure, pre-
conditioning to different stress levels) may make the difference
in outcome between these two studies. Importantly, habituation
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of the catecholaminergic response induced by the chronic stress
application cannot be excluded. Indeed, in our experiment fish
responded to acute stress with an increase in plasma cortisol, not
in α-MSH levels. Possibly, acetylation of α-MSH (independent
from total levels of α-MSH) is affected by chronic stress. The
corticotropic activity of α-MSH in Mozambique tilapia increases
with increasing degree of acetylation (des-, mono- di-acetyl α-
MSH) (18) and a shift in α-MSH species (apart from total levels)
could result in a differential contribution of α-MSH to cortisol
production. However, these aspects were not analyzed in the
present research. The consequence of acetylation of the POMC-
derived peptides MSH and endorphin(s) is differential: MSH
may become more biopotent, endorphins become inactivated
by acetylation (18, 66). Is it the protection against the powerful
actions of endorphins to consider in POMC-peptide stress
regulation? More detailed studies are needed.

No differences in the 5-HT turnover rate were observed
between chronic stress groups in both species. Generally,
mammalian studies show that chronic stress and increased
allostatic load affect 5-HT neurochemistry [reviewed by
Beauchaine et al. (67)]. Similarly, chronic stress, induced by high
stocking densities, resulted in elevated basal levels of brain stem
5-HT turnover in rainbow trout (68). However, upon an acute
stress, already chronically stressed trout showed blunted stress
responses including telencephalic 5-HT responsiveness (69).
However, the present results indicate that chronic stress does
not affect basal 5-HT neurochemistry, which is somewhat in
contrast to the aforementioned rainbow trout studies. However,
it is important to point out that in the rainbow trout studies fish
were exposed to a continuous stressor, while in the present study
they were repeatedly exposed to a combination of high-intensity
stressors (different densities, chasing and air-exposure). Of note,
the experimental design of the present study did not include
brain 5-HT responsiveness to an acute stressor.

Stress can significantly alter the expression profile of genes
related to metabolic, immune and cell signaling functions
(70–72). The expression of glucocorticoid receptors and heat
shock proteins is altered when seabass are chronically stressed
by high rearing density (71, 73). Changes in the expression
of stress-related genes have also been reported in seabream
exposed to different rearing densities (33) or to unpredictable
chronic low intensity stress in the early stages of life
(74).

In the present study there was a remarkable difference in basal
cfos expression in POA of seabass and seabream. In seabream the
gene was apparently and essentially silent in unstressed seabream,
but cfos expression was clearly seen after acute stress. In seabass,
cfos expression in the POA was found under basal as well as
post-stress conditions. It has been suggested that cfos expression
is up-regulated after acute exposure to (hypercapnia) stress in
seabass (72). Moreover, in zebrafish cfos expression seems to be
upregulated after exposure to chronic stress (75). Still, however,
literature on this aspect is limited and we can only speculate that
the high expression of cfos confirms and reflects high HPI-axis
activity in seabass, in agreement with the endocrine pre- and
post-acute stress concentrations of cortisol, glucose and lactate
in seabass, compared to those of seabream (28).

The significant increase in POA crf expression in the highly
stressed seabass indicates that their impaired cortisol response
to acute stress is not related to a dysfunction of the POA, but
must be sought rather in exhaustion of the interrenal tissue
(as discussed above) or in the pituitary corticotropes (35).
Indeed, the seabass interrenal gland appears to be the key tissue
where regulation of cortisol responsiveness occurs (Samaras and
Pavlidis, submitted). Meanwhile, seabream coped well with the
stress imposed. These fish presented both low cortisol levels
and unaltered crf expression in the POA. This is in agreement
with results reported for Atlantic salmon subjected to a similar
unpredictable chronic stress (35). Taken together, the present
study shows a species-specific regulation of the HPI axis to
chronic stress.

A profound difference in cortisol receptor profile was
found between seabass and seabream. The gr1/mr ratio
showed an over 100-fold increase in highly stressed seabass,
compared to control groups, while in seabream the ratio
remained unaffected by stress. The drastic ratio shift in
seabass resulted from a combined increase in gr1 expression
and decrease in mr-expression; we speculate that this shift
is best explained by differential feedforward and feedback
mechanisms of cortisol on these targets, respectively. Shifts in
gr/mr ratio are indicators of impaired appraisal, poor learning
and fear avoidance in vertebrates (76–78). In zebrafish (79)
and trout (80) chronic stress increased the brain gr/mr ratio
and this was associated with diminished cognitive quality and
inhibitory avoidance learning. In mammals, gr/mr ratio shifts
make the brain prone to steroid-induced pathologies (81)
and we suggest here that the same may hold for fish (82–
84).

If we take the gr/mr ratio as indicator of allostatic load [as
done in rodent studies; (77, 81, 85)], also in fish, then our
chronic stress paradigm induces allostatic overload and thus
the ratio may be considered an appropriate indicator of stress
load. We propose that such a receptor profile is a trait common
to vertebrates, and originally developed in fish, the earliest
vertebrates.

Finally, the telencephalon is an important target for cortisol
feedback, illustrated by changes in gr/mr ratio in e.g., zebrafish
(82–84). Indeed, in seabream we observed both decreasing
gr/mr ratio’s and crf expression levels with increasing stress
load. To appreciate a stress response it is important to
recognize and appreciate the role of complex behavior in
this response, memory, learning, appraisal and prediction
are crucial in coping with a dynamic environment and
requires brain structures that facilitate such behavior. Evidence
is accruing that the fish telencephalon/forebrain contains
structures homologous and partly analogous to the mammalian
hippocampus, amygdala, pyriform cortex, and isocortex (3). For
zebrafish we have shown via inhibitory fear avoidance learning
that the amygdala equivalent (dorsomedial pallium) is involved
in acquisition of memory, a likely process involving MR activity,
while in hippocampal neuronal clusters (dorsolateral pallium)
GR facilitates consolidation of memory (86). A surprising
functional parallel seems to exist in fish and mammalian
system (81) steering stress-related behavior. The absence of
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this response in gr/mr ratio’s and crf expression in seabass to
chronic stress corroborates the notion that this species resides
outside its allostatic comfort zone in the current experimental
paradigm.

CONCLUSIONS

In this experiment seabass and seabream were found to react
very differently to stress. Specifically, seabass appear to be
more susceptible to stress in terms of reduced food intake
and growth, as well as the regulation of plasma cortisol levels.
Seabream compared to seabass appeared to have a strong
resistance and lower sensibility to the stress regimes used in this
experiment. This study substantiates species-specific differences
in (endocrine and neuroendocrine) stress physiology from gene
expression to growth performance and (learning) behavior.
These considerations on species-specificity should draw attention
of those involved in diversification programmes in aquaculture
practices.
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Glucocorticoids (GCs) are the final effector products of a neuroendocrine HPA/HPI axis

governing energy balance and stress response in vertebrates. From a physiological

point of view, basal GC levels are essential for intermediary metabolism and participate

in the development and homeostasis of a wide range of body tissues, including the

skeleton. Numerous mammalian studies have demonstrated that GC hormones exert a

positive role during bone modeling and remodeling as they promote osteoblastogenesis

to maintain the bone architecture. Although the pharmacological effect of the so-called

stress hormones has been widely reported, the role of endogenous GCs on bone mineral

metabolism as result of the endocrine stress response has been largely overlooked

across vertebrates. In addition, stress responses are variable depending on the stressor

(e.g., starvation, predation, and environmental change), life cycle events (e.g., migration

and aging), and differ among vertebrate lineages, which react differently according to

their biological, social and cognitive complexity (e.g., mineral demands, physical, and

psychological stress). This review intends to summarize the endogenous GCs action

on bone metabolism of mammals and fish under a variety of challenging circumstances.

Particular emphasis will be given to the regulatory loop between GCs and the parathyroid

hormone (PTH) family peptides, and other key regulators of mineral homeostasis and

bone remodeling in vertebrates.

Keywords: glucocorticoids, stress, bone, vertebrates, PTH3, PTHLH

INTRODUCTION

Glucocorticoids (GCs) are central steroid hormones on endocrine stress response modulation
and whole-body homeostasis in vertebrates. Downstream of the hypothalamic-pituitary-
adrenal/interrenal (HPA/HPI) axis, regulated by a negative feedback loop, circulating CGs exert
diverse actions by binding to glucocorticoid receptor (GR) placed on nearly every tissue in the body
(1). In addition to well-known effects on glucose metabolism, immune system, reproduction,
feeding, circadian rhythm, behavior, and cognition, GCs also regulate bonemetabolism (2–4). Bone
is ametabolically active tissue, shaped at an early stage of development and continuously remodeled
throughout an animals’ lifetime. Bone remodeling regulated by systemic hormones, neural, and
local factors, involves the coupled action of osteoclasts, osteoblasts, and osteocytes to replace old
and damaged bone. This process preserves the mechanical strength and stiffness of the skeleton,
maintains calcium-phosphorus homeostasis, acid/base balance, and releases growth factors as well
as organic material embedded in bone (5, 6).
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In vertebrates, the GCs action is complex. Despite stress
hormones have long been considered as catabolic hormones,
a dual metabolic effect has been found in the skeleton.
Physiological levels of GCs are vital for normal skeletogenesis
and bone mass accrual, which highlights an important anabolic
role (7). However, an increase of GCs over the basal levels causes
reduced bone growth, bone resorption and bone mineral loss
as seen in Cushing’s syndrome and GCs-induced osteoporosis
(GIO), as well as other associated pathologies such as diabetes or
sarcopenia (8–10). In humans, Cushing’s syndrome (also named
hypercortisolism) is characterized by an increased production of
endogenous cortisol or GCs drugs resulting in detrimental effects
on bone metabolism (11). Patients suffering from Cushing’s
disease exhibit a reduced bone mineral density, increased risk of
fracture, suppression of osteoblastic differentiation and apoptosis
of both osteoblasts and osteoclasts, among other symptoms (12,
13). Moreover, sustained exposure to exogenous GCs is also
responsible for the so-called GIO as a consequence of long-term
GC therapy (14). GIO has recently been investigated in fish, with
zebrafish incubated in GCs showing reduced bone growth and
impaired bone regeneration (15).

On the other hand, endogenous/exogenous GCs have been
proposed to act as key regulators of osteocalcin expression in
bone. Osteocalcin is a calcium-binding peptide synthesized by
osteoblasts and osteocytes, involved in skeletal mineralization
and, regulation of insulin production (16). Elevated GC levels
suppress the osteoblast activity and inhibit the osteocalcin release
in mammals (17). Therefore, GCs affecting bone formation also
indirectly cause changes in whole-body energy metabolism (8).
GCs are known to interact with parathyroid hormone (PTH)
family members. Human PTH1 (PTH—the master regulator
of bone mineral homeostasis) showed corticotropic activity
in adrenocortical cell cultures (18). A feedback regulatory
loop between cortisol and PTH3 (parathyroid hormone like
hormone—PTHLH) has been described in vertebrates (18–
20). In mammals, PTH3 participates in embryonic skeletal
development (21), calcium mobilization during fetal-placental
transport (22) and lactation (23, 24). While in fish, duplicated
Pth3 factors are hormones involved in calcium uptake (25,
26), mineral release from scales (27), skeletogenesis and early
mineralization (28).

To date, a substantial body of research has focused on the
bone effects caused by a pathological increase of endogenous
and exogenous GC levels, but few studies have reported the
changes produced on bone metabolism due to the elevation
of stress-induced GCs. As a natural mechanism, all organisms
react to extrinsic and intrinsic stressors through the GC-
mediated hormonal response to restore the equilibrium and
preserve homeostasis. In this context, the skeleton is one of
the target organs of the stress hormones and bone remodeling
is an essential process that enables it to respond to changing
conditions by modifying its structure and mineral composition.
Stress responses are characterized by being variable across
vertebrates and they are closely related to the type of stressor
as well as the lineage-specific biology and ecology (29, 30).
In this article, we review the action of stress-induce GCs on
bone metabolism in vertebrates. Briefly, we define the current

knowledge on the effect of endogenous GCs on bone under
normal physiological conditions. Then, we describe how several
stress factors affect bone mineral metabolism in two different
vertebrate lineages: mammals (primarily human), which are
endothermic terrestrial vertebrates, and fish, characterized as
ectothermic aquatic vertebrates.

ENDOGENOUS GCs ON BONE

DEVELOPMENT AND HOMEOSTASIS

Endogenous GC hormones regulate the expression of target
genes through GR signaling within bone cells, affecting skeletal
development and metabolism. The skeleton responsiveness to
GCs and the subsequent activation or inhibition of the gene
expression depends on the level of circulating stress hormones,
the intracellular availability of active GCs and the GR activity
(1). To date the study of GC actions on bone has focused on
mammalian models. Initially, investigations were based on the
global GR deletion which led to premature death in newborn
mice by respiratory failure (31). This was followed by more
advanced molecular approaches such as the bone cell-specific GR
gene deletion or the osteoblasts-targeted transgenic expression
of 11βHSD2 (enzyme that catalyzes the conversion of active
to inactive GCs) to disrupt intracellular GC signaling. These
studies contributed to better define the endogenous GCs effects
under various physiological conditions. In vivo and in vitro
studies carried out in cell cultures derived from 11βHSD2
overexpressing transgenic mice have reported the positive action
of endogenous GCs during bone development (32, 33). GCs
appeared to be essential for mice osteoblastogenesis as they
control the lineage commitment of mesenchymal progenitor
cells through osteoblasts by promoting the activation of Wnt
signaling. In turn, Wnt proteins act on mesenchymal cells to
increase the expression of β-catenin and RUNX2, the master
regulator of osteoblast differentiation. Also, osteoblast GC
activity disruption in 11βHSD2 transgenic mice revealed an
important role for normal intramembranous ossification and
proper cartilage removal during cranial development (34, 35). In
addition to the GC actions during skeletogenesis in mammals,
several studies have pointed out that endogenous GCs are
also required to maintain the bone mass accrual and skeletal
integrity across adulthood. Inactivation of osteoblast-specific GC
signaling by using a GR knockout mouse model (36) or 11βHSD2
expressing transgenic mice (37, 38) resulted in a decrease of bone
mineral density in adults, which was dependent on the skeletal
site and sexual maturity (37). Moreover, a downregulation in
the expression of osteoblasts differentiation markers (i.e., Col1a1,
Runx2, bone sialoprotein, and osteocalcin) was found, suggesting
failed osteoblastogenesis as well as mature osteoblast function
(36, 38). Therefore, the major effects of endogenous GCs on
bone development and homeostasis are probably due to its
direct actions on osteoblasts. Nevertheless, due to a close and
reciprocal interconnectivity between osteoblasts and osteoclasts
for skeletal metabolism, in vivo studies involving endogenous
GCs and osteoclasts are needed to specifically dissect the cellular
actions on the skeleton.
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STRESS-INDUCED GLUCOCORTICOID

EFFECTS ON BONE MINERAL

METABOLISM

GCs, including cortisol and/or corticosterone in mammals as
well as cortisol in fish, are synthesized in the adrenal cortex of
mammals, but in the interrenal tissue of the head kidneys in
teleosts (39). In response to stress, the pituitary gland signals
the adrenal gland/interrenal tissue to release GCs. These GCs
are released into the blood and initiate numerous cellular events
that promote changes in cells and tissues for adaptation to
stressful stimuli (40) (Figure 1). In this context, it is important
to distinguish between the degrees of stress that can ultimately
affect bone homeostasis. Acute stress is sudden and transitory
and it may trigger skeletal remodeling as an adaptive response,
which confers survival advantage (41). After exposure to an acute
stressor, GCs levels are rapidly increased in the blood before
returning to basal levels via negative feedback mechanisms.
However, chronic stress is a long-term stressor, sustained for a
prolonged period of time or due to a frequently occurring stressor
(41), through which GCs levels remain elevated which could
lead to several pathological conditions including bone mineral
loss (2). Stress-induced bone resorption can result in calcium
and phosphate release and it can lead to irreversible damage
of the bone architecture resulting in mechanical instability. In
addition to intensity and duration of the stressor, the stress
responses of vertebrates are highly variable depending on the type
of stressor and the way it is perceived by each kind of species.
Some key stress factors affecting bone mineral metabolism in
mammals and fish are described in this section including mineral
demands, environmental change, starvation, physical exercise,
psychological stress, and aging (Figure 1).

Mineral Demands
The skeleton is the major mineral storage organ in the vertebrate
body and takes part in the regulation of calcium-phosphate
metabolism. Thus, skeleton provides calcium and phosphate
through bone resorption to compensate the inadequate
availability of minerals in the environment and/or in the diet to
maintain essential ionic levels in blood (5, 42). Unlike terrestrial
vertebrates, fish can absorb minerals from surrounding water
across the skin, oral and branchial epithelium, so stressors
related to water and ion homeostasis have a greater physiological
impact (29). In teleosts, the role of cortisol on osmoregulation
has widely been reported (43) but, the contribution of cortisol
on the ionic balance related to bone mineral homeostasis has
received less attention (44). Previous studies showed that fish
exposed to low calcium water levels give rise to high plasma
cortisol levels in rainbow trout (45, 46), and stimulates the
gene expression of steroid 11β-hydroxylase (final-step enzyme
for cortisol synthesis) as well as glucocorticoid receptor (gr)
in zebrafish (47). Moreover, cortisol treatment was shown
to induce in vitro calcium transport in cultured rainbow
trout gill epithelium, which supports its hypercalcemic role
(48). Also, tilapia exposed to exogenous cortisol showed an
increase in calcium uptake and upregulation of epithelial Ca2+

FIGURE 1 | Stress-induced cortisol affecting bone mineral metabolism in

human and fish. Stressors including mineral demands, environmental change,

starvation, physical exercise, psychological stress, or aging trigger the

hypothalamic-pituitary-adrenal/interrenal (HPA/HPI) axis activation in human

and fish, respectively, leading acute and chronic effects on the skeleton.

channel (ecac) gene expression (49). It would therefore appear
that teleost fish regulate the calcium uptake to cope with a
fluctuating water environment which is closely related to bone
homeostasis. Alternatively, studies with juvenile seabream
showed a plasma cortisol increase after prolonged exposure
to low calcium availability in the water and/or diet, which
resulted in reduced whole-body calcium and phosphorus
contents (50). In the European eel, chronic cortisol treatment
induced mineral loss in vertebral bone through osteoclastic
resorption and osteocytic osteolysis (51). Interestingly, it has
been suggested that cortisol mobilization of bone mineral
stores in eel may be evidence of an ancestral stress-induced
physiological process (51) related to the effects of stress events in
mammals (e.g., starvation, physical exercise, psychological stress,
or aging).

An interaction between hypercalcemic PTH factors regulating
bone mineral metabolism and cortisol has been reported in
mammals and fish (Table 1). Both PTH1 and PTH3, stimulated
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TABLE 1 | Summary of some of the reported studies including PTH-cortisol regulatory interactions in mammals and fish.

Hormone Species Action Tissue References

PTH1 Homo sapiens Cortisol release Adrenocortical cells culture 18

PTH3 Homo sapiens Cortisol release Adrenocortical cells culture 18

Cortisol Mus musculus PTH3 expression increase Kidney 19

Pth3 Sparus aurata Cortisol release Isolated interrenal glands 20

Cortisol Sparus aurata Pth3 expression decrease Blood 52

cortisol release from human adrenocortical cells in vitro
(18), although only the gene encoding PTH3 appears to be
regulated by GCs (19). Similarly, piscine Pth3 showed in vitro
corticotropic activity on isolated sea bream interrenal glands
(20). In turn, sustained cortisol levels in sea bream as a
consequence of a 24h confinement stressor or in vivo cortisol
intraperitoneal injection resulted in a decrease in plasma Pth3
levels (52). Similar to cortisol, sea bream PTH3 is produced
in interrenal tissue in fish (20, 53) and therefore an autocrine
and/or paracrine regulatory mechanism between these two
hormones was proposed (52). However the underlying molecular
regulation remains unclear and it is possible that Pth3 acts
indirectly at other levels of the HPI axis. Contradictory results
regarding the cortisol-Pth3 reciprocal regulation were found
in sea bream exposed to limited calcium availability in the
long-term. Fish either under low calcium water along with
a calcium-sufficient diet or under regular calcium water but
calcium-deficient diet showed elevated plasma cortisol and Pth3
levels (50).

Environmental Change
Environmental stressors like temperature fluctuations are a
critical feature of homeostasis in an organism. This is of
particular relevance for ectothermic animals such as fish, where
temperature directly influences their normal physiology. Sea
bream exposed to water temperatures below 13◦C develop
winter syndrome, which is characterized by a multi-organ
dysfunction together with a high but transient rise of plasma
cortisol levels triggering a stress response (54, 55). A recent
study in sea bream has revealed the impact of cold challenge,
which increased the cortisol production and affected bone
homeostasis in juveniles (55). Thus, fish exposed to low
temperature during early development showed altered enzymatic
activities of alkaline phosphatase (ALP) and tartrate-resistant
acid phosphatase (TRAP) as well as calcium content changes
on the vertebral bone (55). Interestingly, temperature is also
a modulator of the expression of PTH family members.
Zebrafish embryos exposed to cold (18◦C) stress showed up-
regulated mRNA levels of pth1a, pth1b, pth3a, pth3b, and
pth1rb, while those exposed to a hot (38◦C) stress down-
regulated mRNA levels of these genes (56). Therefore, it is
likely that such changes may impact mineral balance, altering
bone development in embryos. However, to our knowledge,
there are no studies showing a correlation between temperature-
driven levels of cortisol and PTH family members affecting bone
metabolism.

Starvation
A common stressor in the wild is food deprivation, which can be
caused by adverse weather, decline in prey availability, increased
predator pressure and migration or hibernation, among others.
Under these conditions, it is well know that GCs are released
into the blood to promote the mobilization and utilization of
energy reserves and mineral stores in vertebrates (57). Regarding
migratory teleost fish like salmonids, spawning migration is a
very challenging situation since they undergo not only fasting
but also exhausting exercise, changes in osmoregulation and
sexual maturation (58). Thus, migratory salmonids, essentially
as adults returning to spawning grounds, experience a strong
activation of the neuroendocrine axis resulting in elevated
plasma corticosteroid levels (59) as well as marked resorption
of the skeleton. In particular, the anadromous Atlantic salmon
was reported to experience a dramatic skeletal transformation
caused by a decrease in the bone mineral content, halastic
demineralization, osteoclastic resorption, and reduced vertebral
bone mass (60–62). Nevertheless, a recent study in the migratory
European eel showed that sexually mature fish via cortisol

injection exhibited severe bone loss in the vertebrae and skull,
while plasma cortisol levels were reduced (63). Therefore,
a cortisol-independent bone resorption mechanism has been
suggested in migratory eels (63). Some mammalian species
also experience a situation of nutritional deprivation during
hibernation similar to that observed in migratory fish. Small
mammals such as little brown bats and hamsters lose a significant
bone mineral volume during hibernation (64, 65), but only high
plasma cortisol levels have been detected in bats (66). On the
other hand, cortisol is increased in hibernating bears, however
they maintain a typically balanced bone turnover which prevents
bone reabsorption excess and osteoporosis (67, 68). Furthermore,
fasting studies in humans have shown an increase in blood
cortisol concentration (69) accompanied by a decrease of PTH
secretion, which is suggested to have some positive effect on the
bone health (70).

Physical Exercise
Physical exercise represents a stressful experience for all
organisms. In mammals, physical activity promotes direct
effects on bone metabolism via mechanical forces (i.e., weight-
bearing activities), but also indirectly through hormonal factors
(71). Hence, exercise causes HPA axis activation and the
subsequent release of GCs into the blood. Although physical
exercise has been reported to prevent bone mineral loss and
to sustain bone health, long-term intense exercise is reported
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to cause hypercortisolism, which can result in osteopenia
and osteoporosis (71). Some studies have showed that over-
trained runners exhibit elevated ACTH and cortisol basal
concentrations compared with moderately trained runners and
sedentary subjects (72). However, the HPA axis activation was
attenuated in over-trained runners after exposure to an acute
exercise, suggesting a certain adaptation to physical exercise
(72). Other investigations have reported that highly trained
male master cyclists (73) and competitive male cyclists show
low bone mineral density in the hip and spine, however there
is no clear association between bone mineral content and
excess of GC secretion (74). Exercised fish show improved
growth and increased bone remodeling (75). However, the most
extreme examples of possible interactions between GCs and bone
metabolism during exercise may arise from migratory fish such
as the salmonids or eels (see also under Aging). In experiments
that were aimed to simulate to some extent the skeletal-loss
consequences of a 5,000 km migration to reproductive grounds
(51, 63) demonstrated that cortisol induced a significant bone
demineralization of Europen eel vertebrae, with significant
decreases of the mineral ratio and the degree of mineralization
of vertebral sections. Using histology and image analysis of
ultrathin microradiographs they showed the induction by
cortisol of different mechanisms of bone resorption, including
periosteocytic osteolysis and osteoclastic resorption. These effects
were further enhanced by sex steroids. Specificity of cortisol
action was investigated by comparison with the effects of sex
steroids, namely estradiol, related to the stimulated synthesis
of vitellogenin (Vg), an oviparous specific phospho-calcio-
lipoprotein. Such effects of estradiol have been profusely shown
in salmonids (76). However, in above study, the ready-to-migrate
eels were not actually exercised but simply injected with steroids
and thus the evidence for the effects of exercise-related GCs.

Psychological Stress
It has recently been demonstrated that psychological stress affects
bone metabolism in humans and some animal models (77–81).
Although the psychological stress response is complex, as it
depends on individual interpretation, it has been suggested that
long-term psychological stress produces altered HPA axis activity
and as a consequence, GC release affecting bone health (77). In
rats, chronic psychological stress by anxiety neurosis results in
the loss of mandibular bone matrix (78). Post-traumatic stress
disorder, which is related to altered serumGCs, caused a decrease
of bone mineral density and bone mineral contents in young
mice (79). In humans, the relationship between depression and
bonemineral density has also been associated with stress-induced
cortisol effects. Post-menopausal womenwith depression showed
loss of bone mineral density in the lumbar spine and femur
compared to non-depressed subjects, as well as a higher cortisol
production after an acute stress experience (80). Furthermore,
pre-menopausal women suffering from chronic depression
presented a negative correlation between cortisol levels and bone
mineral density, as well as low osteocalcin levels suggesting
a decrease in bone formation (81). Recently there has been
increased attention to the impact of social or psychological stress
in fish, in parallel with the recognition of an increased degree of
sentience and multiple individual coping styles, to which some

may even refer as “personalities” in fish. The way fish exhibiting
those different coping styles address stressful events determines
to some extent their rank, access to food, energy expenditure,
growth rates and cortisol response levels (82, 83). However, to
date, there is no information on the impact of psychological stress
and induced GC levels on fish bone.

Aging
Aging is an imbalance between damage and repair that makes
organisms undergo an increasing vulnerability to challenges
during the post-maturational life, decreasing their ability to
survive (84). Along these lines, aging disturbs the homeostatic
system but perhaps it should not be considered as a stressor
since it does not elicit per se a physiological stress response.
However, aging is closely related to responsivity to stress and it
seems to produce similar effects to those seen in the chronic stress
response. In mammals, aging causes greater HPA axis activation
and thereby an excess production of GCs that negatively affect
bone metabolism (7). It has been proposed that HPA axis
hyperactivity could be due to a decrease in the number of GC
receptors in the brain, which in turn affects the negative feedback
regulation, but can also be the result of repeated stress events (7).
An age-related increase of corticosterone as well as upregulation
of 11βHSD1 (enzyme that activates GCs) expression in bone,
which led to reduced bone vasculature and skeletal fragility
in mice (85). Studies in humans have provided evidence that
elevated cortisol levels affect bone mineral density. Thus, elderly
men and women with a high level of evening salivary cortisol
had a reduced bone mineral density in the lumbar spine (86).
Also, high plasma cortisol levels in older women contributed
to bone loss in the femoral neck (87). Additionally, a positive
correlation between cortisol concentration and bone loss rate
was found in the lumbar spine in elderly men (88). Fish grow
continuously throughout their lives and usually their skeleton
maintains its integrity with aging. A few exceptions can be
found in semelparous species, such as many salmonids and
eels (51, 63, 76) in which sexual maturation, reproduction and
related skeletal remodeling coincide with the end of life. Both
GC and sex steroids increase along the migratory route and peak
levels coincide with important organ and skeletal remodeling.
In pink salmon specifically, cortisol levels rise over 20-fold in
both males and females (89) being thus likely that GCs may
have important effects over bone metabolism. Despite the fact
that most fish do not appear to undergo important skeletal
changes as they age, the use of fish as models for probing into
aging-related health conditions with impacts on bone mineral
metabolism in human offers ample possibilities, since they can be
treated and selected to simulate such conditions, including those
directly or indirectly related to disturbances in circulating GCs
(90–93).

CONCLUSION

In response to a variety of stressful situations and/or stimuli that
challenge the internal equilibrium in vertebrates, bone appears to
be a target organ for stress-induced GCs produced by HPA/HPI
axis activation. In mammals, as in fish, elevated GC levels
sustained over time result in bone resorption, which alters the
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mineral balance and damages the bone structure. Although this
evidence suggests that stress-induced GCs may act in a similar
fashion to that of therapeutic GCs, there is a gap in the knowledge
about the cellular and molecular mechanisms involving the stress
response, cortisol and bone mineral metabolism in vertebrates.
Studies utilizing mammalian models based on the pathological
increase of endogenous GCs and pharmacological GCs reported
that the bone effect of these hormones could be due to its direct
action on osteoblasts (34, 35). However, the actions of stress-
induced GCs on bone cells as well as the interactions between
GCs and other factors regulating bone homeostasis are currently
unknown.
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Vertebrates are faced continuously with a variety of potential stressful stimuli and react by

a highly conserved endocrine stress response. An immediate catecholamine mediated

response increases plasma glucose levels in order to prepare the organism for the

“fight or flight” reaction. In addition, in a matter of minutes after this (nor)adrenaline

release, glucocorticoids, in particular cortisol or corticosterone depending on the species,

are released through activation of the hypothalamic-pituitary-interrenal (HPI) axis in

fish or hypothalamic-pituitary-adrenal (HPA) axis in other vertebrates. These plasma

glucocorticoids are well documented and widely used as biomarker for stress across

vertebrates. In order to study the role of glucocorticoids in acute and chronic stress

and gain in-depth insight in the stress axis (re)activity across vertebrates, it is pivotal to

pin-point the involved molecules, to understand the mechanisms of how the latter are

synthesized, regulated and excreted, and to grasp their actions on a plethora of biological

processes. Furthermore, in-depth knowledge on the characteristics of the tissues as well

as on the analytical methodologies available for glucocorticoid quantification is needed.

This manuscript is to be situated in the multi-disciplinary research topic of glucocorticoid

action across vertebrates which is linked to a wide range of research domains including

but not limited to biochemistry, ecology, endocrinology, ethology, histology, immunology,

morphology, physiology, and toxicology, and provides a solid base for all interested in

stress, in particular glucocorticoid, related research. In this framework, internationally

validated confirmation methods for quantification of a glucocorticoid profile comprising:

(i) the dominant hormone; (ii) its direct precursors; (iii) its endogenously present phase

I metabolites; and (iv) the most abundant more polar excreted exogenous phase I

metabolites in non-pooled samples are pivotal.
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Aerts Glucocorticoid Profiling Pivotal in Stress

KEY CONCEPTS

Accurate Identification and Quantification
of Stressors Experienced by an Individual
The sheer diversity in potential stressors, individual perception
and subsequent reaction to these stressors, and the plethora of
metabolic processes mediated by glucocorticoids render accurate
identification and quantification of the stressors experienced by
an individual pivotal.

Analysis of the Dominant Glucocorticoid Is
Affected by Other Steroids
Glucocorticoid quantification can be biased by (i) the less
dominant hormone; (ii) other steroids; (iii) direct precursors
of the dominant hormone and the dominant hormone itself
produced in extra-interrenal or extra-adrenal tissues; (iv) phase
I metabolites present in the body; and (v) phase I metabolites
present on the sample as contaminants.

Analysis of the Dominant Glucocorticoid Is
Affected by the Sample Tissue
Results can be enhanced or suppressed by tissue specific
compounds, and potential effects should be analytically validated.

Analysis of the Dominant Glucocorticoid Is
Affected by the Analytical Methodology
Used
Glucocorticoid analysis should best be performed using
confirmation methods. Hereby, UPLC-MS/MS is considered the
gold standard for quantitation of glucocorticoids in complex
biological tissues as it has the needed sensitivity, selectivity and
the advantage of having the capability to perform multi-analyte
assays, even across compound classes.

Analysis of the Dominant Glucocorticoid Is
Affected by the Lack of Analytical
Validation
Methods should best be developed in an EN ISO/IEC 17025
regulated environment and analytically validated according the

criteria of international standards to ensure full traceability and
quality of the results in time.

INTRODUCTION

Moberg (1) defined stress as “a highly complex multi-
dimensional phenomenon promoted by several noxious or
unpredictable stimuli (stressors) that cause a physiological
response (stress) aimed to maintain or recover the body
homeostasis.” Stressors are diverse and generally classified based
on their: (i) type (i.e., chemical, physical, and psychological);
(ii) duration [i.e., transitory (acute) or long-term (chronic)]; (iii)
severity; (iv) (un)predictability; and (v) (un)controllability (2).
Hereby, stress can be perceived as harmful or negative (distress),
as well as a neutral or even as a positive condition (eustress) (3).

Organisms are faced continously with a variety of potential
stressful stimuli and have developed over time a plethora

of mechanisms to cope with changes and challenges in
their environment (4). When faced with such stressful
stimuli, vertebrates, ranging from fish to humans, react by
a highly conserved endocrine stress response. An immediate
catecholamine mediated response increases plasma glucose levels
in order to prepare the organism for the “fight or flight” reaction
(5). In addition, in amatter ofminutes after this (nor)epinephrine
[(nor)adrenaline] release, glucocorticoids, in particular cortisol
(11β,17α,21-trihydroxypregn-4-ene-3,20-dione or C21H30O5)
or corticosterone (11β,21-dihydroxypregn-4-ene-3,20-dione
or C21H30O4) depending on the species, are released through
activation of the hypothalamic-pituitary-interrenal (HPI) axis in
fish (6) or hypothalamic-pituitary-adrenal (HPA) axis in other
vertebrates (2). These plasma glucocorticoids are widely used
as biomarker for stress across vertebrates (7, 8) and considered
as adaptation hormones as they mediate a redistribution of
energy (i.e., glucose) in order to restore pre-stress conditions.
However, failure to regain homeostasis (maladaptation) will
inevitably lead to chronic stress making the individual prone to
the detrimental effects of glucocorticoid mediated actions (e.g.,
decreased growth, decreased reproduction, immune suppression,
increased mortality). In the concept of “allostasis” [i.e., constancy
through change by resetting the set-points for homeostasis in
accordance to environmental cues (9, 10)], this situation can
be described as: the transition from allostatic load (when the
stress can be overcome, “eustress”) to allostatic overload (when
the stress cannot be overcome and becomes “distress”) (5, 11).
The dominant hormone, cortisol or corticosterone, respectively,
is pleiotropic and affects all major homeostatic systems of
the vertebrate’s body. Besides modulating actions, which alter
an organism’s response to a stressor, also preparative actions,
which alter the organism’s response to a subsequent stressor
or aid in adapting to a chronic stressor, are distinguished (2).
Hereby, a plethora of physiological processes are modulated
including central nervous system (CNS) and cardiovascular
functions, the metabolic system [e.g., bone metabolism (12),
stimulation of gluconeogenesis, proteolytic processes in the
muscle and lipolysis in the adipose tissues to increase plasma
glucose levels)], the immune system (inflammatory response and
lymphocyte production), growth, reproduction, and behavior
(13). Furthermore, physiological amounts of glucocorticoids are
also essential for normal renal tubular function and thus for
water and electrolyte homeostasis (14, 15).

The perception of potential stressors by an individual varies
(16, 17) and depends on various factors including but not limited
to the species, genetic background, previous experiences (18),
gender (19), age, and types as well as duration of the stressors
(20, 21). The stress response will vary accordingly between
individuals and physiological and behavioral responses tend to
be associated in distinct suites of correlated traits, called “stress
coping styles” (22). Hereby, the proactive stress coping style
(active coping or “fight-flight”) is associated with lowHPI orHPA
axis responsiveness, but with high sympathetic reactivity, and is
characterized by a high level of active avoidance, aggression and
other actions indicating active attempts to counteract the stressful
stimulus. The opposite is seen in reactive coping (passive coping
or “conservation-withdrawal”) (22).
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In all, the sheer diversity in potential stressors, individual
perception and subsequent response to these stressors, and the
plethora of metabolic processes mediated by glucocorticoids
render accurate identification and quantification of the stressors
experienced by an individual pivotal.

ANALYSIS OF THE DOMINANT
GLUCOCORTICOID IS AFFECTED BY
OTHER STEROIDS

By the Less Dominant Glucocorticoid
The vertebrate stress response is mediated by the stress system
which is activated when encountering environmental stressors
but also when the body is at rest, hereby responding to various
signals (e.g., circadian, neurosensory, blood-borne, and limbic)
(23). The noradrenergic synthesizing neurons of the locus
coeruleus/norepinephrine-central sympathetic system in the
brainstem as well as the corticosteroid releasing hormone
(CRH) and arginine vasopressin (AVP) synthesizing neurons
of the hypothalamic paraventricular nuclei (PVN) comprise
the central components, while the systemic sympathetic
and adrenomedullary nervous systems and the HPI or
HPA axis comprise the peripheral components of the stress
system (24). Once triggered, CRH stimulates the release of
adrenocorticotropic hormone (ACTH) from the pituitary,
which results in glucocorticoid release, mainly cortisol, and
corticosterone depending on the species, from the head
kidney or adrenal gland, respectively. In ray-finned fish,
cortisol predominates but corticosterone is also present; in the
remaining fish species, the dominant or sole glucocorticoid
varies. In this framework, 11-deoxycortisol in agnate fish
(25); 1α-hydroxycorticosterone in sharks and rays (26); and
11-deoxycorticosterone in teleost fish (27, 28), were shown to
be active glucocorticoids. In amphibians, reptiles and birds, the
dominant glucocorticoid is corticosterone, while mammals, most
placentals and marsupials secrete primarily cortisol. However,
some rodents (e.g., rats and mice) secrete primarily or only
corticosterone, whereas most other rodents secrete primarily
or only cortisol (e.g., guinea pigs), while hamsters secrete both
glucocorticoids in equal quantities. As a consequence, the less
dominant glucocorticoid should be considered during analytical
validation as it can cause cross-reactivity and subsequently bias
glucocorticoid quantification.

By Other Steroids
Glucocorticoids have a typical steroid structure consisting
of a cyclopentaphenanthrene nucleus comprising three fused
cyclohexane rings in a non-linear arrangement and a terminal
cyclopentane ring. Most glucocorticoids possess a 14-3-keto
group, a carbon ketol side-chain at C17 and generally an oxygen
function at C11. The orientation of the groups attached to
the steroid ring system is pivotal for the biological activity
(29). As a consequence, other steroids including (i) androgens
(C19-steroids such as testosterone); (ii) estrogens (C18-steroids
such as estrone); (iii) mineralocorticoids (C21-steroids such
as aldosterone); and (iv) progestagens (C21-steroids such as

progesterone) (30), can be considered as physical-chemical
similar molecules and should be taken into account during
analytical validation as these compounds can cause cross-
reactivity and subsequently bias glucocorticoid quantification.

By Direct Precursors of the Dominant
Glucocorticoid and the Dominant
Glucocorticoid Produced in
“Extra-Interrenal” or “Extra-Adrenal”
Tissues
All steroids are derivatives of cholesterol (C27H46O) (31).
Though, glucocorticoids were initially thought to be exclusively
synthetized by the interrenal or adrenocortical cells, respectively,
numerous studies have shown that they are also synthesized
locally in so called “extra-interrenal” or “extra-adrenal” tissues
(32). At present, these tissues include but are not limited
to: primary lymphoid organs (33), intestine (34), CNS (35),
cardiovascular system (36), skin (37–39), hair follicle (40), lung
(41), kidney (42), and retina (43).

As a consequence, quantification of the dominant
glucocorticoid produced by the HPI or HPA axis can be
biased by direct precursors of the dominant hormone and the
dominant hormone itself produced in extra-interrenal or extra-
adrenal tissues, making the quantification (or at least analytical
validation) of these other glucocorticoids of importance.

By the Manner How Glucocorticoids Are
Regulated
Systemically, glucocorticoid levels are influenced by distinct
brain regions including structures of the limbic system (i.e.,
amygdala and hippocampus) and the midbrain (i.e., prefrontal
cortex) (44) as well as by the hypothalamus, pituitary, and
interrenal cells or adrenal cortex, respectively (45). In addition,
the glucocorticoid pathway is controlled by the dominant
glucocorticoid through a negative feedback loop. Besides this
stress reactivity, glucocorticoid release is under control of a
circadian clock (46). In humans the secretion of cortisol from
the adrenal glands was shown to follow a diurnal cycle with a
profound increase after awakening (47, 48).

Local regulation of glucocorticoid levels is mediated by access
to target cells mediated by carrier proteins (49), by pre-receptor
metabolism due to metabolic enzymes and by the availability of
glucocorticoid (GR) and mineralocorticoid (MR) receptors.

By the Non-free Dominant Glucocorticoid in the

Blood
Glucocorticoid levels vary rapidly due to the pulsatile nature
of its secretion, rendering the dynamics of its binding critical
determinants of tissue levels of free hormone and consequent
hormone signaling. In most vertebrate species, the major
proportion of circulating glucocorticoids are bound to a plasma
glycoprotein called corticosteroid binding globulin (CBG) (50,
51). Subsequently, the free fraction is small (52). Since CBG is
too large to leave the capillaries under normal circumstances,
glucocorticoids bound to it remain in circulation. According to
the “free hormone” hypothesis, it is the concentration of free,
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unbound hormone that determines how much glucocorticoids
diffuses out of the capillaries and reaches the tissues. However,
as CBG-bound glucocorticoids were shown to be released by
enzymatic cleaving of the CBG molecule (53) and cell surface
receptors for the CBG-glucocorticoid complex were shown to
be present in certain tissues (54), one could argue that the
glucocorticoid dissociation from CBG is part of the mechanism
that makes the hormone biologically active.

In all, when focusing on cortisol producing vertebrates,
cortisol is transported in blood more than 90% protein bound,
approximately 70% with high affinity to CBG and 20% with
low affinity to albumin, but it dissociates so rapidly that it is
generally thought to be free (55). However, evidence indicates a
dichotomous pattern with respect to CBG in these vertebrates:
(i) a dominant branch where high levels of CBG bind most of
the glucocorticoid which applies to the majority of vertebrates;
and (ii) a smaller branch where low levels of CBG bind almost
none of the glucocorticoid which applies to the fish (56). As
a consequence, glucocorticoid analysis should be analytically
validated to ensure that solely the free fraction of cortisol is
quantified.

By Phase I Metabolites of the Dominant

Glucocorticoid Present in the Body
Intracellular cortisol within the endoplasmatic reticulum of
cells is regulated by local enzymes in a tissue-specific way
independently of its plasma concentration (57). The intracellular
enzyme 11β-hydroxysteroid dehydrogenase (11β-HSD) is
bidirectional (58): 11β-HSD type 1 is a reductase that converts
the 11-keto metabolite cortisone to its active form 11-hydroxy
cortisol, amplifying glucocorticoid action in liver and visceral
adipose tissue, but also in brain, bone, gonad, muscle and other
GR-expressing tissues including the eye, while 11β-HSD type
2 catalyzes the oxidation of cortisol to cortisone (a hydroxyl
group at C11 becomes a carboxyl group) and is co-expressed with
the MR in the kidney, colon and salivary gland and inactivates
cortisol to cortisone, thereby enabling aldosterone to bind to
the MR (59, 60). In addition, cortisone was found to be further
reduced to 20β-hydroxycortisone by 20β-HSD type 2 (61). As a
consequence, glucocorticoid analysis should include cortisone as
the latter is rapidly interconverted to and from cortisol as well as
20β-dihydrocortisone.

Corticosteroids affect a variety of target tissues over a broad
range of time scales, ranging from slow gene transcription
dependent to rapid gene transcription independent actions.
Following uptake from the circulation, binding can occur by
the two major functional groups of vertebrate corticosteroid
receptors: GR and MR distinguished by their amino acid
sequences and ligand specificity (62, 63). Most studies were
performed on human intracellular genomic receptors [gGR
reviewed by (64) and gMR reviewed by (65) as well as by
(66)] regulating transcriptional activity of steroid target genes.
Far less is known regarding the non-genomic effects mediated
by the extracellular membrane glucocorticoid (mGR) and
mineralocorticoid (mMR) receptors [for review see (67)], which
allow rapid modulation of synaptic transmission and membrane
ion currents hereby playing a key role in signal transduction

at the synapse, the key neuron-to-neuron interface involved
in learning and memory and as such in traumatic memories
during times of stress (68, 69). As a consequence, glucocorticoid
analysis should take into account the effect of phase I metabolites
present in the body (i.e., cortisone and 20β-dihydrocortisone)
as both compounds could potentially bind to GR and MR and
are also excreted in minor proportions to the environment (see
further).

By Phase I Metabolites of the Dominant
Glucocorticoid Present in the Environment
The dominant glucocorticoid, cortisol or corticosterone,
respectively, is controlled by the ratio of de novo synthesis to
catabolism by the action of the respective enzymes involved. In
this framework, steroids undergo extensive bio-transformations
which decrease their biological activity and increase their
water solubility by converting them to hydrophilic compounds
that can be excreted. In general, these bio-transformations
are divided into: (i) phase I metabolism which usually
includes oxidation (e.g., hydroxylation) and/or reduction
(e.g., hydrogenation) reactions; and (ii) phase II metabolism
which usually involves conjugation reactions with polar groups
such as glucuronide or sulfate and resulting into a highly
hydrophilic product, which facilitates excretion in the urine or
feces.

Cortisol and cortisone are metabolized in the liver (70).
The main pathways of phase I metabolic reaction include: (i)
oxidation and reduction at C11; (ii) reduction of the C4-C5 double
bond; and (iii) reduction at C20 (30, 71, 72). In a next step, (allo)-
tetrahydrocortisol (THF) and (allo)-tetrahydrocortisone (THE)
is (i) conjugated at a hydroxy group rapidly with glucuronic acid
or sulfate and excreted in the urine or (ii) cleaved to the C19

steroids 11-hydroxy or 11-oxo-androsterone or etiocholanolone.
In humans, non-metabolized cortisol and cortisone were shown
to comprise only about 0.1% of the total urinary cortisol
metabolites. At least 90% of the tetrahydro-derivatives of cortisol
and cortisone are excreted into the urine as glucuronide or sulfate
conjugates (73). Alternatively, reduction of the 20-oxo group by
20α- or 20β-hydroxysteroid dehydrogenase yields α and β cortols
and cortolones, respectively, with subsequent oxidation at the
C21 position to form the extremely polar metabolites, cortolic,
and cortolonic acids (71). In addition, hydroxylation at C6 to
form 6β-hydroxycortisol as well as reduction of the C20 position,
whichmay occur without A ring reduction giving rise to 20α- and
20β-hydroxycortisol are described (74).

Overall, approximately 50% of secreted cortisol appears in
the urine as THF/allo-THF/THE, 25% as cortols/cortolones,
10% as C19O3 steroids (androstanes), and 10% appears as
cortolic/cortolonic acids. The remaining 5% metabolites are
free, non-conjugated steroids (cortisol, cortisone and 6β-
and 20α/20β-metabolites of cortisol and cortisone). As a
consequence, glucocorticoid analysis should include the most
abundant phase I metabolites such as THF and THE as
they are indicative for possible contamination of the sample
with glucocorticoids from urine, feces, water, as well as from
anthropogenic contamination (e.g., from hands).
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ANALYSIS OF THE DOMINANT
GLUCOCORTICOID IS AFFECTED BY THE
TISSUE USED FOR GLUCOCORTICOID
QUANTIFICATION

The type of tissue used for glucocorticoid quantification is of
utmost importance as each tissue incorporates glucocorticoids
in accordance with the processes by which it is formed hereby
defining the timeframe of interrenal or adrenocortical activity
that the tissue represents. Subsequently, a proper tissue for
chronic stress quantification should allow a retrospective (i.e.,
over a certain period of time) view of the stress axis activity,
and subsequently should possess the capacity to incorporate
glucocorticoids in a stress (i.e., in reaction to stress full stimuli
eliciting a glucocorticoid mediated response) and time (i.e., over
a certain period of time) dependent manner (75). The type of
tissue also determines the structural changes of the dominant
glucocorticoid that may occur via processes of conjugation to
glucuronides and sulfates, metabolic conversion via enzymatic
action and bacterial breakdown (8). As a consequence, the
effect of the tissue on the analysis results, as the latter can be
enhanced or suppressed by tissue specific compounds, should be
analytically validated. In practice, the choice of tissue depends on
various factors including but not limited to: (i) the species; (ii)
the nature of the study; (iii) acute vs. chronic stress quantification;
(iv) the tissues available for sampling; and (v) logistical feasibility.
Table 1 provides an overview of the temporal window of stress
axis (re)activation that is being reported in tissues commonly
used for glucocorticoid analysis across vertebrates. Hereby, it
should be noticed that at present no tissue for chronic stress
quantification exists for amphibians.

ANALYSIS OF THE DOMINANT
GLUCOCORTICOID IS AFFECTED BY THE
ANALYTICAL METHODOLOGY USED

Glucocorticoids are measured using a wide variety of
analytical methods including radio- (RIA) and enzyme

TABLE 1 | Tissues commonly used for glucocorticoid analysis across vertebrates.

Tissue Temporal window on

HPI/HPA (re)activity

References

Vertebrate egg Maternal deposition (76)

Vertebrate plasma/serum Snapshot (57)

Whole body of fish larva Snapshot (77)

Mammalian saliva Minutes (78)

Vertebrate urine Minutes to hours (72)

Vertebrate feces Minutes to days (79)

Vertebrate excreta Minutes to days (80)

Water Minutes to days (81)

Reptilian shed skin Weeks to months (82)

Avian feather Weeks to months (83)

Fish scale Weeks to years (75)

Mammalian hair Weeks to years (84)

(EIA) immunoassay, gas chromatography (GC), high
performance liquid chromatography coupled to ultraviolet
or fluorescence detection (HPLC-UV or FL), gas or liquid
chromatography coupled to tandem mass spectrometry (GC-
or LC-MS/MS) as well as sensor based techniques. In practice,
the technique of choice depends mainly on the availability
of qualified operators and sophisticated equipment in the
laboratory.

By Screening Methods
Immunoassays are most often chosen because they are fast,
cheap, easy to perform, and commercially available for the
dominant glucocorticoid in widely used tissues such as
plasma of well-studied vertebrate species. RIA and EIA are
both competitive binding assays necessitating an antibody
directed against certain parts of the dominant glucocorticoid.
While RIAs rely on a radioactive isotope (e.g., tritium or
iodine) to generate a radioactive signal, EIAs use enzymes
to generate a colorimetric signal to quantify the dominant
glucocorticoid. Though immunoassays are sensitive (i.e.,
sufficient low levels can be detected) for the glucocorticoid
of interest, major disadvantages are the lack of specificity
(i.e., as they show high cross-reactivity with precursors and
phase I metabolites of the targeted glucocorticoid as well as
with substances with similar physical-chemical properties
such as other steroids due to the poly-reactive nature of
antibodies), the high lot-to-lot variation of antibodies (85),
and the necessity to measure hormones individually. For
example, Rettenbacher et al. (86) stated that their results
for egg corticosterone could be explained by cross-reactions
of the antibody used in the corticosterone EIA with other
steroids, probably of gonadal origin as Hackl et al. (87) found a
similar distribution pattern for progesterone. Subsequently,
immunoassays should always be analytically validated
in-depth.

The drawbacks of immunoassays have stimulated the
development of new screening methods. Electrochemical
biosensors have shown potential for fast, accurate and sensitive
analysis of glucocorticoids. However, a continuing challenge
is the sensitivity and stability of the surface bound bio-
recognition molecules, which depends on the matrix used
for their immobilization on the sensor (88). Besides the
use of antibodies, molecular imprinting, which involves the
synthesis of polymers in the presence of a template to produce
the complementary binding sites with specific recognition
ability, is also used. During this formation, the functional
monomers are polymerized in the presence of a template,
which is subsequently removed by washing and/or extraction
after polymerization, resulting in a molecularly imprinted
polymer (MIP) (89). A library of cortisol-imprinted polymers
was prepared by Baggiani et al. (90), while Moreno-Guzmán
et al. (91) reviewed the existing immunosensors for human
cortisol.

In all, the lack of or insufficient in-depth analytical
validation is the main cause of inconsistent results generated by
immunoassays in the pertinent literature.
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By Confirmation Methods
For confirmatory purposes, chromatographic techniques
such as GC and LC, especially when coupled to (tandem)
MS, are preferred since they allow a high resolution
as required for complex biological tissues (92). Major
disadvantages are the need for qualified operators and
sophisticated equipment, high costs and complex sample
preparations.

Significant improvement in the specificity of glucocorticoid
measurements was achieved with the introduction of GC-
MS/MS, however, accurate quantification is limited to analytes
which can be derivatized (93) in order to increase their volatility
(94). Because of limited sensitivity, low throughput and labor-
intensive sample preparation, GC-MS/MS is not optimal for
measuring glucocorticoid profiles. HPLC is well suited for the
separation of glucocorticoids, though when coupled to UV
or FL it lacks the sensitivity and specificity to distinguish
glucocorticoid traces from the biological matrix background
(29). Because of its inherent sensitivity and selectivity, LC-
MS/MS is considered the gold standard method for quantitation
of glucocorticoids in complex biological tissues (92, 95,
96). It has the further advantage of having the capability
to perform multi-compound assays, even across compound
classes (97).

ANALYSIS OF THE DOMINANT
GLUCOCORTICOID IS AFFECTED BY THE
LACK OF ANALYTICAL VALIDATION

Overall, glucocorticoid levels to be quantified are considered
“trace levels” as they are situated in the ppb (µg kg−1 or µg L−1)
and ppt (ng kg−1 or ng L−1) range. Regardless the sample tissue
and analytical methodology used, it is pivotal to demonstrate
that results are accurate, precise, and not biased by interfering
compounds rendering results highly reliable. Subsequently, every
procedure [i.e., parameter(s)/tissue combination using a specific
analytical methodology] should be analytically validated. In
this framework, working according the criteria of international
standards such as EN ISO/IEC 17025 (98) and Commission
Decision No. 2002/657/EC (99, 100), whereby experiments
are carried out by well trained and authorized personnel in
a controlled environment are a must. Hereby, the use of
calibrated equipment, products with a certificate of analysis
as well as performing all tests in standardized conditions
hereby registering all details in logbooks is of importance. In
addition, determination of the performance characteristics such
as accuracy, trueness, precision, sensitivity, specificity and cross-
reactivity with structurally related compounds are of utmost
importance as they can influence the interpretation of results
between studies. In particular immunoassays are prone to be
biased by this as the used antiserum differs between assays leading
to differences in cross-reactivity (8). Subsequent, physiological
(i.e., by pharmacologically induced physiological changes in
circulating glucocorticoid levels and to evaluate whether these

changes are reflected in measured concentrations afterwards) as
well as biological (i.e., glucocorticoid measurements in relation
to cortical activity and the experience of stress) validation is
needed in order to state that the method is fit for purpose
(7).

As a consequence, one should try to use methods developed
in an EN ISO/IEC 17025 regulated environment and analytically
validated according the criteria of international standards as this
ensures full traceability and quality of the results in time.

CONCLUSION

At present, most studies in the pertinent literature have
focused on the quantification of the dominant glucocorticoid,
cortisol or corticosterone depending on the species, using
immunoassays. Hereby, one should bare in mind that: (i) results
are prone to bias by cross-reactivity from other glucocorticoids
as well as substances with similar physical-chemical properties,
making analytical validation a must; (ii) immunoassays are
screening methods which do not allow quantification of multiple
substances, making them not suited for quantification of a
glucocorticoid profile needed to obtain a more accurate and
complete view on the HPI or HPA axis (re)activity, respectively.
However, in-depth validated immunoassays for the dominant
glucocorticoid can be useful in cases when only an indication
(i.e., qualitative) of stress is needed. In addition, the use of
pooled samples (e.g., for whole body of fish larva) renders it
impossible to take into account the coping style of a single
individual.

As a consequence, internationally validated confirmation
methods for quantification of a glucocorticoid profile
comprising: (i) the dominant hormone (e.g., cortisol); (ii)
its direct precursors (i.e., 17α-hydroxyprogesterone and 11-
deoxycortisol; as both will certainly lead to cortisol production);
(iii) its endogenously present phase I metabolites (i.e., cortisone
and 20β-dihydrocortisone; as feedback regulation of cortisol
at pre-receptor level is mediated by 11β-HSD and 20β-
reductase, respectively); and (iv) the most abundant more
polar excreted phase I metabolites (i.e., tetrahydrocortisol and
tetrahydrocortisone; to establish if exogenous glucocorticoids
present in the environment (e.g., from water) or anthropogenic
derived glucocorticoids (e.g., from hands) may have influenced
the results) in non-pooled samples are pivotal in stress research
across vertebrates.
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The circadian system controls temporal homeostasis in all vertebrates. The light-dark
(LD) cycle is the most important zeitgeber (“time giver”) of circadian system, but feeding
time also acts as a potent synchronizer in the functional organization of the teleost
circadian system. In mammals is well known that food intake during the rest phase
promotes circadian desynchrony which has been associated with metabolic diseases.
However, the impact of a misalignment of LD and feeding cycles in the entrainment of
fish circadian oscillators is largely unknown. The objective of this work was to investigate
how a time-lag feeding alters temporal homeostasis and if this could be considered
a stressor. To this aim, goldfish maintained under a 12 h light-12 h darkness were
fed at mid-photophase (SF6) or mid-scotophase (SF18). Daily rhythms of locomotor
activity, clock genes expression in hypothalamus, liver, and head kidney, and circulating
cortisol were studied. Results showed that SF6 fish showed daily rhythms of bmal1a
and clock1a in all studied tissues, being in antiphase with rhythms of per1 genes, as
expected for proper functioning clocks. The 12 h shift in scheduled feeding induced a
short phase advance (4–5-h) of the clock genes daily rhythms in the hypothalamus, while
in the liver the shift for clock genes expression rhythms was the same that the feeding
time shift (∼12 h). In head kidney, acrophases of per genes underwent a 12-h shift in
SF18 animals, but only 6 h shift for clock1a. Plasma cortisol levels showed a significant
daily rhythm in animals fed at SF6, but not in SF18 fish fed, which displayed higher
cortisol values throughout the 24-h. Altogether, results indicate that hypothalamus, liver,
and head kidney oscillate in phase in SF6 fish, but these clocks are desynchronized in
SF18 fish, which could explain cortisol alterations. These data reinforce the hypothesis
that the misalignment of external cues (daily photocycle and feeding time) alters fish
temporal homeostasis and it might be considered a stressor for the animals.

Keywords: goldfish, hypothalamus, interrenal tissue, liver, circadian system, food intake, clock genes

INTRODUCTION

The circadian system in vertebrates is formed by a widespread network of self-sustainable
endogenous clocks located in central and peripheral tissues (Albrecht, 2012; Schibler et al., 2015;
Costa et al., 2016; Isorna et al., 2017). These clocks generate circadian endogenous rhythms
with a period close, but generally not equal, to 24 h, providing a temporal organization for
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physiological and behavioral activities making it possible
to predict environmental changes (i.e., zeitgebers; Albrecht,
2012; Tsang et al., 2014; Challet, 2015). The most important
environmental factor that entrains circadian oscillators is
the light-dark (LD) cycle, and clocks synchronized by
this zeitgeber (“time giver” in German) are named Light-
Entrainable Oscillators (LEOs; Reppert and Weaver, 2002;
Mendoza and Challet, 2009). However, feeding time is also
an important zeitgeber, especially for peripheral clocks, and
clocks entrained by feeding-fasting cycles are known as
Feeding-Entrainable Oscillators (FEOs; Damiola et al., 2000;
Mendoza and Challet, 2009).

The circadian clocks machinery is well conserved in
vertebrates and it is based on transcriptional-translational
feedback loops. The positive limb of the main loop is
represented by two transcription factors, CLOCK (Circadian
Locomotor Output Cycles Kaput) and BMAL1 (Brain and
Muscle ARNT-Like 1), whose heterodimer binds to an E-box
rich region in the promoter of the negative limb genes
period (per) and cryptochrome (cry) (Gekakis et al., 1998;
Nakamura et al., 2008). This binding promotes the expression
of these last two clock genes, whose products PER and CRY
heterodimerize in the cytoplasm and translocate into the nucleus
to repress CLOCK-BMAL1 transactivation (Hastings et al.,
2007; Nader et al., 2010; Schibler et al., 2015). Moreover,
the CLOCK-BMAL1 heterodimer also induces the expression
of genes known as clock-controlled genes (CCG), which
are considered the outputs of the clock by binding to the
E-boxes in their promoters (Hastings et al., 2007; Vatine
et al., 2011; Albrecht, 2012). The functioning of this molecular
mechanism is conserved, although several copies of these
clock genes have been reported in fishes (Vatine et al., 2011;
Sánchez-Bretaño et al., 2015a).

In mammals, the master pacemaker is a LEO located in the
suprachiasmatic nucleus of the hypothalamus (Reppert and
Weaver, 2002; Welsh et al., 2010) that controls in an hierarchical
manner the rest of pacemakers widely distributed over the
organisms (Dibner et al., 2010). It is evident that the organization
of the circadian system in fish is less hierarchical than in
mammals, since a master clock has not been clearly identified
yet (Moore and Whitmore, 2014; Sánchez-Bretaño et al., 2015a;
Isorna et al., 2017). Despite the greater or lesser hierarchical role
of central pacemakers, evidences of the physiological relevance
of peripheral circadian clocks in vertebrates are emerging. It is
suggested that the entrainment of peripheral clocks by feeding-
fasting cycles allows peripheral tissues to anticipate food supply,
and potentially optimizing processes required for food digestion,
metabolism, and energy storage and utilization (Vera et al., 2007;
Lamia et al., 2008). Indeed, food intake during the rest phase
promotes circadian desynchrony, which has been associated
with metabolic diseases in mammals (Ferrell and Chiang, 2015;
Ramirez-Plascencia et al., 2017), thus a time-lag feeding schedule
can be considered a stressor that alters temporal homeostasis.
In fish, feeding time is a potent zeitgeber for peripheral
oscillators of the gastrointestinal tract (Isorna et al., 2017).
In fact, feeding time affects daily locomotor activity rhythms
(Aranda et al., 2001; Cavallari et al., 2011; Feliciano et al., 2011);

clock genes expression in liver, gut, and encephalic tissues
(López-Olmeda et al., 2009, 2010; Feliciano et al., 2011;
Nisembaum et al., 2012; Tinoco et al., 2014); and daily profile
of circulating cortisol (Montoya et al., 2010; Cowan et al., 2017).
But a variety of results are obtained depending on species
and protocols employed (Cowan et al., 2017). Nevertheless,
the effect of feeding time on the clock of the interrenal tissue
has not been investigated in any fish species to date, and it
is unknown if this oscillator behaves as a LEO or a FEO. In
fact, the paradigm of a time-lag in feeding schedule and its
consequences in locomotor activity, peripheral oscillators and
cortisol production has not been studied all at once and in the
same species.

Therefore, the aim of this work was to study, if a time-
lag in scheduled feeding alters temporal homeostasis in fish
and to test its possible role as a stressor. To this end, we
have studied the effects of 12 h shifted feeding schedule on
daily expression of clock genes in the hypothalamus and two
peripheral oscillators, the liver and the head kidney in goldfish
(Carassius auratus). We have also investigated if this paradigm
affects circulating cortisol daily rhythms as stress indicator
and hepatic leptin expression as a putative output of the
liver clock. The interest to study such oscillators is based on
several reasons. The hypothalamus plays a key role in the
control of both, energy homeostasis and the hypothalamus-
pituitary-interrenal (HPI) axis, acting as an integrative core of
environmental and endogenous signals. The role of the liver as
a nexus between metabolism and circadian system in mammals
and fish has been outlined (Albrecht, 2012; Schmutz et al.,
2012; Tsang et al., 2014; Schibler et al., 2015), emphasizing
this tissue as a key food-sensitive clock. Finally, the interrenal
tissue (contained in the head kidney) is the main source of
cortisol, which initiates the stress response (Schreck and Tort,
2016), and its daily rhythm is considered as the most robust
hormonal rhythmic output in vertebrates (Isorna et al., 2017;
Spencer et al., 2018).

MATERIALS AND METHODS

Animals and Housing
Goldfish (C. auratus) with a body weight (bw) of 24 ± 5 g
were obtained from a local commercial supplier (ICA, Madrid,
Spain). Fish were housed in 60 l aquaria with filtered and
aerated fresh water (21 ± 2◦C) under a 12 h light and
12 h darkness (12L:12D) photoperiod (lights on at 8 am,
considered as Zeitgeber Time 0, ZT 0). Fish were fed with
automatic feeders that daily delivered food pellets (1% bw;
Sera Pond Biogranulat, Heinsberg, Germany) at ZT 2. Animals
were acclimated during 2 weeks under these conditions
before the beginning of the experiments. The experiments
comply with the Guidelines of the European Union Council
(UE63/2010), and the Spanish Government (RD53/2013)
for the use of animals in research and were approved by
the Animal Experimentation Committee of Complutense
University (O.H.-UCM-25-2014), and the Community of
Madrid (PROEX 107/14).

Frontiers in Physiology | www.frontiersin.org 2 December 2018 | Volume 9 | Article 174937

https://www.frontiersin.org/journals/Physiology/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/Physiology#articles


fphys-09-01749 December 3, 2018 Time: 11:5 # 3

Gómez-Boronat et al. Feeding Time and Temporal Homeostasis

Experimental Design
Two groups of fish maintained under the same 12L:12D
photoperiod (lights on at 8 a.m.) were fed with different schedules
with automatic feeders to avoid the negative effects of the human
feeding activities. One group (n = 36, placed in six aquaria,
six fish/tank) was daily fed at mid-photophase (ZT 6, named
Scheduled Feeding 6, SF6), and the other one (n = 36, placed in six
aquaria) was daily fed at mid-scotophase (ZT 18, named SF18).
Three weeks later, goldfish were sampled each 4 h throughout a
24 h cycle (one tank (n = 6) per sampling time at ZT 5, ZT 9,
ZT 13, ZT 17, ZT 21, and ZT 1). Blood was collected from the
caudal vein of anesthetized animals (tricaine methanesulfonate,
MS-222, 0.14 g/l; Sigma-Aldrich, Madrid, Spain), and plasma was
obtained after blood centrifugation and stored at −80◦C until
assay. Fish were then sacrificed by anesthetic overdose (MS-222,
0.28 g/l), and hypothalamus, head kidney, and liver were quickly
collected, frozen in liquid nitrogen and stored at −80◦C until
analysis.

Locomotor Activity Recordings
Daily locomotor activity was recorded during the experimental
period by six infrared photocells (Omron Corporation, E3S-
AD12, Japan) fixed on the walls of each aquarium wall.
Two photocells were located below the automatic feeder
(for recording feeding-related activity), while the remaining
four photocells were placed at a height of 3–9 cm above
the bottom in each aquaria wall (for recording general
locomotor activity). With this arrangement of photocells, we
obtained reproducible actograms, more photocells increase the
total amount of activity but does not affect daily profiles.
Each photocell continuously emitted an infrared light beam
which was interrupted each time fish swam in that zone,
generating an output signal. The number of light beam
interruptions was automatically registered every 10 min by

a computer with specific software (Micronec, Spain). The
aquaria walls were covered with opaque paper to minimize
external interferences during the experiment. Data were analyzed
using the chronobiology software EL TEMPS R©(Prof. Antoni
Díez Noguera, University of Barcelona), and actograms and
periodograms were performed.

Gene Expression Analysis
Total RNA from hypothalamus, head kidney, and liver were
isolated using TRI R©Reagent (Sigma-Aldrich) and treated with
RQ1 RNase-Free DNase (Promega, Madison, United States)
according to the manufacturer’s instructions. Then, 0.3 µg of
total RNA was reverse transcribed into cDNA in a 25 µl
reaction volume using random primers (Invitrogen, Carlsbad,
United States), RNase inhibitor (Promega), and SuperScript II
Reverse Transcriptase (Invitrogen). The reverse transcription
reaction conditions consisted of an initial step at 25◦C for 10 min,
an extension at 42◦C for 50 min, and a denaturalization step
at 70◦C for 15 min. Real-Time quantitative PCRs (RT-qPCRs)
were carried out by duplicate in a CFX96 RealTM-Time System
(Bio-Rad Laboratories, Hercules, United States), using iTaqTM

Universal SYBR R©Green Supermix (Bio-Rad Laboratories) using a
96-well plate loaded with 1 µl of cDNA and a final concentration
of 0.5 µM of each forward and reverse primers in a final volume
of 10 µl. Each PCR run included also a four-points serial standard
curve, non-retrotranscribed-RNA (as positive control) and water
(as negative control). The RT-qPCR cycling conditions consisted
of an initial denaturation at 95◦C for 30 s and 40 cycles of
a two-step amplification program (95◦C for 5 s and 60◦C for
30 s). A melting curve was systematically monitored (temperature
gradient at 0.5 C/5 s from 70 to 90◦C) at the end of each
run to confirm the specificity of the amplification reaction. The
Gene Data Bank reference numbers and the primers (Sigma-
Aldrich) sequences employed for target genes (clock genes: per1a,

TABLE 1 | Accession numbers of the genes and primers sequences employed in quantitative RT-qPCR studies.

Gene Accession number Primer sequence 5′→3′ Product (bp)

per1a EF690698 Forward CAGTGGCTCGA ATGAGCACCA 155

Reverse TGAAGACCTG CTGTCCGTTGG

per1b KP663726 Forward CTCGCAGCTC CACAAACCTA 235

Reverse TGATCGTGCA GAAGGAGCCG

per2a EF690697 Forward TTTGTCAATC CCTGGAGCCGC 116

Reverse AAGGATTTGC CCTCAGCCACG

per3 EF690699 Forward GGCTATGGCAGT CTGGCTAGTAA 130

Reverse CAGCACAAAAC CGCTGCAATGTC

bmal1a KF840401 Forward AGATTCTGTT CGTCTCGGAG 161

Reverse ATCGATGAGTC GTTCCCGTG

clock1a KJ574204 Forward CGATGGCAGC ATCTCTTGTGT 187

Reverse TCCTGGATCTG CCGCAGTTCAT

leptin aI FJ534535 Forward AGCTCCTCA TAGGGGATC 192

Reverse TAGATGTCGTT CTTTCCTTA

ef-1α AB056104 Forward CCCTGGCCA CAGAGATTTCA 101

Reverse CAGCCTCGAA CTCACCAACA

per period; bmal1a, brain and muscle ARNT-like 1a; clock1a circadian locomotor output cycles kaput 1a; ef-1α, elongation factor-1α.
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per1b, per2a, per3, bmal1a, and clock1a; and leptin aI) and
the reference gene (ef -1α) are shown in Table 1. The 2−11Ct

method (Livak and Schmittgen, 2001) was used to determine
the relative mRNA expression (fold change). Data obtained were
normalized to the group with the lowest expression in each
gene.

Plasma Cortisol Assay
Plasma cortisol levels were determined by enzyme–linked
immunosorbent assay (ELISA) using a commercial kit
(Demeditec, Schleswig-Holstein, Germany), previously validated
for goldfish plasma (Azpeleta et al., 2010). The lowest analytical
detectable level of cortisol that can be distinguished from
the zero calibrator was 3.79 ng/ml. Free cortisol values were
expected to be within the range described by the manufacturer
(10–800 ng/ml), therefore no dilution was necessary.

Data Analysis
The existence of significant periods in daily locomotor activity
was analyzed by constructing chi-square periodograms with a
significance level set at 0.05 (EL TEMPS R©). A one-way ANOVA
followed by the post hoc Student-Newman-Keuls (SNK) test was
performed to compare data obtained for gene expression and
cortisol levels at different sampling points (using SigmaPlot 12.0
statistics package). When necessary, data were transformed to
logarithmic or square root scale to normalize and to obtain
homoscedasticity. Statistical differences among groups were
noted with different letters. In addition, we have performed a
Mann-Whitney U Test for analyzing the differences between the
mean of cortisol levels in fish fed at ZT 6 and ZT 18. A probability
level of p < 0.05 was considered statistically significant in all
tests. Daily (24 h) significant rhythms in gene expression and
cortisol were determined by Cosinor analysis fitting the data
to sinusoidal functions by the least squares method (Duggleby,
1981). The formula used was f(t) = M+Acos(tπ/12−8), where
f(t) is the gene expression level at a given time, the mesor (M) is
the mean value, A is the sinusoidal amplitude of oscillation, t is
time in hours, and 8 is the acrophase (time of peak expression).
Non-linear regression allows the estimation of M, A, 8, and
their standard errors (SE), which are calculated on the residual
sum of squares in the least-squares fit (Duggleby, 1981; Delgado
et al., 1993). Significance of Cosinor analysis was defined by
the noise/signal of amplitude calculated from the ratio SE(A)/A
(Nisembaum et al., 2012).

RESULTS

Effects of Feeding Time on
Synchronization of Locomotor Activity
Daily Rhythms
Daily locomotor activity was registered during 14 days before
sampling. Representative double-plotted actograms with the
general locomotor activity of fed fish at ZT 6 and ZT 18 are shown
in Figures 1A,B, respectively, while the feeding-related activity
is shown in Figure 1C (SF6) and Figure 1D (SF18). General

FIGURE 1 | Representative actograms and daily average waveform of
goldfish maintained under a 12L:12D photoperiod and fed at ZT 6 [SF6, (A,C)]
or at ZT 18 [SF18, (B,D)]. For convenient visualization, data in the actograms
have been double-plotted in a time scale of 48 h. (A,B), general locomotor
activity; (C,D), feeding-related locomotor activity. In the average waveform
graphs, black line represents the mean, gray lines represent the SEM, and τ

indicates the period of the rhythm when significant (∗).

activity of SF6 goldfish displayed a diurnal significant rhythm
(evidenced by a significant 24 h period; Figure 1A), with higher
general activity during the photophase (80% of total activity). As
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expected, the feeding-related activity was concentrated around
3–4 h before scheduled feeding, corresponding to the food
anticipatory activity (FAA), with a significant daily rhythm with
a period of 24 h (Figure 1C). When scheduled feeding time
was shifted to the mid-scotophase, the general locomotor activity
remained rhythmic (period of 24 h), but its 24 h profile was
flattened (Figure 1B), and surprisingly general locomotor activity
continued being higher during the photophase (60% of total
activity). Nevertheless, fish fed at ZT 18 showed a robust FAA
during the night with a significant daily rhythm (period of 24 h;
Figure 1D).

Daily Rhythms of Clock Genes
Expression in Goldfish
In the hypothalamus of SF6 animals, all studied genes exhibited
significant 24 h rhythms (Figure 2), with acrophases of per1 genes
at the end of the dark phase (ZT 22.7 for per1a; Figure 2A) and
at the light onset (ZT 1.2 for per1b; Figure 2B). These rhythmic
profiles are in antiphase with those shown by bmal1a (ZT 11.3;
Figure 2E) and clock1a (ZT 14.3; Figure 2F). Hypothalamic per3
expression in the SF6 fish peaked around ZT 4 (Figure 2D),
while the maximum expression of per2a occurred at midday
(ZT 7.6; Figure 2C). The expression profiles of the clock genes
in the scheduled-fed goldfish at ZT 18 also showed 24 h
rhythms in the hypothalamus (Figures 2A,B,D,E), except for
per2a and clock1a, whose rhythms were lost (Figures 2C–
F). The shift in the scheduled feeding time from ZT6 to
ZT18 advanced 4–5 h the acrophases in the case of per1a,
per1b, and bmal1a genes, and 9 h for per3 (Figures 5A,B) in
hypothalamus.

In the head kidney, all examined clock genes showed
significant daily variation in their expression in both groups
of scheduled-fed goldfish (SF6 and SF18; Figure 3), with the
exception of per2a and bmal1a, which lost their significant daily
rhythmicity when scheduled feeding was shifted from midday to
midnight (Figures 3C–E). The daily expression profiles in the
head kidney of SF6 fish were broadly similar to the rhythms
observed in the hypothalamus, with similar acrophases, as it
can be observed in polar graphs (Figures 5A–D). However,
a slight shift seems to exist for per1b and per1a in the head
kidney of SF6 fishes compared to the hypothalamus of the
same animals (Figures 5A–C). The amount of per1 transcripts
peaked at the early morning, which is in antiphase with the
expression of bmal1a and clock1a, whose acrophases were located
at the end of the light phase and beginning of the dark phase,
as occurs in the hypothalamus. Thus, hypothalamic and head
kidney oscillators seem to be in phase in SF6 fish. In contrast
to the minor effect observed in the hypothalamus, the 12 h-
shift in feeding schedule produced a complete shift (11–13 h)
in per1 and per3 rhythms in the head kidney of goldfish,
but only a 6 h advance for clock1a, suggesting that these
negative and positive elements of the head kidney clock were
not in antiphase. The expression of per2a showed a significant
rhythm in the head kidney of SF6 but not in SF18 fish, as
occurs in the hypothalamus, with similar acrophases in both
tissues.

Clock genes expression in the goldfish liver displayed
significant 24 h rhythms in both SF6 and SF18 fish (Figure 4),
except for per2a, which did not show daily rhythmicity in any
studied groups (Figure 4C). In SF6 animals, rhythmic profiles
of clock genes expression were similar to those observed in
the hypothalamus and the head kidney. The acrophases of
per1 rhythms are located at the light onset (ZT 0.7 and ZT
0.9 for per1a and per1b, respectively; Figures 4A,B) or the
early morning (ZT 3.4 h for per3; Figure 4D), which is in
antiphase with bmal1a (ZT 10.0) and clock1a genes (ZT 9.0;
Figures 4E,F, 5E,F). When feeding schedule was shifted from
midday to midnight, all clock genes also underwent a 12 h shift
in their acrophases, being moved to the LD transition in the
case of per genes and to the light onset for bmal1a and clock1a
genes (Figures 4, 5). Thus, the hepatic oscillator seems to be in
phase (i.e., positive elements vs. negative elements) in both SF6
and SF18 fishes, as in the hypothalamus, but not in the head
kidney.

Comparing the clocks in the three analyzed tissues, in SF6
animals these clocks ticked at time (i.e., clock genes are in phase
in the different tissues). However, acrophases of clock genes
rhythms in the hypothalamus of SF18 animals were in antiphase
with the hepatic ones, being the head kidney oscillator in an
intermediate condition. Another different aspect of the liver
oscillator, compared to the hypothalamus, and the head kidney,
is referred to the amplitudes of the genes, which were much
higher in the liver. In this sense, the amplitudes of per genes were
more than 10 times higher than in the hypothalamus and about
3–5 times higher than in the head kidney in both SF6 and SF18
animals.

Daily Rhythms of Circulating Cortisol
and Leptin Expression in the Liver
Circulating cortisol displayed a significant daily rhythm in
goldfish fed at midday with a robust amplitude (143.8 ng/ml)
and the acrophase during the scotophase (at ZT 18.9; Figure 6A)
6 h before lights on. By contrast, in the SF18 group
this 24 h rhythmicity was fully abolished. Moreover, the
SF18 fed fish showed significantly higher levels of cortisol
(202.19 ± 22.78 ng/ml) than that observed in SF6 fed fish
(126.95 ± 23.06 ng/ml) (p < 0.05, Mann-Whitney U Test).
Hepatic leptin aI expression showed significant daily rhythms
in both SF6 and SF18 fish (Figure 6B). The acrophase of leptin
aI rhythm was found at the middle of the scotophase (ZT 17.6)
in fish fed at ZT 6, while it was shifted at midday (ZT 5.8) in
SF18 fish. Thus, the 12-h-shift in feeding schedule from midday
to midnight induced a 12-h shift in the rhythmic expression of
leptin aI in goldfish liver.

DISCUSSION

Results obtained clearly show that a shift in feeding schedule
alters temporal homeostasis in goldfish, as it differently affects
clocks (i.e., clock genes expression rhythms) in the hypothalamus,
the liver, and the head kidney. In fish fed at midday, these three
oscillators tick at time with similar acrophases for each gene
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FIGURE 2 | Daily profile of clock genes expression in the hypothalamus of SF6 (•) and SF18 (N) goldfish maintained under a 12L:12D photoperiod. Gray area
indicates the dark period while feeding time is indicated by triangles in the x-axis (solid, ZT 6; white, ZT 18). Data obtained by RT-qPCR are shown as mean ± SEM
(n = 6) in relative units (2−11Ct method). Different letters (a–d in SF6 and x–z in SF18) indicate significant differences. When Cosinor [SE(A)/A < 0.3] was significant,
periodic sinusoidal functions were represented as solid waves (SF6 fish) or dashed waves (SF18 fish), and amplitudes and acrophases (A and 8, respectively) are
shown at the top of the panels (SF6, left; SF18 right).

in the different tissues. However, in fish fed at mid-scotophase,
daily expression rhythms of clock genes are not in phase in
the different tissues, and per1 and clock-bmal genes do not
follow their characteristic profiles of expression in antiphase,
particularly in the head kidney. Then, time-lag in feeding
schedule seems to represent a stressor for the animals, since
alters the temporal homeostasis, with increases in plasma cortisol
and the disappearance of its daily rhythm in fish fed in the
mid-scotophase.

It is widely known that food acts as a potent zeitgeber for
circadian rhythms when restricted or provided on a periodic
basis (Hara et al., 2001; Stephan, 2002). As expected, goldfish
adapted their daily locomotor activity to feeding schedule; SF6
fish showed a robust FAA in the photophase while SF18 fish
showed it during the scotophase. It is previously reported that
a scheduled feeding under continuous light (Vera et al., 2007;
Feliciano et al., 2011), at the start or the end of the photophase
(Aranda et al., 2001), or at the beginning of the scotophase
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FIGURE 3 | Daily profile of clock genes expression in the head kidney of SF6 (•) and SF18 (N) goldfish maintained under a 12L:12D photoperiod. Gray area indicates
the dark period while feeding time is indicated by triangles in the x-axis (solid, ZT 6; white, ZT 18). Data obtained by RT-qPCR are shown as mean ± SEM (n = 6) in
relative units (2−11Ct method). Different letters (a–c in SF6 and x–z in SF18) indicate significant differences. When Cosinor [SE(A)/A < 0.3] was significant, periodic
sinusoidal functions were represented as solid waves (SF6 fish) or dashed waves (SF18 fish), and amplitudes and acrophases (A and 8, respectively) are shown at
the top of the panels (SF6, left; SF18 right).

(Vivas et al., 2011) synchronizes daily activity to feeding time in
goldfish. However, it has been also reported that if both zeitgebers
are present, both are important (Aranda et al., 2001). In this
sense, our data revealed that SF6 goldfish are clearly diurnal
(80% of the activity during the photophase), but SF18 fish has
not became nocturnal, since they reduce their locomotor activity
during daytime but remain active through the 24 h. In fact, they
continue to move more during the photophase (60%) than during
the scotophase. Thus, it seems that goldfish is not as flexible as
previously suggested in terms of daily activity pattern (Isorna

et al., 2017). Currently, it is not possible to discern if the alteration
of locomotor activity rhythm in SF18 goldfish is related to the
time-lag observed in clock genes expression, or if it is due to the
loss of cortisol rhythm. Further studies are needed to assess such
possibilities.

In fish fed at midday (ZT 6), the per1a and per1b genes
in the hypothalamus, the head kidney and the liver displayed
significant daily rhythms with their acrophases at the onset of the
photophase or at the end of the scotophase, in accordance with
previous reports in goldfish also maintained in 12L:12D and fed
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FIGURE 4 | Daily profile of clock genes expression in the liver of SF6 (•) and SF18 (N) goldfish maintained under a 12L:12D photoperiod. Gray area indicates the
dark period while feeding time is indicated by triangles in the x-axis (solid, ZT 6; white, ZT 18). Data obtained by RT-qPCR are shown as mean ± SEM (n = 6) in
relative units (2−11Ct method). Different letters (a–c in SF6 and x–z in SF18) indicate significant differences. When Cosinor [SE(A)/A < 0.3] was significant, periodic
sinusoidal functions were represented as solid waves (SF6 fish) or dashed waves (SF18 fish), and amplitudes and acrophases (A and 8, respectively) are shown at
the top of the panels (SF6, left; SF18 right).

during the photophase at ZT 2 (Velarde et al., 2009; Nisembaum
et al., 2012; Sánchez-Bretaño et al., 2015b). Similarly, a per1
peak around the dark-light transition has been also reported
in other teleosts, as zebrafish brain (Danio rerio; Sanchez and
Sanchez-Vazquez, 2009; Vatine et al., 2011), European sea bass
brain and liver (Dicentrarchus labrax; Sánchez et al., 2010),
rainbow trout hypothalamus (Oncorhynchus mykiss; Patiño et al.,
2011), Senegalese sole retina and optic tectum (Solea senegalensis;
Martín-Robles et al., 2012), or Nile tilapia brain (Oreochromis

niloticus; Costa et al., 2016). All these findings support the
hypothesis that per1 genes anticipate the light arrival in fish
under these conditions (Isorna et al., 2017). Moreover, the clock
genes of the positive limb of the loop (bmal1a and clock1a) were
in antiphase with the negative limb genes (per) in these three
tissues, showing their acrophases almost in the LD interphase,
as previously reported in goldfish (Nisembaum et al., 2012), and
other fish species under a LD photocycle (Patiño et al., 2011;
Vatine et al., 2011; Martín-Robles et al., 2012; Costa et al., 2016).
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FIGURE 5 | Polar representations of parameters defining clock genes rhythms. (A,B) hypothalamus, (C,D) head kidney, (E,F) liver. The length of the vector (radial
axis) indicates the value of the amplitude [fold change of relative expression, C,E in logarithmic scale]. The angular position indicates the acrophase (ZT, zeitgeber
time). The SE of these two parameters is represented by the rhombus at the end of each vector.

Is feeding time able to modify such clock genes rhythmicity?
As previously mentioned, food acts as a potent zeitgeber nor only
for circadian activity rhythms (Aranda et al., 2001; Stephan, 2002;
López-Olmeda et al., 2009; Refinetti, 2015) but also for clock

synchronization (Damiola et al., 2000; Feliciano et al., 2011;
Nisembaum et al., 2012) in mammals and fish. Our findings
revealed that feeding time exerts different effects on clock genes
expression at central and peripheral levels. In the hypothalamus,
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FIGURE 6 | Daily profiles of plasma cortisol (A) and leptin-aI expression in the
liver (B) of SF6 (•) and SF18 (N) goldfish maintained under a 12L:12D
photoperiod. Gray area indicates dark period and feeding time is indicated by
triangles in the x-axis (solid, ZT 6; white, ZT 18). Data are shown as
mean ± SEM (n = 6). Different letters (a–c in SF6, and x–z in SF18) indicate
significant differences. When Cosinor [SE(A)/A < 0.3] was significant, periodic
sinusoidal functions were represented as solid waves (SF6 fish) or dashed
waves (SF18 fish), and amplitudes and acrophases (A and 8, respectively) are
shown at the top of the panels (SF6, left; SF18 right).

a 12 h shift in the feeding schedule (adjusting the feeding time
at the mid-scotophase) induced a minor shifting of 4–5 h in
the acrophases of the target genes (except per2a as expected
and below discussed), in agreement with previous reports in
the European sea bream (Sparus aurata; (Vera et al., 2013),
and the Nile tilapia brain (Costa et al., 2016). These findings
indicate that feeding time is able to induce a slight displacement
of the acrophases, but the LD cycle seems to be the main
synchronizer of the rhythmic expression of hypothalamic clock
genes, as previously suggested (Hara et al., 2001; Sanchez and
Sanchez-Vazquez, 2009; Feliciano et al., 2011; Nisembaum et al.,
2012; Tinoco et al., 2014). Interestingly, the amplitudes of the
central clock genes were diminished when the food was supplied
at midnight (except for per1a), suggesting that feeding-fasting
cycles enhance LD driven-daily rhythms, in agreement with
previous reports (Sánchez-Bretaño et al., 2015a).

It is worthy to highlight the case of per2a, the only gene
that did not change its expression pattern in any of the three
studied tissues when feeding time was shifted. Previous reports

have shown that per2a displayed a rhythmic expression in some
central and peripheral tissues of goldfish, under a LD cycle
with acrophases at midday (Velarde et al., 2009; Nisembaum
et al., 2012), as in sea bass brain (Herrero and Lepesant, 2014).
Such rhythms usually disappear in constant conditions, light
or darkness (Feliciano et al., 2011; Nisembaum et al., 2012;
Vera et al., 2013), showing that per2a rhythmicity is strongly
dependent of the LD cycle. Indeed, it is well-known that per2a is
a light-induced gene with a key role in the molecular mechanism
that entrains the LEOs in zebrafish (Vatine et al., 2011; Moore and
Whitmore, 2014; Ben-Moshe et al., 2014; Ceinos et al., 2018). Our
results support this role of per2a as a light-dependent clock gene
also in goldfish.

A substantial finding is the 12 h shifting in the acrophases of
all hepatic clock genes when feeding time was shifted 12 h (from
midday to midnight). Unlike in the hypothalamus, amplitudes
of all rhythms shown by the different clock genes in the liver
were not significantly affected by feeding time. Vera et al. (2013)
obtained comparable results, reporting a 6–7 h shifting in the
liver of sea bream fed at mid-photophase compared to fish fed
at the mid-scotophase. All these data point out that feeding
time is a synchronizer powerful than the LD cycle in the liver,
as it is previously proposed in mammals (Damiola et al., 2000;
Stokkan et al., 2001; Kornmann et al., 2007). This conclusion
was also suggested by Feliciano et al. (2011), who demonstrate
significant rhythms for clock gene expression driven by the last
meal, independently of previous feeding approaches (random
or scheduled feeding). Therefore, the hepatic clock might be a
peripheral FEO in goldfish. In terms of adaptation to the new
scheduled feeding, the shift in clock genes expression could be
an advantage for the animal physiology. However, overt rhythms
(i.e., outputs of the circadian system) are complex and usually
dependent of more than one oscillator. Thus, although liver
clock genes are synchronized to receive food at mid-scotophase,
metabolic rhythms could not be adapted. In this sense, lipid
metabolism rhythmicity is linked to the LD cycle, independently
of feeding time in zebrafish and sea bream liver (Paredes et al.,
2014, 2015), although feeding time drives clock genes oscillations
in the last species (Vera et al., 2013). Surprisingly, our results
show that hepatic leptin expression rhythms match with clock
genes expression rhythms in liver, and the acrophase is 12 h
shifted in SF6 compared to SF18 animals. This suggests that
maybe not all of the metabolic outputs are driven by the same
zeitgebers in the liver of goldfish.

Regarding the head kidney, fish fed at midday exhibit
significant daily rhythms in the expression of all clock genes, with
genes of the positive and negative limbs of the loop in antiphase
(except per2a, as above discussed), confirming the existence of a
functional clock in this tissue, as in the adrenal gland of mammals
(Son et al., 2008; Kwon et al., 2011). Even though, the interrenal
tissue of goldfish is not directly related to the gastrointestinal
system, feeding time seems to play an important role on its
synchronization, since the expression of per1 genes had a peak
just before the expected feeding time in both experimental groups
(at ZT∼4 when food was provided at ZT 6, and at ZT∼15 when
provided at ZT 18). Hence, the 12 h time-lag in the feeding time
shifted the rhythmic expression pattern of per1 genes, similarly
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as the liver’s response. This is not surprising, given that several
peripheral clocks appear to be entrained by food in mammals
(Albrecht, 2012) and in fish (López-Olmeda et al., 2010; Feliciano
et al., 2011). For instance, food intake has been proven to be
a potent synchronizer not only for the liver (Damiola et al.,
2000; Stokkan et al., 2001; Kornmann et al., 2007), but also
for the heart (Schibler et al., 2003; Mukherji et al., 2015) in
mammals. In fish, meal time synchronizes the expression of
clock genes in posterior intestine and liver of goldfish (Feliciano
et al., 2011; Nisembaum et al., 2012; Tinoco et al., 2014), as
well as in heart and fin of zebrafish (Cavallari et al., 2011).
These evidences suggest that the feeding schedule has an essential
role on the organization of the circadian system in vertebrates,
beyond exclusively regulating digestive functions. Although it
clearly seems that the interrenal tissue of midday-fed fish is a
functional circadian clock, the fact that clock1a is not in antiphase
with per1 genes, and bmal1a lost its rhythmicity in goldfish fed
at mid-scotophase, calls into question the functionality of the
clock under this time-lag condition, and support that temporal
homeostasis in SF18 animals is altered. Then, the time-lag in
feeding schedule may be a stressor for goldfish.

The better adaptation of SF6 fish compared to SF18 is
also supported by cortisol results. Our results demonstrate the
existence of a daily cortisol rhythm in fish fed at midday, with
a peak 5 h before the light onset, which correlates with the
functional interrenal clock observed in this group. Conversely,
animals fed at the mid-scotophase did not show a daily cortisol
rhythm, owing to the fact that the basal levels of this hormone
are constantly elevated, being 10 times higher than the basal
levels found in midday-fed fish. Such cortisol increase in SF18
fish could be a response to a stressful situation, such as the
conflict between environmental cues (light/dark cycle and meal
time), that mismatches the phase of hypothalamic, hepatic, and
interrenal oscillators. This alteration of circulating cortisol might
be due to an altered functionality of the interrenal clock in fish

fed at mid-scotophase, in agreement with the hypothesis (under
debate) that a local functional clock in the interrenal tissue is
necessary to maintain cortisol daily rhythms. In this sense, it is
suggested that the adrenal clock could influence the circadian
changes in circulating glucocorticoids in mammals (Oster et al.,
2006). In fact, fish, and mammals are able to maintain daily
cortisol rhythms after an hypophysectomy and in absence of
cyclic ACTH levels (Srivastava and Meier, 1972; Meier, 1976),
and adrenal clock genes maintain their cyclic expression in rats
without a functional hypophysis (Fahrenkrug et al., 2008).

In summary, a time-lag in feeding schedule mismatches
clock genes expression in the hypothalamus, the liver, and the
interrenal tissue. The increment in cortisol values and the loss
of its daily rhythmicity in goldfish fed at mid-scotophase could
indicate that these fish are under a stressor. Thus, our results show
that the loss of temporal homeostasis can negatively affect the
physiology in goldfish and the underlying links between clocks
and functional outputs deserve to be explored.
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Koalas are rescued from the wild often with incidence of burns from bushfire, injury

from animal attacks, vehicle collision, and diseases. Exposure to environmental stressors

(trauma and disease) could generate physiological stress and potentially impact the

outcomes of clinical management intervention and rehabilitation of rescued wild koalas.

It is important to quantify the stress physiology of wild koalas upon registering

into clinical care. This study demonstrates the first report of physiological stress

assessment in rescued wild koalas (n = 22) to determine the potential influences of

habitat-specific demographics, stressor category, and clinical diagnosis. Fecal samples

were collected from the koalas at rescue and routinely during hospitalization to provide

a longitudinal assessment of the koala’s stress response throughout clinical care. Fecal

glucocorticoid metabolites (FCM) enzyme-immunoassay was used to index physiological

stress non-invasively. Koalas were admitted with exposure to various categories of

environmental trauma such as vehicle collision, dog attack, burns from forest fire (this

also related to conditions such as copious drinking and flat demeanor), and other

injury. The main disease diagnosed was chlamydial infections. In terms of environmental

interactions, it was found that habitat-specific demographics, location where the rescued

koala was found, especially the rural-urban fringe, influenced FCM levels. Furthermore,

there was significant interaction between location, stressor category, and clinical

diagnosis for mean FCM levels. However, these factors were not predictive of the clinical

outcome (euthanized or released). Overall, the results provide invaluable insights into

how wild koalas respond physiologically to environmental trauma and disease and how

methods of care, husbandry, and treatment can be used to further reduce the impacts of

stress with the ultimate aim of increasing the rehabilitation and future release of rescued

koalas to revive the declining mainland populations.
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INTRODUCTION

Global biodiversity is in rapid decline with an increase in
human use of Earth’s natural resources (1). Australia is home
to some of the world’s most distinctive and unique fauna with
80 percent of its terrestrial mammalian species being endemic
(1). However, worldwide mammalian biodiversity is showing
rapid declines largely due to factors such as habitat degradation
and hunting (1). It is estimated that over 50 percent of all
mammal species extinctions worldwide over the past 200 years
are from Australia (2). Since 1788, 28 Australian endemic land
mammals have become extinct and this rate is increasing (1).
These figures make Australia the worst record for mammal
conservation with rates of extinction exceeding that of any
continent (2, 3). There are a multitude of both environmental
factors and species attributes being recognized as causations of
this species decline (3). These are inclusive of anthropogenic
induced environmental changes (4), shelter and foraging habitat,
regional productivity, fecundity, longevity and phylogeny (3).
Further factors include the introduction of predators such as
cats and foxes as well as incidence of infectious diseases (3).
The International Union for Conservation of Nature (IUCN)
now lists 56 Australian land mammals as threatened and an
additional 52 as near-threatened (1). One these threatened
species is the koala (Phascolarctos cinereus), being recognized
as threatened under both Commonwealth and State legislation
(5).

Koala mortality is of increasing concern with multiple
environmental and anthropogenic factors attributing to this
species decline (6). Disease has been considered as one of the
prevalent causes of losses (7). Both retrovirus and trypanosomes
are some of the pathogens affecting koala losses however the
most recognized is the incidence of Chlamydia (6). A review
of historical records has recognized chlamydiosis symptoms
to be present in cases as early as the 1800s (6). Symptoms
associated with the disease are inclusive of kerato-conjunctivitis,
pneumonia, urinary tract infections, and genital tract infections,
especially in female koalas (6). These can cause adverse effects
such as infertility in some koala populations (6). The spread
of the disease is also Australia wide in both captive and

wild populations, with little indication suggesting that it is
location specific (6). Currently the diagnosis of chlamydia
requires intense clinical examination including PCR detection
and ultrasonography (6, 8). In general, the disease is usually
presumed in koalas experiencing some of the symptoms such as
sore eyes, chest infections, and “wet bottom” or “dirty tail” (6).
In a wildlife hospital or clinical setting, the infection is treated
through the use of antimicrobial drugs but the results thus far
are mixed (6). There has been progress in the development of a
chlamydial vaccine to control the disease in koala populations (6).

Further associated factors of mortality and injury to the
wild koala is vehicle collision, bushfire and dog attacks (9,
10). Vehicle collision are of particular concern in heavily
urbanized environments where there are small fragmented
koala populations (9). In particular localities, such as Phillip
Island in Victoria, vehicle collisions make up for 60% of the
mortality for koala populations (9). The incidence of bushfire

also threatens koala population survival causing burns and
respiratory issues to individuals (10). Like the trends of road
mortality, bushfire frequency is heightened in areas of habitat
fragmentation (10).

The hypothalamo-pituitary adrenal (HPA) axis is active
during stress, which causes release of corticotropin releasing-
hormone (CRH), which travels through the hypophyseal portal
system to release adrenocorticotropic hormone (ACTH) from the
anterior pituitary and into the blood stream (11). ACTH then
acts to release glucocorticoid (GC) steroid hormone from the
cortex of the adrenal gland. GCs can either be in the form of
cortisol or corticosterone and dependant on the species, either
cortisol or corticosterone, or even both, are produced. Cortisol is
the major GC in mammals (eutherian and metatherian species)
while corticosterone is the major GC in fish, amphibians, reptiles,
and birds. The effects of GCs can last from several minutes to
hours. Depending on amount by which GCs are elevated can
provide an insight into the severity of the stressor and how
an animal reacts to it (12, 13). In koalas, cortisol has been
identified as the major circulating GC (14), however both cortisol
and corticosterone metabolites have been measured in excreta
(15, 16). Levels of FCMs in adult healthy male and female koalas
have been reported earlier in response to an ACTH stimulation
test as follows; Pre-ACTH challenge; males (7.1 ± 1.29 ng/g dry
feces, n = 6) and females (3.9 ± 0.51 ng/g dry feces, n = 18).
Mean fecal cortisol metabolite concentrations in the males and
females after the ACTH challenge were as follows: Males (8.9 ±
0.80 ng/g dry feces, n= 19) and females (6.7± 0.47 ng/g dry feces,
n= 12).

The types of stressors and their duration can provoke an
array of neuroendocrine responses and immunity capabilities
of an individual (17). There is a proposed link between
environmental factors affecting koala population declines such
as the modification of landscapes and disease incidences, and
the effect of physiological stress on immune capabilities (18).
It is recognized that there is an influence of stress on disease
susceptibility in wildlife species (18). Prolonged stressors or
chronic stressors, result in reductions of basic immune processes
(19). Short term stressors (acute stressors) however generally
enhance immune responses (19). Baseline stress then describes
the absolute basal levels of stress hormone secretion experienced
by the individual in a state where there are no posed threats
(20, 21). It is recognized that baseline GC levels have the ability
to change as the organism encounters environmental fluctuations
and therefore stress causes elevation of cortisol secretion (21). In
wild koala populations there is no knowledge of cortisol levels in
rescued koalas.

An understanding of the relationships between stress,
incidence of disease and trauma and clinical outcomes is key
for conservation management of wildlife populations (22). The
measurement of GCs is key into investigating these relationships
as they are able to indicate the stress response and physiological
resilience of the animal (22). The use of non-invasive techniques
such as fecal GC metabolite measurements is a significant tool
to measure the stress responses whilst not increasing stress
responses through invasive interactions (i.e., blood collection)
(15). Being a folivore with a natural diet consisting of Eucalyptus
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spp., which is extremely high in fibers, the koala requires a long
gut system to be able to digest these products (23). In general,
diets that are higher in fiber will cause a delay in GC release and
gut transit time (24). It is currently approximated that digestion
and GC transition to feces will take an average of at least 213 h
(23). In koalas, fecal based hormone monitoring technique is
highly suitable due to their long gut system and therefore a
lengthy excretory lag-time of over 9 days. Therefore, the first fecal
sample collected at rescue provides a window into quantifying
the physiological stress responses of koalas to environmental
stressors (15).

The success of wildlife rehabilitation is based on successful
treatment as well as long term survival and ultimate release of the
patient koalas (25). Fertility is also a leading driver in the success
of rehabilitation (26). In general, there is a greater need for
research in the rehabilitation process (26). Currently the success
of chlamydial treatments such as topical ointment and antibiotics
is lacking with high failure rates of recovery (26). Whilst
there has been exploration surrounding infection treatments
in clinical settings, there is no research that investigates if
prior life experiences have impact on an animal’s recovery and
outcomes. In this study, we attempt to find out the effects of
environmental stressors on the outcome of koalas in a clinical
setting.

The measurement of fecal glucocorticoid metabolites and
the koalas long gut system therefore allows us to have an
understanding of the stress experienced by koalas several days
before arrival to the clinic and also gives indication as to whether
absolute baseline stress levels could affect clinical outcomes.
It is hypothesized that those rescued koalas admitted to the
veterinary clinic experiencing prior heightened stress levels (e.g.,
burn victims from bush fire) will have lowered success to recovery
in the clinic and will be mainly euthanized.

MATERIALS AND METHODS

Study Koalas
This study was done through formal approval by the Charles
Sturt University ACEC Committee (Protocol number: A16044).
Koala health data was collected in partnership with Adelaide
Koala and Wildlife Hospital (AKWH), South Australia. The
hospital is dedicated to the emergency treatment, rehabilitation
of injured or orphaned native wildlife. During the koala’s
admittance in clinic, they were housed individually in large
cages and provided with fresh water and various assortments of
Eucalyptus species. Sampled koalas were those in care at AKWH
during the sampling period of 2015–2016.

Health Data, Habitat Demographics, and Stressor

Categories
Health data provided was inclusive of hospital records for the
koalas with matched fecal sampling done (n = 22). Hospital
records contained details of health checks, age, sex, weight,
stressor categories, treatments, and outcomes.

Using the AKWH records that were provided, a health
summary was created for each koala which detailed their basic
information (age, sex, location found, etc.) and then what

treatment was used, treatments administered, how long they were
in hospital for, and what their outcome was. Stressor category,
location, and clinical outcomes were all categorized to allow for
statistical analysis.

Habitat was categorized using Google Maps to identify the
habitat demographics where the koala was found by rescuers.
The habitat demographics categories included; “National Park”
which indicated that the koala was picked up from within a
national park, “Rural” which indicated an area that was sparsely
populated and mainly included large lots of grass lands and open
areas, “Semi-Urban” which was a location that was moderately
populated and situated near or fringed by parkland, forest, or
open grasslands, and “Urban” which were areas that is densely
populated and a distance from any forests or parklands.

Stressor categories were as follows; Healthy koalas were
identified as with good body condition score of >4.0 (27)
and no physical signs of disease. Suspected infection cases
showed physical signs such as red/swollen/sore eyes/conjunctiva,
discharge, red cloaca, wet bottom, swollen genital however tested
negative for chlamydia (PCR testing return negative). Injury
included physical injuries sustained from any physical trauma
apart from dog-attack or vehicle collision. Burn victims were
koalas that were rescued from bush fire impact. Dehydrated
patient identified as a koala that was found to be drinking an
abnormal quantity of water for an abnormal length of time (e.g.,
some rescued koalas recorded drinking for over 40min). Flat
demeanor was noted when a rescued koala was found in a state of
not exhibiting normal behaviors, seemed slow and depressed or
was not responding to external stimulus appropriately.

Diagnosis was determined through veterinary testing and
examinations. For example, a koala that had vehicle collision was
found to have multiple fractures so this is what it was ultimately
treated for. Another koala may have been found on the ground
but ended up being treated for an infected pouch, so infected
pouch was its diagnosis. Due to the nature of chlamydia and its
intermittent shedding, the PCR tested negative or positive was
used as a diagnosis as a –ve or+ve result could influence the FCM
levels. Other common diagnosis included renal failure, arthritis
(inability to climb), diabetes and respiratory illness.

Fecal Sample Collection
Fecal samples were collected from 22 koala patients admitted to
the AKWH from the period of 2015–2016. During routine cage
cleaning, 1–5 fresh pellets were collected from each koala daily at
the same time period in the morning to avoid potential influence
of circadian rhythms on FCMs. Sample size (days) ranged from
n = 2 days−36 days depending on the length of time that each
koala stayed in the clinic. Fresh pellets were initially identified
by intensity of smell, mucous covering and lack of dehydration.
Samples were placed into Ziplock© bags and labeled with the
animal’s name, date, identification number, and time of sample
collection. Samples were stored at −20◦C until they were sent
on ice to the laboratory via overnight freight. Upon delivery, the
fresh fecal samples were immediately frozen to minimize effects
of sample age on FCM levels. All samples were analyzed within 1
month of collection.
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Sample Preparation
Frozen fecal samples were dehydrated in a freeze dryer for
a 24 h period (or until completely dried). Once dry, samples
were ground into a fine powder up using a mortar and pestle.
Each mortar and pestle was cleaned using 10% ethanol between
samples. The ground up powder was sifted through a find mesh
strainer to remove all course particles. A 0.2 grams (g) +/−
0.001 g sample of sifted product was weighed out into a labeled
test tube and then stored in a−20◦C freezer.

Fecal Cortisol Metabolite Extraction
Samples were removed from the −20◦C freezer and 2 milliliters
(mL) of 90% ethanol solution was added to the test tube. Tubes
were vortexed at medium-high speed on an Eppendorf mini-
spin centrifuge for a minimum of 30 s to thoroughly mix the
solution. Tubes were then placed into a +80◦C water bath for
10min to allow hormones to dissolve in the solution. Whilst
in the bath, tubes were gently shaken to ensure feces stayed
submerged in ethanol and did not spill over the top of the
tube. After 10min, the contents of the tube were poured into
an Eppendorf tube, closed and then centrifuged at 10,000 RPM
for 5min until the liquid residue separated from the hormones
dissolved in ethanol. Following this, 0.6mL was aliquoted into
a new, clean, and labeled Eppendorf tube. Tubes were left open
and stored in a laminar flow chamber for a minimum of 24 h
until the ethanol has evaporated and the tube was completely
dry. Once tubes were completely dried, 1mL of assay buffer
(39mM NaH2PO4, 15mM NaCl and 0.1% bovine albumin, pH
7.0) was added to the tube. Clean pipette tips were used to scrape
off as much of the residue as possible. Tubes were vortexed
at medium-high speed on an Eppendorf mini-spin centrifuge
for a minimum of 30 s. Following this, they were centrifuged
at 10,000 RPM for 10min. After centrifugation, 850 microliters
(µL) of supernatant was pipetted into a clean labeled Eppendorf
tube avoiding any of the solid section of the solution when
pipetting. If the sample appeared to still be cloudy, tubes were
re-centrifuged for 10min and then pipetted again into a new
tube. Samples were then stored in a −20◦C freezer until ready
for use.

Hormone Analysis
Validation of the fecal cortisol metabolites (FCM) extraction
method is described in (15) and follows the previously
described extraction protocols of (28–30). FCM concentrations
were determined using a polyclonal anti-cortisol antiserum
(R4866) diluted to 1:15,000, horseradish peroxidase (HRP)
conjugated cortisol 1: 80,000 and cortisol standards (1.56–400
pg well−1). Sample extracts were then assayed in duplicate
on Nunc MaxisorpTM plates (96 wells). Plates were coated
with appropriately diluted cortisol antibody and left to stand
and incubate for a minimum of 12 h in a fridge at 4◦C. The
plates were then washed using an automated plate washer
(ELx50, BioTekTM) with phosphate-buffered saline containing
0.05% Tween 20. The dilution factor for the FCMs in koala
fecal extracts where based on the concentration of pooled
samples that resulted in 50% binding on the parallelism curve
[see (15)].

For each assay, 50µL of cortisol standard, control, and diluted
fecal extract was added to each well-based on the plate map,
immediately following 50 µL of HRP was added. Plates were
covered and incubated at room temperature for exactly 2 h. After
2 h of incubation, plates were washed and 50 µL of substrate
buffer (0.01% tetramethylbenzidine and 0.004% H2O2 in 0.1M
acetate citrate buffer, pH 6) was added to each well to generate
a color change. Color reaction was halted after 15min using
50 µL of stop solution (0.5 molL−1 H2SO4). To quantify the
concentration of FCM in each sample the plates were read at
450 nm (with reference to 630 nm) on an ELx800 (BioTekTM)
microplate reader.

Statistical Analysis
Data was statistically analyzed using SYSTAT software version
13.0. All FCM data was first log transformed to meet the
assumptions of normality. Graphs were plotted in GraphPad
Prism software. All FCM data points (from rescue to end
point of clinical recuperation) for each koala were used to
calculate mean levels that provided absolute baseline levels
of FCMs for each koala. A GLMM ANOVA was used
to compare level of significant difference between mean
FCM (variable) and factors included (sex, koala ID, length
of stay, stressor category, habitat location, diagnosis, and
clinical outcome). Post-hoc comparison for interaction between
habitat location, stressor category, and clinical diagnosis as
determinants of mean FCM levels was done using Dunn’s
multiple comparison test. P < 0.05 was used as the level of
significance.

RESULTS

Mean FCM Levels Relative to Koala Habitat
Demographics
GLMM Analysis of Variance results showed that mean FCM
levels were significantly different between individual koalas (F
= 26.33, df = 11, 220; p < 0.001). There was no significant
difference in mean FCM levels between male and females,
however the length of stay in the hospital was significant (p <

0.05).
Stressors experienced in rural localities included; vehicle

collision, dog attacks, flat demeanor (associated with bushfire)
and having a wet “dirty” bottom. Vehicle collision was the
leading stressor in rural localities making up 33% of cases.
All other stressors in rural habitats recorded occurrence
of 17%.

Stressors experienced in semi-urban (rural-urban fringe)
localities included; continuous drinking, eye discharge and
flat demeanor, all of which were equally high occurrence
at 27%.

Individuals in urban habitats experienced multiple stressors
including; continuous drinking, dog attacks, eye discharge,
flat demeanor and vehicle collision. Eye discharge had the
highest occurrence (29%) followed by vehicle collisions and flat
demeanor both at equal occurrence of 21%.
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Analysis of Factors and Interactions With
Mean FCM Levels
Mean Fecal Cortisol Metabolites (FCM) Levels by

Locations
Mean levels of FCM were not significantly different between
locations (F = 1.31, df = 3, 167, p = 0.27; Figure 1). The
highest mean FCM levels were present in koalas found at rural-
urban fringe or semi-urban localities followed by rural and
urban locations (Table 1). Koalas rescued from national parks
had lowest mean FCM levels (Table 1). Post-hoc comparisons
showed significant difference (p < 0.05) between all location
comparisons, except for comparisons between urban vs. national
park and rural vs. rural-urban fringe (p > 0.05 for all
comparisons; Table 1).

FCM Levels by Stressor Category
There was a significant difference between mean FCM levels
for the different stressor categories (F = 5.33; df = 7, 240;
p < 0.001; Figure 2). FCM levels were highest for koalas
with chlamydia), followed by koalas impacted by bushfire
(including burns and flat demeanor), vehicle collision, dog-
attack, veterinary check, suspected infection, dehydration, and
other injury (Table 2). Post-hoc comparisons showed that only
level of significant difference in FCM levels were between
bushfire vs. veterinary check and bushfire vs. other injury
(Table 2).

FIGURE 1 | Shows the mean + range of fecal cortisol metabolites (FCM)

levels in koalas distributed by locations.

Mean FCM Levels by Diagnosis
There was a significant difference between the mean FCM levels
for diagnosis (F = 3.96; df = 5, 50; p = 0.0046; Figure 3).
Koalas that were diagnosed with respiratory illness had the
highest mean FCM, followed by respiratory illness, other injury,
infected pouch, burns, other infection, Chlamydia +, diabetes,
Chlamydia –, renal failure, healthy koala (Table 3). Post-hoc
comparison showed level of significant difference only between
comparison of healthy koala vs. other injury. A caveat here
is low sample sizes for some of the diagnosis (see Table 1).
Thus, categories with n = 1 sample size were excluded from the
statistical analysis.

In all cases of diagnosis for renal failure, arthritis (inability to
climb) and diabetes the outcome was euthanasia. For koalas with
diagnosis of burns, heat stress and respiratory illness, all cases
ended with release. Diagnosis of chlamydia, other infections and
injuries had cases of both release and euthanasia outcomes.

Mean FCM Levels by Multiple Factors
Significant interaction (∗) was found between location, stressor,
diagnosis, and outcome as predictors of FCMs levels in the koala
patients (Figure 4). The test results were as follows:

Location∗diagnosis(F = 28.87, p = 0.00)

Location∗stressor∗diagnosis(F = 14.89, p = 0.00)

Location∗stressor∗outcome(F = 3.16, p = 0.044)

Location∗Stressor∗diagnosis∗outcome(F = 25.09, p = 0.00).

DISCUSSION

This study has provided new knowledge on the physiological
stress responses of rescued wild koalas in relation to their habitat
demographics, stressor category, and clinical intervention. The
results showed that all of these factors interacted to influence
levels of physiological stress (indexed using fecal GCmetabolites)
in the rescued koalas (Figure 4). Therefore, the clinical outcome
(release or euthanasia) can be influenced by both the pre-rescue
conditions as well as the clinical environment that is provided to
the koalas in care.

Koalas that were rescued from rural-urban fringe locations
had the highest FCM values while those in urban had the lowest
(excluding national park and unknown). In rural locations,
interestingly road collision was a leading stressor in 33% of rural
cases. A study by Griffith et al. (31) on trends of koala admission

TABLE 1 | Shows the descriptive statistics and post-hoc comparisons of fecal cortisol metabolites (FCM) levels in koalas distributed by location.

Category Fecal cortisol metabolites (ng/g dry weight) Statistical comparisons

Number Location Sample size Min Max Median Mean S.E.M post-hoc comparison (c.q.) Significant (p < 0.05)

1 Urban 77 3.26 202 24 48.34 5.492 I c.f.2 yes

2 Rural-urban fringe 47 13.42 734.6 38.39 69.87 15.69 I c.f. 3 yes

3 Rural 27 2 426.4 31 68.48 17.32 I c.f.4 no

4 National Park 17 15.82 64.22 36.85 39.74 3.395 2. c.f.3 no

2 c.f.4 yes

3. c.f.4 yes
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to wildlife hospitals found thatmale koalas to have increased risks
of vehicle accidents during the summer period where tourism
was high. Griffith et al. (31) further found that vehicle accidents
coincided with periods of land clearance with those koalas
experiencing these anthropogenic induced threats to be more
likely to be admitted to the wildlife hospital. Furthermore, (32)
in their study compared major and minor roads and found the
incidence of road mortality to be much greater on minor (rural)
roads. It was also found that minor roads caused greater habitat
destruction than the major roads of urban environments (32). Of
the koalas found in rural locations (n = 6), four of these ended
with a final outcome of euthanasia. Koalas in rural locations
will experience less exposure to human activities compared to
those in urban environments (33). However, koalas in an urban
environment are found to be more resourceful, using all trees in
the area, being able to better exploit patchy areas and increased
ability to findmates in fragmented landscapes due to a life history
of adaption to these experiences (33).

FIGURE 2 | Shows the mean + range of fecal cortisol metabolites (FCM)

levels in koalas distributed by stressor categories.

In both semi-urban and urban environments, eye discharge
was at the highest occurrence. In semi-urban environments,
other factors such as excessive drinking and sitting on the
ground had equal high occurrence. Eye discharge was generally
diagnosed as kerato-conjuntivitis, which is a leading symptom
of Chlamydia (34). Red cloaca, eye discharge, wet bottom, and
swollen genitals were all regarded as chlamydial symptoms
(urban; n = 4). This suggests that in both urban and semi-urban
environments, Chlamydia is the leading environmental threat.

During our study period at the AKWH, 17 koalas were
diagnosed with C. percorum (no PCR, PCR +ve and PCR –ve).
Chlamydial infections were higher in females (n= 12) compared
to males (n= 5). In female infections (n= 12), four resulted in a
final outcome of euthanasia. Gonzalez-Astudillo et al. (35) found
koala females to be at a higher risk of poor clinical outcomes
when diagnosed with chlamydiosis. Females have been found

FIGURE 3 | Shows the mean + range of fecal cortisol metabolites (FCM)

levels in koalas distributed by diagnosis. *Healthy koala data was referenced

from published study (15).

TABLE 2 | Shows the descriptive statistics and post-hoc comparisons of fecal cortisol metabolites (FCM) levels in koalas distributed by stressor category.

Category Fecal cortisol metabolites (ng/g dry weight) Statistical Comparisons

Number Stressors Sample Size Min Max Median Mean S.E.M. post-hoc comparison (c.f.) Significant (p < 0.05)

1 Other injury 20 6 36 9.5 13.55 2.067 4 c.f. 7 and I c.f. 7 yes

2 Dehydrated 7 14 47 26 27.71 4.96 All other pairwise comparisons no

3 Suspected infection 14 7 240 16 34.14 16.13

4 Veterinary Check 120 3 426 24.5 42.69 4.837

5 Dog-attack 12 14 202 30.5 49.17 15.36

6 Vehicle collision 10 22 144 83 85.5 15.2

6 Bushfire 53 2 735 75 91.09 13.55

7 Chlamydia 5 54 200 76 102.4 26.62

Data for healthy koalas were referenced from earlier published work (15).
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TABLE 3 | Shows the descriptive statistics and post-hoc comparisons of fecal cortisol metabolites (FCM) levels in koalas distributed by diagnosis.

Category Fecal cortisol metabolites (ng/g dry weight) Statistical comparisons

Number Diagnosis Sample Size Min Max Median Mean S.E.M post-hoc comparison (c.f.) Significant (p < 0.05)

1 Chlamydia– 3 8 8 28 5.859 All pairwise comparisons except, no

2 Chlamydia+ 8 5 5 146 16.02 4 c.f. 7 yes

3 Other infection 5 9 9 118 20.59

4 Other injury 4 21 21 138 26.22

5 Burns 1 54 54 54

6 Renal failure 2 4 4 21 8.5

7 Healthy koala* 29 2.153 2.153 46.44 1.681

8 Infected pouch 1 55 55 55

9 Respiratory illness 1 97 97 97

10 Diabetes 1 39 39 39

*Healthy koala data was referenced from published study (15).

FIGURE 4 | Shows the conceptual diagram summarizing the main findings of this study. That is, physiological stress in rescued wild koalas has the influence of both

environmental factors (pre-rescue) and management factors (post-rescue). The pre-rescue factors include anthropogenic induced environmental stressors that

generate physiological stress in wild koalas such as habitat fragmentation, forest fires, vehicle collision, dog-attacks etc. The habitat-specific factors, especially

rural-urban fringe zone create ecological problems for koalas associated with accessing habitat and food sources. The post-rescue factors are mainly associated with

the clinical management of koalas which include their veterinary care and diagnosis, length of stay, treatment, and rehabilitation. It is important to carefully assess

physiological stress in wild rescued koalas in order to obtain real-time data on their physiological status at the point of rescue and to apply fecal glucocorticoid

monitoring in clinical care to better understand their physiological response to human interventions. The application of non-invasive hormone monitoring can assist us

to better manage and reduce stress for koalas under human care.

to express more explicit signs of chlamydiosis and the disease
often causes female infertility, resulting in higher euthanasia
rates in clinical settings (35). Chlamydia has been recognized as
a contributing factor to koala population declines due to high
incidence, detrimental impacts of the disease and the symptoms
involved (35).

Clinical interventions are crucial for the appropriate care and
recuperation of rescued wild koalas. Increased handling during
treatment as well as a decreased success in antibiotic treatment
may influence stress levels (7). Other diagnosis, such as renal
failure can often be indicative of oxalate nephrosis in koalas
which can be a detrimental disease to koala populations (36).
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In conclusion, it is evident from the outcomes of this
research that the nature of environmental stressor (trauma
and/or disease) and habitat-specific demographics (location
of rescue) can have influence on the physiological stress
responses of wild koalas and their eventual recovery in
clinical care. It is therefore important to monitor the
physiological stress responses of wild rescues koalas using
non-invasive techniques such as fecal glucocorticoid
metabolite enzyme-immunoassays to provide early index
of stress levels in koala patients and apply the data to
understand how koalas perceive environmental stress
(37) and improve their responses to clinical care and
management.
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Netting the Stress Responses in Fish
Joan Carles Balasch* and Lluís Tort

Department of Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, Barcelona, Spain

In the last decade, the concept of animal stress has been stressed thin to accommodate

the effects of short-term changes in cell and tissue physiology, major behavioral

syndromes in individuals and ecological disturbances in populations. Seyle’s definition

of stress as “the nonspecific (common) result of any demand upon the body” now

encompasses homeostasis in a broader sense, including all the hierarchical levels in a

networked biological system. The heterogeneity of stress responses thus varies within

individuals, and stressors become multimodal in terms of typology, source and effects,

as well as the responses that each individual elicits to cope with the disturbance.

In fish, the time course of changes after stress strongly depends on several factors,

including the stressful experiences in early life, the vertical transmission of stressful-

prone phenotypes, the degree of individual phenotypic plasticity, the robustness and

variety of the epigenetic network related to environmentally induced changes, and

the intrinsic behavioral responses (individuality/personality) of each individual. The

hierarchical heterogeneity of stress responses demands a code that may decrypt

and simplify the analysis of both proximate and evolutionary causes of a particular

stress phenotype. We propose an analytical framework, the stressotope, defined as

an adaptive scenario dominated by common environmental selective pressures that

elicit common multilevel acute stress-induced responses and produce a measurable

allostatic load in the organism. The stressotope may constitute a blueprint of embedded

interactions between stress-related variations in cell states, molecular mediators and

systemic networks, a map of circuits that reflect the inherited and acquired stress

responses in an ever-changing, microorganismal-loaded medium. Several features

of the proposed model are discussed as a starting point to pin down the maximum

common stress responses across immune-neuroendocrine relevant physiological levels

and scenarios, including the characterization of behavioral responses, in fish.

Keywords: stress, stressotope, fish, teleost, plasticity, transcriptomics, phenomics

INTRODUCTION

When studying the adaptive ecophysiology of stress in teleosts, the largest group of fishes and
therefore of vertebrates, their extremely diverse life stories appear. This diversity impedes a
unified and common description of stress-related effects of environmental insults in fish, and,
in consequence, is understandably overlooked in comparative interspecies analyses of stress
physiology. Often, the physiological effects of stressors are treated as species-specific features of
the chosen animal, but not always expressly acknowledged as such. Therefore, in the literature,
the uncovered stress-related feature of a single or few species becomes, misleadingly, a prominent
characteristic of all teleosts.
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Reducing the exogenous and endogenous covariates that
elicit stress-related responses undoubtedly helps to reproduce a
more focused physiological process in the laboratory. However,
this approach veils the adaptive and, more importantly, content-
rich interactions between stress-related gene expression and
phenotype turnover across the life stories of each species.
Consequently, the high diversity of teleost lifestyles enriches the
physiological analysis of stress effects in fish, but also flaws a
unified description of common responses to stress. To overcome
this dilemma, the analysis of pan-specific common predictors
of stress-related responses should be entrusted to the accurate
selection of more explanatory variables. For example, when
analyzing the effects of high or low temperatures on physiological
performance in ectothermic species, choosing species-specific
optimal temperature limits (thermopreferundum) as baseline
values allows for comparing the effects of common stressors
(1, 2). This approach assumes that the thermic reference
summarizes the adaptive pathway to temperature tolerance
evolved in a particular biotope (and, implicitly, part of the
adaptive life story of each species), and guarantees a more
realistic description of the “natural” (or eustressed, see below) vs.
maladaptive (distressed) pathways of stress responses. The same
applies for the comparative inter-species analysis of immune
responses to stressors in adult fish, where we should consider
specifically the maturation of primary and secondary immune
organs rather than the relative size of fishes. The microorganism
load may substantially differ between marine and freshwater
realms, but both environments share the deleterious effects
of the communities of resilient low-abundance pathogens (3).
Therefore, diverse stress-related physiological adaptations in
teleost inhabiting aquatic biocenosis are to be expected, as well as
the inter-species commonalities of biological signal transduction
and physiological axes. Given that, the degree of functional
maturation of immune-related organs and tissues becomes a
proxy for adult/mature physiology and allows for the effective
cross-species comparison of immune responses to stress in a
microbial-rich environment. These examples suggest that when
we analyze a particular stress-related phenotype we are not only
describing the physiological outcome of specific gene networks,
but also the recapitulation of the evolutionary life-stories of each
individual (Figure 1).

Considering the complex influences between environmental
stressors and pathogen communities, in this short review
we propose a modified biotope concept (4) for analyzing
stress-induced abnormal responses (i.e., capable of inducing
an allostatic load that compromise the evolutionary conserved
activation of regulatory stress-related physiological axis
responsive to normal/adaptive stress, see below). This approach
would reduce the complexity of species-specific stress analysis
to a set of common descriptors, endogenous and exogenous,
of such responses. Here, we define a teleost “stressotope” as
an adaptive scenario dominated by common environmental
selective pressures that elicit common multilevel severe stress-
induced responses and produce a measurable allostatic load in
the organism.

Defining the components and dynamics of a stressotope may
help to reframe the variability of interspecific stress responses in

teleosts in terms of the cross-linked interactions between niche
characteristics, diverse genomic scaffoldings and phenotypic
specificities that define a set of common, multilevel stress
responses in fish. Several endogenous and exogenous features
that may be relevant to modeling stressotopes are presented
below as a starting point, by no means exhaustive, to discuss
the value of this ecophysiological approach to analyze the
commonalities to stress responses.

STRESSING THE STRESS RESPONSES

Although some definitions and general considerations on
the stress concept involve the idea of an altered status and
physiological exceptionality, it is also true that coping with
stressors, the stress course, and the response of the organism
are not only a common mechanism but also a very sound and
conserved response among living species. Hence, the stress
responses should be considered as one of the basic and important
mechanisms that are key to maintain the physiological, cellular
and molecular stability (homeostasis) of the organism. A myriad
of mechanisms available to face the impact of stressors will
be selected or modulated depending on many factors: the
species itself, the environmental conditions, and chiefly, the
intensity, duration and predictability of the stressor. Therefore,
an important part of the machinery behind the stress response
is the same that is engaged after other stimuli that are not
considered stressors, such as reproductive changes, exercise,
immune stimulants, feeding, light-dark transitions or the
presence of conspecifics or enrichment objects. That is why
it is also difficult to make a definition of the stress concept
with precision.

Along the years and among the authors that have dealt with
the concept of stress (5), several definitions have been provided
following the initial definition, “the non-specific response of the
body to any demand placed upon it” that was proposed by Hans
Selye in 1951 (6). Several concepts have been proposed that agree
with the current consensus that stress responses emerge when
the stimulatory demand exceeds the natural regulatory capacity
of an organism (7). For instance, Selye’s eustress and distress (8)
responses differentiate between a “normal” state, in which no
significant alterations are recorded and the homeostasis is not
impaired (although some hormonal, metabolic or molecular
stress-related mechanisms can work), and an “abnormal” state in
which significant alterations are regarded, an overall perception
of alarm occurs and the stress-related mechanisms are highly
engaged. Hormesis has been defined as any process in which a
cell or an organism exhibits a biphasic response to exposure to
increasing amounts of a specific condition (9). It is currently
applied to chemical stimuli but it has been applied to amounts
of sensory stimulus, metabolic alterations and stressors. Thus,
low-dose exposures would elicit a stimulatory, beneficial or
compensatory response (eustress), whereas high doses elicit
inhibition, alteration or suppression (distress). Likewise, the
term allostasis (10), refers to a concept linked to the energetics
or the “economy management” of the body resources. Any
stressor may lead to an allostatic load that first, compromises the
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FIGURE 1 | Several influences that shape distress-related phenotypes in fish. The analysis of common responses to stress relies on (1) the evolutionary life-stories

endured by each species (i.e., genome duplications, changes in stress-related gene pools, changes in oxygen and temperature levels over geologic time and

dynamics of extinction/speciation throughout Earth’s history) that constraint the evolvability of biological systems and (2) the pattern and scale of environmental effects

in a particular biotope. When analyzing a particular stress-related phenotype the physiological outcomes of specific gene networks during the twin processes of

development and growth/metamorphosis have been taken into account, but also the effects of epigenetic transmission of cortisol sensitivity, the differential responses

to stressors between sexes and the behavioral interactions within populations as starting points. In this sense, a stressotope defines the boundaries of common

pan-specific maladaptive stress responses in a particular/local biotope not only from the perspective of abnormal changes in environmental resources, but also, from

the global-scale changes recapitulated in the life story of each individual, i.e., the functional genomics and phenomics of stress intertwined with functional ecology

across spatial scales.

overall balance of the organism, and second, involves a higher
demand of resources that either leads to a higher acquisition of
food/energy or induces a number of physiological and metabolic
internal compensations in order to retain the lost balance. This
results in maladaptation, which indicates that the regulatory
mechanisms have not been able to compensate the effects of
the stressor. Maladaptation is often associated to chronic stress
since heavy acute stressors may result in death, and mild ones
in recovery. These chronic stressors leading to maladaptation
are very relevant in farmed animals, including fish subjected to
artificial conditions.

The perception of stress involves the receptor-mediated
sensing of the stressor, either physiologically at neuro-endocrine
or cellular levels. The perception mechanisms are important,
not only to act as transducers of alarm signals but also to
discriminate the intensity of the stress stimuli and therefore the
threshold required to trigger the response mechanisms. In fish,
neuroendocrine signaling affects and becomes regulated by the
onset of immune responses, due to the peculiar organization of
the head kidney, a hematopoietic tissue made from a mixture
of endocrine, hematopoietic and immune cell populations,
akin to the mammalian adrenal gland and bone marrow. As
in the rest of vertebrates, those responses are mainly mediated
by the activation of two hormonal axes in fish, the sympatho-
chromaffin (SC) axis and the hypothalamic-pituitary-interrenal

(HPI) axis (11). The SC axis activates a fast stress response,
involving the cardio-respiratory system by increasing ventilatory
and heart rates, heart stroke volume, and blood perfusion in
gills and muscle, providing glucose supply to critical tissues,
with adrenaline being one of the major mediator hormones. An
activated HPI axis contribute to the re-organization of resources
by increasing the catabolic pathways, supplying glucidic sources,
processing fatty acids for energy, and suppressing other high-
cost energy and longer-term processes such as those of immune
responses, being plasmatic cortisol levels one of the major
mediators (12).

By binding to glucocorticoid (GR) or mineralocorticoid (MR)
receptors, cortisol regulates neuroimmunoendocrine circuitries
elicits stress-induced immunosuppression and contributes to
allostatic imbalances. That is why is particularly suited for
stress-related surveys in natural and artificial environments and
the focus of the search for common global markers of stress
states in fish. However, the levels of cortisol in distressed fish and,
consequently, the individual perception and physiological effects
of the intensity of the stressors, are usually strongly biased for
neuroendocrine and immune systems in a highly species-specific
manner, which makes the prognosis of stress recovery both
apparently simple and dauntingly complex (13). Moreover,
within-species diversity in cortisol levels also differs between
behavioral phenotypes. As discussed below, selecting for “bold”
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(proactive) and “shy” (reactive) individuals in a population also
segregate animals as low- or high-cortisol responders, masking
the common cortisol-related responses to stress. A side effect
of this behavioral phenotyping can be seen in experiments
with paired trout, in which agonistic competition for food
resources leads to cortisol-based hierarchical social labeling,
with animals ranging from dominant (proactive, usually with
low plasmatic cortisol levels) to subordinate (reactive, usually
with high plasmatic cortisol levels). When the social status is
reversed, cortisol levels in former subordinates are recovered
quickly, rendering useless the measure of cortisol levels as a
global long-term commonmarker of social stress (14). The direct
effects of social status on plasmatic cortisol levels should also
be balanced out by analyzing the food control exerted by the
dominant conspecifics that may indirectly elevate cortisol levels
in food deprived stressed subordinates.

Cortisol implants may fail to act as a proxy of behavioral
patterns in teleosts (15, 16), and the repeatability of cortisol
profiles is higher in reared as opposed to free-living fish due to
the artificial control of environmental variables (17). Circadian
and seasonal cycles of cortisol secretion must also be considered
for assessing the sensitivity and adaptability to stressors (18),
considering that cortisol are involved in the synchronization of
circadian systems in fish (19). This clearly indicates that a more
complex multiscale approach (i.e., from cellular activation to
organism and population dynamics in specific stressotopes) will
be desirable to describe the effects of stressors.

Besides cortisol, other mediators of stress responses,
namely major regulatory axis components (ACTH, CRH,
proopiomelanocortin –POMC- peptides, β-endorphin, α-
MSH), opioids and a myriad of immune cytokines have been
extensively used to define commonalities in altered stress
states, but the species bias remain. In the last decade the quest
for commonalities of stress responses in fish has focused in
peripheral structures such as the mucosae, that sense and
distribute alarm signals from pathogens, parasites, bacteria,
injuries, sudden changes of salinity or oxygen or the presence
of chemicals in the water (20, 21). Skin, gills or intestine may
often be the first structures that sense the stressors, but they
do so again in a marked species-specify manner (20, 22, 23).
The reorganization of the overall metabolism to cope with the
stressors also involve an alteration of thyroidal axis (24) related to
the energetics and mobilization of fat resources, especially in fish
undergoing severe metamorphosis regulated by environmental
shortages, such as in smolting salmons (25, 26). Under stress,
growth is arrested, the reproductive processes are suppressed or
depressed and chronic stressors induce immune suppression, in
particular in expensive processes such as white cell production
and antibody production, whereas other responses such as
phagocytosis may be maintained (27, 28). However, as seen in
whole organism physiological responses, at the cellular level
the delicate equilibrium between adaptive and maladaptive
stress seems to be the norm. Reactive oxygen species (ROS), for
example, signal oxidative stress as an evolutionary conserved
phagocyte response to infection or xenobiotics (29). However,
as part of the environmental stress response, the expression of
ROS-related genes vary in hermetic fashion: mild oxidative stress

promote the expression of antioxidant defenses that, if defeated,
lead to enhanced gene expression that may have distressed
outcomes (30). The effects of stress-essential (responsive to
specific stressors) and stress-induced (involved in metabolic and
high order neuroendocrine axis activation) genes (31) reach
from cellular disturbances all the way up to systemic processes,
and demand a multilevel approach to determine stress sensing
and resolution in a stressotope context.

Notwithstanding the intensity of the stressor, in fish as in other
vertebrates, the onset of short-term stress mechanisms usually
correlates with genome-fixed and protective adaptive responses
to seasonal and predictable environmental perturbations and
health insults, whereas long-term responses to stressors tend to
be considered as harmful expressions of allostatic imbalances
in an unpredictable or pathogen-ridden environment (32).
This brings the necessity for a broad multilevel framework that
may define more precisely the effect of stressors in cellular,
physiological, pathological/clinical and (eco)systemic scenarios.

OVERCOMING THE SCENIC FEAR

Ancient and extant biotic and abiotic dynamics of aquatic
environments shaped the adaptive/essential stress responses
of fish in a species-specific fashion and should be considered
when defining a stressotope. Here we discuss the effects of
environmental stressors from a dual perspective, including
the physical heterogeneity (natural and man-made) and the
reeducation of genomic landscapes in populations placed under
explicitly perceived predation risk.

The term “fishes” continue to be a phylogenetic trap that
encompass a loosely grouping of more than 28,600 species of
ray-finned fish (Actinopterygii) and elasmobranchs, unequally
distributed in freshwater (12,740 species) and marine (15,886
species) environments (33). The distribution and diversity of life
story patterns in extant fish reflect the differential characteristics
of both realms that helped to shape the organization and
expression of stress-related genome structures. Teleosts comprise
a monophyletic group that accounts for roughly 98% of species
of ray-finned fishes. Both marine and freshwater environments
seem to be dominated by percomorphs and ostariophysians
(34), but marine fishes show an unexplained low diversity in
a realm that covers 70% of the Earth’s surface (35). Several
competing hypothesis have been suggested unsuccessfully to
explain such differences, ranging from ecological constrictions,
homogeneity-heterogeneity of water biotopes or ocean’s net
primary productivity and spatial heterogeneity [see (34–36)
for a comprehensive review]. Freshwater fishes inhabit a
0.01% of available planetary water volume, usually more
fragmented, prone to isolation and barred to dispersal of
organisms than oceanic environments (37). This favors intense
selective pressures that quite frequently lead to niche-specific
diversification, adaptive radiations and increasing speciation,
the many phenotypes of African cichlids being the most cited
example of such processes (38). It has also been described a
greater resilience to extinction in these freshwater low-density,
high-diversity specialized fish populations compared to their
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marine counterparts (39), probably due to the differential
exploitation of resources (detritivores seem to be more
abundant in freshwater environments) and large-scale geological
perturbations. In this sense, freshwater taxa seem to be more
affected and selected for temperature and climatic variations
(33).

Anoxia and osmotic changes affect teleost performance, but,
being fish ectothermic and oxygen levels and saline content
strongly dependent of temperature, thermal conditions largely
define the boundaries of stressotopes. In fish, a sudden drop
in temperature diminishes the production of immune cellular
and molecular resources, impairs T cell-dependent immune
responses and may led to cellular inactivation or anergy (40–42).
High temperatures correlate with enhanced parasite transmission
and resilience within hosts’ bodies (43, 44), even when the onset
of behavioral fever may stimulate phagocytic activation and
modulate innate humoral responses (45). In fish, shifting too
far away from thermopreferendum wakes up distress-induced
genes and alters the responsiveness of HPI and immune axis
(46), but the overall effect may be modulated by acclimation
to temperature changes (42). In this sense, the plasticity of
phenotypic responses to thermic-related stressors dictates the
type and relevance of physiologic variables to be included in a
stressotope.

From those observations it is clear that the number and
distribution of fish species and, consequently, their physiological
strategies to cope with stress result from, and are influenced
by the different rates of speciation and extinction (i.e., net
diversification) in each environment. Several model species,
such as trout, zebrafish or carps inhabit freshwater niches
and may endure unexpected selective pressures due to the
limitations of toxic drainages, xenobiotic clearance or dissolved
oxygen-consuming autotrophic blooms, common to lentic
environments. Under these conditions a high turnover of species
richness, together with accelerated evolution of stress-related
homeostatic mechanisms is to be expected. For example,
in fast-growing short-lived killifish species, the exposome,
defined as an adding-up response to a lifetime expositions to
environmental insults (47) correlates with a fast paced adaptation
to Human Induced Rapid Environmental Changes, HIREC (48).
Complexity, severity and pace of HIREC changes have been
proposed to explain the rapidly acquired tolerance to stress
of different populations of killifish (Fundulus heteroclitus) in
polluted estuaries (49). In this species, a maladaptive stress
scenario forced the emergence of genetic polymorphisms related
to xenobiotic clearance and stress responses such as the aryl
hydrocarbon receptor (ahr) signaling pathways, cytochrome
P450 1A (cyp1a), heat shock proteins (hsp70), multidrug
resistance transport proteins (mrp) and estrogen receptors
(esr2b). In this model of distress modulation, the environmental
trade-offs defined a pattern of gene expression and the emergence
of low-responders stress-tolerant populations, but the fitness
costs depended on specific particularities of newly adapted
phenotypes. This suggests that the physiological costs of evolving
tolerances to specific stressors strongly depend on the population
and individual fitness in a particular niche. In other words,
in diversified population assemblages, well-characterized and

common stress phenotypes expressed from stress-related genetic
markers may quickly reverse in a population-specific manner,
hindering the definition of a set of common stress genes.
Moreover, the expression of gene regulatory networks observed
in different populations of killifish was complex enough to
preclude a one-to-one relationship between clusters of expressed
genes and adaptive features of observed fish phenotypes (50),
probably due to the heterogeneity of xenobiotic stressors. Even
so, under strong selective pressures, convergent evolution may
favor the expression of a handful of stress-induced genes (51, 52),
shared among populations and, possibly, species. This may
be useful for the purposes of establishing a common set of
pan-specific responses to different stressors in fish.

The effects of chronic stressors are context-dependent
and involve a long-term activation of HPI, SC, and
other physiological axis (reproductive, immunological,
thyroidal/metabolic) influenced by stress. In the quest for
rationalize and simplify stress responses across species, an
even more applied definition of stress may help (53): perceived
anticipatory stress, acute or not, resulting from continuous
predation risk. Laundré’s “Landscape of Fear” (LoF) defines this
perceived stress considering the risks of foraging in unsafety
habitats (54). Predation risk, parasite load, metabolic trade-offs
associated to seasonal resource shortages, living in high density
populations, or artificial habitats, HIREC influences and evolved
life story traits have been used to frame the stress related to a
particular biotope, usually measuring behavioral patterns and
glucocorticoid levels as distress indicators (55, 56). However,
despite the content-rich description of these analyses, few
studies have approached the effects of LoF in fish. Behavioral
cascades and patterns of risk aversion have been documented
in coral reef fishes (57–59) and juvenile salmonids (60). In a
highly simplified model of predator-prey relationship between
trout (Oncorhynchus. mykiss) and its prey, (Daphnia pulex)
in a salinized environment coupled with alarm kairomones,
osmotic stress diminished the predatory pressure and favored
prey abundance, whereas alarm cues reduced trout aggression
(61). The effects of combined stressors, however, did not affect
trout growth, probably due to the limitations of the model.

The individual’s perception of stress may also collide with
the maladaptive effects of HIREC-related ecological traps. Albeit
scarcely studied in fish, man-made changes in an otherwise
low-quality habitat may attract fishes unable to properly evaluate
the amount of resources available. As a result, a behavioral glitch
may lead to a struggle to survive in an “evolutionary trap” (62).
For example, drifting fish aggregation devices act as supernormal
stimuli (63) and may lure tuna species to misinterpret habitat
resources (64); coho salmon (O. kisutch) prefer spawning habitats
that greatly reduce their survival (65); and increased water
acidification confounds visual cues in damselfish (Pomacentrus
amboinensis) reducing their antipredator responses (66).

Taken together, those studies confirm not only that the
complexity of the stressotope should be assessed against a
minimum common number of informative variables (Figure 2),
not restricted to binary food webs, but also the relevance of
ecophysiological approaches to describe a unified response
to stress in teleosts. Both net diversification and the effects
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FIGURE 2 | A non-exhaustive list of stressotope components. In fish, the fate

of stress responses to natural (temperature and oxygen variations, changes in

salinity and photoperiod, abundance of pathogens in freshwater and marine

realms...), artificial (cultured) and Human Induced Rapid Environmental

Changes (HIREC) depends mainly, but not only, on environmental insults,

perceived stressful scenarios influenced by continuous predation risk

(Landscape of Fear, LoF) and species-specific intersex differential activation of

stress, immune and metabolic axes. To what extent phenotypic plasticity helps

to cope with maladaptive stressors in turn depends on evolutionary conserved

life stories and behavioral repertoires (see the text for details and

abbreviations).

of perceived risk of depredation and foraging in natural and
artificial habitats provide a coarse-grained description of
environmentally-related impacts on stress physiology in teleosts
and may help to discriminate shared mechanisms common to
stress responses in fish, but the historical genomic remodeling
must also be considered.

ROLLING GENOMES

To delineate a stressotope, a set of pan-specific genes involved
in maladaptive responses to stress must be defined. In the
seascape of fish phenomes, genomes are being continuously
tested and polished against the evolutionary coupling between
environmental and endogenous selective pressures. This
affects specifically the recent omics interpretations of
adaptive physiology of stress in fish. In less than a decade,
stress studies have evolved from moleculocentric analysis to
genocentric approaches, and lately, to genome-wide association
studies, proteomic analysis and high throughput genomic
interpretations of genetic and epigenetic networks’ cross-talking
with environmentally-induced phenotypes that have been

thoroughly reviewed elsewhere (67–70). Dissecting genome-
based responses to severe stressors implies an extensive analysis
of gene regulatory networks and interactions in cellular and
tissue environments. To make the analysis of genome-phenome
interactions more manageable, we can define a “stressome,” or
catalog of genes and its products expressed when the organism
suffers a maladaptive stress, a concept borrowed from studies
of microbial resistance to stressful insults (71) that has been
coined to characterize the roadmap to stress-related changes
in genomic, proteomic, and metabolomic arenas (72, 73).
Stressomes pave the way to a precise definition of stressotopes,
but several methodological and conceptual issues have arisen
in the course of the genocentric turn of fish stress physiology,
mainly the scarcity of model species and the peculiarities of fish
genomes that affect their expression, plasticity and evolvability
under maladaptive scenarios.

Several species of teleosts are considered the gold standard
for developmental, evo-devo, stress-related, and toxicogenomic
studies (20, 74–80). However, to date <0.5% of those species
have a detailed, but still far from being systematic, coverage
of genomic data (81). From the vantage point of comparative
studies, teleost genomes differ from those of other vertebrates
in terms of divergence and redundancy. In addition to the
two events of whole genome duplication common to early
vertebrates, teleost endured another round of teleost-specific
genome duplication 320 million years ago (Mya) (82). Some
lineages widely used as model species, such as Salmonidae
and Cypriniformes have experienced yet another process of
tetraploidization, ∼80 and 8 Mya, respectively (83, 84). To what
extent this diversification leads per se to increased phenotypic
plasticity and adaptability to environmental stressors by means
of neofuncionalization of duplicated genes is still controversial
(85, 86), being the subfuncionalization (the functional division
of ancestral genes among the duplicated ones), loss of genes
or slow evolution of duplicate genes three major outcomes of
genome duplication (87, 88). For example, the recent (<10 Mya)
independent evolution of anadromy in salmonid clades has been
correlated to cooler temperatures that opened new estuarine and
freshwater habitats, and also redefined previous stressotopes,
favoring speciation (85). As described for extremely diversified
non-tetraploid cichlids, several ecophysiological factors may
influence a successful radiation to stressful environments
without specific genome duplications. Instead, genome-wide
diversifying selection on key genes, gene duplication and
regulation by microRNAs and transposable elements may have
allowed their adaptive radiation (89). Additionally, the teleost
genomes analyzed to date seem to have suffered accelerated
rates of nucleotide divergence, high rate of intron turnover
and dramatic loss of conserved noncoding sequences and cis-
regulatory elements [see (90) for a comprehensive review] that
may contribute to their great phenotypic diversity in response to
stressful ever-changing environments. However, this may impair
the inclusion of a set of common stress-related genes as required
when defining a stressotope.

This implies that the species-specificity biases the comparative
genomics of teleosts, but a stressome made of a set of common
predictors of distress still can be assembled from genome-wide

Frontiers in Endocrinology | www.frontiersin.org 6 February 2019 | Volume 10 | Article 6263

https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org
https://www.frontiersin.org/journals/endocrinology#articles


Balasch and Tort Netting the Stress Responses in Fish

analysis. This is the case for annual killifish genomes that contain
several hsp transcripts and genes associated with mitochondrial
function that confer resistance to severe (and more importantly,
predictable) environmental anoxia stress during development
and diapausa stages (91). Atlantic cod (Gadus morhua) also
has a surprisingly high number of major histocompatibility
complex (MHC) I genes that supply the absence of MHC II
components, thus maintaining functional antigen trapping and
processing pathways during the onset of immune responses
(92, 93) in microbial-rich environments. Despite their disparate
life stories, metabolism, longevity and genome scaffolding, both
species can still act as genomic models and source of candidate
predictors for distress-related markers because the processes
evaluated (the extreme stress tolerance and the alternate antigen
processing) recruit enough identical or very similar categories of
predictors for an effective description of a common stressome.
Gene expression profile outcomes may differ between stressors
and species, and the methodology is certainly not without pitfalls
[see (94, 95) for a detailed discussion], but including the adaptive
life stories and the environmental biotope may normalize the
analysis of physiological responses to distress. For instance,
uncovering the seasonal oscillations of stress-related regulatory
networks may help to define stressotopes in a more realistic way.
Cortisol has been shown to induce the expression of per1a and
per1b and repress bma11a and clock genes that control circadian
rhythms in fish, and it has been proposed to act as a modulator
of molecular oscillators (19, 96). Molecular clocks that respond
to environmental factors such as light and dark cycles, food
availability and thermal conditions vary both in natural and
in HIREC environments and may contribute to the ticking of
stressomes in a set of defined stressotopes involving migration
and breeding scenarios (97).

Epigenetic modification of xenobiotic and temperature
stress-related gene expression should also be considered to
define a teleost stressome. Fish genomes differ from those of
mammals in the number of methylated sites retained early
in development and contain exclusive DNA methyltransferase
genes that may help in the vertical transmission of the epigenome
(98, 99), but the overall modulation of gene expression follows
the vertebrate pattern (100). Epigenetic analyses have been used
to test the effects of captive rearing in salmons, suggesting that
hatchery-induced epigenetic changes impair the osmoregulatory
seawater acclimation and swimming performance during
smoltification (101). In zebrafish (Danio rerio), xenobiotic
exposure modified methylation patterns during embryogenesis
(102). Diversification of cortisol-responder phenotypes in
stickleback (Gasterosteus aculeatus) offspring of stressed mothers
has been ascribed also to epigenetic changes (103) signaled by
glucocorticoid receptors. Little is known about the long-term
effects of vertical transmission of stressed phenotypes in fish, but
higher responses to cortisol may reduce the fitness of hatchlings
and contribute to allostatic load in stressful environments (104).
In addition, adaptive epigenetic modifications of gene expression
strongly depend upon the degree, intensity and predictability
of environmental changes that may propitiate maladaptive
outcomes of epigenetic modifications, such as the epigenetic
traps discussed below.

Teleost inhabit a stress-prone scenario that favors the
evolution of highly reactive immunological surfaces, such
as fish mucosal skin, gills, or gut, infiltrated by mucosa-
associated lymphoid tissues (MALT), exquisitely sensitive
to pathogenic or xenobiotic insults (21), and that’s why the
analysis of interfacial tissues can be so rewarding to define a
stressome. Fish skin scaffolding consists of a highly secretory
non-queratinized living tissue that harbors stress-sensing
cells, skin associated lymphoid tissues (SALT) packed with B
and T cells, resident or errand myeloid phagocytes and cells
that produce microbicidal molecules and protective mucus.
Teleost SALT induce and regulate local adaptive immune
responses that may communicate with other mucosal tissues
(branchial, GIALT, and intestinal, GALT) and influence
the immune reactivity of systemic lymphoid (head kidney,
spleen, thymus) and metabolic (liver) organs. In addition
to immunological sensing and regulation, fish gills and gut
are also involved in osmoexcretory/acid-base balance and
energetic metabolism (105, 106). In fish, such multipurpose
organs serve both as probes to distressful environmental
changes and as effectors of allostatic rearrangements of
stress-related hormonal axis, and may be specially suited
to define minimum common molecular markers of distress
across species. In a recent study (20), the short-term effects
of hypoxia and vaccination against Vibrio anguillarum
elicited a strongly interspecific differential response of pro-
inflammatory and stress-related genes in MALT of gilthead
seabream (Sparus aurata), a marine species, and rainbow trout
(Oncorhynchus mykiss), a freshwater teleost, being the former
more responsive to stressors. The stress- and immune-related
transcripts tested (lysozyme, c3, igm, hsp70, cox2, Il1β , tnfα,
il6, il10, and tgfβ1), together with the analysis of mucosal-
and plasmatic-derived cortisol levels constitute a typical set
of markers of distressed states that may help to define a
minimum common set of gene-driven responses to stressors
in teleosts.

JANIAN PHENOMES

Nested in the archaic roman pantheon, a two-headed figure,
Janus, represent, among other things, the transition from one
state to another, or from the past to the future. In both vertebrates
and invertebrates, behavioral phenotypes may change during the
lifetime of an individual, following a reaction norm defined by
environmental changes that enhance or suppress the expression
of key behavioral mediators, and constrained by the adaptability
of the genome (107). A stressotope should consequently be
defined by the ontogenic variations and changing phenotypes
that the organism endure in diverse environments. In teleosts,
the study of relevant stressful-prone “janian” phenotypes has
come to focus in recent years in the grounds of fish welfare, and
include among others the ecological distribution of differentiated
behavioral syndromes or individualities (“personalities”) ruled
by environmental stressors [extensively reviewed in (108) and
not to be discussed here], the pathogen effects on physiological
modifications underlying sequential sex changes and the
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physiological changes linked to transition from freshwater to
marine realms in diadromous species.

The majority of fish follow the usual vertebrate gonochorism,
with both sexes being determined genetically or environmentally
(109). Several teleosts also indulge in a plethora of rare vertebrate
reproductive modes ranging from simultaneous and sequential
hermaphroditism to parthenogenesis (110, 111) that have been
ascribed to differential ecological selective pressures (111),
diversification of reproductive mediators by means of whole
genome duplication events (86) and fish-specific idiosyncrasies
of gonadal axis. Males and females usually inhabit the same
environment, but the selective pressures faced by both sexes
may differ owing to variations in size, competition for resources,
diet, microhabitat use aggressiveness and metabolic trade-offs
between gamete production/fecundity and immune resistance to
parasitic load (112), even in sex-role-reversed species (113).

Several sex-biased effects of parasitism and facultative
infections have been described in natural and artificial
populations of teleosts. Poeciliids have been used as a model to
highlight the relevance of sex-specific evolution of physiological
responses to environmental changes on a macroevolutioanry
basis (114). Polygynous guppies (Poecilia reticulata) parasitized
by Gyrodactylus spp., showed an increased responsiveness
to infection in females that lead to differential evolution of
resistance phenotypes (115). Male guppies also differ from
females in the navigational abilities associated to increased
dispersion and mobility in complex environments (116) and
seems to be more prone to parasite infection than females (117).
Unpredictable chronic stress (social isolation, crowding, tank
changes, thermal variations, and chasing) affect zebrafish males
but not females (118), highlighting the double effect of species-
specificity and sex-biased covariation in stress studies. The
offspring of largemouth bass females (Micropterus salmoides)
treated with cortisol showed lower responsiveness to stress and
exhibit less exploratory behavior and aggression than those of
non-treated females (119), adding to the stressotope equation the
still imprecisely described mechanism of vertical transmission of
stress-related phenotypes.

Parasitic load and unexpected environmental changes may
also contribute to the stressful effects of sex-biased physiologies.
Parasite burden accounts for a large portion of stressors in
aquatic habitats, and in vertebrates immunocompetence depends
largely on male and female sex hormones, being testosterone
generally immunosuppresive and estrogens enhancers of
immune system in a broad sense (120). Vertebrate males also
tend to rely more than females in Th1-mediated immune
responses (linked to defensive responses against intracellular
bacterial and viral parasites) whereas females display generally
higher Th2-mediated extracellular responses against parasites
(121). Both T-cell related immune responses have been described
in fish, albeit with species-specific kinetics that may interfere
or potentiate with the resistance to severe infection (122)
and the intensity of distress responses. However, sex-specific
responses to reproductive hormones may be altered by HIREC
changes in water composition, as demonstrated by the effects of
endocrine disrupting chemicals such as 17β-oestradiol in host-
pathogen interaction between males and females of three-spined

sticklebacks (Gasterosteus aculeatus) and the cestode parasite
Schistocephalus solidus (123). When exposed to high doses of
estradiol, parasitized stickleback males were found to be greatly
affected, more than females by parasite growth.

A reduction of fitness in one sex has also been suggested
as the trigger of selective vulnerabilities in species with
environmentally-directed sex determination (ESD). Unexpected
temperature changes may influence epigenetic regulation
of breeding strategies in teleosts with ESD as described for
mangrove killifishes (124). Similar to the “ecological traps”
discussed above, severe environmental or HIREC variations
could skew the sex ratio by inducing short term epigenetic
changes that favor accelerated adaptation to novel environments
but can become “epigenetic traps” in the long term, benefiting
one sex and decreasing the fitness of the other (125). The same
holds true for sequential hermaphroditic species (126), such as
the extensively farmed Sparidae. Several species of this family
practice protandrous (changing sex from males to females)
and protogynous (the opposite) hermaphroditism (127). In
protandrous gilthead sea bream (Sparus aurata) populations,
the few large fertile females surrounded by many smaller males
skew the sex ratio and have greater fitness measured by the
number of offspring (128). In this species, reproductive success
may be linked to the high rates of evolution of female-biased
genes compared to male-biased genes (129), probably due to
differential selective pressures for both sexes at each stage. This
suggests that the effect of environmental stressors may affect the
sex-biased expression of genes in hermaphrodites in a different
way from what has been described in gonochoristic teleosts.

In diadromous species, the still poorly understood and
complex influence of glucocorticoids as mediators of stress
responses modulates stressome structure and function. In
teleosts, crossing continental and oceanic aquatic environments
stresses the physiology of osmoregulation and metabolism in a
complex combination of enhancing and suppressive expression
of HPI, growth and thyroidal axes. A recent study embraced the
joint analysis of ontogenetic stages, sexual, and parasitic effects
in hypoxia-stressed European eels (Anguilla anguilla), defining
a limited stressotope to modulate the causes and consequences
of the stepped decline in eel populations (130). Parasitized eels
showed stronger levels of plasmatic cortisol and higher gill
Na+/K+—ATPase activity that added up to physical constraints
(salinity, temperature) to mark female eels in the last stage of
silvering to be more prone to be stressed by the combined effects
of several stressors. The synergistic effects of parasitism, hypoxia
and biotic factors included in the analysis of eel physiology signal
the way by which a comprehensive and realistic study of stress
responses should be performed. In anadromous salmonids, for
instance, long-lasting migrations subdue the cortisol resistance
and chronically stress semelparous species. To date, the crosstalk
between immune and hormonal components remains unsolvable
due to the complexity of the activation/suppression interplay
between cortisol, thyroid, growth and sex hormones, B cell
lymphopoiesis, inflammation, antibody responses and the
development of immunological memory at different stages
of their life cycle (131). In this case, the stressotope demands
a pronounced level of multiscale complexity to integrate the
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adaptive vs. maladaptive effects of stress in such migratory
species.

As discussed above, fish stressotopes harbor several
opportunistic and obligate parasitic, fungal, viral, and bacterial
pathogens that may transmit stress-prone phenotypes vertically,
by parasite colonization of gonadal tissues, and direct cortisol
effects into eggs (119, 132) and affect not only broodstock
and natural populations but both sexes differentially as well.
Therefore, the puzzling diversity of teleost reproductive strategies
may be also partially explained assuming compensatory genetic
changes that overcome maladaptive responses to distressful
environments. This leads to plastic reproductive adaptations
between sexes to predatory and pathogenic pressures by virtue of
sex-specific differences in the reproductive hormonal axis.

Overall, these and other studies imply that to accurately
define a stressotope, the range of abnormal values in distress
physiological adjustments, the scope of stressome components
to be included in the analysis of allostatic load and the intersex
differential responses to severe stressors, should necessarily be
taken into account. Considering that in teleosts, as in the rest
of vertebrates, steroids regulate reproductive outcomes but also
metabolism, stress responses, behavior and immune function,
usually in a seasonal way (133, 134), the differential effect of
estrogens- and testosterone-derived mediators must be included
in the stressome catalog.

CONCLUSION

We have outlined some of the key processes and influences
required to properly define a stressotope, ranging from the
molecular to the ecological ones. Stress is a foreground concept
defined against a background of interactions between network
genome expression and phenome consolidation in a particular
ecological niche. A stressotope approach that could help to
elucidate common responses to diverse stressful scenarios is
not only informative but also necessary to reduce the diversity

of fish lifestyles to a minimum common set of telltales and
indicators of allostatic loads originating from multiple and
recurrent stressors. There is a growing shift in the literature of
stress responses in fish toward a more integrate view of allostatic
description. However, this approach is still hampered by the lack
of analytical tools, peculiarities of fish genomes and the fuzzy
definition of common inter-specific endpoints of distress-related
physiological changes across behavioral phenotypes. Moreover,
fish are considered more labile and diverse in their physiology
than other vertebrates. We can describe teleosts as animals
that indulge in sex changes, inhabit environments hostile
to ectothermic metabolisms, grow indefinitely, modify their
coping styles, or individualities in response to environmental
and parasitic insults (135, 136), have higher rates of cell
proliferation in the adult brain compared to mammals, and that
are strongly dependent on the social interactions and physical
environments (137, 138). Therefore, a roadmap for minimum
common descriptors of stress responses, a stressotope, must
be drawn considering the behavioral plasticity of teleosts, an
integrative concept that harbors the cross-linked effects of
neuroimmunoendocrine cross-talks that integrate in a variable
set of phenotypes from specific activation of pan-specific
stressomes.
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The essential amino acid L-tryptophan (Trp) is the precursor of the monoaminergic

neurotransmitter serotonin (5-hydroxytryptamine, 5-HT). Numerous studies have shown

that elevated dietary Trp has a suppressive effect on aggressive behavior and post-stress

plasma cortisol concentrations in vertebrates, including teleosts. These effects are

believed to be mediated by the brain serotonergic system, even though all mechanisms

involved are not well understood. The rate of 5-HT biosynthesis is limited by Trp

availability, but only in neurons of the hindbrain raphe area predominantly expressing the

isoform TPH2 of the enzyme tryptophan hydroxylase (TPH). In the periphery as well as in

brain areas expressing TPH1, 5-HT synthesis is probably not restricted by Trp availability.

Moreover, there are factors affecting Trp influx to the brain. Among those are acute stress,

which, in contrast to long-term stress, may result in an increase in brain Trp availability.

The mechanisms behind this stress induced increase in brain Trp concentration are not

fully understood but sympathetic activation is likely to play an important role. Studies in

mammals show that only a minor fraction of Trp is utilized for 5-HT synthesis whereas

a larger fraction of the Trp pool enters the kynurenic pathway. The first stage of this

pathway is catalyzed by the hepatic enzyme tryptophan 2,3-dioxygenase (TDO) and

the extrahepatic enzyme indoleamine 2,3-dioxygenase (IDO), enzymes that are induced

by glucocorticoids and pro-inflammatory cytokines, respectively. Thus, chronic stress

and infections can shunt available Trp toward the kynurenic pathway and thereby lower

5-HT synthesis. In accordance with this, dietary fatty acids affecting the pro-inflammatory

cytokines has been suggested to affect metabolic fate of Trp. While TDO seems to be

conserved by evolution in the vertebrate linage, earlier studies suggested that IDO was

only present mammals. However, recent phylogenic studies show that IDO paralogues

are present within the whole vertebrate linage, however, their involvement in the immune

and stress reaction in teleost fishes remains to be investigated. In this review we

summarize the results from previous studies on the effects of dietary Trp supplementation

on behavior and neuroendocrinology, focusing on possible mechanisms involved in

mediating these effects.
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INTRODUCTION

Tryptophan (Trp) is an essential amino acid in all animals,
which is synthesized and provided to higher trophic levels by
bacteria, fungi and plants. In addition to being a component
for protein synthesis, Trp is also the obligatory substrate
for the production of several important bioactive substances.
For example, tryptophan is a substrate for the synthesis of
serotonin (5-hydroxytryptpamine, 5-HT) in the brain and gut,
and melatonin in the pineal gland. In vertebrates, central 5-HT
plays an integrative role in the behavioral and neuroendocrine
stress response (1–3). Accordingly, effects of dietary Trp on the
neuroendocrine stress response have been reported in a variety of
species, spanning from teleosts to humans (4–10). However, the
mechanisms underlying this link between Trp metabolism and
the stress response are not fully understood.

In mammals, the majority of Trp is catabolized and
transformed through the kynurenic pathway to bioactive
substances which potentially can interact with the stress response
(11). Moreover, infections, stress, and changes in the gut
microbiome have all been shown to shunt Trp metabolism from
5-HT production toward this pathway (12, 13). Consequently,
pathological changes in stress responsiveness, as in depression,
have been related to nutritional factors, stress and immune
function in humans (14, 15). However, in non-mammals,
information on the kynurenic pathway and its interactions with
central 5-HT signaling and the stress response is scattered
and/or limited.

Dietary manipulations affecting Trp availability to the brain
have been used as a tool to investigate involvement of the 5-
HT system in behavior, mood and cognition in humans (16–
18). Likewise, the dietary Trp content have been shown to
affect endocrine and behavioral responses to stress in teleost
fishes (10, 19, 20). This review summarizes the results from
previous studies on the effects of dietary Trp supplementation
on the behavioral and neuroendocrine stress response, focusing
on possible mechanisms involved in mediating these effects. We
also present a hypothesis on how the diet could be used to
improve fish stress tolerance through interactions with the Trp
metabolic pathways.

L-TRYPTOPHAN AVAILABILITY AND
BRAIN SEROTONERGIC ACTIVITY

In serotonergic neurons Trp serves as the precursor for 5-
HT. The 5-HT metabolic pathway is initiated by Trp being
hydroxylated to the intermediate 5-hydroxytryptophan (5-
HTP), which is subsequently decarboxylated to become 5-HT.
Tissue levels of 5-HTP are usually low since this substance
is rapidly decaroxylated by the enzyme aromatic amino acid
decarboxylase [for review see (21)]. Thus, the rate limiting
step in the biosynthesis of 5-HT is the hydroxylation of Trp
which is catalyzed by the enzyme tryptophan hydroxylase (TPH)
(Figure 1). This enzyme is specific for 5-HT producing cells,
however, it is present in two different isoforms, TPH1 and TPH2
[reviewed in (22, 23)].

FIGURE 1 | Biosynthetic pathway of serotonin.

In amniotes 5-HT neurons are only present in the raphe
area of the hind brain whereas in anamniotes, including teleosts,
5-HT cell bodies are also located in pretectal areas and basal
forebrain. In zebrafish (Danio rerio) raphe and pretectal 5-
HT cells express TPH2, whereas diencephalic and hypothalamic
5-HT cells express TPH1 (TPH1a and TPH1b) and TPH3,
respectively (23). Interestingly, TPH2 show a Km for its substrate
which is in the range of in vivo brain levels of Trp (24).
Consequently, the rate of 5-HT synthesis in cells expressing
TPH2 is drastically affected by changes in Trp availability, an
effect which is probably not seen in 5-HTergic cells expressing
other TPH isoforms (22). Moreover, the rate of 5-HT synthesis is
believed to be reflected in the release of 5-HT, often quantified as
the concentration of the catabolite 5-hydroxyindole acetic acid
(5-HIAA), or the 5-HIAA/5-HT ratio. Thus, changes in Trp
availability may have direct effects on 5-HTergic tone. Coherent
to this, Russo et al. (25) made the interesting suggestion that
Trp may act as signal to the brain, transferring information on
peripheral homeostasic challenges to the 5-HT system which in
turn could act to defend homeostasis. Dietary composition as
well as stress, physical activity and immune system activation
will all have effects on plasma Trp concentrations, and thus on
brain Trp availability and raphe 5-HTergic activity (25). Such
Trp related changes in 5-HTergic activity could have direct
effects on behavior as well as endocrine status through 5-HT
projections to telencephalic and hypothalamic areas. It could be
argued that such effects may be less important in teleost fish since
they have extra-raphe located 5-HT cell populations expressing
the TPH1 isoform, making them less responsive to changes
in Trp availability. However, in teleosts, as well as in other
vertebrates, the raphe 5-HTergic cells have a wide projection
pattern innervating most brain regions (23). Still, it has to be
acknowledged that very little is known about the role of telesost
forebrain 5-HT cell population in the control of behavior and
endocrine functions (23).
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FIGURE 2 | Effects of the proteins and carbohydrates on influx of tryptophan

(Trp) to the brain. Green arrows indicate activation of carbohydrate induced

pathway, resulting increased muscle uptake of large neutral amino acids

(LNAAs; Tyr, tyrosine; Phe, phenylalanine; Iso, isoleucine; Leu, leucine; Val,

valine and Met, methionine) which in turn increases plasma Trp/LNAA ratio and

brain Trp levels. Red arrows indicate how a normal dietary protein source, with

relatively low Trp content, decreases the plasma Trp/LNAA ratio and brain Trp

levels.

FACTORS AFFECTING TRP UPTAKE TO
THE BRAIN

Dietary Effects on Trp Availability
The essential amino acid Trp enters the brain in competition with
other large neutral amino acids (LNNAs; i.e., valine, isoleucine,
leucine, tyrosine, phenylalanine and methionine) through a
common transporter protein. Thus, the amount of Trp entering
the brain depends on the plasma concentrations of Trp in
relation to the other LNAAs [for references see reviews (26, 27)].
Hence, ingestion of a normal protein source, usually containing
0.5–1% Trp, results in a relatively small increase in Trp but
a larger elevation of plasma concentrations of other LNNAs
(28). This results in a decrease in the plasma Trp/LNAA ratio
and thus reduced Trp influx to the brain (Figure 2). Dietary
carbohydrates, on the contrary, increase brain Trp levels. This
is due to elevated insulin which in turn promote uptake of
LNAAs except Trp to the skeletal muscles, thereby increasing
plasma Trp/LNAA ratio and Trp influx to the brain (Figure 2)
(26, 27). This differential amino acid uptake to skeletal muscles is
caused by the fact that Trp in blood plasma is bound to albumin
whereas other LNAA are not. Trp influx to the brain is then
promoted by the common LNAA transporter protein in the blood
brain barrier having a much higher affinity for Trp compared
to albumin (27).

Studies in rainbow trout (Oncorhynchus myliss) show that
the amino acid composition of trout albumin differs from that

of mammalians and lacks the binding site for indoles (29, 30).
Thus, in rainbow trout, the majority of plasma Trp is in its free
non-protein bound state (31, 32). This assumption is further
strengthened by a study by Ruibal et al. (33) showing that
hyperglycemia induced elevation of plasma insulin levels did not
affect brain 5-HT activity in rainbow trout. It is not known if the
lack of Trp binding by albumin is specific for rainbow trout or
if it represents a more general trait of teleost albumin. However,
it is possible that in teleost fishes brain influx of Trp could be
more dependent of the dietary amino acid composition than
on carbohydrates.

The Kynurenic Pathway
In fact, only a minor fraction of the Trp pool is utilized for
5-HT biosynthesis. In mammals, the majority of Trp enters
the kynurenic pathway and is converted to other bioactive
substances than 5-HT, such as kynurenic acid and quinolinic
acid (Figure 3) [for references see review (11)]. The first
stage of this pathway is catalyzed by the hepatic enzyme
tryptophan 2,3-dioxygenase (TDO) and the extrahepatic enzyme
indoleamine 2,3-dioxygenase (IDO), enzymes that are induced
by glucocorticoids and pro-inflammatory cytokines, respectively
(34). Thus, chronic stress and infections can shunt available Trp
toward the kynurenic pathway and thereby lowering brain 5-
HT synthesis while simultaneously increasing the production
of other Trp based bioactive substances. Moreover, since a
majority of Trp follows the kynurenic pathway (<95%, Figure 3)
relative small changes in the activity of this pathway can
have rather big impact on the Trp influx to the brain (35).
Accordingly, decreased Trp influx to the brain as a result of stress
or inflammation/infection induced activation of the kynurenic
pathway have been suggested to be an underlying factor for
mental illnesses and dysregulation of the neuroendocrine stress
axis (12, 14, 15).

Generally, IDO ismore nonspecific than TDO, and catabolizes
other indoleamines than Trp. Moreover, two distinct IDO genes,
IDO1 and IDO2, have been identified in vertebrates. Earlier
studies suggested that IDO1 arose by a gene duplication in
mammals (36). However, recent phylogenetic analyses show
that IDO1 are present in reptiles and in teleosts, indicating
that the gene duplication occurred in the common ancestor
of vertebrates (37). In mammals, the activation of dendritic
cells results in IDO1 induction with the depletion of Trp
levels locally or systemically, a mechanism by which interferons
inhibit the growth of certain bacteria, intracellular parasites,
and viruses (34). Moreover, an elevation of the activity of
the kynurenic pathway also inhibits T lymphocyte replication
which results in immunosuppression and tolerogenicity. In line
with this, IDO1 have been suggested to play an important
role in preventing fetal rejection and in facilitating immune
escape of tumor cells (34). In addition, some products of the
kynrunic pathway may act anti-inflammatory (38, 39). However,
to which extent these anti-inflammatory Trp catabolites acts
back on the activity kynurenic pathway and thereby affecting
Trp influx to the brain and/or central 5-HT signaling is to our
knowledge unknown.
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FIGURE 3 | Major metabolic pathway of tryptophan in mammals.

The Trp catabolizing efficiency of IDO2 and non-mammalian
IDO1 seems to be lower than mammalian IDO1, and
their function and involvement in the immune response in
comparative model species is far less understood (37). However,
recently, it has been demonstrated that treatment with bacterial
lipopolysaccharide (LPS) induces and upregulation of IDO
expression in rainbow trout, suggesting that this enzyme is
involved in the immune response in non-mammalian vertebrates
(40). Moreover, in the aforementioned study, expression of
IDO was induced by the pro-inflammatory cytokine interferon
gamma (IFNγ) in an in vitro cell model, indicating similar
induction mechanisms as those in mammalian IDO1 (40). This
suggests that systemic infection may decrease Trp influx to
the brain of teleost fishes in the same way as in mammals,
and result in behavioral and physiological changes (see section
Kynurenine pathway).

Acute Stress
As discussed above chronic stress may result in lowered
brain Trp availability as a consequence of a stress-induced
activation of the kynurenine pathway. However, acute stress
has been reported to have the opposite effect elevating brain
Trp levels in both mammals (41, 42) and teleost fish (3,
10). This stress-induced increase in brain Trp concentrations
appears at least in part related to a sympathetic activation
and elevated levels of circulating plasma catecholamines (43).
Plasma catecholamines stimulate lipolysis, resulting in elevated
plasma levels of non-esterified fatty acids, which in turn
could compete with Trp for binding to albumin and thus
elevate the plasma pool of free Trp available for uptake into
the brain [reviewed by (44)]. However, as discussed above,
rainbow trout albumin appears to lack the Trp binding site,

suggesting that mechanisms based on competition between
Trp and non-esterified fatty acids are not involved in stress-
induced increase in brain Trp in teleosts, at least not in
rainbow trout. It has also been suggested that sympathetic
activation results in increased permeability of the blood-brain
barrier, another mechanism that could increase brain Trp
influx (44).

TRP AND THE NEUROENDOCRINE
STRESS RESPONSE

Stress Responses Are Modified by Trp
Availability and Brain 5-HT Functions
As mentioned earlier in this review, the positive relationship
between Trp availability and brain 5-HT production is well
conserved within the vertebrate linage. Coherent to this, the
involvement of 5-HT in the neuroendocrine regulation of the
stress response seems to be similar within this linage. 5-HT
plays a central role in control of the hypothalamus–pituitary–
adrenal axis (HPA axis) in mammals, and the hypothalamic–
pituitary–interrenal axis (HPI axis) in fish. This, mainly through
its effects on the release of corticotropin-releasing factor
(CRF) from the hypothalamus (45, 46). In addition, extra
hypothalamic 5-HT appears be involved in appraisal and stress
coping mechanisms, modulating behavioral and neuroendocrine
responses to stressors (47, 48). Furthermore, as mentioned in
section The Kynurenic pathway and Acute stress, stress by itself
can influence the Trp influx to the brain, and thereby affect 5-HT
signaling and the stress response. Moreover, the HPA/HPI axis
are under feedback control on serval levels, including central 5-
HT signaling. Thus, the link between Trp and the 5-HT system
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and how they control behavioral and neuroendocrine stress
responses appears complex with 5-HT having context dependent
effects (19, 22, 49).

Effects of Elevated Dietary Trp
Long-term effects of Trp dietary manipulations on the
neuroendocrine stress response have been observed in both
mammals and teleost fishes [for a review see (49)]. For instance,
in pigs, elevated dietary Trp had stress suppressive effects,
including elevated hypothalamic 5-HT and lowered post
stress plasma cortisol levels, effects that peaked after 5 days
of dietary Trp enrichment (50). Similarly, (51) showed that
post-stress plasma cortisol levels returned to baseline earlier
after social stress in pigs fed Trp enriched feed for 7 days.
Interestingly, a similar time frame for the suppressive effects
of dietary Trp supplementation on glucocorticoid release has
also been demonstrated in fish (for references see Table 1). For
instance, studies in rainbow trout show that suppression of the
neuroendocrine stress response is present after 7, but not after
3 or 28 days of treatment with dietary Trp supplementation
(52). Furthermore, in the earlier studies showing a suppressive
effect of elevated dietary Trp on the neuroendocrine response
to an acute stressor the effects were investigated during or
directly following a period of dietary Trp supplementation
(10, 52). However, in recent studies in sea water reared Atlantic
salmon (Salmo salar), the suppressive effect on post-stress
plasma cortisol seems to appear between 2 and 8 days after
terminating the Trp supplementation. Moreover, in Atlantic
salmon, this suppressive effect was still present at 21 days post
Trp supplementation (7, 53). Basic et al. (53) suggested that
such slow acting Trp-induced alterations of HPI-axis reactivity
could be related to smoltification, a process where salmonid fish
adapt to sea water. Moreover, these long-term alternations of
HPI axis reactivity was not related to changes in hypothalamic
5-HT neurochemistry. Instead they coincided with changes in
dopaminergic neurochemistry in this brain part, effects which
may be related to elevated activity of the kynruneric pathway,
as discussed in section The Kynurenic pathway. Similar results
were shown in the study performed by Höglund et al. (7),
where 5-HTergic activity in hypothalamus did not follow the
long term Trp induced suppressive effect on post stress cortisol
levels. The latter study also included telencephalon and 5-HT
activity followed the same general pattern as cortisol in this
brain part. Höglund et al. (7) suggested that such region specific
differences could be related to 5-HT signaling in telencephalon
being more dependent on projections from the hindbrain
raphe, a nucleus where 5-HT neurons are highly sensitive to
available Trp, see section L-tryptophan availability and brain
serotonergic activity.

Generally, teleost fishes have a remarkable neurogenic
and regenerative capacity throughout ontogeny, and it has
been suggested that structural changes may underlie long-
lasting effects on telencephalic neurochemistry induced by
elevated dietary Trp in teleost fishes (7). This type of brain
architectural changes is supported by mammalian studies,
showing that the 5-HT system is involved in the organization
and development of its own neural projection pattern (65). In

addition, a positive relationship between dietary Trp content and
neural proliferation markers, such as (exogenous) 5-bromo-2-
deoxyuridine and brain derived neurotrophic factor (BDNF) has
been demonstrated in rats (66), which lends further support for
the suggestion that dietary Trp can induce structural changes in
the brain.

There are studies in teleost fishes showing effect of longer
Trp treatment periods than 7 days (Table 1). For example,
Tejpal et al. (60) showed that a 60 days of dietary Trp
supplementation decreased baseline plasma cortisol values as
well as the cortisol response to 60 days of crowding stress.
Moreover, longer Trp treatment periods have also been shown
to act stimulatory on plasma cortisol responses. For example, an
immune challenge by i.p. injection of inactivated Photobacterium
damselae suspension resulted in elevated cortisol values in
seabass fed Trp supplemented feed for 2 weeks as compared
to fish given standard feed fish (67). Furthermore, there is a
rather high variability in the effect of elevated dietary Trp on
baseline cortisol values (Table 1). This variability could reflect
interspecific differences in Trp metabolism and neuroendocrine
mechanisms (49). Moreover, Höglund et al. (19) suggested
that such variation could be related to differences in HPI axis
activation due to divergent rearing environments. For example,
in the studies performed by Lepage et al. (10, 52, 62), fish
were kept socially isolated while in other studies they were
group reared (4, 7, 53, 54). Considering the fact that the 5-
HT system is affected by social interaction (3, 22, 68), this
type of rearing differences may explain some of the variability
in the response to elevated dietary Trp. Moreover, studies
in humans and rats suggest that individual variation in 5-
HT neurotransmission underlies differences in the response to
dietary Trp manipulation (27). It has become increasingly clear
that individual variation in HPA/I axis reactivity is as widespread
phenomena in the vertebrate linage (69). Still, if such individual
variation is related to sensibility to dietary manipulations of
dietary Trp content in non-mammalian vertebrates remains to
be investigated.

Kynurenine Pathway
As mentioned above, in the section about factors affecting Trp
uptake to the brain. Trp influx to the brain and brain 5-HT
signaling can be modulated by the activation of the kynurenic
pathway. In addition, metabolites of this pathway may affect
neuronal signaling involved in stress coping processes [reviwed
by (14)]. The metabolite in the first step of this pathway,
kynurenine, readily passes the blood brain barrier (70). In the
brain it is further degraded to kynurenic acid or quinolinic
acid. Further down this pathway quinolinic acid produces
neurotoxic compounds such as NMDA receptor agonists and
oxidative radicals (71) while kynurenic acid is neuroprotective
by being an NMDA receptor antagonist [for references see
(14)]. In mammals, the neuroprotective kynurenic acid is
mainly produced in astrocytes, while neurotoxic compounds
are produced in macrophages and microglia (34). It has been
suggested that an imbalance between these neurodegenerative
and neuroprotective factors are involved in brain dysfunctions,
including poor stress coping ability, in depression (72). In
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addition, studies in rats show that dietary Trp can affect brain
levels of kynurenic acid (73), which in turn effects other
neurotransmitters, such as dopamine and glutamine through
activation of NMDA and/or a7 nicotinic acetylcholine receptor
(74, 75). Central effects of Trp metabolites produced by the
kynurenic pathway in teleost fishes are, to our knowledge,
largely unknown. Still, effects of dietary Trp supplementation
on dopaminergic neurochemistry in Atlanitic salmon (53) and
Atlanitic cod (Gadus morhua) (4) have been suggested to be
related to elevated levels of kynurenic acid (53).

BEHAVIORAL EFFECTS OF ELEVATED
DIETARY TRP

There is a general consensus that low levels of central 5-HT are
associated with high levels of aggression within the vertebrate
subphylum (3, 69). In line with this, human studies show
that alterations of the dietary Trp content changes irritability
and aggressive behavior [for references see review by Young
and Leyton (76)]. For example, human lab studies show that
dietary Trp induces a dose dependent effect on aggressive
responses, where Trp supplementation and depletion induced
the lowest highest aggression, respectively (77, 78). This negative
relationship between dietary Trp content and aggression is
further supported by studies on rats and birds, showing that Trp
loading can attenuate aggressiveness (79, 80). Similarly, there are
studies in teleost fishes showing a general suppressive effect on
aggressive behavior by dietary Trp supplementation (20, 63, 64).
Furthermore, in the study performed by Winberg et al. (20)
the attenuating effects of dietary Trp on aggressive responses
during territorial defense followed the same time-coarse as the
effects on the neuroendocrine stress response in rainbow trout
(52), with a peak after 7 days of treatment. This together with
a study performed by Höglund et al. (19), showing that the
same treatment time attenuated the anorexic response to a novel
environment, strongly suggest that Trp affects 5-HT signaling
and the integrating role of this neurotransmitter in behavioral
and neuroendocrine stress responses.

Dietary Trp supplementation have also been shown to reduce
cannibalism in juvenile grouper (Epinephelus coioides) (81) and
pike perch (Sander lucioperca) (82). However, the behavioral
components of this response were not studied. Differences
in body size is a main factor underlying cannibalism in
piscivorous fish (83), and one possible explanation to the reduced
cannibalism could be a more homogeneous growth due to
reduced competition for food in fish given Trp supplemented
food. The behavioral effect of dietary Trpmanipulations in teleost
fishes are summarized in Table 1.

CONCLUSIONS AND SUGGESTION FOR
DIRECTION OF FURTHER STUDIES

A positive relationship between dietary Trp and brain 5-
HT activity seems to be present across the vertebrate linage.
However, there appear to be differences between teleost fishes
and mammals when it comes to plasma Trp transport since

teleost albumin lacks the indole binding site (29, 30). This makes
Trp influx to the brain less sensitive to carbohydrates in fish
compared to mammals. On the other hand, behavioral and
neuroendocrine effects of elevated dietary Trp are similar in all
vertebrates. Studies inmammals and teleost fishes show that these
effects, including suppression of aggressive behavior, attenuation
of stress induced anorexia and lower post stress plasma cortisol,
appear after 3–7 days of elevated dietary Trp intake. It has been
suggested this slow time-course reflects 5-HT induced structural
changes in the brain (7). However, further studies are needed to
verify this assumption.

In mammals the majority of Trp enters the kynurenic
pathway. The first stage of this pathway is catalyzed by the
enzymes TDO and IDO that are induced by glucocorticoids and
pro-inflammatory cytokines, respectively. Thus, chronic stress
and infections can shunt available Trp toward the kynurenic
pathway and thereby lowering the rate of brain 5-HT synthesis
while simultaneously increasing the production of other Trp
metabolites [for references see (14)], which potentially can
affect behavioral and endocrine responses to stress. So far,
the kynurenic pathway have been neglected when investigating
effects of dietary Trp supplementation in teleost fishes. It has
previously been pointed out that effects of dietary Trp is
context dependent, where especially the stress status of the
animals can affect the outcome of dietary Trp manipulation
(19). A recent study demonstrates that the expression of
IDO mRNA is upregulated by LPS in rainbow trout (40),
suggesting that bacterial infection can affect the catabolic faith
of Trp also in fish. Previously dietary Trp supplementation
have been suggested as a strategy for reducing unavoidable
stress, such as stress related to transport, size grading and
vaccination, in aquaculture (84). However, considering that
inflammatory processes might affect the catabolic faith of
Trp in teleost fish, anti-inflammatory treatments should also
be considered.

In humans, low circulating levels of the ω3 fatty acids,
eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA),
and a decreased ratio of EPA to the ω6 fatty acid arachidonic
acid (ARA) have been associated with psychiatric ailments and
poor stress coping ability (15). Moreover, a diet with high DHA
and EPA have been shown to affect serotonergic transmission
and to prevent such psychiatric ailments [for references see (15)].
The mechanisms for this anti-depressive action of ω3 fatty acids
are currently not fully understood. However, it is possible that
a diet with high ω3 content results in a suppression of pro-
inflammatory eicosanoids, which in turn may reduce the activity
of the kynurenic pathway, increasing Trp influx to the brain, and
subsequently stimulate brain 5-HT synthesis.

The relative amount of marine ω3 fatty acids has decreased in
commercial fish feed. Potentially, this may result in poorer stress
coping ability trough dietary effects on central 5-HT signaling.
Thus, we hypothesize that it is not only the relative amount of
Trp to other LNAAs in the diet that is important for producing
stress resilient robust fish. Rather, there is an interplay between
dietary amino and fatty acids that decides the effects of Trp
supplementation, where ratio ω3 to ω6 fatty acids in the diet
influences the catabolic faith of Trp. Studies demonstrating a
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negative relationship between HPI-axis reactivity and the ration
of ω3 to ω6 fatty acids in the diet (85, 86) lends support to
this hypothesis. However, if such effects of dietary fatty acid
composition are related to changes in the activity of the kynurenic
pathway is currently not known.
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Fish have evolved a biological clock to cope with environmental cycles, so they

display circadian rhythms in most physiological functions including stress response.

Photoperiodic information is transduced by the pineal organ into a rhythmic secretion of

melatonin, which is released into the blood circulation with high concentrations at night

and low during the day. The melatonin rhythmic profile is under the control of circadian

clocks in most fish (except salmonids), and it is considered as an important output of

the circadian system, thus modulating most daily behavioral and physiological rhythms.

Lighting conditions (intensity and spectrum) change in the underwater environment and

affect fish embryo and larvae development: constant light/darkness or red lights can

lead to increased malformations and mortality, whereas blue light usually results in best

hatching rates and growth performance in marine fish. Many factors display daily rhythms

along the hypothalamus-pituitary-interrenal (HPI) axis that controls stress response in

fish, including corticotropin-releasing hormone (Crh) and its binding protein (Crhbp),

proopiomelanocortin A and B (Pomca and Pomcb), and plasma cortisol, glucose,

and lactate. Many of these circadian rhythms are under the control of endogenous

molecular clocks, which consist of self-sustained transcriptional-translational feedback

loops involving the cyclic expression of circadian clock genes (clock, bmal, per, and

cry) which persists under constant light or darkness. Exposing fish to a stressor can

result in altered rhythms of most stress indicators, such as cortisol, glucose, and lactate

among others, as well as daily rhythms of most behavioral and physiological functions.

In addition, crh and pomca expression profiles can be affected by other factors such

as light spectrum, which strongly influence the expression profile of growth-related

(igf1a, igf2a) genes. Additionally, the daily cycle of water temperature (warmer at day

and cooler at night) is another factor that has to be considered. The response to any

acute stressor is not only species dependent, but also depends on the time of the

day when the stress occurs: nocturnal species show higher responses when stressed

during day time, whereas diurnal fish respond stronger at night. Melatonin administration

in fish has sedative effects with a reduction in locomotor activity and cortisol levels,
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as well as reduced liver glycogen and dopaminergic and serotonergic activities within

the hypothalamus. In this paper, we are reviewing the role of environmental cycles and

biological clocks on the entrainment of daily rhythms in the HPI axis and stress responses

in fish.

Keywords: daily rhythm, light, temperature, HPI axis, wavelength, thermocycles, fish welfare

ENVIRONMENTAL CYCLES AND
BIOLOGICAL CLOCKS IN FISH

The environment is rarely constant and fluctuates most of the
time. Although some environmental changes are unpredictable

(e.g., metereological phenomena such as rain or wind), other
cyclic fluctuations such as tides, day length, moon phases and
seasons are highly predictable. These environmental cycles are
governed by geophysical cycles originating from the rotation of
the Earth and the Moon around the Sun. Time-keeping systems
(i.e., circadian clocks) have evolved since the most primitive
forms of life to cope with natural cycles and anticipate periodic
events (1). In fish, as in other vertebrates, most behavioral and
physiological processes exhibit rhythms, which are driven by
molecular clocks made up of transcriptional/translational loops
of several clock genes (per, clock, bmal, cry, ror, and reverb) (2, 3).

Light and temperature cycles are the two main synchronizing
signals (so called “zeitgebers” or time-givers) to entrain biological
clocks. Light information is transduced into a nocturnal rhythm
of melatonin that acts as an internal zeitgeber setting up
the phase of individual pacemakers. Daylength, the basis for
photoperiodism and seasonality, is coded by the duration
(longer/shorter) of the nocturnal melatonin rhythm (4). In
addition, light characteristics should be considered, since the
underwater photo-environment is peculiar as light is absorbed
differently by the water column, so that only blue light (λ
∼450 nm) reaches deep marine waters (up to 200m in clear
oceanic waters -euphotic zone), while red light (λ > 600 nm)
is quickly absorbed within the first 20m. Thus, melatonin
synthesis is suppressed by light differently depending on the
wavelength: shorter (blue) being more effective than longer (red)
wavelengths (5). Artificial lights differ greatly from the natural
solar light, because classic light bulbs (incandescent filaments)
produce a reddish inefficient light underwater, while fluorescent
tubes produce sharp peaks at specific wavelengths far from
natural daylight. Modern light-emitting diode (LED) technology,
however, provides better cost-effective lighting systems which
can be used for different purposes in aquatic research (6).
Using such technology, light spectrum has been found to
affect the ontogeny of the molecular clock, as clock, per,
and bmal gene expression was affected by lighting conditions
during early larval development. Furthermore, larvae reared
under constant darkness became arrhythmic, while under
light/dark cycles of different wavelengths their daily activity
rhythms appeared earlier under blue than under white or
red lights (7).

The daily day/night alternation not only imposes a light
cycle but also a temperature cycle, as the water warms up

during the day following sunrise, and cools down at night after
sunset. Such a daily thermo-cycle (TC, 12 h cold:12 h warm)
synchronizes the circadian clock, which periodicity (tau) is
temperature-compensated and remains constant in a wide range
of temperatures, with a Q10 value for tau around 1 (8). Actually,
clock transcriptional regulatory elements are entrained by TC in
embryos and primary cell lines of zebrafish (Danio rerio) (9),
although light controlled elements (per2 and cry1a) do not show
rhythmic expression under TC (10). Regarding melatonin, as
early reported by Underwood and Calaban (11) in lizards, its
rhythmic secretion can be synchronized in constant dark (DD)
and constant light (LL) by daily temperature cycles as low as 2◦C
in amplitude (melatonin peaking during the cold phase). In pike
in vitro pineal culture, rhythmic melatonin production persisted
in TC (10◦C:20◦C) and DD, which peaked during the hight
temperature (12). Nevertheless, TC cycles synchronized with
good strength a melatonin rhythm under DD, providing the high
temperature coincided with the subjective dark. Synchronization
persited, but the rhythm was of lower amplitude when the high
temperature was given during the subjective day. In all cases,
the TC rhythm didn’t entrain the melatonin rhythm as a release
into constant temperature resulted in a rapid damping of the
melatonin rhythm. As to locomotor activity rhythms, however,
under TC and ahemeral light-dark (LD) cycles (conflicting
zeitgebers), zebrafish displayed relative coordination, while in
constant dim light they synchronized to TC, and they also free-
run in constant temperature. These findings indicate that TC
alone can entrain zebrafish rhythms, suggesting the participation
of both light- and temperature-entrainable oscillators which are
weakly coupled (13, 14).

PHOTOTRANSDUCTION AND MELATONIN
RHYTHMS IN FISH

Melatonin is a key hormone acting in the circadian system
of vertebrates, and it is mainly produced by the pineal gland.
In fish, the pineal is a complex structure located in an
evagination of the roof of the diencephalon, which exhibits
photoreceptive characteristics (15, 16). The pineal epithelium
contains photoreceptor cells that resemble the retinal cones of
the retina, both on a structural and functional point of view (17–
19). These cells elaborate an electrical message at night when
they are depolarized, which results in the release of an excitatory
neurotransmitter. Meanwhile, light induces hyperpolarization
of the photoreceptor cells and inhibits the discharge of the
pineal neuronal units (20–22). In addition, as early reported
by Falcon et al. (23), photoreceptor cells contains the amino
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acid (tryptophan) and all the indole compounds (serotonin, N-
acetylserotonin, melatonin) and enzymes (see later) to produce
melatonin (24–29). The pineal hormone displays daily and
seasonal patterns of secretion with elevated levels at night
and basal levels during the day, regardless of the fish species
studied. Therefore, robust and predictable rhythms of melatonin
secreted from the pineal to the blood and likely to the CSF,
with which the pineal epithelium communicates in its apical
part (30) are expected. The rhythmic melatonin output, which
reflects the prevailing photoperiod, is an efficient signal to
entrain a wide number of processes that occur at daily and
seasonal levels (4).

The synthesis of melatonin also occurs in the retina, which
in teleost has been usually, but not exclusively, associated with
photoreceptor cells (31–33). Although rhythmic on a daily basis,
the pattern of retinal melatonin is substantially different from
that in the pineal organ, with melatonin content peaking during
the night, or at different times during the day or modifying
the phase of the rhythm throughout seasons depending on the
species (34–37). Moreover, retinal melatonin is thought to act as
a local neuromodulator within the eye (32, 38, 39) and it could be
metabolized in situ (40), which prevents retinal melatonin to be
released to the blood. More doubt arises from a synthesis of the
hormone in other body tissues of fish, the intestine being reported
to hold relevant amounts of melatonin (41–43). In addition, the
presence of mRNA transcripts of melatonin synthesis enzymes
has been reported in the digestive tract of several teleost species
such as goldfish (44), carp (45), and rainbow trout (43), with
daily rhythms that adjust to the prevalent photoperiod. Although
a more formal demonstration of melatonin synthesis in fish
intestine is needed, it seems like its contribution to plasma
melatonin rhythms should be very poor in comparison with the
pineal melatonin source, as low night levels or lack of plasma
melatonin rhythms are found in pinealectomized fish (43, 46).

Studies in several teleost provide well-founded data about
the distribution of melatonin binding sites in wide range of
body tissues (47–50). Therefore, this hormone can be involved
in multiple physiological processes, most of them displaying
daily and/or seasonal rhythms, such as those of locomotor
activity, skin pigmentation, food intake, osmoregulation,
growth and reproduction [for reviews (3, 4, 51, 52)]. Thus,
the melatoninergic output is part of the time-keeping
system and enable the fish to synchronize with the closest
environment (51). The characteristics of its daily rhythm are
well conserved independently on the organization of the system
that controls such rhythm. The LD cycle is the prevalent
cue that directly or indirectly through the circadian clock
system, controls pineal melatonin synthesis and adjust its
daily profile in blood (29, 51, 53, 54). The nocturnal rise in
melatonin observed in all vertebrates is the consequence of
two enzymatic steps that transform serotonin into melatonin:
arylalkylamine N-acetyltransferase (AANAT) catalyses serotonin
synthesis, whereas hydroxyindol-O-methyl transferase (HIOMT)
transforms N-acetylserotonin in melatonin (55). In vertebrates,
AANAT enzyme is the rate-limiting step for clock-dependent
light influence on melatonin synthesis, since this enzymatic
activity displays daily oscillations with light inhibiting it

during daytime (56). Interestingly, teleost fish, unlike other
vertebrates, possess two AANAT subfamilies, namely AANAT1
and AANAT2, which is likely to derive from the whole genome
duplication that occurred close the origin of fish (57–59).
Whereas, AANAT1, which is homologous with the AANAT
found in tetrapods, is expressed preferentially in the retina
and discrete brain areas of fish, AANAT2 is more specifically
expressed in the pineal gland and has no equivalent in other
vertebrates (22, 60).

In contrast to that of mammals, fish pineal photoreceptors
cells contain the whole machinery of a light entrained circadian
system: photoreceptor unit, clock machinery and melatonin
production system (25, 29, 61, 62). Indeed, melatonin synthesis in
most teleost species continues to be rhythmic in pineal explants
and this rhythm adjusts to a 24-h cycle when they are exposed to
a fluctuating light environment (25, 31, 63–65). The connection
between pineal clock system and rhythmic melatonin synthesis
occurs through a CLOCK-BMAL dimer binding to an E-box
in the aanat2 promoter (66–68). Thus, accumulation of aanat2
mRNA as a result of increased gene transcription during the
second half of the day allows AANAT2 protein to be high
soon after night onset. Light at the following day resets the
clock, which makes AANAT2 enzyme activity and melatonin
synthesis to drop (69). The salmonidae lineage, which includes
the rainbow trout (Oncorhynchus mykiss) and Atlantic salmon
(Salmo salar), breaks this rule since it lacks an intra-pineal
oscillatory mechanism (70). Because of that, rhythmic melatonin
synthesis occurs only under an LD cycle both in vivo and in vitro
(71–74). Additionally, melatonin synthesis from fish pineal varies
between seasons, which is interpreted by the clock machinery,
then modulating annual rhythms (36, 75, 76). Light properties
such as intensity and spectrum impact on the amplitude of
the melatonin peak, therefore melatonin secretion varies in fish
as a result of water depth, time of the day (dawn and dusk),
weather conditions, moon phase or latitude (4). Moreover, water
temperature is another external factor that acts on the pineal
organ to influence melatonin rhythm, through the regulation
of AANAT2 activity. A good correlation of AANAT2 activity
at night exists for some teleost such as rainbow trout, pike
(Esox lucius), sea bream (Sparus aurata), and zebrafish, with
optimal physiological temperatures (12, 29, 60, 72). This strongly
supports that both light and temperature act together to provide
accurate tuning to daily and annual cycles of melatonin in
fish (4, 77).

RHYTHMS IN THE HPI STRESS AXIS

A wide variety of physiological variables display rhythmicity
in fish, among them many factors of the endocrine system
such as those produced at all levels of the hypothalamus-
pituitary-interrenal (HPI) axis (78, 79), which is the main
neuroendocrine circuit involved in the primary response to
stress in fish, together with the catecholamine-producing
chromaffin cells from the hypothalamic sympathetic nervous
system (80, 81). The hypothalamus synthesizes corticotropin-
releasing hormone (Crh) which in turn stimulates the synthesis
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and release of adrenocorticotropic hormone (Acth) from the
pituitary (82). Acth is generated from the cleavage of the
Proopiomelanocortin (Pomc) and stimulates the production and
release of glucocorticoids in the cells of the fish interrenal tissue
(82) (Figure 1). The main glucocorticoid produced by fish is
cortisol which, besides its main role in the stress response and
stress-related homeostasis, influences many other processes such
as behavior, growth, reproduction, and osmoregulation (80, 82,
84, 85).

Studies on the rhythmicity of factors from the HPI axis have
mainly focused on cortisol, whose daily rhythms have been
described in a wide variety of species (78, 86). In addition,
daily rhythms have also been reported in other factors from the
HPI axis such as the hypothalamic crh and pituitary pomc gene

expression (83, 87, 88). Regarding cortisol, the characteristics of
the rhythm such as mesor (similar to the median), amplitude
(difference between mesor and highest or lowest point), and
acrophase (the time of day when the highest values can be
found) are species-dependent. Cortisol rhythms persist under
environmental constant conditions, i.e., constant light (LL) or
darkness (DD), in some species such as gilthead sea bream,
Senegalese sole and rainbow trout (89–91). This persistence in
the absence of external cues (free-running) indicates that the
rhythm is controlled by circadian oscillators located within the
organism (79).

Moreover, besides the daily rhythms that seem to be mainly
controlled by variations in the LD cycle, cortisol is also influenced
by seasonal variations in photoperiod and water temperature and

FIGURE 1 | Schematic diagram of the hypothalamus-pituitary-interrenal (HPI) axis (A). Corticotropin-releasing hormone (Crh) is synthesized in the hypothalamus and

stimulates, at the pituitary, the synthesis and release of adrenocorticotropic hormone (Acth), which is formed from Proopiomelanocortin (Pomc). Acth stimulates the

production and release of cortisol in the interrenal cells. In fish, the HPI axis presents daily rhythms at all of its levels. To the right of the figure, representative examples

of the rhythms of crh expression (B), pomca expression (C), and plasma cortisol (D) from Senegalese sole are shown. Mean ± S.E.M. are represented by the bars

and errors, the continuous curve represents the cosine function calculated from a significant Cosinor analysis (p < 0.05). White and black bars above the graphs

represent the light and dark period, respectively. Modified with the permission of authors from López-Olmeda et al. (83).
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by feeding time. Annual cortisol variations have been described
in several fish species and they seem to correlate mainly with
the seasonal reproduction, with the highest annual cortisol levels
being located around the spawning season (78). On the other
hand, a fixed feeding time can act as the entraining signal of
cortisol rhythms in the absence of other external signals such as
the LD cycle (92, 93), and different fixed feeding times are able to
shift the cortisol rhythm (94). Therefore, the season of the year
and the feeding strategy are factors that should be considered
when studying cortisol rhythms.

STRESS AND MELATONIN INTERPLAY IN
A RHYTHMIC ENVIRONMENT

Light disturbance either in natural environment, i.e., artificial
nighttime lighting, or during farming is another critical factor
that could induce stress in animals, including fish (95–97). In
this context, studies on environmental stress effects on vertebrate
circadian systems are still scarce. In mammals, constant light
exposure or food intake out of circadian phase potentially alter
the diurnal level of secreted glucocorticoids (GC) and stress-
induced GC response (98). Additionally, GC and catecholamines
can act as synchronizers of circadian clocks (99, 100). The
glucocorticoid receptors (GR) are expressed ubiquitously in
nearly all tissues and organs, with the exception of SCN,
where no GR expression was noted (99). However, several
genomic and non-genomic pathways exist, through which GC
can influence circadian core clock genes. In this context, stress
at the photophase onset causes a phase-advance of mRNA
expression of several core clock genes in peripheral organs
(101). Meanwhile, when applied at different times during the
photophase, it causes delay or even loss of synchrony, indicating
that influence of stress on peripheral clocks depends on the time
of day.

In fish, environmental stressors are increasingly related to
changes in water conditions including elevated temperature
(e.g., global warming or proximity to nuclear plants or cities),
presence of pollutants, and oxygen deficits. Routine husbandry
in aquaculture also involves further factors, such as stocking
conditions, handling, feeding and social interactions, among
others (102–104), several of which are also influenced by
human intervention. In fish, the effect of stress induced by
high density stocking on the daily profile of hypothalamic
mRNA abundance of circadian clock genes (clock1a, bmal1, per1,
and rev-erbβ-like) was recently studied. Decreased amplitude
and mean expression levels for most of these genes appeared
in stressed trout, except for rev-erbβ-like whose expression
increased (105). Furthermore, treatment of trout with the GR
antagonist, mifepristone, previously exposed to a stressor failed
to prevent these stress-induced changes, suggesting that cortisol
is not directly modulating clock gene expression within the
hypothalamus in trout. Additionally, this study provides evidence
for the involvement of Sirtuin1 (Sirt1), a member of the histone
deacetylases family which links cellular metabolism and circadian
clocks in mammals (106) and fish (91). Sirt1 deacetylates bmal1
and per2 in the liver (107) and activates hypothalamic SCN

pacemaker in mice (108). Moreover, sirt1 mRNA accumulates
rhythmically under normal LD conditions and increases sharply
in the hypothalamus of stressed trout (105). Therefore, Sirt1 is a
good candidate to mediate the effects of stress on the circadian
clock genes, not only in peripheral metabolic tissues (liver),
but also centrally at the hypothalamic level, where a neuronal
network integrates the effects of stress to modulate nutrient
sensing information and regulate feeding behavior (109, 110). It
is also involved in the regulation of the rhythmic profile of clock
genes at the brain level (105), suggesting a role of Sirt1 in the
crosstalk between stress response and central circadian system
in fish.

The pineal melatoninergic system in vertebrates has been
also reported to be influenced by stress and GC treatment in
early studies in the 70s [e.g., (111)], and later both in vitro
(112, 113) and in vivo (114–117). In rodents, forced physical
activity every 2 h for the 24 h around the clock, results in lower
melatonin levels at night, thus flatting normal daily melatonin
rhythm (118). Additionally, chronic stress alters the expression
of sympathetic markers in rodent pineal gland and increases
plasma melatonin concentrations (119). Increased melatonin
levels during daytime after immobilization alone or together
with dexamethasone treatment were reported in the avian
ring dove (Streptopelia capicola) (114). A prolonged, but not
acute, treatment with dexamethasone also suppressed melatonin
production in chick pineal gland and retina, with Aanat
activity being significantly lower than that of controls (115).
Regarding fish, it seems that pineal melatonin is very sensitive
to different environmental stressors, although differences were
observed depending on the species and stress type. Rainbow
trout initially adapted to freshwater conditions (6 ppt) that
were later transferred to isosmotic (12 ppt) and hyperosmotic
conditions (18 ppt) showed an increased melatonin content
at night in pineal gland and plasma, as compared to the
initial status, both in a short-term (6 h) and long-term (5
days) exposure (120). A stimulatory effect of salinity on pineal
aanat2 mRNA abundance and enzyme activity was identified
at day- and night-time, with melatonin synthesis enzymes
under the regulation of cortisol. This suggests that increased
blood osmolality and plasma cortisol levels induced by the
hypersaline environment promotes melatonin synthesis in the
pineal organ of rainbow trout by increasing Aanat activity
independently of the regulatory action exerted by light. In cocho
salmon, however, plasma melatonin remain constant during parr
to smolt transformation, but increased upon seawater entry
(121). Other stressors, like chasing and high-stocking density
inhibit melatonin synthesis at night, thus disrupting melatonin
rhythms and the capacity of fish to translate environmental
information (122). A drop in pineal serotonin content, aanat2
gene expression, and Aanat enzyme activity was also reported
at night. This fits with a diminished N-acetylation pathway as a
consequence of lower substrate availability and enzyme activity.
In this context, cortisol is likely to have a key role in mediating
stress-effects on melatonin synthesis in the pineal organ of trout.
In fact, intraperitoneal (IP) cortisol implants reduced melatonin
synthesis at night in a similar way than exposure to stressors,
and incubation of cultured pineal organs with cortisol reduced
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melatonin synthesis during the dark phase of the 24-h cycle,
with this effect prevented when a GR antagonist was added
(113, 122).

Several published studies also support a modulatory role
of GC in teleost pineal organ. High cortisol concentrations
(100 ng/ml) mimicking stressed conditions were shown to reduce
melatonin secretion from cultured pineal organs of tilapia
(Oreochromis mossambicus) (123), although a similar effect was
not observed at night, when cortisol was physiologically elevated
in stressed fish. In contrast, socially subordinated rainbow trout
displayed concomitant increases in cortisol and melatonin levels
in blood, suggesting that social status of the animals may
modify the circadian cycles of these hormones. In the North
African catfish (Clarias garieinus), treatment with corticosteroid
hormones in a µM to mM range inhibited pineal AANAT
activity in a dose-dependent way during different phases of
the breeding cycle (124). Meanwhile, rainbow trout pineal
organs incubated with the GC analog, dexamethasone, at nM
concentrations also exhibited inhibition of AANAT2 activity,
without affecting HIOMT activity (113). Since a daily variation
of gr mRNA has been reported in the pineal organ (123) it is
plausible that GC effects on melatonin synthesis are modulated
by oscillation of GR signaling, which involves the activation of
glucocorticoid-responsive elements at the Aanat promoter (113).
Alternatively, GC actions are also likely mediated by cell surface
receptors that modify Ca2+ and cAMP levels (82), therefore
being potentially able to modulate rhythmic melatonin synthesis
by the photosensitive pineal cells (4).

In fish, the stress response involves a series of physiological
components organized in two neuroendocrine axes, the brain-
sympathetic-chromaffin (HSC), and the HPI tissues, whose
activation by stressors lead to increased catecholamines and
cortisol blood levels, respectively (125). Several studies showed
that melatonin might play a role in alleviating stress effects
in teleosts, which in many cases relates to the modulation of
neuroendocrine responses within the HPI axis. For instance,
Munro (126) showed that intracerebroventricular (i.c.v.)
injections of melatonin (10 µg) reduced aggressive behavior in
the cichlid Aequidens pulcher to a mirror presented 20min later,
whereas Larson et al. (127) reported that socially subordinated
fish have higher night melatonin levels and no elevation of
cortisol levels compared to non-stressed fish. On the other hand,
several studies report that treatments with melatonin at doses
mimicking nocturnal increase of the hormonal levels were able
to reduce stress effects in fish. Thus, melatonin given orally
(40–200 mg/g food) or dissolved in water (10µM) attenuated
several effects of chronic stress in rainbow trout (128), and
Senegalese sole (Solea senegalensis) (129), such as elevated
plasma cortisol, inhibited food intake, altered activity of some
digestive enzymes, and increased plasma lactate levels and liver
glycogenolitic potential (128). Accordingly, Gesto et al. (130)
showed that adding melatonin at doses as low as 10 nM into the
fish tank was effective in reducing the intensity of stress response
induced at short-term by chasing. Thus, a simple treatment
with melatonin attenuated the response to cortisol, including
the increase of hypothalamic crh mRNA content and that of
enzymes involved in the steroidogenesis pathways at the head
kidney, which normally allow cortisol secretion to increase soon

after fish is stressed. Also, intraperitoneal (i.p.) administered
melatonin at doses as low as 10µg/g body weight for 7 days
resulted in reduced plasma cortisol levels and locomotor activity
of goldfish (Carassius auratus) (131), thus suggesting that
peripheral melatonin inhibits the stress response and displays
additional sedative effects in teleost.

The mechanisms through which melatonin mitigates stress is
currently unknown, although both central and peripheral actions
of melatonin are suspected to be involved. In fish, the brain
serotonergic system is believed to play a role in the activation of
the neuroendocrine responses to both acute and chronic stress,
including social stress (132–134). An increased serotonergic
function starts immediately after exposure to the stressor,
particularly affecting the hypothalamus and telencephalon, two
regions that receive serotonergic neuronal endings (132, 133). At
the level of the hypothalamus-preoptic area, serotonin stimulates
the HPI axis by increasing Crh release, which boosts the
downstream GC stress response (125, 134). Studies have revealed
that melatonin can interact with serotonin to modulate its
function (109, 130, 135). Moreover, melatonin ability to reduce
stress in teleosts has been usually associated with simultaneous
changes in brain serotonergic activity (109, 130, 133). Indeed,
melatonin treatment decreased crh mRNA in sole which was
upregulated by environmental stressors (130), pointing to a
melatonin interplay with serotonin- and Crh-containing neurons
in the hypothalamic-preoptic area. Specific studies are lacking
to demonstrate the underlying mechanisms of the actions of
melatonin on brain serotonin at the cellular level, as well as
those that activate the endocrine response to stress. For instance,
5-HT1A-like receptors were involved in mediating increases in
crh mRNA and Acth hormone secretion in the Gulf toadfish
to crowding stress (136) and to modulate HPI axis response
in Arctic charr (Salvelinus alpinus) (137). This suggests these
receptors are potential candidates for serotonin-mediated effects
of melatonin to reduce stress response in teleosts, and this
hypothesis should be further tested.

Additionally, the possibility that melatonin acts directly on
adrenal tissue to modulate GC secretion exists, as reported
in mammals (138), and also suggested in fish where i.p., but
not i.c.v., melatonin treatment was able to reduce cortisol
secretion (131). The presence of melatonin binding sites and
mRNA expression of melatonin receptors has been demonstrated
in several teleost species (47, 48). Finally, besides applying
pharmacological and molecular tools to gain knowledge on the
melatonin-cortisol interaction, it is intriguing to know whether
the endogenous high levels of melatonin at night are involved in
modulating cortisol secretion, either through the HPI axis and
interrenal cells or by tuning the daily rhythmic cortisol profile,
through the circadian system.

LIGHT AND TEMPERATURE STRESSORS
DURING EARLY DEVELOPMENT AND
ADULTHOOD

The environment during early life stages permanently alters
behavior and physiology by “programming” the expression
of selected genes. Actually, environmental stress in early life
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can impair normal development, predisposing to disease
in adulthood (139). Light characteristics (intensity and
spectrum) change underwater and affect fish embryo and larvae
development (140). In fact, constant light, constant darkness
or LD cycles of red lights lead to increased malformations
and mortality, whereas LD cycles of blue light produced best
hatching rates and growth performance in European sea bass
and Senegalese sole (141, 142). In zebrafish, LD cycles of different
light wavelengths (violet, blue, green, yellow, red, and white) led
also to differences in development, growth, malformations and
ultimately survival, upregulating the expression of key genes of
the somatotropic (igf1a and igf2a) and stress axis in fish (crh
and pomca) (143). On one hand, growth was enhanced in larvae
exposed to LD cycles of violet and blue lights, which showed
also significantly higher expression of igf1 and igf2. On the
other hand, the LD cycles of violet light produced the highest
malformation rates and increased expression of crh, while the
best survival rate and feed intake was achieved in fish exposed to
LD cycles of blue light (Figure 2A).

Light spectral responses may differ depending on the fish
species. In tench, locomotor activity and cortisol levels were
influenced by light spectrum, since juvenile tench kept under
white and blue lights were less active at night, and cortisol levels
were higher in fish kept under white light than in those under
constant darkness (144). Fish under red light behaved in a similar
fashion as those in darkness. In fact, in some fish species red
light may stimulate feeding activity, although such an increase in
feeding does not necessarily elicit higher growth. That is the case
of Nile tilapia, which showed higher feed intake under red light
than under white, blue, green and yellow lights, but failed to show
differences in growth rates of feed conversion efficiencies (145).
This lack of growth differences despite the increase in food intake
maybe related to changes inmetabolism, whichmade food energy
being channeled to stress or swimming. In this species, however,
blue light prevented confinement stress responses and produced
lowest cortisol levels compared to fish under green or white lights
(146, 147). In Atlantic cod and turbot (Scophthalmus maximus),
larvae reared under shorter wavelengths (blue and green lights)
showed significantly enhanced growth in comparison to larvae
reared under longer wavelengths (red light) (148). Reproduction
was also affected by light color, nest construction in Nile tilapia
being enhanced under blue light as well (149).

Background color and light contrast are further relevant issues
to be considered. In Jundiá (Rhamdia quelen), a south american
aquacultured fish, the combination of tank color and shelter
availability reduced stress responses as cortisol levels decreased
in fish kept in talks with blue walls and shelter (150). In the
Caspian kutum (Rutilus frisii), the color of the tanks (black, blue,
red, yellow or white) appeared also to influence food intake and
lipid content without changing growth or feed conversion rates
(151). Eurasian perch (Perca fluviatilis) larvae also showed better
growth and prey intake when raised in black tanks compared to
gray tanks (152). The combination of different light and wall tank
colors affected also the welfare of beluga (Huso huso), since red
light had a negative impact in growth, while blue light reduced
plasma cortisol and glucose (153, 154). In summary, there seems
to be a general consensus in different species pointing at shorter

wavelengths (blue and green -the ones matching the natural
marine underwater photoenvironment) having a positive effect
on fish welfare, regardless of their life stage.

The role of temperature regulating fish metabolism,
reproduction, development and other adaptive responses
has been widely reported (155). Temperature tolerance in fish
has been linked with global warming issues (156) and nutritional
factors such as dietary lipids (157). As to the effects of daily
thermo-cycles (TC) on fish welfare, however, little is known.
An early paper by Spieler et al. (158) reported in goldfish
that increasing water temperature from 14 to 23◦C for 4 h at
different times (7, 11, 15, 19, 23, or 3 h) every day resulted in
different body weight and gonadalsomatic index. In Senegalese
sole, larvae exposed to TC (22◦C-day:19◦C-night) grew better,
showing fastest development and lowest malformation rates,
than those raised under constant temperature (20.5◦C) or a
reversed daily thermocyle (CT, 19◦C-day:22◦C-night) (141)
(Figure 2B). Moreover, in juvenile sole, daily thermocycles
proved to affect sex steroid concentrations (higher estradiol
in TC fish), sex determination (which occurred earlier in fish
under TC) and sex differentiation: fish exposed to TC showing
a higher female proportion (71%) than those under CT (18%)
or constant temperature (38%) (141). Similar results were
obtained in zebrafish larvae kept under two constant (24◦C
and 28◦C) and two daily thermocycles: 28◦C-day:24◦C-night
(TC) and 24◦C-day:28◦C-night (CT), embryo development
and larval growth being fastest under 28◦C and TC, which
also showed the highest survival and lowest malformation
rates (159). Moreover, in that report sex ratio was also strongly
affected by the temperature regime, so that CT and TC produced
more females (around 80%), and highest expression of ovarian
aromatase (cyp19a), which converts androgens into estrogens
and thus led to female differentiation.

Acclimation to a cyclic thermal environment can increase
thermal tolerance, particularly during early development since
the thermal history of larvae induces irreversible changes. As
reported by Schaefer and Ryan (160), fish zebrafish larvae reared
under daily thermocycles (28 ± 6◦C) showed greater tolerance
than those reared under constant (28◦C) or stochastic (random
variations, mean 28◦C) temperature regimes. Ongoing research
further support these observations as zebrafish larvae challenged
to cold/heat shocks (16◦C/36◦C, respectively) showed reduced
mortality rates and enhanced expression of heat shock protein
(hsp70) when reared under a daily thermocycle as compared to a
constant rearing temperature (de Alba et al. unpublished).

TIME-DEPENDENT STRESS RESPONSES
AND DETOXIFICATION RHYTHMS

The endocrine system of fish responds differently depending on
the time of the day. For instance, daily differences have been
reported in the response to exogenous treatments that affect
endocrine pathways controlled by the hypothalamus-pituitary
(HP) system such as the administration of exogenous Gh or Gnrh
agonists (Gnrha) (161–163).
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FIGURE 2 | Fitness diagrams of (A) zebrafish exposed to different light spectrum (violet, blue, green, yellow, and red), and (B) Senegalese sole larvae at 30 DPH

raised under constant temperature (21.5◦C), or two daily thermocycles: TC (22◦C-day:19◦C-night) or CT (19◦C-day:22◦C-night). In (A), lines represent relative values

for malformations (vertical, downwards arrow), survival rate (horizontal, left arrow), gut content (vertical, upwards arrow), and expression of igf2 (rigth-up) and crh

(right-down) genes. Modified from Villamizar et al. (143). In (B), vertical upwards arrows represent relative values for total length, while downwards arrows represent

malformation rates. Different letters indicate significant differences. Modified with the permission of authors from Blanco-Vives et al. (141).

This different response depending on the time of the day
has been reported for the stress response in several fish species
such as the green sturgeon (Acipenser medirostris), Senegalese
sole, gilthead sea bream and African sharptooth catfish (Clarias
gariepinus) (83, 88, 164–166). Senegalese sole subjected to an
acute stress (air exposure) showed a greater cortisol production
when the stress was applied at the beginning of the light phase as
opposed to beginning of the dark phase (83) (Figure 3). Likewise,
a similar stress applied to gilthead seabream at several time points
throughout the 24-h cycle elicited greater cortisol responses
during darkness compared with the light phase (88) (Figure 3).
The daily patterns of locomotor behavior could be partially
responsible for the species-dependent differences. Actually, a
greater stress response was associated with the resting phase of
the species: nocturnal sole presented higher stress during the day,
while diurnal gilthead sea bream were more stressed during the
night. This hypothesis should be further tested in different fish
species, particularly in fish with dual phasing behavior (changing
from diurnal to nocturnal) such as sea bass.

The effectiveness of drug absorption, administration,
metabolism and elimination are also subjected to rhythmicity,
which affects the final concentration of xenobiotics in the
animals’ blood and their bioavailability (167). In mammals,

the existence of toxicity rhythms is widely accepted but in fish
species, data remains scarce with only a few studies recently
published. In particular, the time-dependent effect of several
substances frequently used in aquaculture has been assessed,
including anesthetics and veterinary medicines.

Anesthetics are administered to fish to immobilize them
and minimize their stress response during research and routine
procedures in fish farms (168). However, anesthetics need to
fulfill a number of criteria before being approved for their use
in aquatic animals and consequently, toxicology tests have to
be performed to determine any toxic effects as well as the
optimal concentration required to induce anesthesia, which will
be species and temperature specific (169). In this context, it is also
important to determine whether the time of administration can
have an impact on the effect of these substances. In the case of
tricaine methanesulfonate (MS-222), a licensed anesthetic for use
in food sources, a daily rhythm of toxicity and effectiveness has
been reported in gilthead sea bream (170) and zebrafish (171).
In both species, a strong effect of the time of administration was
found, with higher toxicity and effectiveness of MS-222 when
fish were exposed during the day than at night. In the case
of sea bream, the median lethal concentration (LC50) at mid-
darkness (MD)was 25.7% higher than atmid-light (ML). In order
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FIGURE 3 | Daily rhythms of locomotor activity (A) and differences in the cortisol response depending on the time of the day (B) in the gilthead sea bream and

Senegalese sole. The black area in the waveforms represents the mean values of activity and the continuous line the S.D. White and black bars above the waveforms

represent the light and dark period, respectively. A stress challenge was applied to both species, consisting of air exposure during 30 s, at different time points of the

LD cycle: ZT2 and 14 h for sea bream, and ZT1 and 13 h for sole. Fish were sampled 1 h after the stress and cortisol was evaluated. Unstressed control groups were

sampled at all-time points. Different letters indicated significant differences between groups (ANOVA, p < 0.05) (small case letter for sea bream and upper case letters

for sole). Modified with the permission of authors from López-Olmeda et al. (83) and Vera et al. (88).

to determine the induction time of anesthesia at ML and MD,
fish were also exposed to sublethal concentrations of MS-222,
which revealed that during the day the activity of fish significantly
decreased after 7min of exposure whereas at night no effect was
observed until fish had been exposed for 9min. In addition, the
recovery time was longer during the day (10min) than at night
(6min) (170). These differences in the toxicological response
of sea bream were correlated to higher plasma concentrations
of MS-222, measured post-exposure, during the day than at
night, suggesting a link between the plasma anesthetic levels
and the degree of toxicity (172). In zebrafish, similar day-night
differences in the effect of anesthetics (MS-222 and eugenol) were
found. When fish were exposed to 190 mg/L of MS-222, the
mortality rate was 82% at ML whereas at MD this rate descended
to 14%. In the case of eugenol, a concentration of 80 mg/L also
resulted in a higher mortality rate at ML than atMD (68 and 22%,
respectively) which correlated with a shorter induction time of

anesthesia during the day (171) (Figure 4). The authors of these
studies concluded that toxicity rhythms may be related to the
animal’s daily pattern of activity. Higher toxicity/effectiveness of
anesthetics was observed during the active phase of fish, possibly
due to an increase of the ventilatory frequency and as a result,
increased uptake of the xenobiotic from the water (170–172).

In Atlantic salmon, the time-dependent effects of hydrogen
peroxide have also been investigated. Hydrogen peroxide is
a veterinary medicine commonly used to treat ectoparasites
such as sea lice (Lepeophtheirus salmonis) and amoebic gill
disease (AGD) caused by Neoparamoeba perurans, but these
treatments can have side effects on fish and trigger a stress
response following exposure leading to increased mortalities
in some cases (173). However, the stress response showed
daily rhythmicity in salmon, with cortisol, glucose and lactate
levels showing higher levels when the fish were treated during
the day than at night (174). In addition, these authors also
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FIGURE 4 | Daily variations of mortality of zebrafish exposed to different MS-222 (A) and eugenol (B) concentrations after 15min exposure at mid-light (ML; white

circles) or mid-dark (MD; black circles) [with the permission of authors from Sánchez-Vázquez et al. (171)]. Sea bream mortality after 15min exposure to different

MS-222 (C) concentrations at ML or MD [with the permission of authors from Vera et al. (172)]. A logistic curve (dotted lines) was fitted to mortality rate (six

independent replicates with n = 8). (D) Daily rhythm of mortality of zebrafish larvae exposed to 5% ethanol for 1 h. Different letters indicate significant differences

(ANOVA I, p < 0.05), while the dotted black line represents the sinusoidal function fit (Cosinor analysis, p < 0.05).

investigated the effect of hydrogen peroxide on the oxidative
stress response in liver, reporting that gene expression of
key antioxidant enzymes (gpx1, cat, hsp70, and mn-sod) was
up-regulated when fish were treated during the first half
of the day, and in particular around 6 h after the lights
onset (175).

In vertebrates, the liver is the main organ involved in
detoxification, a process that includes multiple biochemical steps
that convert lipophilic toxins into water-soluble metabolites
that can then be eliminated from the organism via the urine
(176). This system relies on a number of biotransformation
enzymes and transporter proteins (177), some of which are
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regulated by the circadian clock in mammals (178). In zebrafish,
recent investigations have revealed that both detoxification
genes and key transcription factors regulating their expression
are also subjected to circadian control. In particular, the
expression of hepatic PAR bZIP proteins (tefa, tefb, dbpa,
and dbpb) and nuclear receptors (ahr2) showed daily and
circadian rhythmicity, in tune with clock genes expression.
These transcription factors and nuclear receptors regulate the
expression of many detoxifying enzymes and ABC transporters,
some of them also displaying rhythmicity in this species
(cyp1a, gstr1, mgst3a, sult2_st2, abcg2, abcb4, smtb) (179).
Altogether, this study provided evidence about the molecular
mechanisms underlying the toxicity rhythms described before in
fish species and suggested the existence of clock-control in their
toxicological response.

The application of this field of research is evident when
designing health strategies in the aquaculture industry. However,
it is also important to highlight that zebrafish has become an
animal model widely used in biomedical research, to assess the
psychoactive and toxic effects ofmany drugs (180, 181), including
the neurobehavioural effects of ethanol (182). Therefore, it is
crucial to understand the effect of time of administration when
designing these tests. In this context, recent research has revealed
a daily rhythm in the effects of ethanol in zebrafish, characterized
by higher mortality rates in larvae exposed to 5% ethanol at the
beginning of the day (80%) than in the middle of the night (6%).
In addition, behavioral effects in adults exposed to 1% ethanol
were also more severe during the day, with key genes involved in
ethanol detoxification in the liver showing circadian rhythmicity
in continuous darkness (DD) (183).

In conclusion, fish chronotoxicity is a novel area of research
that is showing promising prospects for the application of
chronobiology concepts to optimize the administration of
medicines in fish farms, which can lead to improve welfare
of animals in commercial settings. Furthermore, increasing our
knowledge about toxicity rhythms of drugs used in biomedical
research will also have an impact on the application of therapies
in humans.

PHOTODAMAGE IN THE RETINA

Although light is essential for vision, the trade-off is the
production of reactive oxygen species (ROS) that can cause
damage within the eye (184). In vertebrates, the negative effect
of abnormal light conditions on the retina has been well
reported, including studies in fish species. The existence of
LD cycles is the most important environmental factor acting
as a synchroniser of biological rhythms in vertebrates. For
this reason, lighting conditions and photoperiod have been
frequently used and manipulated in aquaculture to control the
timing of reproduction, overcoming the problems associated
with early maturation, such as reduced growth and feed efficiency
(185, 186). In particular, continuous light (LL) conditions are
commonly used during the production cycle of commercially
relevant fish species to control the onset of puberty, increase
growth rates, manipulate smoltification in salmonids and

improve larvae performances (187–190). However, the use of
artificial light sources and regimes can also have a negative
impact on fish physiology at different levels, triggering the
stress response through activation of the HPI axis, affecting the
immune function and inducing retinal damage (191).

The effect of artificial light regimes during early development
can be particularly detrimental to fish and have negative effects
later during their life cycle. In zebrafish larvae, exposure to
abnormal light-rearing conditions (LL or DD) affects their visual
behavior and adversely influence the physiological development
of the retina, as measured with electroretinogram (ERG) (192).
However, artificial lighting systems are used throughout the
production cycle in the aquaculture industry. Therefore, lights
effects need to be evaluated at different stages of the fish life
cycle, especially in those species showing phototactic behavior,
as these fish would be exposed to high levels of irradiance when
swimming close to the light source (193).

The use of LED technology has increased considerably in the
last few years. LEDs have low electrical running costs, a long-
life span and can be manufactured to yield specific wavelengths
that can be modified according to a species’ environmental
requirements (194–196). However, the potential adverse effects
of these light systems need to be assessed before implementing
their use in aquaculture settings. To this end, several studies
have focused on these effects in different fish species. In Atlantic
salmon, Migaud et al. (191) exposed post-smolt fish to high
intensity white and blue LED lights (LL) and investigated their
effect on retinal morphology. The study found that high intensity
LEDs did not cause retinal damage although the blue lights
triggered a stress response in salmon. Similarly, when Atlantic
cod were exposed to metal halide (LL, 16.58 ± 8.77 W/m2),
high green cathode lights (LL, 0.82 ± 0.15 W/m2) or low green
cathode lights (LL, 0.47 ± 0.18 W/m2), no differences in the
outer nuclear layer (ONL) thickness or ONL nuclei number
were found between groups or in comparison to the control fish
under simulated natural photoperiod (SNP, 0.08 ± 0.03 W/m2)
(197). However, when halogen lights were used, the exposure to
continuous high intensity illumination resulted in the induction
of retinal damage in Atlantic salmon (Salmo salar), Atlantic cod
and European sea bass (198). This damage was characterized by
morphological alterations that included higher melanin density,
forming granules around the photoreceptor cells, photoreceptor
necrosis and clear disorganization within the ONL. Interestingly,
inter-species differences were found, with cod being the most
sensitive species and sea bass the least (cod> salmon> sea bass).
Regional variations in the effect of light on the ONL thickness
and nuclei were also observed, with the central region of the
retina presenting more acute damage. When fish were returned
to a LD cycle, retinal regeneration occurred in the three species
although the recovery time was also species-specific. Thus, cod
showed retinal regeneration after 15 days in LD whereas at least
30 days were needed to observe the same effect in salmon and sea
bass (198). In albino zebrafish, exposure to constant intense light
also resulted in photoreceptor cell death in the central and dorsal
retina, whereas many rods and cods were not affected in the
ventral area. In addition, high levels of cell proliferation in both
the ONL and inner nuclear layer (INL) were observed, suggesting
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a potential compensation for the photoreceptors loss, with large
numbers of PCNA (Proliferating Cell Nuclear Antigen)-positive
cells localized in these layers, indicating a correlation between
the magnitude of retinal damage and cell proliferation response
(199). In normally pigmented individuals, similar results were
found, with high light intensity causing extensive photoreceptor
apoptosis and progenitor cell degeneration, mainly in the dorsal
and central retinas. In particular, retinal damage triggered Müller
glial dedifferentiation and proliferation response of progenitor
cells that then migrated to the ONL (200).

Melatonin is also synthesized in the retina of teleost
fish, showing marked daily rhythmicity. However, an inverse
melatonin profile has been observed in plasma and eye in some
fish species, which could be explained by the existence of two
different AANAT isoforms and suggests a local function for
ocular melatonin (201). One of these roles may be related to
the antioxidant properties of this molecule, which can act as a
free radical scavenger and also as an anti-apoptotic compound
in the retina (202). Actually, recent studies in mammals have
concluded that melatonin reduces and even inhibits retinal
damage associated to oxidative stress. This anti-apoptotic
function could be linked to the inducing effect of melatonin on
antioxidant enzymes, as well as its suppressing effect on pro-
oxidant compounds (203). In fish, the neuroprotective effect
of melatonin against oxidative stress in the retina has not
been evaluated yet. However, the antioxidant properties of this
indolamine and the fact that its production in the eye of some
fish species is higher during the day [reviewed by (204)] suggests
that melatonin may play a role in protecting cells against retinal
photodamage. Further investigations will be needed to prove
this hypothesis.

In summary, there is ample scientific evidence that the use of
artificial lights and protocols can induce retinal damage in fish,
although important differences between light sources and species
have been reported. For this reason, it is crucial to develop and
test novel illumination technologies before their implementation
in aquaculture systems, to ensure that animal welfare is not
compromised. In addition, further studies onmelatonin effects in
the fish retina will be important to enable us to better understand
the cellular mechanisms of retinal photodamage and elucidate
whether this hormone play a role as a neuroprotector against
light-induced oxidative stress in fish.

CONCLUDING REMARKS AND
PRACTICAL ISSUES

Fish physiology is mainly rhythmic, governed by biological clocks
which synchronizes to the (cyclic) environment in order to
improve fitness and ultimately survival. Thus, stress responses
in fish are not always straight forward, as they may respond
differently on a time-dependent basis. Fish in captivity are
challenged by many stressors and the chronobiological approach
depicted here should be considered to improve their welfare.
For instance, in farming conditions fish should be manipulated
at the times when stress is better tolerated, whereas anesthetics
and medicines should be used at the optimal times to enhance
their efficacy while minimizing toxicity and side effects. Finally,
keeping conditions regarding light spectrum and temperature
cycles, should be also considered with care, particularly during
early embryo and larval development as they may have long
lasting irreversible effects. Light contamination at night should
be particularly avoided, providing fish with a “melatonin
friendly” environment.
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In the last years, studies on stress attenuation in fish have progressively grown.

This is mainly due to the interest of institutions, producers, aquarists and consumers

in improving the welfare of farmed fish. In addition to the development of new

technologies to improve environmental conditions of cultured fish, the inclusion of

beneficial additives in the daily meal in order to mitigate the stress response to typical

stressors (netting, overcrowding, handling, etc.) has been an important research topic.

Fish are a highly diverse paraphyletic group (over 27,000 species) though teleost

infraclass include around 96% of fish species. Since those species are distributed

world-wide, a high number of different habitats and vital requirements exist, including

a wide range of environmental conditions determining specifically the stress response.

Although the generalized endocrine response to stress (based on the release of

catecholamines and corticosteroids) is detectable and therefore provides essential

information, a high diversity of physiological effects have been described depending on

species. Moreover, recent omics techniques have provided a powerful tool for detecting

specific differences regarding the stress response. For instance, for transcriptomic

approaches, the gene expression of neuropeptides and other proteins acting as

hormonal precursors during stress has been assessed in some fish species. The

use of different additives in fish diets to mitigate stress responses has been deeply

studied. Besides the species factor, the additive type also plays a pivotal role in the

differentiation of the stress response. In the literature, several types of feed supplements

in different species have been assayed, deriving in a series of physiological responses

which have not focused exclusively on the stress system. Immunological, nutritional

and metabolic changes have been reported in these experiments, always associated

to endocrine processes. The biochemical nature and physiological functionality of

those feed additives strongly affect the stress response and, in fact, these can act
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as neurotransmitters or hormone precursors, energy substrates, cofactors and other

essential elements, implying multi-systematic andmulti-organic responses. In this review,

the different physiological responses among fish species fed stress-attenuating diets

based on biomolecules and minerals have been assessed, focusing on the endocrine

regulation and its physiological effects.

Keywords: fish, stress mitigation, additive, welfare, cortisol

INTRODUCTION

The study of stress in fish has significantly increased in the last
years, mainly due to its close connection to animal welfare. It
is widely accepted that a good fish welfare ensures a successful
culture in fish farms, as in superior animal facilities. In this way,
fish farmers are progressively recognizing it, since survival and
growth, among other factors, are known to decrease under poor
welfare conditions (1).

In spite of the negative perception of stress, it has
been reported that, at low levels, it leads to a necessary
and suitable response for adapting organisms to new
environment/conditions; which is called eustress (2, 3). In
contrast, distress is referred to a more severe and continuous
stressful condition having suppressor effects on immune system
and impairing physiological functions (4).

In fish farming, several zootechnical systems and variables
are adjusted to achieve the maximum animal welfare without
affecting the productive yield, though sometimes the right
balance is very difficult to find. Besides the technological and
infrastructural adaptations, the use of new feeding strategies is
an easy and practical procedure to improve the fish welfare.
In this context, the concept of functional food (providing
beneficial effects on the organism besides the nutritional ones)
has arisen as a new method to improve the general healthy
status, including welfare (5). By this reason, several works on
fish farming are based on the addition of specific substances
with biological activity to conventional commercial fish feed in
order to modulate or attenuate the stress response and, hence,
improve the welfare (6–11). Those works focus on the stress
response in fish fed experimental feeds, after submitting them
to stressful procedures as netting, air exposure, high stocking
density, chasing, and others. The diversity is very high, reporting

many types of stressors and additives, and species, and, despite
the methodological approach is similar, a wide range of stress

markers (e.g., hormones, enzyme activity, immune parameters,

gene expression, etc.) have been reported (12–15). The final goal

is to find the most suitable additive and feeding strategy (i.e.,
time, concentration) to prevent fish from suffering, especially

for typical stress-related processes in fish farming (e.g., grading,
vaccination, fishing, etc.).

The stress response as a complementary study to nutritional

issues has been carried out in many works, especially those

on different protein, lipid, or carbohydrate concentrations and

ratios in the diet (16–18). In this sense, those papers were,

probably, the first evidences of dietary effects on the fish stress

response (19). At the same time, vitamins (mainly ascorbic acid)

were also target substances in that type of studies (20, 21).
Lastly, thanks to new biotechnological protocols developing new
substances, isolating/extracting biomolecules more efficiently, or
including any additive in commercial feeds, many works have
also described the effects of specific molecules (e.g., amino acids,
nucleotides, polysaccharides, etc.) on the stress response (22–24).

For the last decades, studies dealing with proteins and amino
acids have been the most abundant (Figure 1). The versatility
of amino acids may justify their first place in this ranking,
since some of them are directly involved in the neuroendocrine
response. Fatty acids have also been frequently studied, especially
those related to nutritional requirements (docosahexanoic,
arachidonic, and eicosapentanoic acids). Some nucleotides,
including trademarks, are progressively being assayed in fish; in
spite of being stress alleviators, its interaction with the stress axis
still remains unclear (25).

In this review, the literature on fish stress mitigation through
feed additives based on biomolecules and minerals has been
revised and analyzed, aiming at comparing the endocrine and
physiological responses along farmed fish species.

THE ENDOCRINE STRESS RESPONSE IN
FISH

Stress responses have been deeply studied in fish, showing the
key role of the endocrine system in the process. The primary
stress response is based on hormonal cascades; in fact, the stress
response was initially referred as the general adaptative syndrome
(GAS), consisting of a hormonal cascade which promotes
the other responses to stressors (3). HPI (i.e., hypothalamus-
pituitary-interrenal) and HSC (i.e., hypothalamic-sympathetic-
chromaffin) axes are activated during this primary response,
releasing corticosteroids and catecholamines (e.g., adrenaline,
nor-adrenaline and dopamine) into the blood stream. Following
several energy metabolic pathways are enhanced (secondary
response) and, if stress stands, severe failures at organism level
(e.g., pathologies, decreasing growth, dead) may appear (tertiary
response) (26).

The hormonal cascade starts at the hypothalamus level, which
secretes the corticotropin releasing hormone (CRH) to stimulate
the pituitary for releasing ACTH (i.e., adrenocorticotropic
hormone) and MSH (i.e., melanophore stimulating hormone)
into the blood stream. As a result, chromaffin cells, and interrenal
cells from the head-kidney release catecholamines, and cortisol,
respectively. Therefore, plasma cortisol and catecholamines are
considered good acute stress markers. In fact, adrenaline is
considered to be the stress hormone, and cortisol the adaptive
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FIGURE 1 | Percentage of works for (A) every additive type, and (B) every fish species group type in the literature dealing with stress attenuation through feed

additives in fish.

hormone (27). The effects of cortisol on energy metabolism and
other physiological functions is already known in fish, indeed
it is the responsible of the releasing of energy substrates to the
blood stream (secondary response), stimulating glycolysis, and
other metabolic pathways (28). The catecholamines role in the
stress metabolic response is poorly known in fish, meanwhile
it is known that affect carbohydrate and lipids metabolism in
mammals (29).

Thanks to the development of powerful tools on molecular
biology, the knowledge of the HPI signaling in teleosts has
progressed significantly. Many corticosteroid precursors and
receptors have already been characterized in several species,
providing valuable data in the field (30–32). Therefore, the
classical stress markers (plasma hormones, immune parameters,
metabolic rates) are currently studied together specific molecular
biomarkers. Eissa and Huang (33) have revised thoroughly
all genes involved in the fish stress response depending on
stressor type, and stated that the use of genomic tools to study
the candidate genes associated with stress responses are often
unique signatures or imprints of specific stressors and could
determine early signs of stressors. Having this in mind, Kiilerich
et al. (34) have recently studied the expression of glucocorticoid
and mineralocorticoid receptors (i.e., GR1, GR2, and MR) at
different levels, concluding that the control and release of cortisol
after stress is regulated through a negative cortisol feedback
occurring at pituitary level; to the date, it was thought that this
feedback occurred at every level of the HPI axis. Other authors
have concluded that cortisol regulation is also dependent on
circulating glucose concentration under acute stress, reporting
a stimulatory effect of increasing glucose levels on the cortisol
release (35). Despite the latest progress in the subject, the
regulation of stress axis, and mechanisms of cortisol action
in fish still remains unclear. In this sense, Faught et al. (36)
suggested that future studies should be focused on the rapid
non-genomic effects of cortisol, since that pathway could be
crucial in the transcriptional activation of non-GR target genes
during stress.

In the study of other endocrine factors and hormones, beyond
the “classical” cortisol and catecholamines, involved in the fish
stress response, the leptins have been objective for years (37–40).
It seems clear that leptin interacts with the HPI axis at both head-
kidney and pituitary gland levels, though contradictory results
have been published on ACTH stimulation (37, 41). Gorissen and
Flik (41) have stated that this hormone may convey information
on energy status and serve to downplay the stress response,
contributing to the coordination of the balance between eustress
and distress.

Continuing on new hormones and endocrine responses,
Skrzynska et al. (42) have recently studied the involvement of the
vasotocinergic and isotocinergic systems in the stress response.
These authors have stated that changes in avt (arginine vasotocin)
and it (isotocin) gene expression, and in their specific receptors
(avtrv1, avtrv2, and itr) at central (hypothalamus and pituitary)
and peripheral (liver and head-kidney) locations, demonstrate
that vasotocinergic and isotocinergic systems could have a role in
several physiological changes induced by air exposure, including
metabolic and energy repartitioning processes as well as the
control of synthesis and release of several hormones as the final
product of different endocrine pathways.

Lastly, a very innovative and recent study has revealed
the cytoprotective importance of the CRH in the stress-
induced apoptosis during the ontogeny (43). These authors
have demonstrated the relation between CRH and caspase-
3 activity (an effector caspase that execute apoptosis) during
zebrafish (Danio rerio) ontogeny. They also highlighted that it
can be a novel function for CRH during a period of embryonic
development when the HPI axis is not yet matured, and proposed
that it may help mediating the impacts of early life stress on
offspring phenotype.

Summarizing, the literature on endocrine responses to stress
in fish is extensive, and significant advances have been achieved
for the last years. A consensus exist on the HPI (and HSC)
response after stress and the roles of the main factors, including
tissues where they act. Nevertheless, the interaction of the
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axis with other endocrine or metabolic processes is poorly
understood. In most of cases, it has been stated that interaction
exists (thanks to powerful bioindicators) though the intrinsic
biochemical, physiological and endocrine processes involved in
it have not been described yet.

PHYSIOLOGICAL ROLES OF DIETARY
ADDITIVES

Additives are added in food to both improve the physiological
effects on the consumer (probiotics, prebiotics, etc.) and
provide/modify some physical food properties (texture, taste,
color, etc.). The first group includes the stress attenuation, and
diverse works on fish welfare have focused on it. The general
biological functions and physiological roles of those additives
on the fish stress response are summarized in Table 1. For the
last 20 years, over 30 biomolecules and minerals, and around
38 fish species have been assayed in this subject. Below a more
detailed revision depending on every additive group and it main
physiological effects are shown.

Amino Acids
It has been described that stressful husbandry conditions affect
amino acid metabolism in fish (45, 91) and under some stress
situations an increase in the requirement of certain essential
amino acids occurs, which is probably related with the synthesis
of proteins, and other compounds related with the stress response
(92). The role of specific amino acids and their metabolites on key
metabolic pathways that are necessary for growth, immunity or
resistance to environmental stressors and pathogens have been
already reviewed in fish (92–94). Thus, amino acids not only
serve as constituents of proteins and energy sources, but also
can be converted into important biochemically active substances
in vivo.

Arginine is the precursor for the synthesis of nitric oxide (NO)
and polyamines in higher vertebrates. In fish, NO production
plays an important role in cellular defense mechanisms and
has been demonstrated in stimulated macrophages in fish (56).
Moreover, dietary arginine can increase some innate immune
mechanisms and disease resistance of fish following challenge
with Phdp (Photobacterium damselae piscicida) (56).

Branched-chain amino acids (BCAA: leucine, isoleucine and
valine) have an important role in regulating protein synthesis in
skeletal muscle, being leucine the most effective in the regulation
of this process (95). An increased proteolysis activity is usually
observed in fish under stressful situations, together with a
decrease in plasma levels of BCAA (91, 96). Therefore, dietary
supplementation with BCAA, especially leucine, appears to be a
promising tool to mitigate negative effects of stress in fish.

Tryptophan (Trp) is an essential amino acid with important
roles in the regulation of the stress response. It can be converted
to serotonin (5-hydroxytryptamine, 5-HT) and melatonin (97).
Nevertheless, over 95% of the ingested Trp is catabolized
primarily in the liver via kynurenine pathway and produces
niacin, pyruvate and acetyl-CoA as the final products (98). Brain
5-HT is involved in the control of the HPI axis in fish and

a correlation between brain 5-HT activity and plasma cortisol
levels has been observed (99). Indeed, tryptophan directly or
indirectly participates in a wide array of physiological pathways,
as recently reviewed by Hoseini et al. (94). In fact, fish under
stressful husbandry conditions dropped free tryptophan levels in
the plasma compared to control specimens (45, 91). Therefore,
dietary tryptophan supplementation seems to be a promising
nutritional strategy for health management in aquaculture.

Tyrosine is a common precursor for important hormones
and neurotransmitters, including thyroxine, triiodothyronine,
epinephrine, norepinephrine, dopamine, and melanin. These
molecules have important important roles during stress
response in fish, and thus tyrosine could profoundly influence
pigmentation development, feed intake, growth performance,
immunity, and survival of fish (93). It has reported that
plasma free tyrosine concentrations increase during acute stress
responses, suggesting tyrosine importance during stress response
(96, 100).

Methionine also plays an important role in the antioxidant
and immune status of animals as the precursor of cysteine, which
in turn is required for the synthesis of glutathione and taurine
(101). Some studies have reported changes in plasma levels
of methionine in stressed fish compared to control specimens
after both acute and chronic stressful conditions (45, 96, 100).
Methionine metabolism can be directed to three pathways with
health implications: (i) it provides s-adenosylmethionine that is
then decarboxylated and turned into an aminopropane donor
that fuels polyamine turnover (102), (ii) s-adenosylmethionine is
directly involved in methylation of several cell constituents such
as DNA, adrenergic, dopaminergic and serotonergic molecules
(93); (iii) it leads to the transsulfuration pathway that ends
up in the formation of glutathione from homocysteine (103).
Therefore, an eventual increase in the requirement of methionine
in fish under stressful conditions should be carefully considered.

Although the dietary protein is not a dietary additive, that
is a key source for obtaining amino acids with relevant role in
the stress response. In this sense, the effects of dietary protein
(with no details on amino acid composition) concentration and
its relation to lipid/carbohydrate content in fish have been widely
studied, focusing on the nutritional issues (see Introduction).
Regarding stress response, some of them have included stress
markers, searching the optimum protein content to improve fish
health and welfare (14, 16, 17, 47). The endocrine processes are
not described in these works in detail (focused on nutrition),
though it is supposed that the effects on stress response are based
on amino acid content of those experimental diets.

Vitamins
Vitamin C has been the object of the first works on stress
attenuation through vitamin supplements, in both fish and
superior animals (60, 104, 105). Moreover, from a nutritional
perspective, the vitamin C content in fish feed is crucial since
they are not able to synthesize it due to the lack of the enzyme
L-gulonolactone oxidase, which is necessary to convert L-gulonic
acid into vitamin C (106).

Its physiological role related to stress is based on
the steroidogenesis inhibition through peroxidation of
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TABLE 1 | Main additives and its physiological effects assayed in fish in experiments based on the study and reduction of the stress response.

Substance General biological functions Biological function related to

stress system (described in fish)

Amino acids1 Enzymes, antibodies, hormones, pH regulation, cell signaling,

muscle structure

Neurotransmitter and hormone precursors, anti-oxidative

enzymes, enhancer of fatty acid oxidation

Vitamins2 Enzyme cofactor, antioxidants Enzyme cofactor, antioxidant, immunostimulant

Lipids and fatty acids3 Building biological membranes, storing energy Energy reserves, eicosanoid precursors

Prebiotics4 Storing and providing energy, building macromoecules Energy source, prebiotic

Nucleotides5 Nucleic acids building, cell signaling Immune system enhancer

Minerals6 Bone and tooth building, energy production, muscle function,

enzyme cofactor, antioxidant

Enzyme cofactor

1Morrow et al. (17), Hog̈lund et al. (44), Aragão et al. (45), Tejpal et al. (46), Abdel-Tawwab (47), Wolkers et al. (48), Conde-Sieira et al. (35), Hooley et al. (16), Kumar et al. (49),

Morandini et al. (50), Chen et al. (51), Tian et al. (52), Liu et al. (24), Habte-Tsion et al. (14), Babaei et al. (12), Azeredo et al. (7), Herrera et al. (8), Cabanillas-Gámez et al. (6), Harpaz

(53), Papoutsoglou et al. (54), Lepage et al. (55), Costas et al. (56), Costas et al. (57), Martins et al. (58), Hoseini et al. (59).
2Thompson et al. (60), Montero et al. (61), Chen et al. (62), Belo et al. (63), Trenzado et al. (64), Liu et al. (20), Liu et al. (13), Falahatkar et al. (65), Miao et al. (66), Guimarães et al. (67),

Imanpoor et al. (21), Jia et al. (10), Cheng et al. (68), Jakab Sándor et al. (69), Alves Martins et al. (70), Hwang et al. (71), Davis et al. (72).
3Lochmann et al. (73), Van Anholt et al. (74), Van Anholt et al. (75), Bransden et al. (76), Alves Martins et al. (77), Trushenski et al. (78), Araújo and Rosa (79), Xu et al. (80), Rezek et al.

(81), Martins et al. (82).
4Xie et al. (83), Torrecillas et al. (84), Chen et al. (18), Forsatkar et al. (22).
5Tahmasebi-Kohyani et al. (85), Kenari et al. (23), Palermo et al. (86), Fu et al. (25), Fuchs et al. (87).
6Küçükbay et al. (88), Betancor et al. (89), Long et al. (90), Izquierdo et al. (11), Kumar et al. (9).

polyunsaturated lipids and the enhancement of the immune
system (107–110). However, the effect of this supplement
on the cortisol biosynthesis could not be demonstrated in
fish (60, 111). Over 10 years later, Trenzado et al. (64) kept
supporting this lack of connection between cortisol secretion
and vitamin C. Nevertheless, Liu et al. (20) reported the
beneficial immunomodulatory and antioxidant effects of
vitamin C in stressed fish, stating that dietary ascorbic acid
supplements alleviate chronic stress effects. In this sense,
Imanpoor et al. (21) have recently demonstrated that vitamin
C is a beneficial dietary supplement for improving the growth
performance, survival, skeletal development and resistance
to salinity stress of common carp fry. In spite of being
object in many studies, there is not a general statement on
the beneficial effects on vitamin C on the stress resistance,
though no study indicates negative consequences of this
feed supplement.

Vitamin E is required to maintain flesh quality, immunity,
the normal resistance of red blood corpuscles to hemolysis,
the maintenance of normal permeability of capillaries, and
heart muscle (112, 113) Similarly to vitamin C, vitamin
E effects on cultured fish welfare are based in its role
as immunostimulant and antioxidant (61, 114, 115). This
vitamin has been assayed successfully as inhibitor of cortisol
secretion; in fact the most of works highlight this role,
besides its stimulating effects on the immune system (13,
61, 63). Therefore, it seems that vitamin E could be a
better stress alleviator than vitamin C, though the interaction
of both vitamins with the stress system and cortisol and
catecholamines secretion (endocrine and primary response)
would not be clear yet.

Few works have studied the effects on other vitamins on the
stress response, with no clear results regards stress alleviation.
For instance, vitamin A is involved in metabolism, acting
as a steroid hormone regulating growth through glycoprotein

and glycosaminoglycan synthesis, as well as by modulating
cell differentiation (67). In spite of those key physiological
roles, Guimarães et al. (67) have reported that vitamin A
does not provide any protection against cold-induced stress
in fish. In this sense, Miao et al. (66) have demonstrated
that, contrarily to the objective of the above works, long-term
high doses of vitamin D3 lead to chronic stress and weaken
the disease resistance. Therefore, the role and/or effects of
vitamins different to C and E on the fish stress response are
still unknown.

Lipids and Fatty Acids
The study of the effects of dietary lipids on stress response,
based on endocrine markers is relatively recent. Although
some previous works dealt with the stress response in
fish fed different lipid content, these used other markers
as mortality, and oxygen consumption (116–118) One of
the first trials including endocrine effects did not report
promising results since no evidence on the relation between
dietary lipid content and stress response was found (73).
However, several successful works in this subject were published
later (74, 76).

The importance of lipids in stress response is based
on the formation of eicosanoids, particularly prostaglandins.
Concretely, the Arachidonic Acid (ArA) can transform into
eicosanoids, acting as endocrine, paracrine and/or autocrine
modulators of secretory mechanisms in various organs (74). It
has been stated that prostaglandins can modulate the sensitivity
of the hypothalamus–pituitary–adrenal (HPA) axis in mammals
and alter the release of cortisol and corticosterone in the
stress response (119–121). In fish the interaction between
HPI (hypothalamus–pituitary–interrenal) axis (equivalent to
mammal HPA axis) response and dietary ArA has also
demonstrated (122, 123). That is the reason which the most of
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studies on lipids and stress have focused in the dietary ArA as
stress-attenuating biomolecule.

Mainly due to its key nutritional role, other fatty acids
like docosahexanoic and eicosapentanoic acids (DHA
and EPA) have been studied. Similarly, it has stated that
several HUFAs (highly unsaturated fatty acids), for instance
EPA, are also eicosanoid precursors. Besides eicosanoids,
more fundamental processes like alterations in membrane
properties and cellular signal transduction are supposed to
contribute to the consistent effects of dietary DHA/EPA on
growth, stress resistance and certain immune responses (80).
Nevertheless, the knowledge of the interaction between HUFAs
and HPI axis and cortisol secretion is very limited. Ganga
et al. (124) have suggested that the oxygenated products of
cyclooxygenase (COX) and lipoxygenase (LOX) derived from
ArA, EPA, and DHA, respectively, may be major players in
this regulation.

Besides HUFAs studies, the effects of dietary marine
lecithine (mainly phospholipids) on stress response in fish
have also reported (78). Phospholipids are known to facilitate
digestion and absorption of lipids and other nutrients, form
the structure of cellular membranes and support hyperplastic
growth and may serve critical roles as the prevailing carriers
of bioactive long-chain polyunsaturated fatty acids (LC-PUFA)
and precursors to other physiologically active molecules
(125). In fact, Trushenski et al. (78) stated that amending
feed formulations with marine-origin phospholipid appears
to be a practical approach to improve growth and stress
tolerance in fish.

Astaxanthin (carotenoid) has also assayed as fish stress
modulator and it has been reported that improves the acute
overcrowding stress resistance though reduces the weight gain,
CAT (catalase), and lysozyme activities (24). The anti-oxidative
capacities of this compound are already known (126), though
its relation to cortisol secretion decrease was not elucidated
in that work.

Prebiotics
The use of dietary carbohydrates to mitigate stress in fish
has not been studied in deep. In fact, these biomolecules
has been studied in a few works since some prebiotics are
composed of them (22, 84, 127). Mannan-oligosaccharides
(MOS) are one of the most studied prebiotics in fish, stating
that improves growth, feed conversion, stress resistance, and
immune function (128–130). The way which MOS act on the
HPI axis has not been studied, though it is probable that the
stress reduction is a consequence of the general fish welfare
improvement. Therefore, probably the stress attenuation is not
related directly to the consumption of these additives or their
derived biomolecules.

Nucleotides
Nucleotides refer to a group of biochemical substances (a purine
or a pyrimidine base, a ribose or 2-deoxyribose sugar and
one or more phosphate groups) with different physiological
roles and biochemical functions since they are involved, for
instance, in the vital cell function and metabolism, biosynthetic

pathways, or mediating energy metabolism and cell signaling
(131, 132). Dietary nucleotides are considered non-essential
since neither prevailing biochemical malfunctions nor classical
signs of deficiency are developed in endothermic animal models,
and also due to the high rates of their de novo synthesis
(e.g., RNA and DNA) that takes place in the human body,
compared to the actual intake (133). The modulatory effects
of dietary nucleotides on lymphocyte maturation, activation
and proliferation, macrophage phagocytosis, immunoglobulin
responses, gut microbiota as well as genetic expression
of certain cytokines have been reported in endothermic
animals (134).

The roles of nucleotides and metabolites in fish diets have
been studied for almost 20 years, and most research has
shown rather consistent and encouraging beneficial results in
health management of both marine and freshwater fish. Li
and Gatlin (132) reviewed the influence of dietary nucleotides
on innate and adaptive immunity in fish and also suggested
that dietary nucleotides would support lymphoid tissues that
have limited “de novo” synthesizing capacity. Ringø et al. (135)
recently pointed out that exogenous nucleotides have shown
great potential as dietary supplements to enhance immunity
and disease resistance of fish produced in aquaculture. Research
on dietary nucleotides in fish has shown they may improve
growth in early stages of development, alter intestinal structure,
increase stress tolerance as well as modulate innate and adaptive
immune responses (135). Despite occasional inconsistency in
physiological responses, dietary supplementation of nucleotides
has shown rather consistent beneficial influences on various fish
species. In fact, fish fed nucleotide supplemented diets generally
have shown enhanced resistance to viral, bacterial and parasitic
infection (135, 136). However, little attention has been paid to the
role of dietary nucleotides as stress-attenuating additives from an
endocrine perspective.

Minerals
The importance of mineral nutrition in relation to skeletal
metabolism and health in fish have been described by Lall
and Lewis-McCrea (137). Most available literature on mineral
nutrition have aimed at determining optimum levels in diets for
fish, and particular emphasis have been paid in early nutrition
(11). Therefore, much effort needs to be taken to look at specific
mineral requirements during adverse farming conditions to
optimize aquaculture profitability. It seems clear that organic
and inorganic selenium are the most frequent minerals assayed
in order to reduce stress in fish (11, 88–90, 138). Selenium is
cofactor in the antioxidant enzyme glutathione peroxidase (GPx),
playing a crucial role in the oxidative stress (139). Therefore, the
studies are focused on the oxidative stress response, instead of
the endocrine one. All works have stated the beneficial effects of
Se supplements on stress resistance due to its antioxidant action,
and only Long et al. (90) have demonstrated, in addition, their
effects on the inhibition of cortisol secretion. Manganese and
zinc also have been tested (11). Similar to selenium, their roles as
cofactors in several essential enzymes have been related to stress
parameters attenuation, mainly those related to oxidative stress.
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ENDOCRINE AND NEUROENDOCRINE
EFFECTS ALONG SPECIES

The most of endocrine responses in the literature are based on
plasma cortisol analysis, though the use ofmolecularmarkers and
other hormones is progressively growing (see previous sections).
The wide diversity of fish species (over 38), and additive type used
make very difficult to analyse the effects of an only additive along
the species. By that reason, a previous classification according to
taxonomy or other features is appropriate to compare the effects
of additives along species (Figure 1).

Marine Species
The Table 2 shows an overview on the works on stress
attenuation with dietary additives in marine species. The
intensively cultured species have been used in the most
of experiments, such as gilthead seabream (Sparus aurata),
European seabass (Dicentrarchus labrax), Senegal sole (Solea
senegalensis), and turbot (Scophthalmus maximus). Sometimes
there are contradictory results for the same species and
additive (74, 150), although the clear different responses are
usually derived from distinct species, hence those responses are
probably species-specific.

Amino Acids

Fish present additional amino acid requirements when submitted
to stressful rearing conditions, due to either increased energy
demands or for the synthesis of stress-related proteins and other
compounds related with the stress response (92). In this context,
increasing evidence suggests the possibility of mitigating the
negative physiological effects attributed to stress (see previous
sections) by altering dietary amino acid levels.

Studies with flatfish species gathered some knowledge
regarding the role of dietary arginine during chronic stressful
conditions. It was observed that duration (e.g., 14/15 or 60
days) of handling procedures induced different responses in some
innate immune parameters of Senegal sole and turbot (56, 140).
While repeated acute stress reduced NO levels in turbot at
both sampling times, a positive synergistic effect between dietary
arginine and stress was observed in sole. Handling stress also
decreased cellular ROS in both flatfish species, a fact that seems
to be counteracted by dietary arginine after 60 days of feeding in
turbot. Depending on the duration and severity of the stressor,
increased glucocorticoid levels may enhance innate and adaptive
immune responses while similar hormone levels may suppress
immune function. Therefore, the suppressive effect of stress on
the innate immune system is highly disputable and does not
necessarily translate in decrease resistance to infection, as already
suggested elsewhere (2, 159).

Tryptophan has been the central character in many stress
mitigation studies in marine fish. A recent review has covered
the involvement of tryptophan in 5HT and melatonin-mediated
functions, along with its participation in the regulation of the
immune system and its role as an antioxidant and antitoxic agent
in fish (94). In general, a positive effect is usually attributed
to tryptophan nutrition in stressed animals. In marine fish, a
number of studies have already tested the effects of dietary

tryptophan under both acute and chronic stressful conditions.
In those works, feeding strategies varied from 7 to 39 days,
being shorter times more frequently used prior to an acute stress
event. Indeed, 7 and 10 days of tryptophan treatment decreased
aggressive behavior and cannibalism rate in juvenile Atlantic cod
(Gadus morhua) and grouper (Epinephelus coioides), respectively
(141, 142). However, fish fed tryptophan supplemented diets and
reared under non-stressful conditions seem to cope differently
with the stress imposed depending on feeding time. For instance,
Atlantic cod fed tryptophan supplemented diets for 7 days
decreased plasma cortisol and glucose levels immediately after air
exposure, whereas totoaba (Totoaba macdonaldi) and European
seabass fed tryptophan surplus increased plasma cortisol levels
after handling (chasing with a net for 45min) and hypoxia (1mg
oxygen /L during 45min) or an inflammatory insult, respectively,
(6–8). In contrast, Senegalese sole juveniles fed tryptophan
supplemented diets showed a trend to decrease plasma cortisol
levels when reared at high stocking densities (i.e., 31 kg/m2),
which translated in enhanced disease resistance after 39 days
of feeding.

Methionine also seems to play a role in the stress response
probably due to its important role in the transsulfuration
pathway. In a study with gilthead seabream, fish fed dietary
methionine surplus for 30 days decreased plasma lactate levels
and the superoxide dismutase (SOD) isoenzymatic profile (Mn-
SOD and CuZn-SOD) in liver after hypoxia treatment (i.e.,
2.8mg oxygen /L during 5 h) (146). However, European seabass
fed a methionine supplemented diet for 14 days showed the
opposite trend with increased plasma cortisol levels at 24 h after
an inflammatory insult (7).

While most research focused on the effects of individual
dietary amino acids supplementation in fish submitted to
stressful conditions, some other works increased the amount of
digestible protein and therefore the availability of certain amino
acids (AA). For instance, Costas et al. (147) observed that a slight
increase in the availability of some dietary amino acids (arginine,
phenylalanine, and tryptophan) may have a significant impact
on amino acid metabolism, as indicated by changes in plasma
amino acid levels compared to chronically stressed treatments.
Therefore, providing those key AA in the diet may represent
a metabolic advantage during predictable stressful events (e.g.,
handling and overcrowding associated to grading procedures),
which may have a significant effect on growth and welfare in the
longer term. Those effects on metabolism appear to be stronger
after 14 days compared to 28 days of feeding, as indicated by the
reduction of plasma glucose and lactate levels. Still, 28 days of
feeding appear to have some effect on other processes related to
the stress response. In a similar study, Senegalese sole exposed
to a high density for 18 days and fed a diet with an increase in
some key AA, counteracted the negative effects of chronic stress
and increased plasma complement, lysozyme and peroxidase
activities compared to their counterparts fed the control diet (57).

Vitamins

Vitamins have been demonstrated to improve immune responses
to infection by affecting the proliferation and migration of
immune cells such as phagocytic cells, equipping the fish with

Frontiers in Endocrinology | www.frontiersin.org 7 July 2019 | Volume 10 | Article 447105

https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org
https://www.frontiersin.org/journals/endocrinology#articles


Herrera et al. Additives for Fish Stress Mitigation

TABLE 2 | General overview on the effects of dietary additives in marine fish submitted to stressful conditions.

Additive Fish species Stress condition/treatment Feeding

time, days

Test doses Main effects on physiology and

productivity

Arginine Solea senegalensis1 Repeated daily handling (air exposure) 14 4.4–6.9 g 16

g−1 N

↑ ROS; ↑ NO

Scophthalmus

maximus2
Repeated handling (air exposure) every

other day

15; 60 6–11 g 16 g−1 N ↓ Cortisol after 15 days

↑ ROS, plasma NO and ACH50 after

60 days

↑ Lysozyme after 15 and 60 days

No effect on growth

Tryptophan Epinephelus coioides3 Cohabitation for 10 days 10 0–1% ↓ Cannibalism rate

↑ Brain 5-HT contents

↓ Final weight

Gadus morhua 4,5,6 Cohabitation for 7 days 7 2,8% ↓ Aggressive behavior

Air exposure (3min)

Thermal shock (from 10 to 15◦C in 30min)

7 0.26–1.62% ↓ Cortisol and glucose in plasma of

air exposed fish

Confinement stress (i.e., lowering of water

level) for 30min

7 0.4–1.58% ↓ Cortisol in plasma in a dose

dependent manner

Totoaba macdonaldi7 Handling (chasing with a net for 45min)

Hypoxia (1mg oxygen /L during 45min)

21 0.5–2.3% ↑ Cortisol levels in fish submitted to

handling and hypoxia

↓ Telencephalic 5-HT content in

stressed specimens

Dicentrarchus labrax8 Inflammatory insult (intraperitoneal

injection with an inactivated pathogen)

14 1.12–2.24 g 16

g−1 N

↑ Cortisol levels at 24 h after injection

Argyrosomus regius9 Air exposure (3min)

Confinement and netting (3min)

7 0.07–0.11% ↓ Plasma protease activity in fish

submitted to air exposure (after 6 h) or

confinement and netting (after 1 h)

↑ Plasma bactericidal activity in air

exposed fish after 1 h

Solea senegalensis10 High density (31 kg/m2 ) 39 0.44–2.05% ↑ ACH50 in plasma

↑ Disease resistance

Methionine Sparus aurata11 Hypoxia (2.8mg oxygen /L during 5 h) 30 control; control

+ 0.3%

↓ Lactate in plasma

↓ SOD isoforms (Mn-SOD and

CuZn-SOD) in liver

Dicentrarchus labrax8 Inflammatory insult (intraperitoneal

injection with an inactivated pathogen)

14 2.57–4.95 g 16

g−1 N

↑ Cortisol levels at 24 h after injection

Synergistic effects

of amino acids

Solea senegalensis12 Repeated weekly handling (air exposure) 14; 28 Different amino

acid mix

↓ Glucose and lactate after 14 days

↑ Lysozyme activity after 14 days

↑ Brain dopamine levels after 28 days

Solea senegalensis13 High density (12 kg/m2 ) 18 Different amino

acid mix

↓ Cortisol, glucose and lactate

↑ ACH50, lysozyme and peroxidase

levels in plasma

Vitamin C Sparus aurata14 High density (12 Kg/m3) 63 control; control

+ 0.025%

↓ Plasma lysozyme levels

No effect on growth

Sebastes

schlegelii15,16
Exposure to hexavalent chromium (i.e.,

120 and 240 mg/L)

14; 28 0.01–0.0 4% ↓ Plasma cortisol levels only at 14

days

↓ Chromium accumulation in blood,

kidney, liver, gut, gills and muscle

↑ Haematocrit

Vitamin E Sparus aurata14 High density (12 Kg/m3) 63 control; control

+ 0.025%

↓ Plasma lysozyme levels

↑ ACH50 levels in plasma

No effect on growth

Huso huso17 Netting and air exposure (i.e., 1.5min) 48 0.1–0.14% ↓ Plasma glucose levels

↑ WG

Takifugu obscurus18 Exposure to ammonia-nitrogen for 48 h

(i.e., 100 mg/L)

60 0.00023–

0.03116%

↑ Expression levels of HSP, Mn-SOD,

CAT and GR

↓ ROS in blood

↑ WG, SGR

ArA Sparus

aurata19,20,21,22,23
Daily salinity stress (fluctuating salinity over

24 h, from 25 to 40% and back to 25%)

20; 32 0.059–0.586%

live prey DW

↑ Whole-body cortisol levels

(Continued)
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TABLE 2 | Continued

Additive Fish species Stress condition/treatment Feeding

time, days

Test doses Main effects on physiology and

productivity

Air exposure for 90 s 28; 50 0.15–0.75%

Artemia DW

↓ Whole-body cortisol levels

↑ Growth

Confinement: 5·min of submersion in

dip-net

18 0.9–2.4% ↓ Plasmacortisol levels

Crowding stress (43–49 kg/m3) 240 0.2–1.11% FA ↓ Plasma cortisol levels

Crowding stress (90–100 kg/m3) 72 0.13–0.31% TFA ↓ Plasma cortisol and glucose levels

↓ Gene expression in cell- and

tissue-repairing markers, antioxidant

enzymes, nuclear receptors and

transcription factors

Solea

senegalensis24,25,26
Air exposure (2min) 14 0.1–2.3%

Artemia DW

↑ expression levels of PPARα

and PEPCK

Chasing stress test consisting of 5min net

chasing

84 0.5–0.8% TFA ↑ Expression levels of glucocorticoid

receptor 1 and 2 in liver

0.5–0.8% TFA ↑ Expression level of genes related to

defensive response against virus,

antigen differentiation and cytokines

↑ Final weight

Dicentrarchus labrax27 Handling 20 larvae per tank out of the

water in a scoop net for 1min

14 0.3- 1.2% ↓ Gene expression of StAR and

CYP11β

↑ Expression level of genes related to

glucocorticoid receptor complex

EPA Solea

senegalensis25,26
Chasing stress test consisting of 5min net

chasing

84 5.6–12%TFA ↑ Expression levels of glucocorticoid

receptor 1 and 2 in liver

5.6–12%TFA ↑ Expression level of genes related to

defensive response against virus,

antigen differentiation and cytokines

↑ Final weight

DHA Solea

senegalensis25,26
Chasing stress test consisting of 5min net

chasing

84 4.9–11.1%TFA ↑ Expression levels of glucocorticoid

receptor 1 and 2 in liver

4.9–11.1%TFA ↑ Expression level of genes related to

defensive response against virus,

antigen differentiation and cytokines

↑ Final weight

MOS (prebiotic) Dicentrarchus labrax28 Confinement stressor (25 kg/m3) Infection

(intraperitoneal injection with (107 cfu

Vibrio anguillarum/ml)

60 0–0.4% ↓ Plasma cortisol levels in infected

and stressed and infected groups

↑ Plasma cortisol levels in stressed

groups

↓ Side-effects of stress on

microflora profiles

Scophthalmus

maximus29
Handling procedure (combination of

capture, netting/ transfer, and crowding)

112 0–0.6% ↓ Plasma cortisol and glucose levels

at 1 h following acute stress

Nucleotide

(Optimum)*

Sciaenops ocellatus30 Confinement stress (transfer of 3 fish from

110L aquaria to 0.4 L for 15min)

42 0–0.2% No changes in plasma cortisol levels

No effect on growth

Commercial

nucleotides

Gadus morhua31 Acute stress:

Salinity: increase from 35 to 50% during

30 min

Temperature: increase from 12 to 15◦C for

1h

Air exposure for 45 s

38 0.5–1 g/L (live

prey enrichment)

↓ Survival after air exposure

No changes in cortisol levels

↑ HIF-2α in whole larvae

↑ Growth

Nucleotide

(Vannagen)*

Solea solea32 Catching, netting and hand-sorting for

1min

56 0–0.04% ↓ Plasma cortisol and glucose levels

at 1 and 4 h following acute stress

↓ Brain cannabinoid receptor 1A and

1B mRNA expression at 4 h following

acute stress

(Continued)

Frontiers in Endocrinology | www.frontiersin.org 9 July 2019 | Volume 10 | Article 447107

https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org
https://www.frontiersin.org/journals/endocrinology#articles


Herrera et al. Additives for Fish Stress Mitigation

TABLE 2 | Continued

Additive Fish species Stress condition/treatment Feeding

time, days

Test doses Main effects on physiology and

productivity

Scophthalmus

maximus29
Handling procedure (combination of

capture, netting/ transfer, and crowding)

112 0–0.2% ↓ Plasma cortisol and glucose levels

at 1 h following acute stress

Selenium

(inorganic

source–NaSe)

Sparus aurata33 Multiple stressful situations: persecution,

handling and confinement for 2 h.

63 0.00002% ↓ Plasma cortisol levels at 2 h

following acute stress

Selenium (organic

source–SeMet)

5-HT, Serotonin; ACH50, Alternative Complement Pathway; ArA, Arachidonic Acid (20,4n-6); CAT, Catalase; CYP11β, 11β-hydroxylase; DHA, Docosahexaenoic Acid (22,6n-3); DPH,

Days Post-Hatch; DW, Dry Weight; EPA, Eicosapentaenoic Acid (20:5n-3); GR, Glutathione Reductase; HIF, Hypoxia Inducible Factor; HSP, Heat-Shock Proteins; MOS, Mannan

Oligosaccharides; NO, Nitric Oxide; PEPCK, Phosphoenolpyruvate Carboxykinase; PPARα, Peroxisome Proliferator-Activated Receptor Alpha; ROS, Reactive Oxygen Species; SGR,

Specific Growth Rate; SOD, Superoxide Dismutase; StAR, Steroidogenic Acute Regulatory Protein; TFA, Total Fatty Acids; WG, Weight Gain.
1Costas et al. (56); 2Costas et al. (140); 3Hseu et al. (141); 4Höglund et al. (142); 5Herrera et al. (8); 6Basic et al. (143); 7Cabanillas-Gámez et al. (6); 8Azeredo et al. (7); 9Gonzalez-Silvera

et al. (144); 10Azeredo et al. (145); 11Pérez-Jiménez et al. (146); 12Costas et al. (147); 13Costas et al. (57); 14Montero et al. (114); 15Kim et al. (148); 16Kim and Kang (149); 17Falahatkar

et al. (65); 18Cheng et al. (68); 19Koven et al. (150); 20Van Anholt et al. (74); 21Van Anholt et al. (75); 22Ganga et al. (151); 23Pérez-Sánchez et al. (152); 24Alves Martins et al. (77);
25Benítez-Dorta et al. (153); 26Montero et al. (154); 27Montero et al. (155); 28Torrecillas et al. (84); 29Fuchs et al. (87); 30Li et al. (156); 31Lanes et al. (157); 32Palermo et al. (86);
33Mechlaoui et al. (158).
*Optimum®, Vannagen® supplied by Chemoforma (Augst, Switzerland).

an improved resistance to diseases (160). Although vitamin
levels required for fish are influenced by several factors such as
environmental factors, few studies have gathered deep knowledge
on the modulatory role of vitamins during stressful rearing
conditions. Low levels of vitamin E in the diet depleted alternative
complement pathway activity and non-specific haemaglutination
whereas plasma cortisol basal levels were enhanced without a
stressor influence (61). Moreover, this study concluded that fish
fed a vitamin E-deficient diet presented lower stress resistance.

Positive effects of dietary vitamin E supplementation have
observed in several marine fish species submitted to stressful
conditions. For instance, pufferfish (Takifugu obscurus) fed
vitamin E supplemented diets increased relative expression levels
of HSP, Mn-SOD, CAT, and GR whereas ROS levels in blood
decreased after acute exposure to ammonia nitrogen (100 mg/L)
for 48 h (68). Moreover, beluga (Huso huso) submitted to netting
and exposed to air for 1.5min decreased post-stress plasma
glucose levels when fed diets supplemented with vitamin E (65).
In general, the stress response of the belugas observed in this
study was relatively low, and the authors hypothesized that it
could be related to greater resistance and/or weaker physiological
responses to handling stress in that species. Montero et al. (114)
observed that gilthead seabream reared at an initial stocking
density of 12 Kg/m3 (final density: 40 Kg/m3) increased plasma
cortisol and serum lysozyme levels whereas serum ACH50
values decreased. Those fish fed on Vitamin C or a Vitamin E
supplemented diets did not change cortisol levels but a decrease
in lysozyme was observed, in contrast to the augmentation in
serum ACH50 from fish fed the vitamin E supplemented diet.

Lipids and Fatty Acids

It has been reported that dietary lipids can affect the fish
stress response, measured as the ability to cope with different
stressful situations (74, 75, 151, 152). However, the specific
effect of individual fatty acids on the physiological response
to stress is still poorly understood, particularly in terms of

the modulatory role of fatty acids in the activation of the
HPI axis. Arachidonic acid has played a central role in recent
studies concerning research on the modulatory roles of dietary
fatty acids in the fish stress response. The regulatory role
of ArA on the ACTH-induced release of cortisol has been
described in vitro for gilthead seabream by Ganga et al. (122)
and for European seabass by Montero et al. (123). Seabream
juveniles fed diets with a high inclusion of vegetable oils
(e.g., linseed, rapeseed and palm oils), which translated in a
drop in dietary ArA content, increased plasma cortisol levels
following an acute overcrowding stress (124, 152). Similarly,
feeding an ArA-supplemented diet to gilthead seabream juveniles
for 18 days was effective to substantially diminish the cortisol
response after net confinement, compared to fish fed a diet
containing a low ArA level (74). Benítez-Dorta et al. (153)
observed an increase in the level of mRNA expression in
glucocorticoid receptor genes after a chasing stress in Senegalese
sole juveniles fed a fish oil-based diet (i.e., with high ArA
levels) compared to counterpart fed a vegetable oil-based diet
(i.e., with low ArA levels). This decreased response to stress
was in line to what was found in gilthead seabream larvae
submitted to air exposure which showed a considerable drop
in peak cortisol levels 28 or 50 days after hatching when they
were fed ArA-enriched Artemia nauplii (75). In this sense,
European seabass fed dietary ArA supplementation decreased
the level of expression of P450 11β-hydroxylase (enzyme related
cortisol-synthesis), which translated in an increased survival
after an activity test consisting of handling procedures and
transfer to a new tank (155). In contrast, pre-metarmophosing
gilthead seabream larvae daily exposed to fluctuations in salinity
increased whole-body cortisol levels when fed ArA-enriched
Artemiametanauplii for 12 days, which translated in a decreased
in survival at 32 days after hatching (150). These findings
contrast with the survival-promoting effect of high dietary ArA
in larvae exposed only to handling and having relatively low
basal cortisol levels. These authors hypothesized that a clue for
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those physiological mechanisms could be found in mammalian
studies where not only prostaglandin E2 synthesized from the
cyclooxygenase enzymes but other ArA metabolites, such as
leukotrienes produced from the lipoxygenase enzyme system,
also play an important role in ACTH secretion and adrenal
steroidogenesis (121, 161).

The fish stress response is therefore nutritionally regulated,
and in fact a study with gilthead seabream highlights that
the magnitude and persistence of high plasma cortisol levels
after overcrowding exposure are dependent on the source of
dietary oils (124). Indeed, dietary oils source and, hence, dietary
essential fatty acids clearly affected resting levels of glucocorticoid
receptor genes expression in Senegalese sole juveniles and larvae
and European seabass larvae (77, 153, 155). Moreover, Benítez-
Dorta et al. (153) observed and increase in the level of mRNA
expression in glucocorticoid receptor genes after a chasing stress
in Senegalese sole juveniles fed a fish oil-based diet (i.e., with high
ArA levels) compared to specimens fed a vegetable oil-based diet
(i.e., with low ArA levels). Those experimental conditions also
seemed to affect the Senegalese sole immune response to chasing
stress (154).

ArA effects on the stress resistance seem to depend on
ArA doses, species or type of stress, but these effects are also
dependent on the abundance of n-3 LC-PUFA such as EPA and
DHA, since these fatty acids are also essential for stress resistance
(162, 163). For instance, ArA and particularly EPA promoted
cortisol production in gilthead seabream interrenal cells (122).
Moreover, Alves Martins et al. (164) hypothesized that the
abundance of ArA relative to EPA (or their oxidized derivatives)
in Senegalese sole fed a high ArA/EPA diet could influence
StAR (Steroidogenic Acute Regulatory) protein, increase cortisol
production and ultimately imply higher energy expenditure to
cope with stress.

Prebiotics

The effects of prebiotics supplementation in relation to stress
response have scarcely been studied in marine fish. For
instance, Torrecillas et al. (84) observed that European seabass
fed Bio-Mos R© (Alltech, Inc., Nicholasville, KY, USA) dietary
supplementation at 0.4% for 60 days reduced plasma cortisol
levels in response to a challenge with Vibrio anguillarum (i.e.,
107 cfu/ml) or to a combination of infection and confinement
stress (25 kg/m3). In contrast, European seabass submitted to
confinement stress alone and fed Bio-Mos R© increased plasma
cortisol levels following acute stress whereas a lower effect of
stress on gut microbiota was found in those fish fed 0.4%
Bio-Mos R© during 60 days compared to stressed fish fed a
control diet. Indeed, it has been already reported that mannan
oligosaccharides (MOS) supplementation reinforces epithelial
barrier, stimulates the immune system, promotes growth and
feed efficiency and effectively enhances disease resistance in fish
(130). In another study, Fuchs et al. (87) studied the effects of
a 6% yeast (Saccharomyces cerevisiae) product consisting of 20%
beta-1,3/1,6 glucan and 17% MOS (ProEnMune, ProEn Protein,
and Energie GmbH, Soltau, Germany) in turbot juveniles. In
contrast to that observed by Torrecillas et al. (84), it was observed
a decrease in plasma cortisol and glucose levels at 1 h after acute

stress. However, this decrease in both primary and secondary
stress responses observed in stressed turbot could be attributed
to a synergistic effect of both beta-1,3/1,6 glucan and MOS
from yeast, thus making difficult a direct comparison on the
effects of dietary MOS within marine fish species submitted to
stressful conditions.

Nucleotides

Studies on different fish species reported that dietary nucleotide
supplementation enhanced their resistance to parasites,
bacteria and virus (136), while the effects of those particular
additives on the marine fish stress response still remain to
be studied in detail. For instance, a study on Atlantic cod
larvae suggested that a nucleotide-enriched Artemia can benefit
growth whereas those larvae appeared to be more susceptible
to acute stress as evidenced by the lower survival rates and
higher hif-2α transcript levels in whole larvae, although cortisol
levels were not affected (157). Likewise, red drum (Sciaenops
ocellatus) juveniles fed a nucleotide product (i.e., Optimun,
Chemoforma, Basel, Switzerland), which contained cytidine-
50-monophosphate, disodiumuridine-50-monophosphate,
adenosine-50-monophosphate, disodium inosine-50-
monophosphate, disodium guanidine-50-monophosphate,
and RNA, did not change plasma cortisol levels in after a
15min confinement stress test, a fact that could be linked to a
high individual variation among fish (156). In contrast, turbot
juveniles submitted to an acute stress (i.e., handling procedure
consisting of a combination of capture, netting/transfer, and
overcrowding from 13.3 to 32.4 kg m−2) and fed a product of
purified yeast nucleotides for 112 days decreased both plasma
cortisol and glucose levels at 1 h after acute stress. According
to Palermo et al. (86), Senegalese sole fed a commercial source
of nucleotides derived from yeast (VannagenTM, Chemoforma)
for 8 weeks coped well with an acute stress challenge (i.e.,
catching, netting and hand-sorting for 1min) and presented
lower plasma cortisol and glucose levels than control fish.
Those authors also reported a decrease in the mRNA expression
level of brain cannabinoid receptors 1A and 1B in fish fed the
nucleotides supplemented diet after acute stress, and suggested a
putative nucleotides effect on the functional interaction between
endocannabinoid signaling system and stress axis in fish, a fact
that deserves further attention.

Minerals

Indeed, information regarding mineral nutrition in marine fish
is still scarce, a lack of knowledge that seems to increase when
assessing the stress response in fish. Selenium in particular is
an essential trace element for fish (139), and therefore it plays
an important role for growth and conservation of biological
compounds, exerting protection against free radicals resulting
from normal metabolism (165). An increase in dietary selenium
supplementation (i.e., organic and inorganic forms) appeared to
increase stress tolerance in gilthead seabream juveniles, as shown
by the decreased plasma cortisol levels during the stress challenge
in specimens submitted to acute stress (158). The later study
reinforced the importance of dietary selenium supplementation
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on health and welfare in gilthead seabream, similarly to that
reported for salmonid species (see section Minerals below).

Salmonids
Atlantic salmon (Salmo salmo) and rainbow trout
(Onchorhynchus mykiss) are the most studied salmonid species
in the literature (Table 3). Contrarily to marine species, here it
seems that stress responses are more consistent since, for the
same species and additive, the results on stress parameters are
not different among every work (55, 97, 167, 168).

Amino Acids

Research with salmonid species mainly studied the modulatory
role of dietary tryptophan on the fish stress response, including
aggressive behavior, to an acute stressful condition. Moreover,
those studies particularly emphasized on the short-term effect
of tryptophan treatment (e.g., 7 days). For instance, some
recent findings showed that tryptophan administration can
increase serotonergic activity by means of increased 5HT and/or
5HIAA (97, 167, 169); while others suggested a suppression in
aggressive behavior and stress-induced anorexia (44, 166). In
rainbow trout, a 7-day tryptophan treatment suppressed post-
acute stress cortisol increase, a fact that appears to be modulated
by serotonergic activity and ACTH release (97, 167).

In contrast, other researchers investigated if dietary
tryptophan treatment may result in long-lasting effects on
stress responsiveness. For instance, Atlantic salmon decreased
post-acute stress cortisol levels at days 8, 10, and 21 following
a 7-day period tryptophan administration (169, 170). The
importance of tryptophan administration time on serotonergic
activity and cortisol response has also been suggested for the
rainbow trout (97). Still, there are no evidences for the effects
of long-term dietary tryptophan administration on the stress
response in salmonids, a fact that deserves further attention.

Vitamins

Few studies with salmonid species have focused on the
modulatory role of vitamins during stressful rearing conditions.
Thompson et al. (60) did not observe any evidence that dietary
vitamin C (3.17 g/kg diet) can ameliorate the down regulation
of the immune system that occurs following confinement
stress in the Atlantic salmon, suggesting that vitamin C does
not play a fundamental role in regulating the primary stress
response in salmonids. In contrast, dietary supplementation of
vitamin E (275.6 mg/kg diet) appears to enhance the MCV
(Mean Corpuscular Volume) of rainbow trout reared at high
density (i.e., 100 kg/m3) for 42 days (171). 138 also reported a
positive effect of vitamin E supplementation (500 mg/kg diet)
in chronically stressed rainbow trout for 60 days. In this study,
dietary vitamin E reverted the negative effects of high density
(i.e., 80 kg/m3) by decreasing plasma cortisol and lactate levels.
Moreover, those fish also presented and enhanced SOD activity
as well as a decrease in MDA (Malondialdehyde) in liver. A
synergistic effect of dietary vitamin E supplementation with
HUFA was also observed in chronically stressed rainbow trout
with an increase of plasma cortisol after 42 days reared at high
density (64). Those fish also showed an enhanced catalase activity

in liver compared to their low density counterparts, a fact that
could be related to the lipid-soluble character of vitamin E.

Nucleotides

Most studies concerning nucleotides nutrition in salmonids as a
strategy to mitigate the negative effects of stress were performed
with the same commercial additive (Optimun, Chemoforma,
Augst, Switzerland). Rainbow trout fed diets containing 0.15–
0.2% nucleotides from Optimun improved growth performance
and several hematological and biochemical parameters, which
translated in a significant reduction of plasma cortisol and
glucose after exposure to acute handling and overcrowding
stress (85). Leonardi et al. (174) also observed positive health-
related effects in rainbow trout fed the same dietary additive
at 0.03%, since those fish decreased plasma cortisol levels
following challenge with infectious pancreatic necrosis virus.
Furthermore, Caspian brown trout (Salmo trutta caspius) fed an
Optimun supplemented diet (i.e., 0.25%) for 56 days decreased
plasma cortisol and glucose levels after acute confinement and
salinity stress (23). In contrast, rainbow trout fed an Optimun
supplemented diet (i.e., 0.2%) for 45 days did not improve
growth performance nor stressful condition in high density
groups, which decreased serum ACH50 levels (173). Fu et al.
(25) assayed diets supplemented with graded levels of Maxi-
GenTM Plus (Canadian Bio-Systems Inc., Calgary, AB, Canada)
with Atlantic salmon during smoltification, showing that the
hypo-osmoregulatory ability was gradually enhanced when the
dietary inclusion level of Maxi-GenTM Plus augmented from 0.05
to 0.20%, and from 0.20 to 0.60%. Moreover, an inclusion of
0.60% Maxi-GenTM Plus in the diet resulted in lower plasma
cortisol levels of smolting Atlantic salmon compared to fish fed
the control diet, suggesting reduced stress levels in fish during
smoltification and desmoltification.

Minerals

Depending on its chemical form, selenium is a trace element
with a narrow range between requirement and toxicity for most
vertebrates, and thus some studies were undertaken to assess
and recommend safe limits regarding selenium nutrition in
salmonids (175, 176). However, few studies have been conducted
with salmonid species submitted to stressful conditions. Rainbow
trout submitted to acute stressful situations for 7 days or to
crowding conditions (100 kg/m3) for 86 days seem to increase
selenium requirement for an optimal oxidative status (88, 165). In
fact, Naderi et al. (172) reported a drop in serum lactate, alanine
aminotransferase and alkaline phosphatase levels together with
enhanced glutathione peroxidase activity in liver in rainbow
trouts fed Se supplements under high density. Interestingly, in
that study a positive synergistic effect between dietary organic
selenium and vitamin E was observed, which translated in
decreased serum cortisol levels as well as improved superoxide
dismutase activity and low MDA levels in liver.

Cyprinids
In this order more than 10 additives and seven species have
been assayed (Table 4). The most of works have been focused
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TABLE 3 | General overview on the effects of dietary additives in salmonids submitted to stressful conditions.

Additive Fish species Stress condition/treatment Feeding

time, days

Test doses Main effects on physiology and

productivity

Tryptophan Salmo trutta1 Transfer to a new environment 7 0.22–0.06

Trp/LNNA

↓ Stress-induced anorexia

Oncorhynchus

mykiss2,3,4,5,6
Resident/intruder test 3; 7 0.15–1.5% ↓ Aggressive behavior in fish fed for 7 days

Lowering the water level for 2 h 7 0.44–3.57% ↓ Adrenocorticotropic hormone and cortisol

levels in plasma

↑ Brain serotonergic activity

Lowering the water level for 2 h 3; 7; 28 0.044–0.357% ↓ Adrenocorticotropic hormone and cortisol

levels in plasma after 7 days of feeding

Daily social interaction for 1 h followed by a

resident/intruder test after 1 week

7 0.044–0.357% ↓ Aggressive behavior

↓ Cortisol levels in plasma

Lowering the water level for 2 h 7 0.044–0.357% ↓ Cortisol and melatonin levels in plasma

Salmo salar7,8 Confinement for 30min at days 1, 2, and 10

after tryptophan treatment

7 0.4–1.58% ↓ Plasma cortisol levels at day 10 after

tryptophan treatment

Acute crowding stress for 1 h at days 8 and 21

after tryptophan treatment

7 0.44–1.2% ↓ Plasma cortisol levels at days 8 and 21

after tryptophan treatment

Vitamin C Salmo salar9 Confinement for 2 h 161 0.0082–0.317% ↓ Plasma antibody titers at 43

days post-immunization

Vitamin E Oncorhynchus

mykiss10,11
High density (100 kg/m3 ) 42 0.00256–

0.02756%

↑ MCV

High density (80 kg/m3) 60 0.010475–

0.060075%

↓ Cortisol and lactate levels in plasma

↑ SOD in liver

↓ MDA in liver

↑ SGR, WG, FI

Nucleotide (Optimum)* Oncorhynchus

mykiss12,13
Netting, air exposure for 30 s, and crowding at

100 kg/m3 for 3 h

56 0–0.2% ↓ Plasma cortisol levels in infected and

stressed and infected groups

↑ Plasma cortisol levels in stressed groups

↓ Side-effects of stress on microflora profiles

↑ WG, FE

High density (30 kg/m3) 45 0.2% ↓ Serum urea and ACH50 levels

No effect on growth

Salmo trutta

caspius14
Netting, air exposure for 30 s, and crowding at

100 kg/m3 for 3 h

56 0.15–0.5% ↓ Plasma cortisol and glucose levels at 8 h

following acute stress

↑ Final weight

Transfer to salt water (18 g/L) 0.15–0.5% ↓ Plasma cortisol levels at 120 h following

acute stress

↑ Final weight

Nucleotide (Maxi-Gen

Plus)#
Salmo salar15 Smoltification process 122 0.05–0.60% ↓ Plasma cortisol levels

↑ WG, FI

Selenium Oncorhynchus

mykiss11,16,17
High density (80 kg/m3) 60 0.000035–

0.000135%

↓ Serum lactate, ALP and ALT levels

↑ Hepatic GPx activity

↓ SOD activity in liver

No effects on growth

Acute stress for 7 days consisting of a

combination of daily crowding and handling

(i.e., netting and air exposure for 30 s) twice a

day

70 0.00073–

0.00074%

↑ ROS in blood

↑ Hepatic MDA

↑ Whole body copper

High density (100 kg/m3 ) 84 0.00008–

0.00011%

↓ MDA levels in serum and muscle

↓ Serum GPx activity

↓ HSP70 expression in muscle

↑ Final weight, FI

ACH50, Alternative Complement Pathway; ALT, Alanine Aminotransferase; ALP, Alkaline Phosphatase; FE, Feed Efficiency; FI, Feed Intake; GPx, Glutathione Peroxidase; HSP70, Heat

Shock Protein 70; LNNA, Large Neutral Amino Acids; MCV, Mean Corpuscular Volume; MDA, Malondialdehyde; ROS, Reactive Oxygen Species; SGR, Specific Growth Rate; SOD,

Superoxide Dismutase; Trp, Tryptophan; WG, Weight Gain.
1Höglund et al. (44); 2Winberg et al. (166); 3Lepage et al. (167); 4Lepage et al. (97); 5Lepage et al. (168); 6Lepage et al. (55); 7Basic et al. (169); 8Höglund et al. (170); 9Thompson et al.

(60); 10Trenzado et al. (171); 11Naderi et al. (172); 12Tahmasebi-Kohyani et al. (85); 13Yousefi et al. (173); 14Kenari et al. (23); 15Fu et al. (25); 16 Rider et al. (165); 17Küçükbay et al. (88).
*Optimum® supplied by Chemoforma (Augst, Switzerland).
#Maxi-Gen Plus® supplied by Canadian Bio-Systems Inc. (Calgary, AB, Canada).
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TABLE 4 | General overview on the effects of dietary additives in cyprinids submitted to stressful conditions.

Additive Fish species Stress condition/treatment Feeding time,

days

Test

doses

Main effects on physiology and

productivity

Alanine and glutamine Cyprinus carpio1 High density (80 g/L) 56 0–1% ↑ Serum IGF-I and insulin

↓ Serum glucagon

↑ GR gene expression

↑ WG

Tryptophan Labeo rohita2 Thermal stress (34 and 38◦C) 45 0–1.42% ↓ Blood glucose and serum cortisol

↓ AST and ALT activities

↓ LDH and MDH activities

↓ AchE, CAT, and SOD activities

↑ RGR, PER

Cirrhinus mrigala3 Crowding stress (30 fish/75 L,

3-fold control group)

60 0–2.72% ↓ Blood glucose and plasma cortisol

↓ AST and ALT activities

↓ MDH activity

↑ AchE activity

↑ SGR, PER

Taurine Mylopharyngodon

piceus4
Crowding stress (100 g/L) for 24 h

after experimental feeding

56 0–0.4% ↓ Serum glucose and cortisol

↑ Serum complement C3,lysozyme, SOD

and glutathione

↑ WG

Vitamin C Cyprinus carpio5 Salinity stress (0, 6 and 2 ppt) 48 0–0.1% ↓ Blood cortisol

↓ Skeletal malformations

Vitamins C + E (Notemigonus

crysoleucas)6
Vitamins C + E combinations and

thermal stress (37◦C)
119 0–

0.000038%

vit E

0–

0.000222%

vit C

Different interactive effects

↑ACH50
No effect on growth

Vitamin E (Megalobrama

amblycephala)7
Crowding stress for 48 h (100 g/L) 60 0.1–0.6% ↓ Serum glucose and cortisol

↓ Serum ALT and lysozyme activities

↑ Serum proteins

↓ Hepatic MDA content

↑ HSP70 expression

↑ SGR

Vitamins mix (C, B1, B6, and

E)

Cyprinus carpio8 Handling (confinement) stress: 2 cm

water depth for 2 h

14 Different

mixes

↓ Mucus immunoglobulins

No effect on growth

Lipids (Notemigonus

crysoleucas)9
Crowding stress (4 cm water depth

for 2 h)

42 4–13%

different

oils

No changes in cortisol response

MOS (prebiotic) (Danio rerio)10 Starvation, live transport and tank

cleaning

56 0–0.4% ↓ Cortisol and CRH gene expression

Selenium (Megalobrama

amblycephala)11
Nitrite exposure (15 mg/L for 96 h) 60 0–

0.00005%

↓ Serum cortisol

↓ Hepatic MDA content

↑ SOD, CAT and GPx

activities and transcriptions

ACH50, Alternative Complement Activity; AchE, Acetylcholine Esterase; ALT, Alanine Aminotransferase; AST, Aspartate Aminotransferase; CAT, Catalase;; CRH, Corticotropin Releasing

Hormone; GR, Glucocorticoid Receptor; HSP70, Heat Shock Protein 70 KDa; IGF-I, Insuline Growth Factor I; LDH, Lactate Dehydrogenase; MDA, Malondialdehyde; MDH, Malate

Dehydrogenase; MOS, mannan-oligosaccharide; PER, Protein Efficiency Ratio; RGR, Relative Growth Rate; SGR, Specific Growth Rate; SOD, Superoxide Dismutase; WG, Weight Gain.
1Chen et al. (51); 2Kumar et al. (49); 3Tejpal et al. (46); 4Tian et al. (52); 5 Imanpoor et al. (21); 6Chen et al. (62); 7Liu et al. (13); 8Sándor et al. (69); 9Lochmann et al. (73); 10Forsatkar

et al. (22); 11Long et al. (90).

on amino acids and vitamins. Only two works have dealt with
minerals and carbohydrates (22, 90).

Amino Acids

It seems clear that amino acid effects, concretely tryptophan
(Trp) supplements, are consistent along cyprinid species. In
this sense Kumar et al. (49) and Tejpal et al. (46) have
reported significant cortisol secretion decreases after stress in
rohu (Labeo rohita) and mrigal (Cirrhinus mrigala), respectively.

In addition, abovementioned two studies papers have stated a

growth enhancement after feeding Trp-enriched diets for 45–

60 days. The amount of Trp in diet have been very similar in

both papers, hence 1–1.5% Trp on dry matter basis is effective

to attenuate the stress response in cyprinids. In addition, the

stressors were different in both works, hence it seems that the

stress response in cyprinids fed Trp supplements is enough

consistent along species. Tejpal et al. (46) have also established a
linear relation between Trp content and plasma cortisol for both
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stressed (overcrowding) and non-stressed rohus, and have used
that mathematical equation to define the optimum Trp content
(1.36%) for the highest stress attenuation.

Other amino acids like alanine (Ala) and glutamine (Gln)
did not affect cortisol response in carp (Cyprinus carpio)
though growth performance was significantly improved (51).
Spite of the lack of cortisol response in this work, other
hormones variations reflected the addition of dietary amino
acids. In fact, IGF-I (Insulin-like Growth Factor I) and insulin
significantly increased with dietary Ala-Gln supplementation
under overcrowding stress. Therefore, the authors concluded
that Ala-Gln supplements enhance the ability of fish resistance
to overcrowding stress, which may contribute to the better
regulation ability for hormone secretion on fish.

Regards dietary total protein, Habte-Tsion et al. (14) have
studied the effects of different protein ratios (28–36%) in feed
on the stress response in the blunt snout bream (Megalobrama
amblycephala). Under thermal stress, the cortisol secretion was
minimum in fish fed diet containing 32% dietary protein. This
treatment also showed positive results in other immune and
stress oxidative parameters. Additionally, the authors reported
that the specific molecular mechanisms by which the optimum
dietary protein level reduced the level of cortisol in high
temperature stressed blunt snout breams need to be researched.

The relation between dietary lipid and protein contents, and
stress response have also tested in cyprinids. In those cases,
the role of dietary proteins seems to more decisive than lipids
since golden shiners did not show significant differences in
the endocrine stress response depending on dietary lipid level,
meanwhile Habte-Tsion et al. (14) stated that the optimum
protein content for decreasing the cortisol response significantly
in blunt snout bream was 32%.

Vitamins

Vitamins C and E have been assayed in some Cyprinid species.
The beneficial antioxidant properties and the reduction of
cortisol response after stress are common results in recent studies
(13, 21, 62, 66, 69). Moreover, these have reported other positive
effects like immune system and growth enhancement, higher
survival and lower skeleton abnormalities. However, several
differences have been detected among species. It seems that the
vitamin C requirements to improve stress resistance in carp
is around 50 mg/Kg diet, while golden shiners (Notemigonus
crysoleucas) need more than 98 mg/Kg (21, 62). Similarly, 600
mg/Kg diet of vitamin E are reported to be enough to reduce the
post-stress cortisol secretion in blunt snout bream (Megalobrama
amblycephala) (13), and Chen et al. (62) point that 38 mg/Kg diet
is a suitable vitamin E concentration to improve stress resistance
in the golden shiner. In those cases, the vitamin requirements for
improving the stress response are clearly different along species,
which could be expectable since those requirements are in that
way from a nutritional perspective.

Prebiotics

The inclusion of prebiotics, particularly MOS (mannan-
oligosaccharides), in the diet have also demonstrated to
have stress-attenuating effects at endocrine level in cyprinids

(22). Both cortisol secretion and CRH expression level were
significantly reduced after feed deprivation stress in zebrafish
fed MOS. In addition, the inclusion of MOS in the diet of
zebrafish reduced some anxiety-like behaviors in fish submitted
to feed deprivation. Those authors stated that all the physiological
alterations were the results of alteration in intestinal microbiota,
and the modulation of gut microbiota by MOS play a role in the
stress reactivity of zebrafish.

Other Freshwater Species
As in the other groups, amino acids and proteins are the most
frequent substances assayed in these 11 different freshwater
(excluding cyprinids) fish species (Table 5). This is the most
heterogeneous group regards both species and stress response.
Opposite endocrine stress responses have been described for
every additive type in these species.

Amino Acids

In this group, the works have based on two different biomolecules
content in diet: protein/lipid/carbohydrate ratios or tryptophan
(Trp), and tilapia (Oreochromis niloticus) being themost frequent
species. In the former, the study of stress response was a
secondary objective beyond the nutritional aspects, meanwhile
that response was the main objective in the latter.

Generally, the dietary protein level does not seem to have
a significant effect on the stress response in these freshwater
species. Concretely, Hooley et al. (16) did not report any plasma
cortisol and glucose variations during hauling stress in tilapia;
however, these authors pointed that it could be due to a limited
ability to detect differences due to the limited number of fish
examined at each time point and the high variability in responses
between fish within a treatment. Neither Abdel-Tawwab (47)
detected differences in plasma cortisol due to overcrowding stress
in tilapias fed several protein levels. Lastly, Siberian sturgeon
(Acipenser bareii) fed different protein, lipids, and carbohydrates
levels only showed lower values of cortisol for low carbohydrate
diets, regardless protein levels (12).

The effects of Trp-enriched diets on stress and other
physiological parameters have been studied in freshwater species.
Interestingly, three species have showed a similar stress response,
presenting lower cortisol levels in Trp treatments for non-
stressed fish, and no variation between those treatments when
comparing pre- and post-stress cortisol. Concretely, Brycon
amazonicus fed Trp supplements reduced their aggressiveness
though the plasma cortisol did not vary (48). Contrarily,
Martins et al. (58) found differences in plasma cortisol for
undisturbed tilapias fed Trp supplements although, curiously,
it increased significantly after stress for all treatments (control
and Trp added). These authors indicate that despite altering
the serotonergic activity, Trp-enriched diets do not always affect
the HPI reactivity, as reported by Wolkers et al. (48). Despite
Hoseini et al. (59) reported similar responses in Persian sturgeon
(A. persicus), they went deeper in the study of the endocrine
stress response and assessed the variations of serum thyroid
hormones. In this sense, these authors have stated that exogenous
tryptophan decreases serum levels of thyroid hormones probably
via increase in serotonergic activity and elevated cortisol levels.
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TABLE 5 | General overview on the effects of dietary additives in other freshwater species submitted to stressful conditions.

Additive Fish species Stress

condition/treatment

Feeding time,

days

Test doses Main effects on physiology and

productivity

Tryptophan Brycon

amazonicus1
Aggressiveness test

(resident-intruder)

7 0.94–3.76% ↓ Aggressiveness

No effect on physiological stress markers

Cichlasoma

dimerus2
Normal experimental

conditions

28 control; control

+ 2.1%

↓ Plasma cortisol

↓ Brain serotonergic activity

No effect on growth

Acipenser

persicus3
Confinement (0.5 h) 5; 10; 15 0.28–0.78% ↓ Serum thyroid hormones

↑ Serum cortisol

Oreochromis

niloticus4
Crowding (50% water

volume)+chasing (20min)

7 0.48–4.45% ↑ Brain serotonin metabolites

No effect on the HPI axis

Protein levels Oreochromis

niloticus5,6
Experimental conditions

(different protein levels)

70 25–45% ↑ Serum glucose, proteins and lipids

↑ ALT and AST activities

↑ SGR, PER, FI

Simulated haul 84 28–36% No effect on physiological stress markers

No differences for WG, FI

↓ FCR

Acipenser

baerii7
Experimental conditions

(different protein levels)

70 38–44% ↓ Amylase, SOD and CAT activities

↓ Plasma glucose

↑ SGR, WG

Vitamin C Leiocassis

longirostris8
Ammonia (1.03 and 9.6

mg/L total ammonia

nitrogen)

60 0.0038–0.63% Keeping of serum lysozyme and hepatic SOD

activities

↑ SGR, FR

Vitamin E Piaractus

mesopotamicus9
High stocking density (20

Kg/m3)

140 0–0.045% ↓ Plasma cortisol

↑ Kinetic activity of macrophage recruitment

↑ Giant cell formation

Commercial

vitamin

premix

Ictalurus

punctatus10
Confinement (1 and 6 h) 540 Different mixes No effect on plasma cortisol

DHA Prochilodus

lineatus11
Air exposure (60 s) 17 0.13–6.64% TFA

(in Artemia)

↓ Whole-body cortisol

No effect on growth

Astaxanthin Pelteobagrus

fulvidraco12
Crowding stress (2 days at

150 g/L)

60 0–0.008%g ↓ Serum cortisol and glucose

↓ ALT, AST, ALP and MDA activities

↓ Serum lysozyme activity

↓ SGR, WG

Zn Pangasius

hypophthalmus13
High lead (Pb) concentration

(4 ppm)

75 0–0.002% ↓ Serum cortisol and HSP70 expression

↓ Blood glucose

↑ AChE activity

↓ CAT, SOD, GST, LPO activities

AchE, Acetylcholine Esterase; ALT, Alanine Aminotransferase; ALP, alkaline phosphatase AST, Aspartate Aminotransferase; CAT, Catalase; FCR, Factor Conversion Rate; FI, Feed Intake;

FR, Feeding Rate; GST, Glutathione Transferase HPI, hypothalamus-pituitary-interrenal; LPO, Lipid Peroxydase; MDA, Malondialdehyde;; PER, Protein Efficiency Ratio; SGR, Specific

Growth Rate; SOD, Superoxide Dismutase; TFA, Total Fatty Acids; WG, Weight Gain.
1Wolkers et al. (48); 2Morandini et al. (50); 3Hoseini et al. (59); 4Martins et al. (58); 5Abdel-Tawwab (47); 6Hooley et al. (16); 7Babaei et al. (12); 8Liu et al. (20); 9Belo et al. (63); 10Davis

et al. (72); 11Araújo and Rosa (79); 12Liu et al. (24); 13Kumar et al. (9).

Only Morandini et al. (50) have reported a post-stress cortisol
decrease in chanchita (Cichlasoma dimerus) fed Trp supplements.
They also described an enhancement of the serotonergic activity
hence it seems to be a common physiological reaction derived
from this type of diets in studied freshwater species (see above).
Those authors also analyzed the plasma sex steroid variations
depending on the diet and did not find any differences in
those hormones.

Vitamins

Commercial vitamin premix did not seem to affect the stress
response (cortisol levels) in the Channel catfish (Ictalurus
punctatus) (72). However, Belo et al. (63) reported that
plasma cortisol did not vary in pacu (Piaractus mesopotamicus)

submitted to overcrowding stress when fed vitamin E supplement
(450 mg/Kg). These authors concluded that Vitamin E would
seem to act on the stress response of pacus by preventing a stress-
related immunosuppression. Contrarily, the serum cortisol levels
in Leiocassis longirostris submitted to ammonia stress were not
affected by the vitamin C supplements, and it was reported that
chronic high-ammonia stress showed a tendency to inhibit the
cortisol response (20).

Lipids and Fatty Acids

In this topic, Araújo and Rosa (79) researched on the effects of the
docosaheanoic acid (DHA) in the feeding of Prochilodus lineatus
larvae. The supplements were provided to the live prey (Artemia)
during 16 h prior feeding. They stated that supplementation of
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DHA-rich live feed to P. lineatus larvae can attenuate cortisol
response to an acute stressor such as air exposure during
metamorphosis, when higher mortalities are expected, and the
physiological mechanisms underlying the effect of DHA on the
larval stress response still need to be elucidated.

Finally, astaxanthin has also been used to reduce stress
in yellow catfish (Pelteobagrus fulvidraco), stating that this
supplement (80 mg/Kg) can improve the anti-oxidative
capabilities, hepatic HSP70 levels, and acute overcrowding stress
resistance of yellow catfish (24).

Minerals

Kumar et al. (9) performed a comprehensive work on the effects
of zinc (Zn) supplements on several stressors in the catfish
(Pangasius hypophthalmus). They studied the integrative stress
response to high lead (Pb) concentration, assessing immune,
endocrine, metabolic, and oxidative stress parameters. Both
plasma stress markers (cortisol and glucose) and oxidative stress
enzyme activities improved in fish fed Zn supplements. In
addition, immune parameters were enhanced and survival was
higher in the experimental diets. Concluding, Zn supplements
(10–20 mg/Kg) improved the integrative stress response
(endocrine and oxidative) to lead toxicity.

CONCLUSIONS

Overall, the possibility of mitigating the negative effects of
stress and disease susceptibility of fish through dietary additives
supplementation seems realistic, in particular concerning
functional amino acids, fatty acids and minerals. Nevertheless,
these nutritional strategies need to take into account several
extrinsic (e.g., rearing systems, temperature, salinity, etc.) and
intrinsic (e.g., age, genetic background, etc.) factors which in

some cases could require tailor-made formulations. The link
among the catabolism of those biomolecules and the HPI
axis still remains unclear. For instance, the mechanism which
serotonin coming from Trp supplements interact with the
cortisol/corticosteroid secretion is poorly known.

Further studies are required for validating this nutritional
strategy in order to improve welfare and survival in chronically
stressed fish. It was observed that both stress response and
immune function vary with type of stressors and stress duration.
Therefore, once an optimal level of supplementation is achieved
for a certain nutrient/additive and for a given species, its
beneficial effects should be validated during different stressful
conditions commonly found in aquaculture.
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