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Although natural opiates have been used for centuries, and semi-synthetic, and synthetic opiates 
have been used and abused for decades, these last few years have witnessed an incredible increase in 
opioid abuse and deaths due to overdose.  With this opioid crisis has come an increase in research 
into the mechanisms of analgesia, abuse, and addiction, interaction with other drugs, anatomical 
and imaging studies, as well as ethical discussions of opioid use and abuse. This Research Topic, 
Current Topics in Opioid Research, presents 7 minireviews, 2 hypotheses/perspectives, and 16 
original research articles, from 13 different countries, and has articles that span the field of opioid 
research, gives insight into ongoing topics, and provides a basis for further study and potential 
reduction in severity of the opioid crisis.

HYPOTHESIS AND THEORY/PERSPECTIVE ARTICLES

Drug Addiction: From Neuroscience to Ethics by Farisco et al. presents a novel hypothesis concerning 
drug addiction. The authors suggest that in addition to well-described neuronal/neurochemical 
factors contributing to addictive dynamics, the socioeconomic status also plays a causal role in drug 
addiction through epigenetic processes that require additional reward in the brain. This provides a 
strong base for a sociopolitical form of responsibility for preventing and managing the addiction 
crisis. For this reason, the authors consider addiction to be a social disorder in addition to a medical 
and mental disorder.

The Clinical Concept of Opioid Addiction Since 1877: Still Wanting After All These Years by 
Schütz et al. proposes a comprehensive theory of addiction that uses life and social sciences, dynamic 
and complex systems theory, and philosophical–phenomenological approaches to understand the 
full complexity of addiction while integrating neurobiological, psychological, and sociocultural 
aspects. According to this theory, addiction can be viewed as a habit, induced by a network of 
mental, behavioral, and social processes, which not only shape the addict’s perceptions and actions, 
but also cause one to self-maintain.

REWARD/ADDICTION

In Management of Opioid Addiction With Opioid Substitution Treatments: Beyond Methadone 
and Buprenorphine, Noble and Marie discuss drug therapies for addiction treatment. They 
discuss the benefits and detriments of the two mu opioid agonists, with a brief discussion of drug 
characteristics leading to these properties. They also discuss the use of the opioid antagonist 
naltrexone and potential leads toward next-generation medications, including the use of biased 
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agonists, nociception/orphanin (NOP) receptor agonists, or 
potentially enkephalin degradation inhibitors.

In Enkephalin as a Pivotal Player in Neuroadaptations Related 
to Psychostimulant Addiction Mongi-Bragato et al. address 
changes in enkephalin levels in the mesocorticolimbic reward 
circuitry due to administration of psychostimulants. The authors 
discuss how these changes affect signaling of mu and delta opioid 
receptors and the importance of receptor activation with respect 
to cocaine- and amphetamine-induced behavioral sensitization, 
conditioned place preference (CPP), and self-administration.

Previously, Li et al. had demonstrated that activation of 
Trx-1, an important redox regulating protein, could protect 
mice from the rewarding effects of morphine. In Overexpression 
of Thioredoxin-1 Blocks Morphine-Induced Conditioned 
Place Preference Through Regulating the Interaction of 
γ-Aminobutyric Acid and Dopamine Systems, these authors 
demonstrate that morphine-induced CPP was blocked in Trx-1 
overexpressing transgenic mice. Furthermore, Trx-1 expression 
was induced by morphine in the ventral tegmental area (VTA) 
and nucleus accumbens (NAc) in wild-type (WT) mice. The 
level of dopamine, expression of tyrosine hydroxylase (TH), and 
D1 dopamine receptor as well as levels of GABA and GABAB- 
receptors were altered by chronic morphine. Therefore, Trx-1 
may play a role in blocking CPP induced by morphine through 
regulating the expressions of D1, TH, and GABAB receptors in 
the VTA and NAc.

Two papers described effects on drug abuse models subsequent 
to activation of NOP receptors, the fourth member of the opioid 
receptor family. In NOP receptor agonist Ro 64-6198 decreases 
escalation of cocaine self-administration in rats genetically 
selected for alcohol preference, Li et al. examine the effect of NOP 
receptor agonist Ro 64-6198 on alcohol self-administration in 
Marchigian Sardinian alcohol-preferring (msP) rats that have an 
upregulated NOP receptor system and in Wistar control rats. Ro 
64-6198 was better able to attenuate cocaine self-administration 
in msP than in Wistar rats.

In The Nociceptin Receptor (NOP) Agonist AT-312 Blocks 
Acquisition of Morphine- and Cocaine-Induced Conditioned 
Place Preference in Mice, Zaveri et al. discuss the actions of 
AT-312, a selective NOP agonist, on morphine and cocaine 
CPP. AT-312 blocked acquisition of both morphine and cocaine 
as well as locomotor stimulation in WT but not NOP receptor 
knockout (KO) mice. These results demonstrate that NOP 
agonists may have a potential as pharmacotherapy for opioid and 
psychostimulant addiction or for treating polydrug addiction.

Three papers focused on the relationship between opiates 
and alcohol abuse. In Binge-Like Exposure to Ethanol Enhances 
Morphine’s Anti-nociception in B6 Mice, Chang et al. hypothesize 
that binge drinking potentiates onset and progression of opioid use 
disorder (OUD). To examine this, the authors examined and found 
an increase in inflammatory cytokines and mu receptor mRNA in 
the striatum after binge ethanol drinking. This corresponded with 
an increase in potency of morphine at 3 mg/kg in the hotplate test. 
Such effect might initiate the onset and progression of OUDs.

Granholm et al. described the effects of ethanol exposure 
on the level of opioid peptides in Episodic Ethanol Exposure 
in Adolescent Rats Causes Residual Alterations in Endogenous 

Opioid Peptides. To mimic binge drinking in adolescents, the 
authors administered ethanol to rats 3 days per week from weeks 
4 to 9. Beta-endorphin, dynorphin B, and Met-enkephalin-
Arg6Phe7 (MEAP) were then analyzed 2 h and 3 weeks after the 
final ethanol administration. Changes were observed for each 
peptide in selected brain regions. These alterations in opioid 
networks after adolescent ethanol exposure could explain, in 
part, the increased risk for high ethanol consumption later in life.

In Critical Role for Gi/o-Protein Activity in the Dorsal 
Striatum in the Reduction of Voluntary Alcohol Intake in C57Bl/6 
Mice, Robins et al. explore the hypothesis that dorsal striatal 
Gi/o-protein activation is sufficient to reduce voluntary alcohol 
intake. The authors examined this hypothesis in two ways. In one 
set of experiments, they expressed the inhibitory, Gi/o-coupled, 
M4 DREADD in the dorsal striatum. In these animals, receptor 
activation with CNO reduced consumption of 10% ethanol 
in a two-bottle choice paradigm. In other experiments, delta 
opioid receptor activation with the Gi/o-biased agonist TAN-
67 reduced alcohol consumption in WT and β-arrestin-2 KO 
animals, while activation with the β-arrestin-2-biased agonist 
SNC80 increased alcohol intake in WT but decreased intake in 
β-arrestin-2 KO animals. These results suggest that activation 
of Gi/o-coupled receptors in the striatum, with biased agonists, 
could be a mechanism for treating alcohol use disorder.

In CB1 Agonism Alters Addiction-Related Behaviors in Mice 
Lacking Mu or Delta Opioid Receptors, Roeckel et al. investigate 
the interaction between opioid and cannabinoid CB1 receptors 
with respect to pain, withdrawal, anxiety, and depression using 
the selective CB1 agonist ACEA, as well as mu and delta opioid 
receptor KO mice. The authors demonstrated that ACEA had 
no antinociceptive activity of its own in the warmwater tail 
withdrawal test. Naloxone was able to precipitate withdrawal 
from chronic ACEA in mice of all genotypes. Anxiety-like 
behavior was independent of genotype and ACEA treatment, 
but a pro-depressive effect of ACEA was absent in mu KO mice. 
These studies indicate an interaction between opioid and CB1 
receptors in withdrawal and depression.

Butelman et al. examine opioid-dependent patients to 
determine if other drug use was a predictor of ultimate opioid 
dependence. In Non-medical Cannabis Self-Exposure as a 
Dimensional Predictor of Opioid Dependence Diagnosis: 
A Propensity Score Matched Analysis, the authors used an 
outpatient observational study to examine age of onset of 
heaviest use of cannabis, cocaine, and alcohol and how that 
correlated with the onset of opioid dependence. They concluded 
that the maximal self-exposure to cannabis and cocaine, but not 
to alcohol, was greater in volunteers with opioid dependence and 
that increasing self-exposure to cannabis and cocaine, but not 
alcohol, was a positive predictor of opioid dependence.

PAIN

Pain Therapy Guided by Purpose and Perspective in Light of the 
Opioid Epidemic, by Severino et al., discusses the history behind 
the current opioid epidemic then goes on to review potential 
methods for treatment of pain without off-target effects. To 
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this end, the authors discuss the potential for ligand bias and 
bifunctional opioid agonists as potential methods of reducing 
side effects and also outline how the pharmacokinetic profile of 
opioids contribute to their potential for addiction and abuse.

In The Contribution of the Descending Pain Modulatory 
Pathway in Opioid Tolerance, Lueptow et al. review mechanisms 
that underlie opioid tolerance development, concentrating 
on the descending periaqueductal gray matter (PAG)–rostral 
ventromedial medulla (RVM)–spinal cord pain pathway. The 
authors describe how tolerance in the PAG is mediated by mu 
receptor uncoupling from downstream G-protein mediated 
signaling. Other experiments describe the relationship between 
tolerance development and glial activation; particularly, the role 
of TLR4 in that relationship is also discussed.

In Cutting-Edge Search for Safer Opioid Pain Relief: 
Retrospective Review of Salvinorin A and Its Analogs, Zjawiony 
et al. review the development of salvinorin A analogs from the 
perspective of a medicinal chemist. Salvinorin A, a natural 
product purified from Salvia divinorum, is a selective and high-
affinity kappa agonist. Salvia is currently used as a recreational 
drug, since it alters consciousness but, like kappa drugs, is often 
dysphoric. Nevertheless, it has been used as a template for drug 
discovery leading to the production of many kappa and mu 
selective agonists. In particular, many analogs appear to have 
ligand bias, which might be useful in developing drugs with lower 
abuse potential.

In Advances in Achieving Opioid Analgesia Without Side 
Effects, Machelska and Celik review emerging opioid-based 
strategies to develop effective analgesics with reduced side effect 
profile. The novel concepts discussed include biased agonism, 
peripherally active compounds, heteromeric compounds, receptor 
splice variants, and use of endogenous opioids by inhibiting 
degradation or enhancing production. Compounds in clinical 
trials and undergoing preclinical studies are identified.

Zhang et al. examined the involvement of NOP receptors on a 
post-traumatic stress disorder (PTSD) model in male and female 
rats in Sex Differences in Nociceptin/Orphanin FQ Peptide 
Receptor-Mediated Pain and Anxiety Symptoms in a Preclinical 
Model of Post-traumatic Stress. Interestingly, male NOP receptor 
KO rats did not develop single prolonged stress-induced allodynia 
and thermal hypersensitivity, while female NOP receptor KO 
rats exhibited tactile allodynia and thermal hypersensitivity to 
the same extent as WT rats. These experiments demonstrate the 
distinct role that the NOP receptor system plays in males and 
females after exposure to sustained stress.

Stötzner et al., in Mu-Opioid Receptor Agonist Induces Kir3 
Currents in Mouse Peripheral Sensory Neurons—Effects of 
Nerve Injury explore the activity of mu receptors in the dorsal 
root ganglia (DRG) to examine the potential of peripherally 
active mu agonists as analgesics with greatly reduced side 
effects. Receptor activity was determined by measuring activity 
of the G protein-coupled inwardly rectifying potassium 
channels, Kir3 in the DRG of naïve and chronic pain (chronic 
constriction injury CCI) mice. The authors determined that 
the mu agonist DAMGO could activate Kir3 currents and the 
percentage of mu-containing DRG neurons was equivalent in 
naïve and CCI mice.

PAIN/NOVEL LIGANDS

In In Vitro and in Vivo Pharmacological Activities of 14-O- 
Phenylpropyloxymorphone, a Potent Mixed Mu/Delta/Kappa-
Opioid Receptor Agonist With Reduced Constipation in Mice, 
Lattanzi et al. discuss in vitro and in vivo properties of this novel 
compound (POMO). POMO is a 14-O-phenylpropyl-substituted 
analog of the mu opioid agonist 14-O-methyloxymorphone 
(14-OMO). POMO has subnanomolar affinity at mu, delta, and 
kappa receptors and is a full agonist at mu and delta. Importantly, 
it is a very potent analgesic, with an ED50 of 0.7 nmol/kg, 9,000 
times more potent than morphine. Despite the extremely potent 
antinociceptive activity, it has reduced inhibition of gut transport, 
suggesting a greater therapeutic window.

Kumar et al. performed a structure–activity relationship 
study of oxymorphinone analogs in Synthesis, Biological 
Evaluation, and SAR Studies of 14β-phenylacetyl Substituted 
17-cyclopropylmethyl-7,8-dihydronoroxymorphinones 
Derivatives: Ligands With Mixed NOP and Opioid Receptor 
Profile. Affinity and in vitro efficacy were determined at mu, delta, 
kappa, and NOP receptors. All compounds were partial agonists 
at each receptor, and structure activity relationship results were 
consistent with molecular modeling predictions that a binding 
site within the NOP receptor could be accessed by an appropriate 
14β side chain. This resulted in compounds with much higher 
affinity at NOP receptors than the parent compound naltrexone.

MU RECEPTOR

Heteromerization Modulates mu Opioid Receptor Functional 
Properties in vivo by Ugur et al. reviews the evidence for 
heteromers of the mu receptor and discusses how heteromers 
affect mu opioid receptor signaling, trafficking, and subsequent 
behavioral responses. The authors describe how selective 
targeting of heteromers to modulate mu opioid receptor activity 
has attracted significant interest as a method for developing novel 
innovative therapeutics.

In Microglia Express Mu Opioid Receptor: Insights From 
Transcriptomics and Fluorescent Reporter Mice, Maduna et al. 
examine microglia for the presence of the mu receptor. The 
reasoning behind these experiments was the observation that 
microglia appear to mediate certain adverse effects of opiates 
including analgesic tolerance and opioid-induced hyperalgesia. 
Using transcriptomic databases from both mice and humans, as 
well as imaging of newly created Cx3cr1l-eGFP-MOR-mCherry 
mice, the mu receptor was found in the vast majority of mouse 
and human microglia datasets. Furthermore, mu receptors could 
be found in roughly 40% of microglia in both brain and spinal 
cord. These results are consistent with functional studies showing 
the actions of mu receptor agonists on microglia.

In Oxycodone Self-Administration Induces Alterations in 
Expression of Integrin, Semaphorin and Ephrin Genes in the 
Mouse Striatum, Yuferov et al. examined the effect of chronic 
oxycodone treatment on molecules that affect axon guidance 
including integrin, semaphorin, and ephrin gene families. It was 
the author’s hypothesis that opioid-induced changes in axon-target 
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connections and synaptogenesis may be implicated in the behaviors 
associated with opiate addiction. Chronic oxycodone caused either 
an increase or decrease in the majority of the 38 known genes in 
these gene families. The relationship between expression of these 
genes and specific behaviors is under investigation.

MU RECEPTOR IMAGING

In Deformation-based Morphometry MRI Reveals Brain 
Structural Modifications in Living Mu Opioid Receptor 
Knockout Mice, Nasseef et al. used a structural magnetic 
resonance imaging (MRI) approach to determine whether 
volumetric alterations also occur in mu opioid receptor KO mice. 
The authors measured deformation-based morphometry (DBM) 
for each voxel in subjects from mu KO and control groups. They 
found volumetric changes, both contractions and expansions in 
various brain regions, mainly in mu receptor-enriched regions 
and across reward/aversion centers. Some volumetric changes 
were in regions that showed functional connectivity changes 
identified in a previous resting-state functional MRI study, 
suggesting a possible function–structure relationship in mu 
KO-related brain alternations. These functional and structural 
MRI studies disclose whole-brain level mechanisms that likely 
drive mu-controlled behaviors.

Sasaki et al. demonstrated changes in tissue volume in 
the PAG using RMI voxel-based morphometry. In Larger 
Numbers of Glial and Neuronal Cells in the Periaqueductal 
Gray Matter of μ-Opioid Receptor Knockout Mice, these 

authors used immunohistochemistry to measure numbers of 
microglia, astrocytes, and neurons in four subregions of the 
PAG. They found larger numbers of each of these cell types 
in mu KO compared with WT mice, suggesting that these 
alterations might account for the hyperalgesic state in mu 
KO mice.
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Self-Administration in Rats
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Nazzareno Cannella 2 and Roberto Ciccocioppo 2*

1College of Chemical Engineering, Changchun University of Technology, Changchun, China, 2 Pharmacology Unit, School of

Pharmacy, University of Camerino, Camerino, Italy

Cocaine dependence is a psychiatric condition for which effective medications are still

lacking. Published data indicate that an increase in nociceptin/orphanin FQ (N/OFQ)

transmission by NOP receptor activation attenuates cocaine-induced place conditioning

and the locomotor sensitization effects of cocaine. This suggests that the activation

of the N/OFQ receptor (NOP) may attenuate the motivation for psychostimulants. To

further explore this possibility, we investigated the effect of the potent and selective

NOP receptor agonist Ro 64-6198 on cocaine intake under 1 h short access (ShA)

and 6 h long access (LgA) operant self-administration conditions in rats. We used

Marchigian Sardinian alcohol-preferring (msP) rats and Wistar control rats. msP rats

were used because we recently found that this rat line, originally selected for excessive

alcohol drinking and preference, exhibits a greater propensity to escalate cocaine

self-administration following LgA training. msP rats are also characterized by innate

overexpression of the N/OFQ-NOP system compared with Wistar rats. Wistar and msP

rats both exhibited an increase in cocaine self-administration under LgA conditions,

with a higher trend toward escalation in msP rats. In Wistar rats, the intraperitoneal

administration of Ro 64-6198 (0. 1 and 3 mg/kg) significantly decreased ShA cocaine

self-administration. In Wistar rats that underwent LgA cocaine self-administration

training, Ro 64-6198 induced no significant effect either during the first hour of

self-administration or after the entire 6 h session. In msP rats, Ro 64-6198 significantly

reduced cocaine self-administration both under ShA conditions and in the first hour

of the LgA session. At the end of the 6 h session, the effect of Ro 64-6198 was no

longer observed in msP rats. The highest dose of Ro 64-6198 (3 mg/kg) did not affect

saccharin self-administration in msP rats but reduced saccharin self-administration in

Wistar rats. Altogether, these data suggest that NOP receptor activation attenuates

cocaine self-administration, and this effect tends to be more pronounced in a rat line with

innately higher NOP receptor expression and that more robustly escalates cocaine intake.

Keywords: abuse, addiction, psychostimulants, drug-seeking, opioids
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INTRODUCTION

Cocaine is the most commonly abusedillicit psychostimulant,
and its use is linked to serious physical, psychiatric,
socioeconomic, and legal problems (1). Effective medications for
the treatment of cocaine addiction are lacking. The development
of medications that can control cocaine intake and seeking
would represent a significant medical breakthrough.

Cocaine is often co-abused with alcohol. Cocaine dependence
and alcohol dependence share several genetic traits, indicating
that common predisposing factors may exist (2–4). We recently

found that Marchigian Sardinian alcohol-preferring (msP) rats,
which are genetically selected for excessive alcohol drinking and
preference, also exhibit neurophysiological and pharmacological

traits that confer a predisposition to psychostimulant abuse
(5). We recently found that msP rats exhibited alterations of
functional magnetic resonance imaging activity and an increase
in nucleus accumbens dopamine release in response to an
amphetamine challenge compared with Wistar rats. msP rats
also exhibited a higher propensity to escalate cocaine intake
under extended access (6 h/day) self-administration conditions
(5). Compared with heterogeneous stock Wistars rats (i.e.,
the rat strain from which msP rats originate), the msP line
appears to present an addiction-prone phenotype. msP rats are
also characterized by inherited neurophysiological adaptations
of several neurotransmitter systems that may contribute to
their vulnerable phenotype (6–8). One such system consists of
nociceptin/orphanin-FQ (N/OFQ) peptide and its NOP receptor,
known for being structurally similar to dynorphin A and kappa
opioid, respectively (9, 10). The activation of NOP receptors has
been shown to attenuate the motivation for various drugs of
abuse (11–18).

Intracranial N/OFQ administration inhibited
psychostimulant-induced conditioned place preference
and locomotor sensitization in rats (19, 20). NOP receptor
knockout mice exhibited higher cocaine-induced conditioned
place preference compared with their wildtype counterparts
(21). Additionally, NOP knockout mice showed increased
psychomotor sensitization to cocaine (22) and N/OFQ
abolished cocaine-induced psychomotor sensitization in
wildtype but not NOP knockout mice (23). Importantly,
intracerebroventricular N/OFQ administration did not induce
conditioned place preference or aversion, suggesting that
NOP receptor agonists do not have motivational properties
per se (24, 25). Although data on the effect of NOP receptor
activation on cocaine-related behaviors have been published,
direct evidence of an effect of NOP receptor agonists on
cocaine self-administration are limited to buprenorphine and
cebranopadol, two molecules that simultaneously activate
NOP and µ opioid receptors (16–18). The present study
investigated the effect of the potent and selective NOP
receptor agonist Ro 646198 on cocaine intake in rats that
were exposed to a daily 1 h short access (ShA) or 6 h long
access (LgA) operant self-administration sessions. The study
was performed in heterogeneous Wistar and msP rats. msP
rats exhibit overexpression of the N/OFQ system and a greater
propensity to escalate cocaine self-administration. msP rats

also exhibit high sensitivity to NOP receptor agonists, and a
history of dependence enhances NOP expression. Therefore,
we predicted that Ro 64-6198 would be more effective in rats
that were exposed to LgA cocaine self-administration and that
msP rats would be more sensitive to Ro 646198 than Wistar
rats (8, 26).

MATERIALS AND METHODS

Animals
The experiments were conducted with male Wistar rats (Charles
River, Calco, Italy) and msP rats (bred at the School of Pharmacy,
University of Camerino, Italy). The rats weighed 200–250 g at
the beginning of the study. They were housed in pairs in a
room under a reverse 12 h/12 h light/dark cycle (lights off at
9:00 a.m.) with constant temperature (20–22◦C) and humidity
(45–55%). Food and water were provided ad libitum. The animals
were treated in accordance with the guidelines of the European
Community Council Directive for Care and Use of Laboratory
Animals. The experimental procedures were approved by the
Italian Ministry of Health (authorization no. 414/2016-PR).

Drugs
Cocaine hydrochloride (Sigma, St. Louis, MO, USA) was
dissolved in sterile saline. Saccharin (Sigma, Italy) was dissolved
in tap water. The NOP receptor agonist Ro 64-6198 was dissolved
in 10% dimethylsulfoxide, 10% Tween-80, and 80% water. Doses
timing and route of administration of Ro 64-6198 were chosen
based on earlier NOP binding studies indicating that an acute
IP injection of 3.2 mg/kg of Ro 64-6198 induced maximal NOP
receptor occupancy after 30min. Good receptor occupancy was
maintained for approximately 3 h (27).

Catheter Implantation
The rats were anesthetized by an intramuscular injection of
100–150 µl of a solution that contained tiletamine chlorhydrate
(58.17 mg/ml) and zolazepam chlorhydrate (57.5 mg/ml).
For intravenous surgery, incisions were made to expose the
right jugular vein. A catheter that was constructed from
micro-renathane tubing (inner diameter = 0.020 inches, outer
diameter= 0.037 inches) was subcutaneously positioned between
the vein and back. After insertion into the vein, the proximal end
of the catheter was anchored to the muscles that underlie the vein
with surgical silk. The distal end of the catheter was attached to a
stainless-steel cannula that was bent at a 90◦ angle. The cannula
was inserted into a support that consisted of dental cement on
the back of the animals and was covered with a plastic cap.
Immediately after surgery, the rats were treated intramuscularly
with 200 µl of enrofloxacin (50 mg/ml, Baytril, Germany).

The rats were allowed to recover for 1 week before self-
administration training. Catheters patency was confirmed by
an intravenous injection of 150 µl of sodium pentothal (25
mg/ml, Intervet, Italy). Before each self-administration session,
the catheters were flushed with 100 µl of heparinized saline (20
UI/ml) that contained 0.5 mg/ml enrofloxacin.
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Self-Administration Apparatus
The self-administration stations consisted of operant
conditioning chambers (Med Associates, USA) that were
enclosed in sound-attenuating, ventilated environmental
cubicles. Each chamber was equipped with two retractable levers
that were located in the front panel of the chamber. Cocaine was
delivered intravenously through a plastic tube that was connected
to an infusion pump. Saccharin was delivered in a receptacle
that was connected to the infusion pump and located between
the two levers. Responses on the right (active) lever activated the
infusion pump, and responses on the left (inactive) lever were
recorded but did not have any programmed consequences. In
both the cocaine and saccharin sessions, activation of the pump
resulted in the delivery of 0.1ml of fluid. A computer controlled
the delivery of cocaine solution and recorded the behavioral data.

General Cocaine
Self-Administration Procedure
Wistar and msP rats were initially trained to self-administer
cocaine (0.25 mg/infusion) under a fixed-ratio 1 (FR1) schedule
of reinforcement for 1 h/day for 5 days. Afterward, the
reinforcement contingency was switched to an FR5 schedule,
and the rats of each line were split into two subgroups: self-
administration in a 1 h short-access (ShA) session and self-
administration in a 6 h long access (LgA) session. The LgA and
ShA sessions under an FR5 schedule continued for 23 days, after
which the effect of Ro 64-6198 on cocaine self-administration
was tested.

Effect of Ro 64-6198 on Cocaine
Self-Administration in Wistar Rats
Starting from the 24th FR5 session, we tested the effect of
Ro 64-6198 and its vehicle on cocaine self-administration in
Wistar rats that were trained under ShA (n = 10) and LgA
(n = 10) conditions. Using a within-subjects counterbalanced
design, 30min before the session, the rats received Ro 64-6198
(1.0 and 3.0 mg/kg, i.p.) or its vehicle. The tests were repeated
every third day. On the first intervening day, the rats remained in
their home cage. On the second intervening day, they underwent
a baseline cocaine self-administration session. The number of
infusions was recorded after the first hour of self-administration
and also at 6 h in the LgA group.

Effect of Ro 64-6198 on Cocaine
Self-Administration in msP Rats
Similar to Wistar rats, starting from the 24th FR5 session, we
tested the effect of Ro 64-6198 (1.0 and 3.0 mg/kg, i.p.) and
its vehicle on cocaine self-administration in msP rats that were
trained under ShA (n= 9) and LgA (n= 9) conditions. The tests
were performed using a within-subjects counterbalanced design
at intervals of 3 days. The number of infusions was recorded
after the first hour of self-administration and also at 6 h in the
LgA group.

Effect of Ro 64-6198 on Saccharin
Self-Administration in Wistar and msP Rats
Two additional groups of Wistar (n = 9) and msP (n = 9) rats
were trained in daily 1 h saccharin self-administration sessions
under an FR1 schedule of reinforcement. When the rats reached
a stable baseline of saccharin intake, we tested the effect of Ro
64-6198 (1.0 and 3.0 mg/kg, i.p.) and its vehicle on saccharin
self-administration. Thirty minutes before the sessions, the rats
received Ro 64-6198 (1.0 and 3.0 mg/kg, i.p.) and its vehicle in
a counterbalanced Latin-square design. The tests were repeated
every third day.

Statistical Analyses
The number of infusions that were received by ShA rats was
compared with the number of infusions that were received by
LgA rats during the first hour of the daily sessions using two-way
repeated-measures analysis of variance (ANOVA), with session
length (ShA vs. LgA) as the between-subjects factor and time
(days) as the repeated measure. The escalation of cocaine self-
administration was analyzed using one-way ANOVA, with time
as the repeated measure. The effect of Ro 64-6198 on cocaine
and saccharin self-administration was analyzed using one-way
ANOVA, with dose as the within-subjects factor. Wistar and
msP rats were analyzed separately. Significant main effects in the
ANOVA were followed by the Newman-Keuls post hoc test for
escalation and Dunnett’s post hoc test for Ro 64-6198. Values of
p < 0.05 were considered statistically significant.

RESULTS

Escalation of Cocaine Self-Administration
in Wistar and msP Rats
One LgA Wistar rat and one ShA Wistar rat became sick during
training; therefore, only n = 9 LgA Wistar rats and n = 9 ShA
Wistar rats were considered for the analyses. The escalation of
cocaine intake reflects an increase in the number of infusions
that are obtained daily over time. Escalation occurs during LgA
sessions and usually is measured by analyzing the number of
rewards that are earned during the first hour of intake in the LgA
session compared with the ShA session (28).

In Wistar rats, the ANOVA indicated no effect of session
length [F(1, 16) = 1.5, p > 0.05] but a significant effect of time
[F(22, 352) = 6.5, p < 0.0001] and a significant session length
× time interaction [F(22, 352) = 1.7, p < 0.05]. The two groups
differed in intake on the first day under the FR5 schedule but
earned a similar number of infusions during the remainder
of training (Figure 1A). LgA Wistar rats exhibited an increase
in lever pressing over time [F(8, 176) = 8.1, p < 0.01], with a
progressive increase in the total number of daily (6 h) cocaine
infusions that were earned (Figure 1B).

In msP rats, ANOVA was used to compare the number
of infusions that were received in the ShA group and LgA
group during the first hour of the session. The ANOVA
indicated significant main effects of session length [F(1, 16) = 40.9,
p < 0.0001] and time [F(22, 352) = 24.7, p < 0.0001] and a
significant session length × time interaction [F(22, 352) = 2.4,
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FIGURE 1 | Escalation of cocaine self-administration (CSA) in Wistar and msP rats. (A) The number of cocaine infusions that were received by Wistar rats in the first

hour of ShA and LgA sessions was similar throughout training, with the exception of the first day. (B) The number of infusions that were received by Wistar rats during

the entire 6 h LgA session increased over time. (C) The number of infusions that were received by msP rats during the first hour of the daily LgA sessions increased

over training and was higher than ShA-trained msP rats beginning in the fifth session. (D) The number of infusions that were received by LgA-trained msP rats

increased over training during the entire 6 h session. The data are expressed as mean ± SEM. ◦ p < 0.05, ◦◦ p < 0.01, ◦◦◦◦ p < 0.001, compared with ShA.

p < 0.001]. The post hoc analysis indicated that LgA rats
exhibited an increase in the number of infusions over time
and differed significantly from ShA rats starting from the fifth
session (Figure 1C). LgA msP rats exhibited an increase in lever
pressing over time [F(8, 176) = 8.9, p < 0.001], with a progressive
increase in the total number of daily (6 h) cocaine infusions that
were earned (Figure 1D).

When the escalation ratio, calculated as a difference between
the average infusions of the last 3 minus the first 3 LgA
sessions, of msP and Wistar rats was compared, results indicated
a significant difference between the two rat lines [t16 = 2.9,
p < 0.05]. Escalation ratio was 39.3 ± 6.6 in msPs and 19.2 ±

3.3 in Wistars.

Effect of Ro 64-6198 on Cocaine and
Saccharin Self-Administration in
Wistar Rats
We next tested the effect of Ro 64-6198 on cocaine self-
administration in Wistar rats. One additional LgA Wistar rat
was excluded from the analysis because of the loss of catheter

patency. Ro 64-6198 significantly decreased the number of
infusions that were received by ShA Wistar rats [F(2, 8) = 16.5,
p < 0.01]. Dunnett’s post hoc test revealed that 3.0 mg/kg but
not 1.0 mg/kg Ro 64-6198 significantly decreased the number
of infusions compared with vehicle (p < 0.01; Figure 2A).
Under LgA conditions, the ANOVA indicated no effect of
treatment either during the first hour [F(2, 7) = 2.8, p >

0.05] or during the entire 6 h session [F(2, 7) = 2.0, p > 0.05;
Figures 2B,C]. The ANOVA of the effect of Ro 64-6198 on
saccharin self-administration indicated amain effect of treatment
[F(2, 8) = 27.7, p < 0.001]. Dunnett’s post hoc test showed
that 3 mg/kg Ro 64-6198 significantly decreased saccharin self-
administration (p < 0.01; Figure 2D).

Effect of Ro 64-6198 on Cocaine and
Saccharin Self-Administration in msP Rats
In msP rats, Ro 64-6198 significantly decreased cocaine self-
administration both in the ShA condition [F(2, 8) = 15.3,
p < 0.001; Figure 3A] and in the first hour of the LgA condition
[F(2, 8) = 11.6, p < 0.01; Figure 3B]. Dunnett’s post hoc test
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FIGURE 2 | Effect of Ro 64-6198 on cocaine and saccharin intake in Wistar rats. (A) Ro 64-6198 at a dose of 3.0 mg/kg decreased the number of infusions that were

received by ShA rats. (B,C) Ro 64-6198 did not affect cocaine self-administration in LgA-trained rats either during the first hour of the session (B) or during the entire

6 h session (C). (D) Ro 64-6198 at a dose of 3.0 mg/kg decreased saccharin self-administration. The data are expressed as mean ± SEM. **p < 0.01, compared with

Ro 64-6198 vehicle (0.0 mg/kg).

revealed a significant effect of 3.0 mg/kg Ro 64-6198 (p < 0.01).
The ANOVA of the effect of Ro 64-6198 at 6 h in the LgA group
revealed no effect of treatment [F(2, 8) = 0.3, p> 0.05; Figure 3C].
The ANOVA indicated no effect of Ro 64-6198 on saccharin
self-administration [F(2, 8) = 2.0, p > 0.05; Figure 3D].

DISCUSSION

The present study found that cocaine intake was similar in
Wistar and msP rats under ShA self-administration conditions,
but Wistar rats received a slightly higher number of infusions.
When the rats were exposed to LgA self-administration, msP
rats exhibited greater escalation of cocaine intake. These results
replicate our recent study, in which we found that msP
rats exhibited greater escalation of cocaine self-administration
compared with Wistar rats. Additionally, in response to an
amphetamine challenge, msP rats exhibited greater locomotor
stimulation, greater activation of mesolimbic circuitry, and
higher extracellular levels of dopamine in the nucleus accumbens
compared with Wistar rats (5). The msP rat line was originally
selected for excessive alcohol drinking and preference. However,

unknown is why they are also hypersensitive to psychostimulants.
One possibility is that some of the genetic traits that confer
greater vulnerability to psychostimulants also result in an
increase in alcohol intake (i.e., common genetic factors may
be responsible for increases in both alcohol consumption and
the vulnerability to psychostimulants). In humans, cocaine and
alcohol are often co-abused, and common genetic traits that
confer vulnerability to their use have begun to emerge (2–4).

Previous studies showed that Sardinian alcohol-preferring

rats, from which msP rats were derived, are characterized by
the lower expression of dopamine D1 and D2 receptors in the
striatum (29, 30). Under basal condition, these two rat lines may

present a hypodopaminergic state that motivates them to take
higher amounts of alcohol and cocaine. Theserat lines’ ability

to increase mesolimbic dopamine levels may help counteract

such a deficiency in dopamine. Clinical studies have shown
that human addicts have relatively low levels of dopamine
receptors in the ventral striatum (31–34). Similar to msP rats,
human addicts also present an increase in striatal activation,
revealed by functional magnetic resonance imaging, in response
to drug-related stimuli (5, 35–37). One possibility is that msP
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FIGURE 3 | Effect of Ro 64-6198 on cocaine and saccharin intake in msP rats. (A) Ro 64-6198 at a dose of 3.0 mg/kg decreased the number of infusions that were

received in the ShA session. (B,C) Ro 64-6198 at a dose of 3.0 mg/kg decreased the number of infusions that were received by LgA rats during the first hour of the

session (B) but not during the entire 6 h session (C). (D) Ro 64-6198 did not affect saccharin self-administration. The data are expressed as mean ± SEM. *p < 0.05,

**p < 0.01, compared with Ro 64-6198 vehicle (0.0 mg/kg).

rats may represent an animal model that mimics conditions
that are associated with advanced stages of the addiction
cycle, reflected by their greater tendency to escalate drug use.
Another neurochemical alteration that has been detected in
msP rats is overexpression of the N/OFQ system in various
mesolimbic structures (8). The activation of NOP receptors
following the administration of N/OFQ in the ventral tegmental
area attenuated dopamine release in the nucleus accumbens
(38). The intracerebroventricular administration of N/OFQ
suppressed the morphine-induced increase in extracellular
dopamine levels in the nucleus accumbens (39). Moreover,
N/OFQ administration in the nucleus accumbens attenuated
the ability of cocaine to enhance local extracellular dopamine
levels (40). These data suggest that greater activity of the
N/OFQ system may further contribute to the reduction of
the basal tone of the dopamine system, thus contributing to
the motivation to consume drugs of abuse. This possibility
is indirectly supported by a previous study, in which NOP
receptor knockout rats self-administered less cocaine, alcohol,
and heroin compared with wildtype controls (41). Refuting
this hypothesis, however, is evidence that the pharmacological
activation of NOP receptors attenuates the motivation for

several drugs of abuse, including cocaine and amphetamine
(19, 20, 42–45). To clarify the role of the N/OFQ system
in the modulation of drug abuse-related behaviors, we tested
the effect of the selective and potent NOP receptor agonist
Ro 64-6198 on cocaine self-administration in both Wistar
and msP rats. As expected, Ro 64-6198 reduced ShA cocaine
self-administration in both Wistar and msP rats. Under LgA
conditions, the effect of Ro 64-6198 was significant only in msP
rats. Moreover, the half-life of Ro 64-6198 in rodents is relatively
long (5.5 h), and the significant effect of Ro 64-6198 that was
observed in the first hour of the LgA session was not observed
at 6 h (27).

In Wistar rats, 3 mg/kg Ro 64-6198 significantly decreased
saccharin self-administration. This effect was not observed in
msP rats. This may suggest that the effect of Ro 64-6198 on
self-administration is secondary to the nonspecific inhibition
of locomotor activity. However, this possibility is unlikely.
Although Ro 64-6198 reduced saccharin self-administration in
Wistar rats, it did not affect saccharin self-administration in
msP rats. Previous studies reported that Ro 64-6198 doses up
to 3 mg/kg exert specific effects that are not linked to motor
impairment (46, 47).
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Previous studies also showed that NOP receptor activation by
Ro 64-6198 reduced the motivation for alcohol and morphine.
Therefore, the lower motivation to pursue a reward may
also extend to natural reinforcers (48–50). This hypothesis is
supported by previous findings, in which the stimulation of
N/OFQ transmission inNOP receptor knockoutmice suppressed
both basal and drug-induced increases in the hedonic state (51).

The activation of NOP receptors leads to rapid and prolonged
receptor desensitization (52, 53). For example, after treatment
with Ro 64-6198, NOP receptors rapidly internalized, and
N/OFQ-mediated transmission remained impaired for at least
30min (27). Based on these findings, one hypothesis is that the
effect on cocaine self-administration may be mediated by NOP
receptor desensitization rather than NOP receptor activation.
This may explain why Ro 64-6198 was slightly more effective
in msP rats than in Wistar rats because of msP rats’ innate
overexpression of NOP receptors that may be more sensitive to
desensitization. This receptor desensitization hypothesis could
also explain why the effect of Ro 64-6198 is relatively short
(1 h), notwithstanding its relatively long half-life of 5.5 h. After
1 h, the desensitized NOP receptors may progressively become
available again. Finally, the receptor desensitization hypothesis
may reconcile recent findings that NOP-deficient rats exhibited
lower motivation for cocaine and self-administered less cocaine
(41) and may explain why, similar to agonist, NOP antagonists
could reduce drug self-administration (54, 55).

Consistent with the desensitization hypothesis, it is tempting
to hypothesize that chronic treatment with Ro 64-6198 would
have led to a more pronounced effect, possibly leading to
reduction of cocaine intake also in Wistar rats. Earlier studies,
however, have shown that chronic (25 days) and acute treatment
with Ro64-6198 produced comparable reduction of NOP binding
levels due to receptor internalization (27). Based on this
observation we speculate that our treatment condition was
sufficient to detect an effect of Ro 64-6198. To further asses this

conclusion future studies will have to investigate the effect of
chronic drug treatment on cocaine self-administration. Another
potential limitation is that the present study was limited to

the analysis of the effect of Ro 64-6198 on cocaine intake
without exploring its action of the motivation for the drug using
progressive ratio, punished responding or second order schedules
contingencies. The absence of these data hamper the possibility
to drive clear conclusions on the effect of NOP activation on
the motivation of this psychostimulant. Finally, we did not
explore whether LgA exposure to cocaine may have led to a
dependent-like state signaled by expression of drug withdrawal
or hyper-anxiety. However, these conditions were demonstrated
in earlier studies in which the same LgA schedule used here was
applied (56).

In conclusion, the present study found that msP rats escalated
their cocaine self-administration more rapidly than Wistar rats,
and NOP receptor activation by Ro 64-6198 reduced cocaine
consumption. The mechanism by which NOP receptor agonism
leads to such effects is unknown, but receptor desensitizationmay
be one possibility.
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Over the years, pain has contributed to low life quality, poor health, and economic

loss. Opioids are very effective analgesic drugs for treating mild, moderate, or severe

pain. Therapeutic application of opioids has been limited by short and long-term side

effects. These side effects and opioid-overuse crisis has intensified interest in the search

for new molecular targets and drugs. The present review focuses on salvinorin A

and its analogs with the aim of exploring their structural and pharmacological profiles

as clues for the development of safer analgesics. Ethnopharmacological reports and

growing preclinical data have demonstrated the antinociceptive effect of salvinorin A

and some of its analogs. The pharmacology of analogs modified at C-2 dominates

the literature when compared to the ones from other positions. The distinctive binding

affinity of these analogs seems to correlate with their chemical structure and in vivo

antinociceptive effects. The high susceptibility of salvinorin A to chemical modification

makes it an important pharmacological tool for cellular probing and developing analogs

with promising analgesic effects. Additional research is still needed to draw reliable

conclusions on the therapeutic potential of salvinorin A and its analogs.

Keywords: analgesic, opioid receptors, salvinorin A, side effects, analogs

INTRODUCTION

Pain management is a challenging medical issue that requires a wide range of expertise and
innovative ideas (1). Medicinal chemistry as well as extensive analysis of opioid receptors have
increased the possibility of developing novel analgesics that are devoid of detrimental actions (2–6).
Pain as an unpleasant sensory and emotional experience has been managed by different classes of
drugs such as non-steroidal anti-inflammatory drugs, glucocorticoids, sodium channels inhibitors
(local anesthetics), anti-epileptic drugs, tricyclic antidepressants, and opiates (2).
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Opioid medications that mimic endogenous opioid peptides
(dynorphins, endorphins, and enkephalins) typically bind to
subtypes of opioid receptors (kappa-KOP, mu-MOP, and/or
delta-DOP) to suppress pain (7). In addition, the activation of
nociceptin/orphanin FQ peptide receptor (the fourth members
of the opioid family of G protein-coupled receptors) by
its endogenous peptide nociceptin/orphanin FQ (N/OFQ)
modulates stress, reward and pain circuitry in several brain areas
(8–11). A schematic representation of the pain and opioid sites
of action, as shown in Figure 1, identifies important structures
and pain modulatory circuits (12). The detailed account of signal
transduction through opioid receptors, as illustrated by Figure 2,
has been widely reported (13–17).

The KOP ligands are important research tools and promising
molecules for safer treatment of pain (18). The antagonists
or partial agonists of KOP could prevent relapse to drug
dependence (19–23). The blockade of KOP on dopamine
terminals could disinhibit dopamine release in the nucleus
accumbens and prevent drug withdrawal-induced dysphoria
(24). This receptor remains an important cellular mediator of
stress, reward, abuse, emotion, perception (25, 26), sedation
(27), hypothermia (28), depression (29, 30), hallucination (31),
conditioned place aversion, and locomotion impairment (32).
Despite the possibility of undesirable KOP-mediated effects
(33, 34), evidence has shown that this receptor subtype is
an alternative molecular target for the development of safer
analgesics (35).

Recently, Che et al. (3) conducted research on the active-
state crystal structure of the KOP complex with a high-affinity
agonist to provide molecular details of KOP and overcome
the therapeutic limitations of its agonist. In this study, the
authors identified residues that are critical for KOP activation
and illuminate key molecular determinants of subtype selectivity
and signaling bias. The affinity and specificity of drugs to
KOP are fundamental to the array of inducible-biological effects
(Table 1). The development of drugs that clearly separate pain
relief from unwanted side effects has remained challenging
and elusive.

Natural products are important sources of new drugs
(36). Several active principles from medicinal plants have
been used for pain relief (37). The main active principle of
Salvia divinorum (38), salvinorin A, had been suggested as
a useful research tool toward the development of analgesic
drugs (39). Salvinorin A has a distinctive mode of action and
pharmacology. Unlike psilocybin and lysergic acid diethylamide
(alkaloidal hallucinogens which interact with specific serotonin
receptor subtypes), the hallucinogenic effect of salvinorin A has
been associated with its potent and selective KOP agonism.
Salvinorin A shows no significant binding to over 50 other
pharmacologically important receptors, transporter proteins and
ion channels (40). As a non-nitrogenous KOP agonist (40),
this compound differs from typical alkaloid opioid agonists.
Recently, the potent antinociceptive effect of salvinorin A was
reported in the neuropathic pain model (41). Over the years,
medicinal chemists have synthesized several hundred analogs of
this compound including herkinorin, kurkinorin, P-37, PR-38,
methoxymethyl- and ethoxymethyl ether of salvinorin B, and

β-tetrahydropyranyl ether of salvinorin B (4, 6, 42). Previous
preclinical reports on salvinorin A and its analogs have revealed
their promising antinociceptive effects (41, 43, 44). Hence, this
review explored the structural and pharmacological profiles of
salvinorin A and its analogs toward the development of new
analgesic drugs.

SALVINORIN A AND ITS ANALOGS:
STRUCTURE-ACTIVITY RELATIONSHIP

Salvinorin A
The unique biological effects of salvinorin A (Figure 3A)
have motivated many scientists to seek correlations
between its chemical structure and pharmacological
activity (4, 6, 42).

Following the determination of the salvinorin A structure
through A single-crystal x-ray analysis [(38, 45), molecular
modeling studies were performed to determine the interaction of
this compound with KOP (40). Initially, the salvinorin A crystal
structure (45) was docked by superimposition of its aromatic
centroids and the carbonyl atoms with those of bound U69593
(known KOP agonist which shares structural similarity such
as an aromatic ring and ester carbonyl groups separated by a
short bond with salvinorin A). As a hydrogen bond acceptor,
the carbonyl functionality supports the proposed role of Y139
and its interaction with the lactone carbonyl of salvinorin A
(40, 46).

Previous study showed the list of residues that could form
the salvinorin A-binding site of the KOP (40). The KOP models
could accommodate the furan oxygen and 4-methoxycarbonyl
functionality but not the 2-acetoxy group (40). The key residues
in KOP that are responsible for the high binding affinity and
efficacy of salvinorin A as well as important contacts between this
compound and KOP have been identified through mutagenesis
studies (6, 47). Potent and efficacious interactions of this
compound with KOP are due to novel binding modes within
a common three-dimensional space for binding and activating
KOP (47).

Additional studies correlated the structure and activities of
salvinorin A with the potential binding site on KOP. For
instance, a change to the furan ring resulted in analogs that
are more sterically demanding than a one-for-one aryl ring
replacement (6). Sterically hindered environment of C-1 carbonyl
of salvinorin A is not essential for activity as it is incapable
of forming specific donor/acceptor contacts with residues in
the receptor model, (48). In contrary, the 2-acetoxy group of
salvinorin A which makes specific donor/acceptor contacts in
the model is required for activity (45). Meanwhile, the lack
of consensus binding model makes generalization of structure-
activity relationships a challenge (6).

According to Yan (47), salvinorin A uses its flexible
functional groups at C-2, C-4 and C-12 to optimize KOP
interactions and stabilize itself in the binding site. Moreso,
this compound also takes advantage of the conformational
changes induced by G protein-coupling to facilitate
active state stabilization and activation of downstream
signaling events.
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FIGURE 1 | Neural circuits of pain and opioid site of action. Cortex and spinal cord communication modulate pain perception and offer targets for opioid drugs.

Neural projections from peripheral tissue transmit nociceptive inputs through primary afferent fibers (1) to the spinal dorsal horn (SDH) before reaching the thalamus

(2). Neural projections from thalamus target cortical sites (centers of pain processing, cognition, perceptions and integration) and amygdala (“emotional site”). The

amygdala receives nociceptive inputs from the thalamus and cortex. The descending pain control system is mediated through projections from structures such as

amygdala and hypothalamus to the periaqueductal gray matter (PAG) which in turn communicates with the rostral ventromedial medulla (RVM). The neural

components within RVM [the nucleus raphe magnus (NRM) and nucleus reticularis paragigantocellularis (NRPG)] project to the spinal or medullary dorsal horns to

directly or indirectly enhance or attenuate nociceptive transmission. The 5-hydroxytryptamine (5-HT) and enkephalin-containing neurons in the NRM project to the

substantia gelatinosa of the dorsal horn and exert an inhibitory influence on transmission. Opioids sites of action include dorsal horn and peripheral terminals of

nociceptive afferent neurons where opioids inhibit transmission. Opioids stimulate PAG and NRPG (blue asterisk), which in turn project to the rostroventral medulla.

The locus coeruleus (LC) which receives inputs from the PAG releases noradrenalin to the dorsal horn, which in turn inhibits nociceptive transmission. Areas labeled

2–4 in red color and 5–8 in green color represent ascending and descending tracts, respectively.

Salvinorin A, a neo-clerodane diterpenoid with seven
stereogenic centers and three different types of ester
functionalities, is a challenging substrate for chemical
modifications because minor modifications can result in a
complete loss or increase in pharmacological activity. For
example, a product of hydrolysis of the C2 acetoxy side chain
(salvinorin B) is totally devoid of activity, but other changes
to this position actually demonstrate the highest KOP binding
affinities (4, 6). Structural modifications of salvinorin A at the C1,
C4, C12, and the C17-positions have been mostly associated with
a reduction in KOP binding affinity (4, 6, 49). Over the years,
the carbonate, carbamate, ester, ether, amine, amide, sulfonic
ester, sulfonamide, thioester, halide, and other groups have been
introduced to the salvinorin A molecule with a wide variety of
outcomes (6, 50).

Furthermore, potential interactions of salvinorin A with
other receptors have been either hypothesized or demonstrated
preclinically by some researchers. Previous study showed that
salvinorin A allosterically modulates MOP binding (51). The
in vitro testing which showed the binding affinity of salvinorin
A (EC50 values of 89 nM) against the D2 High receptor and
blockade by 10µM S-sulpiride (an antagonist of DRD2) has

resulted into the discussion of partial agonism of salvinorin A at
D2 receptor (52). Moreso, computational studies have predicted
CB1, CB2, or DRD2 as a potential targets of salvinorin A (53). In
an in vivo test, the attenuation of neuropathic pain by Salvinorin
A was blocked by CB1 and KOP antagonists (41). The inhibition
of the effects of salvinorin A on colonic motility by antagonists
of OPRK, CB1 and CB2 in vitro and largely by antagonists
of OPRK in vivo (54) suggests mechanistic complexity in
the activity of salvinorin A as against widely acclaimed
KOP selectivity.

ANALOGS FROM THE MODIFICATION OF
SALVINORIN A AT C-2

Herkinorin
Analogs with bulky alkyl esters at C-2 resulted in a loss in
affinity for KOP (55), but the replacement of the alkyl with
aryl esters at C-2 results in a lower affinity and potency for
KOP; and an increase in affinity for MOP (56). Herkinorin
(Figure 3B) is the first example of salvinorin A derivative with Ki
at MOP (12 ± 1.0 nM) while still retaining lower affinity at KOP
(90± 2.0 nM).
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FIGURE 2 | Hypothetical representation of signal transduction and trafficking of mu [µ] and kappa [κ] opioid receptor. Converging downstream pathways are activated

by salvinorin A and its analogs with selective action and varying affinity on their respective opioid receptor subtypes. Arrows, activation; T lines, blockade of function;

βγ, G protein β-γ subunit; cAMP, cyclic adenosine monophosphate; ERK, extracellular signal-regulated kinase; JNK, c-jun N-terminal kinase; MAPK,

mitogen-activated protein kinases; GRK-3, G protein-receptor kinase 3; P, phosphorylation; C → , cyclization of adenosine triphosphate (ATP) into cyclic adenosine

monophosphate (cAMP) through the cleavage of pyrophosphate.

Methoxymethyl and Ethoxymethyl Ether of
Salvinorin B
These compounds have an alkoxyalkyl ether bond, which
replaced acetoxy group at C-2. The alkoxy methyl ether
substituents improved KOP affinity and potency. The
methoxymethyl ether of salvinorin B (Figure 3G) has higher
binding affinity to KOP (Ki = 0.60 ± 0.1 nM) and potency
(EC50 = 0.40 ± 0.04 nM) than salvinorin A. The putative
synergistic binding interactions of the additional oxygen in
the substituent have been associated with the higher affinity
and potency (57, 58). The ethoxymethyl ether of salvinorin B
(Figure 3F) also displayed a higher KOP binding affinity (Ki =
0.32 nM) and potency (EC50= 0.14 nM) than other salvinorin A
analogs (4, 59).

Methyl Salvinorin B-2-O-Malonate and
2-O-Cinnamoylsalvinorin B
Previous studies have shown the synthesis and biological
activities of Michael acceptor-type of salvinorin A analogs,
such as methyl salvinorin B-2-O-malonate (PR-37) and 2-O-
cinnamoylsalvinorin B (PR-38) (42, 54, 60). The addition of
a second H-binding acceptor leads to the development of a
malonate analog (PR-37) (Figure 3D) that displayed a 3-fold
improvement in KOP affinity (Ki= 2.0± 0.9 nM) (42). However,
other malonic ester substitutions with different carbonyl spacings
reduced biological activity (6). The replacement of the acetate
substituent with the spirolactone group caused a restriction in
bond rotation and a decrease in potency (61). The analog with
cinnamic ester functionality (PR-38) (Figure 3E) displayed not
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only KOP affinity (Ki = 9.6± 2.0 nM) but also MOP (Ki = 52±
9.0 nM) with 5.4 MOP/KOP selectivity (42).

Herkamide
Tidgewell (62) showed a lower KOP affinity as a result of
bioisosteric exchange of the 2-acetoxy subunit of salvinorin A (Ki
= 1.9 ± 0.2) with acetamide (Ki = 30 ± 2.0 nM). Although the

TABLE 1 | Varying degree of opioid receptor involvement in some

pharmacological effect.

Effects MOP DOP KOP

Analgesia +++ ± ++

Sedation ++ – ++

Respiratory depression +++ ++ –

Constipation ++ ++ +

Euphoria +++ – –

Dysphoria – – +++

Depressive behavior – – +++

Hallucination ± – +++

Physical dependence +++ – +

MOP, mu-opioid receptor; DOP, delta-opioid receptor; KOP, kappa-opioid receptor; ±,

more or less; -, no effect; +, low effect; ++, intermediate effect; +++, high.

introduction of a phenyl ring in the herkamide analog (Figure 3I)
decreased KOP affinity, an increase in affinity for MOP - Ki =
3.1 ± 0.4 as compared to herkinorin Ki = 12 ± 1.0 nM was
reported. In addition, herkamide MOP selectivity (KOP/MOP
= 0.0004) was shown to be higher than that of herkinorin
(KOP/MOP= 0.13).

Kurkinorin
The introduction of a double bond between C-2 and C-3 in
herkinorin resulted in the new analog kurkinorin (Figure 3C). In
vitro functional assay revealed that kurkinorin was more selective
for MOP (>8,000-fold selectivity over KOP) than morphine (66-
fold selectivity over KOP) and herkinorin (4.25-fold selectivity
over KOP). Moreover, kurkinorin has similar potency when
compared toMOP agonist such as DAMGO in forskolin-induced
cAMP accumulation assays (63).

β-Tetrahydropyranyl Ether of Salvinorin B
The relative flexibility of the acetoxy (C-2) subunit and potential
adoption of different conformations when interacting with
KOP has been hypothesized and studied in β-tetrahydropyranyl
ether of salvinorin B (Figure 3H). Prevatt-Smith et al. (59)
applied the concept of conformational restriction toward the

FIGURE 3 | The structures of salvinorin A (A) and its analogs (B–I).
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development of ligands as tools to elucidate KOP affinity
and potency. The new analog β-tetrahydropyranyl ether of
salvinorin B showed slightly higher KOP affinity (Ki = 6.21
± 0.4) than salvinorin A (Ki = 7.40 ± 0.4). This result
showed that the rotational restriction strategy as proposed
by Prevatt-Smith et al. (59) only led to small changes in
binding values.

ANALOGS FROM THE MODIFICATION OF
SALVINORIN A AT C-4

Unlike the modification of salvinorin A at C-2, the structural
modifications at the C-4 present challenges because selective
hydrolysis of methyl ester requires a more drastic condition that
often leads to C-8 epimerization (6). Hence, additional efforts
are often needed toward the separation of diastereoisomers. This
seems to be part of the reason why analogs from C-4 position are
fewer than that of C-2. A total loss of KOP binding affinity (Ki
> 1000 nM) was reported for methyl, propyl and methoxymethyl
esters at C-4 (57, 64).

The loss of KOP binding affinity in the long-chain ester
has been associated with the fact that the pocket where the
methyl ester fits is small and delimited by Trp287 and Tyr320
amino acids residues (65). Reduction of ester to alcohol has
also led to an 87-fold decrease in KOP binding affinity as
compared to salvinorin A (58). Consistent with these data,
other studies have shown 33-fold and 385-fold losses in KOP
affinity (64, 66). Some esters with modified regiochemistry with
the exception of cyclopropyl ester showed a 17-fold loss of
affinity (64).

The replacement of methyl ester at C-4 with amides or amines
resulted in a 535-fold loss or a total loss (Ki> 10,000 nM) of KOP
binding affinity, respectively (66). With the exception of alanine,
the introduction of amino acid at C-4 resulted in a total loss of
affinity (57, 64). Some substitutions with functional groups, such
as carboxylic acid and aldehyde, have also resulted in total loss of
KOP binding affinity (64).

ANALOGS FROM THE MODIFICATION OF
SALVINORIN A AT C-12

The study of the analogs with substitutions at C-12 (the furan
ring of salvinorin A) has attracted attention as a result of
their metabolic stability (67). Although the interaction between
furan and KOP is not well-established, the removal of this
ring in salvinorin A resulted in total loss of activity while
its hydrogenation resulted in a 7-fold loss (Ki = 14 ± 1.0
vs. 1.9 ± 0.2) in KOP binding affinity (68). Perhaps the
possibility of hydrogen bonding, hydrophobic interactions or
even π-π stacking type is essential for a receptor’s recognition.
(69), the regiochemical modification of the furan resulted
in a 2-fold decrease in potency (EC50 = 12.2 ± 4.4 nM)
without significant change in efficacy (Emax = 97 ± 2%) when
compared to salvinorin A (vs. EC50 = 6.11 ± 0.04 nM and vs.
Emax = 97± 8%).

DISCUSSION ON ANTINOCICEPTIVE
EFFECT OF SALVINORIN A AND ITS
ANALOGS

Medicinal chemists have consistently modified salvinorin A
structures to produce a wide range of analogs (4, 6). These efforts
have helped to further understanding of salvinorin A chemistry
and pharmacology as well as developing new compounds with
potential therapeutic values (70). Since the identification of
salvinorin A by Bücheler et al. (71), scientists have shown
interests in its analgesic potential. Recently, the effectiveness
of salvinorin A in a rodent model of pain showed that this
compound could be beneficial for neuropathic pain relief (41).
Salvinorin A is lipophilic, and it is mainly absorbed through
the respiratory tract and to a lesser extent by the oral mucosa
(72). Following the isolation and characterization of salvinorin
A in vitro (receptor binding and functional assays) and in
vivo, chemical modification of this compound led to changes in
pharmacological parameters including stability, bioavailability,
binding affinity, potency, functional activities, and selectivity
(6, 73, 74). Hence, the activities of salvinorin A and its analogs
offer clues toward the development of safer analgesics.

The pharmacological characterization of salvinorin A has been
widely published (75). Salvinorin A was reported as a selective
agonist of KOP through a competitive radioligand binding
affinity assay (40). This pharmacological profile was subsequently
replicated and confirmed by the findings of Chavkin and co-
collaborators (76). As an important pharmacological target,
the KOP has been implicated in the antinociceptive effect of
salvinorin A (28, 77–79). Consistent with these reports, the
potent antineuropathic pain of salvinorin A was blocked by
the administration of a KOP antagonist (41). In addition to its
selectivity to KOP, salvinorin A has a very high KOP potency.
For instance, doses as low as 200 micrograms of this compound
produce hallucination (31).

The pharmacology of salvinorin A is considered unique as
a result of its structure and binding to the KOP (5). Despite
being a potent activator of KOP-mediated G protein signaling,
receptor internalization by salvinorin A is still poorly known (79).
The internalization of receptor and β-arrestin recruitment are
two cellular events that often accompany G protein activation
(5). These cellular events have been linked to the underlying
mechanism of unwanted side effects (80, 81). Hence, specific
functional groups or structural features of salvinorin A that
are critical to KOP interaction could be explored to repurpose
analogs with only antinociceptive effect.

As highlighted above, binding affinity parameter has
consistently been used for preclinical screening and as a basis for
structural activity relationship studies. However, varying values
of binding affinity data of salvinorin A and its analogs from
different laboratories have raised questions about their reliability.
Inconsistent data or lack of replicability of binding data could
have resulted from the use of different radioligands to measure
binding constants for the same analog (6).

Nature provides important chemical and pharmacological
clues through the hydrolysis of salvinorin A at C-2 position
that leads to salvinorin B and eliminates KOP activity (4,
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48, 76). In this manner, the C-2 position represents a critical
pharmacophore for salvinorin A and KOP interaction (57, 66,
76). In addition, the therapeutic potential of salvinorin A is
limited as a result of its fast hydrolysis at the C-2 position
by esterases (76, 82). Previous study which showed loss of the
antinociceptive activity of salvinorin A after 20min of intrathecal
injection confirmed its short duration of action (77).

Medicinal chemists have advanced understanding of
salvinorin A through its analogs (4, 6, 42). As mentioned
earlier in this review, the aromatic substitution through
the introduction of a phenyl group at C-2 as in herkinorin
reduced KOP and increased MOP binding affinity (56). The
structural change and selective activation of opioid receptors
seem to be important clues to the antinociceptive effect of this
compound. However, there is no data to exclude the possible
hallucinations and physical dependence that are often associated
with KOP and MOP agonists, respectively. Selective activation
of opioid receptor-mediated beneficial pathways over deleterious
signaling pathways offers an alternative therapeutic opportunity
(3, 83, 84). According to some authors, the selective activation
of Gi/o protein-mediated pathways over arrestin-mediated
signaling could be a clue to designing safer drugs (85–87).

Some experimental data on salvinorin A analogs have shown
preferential activation of G protein, β-arrestin recruitment
among other molecular targets. Previous data showed that
herkinorin promoted phosphorylation of MAP kinases ERK1/2
independent from β-arrestin-2 signaling and without promoting
MOP recruitment of β-arrestin-2 (88). The β-arrestin-2 knockout
mice with opioid treatment exhibited reduced opioid tolerance,
improved the antinociceptive effect devoid of respiratory
depression and constipation (89–91). Some authors have
associated opioid dependence with the internalization of G
protein—coupled receptors (80, 81, 92). The fact that herkinorin
did not promote MOP internalization makes its potential
application as an analgesic far more interesting.

Kurkinorin, which is considered to be extremely selective
to MOP, showed a complete pharmacological change from
salvinorin A which is known for a very high KOP binding affinity
(63, 76). Moreover, kurkinorin also has greater selectivity for
MOP than herkinorin. However, kurkinorin was found to recruit
β-arrestin 2 (EC50 > 140 nM) with an efficacy of 96% and a
bias factor of 0.57 when compared to DAMGO (63). Although
these data suggest that kurkinorin may produce a morphine-like
antinociceptive effect, chemical changes in the structure of these
compounds provide important information on the molecular
features that are necessary for molecular recognition of a ligand
by opioid receptors. Hence, additional modification could be
sufficient to prevent potential undesirable activity of kurkinorin
without compromising antinociceptive property.

Animal models of abdominal pain and pruritus have also
been explored to further the study on some salvinorin A analogs
and their potential antinociceptive effect (43, 93). The aromatic
analogs such as PR-37 and PR-38, which displayed lower affinity
for KOP, blocked nociceptive responses. The intraperitoneal
administration of PR-38 (10 mg/kg) and salvinorin A (3 mg/kg)
elicited a significant decrease in pain-related behaviors. The
higher dose of this analog suggests that salvinorin A is more

potent than PR-38. In 2015, Salaga et al. showed attenuation of
compound 48/80-induced itch responses in mice by PR-37 and
PR-38 (93). The antiscratch activity of PR-37 was blocked by the
selective nor-binaltorphimine (KOP antagonist), and that of PR-
38 by β-funaltrexamine (selectiveMOP antagonist). In this study,
both PR-37 and PR-38 induced antiscratch activity at the same
doses of 10 and 20 mg/kg.

Pharmacological evaluation of β-tetrahydropyranyl ether
of salvinorin B has provided effective insight into the
antinociceptive activity of this analog and salvinorin A. The non-
linear regression analysis of hot water tail-withdrawal latency
revealed β-tetrahydropyranyl ether of salvinorin B to be more
potent (ED50 1.4 mg/kg) than salvinorin A (ED50 2.1 mg/kg)
(44). In addition, salvinorin A and β-tetrahydropyranyl ether of
salvinorin B reduced both phase 1 nociceptive pain and phase
2 inflammatory pain in formalin test. The β-tetrahydropyranyl
ether of salvinorin B produced a longer duration of action in
the tail-withdrawal assay when compared to the salvinorin
A. An increased duration of action has been attributed to the
substitutions of tetrahydropyran group at C-2 position (44).

CLINICAL AND
ETHNOPHARMACOLOGICAL
CONSIDERATIONS OF SALVINORIN A AND
ITS ANALOGS

Currently, except for the ethnopharmacological reports, there
is a dearth of clinical data to support the analgesic property
of S. divinorum and salvinorin A (94). Salvinorin A has a
long history of use as an entheogen by the shamans/healers
of the Mazatec people (95). The ingestion of this plant species
induces a short-lived inebriant state with intense, bizarre feelings
of depersonalization (71, 96). At low infusion doses, the
plant leaves have been used to treat headache, rheumatism,
anemia, constipation, anuria, and diarrhea (97, 98). These
pharmacological effects among others have been attributed to
salvinorin A (99).

Headache is a daily painful experience that affects individuals
of all ages (100, 101). Medicinal plant application to ameliorate
unpleasant sensory and emotional experience that is associated
with a headache is a common practice. The analgesic effect of S.
divinorum leaf through infusion, chewing and swallowing could
be attributed to its salvinorin A content. One kilogram of dried
leaves or eight kilograms of fresh leaves of S. divinorum delivers
about 1.5 g of salvinorin A when smoked, vaporized and inhaled
(31, 99).

In addition to the antiheadache property of salvinorin A, its
potential role in the antirheumatoid activity of S. divinorum leaf
preparation further supports the antinociceptive property. The
origins of rheumatoid arthritis (RA) remains controversial, and
its origins in the New or Old World are subjects of several
scientific works (102). However, several studies have shown
higher prevalence of RA among the natives and women between
the ages of 35 and 50 (103, 104). The treatment of RA among
the Mazatec peoples is expected given its high incidence. The
reports of the use of S. divinorum for RA treatment are plausible,

Frontiers in Psychiatry | www.frontiersin.org March 2019 | Volume 10 | Article 15725

https://www.frontiersin.org/journals/psychiatry
https://www.frontiersin.org
https://www.frontiersin.org/journals/psychiatry#articles


Zjawiony et al. Safer Analgesic Opioids: Salvinorin A Analogs

in view of the potent antinociceptive effect of salvinorin A against
chronic and neuropathic pain (41).

The effect of S. divinorum infusion against anemia,

constipation, anuria, and diarrhea could provide additional
therapeutic benefits not only from its main isolate but also from

some of salvinorin A analogs (105, 106). Gastrointestinal tract

discomfort, constipation and diarrhea are among the therapeutic

limitations of some analgesic medications including NSAIDs
and opioids (107).

ADDICTIVE PROPERTIES: COMPARISON
OF OPIOIDS WITH SALVINORIN A AND
ITS ANALOGS

Salvinorin A as a selective KOP agonist does not elicit an
addictive effect. This property has stimulated research into
its semi-synthetic analogs as therapeutic agents (108). The
activation of KOP produces anti-addictive effects by regulating
dopamine levels in the brain (106). Unlike salvinorin A,
there is dearth of scientific data on the addictive or anti-
addictive tendency of its analogs. This may be connected
with the fact that most of these compounds were not studied
in vivo. However, based on the neurobiology of addiction,
analogs with high affinity for MOP including kurkinorin,
herkamide, and herkinorin need to be evaluated for addictive
property and compared with the available drugs being used
to manage pain. In addition, the potential addictive property
of analogs with high KOP affinity including methoxymethyl
ether of salvinorin B, β-tetrahydropyranyl ether of salvinorin
B, and ethoxymethyl ether of salvinorin B needs to be
evaluated since KOP often promote aversion, withdrawal and
abstinence (109). There are possibilities of analog such as
2-O-cinnamoylsalvinorin B with moderate dual MOP/KOP
agonism to retain analgesic effect without addiction. However,
biased activation of different signaling pathways that are
associated with KOP is key to non-addictive, addictive, or anti-
addictive effect (106). According to (109), both MOP and KOP
contribute to specific aspects of addiction by triggering its onset
and progression.

The reports on the side effects of salvinorin A such as

locomotor decreases aversion, anhedonia, memory impairment,
depressant-like behaviors, hallucinations among others (73,

106, 110) may have negatively reduced its therapeutic values.

In the previous report, the intraperitoneal administration of

salvinorin A significantly lowered dopamine levels in the
caudate putamen to elicit conditioned place aversion in rodents

(32). Salvinorin A-induced potentiation of dopamine re-uptake

transporter function has been reported as a plausible mechanism
of the decreases in dopamine levels (106). The neurobiology

of salvinorin A induced memory impairment and other side

effects is still unclear. Although there are no established structural

activity relationships in respect of these side effects, the analogs

of salvinorin A still hold promise for the future development of
analgesic drugs without addictive and other side effects. Hence,
robust preclinical studies and clinical trials will ultimately reveal
the therapeutic potential of these analogs.

FINAL CONSIDERATIONS AND
CONCLUSIONS

Salvinorin A was the first non-nitrogenous opioid receptor
agonist. Non-nitrogenous nature of this compound can be
attributed to its unique biological activities. According to
Cunningham et al. (4), non-nitrogenous or non-alkaloids are
promising scaffolds for new drug development. Despite the
reports on the opioid receptor mediated antinociceptive effect
of salvinorin A, its instability, short duration of action and side
effects remains sources of concern. Systematical modification has
increased understanding of the important role of substitutions
at different positions of the salvinorin A scaffold and increased
the possibility of developing safer analgesic drugs. Currently,
the data on the binding affinity of salvinorin A analogs are yet
to be correlated with possible low side effects and therapeutic
advantage over existing drugs. As ligands can bind well without
stabilizing the receptor’s active conformation, lower or higher
binding affinity is not synonymous with efficacy and potency.

Renewed focus on molecular targets seems to be promising
because the activation of KOP or MOP could selectively affect
β-arrestin or G-protein signaling. As the arrestin signaling
pathway is responsible for many adverse effects of opioids, biased
agonism for the G-protein pathway could retain analgesic effects
with a reduced side effect. Hence, additional research efforts
are still needed toward: (i) the modification of salvinorin A,
(ii) comprehensive study of opioid receptors and associated
molecular targets, (iii) extensive in vivo assays of salvinorin A
analogs, iv. optimization of structural and pharmacological clues
to develop safer analgesics.

On a final note, it is clear that FDA approval of salvinorin
A as an analgesic constitutes an uphill task, however, the body
of work reviewed here shows that some analogs of salvinorin A
could translate to valuable drugs for the management of pain.
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Binge-Like Exposure to Ethanol
Enhances Morphine’s
Anti-nociception in B6 Mice
Sulie L. Chang 1,2*, Wenfei Huang 1,2, Haijun Han 1 and Ilker K. Sariyer 3

1 Institute of NeuroImmune Pharmacology, South Orange, NJ, United States, 2Department of Biological Sciences, Seton Hall

University, South Orange, NJ, United States, 3Department of Neuroscience, Temple University School of Medicine,

Philadelphia, PA, United States

Elevation of the blood ethanol concentration (BEC) to > 80 mg/dL (17.4mM) after binge

drinking enhances inflammation in brain and neuroimmune signaling pathways. Morphine

abuse is frequently linked to excessive drinking. Morphine exerts its actions mainly

via the seven transmembrane G-protein-coupled mu opioid receptors (MORs). Opioid

use disorders (OUDs) include combination of opioids with alcohol, leading to opioid

overdose-related deaths. We hypothesized that binge drinking potentiates onset and

progression of OUD. Using C57BL/6J (B6) mice, we first characterized time-dependent

inflammatory gene expression change as molecular markers using qRT-PCR within 24 h

after binge-like exposure to high-dose, high-concentration ethanol (EtOH). Themice were

given one injection of EtOH (5 g/kg, 42% v/v, i.g.) and sacrificed at 2.5 h, 5 h, 7.5 h,

or 24 h later. Inflammatory cytokines interleukin (IL)-1β, IL-6, and IL-18 were elevated

in both the striatum (STr) and the nucleus accumbens (NAc) of the mice. We then

investigated the expression profile of MOR in the STr at 2min, 5 h, or 24 h after the first

EtOH injection and at 24 h and 48 h after the third injection. This binge-like exposure to

EtOH upregulated MOR expression in the STr and NAc, an effect that could enhance

morphine’s anti-nociception. Therefore, we examined the impact of binge-like exposure

to EtOH on morphine’s anti-nociception at the behavioral level. The mice were treated

with or without 3-d binge-like exposure to EtOH, and the anti-nociceptive changes were

evaluated using the hot-plate test 24 h after the final (3rd) EtOH injection with or without a

cumulative subcutaneous dose (0, 0.1, 0.3, 1.0, and 3.0 mg/kg) of morphine at intervals

of 30min. The response curve of the mice given EtOH was shifted to the left, showing

enhanced latency to response to morphine up to 3 mg/kg. Furthermore, co-treatment

with the MOR antagonist naltrexone blocked morphine’s anti-nociception in animals

given either EtOH or saline. This confirms that MOR is involved in binge-like exposure

to EtOH-induced changes in morphine’s anti-nociception. Our results suggest that EtOH

enhanced latency to analgesic response to morphine, and such effect might initiate the

onset and progression of OUDs.

Keywords: morphine, mu opioid receptors, high-dose ethanol, anti-nociception, striatum, nucleus accumbens
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INTRODUCTION

Alcohol (EtOH) is the most widely used addictive substance in

the world. The effects of alcohol drinking depend on the volume

consumed, the concentration by volume, and the drinking
pattern (1–4). Alcohol drinking patterns refers to different

frequencies and amounts of alcohol intake, such as casual
drinking, binge drinking, continuous drinking, frequent heavy
drinking, and episodic drinking. National Institute on Alcohol
Abuse and Alcoholism (NIAAA) has defined “binge drinking” as
drinking enough EtOH in a short time to elevate the blood EtOH
concentration (BEC) to > 80 mg/dL (5); that is, 17.4mM. Binge
drinking, particularly of hard liquor (> 40% alcohol by volume
[ABV]), is a popular activity among adolescents (6). Hard liquor
was involved in 43.8% of the binge drinking reported by subjects
aged 13 to 20 yrs, with vodka being the most popular beverage
(7). Epidemiologic studies indicate that adolescence is a risky
period for initiation of EtOH use, and early onset is associated
with a greater risk of late dependence or alcoholism (8–12).
Alcohol consumption by adolescents also can lead to other
addictive behaviors, including abuse of various other substances
such as opioids, as well as neurocognitive deficits and social
impairment. These pathological conditions may lead to direct
and indirect changes in the neuromaturational course extending
into adulthood (8–11). Not only chronic EtOH consumption, but
also sporadic consumption, such as excessive weekend drinking,
can provoke cognitive-deficit neuropsychological effects in young
adults (13).

Binge drinking is observed in individuals with alcohol
use disorders (AUDs). Chronic/repeated alcohol use alters
nociception, including changes in pain sensation (14). Moreover,
binge drinking induces gut leakage causing elevation of the
blood endotoxin concentration (15, 16). This systemic endotoxin
activity can trigger activation of inflammatory cytokines and
has global effects on various cell types in different organs (17,
18). Numerous investigators have shown that binge drinking in
humans and binge-like exposure to EtOH in animals encourages
production of inflammatory molecules such as interleukin
(IL)-1α, IL-6, IL-1β, and IL-18, as well as elevated activity
of neuroimmune signaling pathways via various direct and
indirect mechanisms (19, 20). Dysregulated continual synthesis
of IL-6 has a pathological effect on chronic inflammation
and autoimmunity (21). IL-1β is induced by pro-inflammatory
signaling through Toll-like receptors (TLRs) or by cytokines,
such as tumor necrosis factor (TNF)-α, IL-1β itself, and the
inflammasome (22).

Morphine is a powerful, highly addictive opioid drug that
exerts its analgesic action mainly via mu opioid receptors
(MORs) (23). TheMORs are also the principal site for morphine’s
induction of behavioral reward (24, 25), locomotion (26),
analgesia (27), tolerance (28), and physical dependence (29).
Naltrexone is a long-lasting competitive opioid antagonist that
has high affinity for MORs (30, 31). Oral naltrexone has been
used for many years to treat opioid dependence and has been
approved since 1994 by the U.S. Food and Drug Administration
to treat AUDs. Tail flick latency and hot-plate analgesia tests
are common assays using rodent models to examine morphine’s

anti-nociception (32). MORs are involved in the interaction of
morphine and EtOH, which induces neuroinflammation (33, 34).

We have reported that treatment with the pro-inflammatory
cytokine IL-1β significantly increases MOR expression in
endothelial cells (35) and in humanU87MG cells (36). In another
in vitro study, we reported that the upregulation ofMOR induced
by lipopolysaccharide (LPS) stimulation in macrophage-like
TPA-HL-60 cells and conditioned medium from LPS-stimulated
TPA-HL-60 cells increases MOR expression in SH-SY5Y cells,
a neuronal cell model, through actions mediated by TNF-
α and granulocyte–macrophage colony-stimulating factor (37).
The LPS-challenged HIV-1 transgenic (HIV-1Tg) rat model with
neuroinflammation demonstrates an increase inMOR expression
and is more sensitive tomorphine’s effect in the conditioned place
preference test (38, 39).

Taken together, considering the above-mentioned studies
showing that (1) binge-like exposure to EtOH induces
inflammation and inflammatory cytokines (19, 20) and (2)
inflammatory cytokines mediate expression of MOR (35–37)
and change morphine actions (38, 39), we hypothesized that
binge-like exposure to EtOH increases expression of MOR
and changes morphine-induced anti-nociception by inducing
elevation of inflammatory molecules in the brain. In the present
study, adolescent C57BL/6J mice were given binge-like exposure
to high-dose, high-concentration EtOH for 3d by intragastric
(i.g.) injection to mimic underage binge alcohol drinking, such
as over a weekend (40). The blood EtOH concentration (BEC)
after single and repeated EtOH administration was measured.
Time-dependent gene expression change was investigated using
qRT-PCR as molecular markers to evaluate the response to this
binge-like exposure to EtOH. The nucleus accumbens (NAc)
plays an important role in processing rewarding and reinforcing
stimuli including drug addiction; the striatum (STr) is part of the
brain’s reward circuit and a key region responsible for voluntary
motor control (41). Therefore, we studied expression of the
pro-inflammatory cytokine genes Il1b, Il6, and Il18, as well as the
MOR gene Oprm1, in the NAc and STr. Finally, hot-plate tests
were employed to evaluate the behavioral effect of binge-like
exposure to EtOH on morphine’s anti-nociception. The opioid
antagonist naltrexone was used to confirm morphine’s action
on MOR. Our results suggest that neuroinflammation induced
by binge-like exposure to EtOH contributes to elevation of
morphine’s anti-nociception response. Such a change might be
one of the fundamental mechanisms underlying encouragement
of OUDs by binge-like EtOH exposure.

MATERIALS AND METHODS

Animals
C57BL/6J mice (3–4 wks old) were purchased from the Jackson
Laboratory (Bar Harbor, ME). They were housed with four
animals per ventilated plastic cage (Animal Care Systems
Inc., Centennial, CO) and maintained in a temperature- and
humidity-controlled environment. They were kept on a 12-h
light/dark cycle and fed a standard rodent diet. The experimental
protocol was approved by the Institutional Animal Care and Use
Committee (IACUC) at Seton Hall University, South Orange, NJ.
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TABLE 1 | EtOH administration and determination of blood EtOH concentration.

Treatment Day 1 Day 2 Day 3

Water Blood collection

EtOH 2min Blood collection 2min after injection

EtOH 1 d 5 h Blood collection 5 h after injection

Repeated EtOH 2 d 5 h EtOH Blood collection 5 h after injection

Repeated EtOH 3 d 5 h EtOH EtOH Blood collection 5 h after injection

As vehicle control, water injections (not shown) were given.

EtOH Treatment and BEC Determination
The mice were allowed at least one week to adapt to the facility.
To minimize the non-specific stress response to i.g. injection
of EtOH, the adolescent mice (at ∼ 5 wks) were given 2-day
conditioning by intragastric (i.g.) injection of water. The first
group of mice was then given one dose of 5 g/kg/d of 42%
v/v EtOH as a bolus via i.g. injection. Tail vein blood was
collected by tail clipping prior to and at 10min, 20min, 1 h,
2 h, 4 h, 6 h, and 8 h after treatment. A second group of mice
was designated to receive the same dose of EtOH for 1, 2, or 3
d; and blood was collected 5 h after the last injection (Table 1).
Plasma was obtained by centrifugation of whole blood at 10,000
rpm for 10min at 4◦C and stored at −80◦C until analysis.
The EtOH concentration was determined using an Ethanol
Assay Kit (Biovision, Milpitas, CA) following the manufacturer’s
instructions. The BEC data were analyzed using Student’s
t-test.

EtOH Treatment and Tissue Collection
After 2-day conditioning, the B6 mice were designated to receive
5 g/kg 42% v/v EtOH as a bolus one time and sacrificed at 2min,
2.5 h, 5 h, 7.5 h, or 24 h after treatment, after which the brains
were microdissected. The STr and NAc were stored at −80◦C
until analysis. A second batch of B6 mice received the same dose
of EtOH for 1 or 3 days (Table 2). These mice were sacrificed 5 h
after the last injection. By adapting the EtOH treatment regimen
as reported previously (42), we conducted preliminary studies
using animals receiving water or EtOH for 2min. Other than
the BEC reading, there are no significant differences between
the readings of various assessments on the animals sacrificed
immediately (2min) after receiving EtOH (EtOH for 2min) and
those of the animals receiving water. For example, in the STr,
1Ct of Il1b was 8.77 ± 0.22 in the water group and 8.51±0.58
in the EtOH for 2min group, with a fold change of 1.20 ±

0.38 (p = 0.38); and in the NAc, 1Ct of Il1b was 9.11 ±

0.52 in the water group and 9.42±0.53 in the EtOH for 2min
group, with a fold change of 1.74 ± 0.91 (p = 0.10). The above
data were reproduced in two additional experiments. For the
time course study of gene expression changes, it is necessary to
include 2-min EtOH group that was used as control for data
analysis. In line with IACUC and NIH guideline to minimize
use of the animals, no water group was included in the study for
Oprm1 daily expression following binge-like exposure to EtOH.
As reported previously (42), we have used 2-min EtOH as control
throughout this research project. Brains were microdissected,

TABLE 2 | EtOH administration timeline for Oprm1 response.

Treatment Day 1 Day 2 Day 3 Day 4 Day 5

EtOH

2min

EtOH;

sacrifice 2min

after injection

EtOH 5h EtOH;

sacrifice 5 h

after injection

EtOH

24h

EtOH Sacrifice

Repeated

EtOH

24h

EtOH EtOH EtOH Sacrifice

Repeated

EtOH

48h

EtOH EtOH EtOH Sacrifice

As vehicle control, water injections (not shown) were given.

and the STr and NAc were collected and stored at −80◦C until
use.

RNA Isolation and cDNA Preparation
Total RNA was extracted from the STr and NAc using the
RNeasy Mini Kit (Qiagen, Germantown, MD), followed by
RNase-free DNase (Qiagen) digestion to remove contaminating
DNA. The RNA quality and quantity were determined using
an ND1000 Nanodrop spectrophotometer (Thermo Scientific,
Waltham, MA) and verified by gel electrophoresis. An equal
amount of RNA (400 ng) from each sample was converted to
cDNA using the RT2 First-Strand Kit (Qiagen) according to the
manufacturer’s instructions.

qRT-PCR Analysis
Gene expression was quantified using RT2 SYBR ROX qPCR
Master Mix (Qiagen) as described previously (38, 40, 43). Real-
time polymerase chain reaction (PCR) was performed with the
ABI Prism 7900HT Fast Detection System (Applied Biosystems,
Foster, CA). The thermocycler parameters were 95◦C for 10min
followed by 40 cycles at 95◦C for 15 s and 60◦C for 1min. ROX
was used as the passive reference. Expressions of all genes were
normalized to expression of β-actin (Actb) and splicing factor,
arginine/serine-rich 4 (Sfrs4). The relative expression of each
gene was compared with expression of that gene in the mice
given EtOH for 2min and calculated using the 11CT method
(44). The primer sequences for Il1b, Il6, Oprm1, Actb, and Sfrs4
are listed in Table 3. The Il18 primers were purchased from
Qiagen (Cat No. PPM03112B). Data were analyzed using one-
way ANOVA followed by Dunnett’s post-tests in GraphPad Prism
5 software (GraphPad Software Inc., La Jolla, CA).

EtOH Treatment and Hot-Plate Tests
Male 5-week-old B6 mice were designated to receive either
5 g/kg 42% v/v EtOH or water (control) daily for 3 days.
Morphine sulfate (Sigma, St. Louis, MO) was freshly prepared
prior to use by dissolving it in 0.9% sterile saline. A 1.0-
mg/mL morphine solution was serially diluted to create
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TABLE 3 | PCR array primer sequences.

Gene symbol Primer Sequence 5′3′

Oprm1 Forward CCAGGGAACATCAGCGACTG

Reverse GTTGCCATCAACGTGGGAC

Il1b Forward AATGCCACCTTTTGACAGTGATG

Reverse GGAAGGTCCACGGGAAAGAC

Il6 Forward CCCCAATTTCCAATGCTCTCC

Reverse GGATGGTCTTGGTCCTTAGCC

Actb Forward GGCACCACACCTTCTACAATG

Reverse GGGGTGTTGAAGGTCTCAAAC

Sfrs4 Forward GATCTGAAGAACGGGTATGGCT

Reverse ACACAGGTCTTTGCCGTTCA

TABLE 4 | EtOH administration and hot-plate test timeline.

Treatment Day 1—Day 3 Day 4

Water alone Daily water injections Hot-plate tests

Water + morphine Daily water injections Cumulative doses of morphine

(s.c.) and hot-plate tests

EtOH alone Daily EtOH injections Hot-plate tests

EtOH + morphine Daily EtOH injections Cumulative doses of morphine

(s.c.) and hot-plate tests

doses of 0.1, 0.3, 1.0, or 3.0 mg/kg. A saline solution with
no morphine was the control for morphine treatment. In
our preliminary studies, the animals were given cumulative
doses of morphine of 0.1, 0.3, 1.0, 3.0, and 10 mg/kg to
select the morphine doses to be used. On subcutaneously
(s.c.) treatment with morphine at 10 mg/kg, both control
and experimental animals presented abnormal behaviors
that were beyond measurement using the hot-plate test.
Therefore, we chose morphine doses of 0.1, 0.3, 1.0, and 3.0
mg/kg.

As shown in Table 4, on the day after Day 3 of binge-
like exposure to high-dose, high-concentration EtOH, the mice
were injected subcutaneously (s.c.) with a cumulative dose of
morphine as noted above at intervals of 30min and placed
on the hot plate of the IITC Test Analgesia Meter (Woodland
Hills, CA) that was set at 55◦C. The latency was recorded
according to hind-paw lick or jumping on the meter. A
maximum 120-s cutoff was set to avoid tissue damage. The
latency (s) was plotted against morphine doses (45). By adhering
to the IACUC and NIH guideline, the minimum number
of animals needed to obtain statistical power was discovered
and used.

In a parallel experiment, naltrexone (1 mg/kg) was
administrated s.c. 5min prior to morphine injection. Hot-
plate test results were analyzed using two-way repeated measures
ANOVA, followed by Bonferroni post-tests in GraphPad Prism 5
software (GraphPad Software Inc., La Jolla, CA) (46).

FIGURE 1 | Time course of blood EtOH concentration. Three B6 mice were

given EtOH (5 g/kg, 42% v/v, i.g.). The BEC was measured prior to (0min) and

at 10min, 20min, 1 h, 2 h, 4 h, 6 h, and 8 h later and normalized by subtracting

background (0min BEC) and plotted against time.

RESULTS

Time Course of Blood EtOH Concentration
of Mice Given Single Binge-Like Exposure
to High-Dose, High-Concentration EtOH
The BEC of adolescent C57BL/6J (B6) mice was measured prior
to and at 10min, 20min, 1 h, 2 h, 4 h, 6 h, and 8 h after EtOH
administration. Striking elevation of the BEC to approximately
100mMwas observed at 20min, and it reached a peak of 108.4±
18.8mM at 1 h. The BEC then declined gradually. After a single
binge-like exposure, the time required for the animal’s BEC to
reach < 17.4mM was close to 8 h (Figure 1) .

Blood EtOH Concentration of Mice Given
Repeated Binge-Like Exposure to
High-Dose, High-Concentration EtOH
The BEC of the adolescent B6 mice treated with 1 d, 2d, or
3 d of high-dose. high-concentration EtOH was determined.
At 2min after EtOH treatment, the BEC had already risen to
20.25 ± 2.89mM. The BEC at 5 h after the 1st, 2nd, and 3rd
EtOH injection were compared with that of the mice given
water and at 2min after EtOH injection (Figure 2A). At 5 h after
EtOH administration, the BEC was significantly higher than at
2min and the basal BEC of the mice given water. There was
no significant difference in the BEC at 5 h after repeated EtOH
administration on different days.

Figure 2B shows that at 24 h after the 3rd EtOH delivery,
the BEC had returned to the basal concentration. There was no
significant difference in the BEC of these mice compared with
that of the mice given water.

Elevated Inflammatory Molecule
Expression After Single Binge-Like
Exposure to High-Dose,
High-Concentration EtOH
To explore the time-dependent response of the inflammatory
genes, the gene expression change in both the STr and the NAc at
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FIGURE 2 | Blood EtOH concentration after repeated EtOH administration (5 g/kg/d; 42% v/v; i.g.). (A) Concentrations at 5 h after 1st, 2nd, and 3rd administration.

(B) 24 h after 3 d of administration, BEC was back to basal concentration. Statistical analysis was performed using student’s t tests. *p < 0.05, **p < 0.01,

***p < 0.001; n = 4.

2min, 2.5 h, 5 h, 7.5 h, and 24 h after binge-like exposure to EtOH
was determined. The qRT-PCR revealed that proinflammatory
genes Il18 (F(4, 15) = 9.66, p < 0.001) and Il1b [F(4,14) = 3.21,
p < 0.05] showed significant changes in the STr within 24 h
following EtOH exposure (Figures 3A,B). Expression of Il1b
(p < 0.05) and Il18 (p < 0.01) increased significantly at 5 h
after EtOH treatment; Il18 expression remained high until 24 h
(p < 0.01). Within the time course of 24 h, anti-inflammatory Il6
showed a significant change in STr [F(4,14) = 3.26, p < 0.05]; Il6
increased at 7.5 h but fell after 24 h in STr (Figure 3C).

Figures 3D–F shows a late response in expression of
inflammatory genes Il18 [F(4,14) = 11.10, p < 0.001] and Il1b
[F(4,14) = 5.85, p < 0.01] in the NAc. At 7.5 h after binge-
like exposure to high-dose, high-concentration EtOH, pro-
inflammatory Il1b (p < 0.01) and Il18 expression (p < 0.001)
was significantly elevated at 7.5 h. Meanwhile, the extent of
anti-inflammatory Il6 decreased [F(4,14) = 0.81, p > 0.05].
After 24 h, the extent of Il1b, Il18, and Il6 expression did not
show a significant difference from that in the 2-min control
group.

Repeated Binge-Like Exposure to
High-Dose, High-Concentration EtOH
Induced Upregulation of MOR Expression
Our previous in vitro studies showed that MOR expression is
induced by pro-inflammatory cytokines (36, 37), and therefore,
we examined the time course of mRNA expression of the MOR
gene Oprm1 in the STr and NAc of brains of binge-like EtOH-
treated B6 mice at 2min, 5 h, or 24 h after the first EtOH infusion
and at 24 and 48 h after the third infusion. In the STr, expression
of Oprm1 had increased significantly by 5 h after the first EtOH
delivery and then gradually declined [F(4,9) = 4.25, p < 0.05];
at 5 h after EtOH injection, Oprm1 expression was significantly
higher than that at 2min (p < 0.05) (Figure 4A). Figure 4B
shows a similar trend for Oprm1 in the NAc [F(4,9) = 1.95,
p > 0.05] (Figure 4B).

Binge-Like Exposure to High-Dose,
High-Concentration EtOH Alters
Morphine’s Anti-nociception
To test the behavioral consequences of the gene expression
change induced by binge-like exposure to high-dose,
high-concentration EtOH, hot-plate tests were performed
to evaluate morphine’s anti-nociception effect. 24 h after the 3rd
d EtOH injection, the mice were injected s.c. with a cumulative
dose (0, 0.1, 0.3, 1.0, or 3.0 mg/kg) of morphine at intervals of
30min and then placed on a 55◦C hot plate. As shown in the
insert in Figure 5A, hot plate latency of the mice given either
water or EtOH alone didn’t change with no morphine injections.
Of the mice given water, the latencies were 10.68 ± 3.52 s and
10.89 ± 2.79 s prior to and after injections, respectively; of
the animals given EtOH, the latency readings were 10.93 ±

3.22 s and 10.88 ± 4.04 s, respectively. Morphine produced
dose-dependent anti-nociception both in animals given water
and in those receiving EtOH. In comparison with the animals
given water (blue curve), the animals receiving EtOH showed a
greater response to morphine; the response curve was shifted to
the left [F(4,120) = 5.73, p < 0.001] (Figure 5A). The latency to
analgesic response was significantly enhanced in EtOH-treated
animals at 3 mg/kg dose of morphine (p < 0.001). The response
latency induced by morphine was ablated by naltrexone in
animals treated with EtOH [F(4,72) = 42.78, p < 0.001] or
water [F(4,88) = 13.20, p < 0.001], and no difference was
observed between animals given EtOH and those with water
[F(4,55) = 0.87, p > 0.05] (Figure 5B).

DISCUSSION

“Binge drinking” is repeated EtOH intake causing a BEC > 80
mg/dL (17.4mM) (5). The peak BEC of binge drinkers, from
18 to 50 years old or older, has been reported to be as high as
470 mg/dL (that is equal to 102mM) (47). In addition to the
well-characterized liver toxicity, binge drinking can cause various
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FIGURE 3 | Inflammation-related gene expression change in striatum (A–C) and nucleus accumbens (D–F) within 24 h in response to binge-like EtOH administration

(42% v/v, 5 g/kg, i.g.). Data are expressed as mean ± SE. Statistical analysis was performed using one-way ANOVA followed by Dunnett’s post-tests, compared with

control 2-min EtOH group: *p < 0.05, **p < 0.01, ***p < 0.001; n = 4.

FIGURE 4 | Time-dependent expression change of MOR gene, Oprm1, in striatum (A) and nucleus accumbens (B) in response to binge-like EtOH administration

(42% v/v, 5 g/kg/d, i.g.). Data are presented as mean ± SD. Statistical analysis was performed using one-way ANOVA followed by Dunnett’s post-tests compared

with control 2-min EtOH group: *p < 0.05; n = 4.

neurologic disorders (48). Morphine use/abuse frequently is
linked to drinking, especially excessive drinking. Combining
opioids with other substances, including EtOH, increases opioid
overdose deaths (49). During the last decade, an intertwined

epidemic of drug abuse and addiction, EtOH addiction, and binge
drinking has emerged (50).

Alcohol research investigators have commonly used rodent
models to mimic human alcohol consumption, particularly
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FIGURE 5 | Hot-plate analgesia test in response to morphine in 5-week-old

B6 mice given 3-d binge-like EtOH treatment. (A) Ethanol-treated mice (n = 4)

showed elevated response to morphine; morphine response curve was shifted

to the left. (Insert) the animals given both water and EtOH didn’t show change

in latency without morphine injections (n = 4). (B) The response latency shift

was completely ablated by opioid receptor antagonist naltrexone (1 mg/kg;

s.c.) (n = 3). Statistical analysis was performed using two-way repeated

measures ANOVA followed by Bonferroni post-tests. *p < 0.05, ***p < 0.001.

specific drinking patterns such as binge drinking (40, 51, 52). The
high dose of EtOH we chose to administer (5 g/kg; 42% v/v) is
equivalent to the alcohol by volume (ABV) of the hard liquors,
such as vodka. By adapting the high dose of EtOH used in many
rodent studies, the specified dose of EtOH was used in our study.
The dose of 5 g/kg is well-established as a binge-drinking model
in mice (40, 52). To differentiate binge drinking in humans from
the model in mice, we have used the term “binge-like exposure
to EtOH.” Figure 1 shows that a BEC higher than 17.4mM
was detected in mice after one treatment (i.g.) with EtOH (5
g/kg). The elevation of BEC above 17.4mM was detected within
2min (Figures 1, 2A), and the reading reached its peak, 108.4

± 18.8mM, at 1 h. The peak declined gradually over 7–8 h. The
instant rise of BEC to the NIAAA-defined binge concentration
(17.4mM) and the prolonged high concentration of alcohol
could exert significant systemic effects, including intoxication,
overburden of the liver for alcohol metabolism, and early and
transient pro-inflammatory states (53–56).

Underage drinking, including binge drinking over the
weekend, is common (7). To mimic the underage common
drinking pattern, we chose 3-d high-dose, high-concentration
EtOH dose. After each of the three binge-like EtOH treatments,
the instant elevation of the BEC to > 17.4mM and the
long duration of the elevated BEC followed by a reduction
to below 17.4mM on Day 1 were also observed on Day 2
and Day 3 (Figure 2A). At the 5 h point, the BEC was 35–
40mM on all 3 days (Figure 2A). The 3-d binge-like exposure
to EtOH therefore gave the animals the BEC > 17.4mM for
∼ 24 h in total. We previously reported that this 3-d high-
dose, high-concentration EtOH binge-like regimen induces a
stress response in the hippocampus of adolescent rats, and the
downstream effects of the EtOH-induced stress response in the
hippocampus appear to be involved in reduction of the spleen
size (40).

In addition, there was a significantly higher plasma
endotoxin concentration (200 EU/mL) in the animals
given 3-d binge-like exposure to EtOH (40). Other
studies have found that binge drinking in human subjects,
as well as binge-like exposure to EtOH in rodents,
induces gut leakage that elevates the blood endotoxin
concentration (15, 16), which leads to production of
inflammatory molecules, as well as greater activity of
neuroimmune signaling pathways (19, 20). As noted
previously, binge-like exposure to high-dose, high-
concentration EtOH can trigger a severe immune response
that persists even after EtOH has been metabolized
(Figures 1, 2) (57).

After administration of EtOH, this volatile compound
distributes into the cytosol of all cells. Thus, in addition to
the hippocampus in which the 3-d binge-like exposure to
EtOH induces stress responses (40), this EtOH regimen is
expected to affect other brain areas, including those responsible
for changes in pain sensation, as it was previously reported
that binge EtOH consumption increases inflammatory pain
responses and mechanical and cold sensitivity (14). We focused
on the STr and the NAc areas. The STr is part of the brain’s
reward circuit and a key region responsible for voluntary
motor control (41, 58). The STr projects to the basal ganglia,
a neuronal circuit necessary for voluntary movement control,
and exerts neuronal activity related to movement, rewards, and
the conjunction of movement and reward (41, 59). The MOR
is highly expressed in the STr (60, 61). The NAc plays an
important role in the generation of motivated behaviors (62)
and facilitates reward seeking by integrating neurotransmitter-
mediated reinforcement signals with environmental stimuli
(63, 64).

Figure 3 shows the mRNA time courses of the expression
of Il1b, Il18, and Il6 genes in both the STr and the NAc after
one binge-like exposure to high-dose, high-concentration EtOH.
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The initial elevation of the expression these three genes in the
STr appeared between 5 and 7.5 h, whereas only Il18 remained
significantly elevated at 24 h. However, in the NAc, the significant
elevation of the products of these 3 genes was detected only
at 7.5 h, and the elevation did not last to 24 h. The elevation
time point and differential duration appeared to be brain-region
dependent and suggest that EtOH-mediated effects are more
intense in the STr than in the NAc because the STr projects to
the NAc (65, 66).

Previous studies have demonstrated that expression of
Oprm1 is stimulated by various pro-inflammatory cytokines,
including IL-1β (35–37). Figure 4 shows that in the STr,
significant upregulation of Oprm1 was observed at 5 h after
binge-like exposure to EtOH. On the other hand, there was
only a trend to elevation of Oprm1 in the NAc. Although
Oprm1 mRNA elevation disappeared by the 24-h time point,
protein level of the mu opioid receptors might stay elevated;
confirmation of this idea is needed. Following binge-like
exposure to EtOH, inflammatory cytokines and Oprm1 mRNA
levels both change in the brain areas. However, the concurrent
elevation of these genes might imply, but not confirm, the
direct correlation between expression of inflammatory cytokines
and Oprm1 induced by high-dose, high-concentration EtOH.
Our qPCR data showed that binge-like exposure to EtOH
caused both neuroinflammation and upregulation of MOR
in various brain areas. Further studies are on the way to
examine the causal correlation between expression elevation
of inflammatory cytokines and Oprm1 following binge-like
exposure to EtOH.

Elevation of Oprm1 implies increased expression and
activity of MOR. Anti-nociception associated with morphine
use would be the behavioral outcome of this elevation.
Figure 5A shows morphine anti-nociception in adolescent
C57BL/6J mice as determined by hot-plate analgesia tests
at 24 h after 3-d binge-like EtOH treatment. There was
an increase in morphine-induced anti-nociception after the
EtOH treatment (Figure 5). Co-treatment with naltrexone, the
selective MOR antagonist, abolished anti-nociception of the
cumulative dosage of morphine in the mice given either binge-
like exposure to EtOH or saline. This suggests that MOR is
involved in morphine’s anti-nociception elevation by binge-
like exposure to EtOH. This also confirms that the 3-d EtOH
at a high dose (5 g/kg) and high concentration (42% v/v)
contributed to elevation of neuroinflammation and expression
of MOR.

As noted previously, morphine abuse is frequently linked
to excessive drinking. A cross-tolerance could take place
between EtOH intake and treatment with morphine that is
the high-affinity agonist for MOR. Le et al reported that
in adult male rats, chronic EtOH consumption decreases
the response to treatment with morphine (67). He et al
reported that repeated EtOH intake by self-administration (5–
6 g/kg/24 h) decreases the anti-nociception of MOR agonists.
Inhibition of MOR endocytosis is a possible mechanism
underlying the cross-tolerance interaction between EtOH and
MOR agonists (68). Shah et al reported that chronic EtOH
consumption, but not a single injection that resulted in a BEC

of approximately 15 mg/dL, decreases the analgesic potency of
opioids in mice. However, the investigators were not sure of
the mechanism underlying the interaction between EtOH and
opioids, including morphine (69). In examining the alleviation
of CRF1 receptor antagonism related to heroin and EtOH
dependence, Edwards et al suggested that understanding the
relations between chronic exposure to addictive substances
such as EtOH and pain-related states such as nociception
could reveal the mechanisms underlying the transition to
addiction to various substances of abuse (70). Other than
the study reported by Shah et al, all these studies suggested
how treatment with EtOH changed the activity of MOR
and MOR-mediated morphine-induced anti-nociception. Taking
these data together with the studies showing that inflammatory
cytokines mediate expression of MOR (35–37) and change
morphine actions (38, 39), we have reconciled two of our
previous studies in light of our current study to address how
inflammation induced by various exogenous challenges such as
binge drinking might change the subject’s response to morphine’s
anti-nociception.

In one of our previous studies, we used HIV-1 transgenic
(HIV-1Tg) rats, mimicking people living with HIV/AIDS
and receiving combination antiretroviral therapy (cART),
to demonstrate that the persistent presence of HIV-1
proteins elevates inflammation in the brain that possibly
correlates with upregulation of MOR expression and the
enhancement of morphine’s anti-nociception (71, 72). In
another study, using F344 rats, we showed that repeated
treatment with LPS elevates inflammation in the brain and
enhances the sensitivity to morphine’s anti-nociception
and morphine-induced conditioned place preference (73).
With binge-like exposure to high-dose, high-concentration
EtOH in adolescent mice, with the persistent presence
of HIV proteins in the HIV-1Tg rats (71, 72), and with
repeated treatment with LPS there was enhancement of
morphine’s anti-nociception secondary to upregulation of
MOR expression that might be the outcome of elevation
of inflammation in the brain. Taken together, our three
studies appear to confirm that systemic inflammation
attributable to the persistence of viral proteins, repeated
treatment with LPS, or binge-like exposure to EtOH leading
to elevation of plasma endotoxin, enhanced the rewarding
effects of morphine, both physiologically and behaviorally,
thereby increasing the potential for morphine abuse and
addiction.

In summary, our research indicated that binge-like
exposure to high-dose, high-concentration EtOH- enhanced
morphine anti-nociception might be mediated via elevation
of neuroinflammation. Because morphine is highly addictive,
alteration of the animals’ response to its use in the course of
systemic inflammation could cause the onset and progression
of OUDs in the course of inflammation following binge-like
exposure to EtOH. As a result of the current study, mega-
analysis using bioinformatics tools to link neuroinflammation
parameters, expression ofMOR, and determinants of nociception
will be conducted to extend the findings of our current
study.
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With the opioid crisis in North America, opioid addiction has come in the spotlight and

reveals the weakness of the current treatments. Two main opioid substitution therapies

(OST) exist: buprenorphine andmethadone. These twomolecules are mu opioid receptor

agonists but with different pharmacodynamic and pharmacokinetic properties. In this

review, we will go through these properties and see how they could explain why these

medications are recognized for their efficacy in treating opioid addiction but also if they

could account for the side effects especially for a long-term use. From this critical analysis,

we will try to delineate some guidelines for the design of future OST.

Keywords: addiction, morphine, buprenorphine, methadone, substitution treatment

INTRODUCTION

When people talk about opioid problems or addiction to opioids, they think of opioids that some
people get on the street, such as heroin, with the idea that only a minority of persons is concerned.
But the truth is very different and anyone who uses an opioid can develop addictive behaviors.
This is not a specific problem for heroin users as opioids are very useful molecules and powerful
medications that are generally prescribed to relieve severe pain. Thus, problematic opioid use
may also include the misuse of prescription opioid medications, such as oxycodone, morphine, or
codeine, or the use of a drug for which no personal prescription has been received. As a result,
the number of people over-using or dependent on opioids is increasing dramatically and is a
public health problem. Over the past few years, both the U.S. and Canada have seen a spectacular
increase in opioid overdose rates. From 1999 to 2016, more than 350,000 people died from opioid
overdose in U.S. (https://www.cdc.gov/drugoverdose/epidemic/index.html). This so-called “opioid
epidemic” or “opioid crisis” started in the 1990’s with the conjunction of different factors including
propaganda by pharmaceutical companies claiming that their opioids had a low liability to induce
addiction mainly because of the extended release formula, and a better pain management which led
to a widespread use of opioid drugs for the treatment of moderate pain (1, 2).

Behind these perfectly quantified data, there is another figure that is difficult to quantify, but
which is most certainly very high, people with opioid addiction. This crisis shed light on the
weakness of available treatments to manage opioid addiction. Two main medications—the opioid
substitution treatments (OST) are used: buprenorphine and methadone. After a rapid review of
neurobiology of opoid addiction, we will review some properties of these OST that could explain
why they have a certain success [for an extensive review on methadone and/or buprenorphine, see
(3)]. However, this success is only relative (relapses very often occur even when patients are under
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TABLE 1 | Examples of preclinical and clinical opioid drugs.

Ligand Selectivity Activity

Morphine MOPr >> KOPr Agonist Analgesia

Respiratory depression

Heroin MOPr >> KOPr Agonist Fast penetration in the brain

Acts through its mainly active metabolite, morphine

Buprenorphine MOPr

DOPr

KOPr

Partial agonist

Antagonist

Antagonist

Reduces withdrawal

Low risk of respiratory depression

Methadone MOPr Agonist Reduces withdrawal, risk of respiratory depression

TRV130 MOPr Agonist (biased toward G protein)

PMZ21 MOPr >

KOPr >

DOPr

Biased agonist

Antagonist

Weak agonist Analgesia

Cebranopadol MOPr, KOPr, NOPr >

DOPr

Agonist (partial at KOPr) Reduced respiratory depression

AT-121 MOPr,

NOPr >

DOPr KOPr

Partial agonist

Partial agonist

Naloxone MOPr, DOPr, KOPr Antagonist Blocks euphoric effects

Reverses respiratory depression

Naltrexone MOPr, KOPr > KOPr Antagonist

PL37, PL265 MOPr, DOPr (via

enkephalins)

Inhibit enkephalins degradation Analgesia

Lack opioid-associated side effects

OST) and as banning opioids is not an option, it is therefore
important to discuss the future of opioid research. A table with
the opioids cited in the present review is included to facilitate the
reading of the manuscript (Table 1).

THE NEUROBIOLOGICAL BASIS OF
OPIOID ADDICTION

It has been known for a long time that opioids such as morphine,
heroin, and derivatives induce numerous pharmacological
responses, including analgesia, dependence, respiratory
depression or euphoria (4, 5). From these observations, evidence
that different opioid drug effects could only be explained by
the existence of stereospecific receptors has emerged. In the
1970s, the endogenous opioid receptors were discovered (6–8),
followed by the characterization of the endogenous opioid
peptides (9). Since these identifications numerous studies have
been conducted in the opioid field.

Historically, three opioid receptors have been characterized,
mu (MOPr), delta (DOPr), and kappa (KOPr). Additional
receptor types have been identified, but are no longer considered
as “classical” opioid receptors (e.g., sigma, nociceptin/orphanin
receptor, NOPr) (10). The three opioid receptors were cloned in
the early nineties (11–14). Since this period, several knockout
mice lines, each harboring deletions of the genes encoding
a particular opioid receptor, have been used to clarify the
specific role of the different receptors in vivo and in many
physiopathological conditions (15). In this review the focus will
be on reward and addiction.

It is well-known that all drugs of abuse increase extracellular
dopamine levels in the nucleus accumbens (Nac), either
directly (e.g., cocaine and amphetamine directly target dopamine
transporters), or indirectly (e.g., opioids decrease GABA release
in the ventral tegmental area, leading to an activation of
dopamine neurons). Several lines of evidence indicate that
MOPr play a key role in mediating the rewarding effects of
opioids, while the role of DOPr remains debatable, and KOPr
are considered to have opposite functions to those of MOPr
in the regulation of reward and addiction. KOPr agonists have
dysphoric and aversive effects in humans and rodents (16, 17), in
good agreement with decreases in dopamine release in the Nac
observed following injection of selective agonists in this brain
structure (18).

The pharmacological responses induced by opioids (e.g.,
conditioned place preference, intravenous self-administration,
locomotor activity, analgesia) are abolished in MOPr knockout
mice, demonstrating that MOPr represent the primary in vivo
molecular target for these ligands (15). Morphine-induced
conditioned place preference in an unbiased procedure is also
reduced in DOPr knockout mice (19, 20), but these animals
show normal motivation to obtain morphine in intravenous
self-administration paradigm (20). These results, combined with
other data obtained from other experimental approaches suggest
that morphine reward andmotivation to obtain opioids are intact
in DOPr knockout mice, however drug-context association is
more certainly impaired.

Both with most clinically useful (e.g., morphine, fentanyl,
oxycodone) and most largely abused (heroin) opioids, opioid-
use disorder is a public health problem. The number of
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opioid prescriptions sharply increased in the past two decades,
increasing risks for addiction and overdoses. Addiction to
prescribed opioids is associated with transition to illicit opioid
use like heroin (21), and overdoses have strongly risen since the
1990s (22). As mentioned earlier the notion of “opioid crisis”
or “opioid epidemic” has emerged in North America, and to a
lesser extent in Australia (23). European countries appear to be
less affected (24), but even if the risk in Europe appears relatively
limited, vigilance is needed (25).

Opioid addiction is a brain disorder, involving alterations
in neuronal circuits with complex neuroadaptative mechanisms
that lead to dependence, craving, and relapse; thus contributing
to the maintenance of drug use. Until now, no medication can
reverse the drug-induced changes observed in the brain that are
involved in the relapsing nature of opioid-use disorders, even
after a protracted abstinence. Currently, the therapeutic approach
using an agonist strategy with methadone and buprenorphine,
has shown physical and psychosocial improvements in drug
users, but these molecules possess MOPr agonist properties
which limit their clinical usefulness, as described below.

CHARACTERISTICS OF THE OPIOID
SUBSTITUTION TREATMENTS

The Way They Reach Their Target:
Pharmacokinetic Properties
The therapeutic action of a compound strongly depends on its
pharmacokinetic properties (26). The opioid users seek a rapid
and intense euphoria which is obtained with heroin, which is a
prodrug. Indeed, although it has a low affinity toward MOPr, its
action is mainly mediated by its metabolites including morphine
(27, 28). The intense and rapid euphoria following heroin
administration is partly due to its high lipophilic nature, enabling
the molecule to readily cross the blood-brain barrier (29).
Another very important characteristic that determines the fast
action of heroin is the route of administration: the intravenous
route being the fastest (30). OST are both oral medications,
methadone as a syrup or pills and buprenorphine as sublingual
tablet or films. Methadone has a good oral bioavailability
(between 40 and 95%) (31), conversely, buprenorphine has a
poor oral bioavailability. In any case, both oral and sublingual
routes allow the OST to diffuse slowly, thus avoiding peak effects
which contribute to addiction. Therefore, after ingestion, the
peak effects and peak plasma levels are reached between 1 and
6 h for methadone (average: at 4 h) (32), whereas the peak levels
occur ∼1 h after buprenorphine administration (33, 34). One of
the mandatory features to be a good OST is that it needs to have
slow metabolism and elimination profiles which avoid patients
experiencing withdrawal. Methadone and buprenorphine fulfill
these criteria, with an average half-life of 22 and 32 h, respectively
(31, 33), therefore these medicines are taken once a day, which
favors the observance. Opioid pharmacokinetics are influenced
by their interaction with enzymes that metabolize xenobiotic,
such as cytochromes P450 and efflux pumps. For instance, the
two diphenylpropylamine opioids loperamide and methadone,
which display similar structures, have different fates once

administered. Whereas, methadone transport to the brain is
partly restricted by the multidrug resistance protein 1 (MDR-1)
(35), loperamide is unable to cross the brain blood-brain barrier
due to the presence of the same efflux pump (36) showing that
loperamide is a better substrate for MDR-1 than methadone.
Many pharmacogenetic studies of cytochromes P450 such as
CYP450 3A4 (one of the main cytochromes involved in OST
metabolism) or efflux pumps have been conducted to explain
the variability in OST dosing. Overall, it appears that although
some variants of these genes are associated with OST plasma
levels, their influence on dose requirement is very low (37).
OST pharmacokinetics is more likely to be influenced by co-
prescribed drugs, which interact with their metabolism. For
instance, delavirdine, an antiretroviral medication used in HIV
treatment, inhibits CYP450 3A4 and thus induces an elevation
of methadone plasmatic concentration and drug delayed
clearance (38).

The Way They Interact With the Target:
Pharmacodynamic Properties
Methadone and buprenorphine bindMOPr with a higher affinity
as compared to morphine. Therefore, when a patient under
OST uses heroin, its effects will be reduced, as the morphine
concentration in the brain will not be high enough to displace
methadone or buprenorphine from the receptor. This highlights
the issue of the optimum dose of OST, so each patient must
have a sufficiently high brain concentration to avoid withdrawal
symptoms. In addition, buprenorphine has a very low receptor
dissociation rates (39–41) conferring a long duration of action
(which contributes to its long half-life) and reinforcing its
inability to be displaced by other opioids. Opioid overdoses cause
death by respiratory depression: indeed, whereas tolerance to
analgesia develops rapidly, tolerance to respiratory depression is
far weaker and slower to appear (42). Methadone is a full agonist
at the MOPr (43) and its potency and efficacy increase the risk
of overdose, thus requiring this drug to be administered to treat
opioid dependency only in designated medical units with trained
staff. Buprenorphine has a particular pharmacological profile and
is described as a MOPr partial agonist (44). In pioneering studies
conducted in rodents, buprenorphine displayed a ceiling effect,
exerting only partial analgesia compared to morphine or more
effective agonists (45). Nevertheless, more recent studies have
not shown this ceiling effect in other species such as humans
where buprenorphine is quite powerful (46)—probably because
there is a greater MOPr reserve [i.e., more spare receptors
(47)]. The ceiling effect is probably rather more specific to the
target system (e.g., respiration) than to the species (48) and
may be explained by differences in the receptor reserve in the
different pathways (pain, respiration. . . ), probably explaining the
lack of severe respiratory depression at analgesic doses with
this drug (46). As a consequence, it was allowed to prescribe
buprenorphine as an ambulatory medicine in many countries
including UK, France, USA. Buprenorphine is also depicted as
a KOPr antagonist, which might contribute to its antidepressant
effect (49).
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WHY SEARCHING FOR NEW
TREATMENTS FOR OPIOID ADDICTION?

It is undeniable that the actual OST, methadone and
buprenorphine, have brought a substantial benefit in the
opioid addiction treatments. Indeed, when associated with a risk
reduction policy they substantially reduced death by overdoses
and the transmission of blood-borne diseases. They help addicts
to follow their recovery program and contribute to their social
reintegration. OST were also shown to preserve immune (50) and
memory (51) functions, have positive effects on psychopathology
(52, 53) and reduce polyabuse (54).

However, like any other medications, OST are not fully
effective as many patients under OST might still relapse (55, 56),
and because they are MOPr agonists they may be misused (57).
The promised safety of buprenorphine was challenged as soon
it arrived on the market and for example in France, several
death cases were reported where buprenorphine was diverted
(intravenous use). Whereas, several of these cases included the
concomitant use of buprenorphine with other depressants of
the respiratory system (ethanol and/or benzodiazepines), some
of them reported only buprenorphine use (58). More recently,
when gabapentin was used with opioids a substantial increase in
the risk of opioid-related death was measured (59). Beyond the
high risk of fatal respiratory depression (see above), methadone
is associated with prolongation of the electrocardiographic QT
interval (60, 61). However, the link to cardiac dysrhythmia and
sudden cardiac death remains an open question. Indeed, recent
studies did not confirm the role of methadone in sudden cardiac
death (62) as it was previously suspected.

Many side effects have been reported with these OST such as
a decrease of cognitive performance (63) or sexual dysfunction
in men (64, 65). Finally, as they remain MOPr agonists, they
will contribute to maintain—very likely to a lesser extent—the
allostasis generated by previously abused opioids. In rodents,
a short treatment (5 days) with buprenorphine or methadone
is able to induce behavioral and neurochemical modifications
until 35 days after withdrawal (66, 67). It therefore appears
necessary to find new MOPr agonists, or new combinations of
MOPr agonists and other ligands, that would not induce the
neuroadaptations responsible for the harmful effects of opioids
(e.g., addiction, respiratory depression), and would therefore
gradually restore homeostasis, thus allowing for instance a
complete escape from addiction.

On the other hand, to avoid buprenorphine diversion,
different formulations of buprenorphine are currently evaluated
and usually consist of transdermal patches, subcutaneous
depot injections, or subdermal implants (68). An alternative
strategy to limit diversion is to combine buprenorphine with
an opioid antagonist, naloxone (suboxone). Naloxone has a
poor oral bioavailability, but when injected intravenously (in
the case of misuse), it will precipitate withdrawal. Human
studies shown that it has a reduced abuse potential (69),
however recent preclinical (70) and clinical (71, 72) data
questioned the lower level of rewarding properties of intravenous
suboxone.

SOME LEADS ON THE FUTURE OF OPIOID
RESEARCH

The “opioid crisis” dramatically exposes the need for more
research in at least two main directions. One is to find better
opioid analgesics with less and even virtually no addictive
potential. The other direction is the discovery of newmedications
to treat opioid addiction. We will discuss these two directions
focusing on opioid-based drugs.

Since the 1990’s, studies have demonstrated that different
ligands could induce (or select) different receptor conformations
that could promote different signaling pathways. This concept
is now known as biased agonism or functional selectivity (73).
For opioid receptors, this notion combined with the pioneer
work of Bohn and co-workers paved the way to design new
opioids. It is now well-established that following ligand binding,
MOPr activation could result in the activation of multiple
downstream pathways through either G protein dependent
processes (e.g., regulation of ion channels, adenylate cyclase
inhibition) or G protein independent processes (e.g., beta-
arrestin signaling). Beta-arrestin is a protein that binds the
activated and phosphorylated receptor and is responsible for its
desensitization and endocytosis (74). Bohn and co-workers found
that in beta-arrestin-2 knockout mice, morphine analgesia was
increased and prolonged (75, 76) with a decrease of respiratory
depression and acute constipation (77). Therefore, it has been
suggested that biased opioid agonists toward G protein pathway
will retain analgesic effects with a reduction of side effects
including tolerance mediated by beta-arrestin activation. This
last point is of particular importance as tolerance, by increasing
the dose required to induce the same effects, will contribute to
dependence and overdose. So, recently few opioid biased agonists
for the treatment of pain have been developed including TRV130,
a compound recently entered in phase 3 to treat moderate and
severe acute pain (78). This molecule is biased toward G proteins
and shows less tolerance and respiratory depression as compared
to morphine (79). Using the recent discovery of MOPr structure
(80), Manglik and co-workers discovered PMZ21 a molecule that
displays a protracted analgesia as compared to morphine and
like the TRV130 has no rewarding effects in the conditioned
place preference paradigm (81). However, this lack of rewarding
effects has been recently challenged by Altarifi and colleagues
who found that TRV130 reduced the threshold of intracranial
self-stimulation (82). These results are not surprising as these
molecules selectively target MOPr, so alternative strategies
are currently considered such as targeting multiple opioid
receptors to reduce some side effects and increase efficacy (83).
For instance, cebranopadol a mixed MOPr/DOPr/KOPr/NOPr
receptor agonist was found to be efficient in acute and chronic
pain and development of tolerance was delayed as compared
to equianalgesic doses of morphine (84). More recently, Ding
et al. reported the discovery of AT-121, a MOPr/NOPr mixed
agonist with analgesic effects in non-human primates and
a lack of common opioid-associated side effects such as
physical dependence, abuse potential, respiratory depression, and
opioid-induced hyperalgesia (85). Finally, instead of activating
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opioid receptors with synthetic compounds that could results
in unwanted effects (due to overstimulation in many target
systems) the use of endogenous ligands has been proposed
through the blockade of the catabolism of the endogenous
peptides. This approach was developed by Roques and co-
workers in the 1980’s who published the first study showing that
blocking enzymatic degradation of enkephalins enhances their
physiological effects (86). It has the advantage to target only the
structures where enkephalins are expressed, thus explaining why
multiple preclinical studies demonstrated that these compounds
are as effective as morphine to produce analgesia but without
promotion of tolerance, physical dependence, constipation or
respiration depression (87). Indeed, enkephalins are highly
expressed in pain-control centers (88) whereas they are found
in low amount in respiratory centers (89) or locus ceruleus
(90), a structure involved in the expression of opioid physical
dependence (91). At the moment, two of these molecules, PL37
and PL265, are in clinical development for treating acute and
chronic pain.

Regarding the treatment of opioid addiction, no real progress
has been made since the introduction of methadone and
buprenorphine and most of the current research consists
of work related to these compounds or other marketed
opioids such as modifying the formulation to obtain slow-
release compounds. For instance, it has been proposed to
use slow release morphine for patients who cannot tolerate
methadone (92).

Recently, some opioid antagonists (e.g., naltrexone, naloxone)
have been approved for opioid addiction but only for abstinent
patients because of the risk of withdrawal. They have multiple
benefits: lack of reinforcing effects, blockade of the euphoric
effects of opioids, relative safety (no respiratory depression)
(93). Even so, the adherence to these medications is generally
poor, thus limiting their efficacies for the prevention of relapse
in patients with opioid-use disorder. To circumvent this low
treatment observance, an injectable extended-release naltrexone
was developed. The first meta-analysis on its efficacy mainly
revealed that, unsurprisingly, the success of extended-release

naltrexone was higher in opioid detoxified patients. However,
when randomization occurred after detoxification, extended-
release naltrexone showed similar efficacy to buprenorphine,
whereas when randomization occurred prior to detoxification,
buprenorphine efficacy was superior (94). The fact remains that
opioid antagonists are very efficient in emergency medicine, by
preventing opioid overdose fatalities (95). Naloxone is actually
the only opioid antagonist approved for treating opioid overdose.
Its efficacy is based on a rapid onset of action via intravenous
route (2–3min) (96), but its shorter half-life than that of
most opioid agonists, requires multiple injections or continuous
administration to reverse respiratory depression. A recent study
showed that it was also able to reverse buprenorphine-induced
respiratory depression (97). It is noteworthy that fast opioid
detoxification in opioid-dependent patients might lead to acute
opioid withdrawal syndrome accompanied by catecholamine
releases, responsible for cardiac and respiratory functions
impairment (98).

CONCLUSION

This review was focused on opioids, but knowing whether if they
will remain the gold standard in pain management is an open
question considering the opioid crisis. In addition, long-term
treatment with OST, more than restoring the neurobiological
equilibrium disturbed by the opioid misuse, will maintain drug-
induced neuroplastic changes. So, besides the short and mid-
term necessary research on the discovery of safer opioids, other
pharmacological strategies have to be envisioned based either on
different use of existing treatments or on other neurotransmitter
systems with the objectives of having painkillers devoid of any
activity on the reward system.
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Nociceptin/Orphanin FQ (N/OFQ) is a neuropeptide that modulates pain transmission,

learning/memory, stress, anxiety, and fear responses via activation of the N/OFQ peptide

(NOP or ORL1) receptor. Post-traumatic stress disorder (PTSD) is an anxiety disorder

that may arise after exposure to a traumatic or fearful event, and often is co-morbid

with chronic pain. Using an established animal model of PTSD, single-prolonged

stress (SPS), we were the first to report that NOP receptor antagonist treatment

reversed traumatic stress-induced allodynia, thermal hyperalgesia, and anxiety-like

behaviors in male Sprague-Dawley rats. NOP antagonist treatment also reversed SPS-

induced serum and CSF N/OFQ increase and circulating corticosterone decrease.

The objective of this study was to examine the role of the NOP receptor in male

and female rats subjected to traumatic stress using Wistar wild type (WT) and NOP

receptor knockout (KO) rats. The severity of co-morbid allodynia was assessed as

change in paw withdrawal threshold (PWT) to von Frey and paw withdrawal latency

(PWL) to radiant heat stimuli, respectively. PWT and PWL decreased in male and

female WT rats within 7 days after SPS, and remained decreased through day 28.

Baseline sensitivity did not differ between genotypes. However, while male NOP receptor

KO rats were protected from SPS-induced allodynia and thermal hypersensitivity,

female NOP receptor KO rats exhibited tactile allodynia and thermal hypersensitivity

to the same extent as WT rats. Male NOP receptor KO rats had a lower anxiety

index (AI) than WT, but SPS did not increase AI in WT males. In contrast, SPS

significantly increased AI in WT and NOP receptor KO female rats. SPS increased

circulating N/OFQ levels in male WT, but not in male NOP receptor KO, or WT

or KO female rats. These results indicate that the absence of the NOP receptor

protects males from traumatic-stress-induced allodynia and hyperalgesia, consistent

with our previous findings utilizing a NOP receptor antagonist. However, female NOP
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receptor KO rats experience allodynia, hyperalgesia and anxiety-like symptoms to the

same extent as WT females following SPS. This suggests that endogenous N/OFQ-NOP

receptor signaling plays an important, but distinct, role in males and females following

exposure to traumatic stress.

Keywords: allodynia, hyperalgesia, NOP receptor, PTSD, sex differences, single prolonged stress, anxiety,

Nociceptin/Orphanin FQ

INTRODUCTION

Sex differences in post-traumatic stress disorder (PTSD) and the
presence of co-morbid pain are well documented in the clinic, but
studies of sex differences in PTSD-related behaviors using animal
models has been limited primarily to fear responses/processing
and hippocampal plasticity [for review see (1)]. Literature from
clinical studies suggests that females exhibit a higher reported
rate of PTSD and longer lasting, more severe symptoms [for
review see (1–4)]. They also differ from males in the PTSD
criterion/parameters noted in their response to stress (5), and
in the relationship between PTSD and appearance of co-morbid
conditions such as depression, schizophrenia, cognitive decline,
and pain (6). Therefore, it is important to study and understand
these sex differences to facilitate development of more effective
treatments.

A number of preclinical PTSD models exist; one of the
most frequently utilized, and well-characterized preclinical
models of PTSD that possesses content and criterion validity
is single-prolonged stress [SPS; (7, 8)]. The SPS model
reproduces physiological and psychological symptoms that
appear unpredictably over time following a short period
of severe trauma. This exposure is applicable to civilians
confronted with natural disasters (e.g., tornadoes, fires, and
earthquakes) and other terrifying situations, as well as military
populations. SPS produces sustained neuroendocrine disruption
(including enhanced negative feedback of the hypothalamic-
pituitary-adrenal (HPA) axis), hyperarousal, fear extinction
retention impairment, altered sleep-wake cycles, changes in the
noradrenergic system, increased CRF in the brain, and reduced
synaptic plasticity and BDNF that are all hallmarks of PTSD
in humans (7–10). SPS also produces co-morbid depressive-like
behaviors (11–13), enhanced alcohol reward (14), and cognitive
impairment (15) in male rats. Ours was one of the first groups
to report changes in nociceptive sensitivity in male rats as a co-
morbid condition using a preclinical model of PTSD (16, 17).
Since our initial report we, and other groups, confirmed and
extended our findings of allodynia, hyperalgesia (18–22) and
anxiety-like behaviors (11–13, 16) in males. We found only a
single study that assessed changes in pain sensitivity in female rats
following SPS. Female rats subjected to an enhanced SPS protocol
(with foot shock) exhibited increased visceral sensitivity, but no
comparisons to males were included (23).

One molecule that links the HPA axis, sensory systems and
disease states is Nociceptin/Orphanin FQ (N/OFQ). N/OFQ is
the endogenous ligand for the N/OFQ peptide (NOP) receptor,
and also is known as ORL1 or KOR-3 (24–27). N/OFQ and the
NOP receptor are widely expressed in the central nervous system

(CNS), particularly in the forebrain and the descending pain
pathway, which are involved in emotional and pain processing
(28). N/OFQ bi-directionally modulates many key biological
functions in the CNS that are impacted by PTSD and/or chronic
pain (including nociceptive sensitivity, learning and memory,
stress and anxiety and reward), via activation of the NOP receptor
(29–32). This bidirectional modulatory pattern of N/OFQ often
produces conflicting results that may vary between species,
strains, time and method of drug administration, assay method
and/or stress. For example, N/OFQ and other NOP agonists
block stress-induced analgesia, but may produce analgesia in
other instances (33–38). Serum and CSF of patients with acute
and chronic pain contain elevated N/OFQ levels (39, 40).
Similarly, serum and CSF from rats that exhibited allodynia and
hyperalgesia following SPS contain higher N/OFQ levels than
from sham-treated rats (17, 22). We subsequently reported that
blockade of N/OFQ actions with a NOP antagonist prevented up-
regulation of N/OFQ and anxiety-like symptoms and reversed
SPS-induced allodynia and hyperalgesia, confirming a role for
N/OFQ in modulation of pain sensitivity, anxiety and HPA axis
modulation following traumatic stress (22).

A single nucleotide polymorphism (SNP) in the non-
coding region of the NOP receptor gene was associated with
PTSD symptoms in women that experienced severe traumatic
stress (29), but we have no knowledge about how that SNP
might alter NOP receptor expression, N/OFQ signaling or
nociceptive sensitivity. While preclinical studies examining fear,
hyperarousal, depression, and cognitive deficits in females
exposed to traumatic stress have become more numerous
(including sex differences in SPS-induced cued fear extinction
retention deficits and hippocampal plasticity (41, 42), only a
single study examining changes in nociceptive sensitivity in
preclinical models of PTSD was found (23). Acquisition of NOP
receptor gene knockout (KO) rats (ORL1-/-) (43, 44) enabled
us to examine for the first time, the role of the N/OFQ-NOP
receptor system in female rats following exposure to the SPS
model of PTSD, and further examine its role in males.

METHODS

Animal Treatment
Wild type (WT) Wistar Han rats were purchased from Charles
River Labs (Wilmington, MA). Fourteen male homozygous
Oprl1-TGEM R© KO (referred to herein as ORL1−/− or NOP
“KO”) rats in Wistar Han background and a set of homozygous
breeders were obtained from Transposagen (Lexington, KY). The
rest of the KO animals were generated from the homozygous
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breeding pairs in the OUHSC animal facility; genotype was
confirmed by Transnetyx (Cordova, TN). The animal protocol
was approved by the University of Oklahoma Health Sciences
Center’s Institutional Animal Care and Use Committee. Studies
conformed to the FASEB Statement of Principles for the use
of animals in research and education. Research was compliant
with the Animal Welfare Act Regulations and other Federal
Statutes relating to animals and experiments involving animals,
and adhered to the principles set forth in the Guide for Care
and Use of Laboratory Animals. All experiments conformed to
the guidelines of the International Association for the Study of
Pain. Rats were acclimated to their environment for at least 7
days following arrival and housed in the animal facility under a
12-h light: 12-h dark cycle (lights on at 0600 h) with free access to
food and water. Intact male (250–300 g) and female (175–210 g)
KO andWT rats (9–10 weeks of age) were randomly divided into
control or SPS groups (N = 33 total males and 37 total females;
N = 7∼10/group). SPS consists of complete restraint for 2 h,
grouped forced swimming (N = 2–3 at a time) for 20min, and
exposure to diethyl ether until consciousness is lost. Once rats
recovered from anesthesia, they were returned to their cages and
left undisturbed for 7 days as previously described (8, 17).

Nociceptive sensitivity was assessed by measuring hind paw
withdrawal threshold (PWT) from pressure and paw withdrawal
latency (PWL) from radiant heat prior to SPS exposure and
every 7 days thereafter through day 28. An electronic von Frey
anesthesiometer (IITC Life Sciences, Inc., Woodland Hills, CA)
was utilized for mechanical/tactile nociception assessment. Rats
were placed in clear plastic boxes with a wire mesh floor, and
acclimated for 15–20min. PWT was obtained from the mid-
plantar aspect of the left hind paw. Approximately 1.5 h after
PWT assessment, the wire mesh floor was replaced with a glass
floor and rats acclimated for approximately 30min. Then, a
plantar analgesiameter (IITC Life Sciences, Inc.,WoodlandHills,
CA) was utilized to measure PWL to an infrared light beam
directed toward the left hind paw with the lamp set at 25%
active intensity as previously described (17). Cutoff time was set
at 30 s to prevent tissue damage. The average of three sets of
scores (taken 5min apart) was the PWT/PWL for each rat, each
week. Decrease in PWT compared to control rats was termed
allodynia since the intensity of the pressure applied was dynamic.
Decrease in thermal sensitivity compared to control rats was
termed hyperalgesia because all rats were exposed to same
heat intensity and only latency was determined. All behavioral
assessments were made between 0900 and 1200 h. An algesia
index was determined for each treatment group by calculating
the area under the PWL or PWT curve from y=0 up to the
PWL/PWT at each time point, using GraphPad Prism. Sex and
stress group differences were determined by two-way analysis of
variance (ANOVA).

The presence of anxiety-like symptoms was assessed using the
elevated plus maze (EPM) test on day 9 post-SPS (and again on
day 30 for female rats) as previously described (17). The plus
maze consisted of two open (50 × 10 cm) and two closed (50
× 10 × 40 cm) arms elevated 40 cm above floor with average
light levels 40–55 lux. Each rat was placed in the center of the
apparatus with its head facing a closed arm, and activity was

recorded for 5min from the center of the rat body. The apparatus
was cleaned with 30% ethanol between each recording session.
Recording sessions were analyzed with Any-maze software
(Stoelting Co., Wood Dale, IL) for mobile/immobile time,
traveled distance, arm entries, and time spent in arms. The
anxiety index (AI) was calculated as described (45): 1—[(% time
in open arms + % entries into open arms)/2]. Female rats were
exposed to the EPM a second time on day 30 post-SPS (3 week
interval between testing). Rats do not develop habituation or
sensitization to the EPMwhen testing intervals are spaced at least
3 weeks apart (46, 47).

Collection of Fluid and Tissue Samples
Rats were euthanized by injection with Beuthanasia (i.p. 0.22
mg/kg, Schering-Plow Animal Health, Union, NJ, USA) between
1,200 and 1,600 h on day 28–30 post-SPS. Blood was withdrawn
from the heart with an 18-gauge needle, and kept at room
temperature for 30min before centrifugation at 5,000 × g, 4◦C
for 5min when serum was collected. CSF (150 ∼ 200 µl) from
each rat was withdrawn by inserting a 26-gauge needle into the
cisterna magna. Lumbar spinal cord was removed and the dorsal
horn dissected and collected. All samples were stored at −80◦C
until biochemical analysis was performed.

Radioimmunoassay (RIA)
N/OFQ levels in 50 µL of serum or CSF were determined
in duplicate by RIA (Phoenix Pharmaceuticals, Belmont, CA)
according to the protocol suggested by the manufacturer. Total
amount of N/OFQ immunoreactivity (IR) was calculated and
expressed as pg/mL. Samples that fell outside of the range of the
standard curve or that were contaminated with blood were not
included; specific information is provided in the figure legend.
The individual conducting each assay was blind to the grouping.

35S-GTPγS Binding
Spinal cord (SC) dorsal horn membranes from male and female
WT and KO rats were prepared and assayed for N/OFQ
stimulation of 35S-GTPγS binding as previously described
to examine NOP receptor activity (22). Briefly, tissue was
homogenized in 1mL ice-cold TED buffer (5mM Tris-HCl,
1mM EDTA, 1mM DTT, pH 7.4) containing 10% (w/v) sucrose
and centrifuged at 1,000 × g for 10min. The supernatant was
washed twice by centrifugation at 9,000 × g for 20min and
resuspended in 1mL of TED buffer. The suspension was kept on
ice for 30min, followed by centrifugation at 35,000 x g for 10min.
The pellet was stored at −80◦C until use. Membrane protein,
10 µg as determined by BCA assay, was incubated at 25◦C for
60min in plastic tubes containing a total volume of 100 µL:
0.5% bovine serum albumin, 0.1% bacitracin, 10µMGDP, 0.3 nM
35S-GTPγS, 1mM EDTA, 1mM DTT, 5mM MgCl2, 100mM
NaCl and 10−9

−10−5 M N/OFQ. The reaction was terminated
by rapid filtration through glass fiber filters using a Brandel cell
harvester. Radioactivity was determined by liquid scintillation
spectroscopy. Non-specific binding wasmeasured in the presence
of 100µM unlabeled GTPγS, which was subtracted from total
binding to define specific 35S-GTPγS binding.

Frontiers in Psychiatry | www.frontiersin.org January 2019 | Volume 9 | Article 73150

https://www.frontiersin.org/journals/psychiatry
https://www.frontiersin.org
https://www.frontiersin.org/journals/psychiatry#articles


Zhang et al. Sex Differences in PTSD Pain

Data Analysis
Data Analysis and graph preparation were performed using
GraphPad Prism 7.01 software (GraphPad Software, La Jolla,
CA, USA). Data are expressed as mean ± SD unless
indicated otherwise. Statistical comparisons of behavioral and
neurochemical data were performed by two-way ANOVA with
post-hoc analyses as automatically recommended by the software.
Tukey’s multiple comparisons tests were used when comparing
every row (or column) mean with every other row (or column)
mean. Sidak’s was used to determine differences within columns
or rows. Results were considered statistically significant if P <

0.05. All data were subjected to D’Agostino & Pearson (N > 8)
or Shapiro-Wilk (N < 8) normality tests prior to analysis. Those
groups that failed the normality test (p < 0.05) were subjected
to an outlier test (ROUT; Q = 1%), as recommended (48) to
determine if the outlier was responsible for the failed normality
test. If exclusion of outlier(s) led to passing the normality test
and altered statistical result, the exclusion was made. If it did
not alter the statistical outcome, no data were excluded from that
group. The 6 samples that were excluded by outlier test are listed
in the appropriate figure legend. Pearson’s Correlation Analysis
was performed with the following data aligned from each rat:
D7 and D28 PWT and PWL, D9 (and D30 in females) anxiety
index and % time in open arms, serum N/OFQ and CSF N/OFQ.
Correlations were made with data from Control and SPS-treated
rats of each sex and genotype.

RESULTS

Nociceptive Sensitivity
Our primary goal was to determine if SPS produces tactile
allodynia and thermal hyperalgesia in male and female Wistar
WT and NOP receptor KO rats. Male Wistar WT rats responded
to SPS (closed black circles) by developing tactile allodynia
(Figure 1A) and thermal hyperalgesia (Figure 1B) at the same
rate and to the same extent as previously reported in Sprague-
Dawley rats. This is reflected by decreased PWT and PWL,
respectively, compared to WT Control (CON) rats (black open
circles). Remarkably, PWTs and PWLs of NOP KO rats subjected
to SPS (solid blue circles) did not differ from those of their
untreated control littermates (blue open circles), indicating that
the absence of the NOP receptor protected the rats from SPS-
induced allodynia and hyperalgesia. Two-way ANOVA indicated
that there was a significant interaction between time and
genotype-stress treatment for tactile (A: [F (12, 145) = 3.143,
p = 0.0002]) and thermal (B: [F (12, 145) = 4.176, p < 0.0001])
stimuli. PWT and PWL in WT and KO unstressed rats did
not differ from each other at any time point. Tukey’s multiple
comparisons test revealed WT male SPS rats differed from WT
control (∗p < 0.05 and ∗∗p < 0.01), KO Control (1p < 0.05
and 11 p < 0.01) and KO SPS (##p < 0.05 and ## p <

0.01).
Similar to WT males, WT female rats also developed tactile

allodynia (Figure 1C) and thermal hyperalgesia (Figure 1D)

following SPS (solid black circles). However, unlike the males,
absence of the NOP receptor did not protect female KO rats
from developing allodynia or hyperalgesia following SPS (solid

red circles). Female NOP KO rats developed allodynia and
hyperalgesia to the same extent asWT females, but no differences
in nociceptive sensitivity were noted between female WT CON
(open black circles) and KO CON (open red circles) rats. Two-
way ANOVA indicated significant interaction between Time x
Genotype-stress treatment for tactile (C: [F (12, 165) = 2.925,
p = 0.0011]) and thermal stimuli (D: [F (12, 165) = 3.139,
p = 0.0005]). Tukey’s multiple comparisons test indicated SPS-
treated WT and KO rats differed from WT and KO controls.
Pearson correlation analysis revealed that there was a significant
correlation between D28 PWT and PWL in both WT and KO
female rats (Table 1). The correlation just missed significance in
WT males (p= 0.05).

To directly examine this apparent sex difference, an algesia
index for each group for each stimuli was generated by calculating
its area under each treatment group’s time-nociceptive sensitivity
curve (AUC; Figures 1A–D). A two-way ANOVA of the
calculated AUC was performed with sex as the row effect and
traumatic stress for each genotype (treatment) as the column
effect (Figures 1E–F).There was a significant interaction between
sex and treatment for tactile (E: [F (3, 62) = 4.005; P = 0.0114])
and thermal (F: [F (3, 62) = 5.063; P = 0.0034]) stimuli. Sidak’s
multiple comparison’s test compared the effect of sex within each
group. The only post-hoc sex difference noted was between males
and females in the KO SPS groups. Females in the KO SPS group
were more sensitive to tactile (p< 0.001) and thermal (p< 0.001)
stimuli than males in that treatment group.

Anxiety-Like Behaviors
The secondary goal of this study was to determine if SPS
produces anxiety-like symptoms in male and female Wistar WT
and NOP receptor KO rats. The appearance of anxiety-like
symptoms at day 9 post-SPS was assessed using the elevated plus
maze (EPM) and analyzed by two-way ANOVA for genotype x
traumatic stress for males (Figures 2A–F; Table 2) and females
(Figures 3A–F; Table 2). Unlike the previous report in SD rats,
no significant interaction or significant effect of SPS was found
for any anxiety-like behavior in male Wistar rats (Figures 2A–F;
Table 2). However, a significant effect of genotype was noted for
% time in open Arms (A), % open arm entries (B), distance
traveled in open arms (C), and anxiety index (AI; D). There
was no effect of genotype on total distance traveled (E) or
immobile time (F). Both groups of male KO rats appeared less
“anxious” in that they spent more time, made more entries into
and traveled a longer distance within the open arms, and scored
a lower anxiety index than WT CON and WT SPS rats, but no
differences between treatment groups were detected by post-hoc
analysis.

Unlike their male counterparts (Figure 2), genotype played
no role in anxiety-like behaviors in female rats (Figures 3A–F,
Table 2). However, there was a significant effect of SPS in female
rats at day 9 (Table 2), with post-hoc analysis indicating that
female KO-SPS rats spent significantly less % of time in open
arms (A; p < 0.05) and had a higher AI (D, p < 0.05) than
untreated rats. Since female rats exhibited significant anxiety-
like behaviors at day 9, we extended the observation of anxiety-
like symptoms by EPM for 3 weeks later (Day 30). Significant
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FIGURE 1 | NOP receptor KO genotype prevented development of tactile allodynia and thermal hyperalgesia in male, but not female, rats following SPS. Rats were

randomly assigned into groups within their genotype and sex. For males (A,B) Wild type (WT)-CON (n = 7; black open circles), WT-SPS (n = 7; solid black circles) and

ORL1-/- (KO): CON (n = 9; blue open circles), and KO-SPS (n = 10; solid blue circles). For Females (C,D) WT-CON (n = 9), WT-SPS (n = 9) and KO-CON (n = 10;

red open circles), KO-SPS (n = 9; solid red circles). Mechanical (A,C) and Thermal (B,D) sensitivity was assessed prior to (day 0) and every 7 days following SPS.

PWT and PWL data were analyzed by two-way ANOVA (Treatment/Time x Genotype) followed by Tukey’s post-hoc analysis and data are presented as mean ± SEM.

SPS induced allodynia and hyperalgesia in WT males as previously described, but KO male responses did not differ from WT or KO control rats (*p < 0.05 and **p <

0.01 for WT-CON vs. WT-SPS; 1p < 0.05 and 11p < 0.01 for KO-CON vs. KO-SPS; #p < 0.05 and ##p < 0.01 for WT-SPS vs. KO-SPS). In contrast, female WT

and KO rats developed allodynia and hyperalgesia in response to SPS (*p < 0.05 and **p < 0.01 for WT-CON vs. WT-SPS; 11p < 0.01 for KO-CON vs. KO-SPS). No

differences between female WT and KO SPS or between WT and KO Control groups appeared at any time point. The area under the time-nociceptive sensitivity

curves (AUC) of WT and KO males and females generated in response to tactile (E) and thermal (F) stimuli of each treatment group are presented as mean ± SD, and

were analyzed by two-way ANOVA for sex × SPS treatment. Significant post-hoc differences between sexes within each treatment group were determined with

Sidak’s multiple comparison test (##p < 0.01).

effects of SPS were noted on all four parameters at day 30
(Figures 3A–D; Table 2). Post-hoc differences between groups in
response to SPS became more pronounced over time as SPS-
treated WT and KO rats spent a smaller fraction of time (A; p
< 0.01) and traveled a shorter distance while in open arms (C; p
< 0.01) compared to WT CON; open arm entries were a smaller
percentage of all arm entries compared to KO CON at day 30 (C;
p< 0.05 forWT SPS and p< 0.01 for KO-SPS). The AI increased
in both SPS-treated groups at day 30 compared to WT (p < 0.01)

and KO-CON (p < 0.05) rats (Figure 3D). There was a transient
effect of genotype on total distance traveled at day 9 but not
day 30 (Figure 3E; Table 2), but no individual differences were
noted between groups by post-hoc analysis. Similar to nociceptive
sensitivity in females, no effect of genotype or SPS was noted
on either day of immobile time in female rats (Figure 3F). A
direct analysis of sex differences between anxiety index at day
9 between males and females by two way ANOVA with Sidak’s
multiple comparisons indicates a significant interaction between
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TABLE 1 | Pearson correlation analysis in male and female WT and NOP receptor KO rats.

Pairwise correlations Male WT Male KO Female WT Female KO

D28 PWT:PWL

Pearson r

P-value

0.531

0.05

−0.082

0.739

0.76

<0.001*

0.90

<0.001*

Serum N/OFQ:D28 PWT

Pearson r

P-value

−0.609

0.027*

0.186

0.475

0.207

0.410

−0.432

0.073

Serum N/OFQ:D28 PWL

Pearson r

P-value

−0.102

0.740

−0.198

0.447

0.409

0.092

−0.288

0.246

CSF N/OFQ:D28 PWL

Pearson r

P-value

0.281

0.331

−0.244

0.381

−0.801

0.001*

−0.475

0.073

CSF N/OFQ:D9 Anxiety Index

Pearson r

P-value

−0.427

0.128

−0.305

0.269

0.736

0.004*

−0.384

0.157

CSF N/OFQ:D7 PWT

Pearson r

P-value

0.037

0.900

−0.396

0.144

−0.651

0.016*

0.003

0.993

CSF N/OFQ:D7 PWL

Pearson r

P-value

0.045

0.879

−0.138

0.623

−0.591

0.033*

0.280

0.311

D9 Anxiety Index: D28 PWT

Pearson r

P-value

−0.171

0.560

0.241

0.32

−0.484

0.042*

0.479

0.071

D9 Anxiety Index: D28 PWL

Pearson r

P-value

−0.519

0.057

0.149

0.543

−0.418

0.084

−0.322

0.117

D9 Anxiety Index: D9 % Open Arm time

Pearson r

P-value

−0.92

<0.001*

−0.945

<0.001*

−0.86

<0.001*

−0.904

<0.001*

CSF N/OFQ: D9 % Open arms time

Pearson r

P-value

0.583

0.029*

0.303

0.273

−0.580

0.038*

−0.282

0.242

D30 Anxiety Index: D28 PWT

Pearson r

P-value

ND ND −0.576

0.012*

−0.216

0.374

D30 Anxiety Index: D28 PWL

Pearson r

P-value

ND ND −0.841

<0.001*

−0.176

0.470

D30 Anxiety Index: D9 Anxiety Index

Pearson r

P-value

ND ND 0.318

0.199

0.467

0.044*

ND, not determined.

*Indicates a significant correlation.

sex ([F (3, 62) = 3.687, P = 0.0165]) and treatment group ([F

(3, 62) = 3.19, P = 0.0297]). Within each treatment group the
only sex difference was found in the KO SPS group (∗∗p <

0.01).
Pearson’s correlation analysis of anxiety-like behaviors, PWT

and PWL revealed a significant negative correlation between D9
AI and PWT in female WT rats that was absent in female KO
rats (Table 1). A similar trend for D9 AI and PWL that just
missed significance was noted for male (p = 0.057) and female
WT (p= 0.084) rats; no trend was noted in KO rats. The negative
correlation indicates that the anxiety index increases as PWT or
PWL decrease (more sensitive to nociceptive stimuli). The same

correlation between pain and anxiety was found in WT, but not
KO, females with D30 AI and PWT (p = 0.012) and PWL (p <

0.001).

N/OFQ RIA
Serum and CSF samples were collected at the end of the
experiment (28–30 days post-SPS) to quantify levels of N/OFQ
by RIA. SPS significantly increased serum N/OFQ in male WT
Wistar rats (∗p < 0.05), but had no effect on N/OFQ levels in
NOP KO rats (Figure 4A). There was a significant interaction
between genotype and SPS ([F (1, 26) = 4.553; P = 0.0425]) and a
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FIGURE 2 | Male NOP receptor KO rats exhibited significantly fewer anxiety-like symptoms than WT rats. Data of individual parameters (A–F) were analyzed by

two-way ANOVA and presented as mean ± SD. WT male rats did not exhibit a significant increase in anxiety-like behaviors following exposure to SPS (A–D), though

the Anxiety Index (D) trended in that direction. However, there was a significant effect of genotype (*p < 0.05) on % time in open arms (A), % open arm entries (B),

Distance traveled in open arms (C) and anxiety index (D). Rats in KO-CON and KO-SPS groups spent a greater % of time in open arms, made a greater % of entries

into open arms, covered a greater distance in the open arms (C), and had lower anxiety indexes (D) than WT rats in either treatment group. Tukey’s post-hoc analysis

revealed no post-hoc differences. There was no significant effect of genotype or treatment on total distance traveled (E) or immobile time (F), confirming that rat

mobility, per se, was not responsible for any differences noted. Outliers (Q = 1%): one rat each was excluded from the WT-CON group in panel A and WT-CON and

KO-CON in panel C by ROUT. KO-SPS group in panel F failed the normality test, but no outliers were identified.

significant effect of SPS ([F (1, 26) = 5.209, p = 0.0309]) by two-
way ANOVA with Tukey’s post-hoc test. Somewhat surprisingly,
no significant effect of SPS or genotype was noted for CSF
N/OFQ (Figure 4B) in males. RIA results of serum and CSF
samples from female rats euthanized at day 30 post-SPS found
no significant effects of genotype or stress on serum N/OFQ
(Figure 4C). Analysis of CSF N/OFQ from female rats revealed
a significant effect of genotype [F (1, 24) = 4.564, p= 0.0431], but
no differences between groups were noted with post-hoc analysis
(Figure 4D). To directly compare sex differences in levels of
serum and CSF N/OFQ in the presence and absence traumatic
stress, data from males and females were analyzed by two-
way ANOVA for sex × treatment group, with Sidak’s multiple

comparisons test. We found a significant interaction between sex
and treatment group [F (3, 58) = 2.85, p= 0.0451], and significant
effects of sex [F (1, 58) = 11.53, p = 0.0014] and treatment group
[F (3, 58) = 3.999, p = 0.0117]. Post-hoc analysis indicated that
male WT SPS was significantly different from female WT SPS
(p < 0.01). The same analysis was performed with CSF but no
significant interaction or effects of sex or treatment group was
noted.

Sex differences also were noted in a number of pairwise
correlations involving N/OFQ (Table 1). Serum N/OFQ
negatively correlated with PWT in WT males, but not in KO
males or WT females; KO females trended toward a negative
correlation between serum N/OFQ and PWT (p = 0.073).
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TABLE 2 | Elevated plus maze ANOVA values and sources of variation from comparisons of genotype and SPS treatment on anxiety-like behaviors in male and female

WT and NOP receptor KO rats.

Males Females

Day 9 Day 9 Day 30

Parameter Source of variation F (DFn, DFd) P-value F (DFn, DFd) P-value F (DFn, DFd) P-value

% Time in open arms SPS NS (1, 33) = 8.17 0.007* (1, 33) = 16.1 <0.001*

Genotype (1, 27) = 6.0 0.021* NS NS

% Open arm entries SPS NS (1,33) = 5.96 0.02* (1, 33) = 12.25 0.001*

Genotype (1, 27) = 8.67 0.006* NS NS

Distance traveled in open arms SPS NS NS (1, 33 = 9.05 0.005*

Genotype (1, 29) = 6.07 0.02* NS NS

Anxiety index SPS NS (1, 33) = 10.3 0.003* (1, 33) = 20.4 P < 0.001*

Genotype (1, 29) = 6.46 0.017* NS NS

Total distance traveled Genotype NS (1, 33) = 5.73 0.023* NS

Time immobile None

NS, not significant.

However, it was CSF N/OFQ levels that negatively correlated
with PWT and PWL in WT females, with no correlation noted
in males or KO females. WT males (∗p= 0.029) and WT females
(∗p < 0.037) both showed significant correlations between CSF
N/OFQ levels and % time in open arms (Table 2). However,
the correlation in females was negative (r = −0.580), as noted
with PWT and PWL while the correlation in males was positive
(0.583). Thus, in females increased CSF N/OFQ levels were
associated with less % of time in open arms (more anxiety), while
increased CSF N/OFQ levels in males corresponded to greater %
time in open arms (less anxiety). No significant correlations of
CSF N/OFQ and % time in open arms were noted in KO rats.

NOP Receptor-Mediated 35S-GTPγS
Binding
To provide functional validation of NOP receptor loss and
further examine N/OFQ efficacy following traumatic stress,
N/OFQ-stimulated 35S-GTPγS binding in spinal cord dorsal
horn membranes from male and female WT and KO rats
was assessed (Figure 5). No response to N/OFQ was noted in
membranes from KOmale or female rats, further confirming the
functional loss of NOP receptors in those animals. The efficacy
(Emax) of N/OFQ to elicit 35S-GTPγS binding in the spinal
cord of WT male rats subjected to SPS significantly increased
(p = 0.0285) compared to efficacy in WT CON (Figure 5A).
Two-way ANOVA revealed significant effects of genotype [F

(1, 24) = 60.16, p < 0.001] and traumatic stress [F (1, 24) = 4.673,
p = 0.0408]. A similar increase in Emax also was noted in female
WT rats following SPS (p = 0.03). Two-way ANOVA revealed a
significant interaction between genotype and traumatic stress [F

(1, 22) = 6.831, p = 0.0159] and a significant effect of genotype
[F (1, 22) = 156.1, p < 0.001]. However, N/OFQ potency for
eliciting the response was 500–1000-fold less in WT females
(3.1 and 2.1µM for Control and SPS, respectively) than in WT
male rats (2.1 nM Control and 5.9 nM SPS). Direct analysis of
sex differences in potency (Figure 5C) and efficacy (Figure 5D)
were performed using two-way ANOVA of WT data only (since
there was no effect in KO). There was a significant effect of

sex on potency ([F (1, 23) = 62.12, p < 0.001] in both CON
and SPS tissues (p < 0.001 by Sidak’s multiple comparison test).
The same type of two-way ANOVA was performed to determine
sex differences in efficacy. Though significant effects of sex [F

(1, 23) = 8.5–3, p = 0.0078] and SPS [F (1, 23) = 10.6, p = 0.0035]
were noted, no sex-specific Emax post-hoc differences were found
within either the CON or SPS groups (Figure 5D).

DISCUSSION

Stress-induced analgesia has been well-documented, however
considerable evidence suggests that acute and chronic stress
produce hyperalgesia, including in the SPSmodel (17, 19–23, 49).
The goal of this study was to evaluate the role of the NOP
receptor in the development of allodynia, hyperalgesia, and
anxiety symptoms in male and female rats following exposure
to traumatic stress using WT and NOP receptor KO rats. As
anticipated, results from male NOP receptor KO rats confirm
the contribution of the NOP receptor to the development of
tactile allodynia and thermal hyperalgesia following SPS reported
earlier with a NOP receptor antagonist (22). The most important
and novel finding of the study was that unlike the KO genotype
effect in males, both wild type and NOP receptor KO female rats
developed allodynia and hyperalgesia to the same extent as the
wild type males. Loss of the NOP receptor afforded no protection
to females from SPS-induced nociceptive hypersensitivity or
anxiety-like symptoms. This is the first report of traumatic stress-
induced effects on tactile and thermal nociceptive sensitivity
changes over time in female rats, and the first to examine the role
of N/OFQ-NOP receptor system in that process.

Significant sex differences also were noted in anxiety-like
behaviors following SPS in WT and NOP receptor KO rats.
Unlike our previous EPM results in male Sprague-Dawley (SD)
rats, we did not find a significant effect of traumatic stress on
anxiety-like behaviors in WT Wistar Han males. The cause of
this difference is unclear. It may result from differences in strain,
age and/or housing conditions. In our previous studies, after SPS
the SD rats were housed alone, with dividers between cages to
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FIGURE 3 | Female WT and KO rats develop anxiety-like symptoms following SPS. Data of individual parameters (A–F) measured at days 9 and 30 post-SPS were

analyzed by two-way ANOVA with Tukey’s post-hoc analysis (genotype x SPS treatment) and presented as mean ± SD. Unlike male rats, there was a significant effect

of SPS treatment on four parameters tested (see Table 2 for F values). Post-hoc analysis confirmed that female rats exhibited a significant increase in anxiety-like

behaviors at one or both time points following exposure to SPS (designated by *p < 0.05 and **p < 0.01 vs. WT-CON; 1p < 0.05, and 11p < 0.01 vs. KO-CON) in %

time in open arms (A), % open arm entries (B), distance traveled in open arms (C) and anxiety index (D). Rats in SPS-treated groups spent a smaller percentage of

total time in open arms, made fewer % of all arm entries into open arms, traveled a shorter distance while in open arms (C) and exhibited higher anxiety indexes (D).

However, no significant effect of SPS was noted for total distance traveled (E) or time immobile (F). Unlike male rats, no significant effect of genotype was noted for

any parameter except a transient effect on total distance traveled at day 9 (E; *p < 0.05).

prevent visual contact. Changes in our cage racks precludes the
use of dividers now, though unpublished studies with Sprague-
Dawley rats housed in the new cages continue to exhibit elevated
anxiety-like behaviors. The rats in this study were 2 weeks
older when SPS was initiated compared to previous studies,
due to extended quarantine upon initial receipt of the KO rats.
Therefore, that age was used for all rats in this study. Instead
of finding SPS-induced effects on anxiety-like behaviors in the

male rats, we consistently found an effect of genotype on anxiety-
like behaviors. Male KO rats in CON and SPS-treated groups
showed fewer anxiety-like behaviors, including anxiety index.
This did not result from sedative effects or impaired mobility as
there was no difference in total traveled distance by stress or by
genotype. Our results were not consistent with previous findings
in untreated NOP receptor KO rats (44), where loss of the NOP
receptor was anxiogenic compared to WT. Differences between
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FIGURE 4 | Knockout of NOP receptor prevented SPS-induced increase in serum N/OFQ levels in male rats, but SPS did not change serum N/OFQ levels in female

rats or CSF N/OFQ levels in males or females. Serum (A,C) and CSF (B,D) samples collected at day 28 (males: A,B) or 30 (females: C,D) after SPS were assessed for

N/OFQ content using RIA; analysis was by two-way ANOVA with Tukey’s post-hoc analysis and error bars represent mean ± SD. SPS increased serum N/OFQ in

male WT (*p < 0.05), but not KO, rats. There was no significant effect of SPS on CSF N/OFQ levels in male WT or KO rats (B). Sample sizes were smaller than

expected because several samples were excluded. The value of one serum sample from a male WT-CON was found to be an outlier by ROUT (Q = 1%) and values

from two male KO-SPS rats fell outside the range of the standard curve and could not be included. For CSF (B), two values were excluded for being out of range (1

each in KO-CON and KO-SPS), and two were excluded from KO-SPS for being contaminated with blood. Both male CSF KO groups failed normality tests. No

significant differences in serum N/OFQ between the four groups of female rats was found (C). However, a significant effect of genotype for CSF N/OFQ levels was

revealed (D, *p < 0.05). Exclusions for female rats in serum samples included one each in WT-CON and WT-SPS for being out of range and one from KO-CON for

blood. CSF exclusions for female rats include: WT-CON one out of range and one by ROUT (Q = 1%); WT-SPS one out of range and one by ROUT (Q = 1%), and two

female rats each in KO-CON and KO-SPS groups for being out of range of the standard curve (2) or the presence of blood in the samples (2). Both female CSF KO

groups failed normality tests.

control groups in the two studies may reflect the inherent
variability of EPM from one lab to the next or from differences in
the number of animals housed per cage (50). Rizzi et al. housed
3-4 NOP receptor KO rats per cage, while ours were housed 1-2
per cage. N/OFQ KOmice (another model that lacks a functional
N/OFQ-NOP receptor system) housed with multiple mice/cage
were anxiogenic compared to WT mice, but individually housed
N/OFQ KOmice were anxiolytic compared to WT (50).

Unlike the male rats that exhibited no significant effect of
traumatic stress on any anxiety-like behavior, both WT and
NOP receptor KO female rats developed anxiety-like behaviors
by day 9 following SPS (significant effects of traumatic stress).
While the clinical data indicate that PTSD symptoms in human
females tend to be more pronounced and last longer (4), the
limited studies using PTSD models with adult female rats
(including SPS) suggests that females are more resilient to
PTSD symptoms (41, 51). To determine if female anxiety-like
symptoms change over time with SPS, female rats also were
assessed for the appearance of anxiety-like symptoms on day
30 post-SPS (Figure 3). Previous work suggested that a 3 week
interval in combination with a different environment prevented
the decrease in open arm exploration that often is noted in a
second EPM test (46). In our study the WT females exhibited
identical activities in open arms and anxiety index between

day 9 and 30, indicating that open arm exploration was not
affected in the repeated test after 3 weeks. The significant effect
of traumatic stress was underscored by day 30 post-SPS when
more group differences because apparent by post-hoc analyses
than noted at day 9. Besides females rats developing significant
SPS-induced anxiety-like symptoms and males not exhibiting
increased anxiety, a direct comparison of sex differences in
anxiety index at day 9 indicated that significant sex differences
were found only within the SPS KO treatment group, with female
AI greater than males.

The role of N/OFQ and the NOP receptor in modulation
of anxiety-like symptoms in males and females remains an
open question. Numerous studies cite anxiolytic and anxiogenic
actions of N/OFQ and other NOP agonists (for review see
(32) in male rats. However, administration of two different
NOP antagonists decreased anxiety-like symptoms in male SD
rats exposed to two different models of traumatic stress (22,
52), without altering spontaneous locomotion. Similar gender
differences in anxiety and fear-related behaviors also were
reported in N/OFQ KOmice (50).

Assessment of serum and CSF N/OFQ levels in male and
female rats 28 and 30 days post-SPS, respectively, revealed several
interesting findings. First, serum N/OFQ also was significantly
elevated in WT male rats following SPS as noted previously,
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FIGURE 5 | N/OFQ efficacy increases with SPS in dorsal spinal cord (SC) membranes from Wistar Han WT male (A) and female (B) rats; no efficacy found in SC

membranes from KO rats. 35S-GTPγS binding was performed in the presence and absence of increasing concentrations of N/OFQ in spinal cord membranes from WT

and KO male and female rats from sham control and SPS-treated groups; data are presented as mean ± SD. N/OFQ efficacy significantly increased following SPS in

membranes from WT male (A: *p = 0.0285; n = 7 per group) and female (B: *p = 0.0354; n = 6–7) rats, but no measurable increase in basal 35S-GTPγS binding was

noted with N/OFQ in membranes from male or female KO rats as determined by two-way ANOVA (genotype x stress) with a post-hoc Sidak’s multiple comparison test

(effect of SPS within each genotype). These results are consistent with the genotyping results and extend that analysis to confirm that no functional NOP receptors are

expressed in the KO rats. Direct analysis of sex differences in potency (C) and efficacy (D) were performed using two-way ANOVA with Sidak’s multiple comparison

test. There was a significant effect of sex on potency [F(1,23) = 62.12, p < 0.001] in both CON and SPS tissues (p < 0.001). Though significant effects of sex [F(1,23) =

8.5–3, p = 0.0078] and SPS [F(1,23) = 10.6, p = 0.0035] were noted for efficacy, no sex-specific post-hoc differences were found between CON or SPS groups (D).

but not in the SPS KO males. However, no significant increase
in CSF N/OFQ following SPS in WT or KO male Wistar rats
was detected, which differs from previous studies in WT SD
rats (17, 22). These results are consistent with increased levels
of circulating N/OFQ following traumatic stress that acts on the
NOP receptor to increase nociceptive sensitivity; the absence
of the NOP receptor protects male rats from allodynia and
hyperalgesia.

Interestingly, serum N/OFQ levels were not significantly
increased by SPS in female WT or KO rats; serum N/OFQ
levels in WT SPS male rats were significantly higher than
levels in female WT SPS rats (Figure 4E). Similar to males, no
significant differences in CSF N/OFQ levels were noted between
treatment groups in females, but there was a significant effect of
genotype (Figure 4D). Expression of the N/OFQ-NOP receptor
system is modulated by female sex hormones, glucocorticoids,
inflammatory mediators, and activity of the N/OFQ-NOP

receptor system (53–57). This modulation is supported by the
interaction between genotype and SPS on serum N/OFQ levels
in males and significant effects of genotype on CSF N/OFQ levels
in females. Interpretation of the CSF N/OFQ RIA results in this
study was limited by greater than usual reductions in sample sizes
per group due to difficulty obtaining clear CSF samples from the
Wistar rats, and numerous samples being outside of the range of
the standard curve of the RIA. Unfortunately, limited amounts
of CSF obtained per rat precludes having enough sample left
to re-assay if dilution or increased sample volume is required.
There may have been subtle differences between groups that were
masked by the large variability and smaller sample sizes.

We previously reported that N/OFQ efficacy at the NOP
receptor in the dorsal lumbar spinal cord was increased in SPS-
treated male Sprague-Dawley rats compared to controls (58),
and similar results were noted with WT male and female Wistar
rats in this study. However, we found significant sex differences
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in potency of N/OFQ for activation of GTPγS; N/OFQ was
1000-fold more potent in males than in females in this study.
This suggests that NOP receptors in the dorsal spinal cord of
female rats were desensitized. Spinal N/OFQ antinociception is
gender specific: female rat sensitivity to spinal N/OFQ varies
depending on estrogen state (59–62). For instance, while i.t.
N/OFQ alleviated mustard oil-induced hyperalgesia in male,
ovariectomized (OVX) and diestrous female rats, it did not
reverse hyperalgesia in OVX + estradiol or proestrous female
rats (60). We did not screen the females for stage of the estrous
cycle in this study. However, a previous study of fear extinction
and retention in female SD rats following SPS may provide some
insight. In that study, even though all females were in diestrus
when they were exposed to SPS (42), by day 9 post-SPS there
were equivalent numbers of rats in each stage of the estrus cycle
in each treatment group. It is clear that the overall effect of
traumatic stress in the current study was to produce hyperalgesia
and allodynia in WT and KO females regardless of estrus cycle
stage, and in KO rats independent of the NOP receptor.

N/OFQmodulates nociceptive sensitivity through supraspinal
(33, 63), spinal (59–64), and peripheral nerve sites (65,
66). Supraspinal N/OFQ inhibits stress-induced analgesia and
produces hyperalgesia (33, 35, 63), consistent with SPS-induced
allodynia and hyperalgesia. N/OFQ activates the HPA axis
following acute administration or mild stress (67–69): HPA
activation by N/OFQ resembled acute stress and was blocked by
NOP antagonist treatment. Though acute stress reduced N/OFQ
content in the brain, N/OFQ levels were restored within 24 h (67),
suggesting that stress causes release and synthesis of endogenous
N/OFQ. Acute or repeated social defeat stress also elevates NOP
receptor mRNA in the brain, supporting the hypothesis that
dysfunction of the N/OFQ system contributes to behavioral and
hormonal dysregulation following stress (69).

In mice, i.c.v. N/OFQ blocked stress-induced antinociception
(SIA) equally in males and females (33). Though levels of
N/OFQ did not significantly increase in CSF from WT male
or female rats subjected to SPS in this study, it is possible
that the lack of NOP receptor in the male KO rats ensured
that stress-induced analgesia remained intact, and that could
explain the protective effect of the NOP receptor KO in males.
This was clearly not the case with female rats following SPS.
CSF N/OFQ levels negatively correlate with PWT, PWL and
% open arms time, and positively correlate with anxiety index
in WT females. This is consistent with increased sensitivity to
tactile and thermal stimuli, less time in open arms and a higher
anxiety index in those WT females with the highest levels of
CSF N/OFQ. The correlation was absent in KO females, as
one might expect since no NOP receptors were available to
interact with N/OFQ. However, the KO females experienced
the same extent of allodynia, hyperalgesia and anxiety like
behaviors as the WT females, indicating that activation of NOP
receptors is not the only mechanism by which those behaviors
are mediated.

Though spinal N/OFQ has generally been found to produce
analgesia, very low levels of N/OFQ (femtomole) administered
i.t. produced thermal hyperalgesia and tactile allodynia in male
mice (70, 71). Thus, low levels of N/OFQ in the CSF following
SPS also may contribute to hyperalgesia in males, and this

hyperalgesia would be lost in the NOP receptor KO rats. The
potency of N/OFQ for spinal NOP receptors in WT females
was likely too weak to activate NOP receptors to modulate
spinal nociceptive sensitivity, which is consistent with the lack
of protection afforded NOP receptor KO females.

The third site at which N/OFQ has been found to alter
nociceptive sensitivity is in the periphery at primary afferent
nerve endings, where it increases nociceptive sensitivity via
PLC/IP3-mediated release of Substance P (66). Levels of N/OFQ
in the serum arise from white blood cells (65, 72, 73). Elevated
serum N/OFQ in WT-SPS rats may contribute to hyperalgesia
and allodynia through actions on peripheral nerve endings.
While loss of the NOP receptor is sufficient to block hyperalgesia
and allodynia in male rats, it is not sufficient to alleviate
hyperalgesia and allodynia in female rats. There is strong
evidence that sex differences in the immune system and in
hormonal modulation of immune cells account for differences in
chronic pain or pain sensitivity between males and females (74).
This is likely the case for traumatic stress-induced allodynia, and
future studies will address that possibility.

Our results confirm that circulating N/OFQ-mediated NOP
receptor signaling in male rats plays an important role
in modulating nociceptive sensitivity and serum N/OFQ
levels following traumatic stress. Absence of NOP receptor
expression prevented the development of tactile allodynia,
thermal hyperalgesia and increased serum N/OFQ in male, but
not female, rats following traumatic stress. However, loss of the
NOP receptor in females did not alter behavioral or biochemical
changes in response to SPS compared to WT controls. SPS-
induced significant anxiety-like behavior in female, but not male,
NOP receptor KO rats that persisted for at least 30 days. It
occurred concomitantly with hyperalgesia and allodynia, and was
correlated with CSF N/OFQ levels. Such dramatic differences in
males and females in response to NOP receptor loss requires
additional study to better understand the role of the N/OFQ-
NOP receptor system in stress-induced pain modulation and the
development of co-morbid PTSD symptoms such as allodynia,
hyperalgesia and anxiety-like behaviors.
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Background:Microglia activation contributes to chronic pain and to the adverse effects

of opiate use such as analgesic tolerance and opioid-induced hyperalgesia. Both mu

opioid receptor (MOR) encoded by Oprm1/OPRM1 gene and toll like receptor 4 (TLR4)

have been reported to mediate these morphine effects and a current question is whether

microglia express the Oprm1 transcript and MOR protein. The aim of this study was to

characterize Oprm1-MOR expression in naive murine and human microglia, combining

transcriptomics datasets previously published by other groups with our own imaging

study using the Cx3cr1-eGFP-MOR-mCherry reporter mouse line.

Methods: We analyzed microglial Oprm1/OPRM1 expression obtained from

transcriptomics datasets, focusing on ex vivo studies from adult wild-type animals and

adult post-mortem human cerebral cortex. Oprm1, as well as co-regulated gene sets

were examined. The expression of MOR inmicroglia was also investigated using our novel

fluorescent Cx3cr1-eGFP-MOR-mcherry reporter mouse line. We determined whether

CX3cR1-eGFP positive microglial cells expressed MOR-mCherry protein by imaging

various brain areas including the Frontal Cortex, Nucleus Accumbens, Ventral Tegmental

Area, Central Amygdala, and Periaqueductal Gray matter, as well as spinal cord.

Results: Oprm1 expression was found in all 12 microglia datasets from

mouse whole brain, in 7 out of 8 from cerebral cortex, 3 out of 4 from

hippocampus, 1 out of 1 from striatum, and 4 out of 5 from mouse or rat

spinal cord. OPRM1 was expressed in 16 out of 17 microglia transcriptomes

from human cerebral cortex. In Cx3cr1-eGFP-MOR-mCherry mice, the

percentage of MOR-positive microglial cells ranged between 35.4 and 51.6%

in the different brain areas, and between 36.8 and 42.4% in the spinal cord.
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Conclusion: The comparative analysis of the microglia transcriptomes indicates that

Oprm1/OPRM1 transcripts are expressed in microglia. The investigation of Cx3cr1-

eGFP-MOR-mCherry mice also shows microglial expression of MOR proteinin the brain

and spine. These results corroborate functional studies showing the actions of MOR

agonists on microglia and suppression of these effects by MOR-selective antagonists or

MOR knockdown.

Keywords: microglia, opioid receptor, mu, transcriptomics, gene clusters, fluorescent reporter mice, analgesic

tolerance, opioid-induced hyperalgesia

INTRODUCTION

Activation of the mu opioid receptor (MOR), encoded by the
Oprm1/OPRM1 gene in rodents and humans, respectively (1, 2),
mediates opioid analgesia and the adverse consequences of opioid
use (3, 4). Glial cells and in particular microglia are known to
contribute to chronic pain (5) as well as to opioid tolerance
and opioid-induced hyperalgesia (OIH) (6–8). However, whether
microglia express Oprm1 and whether microglial Oprm1 would
have a role in chronic pain and other opioid effects remains
to be demonstrated. Most studies reporting MOR expression
or function in microglia have been performed on cultured
microglia (9–18). It has been shown however that gene expression
profiles differ between microglia in culture and adult mouse
microglia in vivo (19) and therefore the demonstration of MOR
expression in cultured microglia does not allow to conclude
for MOR expression in adult microglia in vivo. Horvath et al.
(20) have shown MOR expression in rat spinal microglia in
vivo by immunohistochemistry. However, two other studies
have contradicted these findings by showing a lack of MOR
expression in spinal cord microglia (21, 22). Thus, whether
microglia in adults express MOR still remains an unsolved
question. Specifically, Corder et al. present considerable evidence
that argues against the expression of MOR messenger and
protein inmouse spinal cordmicroglia. Their findings are further
strengthened by transcriptomic analyses which show a lack in
co-expression of Oprm1 mRNA with microglial markers (21).
However, critical analysis and commentary on these interesting
results is not possible yet due to the limited access of the
datasets used for transcriptomic analysis. Therefore, whether
Oprm1/OPRM1 are expressed by microglia remains a matter of
debate that should be further investigated. To date, there are
no published studies focusing on the analysis of a large series
of transcriptomic datasets for Oprm1 expression in microglia
that would allow assessing, unambiguously, Oprm1 expression
in microglia in vivo. In addition, OPRM1/MOR expression in
humanmicroglia is yet to be fully characterized. For this purpose,
we have used novel approaches to characterize Oprm1/OPRM1

Abbreviations: BDNF, brain-derived neurotrophic factor; CeA, central amygdala;

CTAP, D-Phe-Cys-Tyr-D-Trp-Arg-Thr-Pen-Thr-NH2; eGFP, enhanced green

fluorescent protein; FCx, frontal cortex; KO, knockout; MA, microarray; Mars-

seq, massively parallel Single-cell RNA-seq; MOR, mu opioid receptor; NAcc,

nucleus accumbens; OIH, opioid-induced hyperalgesia; PAG, periaqueductal gray;

PBS, phosphate buffer baline; PFA, paraformaldehyde; RNA-seq, RNA-sequencing;

TLR, toll like receptor; VTA, ventral tegmental area.

expression in microglia based on transcriptomics and have used
fluorescent reportermice to characterizeMOR expression in vivo.

A number of laboratories have generated transcriptomics
datasets for microglia that can be used for analyzing gene
expression profiles (23, 24) as well as for investigating microglia
physiology and their responses in disease (25, 26). We have
analyzed published datasets from microarray (MA) and RNA-
sequencing (RNA-seq) studies performed on rodent and human
microglia for Oprm1 and OPRM1 gene expression. We have
completed this analysis by imaging microglial MOR using a
novel double fluorescent Cx3cr1-eGFP-MOR-mCherry mouse
line. The chemokine receptor CX3CR1 is a specific marker
for phagocytic cells and labels specifically microglia and
macrophages in the nervous system of naive animals (27–29).
The Cx3cr1-eGFP mouse line was originally used to explore
CX3CR1 function (30) then later to map the fate of tissue
macrophages including microglia (28, 29). A reporter knock-in
mouse line for MOR, the MOR-mCherry line, allows to map the
distribution of MOR-expressing cells in mice using fluorescence
imaging (31). In order to localize MOR protein in microglia,
we have bred these two lines together to generate the Cx3cr1-
eGFP-MOR-mCherry mouse line. Thus, we have analyzed MOR
expression in various brain regions implicated in chronic pain
or chronic opiate effects as well as the spinal cord in control
non-pathological conditions. In addition, as sex differences are
an important factor for chronic pain (32–34) and greatly impact
the microglial contribution to pain (35, 36), we investigated
Oprm1/OPRM1-MOR presence in microglia from both females
and males.

MATERIALS AND METHODS

Transcriptomics Analyses
As microglia develop after birth until post-natal day 15,
followed by stabilization of microglial numbers (37–39),
we focused the Oprm1 expression analysis on microglia
from juvenile-adult wild-type naïve rodent and juvenile-adult
humans with no reported pain phenotype. The datasets
used and related information including the pathology of
patients from whom microglia were collected, are indicated
in Supplementary Tables 1–4. The selection criteria for which
datasets to include in the present study were as follows:
normalized mouse datasets included in the database recently
published by Friedman et al. (40) (see Data S2 in Friedman
et al.) and additional normalized datasets containing Oprm1
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in their gene list; from wild-type mice aged 0.5 months and
older. Microglia datasets from mouse whole brain were from
the studies by Wang et al. (41), Verheijden et al. (42), Poliani
et al. (43), Erny et al. (44), Szulzewsky et al. (45), Pyonteck
et al. (46), Bruttger et al. (47), Lavin et al. (48), Bennett et al.
(49), Gosselin et al. (50), Krasemann et al. (51), and Zhao et al.
(52). Microglia datasets from mouse brain areas were from Orre
et al. (53), Arumugan et al. (54), Grabert et al. (55), Friedman
et al. (40), Srinivasan et al. (56), Zhang et al. 2014 (57), and
Matcovitch-Natan et al. (58). Microglia datasets from rodent
spinal cord were from Chiu et al. (59), Denk et al. (60), Noristani
et al. (61), Matcovitch-Natan et al. (58), and Jokinen et al. (62).
Information on these datasets including publication authors and
year, accession number, mouse or rat strain, sex, age, dissociation,
andmicroglia isolation methods, and genomics assay are given in
Supplementary Tables 1–4.

Human datasets comprised those published by Zhang et al.
(63) and contained in Friedman’s Supplementary Table 2 as well
as normalized datasets recently reported by Gosselin et al. (64)
and Galatro et al. (65) as described in Supplementary Table 4.
Normal cortical regions were resected from patients with diseases
described in column F. Among the 19 datasets by Gosselin
et al. we selected 10 datasets derived from individuals aged
13 and older. Among the 39 datasets from adult individuals
by Galatro et al. we selected 8 datasets derived from samples
collected at a maximum delay of 10 h post-mortem. Information
on these datasets including publication authors and year,
accession number, sex, age, cortex area, dissociation, and
microglia isolation methods, and genomics assay are given in
Supplementary Table 4.

In addition to our main focus set, (A) showing only
the expression levels of Oprm1 gene transcript from purified
microglia, three other groups of gene clusters were formed:
(B) Myeloid cells, (C) Activation patterns and (D) Neurons
and Astrocytes. The list of genes contained in each of
the gene clusters of B, C, and D was formed using the
gene lists defined in Friedman et al. (40) and filtered to
exclude the few genes expressed by any other cell type.
The Myeloid gene clusters (B) include the Microglia, the
Macrophage, and the Neutrophil-Monocytes gene clusters,
respectively. The activation pattern clusters (C) comprise
the Interferon-related, Proliferation-related, LPS-related and
Neurodegeneration-related gene clusters. The Neurons and
Astrocyte gene clusters (D) are composed of the Neuron-
associated, Excitatory neuron-associated, GABAergic neuron-
associated, and Astrocyte-associated genes clusters.

The logarithm scale two (log2) transformation was applied to
each data sample values and 1 was added to expression values to
avoid indetermination for zero count reads. For each data sample,
the first (25th percentile), the second (median), and the third
quantile (75th percentile) values were computed. The log2 values
for the Oprm1 transcript were also obtained for each dataset.
The log2 values associated with each gene subset of B, C, and
D categories were isolated for each sample and an average value
was calculated for each subset. The R environment (version 3.5.0)
was used to create the basic figures. The vioplot R package was
used to obtain a violin plot like contour for the log2 values of

each data sample. The log2 values and the 25th, 75th percentile
and median values were superimposed on the violin plots using
different colors as shown in Figures 1–4.

For determining correlations between Oprm1/OPRM1
expression and the expression of the gene clusters described
above, z-scores transformations (1+log2 values) were calculated
from the mean expression level of each cluster for each dataset
included in the study. The Orre et al. (53) mouse cortex dataset
and the S037 dataset of the Gosselin et al. study (64) were
removed from the analysis as they varied substantially from all
other datasets within their group. The correlation analysis for
human datasets included all dataset except for S037 set.

Cx3cr1-eGFP-MOR-mCherry Mouse Line
Animals and Ethics Statement
The animals were housed under standard light, temperature, and
humidity conditions (12 h light-dark cycle, 21 ± 1 ◦C, 55 ± 10%
humidity) with food and water ad libitum. Brains and spinal
cords were collected from male and female mice aged between
5 and 15 weeks. All experiments were conducted respecting the
European Communities Council Directives of 22 September 2010
(directive 2010/63/UE) under the guidelines of the Committee
for Research and Ethical issues of IASP published in PAIN, 1983;
16:109-110, and were approved by the local ethical committee
(Com’Eth d’Ethique pour l’Expérimentation Animale IGBMC-
ICS, license N◦17) with the agreement number 00876-02.

Cx3cr1-eGFP-MOR-mCherry Mice
The Cx3cr1-eGFP-MOR-mCherry mouse line was generated
by crossing Cx3Cr1-eGFP mice (29) and MOR-mCherry
mice (31) to obtain viable heterozygous animals. These were
intercrossed to generate homozygous Cx3Cr1-eGFP-MOR-
mCherry mice that are fertile and develop normally. Genotyping
was performed by PCR to detect both Cx3Cr1-GFP sequence
(35 cycles at 94◦C for 30 s, 65.5◦C for 30 s, and 72◦C for
2min) using the following primer sequences: Cx3Cr1-Fwd: 5′-
TTCACGTTCGGTCTGGTGGGAAATC-3′, Cx3Cr1- Rev:

5′-TTCCTAGTGGAGCTAGGGTCGGGG-3′, eGFP-Fwd:
5′-GATCACTCTCGGCATGGACG-3′, and MOR-mCherry

sequence (35 cycles at 94◦C for 1min, 63◦C for 1min, and
72◦C for 1min) using a forward primer located on exon four of
Oprm1 gene, -Fwd: 5′-TGACGTGACATGCAGTTGAGATTT-
3′and a reverse primer located in the 3’ UTR region, Rev: 5′-
TCCCACAAACCCTGACAGCAAC-3′. Both female and male
Cx3cr1-eGFP-MOR-mCherry mice were analyzed for MOR
expression in microglia (3 animals per sex).

Tissue Preparation
Mice were deeply anesthetized with intraperitoneal
administration of 100/5 mg/kg ketamine/xylazine (Virbac,
Carros, France; Rompun, Bayer, La Garenne Colombes, France)
and were intracardially perfused with 4% Paraformaldehyde
(PFA) in Phosphate Buffer Saline (PBS) solution (4%PFA/PBS).
The whole brain and spinal cord were isolated and post-fixed
overnight at 4◦C in 4%PFA/PBS. Samples were rinsed three
times in PBS and cryoprotected in a sucrose/PBS gradient (10,
20, and 30%) for 24 h each. Tissues were embedded in OCT
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FIGURE 1 | Oprm1 and gene clusters expression in mouse whole brain microglia datasets. Expression levels of the genes identified in each dataset are represented in

violin plots demonstrating the median, as well as the 25th and 75th quartiles. Datasets are represented by name of the first author in (A), which are denoted

numerically in (B–D). (A) Expression of Oprm1 is below the median in purified microglia assayed with MA, and fluctuates above and below the median in purified

microglia assayed with RNA-seq. (B) Expression values of the Myeloid cell clusters demonstrate a high expression of Microglia-related genes which are in the 75th

quartile in all the datasets analyzed. (C) Expression values of the Activation pattern clusters are below the 75th quartile in all but one dataset (dataset #6). (D)

Expression values of the Neurons and Astrocytes clusters are below the median in 5 out 6 of the datasets derived from MA assays, whereby the Astrocyte-related

genes have expression values above the 75th quartile in dataset #5. When assayed with RNA-seq, the Astrocyte-related genes are below the median, except for

dataset #12, where the values are above the median.

(Tissue Tek, Sakura Fine Technical, Torrance) and coronally
(brain) or transversally (spinal cord) sectioned at 30µm on
Superfrost microscope slides using a cryostat (Leica CM3050S).
Cryosections were dried at room temperature and then stored at
−20◦C before imaging.

Immunohistochemistry and Quantifications
For immunohistochemistry, cryosections were rehydrated with
PBS and were then incubated in a blocking solution (10% horse
serum/0.1% Triton X-100/PBS) for 30min at room temperature.
The sections were incubated with the primary antibodies diluted
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FIGURE 2 | Oprm1 and gene clusters expression in mouse cortex, hippocampus and striatum microglia datasets. Expression levels of the genes identified in each

dataset are represented in violin plots demonstrating the median, as well as the 25th and 75th quartiles. Datasets are represented by name of the first author in (A)

which are denoted numerically in (B–D). In mouse cortex and hippocampus, microglia were assayed with either microarrays (MA) or RNA-sequencing (RNA-seq) as

underlined on (A) and assayed with MA only in the striatum (dataset #13). (A) Oprm1 expression values were distributed below and above the median independent of

the assay used to measure gene expression. RNA-seq datasets (#8 and 12) yielded to no expression of Oprm1 in microglia. The highest Oprm1 expression value was

yielded by dataset #1 in cortical microglia. (B) Among the Myeloid gene clusters, the Microglia-related gene module was the mostly highly expressed in all datasets

analyzed, with expression values distributed about the 75th quantile. (C) Proliferation-related genes were the most highly expressed within the Activation pattern

clusters, distributed within the 75th quantile. (D) Neuron-, GABAergic-, and Astrocyte-related genes had expression values that were below the median in most of the

datasets analyzed. In the cortex and hippocampus, the Excitatory neuron- and Astrocyte-related genes are distributed along the median for datasets #5–7 and #10,

11.

in 10% normal horse serum/0.1% Triton X-100/PBS overnight at
4◦C. The sections were then washed 3 times in 0.1% Triton X-
100/PBS and incubated with secondary antibodies and Hoechst

for 1 h at room temperature, in the same solution as the primary
antibodies. After washing 3 times in 0.1% Triton/PBS and once
in PBS alone, slides were mounted with the S3023 aqueous
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FIGURE 3 | Oprm1 and gene clusters expression in rodent spinal cord

microglia datasets. Expression levels of the genes identified in each dataset

are represented in violin plots demonstrating the median, as well as the 25th

and 75th quartiles. Datasets are represented by name of the first author in (A)

which are denoted numerically in (B–D). Gene expression in the spinal cord

was assayed with RNA-seq exclusively. (A) Oprm1 expression values ranged

from above the median to undetected level (#4). (B) In the Myeloid gene

cluster, the Microglia- related genes were the mostly highly expressed in all

datasets analyzed, with expression values distributed about the 75th quantile.

(C) Proliferation-related genes were the most highly expressed within the

Activation pattern clusters, except in dataset#5, which had higher expression

values for the LPS module in microglia purified from rat. Overall, the expression

values of Activation patterns gene clusters were low compared to the

Microglia-related genes. (D) Neuron-, GABAergic- and Astrocyte-related genes

had expression values that were low compared to the Microglia-related genes

except for dataset #2 that show high Astrocyte-related module expression (B).

mounting medium (DAKO). For staining cis-Golgi, trans-Glogi,
and lysosomes, the rabbit polyclonal anti-GM130 antibody
(11308-1-AP, Proteintech), the rabbit polyclonal anti-TGN38
antibody (NBP1-03495, Interchim), and the mouse monoclonal
anti-Lamp1 antibody (H4A3, Developmental Studies Hybridoma
Bank DSHB) were used. The optimal dilutions were set up in
preliminary experiments. Anti-GM130, anti-TGN38, and anti-
Lamp1 were used at dilutions 1:500, 1:200, and 1:200 (0.6, 5,
0.1µg/ml), respectively. The secondary antibodies used were
the Cy5 conjugated donkey anti-mouse (1:1,000, 715-176-150,
Jackson) and the Cy5 conjugated donkey anti-rabbit (1:500,
711-176-152, Jackson) Ig antibodies. Images were acquired with
a confocal microscope (8UV, Leica Microsystem) using a 40x
objective. The FIJI package for ImageJ software was used for
image analysis (66). The percent of MOR-positive microglia
among the CX3CR1-eGFP-positive microglia in the different
brain and spinal cord regions were quantified on multiple
microscopic fields from 3 female and 3 male adult animals. The
number of fields counted and of cells examined are indicated in
the Supplementary Table 5.

Statistical Analysis
Statistical analyses were performed with GraphPad Prism version
6.01 to investigate the correlations between Oprm1 expression
and the different clusters mentioned above, as well as to compare
MOR expression in CX3CR1-eGFP-positive microglia between
male and female mice. Oprm1 and gene module z-scores were
all non-normally distributed and correlations were assessed with
the Spearman’s correlation test. The mean percentage of MOR-
positive and CX3CR1-eGFP-positive microglia were tested for
normality as well and compared using the Unpaired Student’s
t-test or Mann Whitney test where applicable. The results
are presented as the mean ± SEM for microglia cell counts
(percentages). A p-value of 0.05 or less was considered to be
statistical significant.

RESULTS

Oprm1/OPRM1 Expression in Rodent and
Human Microglia Transcriptomics Datasets
Microglia From Mouse Whole Brain
Oprm1 was expressed in the twelve datasets analyzed
(Figure 1A). Among those, six were issued from MA, see
references (41–46) and six from RNA-seq, see references
(47–52), as described in Supplementary Table 1. Oprm1 levels
ranged from above the median (n = 4) to between the median
and first quartile (n = 4) and below the first quartile (n = 4).
Oprm1 expression tended to be more homogenous in MA
than in RNA-seq datasets. The Myeloid gene modules defined
by Friedman et al. (40) included Microglia, Macrophage, and
Monocyte-neutrophil gene clusters. The Microglia gene cluster
was highly expressed in all datasets, at the highest level of all gene
clusters (Figure 1B). Macrophage and Neutrophil-monocyte
cluster expression was distributed over and under the median
among datasets (Figure 1B). The Proliferation cluster stood out
as the most expressed among the Activation pattern gene sets,
followed by the LPS, or Interferon and then Neurodegeneration
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FIGURE 4 | Oprm1 and gene clusters expression in human cortex microglia datasets. Expression levels of the genes identified in each dataset are represented in

violin plots demonstrating the median, as well as the 25th and 75th quartiles. In all datasets, microglia were assayed with RNA-seq. Gosselin datasets (#2–9)

comprised of microglia isolated from young males and females, while the other human datasets were from adult and aged postmortem samples of unknown gender

(#1) or exclusively males (10–17). Datasets are represented by name of the first author (A), which are denoted numerically in (B–D). (A) Oprm1 expression values were

distributed below or along the median in the Zhang and Gosselin datasets (#1 and 2–9) but consistently below the median in all the Galatro datasets. (B) In the

Myeloid gene clusters, the Microglia- related genes were the most highly expressed in all datasets analyzed, with expression values distributed above the 75th

quantile, except in dataset #17 which had higher expression values for the Monocytes-Neutrophils-related genes. (C) Activation pattern gene clusters were highly

expressed in purified human microglia, distributed within, and above the 75th quantile. The majority of the datasets reported the highest expression values for the

LPS-related genes. Interferon-related genes had the highest expression values in the datasets #5, 10, 14, and 16 with causes of death associated with blood

circulation and aneurysm. (D) Neuron-, GABAergic-, and Astrocyte-related genes had expression values along and below the median in dataset#1 and those provided

by Gosselin (#2–9). Expression values were all below the median in the aged samples (#10–17).
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gene sets (Figure 1C). The three neuronal (Neurons, Excitatory
and GABAergic) gene sets were positioned below the median
in nine of the datasets (Figure 1D). The Astrocyte cluster was
below the median in eight of the datasets (Figure 1D).

Microglia From Murine Cortex, Hippocampus, and

Striatum
In the cortex, Oprm1 expression was expressed in seven out of
the eight datasets generated by either MA (53–55) or RNAseq
(40, 56, 57) and not detected in the dataset by Matcovitch-
Natan et al. derived from Massively parallel Single-cell RNA-
seq (Mars-seq) (58). Expression ranged from above the median
in two datasets, between median, and first quartile in three
datasets, below the first quartile in two datasets, to not being
expressed in the Mars-seq dataset (Figure 2A). The dataset with
very highOprm1 expression was generated using the Agilent MA
technology (53) while Affymetrix arrays were used in the other
MA studies. In the hippocampus, Oprm1 was above the median
in one dataset, ranged between the median, and first quartile
in two datasets, but not expressed in the Mars-seq dataset. In
the striatum dataset by Grabert et al., the Oprm1 was above
the first quartile. The Microglia gene cluster was also highly
expressed and the highest in all datasets (Figure 2B), similarly
to whole mouse brain datasets. Macrophage and Neutrophil-
monocyte module expression ranged among datasets from over
to under the median, with the Macrophage cluster higher than
that of Neutrophil-monocyte (Figure 2B). The Proliferation
cluster stood out as the most expressed among the Activation
pattern gene sets, followed by the LPS or Interferon and then
Neurodegeneration gene sets (Figure 2C), comparably whole
mouse brain data. The neuronal (Neurons, Excitatory and
GABAergic) as well as the Astrocyte gene set were positioned
below the median in nine of the datasets (Figure 2D).

Rodent Spinal Cord
The expression ofOprm1was analyzed in four mouse and one rat
spinal microglia datasets obtained by RNA-seq (58–62). Oprm1
is expressed above the median in two mouse spinal cord datasets,
below the first quartile in one data set, and not expressed in the
Mars-seq dataset by Matcovitch-Natan et al. The rat spinal cord
dataset showed Oprm1 level above the first quartile (Figure 3A).
The Microglia gene cluster was also highly expressed in the
five datasets (Figure 3B). Macrophage and Neutrophil-monocyte
cluster expression varied among datasets from over to below the
median (Figure 3B). In the Activation pattern gene modules, the
Proliferation gene sets were the most expressed in mouse but
not rat, whereas Neurodegeneration gene sets showed the lowest
level (Figure 3C), similarly to what was found in mouse brain.
The three neuronal (Neurons, Excitatory and GABAergic) gene
sets were positioned below or at the median level while Astrocyte
cluster expression differed across the datasets (Figure 3D).

Human Cortex
OPRM1 level was analyzed in microglia RNA-seq datasets
generated from temporal cortex gray matter (63), different
cortical areas (64), and parietal cortex (65) (Figure 4A). OPRM1
is expressed above the median in the dataset generated by Zhang

et al. (63) for which microglia were purified from cortex gray
matter collected on juvenile-adult individuals. In the study by
Gosselin et al. (64) on cortical microglia enriched from young
adults, OPRM1 levels ranged between the median and first
quartile. In the S037 dataset issued frommicroglia collected from
a brain tumor, OPRM1 was highly expressed. In the microglia
datasets by Galatro et al. (65), collected from the parietal cortex
of aged people (57–102 years), OPRM1 was around the first
quartile and not expressed in the S12067 sample (Figure 4A).
The Microglia gene module was the most expressed in all sets
except one and the Macrophage cluster had generally a higher
level than the Neutrophil-monocyte cluster (Figure 4B). Among
the activation pattern gene sets, the LPS and Interferon sets
showed mostly the highest levels, followed by the Proliferation
cluster. The Neurodegeneration gene sets showed the lowest
level of expression (Figure 4C). The values for the Excitatory
and GABAergic clusters were higher than those of the Neurons
cluster, which showed the lowest expression levels (Figure 4D),
differing from mouse datasets. The Astrocyte cluster was below
the median on most datasets (Figure 4D).

Single Cell RNAseq Data Sets
We investigated Oprm1 expression in microglia datasets from
published single cell RNA-seq studies. Transcripts for Oprm1
were not found in the datasets which contained about 1,300,
1,985, 6,000, 1,179, 1,900–3,300, and 1,169 and 800 genes
expressed per cell, respectively (27, 67–72). Microglia datasets
generated from microdissected basal ganglia nuclei led to the
identification of 2,647 expressed genes per cell that did not
include Oprm1 (73).

Relationships Between Oprm1 Expression
and Gene Clusters
Myeloid Cells
We investigated the relationships betweenOprm1 expression and
the expression of myeloid molecular signatures (modules) that
are genes found to be co-expressed in the study by Friedman
et al. (40). Microglia, in comparison with Macrophages cluster,
had inverse trends regarding their correlations with Oprm1
in the rodent analyses (Figures 5–9). The Microglia module
was positively correlated with Oprm1 (mouse cortex, mouse
hippocampus, and rodent spinal cord), while the Macrophage
cluster was negatively correlated with Oprm1.

In whole brain analysis, Oprm1 expression had a negative
correlation with the Macrophage and Monocyte-neutrophil
clusters, which was statistically significant with the Macrophage
gene cluster only (p = 0.030). In the mouse cortex, there was
a strong positive correlation between Oprm1 and the Microglia
gene set which was statistically significant only for this cluster
(r = 0.955; p = 0.0032) but not for the other myeloid sets
(Figure 6). No significant correlation was found between the
Monocyte-neutrophil gene cluster and any dataset (Figures 5–8).

Activation Patterns
We investigated the relationships between the expression of
Oprm1 and of the myeloid activation modules as described (40).
There was a negative correlation between Oprm1 and the LPS
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FIGURE 5 | Correlation of Oprm1 gene expression within the Myeloid cells, Activation patterns, and Neurons and Astrocytes gene clusters in mouse whole brain

datasets. Oprm1 expression does not correlate with the microglia-related and the Monocyte-Neutrophil-related genes (p >0.05, ns) but is significantly negatively

correlated with the Macrophages-related genes (r = 0.636; *p = 0.03). Oprm1 expression has a negative correlation (r < 0) with all the Activation patterns-, Neurons,

and Astrocytes gene clusters, which is only statistically significant for the LPS-related gene module (*p = 0.014). All correlations were determined with the Spearman’s

correlation test.
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FIGURE 6 | Correlation of Oprm1 gene expression within the Myeloid cells, Activation patterns, and Neurons and Astrocytes gene clusters in mouse cortex datasets.

Oprm1 expression is positively and significantly correlated with the microglia-related genes (r = 0.955; **p = 0.0032) but does not correlate with the Macrophages-

and Monocyte-Neutrophils-related genes (r ≤ 0.214; p > 0.05, ns). Oprm1 expression does not correlate with any of the Activation patterns- (r < 0; p > 0.05, ns),

Neurons or Astrocytes gene clusters (r ≤ 0.09; p > 0.05, ns). All correlations were determined with the Spearman’s correlation test.
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FIGURE 7 | Correlation of Oprm1 gene expression within the Myeloid cells, Activation patterns and Neurons and Astrocytes gene clusters in mouse hippocampus

datasets. There is no correlation between Oprm1 expression and all the gene clusters investigated in the mouse hippocampus datasets (p > 0.05, ns). Although

Oprm1 expression seems to have a strongly positive correlation with the Neurons and Astrocytes gene clusters (r = 1 and r = 0.800, respectively) this is not

statistically significant (p > 0.05, ns). All correlations were determined with the Spearman’s correlation test.
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FIGURE 8 | Correlation of Oprm1 gene expression within the Myeloid cells, Activation patterns, and Neurons and Astrocytes gene clusters in rodent spinal cord

datasets. Oprm1 expression has a positive correlation (r = 0.700) with the Microglia-related genes but which is not statistically significant (p > 0.05, ns). Oprm1

expression is negatively correlated (r < 0) with Macrophages, Monocytes-Neutrophils- related genes, and Activation patterns gene clusters, but this is not statistically

significant (r < 0; p > 0.05, ns). Oprm1 expression has a positive correlation with the Neurons (r > 0.5) which is not statistically significant (p > 0.05, ns). There is no

correlation between Oprm1 expression and Astrocytes gene clusters (r = 0.2; p = 0.783, ns). All correlations were determined with the Spearman’s correlation test.
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FIGURE 9 | Correlation of Oprm1 gene expression within the Myeloid cells, Activation patterns and Neurons and Astrocytes gene clusters in human cortex datasets.

Oprm1 expression had a negative correlation with Microglia- and Macrophage-related genes (r < 0) and a positive correlation with the Monocytes-Neutrophils-related

genes which were not statistically significant (p > 0.05; ns). Within the Activation patterns-related genes, Oprm1 expression has a weak positive correlation (r < 0.5)

which is not statistically significant for the LPS-related genes (p > 0.5). There is a statistically significant positive correlation between Oprm1 expression and the

Proliferation-related genes (r = 0.741; **p = 0.002). There is a statistically significant positive correlation between Oprm1 expression and the GABAergic- (r > 0.5;

***p = 0.0006), Neurons-, and Astrocytes-related genes (r > 0.5; ****p < 0.0001).
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gene cluster in the mouse whole brain datasets (Figure 5) and
a positive correlation between OPRM1 and the Proliferation-
related gene level for the human cortex datatsets (Figure 9). No
correlation was found between Oprm1 level and the Interferon
cluster in any of the dataset studied (Figures 5–9).

Neurons and Astrocytes
The analysis for relationships between Oprm1 expression and
expression of the Neuron and GABAergic neuronal signatures
indicated no correlation between Oprm1 and these modules for
whole mouse brain, cortex, hippocampus, and rodent spinal cord
datasets (Figures 5–8). The p and r values obtained from the
analysis of hippocampus and spinal cord data suggest that more
datasets are required to increase the power of the correlation
analysis. For the human cortex datasets, a positive correlation was
found betweenOprm1 expression and expression of the Neuronal
and Astrocyte gene modules (Figure 9).

MOR Expression in CX3cr1-eGFP Microglia
MOR Expression in Brain and Spinal Cord
The Figures 10, 11 show that Cx3cr1-eGFP-positive cells
display the typical microglia morphology with no neuronal,
astrocytic or lymphocytic shapes, confirming previous findings
on colocalization of CX3CR1-eGFP with the CD11b or Iba-
1 microglia and macrophage markers (37, 74, 75) but not
neuronal, astrocytic, or oligodendrocytic markers (76, 77) in
the brain. MOR is expressed in microglia of different brain
regions in female and male Cx3cr1-eGFP-MOR-mCherry mice,
in the Frontal Cortex (FCx), Nucleus Accumbens (NAcc),
Central Amygdala (CeA), Ventral Tegmental Area (VTA),
and Periaqueductal Gray (PAG) (Figure 10). The percent of
microglia expressing MOR-mCherry protein ranges from 35.4
± 4.1 to 51.6 ± 3.5 (Supplementary Table 5). The percentage
of MOR-positive microglia was calculated in the FCx, NAcc,
CeA, and PAG of female and male brains. The VTA showed
a lower percentage of microglia containing MOR in females
than in males which was statistically significant (p = 0.0037)
(Supplementary Table 5).

In spinal cord dorsal horn, MOR is expressed in
microglia of both female and male Cx3cr1-eGFP-MOR-
mCherry mice (Figures 11A,B, Supplementary Video 1,
Supplementary Table 5). The percentage of microglia expressing
MOR ranged from 37.1 ± 2.7 to 44.5 42.4 ± 2.6 in cervical,
thoracic and lumbar segments, with no statistical difference
between the segments (Supplementary Table 5). There were
no statistically significant differences in the percentages of
MOR-expressing microglia between males and females with 36.9
± 2.3% and 36 ± 2.4%, 38.8 ± 2.1% and 42.4 ± 2.5%, and 37.1
± 2.7% and 39.5 ± 2.3% in cervical, thoracic, and lumbar spinal
segments, respectively (Supplementary Table 5).

MOR-Golgi-lysosome Localization
To specifically localize MOR within the intracellular
compartments of spinal microglia, we labeled Cis-Golgi,
trans-Golgi, and lysosomes with GM130, TGN38, and Lamp1
antibodies, respectively. Microglial MOR co-localized with
GM-130 (Figure 11C) and TGN38 (Figure 11D) but not

with Lamp1 (Figure 11E). Together, this indicates that
microglial MOR is localized in cis and trans-Golgi rather than
lysosomes.

DISCUSSION

Altogether the transcriptomics and imaging data show MOR
expression in microglia of all analyzed mammalian brain areas
and the spinal cord. The expression of Oprm1 transcripts
and MOR protein in microglia was shown previously by
using RT-qPCR or antibody based techniques, respectively (9–
14, 16). Although two papers found no expression of MOR
in microglia by using the same above-mentioned techniques
(21, 22), a link between microglial activation and MOR
expression and function was demonstrated, mostly in in
vitro studies on murine primary microglia cultures. Low
concentrations of morphine and DAMGO (a selective MOR
agonist) activated rat microglia and this activation was blocked
by the MOR-selective antagonist D-Phe-Cys-Tyr-D-Trp-Arg-
Thr-Pen-Thr-NH2 (CTAP) (15). Morphine increased Toll-like
Receptors (TLRs) expression which was attenuated by the MOR-
selective antagonist D-Phe-Cys-Tyr-D-Trp-Orn-Thr-Pen-Thr-
NH2 (CTOP). Additionally, thismorphine effect was abolished in
cultured microglia of MOR knockout (KO) mice (78). In murine
microglia, morphine increased the expression of cytokines and
activated the PKCe-Akt-ERK1/2 kinase pathway and these effects
were inhibited by Oprm1 RNA silencing as well as by CTAP
(14, 16). A low dose of morphine enhanced NF-kB activity
via MOR that was blocked by CTAP while a morphine high
dose triggered a TLR4-mediated non-opioid response (18). One
study has shown that, in vivo, the morphine-induced increase
in microglial P2X4R ATP-receptor was blocked by (-)-naloxone
but not by its (+)-naloxone enantiomer, implicating microglial
MOR rather than TLR4 in OIH (17). MOR implication in OIH
has been confirmed at the genetic level with the use of global
MOR KO mice (21, 79). Regarding the implication of TLR4
in OIH, the study of TLR4 KO mice has led to controversial
results as two papers showed that OIH was abolished in TLR4
KO mice while two others showed that it was maintained (6, 7).
Moreover, TLR4-independent activation of NF-kB by morphine
was shown together with increased Tumor Necrosis Factor alpha
(TNFα), suggesting TNFα signaling as a novel pathway for
morphine action on microglia (80). However, whether this effect
of morphine on microglia activation occurs directly through the
microglial MOR or indirectly via a neuronalMOR still remains to
be determined and could be addressed in upcoming studies such
as with conditional MOR-KO targeted at microglia or other cell
types.

The detection of Oprm1/OPRM1 in 27 out of 30 rodent
datasets and 16 out of 17 human whole genome transcriptomics
datasets issued from microglia ex vivo validates the presence
of MOR transcripts in microglia. From this analysis, we could
conclude that in the mammalian central nervous system,
microglia of the whole brain, cerebral cortex, hippocampus,
and spinal cord all contain Oprm1/OPRM1 messenger. Single-
cell RNA-seq currently allows detection of only a few thousand
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FIGURE 10 | MOR is expressed in mouse brain microglia. Photomicrographs from coronal sections of Frontal cortex (FCx), Nucleus Accumbens (NAcc), Central

Amygdala (CeA), Ventral Tegmental Area (VTA), and Periaqueductal Gray (PAG) of Cx3Cr1-eGFP-MOR-mCherry mice show the colocalization (orange) of

CX3CR1-eGFP (green), and MOR-mCherry (red) denoted by white arrows. Scale bar = 20µm.

of the most highly expressed transcripts within a specimen.
Therefore, this approach is used for determining differential gene
expression among the highly expressed genes and cannot analyze
complete transcriptomes (81). As Oprm1 is overall expressed
around or below the median within the reported transcriptomes,
the transcripts would not be contained among the few thousands
of highly expressed genes detected by single-cell RNA-seq studies.
This lack of expression is found also in theMars-seq datasets (58).

The analysis of the relationships between expression ofOprm1
and of the different gene clusters led to interesting insights. First,
Figures 5–9 show that the z-scores for Microglia-related gene
expression are globally above 1 while z-scores for neurons or
astrocytes were below 0, indicating a significant enrichment in

microglia compared to other cell types. The positive correlation
observed between Oprm1 and the Microglia module in mouse
cortex further supports the presence of Oprm1 expression in
microglia. Such a correlation was not found for the mouse
whole brain or spinal cord datasets, possibly reflecting the
diverse cellular heterogeneity in these tissues compared to a
defined region like the cortex. Indeed, the whole brain comprises
many distinct regions, and microglia from other brain regions
implicated in opioid response or pain, such as VTA, NAcc, or
PAG, should be further profiled at the molecular level in order to
characterize the global expression of microglialOprm1. Neurons,
GABAergic neurons and Astrocytes gene clusters correlate with
OPRM1 in the human cortex datasets but not in datasets
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FIGURE 11 | MOR is expressed in microglia of the mouse spinal cord. (A,B) Photomicrographs from transverse sections of the lumbar spinal cord, at the level of the

dorsal horn, demonstrate a colocalization (orange) of MOR-mCherry (red) with CX3CR1-eGFP-positive microglia (green) in adult male (A) and female (B)

Cx3Cr1-eGFP-MOR-mCherry mice, indicated by white arrow heads. Scale bar = 10µm. (C–E) High magnification photomicrographs of CX3CR1-eGFP positive

microglia (green) that colocalize (orange) with MOR-mCherry (red) are indicated with white arrows. Scale bar = 10µm. (C) Anti-GM130 labeling (blue) colocalizes

(pink-white) with MOR-mCherry in the cis-Golgi of CX3CR1-eGFP positive microglia, indicated with white arrows. (D) Anti-TGN38 labeling (blue) colocalizes

(pink-white) with MOR-mCherry in the trans-Golgi of CX3CR1-eGFP positive microglia, indicated with white arrows. (E) Anti-Lamp1 labeling (blue) of lysosomes does

not colocalize with MOR-mCherry in CX3CR1-eGFP positive microglia, indicated with open arrows. The white (closed) arrow indicate colocalization of CX3CR1-eGFP

with MOR-mCherry (orange) alone.

from rodents. A significantly higher content of neuronal and
astrocyte gene transcripts in FACS-isolated microglia compared
to cultured microglia has already been reported, and was

suggested to result from synapse-related mRNAs that were
phagocytosed by the microglia (19). The same phenomenon may
contribute to the positive correlation found between OPRM1
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and Neurons and Astrocytes modules in the human datasets,
despite their very low expression levels in the datasets. In addition
to the transcriptomic analysis, imaging of the Cx3cr1-eGFP-
MOR-mCherry reporter line confirmed MOR expression by
microglia of the FCx, NAcc, CeA, VTA, PAG, and spinal cord.
Furthermore, co-localization of microglial MOR with cis- and
trans-Golgi compartments but not lysosomes strongly supports
the protein synthesis and post-translational processing of MOR
within microglial cells.

Importantly, as discussed by Richard M Ransohoff, microglia
polarization into M1 and M2 subtypes appears too simplistic
and does not reflect the diversity of microglia phenotypes or
profiles induced by internal and external environmental factors
that include central nervous system region, sex, age, and health
state revealed by high-throughput analyses (82). Some reports on
microglia transcriptomics have defined co-regulated gene subsets
or modules to allow for classification of microglia into subtypes
expressing high levels of specific gene modules. We analyzed
the 47 microglia datasets and established three main activation
module profiles related to Interferon, LPS and Proliferation,
in relation to Oprm1 expression. We found a lack of, or a
poor correlation between Orpm1 and these modules. There
is a negative correlation between Oprm1 and the LPS-related
module in whole mouse brain datasets, and a positive correlation
between OPRM1 and the Proliferation-related module in human
cortex datasets. These low correlations may be explained by the
use of datasets from naive, non-stimulated rodents microglia
in which the LPS-related, Interferon-related, and Proliferation
related genes are expressed at the basal low level.

Several lines of evidence support a functional impact of MOR
on microglia activity. Morphine increased spinal microglial p38
and extracellular receptor kinase (ERK) phosphorylation, leading
to an augmented microglial production of proinflammatory
cytokines, and other pronociceptive molecules as well as their
receptors and hence to increased pain (15). Morphine also
enhances the activity of microglial ATP-gated P2X7R and P2X4R
receptors in the spinal cord, leading to increased Brain-derived
neurotrophic factor (BDNF) release from these cells. This
in turn downregulates K-Cl co-transporter KCC2 expression
in GABAergic neurons enhancing their excitability and thus
increased pain (8, 17, 20, 83). Other spinal microglial-mediated
responses for morphine analgesic tolerance and hyperalgesia
involve large conductance Ca2+-activated K+ channels (84) and
genes of the DPA12/TREM2 and potassium intermediate/small
conductance calcium activated channels KCNN4 pathways
(62). Furthermore, bidirectional cross-talks between chemokine
receptors and opioid receptorsmediate opioid analgesic tolerance
(85). Also, microglial pannexin-1 channels attenuate morphine
withdrawal in rodents but are not involved in opioid analgesic
tolerance, thus identifying pannexin-1 as a novel mediator of
specific morphine actions in microglia (86, 87). Peripheral nerve
injury leads to microglial activation in several brain structures
involved in pain sensation or emotion including the VTA and
amygdala (88). Within the VTA, chronic pain, chronic opiate
treatment, and opioid withdrawal induce a dysregulation of
BDNF in microglia that impacts on GABAergic neurons and
disrupts the dopaminergic pathway leading to defects in reward

(89, 90). Therefore, specific regulations in microglia appear
to mediate opioid reward and link chronic pain and opioid
dependence (91, 92) that may be mediated by MOR activity
within different subsets of microglia.

With the use of the Cx3cr1-eGFP-MOR-mCherry reporter
mouse, we have shown that, overall, 35–51% microglia express
MOR, suggesting that the receptor may be expressed by a
particular microglial subset and that only MOR-expressing
microglia will respond to opioid treatment. Future studies are
necessary to address how MOR expression within different
microglial subsets may impact on their functionality, under
physiological, and pathological conditions. The specific ablation
of the Oprm1 gene in the different subtypes of resting or activated
microglia by targeted Cre/Lox technology would require the
identification of unique and very selective gene markers for each
of these subtypes and the generation of the corresponding Cre
mouse lines. In the same line, optogenetic approaches allow the
evaluation of opioid signaling and behavior elicited by specific
spatiotemporal patterns of MOR activation in neurons (93) that
could be applied to microglia. Another aspect of MOR activation
is ligand-biased signaling where different ligands stimulate
differential cell responses (94, 95). We report an intracellular
localization of MOR within the Golgi apparatus of microglia
that suggests a local production of MOR in these cells. MOR
function in microglia could be investigated by novel biosensors
that have been assayed on transfected cell lines and primary
neuronal cultures, revealing a cell localization bias for opioid
receptor activation by endogenous, and exogenous opioids (96).

As sex differences are an important factor for microglial
contribution to pain (35, 36), we investigated MOR expression
in microglia from adult females and males. The transcriptomic
datasets did not contain enough numbers per sex for a full
determination of sex effect, see Figures 5–9. The analysis of brain
sections from the Cx3cr1-eGFP-MOR-mCherry mice indicated
a comparable ratio of microglia containing MOR in female
and male animals in different brain and spinal regions, except
in the VTA where significantly lower percentages of microglia
expressed MOR in females than males. It would therefore
be interesting to determine whether microglial MOR would
influence the regulatory mechanisms in the dopaminergic system
in females as has been previously described for males in the VTA
(89, 90). Also, sex differences in microglia activity were found
in the PAG where a significantly higher microglial activation
profile was found in females compared tomales (97). In the spinal
cord, the microglial P2X4R-mediated hyperalgesia showed sexual
dimorphism (98). Altogether this suggests that transcriptomic
profiles of microglia in chronic pain models or following
chronic drug administration may help to identify Oprm1-linked
mechanisms associated with alterations in microglial functions.
However, sex differences may exert a weaker influence on
morphine-induced analgesic tolerance and hyperalgesia than on
other forms of chronic pain like neuropathic pain. Indeed, these
morphine adverse effects occurred similarly in male and female
mice (79) and no clear impact was shown on OIH (6).

The question of the factors influencing the opioid effects on
microglia physiology should be further explored in the future
by taking into account the genetic diversity, sex differences, and
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pathological states (26). The importance of genetic background
on opioid tolerance, hyperalgesia (6), and misuse (99) has been
well-established in both clinical and preclinical settings. The
rodent datasets analyzed in the present study were from mouse
of C57BL/6 genetic background except four datasets issued from
other strains, genetic background, or species. In the future,
the study of Oprm1 expression may be broadened to a larger
number of rodent strains to get a more comprehensive view.
In addition, all human microglia datasets were collected from
cortical areas and there is a need for studies on microglia
from spinal cord and other brain regions involved in pain
and addiction. The correlations between rodent and human
transcriptomes may be studied as well. Galatro et al. have shown
an overlap between the two species, with similar microglia core
genes expressed by both human and mouse microglia including
the main markers CX3CR1, P2YR12, and Itgam. There were also
dissimilarities due to differences in environment and medical
condition as mouse microglia were isolated from healthy mice
while human donors suffered from pathologies that led to their
death, potentially influencing microglial genes regulation, and
expression (65).

Neuroinflammatory mechanisms underlie opioid-induced
pain sensitization (6, 7) comprising of reciprocal signaling
between neurons and neuroinflammatory cells including
microglia (100). OIH, together with abuse liability, contribute
to the opioid crisis that is epidemic in North America and
becoming prevalent in Europe as well (101). Therefore, the
elucidation of mechanisms involved in opioid deleterious
effects would help to develop new strategies for safer analgesic
clinical intervention. Altogether, this work on microglial Oprm1
expression and previous studies open the way to the exploration
of the role of microglial MOR in response to opiates, in particular
to analgesic tolerance, OIH, and physical dependence elicited by
their chronic use.
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Neuropathic pain often arises from damage to peripheral nerves and is difficult to treat.
Activation of opioid receptors in peripheral sensory neurons is devoid of respiratory
depression, sedation, nausea, and addiction mediated in the brain, and ameliorates
neuropathic pain in animal models. Mechanisms of peripheral opioid analgesia have
therefore gained interest, but the role of G protein-coupled inwardly rectifying potassium
(Kir3) channels, important regulators of neuronal excitability, remains unclear. Whereas
functional Kir3 channels have been detected in dorsal root ganglion (DRG) neurons
in rats, some studies question their contribution to opioid analgesia in inflammatory
pain models in mice. However, neuropathic pain can be diminished by activation of
peripheral opioid receptors in mouse models. Therefore, here we investigated effects of
the selective µ-opioid receptor (MOR) agonist [D-Ala2, N-Me-Phe4, Gly5-ol]-enkephalin
(DAMGO) on potassium conductance in DRG neurons upon a chronic constriction injury
(CCI) of the sciatic nerve in mice. For verification, we also tested human embryonic
kidney (HEK) 293 cells transfected with MOR and Kir3.2. Using patch clamp, we
recorded currents at −80 mV and applied voltage ramps in high extracellular potassium
concentrations, which are a highly sensitive measures of Kir3 channel activity. We found
a significantly higher rate of HEK cells responding with potassium channel blocker
barium-sensitive inward current (233± 51 pA) to DAMGO application in transfected than
in untransfected group, which confirms successful recordings of inward currents through
Kir3.2 channels. Interestingly, DAMGO induced similar inward currents (178 ± 36–
207 ± 56 pA) in 15–20% of recorded DRG neurons from naïve mice and in 4–27%
of DRG neurons from mice exposed to CCI, measured in voltage clamp or voltage ramp
modes. DAMGO-induced currents in naïve and CCI groups were reversed by barium
and a more selective Kir3 channel blocker tertiapin-Q. These data indicate the coupling
of Kir3 channels with MOR in mouse peripheral sensory neuron cell bodies, which was
unchanged after CCI. A comparative analysis of opioid-induced potassium conductance
at the axonal injury site and peripheral terminals of DRG neurons could clarify the role of
Kir3 channel–MOR interactions in peripheral nerve injury and opioid analgesia.

Keywords: neuropathy, DRG neurons, DAMGO, peripheral opioid receptors, potassium channels, GIRK channels,
patch clamp
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INTRODUCTION

In European countries, 12–30% of adults suffer from chronic pain
and many of them experience severe limitations in managing
daily life activities (Breivik et al., 2006). Besides the impairment
of patients’ quality of life, chronic pain is a major economic
challenge for social and health care systems. Neuropathic
pain is defined as pain caused by a lesion or disease of the
somatosensory nervous system (IASP, 2017). Patients experience
reduced thresholds to painful mechanical or thermal stimuli, or
pain sensations elicited by normally innocuous stimuli such as
touch, warm or cool temperatures (Baron et al., 2010). Common
causes of this chronic condition are diabetes, herniated vertebral
discs, cancer, chemotherapy, human immunodeficiency virus or
varicella zoster virus, and injuries to nerves due to accidents or
medical procedures (Jensen and Finnerup, 2014).

The treatment of neuropathic pain is challenging and the
side effects restrict the use of many medications. Among these
are opioids such as morphine and fentanyl, which are the
most powerful analgesics available. However, they also induce
constipation which predominantly results from activation of
intestinal opioid receptors (Imam et al., 2018), as well as
respiratory depression, sedation, dizziness, and nausea mediated
in the central nervous system (CNS) (Li and van den Pol,
2008; Imam et al., 2018). Furthermore, their prolonged use
leads to the development of addiction, which has resulted in a
worldwide opioid epidemic (Volkow et al., 2018). Importantly,
the activation of opioid receptors in peripheral sensory neurons
can provide analgesia without CNS side effects (Stein, 1995;
Kalso et al., 2002). In fact, peripheral opioid receptors mediate a
large proportion of the analgesic effects produced by systemically
administered opioids (Stein and Machelska, 2011; Gaveriaux-
Ruff, 2013; Jagla et al., 2014; Spahn et al., 2017). Numerous
preclinical studies have also shown peripheral opioid analgesia
in models of neuropathic pain in rats (Truong et al., 2003; Kabli
and Cahill, 2007; Obara et al., 2007, 2009; Spahn et al., 2018)
and mice (Kolesnikov et al., 2007; Cayla et al., 2012; Hervera
et al., 2012; Labuz and Machelska, 2013; Labuz et al., 2016).
Furthermore, a clinical trial reported attenuation of neuropathic
pain after peripherally applied morphine in patients (Azad
et al., 2000). Activation of peripheral opioid receptors leads to
the inhibition of voltage-gated calcium and sodium channels,
acid-sensing ion channels, transient receptor potential cation
channel subfamily V member 1 (TRPV1), and subfamily M
member 3 (TRPM3) (Gold and Levine, 1996; Endres-Becker
et al., 2007; Cai et al., 2014; Dembla et al., 2017). A particularly
prominent mechanism underlying peripheral opioid analgesia
is the activation of potassium channels in peripheral sensory
neurons (Ocana et al., 2004). Hence, interactions between opioid
receptors and potassium channels pose a promising basis for
the development of novel therapies with an improved side effect
profile.

Potassium channels play a pivotal role in the regulation
of neuronal excitability and their dysregulation contributes to
neuropathic pain (Prescott et al., 2014; Waxman and Zamponi,
2014). Inwardly rectifying potassium (Kir) channels have gained
particular interest due to their crucial role in maintaining

the resting membrane potential of neurons. Of these channels
the G protein-coupled inwardly rectifying potassium (GIRK
or Kir3) channels form membrane bound signaling complexes
with opioid receptors (Luscher and Slesinger, 2010; Nagi and
Pineyro, 2014). Four Kir3 channel subunits have been identified,
Kir3.1–3.4. To form a functional channel, the subunits assemble
in heterotetramers (Kir3.1, 3.3, 3.4) or both hetero- and homo-
tetramers (Kir3.2). The Kir3.1–3.3 subunits are common in the
CNS (Hibino et al., 2010; Luscher and Slesinger, 2010; Nagi and
Pineyro, 2014). In the peripheral neuron cell bodies in dorsal
root ganglia (DRG), the Kir3 mRNA and protein expression,
and function have been shown in rats and humans (Khodorova
et al., 2003; Gao et al., 2007; Nockemann et al., 2013; Chung
et al., 2014; Gorham et al., 2014; Lyu et al., 2015). In contrast, the
data on Kir3 in the mouse DRG are conflicting. Whereas some
studies detected Kir3 mRNA in DRG (Manteniotis et al., 2013;
Saloman et al., 2016), others did not find Kir3 mRNA or protein
in DRG or cutaneous nerves in wild-type mice (Mitrovic et al.,
2003; Nockemann et al., 2013). The latter study suggested that
the absence of Kir3 in DRG neurons underlie the weak or absent
peripheral mu-opioid receptor (MOR)-mediated analgesia in an
inflammatory pain model in wild-type mice; this analgesia was
established by transgenic expression of Kir3.2 in DRG neurons
(Nockemann et al., 2013). However, in neuropathic pain models,
opioids effectively alleviate mechanical and heat hypersensitivity
via activation of peripheral MOR in wild-type mice (Kolesnikov
et al., 2007; Cayla et al., 2012; Hervera et al., 2012; Labuz and
Machelska, 2013; Labuz et al., 2016). These findings raise the
question whether Kir3 channels functionally couple to MOR in
peripheral sensory neurons in mice following neuropathy.

Therefore, our goal in this study was to investigate
the effects of MOR agonist [D-Ala2, N-Me-Phe4, Gly5-ol]-
enkephalin (DAMGO) on potassium conductance in DRG
neurons upon peripheral nerve injury in mice. We hypothesized
that the nerve lesion results in enhanced MOR-induced
potassium conductance in the corresponding DRG sensory
neuron cell bodies. As a model of neuropathic pain we
used a chronic constriction injury (CCI) of the sciatic
nerve, which resembles human peripheral neuropathy (e.g.,
nerve entrapment or compression) (Bennett and Xie, 1988).
To this end, we examined the effects of DAMGO on
potassium conductance using patch clamp in cultured DRG
neurons from naïve mice and mice exposed to CCI. As a
reference, equivalent experiments were performed in human
embryonic kidney (HEK) 293 cells transfected with MOR and
Kir3.2.

MATERIALS AND METHODS

HEK 293 Cell Culture and Transfection
Human embryonic kidney 293 cells transfected with rat
MOR and mouse Kir3.2 and untransfected HEK 293 cells
(control) (German Collection of Microorganisms and Cell
Cultures, Braunschweig, Germany) were maintained in DMEM
(Sigma-Aldrich, Steinheim, Germany) supplemented with
1% penicillin/streptomycin and 10% fetal bovine serum
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(Biochrom, Berlin, Germany) in 5% CO2 at 37◦C, and were
passaged every 2–3 days. The cells were seeded onto plastic
culture dishes (35 mm) a day prior to transfection. The
transfection mixture consisted of 1 µg pcDNA3.1-MOR
(kindly provided by Prof. Christian Zöllner), 1 µg pFLAG-
Kir3.2 (kindly provided by Dr. Dinah Nockemann), 6 µl
XtremeGene added to 88 µl DMEM without supplements
per culture dish. Untransfected cells were cultured
accordingly.

Animals
Animal experiments were approved by the State animal care
committee (Landesamt für Gesundheit und Soziales, Berlin,
Germany) and followed the guidelines of the International
Association for the Study of Pain (Zimmermann, 1983) and
the ARRIVE guidelines (Kilkenny et al., 2010). Wild-type male
C57BL/6J mice (18–35 g, 6–8 weeks old; Janvier Laboratories,
France) were housed in groups of 2–4 per cage lined with ground
corncob bedding, with free access to standard laboratory rodent
chow and tap water, on a 12 h/12 h (8 am/8 pm) light/dark
cycle. Room temperature was 22 ± 0.5◦C and humidity was
60–65%.

Chronic Constriction Injury
The CCI was induced in deeply isoflurane-anesthetized mice by
exposing the sciatic nerve at the level of the right mid-thigh,
and placing three loose silk ligatures (4-0) around the nerve with
about 1-mm spacing. The ligatures were tied until they elicited a
brief twitch in the respective hind limb. The wound was closed
with silk sutures (Labuz et al., 2009; Labuz and Machelska, 2013).

DRG Tissue Preparation and Neuron
Culture
Dorsal root ganglia were isolated from naïve mice and mice
2 days after CCI. Briefly, mice were killed by an overdose of
isoflurane, the vertebral column was removed, washed in PBS,
placed in ice-cold PBS, and the lumbar (three to five) DRG
innervating sciatic nerve ipsilateral to CCI or from the right side
of naïve mice were dissected. The DRG were collected in ice-cold
serum-free working medium (DMEM/HAM’s F12 supplemented
with 1% penicillin/streptomycin). DRG from one animal were
used for one culture. Further handling of the tissue was
performed under a laminar air flow hood in sterile conditions.
The collected DRG tissue was incubated in 1.25% collagenase
(Sigma-Aldrich) for 50 min at 37◦C in a thermoshaker, washed
with PBS and incubated in 2.5% trypsin (Sigma-Aldrich) for
5 min at 37◦C in a thermoshaker. After digestion, the tissue
was triturated using plastic pipette tips and subsequently filtered
through a 40-µm cell strainer. The filtrate was centrifuged, the
supernatant discarded and the cell pellet resuspended in 300–
1000 µl culture medium (DMEM/HAM’s F12 supplemented with
1% penicillin/streptomycin and 10% horse serum), depending
on the required cell density. The cell suspensions (30–100 µl)
were then seeded onto poly-L-lysine coated plastic culture dishes
(35 mm) and placed in an incubator (5% CO2 at 37◦C). An
hour later (to allow the cells to settle down), the cell cultures

were topped up to a total of 2 ml of culture medium and
cultured until patch clamp recordings, as previously described
(Nockemann et al., 2013).

Patch Clamp Experiments
Human embryonic kidney 293 cells were recorded 40–50 h
after plating (untransfected cells) or transfection with MOR
and Kir3.2. DRG neurons (medium diameter of 20–35 µm)
(Stucky and Lewin, 1999) were used 20–30 h after cultivation.
Cell viability was evaluated before first experiment by Trypan
Blue exclusion assay. Recordings were carried out in whole-cell
voltage clamp mode. After washing with PBS, cells were bathed in
low potassium extracellular buffer (5.6 mM KCl, 140 mM NaCl,
2.6 mM CaCl2, 1.2 mM MgCl2, 10 mM HEPES, 2.6 mM glucose;
adjusted to pH 7.4 using NaOH; all from Sigma-Aldrich) and
visualized using a Zeiss Axiovert 200 inverse microscope. Patch
pipettes (resistance 3.5–8 M�) were fabricated from Borosilicate
glass capillaries using a Sutter P-97 puller (Sutter Instrument,
Novato, CA, United States) and filled with intracellular buffer
(122 mM KCl, 5 mM NaCl, 1 mM CaCl2, 2 mM MgCl2, 10 mM
HEPES, 11 mM EGTA, 4 mM MgATP, 0.25 mM NaGTP; adjusted
to pH 7.4 using KOH; all from Sigma-Aldrich). Currents were
amplified and recorded using an EPC-10 patch amplifier and
Pulse software (HEKA, Lambrecht, Germany), and were sampled
at a frequency of 100 Hz. Cells were superfused by steady flow
of extracellular buffer at a flow rate of 800–1000 µl/min using
a pressurized application system (Perfusion Pressure Kit VPP-6;
Warner Instruments, Hamden, CT, United States) and a suction
pump. Test compounds, DAMGO (10 µM), BaCl2 (3 mM; both
from Sigma-Aldrich), and tertiapin-Q (100 nM; Alomone Labs,
Jerusalem, Israel) were applied using a perfusion valve control
systems (VC-6; Warner Instruments) to switch between vehicle
buffer and buffers containing the test compounds. All recordings
were performed at room temperature. Fast capacitive currents
(i.e., pipette potential) were canceled before seal formation. After
reaching “giga-seal,” the membrane patch was ruptured to achieve
whole-cell configuration. In DRG neurons, the resting membrane
potential was estimated in current-clamp mode shortly after
gaining whole-cell access and action potentials were recorded in
current-clamp mode using stepwise increasing current injections
of 100 ms from 100 to 600 pA. Only cells showing proper
action potential overshoot were included for further experiments.
Cell capacitance, series and input resistance were monitored by
applying test pulses of 10 mV for 10 ms before each recording.
The currents were recorded in voltage-clamp mode at a constant
holding potential of −80 mV in high potassium buffer (140 mM
KCl, 2.6 mM CaCl2, 1.2 mM MgCl2, 5 mM HEPES; adjusted
to pH 7.4 using KOH) for 120 s in the absence or presence
of DAMGO without or with BaCl2 (Nockemann et al., 2013).
Hyperpolarized state and high concentration of potassium in
extracellular buffer were used to increase the electro-chemical
gradient for potassium to drive it into the cell when Kir3 channels
are opened. To reduce “stress” to the cells, high potassium
buffer was carefully washed in over a period of 2 min and cells
were allowed to stabilize for at least 2 min before recording.
For tertiapin-Q experiments we applied voltage ramps from
a holding potential of −40 mV and measured the induced
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FIGURE 1 | DAMGO (10 µM) induces potassium currents in HEK 293 cells transfected with rat MOR and mouse Kir3.2. (A) Number of DAMGO-responders and
non-responders in untransfected and transfected cells. ∗∗P = 0.0013 (Fisher’s exact test) indicates higher proportion of DAMGO-responders to
DAMGO-non-responders in transfected vs. untransfected cells. The cells were sampled from three untransfected and four transfected cell cultures. (B–E) Exemplary
traces of DAMGO-non-responder (B) and DAMGO-responder (C) in untransfected cells, and of DAMGO-non-responder (D) and DAMGO-responder (E) in
transfected cells. (F) Single cell currents in DAMGO-responders. The data points represent single cell values, and the red horizontal line indicates the mean.
Numbers in brackets indicate the number of cells. (G,H) BaCl2 (3 mM)-mediated reversibility of DAMGO-induced currents in untransfected cells (n = 1) (G) and
transfected cells (n = 10; ∗∗P = 0.002, paired t-test) (H). Only DAMGO-responders are shown. Data points represent DAMGO-induced currents of the same cell
before and after application of BaCl2. Dotted lines represent zero current. In all experiments, the currents were recorded in voltage clamp mode at –80 mV in high
potassium extracellular buffer (140 mM). Cells were defined as responding to DAMGO if the resulting current was larger than three times the noise range.

current at −80 mV, based on previously published protocols
(Gao et al., 2007; Gorham et al., 2014). These experiments
were performed in a 45 mM high potassium extracellular buffer
(45 mM KCl, 100 mM NaCl, 2 mM CaCl2, 1 mM MgCl2, 10 mM
HEPES, 10 mM glucose; adjusted to pH 7.4 using KOH) and an
intracellular solution consisting of 120 mM KCl, 20 mM NaCl,
3 mM MgCl2, 10 mM HEPES, 10 mM glucose, 1 mM EGTA,
3 mM NaATP, 0.3 mM NaGTP (adjusted to pH 7.4 using KOH)
(Gorham et al., 2014). The ramps were applied every 10 s for 200 s
in the absence or presence of DAMGO without or with tertiapin-
Q. The analysis of patch clamp recordings was performed
using Nest-o-Patch v1.2 and Prism v6 software (GraphPad
Software, Inc., La Jolla, CA, United States). Effects of DAMGO
were measured as departure from holding current (in voltage
clamp mode experiments) or baseline currents (in voltage ramp
experiments) while running vehicle buffer. Cells were considered

responding to DAMGO application (DAMGO-responders) if the
resulting current was larger than three times the noise range
from the holding and baseline currents, respectively. Effects of
BaCl2 were measured as departure from holding current while
running DAMGO buffer. Effects of tertiapin-Q were measured
as departure from the mean baseline current while running
DAMGO buffer. Drift of baseline was corrected manually or
using the Nest-o-Patch baseline correction tool when necessary.

Statistical Analyses
Data are shown in raw values as bars representing cell numbers,
representative currents, individual data points representing
single cell currents, or means ± SEM. The number of cells
per group was 13–41; the exact numbers are given in Figures.
Statistical analyses were performed using GraphPad Prism
software (Version 5.02 for Windows; GraphPad Software, Inc.).
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The data were normally distributed as evaluated by Kolmogorov–
Smirnov test. The comparison of DAMGO-induced currents
between HEK 293 cells and DRG neurons was done by one-way
analysis of variance (ANOVA). The comparison of DAMGO-
induced currents between DRG neurons from naïve and CCI
mice was analyzed by unpaired t-test. The reversibility of
DAMGO-induced currents by BaCl2 or tertiapin-Q was assessed
by paired t-test. To compare ratios of DAMGO-responders to
DAMGO-non-responders between naïve and CCI mice as well
as between untransfected and transfected HEK 293 cells, the
Fisher’s exact test was used. The differences were defined as
statistically significant if P < 0.05. The statistical tests and the
degree of significance are specified in the Section “Results” or
figure captions.

RESULTS

DAMGO Induces Potassium Currents in
HEK 293 Cells Transfected With MOR
and Kir3.2
To establish the protocol for patch clamp recordings of inward
potassium currents, we first used HEK 293 cells transfected with
MOR and Kir3.2 and untransfected (control) HEK 293 cells.
Effects of DAMGO (10 µM) were recorded in the whole-cell
voltage clamp mode at constant holding potential of −80 mV
and high potassium extracellular buffer (140 mM). Analysis of
all recorded HEK 293 cells revealed a significantly higher rate
of cells responding with inward current to DAMGO application
(DAMGO-responders) in transfected than in untransfected
group (Figure 1A). In the untransfected group, vast majority
of cells did not respond to DAMGO (92%; 12 of total 13
recorded cells) (Figures 1A,B), and only one cell showed very
small, questionable response to DAMGO (Figures 1A,C) (see
also section “Discussion”). In contrast, most of the cells in the
transfected group showed prompt and reversible (by washout)
inward currents upon DAMGO application (71%; 10 of total
14 recoded cells), whereas four cells (29%) were classified as
DAMGO-non-responders (Figures 1A,D,E). The currents were
similar in all DAMGO-responders, although statistical analysis
could not be performed as there was only one responder among
untransfected cells (Figure 1F). Application of the potassium
channel blocker barium (3 mM BaCl2) reversed DAMGO-
mediated currents in one untransfected cell responding to
DAMGO (Figure 1G) and in all DAMGO-responding transfected
cells (Figure 1H), indicating that inward currents were mediated
by potassium channels. These results clearly show functional
coupling of MOR and Kir3.2 in transfected HEK 293 cells.

DAMGO Induces Potassium Currents in
Mouse DRG Neurons
Conferring the recording conditions established for HEK 293
cells, in the next set of experiments we investigated the effects
of nerve injury on DAMGO (10 µM)-induced potassium
conductance in mouse DRG neurons. In addition, we used
voltage ramp experiments in 45 mM potassium extracellular

buffer to reduce the ionic stress in tertiapin-Q experiments,
since the viability of the neurons dramatically decreased during
tertiapin-Q application in voltage clamp mode in 140 mM
potassium buffer. We analyzed neurons from DRG of naïve
mice and from DRG ipsilateral to the CCI (2 days after CCI).
In previous studies, we have shown that mechanical and heat
hypersensitivities are fully established and can be attenuated by
peripherally applied DAMGO at this time point following CCI in
mice in vivo (Cayla et al., 2012; Labuz and Machelska, 2013; Labuz
et al., 2016). Here we found that the rate of DAMGO-responding
neurons between naïve and CCI mice was not significantly
different (Figures 2A, 3A). Thus, in the voltage clamp mode
experiments (Figure 2A), we recorded 15% DAMGO-responders
(5 of total 33 recorded neurons) from naïve mice and 4%
DAMGO-responders (1 of total 26 recorded neurons) from mice
exposed to CCI. In voltage ramp experiments (Figure 3A),
we recorded 20% DAMGO-responders (8 of total 41 recorded
neurons) from naïve mice and 27% DAMGO-responders (9 of
total 33 recorded neurons) from CCI mice. DAMGO-induced
inward currents were comparable between neurons from naïve
and CCI mice; due to low number of DAMGO-responders in
the voltage clamp mode (Figure 2B), the statistical analysis could
only be performed for the voltage ramp experiments (Figure 3B)
(P = 0.6781, unpaired t-test). Nevertheless, in both experimental
conditions the DAMGO-responding neurons showed prompt
inward currents, which could be reversed by barium (3 mM
BaCl2) (Figures 2C–H) and attenuated by a more selective
Kir3 channel blocker tertiapin-Q (100 nM) (Figures 3C–H).
Additionally, the currents of DAMGO-responding neurons from
naïve mice (Figures 2B, 3B) and CCI mice (Figure 3B) were
comparable to currents of DAMGO-responders in MOR- and
Kir3.2-transfected HEK 293 cells (Figure 1F) (P = 0.8866, one-
way ANOVA).

DISCUSSION

In this study, we found that the MOR-selective agonist DAMGO
induces potassium currents in DRG neurons of both naïve mice
and mice with CCI of the sciatic nerve, which were diminished
by barium and tertiapin-Q indicating the involvement of Kir3
channels. The rate of DAMGO-responding neurons and the
DAMGO-induced inward currents did not change following CCI.

In initial experiments, we determined DAMGO-induced
inward potassium currents using a whole-cell voltage clamp
approach in hyperpolarized untransfected and transfected with
MOR and Kir3.2 HEK 293 cells. Among the untransfected cells,
one cell was classified as DAMGO-responder according to the
criterion that the DAMGO-mediated current is three times larger
than the noise range. However, based on the response kinetics
(slow and not clearly corresponding to DAMGO application, very
small current amplitude; Figure 1C), this cell did not appear
to reliably respond to DAMGO. In contrast, the response of
transfected cells was fast and had distinct and tightly correlated to
DAMGO application onset (Figure 1E), similar to the literature
(Kohno et al., 2005; Kobayashi et al., 2006; Nockemann et al.,
2013; Gorham et al., 2014). Furthermore, substantially higher
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FIGURE 2 | DAMGO (10 µM) induces potassium currents in mouse DRG neurons, assessed in the voltage clamp mode. (A) Number of neurons responding and
non-responding to DAMGO from naïve and CCI mice. The proportion of DAMGO-responding to DAMGO-non-responding neurons from naïve vs. CCI mice did not
differ significantly (P = 0.2148; Fisher’s exact t-test). The neurons were sampled from cultures obtained from DRG of nine naïve mice and eight CCI mice. (B) Single
neuron currents in DAMGO-responders. The data points represent single neuron values, and the red horizontal line indicates the mean. Numbers in brackets indicate

(Continued)
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FIGURE 2 | Continued
the number of neurons. (C–F) Exemplary traces of DRG neurons non-responding (C) and responding (D) to DAMGO from naïve mice, and DRG neurons
non-responding (E) and responding (F) to DAMGO from mice on day 2 following CCI. The DAMGO effects are shown before and during BaCl2 (3 mM) application.
(G,H) BaCl2 (3 mM)-mediated reversibility of DAMGO-induced currents in individual neurons from naïve mice (n = 5 neurons; ∗P = 0.017, paired t-test) (G) and CCI
mice (n = 1 neuron) (H). Only DAMGO-responding neurons are shown. Data points represent DAMGO-induced currents of the same neuron before and after
application of BaCl2. Dotted lines represent zero current. In all experiments, the currents were recorded in voltage clamp mode at –80 mV in high potassium
extracellular buffer (140 mM). Neurons were defined as responding to DAMGO if the resulting current was larger than three times the noise range.

ratio of DAMGO-responders in MOR- and Kir3.2-transfected
compared to untransfected HEK 293 cells, and the reversibility
of DAMGO-induced currents by potassium channel blocker
barium clearly demonstrate successful identification of DAMGO-
induced inward currents and suggest they were mediated by
Kir3.2 channels.

Our finding that DAMGO induced similar currents in DRG
neurons of naïve wild-type mice is somewhat intriguing. Whereas
functional Kir3 channels have been consistently identified in rat
peripheral sensory neurons (Gao et al., 2007; Nockemann et al.,
2013; Chung et al., 2014), only a few studies investigated Kir3
channels in these neurons in mice, and the data are inconsistent.
Nockemann et al. (2013) showed very low amounts of Kir3.1
and Kir3.2 mRNA transcripts and no immunoreactivity of the
corresponding proteins in mouse DRG. Using patch clamp
recordings, the authors reported “negligible” inward currents
upon DAMGO application and concluded on the absence of
Kir3 from mouse DRG neurons. However, the size of DAMGO-
induced currents they measured in naïve wild-type mouse DRG
neurons are substantial (1.8 ± 0.4 nA) (Nockemann et al., 2013)
and in fact, much higher compared to currents recorded under
similar conditions and defined as opioid-mediated responses
in rat DRG and spinal cord neurons, or in Xenopus oocytes
transfected with Kir3 (40–800 pA) in other studies (Kohno et al.,
2005; Kobayashi et al., 2006; Gao et al., 2007). The results in these
latter publications are indeed similar to our recordings in MOR-
and Kir3.2-transfected HEK 293 cells (233 ± 51 pA; Figure 1F),
and DRG neurons from naïve mice (206 ± 55 pA, Figure 2B;
178 ± 36 pA, Figure 3B) and CCI mice (207 ± 56 pA,
Figure 3B). Kanjhan et al. (2005) reported the absence of
hyperpolarization-activated potassium currents characteristic for
Kir3 in DRG neurons of newborn mice and argued that Kir3
expression might occur later in the development of the nervous
system, but did not examine older animals. Mitrovic et al. (2003)
stated a lack of Kir3.2-immunostaining in mouse DRG, but
did not present the corresponding data. In a comprehensive
RNA expression analysis of mouse sensory ganglia, Manteniotis
et al. (2013) reported moderate levels of KCNJ3 mRNA coding
for Kir3.1 in DRG and trigeminal ganglia. This, however, is
insufficient to form a functional channel, since functional Kir3
channels are formed by Kir3.1/Kir3.2 heterotetramers and Kir3.2
homotetramers (Luscher and Slesinger, 2010). Interestingly, a
recent study found mRNAs encoding Kir3.1 and Kir3.2 in
mouse DRG, which would allow formation of functional Kir3
channels (Saloman et al., 2016). Taken together, the current
literature suggests low to moderate Kir3 mRNA expression
(Nockemann et al., 2013; Saloman et al., 2016), which may
result in low protein level difficult to detect by immunostaining

(Mitrovic et al., 2003; Nockemann et al., 2013) and functional
analysis (Nockemann et al., 2013) in mouse DRG neurons. Yet,
we found a moderate number of neurons (15–20%) reliably
responding to DAMGO with inward currents in DRG of naïve
wild-type mice. DAMGO-induced currents in our experiments
were diminished by both a general potassium channel blocker
barium, and by tertiapin-Q, currently considered the most
selective Kir3 channel blocker (Jin and Lu, 1998; Kitamura et al.,
2000). Furthermore, considering the patch clamp conditions
in our experiments such as high potassium concentration in
the extracellular buffer and hyperpolarizing holding potential
or voltage ramp mode, which are highly sensitive measures of
Kir3 channel activity (Kobayashi et al., 2006; Gao et al., 2007;
Nockemann et al., 2013; Gorham et al., 2014), the DAMGO-
mediated potassium currents in mouse DRG neurons in our
experiments likely resulted from the activation of Kir3 channels.
This is also supported by the finding that currents of DAMGO-
responding neurons were comparable to Kir3 currents measured
in our MOR- and Kir3.2-transfected HEK 293 cell experiments,
and in rat neurons and Xenopus oocytes in other studies
(Kohno et al., 2005; Kobayashi et al., 2006; Gao et al., 2007).
Although we have not used MOR antagonist, DAMGO is the
MOR-selective agonist (Labuz and Machelska, 2013), and its
effects in the dose of 10 µM (we used here) were reversible by
opioid receptor antagonist naloxone in patch clamp experiments
(Nockemann et al., 2013), suggesting that DAMGO-induced
potassium currents in our experiments are MOR-mediated.

We have also analyzed DRG neurons from mice following
sciatic nerve CCI, and found one DAMGO-responding neuron
(i.e., 4% of all recorded neurons) in the voltage clamp mode,
and nine DAMGO-responding neurons (i.e., 27% of all
recorded neurons) in the voltage ramp experiments. This was
not significantly different compared to DAMGO-responding
neurons from naïve mice (15% and 20%, respectively). Also the
DAMGO-induced inward currents were comparable between
neurons from naïve and CCI mice (see paragraph above and
Figure 3B). As such functional analysis following CCI has not
been performed previously, several studies examined expression
of Kir3 channels or MOR. Following CCI of the sciatic nerve
in transgenic Kir3.2 mice, the Kir3.2 mRNA in the DRG was
not altered (Nockemann et al., 2013). The MOR mRNA or
protein levels were either decreased (Obara et al., 2009), not
altered (Briscini et al., 2002; Kolesnikov et al., 2007), or elevated
(Truong et al., 2003) following CCI. Regardless of these effects
in the DRG cell bodies, the activation of MOR on DRG neuron
peripheral terminals consistently attenuated CCI-induced
hypersensitivity in vivo and nociceptor excitability ex vivo in mice
(Kolesnikov et al., 2007; Cayla et al., 2012; Hervera et al., 2012;
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FIGURE 3 | DAMGO (10 µM)-induced potassium currents in mouse DRG neurons obtained in the voltage ramp mode. (A) Number of neurons responding and
non-responding to DAMGO from naïve and CCI mice. The proportion of DAMGO-responding to DAMGO-non-responding neurons from naïve vs. CCI mice did not
differ significantly (P = 0.596; Fisher’s exact t-test). The neurons were sampled from cultures obtained from DRG of seven naïve and eight CCI mice. (B) Single
neuron currents in DAMGO-responders. The data points represent single neuron values, and the red horizontal lines indicate the means. Numbers in brackets
indicate the number of neurons. (C–F) Exemplary currents of DRG neurons non-responding (C) and responding (D) to DAMGO from naïve mice, and DRG neurons
non-responding (E) and responding (F) to DAMGO from mice on day 2 following CCI. The DAMGO effects are shown before and during tertiapin-Q (100 nM)
application. (G,H) Tertiapin-Q (100 nM)-mediated attenuation of DAMGO-induced currents in individual neurons from naïve mice (n = 8 neurons; ∗P = 0.0204, paired
t-test) (G) and CCI mice (n = 9 neurons; ∗∗P = 0.0073, paired t-test) (H). Only DAMGO-responding neurons are shown. Data points represent DAMGO-induced
currents of the same neuron before and after application of tertiapin-Q. Dotted lines represent zero current. In all experiments, the currents were obtained by voltage
ramps from a holding potential of –40 mV and measured at –80 mV in high potassium extracellular buffer (45 mM). Neurons were defined as responding to DAMGO
if the resulting current was larger than three times the noise range.
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Schmidt et al., 2012; Labuz and Machelska, 2013; Labuz et al.,
2016). This is in line with the accumulation of Kir3.1, Kir3.2,
and MOR proteins at the site of nerve ligation (Schmidt et al.,
2013; Lyu et al., 2015) and the alleviation of CCI-induced
hypersensitivity by DAMGO applied at the CCI site (Cayla et al.,
2012; Labuz and Machelska, 2013; Labuz et al., 2016). Therefore,
the corresponding electrophysiological recordings from the
injury site, for example using in vitro skin-nerve preparations,
appear appealing, but are technically very challenging.

CONCLUSION AND RELEVANCE

Using electrophysiology, we addressed here for the first time
the effect of MOR agonist DAMGO on potassium currents in
mouse peripheral neurons following CCI of the sciatic nerve.
Our data indicate a coupling of MOR and Kir3 in DRG neurons
in naïve mice and following CCI. The number of responding
neurons and the size of DAMGO-induced potassium currents
were comparable between both groups. Hence, the MOR–
Kir3 interactions in peripheral sensory neurons in attenuation
of neuropathic pain presents a worthwhile target for further
investigations. Particularly, site-specific analysis of opioid-
mediated Kir3 conductance along the peripheral pain pathway,
including injury site at the axon and peripheral terminals, could
elucidate the role of Kir3 and MOR in peripheral neuropathies
and their alleviation.
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Mu opioid receptor (MOR) activation facilitates reward processing and reduces pain, and

brain networks underlying these effects are under intense investigation. Mice lacking

the MOR gene (MOR KO mice) show lower drug and social reward, enhanced pain

sensitivity and altered emotional responses. Our previous neuroimaging analysis using

Resting-state (Rs) functional Magnetic Resonance Imaging (fMRI) showed significant

alterations of functional connectivity (FC) within reward/aversion networks in these

mice, in agreement with their behavioral deficits. Here we further used a structural

MRI approach to determine whether volumetric alterations also occur in MOR KO

mice. We acquired anatomical images using a 7-Tesla MRI scanner and measured

deformation-based morphometry (DBM) for each voxel in subjects from MOR KO and

control groups. Our analysis shows marked anatomical differences in mutant animals.

We observed both local volumetric contraction (striatum, nucleus accumbens, bed

nucleus of the stria terminalis, hippocampus, hypothalamus and periacqueducal gray)

and expansion (prefrontal cortex, amygdala, habenula, and periacqueducal gray) at

voxel level. Volumetric modifications occurred mainly in MOR-enriched regions and

across reward/aversion centers, consistent with our prior FC findings. Specifically,

several regions with volume differences corresponded to components showing highest

FC changes in our previous Rs-fMRI study, suggesting a possible function-structure

relationship in MOR KO-related brain differences. In conclusion, both Rs-fMRI and

volumetric MRI in live MOR KO mice concur to disclose functional and structural

whole-brain level mechanisms that likely drive MOR-controlled behaviors in animals, and

may translate to MOR-associated endophenotypes or disease in humans.
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INTRODUCTION

The muopioid receptor (MOR) is an inhibitory G protein-
coupled receptor (GPCR) belonging to the opioid receptor family
(1, 2). MOR is activated by endogenous opioid peptides and by
exogeneous opiates like morphine (3). MOR activation alleviates
aversive states such as physical or social pain (4–7) and drives
natural and drug reward processes (2, 8). Misuse and abuse of
MOR agonists may cause addiction and overdose, a main cause
for the rising opioid epidemics in North America (9).

Mice lacking MOR display several behavioral alterations such
as increased pain perception (7) and reduced drug reward
(10). Furthermore, mice with a deletion of MOR show altered
sensitivity to natural rewards, as shown by their lower motivation
to eat (11) and reduced maternal attachment (12). We further
demonstrated that adult MOR knockout (MOR KO) animals
recapitulate core and multiple comorbid behavioral symptoms
of autism, including deficient social abilities, aggressiveness
and stereotyped behaviors, high anxiety, impaired motor
coordination and increased sensitivity to seizures, and these
behavioral symptoms are associated with anatomical alterations
(13). Additionally, the gene MOR deletion in mice reshapes
functional connectivity in live animals (14). In the latter
study, we combined blood oxygenation level–dependent (BOLD)
Resting-state (Rs) functional Magnetic Resonance Imaging
(fMRI) and diffusion tractography (DTI), and found pronounced
modifications of whole-brain functional connectivity (FC) with
only minor changes in structural connectivity (14). Strongest
perturbations occurred in connectional patterns across the
reward/aversion circuitry, with predominant alterations of
pain/aversion-related networks (14).

Because these modifications reveal circuit mechanisms
underlying behavioral alterations in these mice (increased
pain sensitivity and reward deficits), we sought to further
explore structural abnormalities in MOR KO mice using
most state-of-the-art anatomical MRI. We used high-resolution
structural image acquisition in living MOR KO mice and their
controls (CTLs), and identified anatomical differences caused
by the deletion of MOR using a voxelwise deformation-based
morphometry (DBM) analysis (Figure 1A). Our data extend a
previous study (15) and reveal structural changes that parallel FC
alterations that we observed in our previous study using Rs-fMRI
approach in MOR KO and controls (14).

MATERIALS AND METHODS

Mice
All experiments were performed following the guidelines on
animal experimentation established by the Canadian Council of
Animal Care and animal protocol was approved by the Animal
Care Committees of McGill University/Douglas Mental Health
University Institute, Montreal, Canada (#2014-2018/7466).18
MOR KO and 18 CTLs mice were produced as described in
Matthes et al. (3) and were bred at the Douglas Research Center,
Montreal, Canada. Mice were kept under standard conditions at
22 ± 1◦C, 60% relative humidity, and 12-h light-dark cycle with
food and water available ad libitum. All in-vivoMRI experiments

were performed in homozygote MOR CTLs and KO of 10–12
weeks old male mice.

MRI Anatomical Acquisition
Mouse brain MRI data acquisition was performed with a
7T small animal scanner (BioSpec 70/30USR, Bruker) using
23mm volumetric coil (Bruker). Animals were anesthetized
by inhalation of isoflurane during the image acquisition. Five
minutes before the start of the acquisition, mice were placed in
an anesthesia chamber receiving 5% isoflurane. Then, the animals
were placed into a specific animal bed system (Bruker) receiving
1.5–2% isoflurane during the whole procedure. Respiration was
monitored andmaintained between 45 and 70 breaths perminute
using a 1025-IBP-50 Small Animal Monitoring Gating System
(SA instruments). Body temperature was maintained constant at
37◦C inside themagnetic bore by blowing warm air on the animal
and eye lubricant was applied. MRI data were collected using 3D
True-fast imaging with steady state precession (3D-true FISP)
with the following parameters: matrix 128 × 128 × 64, image
resolution 140 × 140 × 140 µm3, echo time (TE)/repetition
time (TR) = 2.6 ms/800ms. Eight radio-frequency (RF) angles
(180, 0, 90, 270, 45, 225, 135, and 315 degree) were used to
remove banding artifacts and the time of the whole sequence
lasted for 40min for each subject (16). Finally, root mean square
(RMS) of the 8 angle acquisitions were calculated for each
subject.

Registration and Analysis
Voxelwise deformation-based morphometry (DBM) was used
to analyze the anatomical differences all over the brain (17, 18)
following the procedure detailed in Lerch et al. (19). Briefly,
mice brains were registered together through a series of linear
(6 parameter followed by a 12 parameter) and nonlinear
registration steps (20) to create a group-wise average. The
deformation fields map the minimum deformation required at a
voxel-level to map each subject to the average neuroanatomy of
the group. Then, the Jacobian determinants of the deformation
fields were used to measure local anatomical differences (19).
These alterations could either be expansions or contractions
and are dependent of the magnitude of the deformation at each
voxel (19). The deformations were then mapped voxelwise by
using standard tools including minc-toolkit (http://www.bic.
mni.mcgill.ca/ServicesSoftware/ServicesSoftwareMincToolKit,
RMINC (https://wiki.mouseimaging.ca/display/MICePub/
RMINC, (rstudio (https://www.rstudio.com/, anaconda (https://
repo.continuum.io/archive/and pydpiper (https://github.com/
Mouse-Imaging-Center/pydpiper. For statistical analysis,
we used the general linear model, with the log of the local
deformation being modeled with 18 covariates and group.
Group differences were measured via the t-statistic from the
linear model and corrected for multiple comparisons using
FDR at 20% (RMINC, https://wiki.mouseimaging.ca/display/
MICePub/RMINCRMINC was also used for single voxel
boxcar plotting from Jacobians of individual subjects from each
group.
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FIGURE 1 | Local volumes significantly differ between controls (CTLs) and MOR Knockout (KO) mice. (A) Experimental timeline. Experiment was performed in CTLs

and MOR KO groups (n = 18). MRI images were scanned following true-FISP sequences in live animals under isoflurane anesthesia. Anatomical differences in MOR

KO animals were calculated using the deformation-based morphometry (DBM) and are represented voxelwise. (B) Significant anatomical differences (t-statistic, p <

0.05 and FDR correction) between CTLs and MOR KO represented on a coronal. Coronal slices are represented from anterior to posterior. Right top corner shows the

(Continued)
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FIGURE 1 | location of brain mouse slices (yellow lines). Red and blue colors represent statistically significant increase and decrease of anatomical volume of MOR

KO in comparison to CTLs mice. The t-statistics scale for the significant expansion are in yellow to red and for the significant contraction are in light blue to blue. The

brain regions were identified using Allen brain atlas. Most regions with significant modifications are annotated. Voxels of the Str, NAc, BNST, HY, IPN, HPF, SN

SC/PRT, MRN/SC are contracted, whereas voxels of the PFC, AMY, SS, HB, and PAG have expanded in mutant mice. (C). Boxcar plot of relative Jacobians from

both CTL and KO groups on 10 selected voxels indicated in (B), and the voxel is identified with a white cross. OB, Olfactory Bulb; PFC, prefrontal cortex; NAc,

Nucleus Accumbens; BNST, Bed nucleus of the stria terminalis; AMY, Amygdala; HY, hypothalamus; IPN, Interpeduncular nucleus; SS, Somatosensory cortex; HB,

Habenula; TH, Thalamus; SN, Substantia Nigra; Str, striatum; HPF, hippocampal formation; SC, Superior Colliculus; PRT, Pretectal Region; PAG, Periaqueductal Gray;

MRN, Midbrain Reticular Nucleus.

RESULTS

Volume Changes Are Observed in the Brain
of Live MOR KO Mice
The experimental flow is shown in Figure 1A. MOR KO mice
and their CTLs (18 mice/group) were slightly sedated with
isoflurane to avoid motion, and True-FISP sequences were used
to acquire high-resolution anatomical images (16). Images were
registered together through a series of linear and nonlinear
fits, and deformation-based morphometry was calculated on
relative Jacobians and used to compare brain local volumes
(total number of voxels in the field of view = 702 720
voxels) between the two groups (see section Materials and
Methods). Statistical differences between anatomical volumes
from MOR KO and CTL groups were determined using
parametric t-statistic (p < 0.05) and FDR correction (see
section Materials and Methods), and significant anatomical
differences are represented in coronal (Figure 1B) views.
Local volume changes were detected in several brain areas,
which we identified based on the Allen Brain Atlas. Groups
of voxels showing an expansion of volume in MOR KO
brains were located in the Olfactory Bulb (OB), Prefrontal
Cortex (PFC), amygdala (AMY), somatosensory cortex (SS),
habenula (HB) and periaqueductal gray (PAG) (Figure 1B).
Sets of voxels with a local contraction were in the striatum
(Str), Nucleus Accumbens (NAc), the bed nucleus of the
stria terminalis (BNST), hypothalamus (HY), hippocampal
formation (HPF), Interpeduncular nucleus (IPN), substantia
nigra (SN), Superior Colliculus (SC) and midbrain reticular
nucleus (MRN) (Figure 1B). Several groups of voxels showed
a bilateral alteration, and these include the dorsal striatum,
SS, MRN, HY and SC (Figure 1B). Furthermore, quantification
of relative Jacobians in regional center-voxel confirmed the
reduction (Str, NAc, BNST, HY, HPF, and MRN/SC) or increase
(PFC, AMY, and HAB) volumes of altered regions, which were
identified using DBM (Figure 1C). All these areas are known
to express the receptor (21), with some of them particularly
MOR-enriched (PAG, HB, AMY, Str, NAc, HY, SC), and all
belong to reward/aversion centers (see summary in Figure 2A)
networks (14).

DISCUSSION

Previous high-resolution MRI studies mainly used post-mortem
brains to characterize anatomical modifications in knockout
mouse lines (17, 18) or drug effects (22), to take advantage of
extended scanning time without motion artifacts, and increased

tissue contrast, however the brain fixation process could induce
some deformation artifacts (23). We therefore conducted this
study in live animals and used a reasonably long scanning time
to maximize resolution while minimizing motion issues. We
achieved an isotropic resolution of 140µmwith our live imaging
acquisitions of 40min, which reached about a third of what
is achieved with post-mortem imaging of 702min (isotropic
resolution of 56 (18)). Our volumetric analysis of live MOR
KO brains demonstrates significant modifications of local brain
volumes in brains areas with known implication for reward
and/or aversion processing.

MOR is distributed throughout the brain with enriched
expression in the striatum, the medial habenula and moderate
density in NAc and SN (21). These brain areas correspond to
regions with reduced (Str, NAc, and SN) or increased (HB) brain
volume in MOR KO mice, suggesting that MOR activity locally
influences brain microstructure. Notably also the MOR deletion
had significant effects in areas with poor receptor density (PFC
and HPF), suggesting long distance influence of MOR activity on
brain structure.

An earlier study investigated the brain of live MOR KO mice
using voxel-based morphometry (15). The authors used distinct
acquisition parameters that led to a resolution (125 × 125 ×

300µm) and their DBM analysis revealed significant volume

increase for OB, HY, PAG, and cerebellum. Our study (140 ×

140 × 140µm) corroborates some of the previous findings as
we also observed expanded PAG and OB local volumes, among

others (Figures 1B,C). In addition, we also observed contraction

of voxel volumes in several brain areas, including HPF, Str,
NAc, HY, BST, SN, SC, and MRN, further supported by the

observation of bilateral volume reduction for Str and HY. Our

study therefore expands previous knowledge about MOR effects
on brain structure. Mechanisms underlying changes in volume

after the MOR deletion will require further investigations. Sasaki
and colleagues showed a higher number of glial and neuronal
cells in the PAG of MOR KO mice (24), which may explain
some variations in brain volumes in their report and also our

own study. Furthermore, it will be important in the future to
determine whether volume changes arise from a developmental
role of endogenous opioids, or from the lack of MOR activity
at the adult age. Further imaging studies using pharmacological
MOR blockade will appraise the developmental contribution of
MOR activity in brain volumes.

Overall, volume changes occur throughout centers of reward
and aversion processing (summarized in Figure 2A). Voxel
contraction is consistently observed across reward centers,
whereas both expansion and contraction are observed in aversion

Frontiers in Psychiatry | www.frontiersin.org December 2018 | Volume 9 | Article 64396

https://www.frontiersin.org/journals/psychiatry
https://www.frontiersin.org
https://www.frontiersin.org/journals/psychiatry#articles


Nasseef et al. MOR Knockout Brain Structural Modifications

FIGURE 2 | Volumetric data show decreased volumes in reward centers with contrasted effects in aversion centers, and show correspondence with previous Rs-fMRI

data. (A) Summary of volumetric analysis. Reward centers show reduced volumes while aversion center show both reduced and increased volumes. The scheme is

adapted from Darcq and Kieffer (2) and shows main brain structures involved in reward/aversion, as well as addiction. Top: Areas belonging to reward circuitry are

highlighted (dark square) and volume alterations in MOR KO mice are color-coded. Bottom: Areas belonging to aversion circuitry are highlighted (dark square) and

volume alterations in MOR KO mice are color-coded. PFC, Prefrontal cortex; PAG, Periaqueductal Gray; TH, Thalamus; AMY, Amygdala; SC, Superior Colliculus; PRT,

Pretectal Region; PIR, Piriform area; SS, Somatosensory cortex; ENT, Entorhinal area; PERI, Perirhinal area; HPF, hippocampal; MRN, Midbrain Reticular Nucleus; HY,

hypothalamus; VTA, ventral tegmental Area; BNST, Bed nucleus of the stria terminalis. (B) Correspondence of functional nodes (Rs-fMRI) and regions (DBM) showing

significant modifications in MOR KO from our previous study (14) and in this study, respectively. The 10 nodes with highest number of statistically significant FC

changes from the Rs-fMRI study are represented in the left column, and ranked (arrow) from higher (top) to lower (bottom) modifications (14). Volumetric differences

between MOR KO and CTLs in this study are represented in the right column. Comparable coronal sections are displayed, and a white circle highlights local volume

changes corresponding to the 10-top nodes.

centers. Although this particular observation should not be
overinterpreted, it is fair to propose that anatomical sites
of volume changes are consistent with behavioral phenotypes
of MOR KO mice. The genetic MOR deletion reduces both
natural and drug rewards (2, 8), and we found reduced
volumes for Str and NAc that are critical for reward processing
(25). The MOR deletion also increases intracranial electrical
stimulation in lateral hypothalamus (26), and bilateral reduction
of the entire HY volume observed here may reflect a reduced
function for this other key area of motivated behavior and
reward (27). The MOR deletion increases pain perception
(4, 7) and we found increased volume of PAG, critical in
pain signal processing (28). Emotional behaviors are altered

in MOR KO mice (29) paralleling volume changes in BNST
and AMY known to regulate anxiety and stress responses
(30–32).

An important aspect of the study is the observation
that volumetric modifications parallel FC alterations that we
previously reported using Rs-fMRI ((14) and see Figure 2B).
In this previous Rs-FC study, we used data-driven spatial
independent component analysis (100-ICASSO) of Rs-fMRI
datasets, and identified 87 functional components (clusters of
voxel showing correlated and/or anticorrelated activities), which
we used as nodes to establish whole brain FC matrixes for each
MOR KO and CTL group and compare the two groups. A
MOR-dependent FC signature emerged and, to identify most
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prominent alterations in MOR KO mice, we ranked these nodes
based on the number of statistically significant FC changes
(14). Here we considered the top-10 nodes from the Rs-
fMRI study, and found that these nodes visually correspond
with groups of voxels, which also show significant changes in
local volumes (Figure 2B). Specifically, PAG/Thalamus (Th),
SC/PRT, AMY/Piriform (PIR), right and left SS, entorhinal area
(ENT), AMY, HB components from the Mechling study match
regions with enhanced volumes in this study, while HPF and
MRN/SC/PAG nodes match with reduced volumes (Figure 2B).
Although volumetric images in this study were not co-registered
with the same atlas than in Mechling et al. (14), the visual
inspection therefore strongly suggest that the top-10 components
with highest number of FC alterations overlap with regions
showing volume modifications in MOR KO mice (Figure 2B).
Concomitant structural and functional alterations for these 10
nodes, therefore, strengthen the notion that activity of these
brain centers is regulated by MOR. Of note however, there is no
obvious correspondence between modifications of volume size
(expanded or contracted) and FC strength/diversity (enhanced
or reduced), and further analysis will be necessary to determine
whether variations of brain volume reflect FC plasticity upon the
MOR genetic deletion.

In conclusion, progress in human anatomical MRI has
greatly advanced our understanding of brain structure–function
relations (33), and animal MRI is developing to allow translatable
insights into drug effects (34) or vulnerability to disease (17).
Future similar studies using humanized mice (35), and/or mouse

exposure to chronic opiates, may pave the way to understanding
mechanisms underlying the link between MOR gene variability
and vulnerability to disease, or differential activities of MOR
opioid agonists with distinct therapeutic profile at whole-brain
level (2).
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Opioids are the most effective drugs for the treatment of severe pain, but they also
cause addiction and overdose deaths, which have led to a worldwide opioid crisis.
Therefore, the development of safer opioids is urgently needed. In this article, we
provide a critical overview of emerging opioid-based strategies aimed at effective
pain relief and improved side effect profiles. These approaches comprise biased
agonism, the targeting of (i) opioid receptors in peripheral inflamed tissue (by reducing
agonist access to the brain, the use of nanocarriers, or low pH-sensitive agonists); (ii)
heteromers or multiple receptors (by monovalent, bivalent, and multifunctional ligands);
(iii) receptor splice variants; and (iv) endogenous opioid peptides (by preventing their
degradation or enhancing their production by gene transfer). Substantial advancements
are underscored by pharmaceutical development of new opioids such as peripheral
κ-receptor agonists, and by treatments augmenting the action of endogenous opioids,
which have entered clinical trials. Additionally, there are several promising novel opioids
comprehensively examined in preclinical studies, but also strategies such as biased
agonism, which might require careful rethinking.

Keywords: opioid receptor signaling, opioid side effects, addiction, pain, peripheral opioid analgesia, biased
agonists, heteromers, endogenous opioid peptides

INTRODUCTION

Opioids relieve pain, but also produce numerous side effects. All actions of opioids are mediated
by µ-, δ-, and κ-opioid receptors encoded by the three respective genes (Evans et al., 1992; Kieffer
et al., 1992; Mestek et al., 1995; Simonin et al., 1995). Opioid receptors belong to the superfamily
of guanine nucleotide-binding protein (G protein)-coupled receptors (GPCRs) and their structures
have been solved at high-resolution by X-ray crystallography (Granier et al., 2012; Huang et al.,
2015; Che et al., 2018). Upon activation by an agonist, opioid receptors couple to pertussis toxin-
sensitive heterotrimeric Gi/o proteins, which dissociate into Gαi/o and Gβγ subunits to interact
with various intracellular effector systems (Law et al., 2000; Waldhoer et al., 2004; Stein, 2016).
Gαi/o inhibits adenylyl cyclases (AC), cyclic adenosine monophosphate (cAMP) formation, and
protein kinase A (PKA) activity, which leads to the blockade of a heat sensor transient receptor
potential cation channel subfamily V member 1 (TRPV1) (Vetter et al., 2006; Endres-Becker
et al., 2007). Gαi/o–cAMP pathway also suppresses hyperpolarization-activated cyclic nucleotide-
gated (HCN) channels, acid-sensing ion channels (ASIC), and voltage-gated Na+ (Nav) channels
(Ingram and Williams, 1994; Gold and Levine, 1996; Cai et al., 2014). Gβγ blocks voltage-gated
Ca2+ (Cav) channels and heat-sensing transient receptor potential cation channel subfamily M
member 3 (TRPM3), and activates various K+ channels such as G protein-coupled inwardly
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rectifying K+ (GIRK or Kir3) channels and adenosine
triphosphate-sensitive K+ (KATP) channels (Law et al.,
2000; Waldhoer et al., 2004; Cunha et al., 2010; Stein, 2016;
Dembla et al., 2017). Ultimately, these opioid-mediated
actions lead to the suppression of excitatory neurotransmitter
release (e.g., substance P, calcitonin gene-related peptide,
glutamate), hyperpolarization and an overall decrease in
neuronal excitability, which culminates in analgesia (Yaksh,
1997; Ocaña et al., 2004; Stein, 2016; Yudin and Rohacs, 2018)
(Figure 1A). Additionally, analgesia can be mediated by opioid
receptors expressed in immune cells. Activation of leukocyte
opioid receptors leads to the secretion of endogenous opioid
peptides (β-endorphin, Met-enkephalin, and dynorphin A
1-17), which involves Gαi/o–Gβγ–phospholipase C (PLC)–
inositol 1,4,5-trisphosphate receptor (IP3R)– intracellular Ca2+

pathway. The released opioid peptides subsequently activate
neuronal opioid receptors and alleviate pain (Celik et al., 2016)
(Figure 1B).

Opioid receptors also mediate numerous adverse effects that
limits opioid pain therapy. Activation of µ-receptors can lead to
respiratory depression, sedation, constipation, nausea, vomiting,
reward/euphoria, and dependence/withdrawal. Activation of
δ-receptors can cause convulsions and may produce reward
or contribute to rewarding effects of other drugs of abuse.
Agonists of κ-receptors exert aversion/dysphoria, sedation, and
diuresis (i.e., increased urine output). Each of these symptoms
represents a complex phenomenon with multiplex cellular and
molecular mechanisms (Kapusta, 1995; Li and van den Pol,
2008; Bruijnzeel, 2009; Koob and Volkow, 2010; Gendron
et al., 2016; Dripps et al., 2018). Importantly, these side
effects are brought about by G protein-mediated actions in
response to opioid receptor activation (Figure 2A). Opioid-
induced respiratory depression is mediated by Gβγ-dependent
activation of GIRK channels, which results in inhibition of
neurons in the brainstem respiratory center (Montandon et al.,
2016). Sedation is a consequence of the suppression of neurons
in the hypothalamic arousal system, which depends on Gβγ

actions on GIRK and Cav channels (Li and van den Pol,
2008). Constipation results from Gβγ-mediated activation of
GIRK channels and inhibition of Cav channels leading to the
suppression of enteric neuronal activity, including acetylcholine
and substance P secretion blockade in the gastrointestinal tract
(Galligan and Akbarali, 2014). Indirect evidence suggests that
nausea and vomiting may involve Gαi/o-mediated decrease of
the cAMP–PKA pathway activity, blockade of Cav channels
and thus, inhibition of neurons in the vestibular apparatus
(Seseña et al., 2014; Imam et al., 2017). Opioid-induced diuresis
results from the inhibition of arginine vasopressin secretion
in the hypothalamus, suggestive of G protein involvement,
although the exact signaling pathways have not been elucidated
(Kapusta, 1995). Chronic opioid use leads to Gβγ–cAMP–
PKA pathway activation resulting in enhanced activity of ion
channels (e.g., Nav channels) and receptors (e.g., dopamine and
N-methyl-D-aspartic acid receptors) and thereby, in increased
neuronal activity (Nestler and Aghajanian, 1997; Liu and Anand,
2001; Christie, 2008). Furthermore, prolonged activation of
opioid receptors results in Gβγ-dependent activation of protein

kinase C (PKC), Ca2+/calmodulin-dependent protein kinase
(CaMK) II, and extracellular signal-regulated kinases 1 and
2 of the mitogen-activated protein kinases (MAPKs). These
kinases as well as PKA can phosphorylate opioid receptors,
which results in their uncoupling from G protein-mediated
effects (Liu and Anand, 2001; Christie, 2008; Al-Hasani and
Bruchas, 2011). These events have been ascribed to alterations
in opioid receptor signaling underlying analgesic tolerance,
reward/euphoria, dependence/withdrawal, or aversion/dysphoria
(Nestler and Aghajanian, 1997; Law et al., 2000; Liu and
Anand, 2001; Waldhoer et al., 2004; Christie, 2008; Koob
and Volkow, 2010; Al-Hasani and Bruchas, 2011; Gendron
et al., 2016) (Figure 2A). Additionally, opioid receptors are
phosphorylated by GPCR kinases (GRKs), which is followed
by recruitment of β-arrestins (Figure 2B). This process occurs
after even brief agonist exposure and it terminates G protein
coupling and signaling to promote receptor desensitization
and internalization. Dephosphorylated opioid receptors can be
recycled to the plasma membrane, which reinstates signaling,
or can be targeted to lysosomes and degraded (Waldhoer et al.,
2004). β-arrestin-2 (also known as arrestin-3) might be involved
in morphine-induced analgesic tolerance, respiratory depression,
and constipation (Bohn et al., 2000; Raehal et al., 2005). It has
also been proposed to mediate κ-receptor-induced aversion via
activation of p38 MAPK (Bruchas et al., 2006; Land et al., 2009;
Ehrich et al., 2015). Nevertheless, the exact β-arrestin-2-regulated
signaling underlying opioid-induced side effects are yet unclear
(Figure 2B). The cellular mechanisms of δ-receptor-mediated
convulsions have not been identified, and do not seem to involve
Gαo or β-arrestin-2 (Dripps et al., 2018).

Clearly, conventional opioids produce numerous side effects,
yet they are the strongest painkillers. As all other, non-opioid
pain medications also exert adverse actions, none of them
produces as powerful pain relief as opioids (Stein and Kopf, 2009;
Sondergaard and Gislason, 2017; Welsch et al., 2018). Therefore,
opioids will remain the main therapy for moderate and severe
pain, which makes efforts to improve their action profile highly
desirable and relevant. In the following sections, we present
several interesting strategies to achieve safer opioid analgesia, and
discuss limitations associated with these new approaches.

TARGETING OPIOID RECEPTORS IN
PAINFUL TISSUE

The Rationale
All three opioid receptors (µ, δ, and κ) are expressed in the central
nervous system (CNS), including spinal cord and brain, as well
as in peripheral sensory neurons (nociceptors). Peripheral opioid
receptors are synthetized in nociceptor cell bodies in trigeminal
and dorsal root ganglia (DRG), from where they are transported
and accumulate in nociceptor peripheral terminals innervating
peripheral tissue (skin, joints, viscera) (Figures 1B, 3A). The
concept of targeting peripheral opioid receptors comes from the
fact that they mediate effective analgesia, but are not involved in
fatal effects, in animal models and in humans (Kalso et al., 2002;
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FIGURE 1 | Mechanisms of opioid-induced analgesia. (A) Cellular effects mediated by neuronal opioid receptors (OR). Activation of OR by an opioid leads to the
dissociation of Gi/o proteins into Gαi/o and Gβγ subunits (step 1). Gαi/o inhibits AC, cAMP formation, and PKA activity, which blocks various ion channels, including
TRPV1, HCN, ASIC, and Nav channels (path 2). Gβγ blocks Cav and TRPM3 channels (path 3), and activates GIRK and KATP channels (path 4). Ultimately, these
actions lead to the decrease in neuronal excitability, which culminates in analgesia. (B) Cellular effects mediated by OR in immune cells. Activation of leukocyte
Gi/o-coupled OR leads to the Gβγ-mediated activation of PLC and production of IP3, which activates IP3R in endoplasmic reticulum (ER) to release intracellular
Ca2+, which results in the secretion of opioid peptides from immune cells. The released opioid peptides activate neuronal OR and decrease pain.

Stein et al., 2003; Stein and Machelska, 2011; Sawynok and Liu,
2014). Indeed, the serious side effects arise from opioid actions
in the brain (Figure 3B). Respiratory depression results from
activation of µ-receptors in the brainstem medulla (preBötzinger
complex) and pons (Kölliker-Fuse nucleus, parabrachial nuclei,
locus coeruleus), in cortical areas, thalamus, and amygdala, and
to a lesser extent in the periphery in the carotid body (Pattinson,
2008; Imam et al., 2017). Reward and dependence/withdrawal
mediated by µ-receptors, as well as aversion/dysphoria mediated
by κ-receptors involve a widely distributed brain network,
including the mesolimbic pathway (ventral tegmental area,
nucleus accumbens), amygdala, cortex, hippocampus, and insula
(Bruijnzeel, 2009; Koob and Volkow, 2010). Sedation is caused
by µ- and κ-receptor activation in the hypothalamic and locus
coeruleus neurons controlling arousal and sleep (Greco et al.,
2008; Li and van den Pol, 2008; Chung et al., 2017). Convulsive
actions of δ-receptor agonists involve hippocampus and thalamo-
cortical circuits (Jutkiewicz et al., 2006). Constipation is mostly
mediated by µ-receptors in peripheral sensory myenteric and
submucosal neurons in the gastrointestinal tract, but spinal and
supraspinal receptors may also be involved (Burks, 1990; Galligan
and Akbarali, 2014; Imam et al., 2017). Nausea and vomiting
are mostly mediated by µ-receptors in the medulla, cortex,
and vestibular apparatus, and partially in the gastrointestinal
tract, possibly secondary to constipation (Porreca and Ossipov,
2009; Imam et al., 2017). Diuresis results from activation of
κ-receptors in the hypothalamus with some actions in adrenal
glands (Kapusta, 1995). Thus, peripherally restricted opioids
should be devoid of the CNS side effects, and produce fewer
or less severe adverse actions having both CNS and peripheral
components such as constipation, nausea, vomiting (µ-opioids),
and diuresis (κ-opioids). Some authors suggested that peripheral

µ-receptors mediate morphine-induced analgesic tolerance and
paradoxical hyperalgesia, but not analgesia itself, using mice with
µ-receptor deletion in TRPV1-expressing neurons (Corder et al.,
2017). This is in contrast to studies in mice with µ-receptor
deletion in Nav1.8-expressing neurons, which showed that
peripheral µ-receptors do not contribute to analgesic tolerance or
hyperalgesia induced by morphine or its metabolite (Weibel et al.,
2013; Roeckel et al., 2017). Further work will be required to find
out whether these contradictory findings are related to different
µ-receptor-expressing neuronal populations or unidentified
knockout strategy-related alterations. Nevertheless, in agreement
with the latter studies, experiments without genetic modifications
showed that development of tolerance at peripheral µ-receptors
is reduced in inflamed tissue in animals and humans, due to the
continuous presence of immune cell-derived opioid peptides and
enhanced µ-receptor recycling (Stein et al., 1996; Zöllner et al.,
2008).

Additional advantage of peripheral opioid receptor targeting is
the inhibition of pain at its source, since many painful syndromes
originate in peripheral tissue and are usually associated with
inflammation (including surgery, arthritis, neuropathy, cancer,
and visceral disorders). Under such conditions, opioid receptor
synthesis, transport, and G protein coupling in peripheral sensory
neurons is increased, and disruption of the perineurial barrier
facilitates the access of opioids to receptors (Hassan et al.,
1993; Antonijevic et al., 1995; Zöllner et al., 2003; Hackel et al.,
2012; Mousa et al., 2007, 2017). Moreover, damaged tissue
is infiltrated by immune cells containing opioid peptides and
expressing functional opioid receptors (Stein et al., 1990, 1993,
1996; Rittner et al., 2001; Labuz et al., 2009; Boué et al., 2014;
Celik et al., 2016). All these events lead to enhanced analgesic
efficacy of opioids at peripheral receptors. This has been shown
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FIGURE 2 | Mechanisms of opioid-induced side effects. (A) G protein-mediated side effects in response to activation of opioid receptors (OR). (1) Respiratory
depression: Gβγ-dependent activation of GIRK channels. (1 and 2) Sedation and constipation: Gβγ-dependent activation of GIRK channels (1) and inhibition of Cav

channels (2). (3) Nausea and vomiting: Gαi/o-mediated inhibition of AC, decreased cAMP levels and PKA activity, and inhibition of Cav channels; this is based on
indirect evidence (indicated by a question mark). (4 and 5) Analgesic tolerance, reward/euphoria, dependence/withdrawal, or aversion/dysphoria: Gβγ-mediated AC
activation, elevated cAMP levels, enhanced PKA activity, and activation of Nav channels (4). Phosphorylation of OR by various kinases (5), including PKA and
activated by Gβγ PKC, CaMK II, and MAPK, which results in OR uncoupling form G protein-mediated effects. (B) β-arrestin-dependent actions. After even brief
activation by an opioid, OR are phosphorylated by GRK recruited by Gβγ, followed by β-arrestin binding to phosphorylated OR (1), which terminates G protein
coupling and signaling (2), and leads to OR internalization (3). Dephosphorylated OR can be recycled to the cell membrane (4) or directed to lysosomes and
degraded (5). β-arrestin-2 might also promote morphine-induced respiratory depression, constipation, analgesic tolerance, and κ-receptor-mediated aversion, and
dampen morphine-induced reward. Some of these effects may involve MAPK activation (6), but mechanisms are unknown (indicated by question marks).

following local application of small, systemically inactive doses
of opioids in animal models and in humans (Kalso et al., 2002;
Stein et al., 2003; Zeng et al., 2013; Stein, 2016). Importantly,
pharmacologic, genetic, and clinical studies have demonstrated
that peripheral opioid receptors mediate a large proportion of the
analgesic effects produced by systemically administered opioids
(Gavériaux-Ruff, 2013; Jagla et al., 2014; Stein and Jagla, 2014;
Stein, 2016).

Reducing Opioid Access to the CNS
The above described findings stimulated the development of
peripherally restricted opioid receptor agonists by limiting their
ability to cross the blood-brain barrier (BBB) (Figure 4A).
These strategies focused on κ-opioids, supported by a recent
study (Snyder et al., 2018), and include agonist chemical
modifications (e.g., incorporation of quaternary structures
or amphiphilic molecules which contain hydrophilic and
hydrophobic components), and synthesis of peptide-based
compounds. However, these modifications often decreased
agonist affinity to receptors, which required the use of
relatively high doses and did not warrant complete BBB
impermeability (Barber and Gottschlich, 1997; Rivière, 2004;
Stein and Machelska, 2011). This also applies to peptides, as

in contrast to previous beliefs, peptides can cross the BBB
(Kastin and Pan, 2010). Nevertheless, two κ-receptor agonists
gained pharmaceutical interests, asimadoline (initially termed
EMD 61753) and CR845 (formerly FE 202845) (Figure 4A and
Table 1). Asimadoline belongs to the amphiphilic molecules and
possesses somewhat puzzling action profile. In animal models of
hind paw inflammation or sciatic nerve injury, it alleviated pain
(Barber et al., 1994) or produced bi-phasic effects, with analgesia
at lower doses or shortly after injection, but paradoxically
increased pain at higher doses or at later time points (Machelska
et al., 1999; Walker et al., 1999). As the analgesic actions were
mediated by peripheral κ-receptors, the hyperalgesic effects were
either κ-receptor-selective (Walker et al., 1999) or independent
of κ- and N-methyl-D-aspartic acid receptors (Machelska et al.,
1999). Asimadoline was also hyperalgesic in experimental colonic
distension model in healthy human volunteers (Delgado-Aros
et al., 2003) and tended to enhance postoperative pain in patients
undergoing arthroscopic knee surgery (Machelska et al., 1999).
In contrast, in preclinical models of visceral inflammatory pain
(Gebhart et al., 2000), barostat-induced colonic distension in
patients with irritable bowel syndrome (IBS) (Delvaux et al.,
2004), and in phase 2b IBS trial (Mangel et al., 2008; Mangel
and Williams, 2010), asimadoline was reported to decrease
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FIGURE 3 | Representation of body structures involved in opioid-induced analgesia (A) and side effects (B).

pain. It produced some side effects, which could be of CNS
(sedation, headache, dizziness) or both CNS and peripheral origin
(diuresis), albeit at higher than analgesic doses (Mangel and
Hicks, 2012). These results led to the conclusion that in contrast
to somatic pain, asimadoline may be efficacious in the visceral

pain, and it is now developed for management of diarrhea-
predominant IBS with moderate-to-severe pain (Mangel and
Hicks, 2012; Foxx-Orenstein, 2016).

CR845 is a tetrapeptide currently under development by Cara
Therapeutics (Stamford, CT, United States) for postoperative
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FIGURE 4 | Strategies for safer pain control – targeting opioid receptors. (A) Targeting opioid receptors (OR) in peripheral painful tissue by chemical modification of
agonists, which results in their decreased blood-brain barrier penetration (1), nanocarrier-based opioid delivery to inflamed tissue (2), or by low pH-dependent OR
activation (3). (B) Biased agonism: This approach aims at targeting OR–G protein signaling without activation of β-arrestins, which were considered to mediate
opioid-induced side effects, but not analgesia. This might need reconsideration, since G proteins not only mediate analgesia but also side effects (see also
Figure 2A). (C) Targeting heteromers. (D) Development of multifunctional ligands, which act as µ- and δ-opioid receptor agonists and NK1 receptor antagonists, or
µ- and NOP-receptor agonists. (E) Targeting truncated, 6TM domain µ-receptor variants. Question marks indicate that heteromer/multiple receptor selectivity of the
ligand was not tested or not confirmed (see also Tables 2, 3).

and osteoarthritis pain. Its analgesic effects were reported in
animal models of pancreatitis, abdominal, inflammatory, and
neuropathic pain. Completed phase 2 clinical trials stated
that CR845 attenuated postoperative pain after laparoscopic
hysterectomy and in some patients after bunionectomy, and
it was well tolerated with repetitive dosing over 2 weeks
in patients with osteoarthritis of knee or hip. The side
effects were considered mild and, similar to asimadoline, they
included dizziness, headache, and diuresis. However, these data
were only presented in abstracts, press releases, and at the
ClinicalTrials.gov website (Albert-Vartanian et al., 2016), and
thus, independent, peer-reviewed studies will be essential to
verify these findings.

Nanocarrier-Based Approaches
A promising strategy to alter the pharmacokinetic profile and
improve therapeutic effects of drugs is the use of nanoparticles as
drug carriers. Nanoparticles are defined as molecules of 1–100 nm

in at least one dimension, and examples include liposomes,
micelles, and polymer-based particles. They have been widely
examined for tumor-directed delivery of chemotherapeutics to
reduce their off-target toxicity (Cheng et al., 2012). Similar
strategies have recently been used to deliver opioids to peripheral
inflamed tissue (Figure 4A). Liposomes conjugated with an
antibody to intercellular adhesion molecule-1 (anti-ICAM-1)
were employed to mimic the properties of immune cells (Hua
and Cabot, 2013). Indeed, it has earlier been shown that similar
to selectins and integrins α4 and β2 (Machelska et al., 1998,
2004), ICAM-1 expressed on vascular endothelium mediates
the migration of opioid peptide-containing immune cells to
peripheral inflamed tissue to locally alleviate pain (Machelska
et al., 2002). Accordingly, intravenously injected anti-ICAM-1-
conjugated liposomes loaded with µ-receptor agonist loperamide
accumulated in inflamed tissue and alleviated mechanical
hypersensitivity via local opioid receptors in a rat model of
unilateral hind paw inflammation (Hua and Cabot, 2013). In
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TABLE 1 | Novel opioid treatments in clinical trials.

Category Name/Target Clinical conditions Effects Reference

Agonists with
reduced CNS
access

Asimadoline∗

(peripheral κ-receptors)
Postoperative pain (knee surgery); randomized,
double-blind, placebo-controlled; oral

- Tendency to hyperalgesia
- No serious side effects (data not shown)

a

Healthy volunteers (barostat-induced colonic
distension); randomized, double-blind,
placebo-controlled; oral

- Hyperalgesia
- Side effects comparable to placebo (dizziness,

nausea, headache)

b

IBS (barostat-induced colonic distension);
randomized, double-blind, placebo-controlled; oral

- Analgesia
- Side effects not reported

c

IBS; randomized, double-blind, placebo-controlled;
oral

- Analgesia in D-IBS
- No drug-related side effects in analgesic doses∗

d

CR845#

(peripheral κ-receptors)
Postoperative pain (hysterectomy, bunionectomy);
oral, i.v.

- Analgesia
- Side effects: dizziness, headache, diuresis

e

Biased agonists Oliceridine (TRV130)
(µ-receptors)

Healthy volunteers (cold pain test); randomized,
double-blind, placebo-controlled; i.v.

- Analgesia (superior to morphine)
- Side effects: vs. morphine, lesser nausea, similar

respiratory depression

f

Postoperative pain (bunionectomy); randomized,
double-blind, placebo-controlled; i.v.

- Analgesia (superior to morphine)
- Side effects: constipation, nausea,

vomiting, dizziness similar to morphine

g

Postoperative pain (abdominoplasty); randomized,
double-blind, placebo-controlled; i.v. PCA

- Analgesia (similar to morphine)
- Side effects: lesser nausea and vomiting vs.

morphine

h

Nalfurafine (κ-receptors) Approved for uremic pruritus in Japan, but not in
Europe

Sedation in analgesic doses (not recommended for
pain treatment)

i

DENK inhibitors PL37, PL265
(enkephalin peptidases)

Postoperative pain (PL37), neuropathic and ocular
pain (PL265)

Data not available j, k

Gene therapy HSV-PENK (enkephalin
overexpression in DRG
neurons)

Intractable cancer pain; not randomized, not
blinded, not placebo-controlled; intradermal

- Analgesia vs. pre-injection
- Side effects: transient and mild injection site

erythema and pruritus, body temperature elevation

l

Intractable cancer pain; randomized, double-blind,
placebo-controlled; intradermal

Data not available m

Agonists with low
rate CNS entry

NKTR-181
(µ-receptors)

Osteoarthritis and low back pain; randomized,
double-blind, placebo-controlled; oral

Data not available n

D-IBS, diarrhea-predominant irritable bowel syndrome; I.v., intravenous; PCA, patient-controlled analgesia. ∗Currently under development for D-IBS with moderate-to-
severe pain. Sedation, headache, dizziness, diuresis – in higher than D-IBS analgesic dose (Mangel et al., 2008; Mangel and Williams, 2010; Foxx-Orenstein, 2016).
#Currently under development for postoperative and osteoarthritis pain. Data in abstracts, press releases, ClinicalTrials.gov; No published peer-reviewed trials. (a)
Machelska et al., 1999; (b) Delgado-Aros et al., 2003; (c) Delvaux et al., 2004; (d) Mangel et al., 2008; (e) Albert-Vartanian et al., 2016; (f) Soergel et al., 2014; (g)
Viscusi et al., 2016; (h) Singla et al., 2017; (i) Inui, 2012; (j) Roques et al., 2012; (k) http://www.pharmaleads.com; (l) Fink et al., 2011; (m) ClinicalTrials.gov NCT01291901;
(n) ClinicalTrials.gov NCT02367820 and NCT02362672.

the same model, analgesic effects were exerted by loperamide-
encapsulated liposomal gel applied topically on the inflamed paw
(Iwaszkiewicz and Hua, 2014). In both cases, anti-inflammatory
effects were also observed, and all actions of loperamide-loaded
liposomes were superior to either conventional loperamide or
loperamide gel, respectively. However, in the rat model of
polyarthritis, despite producing analgesia, loperamide liposomal
gel unexpectedly exacerbated arthritis (Table 2). As the opioid
receptor-selectivity has not been tested, the mechanisms of these
actions are currently unclear (Hua et al., 2017).

Another nanocarrier-based approach utilized hyperbranched,
dendritic polyglycerols (PG) to deliver morphine to peripheral

inflamed tissue. Morphine was covalently bound to PG via
cleavable ester linker sensitive to esterases and low pH (González-
Rodríguez et al., 2017). The rationale was that due to its
high molecular weight and hydrophilicity, such PG-morphine
injected intravenously will not cross the BBB, but will selectively
extravasate from leaky blood vessels characteristic of inflamed
tissue. The local low pH and leukocyte esterases will then trigger
the release of morphine from PG-morphine to ameliorate pain
(Fleige et al., 2012; Nehoff et al., 2014). Indeed, in contrast
to morphine, intravenous PG-morphine exclusively produced
analgesia via peripheral opioid receptors in painful tissue without
sedation and constipation, in a rat model of unilateral hind
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TABLE 2 | Novel opioid treatments in preclinical models of pathological pain.

Category Name/Target Experimental conditions Effects Reference

Nanocarrier agonist
delivery

anti-ICAM-1 conjugated
liposomes loaded with
loperamide (µ-receptors in
peripheral inflamed tissue)

- CFA hind paw inflammation
- Paw pressure test
- I.v. or gel on inflamed paw
- Blinding (+), R (+), SSE (−)

- Analgesia
- Decreased paw volume
- Side effects not evaluated

a, b

- CFA polyarthritis
- Paw pressure test
- Gel on inflamed paws
- Blinding (+), R (+), SSE (−)

- Analgesia
- Exacerbated arthritis: higher paw volume,

pannus, angiogenesis

c

PG-morphine (µ-receptors
in peripheral inflamed
tissue)

- CFA hind paw inflammation
- Paw pressure test
- Into inflamed paw, i.v.
- Blinding (+), R (+), SSE (−)

- Analgesia
- No sedation, constipation; 2-fold higher than

analgesic doses

d

pH-sensitive
receptor activation

NFEPP (µ-receptors in
peripheral inflamed tissue)

- CFA hind paw inflammation
- Hind paw incision
- CCI neuropathy
- Paw pressure, von Frey, Hargreaves tests
- Into inflamed paw, i.v., s.c.
- Blinding (+), R (−), SSE (+)

- Analgesia
- No sedation, constipation, motor impairment,

reward (CPP), respiratory depression (naïve
rats); 10-fold higher than analgesic doses

e, f

FF3 (µ-receptors in
peripheral inflamed tissue)

- CFA hind paw inflammation
- Hind paw incision
- CCI neuropathy
- Paw pressure, von Frey, Hargreaves tests
- I.v., s.c.
- Blinding (+), R (−), SSE (+)

- Analgesia
- Sedation, constipation, motor impairment,

reward (CPP), respiratory depression (naïve
rats); 2.5–10-fold higher than analgesic doses

g

Heteromer bivalent
ligands

MMG22 µ-agonist–
mGluR5-antagonist
(putative µ–mGluR5)

- Lipopolysaccharide (LPS) systemic
inflammation

- CFA hind paw inflammation
- Bone cancer
- SNI neuropathy
- Tail-flick, von Frey tests
- Supraspinal, spinal
- Blinding (−,+)∗, R (−), SSE (−)

- Analgesia; µ–mGluR5 selectivity not confirmed
- No analgesic tolerance, no respiratory

depression after spinal injection (LPS or naïve
mice); lower than analgesic doses

h, i

MCC22 µ-agonist–CCR5-
antagonist (putative
µ–CCR5)

- Sickle disease
- von Frey test
- Intraperitoneal
- Blinding (+), R (+), SSE (−)

- Analgesia; µ–CCR5 selectivity not tested
- No analgesic tolerance

j

Multifunctional
ligands (µ- and
δ-agonists and NK1
receptor
antagonists)

TY027 (CNS µ-, δ-, and
NK1 receptors)

- SNL neuropathy
- Paw pressure, von Frey, Hargreaves tests
- Supraspinal, spinal, i.v.
- Blinding (only ferrets), R (only ferrets), SSE

(−)

- Analgesia
- No constipation, reward (CPP), analgesic

tolerance, withdrawal (teeth chattering,
wet-dog shakes, diarrhea, weight loss) (naïve
rats), vomiting (naïve ferrets); up to 5-fold lower
than analgesic doses

k

RCCHM3, RCCHM6 (CNS
µ-, δ-, and NK1 receptors)

- CCI neuropathy
- von Frey, cold plate tests
- Spinal
- Blinding (−), R (−), SSE (−)

- Analgesia
- Side effects not evaluated

l

µ-Receptor splice
variant agonists

IBNtxA (CNS 6TM
µ-receptors)

- CFA hind paw inflammation
- Zymosan ankle inflammation
- SNI neuropathy
- von Frey test, facial grimacing; S.c.
- Blinding (−,+)∗, R (+), SSE (−)

- Analgesia
- Less constipation, no reward (CPP),

respiratory depression, withdrawal (jumping);
analgesic or 2.5-fold higher doses

m, n

(Continued)
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TABLE 2 | Continued

Category Name/Target Experimental conditions Effects Reference

Gene therapy HSV-µ-receptors
(overexpressed µ-receptors
in DRG neurons)

- SNL neuropathy
- von Frey, Hargreaves tests
- Into ipsilateral paw
- Blinding (+), R (+), SSE (−)

- Reduced basal von Frey sensitivity
- Enhanced morphine
- and loperamide-analgesia
- Side effects not evaluated

o

Endomorphin-1
analog

Analog 4 (ZH853) (CNS
µ-receptors)

- CFA hind paw inflammation
- Hind paw incision
- SNI neuropathy
- Paw pressure, von Frey, Hargreaves tests
- Oral, spinal, i.v., s.c.
- Blinding (+), R (−,+)∗, SSE (−)

- Analgesia
- Less analgesic tolerance, motor impairment,

reward (CPP, SA), respiratory depression (naïve
mice or rats); 2-fold lower or analgesic doses

p, q

CCI, chronic constriction injury; CFA, complete Freund’s adjuvant; I.v., intravenous; R, randomization; SA, self-administration; S.c., subcutaneous; SNI, spared nerve
injury; SNL, spinal nerve ligation; SSE, sample size estimation; TM, transmembrane domain. ∗Each sign refers to the corresponding reference (in the citation order).
Marked in bold are compounds currently the most comprehensively examined (pathological pain models, various side effects) and showing promising results. (a) Hua and
Cabot, 2013; (b) Iwaszkiewicz and Hua, 2014; (c) Hua et al., 2017; (d) González-Rodríguez et al., 2017; (e) Spahn et al., 2017; (f) Rodriguez-Gaztelumendi et al., 2018;
(g) Spahn et al., 2018; (h) Akgün et al., 2013; (i) Peterson et al., 2017; (j) Cataldo et al., 2018; (k) Largent-Milnes et al., 2013; (l) Starnowska et al., 2017; (m) Majumdar
et al., 2011; (n) Wieskopf et al., 2014; (o) Klein et al., 2018; (p) Zadina et al., 2016; (q) Feehan et al., 2017.

paw inflammation (Table 2). Consistent with these actions,
free morphine was only measured in inflamed paw tissue, but
not in the contralateral, non-inflamed paw tissue, blood, and
brain (González-Rodríguez et al., 2017). Together, although
polyglycerols are biocompatible (Kainthan et al., 2006), the
organ toxicity and broader side effect profile, including abuse
potential and effects on respiration of PG-morphine need to
be investigated to strengthen the clinical applicability of this
strategy.

Painful Tissue-Specific Opioid Receptor
Activation
Recent studies explored the opioid receptor–ligand interactions
that are specific to pathological painful conditions such as
acidosis (pH 5–7 vs. 7.4 in non-inflamed tissue) (Spahn et al.,
2017). An agonist designed to fulfill such requirements could
freely distribute throughout the whole body, including the
brain, but would only activate opioid receptors in peripheral
inflamed tissue (Del Vecchio et al., 2017) (Figure 4A). This has
been achieved by lowering the dissociation constant (pKa) of
the µ-receptor agonist fentanyl to the acidic pH. Accordingly,
fluorination of fentanyl (pKa 8.43) by computer simulations
resulted in a design of a novel compound NFEPP [(±)-N-
(3-fluoro-1-phenethylpiperidine-4-yl)-N-phenyl propionamide]
with a pKa 6.8, which can only be protonated, and thus
bind to receptors, at lower than physiological pH. Indeed,
in vitro experiments confirmed that NFEPP bound to and
activated µ-receptors only at acidic pH, whereas fentanyl was
active at both acidic and physiological pH. Importantly, unlike
fentanyl, intravenously applied NFEPP produced analgesia by
activation of opioid receptors exclusively in peripheral injured
tissue in rat models of unilateral hind paw inflammation or
surgical incision (Spahn et al., 2017), sciatic nerve injury-induced
neuropathy, and abdominal pain (Rodriguez-Gaztelumendi
et al., 2018). Furthermore, NFEPP did not induce respiratory
depression, sedation, motor impairment, reward (assessed by
conditioned place preference; CPP), and constipation, even at

doses 10-fold higher than the most effective analgesic doses
(Spahn et al., 2017) (Table 2). As this compound will not be
an option for patients with CNS inflammation, it represents
a promising analgesic for pain conditions associated with
peripheral tissue damage, which needs to be demonstrated in
clinical trials.

Interestingly, another fentanyl derivative FF3 ((±)-N-[1-(2-
fluoro-2-phenylethyl)piperidine-4-yl]-N-phenyl propionamide)
with a higher than NFEPP’s pKa, 7.22 (but still lower than
that of fentanyl), produced injury-restricted analgesia in rat
models of inflammatory, surgical, neuropathic, and abdominal
pain, similarly to NFEPP. However, unlike NFEPP, FF3
induced side effects, including respiratory depression, sedation,
motor impairment, reward, and constipation, at 2.5–10-fold
higher than analgesic doses (Table 2). These results suggest
that a ligand’s pKa should be close to the pH of injured
tissue to obtain analgesia without side effects (Spahn et al.,
2018).

BIASED AGONISM

Background
The concept of biased agonism (or functional selectivity) is
based on the ability of different ligands of the same receptor
to stabilize various receptor active states, which leads to the
activation of diverse signaling pathways – a biased agonist
preferentially activates one signaling pathway over another.
Some biased agonists of GPCRs, including opioid receptors,
might activate G protein-mediated pathway, whereas others
might involve β-arrestin-2. The role of β-arrestin-2 was first
examined in the µ-receptor function using β-arrestin-2 knockout
mice. These studies used naïve mice, without pathological
pain, and reported that morphine induced more efficacious
and prolonged analgesia in acute heat pain tests, absent
(in hot plate test) or delayed (in tail-flick test) analgesic
tolerance, and decreased constipation and respiratory depression
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in β-arrestin-2 knockout compared to wild-type mice (Bohn
et al., 1999, 2000, 2002; Raehal et al., 2005). Whereas
naloxone-precipitated morphine withdrawal was unchanged
(Bohn et al., 2000), morphine-induced hypothermia and reward
(CPP) were substantially enhanced in β-arrestin-2 knockout mice
(Bohn et al., 1999, 2003) (Figure 2B). Of note, analgesic tolerance
and naloxone-precipitated withdrawal following injection of
other µ-receptor agonists such as fentanyl, oxycodone, and
methadone did not differ between β-arrestin-2 knockout and
wild-type mice (Raehal and Bohn, 2011). Intriguingly, opposite
effects were observed using GRK3 knockout mice, who showed
weaker acute analgesic tolerance to fentanyl, oxycodone, and
methadone, but not to morphine (Melief et al., 2010). Further
work of that group indicated that analgesic tolerance to fentanyl
involves GRK3/arrestin and c-Jun N-terminal kinase-2 belonging
to the MAPK family, whereas tolerance to morphine also
involves this kinase, but in GRK3/arrestin-independent manner
(Kuhar et al., 2015). It is unclear whether these contradictory
results relate to different actions mediated by GRK3 and
β-arrestin-2 in response to µ-receptor activation, or to other,
unknown alterations resulting from knockout strategies, which
cannot be excluded, since GRKs and β-arrestins interact with
many GPCRs, not only with opioid receptors (Reiter et al.,
2012). Regardless of the discrepancies, these findings suggest
that GRK3 and β-arrestin-2 are not essential for side effects
exerted by µ-agonists, and that β-arrestin-2 might actually be
required for dampening the reinforcement/abuse potential of
morphine. Nevertheless, the following efforts focused on design
of agonists without or with minimal β-arrestin-2 recruitment
properties, but with bias toward G protein-mediated signaling
(Figure 4B).

It is currently accepted that biased agonism occurs at
all three opioid receptors (Al-Hasani and Bruchas, 2011;
Siuda et al., 2017). There is in vitro evidence that δ-receptors
can adopt distinct receptor conformations in response to
different agonists, and that agonist-dependent δ-receptor
trafficking and different arrestin isoform recruitment may have
behavioral implications (Vicente-Sanchez and Pradhan, 2017).
However, no biased δ-receptor agonists with a potential
distinction between analgesic actions and undesirable
effects such as convulsions have been developed so far.
Therefore, the following sections focus on µ- and κ-opioid
receptors.

µ-Receptor Biased Ligands
The first G protein-biased µ-receptor agonist was oliceridine
(formerly TRV130) (DeWire et al., 2013) and initially it was
classified as potent analgesic with reduced side effect profile
(Kingwell, 2015). However, closer analysis of the data and
subsequent studies appear less consistent. In mice, oliceridine
produced similarly effective analgesia in acute heat pain test,
but less constipation compared to morphine. Both agonists also
exerted comparable analgesia in a short-lasting (24 h) post-
operative pain model in rats. Respiratory function was not
affected by either opioid at the most effective analgesic doses,
but it was to a similar degree diminished by approximately 2.5-
fold (oliceridine) or 4-fold (morphine) higher doses in naïve rats

(DeWire et al., 2013). Subsequent study in rodents confirmed
oliceridine-induced analgesia and lack of analgesic tolerance in
acute heat pain test, but also reported robust constipation and
abuse-related behavior in intracranial self-stimulation (ICSS)
assay (Altarifi et al., 2017) (Table 3). In healthy human
volunteers, compared to morphine, oliceridine exerted superior
analgesia in experimental cold pain test, less severe nausea, and
comparable degree, but shorter-lasting respiratory depression,
which paralleled the time-course of its analgesic effect (Soergel
et al., 2014). In phase 2 trial examining patients undergoing
bunionectomy, oliceridine produced greater post-operative pain
relief, but similar to morphine side effects characterized by
the percentage of patients experiencing constipation, nausea,
vomiting, and dizziness, as well as by the severity and
number of these events (Viscusi et al., 2016). The most
recent phase 2b study in patients undergoing abdominoplasty
reported comparable rescue analgesic use and reduction in
pain intensity, but significantly lower percentage of patients
experiencing nausea and vomiting following oliceridine vs.
morphine treatment. Whereas earlier clinical trials used fixed-
dose design, in that latest study opioids were delivered on
an as-needed basis via patient-controlled analgesia (Singla
et al., 2017) (Table 1). Together, as all so far performed
pre-clinical and clinical studies consistently showed analgesia
induced by oliceridine, its side effect profile appears more
variable across the studies with most reporting comparable
to morphine adverse actions. Additional limitation is the
abuse liability of oliceridine (Altarifi et al., 2017) and possibly
of other G protein-biased µ-receptor agonists (Bohn et al.,
2003).

G protein-biased ligands with µ-receptor agonistic activity,
but also affinities to other opioid receptors were later described.
PZM21 was initially characterized as µ-receptor agonist with
κ-receptor antagonistic activity, and no β-arrestin-2 recruitment.
It was reported to produce analgesia in acute heat pain test
and in short-lasting (30 min) hind paw inflammation in
mice, but no respiratory depression and rewarding (CPP)
properties, and less constipation than morphine. However,
the side effects were examined in equivalent or lower than
the most effective analgesic doses (Manglik et al., 2016).
Furthermore, in contrast to that report, a recent study re-
examining PZM21 found that it induced respiratory depression
similarly to morphine. Additionally, following repeated
administration, tolerance developed to PZM21-induced
analgesia but not to respiratory depression (Hill et al., 2018)
(Table 3).

Mitragynine pseudoindoxyl is a derivative of the natural
product mitragynine, which in vitro preferentially activated
G protein without β-arrestin-2 recruitment, and acted as
µ-receptor agonist as well as δ- and κ-receptor antagonist.
In vivo it produced µ-receptor-mediated analgesia in acute
heat pain test, delayed analgesic tolerance, lesser constipation,
naloxone-precipitated withdrawal and respiratory depression,
and no reward compared to morphine or aversion compared
to the κ-receptor agonist U50,488H (CPP/conditioned place
aversion; CPA). The doses of mitragynine pseudoindoxyl used
to examine side effects were higher than ED50, but still
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TABLE 3 | Novel opioids tested in animals without pathological pain.

Category Name/Receptor selectivity Experimental conditions∗ Effects# Reference

Biased ligands Oliceridine (TRV130) (µ-agonist) - Tail-flick; S.c.
- Blinding (−), R (+), SSE (−)

- Analgesia
- No analgesic tolerance
- Robust constipation, reward (ICSS)

a

PZM21 (µ-agonist; also
κ-antagonist in vitro)

- Tail-flick, hot plate
- Hind paw inflammation (30 min); S.c.
- Blinding (only hot plate), R (−),

SSE (−)

- Analgesia (not in tail-flick)
- Less constipation, no respiratory depression,

reward (CPP)

b

- Hot plate; S.c., i.p.
- Blinding (+), R (+), SSE (+)

- Analgesia
- Respiratory depression
- Tolerance to analgesia, but not to respiratory

depression; side effects in analgesic or 2-fold
higher doses

c

Mitragynine pseudoindoxyl
(µ-agonist; also δ-,
κ-antagonist in vitro)

- Tail-flick
- S.c., oral, supraspinal
- Blinding (−), R (−), SSE (−)

- Analgesia
- Less constipation, withdrawal (jumping),

respiratory depression, no reward, aversion
(CPP/CPA)

d

RB-64 (κ-agonist) - Hot plate; S.c.
- Blinding (−), R (−), SSE (−)

- Analgesia
- No sedation, motor impairment,

aversion/anhedonia in ICSS
- Robust aversion in CPA

e

Triazole 1.1 (κ-agonist) - Tail-flick; S.c., i.p.
- Blinding (−), R (−), SSE (+)

- Analgesia
- No sedation, aversion (ICSS)

f

Heteromer ligands CYM51010 (µ–δ heteromer
agonist)

- Tail-flick
- S.c., i.p., spinal
- Blinding (−), R (−), SSE (−)

- Analgesia (partially reversed by µ–δ-specific
antibody)

- Less analgesic tolerance, diarrhea, body weight
loss; No change in jumping, teeth chattering,
tremor

g

MDAN-21 bivalent
µ-agonist–δ-antagonist
(µ–δ heteromers)

- Tail-flick
- I.v., supraspinal
- Blinding (−), R (−), SSE (−)

- Analgesia (µ–δ selectivity not tested)
- No analgesic tolerance, withdrawal (jumping),

reward (CPP)

h,i

NNTA (monovalent agonist of
putative µ–κ heteromers)

- Tail-flick
- I.v., supraspinal, spinal
- Blinding (−), R (−), SSE (−)

- Analgesia (µ–κ selectivity not tested)
- No analgesic tolerance, withdrawal (jumping),

reward (CPP)
- Strong aversion (CPA)

j

INTA (monovalent agonist of
putative µ–κ and/or δ–κ

heteromers)

- Tail-flick
- S.c., supraspinal, spinal
- Blinding (−), R (−), SSE (−)

- Analgesia (µ–κ or δ–κ selectivity not tested)
- No analgesic tolerance, aversion (CPA)
- Strong reward (CPP)

k

Multifunctional
ligands

AT-121 (µ- and NOP-agonist) - Rhesus monkeys
- Naïve and capsaicin
- Tail immersion
- S.c.
- Blinding (+), R (−), SSE (−)

- Analgesia (µ- and NOP-selective)
- No analgesic tolerance, scratching, reward (SA),

respiratory depression, withdrawal (increased
respiration, heart rate, arterial pressure); up to
10-fold higher than analgesic doses

l

Ligands with low
rate CNS entry

NKTR-181 (µ-agonist) - Hot plate
- Writhing test
- Oral
- Blinding, R (+; but not for SA and

rigidity), SSE (−)

- Analgesia; receptor selectivity and action site not
tested

- No reward (SA), mild muscle rigidity and motor
impairment at the most effective analgesic doses

m

I.p., intraperitoneal; I.v., intravenous; R, randomization; SA, self-administration; S.c., subcutaneous; SSE, sample size estimation. ∗Experiments were performed in mice or
rats, unless otherwise stated. #Side effects were tested in analgesic or lower doses, unless otherwise stated. (a) Altarifi et al., 2017; (b) Manglik et al., 2016; (c) Hill et al.,
2018; (d) Váradi et al., 2016; (e) White et al., 2015; (f) Brust et al., 2016; (g) Gomes et al., 2013; (h) Daniels et al., 2005; (i) Lenard et al., 2007; (j) Yekkirala et al., 2011; (k)
Le Naour et al., 2014; (l) Ding et al., 2018; (m) Miyazaki et al., 2017.
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substantially lower than the most effective analgesic doses
(Table 3). Additionally, the relative contribution of its µ-receptor
agonist/δ- and κ-receptor antagonist activity and G protein bias
to the improved side effect profile is unclear (Váradi et al.,
2016).

A recent paper suggested that just the occurrence of biased
signaling might be insufficient, and the degree of bias or
bias factor (which quantitatively defines the preference for
one signaling pathway over another) closer predicts the opioid
therapeutic window (i.e., the separation of doses that produce
analgesia and doses that produce side effects). Thus, the
higher the G protein bias factor the better the therapeutic
window, as calculated for several µ-receptor agonists by
comparing respiratory depression and analgesia. Generally,
the authors found a correlation between the bias factor and
therapeutic window. Nevertheless, it is difficult to clearly
define the best bias factor, since it strongly depended and
substantially varied with the in vitro assays and conditions
(e.g., cell line, native tissue, mouse vs. human µ-receptors,
signaling pathway type). Similarly, the therapeutic window varied
with the pain tests (tail-flick or hot plate) and respiratory
depression parameters (arterial oxygen saturation or breath
rate). For example, for the most G protein-biased compound
SR17018, the G protein bias factor varied from 40 to 102
and therapeutic window for respiratory depression vs. analgesia
ranged from 26 to 105 (Schmid et al., 2017); the bias factor
of 3 was calculated for oliceridine (DeWire et al., 2013).
Furthermore, the correlation between the bias factor and
therapeutic window in pathological pain models and for other
opioid side effects (constipation, reward, physical dependence) is
unknown.

κ-Receptor Biased Ligands
Nalfurafine (previously TRK-820), first synthetized and
characterized in the late 1990s, is a κ-receptor agonist with
particularly strong G protein bias at human κ-receptors (bias
factor of 300 vs. 7 for rat κ-receptors) (Schattauer et al., 2017).
It was initially described as efficacious analgesic and antipruritic
with favorable side effect profile; however, a recent study
demonstrated its aversive/anhedonic effects (in ICSS assay) in
rats (Lazenka et al., 2018). Furthermore, it produced severe
sedation at analgesic doses in humans, but lower doses decreased
pruritus without severe side effects. Nalfurafine is currently used
in Japan for the treatment of uremic pruritus in individuals
undergoing hemodialysis (Inui, 2012), but was not approved in
Europe, and it is not recommended for the treatment of pain
(Inui, 2012)1 (Table 1).

RB-64 is a derivative of salvinorin A, an active
psychotropic ingredient of a plant Salvia divinorum, with
a G protein/β-arrestin-2 bias factor of 96 (vs. 3 for typical
κ-agonist U69593) (White et al., 2015). It produced κ-receptor-
selective analgesia in acute heat pain test, but did not induce
sedation, motor impairment, and aversion/anhedonia in ICSS
assay compared to U69593 and salvinorin A; however, it was

1https://www.ema.europa.eu/documents/medicine-qa/withdrawal-marketing-
authorisation-application-winfuran-nalfurafine_en.pdf

aversive in the CPA paradigm (Table 3). Additionally, U69593
and salvinorin A produced similar analgesia, sedation, and
aversion in wild-type and β-arrestin-2 knockout mice, and
only motor impairment was slightly lesser in the latter. These
data suggest that analgesia and most side effects induced by
κ-opioids are mediated by G protein-, but not by β-arrestin-
2-dependent signaling. Thus, although RB-64 did not recruit
β-arrestin-2 in vitro (White et al., 2015), it is unclear whether
the lack of β-arrestin-2 signaling indeed account for its effects
in vivo.

Another G protein-biased κ-receptor agonist triazole 1.1
(with G protein/β-arrestin-2 bias factor of 28) produced
similar degree analgesia in acute heat pain test and an anti-
pruritic activity, but did not decrease dopamine release
in the striatum and did not possess sedative and aversive
properties (in ICSS test) compared to classic κ-receptor
agonist U50,488H (Brust et al., 2016). Still, the fact that
triazole 1.1 was not tested in chronic pathological pain
models and the analgesic doses from acute pain tests
were used to examine side effects pose some limitations
(Table 3).

In summary, the idea to separate desirable and undesirable
opioid actions by biased agonists stimulated pain research in
the last decades. As analgesic effects of µ- and κ-receptor
biased agonists were examined in animals without pain or in
very short-lasting inflammation (30 min–24 h) (Table 3), it
will be essential to use animal models of pathological pain
to closer reflect clinical conditions. To broaden therapeutic
window, it is desirable to also use doses exceeding the most
effective analgesic doses for testing adverse actions, since fatal
effects result from overdosing, as in case of respiratory arrest.
The potential abuse liability of G protein-biased µ-receptor
agonists, as in case of oliceridine, even in the absence of other
side effects, must be seriously considered. Clearly, the addictive
properties of opioids have led to their misuse and abuse, which
resulted in the opioid crisis worldwide (Abdel-Hamid et al.,
2016; Novak et al., 2016; Volkow et al., 2018). Although bias
factor depends on experimental conditions and cannot be used
as an absolute predictor of the ligand action, the degree of bias
is often emphasized, but even very high bias factor does not
guarantee the absence of side effects, as in case of nalfurafine.
Moreover, it was not always clear whether in vivo actions of
biased agonists indeed resulted from G protein bias and the lack
of β-arrestin-2 engagement, or from a complex pharmacological
profile or yet unidentified pathways, as in case of mitragynine
pseudoindoxyl and RB-64. Considering these issues, including
uncertain mechanistic basis for action of biased agonists, it
needs to be acknowledged that opioid-mediated side effects do
involve G protein-dependent signaling (see Introduction and
Figure 2A).

HETEROMERS, BIVALENT AND
MULTIFUNCTIONAL LIGANDS

Heteromers are defined as complexes composed of at least
two functional receptor units (protomers) and having different
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biochemical properties than the individual units. Additional
criteria include the colocalization and physical interaction
of protomers, and the ability to alter heteromer action by
heteromer-specific reagents (Gomes et al., 2016). Heteromers
might thus potentially exhibit new pharmacology and represent
a novel therapeutic target (Figure 4C). In vitro studies in
heterologous cells indicated heteromerization between
opioid receptors to form µ–δ, µ–κ, and δ–κ heteromers,
as well as between opioid and other receptors to form
heteromers such as µ-opioid–gastrin-releasing peptide receptor,
µ-opioid–metabotropic glutamate receptor 5 (mGluR5),
µ-opioid–chemokine receptor 5 (CCR5), µ-opioid–neurokinin
1 (NK1) receptor, µ-opioid–cannabinoid 1, and δ-opioid–
cannabinoid 1 receptor. There is only scarce evidence that such
complexes exist in endogenous systems, and only µ–δ heteromers
appear to fulfill the criteria required for heteromerization in
native tissue (Gomes et al., 2016). For example, using µ–δ

heteromer-specific antibody, this heteromer was detected
in cultured DRG neurons and in various pain-related brain
areas in mice (Gupta et al., 2010), although some authors
question the co-expression of µ- and δ-receptors in DRG
neurons (Wang et al., 2018). Screening of a small molecule
library identified CYM51010 as the µ–δ heteromer agonist.
This compound produced analgesia in acute heat pain test,
which was partially reversed by µ–δ heteromer antibody.
Compared to morphine, CYM51010 induced lesser analgesic
tolerance and less severe diarrhea and body weight loss,
but did not improve other signs of naloxone-precipitated
withdrawal (jumping, teeth chattering, paw tremor, whole
body tremor) (Gomes et al., 2013) (Table 3). A bivalent
ligand comprising a µ-receptor agonist (oxymorphone-derived
ligand, oxymorphamine) linked to a δ-receptor antagonist
(naltrindole) by a 21-atom spacer (MDAN-21) was designed
as a putative µ–δ heteromer ligand. This is based on earlier
studies reporting attenuation of morphine-induced side effects
by blocking δ-receptor function (Gendron et al., 2016). MDAN-
21 produced analgesia in the acute heat pain test, but did
not induce acute tolerance, naloxone-precipitated jumping,
and reward (in CPP assay) compared to morphine in mice;
nevertheless, the µ–δ heteromer-selectivity of MDAN-21
action was not shown (Daniels et al., 2005; Lenard et al., 2007)
(Table 3).

To target other putative heteromers, several compounds of
different chemistry have been generated. Examples of bivalent
ligands are MMG22 and MCC22, which exert agonistic action
at µ-receptors and antagonistic activity at various receptors
mediating pain. The former was designed to target µ–mGluR5
heteromers, as it consists of µ-agonist (oxymorphamine)
and mGluR5 antagonist (metoxy-2-methyl-6-(phenylethynyl)-
pyridine) connected by a 22-atom spacer. Compared to morphine
or the individual pharmacophores, MMG22 was more potent,
but similarly efficacious in mouse models of inflammatory, bone
cancer (Akgün et al., 2013), and neuropathic pain (Peterson
et al., 2017). However, as the latter study showed that MMG22
acted at µ-receptors and mGluR5 as separate monomers rather
than heteromers (Peterson et al., 2017), and the examination
of side effects was very limited (Akgün et al., 2013), a rigorous

evaluation of a broad adverse effect spectrum will be essential
to justify the utility of this compound. MCC22 comprises a
µ-agonist (oxymorphamine) and CCR5 antagonist (TAK-220)
linked by a 22-atom spacer, and was designed to act at µ–CCR5
heteromers. Compared to morphine, MCC22 ameliorated tactile
hypersensitivity with similar efficacy, but higher potency and of
longer duration, without inducing tolerance, in a mouse model
of sickle cell disease. The assessment of receptor specificity and
other than tolerance side effects awaits further research (Cataldo
et al., 2018) (Table 2).

Monovalent molecules N-naphthoyl-β-naltrexamine (NNTA)
and N-2′-indolylnaltrexamine (INTA) were developed to target
heteromers containing κ-receptors, probably because κ-receptor
activation does not induce reward. NNTA designed to act at
µ–κ heteromers produced analgesia in acute heat pain test,
little tolerance, and no naloxone-precipitated jumping. It also
did not induce reward at half-maximal analgesic doses, but
exerted strong aversion at maximal analgesic doses (in CPP/CPA
paradigm), which is consistent with the pharmacology of mixed
κ-receptor agonist/µ-receptor antagonist opioid class (Yekkirala
et al., 2011). INTA designed to target µ–κ and/or δ–κ heteromers
did not induce acute analgesic tolerance in heat pain test,
and was not aversive, but produced robust reward (Le Naour
et al., 2014). It is still unclear whether NNTA and INTA exert
the respective heteromer-selective effects, and their aversive or
rewarding properties are clear drawbacks (Table 3).

Multifunctional ligands are designed to interact with two or
more receptors, but heteromers are not necessary their primary
target. The advantages of such multitarget, single compounds
over a co-administration of several, each receptor-selective
ligands, include easier pharmacokinetics and the lack of potential
drug–drug interactions. A known, clinically used example of such
compound is buprenorphine, which is a partial agonist at µ- and
nociceptin/orphanin FQ peptide (NOP) receptors, and a weak
antagonist at κ- and δ-receptors. Buprenorphine is predominately
applied for the treatment of opioid dependency, as it exhibits
ceiling effect for respiratory depression, which diminishes the
likelihood of respiratory arrest, and has reduced abuse liability
(probably due to its partial µ-receptor agonistic activity) and
diminished aversive properties (possibly due to its antagonistic
κ-receptor activity). It appears that the majority of clinical trials
in cancer pain patients were observational, of poor quality, and
with a high risk of bias. Similarly, good quality, randomized
studies in neuropathic pain patients are needed. In randomized
trials of postoperative or osteoarthritis pain, buprenorphine
was concluded to produce fewer respiratory complications, but
equivalent analgesia to other opioids (Davis et al., 2018), although
the reason for the lack of ceiling analgesic effects in contrast
to respiratory depression is unclear, and other studies reported
high rate of drop-out due to nausea/vomiting (Fishman and Kim,
2018). Together, as buprenorphine is successfully used for opioid
maintenance therapy, the evidence for its analgesic superiority
over other opioids in clinical setting appears moderate and more
good quality comparative studies are needed (Davis et al., 2018).

Examples of new multifunctional ligands tested in preclinical
studies are peptides Tyr-D-Ala-Gly-Phe-Met-Pro-Leu-Trp-NH-
Bn(CF3)2 (TY027), RCCHM3, and RCCHM6, which exert µ-
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and δ-opioid receptor agonistic and NK1 receptor antagonistic
activity (Figure 4D). In a very comprehensive study, TY027
injected supraspinally, spinally, or intravenously reversed
neuropathy-induced heat and tactile hypersensitivity. In contrast
to morphine, TY027 did not produce analgesic tolerance,
reward (in CPP test), naloxone-precipitated withdrawal
(teeth chattering, wet-dog shakes, diarrhea, weight loss),
did not inhibit gastrointestinal transit (in mice or rats),
and did not cause retching/vomiting (in ferrets), although
the doses were up to 5-fold lower than the most effective
analgesic doses. Additionally, TY027 was shown to act as
opioid receptor agonist and NK1 receptor antagonist in vivo
(Largent-Milnes et al., 2013). RCCHM3 and RCCHM6 were
efficacious in ameliorating neuropathy-induced tactile and
cold hypersensitivity in mice, but the receptor selectivity
and side effects were not examined (Starnowska et al., 2017)
(Table 2).

Additionally, a bifunctional partial agonist at µ- and NOP
receptors, AT-121, has been recently developed. The rationale is
based on earlier studies reporting synergistic analgesic actions
of morphine and NOP receptor agonists, as well as reduced
dopamine release and attenuation of rewarding effects of
µ-agonists by NOP receptor agonists (Toll et al., 2016). In
rhesus monkeys, subcutaneously injected AT-121 did not induce
scratching, but produced comparable to morphine analgesia,
which was reversed by opioid and NOP receptor antagonists in
an acute heat pain test. AT-121 also reversed capsaicin-induced
sensitivity measured by the same test. Unlike oxycodone, it
lacked reinforcing effects in self-administration paradigm, and
partially attenuated reinforcing action of oxycodone. Unlike
heroin, AT-121 at 10 times the analgesic doses did not
compromise respiratory and cardiovascular function (respiration
rate, minute volume, heart rate, mean arterial pressure).
These parameters were also unchanged after injection of
the antagonists, indicating a lack of antagonist-precipitated
withdrawal in AT-121-treated monkeys. Moreover, following
repeated administration (twice daily for 4 weeks), in contrast
to morphine, AT-121 did not produce analgesic tolerance in
the heat pain test (Ding et al., 2018) (Table 3). Although
understandably, the numbers of monkeys per group were low and
the chronic pain could not be examined, these conditions present
some limitations. Additionally, since NOP receptors are very
widely distributed throughout the nervous system and peripheral
tissues, other potential side effects produced by NOP receptor
agonists, including motor disturbance, memory impairment, and
gastrointestinal complications, need to be considered (Mogil and
Pasternak, 2001; Toll et al., 2016).

Together, of all opioid receptor heteromers described in
heterologous systems in vitro, the µ–δ heteromer might be
present and function in vivo. However, more research would be
needed to develop selective ligands, test them in pathological
pain models and in a broad range of side effect tests to
justify the targeting of µ–δ heteromer as improved pain
therapy. Of numerous ligands designed to simultaneously act at
various receptors, TY027 has been thoroughly examined, showed
analgesic efficacy in pathological pain and promising side effect
profile.

µ-RECEPTOR SPLICE VARIANTS

Alternative splicing is a genetic regulation that takes place
during gene expression when particular exons (transcriptional
sequences) of a gene are either included or excluded from the
final mRNA, which may result in generation of multiple protein
isoforms (Black, 2003). Among opioid receptors, the alternative
splicing of µ-receptor coding exons has been extensively
examined and the generation of multiple splice variants in mice,
rats, and humans has been revealed. In addition to classic
full-length, seven-transmembrane (7TM) domain µ-receptor
variants, there are also exon 1-associated truncated 1TM domain
variants and exon 11-associated truncated 6TM domain variants.
Depending on the species, two to five 1TM domain and 6TM
domain variants have been described (Pasternak and Pan, 2013).
Several of these variants have been detected in the mouse brain,
spinal cord, and DRG at the mRNA level (Pasternak and Pan,
2013; Wieskopf et al., 2014), and some of them were examined
by immunohistochemistry, but difficulties associated with the
specificity of antibodies preclude the convincing evidence on
their expression at the protein level (Pasternak and Pan, 2013).
It has been suggested that 1TM domain variants do not bind
ligands, but function as molecular chaperones that facilitate
expression of the 7TM domain µ-receptor and thereby enhance
morphine analgesia. In contrast, 6TM domain variants appear
to possess distinct pharmacology characterized by the use of
a compound iodobenzoylnaltrexamide (IBNtxA) (Figure 4E).
Radiolabeled IBNtxA-binding sites were detected in the brain
membrane homogenates in wild-type mice and mice lacking
7TM domain µ-, δ-, and κ-opioid receptors, but were absent in
exon 11 knockout mice (Majumdar et al., 2011). Systemically
applied IBNtxA diminished spontaneous inflammatory pain and
mechanical hypersensitivity in inflammatory and neuropathic
pain models in wild-type mice, whereas the effects in the
latter two models were absent in exon 11-lacking mice
(Wieskopf et al., 2014). Compared to morphine, IBNtxA at
analgesic or higher doses exerted lesser constipation, and
did not produce respiratory depression, naloxone-precipitated
jumping, and CPP reward (Majumdar et al., 2011) (Table 2).
Experiments in µ-receptor knockout mice reconstituted with
6TM domain variants confirmed their contribution to IBNtxA-
induced analgesia (in the acute heat pain test) (Lu et al., 2018). It
is still unclear what cellular mechanisms underlie analgesic effects
and improved side effect profile of 6TM domain variants, and
whether these variants are functional in humans. The complexity
of this system is additionally implied by animal studies describing
excitatory cellular actions of 6TM domain variants and enhanced
heat sensitivity following repetitive injections of IBNtxA in naïve
mice (Convertino et al., 2015; Samoshkin et al., 2015).

TARGETING ENDOGENOUS OPIOID
PEPTIDES

Enkephalinase Inhibitors
Enhancing the activity of endogenous opioid peptides as
natural agonists of opioid receptors represents an intrinsic pain
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control. Opioid peptides, including β-endorphin, enkephalins
and dynorphins are expressed in neurons in pain-relevant
regions of the central or peripheral nervous system as well
as in immune cells accumulating in peripheral painful tissue
(Fields, 2004; Stein and Machelska, 2011). Hence, targeting
endogenous opioids at the site of their native expression may
diminish the risk of off-site, unphysiological actions. Electrical
stimulation of periventricular/periaqueductal gray matter and
thalamus, or activation of immune cells in peripheral inflamed
tissue (by surgery-related stress or local application of opioid
peptide-releasing agents) alleviates pathological pain involving
endogenous opioids in humans (Stein et al., 1993; Bittar
et al., 2005; Likar et al., 2007). Notably, immune cell-derived
opioid peptides exerted additive/synergistic analgesic action with
peripherally (intra-articularly) applied morphine in patients
with postoperative pain (Stein et al., 1996; Likar et al., 2004),
which may be related to the activation of leukocyte opioid
receptors (Celik et al., 2016). Nonetheless, opioid peptides
are rapidly enzymatically degraded, and the best characterized
enzymes are aminopeptidase N (APN; also known as CD13) and
neutral endopeptidase (NEP; also known as neprilysin, CD10,
or enkephalinase). Among opioid peptides, the predominant
substrates of APN and NEP are Met- and Leu-enkephalin, but
dynorphin A 1-17 can also be inactivated. Both enzymes are
functional in the CNS, peripheral nerves, and immune cells, and
their blockade prevented opioid peptide degradation (Bourgoin
et al., 1986; Le Guen et al., 2003; Schreiter et al., 2012). Since the
actions of both peptidases are complementary, their concomitant
blockade is most efficient, which led to the development of dual
APN and NEP inhibitors, now known as dual enkephalinase
(DENK) inhibitors (Figure 5A). Over the last four decades,
numerous DENK inhibitors have been synthetized and found
to alleviate inflammatory, neuropathic, abdominal, cancer, and
postoperative pain, when applied intravenously, orally, or into
inflamed tissue in animal models (Roques et al., 2012; Schreiter
et al., 2012). Compared to morphine, DENK inhibitors in
analgesic or higher doses produced no or less severe side effects,
including tolerance, naloxone-precipitated withdrawal, reward
(CPP, ICSS), respiratory depression, and constipation (Noble
and Roques, 2007). Within the last decade, DENK inhibitors
developed by Pharmaleads (Paris, France) for the treatment
of postoperative pain (PL37) or neuropathic and ocular pain
(PL265) entered clinical trials, but the data are not yet available
(Roques et al., 2012)2 (Table 1).

Gene Therapy
Gene therapy (or gene transfer) is based on the introduction
of DNA or RNA encoding a protein of interest, and offers
a possibility of the protein long-term expression in native
tissue. For in vivo delivery of genes encoding enkephalin
precursor proenkephalin (PENK) or β-endorphin precursor
proopiomelanocortin (POMC), different vectors have been
used, including plasmids, non-replicating adenoviruses, adeno-
associated viruses, and herpes simplex virus (HSV), as well
as non-plasmid and non-viral DNA vectors (e.g., MIDGE;

2http://www.pharmaleads.com/

minimalistic, immunologically defined gene expression vector).
There are numerous preclinical studies, in which these PENK-
or POMC-encoding vectors were applied intramuscularly, on
the spinal cord, intra-articularly, or into the skin/subcutaneous
tissue, which resulted in enhanced expression of the respective
peptides (Met/Leu-enkephalin or β-endorphin) in the
corresponding tissue. Consequently, these treatments led to
attenuation of mechanical and heat hypersensitivity in models
of inflammatory, neuropathic, or cancer pain, mediated by
spinal or peripheral opioid receptors; these analgesic effects were
rather modest, but in some cases persisted for several weeks
(Machelska et al., 2009; Simonato et al., 2013; Goss et al., 2014;
Hu et al., 2016; Klein et al., 2018). Since this strategy targets
peripheral and spinal cord tissue, the opioid side effects mostly
mediated in the brain are not anticipated, but this has not been
verified. Compared to non-viral vectors, viral vectors have higher
transfection efficacy, which is attributed to the natural ability of
viruses to infect and express their genes in host cells. However,
viral vectors can potentially cause toxicity and inflammation,
which depends on treatment conditions (e.g., dosing, route
of application), although based on so far available data, HSV
vectors inoculated into the skin are predicted to be safe (Wolfe
et al., 2009; Simonato et al., 2013; Goss et al., 2014). The first
phase 1 clinical trial testing this strategy employed HSV-based
vector encoding human PENK injected intradermally (into the
pain-corresponding dermatomes) in terminally ill patients with
intractable cancer pain. The treatment was well tolerated and
no serious adverse events were observed. Over the 4-month
follow-up, the treatment-emergent adverse effects (injection
site erythema and pruritus, and body temperature elevation)
were transient and judged of mild severity. The study was very
small (four or fewer patients per group), not blinded and not
placebo-controlled, but also reported a dose-related decrease of
pain (up to 4 weeks post-treatment) as the secondary outcome
(Fink et al., 2011). A phase 2, randomized, double-blind,
placebo-controlled, multicenter study testing HSV-encoding
PENK in patients with intractable malignant pain has been
completed, but the data are not yet released (ClinicaleTrials.gov
NCT01291901) (Table 1). Based on the corresponding pre-
clinical studies it is anticipated that HSV-encoding PENK is
taken up by cutaneous terminals of peripheral sensory neurons
and axonally transported to their cell bodies in DRG, where
PENK is processed to enkephalins. The enkephalins can be
then transported toward peripheral and central DRG neuron
terminals, released and respectively activate peripheral and
spinal opioid receptors to provide analgesia (Antunes Bras et al.,
1998, 2001; Goss et al., 2001; Klein et al., 2018) (Figure 5B).
Similar strategy can also be used to enhance expression of opioid
receptors. For example, HSV-encoding µ-receptors applied
to mouse hind paw elevated µ-receptor-immunoreactivity in
epidermal skin fibers, DRG cells, and dorsal horn spinal cord,
alleviated basal mechanical hypersensitivity, and enhanced
analgesic effects of morphine and peripherally acting loperamide
injected systemically in a neuropathic pain model (Table 2).
Surprisingly and not clarified yet, combined treatment with
HSV-encoding µ-receptors and HSV-encoding PENK was
ineffective (Klein et al., 2018).
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FIGURE 5 | Strategies for safer pain control – targeting endogenous opioid peptides. (A) Prevention of opioid peptide degradation. (1) Opioid peptides, including
enkephalins (ENK) are degraded by APN and NEP expressed on neurons (central and peripheral) and immune cells in inflamed tissue. (2) DENK inhibitors block APN
and NEP, and prevent ENK degradation to locally alleviate pain. (B) Gene transfer to enhance opioid peptide production in native tissue. As an example, HSV vector
encoding ENK precursor PENK injected into peripheral tissue is taken up by peripheral terminals of dorsal root ganglion (DRG) neurons and transported to their cell
bodies in DRG (1), where PENK is processed to ENK (2). ENK is then transported to peripheral and central DRG neuron terminals (3), released, and respectively
activates peripheral and spinal opioid receptors to produce analgesia.

OTHER APPROACHES

Abuse-Deterrent Opioid Formulations
Currently clinically used opioids have been modified to obtain
abuse-deterrent formulations, and several of such substances
have been approved by the Food and Drug Administration
(Becker and Fiellin, 2017). The general aim was to make these
new formulations difficult to inhale or inject, and to get a high
from. This has been attempted by means of physical or chemical
barriers to hinder crushing, chewing, or solubilization of pills, as
in case of modifications of morphine (MorphaBond ER, Arymo
ER), oxycodone (OxyContin, RoxyBond, Xtampza ER), and
hydrocodone (Vantrela ER, Hyslinga ER). Alternatively, opioid
receptor agonists were combined with antagonists, as in case
of Embeda (morphine and naltrexone), Troxyca ER (oxycodone
and naltrexone), or Targiniq ER (oxycodone and naloxone)
(Becker and Fiellin, 2017; Salwan et al., 2018). However, these
strategies have not proved successful in preventing opioid abuse.
To overcome the obstacles associated with hindering the misuse
of these formulations they were taken at higher doses or replaced
with other opioids having a higher abuse liability such as heroin
or fentanyl (Cicero and Ellis, 2015; Becker and Fiellin, 2017;
Curfman et al., 2018; Salwan et al., 2018).

Agonists With Low Rate CNS Entry
Nektar Therapeutics (San Francisco, CA, United States) has
synthetized and been testing a compound NKTR-181, a
µ-receptor agonist with a low rate influx across the BBB,
proposing that such substance should have lower abuse potential
compared to drugs with rapid CNS entry. The slow CNS entry

has been achieved by addition of a polyethylene glycol functional
group to morphine-like (morphinan) pharmacophore. NKTR-
181 produced analgesia in naïve animals in acute heat pain test
and in acetic acid-induced writhing model, but the µ-receptor-
selectivity and the action site (central, peripheral) have not
been examined. Its side effect profile was improved compared
to oxycodone, although at the most effective analgesic doses
NKTR-181 induced mild muscle rigidity and motor impairment.
Compared to cocaine and oxycodone, it did not produce reward
in self-administration paradigm (Miyazaki et al., 2017) (Table 3).
In healthy, non-physically dependent recreational opioid users,
single oral application of NKTR-181 (in doses used in ongoing
phase 3 trials) induced significantly lower drug liking effects
(indicative of lower abuse potential) and smaller changes in the
pupil diameter (indicative of less robust CNS actions) relative to
oxycodone. Still, the effects of the highest NKTR-181 dose used
were significantly higher vs. placebo (Webster et al., 2018). The
compound is considered to be resistant to physical or chemical
tampering, albeit the data were not shown (Miyazaki et al., 2017),
and the possibility of taking it at high doses to achieve high
CNS levels cannot be excluded, as in case of abuse-deterrent
opioids. The company sponsored completed phase 2 trial in
patients with osteoarthritis (NCT02367820) and phase 3 trial
in patients with chronic low back pain (NCT02362672; both at
ClinicalTrials.gov), but the peer reviewed data are not available
yet (Table 1).

Endomorphin Analogs
Endomorphin-1 and endomorphin-2 are additional endogenous
opioid peptides, although (in contrast to endorphins,
enkephalins, and dynorphins) their precursor has not been

Frontiers in Pharmacology | www.frontiersin.org November 2018 | Volume 9 | Article 1388115

https://ClinicalTrials.gov/
https://www.frontiersin.org/journals/pharmacology/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/pharmacology#articles


fphar-09-01388 November 28, 2018 Time: 17:7 # 17

Machelska and Celik New Opioids, Analgesia, Side Effects

identified so far (Zadina et al., 1997). Both endomorphins
are highly selective at µ-receptors and exerted analgesia with
reduced side effects relative to conventional opioids in some
preclinical studies. Due to their poor metabolic stability,
numerous endomorphin analogs with potentially improved
pharmacological properties have been developed (Gu et al., 2017).
Example is a recently characterized cyclized, D-amino acid-
containing endomorphin 1 peptide analog termed analog 4 or
ZH853 (Tyr-c-[D-Lys-Trp-Phe-Glu]-Gly-NH2). This compound
alleviated heat and mechanical hypersensitivity in models of
neuropathic, inflammatory, and postoperative pain following
spinal or intravenous injections. Relative to morphine, the
analog 4-induced analgesia was equally effective but longer-
lasting (Feehan et al., 2017). Moreover, in contrast to morphine,
analog 4 produced lesser analgesic tolerance, no motor
impairment, respiratory depression, and reward (in CPP and
self-administration paradigms), and did not induce spinal glia
activation (Zadina et al., 2016), although side effects were mostly
tested using similar or lower than analgesic doses (Feehan
et al., 2017) (Table 2). Whereas the results appear promising,
considering that the compound crosses the BBB and activates
µ-receptors in the brain (Zadina et al., 2016), it will be important
to elucidate the mechanistic basis for its improved side effect
profile.

Allosteric Modulators
Allosteric modulators are ligands that bind the allosteric site
of the receptor (i.e., the site that does not bind orthosteric
ligands such as endogenous and standard exogenous ligands)
and can modulate (positively or negatively) the effect of the
orthosteric ligand without eliciting activity on its own. For
example, it is anticipated that positive allosteric modulators will
enhance the activity of endogenous opioid peptides, maintain
their temporal and spatial action, and potentially limit the off-
target adverse effects. Although several such compounds have
been characterized in vitro, their utility in vivo is yet to be
determined (Remesic et al., 2017).

CONCLUSION

Conventional opioids are the most effective painkillers, but
they also produce adverse affects. Additionally, their prolonged
use leads to addiction, which limits the effectiveness of pain
therapy and has resulted in a worldwide opioid epidemic
(Abdel-Hamid et al., 2016; Novak et al., 2016; Volkow et al.,
2018). Therefore, the search for opioids with improved side
effect profile and low abuse liability is undisputed. Several
novel treatments targeting peripheral κ-receptors (asimadoline,
CR845), endogenous opioid peptides (DENK inhibitors, HSV-
PENK), and agonist with a low rate CNS entry (NKTR-181)
are under development and are tested in clinical trials, but
not all results are available yet (Table 1) and it remains to
be seen whether they enter clinical practice. The G protein-
biased agonism as a safer pain therapy needs to be verified,

since opioid-induced adverse actions are mediated by G proteins
(Figure 2A), and there are increasing numbers of studies that
report biased agonist-induced constipation, sedation, respiratory
depression, and addiction (Inui, 2012; Soergel et al., 2014; Altarifi
et al., 2017; Hill et al., 2018) (Tables 1, 3). Encouragingly,
there are several new opioids examined in preclinical studies,
which are comprehensively characterized in various pathological
pain models and methods assessing a wide spectrum of side
effects, and show promising results. They include an agonist
sensitive to low pH characteristic of painful tissue (NFEPP),
ligands targeting multiple receptors (TY027) or µ-receptor splice
variants (IBNtxA), and endomorphin-1 analog (analog 4 or
ZH853) (Table 2). Nevertheless, several aspects are still open
such as mechanistic basis of analgesia and improved side effect
profile (IBNtxA, endomorphin-1 analog), the need for replication
of the initial findings (NFEPP, TY027), and examination of their
clinical efficacy. Although there are no preclinical assays that
ideally reflect pain in humans, the pathological pain models
involving tissue damage and lasting for days or weeks (Table 2)
closer resemble clinical conditions than the tests inducing pain
lasting for seconds in naïve animals (Mogil, 2009) (Table 3).
Additionally, even though there is an increasing awareness of
the importance of the rigorous study design and performance,
including blinding, randomization, and sample size estimation
(Kilkenny et al., 2010; Berg, 2017), many animal studies still
do not adhere to these requirements (Tables 2, 3). It is thus
critical that all these aspects are considered when the clinical
translation of preclinical studies is judged. Finally, it is crucial to
recognize the multifactorial biopsychosocial etiology of chronic
pain and that it requires a multidisciplinary management
comprising not only pharmacologic, but also psychological, and
physiotherapeutic approaches (Scascighini et al., 2008; Stein and
Kopf, 2009). Pharmacologic treatment alone is insufficient and
will always carry a risk of unwanted behaviors, as seen by the
shifting trends in pain management and the addiction landscape
toward alternative opioid (e.g., loperamide) and non-opioid
(e.g., gabapentin, pregabalin), but also potentially dangerous
medications (Throckmorton et al., 2018).
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Treatment of drug addiction remains an unmet medical need due to the dearth of

approved pharmacotherapies. There are no approved treatments for cocaine addiction,

whereas the current opioid crisis has revealed the stark reality of the limited options to

treat prescription and illicit opioid abuse. Preclinical studies in rodents and nonhuman

primates have shown that orphanin FQ/nociceptin (N/OFQ), the endogenous ligand

for the nociceptin opioid receptor (NOP) reduces the rewarding effects of several

abused substances, including opioids, psychostimulants and alcohol. A few nonpeptide

small-molecule NOP agonists have also shown efficacy in attenuating the rewarding

effects of various abused drugs. We previously demonstrated that a high affinity

small-molecule NOP agonist AT-312 selectively reduced the rewarding effects of ethanol

in the conditioned place preference paradigm in mice. In the present study, we examined

if AT-312 (3 mg/kg, i.p. or s.c. respectively), would alter the rewarding action of morphine

(7.5 mg/kg, s.c.) or cocaine (15 mg/kg, i.p.). The effect of AT-312 on morphine- and

cocaine-induced motor stimulation was also assessed on the conditioning days.

The role of the NOP receptor in the effects of AT-312 was further confirmed by

conducting the place conditioning experiments in NOP knockout mice and compared

to their wild-type controls. Our results showed that AT-312 significantly reduced the

acquisition of morphine and cocaine CPP in wild-type mice but not in mice lacking

NOP receptors. AT-312 also suppressed morphine-induced and completely abolished

cocaine-induced motor stimulation in NOP wild-type mice, but not in NOP knockout

mice. These results show that small-molecule NOP receptor agonists have promising

efficacy for attenuating the rewarding effects of morphine and cocaine, and may have

potential as pharmacotherapy for opioid and psychostimulant addiction or for treating

polydrug addiction.

Keywords: morphine, cocaine, conditioned place preference, AT-312, NOP agonist, NOP receptor knockout,

polydrug addiction, addiction pharmacotherapy
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INTRODUCTION

Addiction pharmacotherapy remains an area severely in need of
new approaches and new targets, given that there are no approved
therapies for cocaine addiction and the limited suboptimal
options available for those addicted to opioids fueling the opioid
crises. Addiction to more than one drug is also quite prevalent,
but there are few, if any, appropriate pharmacotherapies that
can address polydrug addiction effectively. Most addictive
substances cause an increase in dopamine release in the
mesolimbic areas of the reward circuitry, albeit through different
mechanisms. Cocaine blocks the dopamine transporter and
increases dopamine levels in the nucleus accumbens (NAc) (1–
3); whereas opioid drugs increase dopamine levels in the VTA
and NAc through their action at the mu opioid receptor (4,
5). Even the endogenous opioid peptides, beta-endorphin and
enkephalins increase the activity of the mesolimbic dopaminergic
neurons and stimulate dopamine release in the NAc (6). In
fact, the endogenous opioid system has been shown to be
involved in the rewarding actions of other drugs of abuse such as
cocaine and alcohol (7–9). Therefore, approaches that inhibit the
dopaminergic transmission in the mesolimbic circuitry may be
useful for reducing rewarding effects of many different addictive
drugs.

The endogenous peptide, nociceptin/orphanin FQ (N/OFQ),
acting through the nociceptin opioid peptide (NOP) receptor, is
present in several areas of the brain associated with reward and
stress pathways such as the ventral tegmental area, prefrontal
cortex, amygdala and lateral hypothalamus (10, 11). The NOP
receptor and its endogenous ligand N/OFQ are the fourth
members of the opioid family of G protein-coupled receptors
mu, delta and kappa and their endogenous ligands endorphins,
enkephalins and dynorphin (12, 13). Unlike the classical opioid
ligands, however, N/OFQ has a broad inhibitory effect on
multiple neurotransmitter systems involved in drug reward and
has been shown to decrease drug-induced dopamine levels in
the nucleus accumbens (14, 15). Intracerebroventricular (i.c.v.)
administration of N/OFQ has been shown to block morphine-
induced dopamine release in the NAc (14, 16–19). We and others
have shown that central administration of the N/OFQ peptide
decreases cocaine-induced dopamine release in the NAc in rats
(20, 21). Consistent with these observations, i.c.v. administration
of N/OFQ blocks the rewarding effects of morphine, cocaine
and alcohol in animal models of drug reward such as the
conditioned place preference (CPP) (17, 22–24). Targeting the
NOP-N/OFQ system is therefore a potential approach to reduce
the rewarding effects of multiple abused substances and develop
pharmacotherapy to treat addiction to various drugs and possibly
polydrug addiction (25–28).

Some effort along these lines has been expended with
few synthetic small-molecule NOP agonists, producing
equivocal results. The nonpeptide small-molecule NOP
agonist Ro 64-6198 was reported to block acquisition and
reinstatement of morphine-induced CPP after intraperitoneal
(i.p.) administration (29), and the expression, acquisition and
reinstatement of alcohol-induced CPP in mice (24). However,
i.p. Ro 64-6198 was also reported to produce a place preference

in rats through a purported dopaminergic mechanism, and not
through an opioid or NOP-related mechanism (30). A different
NOP agonist Ro 65-6570 on the other hand, blocked opioid-
and cocaine-induced CPP in rats in the same study, and this
effect was reversed by a NOP antagonist J-113397, confirming
the role of the NOP receptor in the anti-rewarding actions
of Ro 65-6570 (30). NOP agonist SCH221510 was shown to
reduce opioid (remifentanil) self-administration in rats only
when administered intracisternally but not systemically (31). We
recently reported that SCH221510 showed a modest inhibition
of ethanol-induced CPP in mice at high doses given i.p. (32). On
the other hand, in the same study, we showed that a novel and
selective NOP agonist AT-312 showed a significant and robust
inhibition of ethanol CPP in mice at doses lower than that of
SCH221510. Moreover, this effect was absent in mice lacking
the NOP receptor, confirming the NOP-targeted inhibition of
ethanol CPP by AT-312 (32).

The aims of this study were to determine the efficacy of AT-
312 in attenuating the rewarding effects of other drugs of abuse
such as morphine and cocaine. To confirm the pharmacological
mechanism of the effect of AT-312, we conducted the CPP
experiments in mice lacking the NOP receptor and their wild-
type littermates. In addition, we also characterized the effect of
AT-312 on the locomotor stimulation produced by morphine or
cocaine in wild-type and NOP knockout mice.

MATERIALS AND METHODS

Subjects
Mice lacking the NOP receptor and their wild-type controls,
fully backcrossed on a C57BL/6J mouse strain, were bred in
house, and weaned at the age of 21–24 days, prior to genotyping.
Mice between the ages of 2–4 months were used for these
experiments. Mice were housed 2–4 per cage with free access to
laboratory chow and water and maintained under a 12 h light/
12 h dark cycle. All experimental procedures were approved by
the Institutional Animal Care and Use Committee at Western
University of Health Sciences (Pomona, CA) and were in accord
with the NIH Guide for the Use and Care of Animal in Research.

Drugs
AT-312 ((1-(1-((cis)-4-isopropylcyclohexyl)piperidin-4-yl)-1H-
indol-2-yl)methanol) was synthesized at Astraea Therapeutics.
The details of the synthesis and the in vitro pharmacological
profile of AT-312 at the opioid receptors have been previously
reported (32). AT-312 was dissolved in 1–2% DMSO and
then diluted to the desired concentration with 0.5% aqueous
hydroxypropylcellulose (HPC) and injected subcutaneously (s.c.)
or intraperitoneally (i.p.) at a dose of 3 mg/kg in a volume of 0.1
ml/10 g of body weight. The dose of AT-312 was selected based
on our previous study (32). Controls received 0.1 ml/10 g of body
weight of the appropriate vehicle (1–2% DMSO in 0.5% of HPC).
Morphine sulfate and cocaine hydrochloride were obtained from
NIDA Drug Supply and dissolved in normal saline. The doses of
morphine and cocaine are as their salt forms.
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Experimental Procedures
Effect of AT-312 on Morphine-Induced CPP in

Wild-Type and NOP Knockout Mice
A detailed description of the CPP apparatus and procedure is
given elsewhere (33). Briefly, female mice lacking NOP receptor
and their wild-type controls were tested for baseline place
preference on day 1, in which each mouse was placed in the
neutral central chamber and allowed to freely explore the CPP
chambers for 15min. The amount of time that mice spent
in each conditioning chamber was recorded. There was no
initial preference for any of the CPP chambers, i.e., the CPP
paradigm was unbiased. The following day, mice were treated
with either vehicle or AT-312 (3 mg/kg, i.p.) followed, 5min
later, by morphine or saline (morphine vehicle) (7.5 mg/kg,
s.c.) and confined to the vehicle-paired chamber (VPCh; if they
received vehicle and then saline) or drug-paired chamber (DPCh;
if they received vehicle or AT-312 before morphine) for 60min.
The dose of AT-312 and morphine, the conditioning time, and
the time of AT-312 administration with respect to morphine
administration were based on our previous studies (32, 34). The
CPP procedure was carried out in a counterbalanced manner, in
which some animals were treated with vehicle or AT-312 followed
by morphine in the morning and some in the afternoon. If they
received vehicle or AT-312 followed bymorphine in themorning,
they received vehicle followed by saline in the afternoon on that
day. If they received vehicle followed by saline in the morning,
they received conditioning with vehicle or AT-312 followed by
morphine in the afternoon. Locomotor activity, measured as
distance traveled, was also recorded on each conditioning day.
The twice daily conditioning continued for three consecutive
days on days 2–4. Mice were then tested for post conditioning
place preference on day 5 in a drug-free state, as described for
day 1.

Effect of AT-312 on Cocaine-Induced CPP in

Wild-Type and NOP Knockout Mice
We also assessed the effect of AT-312 on cocaine-induced CPP in
mice. The CPP procedure was the same as described above for
morphine except that male mice were used for this experiment.
On conditioning days, mice were treated with vehicle or AT-
312 (3 mg/kg, s.c.) and 5min later with cocaine (15 mg/kg, i.p.),
and then confined to the DPCh for 30min. Other mice received
vehicle and 5min later saline and were confined to the VPCh for
30min. In the afternoon, mice received the alternative treatment
(e.g., vehicle followed by saline; if they were treated with vehicle
or AT-312 followed by cocaine) and were confined to the opposite
conditioning chamber (e.g., chamber with the rod floor if mice
received the other treatment in the chamber with mesh floor)
for 30min. This twice-daily conditioning lasted for 3 consecutive
days and mice were tested for post conditioning place preference
on day 5, as described above.

Data Analysis
Values represent mean (± S.E.M.) of the amount of time (sec)
that mice spent in the CPP chambers on the preconditioning
(day 1, D1) and postconditioning (day 5, D5) test days or the
distance traveled (cm) during the conditioning days. Data were
analyzed using three-way repeated measures analysis of variance

(ANOVA) followed by the post-hoc Tukey’s test. The factors were
pretreatment (i.e., vehicle vs. AT-312) and treatment (saline vs.
cocaine) and time (day 1 and day 5). A P < 0.05 was considered
significant.

RESULTS

AT-312 Reduced CPP Induced by Morphine
in Wild-Type but Not NOP Knockout Mice
Figure 1 shows the amount of time (sec) that mice lacking NOP
and their wild-type controls spent in the conditioning chambers
before (day 1, D1) and after (day 5, D5) conditioning. A three-
way ANOVA of the data in wild-type mice showed a significant
effect of treatment [F1, 40 = 14.88; P < 0.001] and a significant
interaction between time and treatment [F1, 40 = 16.61; P
< 0.001] and a trend toward an interaction between time,
pretreatment and treatment [F1, 40 = 3.09; P < 0.09]. The
Tukey’s post-hoc test revealed that morphine induced a robust
CPP response in vehicle-treated control mice, as evidenced by a
significant (P < 0.0001) increase in the amount of time that mice
spent in the drug-paired chamber (DPCh) compared to vehicle-
paired chamber (VPCh) on the postconditioning test day (D5;
Figure 1; upper panel; compare DPCh vs. VPCh for the Veh-Mor
group). However, this response was abolished in mice treated
with AT-312 in conjunction with morphine on each conditioning
day (Figure 1, upper panel; compare DPCh vs. VPCh for the
AT-Mor group). In contrast, AT-312 did not alter morphine-
induced CPP in mice lacking NOP (Figure 1, lower panel). The
Tukey post-hoc test revealed a significant increase in the amount
of time that mice of each pretreatment group (vehicle or AT-
312 pretreated) spent in the DPCh vs. VPCh on day 5 (P <

0.05). These results indicate that AT-312 blocked the acquisition
of morphine-induced CPP via the NOP receptor.

AT-312 Reduced Morphine-Induced Motor
Stimulation During Conditioning in
Wild-Type but Not in NOP Knockout Mice
We found that AT-312 reduced the motor stimulatory effect of
morphine in wild-type mice (Figure 2, upper right panel) but
not in mice lacking NOP receptor (Figure 2, lower right panel).
Three-way ANOVA of the data in wild-type mice revealed a
significant effect of pretreatment [F(1, 60) = 4.03, P < 0.05] and a
significant effect of treatment [F(1, 60) = 62.11, P< 0.0001] but no
significant interaction between pretreatment, treatment and time
[F(2, 60) = 0.11, P > 0.05]. The Tukey’s post-hoc test revealed that
vehicle-pretreated mice traveled significantly greater distances
in the chamber conditioned with morphine compared to saline
on each conditioning day (P < 0.05; Figure 2, upper left
panel). However, this response was attenuated in wild-type mice
pretreated with AT-312 as evidenced by no significant difference
in distance traveled after morphine treatment compared to saline
in this group (P> 0.05; Figure 2, upper right panel). On the other
hand, the post-hoc test showed that mice lacking NOP receptors
conditioned with morphine traveled significantly more distance
compared to saline-conditioned animals on each conditioning
day (Figure 2, lower left panel). However, this response was not
reduced in NOP knockout mice treated with AT-312 prior to
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FIGURE 1 | Effects of AT-312 on morphine-induced CPP in mice lacking NOP

and their wild-type littermates/controls. Mice (n = 6 mice per treatment for

each genotype) were tested for baseline place preference on day 1,

conditioned with morphine (7.5 mg/kg, s.c.) in the presence and absence of

AT-312 (3 mg/kg, i.p.) on days 2–4 and then tested for CPP on day 5. Vehicle

or AT-312 was given 5min before morphine on each conditioning day to

wild-type (Upper) and knockout (Lower) mice. *P < 0.05; **P < 0.01; ****P <

0.0001, a significant increase in the amount of time that mice spent in the

drug-paired chamber (DPCh) compared to vehicle-paired chamber (VPCh) on

this day.

morphine (Figure 2, lower right panel). Interestingly, AT-312
not only did not reduce morphine-induced motor stimulation
in the NOP knockout mice but it appeared that the stimulatory
action of morphine was increased in these mice in the presence
of AT-312. (Figure 2, lower right panel, compare day 2 vs. day
4) However, this response was not different than that in the
Veh-Mor knockout mice (P> 0.05). Overall, these results suggest
the involvement of the NOP receptors in the suppressive effect of
AT-312 on the motor stimulation produced by morphine.

FIGURE 2 | Effects of AT-312 on morphine-induced motor stimulation during

the conditioning days in the CPP chambers in mice lacking NOP and their

wild-type littermates/controls. On each conditioning day, wild-type (Upper)

and NOP knockout (Lower) mice were treated with vehicle or AT-312 (3

mg/kg; i.p.; n = 6 mice per treatment for each genotype) 5min before

morphine (7.5 mg/kg, s.c.) and distance traveled by mice in the

morphine-paired chamber (DPCh) was recorded for 60min each day. Distance

traveled by the mice in the saline-paired chamber (VPCh) was also recorded, in

which mice were injected with vehicle and 5min later with saline. *P < 0.05,

**P < 0.01 and ****P < 0.0001, a significant increase in distance traveled by

mice in the DPCh vs. their respective VPCh on this day.

AT-312 Reduced Acquisition of Cocaine
CPP in Wild-Type but Not NOP Knockout
Mice
Figure 3 shows the amount of time that wild-type (upper
panel) and knockout (lower panel) mice spent in the vehicle-
paired chamber (VPCh) and drug-paired chamber (DPCh) on
the preconditioning (D1) and postconditioning (D5) test days.
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Three-way repeated measures ANOVA of the data in wild-type
mice showed a significant effect of treatment [F(1, 96) = 11.35;
P < 0.001], a significant effect of pretreatment × treatment
interaction [F(1, 96) = 4.96: P < 0.03] and a significant interaction
between time × pretreatment × treatment [F(1, 96) = 6.93; P
< 0.01]. The Tukey’s post-hoc test showed that cocaine induced
a robust CPP in vehicle-treated control, as evidenced by a
significant increase in the amount of time that mice spent in the
DPCh compared to VPCh on the postconditioning day (Figure 3,
upper left panel; compare DPCh vs. VPCh on day 5 for the Veh-
Coc group). In contrast, this response was abolished in mice
treated with AT-312 prior to cocaine on each conditioning day
(Figure 3, upper right panel; compare DPCh vs. VPCh on day
5 in the AT-Coc group). On the other hand, AT-312 had no
effect on the place preference induced by cocaine in mice lacking
NOP (Figure 3, lower left panel). Three-way ANOVA showed a
significant effect of time× treatment interaction [F1, 40 = 12. 62,
P < 0.001] but no significant interaction between pretreatment×
treatment [F1, 40 = 0.01; P > 0.05] and no significant interaction
between pretreatment × treatment and time [F1,40 = 0.05; P >

0.05]. The Tukey’s post-hoc test revealed a significant increase
in the amount of time that mice spent in DPCh compared to
VPCh on the postconditioning day regardless of the pretreatment
(P < 0.05). Overall, these results indicate that AT-312 blocked
cocaine-induced CPP via the NOP receptor.

Figure 4 shows the effect of AT-312 on the motor stimulatory
action of cocaine in wild-type (upper panel) and NOP knockout
(lower panel) mice. Three-way ANOVA revealed a significant
interaction between pretreatment and treatment [F(1, 60) = 43.9,
P < 0.0001] but no significant time × treatment [F(2, 60) = 0.63;
P > 0.05] or time × pretreatment × treatment interaction
[F(2, 60) = 0.65; P > 0.05]. Post-hoc analyses of the data showed
that cocaine increases motor activity compared to saline in wild-
type mice (Figure 4, upper left panel; compare distance traveled
between DPCh and VPCh in mice pretreated with vehicle and
conditioned with cocaine, i.e., Veh-Coc group). This response
was completely blocked in wild-type mice pretreated with AT-
312 (Figure 4, upper right panel; compare distance traveled in
the DPCh vs. VPCh in mice AT-Coc group). In contrast, AT-312
failed to alter the motor stimulatory action of cocaine in mice
lacking NOP (Figure 4, lower right panel). Three-way ANOVA
revealed a significant effect of treatment [F(1, 60) = 82.02; P <

0.0001] but no significant interaction between pretreatment and
treatment [F(1, 60) = 0.12; P > 0.05] or time × pretreatment ×
treatment interaction [F(2, 60) = 0.43; P > 0.05]. The post-hoc test
showed a significant increase in distance traveled by cocaine in
mice lackingNOP regardless of the pretreatment (Figure 4, lower
panel). Together, these results suggest that AT-312 abolished
the motor stimulatory action of cocaine in wild-type but not
knockout mice.

DISCUSSION

Themain findings of the present study are (i) AT-312 significantly
attenuates acquisition of CPP to morphine and cocaine in the
CPP paradigm; (ii) AT-312 attenuatesmorphine and cocaine CPP

FIGURE 3 | Effect of AT-312 on cocaine-induced CPP in wild-type (Upper;

n = 13 mice per treatment) or knockout (Lower; n = 10 mice per treatment)

mice. Data are mean (±SEM) of the amount of time that mice spent in the

vehicle-paired chamber (VPCh) and drug-paired chamber (DPCh) on the

preconditioning (D1) and postconditioning (D5) test days. **P < 0.01; ****P <

0.0001, a significant increase in the amount of time that mice spent in the

DPCh vs. its respective VPCh on D5.

through its action at the NOP receptor, as this attenuation is
absent in mice lacking the NOP receptor; and (iii) AT-312 blocks
morphine- and cocaine-induced locomotor stimulation.

Previous studies have shown that N/OFQ reduces the
rewarding action of morphine (17, 35), raising the possibility
that nonpeptide NOP agonists may reduce the rewarding effects
of opioids. Indeed, the selective small-molecule NOP agonist Ro
64-6198 blocked the acquisition and reinstatement of morphine
CPP in mice (29). A chemically-related NOP agonist Ro 65-6570
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FIGURE 4 | Effects of AT-312 on cocaine-induced motor stimulation during

conditioning in wild-type and knockout mice. Motor activity was measured in a

subset of animals (n = 6 mice per genotype for each treatment) and the

experiment was repeated three times (n = 2 mice of each genotype per

treatment for each cohort). On each conditioning day, wild-type (Upper) and

NOP knockout (Lower) mice were treated with vehicle or AT-312 (3 mg/kg)

5min before cocaine (15 mg/kg, i.p.) and distance traveled by mice in the

drug-paired chamber (DPCh) was recorded for 30min each day. The distance

traveled by mice in the saline-paired chamber (VPCh) was also recorded, in

which mice were injected with vehicle and 5min later with saline. *P < 0.05,

**P < 0.01 and ****P < 0.0001, a significant increase in distance traveled by

mice in the DPCh vs. their respective VPCh on this day. ++P < 0.01 and
++++P < 0.0001 vs. DPCh in mice treated with AT-312 followed by cocaine

on this day.

demonstrated significant “anti-opiate” effects in rats by reducing
CPP of a variety of opiate drugs including morphine, oxycodone,
and heroin, particularly when administered within a 15-min
(but not 30-min) pretreatment interval. We previously reported

that another chemically distinct, and modestly selective NOP
agonist AT-202 suppressed the acquisition of morphine CPP
in mice, and this effect was reversed by pretreatment with a
selective NOP antagonist SB-612111 (36), confirming the NOP
receptor as the target for the anti-rewarding effect of AT-202.
Results in this study showed that morphine induced a robust
acquisition of CPP response in NOP wild-type mice, and this
response was significantly reduced in mice pretreated with AT-
312 in conjunction with morphine. The inhibitory effect of AT-
312 on acquisition of morphine CPP appears to be consistent
with that observed with other previously reported NOP agonists.
Morphine also showed a robust CPP in mice lacking the NOP
receptor; however, pretreatment with AT-312 had no effect on
morphine place preference in these mice. This lack of an effect
in the NOP knockout mice further confirms that the efficacy of
AT-312 in attenuating morphine place preference is through its
action at the NOP receptor.

We recently showed that AT-312 is devoid of intrinsic
motivational effects and does not induce CPP or CPA in mice
(32). Similarly, we have shown that other NOP-selective agonists
such as AT-202 is also devoid of intrinsic rewarding effects in the
CPP paradigm in mice, as is the NOP partial agonist AT-200 (36).
N/OFQ (i.c.v.) was also shown to be devoid of intrinsic rewarding
effects (37) and even though it decreases basal dopamine levels in
the NAc (14), it shows only a mild conditioned place aversion
in mice (23). Among other nonpeptide NOP agonists, Ro 65-
6570 showed no intrinsic rewarding effects in the CPP paradigm
in rats (30); but, the closely related Ro 64-6198 appeared to
induce a place preference in rats in this same study, an effect
reversed by dopamine D2 receptor antagonist haloperidol but
not by a NOP antagonist or opioid antagonist naloxone (30).
Taken together, it appears that nonpeptide NOP agonists lack
intrinsic rewarding effects and show selective attenuation of the
acquisition of morphine CPP through their action at the NOP
receptor.

Opioids and psychostimulant drugs are known to produce
hyperlocomotion in rodents. Exogenously administered (i.c.v)
N/OFQ (1–10 nmol) inhibits spontaneous locomotor activity in
mice (12, 38–40) and rats (41). Icv N/OFQ has also been shown
to block the locomotor stimulant effect produced by cocaine in
rats (20, 21) althoughN/OFQhad no effect onmorphine-induced
locomotor sensitization (22). Small-molecule NOP agonists such
as Ro 64-6198 (i.p.) also decreased locomotor activity in mice at
1 and 3 mg/kg doses for 30min after administration, returning
to normal at 60min (42). One concern with compounds that
cause motor sedation is that this may have confounding effects
in the place conditioning paradigm. AT-312 was also found to
decrease motor activity in wild-type mice in this study. However,
since the CPP test is conducted in a drug-free state, we believe
that the motor-suppressing effect of the drug is not the reason
for the inhibitory effect of AT-312 on the place preference. While
AT-312 completely blocked acquisition of morphine CPP, it only
modestly reduced the motor stimulatory effect of morphine in
wild-type mice (Figure 2, upper right panel). This effect was via
the NOP receptor because AT-312 did not reduce morphine-
induced motor stimulation in NOP knockout mice (Figure 2,
lower right panel). On the contrary, in NOP knockout mice,
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AT-312 pretreatment appeared to enhance the motor stimulatory
action of morphine (Figure 2, lower right panel). It is tempting
to conclude that this effect of AT-312 on morphine locomotor
activity in the absence of the NOP receptor, is due to the low level
ofMOP partial agonist activity of AT-312 (32). However, this may
be less likely because the CPP response was comparable between
the vehicle and the AT-312-treated groups in the NOP knockout
mice (Figure 1, lower panel). The use of a MOP receptor
antagonist in NOP knockout mice should shed more light in this
regard. Together, it appears that AT-312 selectively blocks the
rewarding and motor stimulatory actions of morphine through
the NOP receptor. Furthermore, this effect is not through a
non-selective reduction in the motor activity of mice, as we
recently demonstrated that other sedative-hypnotic drugs such
as pentobarbital, which robustly reduce motor activity in mice,
do not diminish the place preference induced by ethanol, even
when administered at motor-suppressive doses (32).

N/OFQ (i.c.v.) has been shown to reduce the rewarding
effects of cocaine in mice (23). However, studies with small-
molecule NOP agonists thus far have shown inconsistent results
in their effects in the place conditioning paradigm in rodents
(30, 43, 44). For instance, Sartor and colleagues reported that
SR-8993, a highly selective nonpeptide agonist failed to block
expression, acquisition or reinstatement of cocaine CPP in mice
(43). However, the NOP full agonist Ro 65-6570 significantly
attenuated cocaine CPP in rats, and the effect was particularly
robust when the pretreatment time was increased to 15-min prior
to cocaine injections (30). We observed a complete blockade
of cocaine-induced CPP in wild-type mice by AT-312 and this
response was abolished in mice lacking NOP, suggesting that
the inhibitory action of AT-312 was via the NOP receptor. We
also found that AT-312 robustly reduced the motor stimulatory
effect of cocaine in wild-type mice, which is consistent with our
earlier results using N/OFQ (20, 45). Although we do not know
why the previous study with small-molecule NOP agonist SR-
8993 failed to show an effect on the rewarding action of cocaine,
one cannot rule out the impact of pharmacokinetic profiles and
pretreatment intervals, which could be a potential confound in
terms of their effectiveness in reducing the rewarding effects
of cocaine (43). We reported the pharmacokinetic profile and
brain penetration of AT-312 in mice (32) and have observed in
our studies that AT-312 works within minutes of administration,
and that its peak plasma and brain concentration occur within
30min. Thus, with our pretreatment interval of 5-min and testing
period of 30-min, we observe a robust inhibitory effect of AT-
312 on cocaine CPP. It is possible that for NOP agonist SR-
8993, the reported pretreatment times of 30min or 2 h before
cocaine administration may have missed the window of effect of
this compound on cocaine-induced CPP. Further studies with

new chemically unrelated selective NOP agonists are certainly

warranted to clear the inconsistencies observed thus far with
nonpeptide NOP agonists in cocaine reward.

There are different phases of CPP, the acquisition when the
CPP response develops and the expression of the CPP response,
when the CPP response is measured. In the present study we only
assessed the effect of the NOP agonist on the acquisition of the
CPP response and tested animals in a drug-free state to rule out
the impact of motor impairment on the expression of the CPP
response, given that NOP agonists are known to cause motor
suppression. However, further studies are needed to assess the
impact of NOP agonists on the expression of the CPP response,
on the CPP response once it is fully developed and on extinction
and reinstatement processes.

NOP agonists have been shown to impact learning and
memory processes. In particular, NOP agonists are known to
impair several learning tasks and various types of memory
(46–53) whereas NOP knockout mice show enhanced memory
(50, 54, 55). Therefore, one might argue that AT-312 decreases
acquisition of CPP induced by morphine, cocaine (or alcohol
in our previous study) by affecting cognitive processes rather
than acting on reward-related processes. However, not all types
of memory are affected similarly by activation of the NOP
receptor. While N/OFQ has been shown to block acquisition of
cocaine- as well as morphine-induced CPP, it failed to reduce
acquisition of naloxone-induced conditioned place aversion (23).
Likewise, N/OFQ has been reported to reduce the expression of
morphine-induced CPP at doses that did not alter the expression
of naloxone-induced conditioned place aversion (56).

In summary, these results add to our observations that
nonpeptide NOP agonists like AT-312 block the rewarding
effects of several abused drugs such as morphine, cocaine
and alcohol, and may be a promising approach for opioid
and psychostimulant addiction pharmacotherapy. Given that
addiction to multiple substances is also quite prevalent and there
are limited therapeutic options, NOP receptor agonists may have
broad therapeutic utility for treating polydrug addiction.
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Opioids are powerful analgesics but the clinical utility of these compounds is reduced by

aversive outcomes, including the development of affective and substance use disorders.

Opioid systems do not function in isolation so understanding how these interact with

other neuropharmacological systems could lead to novel therapeutics that minimize

withdrawal, tolerance, and emotional dysregulation. The cannabinoid system is an

obvious candidate as anatomical, pharmacological, and behavioral studies point to

opioid-cannabinoid interactions in themediation of these processes. The aim of our study

is to uncover the role of specific cannabinoid and opioid receptors in addiction-related

behaviors, specifically nociception, withdrawal, anxiety, and depression. To do so, we

tested the effects of a selective CB1 agonist, arachidonyl-2-chloroethylamide (ACEA),

on mouse behavior in tail immersion, naloxone-precipitated withdrawal, light-dark, and

splash tests. We examined cannabinoid-opioid interactions in these tests by comparing

responses of wildtype (WT) mice to mutant lines lacking either Mu or Delta opioid

receptors. ACEA, both acute or repeated injections, had no effect on nociceptive

thresholds in WT or Mu knockout (KO) mice suggesting that analgesic properties of

CB1 agonists may be restricted to chronic pain conditions. The opioid antagonist,

naloxone, induced similar levels of withdrawal in all three genotypes following ACEA

treatment, confirming an opioidergic contribution to cannabinoid withdrawal. Anxiety-like

responses in the light-dark test were similar across WT and KO lines; neither acute nor

repeated ACEA injections modified this behavior. Similarly, administration of the Delta

opioid receptor antagonist, naltrindole, alone or in combination with ACEA, did not alter

responses of WT mice in the light-dark test. Thus, there may be a dissociation in the

effect of pharmacological blockade vs. genetic deletion of Delta opioid receptors on

anxiety-like behavior in mice. Finally, our study revealed a biphasic effect of ACEA on

depressive-like behavior in the splash test, with a prodepressive state induced by acute

exposure, followed by a shift to an anti-depressive state with repeated injections. The

initial pro-depressive effect of ACEA was absent in Mu KO mice. In sum, our findings

confirm interactions between opioid and cannabinoid systems in withdrawal and reveal

reduced depressive-like symptoms with repeated CB1 receptor activation.
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INTRODUCTION

Opioid and cannabinoid systems both play a critical role in
a number of addiction-related behaviors, such as analgesia,
reward, and emotional processing (1, 2). This commonality of
function may reflect colocalization of opioid and cannabinoid
receptors in brain regions implicated in each process and/or
a common mechanism of receptor activation. In terms of the
latter, Mu (MOP), Delta (DOP), and Kappa (KOP) opioid
receptors, as well as both cannabinoid receptors (CB1 and CB2),
are all coupled to inhibitory G proteins. Similarly, anatomical
distribution of the three opioid receptors (3, 4) overlaps with
CB1 receptor distribution (1) in many areas of the central
nervous system (CNS). In contrast, anatomical localization of
CB2 receptors in the CNS is not well studied. Indeed, initial
reports described CB2 expression in immune cells (5, 6),
although more recent work confirmed central expression of
these receptors (7–9). Consequently, the anatomical relationship
between CB2 receptors and either CB1 or opioid receptors
is not known. Importantly, colocalization of opioid and CB1
receptors has been reported in the spinal cord, a critical
site for antinociception (10–12), and in higher brain regions
associated with emotional processing (13). This pattern of co-
expression suggests that cannabinoid-opioid interactions may
mediate behavioral responses related to pain relief and addiction
(1, 6, 14), a process that may involve the formation of receptor
heteromers (15).

Pharmacological and genetic knockout studies confirm
interactive effects of opioid and CB1 receptors in antinociception
(16) and behaviors related to addiction (17). For example,
pharmacological blockade of either opioid or cannabinoid
receptors with selective antagonists attenuates behavioral
responses induced by an agonist of the other system (14). In
addition, genetic inactivation of MOP receptors, producing
knockout (KO) mice, decreases physical dependence induced
by chronic administration of cannabinoid agonists (18, 19)
and reduces the reinforcing properties of these drugs (18).
Conversely, inactivation of CB1 receptors inhibits the rewarding
properties of a MOP receptor agonist (19–21).

Most studies examining opioid mechanisms in pain relief
focus on MOP receptors because of the potent analgesic
properties of MOP agonists, such as morphine. Unfortunately,
the therapeutic utility of these compounds is often limited as
repeated use can lead to both tolerance and addiction (22). One
suggestion for increasing clinical efficacy is to combine MOP and
cannabinoid agonists, as this leads to increased analgesia (23–25)
with fewer side effects (26). Development of these combination
drugs depends on a better understanding of opioid-cannabinoid
interaction in antinociception and addiction-related behaviors
(e.g., tolerance, withdrawal, and emotional processing). To
date, the majority of studies examining behavioral responses to
cannabinoid receptor activation used 19-Tetrahydrocannabinol
(THC), the primary phytocannabinoid in the cannabis plant.

Abbreviations: ACEA, arachidonyl-2-chloroethylamide; CNS, central nervous

system; DOP, delta opioid; KO, knockout; KOP, kappa opioid; MOP, mu opioid;

NLX, naloxone; NTI, naltrindole; THC, 19-Tetrahydrocannabinol; WT, wildtype.

Because it is a partial agonist at both CB1 and CB2 receptors,
THC cannot dissociate the contribution of either cannabinoid
receptor to behavioral and affective processes related to
pain management. This is a particularly important issue in
pain studies, given recent evidence that CB2 receptors are
involved in pathological states, such as neuroinflammation and
hypersensitivity (27).

In this study, we explored possible interactions between opioid
and cannabinoid systems in themediation of antinociception and
addiction-related behaviors. To do so, we examined the effect
of the selective CB1 agonist, arachidonyl-2-chloroethylamide
(ACEA) (28), on nociception, tolerance, withdrawal, and
emotion-related behaviors in MOP or DOP receptor deficient
mice. Nociception and tolerance to this effect were assessed
in the tail immersion assay; somatic withdrawal symptoms
were measured following an injection of the opiate antagonist,
naloxone. We relied on naturalistic behaviors to assess anxiety-
like (light-dark box) and depressive-like (splash test) responses
in mice. Finally, we tested the consequences of both acute and
repeated ACEA treatments on opioid-mediated effects in order
to assess putative biphasic properties of this agonist.

MATERIALS AND METHODS

Animals
One hundred and sixty-eight male and female mice lacking
MOP or DOP receptors (MOP KO and DOP KO, respectively)
and their wildtype controls (12–24 weeks) were group housed
(2–5/cage) under standard light, temperature, and humidity
conditions (12 h light-dark cycle, 22 ± 2◦C, 55 ± 10% humidity)
with ad libitum access to food and water. Mice were generated by
homologous recombination (29, 30). The genetic background of
all mice was 50% C57/BL6J:50% 129svPas.

Research was conducted in accordance with the European
Communities Council Directive of 22 September 2010 (directive
2010/63/UE), under the guidelines of the Committee for
Research and Ethical issues of the International Association
for the Study of Pain (31). Experiments were approved by the
local ethics committee (Comité Régional d’Ethique en Matière
d’Expérimentation Animale de Strasbourg CREMEAS), and
findings are reported following the ARRIVE Guidelines for
experiments involving animals.

Drugs
ACEA (Tocris, Bio-techne, Lille, France) was dissolved in 0.9%
saline solution (supplied pre-dissolved in ethanol at 5 mg/ml)
to obtain doses of 0.15, 3, and 5 mg/kg. Naloxone (NLX) and
Naltrindole (NTI) (Sigma-Aldrich St-Quentin Fallavier, France)
were dissolved in saline solution to obtain final doses of 1 and
2.5 mg/kg, respectively. Vehicle (saline or 6% ethanol) injections
were used as controls. All drug and vehicle injections were
administered ip using 100 µl solution per 10 g bodyweight.

Behavioral Procedures
In each group, approximately equal numbers of male and female
mice were used. A total of 22 DOP KO, 49 MOP KO, and 97
WT mice were used. Mice were habituated to the facility and
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handled for one week before starting the experiments. Behavioral
tests were conducted during the light phase and performed blind
to genotype and treatment. ACEA or vehicle was administered
45min before tail immersion or light-dark tests, 35min before
the splash test, and 90min before precipitated withdrawal.

Tail Immersion
Thermal nociceptive thresholds were assessed in the tail
immersion test by gently restraining mice and immersing ∼2/3
of the tail in a water bath at 47◦C. The latency to withdraw the tail
was recorded before and after ACEA injections. Acute responses
to increasing doses of ACEA were tested in WT and MOP KO
mice. The effects of repeated ACEA injections (3 mg/kg) on
antinociception were tested in a separate group of WT and MOP
KO mice by measuring tail immersion responses on day 1 and
day 5 of treatment. Hypersensitivity to repeated treatment was
assessed 23 h after the last injection, as described previously (32).

Naloxone-Precipitated Withdrawal From ACEA
To evaluate the role of the opioid system in cannabinoid
withdrawal, WT, MOP KO, and DOP KO mice received ACEA
injections (3 mg/kg once per day for 5 days) followed by a
naloxone injection (1 mg/kg), administered 90min after the last
ACEA injection. Withdrawal behaviors were summed over a 20-
min observation period and three separate scores were computed
for each animal. First, global withdrawal scores were calculated
by summing the following values: jumping x 0.8, wet dogs shakes
x 1, paw tremors x 0.35, ptosis x 1.5, teeth chattering x 1.5,
body tremors x 1.5, and piloerection x 1.5. Second, a subcategory
of somatic signs was calculated by combining the total number
of jumps, paw tremors, and wet dog shakes. Third, signs of
discomfort reflected the sum of stretching, genital licks, and body
tremors (33).

Light-Dark Test
The light-dark test, assessing anxiety-like behavior in rodents,
employed an apparatus composed of two compartments (20 ×

20 × 25 cm), connected by a tunnel (6 × 16.5 × 20 cm) (34).
One compartment was brightly illuminated (>400 lx); the other
was dark (7 lx). Mice were placed in the dark compartment and
allowed to freely explore the apparatus for 5min while the time
spent in each compartment and the tunnel was recorded. Mice
have a natural tendency to avoid lit environments: decreased
time spent in the dark compartment is a measure of reduced
anxiety (35). WT, MOP KO, and DOP KO mice were tested
prior to drug administration (baseline; BL) and then following
ACEA injections (3 mg/kg) on days 1 and 3. The role of DOP
receptors in ACEA-induced changes in anxiety-like behavior
was assessed in WT mice by administering NTI prior to ACEA
injections; control groups received saline plus ACEA or NTI plus
vehicle.

Splash Test
The splash test (36, 37) consists of vaporizing a 20% sucrose
solution on the back fur of mice; mice initiate grooming in
response to the solution viscosity. The number of grooming
responses (head or body grooming, shakes, and scratches) and
the time spent grooming were recorded over 5min. Repeated

stress decreases grooming responses, which is reversed by
antidepressant treatment (38), providing an assay for changes
in depressive-like behavior in rodents. WT, MOP KO, and DOP
KO mice were assessed in the splash test following days 1 and 3
of ACEA treatment (3 mg/kg). As with the light-dark test, WT
mice were tested following injections NTI plus ACEA, saline plus
ACEA, or NTI plus vehicle.

Data Analyses
Statistical tests were performed using Graphpad Prism R©

statistical software (Version 6.0; La Jolla, CA, USA). Data from
the tail immersion, light-dark, and splash tests were analyzed
using a two-way analysis of variance (ANOVA) with genotype as
a within subject’s factor and dose or day of injection as repeated
factors. A 2-way ANOVA (genotype by drug) was used to assess
each category of withdrawal score. Subsequent comparisons were
conducted using Bonferroni post hoc tests. Statistical significance
was set at p < 0.05.

RESULTS

Body weight was monitored across the entire experiment with
daily weights recorded on all drug treatment days. Using body
weight prior to the first injection as a baseline, ANOVA revealed
no effect of drug (ACEA, NTI, or NTI+ ACEA) on body weights
at d5 in either WT (ACEA, 97.5% of BL; NTI, 95.1% of BL,
NTI+ACEA, 101.8% of BL), MOP KO (Vehicle, 102.7% of BL;
ACEA, 100.7% of BL), or DOP KO (Vehicle, 100.6% of BL;
ACEA, 97.9 % of BL) mice.

Thermal Nociception
As shown in Figure 1A, acute injections of ACEA had no
effect on thermal nociception in WT or MOP KO mice across
a range of doses [WT: F(3, 32) = 1.43, P = 0.24; MOP KO:
F(3, 31) = 1.86, P= 0.15]. Although MOP receptors preferentially
mediate nociceptive response in mice (30), we did not observe
any significant modification of nociceptive thresholds in this
genotype, compared toWTmice (P > 0.05). We also investigated
the effects of repeated subanalgesic doses of ACEA (Figure 1B),
revealing no drug-induced alteration in thermal nociceptive
thresholds in WT mice [F(1, 45) = 0.04, P = 0.15] and no effect
of repeated injections [F(2, 90) = 1.30, P = 0.27]. MOR KO mice
developed hypersensitivity, with decreased thermal nociceptive
thresholds after the 1st vehicle and 5th ACEA injections [Drug
X Time Interaction: F(2, 44) = 3.40, P < 0.05]. Finally, there was
no effect of chronic ACEA treatment on thermal nociceptive
thresholds in either WT or MOP KO mice, measured 23 h after
the last injection (Figure 1C) [WT: F(1, 45) = 0.40, P= 0.15; MOP
KO: F(1, 22) = 2.68, P = 0.11].

Naloxone-Precipitated Withdrawal From
ACEA
Naloxone induced increased global withdrawal scores in animals
chronically treated with ACEA [F(1, 41) = 28.85, P < 0.0001].
The effect was consistent across WT, MOP KO, and DOP KO
mice [F(2, 41) = 1.74, P = 0.16], with modest changes in all three
genotypes treated with vehicle (Figure 2A). A more detailed
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FIGURE 1 | Effects of ACEA on thermal nociceptive thresholds in wildtype (WT) (left) and MOP receptor knockout (KO) (right) mice following acute (A) or chronic (B)

injections and during a post-treatment drug-free test (C). (A) Bars represent mean (+SEM) latency (s) to withdraw the tail from a heated bath 45min after ACEA (0.15,

3, or 5 mg/kg) or vehicle injections. (B) Tail withdrawal latencies are expressed as mean (+SEM) % change from baseline (BL) following vehicle or ACEA (3 mg/kg)

administration on days 1 and 5 (d1, d5) of a 5-day dosing regime. BL was established one day prior to the first injection. (C) Tail withdrawal latencies, shown as mean

(+SEM) % change from BL, were assessed 23 h following the final ACEA or vehicle injection. ACEA = arachidonyl-2-chloroethylamide **P < 0.01; ***P < 0.001.

analysis revealed that ACEA treatment increased both somatic
symptoms [F(1, 41) = 24.45, P < 0.0001] and signs of discomfort
[F(1 41) = 3.80, P = 0.058], although the latter did not reach
statistical significance (Figures 2B,C). Differences in somatic
signs in ACEA- and vehicle-treated mice varied across genotype
[F(2, 41) = 4.50, P < 0.05], with MOP KO showing reduced signs
of withdrawal compared to WT and DOP KO mice. Signs of
discomfort were relatively low in all animals and did not differ
across the three lines [F(2, 41) = 0.97, P = 0.07].

Light-Dark Test
Figure 3A shows that there were no significant differences in
baseline levels of anxiety, measured in the light-dark test, across
WT, MOP KO, and DOP KO mice [F(2, 37) = 1.436, P =

0.25]. Repeated drug injections (ACEA with and without NTI)
decreased anxiety-like effects in WT mice (Figure 3B) [F(2, 42) =
7.93, P < 0.01], although there was no overall main effect of drug
[F(2, 21) = 0.02, P = 0.97]. Post-hoc tests revealed a significant
difference in % time spent in the dark on BL compared to d1 for
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FIGURE 2 | Effects of ACEA treatment on naloxone-precipitated withdrawal in wildtype (WT), MOP knockout (KO), and DOP KO mice. Bars represent mean (+SEM)

global withdrawal scores (A), somatic signs (B), and signs of discomfort (C) for each genotype over a 20-min observation session. Naloxone (1 mg/kg) was

administered 2 h after the last injection of vehicle or ACEA (3 mg/kg per day for 5 days). ACEA = arachidonyl-2-chloroethylamide *P < 0.05; **P < 0.01.

mice treated withNTI plus ACEA (Bonferroni post-hoc P< 0.05).
Similarly, repeated injections of ACEA increased % time in the
dark in both KO lines [F(2, 28) = 8.57, P < 0.01] (Figure 3C), due
to significant changes from BL to both d1 and d3 in MOP KO
mice (Bonferroni post-hoc P < 0.05 and P < 0.01).

Splash Test
As shown in Figure 4, grooming scores of WT controls
(Figure 4A) were higher than both MOP (Figure 4C) and DOP
(Figure 4D) KO mice following a vehicle injection, although
time spent grooming was consistent across genotypes. Statistical
analysis revealed that the effect of ACEA on grooming scores in
WT and DOP KOmice was modified with repeated testing [WT:

F(1, 23) = 7.15, P < 0.05; DOP KO: F(1, 12) = 15.50, P < 0.01].
Analysis of time spent grooming revealed a similar drug x time

interaction in these groups [WT: F(1, 23) = 15.25, P < 0.0001;
DOP KO: F(1, 12) = 16.23, P < 0.01]. These effects were due to

decreased grooming on day 1 in ACEA- vs. vehicle-treated mice

and increased drug-induced grooming on day 3 compared to day

1 (post-hoc Ps < 0.05). ACEA increased grooming score [F(1, 29)
= 17.04, P < 0.001], but not time spent grooming [F(1, 29) = 0.53,

P = 0.46], in MOP KO mice. As with WT and DOP KO mice,

both measures increased with repeated injections in this group

[grooming score: F(1, 29) = 7.30, P < 0.05; time spent grooming:

F(1, 29) = 5.38, P < 0.05]. In sum, the first ACEA injection

decreased grooming in WT and DOP KO mice, while having no
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FIGURE 3 | Effects of ACEA treatment on anxiety-like behavior in the

light-dark test for wildtype (WT), MOP knockout (KO), and DOP KO mice. (A)

Bars represent mean (+SEM) time (s) spent in the dark compartment for each

genotype over a 5-min drug-free test, which constituted baseline (BL) values.

(B) Time in the dark compartment is shown as mean (+SEM) % change from

BL, assessed on days 1 and 3 (d1, d3) in WT mice, following injections of

ACEA plus saline, ACEA combined with naltrindole (NTI), or NTI alone. (C)

Time in the dark compartment, expressed as mean (+SEM) % change from

BL, was assessed in the two KO lines on days 1 and 3 following daily

injections of vehicle or ACEA (3 mg/kg). ACEA =

arachidonyl-2-chloroethylamide. *P < 0.05; **P < 0.01.

effect in MOP KO mice. Interestingly, this prodepressive drug
effect was altered following 3 days of injections in WT mice:
grooming score returned to basal levels and time spent grooming
was increased beyond these levels. The pattern was similar in
DOP KO mice, showing increases in both measures following
the third ACEA injection. In MOP KOmice, grooming score and
time spent grooming were not significantly altered in MOP KO
mice on day 1; grooming score increased following the 3rd ACEA
injection.

We verified this biphasic effect of ACEA on depressive-like
behavior in a separate group ofWTmice (Figure 4B), replicating
decreased grooming at day 1 with a return to baseline levels
by day 3 [grooming score: F(2, 42) = 4.41, P < 0.05; time spent

grooming: F(2, 42) = 9.95, P < 0.001]. Pretreatment with NTI had
no significant effect on either measure [grooming score: F(2, 21)
= 1.55, P = 0.20; time spent grooming: F(2, 21) = 1.23, P = 0.31].

DISCUSSION

The goal of this study was to clarify the role of CB1 receptors in
addiction-related behaviors and to assess potential interactions
with opioid mechanisms, specifically MOP and DOP receptors.
Extensive research over the last decades confirms an important
contribution of cannabinoid mechanisms to processes such
as antinociception, drug dependence, and emotional responses
(1, 39, 40), but many of these studies employed THC or
other nonselective compounds. Studies using receptor KO mice
confirm that both CB1 and CB2 receptors play a role in
these processes (1, 41, 42), pointing to the need to examine
behavioral effects of pharmacological tools that specifically target
each receptor. To this end, we used the selective CB1 agonist,
ACEA, as this compound has a Ki of 1.4 nM for CB1, vs. a Ki
<2000 nM for CB2, or 1,400 times greater for CB2 compared
to CB1 (43). Confirmation of compound selectivity is provided
by abolishment of neurotoxicological effects of ACEA in CB1
KO animals (44), although functional selectivity of G protein
signaling may be lost with high doses of ACEA (45).

Use of this highly specific compound revealed a distinct
pattern of behavioral effects, some of which differed from results
using other CB1 agonists. First, we show that ACEA did not
alter bodyweight, despite evidence that other CB1 agonists have
orexigenic properties in human and rodents, and that CB1
antagonists may facilitate weight loss (46, 47). We also observed
no effect of ACEA on antinociceptive thresholds across a range
of doses, contradicting previous evidence that CB agonists such
as THC, CP55,940, anandamide, or WIN are analgesic (48, 49).
We confirmed a lack of ACEA-induced antinociception in a
separate group of mice treated with a single dose and revealed
no changes in this measure with repeated injections. It is possible
that ACEA doses in our study were too low to be effective as
higher doses of THC are required to elicit analgesic responses
in the tail immersion, compared to the hot plate, test (20). It
is also possible that extending the ACEA dosing regime may
have revealed behavioral effects that were not apparent following
the protocol used in this study. At the same time, high doses
of CB agonists, such as THC, may induce hypolocomotion
and catalepsy (50), which could interfere with the behavioral
expression of pain and confound measures of antinociception. In
addition, THC produces aversive effects at higher doses, such as
anxiety and weight loss, which may explain contracictory effects
of cannabinoid agonists at high and low doses (51–53). Repeated
injections of cannabinoid agonists, such as ACEA, could lead
to poor health outcomes minimizing the ethological validity of
our findings. Importantly, doses of ACEA comparable to those
in our study reduce mechanical allodynia in mouse models of
osteoarthritic (54) and neuropathic (55) pain. A more plausible
explanation for our negative findings, therefore, is that CB1
receptors are not involved in antinociceptive responses in pain
naïve states, fitting evidence that ACEA-induced analgesia in
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FIGURE 4 | Effects of ACEA treatment on depressive-like behaviors in the splash test for wildtype (WT) (A), MOP knockout (KO) (C), and DOP KO (D) mice. Bars

represent mean (+SEM) grooming score (left) and time (s) spent grooming (right) in response to vaporization of a 20% sucrose solution on the back fur. Responses

were assessed in each genotype over a 5-min period, 45min after the first and third daily (d1, d3) injections of vehicle or ACEA (3 mg/kg). Grooming responses were

assessed in a separate group of WT mice on days 1 and 3 (d1, d3) following injections of ACEA plus saline, ACEA combined with naltrindole (NTI), or NTI alone (B).

ACEA = arachidonyl-2-chloroethylamide *P < 0.05; **P < 0.01; ***P < 0.001.
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a neuropathic model does not extend to the paw contralateral
to the injury (54). This dissociation in the effectiveness of
ACEA treatment may reflect altered endocannabinoid signaling,
including changes in CB1 receptor function, that is associated
with persistent pain states (56).

Our study also provides the first evidence of naloxone-
precipitated withdrawal following chronic ACEA treatment.
The effect was consistent across all three genotypes but was
substantially lower than symptoms observed following treatment
with a classic MOP receptor agonist, morphine (33). This general
reduction in withdrawal signs may have obscured any genotypic
differences in our study, such as decreased withdrawal in MOP
or DOP KO mice. If these do exist, they could be revealed by a
more intense treatment regime (i.e., higher dose and/or increased
number of injections). Regardless, our finding that naloxone
elicited withdrawal symptoms in ACEA-treated mice adds to
evidence of opioid-cannabinoid interactions in this behavior.
For example, cannabinoid antagonists, such as SR141716A, elicit
withdrawal symptoms following chronic morphine injections
(17, 19, 57) and opioid antagonists induce withdrawal in rodents
previously treated with cannabinoid agonists (17). Studies using
genetically modified mice confirm opioid-cannabinoid cross-
talk in drug withdrawal: naloxone-precipitated withdrawal is
decreased in CB1 receptor knockout mice following morphine
treatment (19–21) and MOP KO mice exhibit reductions
in SR141716A-induced withdrawal following chronic THC
treatment (19). The latter effect is dose dependent and
alleviated by morphine injections in wildtype mice, providing
further support for cannabinoid-opioid interactions in drug
withdrawal.

Given the reciprocal relationship between opioid and
cannabinoid systems in drug withdrawal, our observation that
ACEA treatment induced withdrawal symptoms in both MOP
and DOP KO mice seems counterintuitive. These findings
could suggest that the KOP receptor has a critical role in
cannabinoid withdrawal. This fits evidence that DOP receptors
contribute to negative affective states induced by THC (18,
20, 58), but have no role in the anxiolytic properties of the
drug (59). In addition, naloxone is a nonselective antagonist
so if a single receptor subtype is deleted (e.g., MOP or DOP),
withdrawal symptoms could be elicited through an action at the
remaining, intact receptors. This would explain why naloxone-
precipitated withdrawal following cannabinoid treatment is
not modulated in mice lacking either MOP, DOP, or KOP
receptors (18).

A novel finding in our study is that initial administration of a
CB1 agonist produces a depressive-like state, which recovers with
further drug exposure. This could explain why the rewarding
effects of cannabinoid agonists, including THC, are only revealed
in self-administration or place conditioning paradigms when
animals receive priming injections prior to training (18, 51,
53, 60, 61). Interestingly, the pro-depressive effect of acute
ACEA injections (i.e., day 1) was absent in MOP KO mice,
mimicking decreased depressive-like symptoms of this genotype
in other behavioral tests (29). Despite this initial blunting,
repeated ACEA injections reduced depressive-like symptoms in
MOP KO animals, matching behavioral effects observed in DOP

KO mice. WT mice showed a different profile: repeated ACEA
injections restored grooming scores to basal levels but increased
time spent grooming above control levels. MOP receptors,
therefore, appear to mediate the initial pro-depressive effects of
ACEA without affecting the subsequent anti-depressive effects of
repeated exposure.

In contrast to depressive-like behaviors, we observed no
effect of either acute or chronic ACEA injections on anxiety-
like responses in the light/dark box. This appears to contradict
previous findings in the elevated plus maze (54), although
decreased time spent in open arms was only observed with
higher doses of the drug. At least for another CB agonist (THC),
anxiolytic properties at low doses (59, 61) are replaced by
anxiogenic effects at higher ones (51, 61). As noted previously,
hypolocomotion and catalepsy induced by higher dose of THC
(50) could modify responses in a number of behavioral tasks
including the light-dark test, open field, and elevated plus maze.
At the very least, given that we used identical dosing procedures
in splash and light/dark tests, our findings provide evidence for
a dissociation in the effects of CB1 activation on anxiety- and
depressive-like responses in mice.

Given the key role of DOP receptors in anxiety and depression
(29), we went on to test whether pharmacological blockade of
these receptors in WT mice would alter responses in splash
or light/dark tests. The DOP receptor antagonist, NTI, was
ineffective on its own, but decreased time spent grooming in
the splash test when combined with ACEA. This reduction was
not matched by a reduction in grooming score, suggesting that
the drug combination may have disrupted a general pattern of
naturalistic behavior (i.e., grooming). Overall, our results are
consistent with previous studies: although NTI disrupts pro-
depressive or anxiogenic effects of DOP agonists (62–64), it is
ineffective when administered alone (65, 66). Our findings that
pharmacological blockade of DOP receptors has no effect on
anxiety- or depressive-like behaviors conflicts with studies using
genetically modified mice (67), suggesting that developmental
adaptations impact the function of these receptors in emotional
expression.

In sum, our results help to clarify how opioid and
cannabinoid systems interact in behavioral processes associated
with addiction. The use of a selective CB1 agonist revealed no
involvement of this receptor in either antinociception or anxiety-
like behaviors in mice. In contrast, repeated activation of CB1
receptors induced opioid-dependent withdrawal symptoms and
produced a biphasic effect on depressive-like symptoms. In the
long-term, this information could facilitate the development of
new pain medications that reduce the incidence of affective and
substance use disorders that currently characterize long-term
opioid use.
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Opioids remain among the most effective pain-relieving therapeutics. However, their
long-term use is limited due to the development of tolerance and potential for addiction.
For many years, researchers have explored the underlying mechanisms that lead to this
decreased effectiveness of opioids after repeated use, and numerous theories have
been proposed to explain these changes. The most widely studied theories involve
alterations in receptor trafficking and intracellular signaling. Other possible mechanisms
include the recruitment of new structural neuronal and microglia networks. While
many of these theories have been developed using molecular and cellular techniques,
more recent behavioral data also supports these findings. In this review, we focus
on the mechanisms that underlie tolerance within the descending pain modulatory
pathway, including alterations in intracellular signaling, neural-glial interactions, and
neurotransmission following opioid exposure. Developing a better understanding of the
relationship between these various mechanisms, within different parts of this pathway,
is vital for the identification of more efficacious, novel therapeutics to treat chronic pain.

Keywords: opioid, tolerance, periaqueductal gray (PAG), RVM, dorsal horn

DESCENDING PAIN PATHWAY IN OPIOID FUNCTIONS

Opioids are widely used pain therapeutics; however, the development of tolerance limits the long-
term use of opioids due to the need for dose escalation over time in order to maintain analgesia.
While there are four main types of opioid receptors, most pain therapeutics, including morphine,
methadone, fentanyl, and oxycodone, target the mu opioid receptor (MOPr). The MOPr is a
G-protein coupled receptor that couples to inhibitory heterotrimeric G-proteins (Gi/o) producing
subsequent intracellular signaling and ion conductance (Goode and Raffa, 1997; Gintzler and
Chakrabarti, 2004). MOPr expression within the descending pain modulatory pathway, which
includes the ventrolateral periaqueductal gray (PAG), rostral ventromedial medulla (RVM), and
the dorsal horn (DH) of the spinal cord, contribute to opioid-induced antinociception and the
development of opioid tolerance (Fang et al., 1989; Fairbanks and Wilcox, 1997; Tortorici et al.,
2001; Morgan et al., 2006; Bobeck et al., 2009).

GABAergic neurons within the PAG are a critical site of action by opioids. Under normal
conditions, these neurons have tonic activity (Figure 1, naive); however, upon binding of opioids
to MOPr, the activity of these neurons is decreased, disinhibiting PAG projections to the RVM
(Figure 1, Acute Morphine) (Stiller et al., 1996; Vaughan et al., 1997; Bobeck et al., 2014). In vitro
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electrophysiology studies have shown that opioids reduce the
frequency of spontaneous mIPSCs in PAG (Vaughan et al.,
1997; Bobeck et al., 2014), which indicates a reduction in the
probability of GABA release. This is also supported by in vivo
studies. Microinjection of bicuculline (GABAA agonist) into
the PAG produces antinociception, which suggests that GABA
is being tonically released (Bobeck et al., 2014). Furthermore,
microdialysis in the PAG reveals a reduction in extracellular
GABA following administration of morphine (Stiller et al., 1996).

Opioids activate different signaling cascades depending on
whether the MOPr is expressed at pre- or post- synaptic sites.
Opioid binding to postsynaptic MOPr results in the activation
of a G-protein inwardly rectifying potassium channels (GIRK)
that hyperpolarize GABAergic neurons in the PAG producing
an overall decrease in GABAergic neuron activity (Figure 1;
Acute Moprhine) (North and Williams, 1983; Pan et al., 1990).
Alternatively, when MOPr are expressed at presynaptic sites they
produce an inhibition of voltage gated calcium channels and
voltage gated potassium channels (Kv) resulting in the inhibition
of GABA release (Figure 1; Acute Morphine) (Wilding et al.,
1995; Vaughan et al., 1997; Connor et al., 1999; Williams et al.,
2001). Overall, the combined action of MOPr binding by opioids
is a decrease in GABAergic neuronal activity, and therefore an
increase in output from the PAG to the RVM (Figure 1; Moreau
and Fields, 1986; Depaulis et al., 1987; Jacquet, 1988; Osborne
et al., 1996). Recent studies support the hypothesis that this
increase in PAG output to the RVM is a main contributor to the
opioid-induced antinociception by demonstrating that selective
inhibition of GABAergic neurons or activation of glutamatergic
output neurons in the PAG mimics the antinociceptive effects
of opioids (Samineni et al., 2017). In summary, these findings
support the notion that analgesia is produced by disinhibition of
excitatory outputs from the PAG.

The overall effect of MOPr activation in the PAG is an increase
in output to the two distinct cell types within the RVM: off-cells
and on-cells (Fields et al., 1983; Fields and Heinricher, 1985).
The activity of off-cells pauses just prior to the response to a
painful stimulus, while the activity of on-cells increases during
this response, and both of these activities are blocked during
the administration of opioids. There is conflicting evidence
regarding the excitatory versus inhibitory nature of the PAG
projections to the on- and off-cells in the RVM. Studies in
GAD67-GFP mice, a marker for GABAergic neurons, show
that retrogradely labeled neurons from the RVM do no co-
localize with GAD67 in the PAG (Park et al., 2010), indicating
that the PAG to RVM projection is glutamatergic. In contrast,
studies in rats demonstrate that PAG to RVM projections are a
mix of GABAergic and glutamatergic neurons (Morgan et al.,
2008). Furthermore, these studies demonstrate that GABAergic
neurons project from PAG and target on-cells and glutamatergic
neurons project from the PAG and target off-cells (Morgan et al.,
2008). Despite these differences, both studies support the notion
that opioids inhibit GABA release from interneurons in the
PAG, which disinhibit (i.e., excite) glutamate projections to off-
cells. Given that the off-cells in the RVM are GABAergic, they
subsequently inhibit pain responses in the DH (Fields et al., 1983;
Moreau and Fields, 1986; Morgan et al., 2008). Overall, these

studies support the concept that opioid-induced antinociception
is mediated by direct excitation of off-cells and subsequent
inhibition of pain in the spinal cord.

At each level of this pathway, a myriad of cellular effects
drives the physiological changes mentioned above, and are highly
correlated with the development of opioid tolerance. One of the
most studied mechanisms involves regulation and signaling at
the MOPr. Current research demonstrates that while MOPr is
a key player in the development of antinociceptive tolerance,
mechanisms beyond simple receptor desensitization, including
alterations in neurotransmission and β-arrestin dependent
signaling, are also critical. Furthermore, MOPr expression in
non-neuronal cells, specifically on microglia and astrocytes
within the spinal cord, and more recently within the PAG, greatly
contributes to the development of opioid tolerance.

OPIOID TOLERANCE AND
NEUROTRANSMISSION IN THE
DESCENDING PAIN PATHWAY

Evidence suggests that tolerance is due to changes in the
properties of GABAergic neurons in the PAG (Morgan et al.,
2003). First of all, while microinjection of morphine into the
PAG or RVM produces antinociception, repeated microinjection
into the PAG and not the RVM results in tolerance (Morgan
et al., 2005; Campion et al., 2016). Secondly, inhibition of
MOPrs within the PAG blocks tolerance to systemic morphine
(Lane et al., 2005). Furthermore, inactivation of RVM by a
GABA agonist during direct administration of morphine into
the PAG still leads to tolerance development (Lane et al., 2005).
Therefore, MOPr within the PAG are necessary and sufficient in
the development of opioid tolerance.

However, the development of tolerance within the PAG
produces downstream effects along the descending pain pathway.
This is evidenced by the fact that direct injection of morphine into
the PAG affects RVM signaling, suggesting that their activity is in
fact coupled (Tortorici et al., 2001). While acute administration
of opioids into the PAG disrupts the activity of on- and off-
cells in response to painful stimuli, these cells respond normally
following chronic infusion that is associated with tolerance (Lane
et al., 2004). Another side effect of chronic morphine treatment
is hyperalgesia, or the increased sensitivity to pain following
chronic morphine treatment. One theory is that hyperalgesia may
manifest as opioid-induced tolerance since increased sensitivity
to pain would counteract the pain-relieving effects of opioids.
Some studies suggest that increased activation of the descending
pain pathway by chronic morphine produces neuroadaptations
with in the RVM that result in hyperalgesia (Vanderah et al.,
2001). In support of this, one study demonstrated that chronic
morphine produced an increase in the number of active on-
cells, likely increasing sensitivity to noxious stimuli (Meng and
Harasawa, 2007), which may be responsible for morphine-
induced hyperalgesia. While RVM plays a role in opioid-induced
tolerance, direct injections into the RVM leads to a lesser
development of tolerance compared to PAG administration
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FIGURE 1 | The effects of morphine on neuronal transmission in the descending pain pathway. In the naïve state, GABAergic interneurons in the periaqueductal
gray (PAG) fire tonically, thereby producing a steady release of GABA and inhibition of PAG output neurons. Upon administration of acute morphine, postsynaptic
mu opioid receptor (MOPr) activate GIRK channels via Gα proteins resulting in K+ release and hyperpolarization of the neuron. Additionally, MOPr activate Gi/o

proteins, which result in the inhibition of adenylyl cyclase (AC) and decrease cAMP production. Morphine binding of presynaptic MOPr inhibits voltage dependent
calcium (Ca2+) conductances via Gβγ proteins and activated voltage dependent potassium conductances (Kv) via Phospholipase A (PLA). Overall, these two
mechanisms block release of the neurotransmitter GABA, therefore suppressing inhibition, increasing output, of the PAG neurons projecting to the rostral
ventromedial medulla (RVM). Acute morphine treatment also activates toll-like receptor 4 (TLR4) receptors on astrocytes and microglia in the PAG inducing several
signaling cascades.

(Morgan et al., 2005), indicating that activation of the entire
descending pain circuit is essential.

The neurophysiological mechanisms of tolerance in the PAG
are mediated by MOPr uncoupling from downstream G-protein
mediated signaling (Figure 2). One key study demonstrated
that chronic morphine decreases opioid-mediated GIRK currents
in the PAG (Bagley et al., 2005), supporting the notion that
morphine tolerance is associated with uncoupling of G-protein
mediated signaling. Since GIRK channels regulate neuronal
excitability, this mechanism would result in a reduction in
the ability of MOPr activation to suppress GABAergic neuron
activity. Additionally, morphine tolerance is also associated with
decreased efficacy of other MOPr agonists ability to reduce
voltage gated calcium currents in the PAG (Bagley et al., 2005).
The net effect of the uncoupling of MOPr activation from voltage
gated calcium channels would be the attenuation of MOPr
mediated inhibition of GABA release. However, the precise

mechanisms underlying MOPr uncoupling from voltage gated
calcium channels are complex, as cellular tolerance associated
with this effect was not observed in β-arrestin two knockout mice
(Connor et al., 2015), suggesting that β-arrestin two also plays a
role in this interaction.

GABA release is also regulated by signaling through
phospholipase A2-mediated activation of voltage gated
potassium channels (Figure 1; Wimpey and Chavkin, 1991;
Vaughan et al., 1997). This signaling pathway is differentially
affected by morphine tolerance versus withdrawal. Morphine
tolerance is associated with a decrease in opioid-mediated
inhibition of GABA release (Figure 2) that is not a result of
MOPr desensitization (Fyfe et al., 2010). However, during
naloxone-precipitated withdrawal following chronic morphine,
GABA release is enhanced via an increase in adenylyl cyclase
(AC) signaling (Sharma et al., 1975; Ingram et al., 1998; Hack
et al., 2003). These two outcomes may be related as studies have
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FIGURE 2 | Effects of repeated morphine treatment on glial and neuronal
signaling in the PAG. Chronic morphine treatment induces several side effects
that block opioid-induced decreases in GABAergic interneuron activity at the
neuronal level, postsynaptically. This includes the uncoupling of MOPr from
G-protein mediated effects on GIRK channels and AC. This results in an
upregulation of cAMP. Uncoupling also occurs in the presynaptic region,
blocking the Gβγ mediated inhibition of calcium channels and PLA mediated
activation of Kv channels. In this state, binding of opioids to MOPr no longer
results in suppression of GABA release. At the level of glial signaling, upon
repeated treatment with morphine, there is a rapid upregulation of TLR4 on
astrocytes and microglia within the PAG, resulting in an increase in excitatory
cytokine release, as well as a switch from Gi/o to Gs coupling at MOPr,
resulting in an overall increase in excitatory tone that is correlated with opioid
tolerance.

demonstrated that inhibition of AC in the PAG prevents the
development and expression of morphine tolerance (Bobeck
et al., 2014). Moreover, AC activation is sufficient to increase
GABA release from PAG neurons (Bobeck et al., 2014).

INTRACELLULAR SIGNALING CHANGES
IN THE PAG-RVM-DH PATHWAY IN
OPIOID TOLERANCE

Direct activation of the MOPr results in the Gα subunit-mediated
inhibition of the AC-cyclic adenosine monophosphate (cAMP)-
protein kinase A (PKA) pathway (Figure 1; Sharma et al., 1975;
Guitart and Nestler, 1989; Hirst and Lambert, 1995). However,
opioid binding activates other signaling proteins, such as protein
kinase C (PKC) and extracellular signal-regulated kinase 1/2
(ERK1/2) via β-arrestin pathways, which are independent of
G-protein signaling. As mentioned previously, downstream of
G-protein mediated signaling, there is an inhibition of calcium

channels and activation of potassium channels that leads to
hyperpolarization and a reduction in neurotransmitter release
in the PAG that produces antinociception (Bourinet et al., 1996;
Ippolito et al., 2002; Torrecilla et al., 2002). Chronic morphine
produces adaptations that contribute to opioid-tolerance within
all these downstream signaling pathways.

Long-term opioid treatment leads to adaptations in many
signaling proteins within the PAG-RVM-DH pathway, which
have been proposed as mechanisms of opioid tolerance. In
contrast to the acute inhibitory effect of opioids on cAMP
production, chronic morphine treatment upregulates cAMP
(Figure 2; Guitart and Nestler, 1989; Gintzler and Chakrabarti,
2004). It has been proposed that this upregulation in cAMP
is caused by compensatory changes in intracellular signaling,
or an uncoupling of Gi/o-proteins from the receptor and a
switch to coupling with Gs-proteins (Gintzler and Chakrabarti,
2004). Very few in vivo studies have evaluated the role of the
AC pathway in morphine tolerance, but inhibition of the AC
pathway, via either intracerebroventricular (ICV) or intra-PAG
injection, during morphine pretreatment has been shown to
block the development of morphine tolerance (Smith et al., 2006;
Gabra et al., 2008; Bobeck et al., 2014). In the DH, administration
of morphine results in no change or even an increase in MOPr
expression, but a significant down-regulation of the G-protein
activation in the DH, as measured by [35S]-GTPyS (Maher et al.,
2001; Ray et al., 2004). The loss of G-protein signaling is likely a
switch in MOPr G-protein coupling, from Gi/o to Gs coupling
(Gintzler and Chakrabarti, 2004). Recently, adrenomedullin,
a pronociceptive peptide from the CGRP family, has been
implicated in mediating this G-protein switch in the DH.
Following chronic morphine, adrenomedullin is significantly
upregulated in the DH and dorsal root ganglia, and inhibition of
its receptor prevents or reverses morphine tolerance and blocks
the MOPr Gi/o to Gs switch in coupling (Wang et al., 2016).

Behavioral studies suggest that the mechanisms underlying
tolerance are dependent on the specific MOPr agonist being
studied. Some agonists, such as morphine, do not readily recruit
β-arrestin or internalize the receptor, as compared to high efficacy
agonists, such as DAMGO or fentanyl, which readily do both.
This difference in signaling suggests differences in tolerance
mechanisms, where morphine-mediated tolerance utilizes a
G-protein dependent mechanism, and other MOPr agonists, such
as DAMGO or fentanyl, use a β-arrestin dependent mechanism
(Hull et al., 2010; Melief et al., 2010; Bobeck et al., 2014, 2016;
Morgan et al., 2014). For example, inhibition of ERK1/2 within
the PAG during the development of tolerance enhances morphine
tolerance (Macey et al., 2009), but reduces tolerance to DAMGO
and has no effect on fentanyl tolerance (Bobeck et al., 2016).
Furthermore, inhibition of the G-protein dependent pathway
(i.e., c-Jun N-terminal kinase) blocks development of tolerance
to morphine, but not fentanyl. However, inhibition of β-arrestin
dependent signaling (i.e., G protein-coupled receptor kinase)
blocks expression of fentanyl tolerance (Morgan et al., 2014).

Neuropeptides within the descending pain pathway have
also been shown to regulate opioid tolerance. One such
neuropeptide, cholecystokinin (CCK), is particularly enriched
in supraspinal midbrain regions known to regulate spinal
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nociception (King et al., 2005). There is evidence that CCK acting
within the PAG-RVM-DH pathway regulates morphine tolerance
(Xie et al., 2005; Thomas et al., 2015). A CCK receptor antagonist,
directly injected into the PAG, is able to block morphine tolerance
(Xie et al., 2005). In the RVM, injection of CCK blocks opioid
activation of off-cells that mediate descending antinociception,
resulting in a blockade of the analgesic effects of morphine (Xu
et al., 2014; Thomas et al., 2015).

N-methyl D-aspartate receptors (NMDArs) have been
heavily implicated in the development of both spinal-mediated
hyperalgesia and opioid tolerance. NMDAr antagonists or the
targeted disruption of the NR2 subunits, NR2a and NR2b,
attenuates opioid tolerance (Price et al., 2000; Zhao et al., 2012).
Deletion of PSD-93, the anchoring protein for NR2a and NR2b
in the synapse, leads to a DH site-specific down-regulation of
both subunits from the plasma membrane into the cytosolic
compartment, and a reduction in the development of morphine
tolerance (Liaw et al., 2008). This is a region-specific effect,
as other portions of the descending pain pathway did not see
changes in the NR2 subunit localization (Kozela and Popik,
2007). Interestingly, NMDArs in the PAG have not been
implicated in tolerance (Morgan et al., 2009).

A few other main signaling targets have been implicated
in DH-mediated opioid tolerance, as well. Mammalian target
of rapamycin (mTOR) is found to be upregulated following
repeated intrathecal morphine administration, and this effect is
mediated by activation of PI3K/AKT following MOPr activation
(Xu et al., 2015). Administration of mTOR inhibitors is able to
both prevent and reverse morphine tolerance (Xu et al., 2014,
2015; Jiang et al., 2016; Chen et al., 2017). Calcium/calmodulin-
dependent protein kinase IIα has also been implicated in the
development of tolerance (Brüggemann et al., 2000). It has been
shown to colocalize with MOPr, in the DH specifically, following
opioid administration, possibly resulting in increased MOPr
phosphorylation and desensitization (Brüggemann et al., 2000).

IMPACT OF OPIOID-INDUCED
NEUROINFLAMMATION ON THE
DEVELOPMENT OF TOLERANCE

Over the past few decades, researchers have discovered that
opioids are potent activators of immune cells within the
CNS, and this inflammation is a strong contributor to the
development of opioid tolerance (Giron et al., 2015; Cahill and
Taylor, 2017). Specifically, repeated administration of opioids,
which leads to activation of glia within the PAG and spinal
cord of the descending pain pathway, results in alterations in
both intracellular signaling cascades and signaling properties of
neurons. Furthermore, microglial inhibitors have been shown
to attenuate morphine-induced tolerance (Song and Zhao,
2001; Raghavendra et al., 2002, 2004; Cui et al., 2008; Eidson
and Murphy, 2013; Harada et al., 2013). Though the precise
mechanisms that underlie these changes are only beginning to be
uncovered, a few notable pathways have emerged that are likely
significant contributors to the development of opioid tolerance.

One prominent pro-inflammatory signaling cascade that
has been implicated in opioid tolerance involves the immune
receptor, toll-like receptor 4 (TLR4, Figure 2). Upon agonist
binding to TRL4, sphingomyelinase produces ceramide, which
allows for interaction of the receptor with its co-activators
myeloid differentiation factor-2 (MD-2) and CD14, resulting in
subsequent activation of 3 parallel pathways: the p38-MAPK
pathway, the PI3K/AKT pathway (cell survival/apoptosis),
and the NFκB pathway (proinflammatory cytokine release)
(Rönnbäck and Hansson, 1988; Watkins et al., 2009; Nakamoto
et al., 2012; Eidson and Murphy, 2013). In the spinal cord, TLR4
is primarily expressed on microglial cells and is shown to be
upregulated (Figure 2) along with its cofactor MD-2 following
morphine treatment (Wang et al., 2012), and activation of TLR4
signaling can induce “naïve tolerance” to opioids (Eidson and
Murphy, 2013; Grace et al., 2015). Furthermore, inhibition of
TLR4, co-activators MD-2 or CD14, or inhibition of ceramide
biosynthesis, leads to attenuation of morphine tolerance, as well
as decreased microglial activation, suggesting a prominent role
for the TLR4 pathway in the development of opioid tolerance,
at the level of the spinal cord (Ndengele et al., 2009; Hutchinson
et al., 2010, 2011; Muscoli et al., 2010; Thomas et al., 2015).

Interestingly, it is also thought that TLR4 is directly activated
by opioids (Figures 1, 2; Hutchinson et al., 2011; Wang et al.,
2012; Grace et al., 2015), and, perhaps more importantly, the
accessory protein MD-2 is able to non-stereoselectively bind
opioids and signal through TRL4 (Grace et al., 2015). Since the
classic opioid receptors only bind the (−)-opioid isomer, the (+)-
opioid isomer antagonists could be used to block TLR4-mediated
microglial activation and pro-inflammatory cytokine production.
In fact, studies have demonstrated that (+)-naloxone is able to
attenuate morphine-induced analgesia, specifically at the level
of the spinal cord (Hutchinson et al., 2010; Lewis et al., 2010).
This non-stereoselectivity at the TLR4 receptor complex could
potentially be leveraged for the enhancement of the therapeutic
efficacy of opioids, including enhancing analgesic effects and
reducing tolerance.

How does the activation of glial cells lead to alterations in
neuronal signaling? One possibility is through the alteration of
neuronal excitability via increased release of glially-derived pro-
inflammatory cytokines, including TNF (tumor necrosis factor)
and IL-1β, which are known to increase neuronal AMPA and
NMDA receptors, as well as down regulate GABA receptors
(Viviani et al., 2003; Stellwagen, 2005). Within the PAG, repeated
morphine administration results in an upregulation of TLR4,
which subsequently leads to an increase in release of TNF and
IL-1β (Eidson and Murphy, 2013; Eidson et al., 2017). This
upregulation is concurrent with a downregulation of astrocyte
glutamate transporters GLT-1 and GLAST, which are responsible
for synaptic glutamate uptake. The overall effect is an increase
in neuronal excitability, thereby lowering the ability of opioids
to hyperpolarize mu-containing GABAergic neurons (Figure 2).
Within the PAG to RVM circuitry, this results in an inability
for morphine to disinhibit output neurons to RVM (Eidson and
Murphy, 2013; Eidson et al., 2017).

Another potential point of cross talk is via purinergic
receptors, specifically P2X4 and P2X7, which are primarily
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expressed on microglia. These receptors are also capable of
upregulating pro-inflammatory cytokines, and blocking their
activity in the spinal cord attenuates morphine tolerance
(Horvath et al., 2010; Zhou et al., 2010; Xiao et al., 2015). P2X4
activates the p38-MAPK pathway, resulting in the release of IL-
1β, TNF-α, and BDNF, which, as mentioned above, are known to
alter neuronal excitability and contribute to pain hypersensitivity,
but no direct connection has been made to opioid tolerance
(Ferrini et al., 2013; Grace et al., 2015; Thomas et al., 2015).
However, P2X7 mediated release of IL-18 from microglia induces
activation of the IL-18 receptor on astrocytes, thereby increasing
the release of D-serine, which is able to activate NMDA receptors
in neurons. Activation of both receptors is able to alter glial
activation and neuronal excitability, suggesting a complicated
crosstalk between cell types in the spinal cord that is correlated
with morphine tolerance (Chen et al., 2012).

CONCLUSION

The descending pain pathway is a critical modulator of
nociception and plays an important role in mediating
endogenous and exogenous opioid-induced analgesia. Because
of this, it is highly implicated in allostatic cellular and
molecular changes following repeated opioid use that lead
to the development of tolerance. While this review has
touched on a number of those changes at each level of the
descending pain pathway, including desensitization of MOPr,
altered cellular excitability and signaling, and induction of
immune-competent cells, we do not yet have a complete
understanding of all the factors that might be contributing to
opioid tolerance.

Much of the literature on opioid tolerance has focused the
effects of morphine on this system. Future research must expand
to include other commonly used opioids, especially in light of
the increasing use of oxycodone and fentanyl, as each of these
has widely different pharmacokinetic and signaling profiles, and

may have differential effects on each level of the PAG-RVM-
DH pathway. Indeed, studies looking at cross-tolerance between
opioid analgesics suggest that differences in the distribution of the
drug within the pain pathway may be differentially contributing
to the development of tolerance. Furthermore, the cellular
signaling pathways initiated within these spinal and supraspinal
regions following administration of different opioids are known
to vary.

Finally, the research design of the studies related to opioids
and tolerance has varied widely in terms of not only the drugs
used, but also routes of administration, length of exposure,
and use of biological systems. Also, the majority of studies
on opioid tolerance have focused on males and have largely
excluded females. Given that males show greater morphine
potency, tolerance, and activation of neurons from PAG to RVM
following morphine, as compared to females (Loyd et al., 2008),
it is imperative to further explore these differences. Overall,
these variations in research design have resulted in a myriad
of observed cellular changes that correlate with tolerance, but
with no definite conclusions or unifying theories of tolerance.
While no one specific etiology may exist, future researchers
must be careful in designing these studies, in order to make
meaningful conclusions regarding the cellular impact of opioids
in the development of tolerance.
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In the present paper, we suggest a potential new ethical analysis of addiction focusing

on the relationship between aware and unaware processing in the brain. We take the

case of the opioids epidemics to argue that a consideration of both aware and unaware

processing provides a more comprehensive ethical framework to discuss the ethical

issues raised by addiction. Finally, our hypothesis is that in addition to identified Central

Nervous System’s neuronal/neurochemical factors contributing to addictive dynamics,

the socio-economic status plays a causal role through epigenetic processes, originating

the need for additional reward in the brain. This provides a strong base for a socio-political

form of responsibility for preventing and managing addiction crisis.

Keywords: addiction, ethics of addiction, unaware processing, opioids epidemics, drugs addiction

INTRODUCTION

Even if, as recognized, among others, by the World Health Organization and by the American
Psychiatric Association, addiction can be described as a chronically relapsing brain disorder
which shares the same brain pathways of reward systems, there is a growing discussion about
whether addiction should be understood as a brain disease/disorder or as resulting from a non-
pathological brain dynamics/development (1–8). The point being whether addiction results from
a pathological neurobiological disorder or rather from a brain dynamics eventually manifesting in
addicted behavior. In both scenarios addiction is correlated with some changes in brain systems,
particularly in networks mediating experience and anticipation of reward, perception andmemory,
and cognitive control (7), but the point at stake is whether such changes should be regarded as
pathological or rather as brain developments caused by particular biological, psychological and
environmental factors. These two alternative views result in different interventions: if addiction is a
neurobiological pathology medication is the only way to treat it; if addiction is a non-pathological
brain development, then changing the factors causing it would restore a non-addicted brain state.
We acknowledge the controversy around the definition of addiction as a disease, as well as, its
potential impacts on different levels (from diagnosis to prognosis, from ethics to policy definition).
Yet, as we will see in details in the following, we think that new scientific perspectives on brain
development and on consciousness/non-conscious processing relationship offer the possibility of
conceptualizing addiction beyond a dualistic interpretation of disease and dynamical models.

Beyond the abovementioned scientific controversy, addiction has emerged as one of the most
compelling emergencies of contemporary society. Many factors contribute to making addiction a
complex and multifaceted issue, the analysis of which requires the contribution of different fields.

Several scientific (e.g., from neuroscience to medicine) and social analyses of addiction have
been produced in recent years (4, 9). However, the ethical discussion seems to be more limited
and it is mainly focused on normative and practical issues (10, 11), i.e., on the regulatory and
practical questions related to the off-label abuse of opioid medication. An ethical analysis of the
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factors leading to addictive behaviors and, specifically, of the
responsibility for such behaviors seems lacking. This paper aims
to contribute to this kind of ethical analysis on the basis of
neuroscientific data about information processing in the brain. In
particular, we focus on the role of external influences on unaware
processing (also referred to as unconscious, preconscious, or
non-conscious processing) and its driving role in addictive
behavior.

We will argue that in addition to the central nervous system’s
neuronal/neurochemical bases of addiction, particularly to opiate
crisis, socio-economic status modulates through non-conscious
processing what can be described as the person’s subjective
“global well-being,” raising the need for additional rewards in the
brain. In the light of the impact of external factors, we argue that
some people are particularly vulnerable to a sort of alienation
by the political-socio-economical capitalistic system, and that
this stressful condition, which has both aware and unaware
components, is one of the main causes of addiction.

In fact, different factors contribute to define the
complexity of addictive behavior, which includes both
physiological/pharmacological and psychological/social
components. As a result, the subject acts as conditioned by
both aware and unaware drives. Aware and unaware levels,
their respective interaction, and the impact of external factors
should be taken into account when attempting to provide a more
adequate ethical analysis of addiction.

The case of opioid epidemics is highly illustrative in this
respect. It clearly shows how addiction is affected by both
internal and external factors, e.g., physiological, psychological,
and environmental mostly social.

A CONTEMPORARY EPIDEMICS

Opioids Abuse Data
Data shows that opioids abuse has increased significantly in the
last decades just in the US (9, 12): the rate of opioid addiction
affected about 2.5 million adults in 2014, while in 2016 91.8
million of US civilian used prescription opioids, and 11.5 million
misused them (13).

Media coverage of the opioids addiction has been growing in
recent years. In the last few years, Time magazine devoted two
covers to the abuse of opioids painkillers [June 2015 (14) and
March 2018 (15)]. Yet many other communication media reserve
significant attention to the phenomenon almost every day: just to
give some recent examples, CNN website recently published the
data of the fast increase of opioid crisis (16); TheWashington Post
published a tough story of life devastated by opioids (17); and The
New York Times described the stories of the children of addicted
mothers (18).

Increases in opioids abuse are related to increases in
therapeutic opioids prescription (12). The main claimed reason
for those prescriptions is chronic pain, whose prevalence among
adult Americans is between 30 and 40% (19). Opioid medication
is now the most prescribed medication in the US (20).

As recently outlined by Volkow and McLellan, two facts seem
indubitable: first, opioid analgesics are widely distributed and
improperly used, resulting in a high number of overdose deaths

and addictions; second, the main source of opioids distribution is
physicians’ prescriptions (9, 21, 22).

These two facts raise important ethical issues that should be
addressed. The main issue is the responsibility, i.e., the original
cause, for such a widespread improper use of opioids that many
people define as an epidemic. What are the real causes leading to
an improper use of opioids?

The Legal Use of Opioids as Pain Killers
Different causes can be related to the actual massive use of opioid
analgesics. One of the main factors is the perception of pain
as a negative experience to be cured and eventually eliminated.
More specifically, the Joint Commission on the Accreditation of
Healthcare Organizations (JCAHO), incorrectly assuming that
clinical use of opioids rarely generates addiction, reported that
effective narcotic analgesics were wrongly not used in US because
of an irrational fear of addiction (23). A strong focus on pain
management by opioids ensued, accompanied by pharmaceutical
companies marketing.

The pro-opioids for pain management movement gained
strength from this report and had a large impact on the public,
contributing to subtly change the perception of the medical
use of opioids. As a consequence, the prescription of opioid
analgesics increased considerably (24). The problem is that the
number of non-prescribed, diverted use of opioids seems to
be proportionally related to the number of prescriptions (12);
the transition from medication to addiction being something
subtle and not consciously perceived by the affected subject (25).
Addiction starts as an unaware process: only in subsequent stages
does the subject become aware of her/his addiction and takes the
drug knowing it is a drug.

An important reason for the continued use of opioids is that
they are prescribed by physicians, hence perceived as either less
or not dangerous at all (26). This fact points not just to the
physicians’ responsibility (both as causal role and accountability)
but also shows the influence of implicit biases on the resulting
addiction behaviors. In general, the doctor is implicitly seen
as an ethically normative actor, someone who clearly makes
the difference between licit and illicit behaviors (27). Moreover,
because opioids are legally prescribed as painkillers there is a
tendency to regard them as safer drugs (28). The impact of these
implicit biases on the final addiction behavior raises the issue of
socio-political responsibility: legally allowing the prescription of
opioids medication is not neutral with regard to the perception
of its risks. In fact, we think that, in the light of both aware and
unaware influences that can be exercised on the final users, legally
allowing the prescription and subsequent use of opioids risks to
be a way to endorse them.

Among the personal reasons to continue opioids use, the most
important seems to be their role as a response to life stressors or as
ameans of self-medicating psychological issues, effects of trauma,
or emotional pain. Other, minor reasons include normalization
(e.g., to not feel uncomfortable), increased energy, boredom,
enhanced sexual intimacy, self-blame/addictive personality (12).
Co-morbidity of opioids addiction with underlying psychiatric
disorders is quite high in prescribed opioid addicted subjects.
The risk of addiction has also genetic and developmental roots:
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in particular adolescents are more prone to develop addiction
(29, 30).

The above suggests that addiction has a strong basis in the
brain on different levels of consciousness, aware, as well as,
unaware. For this reason we think that an ethical analysis of
addiction purporting to highlight the reasons behind it must
include a specific focus also on the lower levels of consciousness,
not connected to awareness.

THE PHARMACOLOGICAL IMPACT OF
ADDICTION ON AWARENESS

While different theoretical models of conscious processing have
been elaborated on the basis of cognitive neuroscience [e.g., the
Global Neuronal Workspace (31, 32)], little attention has been
dedicated to the pharmacology of conscious experience (33).
There is evidence that self-awareness, an important component
of conscious experience, is determined by a paralimbic circuitry
of synchrony regulated by GABAergic interneurons under
the control of acetylcholine and dopamine. Accordingly, specific
chemical agents and their respective balancemodulate awareness.

Specifically, self-awareness has been shown to be linked to
hemodynamic activity in a medial paralimbic circuitry involving
medial prefrontal/anterior cingulate, medial parietal/posterior
cingulate, and subcortical regions, associated with the lateral
parietal cortex, typically the angular gyri, and insula (33). On
the basis of experiments with transcranial magnetic stimulation
(TMS), Changeux and Lou conclude that the paralimbic circuitry
plays a causal role with regard to self-awareness. Interestingly
synchronization in the paralimbic circuitry regions increases

proportionally with self-processing. The conclusion by Changeux
and Lou is that the paralimbic synchronization enables unity of
consciousness through coherence of serial conscious experiences
(e.g., self-control) by acting as their common neural path
(33). In other words, synchronization of paralimbic regions
plays a crucial role in self-awareness and self-control.
synchronization is regulated by GABAergic interneurons, which
are affected in particular by two neurotransmitters: acetylcholine
and dopamine.

Behaviorally, addiction may be described as the result
of the loss of or the serious impairment of self-control,
decision-making, and emotion processing by the subject, where
an initially voluntary substance use or behavior gradually
becomes compulsive (33, 34). More specifically, three stages of
addiction have been identified (2): preoccupation/anticipation;
binge/intoxication; withdrawal/negative effects. Importantly,
these three stages feed into each other reinforcing an addiction
cycle.

At the neurophysiological and neurobiological levels,
addiction causes the impairment of the paralimbic circuitry that
we have seen to be critical for self-awareness and self-control.
Consequently, addiction results in a pharmacological disorder
or chemical impairment of conscious self-control and self-
regulation through the impairment of paralimbicmedial circuitry
normal function (33, 35). The abovementioned three stages are
correlated with changes occurring in three brain systems

related to particular functions: preoccupation/anticipation is
correlated with changes in the prefrontal cortex, which underlies
executive function; binge/intoxication is correlated with changes
in the basal ganglia, which underlies incentive salience; and
withdrawal/negative effect is correlated with extended amygdala,
which underlies negative effect withdrawal (2).

In short, in cases of addiction there are important changes
in the brain reward and stress mechanisms, underlying the
passage from impulsive to compulsive behavior and from positive
to negative reinforcement. Importantly, addiction affects, in
particular, the dopaminergic system, which we have seen plays an
important role in modulating self-awareness and self-control. In
the end, addiction causes a pharmacological disconnection from
top-down GNWprocessing, i.e., a moving from self-awareness to
unchecked goal-directed actions (36).

In other words, addiction causes the disruption of the
chemical balance critical for self-awareness and self-control,
causing a vicious circle for which the dependence from the
substance constantly increases (33).

ETHICS OF ADDICTION

In addition to the neurochemical bases of consciousness and of
the addiction’s impact on it described above, socio-economic and
ecological contexts play an important role in addiction insofar as
they have a significant impact on the brain aware and unaware
processes. The connection between the brain and its living
contexts gives us new tools for detecting ethical responsibility for
addiction.

An important scientific theory for exploring the connection
between brain and external world is the epigenetic theory of
neuronal development, which promises to help us illustrating
addiction dynamics as well.

Synaptic Epigenesis and the Internalization
of the Socio-Cultural Environment During
Development
As recently summarized elsewhere (37), recent advances in
neuronal epigenesis studies reveal a deep relationship between
the brain and its environment, including social and cultural
contexts (38). There is evidence that because of this interaction,
an active epigenetic selection of neuronal networks results in the
internalization of the cultural and ethical rules prevalent in the
social community to which the child and her/his family belongs
(39). Arguably, this internalization is mostly implemented at the
unaware level and importantly contributes to shaping the brain’s
architecture on all levels of conscious processing.

The epigenetic theory of neuronal development together with
other studies about the intrinsic predisposition of the brain to
interact with the world (40) suggest a reciprocal causality between
the brain and its external environments, and a mutual epistemic
relevance in understanding the two realms (biological vs. socio-
cultural) (37). Specifically, understanding the brain requires
reference to the experiences and social structures that shape it,
and knowledge of the brain is also relevant to understanding the
development of those social structures (41, 42).
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From the above we can infer that the brain is not a closed, self-
referential information device or a simple input-output machine,
but rather a plastic and interacting organ shaped by a panoply of
factors, including biological, experiential, and social causes.

The Quality of Life and General Welfare
One of the reasons for addictive opioids consumption is likely
the lack of well-being understood in its widest sense, that
is including both psychological and physical components. As
is characteristic of any addictive behavior, an initial need
for treating an undesirable condition (e.g., physical pain) is
subsequently replaced by the urge to “feel high” and then the need
to oppose the withdrawal symptoms. Significantly, the transition
from using opioids as painkillers to using them addictively takes
place without the subject being aware of it: it seems like the user
loses control of what s/he intakes and of the true reasons why
she/he intakes it (25).

The critical component in this addiction dynamics is how
“being well” is conceived and consequently exposed to external
influences. As seen above, recent evidence from neuroscience
depicts the brain as a cognitive and emotional, spontaneously
active organ, which is shaped and modulated by the interaction
with the environment (43). Its cognitive and emotional actions
are not limited to the aware level, nor do they result from internal
factors only: environmental influences on the development of the
cognitive and emotional brain, at both aware and unaware levels,
are massive and even critical.

This suggests the view of “being well” as a multilevel
and multidimensional condition: well-being can generally be
perceived at both unaware and aware levels, and it results
from different factors, both internal and external to the
subject (e.g., bodily components and environmental influences).
Among the factors impacting on brain development are
the influences on subjective well-being coming from the
socio-cultural environment, including political, cultural, and
educational contexts: the information coming from these sources
are internalized by the subject and contribute to shaping
his personal aware and unaware well-being. The relevance of
external factors in shaping individual actions raises the issue of
social responsibility, if not in ethical terms, at least in terms of
public policy.

It is significant that the opioids addiction described above
primarily if not exclusively affects advanced industrial countries,
and in particular the US. Opioids consumption is not new
in society: for instance, they were abundantly used in ancient
societies. Anyway, even if always questionable, the use of drugs
usually had a different socio-political meaning and function,
and they were almost systematically used in social and religious
rituals under a very stringent control, for instance by shamans.
Today, the reason, why to use drugs is different: coping with
life stressors and looking for well-being seems to be among the
main reasons leading to addictive opioids consumption. Such
addiction is prevalently affecting advanced industrial countries,
so that it is reasonable to infer that these societies may be
affected by a general feeling of dissatisfaction, which emerges as
a psychological, social, political, and ethical issue. Even further,
such dissatisfaction might be at the root of the search for

enhancement, including brain enhancement, which has been
one of the priorities of US neuroscience research, e.g., in
military research (see https://www.darpa.mil/program/targeted-
neuroplasticity-training).

This is comparable with the general tendency lately spread
in Europe and also the US to think about the need to go over
present humans, like in the transhumanist philosophy, which
aims at purifying humankind from its poor present state (44),
finally emerging as a sort of secular eschatology. A main issue
with important ethical implications raised by this view is the
definition of the quality of life standards from which we can
infer whether our status is good or bad. The internalization of
such standards, which result from several external sources and
subsequently affect how the subject consciously thinks and acts,
is arguably happening mainly below the level of awareness.

Finally, we think that the abovementioned feeling of
dissatisfaction has its roots in the value system of Western
societies, dominated by a capitalist worldview according to
which personal success is measured by economic and financial
success. The Western value system grounded on competition vs.
cooperation is arguably one of the causes of the life condition
leading to addictive consumption of drugs. It is a remarkable
phenomenon that the recent dramatic increase of opiates
overdose casualties closely follows that of income inequality in
the US (45). Again, from an ethical point of view, an alternative to
this value system is possible, for instance in stressing the priority
of cooperation over competition, and community and esthetic
pleasure as a social value (46).

The Aware Feeling of Pain
The original reason why opioids medication was massively
introduced in the healthcare system was the need to manage
and treat pain, seen as something to be eliminated. This raises
the question of the definition of pain. This is a scientific issue
with important ethical implications. In fact, we can generally
describe pain as an evolutionary warning system, a sort of
safety device making subjects consciously aware of a danger
without necessarily being aware of the causes of the pain.
Accordingly, pain acts as a homeostatic behavioral regulator: it is
both an emotion (i.e., interoceptive knowledge of physiological
condition) and a behavioral motivation originating from the
need to maintain homeostasis (47–49). Homeostasis can be
described as a dynamic and ongoing process maintaining an
optimal balance in the physiological condition of the body for its
survival (50).

If so, from an evolutionary point of view pain is not a negative
but rather a necessary phenomenon. It is reasonable to think that
without pain the chances of survival of humankind, and of any
animal species, would be much lower. The inherited condition
known as congenital insensitivity to pain confirms the necessity
of pain for surviving: people affected by such disorder frequently
die prematurely due to complications of trauma and injuries (51).

The issue to address, then, is whether and to what extent it
is worth to manage pain simply by silencing or abolishing it.
Completely suppressing pain would mean eliminating a system
of physiological feedback regulation between the subject and
the outside world. In other words, the capacity for experiencing
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pain is necessary for the survival of living organisms. The
individual fitness would be consequently affected if pain was
simply removed. The reason is that both positive and negative
rewards are necessary for an appropriate evaluation of the
external world.

This is not to say that all pain is “valuable,” or that not
being able tolerating pain is unjustifiable or in any way worthy
of stigmatization. There may be conditions of pain that the
subject cannot—and should not be requested to—endure [which
they are is open to controversy, e.g., particularly debilitating
chronic pain, or end-of-life conditions. See for instance the
Final Report by the President’s Commission on Combating Drug
Addiction and the Opioid Drugs (52)]. In these cases, the use
of painkillers, including exceptionally opioids, would indeed be
both medically and ethically justified. Our argument directs
itself exclusively against the use of opioids, where this is not—
or not demonstrably—the case, recognizing that the drawing
of this limit can be a difficult challenge. Moreover, we stress
also the ethical need to enhance the search for alternative,
non-addictive painkillers, including non-addictive opioids like
recently suggested by Severino et al. (53).

The Responsibility of Drug Companies and Medical

Doctors
The opioids epidemics was partly initiated by the pharmaceutical
companies which developed a very potent opiate analgesic
without warning against—or at worst even denying—the risk of
addiction. A pro-opioids campaign was initiated on the basis of
the erroneous assumption that the use of this medication was free
of any risk of addiction (23). These companies put great social
pressure on medical doctors and this massively affected both
public opinion and professional standards. The influence that
pharmaceutical companies have on society and how they impact
public opinion and professional choices is ethically problematic
and requires a specific analysis.

First, the reasons behind such influence should be scrutinized:
what is the aim of drug companies’ battle in favor of opioids
medication? Is it patients’ interest or rather their own (economic)
interest, or a combination of both?

The behavior of medical doctors should also be critically
assessed. If even when they know about the risk of addiction
physicians still choose to prescribe opioids, such choice may be
ethically problematic. It is true that it is not easy for the doctor
to choose how to best help the patient and maybe the sole cost-
benefit analysis is insufficient per se to solve the dilemma. The
risk of addiction may be outweighed by the benefit of pain-relief,
but this is a difficult medical and psychological evaluation that
must be done with great care, not least since there may be quite
large differences between different individuals concerning the
best possible treatment. Moreover, if the mere fact that a medical
doctor prescribes a medicationmakes lay people believe that such
medication is ethically unproblematic, this means that what the
doctor says is not neutral but has important consequences both
in terms of opinions and in terms of action, mainly influencing
them at the unaware level. This fact is ethically significant.

An ethical warning informed by the scientific data about
aware and unaware brain processes should be part of both drug

companies’ policies and medical doctors’ professional skills, and
relevant tools should be implemented to increase understanding
of these topics.

A Look Forward
The discussion above suggests that a number of considerations
should be taken into account in the search for a feasible and
effective strategy to manage addiction.

In the first place, any attempt to cope with addiction should
start from the relevant scientific knowledge, particularly from
the neuroscience of the involved aware and unaware processes.
In fact, the dynamics of addiction includes both aware and
unaware components: as illustrated by the case of opioids, at
the beginning the subject consciously chooses to take the drug
to alleviate a negative experience (e.g., pain). This (apparently)
fully aware decision is partly affected by unaware dynamics that
are beyond direct subjective control. Whether undergoing pain is
taken to be a negative experience and what amount of pain can
be tolerated depend in part on external information (e.g., from
professional organizations, educational actors, social media) that
eventually becomes interiorized and affects subjective behavior
at the unaware level. Thus, when the subject asks the doctor
for an opioid prescription, and she/he consciously starts to take
the medication, her/his behavior is already subtly conditioned
and eventually guided by both aware and unaware drives until
an addictive use of the substance is established. As emerges
from first person accounts (12), initially addicted subject has no
knowledge of being addicted, she/he is not aware. The realization
of addiction comes only at a later stage, when she/he continues to
take the drug knowing that it is an addiction and unable to stop
using it because of withdrawal and other negative symptoms.

In the end, it is necessary to be aware of this continued
oscillation between aware and unaware drives, which denote
different psychological, neurological, and pharmacological
processes in the brain. Since neuroscience is providing increasing
knowledge of these processes, management strategies should
consider both the aware and unaware brain. Of course, such
strategies can be implemented in different ways, e.g., through
a direct pharmacological approach or through an indirect
approach aiming at influencing the brain by altering external
environmental conditions, including cultural and social
institutions. In particular, considering that brain development
is particularly sensible to external inputs for about 20 years
after birth (43), the experiences during this period of time,
especially familiar and educational conditions, play a crucial role
in exposing the subject to the risk of addiction.

CONCLUSION

An ethical framework for a balanced analysis of addiction should
take into account emerging neuroscientific data about aware
and unaware processes involved. In order to clarify the ethical
responsibility of the final user, of the medical doctors, and of
the pharmaceutical companies, and to suggest a strategy for
an ethically sound management of addiction it is necessary to
include different levels of conscious processing in the brain,
not only awareness, and to outline the critical role they play
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in addiction behavior, the extent to which external influences
shape it, and the possibility to take care of it. Thus, we suggest
that an ethics of addiction (i.e., an ethically sound treatment of
addiction) importantly requires taking due care of the brain also
below the levels of awareness.

In short, our argument rests on the following:

1 Medical: Addiction causes the disruption of the chemical
balance critical for self-awareness and self-control, resulting
in a pharmacological impairment of awareness and causing a
vicious circle for which the dependence from the substance
constantly increases.

2 Scientific: Non-conscious brain processes are massively
influenced by socio-economic and ecological factors.

3 Psychological: Addiction is mainly dependent from non-
conscious brain processes, i.e., from loss of conscious control.

4 Ethical: Given the scientific and psychological factors
mentioned, the socio-economic and ecological contexts are
highly relevant to addictive dynamics, especially through the
influence they have on unaware brain processes.

Finally, our hypothesis is that in addition to identified Central
Nervous System’s neuronal/neurochemical factors contributing
to addictive dynamics, the socio-economic status plays a causal

role through epigenetic processes, originating the need for
additional reward in the brain. For this reason, we consider
addiction to be, in addition to a medical and mental disorder, also
a social disorder.

This provides a strong base for a socio-political form of
responsibility for preventing and managing addiction crisis.
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Mu opioid receptors modulate a large number of physiological functions. They are

in particular involved in the control of pain perception and reward properties. They

are also the primary molecular target of opioid drugs and mediate their beneficial

analgesic effects, euphoric properties as well as negative side effects such as tolerance

and physical dependence. Importantly, mu opioid receptors can physically associate

with another receptor to form a novel entity called heteromer that exhibits specific

ligand binding, signaling, and trafficking properties. As reviewed here, in vivo physical

proximity has now been evidenced for several receptor pairs, subsequent impact of

heteromerization on native mu opioid receptor signaling and trafficking identified and

a link to behavioral changes established. Selective targeting of heteromers as a tool to

modulate mu opioid receptor activity is therefore attracting growing interest and raises

hopes for innovative therapeutic strategies.

Keywords: mu opioid receptor, heteromer, GPCR, delta opioid receptor, morphine, hypertension, addiction, pain

INTRODUCTION

The mu opioid (mu) receptor is a G protein-coupled receptor (GPCR) that neuromodulates several
physiological functions, in particular nociception (Kieffer and Evans, 2009). This receptor also
mediates the reinforcing properties of natural stimuli. In addition, mu receptors are the primary
molecular target of opioid drugs used in the clinic (e.g., morphine, codeine, oxycodone, fentanyl,
tramadol), and are responsible for their analgesic properties but also for the side effects associated
with their acute (e.g., respiratory depression, nausea, dizziness, sedation, constipation) (Kieffer,
1999) and chronic use (tolerance, hyperalgesia, and physical dependence) (Matthes et al., 1996;
Williams et al., 2013). Moreover, mu receptors mediate opioid rewarding and euphoric properties
that underlie their abuse potential (Matthes et al., 1996). The latter is at the root of the epidemic that
has developed in North America upon misuse and/or abuse of prescription opioid drugs after an
initial therapeutic use or in patients that self-medicate (Vowles et al., 2015). It underscores the need
for designing effective opioid analgesics devoid of side effects and has prompted considerable efforts
to better understand the molecular and cellular mechanisms underlying mu receptor activity. In
this context, functional consequences elicited by physical association of the mu receptor with
another GPCR attracted attention. Here, we review evidence of molecular, cellular, and behavioral
modulation induced by mu receptor heteromerization in native tissue.
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MU RECEPTOR HETEROMERS IN NATIVE
TISSUE

Heteromers involving the mu receptor have been extensively
studied in heterologous systems (Fujita et al., 2014a). Receptor
physical proximity has now been established in native tissue for
several receptor pairs using receptor co-immunoprecipitation,
co-localization by electron microscopy or in situ proximity
ligation assay (PLA), and/or disruption of physical contact by
an interfering peptide. The use of interfering peptide and/or
mice deficient for one receptor also significantly contributed to
demonstrate the specificity of the functional changes associated
with heteromer formation and to establish a causal link
with behavioral outputs. In native tissue, the mu receptor
heteromerizes with the delta opioid (delta) or kappa opioid
(kappa) receptors or with the non-opioid receptors ORL1,
cannabinoid CB1, galanin Gal1, adrenergic α2a, somatostatin
sst2, dopamine D1, chemokine CCR5, and vasopressin V1b.
Association between the mu receptor splice variant MOR1D and
the gastrin-releasing peptide receptor (GRPR) has also been
reported as well as mu physical proximity with the ion channel
NMDA (Table 1). Heteromerization with a Gαi/o coupled GPCR
is thus the most frequently reported to date but association with
the Gαq coupled GRPR and vasopressin V1B receptors or the Gαs

coupled dopamine D1 receptor indicates no specific requirement.
Additional heteromers likely exist in vivo since mu receptor
heteromerizes with serotonin 5HT1a (Cussac et al., 2012),
neuropeptide FF NPFF2 (Roumy et al., 2007), melanocortin MC3
(Rediger et al., 2009), neurokinin NK1 (Pfeiffer et al., 2003),
and possibly, dopamine D4 (Qian et al., 2018) receptors in co-
transfected cells, and neuronal co-localization with chemokine
CXCR4 (Patel et al., 2006; Heinisch et al., 2011), metabotropic
glutamate mGluR5 (Schröder et al., 2009) and serotonin 5HT2a

(Lopez-Gimenez et al., 2008), and dopamine D4 (Rivera et al.,
2017) receptors has been reported (see also http://www.gpcr-
hetnet.com for further information on the GPCR interaction
network, and interacting or non-interacting receptor pairs;
Borroto-Escuela et al., 2014).

Expression of native heteromers is dynamic. Chronic
morphine treatment enhances mu-delta heteromer density in
brain regions associated with the reward pathway (Gupta et al.,
2010). Concomitant increase in delta receptor localization at the
cell surface is observed and is mu receptor dependent (Gendron
et al., 2015; Ong et al., 2015; Erbs et al., 2016). Heteromers
form intracellularly in native tissue. In the mouse dorsal root
ganglia (DRG), mu and delta opioid receptors associate in the
endoplasmic reticulum (ER), which requires phosphorylation
of the delta receptor at threonine 161 by the cdk5 kinase
(Walwyn et al., 2009; Xie et al., 2009). Mu-delta density could
also be affected in other pathological conditions enhancing
delta receptor presence at the cell surface such as inflammatory
pain conditions (Cahill et al., 2003) or voluntary alcohol
consumption (van Rijn et al., 2012). In addition, expression of
mu-α2a heteromers in the nucleus of the solitary tract (NTS)
is dynamically regulated and increased in hypertensive rats
(Sun et al., 2015). In human peripheral blood mononuclear
cells (PBMC), the mu agonist DAMGO induced CCR5 receptor
synthesis through a TGFβ1 dependent mechanism (Happel et al.,

2008), suggesting a role for mu-CCR5 heteromers in HIV1 entry
in opiate abusers.

MODULATION OF G PROTEIN SIGNALING
IN NATIVE MU HETEROMERS

In SK-N-SH neuroblastoma cells co-expressing mu and delta
receptors, occupancy of the binding site of one receptor by
a non-signaling concentration of ligand increased binding
and Gα signaling of the other receptor (Gomes et al.,
2000, 2004, 2011). The nature of the first ligand did not
seem important since agonist, antagonist or inverse agonist
induced similar effects. Data therefore suggest that mu-delta
heteromerization induces cross-allosteric modulation with a
positive cooperativity promoted upon binding of the first ligand
(Figure 1). Accordingly, co-application of the delta antagonist
TIPPψ and mu agonist DAMGO or co-application of the
mu antagonist CTAP and delta agonists deltorphin II or
DPDPE increased hyperpolarization in a subset of neurons
in the ventral tegmental area (VTA) (Margolis et al., 2017).
Similarly, co-injection of subthreshold doses of the mu agonist
DAMGO and the delta agonist deltorphin II in the rostral
ventromedial medulla (RVM) of rats chronically treated with
morphine increased γ aminobutyric acid (GABA)ergic inhibition
through synergistic activation of the phospholipase A2 and cyclic
adenosine monophosphate (cAMP)/protein kinase A (PKA)
dependent pathways (Zhang and Pan, 2010). Moreover, mu-
delta preferential coupling to the pertussis toxin insensitive
Gαz subunit would not be desensitized by chronic morphine
administration in the rat striatum and hippocampus (George
et al., 2000; Kabli et al., 2014). Altogether, mu-delta positive
crosstalk reinforces the inhibition of neuronal activity.

In contrast, heteromers formed with a non-opioid receptor
appear to negatively modulate mu receptor G protein dependent
signaling (Figure 1). In the VTA, co-activation of mu-Gal1
heteromers by galanin and endomorphin 1 decreased
extracellular signal-regulated kinase ERK1/2, protein kinase
B (AKT), and cyclic AMP response element binding protein
(CREB) phosphorylation (Moreno et al., 2017). Accordingly,
galanin could not prevent dopamine release promoted by local
infusion of endomorphin 1 in the presence of an interfering
peptide that disrupt mu-Gal1 physical interaction (Moreno
et al., 2017). In addition, acute morphine administration
enhanced ERK1/2 activation in the nucleus accumbens (Nacc)
and amygdala of galanin knock-out mice compared to wild
type mice (Hawes et al., 2008). These data suggest a negative
crosstalk mediated by mu-Gal1 heteromers by which galanin
dampens mu receptor signaling. In addition, the mu antagonist
CTOP counteracted galanin induced ERK1/2, AKT and CREB
phosphorylation indicative of a cross-antagonism on Gal1
receptor signaling (Moreno et al., 2017).

In BE(2)-C neuroblastoma cells co-expressing mu and ORL1
receptors, pretreatment with nociceptin decreased DAMGO
potency and efficacy to inhibit adenylate cyclase (Mandyam
et al., 2002). This effect was abolished in HEK293 cells co-
transfected with receptor pairs unable to physically associate,
which supports heteromer specificity (Wang et al., 2005).
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TABLE 1 | Identification, properties, and functional outcome of native heteromers involving the mu opioid receptor.

Receptor

pair

In vivo physical proximity Specific properties of native heteromers

Tissue Technique References Ligand binding, receptor

signaling

and trafficking

Tissue Functional

outcome

References

MU HETEROMERS INVOLVING ASSOCIATION WITH A GI/O COUPLED RECEPTOR

Mu-delta Mouse brain, SC,

DRG

Co-IP

Disruptive peptide

Xie et al., 2009;

Kabli et al., 2013;

Erbs et al., 2015

Reciprocal positive crosstalk

upon co-activation with an

agonist, inverse agonist or

antagonist for the other

receptor (positive binding

cooperativity, increased Gα

signaling)

SKNSH, SC

VTA

Gomes et al.,

2000, 2004, 2011;

Margolis et al.,

2017

Increased by

morphine in

Selected brain

areas

Specific mu-delta

antibody

Gupta et al., 2010

Synergy upon co-activation in

chronic morphine treated rats

RVM Increased

analgesia

Zhang and Pan,

2010

Synergy upon co-activation in

chronic inflammatory condition

RVM Increased

analgesia

Sykes et al., 2007

Mu-delta surface expression DRG, SC Increased

analgesia

Walwyn et al.,

2009; Xie et al.,

2009

Disruption mu-delta heteromer SC, DRG Increased

Morphine

tolerance

Xie et al., 2009; He

et al., 2011

Mu-delta co-internalization

(UFP-512, CYM51010)

Striatum,

hippocampus

Anxiolytic, anti-

depressive,

analgesic,

decreased

morphine

tolerance and

dependence

Gomes et al.,

2013; Kabli et al.,

2013; Derouiche

et al., 2018

Increased β-arrestin signaling SKNSH cells Rozenfeld and

Devi, 2007

No uncoupling from Gz after

chronic morphine

Striatum,

hippocampus

Kabli et al., 2014

DAMGO induced delta recycling

to plasma membrane after

chronic morphine

DRG Ong et al., 2015

Mu-kappa Rat SC proestrous

females

Co-IP Chakrabarti et al.,

2010

Co-activation morphine/

dyn1-17 induced synergy

Increases

morphine

analgesia females

Chakrabarti et al.,

2010; Liu N. J.

et al., 2011

Mu-ORL1 DRG Co-IP Evans et al., 2010 Co-activation induced negative

crosstalk on ORL1 signaling

Neuroblastoma Nociception Mandyam et al.,

2002

Mu-CB1 Rat striatum Electron

microscopy

Rodriguez et al.,

2001

Co-activation induced

bidirectional negative crosstalk,

decreased mu agonist binding

Bidirectional cross antagonism

(Nacc)

SKNSH, striatum

Mu KO mice

CB1 KO mice

CB1 antagonist

Neuritogenesis

Social play

Vaysse et al.,

1987; Rios et al.,

2006

Manduca et al.,

2016

Mu-Gal1 Mouse VTA Disruptive peptide Moreno et al.,

2017

Co-activation induced negative

crosstalk

Cross-antagonism on Gal1

signaling

VTA Opioid drug

reward

Moreno et al.,

2017

Mu-α2a
adrenergic

Rat NTS

Increased

expression in

hypertensive rats

Co-IP

PLA

Sun et al., 2015 Opiate induced increased

co-expression

Co-activation induced negative

crosstalk

receptor co-internalization

RVM

Primary SC

neurons

DRG

Hypertension Sun et al., 2015

Jordan et al., 2003

Tan et al., 2009

(Continued)
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TABLE 1 | Continued

Receptor

pair

In vivo physical proximity Specific properties of native heteromers

Tissue Technique References Ligand binding, receptor

signaling

and trafficking

Tissue Functional

outcome

References

Mu-sst2 Human pancreatic

cancer cells

Co-IP

FCS

Jorand et al., 2016 Co-activation increased

β-arrestin signaling, decreased

EMT

Pancreatic cancer

cell line

Increased cancer

metastatis

Jorand et al., 2016

Mu-CCR5 Human and

monkey PBMC

Co-IP Suzuki et al., 2002 Negative crosstalk

Cross-antagonism

CCR5 KO mice

CCR5 antagonist

Decreased

nociception

HIV infection

Lee et al., 2013

Szabo et al., 2002

MU HETEROMERS INVOLVING ASSOCIATION WITH A Gs COUPLED RECEPTOR

Mu-D1 Mouse striatum

mPFC

Co-IP

Co-localization

Tao et al., 2017 Cross-antagonism D1 KO mice

D1 antagonist

Opiate locomotor

sensitization

Tao et al., 2017

MU HETEROMERS INVOLVING ASSOCIATION WITH A Gq COUPLED RECEPTOR

Mu-V1b Mouse RVM ISH

Truncated V1b
receptor

Koshimizu et al.,

2018

Increased β-arrestin signaling RVM Enhanced

morphine

tolerance

Koshimizu et al.,

2018

MOR1D-

GRPR

Mouse SC Co-IP

Disruptive peptide

Liu X. Y. et al.,

2011

Positive crosstalk on GRPR

signaling

SC Morphine induced

itch

Liu X. Y. et al.,

2011

MU HETEROMERS INVOLVING ASSOCIATION WITH AN ION CHANNEL

Mu-NMDA Mouse PAG Co-IP Rodríguez-Muñoz

et al., 2012

Positive crosstalk on mu

receptor and negative crosstalk

on NMDA CAMKII pathway

PAG Decreased

morphine

analgesia and

increase morphine

tolerance

Rodríguez-Muñoz

et al., 2012

Co-IP, Co-immunoprecipitation; DRG, Dorsal Root Ganglia; PAG, Periaqueductal Gray; PBMC, peripheral blood mononuclear cells; PLA, Proximity Ligation Assay; RVM, Rostral Ventral

Medulla; SC, Spinal Cord; VTA, Ventral Tegmental Area.

Additional examples of negative crosstalk on mu receptor
signaling can be linked to heteromerization. Co-activation of mu
and cannabinoid CB1 receptors by the mu agonist morphine
and a non-signaling dose of the CB1 agonist WIN 55,212-
2 decreased [35S]guanosine 5′-[γ-thio]triphosphate (GTPγS)
binding and ERK1/2 signaling in SK-N-SH neuroblastoma
cells (Rios et al., 2006) and 1

9-tetrahydrocannabinol (THC)
allosterically decreased dihydromorphine binding at the mu
receptor in rat striatal membranes (Vaysse et al., 1987).
Similarly, co-activation of mu and adrenergic α2a receptors
decreased ERK1/2 phosphorylation in primary spinal cord
neurons (Jordan et al., 2003). Also, the chemokine CCL5 induced
phosphorylation of the mu receptor in human PBMC indicating
cross-desensitization (Szabo et al., 2002). Finally, the dopamine
D1 antagonist SCH233390 decreased G protein activation and
ERK1/2 phosphorylation induced by the mu agonist DAMGO
in mouse striatal membrane from wild type but not mice
deficient for the D1 receptor (Tao et al., 2017). Activation of
mu-NMDA heteromers by N-methyl-D-aspartate (NMDA) in
the periaqueductal gray (PAG) also negatively regulated mu
receptor activity by promoting PKA-dependent dissociation of
the heteromer and subsequent mu receptor phosphorylation.
This in turn promoted G protein uncoupling and receptor
desensitization (Rodríguez-Muñoz et al., 2012).

Interestingly, constitutive activity has been reported for delta
opioid (Costa and Herz, 1989), kappa opioid (Sirohi andWalker,
2015), ORL1 (Beedle et al., 2004), cannabinoid CB1 (Fioravanti
et al., 2008), adrenergic α2a (Pauwels et al., 2000), and mu opioid

receptors (Wang et al., 2004). Since heteromers involving the mu
receptor form in the ER in a ligand independentmanner, receptor
constitutive activity could represent an important determinant
of the allosteric modulation and could contribute to the basal
homeostasis of the cell in the absence of receptor stimulation.
The release of endogenous peptides would however further
modulate their functional impact because these receptors can still
be activated by agonists (Canals and Milligan, 2008).

ACTIVATION OF β-ARRESTIN SIGNALING
IN NATIVE MU HETEROMERS

In SK-N-SH neuroblastoma cells co-expressing mu and delta
receptors, activation by the mu agonist DAMGO changed the
spatio-temporal profile of ERK1/2 phosphorylation (Rozenfeld
and Devi, 2007) (Figure 1). This was abolished in the presence
of a β-arrestin 2 small interfering ribonucleic acid (siRNA)
or in the presence of the delta selective antagonist TIPPψ

(Rozenfeld and Devi, 2007) suggesting that activation of
heteromers involving the mu receptor can promote β-arrestin
dependent signaling. Mice deficient for β-arrestin 2 developed
less tolerance to morphine (Bohn et al., 2002), data thus
suggest that the recruitment of the β-arrestin pathway by mu
heteromers contributes to morphine tolerance. This hypothesis
is also supported by the observation that tolerance to morphine
develops more slowly in mice deficient for the vasopressin
V1B receptor or in the presence of a V1B selective antagonist
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FIGURE 1 | Impact of heteromerization on mu opioid receptor signaling and trafficking. Heteromerization can take place in the endoplasmic reticulum. Association

with another opioid receptor positively modulates mu opioid receptor G protein-dependent signaling whereas association with a non-opioid receptor negatively

regulates it. Heteromerization also favors the recruitment the β-arrrestin dependent pathway upon internalization in the endosomal compartments. Native receptor

pairs for which information is available are indicated.

(Koshimizu et al., 2018). In the mouse RVM, vasopressin V1B

receptors constitutively associate with β-arrestin 2 through a
leucine rich motif present in the V1B C-terminus (Koshimizu
et al., 2018). This suggests that physical association with the
V1B receptor facilitates the recruitment of the β-arrestin pathway
by the mu receptor, and contributes to the development of
morphine tolerance. Accordingly, removal by genome editing
with the clustered regularly interspaced short palindromic
repeats-CRISPR associated protein 9 (CRISPR-Cas9) system
of the leucine rich motif responsible for the receptor V1B-β-
arrestin interaction increased morphine-induced analgesia and
reduced adenylate cyclase supersensitization and morphine-
induced tolerance and physical dependence (Koshimizu et al.,
2018).

Of note, co-activation of mu and somatostatin sst2 receptors
by dermorphin and L-054,264 in pancreatic cancer lines similarly
altered the spatio-temporal profile of ERK1/2 phosphorylation,
potentiating the epithelial to mesenchymal transition (Jorand
et al., 2016).

RECEPTOR CO-INTERNALIZATION IN
NATIVE MU HETEROMERS

Co-internalization of endogenous heteromers is less documented
largely due to the lack of appropriate tools (Figure 1).
Receptor internalization contributes to desensitize G protein

dependent signaling and favors β-arrestin dependent signaling
(Calebiro et al., 2010). Accordingly, co-internalization of mu
and adrenergic α2a receptors was dependent on β-arrestin 2
recruitment and mitogen-activated protein kinase (MAPK) p38
activation in the mouse DRGs (Tan et al., 2009).

Mu-delta co-internalization was observed following
activation by the mu-delta biased agonist CYM51010 in
primary hippocampal neurons from fluorescent double knock-in
mice (Derouiche et al., 2018) but could not be detected in
the spinal cord following SNC80 application (Wang et al.,
2018). Since SNC80 promoted mu-delta co-internalization in
co-transfected HEK293 cells (He et al., 2011), this observation
highlights the influence of the cellular environment.

MU HETEROMERS MODULATE
NOCICEPTION, MORPHINE ANALGESIA
AND TOLERANCE

Several observations support the implication of mu heteromers
in the control of the nociceptive threshold. The lower response
to inflammatory or chemical stimuli in CCR5 knock-out mice
or upon injection of a CCR5 antagonist indicate that mu-
CCR5 heteromers contribute to dampen the basal nociceptive
threshold by exerting a negative crosstalk on mu receptor
signaling (Lee et al., 2013). Mapping mu and delta receptors
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in the central and peripheral nervous systems using double
fluorescent knock-in mice revealed mu-delta co-expression in
discrete neuronal populations located in networks involved in
the perception and processing of nociceptive stimuli (Erbs et al.,
2015). Accordingly, disrupting mu-delta physical interaction
with an interfering peptide in naïve mice increased morphine-
induced thermal analgesia (He et al., 2011). In rats chronically
treated with morphine or with persistent inflammatory pain, co-
administration of low doses of mu and delta agonists in the
RVM enhanced mechanical and thermal analgesia (Sykes et al.,
2007; Zhang and Pan, 2010). Since delta receptor expression is
increased in both pathological conditions (Cahill et al., 2003;
Gendron et al., 2015; Ong et al., 2015; Erbs et al., 2016), this
synergistic effect can be explained by the positive crosstalk at
mu-delta heteromer elicited by receptor co-activation (Gomes
et al., 2000, 2004, 2011). Similarly, co-activation bymorphine and
the subsequently released dynorphin 1–17 acted synergistically
at mu-kappa heteromers to increase spinal morphine analgesia
(Chakrabarti et al., 2010). However, this effect is sex-dependent
and more pronounced in proestrous female mice where mu-
kappa heteromers are most abundant (Chakrabarti et al., 2010;
Liu N. J. et al., 2011).

Activation of mu-delta heteromers by the mu agonist
DAMGO (Rozenfeld and Devi, 2007) or co-activation of mu-
V1b heteromers by vasopressin and morphine (Koshimizu
et al., 2018) increased β-arrestin 2 recruitment and signaling.
Importantly, this pathway participates to the development of
morphine tolerance (Bohn et al., 2000), which suggests a
contribution frommu heteromers. Accordingly, disruption of the
physical contact between the mu and delta opioid receptors (Xie
et al., 2009; He et al., 2011) or between the mu and vasopressin
V1b receptors (Koshimizu et al., 2018) decreased morphine
tolerance. In addition, activation of mu-NMDA heteromers in
the PAG reduces morphine efficacy through a dual mechanism.
Indeed, stimulation by NMDA decreases the analgesic effect
of morphine by exerting a negative crosstalk on mu signaling
whereas morphine binding to the mu receptor potentiates the
NMDA-Ca2+/calmodulin-dependent protein kinase (CAMKII)
pathway and contributes to morphine tolerance (Rodríguez-
Muñoz et al., 2012).

Other roles formu heteromers includemorphine-induced itch
generated by cross-activation of the GRPR signaling in MORD1-
GRPR heteromers (Liu X. Y. et al., 2011). Moreover, mu-α2a, mu-
CB1, ormu-ORL1 heteromers very likely represent additional key
players since all four receptors modulate nociception but, to date,
a direct link to heteromerization with the mu receptor is still
lacking.

MU HETEROMERS MODULATE REWARD
PROCESSING AND ADDICTION TO OPIOID
DRUGS

Modulation of mu receptor signaling by heteromer formation
in the mesocorticolimbic pathway is bound to have a profound
impact on the rewarding properties of opioid drugs and
natural stimuli. Accordingly, galanin-dependent dampening of

opiate reinforcing and rewarding properties was abolished upon
disruption of mu-Gal1 heteromers in the VTA (Moreno et al.,
2017) or in galanin knock-out mice (Hawes et al., 2008).
Also, chronic morphine treatment increased mu-delta heteromer
expression in several brain regions including the VTA and Nacc
(Gupta et al., 2010). Therefore, the positive cross talk at mu-
delta heteromers observed in a subset of VTA neurons could
contribute to increased dopamine release in the Nacc and opiate
reinforcing properties (Margolis et al., 2017).

Also, systemic injection of the endocannabinoid 2-
arachidonoyl (2-AG) hydrolysis inhibitor JZL184 increased
the concentration of the endogenous ligand and enhanced social
play behavior in adolescent rodents (Manduca et al., 2016).
This effect was blocked by infusing the mu antagonist CTAP
in the Nacc and was absent in mu receptor knock-out mice
(Manduca et al., 2016). Reciprocally, systemic injection of the
mu agonist morphine increased social play and was abolished
by the CB1 antagonist SR1417-16 or in CB1 receptor knock-out
mice (Manduca et al., 2016). This bidirectional cross-antagonism
suggests that mu-CB1 heteromers in the Nacc modulate the
strong rewarding value of social play.

Mu receptors are also involved in other aspects of opiate
addiction such as locomotor sensitization and could achieve their
modulatory control through heteromerization with dopamine
D1 receptors. Indeed, opiate hyperlocomotion and locomotor
sensitization were abolished in dopamine D1 receptor in knock-
out mice or following local injection of the D1 antagonist
SCH23390 in the Nacc (Tao et al., 2017).

MU HETEROMERS MODULATE ANXIETY
AND DEPRESSION

Pharmacological and knock-out based studies linked an
anxiogenic and depressant phenotype to mu receptor activation
and, on the opposite, associated an anxiolytic and antidepressant
phenotype with delta receptor activation (Lutz et al., 2014).

Systemic administration or local micro-infusion in the Nacc
of the delta agonist UFP512 promoted anxiolytic- and anti-
depressant-like activity (Vergura et al., 2008; Kabli et al., 2013).
These effects were abolished by pretreatment with the mu
antagonist CTOP or the delta antagonist naltrindole or following
disruption of mu-delta physical contact in the Nacc (Kabli et al.,
2013). These data therefore suggest that accumbal mu-delta
heteromers participate to the modulation of anxio-depressive
states.

MU HETEROMERS MODULATE
METABOLIC DISORDERS

Mu receptors are known to control autonomous functions.
Higher levels of mu-α2a heteromers in the NTS were correlated
with increased blood pressure in hypertensive rats (Sun
et al., 2015). In normotensive rats, mu-α2a heteromerization
induced by the mu agonist DAMGO was paralleled by
increased blood pressure. Treatment with the mu antagonist
CTAP antagonized DAMGO changes in normotensive rats
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and reduced mu-α2a heteromerization and blood pressure in
hypertensive rats (Sun et al., 2015). Thus, activation of the
mu receptor by endogenous opioid peptides dampens the
activity of the α2a adrenergic receptors thereby potentiating
hypertension.

Interactions between mu and somatostatin receptors have
been postulated to influence tumor cell growth (Hatzoglou et al.,
2005). Recently, mu-sst2 heteromers were identified in pancreatic
cancer lines and in tissue from patients with pancreatic ductal
adenocarcinoma. Co-activation of the receptors initiated the
epithelial to mesenchymal transition, which is associated with
increased metastatic potential (Jorand et al., 2016).

MU HETEROMERS AS A NOVEL
THERAPEUTIC TARGET

The bivalent ligand MDAN-21 composed of the mu agonist
oxymorphone and the delta antagonist naltrindole tethered
by a 21 amino acid long linker was developed to selectively
target mu-delta heteromers (Daniels et al., 2005). The length
of the linker was designed to enable simultaneous binding of
the two ligand moieties to the orthosteric binding pockets of
two GPCRs in physical contact. MDAN-21 induced analgesia
with low tolerance, low physical dependence and no reinforcing
properties (Daniels et al., 2005; Lenard et al., 2007; Aceto et al.,
2012) providing a proof of concept that selective targeting of mu-
delta heteromers may represent a valid therapeutic strategy, in
particular for patients on opiate maintenance treatment.

More recently, the bivalent ligand MCC22 linking the mu
agonist oxymorphone to the CCR5 antagonist TAK220 has
been proposed to inhibit inflammatory and neuropathic pain by
targeting mu-CCR5 heteromers (Akgün et al., 2015). This is in
line with the enhanced nociception observed in CCR5 receptor
knock-out mice or in the presence of a CCR5 antagonist (Lee
et al., 2013).

A major limitation to the therapeutic use of bivalent ligands
is their poor capacity to cross the blood brain barrier (Le
Naour et al., 2013; Jörg et al., 2015). Therefore, monovalent
bifunctional ligands that would selectively target mu heteromers
have been developed (Schiller, 2010; Günther et al., 2018).
Eluxadoline is a mixed mu agonist delta antagonist recently been

approved by the FDA for the treatment of the irritable bowel
syndrome (FDA application N◦206940). Arguments in favor of
binding to mu-delta heteromers include lower efficacy in mice
deficient for the delta receptor and reduced signaling in the
presence of mu-delta selective antibodies (Fujita et al., 2014b).
Eluxadoline thus represents the first drug on the market designed
to target heteromers. In preclinical models, other ligands further
support preferential activation of mu heteromers as a valuable
therapeutic approach. The mu-delta biased agonist CYM51010
induced potent thermal analgesia comparable to morphine but
less tolerance and physical dependence (Gomes et al., 2013) and
the mu-kappa agonist NNTA produced strong analgesia devoid
of tolerance, physical dependence, or reinforcing properties upon
intrathecal injection in mice (Yekkirala et al., 2011).

CONCLUSION

Our current appreciation of the role of mu heteromer is still
in its infancy and their contribution to mu receptor-dependent
behavior likely underestimated. So far, physical proximity has
only been validated for a limited number of receptor pairs in vivo
and their functional interactions addressed in a handful of tissue
or brain areas. Moreover, heteromer expression is dynamically
regulated depending on physiopathological conditions. No doubt
that both novel functions and receptor pairs will be uncovered in
the future, which further emphasizes their potential as innovative
therapeutic targets.
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In 1877, the psychiatrist Edward Levinstein authored the first monograph on opioid

addiction. The prevalence of opioid addiction prior to his publication had risen in

several countries including England, France and Germany. He was the first to call

it an illness, but doubted that it was a mental illness because the impairment of

volition appeared to be restricted to opioid use: it was not pervasive, since it did not

extend to other aspects of the individuals’ life. While there has been huge progress in

understanding the underlying neurobiological mechanisms, there has been little progress

in the clinical psychopathology of addiction and in understanding how it relates to these

neurobiological mechanisms. A focus on cravings has limited the exploration of other

important aspects such as anosognosia and addiction-related behaviors like smuggling

opioids into treatment and supporting the continued provision of co-patients. These

behaviors are usually considered secondary reactions, but in clinical practice they appear

to be central to addiction, indicating that an improved understanding of the complexity

of the disorder is needed. We propose to consider an approach that takes into account

the embodied, situated, dynamic, and phenomenological aspects of mental processes.

Addiction in this context can be conceptualized as a habit, understood as a distributed

network of mental, behavioral, and social processes, which not only shapes the addict’s

perceptions and actions, but also has a tendency to self-maintain. Such an approach

may help to develop and integrate psychopathological and neurobiological research and

practice of addictions.

Keywords: addiction, opioid use disorders, psychopathology, habits, 4E cognition, enactivism, anosognosia

INTRODUCTION

The last decades have seen a great deal of progress in our understanding of the underlying
neurobiological mechanisms of opioid and other substance use disorders and on the perception
of addiction as a public health issue. However, we believe that the clinical psychopathology of
addiction has undergone scant development. In our view addiction is a mental disorder. However,
many, including psychiatrists, often seem to struggle to support this statement. We contend that
this resistance is attributable to an inadequate scientific theory of the psychopathology of addiction,
and especially a restricted conception of the addicted mind as core problems in the current
discussion of addiction, including opioid addiction.
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One hundred and forty years ago, Edward Levinstein,
Director of the Maison de Santé in Berlin, published a
monograph entitled Die Morphiumsucht (1). This was the first
monograph identifying opioid addiction as a disorder. One
year later it was translated into English (2) and French (3).
Around 1853, injectable morphine had become available in
Germany, and 25 years later, Germany, like other countries, was
experiencing a wave of problems with non-prescribed injection of
opiates (4).

Levinstein’s definition of addiction as an “uncontrollable
desire to use” has held up in the last 140 years. He argued
that morphine addiction is a disease, but not a mental
disease, because the will of the addicted individual was
not pervasively damaged. Individuals could use their will
successfully in the context of work and family, but not with
opiates (2). Conversely, current versions of the Diagnostic
and Statistical Manual of Mental Disorders (DSM) and the
International Classification of Diseases (ICD) include opioid
use disorders as mental disorders. Nevertheless, a great deal
of ambivalence remains toward the psychiatric diagnosis of
substance use as a mental disorder, not only in the general
population, but also among health professionals in general,
including psychiatrists (5–8). In our view, this ambivalence
reflects the lack of a comprehensive theory of addiction that
takes into account the full complexity of the phenomenon
in its neurobiological, psychological, and sociocultural
aspects.

In this perspective paper, we undertake a critical appraisal
of the current status of the psychopathology of opioid use
disorder from a clinical point of view. We further suggest
that recent developments in cognitive science, in particular
enactivism (9, 10), serve as a suitable framework to overcome
some of the shortcomings of the current approach by providing
a more comprehensive model of addiction that integrates life
and social sciences, dynamical and complex systems theory, and
philosophical-phenomenological approaches.

LIMITATIONS OF THE CURRENT
PSYCHOPATHOLOGY OF ADDICTION

Most physicians and psychiatrists would find it difficult to
respond if asked about the nature of addiction. We propose
that this difficulty can be attributed to a lack of a mature
theory regarding the clinical psychopathology of addiction.
Searches for articles using the keywords psychopathology and
addiction or substance use disorder will mainly retrieve articles
on psychopathology of other mental disorders and concurrent
addiction, but not about the psychopathology of addiction as
such. We think that a glance at the origin and development of
psychopathology and the concept of mental disorders may help
to understand this deficit.

The original development of the concepts of psychopathology
and mental disorders has been attributed to Karl Jaspers.
Jaspers based his concept of psychopathology on Edmund
Husserl’s phenomenology, focusing on conscious experiences
and excluding non-conscious aspects (11). He felt uncomfortable

with Sigmund Freud’s speculations of the impact of non-
conscious aspects of the mind on salience, motivation and
decision-making (12). Jasper’s philosophical anchoring in
phenomenology as a disciplined investigation of conscious
experience seems to have been lost (13, 14). Instead, current
clinical psychopathology (signs and symptoms) continues to
be based on the naïve common sense concepts of the mind
derived from folk psychology, with all its limitations and
scientifically unsustainable assumptions (15). But even Jaspers
in his original formulations made no attempt to systematically
probe the phenomenology of actual lived experience of addiction
as reported by addicted individuals.

In a recent attempt to develop such a phenomenology of
addiction, Owen Flanagan talked about shame and normative
failures, not pathological craving (16). Patients appear to
experience cravings as intuitive drives, not as uncontrollable
or foreign urges. This is different from other disorders, such
as obsessive-compulsive disorder (OCD), where urges can be
experienced as intrusive, overwhelming and dysfunctional.
It appears that individuals with an addiction do not tend to
spontaneously report a feeling of a “loss of control.” If individuals
suffering from addiction step back and evaluate their lives, they
can articulate the negative impact of their substance use, but
this is distinct from a feeling of losing control due to craving.
While this is a clinical observation not unfamiliar to treatment
providers, data and studies regarding this phenomenon are
lacking and current psychopathology of addiction has remained
silent to it. Although clinical experience, including clinical
psychopathology, cannot replace scientific evidence, clinical
psychopathology is important to understand the expression of
the disorder in a patient’s life and to relate the neurobiological
mechanisms to the relevant aspects of this clinical
disorder.

Sense of control and will are central concepts in commonsense
psychology, but they are surprisingly poorly conceptualized or
investigated in current psychopathology. If pressed, professionals
will express contradictory views: they will argue either that
the will of an addict is in principle intact, as conceptualized
by Levinstein (2); or that it is impaired (lack of willpower),
as argued by Jaspers, Kraepelin and others (17, 18). This
contradiction might arise because commonsense psychology
endows an individual with a consistent, single will that is either
“healthy” or “sick” in addiction. Imposing a dichotomy does
not do justice to the complexity of agency. Discussion of the
role of volition, will and agency is closely related to questions
around free will. Free will is a conceptual cornerstone of the
prevalent Western folk intuitions of individuals as responsible
human beings (19–21). This is a deeply engrained perspective,
and also may be a reason why addiction is associated with
such a high level of stigma. The image of a hijacked brain,
endorsed by the National Institute on Drug Abuse (NIDA) as
a metaphor aimed at lay audiences, circumvents this stigma by
describing the brain as seized by an unnamed outside agent
(e.g., drugs or addiction processes) that forces it to follow a new
trajectory.

It is undeniable that the brain undergoes neuroplastic changes
in response to substance abuse. However, neuroplasticity does
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not imply that the brain has been “hijacked” (22). Furthermore,
this metaphor may undermine the patients’ possibility of taking
at least partial responsibility for their actions and does little
to support their capacity for change (23). Accepting to be
completely controlled by drugs might contribute to a low
self-efficacy in addiction. We think that this last point is
relevant for recovery, since self-efficacy (24) has been found
to be a significant determinant of behavior change and relapse
prevention in studies on smoking cessation and alcoholism
treatments (25–27). Pickard’s framework of “responsibility
without blame” (28), which proposes to change attitudes toward
addiction by decoupling responsibility from morality, might be
useful in clinical practice for avoiding stigma and blame without
removing the patients’ sense of agency. Additionally, a more
nuanced theory of agency, which can defend the sense of being
an autonomous individual, while acknowledging the constraints
of biological embodiment also appears to be advantageous or
even necessary, as it might help to identify healthy aspects of
agency supporting a restructuring of an individual’s life. In the
next section, we will argue that enactivism can provide such a
theory.

Another feature of addiction, which we feel needs more
attention, is that it involves a host of characteristic behaviors
beyond use itself. Levinstein already provided a broad range of
examples of the effect of morphine addiction on the patients’
responses and behavior, e.g., when the treatment provider has
to expect that, independently of the “respectability” of the
patients, they will try to smuggle morphine into treatment.
He also pointed out that “hardly any person suffering from
morbid craving for morphia1 is able truthfully to state the daily
quantity of morphia used, and the hour when he last injected
morphia” (2). Furthermore it seems to require considerable
effort to switch from supporting substance use of others to
supporting recovery and abstinence of others, even in the context
of a joint recovery. These behaviors and social phenomena are
familiar to anybody treating patients suffering from substance
use disorders, and yet remain rarely discussed as an integrated
part of the disorder. We believe that they once again point
toward the need for a more elaborate and far-reaching theory of
addiction.

Neuroscience will play an essential role in developing a more
comprehensive conceptualization of addiction. For instance,
some of the aforementioned aspects have been subsumed under
the description of “denial” (29). Denial can be considered a
refusal to accept reality or facts, acting as if an uncomfortable
event, thought, or feeling does not exist (30). Recently, Nora
Volkow and other authors (31–33) have touched upon denial
in addiction by discussing anosognosia, conceptualizing it as
a “dysfunction of brain networks subserving insight and self-
awareness” (31). Another example is the theory of allostasis,
developed by Sterling and Eyer (34) to explain the relationship
between stress and diseases. George Koob and other researchers
(35–38) have incorporated it into the field of addiction to
explain the neurobiological mechanisms underlying vulnerability

1The term “morphia” used in the English edition is equivalent to the term

“morphine” that is employed nowadays.

to drug addiction and relapse. According to this theory, a
pathological equilibrium related to sustained changes in the
stress response system or allostatic load (39) leads to a self-
reinforcing drug use pattern. This theory explains compulsion
and relapse as behaviors aimed at reestablishing hedonic
homeostasis by relieving the allostatic load, which manifests
itself as a spiraling affective tension resulting from withdrawal,
repeated failures in self-regulation, and other daily stressors.
Similar to the anosognosia concept, this framework captures
aspects of addiction familiar to clinicians, but currently not
covered by clinical psychopathology. One key feature about
this theory is that it emphasizes the integral causality between
the whole body and the environment, making it clear that
the brain does not work in isolation, but only as a part
of a complex system. This fact has also been acknowledged
by Thomas Fuchs, who regards the brain as “an organ of
mediation” between the organism as a whole and its environment
(23).

In general, it can be said that acknowledgement of
neurobiological aspects has had a very limited impact in the
psychopathology of addiction. This may be partly because
clinical psychopathology appears to be increasingly disconnected
from biological psychiatry. In fact, from the perspective
of the latter, psychopathology is sometimes considered a
barrier for progress (40, 41). Psychiatrists conducting genomic
and neuroscientific research have tried to circumvent it,
creating new biological concepts such as endophenotypes (42)
and the Research Domain Criteria (RDoC) (41). Behavioral
neuroscience certainly is an essential source of progress
for research on and treatment of addictions, but it does
not replace clinical psychopathology. We see a need for
both neuroscience and clinical psychopathology to more
effectively inform each other to obtain a more comprehensive
understanding of opioid use disorders and other addictions. In
the forthcoming section, we suggest that one promising avenue
for collaboration might come from an enactive approach to
cognitive sciences.

TOWARD A NEW UNDERSTANDING OF
OPIOID AND OTHER DRUG ADDICTIONS

Recent developments in embodied, embedded, extended, and
enactive (4E) cognitive science have done much to highlight how
embodied interactions, tool-use, affectivity, language, material
environment, and socio-cultural practices shape lived experience
and the functioning of the mind. A theory of addictions based
on 4E theory seems to be an attractive option to move the field
forward.

Walter (43) recently described the 4E approach to cognition
as the potential base for a third wave in biological psychiatry.
By treating the mind/brain as embodied, embedded, extended,
and enactive, processes external to the brain are considered to
be constitutive of mental processes and thus also constitutive
of disordered and pathological mental processes. We agree and
see much promise of applying these insights to addiction. In
particular, we propose that an enactive approach may do the
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clinical phenomena of addiction more justice, while also being
consistent with biological findings.

Enactivism emerged as an alternative to current mainstream
cognitive science, emphasizing the dynamical, self-organized,
embodied, affective, intersubjective, and situated nature of
cognition, as well as its phenomenological dimension (10).
The enactive approach emphasizes the centrality of agency for
understanding mind and behavior. An agent is understood as
“a self-constructed unity that engages the world by actively
regulating its exchanges with it for adaptive purposes that are
meant to serve its continued viability” (44). This means that
agents generate an identity through their activity in the world,
and strive to preserve it in the face of external perturbations
and in spite of its intrinsic precariousness and entropic trends.
In order to do that, agents need to be adaptive, i.e., they
need to regulate themselves to stay within the limits of their
viability (44).

On a biological level, agents seek to preserve a metabolic
identity in order to survive. However, in the case of humans,
they also strive to maintain habitual identities (45). In this
regard, according to enactivism, the preservation of habits
constitutes a central source of normativity that guides an
agent’s perception, thought and behavior: agents will tend
to avoid situations and actions that may threaten their
habitual identities and to look for favorable ones (46).
Accordingly, agents create meaningful relations with the
world in the sense that everything that contributes to the
conservation of their biological and habitual identity is seen
as intrinsically good and attractive, while everything that
challenges its subsistence as intrinsically bad and aversive
(47).

This framework also suggests “bundles of habits” (48)
constituting a complex network of regional identities that involve
bodily and neural processes, as well as interactions with the
material, social, and cultural environment. These identities
mutually enable and restrain each other (49), giving rise through
their interaction to a global identity i.e., a loosely assembled
self.

Under this perspective, addiction is considered one of the
many habitual identities that constitute an addict’s form of life
and that is so deeply ingrained into the agent’s physiology that
it alters her metabolic autonomy and escalates to dependence.
In this sense, addiction can be regarded as a bad or pathological
habit because it endangers or constrains some of the addict’s other
identities, such as the biological or social ones. In dynamical
systems terms, it can be said that addicts are stuck in a
suboptimal attractor, which creates a tension that may manifest
as frustration or anxiety for not being able to develop other
regional identities. This view thus places addiction within the
self, and not as a compulsion or an alien force. Additionally,
it acknowledges addicts as autonomous agents that strive to
preserve an identity that they have forged through a long
history of interactions with their material, social, and cultural
environment.

This perspective helps to explain the puzzling but common
behaviors of individuals initiating treatment, but smuggling
drugs into it and failing to disclose the full extent of usage:

these behaviors can be seen as ways of maintaining the
addict’s form of life, which is being threatened by treatment.
Furthermore, addictions may be so difficult to override not
only because of their self-sustaining character, but also because
their dynamics influence the formation and maintenance
of other related habits, including social ones, thus making
it necessary to change many other regional identities and,
eventually to perform more extensive reshaping of the addict’s
entire self and its narratives. In order to do this, the enactive
approach emphasizes the need to take into account the
embodied, affective, situated, intersubjective, and extended
aspects of addiction, as well as its phenomenological and
dynamical dimensions to achieve a broader understanding
and an impact on treatment. We propose that these
factors should be a prominent focus of future research on
addiction.

While we argue for this approach within the context of a
very “underdeveloped” clinical psychopathology, its value will
only be realized if it can better integrate diverse aspects of
the disorder, including psychopathology and neurobiological
findings; if it can predict patients’ trajectories; and if it facilitates
the development of new effective treatments. One future line
of research can come from relating this enactive perspective
with the theory of allostasis. In this regard, for example, the
enactive notion of adaptivity, understood as “the capacity of
an organism to regulate itself with respect to the boundaries
of its own viability” (44) can be conceptually linked to that
of allostasis, which refers to the principle that “to maintain
stability an organism must vary all the parameters of its
internal milieu and match them appropriately to environmental
demands.” (34). Additionally, both frameworks regard the brain
as an interacting dynamical system embedded within larger
ecological systems. In fact, the notion of allostasis has started
to be incorporated within the enactive approach in relation to
autonomy and self-regulation (50). We believe that this exchange
will be mutually beneficial, for it can provide enactivism with a
more solid physiological and empirical grounding and connect
allostasis theory with science informed cutting-edge philosophy
of mind.

CONCLUSIONS

Levinstein’s monograph ends with case histories. The last
case is about Darius, who dies during treatment. The author
suggests that he died because he relapsed and overdosed
(2). This may be taken as a reminder of the high human
and societal cost induced by addiction. A more mature
theory of the “pathologies” of the mind, as well as their
relationship to individuals’ experiences, actions, and brain
mechanisms seems to be urgently required. This need may
be most pronounced in the field of substance use disorders,
and it appears to be time to move beyond the traditional
framework of “folk psychology” and brain mechanisms. The
need to incorporate science-based and philosophically informed
developments in understanding the mind, such as those
suggested by the 4E approaches to cognition, appears to
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be more than a mere academic exercise; it might actually
be considered a necessary step to successfully integrate
and further develop preclinical neuroscience and clinical
psychopathology.
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Background: µ-opioid receptor knockout (MOP-KO) mice display baseline

hyperalgesia. We have recently identified changes in tissue volume in the periaqueductal

gray matter (PAG) using magnetic resonance imaging voxel-based morphometry.

Changes in the structure and connectivity of this region might account for some

behavior phenotypes in MOP-KO mice, including hyperalgesia.

Methods: Adult male MOP-KO and wild-type (WT) mice were studied.

Immunohistochemistry was performed to detect microglia, astrocytes, and neurons in

the PAG using specific markers: ionized calcium-binding adaptor molecule 1 (Iba-1)

for microglia, glial fibrillary acidic protein (GFAP) for astrocytes, and the neuronal nuclei

antigen (NeuN; product of the Rbfox3 gene) for neurons, respectively. Cell counting was

performed in the four parallel longitudinal columns of the PAG (dorsomedial, dorsolateral,

lateral, and ventrolateral) at three different locations from bregma (−3.5, −4.0, and

−4.5mm).

Results: The quantitative analysis showed larger numbers of well-distributed Iba1-

IR cells (microglia), NeuN-IR cells (neurons), and GFAP-IR areas (astrocytes) at all the

anatomically distinct regions examined, namely, the dorsomedial (DM) PAG, dorsolateral

(DL) PAG, lateral (L) PAG, and ventrolateral (VL) PAG, in MOP-KO mice than in control

mice.

Conclusions: The cellular changes in the PAG identified in this paper may underlie

aspects of the behavioral alterations produced by MOP receptor deletion, and suggest

that alterations in the cellular structure of the PAG may contribute to hyperalgesic states.

Keywords: µ opioid, µ opioid receptor knockout (MOP-KO), periaqueductal gray matter (PAG), microglia,

astrocytes, neuron, immunohistochemistry
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INTRODUCTION

Studies in knockout (KO) mice have demonstrated that µ-
opioid (MOP) receptors play crucial roles in several physiological
functions, including nociception, stress responses, tolerance,
reward learning, and immune function (1–5). Although these
effects of MOP deletion have been generally thought to result
simply from elimination of MOP signaling (6), as would be
expected from elimination of opiate reinforcement in MOP-KO
mice (7, 8), effects on drug reinforcement extend to abused drugs
acting through diverse mechanisms [(9–11), see summary in
Hall et al. (12)]. This may still just indicate a role for MOP in
drug reinforcement generally, just as baseline hyperalgesia may
indicate a role of MOP in basal nociception (1, 8). However, there
certainly is evidence for neuroadaptations to the elimination of
MOP. Most recently, we have found brain volume differences
in the periaqueductal gray matter (PAG), olfactory bulb, arcuate
nucleus, and several cerebellar regions using magnetic resonance
imaging voxel-based morphometry (13).

Several factors are likely to be involved in the brain volume
abnormalities in the PAG caused by the deletion of MOP
receptors. The brains of several strains of mutant mice exhibit
structural changes, that correlate with behavioral consequences
of the genetic modifications (14). Since glial cells take up a
large portion of neural tissue, it is likely that glial changes
may account for some of these differences in tissue volume
(although that does not exclude changes in the volume of
the neuropil as well, which would be likely to drive changes
in glial numbers or volume). Indeed, glial changes are found
in altered pain states in the spinal cord, as well as marked
changes in specific brain regions (15–17). Changes in some
regions may involve a role of opioids in brain development, but
others may involve adult plasticity. Hippocampal neurogenesis
is affected by MOP deletion (18). Although opioid systems
modulate neural stem cell progenitor differentiation and
influence aspects of neural development, it is important to
note that opioid agonists also affect neurogenesis in adult
animals (19, 20), indicating that these effects are not necessarily
developmental in nature. Current evidence support genetic
factors affect brain functional connectivity and organization
(21). MOP receptor gene alters the widespread brain functional
connectome and remodels the reward/aversion circuit (22). Such
connectivity remodeling may account for brain morphology
alterations.

Thus, it is likely that alterations in MOP signaling may
have broader effects on developmental and adult neuroplasticity,
in addition to simply altering MOP activity. This might be
evidenced as altered brain morphology and connectivity. In our

previous study, finding increased size of the PAG in MOP-
KO mice, histological analysis did not reveal apparent cellular
pathological changes, based on conventional hematoxylin and
eosin/Klüver-Barrera staining, although there were increased
neural cell numbers (13). Consequently, the aim of the
present study was to investigate the contribution of different
neural cell types to the volume and cell number differences
in the PAG resulting from genetic elimination of MOP
receptors.

MATERIALS AND METHODS

Animals
All animals were treated in compliance with the “Principles
of Laboratory Animal Care” (National Society for Medical
Research) and the “Guide for the Care and Use of Laboratory
Animals” (National Academies of Sciences). The Animal Care
and Use Committee of the Tohoku University Graduate School
of Medicine approved this study.

Congenic homozygous male MOP-KO (N = 7) and wild-
type (WT, N = 7) mice that had been backcrossed for at least
20 generations to C57BL/6J mice were used (1). All mice were
housed at the Institute for Animal Experimentation, Tohoku
University Graduate School of Medicine, in a colony maintained
at an ambient temperature of 22 ± 2◦C, on a 12 h light:12 h dark
cycle (lights on: 08:00–20:00) with food and water available ad
libitum. Four to six mice were housed per cage. All mice were
12 weeks old at the time of sacrifice for immunohistochemical
analysis.

Immunohistochemistry
Each mouse was anesthetized by intraperitoneal administration
of a combination of medetomidine (0.3 mg/kg, Medetomin;
Meiji Seika Pharma, Co., Ltd., Tokyo, Japan) and butorphanol
(2 mg/kg, Betrorphal; Meiji Seika Pharma, Co., Ltd., Tokyo,
Japan). Local anesthesia, with 2% lidocaine (diluted to 0.5%,
3 mg/kg), was performed at the incision site. Animals were
perfused transcardially with cold 0.1Mphosphate-buffered saline
(PBS, pH 7.4) followed by 4% paraformaldehyde in 0.1M PBS
for 30min, at rate of 7 mL/min. After perfusion, the brains
were removed and post-fixed in 4% paraformaldehyde in 0.1M
PBS. After post-fixation, tissues were embedded in paraffin using
a specialized automated tissue processing system (Tissue-Tek,
Sakura Finetek Japan Co., Ltd., Tokyo, Japan) at 58◦C; 5-µm
coronal sections were cut from the three anatomically distinct
regions of the PAG (bregma: −3.5, −4.0, and −4.5mm) for each
of the brains from MOP-KO and WT mice (23). For each of the
three regions, 5 serial sections (total number of sections: 15 per
mouse) were collected.

Each formalin-fixed and paraffin wax-embedded tissue
section was cleaned in xylene and rehydrated with decreasing
concentrations of ethanol. For studying microglia, each section
was subjected to a standard antigen retrieval procedure
consisting of 5min autoclaving at 120◦C in antigen retrieval
buffer, using pretreatment regent (Deparaffinization/Antigen
Retrieval Solution, pH 9; Nichirei Bioscience, Tokyo, Japan),
for ionized calcium-binding adapter molecule 1 (Iba1). The
sections were cooled at 4◦C for 30–45min and incubated
with the primary antibody (anti-Iba1 antibody, goat polyclonal,
1:2,000; Abcam, Tokyo, Japan) overnight at 4◦C. The next
day, the sections were washed three times with 0.01M PBS
(10min per wash), and endogenous enzyme activity was
blocked using 1% H2O2 for 20min. Each section was stained
using the indirect immunoperoxidase method (Histofine Simple
Stain Max PO (G); Nichirei Bioscience), and a chromogen
complex, 3,3′-diaminobenzidine tetrachloride (Simple StainDAB
Solution; Nichirei Bioscience) was used to visualize the targeted
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antigens; the sections were then counterstained with hematoxylin
(Chroma, Köngen, Germany).

To label astrocytes, a similar protocol was used for polyclonal
rabbit anti-glial fibrillary acidic protein (GFAP) (1:2,000; Dako,
Tokyo, Japan). Immunoreactivity was examined using the
indirect immunoperoxidase method (Histofine Simple StainMax
PO (R); Nichirei Bioscience).

In order to detect neuronal nuclei (NeuN) expression in
neurons, the antigen was retrieved by heating the samples
in a microwave for 15min at 100◦C in 0.01 mol/L citrate
buffer (pH 6.0). After the slides were washed, they were
incubated with Blocking Reagent A (Nichirei Bioscience) for
1 h at room temperature. The sections were incubated with
primary antibody (Anti-NeuN antibody, mouse monoclonal,
1:1,000; Millipore, CA, USA) overnight at 4◦C. The next day,
the sections were washed three times with 0.01M PBS (10min
per wash) and endogenous enzyme activity was blocked using
1% H2O2 for 20min. Each section was stained using the indirect
immunoperoxidase method (Histofine Simple Stain Max PO
(M); Nichirei Bioscience), and a chromogen complex, 3,3

′

-
diaminobenzidine tetrachloride (Simple Stain DAB Solution,
Nichirei Bioscience) was used to visualize the targeted antigens;
the sections were then counterstained with hematoxylin,
followed by incubation with Blocking Reagent B (Nichirei
Bioscience).

The immunoreactivity of each antibody (GFAP, Iba1, and
NeuN) for paraffin-embedded sections was confirmed using the
procedures recommended in each product’s data sheet.

Image Analysis
The number of immunoreactive (IR) nuclei (for Iba1-IR and
NeuN-IR, that show distinct cells) and the immunoreactive
area (for GFAP-IR, that shows a more diffuse staining) were
quantified using a light microscope equipped with a computer-
based automated cell counting system (BZ-9000, KEYENCE,
Tokyo, Japan) at the four columns in the PAG (dorsomedial:
DM, dorsolateral: DL, lateral: L, and ventrolateral: VL) and three
different locations from the bregma (−3.5, −4.0, and −4.5mm)
in 300 × 300 µm2 fields, following standard mouse brain
coordinates (23). While viewing the automated cell counting
system monitor, upper and lower thresholds of immunostaining
gray level were set such that only Iba1-IR, GFAP-IR and NeuN-
IR was accurately discriminated from the background in outlined
PAG area. The boundaries of each PAG column were defined
based on previously published anatomical criteria (24, 25).

Statistical Analysis
A P-value of 0.05 was considered statistically significant. The
Mann-Whitney U-test with post hoc Bonferroni-Dunn corrected
means comparisons were used to evaluate individual group
differences. Statistical analyses were performed using IBM SPSS
Statistics 2.4 (IBM, Chicago, IL, USA), GraphPad Prism Version
7.0 (GraphPad Software, Inc., La Jolla, CA, USA), and SigmaPlot
Version 13.0 (Systat Software, Inc., CA, USA). Data is presented
as median (interquartile range), unless mentioned otherwise.

RESULTS

The quantitative analysis showed larger numbers of well-
distributed microglia (Iba1-IR), neurons (NeuN-IR) and
astrocytes (GFAP-IR) at all the anatomically distinct regions
examined, namely, the DMPAG, DLPAG, LPAG, and VLPAG,
in MOP-KO mice than in control mice. The analysis showed
that MOP-KO mice displayed greater numbers of Iba1-IR cells
at −3.5mm from bregma (WT: 3 [2–4] vs. MOP-KO: 8 [7–9],
P < 0.001, n = 105), −4.0mm from bregma (WT: 3 [2–4]
vs. MOP-KO: 7 [6–8], P < 0.001, n = 105), and −4.5mm
from bregma (WT: 3 [2–4 vs. MOP-KO: 8 [7–9], P < 0.001,
n = 105) in the DMPAG; −3.5mm from bregma (WT: 3 [2–4]
vs. MOP-KO: 7 [6–8], P < 0.001, n = 105), −4.0mm from
bregma (WT: 3 [2–4] vs. MOP-KO: 8 [7–9], P < 0.001, n= 105),
and −4.5mm from bregma (WT: 4 [3–5] vs. MOP-KO: 8 [7–9],
P < 0.001, n = 105) in the DLPAG; −3.5mm from bregma
(WT: 2 [1–3] vs. MOP-KO: 6 [5–7], P < 0.001, n = 105),
−4.0mm from bregma (WT: 2 [1–3] vs. MOP-KO: 6 [5–7],
P < 0.001, n = 105), −4.5mm from bregma (WT: 3 [2–4]
vs. MOP-KO: 7 [6–8], P < 0.001, n = 105) in the LPAG; and
−4.5mm from bregma (WT: 3 [2–4] vs. MOP-KO: 8 [7–9],
P < 0.001, n = 105) in the VLPAG. These data are illustrated
in Figure 1 (also see the representative photomicrographs in
Figure 4).

MOP-KO mice displayed larger GFAP-IR area (µm2) at
−3.5mm from bregma (WT: 471.0 [455.8–486.0] vs. MOP-
KO: 699.0 [685.0–711.3], P < 0.001, n = 105), −4.0mm from
bregma (WT: 548.0 [538.8–554.3] vs. MOP-KO: 854.5 [843.8–
866.3], P < 0.001, n = 105), and −4.5mm from bregma
(WT: 351.0 [344.0–357.3] vs. MOP-KO: 923.0 [899.0–934.0],
P< 0.001, n= 105) in the DMPAG;−3.5mm from bregma (WT:
60.0 [58–62.0] vs. MOP-KO: 158.0 [153.0–164.3], P < 0.001,
n = 105), −4.0mm from bregma (WT: 63.0 [59.8–66.0] vs.
MOP-KO: 248.5 [243.0–251.0], P < 0.001, n = 105), and
−4.5mm from bregma (WT: 51.0 [49.0–53.0] vs. MOP-KO:
350.5 [349.0–354.3], P < 0.001, n = 105) in the DLPAG;
−3.5mm from bregma (WT: 102.0 [99.0–108.3] vs. MOP-KO:
451.0 [450.0–455.0], P < 0.001, n = 105), −4.0mm from
bregma (WT: 99.0 [94.0–102.0] vs. MOP-KO: 437.0 [429.8–
450.0], P < 0.001, n = 105), and −4.5mm from bregma
(WT: 131.0 [128.0–137.0] vs. MOP-KO: 609.5 [600.8–617.0],
P < 0.001, n = 105) in the LPAG; and −4.5mm from
bregma (WT: 62.5 [59.8–68.0] vs. MOP-KO: 395.0 [388.8–403.0],
P < 0.001, n = 105) in the VLPAG. These data are illustrated
in Figure 2 (also see the representative photomicrographs in
Figure 4).

The analysis showed that MOP-KO mice had larger numbers
of NeuN-IR cells at−3.5mm from bregma (WT: 65.0 [60.5–69.0]
vs. MOP-KO: 121.0 [116.5–127.0], P< 0.001, n= 105),−4.0mm
from bregma (WT: 98.0 [91.5–102.5] vs. MOP-KO: 142.0 [130.5–
147.0], P < 0.001, n = 105), and −4.5mm from bregma
(WT: 105.0 [102.0–109.0] vs. MOP-KO: 150.0 [144.0–154.5],
P< 0.001, n= 105) in the DMPAG;−3.5mm from bregma (WT:
80.0 [75.0–82.0] vs. MOP-KO: 122.0 [117.0–126.0], P < 0.001,
n= 105),−4.0mm from bregma (WT: 90.0 [86.0–97.0] vs. MOP-
KO: 143.0 [138.5–149.0], P< 0.001, n= 105), and−4.5mm from
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FIGURE 1 | Median values and interquartile ranges for the number of Iba1-IR cells in the examined fields (300 × 300 µm2 ) in the DMPAG (−3.5, −4.0, and −4.5mm

from bregma), DLPAG (−3.5, −4.0, and −4.5mm from bregma), LPAG (−3.5, −4.0, and −4.5mm from bregma), and VLPAG (−4.5mm from bregma). Fifteen slides

per brain tissue block (N = 7) were designated for image analysis. The asterisk indicates significant differences (MOP-KO vs. WT mice). Iba1, ionized calcium-binding

adapter molecule 1; IR, immunoreactive; DMPAG, dorsomedial periaqueductal gray matter (PAG); DLPAG, dorsolateral PAG; LPAG, lateral PAG; VLPAG, ventrolateral

PAG. ***P < 0.001.

FIGURE 2 | Median values and interquartile ranges of the GFAP-IR areas (µm2) in the examined fields (300 × 300 µm2 ) in the DMPAG (−3.5, −4.0, and −4.5mm

from bregma), DLPAG (−3.5, −4.0, and −4.5mm from bregma), LPAG (−3.5, −4.0, and −4.5 from bregma), and VLPAG (−4.5mm from bregma). Fifteen slides per

brain tissue block (N = 7) were designated for image analysis. The asterisk indicates significant differences (MOP-KO vs. WT). GFAP, glial fibrillary acidic protein;

DMPAG, dorsomedial periaqueductal gray matter (PAG); DLPAG, dorsolateral PAG; LPAG, lateral PAG; VLPAG, ventrolateral PAG. ***P < 0.001.

bregma (WT: 84.0 [80.0–86.0] vs. MOP-KO: 147.0 [141.5–151.0],
P < 0.001, n= 105) in the DLPAG;−3.5mm from bregma (WT:
85.0 [81.0–90.0] vs. MOP-KO: 160.0 [154.0–165.0], P < 0.001,
n= 105),−4.0mm from bregma (WT: 75.0 [72.0–79.0] vs. MOP-
KO: 130.0 [128.0–136.0], P < 0.001, n = 105), and −4.5mm

from bregma (WT: 100.0 [98.0– 105.0] vs. MOP-KO: 140 [133.0–
145.5], P < 0.001, n = 105) in the LPAG; and −4.5mm (WT:
90.0 [88.0–93.0] vs. MOP-KO: 151.0 [146.0–155.0], P < 0.001,
n = 105) in the VLPAG. These data are illustrated in Figure 3

(also see the representative photomicrographs in Figure 4).
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DISCUSSION

The aim of this study was to determine the contribution of
changes in the numbers of different neural cell types (or area for
astrocytes) to the volume changes in the PAG of MOP-KO mice.
Immunohistochemical analysis revealed that enlarged brain size
was accompanied by an increase in the number of microglia and

neurons, and area of astrocyte immunoreactivity, in all of the
anatomically distinct regions of the PAG that were examined
(these included three different locations from the bregma [−3.5,
−4.0, and −4.5mm] and four different columns in the PAG
[dorsomedial, dorsolateral, lateral, and ventrolateral].

Regulation of neurodevelopment by the endogenous opioid
system is an important concept for the interpretation of our

FIGURE 3 | Median values and interquartile ranges for the number of NeuN-IR cells in the examined fields (300 × 300 µm2) in the DMPAG (−3.5, −4.0, and

−4.5mm from bregma), DLPAG (−3.5mm, −4.0mm, and −4.5mm from bregma), LPAG (−3.5, −4.0, and −4.5mm from bregma), and VLPAG (−4.5mm from

bregma). Fifteen slides per brain tissue block (N = 7) were designated for image analysis. The asterisk indicates significant differences (MOP-KO vs. WT). NeuN,

neuronal nuclei; DMPAG, dorsomedial periaqueductal gray matter (PAG); DLPAG, dorsolateral PAG; LPAG, lateral PAG; VLPAG, ventrolateral PAG. ***P < 0.001.

FIGURE 4 | Representative photomicrographs of Iba1-IR cells, GFAP-IR areas, and NeuN-IR cells in the PAG. Iba1, ionized calcium-binding adapter molecule 1; IR,

immunoreactive; GFAP, glial fibrillary acidic protein; NeuN, neuronal nuclei; PAG, periaqueductal gray matter. Scale bars indicate 100µm.
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findings. Firstly, it is of interest to note that opioid receptor
blockade increases DNA synthesis in germinal neural cells (26).
Opioid antagonists exert a marked, stereospecific influence on
the growth of neural tissues, depending on the duration of opioid
receptor blockade (27). Continuous daily blockade of opioid
receptors increases the number of cells in the cerebellum, whereas
intermittent opioid receptor blockade decreases the number of
these cells (26). Quantitative analysis has demonstrated that all
cerebellar cell types, including granule cells, Purkinje cells, and
glial cells, contribute to this cerebellar plasticity (28). Given
these facts, our findings are in line with the cerebellar structural
changes induced by continuous daily blockade of opioid receptor
using naltrexone in postnatal rats (27).

However, the specific mechanisms by which MOP receptors
regulate neural development in specific brain areas is yet to be
determined, and likely to involve more than just MOP receptor
density. Distribution and levels of MOP receptors in the brain
do not predict those areas in which increased cell numbers are
observed, such as the cerebellum and PAG, since neither of
those areas contain high levels of MOP receptors (29), and many
regions with high levels of MOP expression do not seem to be
affected.

Our results indicate that structural abnormalities in the
PAG may not relate to the anatomical locations and cellular
organization of PAG circuits because increased cell numbers
were observed in all cell types, in all PAG columns—there
is just more of everything. Each anatomical subdivision
of the PAG does have a role in distinct physiological
functions that include the control and expression of pain,
analgesia, fear, and anxiety (30, 31). Briefly, dorsolateral
PAG stimulation evokes active coping strategies, such
as fight/flight behaviors, non-opioid-mediated analgesia,
hypertension, and tachycardia. The lateral PAG appears to
coordinate non-opioid analgesia, active defensive behaviors,
and exerts a hypertensive effect. Ventrolateral stimulation,
on the other hand, evokes passive defensive behaviors, such
as quiescence, opioid-mediated analgesia, hypotension, and
bradycardia (25, 31, 32). Our findings do not necessarily
indicate a large shift in these behavioral circuits mediated
by PAG since all areas were affected, although these areas
were not entirely equally affected. It will require more work
to determine if these small differences affect the activity of
individual PAG subregions and the behavior circuits that they
influence.

A number of studies have demonstrated the importance of
several brain sites in modulating nociception and/or mediating
analgesic effects, including the PAG (33, 34), thalamus (35),
hypothalamus, and amygdala (34). It is well-known that the
endogenous descending pain modulatory circuit originates in
the PAG and includes neurons in the rostral ventromedial
medulla and spinal cord dorsal horn (36). Evidence indicates
that glial plasticity in specific brain areas affect pain states,
beyond the changes in numbers of glia occurring in the spinal

cord and the peripheral nerves (15–17). Marked structural glial
modifications may also occur in the PAG of MOP-KO mice that
have baseline hyperalgesia, but the present study demonstrates
that increased numbers of neuronal cells also contribute to
volume abnormalities in that brain region. Neuronal changes in
specific brain areas associated with chronic pain states, including
hyperalgesia and allodynia, remain to be fully elucidated, so
the extent to which these changes are specifically involved in
hyperalgesia remains to be seen.

Our study has some limitations. Firstly, the examination
was performed at 12 weeks of age, and our findings require
corroboration from investigations at earlier stages of life.
Secondly, increased regional gray matter volume in MOP-
KO mice was observed in other brain regions, such as the
hypothalamus and olfactory bulb (13). Further investigation of
these brain regions is warranted to determine whether changes
in all neural cell types are also detected in these regions as
well. Thirdly, we did not examine baseline cytokine levels, or
other potential mediators beyond MOP in MOP-KO mice that
show baseline hyperalgesia. Specific cytokines may influence the
numbers of glial cells observed in the PAG due to the deletion of
MOP receptors. Finally, further study is warranted to clarify the
sex-bias in each genotype since we did not analyze the data by
sex.

In conclusion, the present study shows that increased numbers
of microglia, and neurons, and greater astrocytic area, in the
PAG in MOP-KO mice might result from developmental roles
of by the endogenous opioid system. Further investigations
based on the present findings are necessary to elucidate
whether structural changes are observed earlier in life, and
if so, why these changes are induced in specific brain areas,
and what phenotypic outcomes are mediated by these cellular
changes.
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Derivatives: Ligands With Mixed NOP
and Opioid Receptor Profile
Vinod Kumar 1, Willma E. Polgar 2, Gerta Cami-Kobeci 3, Mark P. Thomas 3,

Taline V. Khroyan 2, Lawrence Toll 4 and Stephen M. Husbands 3*
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International, Menlo Park, CA, United States, 3Department of Pharmacy and Pharmacology, University of Bath, Bath,

United Kingdom, 4Department of Biomedical Sciences, Florida Atlantic University, Boca Raton, FL, United States

A series of 14β-acyl substituted 17-cyclopropylmethyl-7,8-dihydronoroxymorphinone

compounds has been synthesized and evaluated for affinity and efficacy for mu (MOP),

kappa (KOP), and delta (DOP) opioid receptors and nociceptin/orphanin FQ peptide

(NOP) receptors. The majority of the new ligands displayed high binding affinities for

the three opioid receptors, and moderate affinity for NOP receptors. The affinities for

NOP receptors are of particular interest as most classical opioid ligands do not bind to

NOP receptors. The predominant activity in the [35S]GTPγS assay was partial agonism

at each receptor. The results are consistent with our prediction that an appropriate 14β

side chain would access a binding site within the NOP receptor and result in substantially

higher affinity than displayed by the parent compound naltrexone. Molecular modeling

studies, utilizing the recently reported structure of the NOP receptor, are also consistent

with this interpretation.

Keywords: opioid, nociceptin, ORL-1, analgesics, kappa opioid receptor, mu opioid receptors

INTRODUCTION

There are three classical opioid receptors mu (MOP), delta (DOP), and kappa (KOP), which
play important physiological and pharmacological roles especially in pain regulation. In addition
to these, the NOP receptor (earlier ORL1) was identified as a fourth member of the opioid
receptor family. This G-protein coupled receptor (1) has significant homology with classical
opioid receptors; however none of the endogenous opioid ligands show high affinity to NOP.
The endogenous ligand for this receptor, nociceptin/orphanin FQ (N/OFQ) (2, 3) is a 17 amino
acid peptide having sequence similarity to the opioid peptides, particularly dynorphin, but it itself
does not have high affinity for other opioid receptors. Various early studies indicated that the NOP
receptor may play an important role in pain regulation (4), the cardiovascular system (5, 6), opioid
tolerance (7), learning andmemory (8–10), anorexia (11), anxiety (12), and others (6). However, the
development of new therapeutics targeting NOP receptors has not proven easy and it has become
clear that the biological actions of NOP receptor ligands vary enormously depending on species,
route of administration and dose (13).
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For example, the pharmacological action of nociceptin on
the perception of pain is not straightforward. Early studies on
nociceptin provided mutually contradictory results of either
increasing or decreasing perception of pain, depending on dose,
site and method of administration (14, 15). Whereas Meunier
et al. (3) reported nociceptin induced hyperalgesia in the hot
plate test when injected intracerebroventricularly (i.c.v) in mice,
Rossi et al. (16) found that i.c.v nociceptin produced a transient
hyperalgesia followed by analgesia in the tail flick test in mice.
More recent evidence from studies using non-human primates,
which may have greater translational validity than studies using
rodents, appears to confirm that NOP agonists have analgesic
effects comparable to morphine (17–19), though variations in
level of response have been reported (20).

Often medicinal chemistry programs aim to develop ligands
with ever greater selectivity for a particular target so as to
decrease the possibility of side effects. More recently there has
been a move to rationally design drugs having a multi receptor
affinity profile, recognizing the complexity of many disease
states (21, 22). The continued development of Cebranopadol,
now in multiple clinical trials is an example of this approach
(23, 24). Cebranopadol is a potent, full agonist at both MOP
and NOP receptors but is reported to have an improved safety
profile over standard MOP receptor agonist analgesics. In a
similar vein our groups have been interested in the development
of compounds with a mixed affinity profile, including MOP
partial agonist/NOP receptor partial agonists and separately
MOP partial agonist/KOP partial agonists (25–27). In particular,
MOP/NOP partial agonists are expected to be analgesic but with
reduced side effect profile, including less respiratory depression,
low abuse potential and less tolerance development (27–30).

The orvinol, buprenorphine (1) is a partial MOP receptor
agonist with modest affinity for the NOP receptor (31). Its
efficacy in the treatment of pain may involve a NOP receptor
component (32). The close homolog of buprenorphine, BU08028
(2) (26, 27), displays significant affinity and partial agonist
activity for NOP receptors in vitro and SAR from this series
of orvinols provides evidence that the region of space occupied
by the t-butyl group in buprenorphine is key to good NOP
receptor activity (26). Subsequently, similar NOP activity was
found in the related phenethyl orvinols (3) (33) further
highlighting the importance of the C20 group in the orvinol
series.

The 14β-hydroxymorphinan-6-ones naltrexone (4) and
naloxone are MOP receptor antagonists used in clinical practice.
It is known that substituting the C14-oxygen can have a dramatic
effect on the opioid receptor profile of these compounds
(34, 35). Thus, while 14-O methyl & ethyl derivatives (36, 37)
of naltrexone and naloxone are nonselective opioid receptor
antagonists, 14-phenylpropyloxymorphinan-6-ones (38) have
shown powerful agonist properties. We have previously reported

Abbreviations: MOP receptor, mu opioid receptor; NOP receptor,

nociceptin/orphanin FQ receptor; DOP receptor, delta opioid receptor; KOP

receptor, kappa opioid receptor; MPE, maximum percent effect; ANOVA,

analysis of variance; DAMGO, [D-Ala2, N-MePhe4, Gly-ol]-enkephalin; DPDPE,

[D-Pen2,D-Pen5]enkephalin.

on cinnamoyl esters of naltrexone as MOP receptor antagonists-
partial agonists (39). From molecular modeling studies, it is
clear that a suitable substituent attached to the C14-oxygen of
naltrexone could access the same region of space as the t-butyl
group of buprenorphine and it therefore seemed possible that
such a series of ligands might display the mixed MOP/NOP
receptor partial agonist activity desired.

CHEMISTRY

The 3-hydroxy group of 4 was protected with tert-
butyldimethylsilyl chloride in order to carry out selective
esterification of the 14-hydroxy group. The tendency of the C6-
carbonyl to exist in its enol form meant that clean esterification
was not possible with acyl chlorides but could be achieved with
the appropriate anhydrides which were synthesized from the
corresponding phenylacetic acid and triphosgene. Thereafter
the 3-hydroxy group was regenerated using a 1:1 mixture of
methanol and HCl (6N) to give the target esters (7) (Scheme 1).

RESULTS

Affinities for the individual opioid receptors were determined
in displacement binding assays in recombinant human opioid
receptors transfected into Chinese hamster ovary (CHO) cells
as previously described (31). The displaced selective radioligands
were [3H]N/OFQ (NOP), [3H]DAMGO (MOP), [3H]Cl-DPDPE
(DOP), and [3H]U69593 (KOP). All of the ligands displayed
high affinity binding in the subnanomolar to nanomolar range
toward MOP, KOP, and DOP receptors, with 1–2 orders of
magnitude lower affinity at NOP (Table 1). No selectivity in
binding between MOP, KOP, and DOP receptors was expected
or seen with this series of compounds; similarly there was no
substantial effect on the affinities of the ligands at MOP, KOP,
and DOP receptors on introduction of a substituent to the aryl
ring of the phenylacetyl group. At NOP receptors, it appears that
a substituent on the ring may be beneficial to affinity with a two-
to four-fold increase in affinity on addition of a single substituent
(compare unsubstituted 7a to substituted analog 7b-7k). When
compared with the parent compound 4, these ligands displayed a
substantial increase in binding affinity toward the NOP receptor,
a small increase in affinity at DOP (two- to eight-fold) and no
change atMOP andKOP. Affinities were almost identical to those
of buprenorphine (1).

The in vitro assay used to determine opioid receptor
functional activity was the [35S]GTPγ S binding stimulation
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SCHEME 1 | Synthesis of 14-O-phenylacetylnaltrexone and analogs. Reagents and conditions: (i) TBDMSiCl, imidazole, DCM, rt; (ii) R-phenylacetic anhydride,

toluene, 125◦C; (iii) MeOH-HCl (6N) 1:1, reflux.

TABLE 1 | Binding affinities of new compounds to human opioid receptor

transfected into CHO cellsa.

Cpd R Ki/nM

NOP MOP DOP KOP

7a H 127 ± 17 0.86 ± 0.18 3.10 ± 0.60 1.14 ± 0.46

7b 4-CH3 36.3 ± 4.2 1.87 ± 0.09 1.70 ± 0.20 1.56 ± 0.28

7c 2-CH3 44.1 ± 3.1 3.59 ± 0.86 1.97 ± 0.19 1.69 ± 1.2

7d 3-CH3 49.9 ± 3.5 1.91 ± 0.51 5.58 ± 0.22 2.80 ± 0.91

7e 3-OCH3 50.1 ± 2.7 1.10 ± 0.08 3.61 ± 0.34 1.44 ± 0.33

7f 4-OCH3 49.8 ± 7.1 1.08 ± 0.33 2.56 ± 0.48 1.90 ± 0.42

7g 3,4-OCH2O- 94.3 ± 28 0.99 ± 0.35 1.25 ± 0.20 1.20 ± 0.42

7h 2-OCH3 62.3 ± 4.9 3.77 ± 0.90 2.12 ± 0.59 3.52 ± 0.90

7i 2-F 69.7 ± 2.4 2.59 ± 1.1 4.07 ± 0.91 4.55 ± 0.70

7j 4-Cl 51.3 ± 14 1.78 ± 0.03 4.95 ± 1.1 3.95 ± 0.59

7k 2-Cl 32.6 ± 2.3 4.66 ± 1.8 3.24 ± 0.15 1.34 ± 0.50

3 – >10K 0.66 ± 0.10 10.7 ± 0.82 1.10 ± 0.22

1 – 77.4 ± 16 1.5 ± 0.8 6.1 ± 0.4 2.5 ± 1.2

aData are the average ± SD from two experiments, each carried out in triplicate.

Tritiated ligands were [3H]DAMGO (MOP), [3H]N/OFQ (NOP), [3H]Cl-DPDPE (DOP), and

[3H]U69593 (KOP).

assay, which, like the binding assays, was performed in human
receptor transfected CHO cells as described previously (31).
Agonist efficacy at these opioid receptors was determined in
comparison to the standard selective agonists N/OFQ (NOP),
DAMGO (MOP), DPDPE (DOP), and U69593 (KOP) (Table 2).
The ligands were predominantly low efficacy agonists at MOP
receptors. 7f, 7g, and 7j were also evaluated as MOP receptor
antagonists with 7f and 7g proving to be very potent competitive
antagonists (pA2 values of 10.58 ± 0.13 and 10.29 ± 0.24,
respectively, Table 3), whereas 7j was non-competitive, as
determined by a Schild analysis with a slope different than
−1. Similar results were obtained at the other receptors with

partial agonism being the standard activity. 7f had sufficiently
low efficacy at KOP, DOP, and NOP receptors to warrant
evaluation as an antagonist at each. Whilst competitive at the
MOP receptor, inhibition was non-competitive at the other
receptors, with IC50 values of 12.4 ± 2.25, 12.2 ± 0.11, 48.1±
14.06, and 5,637 ± 2,242 nM at MOP, KOP, DOP, and NOP,
respectively.

7f was evaluated in CD1 mice using the tail flick assay
with an analgesia instrument (Stoetling) that uses radiant heat.
Methods were as reported previously (27, 31). The overall
ANOVA indicated that there was a significant interaction effect
[F(6, 56) = 3.96, P < 0.05]. The positive control morphine (3
mg/kg) produced the anticipated increase in %MPE at all time
points. At the doses tested (1 and 3 mg/kg) 7f produced low
levels of antinociception, consistent with partial agonist activity
demonstrated in the [35S]GTPγS binding assay. The 1 mg/kg
dose of 7f produced a significant increase in tail flick latency
compared to vehicle controls at the 60- and 120-min time points,
whereas the 3.0 mg/kg dose produced significant antinociception
at the 30- and 120-min time points (Figure 1A). Given that
both doses of 7f produced similar levels of antinociception, we
examined whether the lower dose would alter morphine-induced
analgesia. As evident in Figure 1B, when 7f was given as a
pretreatment to morphine, morphine-induced antinociception
was attenuated at the 30- and 60-min time points (P < 0.05).

DISCUSSION

Substitution at 14-O position of naltrexone (4) has a significant
impact on the pharmacological profile. Lia et al. (40) reported
on a series of 14-O heterocyclic esters of 4 as selective MOP
receptor antagonists with subnanomolar to nanomolar binding
affinities. Similarly we have reported (39) that the predominant
activity of 14-O cinnamoyl esters of 4 was MOP partial
agonism/antagonism both in vitro and in vivo. In contrast, the
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TABLE 2 | Opioid agonist stimulation of [35S]GTPγS binding in recombinant human opioid receptora.

NOP MOP DOP KOP

Cpd EC50/nM % stim EC50/nM % stim EC50/nM % stim EC50/nM % stim

7a 401 ± 161 28.1 ± 4.8 3.8 ± 1.8 31.6 ± 4.2 5.6 ± 0.4 30.5 ± 5.5 1.2 ± 0.6 44.5 ± 13

7b 169 ± 3.4 22.3 ± 1.4 1.6 ± 0.9 34.9 ± 2.0 3.8 ± 1.1 27.0 ± 4.8 6.3 ± 2.2 11.5 ± 2.7

7c 106 ± 32.2 21.1 ± 1.4 2.2 ± 0.2 41.9 ± 1.4 201 ± 59 12.6 ± 3.1 2.9 ± 1.8 86.3 ± 6.5

7d 855 ± 185 59.3 ± 2.4 5.2 ± 2.0 40.1 ± 4.4 21.3 ± 2.2 15.8 ± 0.1 1.0 ± 0.3 46.4 ± 3.6

7e 374 ± 81.6 36.1 ± 0.3 13.3 ± 2.2 11.3 ± 1.3 9.9 ± 0.2 35.7 ± 0.7 1.7 ± 0.4 46.3 ± 8.1

7f 61.8 ± 20.1 8.9 ± 1.0 * 7.8 ± 3.5 59.4 ± 19.6 18.4 ± 1.3 * 6.5 ± 3.3

7g 562 ± 67.5 43.5 ± 9.4 * 12.1 ± 3.7 * ---- 5.4 ± 0.1 41.1 ± 0.9

7h 479 ± 33.3 40.8 ± 5.4 0.5 ± 0.1 37.3 ± 0.7 4.15 ± 1.85 19.2 ± 4.9 1.6 ± 0.3 50.4 ± 6.0

7i 94.1 ± 24.7 14.5 ± 2.9 2.0 ± 0.7 27.9 ± 2.8 * ---- 4.0 ± 2.0 43.8 ± 4.7

7j 298 ± 18.6 18.9 ± 2.7 * 8.2 ± 7.2 2.91 ± 10.6 37.2 ± 0.2 5.4 ± 1.3 37.1 ± 0.2

7k 808 ± 45.8 49.9 ± 0.7 2.4 ± 0.6 39.3 ± 4.7 * ---- 13.9 ± 6.4 31.3 ± 5.6

1 116 ± 88.0 21.0 ± 8.4 10.2 ± 2.2 28.7 ± 1.1 >10,000 ---- >10,000 ----

DAMGO ---- ---- 35.3 ± 0.5 100 ---- ---- ---- ----

Nociceptin 8.1 ± 1.4 100 ---- ---- ---- ---- ----

DPDPE ---- ---- ---- ---- 6.9 ± 0.4 100 ---- ----

U69,593 ---- ---- ---- ---- ---- ---- 78.5 ± 8.8 100

aData are the average ± SD from at least two experiments, each carried out in triplicate.
*Too little stimulation (if <15% an EC50 was not always determined).

N/OFQ, Nociceptin/orphinan FQ.

equivalent phenylpropyl ether was a potent agonist in a battery
of thermal nociceptive assays (38); thus substitution at the 14-
O position of 4 plays a critical role in modulating activity, and
predominantly efficacy, of the ligands at the traditional opioid
receptors MOP, DOP, and KOP. In the current study, this SAR
is further explored and extended to include activity at the NOP
receptor. The new ligands, substituted 14-O-phenylacetyl esters
of 4, were evaluated for binding affinities and efficacies at MOP,
DOP, and KOP, and NOP receptors. Phenylacetyl substitution
at the 14-oxygen had little effect on affinity at MOP, DOP,
and KOP receptors, but did substantially increase the binding
affinity at NOP receptors. Addition of a substituent to the
aryl ring of the phenylacetyl group further increased affinity
for NOP receptors leading to a series of compounds with
binding profiles directly comparable to buprenorphine (1). This
provides support for our hypothesis that the group, in this case
phenylacetyl, attached to the 14-O of 4 can access the same
space as the t-butyl group in 1, leading to moderate affinity
at NOP receptors. The non-competitive binding seen with 7f

and 7j may relate to the increased lipophilicity of these esters
relative to 4. The calculated logPs of 7j (logP 4.41 ± 0.57) and
7f (3.73 ± 0.57) (calculated using ACD/I-lab 2.0) are similar
to those found with the orvinols—a series for which there is
evidence for pseudo-irreversible binding in in vitro bioassays
(25, 41).

Recently the structure of the NOP receptor in complex
with the peptide mimetic C-24 has been determined (42). As
part of the current study, 7c was docked to the binding site
of the crystal structure using GOLD. The docked pose of 7c
that best fit with the known interactions of C-24 with the
protein is illustrated in Figure 2. Key interactions are between

the basic nitrogen and Asp130, while the cyclopropylmethyl
group occupies, but not fully, a lipophilic site accessed by the
dihydroisobenzofuran head group of C-24. Most interestingly,
the phenylacetyl type side chain of 7c extends into the same
region occupied by the pyrolidine ring of C-24 (including the
amino acid residues Gln107, Asp110, Trp116, and Val126) and
perhaps explains the substantial increase in affinity for these
new ligands relative to the parent compound 3, which cannot
access this region. The Schrödinger software was then used to
superimpose buprenorphine on the minimized structure of 7c
in the protein-ligand complex resulting in the same interactions
between the basic nitrogen and the cyclopropylmethyl groupwith
the protein and now with the bulky t-butyl group accessing the
same region as the phenylacetyl group of 7c (Figure 3). We have
shown previously that minor changes to the t-butyl group of
1 can have a significant impact on binding affinity and efficacy
at the NOP receptor (26, 27) and again, the interaction of this
group with the site defined by, amongst other residues, Gln107,
Asp110, Trp116, and Val126 could explain this finding. This
docking pose would also help explain the lack of effect on NOP
affinity on substituting the aromatic A-ring of 1 with halogens
(26) as the A-ring extends into a very large, open region of
the binding pocket, making no close interactions with receptor
residues.

The predominant activity in the [35S]GTPγS assay was of
partial agonism at each of the receptors under study. Thus,
when compared to the parent compound 4, an antagonist,
introduction of the phenylacetyl side chain has increased efficacy
at each receptor. The effect was most pronounced at the
KOP where one compound, 7c, had high efficacy (86% of
the standard) and a number of others fell in the 40–50%
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TABLE 3 | Antagonist activity of selected compounds at the MOP receptor in the

[35S]GTPγS binding assay.

MOP

Compound Ke pA2

7f 0.026 ± 0.008 10.58 ± 0.14

7g 0.051 ± 0.018 10.29 ± 0.24

7j Non-competitive

Schild analysis indicated that compound 7j had a slope significantly different than −1.0.

This indicated non-competitive antagonism and a pA2 could not be determined. In an

inhibition assay it had an IC50 value of 5.9 ± 1.84 nM when inhibiting DAMGO stimulation

of [35S]GTPγS binding. Results represent cumulative data from at least three separate

experiments.

FIGURE 1 | Acute thermal antinociceptive effect of 7f alone (A) or as a

pretreatment to morphine (B), using the mouse tail flick assay (N = 8/group).

Data are mean %MPE (± SEM). *Significant difference from vehicle control;
†
Significant difference from morphine alone (P < 0.05). Behavioral results were

analyzed by use of repeated measures ANOVAs with drug treatment (7f,

morphine) as between group variables and post-injection time (30, 60, and

120min) as the repeated measure followed by Tukey/Kramer post-hoc tests

where appropriate.

range. In this assay, efficacies were somewhat lower at MOP
and lower still at DOP receptors. Some consistent SAR does
emerge, with ortho substitution tending to give the highest

FIGURE 2 | Docking of 7c in the binding site of the NOP receptor. 7c is

shown with cyan carbons. The protein is shown with green carbons apart from

D130 which has purple carbons. For clarity, residues C200, L201, V202, and

T305 are shown as lines rather than sticks. The crystal structure ligand, C-24,

is shown as lines with brown carbons.

efficacy, followed by meta and then para at both MOP and
KOP receptors. A similar trend is observed at NOP receptors,
where the ortho and meta-substituted ligands were typically
higher efficacy than their para substituted equivalents. At MOP
and NOP receptors a number of the new ligands had profiles
somewhat similar to 1, though typically with more selectivity
for MOP. The most substantial difference to 1 was at the
KOP receptor where the potent partial agonism of many
of the current series contrasts with the potent antagonism
characteristic of 1. Compared to the closely related cinnamoyl
esters reported previously (39), these phenylacetyl esters have
similar affinities, but higher efficacies at MOP, DOP, and KOP
receptors (NOP receptor activity was not measured for the
cinnamoyl esters).

The 4-methoxy substituted analog 7f was of interest due to its
good affinity and very low level stimulation of all the receptors in
the [35S]GTPγS assay. Agonists for KOP and DOP receptors have
been, and continue to be, evaluated as potential analgesics either
as selective ligands (43) or dual-acting (44). In an extension of the
argument made earlier for the development of mixed MOP/NOP
agonists, it could be envisaged that ligands displaying low efficacy
at each of the receptors might provide analgesia with very little
in the way of side-effect profile. The low level of antinociception
observed in the mouse tail flick assay and the ability to act as
a morphine antagonist is consistent with this hypothesis and
7f may provide a useful lead in the development of new, safer
analgesics.

CONCLUSION

The hypothesis that introduction of a lipophilic group to
the 14-oxygen of 4 would introduce NOP receptor affinity
has been validated by the present study. Moderate affinity,
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FIGURE 3 | Docking of Buprenorphine (1) in the binding site of the NOP

receptor. 1 is shown with cyan carbons. The protein is shown with green

carbons apart from D130 which has purple carbons. For clarity, residues

C200, L201, V202, and T305 are shown as lines rather than sticks. The crystal

structure ligand, C-24, is shown as lines with brown carbons.

equivalent to that of the orvinol buprenorphine (1), was
seen alongside low efficacy partial agonism, supporting our
belief that the t-butyl group of 1 and the phenylacetyl group
of the current series might access the same region of the
NOP receptor. This is reinforced by docking studies, to the
recently solved crystal structure of the NOP receptor that
provide a rationale for the moderate affinity shown by the
ligands reported here and also, help explain the SAR of close
analogs of 1 (26). As expected, introduction of the 14-O side
chain also raised efficacy relative to 4 at the standard opioid
receptors.

METHODS

Reagents and solvents were purchased from Sigma-Aldrich or
Alfa Aesar and used as received. 1H and 13C NMR spectra
were obtained with a Brucker-400-MHz instrument (1H at 400
MHz, 13C at 100 MHz); δ in ppm, J in Hz with TMS as an
internal standard. ESIMS: microTOF (BRUKER). Microanalysis:
Perkin-Elmer 240C analyzer. Column Chromatography was
performed using pre-packed column in combi flash instrument.
Ligands were tested as their hydrochloride salts, prepared
by adding 5 equivalent of HCl (1N solution in diethyl
ether) in a solution of compound in anhydrous methanol.
All reactions were carried out under an inert atmosphere
of nitrogen unless otherwise indicated. All compounds were
>95% pure.

General Procedure. 14-O-Esterification
To a solution of TBDMS-protected naltrexone (5) (0.4 mmol)
in anhydrous toluene, optionally substituted phenylacetic
anhydride (0.8 mmol), and DMAP (0.04 mmol) were

added and the reaction mixture refluxed for 16 h. After
completion saturated sodium bicarbonate (15mL) was added
and the aqueous layer extracted with EtOAc (3 × 10mL).
Organic layer was washed with water (2 × 20mL), brine
(10mL) and dried over magnesium sulfate and evaporated
in vacuo to obtain crude product which was purified by
flash chromatography using methanol:dichloromethane
(0.5:99.5).

General Procedure. TBDMS Deprotection
The substrate (0.3 g) was dissolved in 6mL (1:1) solution of
methanol:hydrochloric acid (6N) and refluxed for 5 h. The
reaction mixture was cooled to 0

◦

C and neutralized with
saturated aq. sodium bicarbonate. The organic layer was
extracted with ethyl acetate (3 × 20ml), washed with water
(2 × 25mL), brine (25mL), dried over magnesium sulfate and
evaporated to obtained crude product which was purified by flash
chromatography using methanol:dichloromethane:ammonium
hydroxide (2:97.5:0.5).

14β-phenylacetyl-17-cyclopropylmethyl-
7,8-dihydronoroxymorphinone (7a)
White Solid; 1H NMR (CDCl3) δ 0.09–0.12 (2H, m), 0.51–0.54
(2H, m), 0.78–0.83 (1H, m), 1.41–1.45 (1H, m), 1.57 (1H, dt,
J = 3.72 and 14.44Hz), 2.09–2.21 (2H, m), 2.23–2.52 (4H, m),
2.58–2.67 (2H, m), 2.79–2.82 (1H, m), 3.07 (1H, d, J = 18.2 Hz),
3.77 (2H, m), 4.44 (1H, d, J = 5.52 Hz), 4.51 (1H, s), 6.59 (1H, d,
J= 8.0 Hz), 6.72 (1H, d, J= 8.0 Hz), 7.24–7.31 (2H, m), 7.36–7.41
(3H, m); HRMS, m/z for (C28H30NO5) [MH]+, calcd- 460.2124,
found- 460.2103.

14β-(4′-methylphenylacetyl)-17-
cyclopropylmethyl-7,8-
dihydronoroxymorphinone (7b)
White Solid; 1H NMR (CDCl3) δ 0.09–0.12 (2H, m), 0.50–0.54
(2H, m), 0.74–0.80 (1H, m), 1.44–1.48 (1H, m), 1.61 (1H, dt,
J = 3.72 and 14.44Hz), 2.14–2.22 (2H, m), 2.27–2.51 (8H, m),
2.57–2.61 (1H, m), 2.78–2.82 (1H, m), 3.07 (1H, d, J = 18.2 Hz),
3.74–3.76 (2H, m), 4.48 (1H, d, J = 5.52 Hz), 4.53 (1H, s), 6.60
(1H, d, J = 8.0 Hz), 6.72 (1H, d, J = 8.0 Hz), 7.16 (2H, d, J = 8.0
Hz), 7.27 (2H, d, J = 8.0 Hz); HRMS, m/z for (C29H32NO5)
[MH]+, calcd-474.2280, found-474.2329.

14β-(2′-methylphenylacetyl)-17-
cyclopropylmethyl-7,8-
dihydronoroxymorphinone (7c)
White Solid; 1H NMR (CDCl3) δ 0.09–0.14 (2H, m), 0.51–0.55
(2H, m), 0.78–0.84 (1H, m), 1.32–1.35 (1H, m), 1.51 (1H, dt,
J = 3.72 and 14.44Hz), 2.10–2.50 (10H, m), 2.62–2.68 (1H, m),
2.74–2.81 (1H, m), 3.03 (1H, d, J = 18.2 Hz), 3.76–3.88 (2H, m),
4.42 (1H, s), 4.51 (1H, d, J= 5.52 Hz), 5.90 (1H, bd), 6.59 (1H, d,
J= 8.0 Hz), 6.72 (1H, d, J= 8.0 Hz), 7.20–7.23 (3H, m), 7.29–7.33
(1H, m); HRMS, m/z for (C29H32NO5) [MH]+, calcd- 474.2280,
found- 474.2258.
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14β-(3′-methylphenylacetyl)-17-
cyclopropylmethyl-7,8-
dihydronoroxymorphinone (7d)
White Solid; 1H NMR (CDCl3) δ 0.09–0.12 (2H, m), 0.50–0.0.54
(2H, m), 0.70–0.75 (1H, m), 1.45–1.49 (1H, dd, J= 4.00 and 12.1
Hz), 1.59–1.66 (1H, dt, J= 3.72 and 14.44Hz), 2.14–2.31 (2H, m),
2.32–2.40 (8H, m), 2.67 (1H, dd, J = 4.0 and 12.1 Hz), 2.76–2.81
(1H, m), 3.07 (1H, d, J = 18.4 Hz), 3.69 (2H, dd, J = 8.0 and 18.4
Hz), 4.49 (1H, d, J= 4.0 Hz), 4.53 (1H, s), 5.75 (1H, bd), 6.60 (1H,
d, J = 8.0 Hz), 6.73 (1H, d, J = 8.0 Hz), 7.11 (1H, d, J = 6.1 Hz),
7.17 (3H, d, J = 8.1 Hz); HRMS, m/z for (C29H32NO5) [MH]+,
calcd- 474.2280, found- 474.2288.

14β-(3′-methoxyphenylacetyl)-17-
cyclopropylmethyl-7,8-
dihydronoroxymorphinone (7e)
White Solid; 1H NMR (CDCl3) δ 0.09–0.14 (2H, m), 0.50–0.0.54
(2H, m), 0.69–0.74 (1H, m), 1.45–1.49 (1H, dd, J= 4.00 and 12.1
Hz), 1.59–1.66 (1H, dt, J= 3.72 and 14.44Hz), 2.14–2.31 (2H, m),
2.31–2.41 (5H, m), 2.67 (1H, dd, J = 4.0 and 12.1 Hz), 2.76–2.81
(1H, m), 3.07 (1H, d, J = 18.4 Hz), 3.71 (2H, dd, J = 8.0 and 18.4
Hz), 3.83 (3H, s), 4.49 (1H, d, J = 4.0 Hz), 4.54 (1H, s), 5.79 (1H,
bd), 6.60 (1H, d, J = 8.0 Hz), 6.73 (1H, d, J = 8.0 Hz), 6.83 (1H,
dd, J = 4.0 and 8.1 Hz), 6.95–6.99 (2H, m), 7.28–7.30 (1H, m);
HRMS, m/z for (C29H32NO6) [MH]+, calcd- 490.2230, found-
490.2278.

14β-(4′-methoxyphenylacetyl)-17-
cyclopropylmethyl-7,8-
dihydronoroxymorphinone (7f)
White Solid; 1H NMR (CDCl3) δ 0.05–0.08 (2H, m), 0.46–0.50
(2H, m), 0.70–0.73 (1H, m), 1.42–1.45 (1H, m), 1.56 (1H, dt,
J = 3.76 and 14.44Hz), 2.11–2.16 (2H, m), 2.18–2.47 (5H, m),
2.61–2.67 (1H, m), 2.74–2.79 (1H, m), 3.03 (1H, d, J = 18.2 Hz),
3.64–3.73 (2H, m), 3.79 (3H, s), 4.44 (1H, d, J = 5.52 Hz), 4.52
(1H, s), 6.56 (1H, d, J = 8.0 Hz), 6.69 (1H, d, J = 8.0 Hz), 6.85
(2H, d, J = 8.0 Hz), 7.25 (2H, d, J = 8.0 Hz); HRMS, m/z for
(C29H32NO6) [MH]+, calcd- 490.2230, found- 490.2200.

14β-(3′,4′-dioxymethylenephenylacetyl)-17-
cyclopropylmethyl-7,8-
dihydronoroxymorphinone (7g)
White Solid; 1H NMR (CDCl3) δ 0.09–0.14 (2H, m), 0.51–0.54
(2H, m), 0.89–0.95 (1H, m), 1.46–1.51 (1H, m), 1.57 (1H, dt,
J = 3.76 and 14.44Hz), 2.11–2.31 (3H, m), 2.36–2.46 (4H, m),
2.65–2.72 (1H, m), 2.76–2.82 (1H, m), 3.08 (1H, d, J = 18.2 Hz),
3.68–3.72 (2H, m), 4.49 (1H, d, J = 5.52 Hz), 4.58 (1H, s), 5.50
(1H, bd), 5.97 (2H, s), 6.61 (1H, d, J = 8.0 Hz), 6.73 (1H, d,
J = 8.0 Hz), 6.79–6.82 (2H, m), 6.92 (1H, s); HRMS, m/z for
(C29H30NO7) [MH]+, calcd- 504.2022, found- 504.2069.

14β-(2′-methoxyphenylacetyl)-17-
cyclopropylmethyl-7,8-
dihydronoroxymorphinone (7h)
White Solid; 1H NMR (CDCl3) δ 0.08–0.11 (2H, m), 0.49–0.52
(2H, m), 0.78–0.84 (1H, m), 1.32–1.35 (1H, m), 1.51 (1H, dt,

J = 3.72 and 14.44Hz), 2.10–2.45 (6H, m), 2.55–2.65 (2H, m),
2.74–2.81 (1H, m), 3.03 (1H, d, J = 18.2 Hz), 3.76 (2H, m), 3.81
(3H, s), 4.34 (1H, s), 4.43 (1H, d, J = 5.52 Hz), 5.61 (1H, bd),
6.55 (1H, d, J = 8.0 Hz), 6.68 (1H, d, J = 8.0 Hz), 6.89 (1H, d,
J = 8.0 Hz), 6.93 (1H, m), 7.24–7.28 (2H, m); HRMS, m/z for
(C29H32NO6) [MH]+, calcd- 490.2230, found- 490.2228.

14β-(2′-fluorophenylacetyl)-17-
cyclopropylmethyl-7,8-
dihydronoroxymorphinone (7i)
White Solid; 1H NMR (CDCl3) δ 0.06–0.09 (2H, m), 0.48–0.0.51
(2H, m), 0.71–0.75 (1H, m), 1.33–1.36 (1H, m), 1.56–1.64 (1H,
dt, J = 3.72 and 14.44Hz), 2.04–2.42 (6H, m), 2.46–2.62 (2H, m),
2.76–2.80 (1H, m), 3.07 (1H, d, J = 18.4 Hz), 3.72 (2H, m), 4.42
(1H, d, J= 4.0 Hz), 4.44 (1H, s), 5.65 (1H, bd), 6.56 (1H, d, J= 8.0
Hz), 6.68 (1H, d, J = 8.0 Hz), 7.08–7.14 (2H, m), 7.25–7.29 (1H,
m) 7.35–7.37 (1H, m); HRMS, m/z for (C28H29FNO5) [MH]+,
calcd- 478.2030, found- 478.2073.

14β-(4′-chlorophenylacetyl)-17-
cyclopropylmethyl-7,8-
dihydronoroxymorphinone (7j)
White Solid; 1H NMR (CDCl3) δ 0.04–0.10 (2H, m), 0.47–0.50
(2H, m), 0.65–0.69 (1H, m), 1.43–1.46 (1H, m), 1.59 (1H, dt,
J = 3.72 and 14.44Hz), 2.08–2.16 (1H, m), 2.21–2.34 (4H, m),
2.39–2.48 (2H, m), 2.62–2.65 (1H, m), 2.74–2.81 (1H, m), 3.04
(1H, d, J = 18.2 Hz), 3.72–3.74 (2H, m), 4.43 (1H, d, J = 5.52
Hz), 4.53 (1H, s), 6.56 (1H, d, J = 8.0 Hz), 6.70 (1H, d, J = 8.0
Hz), 7.29–7.31 (4H, m); HRMS, m/z for (C28H29ClNO5) [MH]+,
calcd- 494.1734, found- 494.1734.

14β-(2′-chlorophenylacetyl)-17-
cyclopropylmethyl-7,8-
dihydronoroxymorphinone (7k)
White Solid; 1H NMR (CDCl3) δ 0.08–0.10 (2H, m), 0.49–0.53
(2H, m), 0.76–0.81 (1H, m), 1.30–1.33 (1H, m), 1.56 (1H, dt,
J = 3.72 and 14.44Hz), 2.04–2.09 (2H, m), 2.25–2.32 (3H, m),
2.41–2.46 (1H, m), 2.53–2.59 (2H, m), 2.76–2.81 (1H, m), 3.03
(1H, d, J = 18.2 Hz), 3.90 (2H, m), 4.41 (1H, d, J = 4.0 Hz),
4.43 (1H, s), 5.48 (1H, bd), 6.55 (1H, d, J = 8.0 Hz), 6.68 (1H,
d, J= 8.0 Hz), 7.24–7.26 (2H, m), 7.40–7.43 (2H, m); HRMS, m/z
for (C28H29ClNO5) [MH]+, calcd- 494.1734, found- 494.1729.

Molecular Modeling Methods
The 4EA3 crystal structure (42) of NOP was the starting
point. The structure was run through the Protein Preparation
Wizard in the Schrödinger software suite running under Maestro
version 9.3.023. Buprenorphine (1) and 7c were built and
minimized using the same software. Both ligands were docked
into the binding site using GOLD. The docked pose of 7c

that seemed to best fit with the known interactions of the
ligand with the protein was subjected to 1,000 rounds of
minimization using the Schrödinger MacroModel software with
the constraint that the ligand nitrogen be 2.8 Å from the
nearest acidic oxygen of D130. GOLD failed to bind 1 with
a sensible pose so the Schrödinger software was used to
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superimpose 1 on the minimized structure of 7c in the protein-
ligand complex. The protein-1 complex was then subjected to
1,000 rounds of minimisation. Figures were prepared using
PyMOL.

In vitro Characterization

Cell culture
All receptors were individually expressed in CHO cells stably
transfected with human receptor cDNA, The cells were
grown in Dulbecco’s Modified Eagle Medium (DMEM)
with 10% fetal bovine serum, in the presence of 0.4
mg/ml G418 and 0.1% penicillin/streptomycin, in 100-
mm polystyrene culture dishes. For binding assays, the
cells were scraped off the plate at confluence. Receptor
expression levels were 1.2, 1.6, 1.8, and 3.7 pmol per
mg protein for the NOP, MOP, KOP, and DOP receptors,
respectively.

Receptor binding
Binding to cell membranes was conducted in a 96-well format,
as described previously (45, 46). Briefly, cells were removed
from the plates, homogenized in 50mM Tris pH 7.5, using
a Polytron homogenizer, then centrifuged once and washed
by an additional centrifugation at 27,000 × g for 15min.
The final pellet was re suspended in Tris, and the suspension
incubated with [3H]DAMGO (51 Ci/mmol, 1.6 nM), [3H]Cl-
DPDPE (42 Ci/mmol, 1.4 nM), [3H]U69593 (41.7 Ci/mmol,
1.9 nM), or [3H]N/OFQ (120 Ci/mmol, 0.2 nM) for binding
to, MOP, DOP, KOP, and NOP receptors, respectively. Non-
specific binding was determined with 1µM of unlabeled
DAMGO ([D-Ala2, N-MePhe4, Gly-ol]-enkephalin), DPDPE
([D-Pen2,D-Pen5]Enkephalin), ethylketocyclazocine, and
N/OFQ, respectively. Samples were incubated for 60min at
25◦C in a total volume of 1.0ml, with 15 µg protein per well.
The reaction was terminated by filtration using a Tomtec
96 harvester (Orange, CT) through glass fiber filters and
radioactivity was counted on a Pharmacia Biotech beta-plate
liquid scintillation counter (Piscataway, NJ). IC50 values were
calculated using Graphpad/Prism (ISI, San Diego, CA) and
Ki values were determined by the method of Cheng and
Prusoff (47).

[35S]GTPγ S binding
[35S]GTPγS binding was conducted basically as described by
Traynor and Nahorski (48). Cells were scraped from tissue
culture dishes into 20mM Hepes, 1mM EDTA, then centrifuged
at 500x g for 10min. Cells were resuspended in this buffer and
homogenized using a Polytron Homogenizer. The homogenate
was centrifuged at 27,000 × g for 15min, and the pellet re
suspended in Buffer A, containing: 20mMHepes, 10mMMgCl2,
100mM NaCl, pH 7.4. The suspension was re centrifuged at
27,000 × g and suspended once more in Buffer A. For the
binding assay, membranes (8–15 µg protein) were incubated
with [35S]GTPγS (50 pM), GDP (10µM), and the appropriate
compound, in a total volume of 1.0ml, for 60min at 25◦C.
Samples were filtered over glass fiber filters and counted
as described for the binding assays. Statistical analysis was

conducted using the program Prism. For the antagonist assay,
various concentrations of 7f, 7g, and 7j were incubated in
the presence of 100 nM N/OFQ, or 1µM DAMGO, DPDPE
or U69593 to determine antagonist potency at NOP, MOP,
DOP, and KOP receptors, respectively. Schild analysis was also
conducted at MOP receptors using various concentrations of
the inhibitor in the present of a full DAMGO dose response
curve.

In vivo Testing

Animals
Male ICR mice weighing 25–30 g at the start of the experiment
were used. Animals were group-housed (N = 10/cage) under
standard laboratory conditions using nestlets as environmental
enrichment in their cages and were kept on a 12:12-hr day/night
cycle (lights on at 7:00 a.m.). Testing was conducted during
the animals’ light cycle between 9 a.m. and 2 p.m. Animals
were handled for 3–4 days before the experiments were
conducted. On behavioral test days, animals were transported
to the testing room and acclimated to the environment for
1 h. Mice were maintained in accordance with the guidelines
of SRI International and of the Guidelines for the Care and
Use of Mammals in Neuroscience and Behavioral Research
(49). Prior to any in vivo testing, approval for the behavioral
protocols was obtained from the institutional ACUC of SRI
International.

Drugs
7f was dissolved in 1–2% Dulbecco’s modified Eagle’s medium
and 0.5% aqueous hydroxypropyl cellulose. Morphine
hydrochloride (Eli Lilly & Co., Indianapolis, IN) was dissolved
in water. Drugs were injected subcutaneously (s.c.) in a volume
of 0.1 ml/30 g. Controls received 0.1 ml/30 g of the appropriate
vehicle.

Assessment of acute thermal nociception
Tail-flick assay. Acute nociception was assessed using the tail
flick assay with an analgesia instrument (Stoelting) that uses
radiant heat. This instrument is equipped with an automatic
quantification of tail flick latency, and a 15 s cutoff to prevent
damage to the animal’s tail. During testing, the focused beam of
light was applied to the lower half of the animal’s tail, and tail flick
latency was recorded.

Baseline values for tail flick latency were determined before
drug administration in each animal. The mean basal tail flick
latency was 5.39 ± 0.09 SEM. After baseline measures, animals
received a subcutaneous injection of their assigned dose of
drug(s) and were tested for tail-flick latencies at 30, 60, and
120min following the last drug injection. Controls received
vehicle prior to testing.

Drug regimen. In the first series of experiments, animals
(N = 8/group) received injections of 7f (1 and 3 mg/kg s.c.) or
morphine (3 mg/kg). Given that both 1 and 3 mg/kg 7f produced
similar levels of antinociception, we chose to examine the effects
of 1 mg/kg 7f given as a pretreatment to morphine. In these
experiments, animals received 1 mg/kg 7f or vehicle and 10min
later received an injection of morphine. A group of animals
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served as vehicle controls. Testing was conducted as described
above.

Statistical analyses. Antinociception (% maximum potential
effect; % MPE) was quantified by the following formula:
% MPE = 100[(test latency–baseline latency)/(15–baseline
latency)]. If the animal did not respond before the 15-s
cutoff, the animal was assigned a score of 100%. Behavioral
results were analyzed by use of repeated measures ANOVAs
with drug treatment (7f, morphine) as between group
variables and post-injection time (30, 60, and 120min) as
the repeated measure followed by Tukey/Kramer post-hoc
tests where appropriate. The level of significance was set at
P = 0.05.
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Alterations in Endogenous Opioid
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Department of Pharmaceutical Bioscience, Neuropharmacology, Addiction and Behaviour, Uppsala University, Uppsala,
Sweden

Adolescent binge drinking is associated with an increased risk of substance use disorder,
but how ethanol affects the central levels of endogenous opioid peptides is still not
thoroughly investigated. The aim of this study was to examine the effect of repeated
episodic ethanol exposure during adolescence on the tissue levels of three different
endogenous opioid peptides in rats. Outbred Wistar rats received orogastric (i.e., gavage)
ethanol for three consecutive days per week between 4 and 9 weeks of age. At
2 h and 3 weeks, respectively, after the last exposure, beta-endorphin, dynorphin B
and Met-enkephalin-Arg6Phe7 (MEAP) were analyzed with radioimmunoassay. Beta-
endorphin levels were low in the nucleus accumbens during ethanol intoxication.
Remaining effects of adolescent ethanol exposure were found especially for MEAP, with
low levels in the amygdala, and high in the substantia nigra and ventral tegmental area
three weeks after the last exposure. In the hypothalamus and pituitary, the effects of
ethanol on beta-endorphin were dependent on time from the last exposure. An interaction
effect was also found in the accumbal levels of MEAP and nigral dynorphin B. These
results demonstrate that repeated episodic exposure to ethanol during adolescence
affected opioid peptide levels in regions involved in reward and reinforcement as well as
stress response. These alterations in opioid networks after adolescent ethanol exposure
could explain, in part, the increased risk for high ethanol consumption later in life.

Keywords: beta-endorphin, dynorphin B, enkephalin, rat model, developing brain, alcohol

INTRODUCTION

During adolescence, social interactions with peers become highly important and increased
frequencies in behaviors like risk-taking, impulsivity and novelty-seeking can be observed in
experimental models (1). In the western world, many adolescents begin experimentation with
ethanol during this period of life (2, 3). Exposure to ethanol may pose risks as indicated by findings
showing that early onset of drug consumption can increase later susceptibility for drug abuse
and addiction (4–7). This vulnerability could be a result of three factors (8). Firstly, adolescents
frequent environments in which drugs are used. Secondly, early use could be a consequence of an
inherited vulnerability for drugs of abuse. Thirdly, as the adolescent brain continually matures,
early use might shape the brain toward a vulnerability state, which consequently leads to later
susceptibility for drug use. To investigate the third factor, an adolescent rat model was used to
study the endogenous opioid system after episodic binges of ethanol.
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Ethanol has an unspecific mechanism of action as it does
not have a specific target protein. Instead, ethanol acts on
several receptors and ion channels in a number of transmitter
networks, including the endogenous opioid system (9, 10).
The endogenous opioids regulate other neurotransmitters of
importance for reward and reinforcement (e.g., dopamine
and γ-aminobutyric acid). Most drugs of abuse affect the
endogenous opioid system and their effects on different
brain target areas differ depending on the drug and also
on the phase in the addiction cycle, i.e., binge/intoxication,
withdrawal/negative affect, preoccupation/anticipation (9, 11,
12). The classical endogenous opioid system consists of three
G-protein coupled receptors (μ-, δ-, and κ-receptors) and
their corresponding ligands (endorphins, enkephalins and
dynorphins). The endogenous opioid peptides are derived from
precursors i.e., prohormones (13, 14). Beta-endorphin that binds
to μ-receptors is generated from proopiomelanocortin (15).
Dynorphin B is cleaved from prodynorphin (16) and binds to
κ-receptors. Met-enkephalin-Arg6-Phe7 (MEAP) is derived from
proenkephalin (17) and binds predominantly to δ-receptors but
also to μ-receptors (18).

This study used adolescent male Wistar rats to evaluate
the effects of episodic binge-like exposure of ethanol on brain
levels of the following three opioid peptides; beta-endorphin,
dynorphin B, and MEAP. Levels were measured at 2 h, to
investigate the effects of intoxication, and at 3 weeks, to study
long-term, residual changes (Figure 1).

METHODS

Animals and Experimental Design
All animal experiments were performed with the approval of
the Uppsala Animal Ethical Committee and according to the
principles of the Guide for the Care and Use of Laboratory
Animals, the guidelines of the Swedish Legislation on Animal
Experimentation (Animal Welfare Act SFS1998:56), and the EU
Parliament and the Council Directive of 22 September 2010
(2010/63/EU).

Two sets of time-mated Wistar rats (Harlan Laboratories B.V.,
Horst, the Netherlands) arrived at the animal facility in Uppsala,
Sweden, at gestation day 15. The dams were housed individually
in a standard cage (59 × 38 × 20 cm) with wood chip bedding
and nesting material under standard conditions (22◦C, 50 ±
10% humidity, 12 h light-dark cycle commencing at 07:00, ad
libitum access to pellet food and tap water, and background noise
masking). The pregnant females were transported during the
least sensitive phase of the gestation. No signs of negative impact
of the travel were noticed and the delivery was normal in all
females. To avoid biological littermates, the litters were cross-
fostered and mixed on the day of birth (postnatal day, PND, 0) so
each litter contained four females and six males. Previous studies
have shown that single housing affects brain levels of endogenous
opioid peptides in adolescent rats (19, 20), so on PND 21 the

Abbreviations: ANOVA, Analysis of variance; MEAP, Met-Enkephalin-Arg6-
Phe7; VTA, Ventral tegmental area.

pups were weaned and group housed (2–3 rats per cage) to avoid
confounding factors.

Adolescent Ethanol Exposure
Between 4 and 9 weeks of age, the male rats received orogastric
administration of water (n = 20) or ethanol, 2 g/kg, 20% v/v
ethanol diluted with tap water, (n = 20).

Administrations were given at 09:00 on three consecutive
days, followed by 4 days without treatment. Orogastric
administration was used since it does not require single housing
and this route of administration resemble the oral ingestion
of ethanol by humans. Unpublished data from our pilot study
and published data from others (21) have shown that 2 g/kg
produces blood alcohol concentration reaching the National
Institute on Alcohol Abuse and Alcoholism criterion for binge
drinking (i.e., >0.08 g/dl in 2 h). The rats were housed under
standard conditions as described above except that the light and
dark cycles were reversed at weaning. The rats were euthanized
by decapitation either 2 h or 3 weeks after the last ethanol
exposure.

Tissue Stabilization and Sampling
The pituitary glands was snap frozen on dry ice whereas the
whole brains were immediately frozen in an isopentane bath
(−20◦C for 2 min). The tissues were stored at −80◦C. One
day prior to stabilization, the whole brains and the pituitaries
were moved to a −20◦C freezer to reduce the temperature
gradient before stabilization. The tissue samples were stabilized
by heat denaturation (95◦C) with a bench-top Stabilizor T1
(Denator AB, Uppsala, Sweden) according to the manufacturer’s
manual. The stabilization process involves a combination
of conductive heat transfer and pressure under vacuum to
prevent enzymatic degradation (e.g., of peptides) during freeze-
thawing (22). Whole brains were placed in a Maintainor Tissue
card (Denator AB, Uppsala, Sweden) and stabilized in the
“frozen structure preserve mode” and thereafter in the “fresh
structure preserve mode” to ensure an adequate treatment. After
stabilization, the brains were dissected according to Paxinos and
Watson (23) to separate the hypothalamus, medial prefrontal
cortex, cingulate cortex, dorsal striatum, nucleus accumbens,
amygdala, hippocampus, ventral tegmental area (VTA) and
substantia nigra. The pituitaries were individually placed in a
pre-chilled Maintainor Tissue card and stabilized in the “frozen
quick compress mode”. Stabilized tissues were thereafter stored
at −80◦C.

Peptide Extraction
The tissues were moved from −80◦C and heated in 95◦C acetic
acid (1M) for 5 min, then placed on ice and homogenized by
sonication using a Branson Sonifier (Danbury, CT, USA). The
homogenates were centrifuged for 15 min at 4◦C, 12,000 × g
in a Beckman GS-15R centrifuge (Fullerton, CA, USA) and
supernatants were purified by cation exchange chromatography
procedure (24). The purified samples were dried in a vacuum
centrifuge and stored at −20◦C.
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FIGURE 1 | A schematic overview of the experiment. Adolescent male Wistar rats were exposed to episodic binges of ethanol three times per week (indicated by
vertical bars) during adolescence. Two hours (in the intoxicated state) or three weeks (to measure residual effects) after the last exposure of ethanol, three endogenous
opioids (beta-endorphin, dynorphin B and Met-Enkephalin-Arg6-Phe7) were measured in several brain areas. The gray dotted line indicates the timeline of the
experiment.

TABLE 1 | Immunoreactive levels (fmol/mg) of beta-endorphin.

Water
intoxication

Ethanol
intoxication

Water
residual effects

Ethanol
residual effects

Two-factor ANOVA η2
p

Mean ± SEM Mean ± SEM Mean ± SEM Mean ± SEM Treatment Time Treatment × Time

Pít 27.982 ± 1.653 33.940 ± 2.890 31.685 ± 2.783 25.800 ± 2.054 F (1, 35) < 0.01; p = 0.99 F(1, 35) = 0.84; p = 0.37 F(1, 35) = 5.99; p = 0.020 0.17

Ht 41.0 ± 1.3 44.4 ± 1.6 45.0 ± 3.7 37.5 ± 2.2 F (1, 35) = 0.69; p = 0.41 F (1, 35) = 0.35; p = 0.56 F(1, 35) = 5.16; p = 0.029 0.15

AMY 3.5 ± 0.3 2.9 ± 0.2 3.1 ± 0.4 2.8 ± 0.2 F (1, 35) = 2.84; p = 0.10 F (1, 35) = 0.79; p = 0.38 F (1, 35) = 0.36; p = 0.55 0.10

NAc 2.2* ± 0.5 1.0# ± 0.1 0.9 ± 0.1 1.1 ± 0.2 F (1, 35) = 3.23; p = 0.081 F(1, 35) = 4.89; p = 0.034 F(1, 35) = 5.32; p = 0.027 0.28

VTA 2.9 ± 0.3 2.6 ± 0.2 2.7 ± 0.3 2.8 ± 0.3 F (1, 34) = 0.14; p = 0.71 F (1, 34) < 0.01; p = 0.99 F (1,34) = 0.37; p = 0.55 0.016

dStr 0.6 ± 0.1 0.4 ± 0.04 0.4 ± 0.04 0.4 ± 0.02 F (1, 34) = 3.87; p = 0.057 F(1, 34) = 5.84; p = 0.021 F (1, 34) = 1.55; p = 0.22 0.25

Rats were repeatedly exposed to ethanol or water during adolescence. Two hours (during ethanol intoxication) or three weeks (residual effects) after the last exposure, the immunoreactive
levels of beta-endorphin were measured in different brain regions. Amy, amygdala; ANOVA, analysis of variance; Ht, hypothalamus; NAc, nucleus accumbens; η2

p, partial eta-squared;
Pit, pituitary; Str, striatum; VTA, ventral tegmental area. Tukey’s post hoc test; *p < 0.05 intoxication effects (2 h) compared to the residual effects (3 weeks) of the same treatment;
#p < 0.05 ethanol compared to water at the same time-point. Bold letters highlights statistically significant results.

Radioimmunoassay
Measurement of the immunoreactive levels of dynorphin B and
MEAP was performed according to Nylander et al. (25, 26)
with antisera generated in rabbits. The dynorphin B antiserum
(113+) was used at a final dilution of 1:500,000. The cross-
reactivity with DYNB 29 is 1% and with big dynorphin (DYN 32)
100%, whereas no other opioid peptide cross-reacts in the
assay. The detection range in the dynorphin B assay is 1–70
fmol in 25 μl of the sample. The MEAP antiserum (90:3D II)
was used at a final dilution of 1:140,000. The cross-reactivity
with Met-enkephalin, Met-enkephalin-Arg6, Met-enkephalin-
Arg6Gly7Leu8, Leu- enkephalin and dynorphin A (1–6) is less
than 0.1% and no other opioid peptide cross-reacts in the assay.
The detection range in the MEAP assay is 2-100 fmol in 25 μl
of the sample. Antibody-bound peptides in the dynorphin B
assay were separated from free peptides by adding goat-anti-
rabbit-IgG and normal rabbit serum. For the MEAP assay,
separation was performed by adding charcoal suspension (Sigma-
Aldrich, MO, USA).

For the beta-endorphin, a commercial kit was used according
to the manufacturer’s instructions (Phoenix Pharmaceutical, Inc.,
Burlingame, CA, USA). Cross-reactivity was reported to be
100% with alpha-endorphin, 40% with human beta-endorphin
but none with alpha-MSH, ACTH, PACAP 38, Met- or

Leu-enkephalin and the detection range was 1–128 pg in 100 μl
of the sample.

Statistics
One-way analysis of variance (ANOVA) was used to investigate
overall differences between the groups and effect size was
estimated with the partial eta-squared test. Factorial ANOVAs
were used to test the effects of treatment (adolescent exposure
to ethanol or water), time (2 h or 3 weeks after the last
exposure) or interaction (time × treatment). The factor time
also represents a factor of age since the rats were 9 or
12 weeks of age at the time-point for decapitation, i.e.,
2 h or 3 weeks after the last exposure. Significant levels
were set to p < 0.05; Tukey’s post hoc test was used to
analyze between-group differences. Extreme values (1.5 standard
deviation) within each treatment group were excluded from the
analyses.

RESULTS

The statistical results for beta-endorphin, dynorphin B and
MEAP in all brain tissues and the pituitary are given in
Tables 1–3 respectively.
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TABLE 2 | Immunoreactive levels (fmol/mg) of dynorphin B.

Water
intoxication

Ethanol
intoxication

Water
residual
effects

Ethanol
residual effects

Two-factor ANOVA η2
p

Mean ± SEM Mean ± SEM Mean ± SEM Mean ± SEM Treatment Time Treatment × Time

Pit 570.1◦ ± 23.1 703.4 ± 32.6 677.8 ± 30.3 748.4 ± 48.7 F(1, 34) = 8.09; p = 0.01 F(1, 34) = 4.54; p = 0.04 F (1, 34) = 0.76; p = 0.39 0.28

Ht 22.6 ± 2.3 21.8 ± 1.6 28.3 ± 1.4 29.2 ± 1.9 F (1, 36) = 0.02; p = 0.88 F(1, 36) = 4.76; p = 0.04 F (1, 36) = 0.25; p = 0.62 0.20

AMY 9.8 ± 1.0 9.2 ± 0.8 8.9 ± 1.1 10.4 ± 0.8 F (1, 35) = 0.22; p = 0.65 F (1,35) = 0.03; p = 0.87 F (1, 35) = 1.23; p = 0.27 0.040

NAc 36.7* ± 2.4 30.0 ± 1.6 28.7 ± 1.1 29.0 ± 2.2 F (1, 35) = 2.73; p = 0.11 F(1, 35) = 5.49; p = 0.02 F (1, 35) = 3.24; p = 0.08 0.25

VTA 5.3 ± 0.6 5.7 ± 0.8 6.2 ± 1.2 8.3 ± 1.5 F (1, 34) = 1.24; p = 0.27 F (1, 34) = 2.62; p = 0.11 F (1, 34) = 0.54; p = 0.47 0.12

SN 83.2 ± 7.9 85.4 ± 8.9 62.5 ± 9.9 101.4# ± 9.3 F(1, 35) = 5.21; p = 0.03 F (1, 35) = 0.07; p = 0.79 F(1, 35) = 4.13; p = 0.05 0.22

dStr 16.1 ± 0.8 14.7 ± 1.5 15.5 ± 0.9 13.4 ± 0.6 F (1, 35) = 2.91; p = 0.10 F (1, 35) = 0.86; p = 0.36 F (1, 35) = 0.13; p = 0.72 0.097

Hc 22.6 ± 2.3 21.8 ± 1.6 26.6 ± 2.7 28.1 ± 2.7 F (1, 36) =0.02; p = 0.88 F(1, 36) = 4.76; p = 0.04 F (1, 36) = 0.25; p = 0.62 0.12

CCx 1.4 ± 0.3 1.0 ± 0.2 1.2 ± 0.2 1.5 ± 0.3 F (1, 35) = 0.02; p = 0.90 F (1, 35) = 0.23; p = 0.64 F (1, 35) = 1.83; p = 0.18 0.055

MPFCx 1.3 ± 0.1 1.1 ± 0.1 1.1 ± 0.2 1.2 ± 0.2 F (1, 36) = 0.14; p = 0.71 F (1, 36) = 0.06; p = 0.82 F (1, 36) = 0.42; p = 0.52 0.017

Rats were repeatedly exposed to ethanol or water during adolescence. Two hours (during ethanol intoxication) or three weeks (residual effects) after the last exposure, the immunoreactive
levels of dynorphin B were measured in different brain regions. Amy, amygdala; CCx, cingulate cortex; Hc, hippocampus; Ht, hypothalamus; DynB; mPFCx, medial prefrontal cortex;
NAc, nucleus accumbens; η2

p, partial eta squared; Pit, pituitary; SN, substantia nigra; Str, striatum; VTA, ventral tegmental area. Tukeys post hoc test; *p < 0.05 intoxication effects (2 h)
compared to the residual effects (3 weeks) of the same treatment; #p < 0.05 ethanol compared to water at the same time-point; ◦p = 0.06 ethanol compared to water at the same
time-point. Bold letters highlights statistically significant results.

TABLE 3 | Immunoreactive levels (fmol/mg) of Met-Enkephalin-Arg6-Phe7 (MEAP).

Water
intoxication

Ethanol
intoxication

Water
residual effects

Ethanol
residual effects

Two-factor ANOVA η2
p

Mean ± SEM Mean ± SEM Mean ± SEM Mean ± SEM Treatment Time Treatment x Time

Pit 12.6 ± 2.1 33.9◦ ± 9.1 17.1 ± 3.1 17.6 ± 3.1 F (1, 33) = 3.88; p = 0.06 F (1, 33) = 1.15; p = 0.3 F (1, 33) = 3.58; p = 0.07 0.12

Ht 129.2* ± 4.4 125.3* ± 6.5 107.1 ± 6.9 99.3 ± 5.2 F (1, 35) = 0.98; p = 0.3 F(1, 35) = 17.07; p < 0.001 F (1, 35) = 0.11; p = 0.8 0.34

AMY 88.0 ± 7.2 65.9 ± 11.3 92.2 ± 10.8 68.9 ± 5.3 F(1,36) = 6.33; p = 0.02 F (1,36) = 0.16; p = 0.7 F (1,36) = 0.0041; p = 0.9 0.15

NAc 93.6 ± 7.6 121.6 ± 6.8 106.4 ± 10.5 100.4 ± 7.7 F (1, 34) = 1.79; p = 0.2 F (1, 34) = 0.26; p = 0.6 F(1, 34) = 4.31; p = 0.05 0.16

VTA 20.7 ± 1.3 23.9 ± 3.2 16.9 ± 1.9 25.6 ± 2.6 F(1, 34) = 6.20; p = 0.02 F (1, 34) = 0.18; p = 0.7 F (1, 34) = 1.27; p = 0.3 0.18

SN 11.6 ± 0.9 15.8 ± 1.3 11.7 ± 1.6 15.6 ± 1.9 F(1, 35) = 7.15; p = 0.01 F (1, 35) = 0.0016; p = 0.9 F (1, 35) = 0.0089; p = 0.9 0.16

dStr 85.1* ± 5.8 81.5 ± 6.1 60.9 ± 4.9 71.5 ± 6.1 F (1, 34) = 0.36; p = 0.6 F(1, 34) = 8.60; p = 0.006 F (1, 34) = 1.50; p = 0.2 0.23

Hc 9.6 ± 0.9 10.5 ± 0.7 9.4 ± 1.3 9.8 ± 1.2 F (1,36) = 0.35; p = 0.6 F (1,36) = 0.18; p = 0.7 F (1,36) = 0.069; p = 0.8 0.016

CCx 2.0 ± 0.4 1.8 ± 0.3 1.6 ± 0.3 2.3 ± 0.5 F (1, 35) = 0.37; p = 0.5 F (1, 35) = 0.014; p = 0.9 F (1, 35) = 1.33; p = 0.3 0.048

MPFCx 5.8 ± 0.5 7.1 ± 0.6 7.0 ± 1.7 5.9 ± 0.4 F (1,36) = 0.023; p = 0.9 F (1,36) = 0.0014; p = 0.9 F (1,36) = 1.91; p = 0.2 0.043

Rats were exposed to ethanol or water during adolescence. Two hours (during ethanol intoxication) or three weeks (residual effects) after the last exposure, the immunoreactive levels of
MEAP were measured in different brain regions. Amy, amygdala; CCx, cingulate cortex; Hc, hippocampus; Ht, hypothalamus; mPFCx, medial prefrontal cortex; NAc, nucleus accumbens;
Pit, pituitary; SN, substantia nigra; Str, striatum; VTA, ventral tegmental area; w, weeks. Tukeys post hoc test; *p < 0.05 intoxication effects (2 h) compared to the residual effects (3
weeks) of the same treatment; ◦p = 0.052 compared to water at the same time-point. Bold letters highlights statistically significant results.

Beta-Endorphin
In the nucleus accumbens, differences in beta-endorphin
levels between the ethanol-treated rats and water controls
were indicated by an interaction between time and treatment
[F(1, 35) = 5.32; p = 0.03]. Beta-endorphin levels were lower in
the intoxicated state (i.e., after 2 h) than for their time-matched
water controls; this effect was not present 3 weeks after the last
exposure of ethanol (Figure 2).

An effect of time [F(1, 35) = 4.89; p = 0.03] was also found
in the nucleus accumbens and was driven by the higher beta-
endorphin in the water group at 2 h. Interactions between
treatment and time were also found in the hypothalamus
[F(1,35) = 5.16; p = 0.03] and in pituitary [F(1, 35) = 5.99; p = 0.02]

but the Tukey’s post-hoc test did not reveal any between-group
differences, see Figure 3. An overall effect between the treatment
groups was found in the dorsal striatum [F(3, 34) = 3.85; p = 0.03],
but post hoc analyses failed to identify any statistical between-
group differences in beta-endorphin. Furthermore, the two-
way ANOVA analysis showed an effect of time [F(1, 34) = 5.84;
p = 0.02] in the dorsal striatum (Table 1).

Dynorphin B
In the pituitary, there was an overall effect of treatment
[F(1, 34) = 8.09; p = 0.01] and time [F(1, 34) = 4.54; p = 0.04],
and a trend (p = 0.06) of increased dynorphin B was seen
in ethanol-intoxicated rats (Table 2). In the substantia nigra,
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FIGURE 2 | Beta-endorphin (fmol/mg tissue) in the nucleus accumbens after
repeated adolescent ethanol (EtOH) exposure. Levels were measured in an
ethanol-intoxicated state (2 h after last exposure) and 3 weeks after the
exposure (residual effects). Data expressed as mean ± SEM. “Treatment ×
time” and “Treatment” indicates a significant interaction effect and an effect of
treatment, respectively, *p < 0.05 two-factor ANOVA. #p < 0.05 Tukey’s HSD
post hoc test.

there was an effect of treatment [F(1, 35) = 5.21; p = 0.03]
as well as an interaction effect [F(1, 35) =4.13; p = 0.05]. In
the intoxicated state (2 h), there was no difference between
the ethanol-treated group and water controls, but higher
dynorphin B were found in the substantia nigra of the
ethanol treated group at 3 weeks (Figure 4). For dynorphin
B, an effect of time was present in the hypothalamus
[F(1, 36) = 4.76; p = 0.04], the nucleus accumbens [F(1, 35) = 5.49;
p = 0.02] and the hippocampus [F(1, 36) = 4.76; p = 0.04]
(Table 2).

Met-Enkephalin-Arg6-Phe7

In several brain areas, the effects of ethanol exposure on
MEAP levels persisted 3 weeks after the last exposure to
ethanol. In the amygdala, an effect of treatment [F(1, 36) = 6.33;
p = 0.02] was found with lower MEAP after ethanol exposure
(Figure 5A). In the VTA [F(1, 34) = 6.20; p = 0.02] and
substantia nigra [F(1, 35) = 7.15; p = 0.01], the levels were
higher in ethanol-exposed rats (Figures 5B,C). In the above-
mentioned structures, Tukey’s post hoc test did not reveal any
between-group differences. There was a significant overall effect
[F(3, 33) = 2.97; p = 0.05] in the pituitary, but post hoc analysis
showed only a strong trend (p = 0.053) of higher MEAP in the
ethanol-intoxicated rats (Table 3). In the nucleus accumbens, an
interaction effect [F(1, 34) = 4.31; p = 0.05] showed that the levels
of MEAP varied, depending on both treatment and time but there

FIGURE 3 | Beta-endorphin (fmol/mg tissue) in (A) hypothalamus
(Intoxication; water, n = 10; ethanol, n = 9 and residual effects; water, n = 10;
ethanol, n = 10) and (B) pituitary (Intoxication; water, n = 9; ethanol n = 10
and Residual effects; water, n = 9; ethanol, n = 10) after repeated adolescent
ethanol exposure. Levels were measured in an ethanol-intoxicated state (2 h
after last exposure) and 3 weeks after the last exposure (residual effects). Data
expressed as mean ± SEM. “Treatment × time” indicates a significant
inter-action effect (*p < 0.05 two-factor ANOVA).
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was no significant differences between the groups (Figure 6). An
effect of time, i.e., 2 h or 3 weeks after the last ethanol exposure,
was found in the hypothalamus [F(1, 35) = 17.07; p < 0.001].
MEAP levels were found to be lower at 3 weeks than at 2 h for

FIGURE 4 | Dynorphin B (fmol/mg tissue) in substantia nigra after repeated
adolescent ethanol (EtOH) exposure. Levels were measured in an
ethanol-intoxicated state (2 h after last exposure) and 3 weeks after the last
exposure (residual effects). Data expressed as mean ± SEM. “Treatment ×
time” and “Treatment” indicates a significant interaction effect and an effect of
treatment, respectively, *p < 0.05 two-factor ANOVA. #p < 0.05 Tukey’s HSD
post hoc test.

both the ethanol and control groups (Table 3). The same effect
of time was also present in the dorsal striatum [F(1, 34) = 8.60;
p = 0.006] (Table 3).

DISCUSSION

The neurobiological consequences of ethanol exposure during
adolescence have been a neglected field in preclinical research
until only recently [for recent reviews see (27, 28)]. There
is, for example, still a knowledge gap in how ethanol affects
the endogenous opioids in the adolescent brain, and the
literature regarding the effect of repeated ethanol exposure
during adolescence is almost nonexistent. To our knowledge,
this is the first study to investigate the pharmacological effects of
repeated adolescent ethanol exposure on the endogenous opioids,
including both intoxication effects and residual effects 3 weeks
after the exposure.

Previous studies from our laboratory have reported the
effects of ethanol on endogenous opioids in adult rats as a
function of strain, housing condition and ethanol administration
paradigm (29–31). The differences for adult vs. adolescent rats
must be compared carefully as they could be due to age,
ethanol administration model, or both. In both adult and
adolescent rats, the central levels of endogenous opioids interact
with housing conditions (i.e., single or group housed) and
ethanol intake (19, 20). These aforementioned studies show
the profound importance of the experimental settings when
working with ethanol models in rats. Therefore, to evaluate the
pharmacological effects of ethanol exposure during adolescence,
our rats were housed in groups and the ethanol was administered
orogastrically by gavage to control the doses received. The
present study focused on the effects in male rats and how ethanol
affects the endogenous opioid peptides in females remains to be
examined.

FIGURE 5 | Met-Enkephalin-Arg6-Phe7 (MEAP) (fmol/mg tissue) in (A) amygdala, (B) ventral tegmental area, and (C) substantia nigra after repeated adolescent
ethanol (EtOH) exposure. Levels were measured in an ethanol-intoxicated state (2 h after last exposure) and 3 weeks after the last exposure (residual effects). Data
expressed as mean ± SEM. “Treatment” indicates a significant interaction effect of treatment, *p < 0.05, **p < 0.01 two-factor ANOVA.
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FIGURE 6 | Met-Enkephalin-Arg6-Phe7 (MEAP) (fmol/mg tissue) in the
nucleus accumbens after repeated adolescent ethanol exposure. Levels were
measured in an ethanol-intoxicated state (2 h after last exposure) and 3 weeks
after the last exposure (residual effects). Data expressed as mean ± SEM.
“Treatment × time” indicates a significant interaction effect, *p < 0.05
two-factor ANOVA. Intoxication; water, n = 10; ethanol, n = 10 and residual
effects; water, n = 9; ethanol, n = 10.

Repeated Ethanol Exposure During
Adolescence and Intoxication Effects
In the present study, MEAP levels were increased in the pituitary
2 h after the last exposure. Palm and Nylander (20) presented
similar results with increased MEAP 2 h after last drinking
session in both single and group housed rats. This indicates a
pharmacological effect of increased MEAP in the pituitary during
intoxication. A trend (p = 0.06) toward increased dynorphin B
was also found in the pituitary of the ethanol intoxicated rats.
These changes may reflect ethanol involvement in stress axis
activation as previously been reported [for review see Zhou and
Kreek (32)].

Effects of intoxication were also found in nucleus accumbens
where beta-endorphin was lower in the ethanol-exposed rats.
This finding is in contrast to studies on adult rats, that report
increased beta-endorphin in the nucleus accumbens after acute
ethanol exposure (33, 34). This difference could be due to
the choice of methodology, i.e., measuring peptide content in
dialysate vs. tissue content, or it could be due to the effect of
intoxication after just a single exposure vs. repeated exposure
as in our study. The low beta-endorphin could be an indirect
effect caused by ethanol-induced alterations in social behavior.
Social play behavior activates the endogenous opioid system
(35), specifically, the μ-receptors in the nucleus accumbens
(36, 37). Ethanol has been shown to interfere with social play
behavior; at low doses (0.25–0.75 g/kg) this behavior increase
whereas at higher doses (1–4 g/kg) it decrease (38). In the

present study, 2 g/kg ethanol was administered during the age
interval (4–9 weeks of age) in which play behavior is reported to
peak (39). Hence, the ethanol exposure could have affected the
normal play behavior and thus social development, which could
explain the differences in beta-endorphin levels in the nucleus
accumbens. Another plausible explanation is that the high levels
in water controls at the 2-h time-point is a consequence of
stress-induced activation of beta-endorphin networks by the
orogastric administration, considered a mild stressor (40), and
that this effect is blunted by ethanol in the intoxicated animals.
Differences between the ethanol-treated rats and water controls
were not seen at the other time-point when 3 weeks had passed
from the handling procedure. Changes in beta-endorphin were
also seen as an interaction effect between time and treatment
in the hypothalamus and pituitary, indicating possible effects
of the handling procedure. Intermittent exposure of ethanol
in adolescence have been reported to increase the expression
of pomc in hypothalamus along with an increase of histone
acetylation of the gene promotor (41).

An interaction between treatment (ethanol or water) and
time (2 h or 3 weeks after the last exposure) was seen in the
accumbal levels of MEAP, with the highest levels occurring in
the intoxicated state. Previous studies have shown that ethanol
intoxication increase enkephalins in the nucleus accumbens of
adult rats. An increase of Penk expression and δ-receptor binding
in shell and core of accumbens can be seen 2 h after ethanol
administration (42, 43). Awake rats have increased accumbal
levels of Met-enkephalin when injected with 1.6 g/kg ethanol,
whereas higher (2.4 or 3.2 g/kg) or lower (0.8 g/kg) doses have no
effect on Met-enkephalin (44). In anesthetized rats, the highest
dose of ethanol (2.5 g/kg) leads to a peak of Met-enkephalin
at 30 min, but lower doses (0.5 or 1.0 g/kg) delay the peak 90
and 60 min respectively (45). Furthermore, adolescent ethanol
exposure alters the expression of Penk in the nucleus accumbens
after an acute ethanol challenge in adult rats (46).

Residual Effects After Repeated Ethanol
Exposure During Adolescence
An interesting finding was the residual effects of adolescent
ethanol exposure on MEAP, such as the lower MEAP in
the amygdala observed 3 weeks after the last exposure. The
enkephalin system in amygdala is involved in emotional
processing of states such as anxiety and stress (47) and Oprd1 and
Penk knock-out mice show increased anxiety and depressive like
behaviors in a variety of tests (48–50). Pharmacological studies
with systemic administrations and local injections of δ-receptor
agonists into the amygdala decrease anxious behavior (51–53).
Likewise, the administration of antagonists (51, 52, 54, 55)
increases anxiety-like behaviors.

The scope herein was not to study behavioral manifestations
per se, but the finding of residual low levels of enkephalin
in the amygdala after adolescent exposure to ethanol indeed
indicates long-lasting consequences that could relate to the
increase in anxiety-like behaviors reported by others (41, 56, 57).
δ-receptor knockout mice have an increased consumption of
ethanol (58) and their elevated intake may be a way to reduce
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their elevated anxiety level (47). The low enkephalin tone after
adolescent ethanol exposure may therefore constitute a risk factor
for elevated intake of ethanol later in life. As noted above,
an interaction between time and treatment was found in beta-
endorphin in the hypothalamus and in the pituitary—these brain
areas, along with the amygdala, are important in the regulation of
the stress response.

Repeated exposure of ethanol during adolescence increased
MEAP and dynorphin B in substantia nigra and MEAP in
the VTA. The substantia nigra and VTA contain dopaminergic
neurons that extend into the striatal, limbic and cortical areas
(59). Importantly, endogenous opioids are highly involved in
regulating dopamine output (60–62) and residual effects after
adolescent ethanol exposure may have consequences for opioid
regulation of dopamine pathways. Adolescent ethanol exposure
has been shown to alter the dopamine dynamics in the dorsal
striatum (63, 64), nucleus accumbens (65–67) and medial
prefrontal cortex (68). An interesting aspect for future research
would be to investigate the relationships between dopamine and
opioid changes after adolescent ethanol exposure.

CONCLUSION

Intoxication after repeated ethanol exposure during adolescence
altered the levels of MEAP and beta-endorphin in the accumbens
and dynorphin B and MEAP in the pituitary. Especially
noteworthy is the observation of long-term consequences of the

adolescent ethanol exposure, particularly MEAP in the amygdala
and beta-endorphin in the hypothalamus and pituitary as these
regions are involved in the response to anxiety and stress.
Furthermore, residual effects were noted in the substantia nigra
and VTA, areas important for opioid regulation of dopaminergic
projections in the reward circuitry. It has been postulated that
changes in stress circuits and in dopaminergic activity increase
the susceptibility for alcohol use disorders. Hopefully, the data
presented herein on the alterations in endogenous opioids after
adolescent ethanol exposure can contribute in the understanding
of how adolescent ethanol exposure increases the risk of elevated
alcohol consumption later in life.
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In vitro and in vivo
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14-O-Phenylpropyloxymorphone, a
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Opioid Receptor Agonist With
Reduced Constipation in Mice
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Mariana Spetea2*
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Pain, particularly chronic pain, is still an unsolved medical condition. Central goals in
pain control are to provide analgesia of adequate efficacy and to reduce complications
associated with the currently available drugs. Opioids are the mainstay for the treatment
of moderate to severe pain. However, opioid pain medications also cause detrimental
side effects, thus highlighting the need of innovative and safer analgesics. Opioids
mediate their actions via the activation of opioid receptors, with the mu-opioid receptor
as the primary target for analgesia, but also for side effects. One long-standing focus
of drug discovery is the pursuit for new opioids exhibiting a favorable dissociation
between analgesia and adverse effects. In this study, we describe the in vitro and in vivo
pharmacological profiles of the 14-O-phenylpropyl substituted analog of the mu-opioid
agonist 14-O-methyloxymorphone (14-OMO). The consequence of the substitution of
the 14-O-methyl in 14-OMO with a 14-O-phenylpropyl group on in vitro binding and
functional activity, and in vivo behavioral properties (nociception and gastrointestinal
motility) was investigated. In binding studies, 14-O-phenylpropyloxymorphone (POMO)
displayed very high affinity at mu-, delta-, and kappa-opioid receptors (K i values in
nM, mu:delta:kappa = 0.073:0.13:0.30) in rodent brain membranes, with complete
loss of mu-receptor selectivity compared to 14-OMO. In guinea-pig ileum and mouse
vas deferens bioassays, POMO was a highly efficacious and full agonist, being more
potent than 14-OMO. In the [35S]GTPγS binding assays with membranes from CHO
cells expressing human opioid receptors, POMO was a potent mu/delta-receptor full
agonist and a kappa-receptor partial agonist. In vivo, POMO was highly effective
in acute thermal nociception (hot-plate test, AD50 = 0.7 nmol/kg) in mice after
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subcutaneous administration, with over 70- and 9000-fold increased potency than 14-
OMO and morphine, respectively. POMO-induced antinociception is mediated through
the activation of the mu-opioid receptor, and it does not involve delta- and kappa-
opioid receptors. In the charcoal test, POMO produced fourfold less inhibition of the
gastrointestinal transit than 14-OMO and morphine. In summary, POMO emerges as
a new potent mixed mu/delta/kappa-opioid receptor agonist with reduced liability to
cause constipation at antinociceptive doses.

Keywords: pain, analgesia, constipation, opioid agonist, opioid receptor, morphinans, binding affinity

INTRODUCTION

Pain, particularly chronic pain, remains an ongoing global health
and socioeconomical problem (Severino et al., 2018), affecting
more people than cancer, heart disease, and diabetes combined
(Skolnick and Volkow, 2016). Furthermore, comorbidity of
chronic pain with mood disorders (e.g., depression, anxiety)
in pain patients is well-recognized (Nicholson and Verma,
2004; Tsang et al., 2008; Miller and Cano, 2009). Opioids
are the most effective drugs for the treatment of moderate
to severe pain (Pasternak, 2014; Stein, 2016). However, their
wide use is hampered by unwanted side effects, including
constipation, apnea, sedation, nausea, tolerance, and dependence
(Benyamin et al., 2008; Imam et al., 2018). A huge increase
in medical use and abuse of prescription opioids with raised
opioid-related morbidity and mortality has been reported
in the past years (Skolnick and Volkow, 2016; Severino
et al., 2018). Ongoing monitoring of pain patients receiving
opioids to ensure appropriate use and effectiveness is of
major importance. The central goal is to balance the patient’s
pain relief, potential harmful consequences of opioids, and
quality of life. Opioids induce their actions via the activation
of opioid receptors, that is, mu (MOR), delta (DOR), and
kappa (KOR), as members of the large family of G protein-
coupled receptors (GPCRs) with seven transmembrane domains
(Kieffer and Evans, 2009; Shang and Filizola, 2015). Opioid
receptors modulate neurotransmission in neuronal circuits
that subserve pain both at central and peripheral sites (Stein
and Machelska, 2011). One long-standing focus of opioid
drug discovery is the pursuit for safe and effective analgesics
with more favorable pharmacological features. Different
approaches are therefore being evaluated to mitigate the
deleterious effects of opioid analgesics, with extended reports
into the field over the past years (Stein and Machelska,
2011; Aldrich and McLaughlin, 2012; Albert-Vartanian
et al., 2016; Del Vecchio et al., 2017; Günther et al., 2017;
Madariaga-Mazón et al., 2017; Schmid et al., 2017; Yekkirala
et al., 2017; Livingston and Traynor, 2018; Pergolizzi et al.,
2018).

The MOR is the primary target for analgesia, but also
for side effects of opioid analgesics (Pasternak and Pan,
2013). The present understanding of the MOR function is
persistently increasing with the crystal (active and inactive)
structures of the MOR available (Filizola, 2018). Among clinically
used opioids, morphinans including morphine, oxycodone, and
oxymorphone, are of key importance as potent MOR agonists

(Fürst and Hosztafi, 2008; Spetea et al., 2013). Modifications
at position 14 of the morphinan skeleton were targeted by
us and others with the prospect of designing novel MOR
analgesics, which retain their opioid analgesic properties, but
with fewer or no adverse effects (Fürst and Hosztafi, 2008;
Lewis and Husbands, 2011; Spetea and Schmidhammer, 2012;
Spetea et al., 2013). We have reported that the introduction
of a 14-methoxy group in oxymorphone leading to 14-O-
methyloxymorphone (14-OMO, Figure 1) (Schmidhammer
et al., 1984) not only increased binding affinity and agonist
potency at the MOR, but also resulted in a significant increase
in antinociceptive potency in various pain models in rodents
(Schmidhammer et al., 1984; Lattanzi et al., 2005; Spetea
et al., 2010; Dumitrascuta et al., 2017). However, 14-OMO
induces the typical opioid-like side effects (Schmidhammer
et al., 1984; Lattanzi et al., 2005). In this study, we describe
the in vitro and in vivo pharmacological profiles of the 14-
O-phenylpropyl substituted analog of 14-OMO, namely 14-O-
phenylpropyloxymorphone (POMO, Figure 1), which emerges
as a new potent mixed mu/delta/kappa-opioid receptor agonist
with reduced propensity to cause constipation at antinociceptive
doses.

MATERIALS AND METHODS

Drugs and Chemicals
Cell culture media and supplements were obtained from
Sigma-Aldrich Chemicals (St. Louis, MO, United States) or
Life Technologies (Carlsbad, CA, United States). Radioligands,
[3H][D-Ala2,N-Me-Phe4,Gly-ol5]enkephalin ([3H]DAMGO),
[3H]5α,7α,8β-(-)N-methyl-N-[7-(1-pyrrolidinyl)-1-oxaspiro(4,5)
dec-8-yl]benzeneacetamide ([3H]U69,593), and guanosine 5′-O-
(3-[35S]thio)-triphosphate ([35S]GTPγS), were purchased from
PerkinElmer (Boston, MA, United States). [3H][Ile5,6]deltorphin
II was obtained from the Institute of Isotopes Co. Ltd. (Budapest,
Hungary). Guanosine diphosphate (GPD), GTPγS and opioid
ligands, naloxone, DAMGO, [D-Pen2,D-Pen5]enkephalin
(DPDPE), U69,593 and naltrindole, were obtained from
Sigma-Aldrich Chemicals (St. Louis, MO, United States).
Nor-binaltorphimine (nor-BNI) was purchased from Tocris
(Abingdon, United Kingdom). Morphine hydrocloride was
obtained from S.A.L.A.R.S. (Como, Italy). Dermorphin and
deltorphin I were synthesized as previously described (Erspamer
et al., 1989; Negri et al., 1992). 14-OMO and POMO were
prepared as described earlier (Schmidhammer et al., 1984; Spetea
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FIGURE 1 | Structures of 14-O-methyloxymorphone (14-OMO) and
14-O-phenylpropyloxymorphone (POMO).

et al., 2004). All other chemicals were of analytical grade and
obtained from standard commercial sources.

Animals
Male CD-1 mice (20–25 g) and guinea-pigs (400–500 g)
were obtained from Charles River (Lecco, Italy, or Sulzfeld,
Germany). Animals were housed at 22◦C with food and water
ad libitum and a 12-h light/dark cycle. Animals were used
after 4–5 days of acclimatization to the housing conditions.
All animal studies were conducted in accordance with ethical
guidelines and animal welfare standards according to Italian and
Austrian regulations for animal research and were approved by
the Animal Care and Use Committee of the Italian Ministry
of Health and the Austrian Federal Ministry of Science and
Research. All efforts were made to minimize animal suffering
and to reduce the number of animals used. For behavioral
studies, compounds were dissolved in sterile saline solution,
and administered subcutaneously (s.c.) to mice. Separate
groups of mice received the respective dose of compound,
and individual mice were only used once for behavioral
testing.

Radioligand Binding Assays
Membranes were prepared from Sprague–Dawley rat brains or
guinea-pig brains obtained frozen from Labortierkunde und
Laborgenetik, Medizinische Universität Wien, Himberg, Austria
according to the described procedure (Lattanzi et al., 2005).
Protein content of brain homogenates was determined by
the method of Bradford using bovine serum albumin as the
standard (Bradford, 1976). Binding experiments were performed
in 50 mM Tris-HCl buffer (pH 7.4.) in a final volume of
1 ml containing 0.3–0.5 mg protein and various concentrations
of test compound as described previously (Lattanzi et al.,
2005). Rat brain membranes were incubated either with
[3H]DAMGO (1 nM, 45 min, 35◦C) or [3H][Ile5,6]deltorphin
II (0.5 nM, 45 min, 35◦C) for labeling MOR and DOR,
respectively. Guinea-pig brain membranes were incubated with
[3H]U69,593 (1 nM, 30 min, 30◦C) for labeling the KOR.
Nonspecific binding was determined using 10 µM naloxone.
After incubation, reactions were terminated by rapid filtration
through Whatman glass fiber filters. Filters were washed three
times with 5 ml of ice-cold 50 mM Tris-HCl buffer (pH
7.4) using a Brandel M24R cell harvester (Gaithersburg, MD,
United States). Radioactivity retained on the filters was counted

by liquid scintillation counting using a Beckman Coulter LS6500
(Beckman Coulter Inc., Fullerton, CA, United States). All
experiments were performed in duplicate and repeated at least
three times.

[35S]GTPγS Binding Assays
Chinese hamster ovary (CHO) cells stably expressing the
human opioid receptors, MOR, DOR, or KOR (CHO-hMOR,
CHO-hDOR, and CHO-hKOR cell lines) were kindly provided
by Dr. Lawrence Toll (SRI International, Menlo Park, CA,
United States). The CHO-hMOR and CHO-hDOR cell lines
were maintained in Dulbecco’s Minimal Essential Medium
(DMEM)/Ham’s F-12 medium supplemented with fetal bovine
serum (FBS, 10%), penicillin/streptomycin (0.1%), L-glutamine
(2 mM), and geneticin (400 µg/ml). The CHO-hKOR cell
line was maintained in DMEM supplemented with FBS
(10%), penicillin/streptomycin (0.1%), L-glutamine (2 mM),
and geneticin (400 µg/ml). Cell cultures were maintained at
37◦C in 5% CO2 humidified air. Binding of [35S]GTPγS to
membranes from CHO cells stably expressing the human opioid
receptors was conducted according to the published procedure
(Ben Haddou et al., 2014). Cell membranes were prepared
in Buffer A (20 mM HEPES, 10 mM MgCl2, and 100 mM
NaCl, pH 7.4) as described (Ben Haddou et al., 2014). Cell
membranes (5–10 µg) in Buffer A were incubated with 0.05 nM
[35S]GTPγS, 10 µM GDP, and various concentrations of test
compound in a final volume of 1 ml, for 60 min at 25◦C.
Nonspecific binding was determined using 10 µM GTPγS,
and the basal binding was determined in the absence of test
compound. Samples are filtered over Whatman glass GF/B
fiber filters and counted as described for binding assays. All
experiments were performed in duplicate and repeated at least
three times.

Bioassays
Preparations of the myenteric plexus-longitudinal muscle
obtained from the small intestine of male guinea-pigs (GPI)
and preparations of vasa deferentia of mouse (MVD) were
used for field stimulation with bipolar rectangular pulses of
supramaximal voltage as described earlier (Lattanzi et al., 2005).
Test compounds were evaluated for their ability to inhibit the
electrically evoked twitch, and agonist potency was compared
with that of the MOR agonist, dermorphin, in GPI, and with
the DOR agonist deltorphin I, in MVD. Concentration-response
effects were established. All experiments were repeated at least
three times.

Antinociception
Antinociception was assessed using the hot-plate assay
performed as described (Lattanzi et al., 2005). Hot-plate
latencies were determined by placing each mouse on a hot-
plate kept at 55 ± 1◦C and observing the occurrence of a
nociceptive response (licking of a paw or jumping). Each animal
served as its own control. Before drug s.c. administration,
each animal was tested, and the basal latency to thermal
stimulation was recorded. Animals not responding within
3 s were not used. In order to avoid possible tissue damage,
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a cut-off time of 12 s was applied. Mice were tested for
antinociception after drug administration, and time- and
dose-response effect was established. For the antagonism
studies, naloxone (1 mg/kg) or naltrindole (3 mg/kg) were
s.c. administered 10 min before POMO (2 nmol/kg, s.c.).
Nor-BNI (20 mg/kg, s.c.) was administered 24 h before
POMO. Antinociception was assessed 20 min after POMO s.c.
injection using the hot-plate assay. Doses and pretreatment
times of the antagonists were chosen based on pilot studies
and previous research (Lattanzi et al., 2002; Erli et al.,
2017). Antinociceptive response was expressed as maximum
possible effect (%MPE), calculated according to the equation:
%MPE = (test latency − basal latency)/(cut-off − basal
latency) × 100. Each experimental group included six to eight
animals.

Gastrointestinal Transit
The charcoal meal test was used to measure gastrointestinal
transit (Broccardo et al., 1998). Mice were fasted for 18 h,
with free access to water for the entire study. Animals
received 0.25 ml of a suspension of charcoal consisting of
10% (w/v) charcoal suspension in a 5% gum Arabic solution,
administered by a gastric tube. Groups of mice were s.c.
administered different doses of test drug (morphine: 3900,
6690, and 8000 nmol/kg; 14-OMO: 32, 53, and 90 nmol/kg;
POMO: 0.35, 0.70, and 1.6 nmol/kg) or vehicle (saline),
15 min before the charcoal meal, and were sacrificed 15 min
later. The stomach and small intestine were separated from
the omentum to avoid stretching. The length of the intestine
from the pyloric sphincter to the ileocecal junction and the
distance traveled by the charcoal meal were measured. The
distance traveled by the charcoal meal was expressed as percent
of the total length of the small intestine, and the effect was
computed as follows: %inhibitory effect = 100 − [(%length
traveled after test compound)/(%length traveled after
vehicle) × 100]. Each experimental group included eight
animals.

Statistical Analysis
Data were analyzed and graphically processed using the
GraphPad Prism 5.0 Software (GraphPad Prism Software
Inc., San Diego, CA) and are presented as means ± SEM.
For in vitro assays, inhibitor constant (K i in nM), potency
(EC50 or IC50 in nM), and efficacy (% stimulation) values were
determined from concentration-response curves by nonlinear
regression analysis. The K i values were determined by the
method of Cheng and Prusoff (1973). In the [35S]GTPγS
binding assays, efficacy was determined relative to the
reference full opioid agonists, DAMGO (MOR), DPDPE
(DOR), and U69,593 (KOR). The AD50 defined as the dose
that produced an antinociceptive effect equal to 50% MPE
in the hot-plate test, the ED50 defined as the dose that
produced 50% inhibitory effect in the charcol test, and 95%
confidence intervals (95% CI) were calculated from dose-
response curves (Tallarida and Murray, 1986). Data were
statistically evaluated using one-way ANOVA with Tukey’s
post hoc test for multiple comparisons and unpaired t-test

for comparisons between two groups, with significance set at
P < 0.05.

RESULTS

In vitro Pharmacology – Opioid Receptor
Binding and Functional Activity
Binding affinity and functional in vitro activity of POMO were
evaluated at MOR, DOR, and KOR and compared to the
profile of 14-OMO. For comparison purposes, the affinity and
potency/efficacy data of morphine (Ben Haddou et al., 2014) are
also presented. Affinities at opioid receptors were determined in
competition binding assays using rat brain (MOR and DOR) and
guinea-pig brain (KOR) membrane preparations (Lattanzi et al.,
2005). As shown in Figure 2A, POMO effectively inhibited in a
concentration-dependent manner the binding of selective opioid
radioligands to brain membranes. Based on the calculated K i
values, POMO displayed very high affinity in the picomolar range
at the MOR (K i = 0.073 nM), similar to the parent compound
14-OMO (P > 0.05, t-test). However, POMO had also low K i
values in the subnanomolar range at DOR and KOR, that were
significantly lower than the K i values of 14-OMO (P < 0.05,
t-test), thus indicating a complete loss of MOR selectivity of
POMO when compared to 14-OMO, as well as to morphine
(Table 1).

The opioid agonist in vitro activities of POMO were initially
assessed on smooth muscle preparations, the GPI and MVD,
as well-known widely used bioassays (Leslie, 1987). The GPI
is primarily a MOR preparation, even though the ileum also
contains KOR. In the MVD, the opioid effects are mostly
mediated through the DOR, but MOR and KOR also exist in
the tissue. Dermorphin and deltorphin I were used as reference
MOR and DOR agonists, respectively. POMO was effective in
inhibiting the electrically stimulated twitch in GPI and MVD
preparations, with IC50 values listed in Table 2. In the GPI
assay, POMO exhibited potent and full agonist activity at the
MOR (IC50 = 1.2 nM), with a slight albeit significant increase
(P < 0.05, t-test) than that of 14-OMO. In the MVD preparation,
POMO was 1000-fold more potent than 14-OMO as agonist
(P < 0.05, t-test), in line with its enhanced binding affinities
at DOR and KOR when compared to 14-OMO. Compared to
morphine, POMO was over 250- and 50,000-fold more potent as
agonist in the GPI and MVD, respectively (Table 2).

In addition to functional bioassays, we assessed the effect
of POMO on G protein activation using the ligand-stimulated
[35S]GTPγS binding assay with membranes from CHO cells
stably expressing the human opioid receptors (Ben Haddou
et al., 2014). As shown in Figure 2B, POMO produced a
concentration-dependent increase in the [35S]GTPγS binding.
Agonist potencies (ED50) and efficacies (% stimulation) values
are listed in Table 2. Stimulation of [35S]GTPγS binding was
determined and compared to the effect of prototypical full
agonists, DAMGO (MOR), DPDPE (DOR), and U69,593 (KOR).
POMO was a highly potent agonist at all three receptors, with
full efficacy at MOR and DOR, and partial agonism at the
KOR (Figure 2B and Table 2). The in vitro functional activity
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FIGURE 2 | In vitro binding and agonist profile of POMO at the opioid receptors. (A) Concentration-dependent inhibition by POMO and 14-OMO of [3H]DAMGO
(MOR) and [3H][Ile5,6]deltorphin II (DOR) binding using rat brain membranes, and by [3H]U69,593 (KOR) using guinea-pig brain membranes, determined in
competition binding assays. (B) Concentration-dependent stimulation of [35S]GTPγS binding by POMO and 14-OMO determined in the [35S]GTPγS binding assays
using membranes from CHO cells expressing human opioid receptors. Percentage stimulation is presented relative to the maximum simulation of reference agonists
DAMGO (MOR), DPDPE (DOR), and U69,593 (KOR). Values are expressed as the mean ± SEM (n ≥ 3).

was also affected by the substitution of the 14-O-methyl group
with a 14-O-phenylpropyl group, as POMO showed a significant
increase in potency than 14-OMO as defined by the higher
EC50 values (20-fold at MOR, 151-fold at DOR, and 411-fold
at KOR) (P < 0.05, t-test), while retaining the full agonism
at MOR/DOR and partial agonism at the KOR (Table 2).
Subsequently, the functional MOR selectivity was significantly
decreased for POMO.

In vivo Pharmacology – Antinociceptive
Activity and Gastrointestinal Transit in
Mice
POMO was evaluated for antinociceptive activity in a mouse
model of acute thermal nociception, the hot-plate assay
(Lattanzi et al., 2005). Subcutaneous administration of POMO

produced time- and dose-dependent increase in latencies to
thermal stimulus, with the peak of antinociceptive response
occurring at 20 min (Figure 3). Antinociceptive potency as
AD50 value (and 95% CI) was calculated at the peak of
action and compared to 14-OMO and morphine. As shown
in Table 3, the in vivo functional activity was affected by
the replacement of the 14-O-methyl group with a 14-O-
phenylpropyl substituent, affording an opioid agonist with more
than 70-fold increased antinociceptive potency than 14-OMO.
Compared to morphine, POMO was over 9000-fold more
effective in producing antinociception in the hot-plate assay in
mice.

To determine the relative involvement of the opioid
receptor agonist activity in eliciting POMO-induced
antinociception, mice were s.c. pretreated with the MOR
antagonist naloxone (1 mg/kg), DOR antagonist naltrindole

TABLE 1 | Binding affinities and selectivity of POMO at the opioid receptors.

Affinity, Ki (nM) Selectivity

MOR DOR KOR DOR/MOR KOR/MOR

14-OMOa 0.10 ± 0.01 4.80 ± 0.22 10.2 ± 2.0 48 102

POMO 0.073 ± 0.007 0.13 ± 0.02∗∗∗ 0.30 ± 0.01∗∗ 1.8 4.1

Morphinea 6.55 ± 0.74 217 ± 19 113 ± 9 33 17

Competition binding assays were performed with membranes from rat brain (MOR and DOR) or guinea-pig brain (KOR). aData from Lattanzi et al. (2005). Values are
means ± SEM of at least three experiments. ∗∗P < 0.01 and ∗∗∗P < 0.001 vs. 14-OMO (unpaired t-test).
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TABLE 2 | In vitro functional activity of POMO at the opioid receptors.

Bioassaya [35S]GTPγS Bindingb

IC50 (nM) MOR DOR KOR

GPI MVD EC50 (nM) % stim. EC50 (nM) % stim. EC50 (nM) % stim.

14-OMO 2.0 ± 0.3c 30.5 ± 5.5c 1.62 ± 0.48 97 ± 6 43.8 ± 11.7 106 ± 1 144 ± 32 65 ± 7

POMO 1.2 ± 0.21∗ 0.03 ± 0.0013∗∗∗ 0.082 ± 0.017∗∗ 100 ± 8 0.28 ± 0.14∗∗ 91 ± 8 0.38 ± 0.13∗∗ 39 ± 5

Morphine 311 ± 29c 1600 ± 121c 34.4 ± 5.1d 89 ± 17d 668 ± 65d 109 ± 14d 710 ± 23d 76 ± 2d

Dermorphin 1.3 ± 0.27 18 ± 0.31

Deltorphin I 1239 ± 132 0.19 ± 0.03

DAMGO 14.7 ± 1.9 100

DPDPE 1.26 ± 0.76 100

U69,593 16.7 ± 3.0 100

aFunctional bioactivity was determined using GPI and MVD preparations. b[35S]GTPγS binding assays were performed with membranes from CHO stably expressing
human opioid receptors. Percentage stimulation (% stim.) is presented relative to the reference full agonists DAMGO (MOR), DPDPE (DOR), or U69,593 (KOR). cData from
Lattanzi et al. (2005). dData from Ben Haddou et al. (2014). Values are means ± SEM of at least three experiments. ∗P < 0.05, ∗∗P < 0.01, ∗∗∗P < 0.001, vs. 14-OMO
(unpaired t-test).

FIGURE 3 | Acute thermal antinociception induced by POMO in the hot-plate assay in mice after s.c. administration. (A) Time-dependent antinociceptive effects of
POMO. (B) Comparison of dose-dependent antinociceptive effects of POMO, 14-OMO, and morphine. Data are shown as mean %MPE ± SEM (n = 6–8 mice per
group).

(3 mg/kg), or KOR antagonist nor-BNI (20 mg/kg) prior
to POMO s.c. injection, and tested in the hot-plate
assay (Figure 4). Antinociception induced by the s.c.
administration of 2 nmol/kg of POMO was significantly
antagonized by naloxone (P < 0.05, ANOVA), but not
by naltrindole and nor-BNI (P > 0.05, ANOVA). Thus, it
appears that the activation of the MOR, but not DOR and

TABLE 3 | Antinociceptive activity and gastrointestinal transit inhibition by POMO
in mice after s.c. administration.

Antinociceptive activitya Gastrointestinal transitb

AD50 (µg/kg, s.c.) (95% CI) ED50 (µg/kg, s.c.) (95% CI)

14-OMO 53 (48–58)c 37 (35–39)

POMO 0.70 (0.63–0.77) 1.70 (0.80–3.58)

Morphine 6690 (4468–9348)c 3800 (3400–4330)

aDetermined in the hot-plate assay. Antinociceptive dose 50% with 95% confidence
intervals (AD50, 95% CI), (n = 6–8 mice per group). bDetermined in the charcoal
test. Effective dose 50% with 95% confidence intervals (ED50, 95% CI), (n = 8 mice
per group). cData from Lattanzi et al. (2005).

KOR are responsible for POMO-induced acute thermal
antinociception.

One of the most frequent adverse effects of opioid analgesics
is constipation, as a consequence of activation of opioid
receptors in the gastrointestinal tract (Imam et al., 2018).
It is well-recognized that the MOR plays a primary role
in the inhibitory control of gastrointestinal motility (Imam
et al., 2018). In vivo studies were performed with POMO
by assessing its effect on gastrointestinal transit in mice after
s.c. administration using the charcoal test (Broccardo et al.,
1998). The inhibitory effective dose, ED50 (and 95% C.I.),
was calculated and compared to 14-OMO and morphine
(Table 3). As expected, morphine effectively slowed transit
in a dose-dependent manner, with the highest tested dose
completely abolishing transit (Figure 5). Similarly, and in
agreement with our previous data in the colonic bead
expulsion test (Lattanzi et al., 2005), 14-OMO dose-dependently
inhibited gastrointestinal motility in mice, with the highest dose
producing a 90% inhibition. Although POMO also decreases
gastrointestinal transit, its actions reached only a 50% inhibition
(Figure 5).
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FIGURE 4 | Opioid receptor selectivity of POMO-induced antinociception in
the hot-plate assay in mice after s.c. administration. Antinociceptive effect of
POMO (2 nmol/kg, s.c.) measured at 20 min was antagonized by
pretreatment with naloxone (NLX, 1 mg/kg, s.c., –10 min), but not by
naltrindole (NTI, 3 mg/kg, s.c., –10 min) and nor-binaltorphimine (nor-BNI,
20 mg/kg, s.c., –24 h). ∗∗∗P < 0.001 vs. saline-pretreated group (ANOVA with
Tukey’s post hoc test). Data are shown as mean %MPE ± SEM (n = 6 mice
per group).

FIGURE 5 | POMO produces antinociception with reduced constipation after
s.c. administration in mice. Antinociception (hot-plate assay) vs.
gastrointestinal transit inhibition (charcoal test) of POMO, 14-OMO, and
morphine. (n = 6–8 mice per group).

DISCUSSION

During the past decades of opioid research, there has been
an intensive hunt for an alternative to currently available
opioids, which would produce powerful analgesia without
the harmful side effects (Bannister et al., 2017; Yekkirala
et al., 2017). In this study, we have addressed the exploration
of in vitro and in vivo pharmacological profiles of a new
opioid agonist from the class of N-methylmorphinan-6-ones,
POMO (Figure 1). The major finding is that POMO displays
potent mixed MOR/DOR/KOR agonism and extraordinarily
antinociceptive activity through MOR-mediated mechanisms
with considerably reduced propensity for constipation in mice
after s.c. administration.

Opioid drug discovery approaches have uncovered that
functionalizing position 14 in the morphinan skeleton gives rise
to opioid ligands with distinct functional profiles in vitro and
in vivo that are appraised as valuable and potential therapeutics
and important research probes (Fürst and Hosztafi, 2008; Lewis
and Husbands, 2011; Stavitskaya and Coop, 2011; Spetea and
Schmidhammer, 2012; Spetea et al., 2013). Combining in vitro
ligand binding and functional assays and in vivo behavioral
approaches, we show that the 14-O-phenylpropyl substitution
in POMO compared to the 14-O-methyl substitution in 14-
OMO has a strong influence on the interaction with opioid
receptors in terms of receptor binding and activation. The
in vitro assessment of binding affinities revealed that the
introduction of an arylalkoxy group, that is, phenylpropoxy
at position 14, maintained the high affinity at the MOR,
while markedly increasing affinities at DOR and KOR, hence
resulting in a complete loss of MOR selectivity of POMO.
These data extend our prior structure-activity relationship
(SAR) observations in terms of opioid receptor binding in
the series of N-methylmorphinan-6-ones when comparing 14-
hydroxy and 14-alkoxy analogs (Schmidhammer et al., 1984;
Lattanzi et al., 2005; Spetea et al., 2005). Similar to 14-OMO,
POMO is characterized as agonist in vitro and in vivo activity,
while exhibiting a distinct functional profile. We showed that
in vitro functional activity is largely affected by the replacement
of the 14-O-methyl group with a 14-O-phenylpropyl group
changing the MOR functionally selective 14-OMO to a potent
MOR/DOR full agonist and KOR partial agonist. Notably,
POMO exhibited increased affinity and efficacy at the MOR
compared to oxymorphone (K i = 0.97 nM and EC50 = 7.89 nM)
(Lattanzi et al., 2005; Dumitrascuta et al., 2017) and morphine
(K i = 6.55 nM and EC50 = 34.4 nM) (Ben Haddou et al., 2014),
two clinically used opioids.

Our findings from behavioral studies using a mouse model
of acute thermal nociception establish POMO as an extremely
potent opioid agonist in vivo exhibiting antinociceptive efficacy
(AD50 = 0.7 nmol/kg) after s.c. administration in mice.
Antinociceptive potency of POMO was found to be more than
70-fold higher than that of 14-OMO, and over 9000-fold when
compared to morphine. While introduction of a 14-O-methyl
group in oxymorphone, affording 14-OMO, caused an increase
up to 40-fold in antinociceptive potency (Schmidhammer
et al., 1984), the presence of the 14-phenylpropoxy group
in POMO resulted in a further substantial increase (>1400-
fold) than that reported for oxymorphone in the hot-plate
assay in mice after s.c. administration (Dumitrascuta et al.,
2017). Thus, substitution of the 14-O-methyl group in 14-
OMO with a 14-O-phenylpropyl substituent in POMO leads
to a highly potent and efficacious opioid analgesic. The
SAR observations derived in this study from the in vivo
pharmacological findings on antinociceptive properties are in
qualitative agreement with the in vitro functional activities of
targeted opioid agonists. The current findings support and extend
our observations on major alterations of the pharmacological
profile upon the introduction of a 14-O-phenylpropyl group
into the opioid antagonists naloxone and naltrexone (Greiner
et al., 2003). Hence, naloxone and naltrexone were converted
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into nonselective ligands with very high affinities at all three
opioid receptors, and potent antinociceptive agents in mice
after s.c. administration as a result of the presence of the 14-
O-phenylpropyl substituent (Greiner et al., 2003). However, in
the present work, we report on a more thorough evaluation
on the consequence of the presence of 14-O-phenylpropyl
group in N-methylmorphinan-6-ones including the mechanism
of action for analgesic effects, together with first behavioral
studies on the inhibition of gastrointestinal transit. Using
pharmacological approaches, we demonstrated that POMO-
induced antinociception is mediated through the activation
of the MOR, and it does not involve DOR and KOR, as
naltrindole and nor-BNI, respectively, did not antagonize the
acute thermal antinociceptive effect of POMO in the hot-plate
assay in mice.

Prescription opioid use has increased rapidly over the past
years (Skolnick and Volkow, 2016; Severino et al., 2018) as
have related adverse events including constipation, respiratory
depression, tolerance, and dependence (Benyamin et al., 2008;
Imam et al., 2018). Respiratory depression is of major concern to
clinicians due to its potential for producing fatal outcomes and
the primary cause of opioid-related overdose mortality (Imam
et al., 2018; Severino et al., 2018). Development of analgesic
tolerance pose challenges for compliance and is particularly
problematic in long-term chronic pain users (Benyamin et al.,
2008; Severino et al., 2018). Opioid-induced constipation is
one of the most common and most bothersome side effect of
opioid analgesics, and can significantly impact the quality of
life (Szigethy et al., 2018). The incidence of constipation is
reported in 40–95% of opioid treated patients (Imam et al.,
2018). In association with constipation, patients develop other
gastrointestinal side effects, including vomiting and nausea,
which pose major challenges for compliance and continuation of
the therapy for chronic pain management (Imam et al., 2018). All
three opioid receptors types, MOR, DOR, and KOR, are present
in the gastrointestinal tract of humans (Holzer, 2004; Galligan
and Akbarali, 2014). However, opioid-induced inhibition of
gastrointestinal transit appears to be mainly mediated by the
MOR, as MOR agonists predominantly increase gastric emptying
time and inhibit gastrointestinal motility that contributes to
nausea and vomiting (Herndon et al., 2002; Imam et al.,
2018). In this study, we report on the reduced propensity of
POMO to produce constipation at antinociceptive doses after
s.c. administration in mice. Based on the calculated ratios of
ED50(constipation) vs. AD50(antinociception) values of 0.54,
0.67, and 2.43 for morphine, 14-OMO and POMO, respectively,
it is evident that morphine and 14-OMO cause inhibition of
gastrointestinal motility at subanalgesic doses, while POMO
showed a larger therapeutic window. Notably, we established that
in the charcoal test, POMO produced fourfold less inhibition
of the gastrointestinal transit than 14-OMO and morphine in
mice.

Evaluation of pharmacokinetics (PK) is an important
aspect in drug discovery and development, specially in
understanding the behavior of bioactive molecules and
correlation with pharmacological activities (Faller, 2008).
The in silico determination of the partition coefficient (logP)

and distribution coefficient at pH 7.4 (logD7.4) of 14-OMO
and POMO was made using the software MarvinSketch 18.8
(ChemAxon). The calculated logP (clogP) values of 14-OMO
and POMO were 1.45 and 3.88, respectively, and the calculated
logD7.4 (clogD7.4) values were 0.48 and 2.89, respectively,
indicative for their good capability to enter the central nervous
system. The clogP and clogD7.4 of morphine are 1.23 and
−0.57, respectively. Based on the calculated PK parameters,
POMO showed a much higher lipophilicity than 14-OMO and
morphine, which may account for its pharmacological effects
observed in vivo.

Herein, we have shown that POMO was highly potent in
inducing acute thermal antinociception, via activation of the
MOR. In vitro, POMO is a mixed MOR/DOR full agonist, as
well as a potent KOR partial agonist. The design of ligands that
can act at multiple opioid receptors has emerged as a promising
new approach to analgesic drug development to potentially
lower side effects and to increase analgesic efficacy, especially
in chronic pain conditions (Ananthan, 2006; Kleczkowska et al.,
2013; Chan et al., 2017; Günther et al., 2017). All opioid
receptors, MOR, DOR, and KOR, are crucial modulators of both
nociception and opioid analgesia (Pasternak, 2014; Stein, 2016),
and are co-localized in nociceptive sensory neurons (Erbs et al.,
2015; Massotte, 2015). Compared to the pain relief triggered
upon MOR activation in acute pain conditions, agonism at the
DOR alone is relatively ineffective (Gavériaux-Ruff and Kieffer,
2011). However, DOR activation can be therapeutically beneficial
in the management of persistent inflammatory pain states
(Gavériaux-Ruff et al., 2008; Vanderah, 2010), with synergistic
agonism at MOR and DOR increasing the overall analgesic
effects (Fujita et al., 2015). Activation of the KOR also leads
to effective analgesia, especially in visceral pain models (Kivell
and Prisinzano, 2010; Yekkirala et al., 2017). Besides, there is
less abuse potential, fewer gastrointestinal-related complications
and reduced respiratory depression for DOR and KOR agonists
compared to MOR agonists (Benyamin et al., 2008; Pasternak
and Pan, 2013; Imam et al., 2018). Numerous biochemical and
pharmacological studies and studies with genetically modified
mice have provided evidence on the modulatory interactions
between opioid receptor types, and the existence of MOR/DOR,
DOR/KOR, and MOR/KOR heterodimers is recognized (Fujita
et al., 2015; Massotte, 2015), and nowadays targeted for the
development of bivalent ligands (Ananthan, 2006; Kleczkowska
et al., 2013; Fujita et al., 2015; Massotte, 2015; Chan et al.,
2017; Günther et al., 2017). On this basis, the activity profile
established in this study for POMO as a ligand that can
simultaneously bind and activate multiple opioid receptors is of
major relevance.

These results provide valuable insights on the SAR in the
N-methylmorphinan-6-ones class of opioids, by broadening the
current understanding of the impact of different substituents at
position 14 on ligand-receptor binding, receptor activation and
link between antinociception and side effects (i.e., constipation).
Future studies remain to analyze in more detail pathway-
dependent agonist efficacy and signaling (i.e., biased agonism),
effectiveness in models of chronic pain and other opioid
typical-side effects. Thus, position 14 in the morphinan scaffold
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represents a feasible site for tuning functional in vitro and in vivo
activities toward finding effective and safer opioid analgesics.
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Background: The impact of increasing non-medical cannabis use on vulnerability to

develop opioid use disorders has received considerable attention, with contrasting

findings. A dimensional analysis of self-exposure to cannabis and other drugs, in

individuals with and without opioid dependence (OD) diagnoses, may clarify this issue.

Objective: To examine the age of onset of maximal self-exposure to cannabis, alcohol,

cocaine, and heroin, in volunteers diagnosed with OD, using a rapidly administered

instrument (the KMSK scales). To then determine whether maximal self-exposure to

cannabis, alcohol, and cocaine is a dimensional predictor of odds of OD diagnoses.

Methods: This outpatient observational study examined maximal self-exposure to these

drugs, in volunteers diagnosed with DSM-IV OD or other drug diagnoses, and normal

volunteers. In order to focus more directly on opioid dependence diagnosis as the

outcome, volunteers who had cocaine dependence diagnoses were excluded. Male and

female adults of diverse ethnicity were consecutively ascertained from the community,

and from local drug treatment programs, in 2002–2013 (n = 574, of whom n = 94 had

OD diagnoses). The age of onset of maximal self-exposure of these drugs was examined.

After propensity scorematching for age at ascertainment, gender, and ethnicity, amultiple

logistic regression examined how increasing self-exposure to non-medical cannabis,

alcohol and cocaine affected odds of OD diagnoses.

Results: Volunteers with OD diagnoses had the onset of heaviest use of cannabis

in the approximate transition between adolescence and adulthood (mean age = 18.9

years), and onset of heaviest use of alcohol soon thereafter (mean age = 20.1

years). Onset of heaviest use of heroin and cocaine was detected later in the lifespan

(mean ages = 24.7 and 25.3 years, respectively). After propensity score matching

for demographic variables, we found that the maximal self-exposure to cannabis and

cocaine, but not to alcohol, was greater in volunteers with OD diagnoses, than in

those without this diagnosis. Also, a multiple logistic regression detected that increasing
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self-exposure to cannabis and cocaine, but not alcohol, was a positive predictor of OD

diagnosis.

Conclusions/Importance: Increasing self-exposure to non-medical cannabis, as

measured with a rapid dimensional instrument, was a predictor of greater odds of opioid

dependence diagnosis, in propensity score-matched samples.

Keywords: opioid, cocaine, cannabis, heroin, alcohol, dimensional, exposure, adolescence

INTRODUCTION

Addictions to heroin or illicitly used prescription opioids (short-
acting MOP-r agonists) cause major morbidity and mortality (1,
2), and there is considerable poly-drug use in persons with these
diseases (3–6). Use of other substances, especially cannabis and
alcohol, often precedes non-medical use of MOP-r agonists. The
impact of non-medical cannabis use with respect to vulnerability
to develop an opioid use disorder remains under study (7). This
has been examined primarily with categorical classifications of
cannabis use, such as “any use” vs. “no use” or presence vs.
absence of a diagnosed cannabis use disorder. For example,
epidemiological studies have shown that any cannabis use is
associated with a later increase in odds of non-medical use of
opioids and other drugs (8, 9). Another recent report from the
NESARC longitudinal study found that any use of cannabis at the
“wave 1” time point (2001–2002), was a positive predictor of both
non-medical prescription opioid use, and opioid use disorder at
the “wave 2” time point (2004–2005) (10).

In this study, we focus on dimensional aspects of drug self-
exposure and their relationship to an opioid dependence
diagnosis (OD). Dimensional measures are those that
characterize a behavioral or biological variable along some
form of a continuum. Specifically, we examined the ages of
onset of heaviest use of different drugs in volunteers with
opioid dependence diagnosis, as well as the level of maximal
self-exposure. Dimensional aspects of substance use disorders
(SUDs) are receiving recent attention, both for examination of
disease progression and for the examination of mechanistic and
genetic features (11–13).

Intriguingly, some studies have found that state-wide
availability of medical cannabis has resulted in decreases in age-
adjusted opioid overdose mortality (14), and other apparent
protective effects (15). Experimental studies in humans do not
detect a protective effect of the main psychoactive component of
cannabis (the CB-1 partial agonist 19-tetra-hydro-cannabinol;
19-THC) on MOP-r agonist-induced respiratory depression,
which is the underlying cause of overdose mortality (16). Also,
cannabis smoking produced a small but significant increase in
the abuse potential of a MOP-r agonist, in a recent laboratory

Abbreviations: 95%CI, 95% Confidence interval; 19-THC, delta9-

tetrahydrocannabinol; CB1-r, Cannabinoid-1 receptor; IQR, Inter-quartile

range; KMSK scale, Kreek-McHugh-Schluger-Kellogg scale for maximal self-

exposure to specific drugs; MOP-r, mu-opioid receptors; N.S., Non-significant;

OD, opioid dependence diagnosis (DSM-IV criteria); OUD, Opioid use disorder

(DSM-5 criteria); ROC curve, Receiver operating characteristic curve; SUD,

Substance use disorders.

study (17). Studies on the effectiveness of 19-THC in decreasing
severity of withdrawal from MOP-r agonists have yielded mixed
results, possibly due to different methods used (18, 19).

Some preclinical data show that exposure to 19-THC in
adolescence can increase vulnerability to the addiction-related
effects of MOP-r agonists in adulthood (20–22). Some, but
not all, preclinical studies suggest that greater exposure to a
CB1-r agonist could cause neurobiological effects that increase
subsequent vulnerability to addictive-like effects of MOP-r
agonists (23–25).

At least two major theories have been proposed to account
for the sequence of first use of drugs, and also for specific
patterns of poly-drug exposure in persons with specific SUD.
Two of these major theories have been termed the “gateway
theory” and the “shared vulnerability theory,” and their
relative impact remains an area of controversy (6, 26–28).
An examination of dimensional, as opposed to categorical,
aspects of drug self-exposure could also provide a framework
to further understand the aforementioned phenomena
(11, 29).

Given the changes in cannabis availability and use, and the
ongoing epidemic of opioid use disorders, this controversy is
of current importance (30, 31). It has been suggested that
dimensional data at the individual level would be of value to
address this issue (32–34). However, few studies have examined
dimensionally, how exposure to non-medical cannabis and other
drugs can affect odds of a clinically diagnosed opioid use
disorder, at the individual level (10, 35–37). Furthermore, inmost
studies where such data was examined, the instruments used
are not suitable for general clinical or preventive practice, due
primarily to their length. In this study, we therefore examined
dimensionally how different amounts of self-exposure to major
drugs of abuse including non-medical cannabis and alcohol,
affected odds of developing an opioid dependence diagnosis,
using a relatively rapid and simple instrument (38, 39).

MATERIALS AND METHODS

This was an observational study, with consecutively ascertained
adult volunteers who were examined in an outpatient research
hospital setting, in the New York City area. This cohort was
originally recruited and ascertained as part of genetic association
studies of SUD (40–42).

Volunteers
The main outcome under examination was the presence or
absence of a DSM-IV opioid dependence (OD) diagnosis. Many
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of the volunteers with SUD also had other diagnoses in addition
to OD, but the presence of a cocaine dependence diagnosis was
an exclusion criterion for this study. However, volunteers with
the relatively less severe DSM-IV diagnosis of cocaine abuse were
not excluded. Volunteers were ascertained sequentially from a
number of addictive disease treatment clinics in the greater New
York City area, and from the local community in the same
area.

Recruitment, Inclusion and Exclusion Criteria
This study was carried out in accordance with the
recommendations for Human Subjects Policies and
Guidance of the National Institutes of Health. The protocol
was approved by the Rockefeller University Hospital
Institutional Review Board (IRB). All subjects gave written
informed consent in accordance with the Declaration of
Helsinki.

Male and female volunteers (≥18 years of age) were
recruited through IRB-approved posted notices and newspaper
advertisements in the community. Volunteers were required to
be competent to understand study procedures and understand
and sign the IRB-approved informed consent in English. The
presence of uncontrolled schizophrenia or other psychotic
signs during the interview were exclusion criteria. In order
to focus more directly on the impact of cannabis or alcohol
exposure on the odds of OD diagnoses, we excluded from
this study volunteers who had a cocaine dependence diagnosis.
Volunteers who had used cocaine, but did not meet the DSM-
IV diagnostic criteria for cocaine dependence diagnosis were not
excluded.

Persons were excluded from the normal volunteer category
if they had any lifetime drug abuse or dependence diagnosis
by DSM-IV criteria, or any of the following: (a) any instance
of drinking to a level of intoxication during the previous 30
days, (b) any use of illicit drugs including opiates, cocaine, and
amphetamines during the 30 days prior to ascertainment, (c) if
they had used cannabis on more than 12 days during the 30
days prior to ascertainment, (d) had used illicit drugs (with the
exception of cannabis) for at least three times a week for a period
of at least 1 month, in their lifetime (40). This therefore allowed
for examination of a range of normative self-exposure to cannabis
and alcohol, also in the normal volunteers.

The three diagnostic groups in this study are volunteers
with opioid dependence (OD), volunteers with drug diagnoses
except OD, and normal volunteers. These groups are described
in further detail in Table 1. In further analyses, the latter
two groups were combined into an overall “not OD”
group, for analyses of patterns of self-exposure to specific
drugs.

Instruments Administered During Clinical
Interviews
All ascertainments were completed during a standardized private
face-to-face interview with a licensed trained clinician (e.g.,
M.D., D.O., Ph.D. Psychologist, Nurse Practitioner or Registered
Nurse).Volunteers underwent the SCID I/P structured interview
(Version 2.0; DSM-IV criteria) (43), and received the KMSK

TABLE 1 | Description of diagnostic groups (DSM-IV criteria).

Volunteers with opioid

dependence (OD)

diagnosis

Volunteers with drug

diagnoses, except OD

Normal

volunteers

Description Volunteers with opioid

dependence diagnosis, as

well as other drug

diagnoses (if applicable)

Volunteers with any drug

diagnoses, except OD

Volunteers

without any

drug

diagnoses

Cocaine dependence diagnosis was an overall exclusion

criterion for this study

questionnaires for maximum self-exposure to cannabis, alcohol,
heroin, and cocaine (38) (see below).

KMSK Scales for Maximal Self-Exposure to
Specific Drugs (“KMSK Score”)
The KMSK scales for cannabis, alcohol, heroin, and cocaine
provide ordinal measures of maximal self-exposure, thus
focusing on the period in the volunteer’s life when use was
the heaviest. For each drug, the scales start at a minimum “0”
score, which denotes that the volunteer has not had any lifetime
exposure to the drug (i.e., no use). The scores then increase in
integers up to a maximum (13 for heroin and alcohol, 14 for
cannabis, and 16 for cocaine) (see Table 2). The KMSK score for
each drug is the composite sum of responses on three items: (a)
frequency of maximal use (e.g., in times per day or per week), (b)
duration of pattern of maximal use (e.g., in months or years) and
(c) amount used in one day or sitting (e.g., number of alcoholic
drinks or cannabis joints) (38). A separate KMSK scale is also
used to characterize illicit use of prescription opioids, but was
not analyzed in this study (heroin was the predominant MOP-r
agonist used in this cohort). Concurrent validity of KMSK scores
with the respective DSM-IV dependence diagnoses has been
examined, and yielded optimal “cutpoint” scores for sensitivity
and specificity (38, 39).

The KMSK scales have been used to characterize drug
exposure in patients with medical and psychiatric conditions
(44–46). The scales can be rapidly administered within a clinical
interview (e.g., ≤5min per drug). Each KMSK form also records
age of first use, and age of onset of heaviest use (in whole years;
the latter was studied herein). The four KMSK forms used in
this study (i.e., for cannabis, alcohol, cocaine, and heroin), are
provided in the Supplementary Materials. The full text of the
scales for these and other drugs can be freely accessed: http://lab.
rockefeller.edu/kreek/assets/file/KMSKquestionnaire.pdf.

Statistical Analyses
Missing Data
If there were missing data for specific comparisons for a
volunteer, the data for that volunteer was removed from
analysis. The cannabis KMSK scale and the age-related items
were implemented while cohort ascertainment was in progress.
Therefore these items, especially for cannabis, were not available
for the complete cohort.
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TABLE 2 | KMSK scales for maximal self-exposure to specific drugsa,b.

Drugs Sub-scores KMSK score range: (sum

of sub-scores)

Optimal cutpoints

(males and females combined)h

Frequency of usee Duration of patternf Amount used in a sitting

or a dayg

Range:

never used:multiple daily

use

Range:

<6 months>:1year

Range:

(see below)

Cannabisc 0:6 0:3 0:5

None:>5 joints

0–14 10

Alcoholc 0:5 0:3 0:5

None:>10 drinks

0–13 10

Heroind 0:4 0:3 0:6

None:>10 doses/bags

0–13 6

Cocained 0:7 0:3 0:6

$0:>$100

(also converted from grams,

rocks or vials)

0–16 9

aOrdinal integer scales; quantifying drug self-exposure at the time in the volunteer’s life when use is heaviest.
bScales for alcohol, heroin, and cocaine were published initially(“KMSK-1”) (38). Scales for cannabis were developed and used subsequently (“KMSK-2”) (39).
c If the Frequency sub-score ≤2, the Duration sub-score is assigned a “0” value.
d If the Frequency sub-score ≤1, the Duration sub-score is assigned a “0” value.
eQuestionnaire text reads: “At the time in your life when you were using the most [drug], were you using it.”
fQuestionnaire text reads: “How long did this pattern of [drug] use last?”
gQuestionnaire text reads: “During this time when you were using the most, how much [drug] at a sitting [or day] would you typically use?”
hOptimal cutpoints for concurrent validity in males and females combined, for the respective DSM-IV dependence diagnosis (unpublished data).

Univariate Analyses
Univariate analyses were carried out with GraphPad Prism
software. Demographic variables (age at ascertainment,
gender, and ethnicity) and KMSK scores were analyzed
non-parametrically (Mann–Whitney U-tests or χ

2 analyses,
Kruskal–Wallis or Friedman’s ANOVAs, and Dunn’s post-hoc
tests).

Propensity Score Matching
As shown in Table 3, the overall cohort had a total of n = 574
volunteers, of whom n= 94 had OD diagnoses. Of the volunteers
with OD diagnoses, n = 89 had all KMSK scores available,
and were used in the propensity score matching procedure.
Propensity score matching (47), as implemented in the “MatchIt”
package in R software, was applied using a 1:1 “nearest neighbor”
algorithm, to minimize heterogeneity in the above demographic
variables between volunteers withOD, vs. all the other volunteers.
Therefore, the latter comparison group contained the volunteers
with drug diagnoses except OD, and also normal volunteers (see
Table 3B).

Multiple Logistic Regression After Propensity Score

Matching, Examining Cannabis, Alcohol and Cocaine

KMSK Scores as Dimensional Predictors of Opioid

Dependence Diagnosis
A multiple logistic regression was performed with Statistica
(TIBCO) software. The predicted outcome was the presence
of opioid dependence diagnosis (binary). There were n = 89
volunteers with and n= 89 without OD diagnoses in this sample,
after the propensity score matching procedure, described above.

Alpha Level for Rejection of Null Hypotheses
For all analyses, the alpha level was p ≤ 0.05.

RESULTS

Sample Demographics
Sample Demographics are in Table 3. In order to provide a
complete description of the cohort, Table 3A presents data for
volunteers with OD diagnoses, volunteers with drug diagnoses
except OD, and normal volunteers. Table 3B presents the same
data, but the latter two groups are combined, as this is the
design used in the propensity score matching procedure. See also
Table 5, for demographic data in the two groups after execution
of the propensity score matching procedure.

Age at Ascertainment
Mean age at ascertainment was greater for volunteers with OD
diagnoses, and also for volunteers with drug diagnoses except
OD, vs. normal volunteers (Table 3A).

Gender
A χ

2 analysis of gender was significant, with a greater proportion
of males among volunteers with OD diagnoses, or drug diagnoses
except OD, vs. normal volunteers (Table 3A).

Ethnicity
A χ

2 analysis of ethnicity was also significant, with a relatively
greater proportion of African Americans in the normal volunteer
group, and a relatively greater proportion of Caucasians and
Hispanics in the OD group (Table 3A).

Missing Data
Of the 94 volunteers with OD diagnosis (see Table 3A), five were
removed from further analysis, due to missing data (remaining
n = 89). Therefore, the propensity score matching procedure
used these n = 89 volunteers with OD diagnoses as the reference
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TABLE 3 | Demographics (volunteers sequentially ascertained 4/4/02-8/1/13)a.

(A) Comparison of volunteers with opioid dependence (OD) diagnoses, volunteers with drug diagnoses except OD, and normal volunteers.

Demographics Total n= 574 Volunteers with

OD diagnosisb
Volunteers with drug

diagnoses, except ODC
Normal

volunteersC (NV)

Kruskal-Wallis statistic or

χ2 [df]; p value

n = 94 n = 187 n = 293

Mean age at

ascertainment(SEM)

41.17 (1.23) 39.7 (0.86) 33.4 (0.70) 59.34 <0.0001

Gender Male 65 69.1% 124 66.3% 132 45.1% 28.91 [2] <0.0001

Female 29 30.1% 63 33.7% 161 55.0%

Ethnicity African-American 25 26.6% 78 41.7% 127 43.3% 22.12 [6] 0.0012

Caucasian 31 33.0% 59 31.6% 81 27.7%

Hispanic 32 34.0% 31 16.6% 47 16.0%

Other 6 6.4% 19 10.2% 38 13.0%

(B) Comparison of volunteers with OD diagnosis vs. all volunteers without OD (i.e., combining volunteers with drug diagnoses except OD, and normal volunteers).

Demographics Total n = 574 Volunteers with OD

diagnosisb
All volunteers without OD

diagnosis

U or χ2 [df];

p-value

n = 94 n = 480

Mean age at ascertainment (SEM) 41.17 (1.23) 35.81 (0.5) 16,566 < 0.0001

Gender Male 65 69.1% 256 53.3% 7.98 [1] 0.0047

Female 29 30.1% 224 46.7%

Ethnicity African-American 25 26.6% 205 42.7% 20.62 [3] 0.0001

Caucasian 31 33.0% 140 29.2%

Hispanic 32 34.0% 78 16.3%

Other 6 6.4% 57 11.9%

aCocaine dependence diagnosis was an exclusion criterion for this study. See Table 1 for further description of diagnostic groups.
bThe same data from volunteers with OD diagnosis are presented in (A,B).
cThis group combines the two right-most columns in (A). The two groups presented in (B) are used as the input data for the propensity score matching procedure (see Table 5).

TABLE 4 | Ages of onset of heaviest use of specific drugs, in volunteers with

opioid dependence diagnosis (data available for each of the drugs from n = 47).

Drug Age of onset of heaviest use mean [95%CI]a

Cannabis 18.9 [16.6–21.1]b

Alcohol 20.1 [18.1–22.3]c

Heroin 24.7 [21.9–27.5]

Cocaine 25.3 [22.6–27.9]

aFriedman’s ANOVA F(4) = 29.22; p < 0.0001.
bDunn’s post-hoc tests: cannabis<heroin; cannabis<cocaine.
cDunn’s post-hoc tests: alcohol<heroin; alcohol<cocaine.

group (see below and Table 5). Of the 187 volunteers with a
drug diagnosis except OD, 13 were removed due to missing data
(remaining n= 174). Also, of the 293 normal volunteers, 12 were
similarly removed due to missing data (remaining n= 281).

Ages of Onset of Heaviest Use of Different
Drugs, in Volunteers With Opioid
Dependence Diagnosis
The mean age of onset of heaviest use of cannabis, alcohol,
cocaine and heroin are presented in Table 4, for volunteers
with opioid dependence diagnosis, for whom all these data
were available. A Friedman’s ANOVA examining these data was

significant [F(4) = 29.22; p < 0.0001]. Dunn’s post-hoc tests show
that the age of onset of heaviest use of cannabis use was earlier
than that for heroin or cocaine. Likewise, age of onset of heaviest
use of alcohol was earlier than that for heroin or cocaine. Ages of
onset of heaviest use did not differ between cannabis and alcohol,
or between heroin and cocaine.

Propensity Score Matching Procedure for
Demographic Variables
As shown in Table 3B, there were demographic differences
between the group with OD diagnoses and the group without OD
diagnoses (the latter group being the combination of volunteers
with drug diagnoses except OD, and normal volunteers). The
goal of the propensity score matching procedure was to minimize
the impact of the demographic differences. As is common in
propensity score matching procedures, we initially utilized a
multiple logistic regression to examine the demographic variables
(age at ascertainment, gender, and ethnicity) as predictors of the
OD diagnosis outcome. Propensity scores were then generated
for each volunteer in the whole cohort, as the predicted values
from this regression. These propensity scores were then entered
in a matching algorithm as described in the section Materials and
Methods. This algorithm selected n = 89 volunteers without OD
diagnoses, to match the reference group of n = 89 volunteers
with OD diagnoses. This matching procedure was effective,
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TABLE 5 | Demographics after the propensity score matching procedure (see Table 3B for data prior to the matching procedure).

Demographics Total n = 178 Volunteers with OD diagnosis Volunteers without OD diagnosis U or χ2 [df]; p-value

n = 89a n = 89

Mean age at ascertainment (SEM) 41.37 (1.30) 41.60 (1.25) 3,894 N.S. p = 0.85

Gender Male 61 68.5% 56 62.9% 0.985 [1] N.S. p = 0.80

Female 28 31.5% 33 37.1%

Ethnicity African-American 25 28.1% 20 22.5% 0.624 [3] N.S. p = 0.43

Caucasian 27 30.3% 31 34.8%

Hispanic 31 34.8% 33 37.1%

Other 6 6.7% 5 5.6%

aAs mentioned in text, data from 5 of the n = 94 volunteers with OD diagnoses (as described in Table 3) had to be excluded from the matching procedure, due to missing data (thus

having a remaining group of n = 89 volunteers with OD diagnoses).

as confirmed by the lack of significant differences in gender,
ethnicity and age at ascertainment, for the two groups (Table 5).

Maximal Self-Exposure to Cannabis,
Alcohol, and Cocaine Compared in
Volunteers With and Without Opioid
Dependence Diagnosis, After Propensity
Score Matching
Volunteers with OD had significantly greater KMSK scores for
cannabis and cocaine, compared to propensity score—matched
volunteers without OD (Figure 1). Alcohol KMSK scores did
not differ significantly between these two groups. As expected,
volunteers with an OD diagnosis had significantly greater heroin
KMSK scores, compared to volunteers without this diagnosis (not
shown) (38).

Multiple Logistic Regression Examining
Cannabis, Alcohol, and Cocaine KMSK
Scores as Predictors of Opioid
Dependence Diagnosis, After Propensity
Score Matching
This multiple logistic regression was carried out after propensity
score matching for the demographic variables, as indicated
above. A Wald test for a global null hypothesis was significant
[χ2

(df=3)
= 25.05; p < 0.0001], showing that the coefficients

for the predictor variables were significantly different from 0.
A Hosmer–Lemeshow test was non-significant, suggesting no
evidence of lack of fit. Cannabis and cocaine KMSK scores were
each detected as significant positive predictors of odds of OD
diagnosis (Figure 2). By contrast, alcohol KMSK scores were not
a significant predictor. Odds ratios are presented per point in
each KMSK scale (score ranges in the scales are described in
Table 2).

DISCUSSION

The impact of non-medical cannabis and alcohol use on
vulnerability to develop an opioid use disorder, and to recover
therefrom, has received considerable recent attention (3, 14,

15, 48). This is an area of current public health importance,
given evolving trends in cannabis status across jurisdictions,
the ongoing epidemic of opioid use disorders (37, 49), and the
increase in prevalence of alcohol use disorders (50). However, few
studies have examined dimensionally how exposure to several
major drugs, especially non-medical cannabis and alcohol,
impacts odds of opioid dependence diagnosis (6, 10, 35, 36, 51,
52).

Ages of Onset of Heaviest Use of Each
Drug in Volunteers With Opioid
Dependence Diagnosis
We found the ages of onset of heaviest use of both cannabis
and alcohol preceded the onset of heaviest use of heroin, in
volunteers with OD diagnosis. The ages of onset of heaviest
use of cannabis and alcohol did not differ from each other,
and occurred in the period of transition from adolescence to
adulthood (27, 53). In this group of volunteers with an OD
diagnosis, age of onset of heaviest use of cocaine occurred at
a similar age as that for heroin. This overall pattern has some
similarity to those previously reported (6, 53), but focuses more
directly here on the ages of onset of maximal use, rather than
on first use. In the context of this study, the aforementioned
data provided a rationale for examining cannabis and alcohol
KMSK scores as dimensional predictors of OD diagnosis. We
also opted to include cocaine KMSK scores as a predictor in
the multiple regression below, in order to control for differing
levels of exposure to this drug that could occur in volunteers with
OD diagnoses (even after exclusion of volunteers with DSM-IV
cocaine dependence diagnoses).

Demographic Variables and Rationale for
Propensity Score Matching
We detected significant differences in major demographic
variables (age at ascertainment, gender, and ethnicity) between
the different diagnostic groups. As mentioned above, this was a
study of consecutive volunteers responding to advertisements in
the community and in drug treatment programs, from a large
ethnically diverse urban area. This may have therefore affected
some of the demographic parameters of the sample. For example,
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FIGURE 1 | Maximal self-exposure (KMSK scores) to non-medical cannabis

(A), alcohol (B), and cocaine (C), upper, middle and lower panels, respectively,

in volunteers with and without opioid dependence diagnoses (“OD” and “not

OD,” respectively). The “not OD” group is the combination of volunteers with

drug diagnoses except OD, and normal volunteers. The data represent two

groups of n = 89 each, after the propensity score matching procedure (see

Table 5).

epidemiological studies show that the prevalence of specific
SUD can differ based on major demographic factors, including
gender (54, 55). We therefore elected to carry out a propensity

FIGURE 2 | Odds ratios of opioid dependence diagnosis, with cannabis,

alcohol, and cocaine KMSK scores as dimensional predictors. The ordinate is

the odds ratio (±95%CL), calculated for a 1-unit score increment in each of

the KMSK scales (see Table 2). The multiple logistic regression was calculated

after the propensity score matching procedure (two groups, n = 89 each; see

Table 5).

score matching procedure for age at ascertainment, gender, and
ethnicity, prior to further analysis of maximal self-exposure to
specific drugs. This matching procedure was effective in yielding
groups with and without OD diagnoses, which did not differ
significantly with respect to the aforementioned demographic
variables.

Maximal Self-Exposure to Cannabis,
Alcohol, and Cocaine, in Volunteers With
and Without Opioid Dependence
Diagnoses, After Propensity Score
Matching
We found that both cannabis and cocaine KMSK scores were
significantly greater in volunteers with OD diagnoses, vs. those
without this diagnosis. Of note, the median cannabis KMSK
score of volunteers with an OD diagnosis was relatively high,
denoting heavy self-exposure to cannabis in this clinical group
(based on a prior concurrent validity analysis with the DSM-
IV cannabis dependence diagnosis (39) and unpublished data).
Alcohol KMSK scores did not differ between volunteers with and
without OD diagnosis, and a broad range of alcohol scores was
observed in the two propensity score-matched groups. We note
that cocaine KMSK scores were significantly greater in volunteers
with OD than those without this diagnosis, even though a cocaine
dependence diagnosis was an exclusion criterion for this study.
As expected, the median cocaine KMSK score in the volunteers
with OD was lower than the previously determined optimal
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“cutpoint” for the cocaine dependence diagnosis (38), due to
the aforementioned exclusion criterion. However, the median
cocaine KMSK score was even lower in the volunteers without
OD (at least 50% of this group reported no lifetime cocaine use).

Multiple Logistic Regression With
Cannabis, Alcohol, and Cocaine KMSK
Scores as Predictors, After Propensity
Score Matching
After propensity score matching for age at ascertainment, gender,
and ethnicity, cannabis and cocaine KMSK scores were each
positive predictors of odds of an OD diagnosis. The odds in
this regression were generated per 1-unit change on each KMSK
scale. Therefore, it can be observed that any use of cannabis (i.e.,
cannabis KMSK score ≥ 1) is a predictor of increased odds of
OD diagnosis (i.e., odds ratio = 1.13 per point in the cannabis
KMSK scale). This study also shows that the odds of an OD
diagnosis increase gradually with greater cannabis self-exposure
scores. As mentioned above, recent epidemiological data from
the NESARC study show that any use of cannabis at the “wave
1” time point (in 2001–2002) was a predictor of greater odds of
opioid use disorder at the “wave 2” time point (in 2004–2005)
(10). Other studies based on NESARC show that a dimensional
measure of cannabis use (i.e., a defined frequency of use in the
past year) at “wave 1” was a positive predictor of several SUDs (3),
but opioid use disorder was not presented as a specific outcome
in that study. Overall, several studies have examined primarily
categorical measures of cannabis use as predictors of initiation
of other drug use (56, 57). This study therefore provides the
first rapid dimensional analysis which detects that self-exposure
to non-medical cannabis is a positive predictor of odds of OD
diagnosis, in a propensity score-matched sample.

Increasing cocaine self-exposure was also detected as a
positive predictor of OD diagnosis, even though volunteers
with cocaine dependence diagnoses were excluded from study.
Therefore, even relatively smaller amounts of cocaine self-
exposure are also associated with an increase in odds of OD
diagnoses (further discussed below, in the “Limitations and
Design Considerations” section). By contrast, alcohol KMSK
scores were not a significant predictor of odds of an OD
diagnosis. This study adds to the available literature on different
aspects of alcohol use that may be related to opioid use disorders
(9). Overall, it can be hypothesized that pharmacological or
downstream neurobiological effects of cannabis, but not alcohol,
can result in greater later vulnerability to opioid use disorders.
An alternative interpretation, in the context of the “common
liability” theory (27), is that there is a common pre-existing
liability between cannabis and opioid exposure, and that alcohol
does not share this liability to the same extent.

In preclinical studies, peri-adolescent exposure to 19-THC
produces long-lasting neurobiological changes to MOP-r and
dopaminergic systems, which mediate direct and indirect effects
of MOP-r agonists (20, 22, 58–60). There is also evidence
that some of the behavioral and downstream neurobiological
effects of 19-THC are partially shared with MOP-r systems
(25, 61). Preclinical studies show that the amount and pattern of

exposure to specific drugs of abuse are critical in the emergence
of underlying neurobiological changes and of addiction-like
behaviors (62–65). Overall, substantial non-medical cannabis
exposure in adolescence and early adulthood may result in long-
lasting disruption in these and other systems, and thus result in
increased vulnerability to the later development of opioid use
disorders.

Limitations and Design Considerations
In this study, volunteers had to recall and report aspects of their
drug exposure history. The possibility that recall bias may have
affected these data cannot be excluded with this type of design
(66), which is very common in studies of SUD (6, 35). Recalling
the age(s) at which heaviest use of a specific drug occurred is
also a demand of this scale. Studies with larger cohorts, different
sampling methods, as well as longitudinal studies, could be
used to further extend these findings. These volunteers were
ascertained prior to the passage of the relevant medical marijuana
statutes for this community (31). Therefore, these findings are
not necessarily relevant to the impact of medically sanctioned
cannabis. Studies with later birth cohorts could also investigate
possible changes to the age trajectory of exposure to different
drugs, due to environmental factors (1, 67–69).

We opted here to focus on the opioid dependence diagnosis
as an outcome, and to exclude volunteers who had a cocaine
dependence diagnosis. This allowed us to examine more directly
the impact of cannabis and alcohol self-exposure on opioid
dependence diagnosis as a clinical outcome. It is known that
persons with dual severe opioid and cocaine use disorder
diagnoses can have a different clinical course from those with
only the former diagnosis (5, 70, 71). We observed that the
volunteers with OD diagnoses still had significantly greater
cocaine KMSK scores than the volunteers without this diagnosis.
This is not surprising, as cocaine use is relatively common in
persons who use heroin (6), and can occur even in the absence
of a diagnosed cocaine dependence diagnosis. As mentioned in
the Methods, volunteers with cocaine abuse diagnoses were not
excluded from study. Therefore, we included cocaine KMSK
scores in the multiple logistic regression, primarily to control for
the level of cocaine self-exposure.

We elected to examine two propensity score matched groups:
(a) volunteers with OD, and a comparison group: (b) volunteers
without OD. The latter group thus included volunteers with drug
diagnoses except OD, and normal volunteers. This allowed us to
have a propensity score-matched comparison group with a broad
range of KMSK scores for the drugs of interest, of value for amore
robust dimensional analysis (11, 38, 72).

Propensity score matching studies have become relatively
frequent, and have potential strengths and limitations (3, 73).
For further examination of the conclusions, we also carried out
an overall multiple logistic regression with OD diagnosis as
the outcome, controlling for age at ascertainment, gender and
ethnicity, but without propensity score matching (i.e., including
data from all volunteers in the cohort). In this overall regression,
the same KMSK scores were detected as positive predictors,
as in the regression in the propensity score matched groups
(not shown). Therefore, the results reported above with respect
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to cannabis, cocaine and alcohol KMSK scores as dimensional
predictors of OD diagnosis are not likely to be an artifact of the
propensity score matching procedure.

CONCLUSIONS

We detected that increasing self-exposure to non-medical
cannabis was a positive predictor of odds of an OD diagnosis.
We also determined that the level of maximal alcohol self-
exposure per se was not a predictor of the OD diagnosis
outcome. This is one of the few individual-level examinations
in which self-exposure to cannabis and alcohol are both
examined dimensionally, as predictors of a diagnosed opioid
use disorder. Some recent state-wide and epidemiological
studies have reported that the legalized status of medical
cannabis is associated with decreases in population-wide opioid
overdoses and other measures of opioid-related morbidity (14,
15). Other studies have reported divergent findings on the
influence of cannabis use on treatment outcomes in opioid-
dependent volunteers, possibly due to different methods used
(48, 74). Non-medical cannabis use has been associated with
increased probability of aberrant opioid-taking behaviors in
pain patients (75), and it has also been reported recently
that some persons substitute cannabis for other substances,
including prescription opioids for non-medical use (76). The

use of categorical vs. dimensional measures of drug use has
also been suggested as a possible reason for the apparent
discrepancies in this area (48). Future studies could determine
whether increasing non-medical cannabis exposure, especially
in adolescence and young adulthood, can result in neuro-
behavioral changes that underlie greater vulnerability to opioid
use disorders.
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Oxycodone is one a commonly used medication for pain, and is also a widely

abused prescription opioid, like other short-acting MOPr agonists. Neurochemical

and structural adaptations in brain following chronic MOPr-agonist administration are

thought to underlie pathogenesis and persistence of opiate addiction. Many axon

guidance molecules, such as integrins, semaphorins, and ephrins may contribute to

oxycodone-induced neuroadaptations through alterations in axon-target connections

and synaptogenesis, that may be implicated in the behaviors associated with opiate

addiction. However, little is known about this important area. The aim of this study is to

investigate alterations in expression of selected integrin, semaphorin, ephrins, netrin, and

slit genes in the nucleus accumbens (NAc) and caudate putamen (CPu) of mice following

extended 14-day oxycodone self-administration (SA), using RNAseq.

Methods: Total RNA from the NAc and CPu were isolated from adult male C57BL/6J

mice within 1 h after the last session of oxycodone in a 14-day self-administration

paradigm (4h/day, 0.25 mg/kg/infusion, FR1) or from yoked saline controls. Gene

expressions were examined using RNA sequencing (RNA-Seq) technology. RNA-Seq

libraries were prepared using Illumina’s TruSeq® Stranded Total RNA LT kit. The reads

were aligned to the mouse reference genome (version mm10) using STAR. DESeq2 was

applied to the counts of protein coding genes to estimate the fold change between the

treatment groups. False Discovery Rate (FDR) q < 0.1 were used to select genes that

have a significant expression change. For selection of a subset of genes related to axon

guidance pathway, REACTOME was used.

Results: Among 38 known genes of the integrin, semaphorin, and ephrin gene families,

RNA-seq data revealed up-regulation of six genes in the NAc: heterodimer receptor,

integrins Itgal, Itgb2, and Itgam, and its ligand semaphorin Sema7a, two semaphorin

receptors, plexins Plxnd1 and Plxdc1. There was down-regulation of eight genes in this

region: two integrin genes Itga3 and Itgb8, semaphorins Sema3c, Sema4g, Sema6a,

Sema6d, semaphorin receptor neuropilin Nrp2, and ephrin receptor Epha3. In the CPu,

there were five differentially expressed axon guidance genes: up-regulation of three
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integrin genes, Itgal, Itgb2, Itga1, and down-regulation of Itga9 and ephrin Efna3 were

thus observed. No significant alterations in expression of Netrin-1 or Slit were observed.

Conclusion: We provide evidence for alterations in the expression of selective axon

guidance genes in adult mouse brain following chronic self-administration of oxycodone.

Further examination of oxycodone-induced changes in the expression of these specific

axon guidance molecules and integrin genes in relation to behavior may provide new

insights into development of addiction to oxycodone.

Keywords: oxycodone, RNA seq, axon guidance genes, cell type enrichment, integrins

INTRODUCTION

Oxycodone is one of the most commonly use medications
for pain, and like many short-acting MOPr agonists, it also
has abuse potential. The neuroadaptations in specific brain
regions following chronic opioid administration occur at the
neurochemical and structural levels, and may underlie opioid use
disorders. Like other drugs of abuse, opioids have the ability to
cause neuroplasticity by altering morphology of dendrites and
spines, which are the primary sites of excitatory synapses in brain
regions involved in incentive motivation, reward, and learning
(1). A decrease in the complexity of dendritic branching and
number of dendritic spines on neurons specifically located in the
nucleus accumbens (NAc) and cortex of rats was found following
morphine self-administration (2, 3). Molecular mechanisms that
underlie drug-induced structural alterations are still not fully
understood. However, there are pharmacological and genetics
evidence that the axon guidance genes may contribute to these
morphological alterations (4, 5).

Researchers have identified five families of canonical guidance
proteins: semaphorins, ephrins, slits, netrins, and integrins (4,
6). Proteins of the axon guidance gene family may contribute
to oxycodone-induced neuroadaptations, through alterations in
axon-target connections and synaptogenesis, and these may be
implicated in the behaviors associated with opioid use disorders.
Originally, integrins, semaphorins, ephrins, slits, and netrins
with their cognate receptors were found to be implicated
in establishing functional neural circuits, cell migration, and
synapse formation during development (5). However, axon
guidance molecules are also expressed in adult brain, and
may contribute to alterations in neural circuit regulation,
throughout axon pruning, synaptogenesis, dendrite, and spine
morphogenesis. Several studies showed an implication of axon
guidance proteins in neuroadaptation following drugs of abuse
administration, and response to brain injury (7–12).

EPH receptor tyrosine kinases are divided into two classes,
EPHA receptors (A1–A8, A10) and EPHB receptors (B1–B4, B6),
based on their binding affinities for ligands ephrin-A (A1–A5)
or ephrin-B (B1–B3) ligands (13). Eph receptors and ephrins
mediate bidirectional signaling, being both membrane proteins.
In general, cellular response to the Eph receptor activation
is local actin fiber depolymerization, which results in rapid
cytoskeletal collapse and loss of focal adhesions, leading to cell
detachment. EphB1 receptor and ligand ephrin-B2 ligand are

expressed in the midbrain dopaminergic neurons. Activation of
the EphB1 inhibits the growth of neurites and induces the cell
loss of substantia nigra, but not ventral tegmental, dopaminergic
neurons (14). The same study showed that ephrin-B2 expression
is upregulated by cocaine or amphetamine in the striatum of
adult mice, suggesting that ephrin-B2/EphB1 interaction may
play a role in drug-induced plasticity. Of interest, Liu et al showed
that escalating morphine treatment up-regulates expression of
EphB1 in the mouse spinal cord, and that EphB2 blocker
(EphB2-Fc) attenuated most of naloxone-precipitated morphine
withdrawal signs (15).

Twenty semaphorins fall into five classes, semaphorins 3–
7 (16). Class 3 semaphorins are secreted proteins, classes 4–6
are transmembrane proteins, and semaphorin 7A is linked to
the plasma membrane via a glyco-phosphatidylinositol (GPI)
anchor. Most of the effects of semaphorins are mediated by
plexins, a group of nine transmembrane receptors that can be
subdivided into four classes, plexins A–D, and two neuropilin
receptors, Nrp1 and Nrp2. The semaphorin–plexin system is
involved in multiple functions during development and in the
adult organism, particularly in the nervous system, the immune
system and during angiogenesis. Deregulation of semaphorin
expression was documented in many pathological conditions
such as ischemia, degenerative diseases, multiple sclerosis (5, 16).
Semaphorins have also been shown to have immune regulatory
functions in B and T cells. In vitro, Sema4d enhanced B
cell survival, and play a role in monocytes and macrophages
migration. Recently, Sema7A was identified as an effector
molecule in T-cell-mediated inflammation through an integrin-
mediated mechanism (17).

Integrins are a large family of receptors for components
of the extracellular matrix (ECM). Integrins are obligatory
αβ-heterodimers that undergo large conformational changes
in their extracellular domains in response to signaling events
inside cells. In mammals, there are 18 different α-subunits and 8
different β-subunits, which together generate 24 distinct integrin
αβ-heterodimer receptor combinations (18). Intracellularly,
integrins link to the actin cytoskeleton via adaptor proteins,
such as talin and vinculin, and engage second messenger
signaling cascades through several kinases such as Srk, ILK,
FAK, and PI3K. Given the diversity of integrin effects, regional
differences in receptor expression could be involved in activity-
dependent synaptic plasticity, including activity-dependent
neural circuit adaptation, and in turn its dysfunctions might
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promote neurological disorders (19). In relation to drug
addiction-like behavior, inhibition of integrin-linked kinase
(ILK) in the rat NAc core blocked the induction of cocaine
psychomotor sensitization, and prevented cocaine-induced
increase in dendritic density and dendritic spine numbers (20).
It has been shown that the basal levels of the integrin beta-1
(Itgb1) were elevated after chronic cocaine administration (11).
Alpha and beta integrins are receptors for semaphorin 7A, and
mediate its function (4). This supports potential involvement of
integrins in the chronic cocaine-induced behaviors. However,
there are no reports regarding an involvement of integrins
in the opioid-induced pathology in humans or animal
models.

Netrins play various important roles in the correct wiring of
the nervous system during development (21). To date, several
netrins have been described: netrin-1, netrin-3, netrin-4 and
G-netrins. The most studied netrin-1 induces axon outgrowth
via one of its receptors DCC (Deleted in Colorectal Cancer)
in several types of neurons. Recent morphological analyses
suggested a possibility of a shift in the function of netrin-
1 in cortical axons during development, from promotion of
outgrowth to promotion of branch formation (22). Function-
blocking experiments suggested that DCC may contribute not
only to axon outgrowth but branching. There is no information
on modulation of opioid-induced behaviors by netrin-1 or
its receptor DCC expression. Of interest, in vitro treatment
of neurons of dorsal root ganglion (DRG) with netrin-1
stimulates translation of the kappa opioid receptor (KOR), which
activates its downstream target the focal adhesion kinase (FAK)
(23).

Another class of axon guidance proteins is Robo receptor and
its ligand Slit. The Slit/Robo pair not only functions in axon
guidance in development but also in diverse processes in the
CNS, like cell migration, axonal branching, axonal targeting or
cell differentiation (24). In most vertebrates there are 3 Robo
receptors expressed in CNS cells, Robo-1, Robo-2, and Robo-
3. Three Slit genes have been identified in mammals, Slit 1-
Slit-3. Full-length Slits can be cleaved by proteases generating
shorter functional N-terminal isoforms (Slit1-N, Slit2-N, and
Slit3-N). In relation to drug of abuse area, several studies showed
their involvement in regulation of dopaminergic neurons (25,
26). For example, Slit-2 inhibits growth of tyrosine-ir positive
(TH+) axons in primary cultures of the rat ventral midbrain.
Similarly, Slit-2 reduced the number and length of TH+ axons
in explants from the ventral midbrain tissue of mouse brain
(26). However, little is known about the effect of MOPr agonist
self-administration on these important guidance molecules (10).

Nonmedical use and misuse of prescription opioids,
including oxycodone is an increasing public health problem
(27, 28). We hypothesize that specific representatives of the
axon guidance gene family are implicated in development
of neurobiological adaptation that occurs during chronic
oxycodone self-administration. The aim of this study is to
identify alterations in expression of specific axon guidance
genes in the nucleus accumbens and caudate putamen of mice,
following chronic oxycodone self-administration using RNA-seq
technology.

METHODS

Animals and Oxycodone
Self-Administration Procedure
Male adult (11 weeks old) C57BL/6J mice were obtained
from Jackson Laboratory, Bar Harbor, ME. Animal care and
experimental procedures were conducted according to the Guide
for the Care and Use of laboratory Animals (Institute of
Laboratory Animal Resources Commission on Life Sciences
2016). Animals had free access to food and water in a light
(12:12 h) reverse cycle, lights on at 7:00 p.m. and off at 7:00 a.m.
Mice were handled prior to surgery. Catheter implantation for
drug self-administration was carried out after acclimation of
animals for 7 days. The experimental protocol used was approved
by the Institutional Animal Care and Use Committee of the
Rockefeller University.

Oxycodone Self-Administration
Details of surgery and catheter implantation, and subsequent the
procedure of oxycodone self-administration (SA) in mice has
been described previously (29). Briefly, the self-administration
experiments were carried out in chamber ENV-307W (21.6,
17.8, and 12.7 cm; Med Associates, St Albans, VT). A 4-h
self-administration session was conducted once a day for 14
consecutive days with oxycodone, n = 6 (0.25 mg/kg/infusion)
or yoked saline controls (n= 6).

RNA Extraction
Mice were sacrificed within 1 h after the last session of oxycodone
self-administration, by exposure to CO2. The brain tissues of
12 mice (6 oxycodone and 6 yoked saline controls) were used
for the RNA-seq study. Total RNA was isolated from the
nucleus accumbens (NAc) and caudate putamen (CPu) using the
miRNeasy Kit (Qiagen, Valencia, CA). Agilent 6000 RNA Nano
Chips were used to examine the integrity of RNA in samples.

RNA-seq Library Preparation and
Sequencing
RNA-seq library preparation and sequencing of samples isolated
from the CPu was performed by LC Sciences (Houston, TX),
whereas RNA-seq library preparation and sequencing of RNA
isolated from NAc was performed by the Genomic Resource
Center at the Rockefeller University. Both RNA-seq libraries
were prepared using Illumina’s TruSeq R© Stranded Total RNA
LT kit following the manufacturer’s protocol. Libraries were
validated using Agilent Tape Station High-Sensitivity RNA kits
and normalized. Libraries were multiplexed, four samples per
lane, and sequenced. An Illumina HiSeq 2500 apparatus was used
to obtain 100 bp single end reads for samples from the nucleus
accumbens, whereas Illumina HiSeq 2000 was used to obtain 100
bp paired-end reads for samples from the CPu. All samples were
analyzed exactly as described previously (30). Briefly, the reads
were aligned to the mouse reference genome (version mm10)
using STAR (31) aligner with default parameters. The alignment
results were evaluated through RNA-SeQC (32). Aligned reads
were then summarized through featureCounts (33) with the gene
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model from Ensemble (Mus_musculus GRCm38.75.gtf) at gene
level.

Samples were normalized through a set of housekeeping
genes Ppia, Gusb, and Gapdh as described previously (30).
Principal Component Analysis (PCA) was then applied to
normalized counts of all the samples by brain region, to detect
outlier samples. In the CPu, data from one saline control, and
from one oxycodone-treated animals were thus excluded from
downstream analysis. In the NAc, data from one oxycodone-
treated animal was excluded from the downstream analysis.

Axon Guidance Gene Selection
REACTOME (linked to KEGG) was used to identify 416 genes
in the NAc and 445 genes in CPu in the axon guidance canonical
pathway (stable Identifier R-MMU-422475.1). Statistical
significance and fold change of oxycodone-induced alterations
in expression of 32 axon guidance-related genes (integrins,
semaphorins and ephrins, and their receptors) were extracted
from the total list of differentially expressed genes in the RNA-seq
data for the NAc and CPu in this study (Supplement Tables 1s,
2s, respectively).

Analyses of Cell-Type Specific Enrichment
of Integrin, Semaphorin and Ephrin Gene
Transcripts
To examine whether DE axon guidance genes may produce their
effect in cell type specific manner, we have studied potential
enrichment in transcripts of the axon guidance genes in specific
cell types such as astrocytes, neurons, microglial and endothelial
cells. Publicly available RNA-Seq transcriptome data (34) were
downloaded from GEO (GSE52564). For each gene of integrin,
semaphorin and ephrin gene families, that had a significant
change (FDR < 0.1) in either NAc or CPu, expression fold
change of each cell type was calculated as described recently (34)
(Table 2). For example, in astrocytes: FC = gene X’s expression
in astrocytes/average gene X’s expression in all non-astrocyte cell
types.

STATISTICS

RNA-seq Differential Gene Expression
Analysis
We used DESeq2 (https://doi.org/10.1186/s13059-014-0550-
8) (35), a method for differential analysis of RNA-seq data
to estimate fold-change and significance testing. Specifically,
DESeq2 estimate gene-wise log fold of changes (LFCs) between
conditions from the standard Generalized Linear Model (GLM)
fits to obtain maximum-likelihood estimates, and then fit a
zero-centered normal distribution to the observed distribution
of Maximum-likehood Estimate (MLE) over all genes. This
distribution is used as a prior on LFC in a second round of GLM
fits, and the maximum a posteriory (MAP) estimates are kept as
final estimates of LFC. For significance testing, DESeq2 uses a
Wald test: the shrunken estimate of LFC is divided by its standard
error, resulting in a z-statistic, which is compared to a standard
normal distribution. The Wald test P values from the subset of

genes that pass an independent filtering step, are adjusted for
multiple testing using the procedure of Benjamini and Hochberg
(36).

DESeq2 was applied to the normalized counts to estimate
the fold-change between the samples from mice that had self-
administered oxycodone versus those from yoked saline controls,
using negative binomial distribution. An adjusted p-value of less
than 0.1 (FDR < 0.1) and fold change ≥15% were used to select
genes that have a significant expression change.

RESULTS

Extended Access Oxycodone
Self-Administration
Oxycodone self-administration behavior in the animals in this
sample was reported in our previous publication (30). Our
previous studies of oxycodone dose-response effects showed
that a dose of 0.25 mg//kg per infusion lead to escalation of
oxycodone over the sessions (29). Animals showed a robust
escalation of daily oxycodone intake across 14 consecutive daily
sessions. A two-way ANOVA for drug condition (oxycodone
or saline) × session (days 1–14), showed a significant main
effect of drug condition [F(1, 252) = 672.6, p < 0.0001] and a
significantmain effect of session [F(13, 252) = 2.359, p< 0.01]. The
average amount of oxycodone self-administered for each mouse
increased from 3 mg/kg on the 1st session to 7.5 mg/kg on the
last sessions. Oxycodone self-administering mice showed a much
greater frequency of response on the active versus inactive holes.
In contrast, yoked-saline control mice showed lower responding,
and stayed stable across 14 daily sessions.

Oxycodone-Induced Alterations in
Expression of Integrin, Semaphorin and
Ephrin Genes
Nucleus Accumbens (NAc)
Among 38 integrin, semaphorin and ephrin genes selected for
further analyses, we found significant alterations in 14 genes
in the NAc at fold change ≥15%, with a false discovery rate
(FDR) of <0.1, of which six were up-regulated and 8 were down-
regulated (Table 1A). Among up-regulated genes, there were
integrin receptors Itgal and Itgb2, and their ligand semaphorin
Sema7a. There was also up-regulation of semaphorin receptors
Plxdc1 and Plxnd1, with concomitant lower levels in expression
of their cognate ligands Sema3c, Sema4g, Sem6a, and Sema6d. In
contrast to elevated expression of the receptor Plxd1, the receptor
neuropilin Nrp2 was down-regulated. Two integrin genes, Itga3
and Itgb8 had lower level expression in the oxycodone treatment
group, compared to the saline group, and only one gene from the
ephrin receptor family, Epha3 was down-regulated in this group.

Caudate-Putamen (CPu)
As observed above in the NAc, in this region there was strong
up-regulation of three integrin genes, Itgal, Itgb2, and Itga1
(Table 1B). Among down-regulated genes, there were integrin
Itga9 and the ephrin receptor ligand, Efna3.
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TABLE 1 | Axon gudance and integrin genes with differential expression in the mouse nucleus accumbens and caudate putamen following 14 days of oxycodone

self-administration (FDR < 0.1, FC > 15%).

Gene symbol Fold change Direction p-value FDR Gene name

A. NUCLEUS ACCUBBENS

Itgal 2.54 ↑ 0.00000 0.0000 Integrin alpha L

Itgb2 1.69 ↑ 0.00006 0.0068 Integrin beta 2

Sema7a 1.40 ↑ 0.00637 0.0910 Semaphorin 7a

Plxdc1 1.32 ↑ 0.00102 0.0464 Plexin dc1

Plxnd1 1.48 ↑ 0.00376 0.0693 Plexin d1

Itgam 1.29 ↑ 0.00519 0.0852 Integrin alpha M

Epha3 0.77 ↓ 0.00298 0.0620 Ephrin receptor a3

Sema3c 0.77 ↓ 0.00223 0.0618 Semaphorin 3c

Sema4g 0.75 ↓ 0.00482 0.0821 Semaphorin 4g

Sema6a 0.82 ↓ 0.00782 0.1050 Semaphorin 6a

Sema6d 0.84 ↓ 0.06142 0.0583 Semaphorin 6d

Nrp2 0.61 ↓ 0.00165 0.0583 Neuropilin 2

Itga3 0.77 ↓ 0.00244 0.0620 Integrin a3

Itgb8 0.86 ↓ 0.00583 0.0861 Integrin b8

Gene symbol Fold change Direction p-value FDR Entrez gene name

B. CAUDATE PUTAMEN

Itgal 2.53 ↑ 0.00000 0.0002 Integrin alpha L

Itgb2 2.14 ↑ 0.00003 0.0041 Integrin beta 2

Itga1 1.48 ↑ 0.00060 0.0323 Integrin alpha 1

Itga9 0.72 ↓ 0.00004 0.0042 Integrin alpha 9

Efna3 0.71 ↓ 0.00185 0.0747 Ephrin A3

Cell Type Specific Enrichment Analysis of Integrin,

Semaphorin, and Ephrin Gene Transcripts
Recently, an RNA-sequencing transcriptome and splicing
database has been reported for purified representative
populations of neurons, astrocytes, oligodendrocyte
precursor cells, newly formed oligodendrocytes, myelinating
oligodendrocytes, microglia, and endothelial cells from mouse
cerebral cortex (34). This database provided a platform for
analyzing and comparing transcription profiles for various cell
classes in the brain herein. We have used this publicly available
database to perform analyses of enrichment in expression levels
of axon guidance genes that would be expected in astrocytes,
neurons, microglial and endothelial cells. The analyses have
revealed an enrichment of integrins Itgal, Itgb2, Itgam, and
receptors Plxdc1 and Plxdc2 expression in microglia cells
(Table 2). Similar analysis showed that ephrin Efna3, and
its receptor Epha3, and semaphorins Sema3c and Sema4g are
abundoned in neurons. Expression levels of semaphorins Sema7a
and Sema3c, semaphorin receptor Nrp2, and integrin Itga1 were
enriched in endothelial cells. Astrocytes were enriched with
semaphorin Sema6d.

DISCUSSION

In this study, we have for the first time RNA-seq technology
applied to examine differential gene expression of the axon
guidance gene family and integrins, in the NAc and CPu of adult

male mice, following 14-day extended-access self-administration
of oxycodone, compared with the yoked saline controls. This self-
administration regimen resulted in substantial daily intake and
escalation of oxycodone across sessions (37).

We have found substantial difference in number of the

differentially expressed axon guidance genes in response to the
chronic oxycodone self-administration, 14 genes in the NAc, and
five genes in the CPu. This difference between these two regions
could be due to, in part, difference in neuroanatomical structure

and functions of ventral and dorsal striatum in the development
of dependence to drugs of abuse, with the NAc implemented in
drug rewards, and CPu in drug-induced habituation behavior
(38). Earlier studies showed that in contrast to NAc, injections of
morphine to CPu did not produce a condition place preference
(39). This could be also a result of intrinsic differences in
the dopamine fiber responsiveness that innervate these specific
regions of the striatum as well as in dopamine transporters
in regulation of drug-induced dopamine release. For example,
repeated morphine administration at a dose of 1.0 mg/kg (s.c.)
increased synaptic dopamine concentrations preferentially in the
rat NAc, not in CPu (40, 41). After 15 days of withdrawal after
3 days of morphine treatment, challenge with 1 mg/kg (s.c.)
morphine failed to significantly modify extracellular DA in the
CPu of sensitized as well as in control rats (41).

We have found oxycodone-induced alterations in expression
mainly in three axon guidance gene families such as integrins,
semaphorins, and ephrins. These systems may contribute
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TABLE 2 | Cell type enrichment of integrin, semaphorin, and ephrin.

Transcripts (log2 of Fold Enrichment)

Gene Astrocytes (A) Neurons (N) Microglia

(MGL)

Endothelia

(Endo)

Itgal −2.235 −2.235 2.956a −1.419

Itga1 −2.179 −4.461 −5.737 6.439

Itga3 −2.095 2.048 −4.006 1.321

Itga9 −5.707 −3.4 2.081 −2.568

Itgal.1 −2.235 −2.235 2.956 −1.419

Itgam −8.218 −7.842 5.905 −8.752

Itgb2 −7.874 −6.023 6.834 −5.103

Itgb2.1 −7.874 −6.023 6.834 −5.103

Itgb8 0.978 −1.988 −6.774 −6.7

Nrp2 −2.55 0.197 0.802 1.935

Plxdc1 −4.265 0.264 2.822 0.494

Plxdc2 −1.234 −1.446 3.347 −2.651

Plxnd1 −3.509 1.016 −0.667 3.113

Sema3c −3.559 1.725 −5.425 3.192

Sema4g −0.77 2.445 −0.153 −4.345

Sema6a 0.642 −0.977 −7.241 −0.245

Sema6d 2.287 −1.622 −3.912 0.376

Sema7a −3.782 −2.209 −3.772 4.542

Efna3 −2.091 4.598 −2.668 −2.987

Epha3 −2.207 4.406 −3.799 −3.525

aExample of calculation of a fold enrichment of a gene in a specific cell type:

Log2 [expression of X gene in astroglia divided by average expression of X gene in non-

astrocyte cell types (N+MGL+Endo)]. Bolded numbers show the highest enrichment of X

gene transcripts in a specific cell type. Positive numbers indicate a higher abundance of

gene X expression in a particularly cell type, compared with its expression in other cells.

to oxycodone-induced neuroadaptations through alterations
in axon-target connections and synaptogenesis and may be
implicated in the behavioral and neurobiological adaptations
occurring in opioid use disorders. No significant oxycodone-
induced alterations in expression of Netrin-1 or Slit were
observed. We found here that integrins Itgal and Itgb2 have
the greatest increase in expression in both the NAc and CPu
immediately after chronic oxycodone SA. However, oxycodone-
induced increase of their potential ligand semaphorin Sema7a
was observed only in the NAc, but not in the CPu. In the adult
brain, many integrins are present at high levels at synapses.
The sequence arginine-glycine-aspartic acid RGD (42) was
identified as a general integrin-binding motif. Application of
soluble GRGDS (Gly-Arg-Gly-Asp-Ser) peptides completely
abolished the mu opioid receptor agonist DAMGO inhibitory
effect on cyclic AMP (cAMP) accumulation in bradykinin-
primed trigeminal ganglia neurons (43, 44). This suggests that
activation of specific integrins at focal adhesions may modulate
the mu opioid receptor signaling by altering interactions
with G proteins. Also, RGD peptides, or anti-integrin
antibodies block N-methyl-D-aspartate (NMDA)-mediated
excitatory postsynaptic currents in hippocampal neurons
(45), suggesting that RGD-binding integrins are important in
neurotransmission.

We have found only one gene from the ephrin receptor
family, Epha3, which was down-regulated in the NAc of
oxycodone-treated mice. In other studies, similar down
regulation in the expression of ephrin genes in the rat NAc was
observed at 24 h after secession of heroin self-administration
(6 h/day for 5 days) (12). In contrast, cocaine treatment
increased expression of many ephrin and ephrin receptor
in the rat and mouse striatum and hippocampus (7, 14)
and in striatum of nonhuman primates (46). Alterations in
expression of the Eph/ephrin genes have also been linked
to neuropathology ranging from inhibition of neural repair
after traumatic injury and stroke to neurodegenerative
diseases (47, 48). Ephrin receptors and their ligands are
implicated in dendritic spine morphology throughout an
interaction with integrins. For instance, activation of the
receptor EphA4 by ephrinA3 inhibits activity of integrin
Itgb1 and downstream signaling, and leads to decreases
spine length and density (49). Transgenic overexpression
of ephrinA3 in astrocytes reduces glutamate transporter
levels and elevates extracellular glutamate concentrations
(50). In contrast, loss of ephrin-A3 raises glutamate
transporter currents in astrocytes. Functionally, EphA4
and ephrinA3 modulate transporter glutamate currents in
astrocytes.

Previously, microarray studies of morphine-treated mice
showed alterations in expression of genes related to the
semaphorin pathway in the NAc such as Sema3f, Sema4b,
sema6c, Sema6d, Sema7a, and Plxna3 (10) and Sema6a (44).
Heroin self-administration induced downregulation of Sema5a,
Sema6c and receptor Plxnb1 in the rat NAc (12). Consistent with
these earlier reports, in this study we have found oxycodone-
induced downregulation of Sema3c, Sema4g, Sema6a, Sema6d,
and upregulation Sema7a in the mouse NAc. Our results are
also consistent with alterations in the expression of semaphorins
and their receptors in post-mortem brain of patients chronically
exposed to alcohol or cocaine (51), particularly upregulation of
SEMA7A and plexin PLXDC1, and down-regulation SEMA4B in
hippocampus. Alterations in expression of semaphorins and their
receptors were documented in many pathological conditions
such as ischemia, degenerative diseases, multiple sclerosis (5).

Early studies showed that chronic morphine modulate both
adaptive and innate immune systems, as well as activate
neuroinflammation (52). Several studies showed that this effect
of morphine on immune system is mediated by the central
MOPr, and can be antagonized by naltrexone (53, 54). Several
studies showed that microglia, astrocytes, oligodendrocytes,
and endothelial cells actively respond to opioids by producing
an inflammatory immune response (55, 56). Recently, we
have reported mRNA levels of numerous genes related to
the inflammation and immune functions changed as a result
of oxycodone self-administration, in the CPu and NAc (30).
We have found oxycodone-induced upregulation in the NAc
of many glial- and immune cell-specific genes, such as the
chemokine receptor Ccr5, chemokine Ccl 12, toll-like receptor
Tlr7, interleukin Il1b, interleukin-17 receptor, antigen CD14,
antigen CD163, complement component 1 C1qc, interferon
regulatory factor Irf1, and others. Astrocytes and microglia
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release several neuroactive molecules, such as glutamate, D-
serine, ATP, GABA, TNFa, that can actively regulatemany aspects
of neuronal function, including neurotransmitter release, gene
regulation, dendriticmorphology, and synaptic connectivity (57).

Semaphorins were shown to be involved in initiation
of the immune response in brain (58), and alterations in
their expression may be related to the oxycodone-induced
changes in inflammation/immune gene expression found in
this study. Sema7A has been identified as an effector molecule
in T-cell-mediated inflammation through an integrin-mediated
mechanism, reviewed in (17). Of interest, many immune proteins
have been found in healthy, uninfected nervous system, and they
may participate in regulation of neuronal functions, including
neurotransmitter release, dendritic morphology, and synaptic
transmission (59–61).

Several studies proposed axon guidance molecules for contact
interaction of neuronal and glial cells (13). The oxycodone-
induced differential expression of integrins, semaphorins, and
ephrins in ventral and dorsal regions of the mouse striatum
implies that they likely participate in the altered communication
occurring between neurons and glial cells. Therefore, an
identification of cell type specificity of axon guidance gene
expression would help in understanding of their specific
roles in drug-induced alterations in neuronal activity. We
did not perform a cell sorting procedure of brain tissues
in our experiments. However, our bioinformatics analysis
of oxycodone-induced differentially expressed axon guidance
genes showed that their mRNA enrichment varied among
neuronal, astrocyte, microglial and endothelial cells, supporting
their pleiotropic functions in adaptation to chronic oxycodone
treatment.

Since gene expression changes were examined immediately
after 14 consecutive days of chronic oxycodone self-
administration, it is also not clear whether the changes in
axon guidance gene expression are long-lasting, which may
play an important role in drug-induced adaptation. The exact
molecular mechanisms of regulation of neurotransmission (e.g.,
dopaminergic, GABAergic, serotoninergic) by different axon

guidance molecules remain unknown. However, it is known
that axon guidance molecules are involved in glutamatergic

transmission and long term potentiation (60). Therefore,
oxycodone induced alterations in axon guidance gene expression
may be relevant to neuronal plasticity which may occur in
addictive-like state (1, 62). This is the first RNAseq study on the
impact of a chronic period of oxycodone self-administration, a
widely abused prescription drug on expression of axon guidance
genes in the mouse brain.

In conclusion, we have found alterations in expression of
specific axon guidance genes in the mouse striatum following
chronic oxycodone self-administration. Although, their exact
functions in drug taking or drug seeking behaviors are not
known, these proteins are promising targets for further studies
and development of treatment of oxycodone addiction.
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Enkephalin expression is high in mesocorticolimbic areas associated with

psychostimulant-induced behavioral and neurobiological effects, and may also

modulate local neurotransmission in this circuit network. Psychostimulant drugs, like

amphetamine and cocaine, significantly increase the content of enkephalin in these brain

structures, but we do not yet understand the specific significance of this drug-induced

adaptation. In this review, we summarize the neurochemical and molecular mechanism

of psychostimulant-induced enkephalin activation in mesocorticolimbic brain areas, and

the contribution of this opioid peptide in the pivotal neuroadaptations and long-term

behavioral changes underlying psychostimulant addiction. There is evidence suggesting

that adaptive changes in enkephalin content in the mesocorticolimbic circuit, induced

by acute and chronic psychostimulant administration, may represent a key initial step in

the long-term behavioral and neuronal plasticity induced by these drugs.

Keywords: enkephalin, cocaine, amphetamine, neuroadaptations, addiction, opioid antagonists

INTRODUCTION

Psychostimulant addiction is a severe worldwide health problem. The most challenging aspects
in its treatment are compulsive drug use and relapse. Currently, there are no effective
pharmacotherapies for this disorder. New therapeutic approaches are required based on
understanding the neurobiology of drug addiction. Numerous lines of research suggest that
exposure to psychostimulant drugs causes neurochemical and molecular adaptations that explain
the stability of the behavioral disorders characterizing the addictive state (1, 2). Attention
has focused on how the mesocorticolimbic dopamine circuit is affected by drugs of abuse,
and particularly on the role of glutamate and dopamine neurotransmission in determining
the neuroplastic changes related to psychostimulant addiction (3–6). At molecular level, it
has been shown that activation of glutamate and dopamine neurotransmission after repeated
psychostimulant administrations, affects intracellular signaling cascades (7–9), alters the expression
of membrane receptors (10, 11) and changes gene expression within the neural circuits (12, 13),
which leads to sensitization of the drug’s behavioral effects (14) and other behavioral alterations
observed in addiction, like intense drug craving and relapse (15).

Enkephalin, an opioid peptide derived from proenkephalin (PENK), is widely expressed in the
mesocorticolimbic circuit (16) and interacts with glutamate and dopamine in the brain reward
structures related to psychostimulant-induced effects. Both delta-opioid (DOPr) and mu-opioid
receptors (MOPr) can be activated by enkephalin, and each has its particular pattern of expression

230

https://www.frontiersin.org/journals/psychiatry
https://www.frontiersin.org/journals/psychiatry#editorial-board
https://www.frontiersin.org/journals/psychiatry#editorial-board
https://www.frontiersin.org/journals/psychiatry#editorial-board
https://www.frontiersin.org/journals/psychiatry#editorial-board
https://doi.org/10.3389/fpsyt.2018.00222
http://crossmark.crossref.org/dialog/?doi=10.3389/fpsyt.2018.00222&domain=pdf&date_stamp=2018-05-28
https://www.frontiersin.org/journals/psychiatry
https://www.frontiersin.org
https://www.frontiersin.org/journals/psychiatry#articles
https://creativecommons.org/licenses/by/4.0/
mailto:lcancela@fcq.unc.edu.ar
https://doi.org/10.3389/fpsyt.2018.00222
https://www.frontiersin.org/articles/10.3389/fpsyt.2018.00222/full
http://loop.frontiersin.org/people/502369/overview
http://loop.frontiersin.org/people/549132/overview
http://loop.frontiersin.org/people/548699/overview
http://loop.frontiersin.org/people/503354/overview
http://loop.frontiersin.org/people/521228/overview


Mongi-Bragato et al. Enkephalin and Psychostimulant Addiction

within the motivational circuit (17). Although several
pharmacological and genetic approaches demonstrate a
role of both MOPr and DOPr in psychostimulant-induced
behavioral effects, the role of the endogenous opioid peptides in
this process has not been fully examined. Previous studies from
our lab have demonstrated a long-lasting increase in enkephalin
levels within the mesocorticolimbic circuit after psychostimulant
administration (18, 19). Enkephalin has also been shown to
positively modulate dopamine and glutamate neurotransmission
within this circuit (20–25). These data indicate that cocaine-
induced enkephalin elevation may drive the neuronal plasticity
induced by the drug and the long-term behavioral effects of
psychostimulant exposure.

ACTIVATION OF THE ENKEPHALIN
SYSTEM BY PSYCHOSTIMULANTS IN THE
CENTRAL NERVOUS SYSTEM

Mesolimbic dopamine activity is directly affected by
psychostimulants (26). These drugs bind to monoamine
transporters and block reuptake mechanisms (cocaine),
or competitively inhibit dopamine uptake and disrupt
vesicular storage (amphetamine). The activation of this
system is a primary conditioner of their psychomotor
stimulant and rewarding effects (27). Acute or chronic
administration of psychostimulants also alters, among
others, the levels of endogenous opioid peptides, including
enkephalin, within areas of the mesocorticolimbic
circuit.

Acute cocaine (28, 29) and amphetamine (30–33) elevate
PENK mRNA levels in the striatum, and these levels are
also increased after chronic cocaine exposure in different
dopamine mesolimbic afferents (34–36). Elevated PENK levels
were also observed within the caudate putamen on the
second day of binge cocaine administration (37). Following
chronic cocaine treatment, no changes were observed in the
cortex in PENK mRNA levels (38), prefrontal cortex (39,
40), amygdala (41, 42), hypothalamus, pituitary, central gray
and cerebellum, nucleus accumbens or caudate putamen (39).
However, PENK mRNA levels were significantly elevated during
long-term extinction (10 days) of a cocaine self-administration
paradigm in the caudate putamen, nucleus accumbens, piriform
cortex and olfactory tubercle regions, and decreased in the
central amygdale of rats (43). Similarly, sensitized PENK
mRNA expression was observed in the nucleus accumbens
and/or caudate putamen in response to an amphetamine
challenge following acute (44–47) or chronic (48) amphetamine
pretreatment in animals after short-term abstinence from the
drug.

Furthermore, data from our lab demonstrate an increase in
the levels of met-enkephalin in the nucleus accumbens from
rats after acute amphetamine (5 mg/kg i.p.) following 4, but
not 7 or 21 days after the last drug injection (18, 49, 50). Met-
enkephalin elevation was also observed after 4 days withdrawal
period from chronic amphetamine (5 × 2 mg/kg i.p) (49).
Interestingly, long-lasting sensitization to amphetamine-induced

increases in met-enkephalin levels was evidenced in the same
brain area following amphetamine challenge (1 mg/kg i.p.) 21
days after the last acute (5 mg/kg i.p.) administration of the drug
(18). Similarly, persistent met-enkephalin immunoreactivity
was evidenced in the nucleus accumbens from mice treated
chronically with cocaine (9 × 15 mg/kg i.p.) after a long-
term abstinence from the drug (12 days after last injection).
Met-enkephalin immunoreactivity elevations induced by chronic
cocaine is not dependent of cocaine challenge administration
(7.5 mg/kg i.p., day 21), as this effect on met-enkephalin
immunoreactivity was also observed after saline challenge
injection (19).

Altogether these data demonstrate that PENK mRNA
levels are increased in specific dopaminergic regions following
psychostimulant administration, be the injection acute, chronic
or remote.

NEUROCHEMICAL AND MOLECULAR
MECHANISMS IN
PSYCHOSTIMULANT-INDUCED
PROENKEPHALIN EXPRESSION

Psychostimulant-induced PENK mRNA expression at striatal
level may be the result of multiple neurotransmitter interactions
(31, 51, 52). Cocaine and amphetamine stimulate the PENK
mRNA expression in striatal neurons (19, 28, 31, 35, 49),
which mostly express D2 receptors (53, 54), and also induce
prodynorphin and substance P in striatal neurons (31), which
mainly express D1 receptors (53, 55). Similarly, the full D1
receptor agonist SKF-82958 induced PENK, prodynorphin and
substance P gene expression in both the dorsal and ventral
striatum (33). Interestingly, the increase in met-enkephalin
induced by amphetamine (50) or PENK mRNA levels stimulated
by SKF-82958 in striatal neurons (33) was blocked by the
D1 receptor antagonist SCH-23390 (50) and by scopolamine,
the muscarinic receptor antagonist (32). Oppositely, the D2
receptor antagonist eticlopride did not affect SKF-82958-induced
PENK mRNA expression (33). Similarly, amphetamine-induced
met-enkephalin levels was not modified by raclopride, another
D2 receptor antagonist (50). Thus, this evidence suggests
that D1-mediated induction of PENK may involve trans-
synaptic activation of cholinergic neurotransmission. That is,
the psychostimulant-induced dopamine elevations stimulates
acetylcholine release via a D1-dependent mechanism (56,
57). The acetylcholine released then activates muscarinic
M1 receptors (32, 44) and associative signaling pathways in
enkephalin-containing neurons thus facilitating PENK mRNA
expression (Figure 1). Opioid receptors located at striatal
level are also involved in psychostimulant-induced PENK
mRNA expression. Selective kappa opioid receptor (KOPr)
agonists appear to inhibit psychostimulant-induced alterations
in PENK mRNA in the striatum (58), and DOPr antagonists
significantly decreased amphetamine-induced mRNA PENK
expression (45). In contrast to DOPr’s inhibitory effects, MOPr
antagonists, alone or combined with amphetamine, increase
PENK mRNA levels in the dorsal striatum (45). Opioid
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receptors thus probably differentially regulate psychostimulant-
induced PENK gene expression in the striatum, as a result
of the predominantly MOPr expression at D1+ medium
spiny neuron vs. D2+ medium spiny neuron and the
selective pre-synaptic DOPr location in the local network.
Similarly, pre-synaptic KOPr located at striatal dopamine and
glutamate nerve terminals could regulates psychostimulant-
evoked neurotransmitter release (59) indirectly affecting PENK
expression within this brain area.

Glutamate transmission actively regulates PENK gene
expression under normal or stimulated conditions (51, 52).
However, the precise mechanism by which glutamate participates
in psychostimulant-stimulated PENKmRNA expression requires
further study. Several reports indicate that cocaine (60, 61) and
amphetamine (62–64) administration increases extracellular
glutamate levels as well as dopamine levels in the striatum.
Also, glutamate tone may be important for amphetamines
to stimulate dopamine release from nerve terminals (64–
67). Thus, glutamate transmission could also play a role
in regulating the stimulant effect of psychostimulants on
PENK mRNA expression. There is evidence from our lab that
pretreatment with NMDA receptor antagonists attenuates
long-lasting amphetamine-induced PENK mRNA expression
and met-enkephalin levels in the nucleus accumbens (18). In
addition, there is evidence that glutamate transmission mediated
by the AMPA receptor is involved in acute amphetamine-
induced PENK levels in the striatum (52). Alternatively,
elevated glutamate transmission seems to increase acetylcholine
release (68, 69), and this induces acetylcholine-sensitive
PENK gene expression, possibly through a NMDA receptor
mechanism.

The regulation of PENK in the brain is usually preceded
by the induction of AP-1, cAMP response element-
binding protein (CREB) and c-Fos (70–74). Dopamine
D1 receptor stimulation activates these transcription
factors and, if dopamine D2 is also activated, there is a
synergistic mechanism (75, 76). This initiates a sequence
of molecular steps critically involved in psychostimulant-
induced behavioral responses. CREB is the primary regulator
of transcriptional activity in accumbal projection neurons
and is phosphorylated by protein kinases, including the
extracellular signaling-regulated kinase (ERK1/2) (77, 78).
Glutamate-stimulated CREB phosphorylation in the striatum
is attenuated by the ERK1/2 kinase inhibitor, PD98059
(77–79).

Psychostimulant drugs, which increase dopamine, glutamate
and PENK content in mesocorticolimbic brain areas, also up-
regulate ERK2/CREB phosphorylation (8, 9, 80). Consistent
with this, the inhibition of the ERK2/CREB signaling pathway
prevents the increase of psychostimulant-induced PENK mRNA
expression (47). This strongly indicates that the long-term
increase in met-enkephalin levels, induced by psychostimulants
in mesocorticolimbic brain structures, is mediated by a
dopamine- and glutamate-dependent mechanism, with the
activation of dopamine D1 and glutamate NMDA receptors
leading to ERK2/CREB signaling pathway activation in the same
brain areas.

ROLE OF THE ENKEPHALINERGIC
SYSTEM IN
PSYCHOSTIMULANT-INDUCED
LONG-TERM BEHAVIORAL EFFECTS AND
ASSOCIATED NEUROADAPTATIONS

Although enkephalin seems to exert an influence on key areas
involved in psychostimulant-induced behavioral effects, the
mechanism underlying long-term effects has not yet been fully
explained. Pharmacologically, PENK-derived opioid peptides
seem to show high affinity for DOPr, but also good affinity
for MOPr (17). Furthermore, dopamine release in the nuceleus
accumbens appears to be promoted by enkephalin in the ventral
tegmental area (20, 81), while MOPr antagonists administered
intra-ventral tegmental area cause a decrease in dopamine
neurotransmission (82). Pharmacological studies have shown
that MOPr and DOPr contribute to increasing dopamine and
glutamate release induced by psychostimulants in the nucleus
accumbens (83–86). Consistently, pharmacological approaches
using MOPr and DOPr antagonists, as well as MOPr knockout
mice, demonstrate that the endogenous opioid system is involved
in dopamine-related behaviors (87–89). This evidence, together
with studies showing that PENK is one of the mediators of the
positive reinforcing effects of nicotine, alcohol and marihuana
(90–92), suggests that enkephalin may also have a role in
psychostimulant-induced behaviors. However, further study is
needed to explain the mechanism of its involvement.

Behavioral Sensitization
Repeated intermittent exposure to cocaine steadily increases
the locomotor response to the drug (behavioral sensitization)
(14), which is mostly coupled to a greater drug-induced
dopamine efflux in the nucleus accumbens (93–95). However,
a reduction (96) or non-augmentation (97) in the levels
of the neurotransmitter in the nucleus accumbens was
found simultaneously with this phenomenon. Behavioral
sensitization to psychostimulants may well be mediated by
converging extracellular signals, which give rise to a number
of specific molecular and cellular events, such as activating the
ERK/CREB signaling pathway, and enhancing GluR1 AMPA
receptor cell surface expression and brain-derived neurotrophic
factor/tyrosine kinase B (BDNF/TrkB) receptor signaling within
the nucleus accumbens (11, 98). As mentioned previously, the
enkephalinergic system increases mesoaccumbal dopamine
neurotransmission (25). Likewise, pharmacological studies have
demonstrated that MOPr and DOPr receptors contribute to
amphetamine (99, 100) and cocaine-induced enhancement
of dopamine levels in the nucleus accumbens (84, 86), and
there is data of the anatomical selectivity of MOPr receptors
within the ventral tegmental area-nucleus accumbens pathway in
cocaine-induced reward and locomotor-stimulating effects (101).
It has also been proposed that cocaine may cause the release of
endogenous opioid peptides. These then activate MOPr within
the nucleus accumbens and ventral tegmental area and modulate
the drug-induced behavioral effects (102).
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FIGURE 1 | (Left) Principal met-enkephalin target nucleus in the mesocorticolimbic circuit. Distribution of opioid receptors within the circuit network is also shown

and reveals the modulation exerted by enkephalin on dopamine and glutamate transmission at this level. (Right) Persistent adaptations in the enkephalin content

followed by psychostimulant treatment and the subsequent activation of MOPr could result in a feedback mechanism critical for the neuronal plasticity induced by

these drugs in the NAc. Enkephalin transmission activation promotes the development of psychostimulant-induced long-term neurochemical and molecular changes

in the NAc, such as increases in BDNF/TrkB, phospho-ERK2/CREB signaling activation and GluR1 AMPA cell surface expression. VP, ventral pallidum; VTA, ventral

tegmentalarea; PfC, Prefrontal cortex; DA, dopamine; Ach, acetylcholine; Glu, glutamate; met-enk, methionine encephalin; GABA, γ-aminobutyric, M1 and M4:

muscarinic acetylcholine receptors type 1 and 4, respectively, acetylcholine nAch, nicotinic acetylcholine receptor.

The role of MOPr and DOPr in the development and
expression of psychostimulant sensitization has been shown
pharmacologically. It has been reported that naloxone and
naltrexone, non-selective opioid receptor antagonists, attenuate
the development of sensitization to cocaine in rats (103)
and mice (19, 88, 104). Naltrindole, a DOPr antagonist
(87) and CTAP (D-Phe-cyc(Cys-Tyr-D-Trp-Arg-Thr-Pen)-Thr-
NH2), a selective MOPr antagonist(105), also reduce cocaine-
induced sensitization in rats. Similarly, the development
(106) and expression (107, 108) of amphetamine-induced
behavioral sensitization were reduced following non-selective
opioid receptor administration. Additionally, there is evidence
of ERK1/2 signaling stimulation induced by MOPr/DOPr
activation in the striatum (109). However, there is data
showing that acute morphine caused a reduction in ERK
1/2 levels in the nucleus accumbens (110, 111). Interestingly,
although chronic morphine, a MOPr agonist, caused a reduction
(110) or tolerance to morphine-induced ERK1/2 activation
(111), naloxone-precipitated withdrawal inmorphine-dependent
animals induced a robust stimulation of ERK1/2 in the striatum
(109, 112). Together this evidence demonstrates a prominent role
for MOPr in the regulation of molecular events, associated not

only with psychostimulant induced-behavioral sensitization, but
also with the underlying opiate dependence. However, studies
using MOPr mice seem to be inconclusive (88) or did not show
a significant influence of this receptor in cocaine sensitization
(113–115). It is important to note that these behavioral
evaluations were performed after short-term cocaine withdrawal
[(88): 10 × 15 mg/kg i.p./7days withdrawal; (113): 5 × 20 mg/kg
i.p./dose–response experiment; (114): 6 × 15 mg/kg i.p./6 days
withdrawal; (115): 20 mg/kg i.p./3 days withdrawal], possibly
masking the role of MOPr in long-term behavioral effects
induced by cocaine (116). There is also evidence that, after long-
but not short-term withdrawal, naloxone blockade is observed
of the expression of behavioral sensitization to psychostimulants
[(108): amphetamine 1.5 mg/kg i.p./14 days abstinence]. Despite
all these studies, and reports demonstrating that met-enkephalin
and MOPr have a prominent role in the ventral tegmental area
at the initial step of sensitization (101, 117, 118), there is still no
explanation in the literature of the influence of enkephalin on the
psychostimulant-induced neuronal plasticity underpinning long-
term sensitization. Data from our lab demonstrate an essential
role of enkephalin in the development of neuroadaptations in
the nucleus accumbens leading to cocaine-induced psychomotor
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sensitization (19). PENK knockout mice treated chronically
with cocaine (9 days x 15 mg/kg) do not become sensitized
to cocaine’s properties stimulating locomotor activity and
dopamine release in the nucleus accumbens 21 days after
starting drug treatment. Additionally, the nucleus accumbens
and dorsal striatum from PENK knockout mice showed no
pivotal neuroadaptations such as the increase in phospho-TrkB
receptor, phospho-ERK/CREB and GluR1 AMPA cell surface
expression related to sensitized responses to cocaine. Consistent
with these observations, full suppression of cocaine-induced
behavioral and neuronal plasticity was observed in wild-type
animals after naloxone pretreatment (1 mg/kg s.c. 15min prior
to cocaine injections). Reduced activity-dependent BDNF/TrkB
signaling within the ventral tegmental area-nucleus accumbens
circuit may attenuate the ability of cocaine to induce pathological
changes in the nucleus accumbens that promote addiction (119,
120). Related with this, the lack of dopamine sensitization of a
cocaine-induced increase in BDNF/TrkB signaling, identified in
knockout- and naloxone-pretreated mice, strongly suggests that
both enkephalin and BDNF have an important role in dopamine-
sensitized behaviors. There is thus considerable evidence that
the MOPr/endogenous enkephalin system has a prominent role
in the establishment of long-term neuroadaptations within the
nucleus accumbens underlying the expression of sensitization to
cocaine.

Conditioned Place Preference
Pharmacological evidence clearly demonstrates the role of
MOPr and DOPr in the modulation of psychostimulant-
induced rewarding properties by studying the development
of conditioned place preference (CPP); i.e., acquisition of
associative learning between a context and the rewarding effects
of a drug. In this sense, the establishment of CPP induced by
amphetamine was prevented by the non-selective opioid receptor
antagonist naloxone (0.02, 0.2 or 2.0 mg/kg s.c.), administered
during the conditioning sessions (121). Similarly, naltrexone
implants can attenuate cocaine-induced CPP in rats (122),
although high doses of the opioid antagonist were required.
This effect could be due to the non-selective opioid receptor
antagonism. Naltrindole, a highly selective DOPr antagonist,
blocked the acquisition of cocaine and amphetamine-induced-
CPP in rats (123, 124), indicating that a selective opioid receptor
antagonism can fully attenuate the reinforcing properties of
cocaine. Furthermore, several studies have demonstrated that
selective MOPr receptor antagonists attenuate psychostimulant-
induced CPP. Specifically, systemic pretreatment with the
selective MOPr type-1 receptor antagonist naloxonazine (125)
and intracerebroventricular administration (i.c.v.) of CTAP
paired with peripheral injections of cocaine (105), prevented
the development of cocaine-induced CPP. It has also been
demonstrated that animals pre-treated with CTAP into the
nucleus accumbens core or rostral ventral tegmental area, but
not into the caudal ventral tegmental area, caudate putamen or
medial nucleus accumbens shell, during cocaine conditioning,
showed an attenuation of the establishment of cocaine-induced
CPP, demonstrating the involvement of mesolimbic MOPr in
cocaine-induced reward (101). Although all this evidence has

focused on the role of MOPr and DOPr in the development
of psychostimulant-induced CPP, their involvement in the
expression of this behavior cannot be ruled out. In line, Gerrits
et al. (126) assessed the effect of naloxone (0.01–0.1 mg/kg s.c.)
administered prior the conditioning test, demonstrating the role
of opioid receptors in the expression of cocaine’s motivational
effects.

Despite this pharmacological evidence, the data regarding
cocaine-induced CPP in MOPr knockout mice seems to be
inconsistent. For example, the development of cocaine induced-
CPP has been reported to be attenuated (113), unchanged
(127) or induced after higher doses of cocaine compared to
that used in wild-type littermates (128). The mechanisms that
underlie these discrepancies in behavioral effects induced by
cocaine in MOPr knockout mice are unknown. One possible
explanation involves the different protocols of conditioning
and cocaine doses used [(128): 4 days conditioning/5 or 10
mg/kg; (127): 3 days–two conditioning sessions per day/10
mg/kg; (113): 2 days–two conditioning sessions per day/5 or 10
mg/kg]. Another explanation could be the genetic background
of the mice [(128): 129/Ola × C57BL F2; (113): congenic C57B
F10; (127): hybrid 129SV/C57BL/6 F1] that may influence the
differences in the process of acquisition of cocaine-induced
CPP.

Although the evidence indirectly indicates a potential
role of enkephalin in psychostimulant-induced CPP, its role
in this process has not been addressed yet. Moreover,
the molecular mechanism that underlies the MOPr/DOPr
contribution to psychostimulant-induced CPP and the potential
role of enkephalin has not been fully studied. Interestingly,
there is data suggesting that morphine (a MOPr agonist)-
induced CPP is associated with neuroadaptations similar to
that observed following chronic psychostimulant treatment in
important brain areas associated with drug addiction and those
related to memory consolidation. Augmented phosphorylation
levels of the GluR1 AMPAR subunit and ERK/CREB were
observed in the hippocampus (129–131) as well as in the
nucleus accumbens (132) and ventral tegmental area (130,
133) following morphine-induced conditioned behavior. This,
together with data from our lab demonstrating that the PENK
gene regulates cocaine-induced long-lasting molecular changes,
such as enhancement in dopamine transmission, GluR1 AMPA
receptor cell surface expression, ERK/CREB signaling pathway
activation and modulation of TrkB/BDNF levels in the nucleus
accumbens (19), suggests that enkephalin and the MOPr
system may favor neuronal plasticity within the mesolimbic
circuit that underlies psychostimulant and opiate-induced CPP.
Further genetic (PENK knockout mice) and pharmacological
studies need to be carried out to confirm this hypothesis and
demonstrate the role of enkephalin in psychostimulant-induced
CPP.

Psychostimulant Self-Administration
There is now considerable pharmacological evidence of the
important role that MOPr plays in mediating the reinforcing
effects of cocaine in a self-administration paradigm. GSK1521498
(0.1, 1, and 3 mg/kg s.c.), a MOPr antagonist, and naltrexone
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administered at the same doses and route, reduced cocaine-
seeking under a second-order schedule of reinforcement but
did not affect cocaine self-administration under a simple
fixed-ratio schedule (FR1) (134), indicating modulation of
mechanisms regulating cocaine-seeking behavior rather than
cocaine reinforcement (135). Additionally, GSK1521498 was
more effective than naltrexone in reducing cocaine seeking,
possibly because of different opioid receptor subtype selectivity.
Similarly, low doses of naltrexone (0.1 mg/kg i.p.) showed
no changes in cocaine self-administration (FR2 schedule), but
attenuated cocaine- and cue-induced reinstatement of drug-
seeking behavior administered 30min prior to the reinstatement
test (136). Consistently, the MOPr irreversible antagonist, beta-
funaltrexamine, administered intra-ventral tegmental area or
nucleus accumbens, had no effect on cocaine self-administration
under a FR1 schedule of reinforcement. In contrast, MOPr
blockade in both brain regions did attenuate the response to
cocaine under a progressive ratio (PR) schedule, supporting the
notion that MOPr within the mesolimbic system is involved
in motivation to respond to cocaine (137). Regarding the role
of MOPr, the selective MOPr antagonist CTAP (0.3 and 3 µg)
administered in the ventral pallidum, but not in the nucleus
accumbens or lateral hypothalamus, blocked the reinstatement
of drug-seeking in rats that extinguished from cocaine self-
administration (138). Given the GABA/enkephalin projection
from the nucleus accumbens to the ventral pallidum, chronic
cocaine may result in enkephalin release in this brain area,
activating MOPr and eliciting cocaine relapse.

Data regarding the role of DOPr in mediating the rewarding
effects of cocaine are conflicting. Naltrindole (0.03–3.0 mg/kg
i.p. prior to self-administration session) did not alter the
intake of cocaine (FR2 schedule of reinforcement) or the re-
acquisition of cocaine self-administration (139). Similarly, a
selective DOPr type-2 antagonist (administered i.c.v.) has been
reported to have a slight effect on cocaine self-administration
(FR1 schedule) (140). In contrast, there is data demonstrating
that naltrindole (10 mg/kg i.p. 15min prior FR1) reduced
cocaine self-administration (141). These discrepancies regarding
the role of DOPr in cocaine reinforcement may be due to the
different types and doses of DOPr antagonist and cocaine-self-
administration protocols. Importantly, none of these studies
evaluated a possible role of DOPr within specific brain areas
associated with cocaine reinforcement. DAMGO (1–3 ng) and
DPDPE (300–3,000 ng), MOPr- and DOPr-selective ligands
respectively, as well as β-endorphin (100–1,000 ng) and the
enkephalinase inhibitor thiorphan (3–10 µg) microinjected into
the nucleus accumbens, are sufficient to reinstate cocaine-
seeking behavior in rats following extinction of cocaine self-
administration (142). Thus, the stimulation of either accumbal
MOPr or DOPr seems to be necessary to precipitate cocaine
relapse.

Cocaine self-administration was reduced in MOPr knockout
mice (143), suggesting a critical role of this receptor in cocaine
reinforcement. In contrast, Gutiérrez-Cuesta et al. (144), found
no changes in cocaine self-administration in this genotype.
This discrepancy could be explained in the framework of the
differences in experimental protocols used regarding cocaine

dose and the time of the conditioning sessions, as in the
study of Mathon et al. (143), which demonstrated significant
differences in this genotype at high cocaine doses in shorter
session times.Moreover, cocaine self-administration was reduced
in both DOPr knockout and PENK knockout mice (144),
mainly when animals were trained in FR3 and PR schedules.
These findings suggest that DOPr and PENK are involved in
the motivation to obtain cocaine, and the absence of these
opioid components engenders an impaired response of cocaine
self-administration, mainly when greater effort to obtain a
reward is required. In addition, Gutiérrez-Cuesta et al. (144),
demonstrated that cue-induced reinstatement of cocaine-seeking
behavior was attenuated in both DOPr knockout and MOPr
knockout. These data support previous pharmacological studies
of Simmons and Self (142) addressing an important role
of both receptors within the mesolimbic system in cocaine
relapse. Consistent with these data, an enduring MOPr tone
has been demonstrated within brain reward structures following
extinction of cocaine self-administration (145), indicating that up
regulating enkephalin levels may lead to long-lasting adaptations
in response to repeated cocaine. Thus, all this evidence indicates
that enkephalin, presumably acting on MOPr (although a role
of DOPr cannot be ruled out) has a facilitatory influence on
cocaine-induced behavioral and neuronal plasticity.

Importantly, the human literature shows encouraging
evidence regarding the use of opioid antagonist in the
treatment of psychostimulants relapse (146–148). Indeed,
naltrexone (50 mg/day) administered in combination with
relapse prevention therapy reduced cocaine use in a study of
cocaine-addicted patients (n = 85). Thus, people receiving
the combination of naltrexone (administered throughout 12
weeks) and relapse prevention therapy evidenced significantly
reduced cocaine use than participants receiving other treatment
combinations such us naltrexone alone or combined with
drug counseling therapy (147). The same treatment protocol
(naltrexone 50 mg/day during 12 weeks of medication and
relapse prevention therapy) reduced amphetamine use as well
as craving in amphetamine dependent patients (n = 55) (149).
Additionally, naltrexone (50 mg/day) reduced the subjective
effects of dexamphetamine (30mg, oral) in amphetamine-
dependent people (n = 20) (150). In constrast, patients who
received oral naltrexone doses (0, 12.5, or 50mg) before
smoked cocaine (0, 12.5, 25, and 50mg or placebo), or oral
amphetamine (0, 10, and 20mg or placebo) did not show
alterations in positive subjective effects in cocaine users (n = 12)
(146). This evidence suggests that this opioid antagonist did
not alter positive subjective ratings after cocaine. Importantly,
naltrexone did not alter physiological effects of psychostimulants
in terms of cardiovascular function (146), cortisol levels and skin
conductance (149, 150). Morever, naltrexone did significantly
reduce craving for cocaine and tobacco during cocaine sessions
(146) as well as amphetamine craving (149, 150). These
data demonstrated that behavioral alterations observed in
psychostimulants addiction, such us drug craving could be
modulated by the endogenous opioid system.

It is important to address that in these studies, participants do
not show evidence of any increase in the intake of other drugs of
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abuse during naltrexone protocol therapy to compensate for the
reduction in the drug consumption that is being evaluated. On
the other hand, these studies were restricted to short periods of
naltrexone treatment and long-term effects in these patients are
unknown. Thus, future longitudinal studies are required in order
to follow patients over prolonged periods of time.

Similar effects on opioid antagonists were observed in
patients with cocaine/alcohol comorbidity (148, 151–153) or
cocaine/opiate dependence (154).

In summary, several studies show promising results for
psychostimulants addiction treatment, suggesting a potential role
of naltrexone as an anti-craving therapy for this psychiatric
disorder.

CONCLUSIONS AND FUTURE
DIRECTIONS

This review emphasizes the important role of endogenous
enkephalin during the development of the long-term
neurobiological changes underlying psychostimulant addiction.
It has been suggested that polymorphisms in genes encoding
components of the endogenous opioid system are involved in
predisposing to addiction to cocaine and opiates (155). Similarly,
it is likely that genetic variations in the endogenous PENK
gene (155–158) influence the development of behavioral and
neurobiological adaptations in response to psychostimulant
exposure, and thus modify vulnerability to psychostimulant
addiction. This review also helps to understand how opioid

antagonists can be effective in treating psychostimulant
addiction (146, 147, 149), supporting their use as therapy
for this disorder. Thus, the evidence presented in this review
provides a basis for the development of new drug therapies for
psychostimulant addiction based on specific modulation of the
endogenous PENK system.
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Morphine is one kind of opioid, which is currently the most effective widely utilized pain 
relieving pharmaceutical. Long-term administration of morphine leads to dependence 
and addiction. Thioredoxin-1 (Trx-1) is an important redox regulating protein and works 
as a neurotrophic cofactor. Our previous study showed that geranylgeranylaceton, an 
inducer of Trx-1 protected mice from rewarding effects induced by morphine. However, 
whether overexpression of Trx-1 can block morphine-induced conditioned place prefer-
ence (CPP) in mice is still unknown. In this study, we first examined whether overexpres-
sion of Trx-1 affects the CPP after morphine training and further examined the dopamine 
(DA) and γ-aminobutyric acid (GABA) systems involved in rewarding effects. Our results 
showed that morphine-induced CPP was blocked in Trx-1 overexpression transgenic 
(TG) mice. Trx-1 expression was induced by morphine in the ventral tegmental area 
(VTA) and nucleus accumbens (NAc) in wild-type (WT) mice, which was not induced in 
Trx-1 TG mice. The DA level and expressions of tyrosine hydroxylase (TH) and D1 were 
induced by morphine in WT mice, which were not induced in Trx-1 TG mice. The GABA 
level and expression of GABABR were decreased by morphine, which were restored in 
Trx-1 TG mice. Therefore, Trx-1 may play a role in blocking CPP induced by morphine 
through regulating the expressions of D1, TH, and GABABR in the VTA and NAc.

Keywords: thioredoxin-1, morphine, ventral tegmental area, nucleus accumbens, conditioned place preference

INTRODUCTION

Morphine is the most effective pain relieving pharmaceutical, which repeated use can lead to 
dependence and addiction. Morphine induces addiction through stimulating dopaminergic neu-
rons in the ventral tegmental area (VTA) (1–3). The activity of the dopaminergic neurons in the VTA 
is involved in the rewarding effects induced by morphine (4). Morphine first targets γ-aminobutyric 
acid (GABA) neurons, which results in activation of dopaminergic neurons, then leads to rewarding 
effects (5). Thus, the rewarding effects are regulated by γ-aminobutyric acid and dopamine (DA) 
systems in the VTA, which projects to the nucleus accumbens (NAc).
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Thioredoxin-1 (Trx-1) has various biological activities, such 
as regulating redox, activating transcription factors and protect
ing mice from Parkinson’s disease (6–8). Nerve growth factor 
induces Trx-1 expression via activation of the extracellular signal- 
regulated kinase (ERK) and cAMP-response element binding pro-
tein (CREB) (6). Previous studies showed that morphine-induced 
Trx-1 expression in vitro and in vivo (9, 10). Geranylgeranylaceton, 
an inducer of Trx-1, protects mice from rewarding effects induced 
by morphine (10). Trx-1 overexpressing transgenic (TG) mice 
resisted the rewarding effects induced by methamphetamine 
(11). However, whether Trx-1 TG mice resist the rewarding effects 
induced by morphine is still unknown.

In this study, we examined conditioned place preference 
(CPP) in both wild-type (WT) mice and Trx-1 TG mice after 
morphine conditioned training and detected the levels of DA and 
GABA and the expressions of tyrosine hydroxylase (TH), D1, 
and GABA receptor B (GABABR) in the VTA and NAc.

ANIMALS AND METHODS

Reagents
Morphine hydrochloride was obtained from Shenyang First Phar
maceutical Factory, Northeast Pharmaceutical Group Corp. 
(Shenyang, China). Anti-mouse Trx-1 rabbit polyclonal antibody 
(14999-1-AP; 1:1,000) was purchased from ProteinTech (Wuhan, 
China). Antibody β-actin (sc-47778; 1:1,000) was obtained from 
Santa Cruz Biotechnology (Santa Cruz, CA, USA). Antibody D1 
DA receptor (ADR001AN0302; 1:1,000) was purchased from  
alomone labs (Jerusalem Israel). Antibodies TH (ab137869; 1:1,000)  
and GABABR (ab55051; 1:1,000) were purchased from Abcam 
(Cambridge, UK).

Animals
Male C57BL/6 mice (22–25  g, 8  weeks) were obtained from 
Chongqing Medical University, China. Mice were housed in 
plastic cages under controlled condition: 12 h light/dark cycles, 
average temperature of 23°C, with free access to food and water. 
C57BL/6 human Trx-1 overexpression TG mice were constructed 
by (Cyagen Biosciences Inc., Guangzhou, China). The pronuclei 
of fertilized eggs from hyperovulated C57BL/6 were micro-
injected with human Trx-1 cDNA construct. The presence of 
Trx-1 transgene was confirmed by performing western blot and 
real-time PCR analysis (Figure S1 in Supplementary Material). 
Mice were divided into four groups: saline, morphine (20 mg/
kg), TG  +  saline, and TG  +  morphine (n  =  7 per group). All 
procedures and protocols were approved by the animal ethics 
council of Kunming University of Science and Technology and 
were in accordance with the National Institutes of Health Guide 
for the Care and Use of Animals (12). The lab procedures were also 
approved by the local Committee on Animal Use and Protection 
of Yunnan province (No. LA2008305).

Western Blot Analysis
The VTA and NAc were dissected out according to the stereotaxic 
coordinates of Franklin and Paxinos, after the post-conditioning 
test. The exact coordinates for the two regions based on the 

center of the punch are: NAc (including core and shell): 1.34 mm 
anterior to bregma, 4.5  mm ventral to bregma, 0.8  mm lateral 
to the midline; and VTA: 3.4 mm posterior to bregma, 4.3 mm 
ventral to bregma, 0.5  mm lateral to the midline. After dissec-
tion, tissues were stored at −80°C until assay. Protein lysates was 
prepared using the solubilizing solution [1  mM EDTA, 20  mM 
Tris–HCl (pH 7.4), 1% NP-40, 150 mM NaCl, 1 mM phenylmeth-
anesulfonyl fluoride, 1% Triton X-100, 1  mM EGTA, 2.5  mM 
sodium pyrophosphate, 1  mM β-glycerol phosphate, 1  mM 
Na3VO4, and 1  mg/ml leupeptin]. Protein concentration was 
determined using Bio-Rad protein assay reagent (Hercules, CA, 
USA). Using 12% (for GABABR, D1, and TH) or 15% (for Trx-1)  
SDS-PAGE, equal quantity of proteins was separated and transferred 
to a polyvinylidene difluoride membrane (Millipore, Billerica, 
MA, USA). The membrane was soaked in 10% skimmed milk (in 
phosphate-buffered saline, containing 0.1% Tween 20, pH 7.2) for 
2  h and incubated at 4°C overnight with the primary antibody. 
Immunoblots then were processed with the secondary antibodies 
(peroxidase-conjugated anti-mouse or anti-rabbit IgG) (1: 10,000, 
KPL, Gaithersburg, MD, USA). The bands were detected using an 
ECL chemiluminescence reagent kit (Millipore, MA, USA). Finally, 
densitometry analysis was performed by using ImageJ software.

Conditioned Place Preference
The CPP apparatus (15 cm × 15 cm × 30 cm) consisted of two 
chambers divided by a Plexiglas sliding door, one chamber is a 
black wall and a rough floor, and the other one is a white wall 
and a smooth floor. Mice were given a 15 min pretest to verify 
that the box configuration did not produce a significant bias 
for either chamber. However, individual mice tended to spend 
more time in one chamber or the other during the pretest, 
thus mice were morphine paired in the chamber in which they 
spent the least amount of time during the pretest (13). The 
experimental schedule for the CPP task is shown in Figure 1; 
mice were given 2 days for habituation freely in the apparatus 
for 15 min/day. On day 3, mice were placed into the chamber 
and allowed to move freely between the white and the black 
chamber for 15 min for the pre-conditioning, record the time 
that the mice spent in each chamber to determine the prefer-
ence of experimental mice before morphine administrator. 
On days 4, 6, 8, and 10, mice received a morphine injection 
(20  mg/kg) and were immediately placed into the appropri-
ate chamber (morphine-paired chamber) of the CPP box for 
15 min. Saline group and TG + saline group received a saline 
injection and were placed in the chamber (morphine paired) 
of the CPP apparatus for 15  min immediately. On days 5, 7, 
9, and 11, mice received a saline injection and were immedi-
ately placed in the opposite chamber (saline-paired chamber)  
for 15 min. On day 12, the post-conditioning test was performed 
without drug treatment, and the time when the mice spent in 
each chamber was measured for 15 min and time spent in each 
chamber was evaluated to determine preference. The standard 
for us to determine whether mice were addictive (CPP) is that 
the mice which previously tended to prefer the dark chamber 
turned to tend to prefer the white chamber after morphine condi-
tion. According to the data for the pretest, we found that overall 
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Figure 1 | Experimental schedule for measurement of morphine-induced conditioned place preference in mice. Arrows indicate days on  
which behavioral tests were carried out (morphine 20 mg/kg).

Figure 2 | Effects of thioredoxin-1 (Trx-1) overexpression on morphine-
induced conditioned place preference (CPP) in mice. The morphine-induced 
CPP was blocked in Trx-1 overexpressing transgenic (TG) mice. Mice were 
treated with morphine (20 mg/kg, intraperitoneally). Each bar represents the 
mean ± SE (n = 7). n.s. >0.05, ***P < 0.001, statistically significant.
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mice tended to prefer the dark chamber over the white cham-
ber, thus most mice received morphine in the white chamber.  
The formula for calculation is as follows: Post–Pre value (s) = the 
time the mice spent in the white chamber in Post-CPP test − the 
time the mice spent in the white chamber in Pre-CPP test.

High Performance Liquid Chromatography 
(HPLC) Analysis
The VTA and NAc samples (n = 6 per group) were ultrasonicated 
in 0.1 M perchloric acid containing 10 ng/mg of internal standard 
dihydroxybenzylamine. It was centrifuged at 12,000  rpm for 
15 min. The concentrations of DA and GABA were measured by 
1100 HPLC system equipped with an ECD-105 electrochemical 
detection (CoMetro) and XDB-C18 column (150 mm × 4.6 mm, 
50 mM, Agilent Technologies). The mobile phase A for separation 
consisted of the following: Na2HPO4, 50 mM; trisodium citrate, 
20  mM; triethylamine, 5  mM, pH 4.75; and l-heptanesulfonic 
acid 0.3 mM. The mobile phase B is methanol (A: B 1/4 95:5). 
The HPLC systems were controlled, and the data were collected 
by a computer equipped with ChemStation software from Agilent 
Technologies (14). The amounts of GABA and DA in each sample 
were calculated from calibration curves of standards which were 
run simultaneously with every set of unknown samples.

Statistical Analysis
The data were expressed as mean ± SE values. Statistical analysis 
was performed using GraphPad Prism5 software. Normality 
was assessed using the Shapiro–Wilk test. A two-way ANOVA 
followed by a Bonferroni post hoc analysis was used to identify 
differences between treatment groups. A P value less than 0.05 
was considered statistically significant.

RESULTS

Overexpression of Trx-1 Blocked  
CPP Induced by Morphine
Conditioned place preference is a model to examine the reward-
ing effects of drugs and other stimuli. The experimental schedule 
for the CPP is shown in Figure 1. The results showed that CPP 
was induced after morphine treatment in WT mice, while the 
CPP was not induced by morphine in Trx-1 TG mice (Figure 2). 
Two-way ANOVA revealed a significant mice  ×  drug interac-
tion (F1,24  =  48.33, P  <  0.001) and significant effects of mice 
(F1,24  =  27.01, P  <  0.001) and drug (F1,24  =  26.41, P  <  0.001). 
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Figure 3 | Thioredoxin-1 (Trx-1) expression in the ventral tegmental area (VTA) and nucleus accumbens (NAc). Immediately after the post-conditioning test, the 
VTA and NAc of mice were dissected out. Trx-1 expression was detected by western blot analysis. Trx-1 overexpression inhibited the further increase of Trx-1  
by morphine in the VTA (A) and NAc (B). Each bar represents the mean ± SE (n = 6). n.s. >0.05, *P < 0.05 and **P < 0.01, statistically significant.
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Bonferroni post  hoc test showed that significant difference 
between the saline and morphine group in WT mice (P < 0.001) 
but not in TG mice (P > 0.05).

The Expression of Trx-1 in the VTA and 
NAc After Morphine-CPP Training
The VTA and NAc are critically involved in CPP for both psycho-
stimulants and opiates (15, 16). Our previous study showed that 
Trx-1 was induced by morphine in vitro and in vivo (9, 10). Thus, 
we first examined the expression of Trx-1 after morphine treatment. 
The expression of Trx-1 was induced by morphine in the VTA of 
WT mice, while the expression was not induced by morphine in 
TG mice (Figure  3A). Two-way ANOVA revealed a significant 
mice × drug interaction (F1,20 = 5.01, P < 0.05) and significant effects 
of mice (F1,20 = 13.62, P < 0.01) and drug (F1,20 = 9.36, P < 0.01). 
Bonferroni post  hoc test showed a significant difference between 
the saline and morphine group in WT mice (P < 0.01) but not in 
TG mice (P > 0.05). The post hoc test also showed a significant dif-
ference between the TG and WT mice that have never been treated 
with morphine (P < 0.01). The expression of Trx-1 was induced by 
morphine in the NAc of WT mice; however, the expression of Trx-1 
was not induced by morphine in TG mice (Figure 3B). Two-way 
ANOVA revealed a significant mice × drug interaction (F1,20 = 9.59, 
P < 0.01) and significant effects of mice (F1,20 = 7.82, P < 0.05) and 
drug (F1,20  =  4.85, P  <  0.05). Bonferroni post  hoc test showed a 
significant difference between the saline and morphine group in 
WT mice (P < 0.01) but not in TG mice (P > 0.05). The post hoc test 
also showed a significant difference between the TG and WT mice 
that have never been treated with morphine (P < 0.05).

The Level of DA and the Expression of TH, 
D1 in the VTA and NAc After Morphine-
CPP Training
Dopaminergic neurons in the VTA and NAc are activated in 
response to unpredicted rewards or cues that predict reward 

delivery (17). The DA receptor 1 (D1) is abundantly expressed 
in the VTA, especially on GABAergic neurons and synaptic 
afferents (18). Tyrosine hydroxylase (TH) is the maker of dopa-
minergic neurons (19). In this study, we found that the level of 
DA was increased by morphine in the VTA of WT mice, while 
the DA level was not increased by morphine in the VTA in  
TG mice (Figure 4A). Two-way ANOVA revealed a significant 
mice × drug interaction (F1,20 = 40.5, P < 0.001) and significant 
effects of mice (F1,20 = 5.61, P < 0.05) and drug (F1,20 = 32.06, 
P <  0.001). Bonferroni post hoc test showed a significant dif-
ference between the saline and morphine group in WT mice 
(P <  0.001) but not in TG mice (P >  0.05). The post hoc test 
also showed a significant difference between the TG and WT 
mice that have never been treated with morphine (P < 0.001). 
The level of DA was increased by morphine in the NAc in WT 
mice, while the DA level was not increased by morphine in 
TG mice (Figure 4B). Two-way ANOVA revealed a significant 
mice × drug interaction (F1,20 = 56.95, P < 0.001) and significant 
effects of mice (F1,20 = 6.33, P < 0.05) and drug (F1,20 = 31.10, 
P <  0.001). Bonferroni post hoc test showed a significant dif-
ference between the saline and morphine group in WT mice 
(P < 0.001) but not in TG mice (P > 0.05). The post hoc test also 
showed a significant difference between the TG and WT mice 
that have never been treated with morphine (P  <  0.001). We 
found that the expression TH was increased by morphine in the 
VTA in WT mice, while the TH expression was not increased by 
morphine in TG mice (Figure 4C). Two-way ANOVA revealed 
a significant mice  ×  drug interaction (F1,20  =  4.54, P  <  0.05) 
and significant effects of mice (F1,20 = 12.48, P < 0.01) and drug 
(F1,20 = 6.46, P < 0.05). Bonferroni post hoc test showed a signifi-
cant difference between the saline and morphine group in WT 
mice (P < 0.01) but not in TG mice (P > 0.05). The post hoc test 
also showed a significant difference between the TG and WT 
mice that have never been treated with morphine (P < 0.01). 
The results also showed that TH was increased by morphine in 
the NAc in WT mice, while the TH expression was not increased 
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Figure 4 | Dopamine (DA) concentration and the expressions of tyrosine hydroxylase (TH) and D1 in the ventral tegmental area (VTA) and nucleus 
accumbens (NAc). Immediately following the post-conditioning test, the VTA and NAc of mice were dissected out. DA concentration was detected by high 
performance liquid chromatography in the VTA (A) and NAc (B). The expressions of TH and D1 were detected by western blot analysis. Thioredoxin-1 (Trx-1) 
overexpression inhibited the further increase of TH induced by morphine in the VTA (C) and NAc (D). Trx-1 overexpression inhibited the further increase of D1 
induced by morphine in the VTA (E) and NAc (F). Each bar represents the mean ± SE (n = 6). n.s. >0.05, *P < 0.05, **P < 0.01, and ***P < 0.001,  
statistically significant.
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by morphine in TG mice (Figure  4D). Two-way ANOVA 
revealed a significant mice × drug interaction (F1,20 = 6.84, 
P < 0.05) and significant effects of mice (F1,20 = 4.83, P < 0.05) 
and drug (F1,20  =  21.81, P  <  0.001). Bonferroni post  hoc test 

showed significant differences between the saline and morphine 
group in WT mice (P < 0.05) but not in TG mice (P > 0.05). 
The post hoc test also showed significant differences between the 
TG and WT mice that have never been treated with morphine 
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Figure 5 | GABA concentration and the expression of GABABR in the ventral tegmental area (VTA) and nucleus accumbens (NAc). After the post-conditioning test, 
the VTA and NAc of mice were dissected out. GABA concentration was detected by high performance liquid chromatography in the VTA (A) and NAc (B). The 
expression of GABABR was detected by western blot analysis. Thioredoxin-1 overexpression restored the expression of GABABR suppressed by morphine in the 
VTA (C) and NAc (D). Each bar represents the mean ± SE (n = 6). n.s. >0.05, **P < 0.01 and ***P < 0.001, statistically significant.
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(P < 0.05). We found that the expression of D1 was increased 
by morphine in VTA in WT mice, while the expression of 
D1 was not increased by morphine in TG mice (Figure  4E). 
Two-way ANOVA revealed a significant mice × drug interac-
tion (F1,20  =  10.08, P  <  0.01) and significant effects of mice 
(F1,20  =  20.17, P  <  0.001) and drug (F1,20  =  6.59, P  <  0.05). 
Bonferroni post hoc test showed a significant difference between 
the saline and morphine group in WT mice (P < 0.01) but not 
in TG mice (P > 0.05). The post hoc test also showed significant 
differences between the TG and WT mice that have never been 
treated with morphine (P < 0.001). We found that the expres-
sion of D1 was increased by morphine in the NAc of WT mice, 
while the expression of D1 was not increased by morphine in 
TG mice (Figure 4F). Two-way ANOVA revealed a significant 
mice × drug interaction (F1,20 = 6.06, P < 0.05) and significant 
effects of mice (F1,20 = 19.36, P < 0.001) and drug (F1,20 = 4.54, 
P  <  0.05). Bonferroni post  hoc test showed a significant dif-
ference between the saline and morphine group in WT mice 
(P < 0.01) but not in TG mice (P > 0.05). The post hoc test also 
showed significant difference between the TG and WT mice that 
have never been treated with morphine (P < 0.001).

The Level of GABA and the Expression  
of GABABR in the VTA and NAc After 
Morphine-CPP Training
Morphine targets GABAergic interneurons in the VTA and NAc 
and decreases their activity, which leads to an indirect increase 
activity of dopaminergic neurons (2). We found that the level 
of GABA was decreased by morphine in VTA in WT mice, 
while the level of GABA was not decreased by morphine in 
TG mice (Figure 5A). Two-way ANOVA revealed a significant 
mice × drug interaction (F1,20 = 20.28, P < 0.001) and significant 
effects of mice (F1,20 = 73.71, P < 0.001) and drug (F1,20 = 17.64, 
P < 0.001). Bonferroni post hoc test showed a significant dif-
ference between the saline and morphine group in WT mice 
(P < 0.001) but not in TG mice (P > 0.05). The post hoc test also 
showed a significant difference between the TG and WT mice 
that have never been treated with morphine (P < 0.001). The 
level of GABA was decreased by morphine in the NAc of WT 
mice, while the level of GABA was not decreased by morphine in 
TG mice (Figure 5B). Two-way ANOVA revealed a significant 
mice × drug interaction (F1,20 = 16.11, P < 0.001) and significant 
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effects of mice (F1,20 = 49.28, P < 0.001) and drug (F1,20 = 18.30, 
P < 0.001). Bonferroni post hoc test showed a significant dif-
ference between the saline and morphine group in WT mice 
(P < 0.001) but not in TG mice (P > 0.05). The post hoc test 
also showed a significant difference between the TG and WT 
mice that have never been treated with morphine (P < 0.001). 
We further detected the expression of GABABR in the VTA and 
NAc. The expression of GABABR was decreased by morphine 
in the VTA of WT mice, while the expression of GABABR 
was not decreased by morphine in TG mice (Figure  5C). 
Two-way ANOVA revealed a significant mice  ×  drug inter-
action (F1,20  =  5.68, P  <  0.05) and significant effects of mice 
(F1,20 = 256.57, P < 0.001) and drug (F1,20 = 8.78, P < 0.001). 
Bonferroni post hoc test showed a significant difference between 
the saline and morphine group in WT mice (P  <  0.01) but 
not in TG mice (P  >  0.05). The post  hoc test also showed a 
significant difference between the TG and WT mice that have 
never been treated with morphine (P < 0.01). The expression 
of GABABR was decreased by morphine in the NAc in WT 
mice, while the expression of GABABR was not decreased by 
morphine in TG mice (Figure 5D). Two-way ANOVA revealed 
a significant mouse × drug interaction (F1,20 = 5.51, P < 0.05) 
and significant effects of mice (F1,20 = 130.30, P < 0.001) and 
drug (F1,20 = 27.07, P < 0.001). Bonferroni post hoc test showed 
a significant difference between the saline and morphine group 
in WT mice (P  <  0.01) but not in TG mice (P  >  0.05). The 
post hoc test also showed a significant difference between the 
TG and WT mice that have never been treated with morphine  
(P < 0.001).

DISCUSSION

In this study, we found that overexpression of Trx-1 blocked 
morphine-induced CPP (Figure  2). Trx-1 expression was 
induced by morphine in the VTA and NAc. This result is con-
sisted with our previous study. Trx-1 was induced by morphine 
in the VTA, NAc, and prefrontal cortex, as well as the inducer 
of Trx-1 protected mice from rewarding effects induced by 
morphine (10).

The VTA and NAc are critically involved in CPP for both 
psychostimulants and opiates (15, 20). Studies have shown that 
activation of dopaminergic neurons in the midbrain can induce 
place preference (21). Dopaminergic neurons in the VTA are 
predicted to play roles in rewarding effects. The VTA contains 
substantial heterogeneity in neurotransmitter type, dopaminer-
gic and GABAergic neurons (22). The NAc is the main projection 
from the VTA (23). Thus, the increased expressions of TH and 
D1 induced by morphine in the VTA and NAc of WT mice were 
related to morphine-induced CPP. However, the level of DA as well 
as the expressions of TH and D1 was not induced by morphine 
in TG mice in which the CPP was blocked (Figures 4A–F). It has 
been reported that dopaminergic neurons in the VTA are inhib-
ited by endogenous GABA (24). Morphine inhibits GABAergic 
neurons in the VTA and disinhibits dopaminergic neurons (25). 
GABAergic inhibition results in tonic and phasic ignition of 
dopaminergic neurons. Similarly, activation of GABABR in the 
VTA by baclofen blocks both heroin self-administration behavior 

and DA release in the NAc (26, 27) and morphine-induced CPP 
(28). Taken together, GABABR in the VTA may play an essential 
role in mediating opiate reinforcement and rewarding effects. The 
majority of neurons in the NAc are GABAergic. Thus, GABABR in 
the NAc also plays an essential role in mediating opiate reinforce-
ment and rewarding effects. The GABAergic neuronal inhibition 
in the NAc can be antagonized by elevating endogenous GABA 
concentration in the VTA. Our results showed that the GABA 
release and the GABABR expression were decreased by morphine 
in the VTA and NAc of WT mice, while the alterations were 
inhibited in Trx-1 TG mice (Figures 5A–D). Thus, these results 
suggest that Trx-1 overexpression may block morphine-induced 
CPP through elevating endogenous GABA concentration and 
GABABR expression.

Interestingly, the expressions of TH, D1, and GABABR were 
upregulated by Trx-1 (Figures 4C–F and 5C,D). These results may 
be explained by the following studies. Our previous study showed 
that epinephrine increased TH expression through upregulating 
Trx-1 expression (14). Trx-1 increases the expressions of TH 
and D1 through increasing the expressions of c-fos and cAMP-
response element binding protein (CREB) (29, 30). Forskolin 
enhances GABAergic responses (31). Trx-1 may increase GABABR 
expression through upregulating forskolin/CREB. Thus, as our 
previous study suggested (11), an active defense system may have 
been built through increasing the levels of TH, D1, and GABABR 
by the overexpression of Trx-1 in TG mice, which may contribute 
to the resistance of the development of CPP during morphine 
condition training.

In conclusion, Trx-1 overexpression blocks morphine-induced 
CPP in mice through regulating dopaminergic and GABAergic 
systems in the VTA and NAc. Our results indicate that Trx-1 may 
be a novel therapeutic target for morphine dependence.
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Prescription opioid misuse is an ongoing and escalating epidemic. Although these 
pharmacological agents are highly effective analgesics prescribed for different types of 
pain, opioids also induce euphoria, leading to increasing diversion and misuse. Opioid 
use and related mortalities have developed in spite of initial claims that OxyContin, 
one of the first opioids prescribed in the USA, was not addictive in the presence 
of pain. These claims allayed the fears of clinicians and contributed to an increase 
in the number of prescriptions, quantity of drugs manufactured, and the unforeseen 
diversion of these drugs for non-medical uses. Understanding the history of opioid 
drug development, the widespread marketing campaign for opioids, the immense 
financial incentive behind the treatment of pain, and vulnerable socioeconomic and 
physical demographics for opioid misuse give perspective on the current epidemic 
as an American-born problem that has expanded to global significance. In light of the 
current worldwide opioid epidemic, it is imperative that novel opioids are developed 
to treat pain without inducing the euphoria that fosters physical dependence and 
addiction. We describe insights from preclinical findings on the properties of opioid 
drugs that offer insights into improving abuse-deterrent formulations. One finding is 
that the ability of some agonists to activate one pathway over another, or agonist bias, 
can predict whether several novel opioid compounds bear promise in treating pain 
without causing reward among other off-target effects. In addition, we outline how the 
pharmacokinetic profile of each opioid contributes to their potential for misuse and 
discuss the emergence of mixed agonists as a promising pipeline of opioid-based 
analgesics. These insights from preclinical findings can be used to more effectively 
identify opioids that treat pain without causing physical dependence and subsequent 
opioid abuse.

Keywords: biased agonism, pharmacokinetics, opioid epidemic, chronic pain, opioid use disorder, oxycodone, 
mixed agonists
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OXYCODONE AND OXYCONTIN AT THE 
CENTER OF THE PRESCRIPTION OPIOID 
EPIDEMIC

The History of Oxycodone Treatment of 
Chronic Non-Cancer Pain
Oxycodone, a semisynthetic opioid, was first formulated in 
1916 from thebaine, a chemical found in opium poppy plants. 
The drug was first marketed as a less addictive alternative to 
“narcotic” drugs, such as morphine and heroin, which were 
typically prescribed to patients as an analgesic in the early 1900s. 
Oxycodone was first released in the USA in 1939 by Merck as 
a combination drug containing scopolamine, oxycodone, and 
ephedrine, but was discontinued in 1987 (1). Purdue Pharma 
then developed an extended-release formulation of oxycodone, 
called OxyContin. The FDA approved OxyContin in 1995 
(2), noting that the reduced frequency of dosing was the only 
advantage of OxyContin over regular oxycodone (3). This drug 
was aggressively marketed by Purdue Pharma for opioid-based 
management of moderate-to-severe cancer and non-cancer pain 
where the use of an opioid analgesic was considered appropriate 
for more than a few days (2). Purdue used an aggressive market-
ing strategy to target-specific physicians (4), particularly those 
with less time to evaluate patients and often with less training 
in pain-management techniques. This led to more than half of 
the total OxyContin prescriptions being written by primary care 
physicians rather than pain specialists (4). In addition, direct-to-
consumer pharmaceutical advertising, allowed only in the USA 
and New Zealand, has contributed to mass consumer awareness 
of the availability of these drugs with a demonstrated influence 
on the prescribing practice of physicians (5, 6). This aggressive 
physician directed marketing, as well as direct-to-consumer mar-
keting, has become a benchmark for the marketing of opioids.

The Financial Incentive for Prescription 
Opioid Distribution
The Purdue-Frederick company first marketed MsContin 
(morphine sulfate) as an extended-release opioid-containing 
formula to treat pain in terminal cancer patients. MsContin 
generated $475 million in sales over a decade. After the Sackler 
brothers acquired Purdue-Frederick and rebranded the company 
as Purdue Pharma, they released OxyContin, which generated 
$45 million in sales in just the first year after its release in 1996. 
By 2001, the annual revenue from OxyContin sales reached $1.1 
billion and rose to $2.528 billion by 2014 in the USA alone.

Currently, the Purdue Pharma company is 100% owned by 
members of the Sackler family, who are worth $13 billion and 
ranked as the 19th wealthiest family in the USA in 2016 (7). In 
addition to Purdue Pharma and other Sackler holdings, there are 
several other companies manufacturing oxycodone and related 
opioid compounds to fill the 259 million annual prescriptions 
written to patients in the USA, generating an additional $11 billion 
in opioid sales annually in 2011 (8). These include Abbot Labs, 
Novartis, Teva, Pfizer, Endo Pharmaceuticals, Impax, Actavis, 
Sandoz, Janssen Pharmaceuticals, etc. Together, these figures 
demonstrate the significant financial incentive pharmaceutical 

companies have to market opioid compounds despite growing 
concerns of the abuse liability and safety of these drugs.

Recognition of the Abuse Liability of 
Oxycodone and OxyContin
OxyContin was marketed as a delayed-release formulation allo
wing 12  h of continuous analgesia with fewer side effects than 
other opioid-based analgesics if used as directed. This formula-
tion was promising in that the delayed-release would enable 
patients to sleep through the night, improving the standard of 
care for chronic pain patients at the time. However, this drug  
has been widely misused for non-medical purposes. At the time 
of the release of OxyContin in 1996, it was already known that 
68% of an OxyContin tablet could be extracted by crushing the 
tablet (4). Since the first published reports of OxyContin abuse in 
2000 (9), public awareness of its abuse liability has grown. Indeed, 
Purdue-Frederick, a holding of Purdue Pharma, paid $470 mil-
lion dollars in fines to federal and state agencies and $130 million 
of payments in civil suits due to the misbranding of OxyContin as 
non-addictive in 2007 (10). Three executives of Purdue Pharma 
also pleaded guilty to OxyContin misbranding charges and paid 
$34.5 million in fines. By early 2017, there were daily reports of 
the diversion and misuse of prescription opioids with a number 
of states and counties across the country filing suit against five 
pharmaceutical companies, including Purdue. The plaintiffs in 
these suits claimed that the aggressive marketing campaign of opi-
oid compounds is founded on fraudulent assertions of the safety 
of these drugs and that this misinformation has contributed to 
the ongoing opioid crisis. Purdue has responded to these claims 
by emphasizing that opioids are essential in pain management 
(2) and that their extended-release abuse-deterrent formulations 
are evidence of their drive to reduce the diversion of OxyContin 
(8). In 2018, Purdue stated it will no longer advertise directly to 
American doctors, a measure that will hopefully reduce over-
prescription of opioids (11).

The Patterns of Prescription Opioid 
Misuse and Overdose Mortalities 
Worldwide
The incidence of lifetime OxyContin abuse in the USA increased 
from 0.1% in 1999 to 0.4% in 2001 (12). By 2013, over 1,000 
Americans were treated daily in emergency departments for 
prescription opioid misuse and in 2014, 4.3 million people used 
prescription opioids for non-medical reasons (13, 14). This trend 
was also seen in the number of deaths attributed to oxycodone, 
which increased from 14 cases in 1998 to ~14,000 cases in 2006 
and 18,000 in 2015 (15). Although not of the same magnitude 
and somewhat delayed, this increase in opioid abuse and mor-
tality is also occurring in other countries (16, 17). In Australia, 
oxycodone-related deaths increased sevenfold between 2001 and 
2011 (18). In Finland, opioid mortalities increased from 9.5% of 
all drug overdose deaths in 2000 to 32.4% in 2008 (19), and data 
from Brazil, China, and the Middle East show similar increases 
in opioid diversion (17). In the United Kingdom, although 
tramadol and methadone are misused over oxycodone, the pat-
tern of opioid misuse shows a similar increase to the USA albeit 
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on a smaller scale (20). While Americans consume 80% of the 
global opioid supply and 99% of the global hydrocodone supply 
(21) and the number of overdose mortalities is considerably 
higher in the USA, the opioid epidemic is growing worldwide.

The Most Vulnerable Populations
The incidence of opioid overdose mortality in the USA shows 
three hotspots: (1) the Appalachian states of Kentucky, Virginia, 
West Virginia, Pennsylvania, and Ohio, (2) the Northeast states of 
Maine, New Hampshire, and Rhode Island, and (3) the Southwest 
states of Nevada, Utah, New Mexico, and Arizona (15). This could 
be related to the demographics of these areas and the prescrib-
ing habits of the local medical professionals and pharmacies 
(22–25). Within all of these affected areas, opioid-related deaths 
are predominately Caucasians of middle age and are a result of 
drug overdose, alcohol-related disease, suicide, and psychiatric 
disorders. This has resulted in the first decline in life expectancy 
in the USA since 1993 (26–29). This has been highlighted in a 
series of articles that describe this population as subject to the 
“deaths of despair” (27, 30) and a “toxic stress” response to benign 
early-life events (31).

The primary factor contributing to these “deaths of despair” 
is the collapse of the white high-school educated working class 
from its heyday of the 1970s. This population’s struggles in the job 
market in early adulthood became more difficult over time and 
are accompanied by health and personal issues that contribute to 
an increased morbidity from chronic pain, and physical and men-
tal health disorders including opioid use disorder [OUD (32)]. 
The (USA) National Bureau of Economic Research found that for 
every 1% increase in unemployment, there is a 3.6% increase in 
opioid-related deaths, suggesting that macroeconomic conditions 
have influence over national drug misuse (33). Considering the 
global economic aftershocks of the USA’s recession, we suggest 
that global economic recession contributed to the developing 
international opioid epidemic. To this point, a meta-analysis of 
research published from 1995 to 2015 in South America, the 
Caribbean, Europe, Asia, the USA, and Australia suggests that 
economic depression causes mental health issues that exacerbate 
illicit drug use (34). Case and Deaton additionally report that the 
use of prescription opioids did not create the vulnerable American 
profile, but the ease of availability of these compounds and the 
difficulty in treating opioid misuse in a depressed economy has 
inflamed the “sea of despair” that extends across the USA (27, 30).

Addressing Chronic Pain in the Midst of 
the Opioid Epidemic
It is clear that mass production, marketing, and prescription 
of opioids for pain treatment has contributed to the opioid 
epidemic in vulnerable demographics, characterized by mental 
health disorders, socioeconomic challenges, and susceptibil-
ity to occupational injury. We discuss the interplay of mental 
health, pain, and depression, and how these factors contribute 
to the misuse and addiction of prescription opioids. One of the 
key marketing claims of pharmaceutical companies was that 
the presence of pain is protective against opioid misuse. The 
evidence for this claim is shockingly limited due to evolving 

diagnostic criterion for opioid misuse and does not account for 
the influence of mental health on opioid misuse behavior in the 
pain state. This gives us perspective toward treating pain with 
the intent to limit the pro-addiction properties and off-target 
effects of future pharmaceuticals to decrease opioid dependence 
in the chronic pain state. We look to insights from behavioral 
research on addiction and reward, and then to mechanistic 
research on the pharmacokinetic and signaling properties on 
opioids to address these issues.

ARE CHRONIC PAIN PATIENTS AT RISK 
FOR OPIOID MISUSE?

The Use of Opioids to Treat Chronic Pain
Opioids are highly effective analgesics for the management of 
acute pain or pain associated with cancer but it is the opioid treat-
ment of non-cancer pain that is at the root of the opioid epidemic. 
Before the introduction of OxyContin, patients of all ages suffer-
ing from chronic non-cancer pain were commonly under-treated 
due to a fear of opioid addiction and of other side effects of these 
drugs (35–37). There were also few viable alternatives, heroin and 
its metabolite, morphine, had been abused during the Vietnam 
war and a prevailing public stigma against the use of drugs devel-
oped (38). This culminated in an “opioid-phobia” and recurrent 
under-treatment of pain. Spurred by the promise that the pres-
ence of pain protects against opioid addiction in patients with 
chronic cancer pain (39), the availability of a slow-release opioid 
(OxyContin) and an aggressive marketing strategy by Purdue, 
opioid-phobia was replaced by an over-willingness to prescribe 
opioids. This openness, based on the success of long-term opioid 
treatment of cancer patients by oncologists and pain specialists 
(39) was coupled with a lack of adequate physician training in 
the appropriate use of opioids or evidence for their use in other 
pain conditions, increasing market pressure and a lack of regula-
tory control by the government. This timely interplay of multiple 
factors resulted in the number of opioid prescriptions per 100 
persons per year increasing from 61.9 in 2000 to 83.7 in 2009, 
and to 259 million prescriptions by 2012, almost one per person 
(40–42). This increase has not been reflected by a change in the 
percentage of either ambulatory Americans or those reporting to 
the emergency department in pain, suggesting that the increase 
in opioid prescriptions is unrelated to the presence or absence of 
pain (43, 44). However, these large scale epidemiological stud-
ies make it difficult to assess whether opioid-based treatment 
of the ~100 million Americans in pain (45) has influenced the 
incidence of opioid misuse that affects 4.3 million Americans (14, 
46). Assessing the risk of opioid misuse in chronic pain patients 
provides greater insight into the vulnerability of these patients 
for addiction.

The Risk of Opioid Misuse in Chronic Pain 
Patients
At the center of the opioid epidemic lies an unanswered question 
as to whether pain is protective of opioid misuse, a claim first 
made by Purdue in the 1990s. This was based on the findings 
from two studies that suggested the risk of addiction in pain 
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patients was less than 1% (4). In the first study, Porter and Jick 
found iatrogenic addiction in 4 of 11,882 patients (47) and in 
the second, Perry and Heidrich found no addiction among 
10,000 burn patients treated with opioids (48). A third study 
by Portenoy and Foley found no evidence of abuse behaviors in 
38 patients treated with different opioids (49). The 5-sentence, 
101-word letter to the New England Journal of Medicine in 1980 
by Porter and Jick was recently found to have been uncritically 
cited by 439 authors as proof that addiction was rare in long-term 
opioid therapy. Despite its limitations, this letter and its citations 
have made a seminal contribution to the opioid crisis (50).

Before considering the evidence for a protective effect of pain 
in preventing opioid misuse, the criterion by which to assess 
opioid misuse must be defined. Initially, opioid dependence and 
addiction were considered the definitive benchmark. These terms 
have recently been replaced by the term “opioid misuse” or the 
use of opioids for any other reason or under any other dosing 
schedule than originally prescribed. The diagnostic classification 
system of patients misusing opioids has similarly evolved and 
the terms “abuse” or “dependence” have been replaced by the 
diagnosis of OUD. According to the criteria established by the 
Diagnostic and Standard Manual of Mental Disorders (DSM) V 
(51), OUD has levels of severity depending on the number of cri-
teria met in several categories. The four categories of criteria that 
characterize OUD include impaired control, social impairment, 
risky use, and pharmacological properties (physical tolerance and 
withdrawal symptoms).

Using these criteria, recent reports clearly show that the 
incidence of opioid misuse and aberrant drug-related behavior 
is in fact higher, not lower, in pain patients compared with the 
general population (52–63). Chronic pain patients have a higher 
rate of comorbid depression and anxiety, likely contributing to 
their increased use and misuse of opioids (64). Indeed, 30–80% 
of chronic pain patients are concurrently diagnosed with both 
depression and chronic pain, a comorbidity known as the pain-
depression dyad (65, 66). Both conditions are closely interwoven 
in that they respond to similar treatments, aggravate or improve 
each other, and share common biological mechanisms [for review 
see Ref. (67)]. Using opioids to relieve pain in the presence of 
this dyad may in itself drive further psychiatric comorbidities 
(68). This patient population is unsurprisingly more likely to 
increasingly misuse opioids (58, 63, 69–71). Patient escalation of 
opioid doses in response to the progressive interaction between 
pain and affect or to compensate for tolerance and changes in 
pain sensitivity over time (“pseudoaddictive” behaviors) (71–73) 
may explain enhanced aberrant drug-related behaviors in chronic 
pain patients (61), as well as the positive correlation between 
baseline pain and the presence of OUD at a 3-year follow-up (74).

WHY ARE OPIOIDS SO ADDICTIVE?

The motivation to continue taking drugs in spite of adverse con-
sequences can be explained by several concurrent theories. The 
Opponent Process theory (75) results from a balance between two 
valuationally opposite components, a loss of function within the 
reward-mediating dopaminergic circuits and an increased func-
tion of stress-related circuitry involving the extended amygdala, 

the kappa/dynorphin opioid and corticotrophin-signaling systems 
[reviewed in Ref. (76)]. The latter system becomes hyperactive 
during opioid dependence and manifests as increased anxiety 
and aggressive behaviors (77, 78). Another, co-occurring theory 
of the motivation behind continued drug use is the Incentive 
Sensitization theory that proposes an increase in drug-paired 
cues with chronic drug taking (79). Together, these systems 
drive drug-seeking behavior that is a product of (1) a decrease 
in positive outcome coupled with the promise and pullof drug-
associated cues and (2) an increase in dysphoria between drug 
exposures and during withdrawal (80–82). This is particularly 
relevant for opioids as these compounds induce a tolerance to 
repeated exposures of the same dose of the drug. This leads to  
(1) an escalating intake of opioids over time resulting in compul-
sive opioid-taking behaviors (83), (2) increasing dependence, and 
(3) increasing negative affect seen in the absence of the drug (84) 
that together culminate in further dysregulation of the reward 
system (85).

The negative affective state of depression and anxiety asso-
ciated with chronic pain can be relieved temporarily by the 
analgesic and euphoric properties of acute opioid use, which 
contributes to their abuse liability in the chronic pain state (86). 
However, both pain and opioid use create a new homeostasis in 
the reward and stress-related pathways [reviewed in Ref. (87)],  
an example of which can be seen in chronic pain patients who 
misuse opioids and also fail to show a positive affect from 
natural rewards (84, 88). Preclinical studies in rodent models 
have been able to examine the interaction between pain and 
opioids at several levels. Pain does not affect the number of low 
doses of opioid infusions (of heroin, morphine, and oxycodone) 
earned in a self-administration model of drug-seeking behavior 
but does increase heroin self-administration to binge levels at 
higher doses and during prolonged access to the drug (89–93). 
By contrast, pain reduces the self-administration of fentanyl 
(94), a shorter-acting but highly efficacious opioid that rapidly 
crosses the blood–brain barrier (BBB) (95). Pain also increases 
drug (morphine)-seeking behavior when the drug is no longer 
available (96). This result suggests that the abuse liability of 
opioids in the chronic pain state is not directly motivated by 
analgesia-seeking and intensifies when the drug is no longer 
available yet drug-associated cues and environmental stimuli are 
present. Together, these preclinical findings suggests that chronic 
pain produces a vulnerability to addiction-like behavior, bearing 
a similarity to the behavior of opioid addicts in chronic pain 
who are more likely to relapse once tapering off a maintenance 
buprenorphine naloxone treatment (97).

THE CURRENT CLINICAL TREATMENT OF 
CHRONIC PAIN PATIENTS WITH OPIOID 
USE DISORDER

The current clinical treatment of chronic pain in patients with 
OUD in the USA relies on 3 FDA-approved medications: 
buprenorphine naloxone, methadone, and long-acting injectable 
naltrexone (98). These strategies seek to antagonize or minimize 
the agonist properties of opioids to reduce the likability of 
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opioids. The use of methadone in the USA for OUD is limited to 
highly restricted methadone programs, but buprenorphine can 
be prescribed for office-based treatment by certified physicians. 
Buprenorphine, an opioid partial agonist, has analgesic effects 
and can be used to treat co-occurring chronic pain and OUD. 
While outcomes for OUD treatment with buprenorphine are 
similar for patients with and without chronic pain (99), poorly 
controlled pain during buprenorphine treatment is a risk for 
opioid relapse (97, 100, 101). Buprenorphine combined with 
naloxone, an opioid antagonist added to reduce diversion of 
buprenorphine for intravenous abuse, is FDA approved for OUD 
(e.g., Suboxone®), while a transdermal formulation (Butrans®) 
and a buccal film (Belbuca®), both without added naloxone, are 
approved for chronic pain. There are several novel compounds 
and approaches under development to treat pain, non-opioid 
compounds such as those that target cannabinoid receptors 
(102) and non-pharmaceutical, behavioral-based options to treat 
pain patients (103). However, for patients with chronic pain who 
continue to prefer a “quick fix from pain pills,” the development 
of analgesic compounds that are not rewarding and have minimal 
off-target effects remains a challenge in the current context of the 
opioid epidemic.

NOT ALL OPIOID ANALGESICS ARE THE 
SAME: EXPLORING NOVEL 
PHARMACEUTICAL APPROACHES TO 
GUIDE THERAPEUTIC INTERVENTIONS 
FOR CHRONIC PAIN

Opioids have been used for centuries as the treatment of choice 
for pain but “abuse-deterrent” formulations may decrease opioid 
misuse and deaths if strategically developed. Abuse-deterrent for-
mulations of existing opioids are one strategy to reduce misuse, but 
they have been demonstrated to be modifiable, necessitating the 
consideration of additional properties to minimize abuse liability 
and fatalities. We suggest that therapeutics that do not produce 
reward are most likely to reduce diversion for misuse. Focusing 
on this approach, we discuss novel interventions that maximize 
analgesic properties while minimizing reward-promoting effects 
on the affective state. To provide background information for this 
section, we have included a table (Table 1) of the clinical use and 
pharmacological properties of opioids commonly used in the 
clinic and those that are often abused. This table shows that most 
opioids used clinically to relieve pain are either full or partial 
agonists of the mu opioid receptor (MOR) with some activity at 
other members of the family of opioid receptors.

Biased Agonism of the Mu Opioid 
Receptor
Over the years, many opioid compounds have been classified by 
their efficacy to activate a downstream pathway (such as cAMP), 
their selectivity for a specific opioid receptor, and ability to 
desensitize, internalize, and re-sensitize the ligand-bound recep-
tor. More recently, many opioids have been further classified by 
their ability to induce a specific ligand-receptor conformation 
to recruit and activate different downstream signaling cascades 

[reviewed in Ref. (153)]. This bias toward either activation of 
G-protein-dependent or G-protein-independent, arrestin signal-
ing pathways is known as “biased agonism” (154). This is an excit-
ing discovery with obvious translational significance if specific 
pathways can indeed be activated to reduce non-analgesic opioid 
signaling. For MORs and other G-protein coupled receptors, such 
as the Cannabinoid 1 receptor, agonists biased toward arrestin-
mediated signaling rather than G-protein-dependent signaling 
pathways seem to produce greater adverse side effects (155, 156). 
This has led to an emphasis on developing compounds that do 
not recruit either of the non-visual arrestin isoforms very well. 
Herkinorin was the first example of a MOR agonist showing that 
reduction of arrestin-signaling bias is associated with reduced 
adverse side effects. Using this logic, novel MOR agonists such 
as TRV130, TRV0109101, and PZM21, have been developed that 
do not recruit arrestin very well and also induce fewer adverse 
side effects (156–159). In particular, TRV130 has been shown 
to be G-protein biased, has a greater or equal analgesic potency 
to morphine, and induces less tolerance (160, 161). However, 
it is controversial as to whether TRV130 causes less rewarding 
behaviors, inhibition of gastrointestinal transit, or induction 
of respiratory depression than morphine (158, 160, 161). This 
compound is now in a Phase III clinical trial for parenteral treat-
ment of acute pain (NCT02656875). TRV0109101 is also biased 
toward G-protein signaling and does not induce hyperalgesia, a 
common side effect of chronic opioid use (159). PZM21 similarly 
does not recruit β-arrestin 2 but is less potent than morphine and 
appears to induce less constipation, less respiratory depression, 
and reduced reward-seeking behaviors (158).

Using agonist bias profiles to predict the abuse of the com-
monly abused semisynthetic and synthetic opioids yields mixed 
results. For example, morphine shows the same or greater arrestin 
bias than oxycodone (162, 163), yet oxycodone has a greater abuse 
liability than morphine (136). Fentanyl and its analogs are highly 
abused yet this class shows no overt bias for either signaling 
pathway. This suggests that biased agonism alone cannot be used 
to separate the analgesic from rewarding properties of opioids.

Pharmacokinetics
The action of opioids in the central nervous system facilitates 
analgesia mediated at supraspinal sites, such as those in the ros-
tral ventral medulla, but also induces euphoria due to signaling 
at different central opioid receptor populations mediating reward 
(164). These central effects of opioids are also the major cause of 
overdose lethality due to respiratory depression (165), which is 
mediated by opioid receptors in breath-pattern generating neu-
rons such as those in the pre-Bötzinger’s complex of the medulla 
(166). Limiting the access of opioids to the central nervous system 
is a beneficial pharmacokinetic manipulation that may bypass 
these off-target effects while preserving the potential for analgesia 
mediated by signaling at opioid receptors in the spinal cord or 
primary nociceptive afferent neurons.

This relationship between the pharmacokinetic profile of 
opioids and their abuse liability was first described in the 1970s  
(167, 168) and resulted in the use of buprenorphine and metha-
done as a non-rewarding analgesic or to treat OUD (104, 167, 169).  
It is now well-known that the intrinsic abuse liability of an opioid 
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Table 1 | Descriptive and clinically relevant information of common opioids including clinical formulations, class of opioid, clinical uses, and cellular targets.

Drug [brand or 
alternative name(s)]

Common clinical 
formulation(s) (USA  
unless stated otherwise)

Classification; origin Clinical use Cellular target

Buprenorphine  
(e.g., Suboxone, 
Subutex, Buprenex)

Buprenorphine  
hydrochloride, buprenorphine 
naloxone (4:1)

Semisynthetic opiate; 
thebaine of the opium  
poppy (104)

Analgesia and maintenance therapy or 
opiate addiction treatment (Step 3 pain 
medication) (104)

Partial MOR agonist, KOR 
antagonist, nociceptin receptor 
agonist and antagonist (105, 106)

Fentanyl (e.g., Actiq, 
Duragesic, Fentora)

Fentanyl citrate Synthetic opioid; 
N-phenethyl- 
piperidone (95)

Chronic and acute pain; administered 
orally, IV, transdermal patches (Step 3 
pain medication) (107, 108)

Full MOR agonist, weak KOR 
agonist (109)

Heroin (i.e., 
diamorphine)

Diamorphine (UK) (110), 
diacetylmorphine (Canada/
Switzerland) (111)

Opiate; morphine, and 
opium poppy (112)

Strong analgesic (Step 3 pain medication) 
(113, 114), opiate addiction treatment 
(Switzerland, Netherlands, Germany, 
England, Denmark) (115)

Partial MOR agonist (116) acts as 
prodrug (see active metabolites).

Hydrocodone  
(i.e., dihydrocodeinone) 
(e.g., Zohydro ER, 
Vicodin)

Hydrocodone bitartrate, 
hydrocodone bitartrate,  
and acetaminophen (117)

Semisynthetic opioid  
(118, 119); codeine  
(from opium poppy)

Chronic pain and opioid maintenance 
therapy (117)

Full MOR agonist (118)

Hydromorphone  
(e.g., Dilaudid)

Hydromorphone 
hydrochloride (120)

A semisynthetic opioid; the 
hydrogenated ketone of 
morphine (121)

Acute and chronic analgesia (Step 3 pain 
medication) (122), 5–8× more potent  
than morphine (123)

Full MOR agonist, partial DOR 
agonist, and weak KOR agonist 
(124, 125)

Methadone  
(e.g., Dolophine)

Methadone hydrochloride  
[(R) or racemic mixture]  
(126, 127)

Synthetic opioid (128); 
diphenylacetonitrile (129); 
and 1-dimethylamino-2-
chloropropane (130)

Opioid dependence treatment 
(detoxification), chronic pain (131, 132)

Levo: full MOR agonist (109);  
dextro (d) NMDA antagonist (127).

Morphine (e.g., 
morphine sulfate ER, 
Roxanol, MsContin)

Morphine sulfate Opiate; opium poppy (133) Acute and chronic pain (Step 3 pain 
medication) (134)

Partial MOR agonist, weak DOR 
agonist (109, 135)

Oxycodone  
(e.g., Oxycontin, Norco, 
etc.)

Oxycodone hydrochloride, 
oxycodone acetaminophen, 
and oxycodone aspirin

Semisynthetic opiate; 
thebaine of the (136) opium 
poppy (137, 138)

Acute and chronic pain; may be superior 
than morphine for some types of pain 
(Step 3 pain medication) (139, 140)

Medium MOR agonist, partial  
KOR agonist (141), and partial  
DOR agonist (137, 142)

Remifentanil  
(e.g., Ultiva)

Remifentanil hydrochloride 
(always administered IV)

Synthetic opioid (143); 
derivative of fentanyl (144)

Acute pain or sedation (50–100× more 
potent than morphine) often used for 
surgical procedures (145–148)

Full MOR agonist (143)

Tramadol  
(e.g., Ultram)

Tramadol hydrochloride 
[racemic (+/−)], Tramadol 
hydrochloride, and 
acetaminophen

Synthetic opioid; salicylic 
acid with addition 
of 3-methoxyphenyl 
magnesium halide (149)

Moderate pain (Step 2 pain medication) 
(149, 150). Analgesic potency is 10%  
that of morphine (149)

(+/−) MOR agonist (151), (−) 
monoamine reuptake  
inhibitor (152)

Alternative names refer to either the chemical name (referred to as i.e.) or brand name (referred as e.g.). Pain medication steps of analgesia are derived from World Health 
Organization classifications.
MOR; mu opioid receptor, DOR; delta opioid receptor, KOR; kappa opioid receptor.
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is a product of different pharmacokinetic parameters such as the 
time to peak plasma concentration, lipid solubility, BBB transport 
(a combination of passive diffusion and active transport in and 
out of the brain), and the presence of bioactive metabolites. 
Abuse liability may also be influenced by availability, with some 
compounds such as remifentanil being less available than others, 
such as methadone and heroin. We have outlined these pharma-
cokinetic properties and the abuse potential of commonly abused 
opioids and those used clinically (Table 2). This shows that fen-
tanyl is one of the most rapidly bio-available opioids but has the 
same elimination half-life as morphine. However, it is highly lipid 
soluble (580× that of morphine) and so more easily crosses the 
BBB in both directions, shortening its effective duration of action. 
Heroin is a prodrug that is quickly transported across the BBB and 
converted to 6-acetyl-morphine, morphine, and demethylated to 
hydromorphone (170). Both of these opioids have a high abuse 
liability, but fentanyl and its derivatives are both more potent and 

have a longer elimination half-life making the fentanyl family of 
opioids fatal if taken in unknown or high quantities, as has often 
been the case (171). In comparison, morphine is hydrophilic, has 
poor protein binding capacity and its transport across the BBB 
is regulated, making it less likely to be abused. Compared with 
morphine, oxycodone is actively transported across the BBB, has 
a more rapid onset of effect and several active metabolites that 
all contribute to its greater abuse profile. At the other end of the 
spectrum are methadone and buprenorphine with medium-to-
low abuse liabilities explained by low BBB permeability and a 
longer elimination half-life, in addition to differences in receptor 
selectivity and pharmacological profiles (Tables 1 and 2).

The positive correlation between BBB permeability/transport 
with abuse liability is the cornerstone of the strategically designed 
novel mu-opioid agonist, NKTR-181, which is analgesic but has 
limited abuse liability in humans (208, 209). This compound has a 
poly-ethylene glycol side chain and shows delayed transfer across 
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Table 2 | The abuse liability, aspects of the pharmacokinetic profile, and bioavailability of select clinical and abused opioid compounds.

Drug Abuse liability Onset of effect and 
time to peak plasma 
concentration (min to h)

Elimination 
half-life 
(generally 
oral/human)

Metabolite(s) Metabolite half-life Bioavailability and 
blood–brain barrier (BBB) 
permeability/transport

Buprenorphine Low in relation 
to other opioids 
(172, 173)

Sublingual onset of 
0.25–0.75 h, peak plasma 
concentration at 2 h (174)

3–48 h (175), 
variable

Buprenorphine-
3-glucuronide, 
norbuprenorphine-3-
glucuronide (106)

Unknown (106) 28–51% bioavailability (176), 
low BBB permeability (177)

Fentanyl Very high 
(178–180)

2–5 min onset of action, 
and peak plasma 
concentrations of 20 min 
after oral and 12 min  
after intranasal 
administration (95)

1.5–7 h  
(181)

Norfentanyl; minimal 
activity (182)

N/A 50–90%, highly lipophilic  
and high BBB permeability 
through passive and active 
transport (178, 183).  
Transfer half-life of  
4.7–6.6 min (95)

Heroin Very high (184) 45 s to onset of effect, 
heroin undetectable in 
blood and CSF by 20 min 
in rats (185)

3 min (IV) 
(170)

6-Monoacetylmorphine 
(6-MAM), morphine,  
and morphine’s 
metabolites (182)

6-MAM < 10 min after 
BBB crossing (116). 
Plasma conversion to 
morphine: 1.5–4.5 h, 
hydromorphone: 5 h, 
M6G: 2 h, M3G: 1.5 h

High (lipophilic) 60% or  
greater BBB permeability  
(116, 186)

Hydrocodone High (136, 179, 
187)

10 min to onset of effect 
and peak effects within 
30–60 min (188)

3–9 h (189) Hydromorphone and 
norhydrocodone (190).

Hydromorphone: 5 
norhydrocodone: 8 (191)

25% bioavailability; 50%  
BBB permeability (187)

Hydromorphone High (179) 5–30 min to onset of 
action, 30 min to peak 
effect (125, 189)

2–3 h (192) Hydromorphone-3-
glucuronide (182)

1.5–3 h (193) 55% bioavailability (194), 
higher BBB permeability  
than morphine; transfer  
half-life; 18–38 min (191)

Methadone Medium (172) 30 min for onset of action, 
1–5 h (132, 185)

4–6 h (132) or 
longer (195) 

None (196) N/A 41–99% bioavailability (195), 
40% permeability (186)

Morphine High (136, 179) 15–60 min (125, 139) 1.5–4.5 h  
(IV and IM)  
(121, 137)

Active: morphine-6-
glucuronide (M6G) and 
hydromorphone. Inactive: 
morphine-3-glucuronide 
(M3G) (182). 

M6G: 2 h (197); 
hydromorphone: 5 h 
(191); M3G: 1.5 h (198)

30% bioavailability, low  
BBB permeability; transfer 
half-life; 1.6–4.8 h (191)

Oxycodone Very high 
(greater than 
morphine and 
hydrocodone) 
(136, 179)

10–30 min for onset of 
action (199), peak plasma 
levels occur ~1 h (137)

2–3 h (199), 
3–5 h plasma 
after oral 
(137)

Noroxycodone (low 
activity) and oxymorphone 
(potency > morphine) 
(141), both metabolize 
into noroxymorphone 
(8–30× morphine’s 
activity, BBB 
impermeable) (141)

Noroxycodone is 
converted slowly into 
noroxymorphone (200), 
oxymorphone (7–8 h) 
(141), noroxymorphone 
significantly longer than 
oxycodone (3–5 h but 
limited BBB permeability) 
(201)

60–90% bioavailability  
(142), active transport  
across the BBB and can  
reach 3× higher levels in the 
brain than blood (140, 202)

Remifentanil Medium, 
possibly due to 
low availability 
(few cases) 
(203, 204)

1–2 min (143) 3–4 min (IV) 
(143)

Remifentanil acid, 
relatively inactive (205)

Negligible (205) 50% bioavailability and  
BBB equilibration half-life  
is 2–5 min (205)

Tramadol  
(e.g., Ultram)

Medium (179, 
206);

2–3 h (149, 187) 5.1 h (149) O-desmethyltramadol 
(M1), an MOR agonist 
(149)

9 h (149) Actively transported (207)
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the BBB (208). It is currently in Phase III clinical trials to treat 
chronic lower back pain or non-cancer pain (NCT02367820).

Mixed Opioid Agonists
Another interesting development is the use of ligands that 
simultaneously bind to and activate multiple receptors to relieve 
pain. Careful design of these bivalent ligands and their linkers has 
been shown to increase signaling efficacy of the target receptors, 

allowing a lower dose of the ligand to be used to achieve the 
same analgesic effect. Such bitopicity, or action at two sites, 
was first described for biphalin, a dual enkephalin analog that 
showed greater analgesic efficacy than enkephalin alone (210). 
Furthermore, incorporating the pharmacological properties of 
an opioid that has a reduced abuse liability, i.e., a slow onset of 
action, a long half-life and low BBB permeability, would result in 
an effective analgesic that is not rewarding. Several such mixed 
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ligands have now been generated that are based on the structure 
of buprenorphine (211–213), a partial MOR agonist, kappa 
opioid receptor (KOR)antagonist and nociceptin receptor ligand 
(214, 215) with reduced reward liability (172, 173). There are also 
other bivalent compounds that activate MOR and delta opioid 
receptors (DOR) (216), MOR and mGluR5 (217), and MOR, 
DOR and KORs (218).

In summary, we propose that the preclinical examination of 
novel opioid agonists that are pharmacologically designed to be 
(1) biased and so able to influence one signaling pathway over 
another, or (2) show a pharmacological profile that reduces a 
central duration of action, or (3) are able to signal selectively 
through mixed receptors, may provide better insight into and 
predictability of their abuse and lethality profiles. Such novel 
agonists may also incorporate aspects of each of these designs 
to obtain the desired clinical outcome. An example of this multi-
faceted approach is the family of mixed ligands that are based 
on the structure of buprenorphine, which may target multiple 
receptors to enhance analgesia but have a buprenorphine-like 
pharmacological profile of reduced reward and overdose 
liability. The specificity and effects of these novel pharmaceutical 
compounds may be further influenced by the use of a positive 
allosteric modulator for which a conserved site has been found 
on MORs, DORs, and KORs (219).

TREATING PAIN WITH PERSPECTIVE AND 
WITH THE PURPOSE OF REDUCING 
HARM DURING THE OPIOID EPIDEMIC

Many pain patients have now found themselves physically and 
psychologically dependent on their opioid prescriptions, as both 
fail to relieve their pain in the chronic setting but are also now 
known to be addictive and harmful with long-term use. We 
have described the etiology of the opioid epidemic from the 
financial motivation for the over-prescription of these drugs, 
to the socioeconomic and physical issues that contribute to 
pain and addiction-prone populations worldwide. Navigating 
through the devastation caused by the opioid epidemic requires 
some perspective. While acknowledging that many opioids are 
harmful and addictive, they are still the most efficacious class 
of drugs for analgesia. Here, we aim to guide the refinement of 

prescription opioid compounds by improving upon the currently 
available abuse-deterrent formulations. These treatments should 
maximize analgesic properties by directing ligand bias toward 
signaling through G-proteins rather than β-arrestins, delaying or 
minimizing the BBB entry of drugs, minimizing metabolites with 
pro-addictive or off-target properties and using mixed agonists 
to provide more specific clinical effects. These strategies have 
led to the development of some promising compounds that may 
provide pain relief while minimizing the likelihood of addiction 
and misuse. Of course, these pharmaceutical agents should 
only be used following a comprehensive screening strategy to 
both exclude patients likely to misuse their medications and to 
identify those who may respond to alternate, non-opioid-based 
pain-management strategies.
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Critical Role for Gi/o-Protein Activity 
in the Dorsal Striatum in the 
Reduction of Voluntary Alcohol 
Intake in C57Bl/6 Mice
Meridith T. Robins1,2, Terrance Chiang1,2, Kendall L. Mores1,  
Doungkamol Alongkronrusmee1,2 and Richard M. van Rijn1,2*

1 Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN, United States, 
2 Purdue University Institute for Integrative Neuroscience, Purdue University, West Lafayette, IN, United States

The transition from non-dependent alcohol use to alcohol dependence involves 
increased activity of the dorsal striatum. Interestingly, the dorsal striatum expresses a 
large number of inhibitory G-protein-coupled receptors (GPCRs), which when activated 
may inhibit alcohol-induced increased activity and can decrease alcohol consumption. 
Here, we explore the hypothesis that dorsal striatal Gi/o-protein activation is sufficient to 
reduce voluntary alcohol intake. Using a voluntary, limited-access, two-bottle choice, 
drink-in-the-dark model of alcohol (10%) consumption, we validated the importance of 
Gi/o signaling in this region by locally expressing neuron-specific, adeno-associated-vi-
rus encoded Gi/o-coupled muscarinic M4 designer receptors exclusively activated by 
designer drugs (DREADD) in the dorsal striatum and observed a decrease in alcohol 
intake upon DREADD activation. We validated our findings by activating Gi/o-coupled 
delta-opioid receptors (DORs), which are natively expressed in the dorsal striatum, using 
either a G-protein biased agonist or a β-arrestin-biased agonist. Local infusion of TAN-
67, an in vitro-determined Gi/o-protein biased DOR agonist, decreased voluntary alcohol 
intake in wild-type and β-arrestin-2 knockout (KO) mice. SNC80, a β-arrestin-2 biased 
DOR agonist, increased alcohol intake in wild-type mice; however, SNC80 decreased 
alcohol intake in β-arrestin-2 KO mice, thus resulting in a behavioral outcome generally 
observed for Gi/o-biased agonists and suggesting that β-arrestin recruitment is required 
for SNC80-increased alcohol intake. Overall, these results suggest that activation Gi/o-
coupled GPCRs expressed in the dorsal striatum, such as the DOR, by G-protein biased 
agonists may be a potential strategy to decrease voluntary alcohol consumption and 
β-arrestin recruitment is to be avoided.

Keywords: dorsal striatum, alcohol intake, biased signaling, delta-opioid receptor, β-arrestin, designer receptors 
exclusively activated by designer drugs, C57BL/6 mice

INTRODUCTION

Alcoholism and alcohol abuse is a widespread health issue, placing a large burden at both the indi-
vidual and societal level. Yet, pharmacological treatment options are still limited. Currently, only 
three drugs have been approved by the Food and Drug Administration for the treatment of alcohol 
use disorders (AUD), and each come with their own limitations in therapeutic efficacy (1); therefore, 
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it is imperative to identify novel targets for more effective drug 
development, with hopes of increasing the number of treatment 
options and compliance for AUD management.

One potential AUD treatment approach is to increase inhibi-
tion of the dorsal striatum, a brain region with observed increas-
ing activation upon alcohol tasting in heavy alcohol drinking 
human subjects (2). In contrast to the ventral striatum, which 
is implicated in reward-associated learning and behavior, the 
dorsal striatum is heavily involved in the transition to compul-
sive drug or alcohol seeking and taking (2–5). In rats, habitual 
alcohol self-administration increases habit-like responding with 
decreased sensitivity to alcohol devaluation (6). This shift toward 
habit-like responding, as well as reports of increased hyperexcit-
ability and altered glutamatergic and GABAergic transmission in 
the dorsomedial striatum upon alcohol exposure (7–9), suggests 
molecular alterations in this brain region lead to behavioral 
reinforcement of alcohol intake resulting in habitual, excessive 
alcohol intake (3, 7, 9). We hypothesized that one conceivable 
strategy to inhibit this alcohol-induced neuronal excitability is 
by activation of metabotropic, inhibitory Gi/o-protein signaling 
pathways via G-protein-coupled receptors (GPCRs) expressed on 
neurons in this region.

Interestingly, a large number of GPCRs expressed in the dorsal 
striatum couple to inhibitory G proteins (Gi/o) (10, 11), thereby 
providing an ideal target for inhibiting this hyperexcitability 
observed in the dorsal striatum following persistent alcohol use. 
To investigate our hypothesis, Gi/o-coupled designer receptors 
exclusively activated by designer drugs (DREADDs) can provide 
powerful tools (12, 13) to increase Gi/o signaling in a specific brain 
region, such as the dorsal striatum, on an experimenter's prede-
termined time point to determine the role of the dorsal striatum 
in modulating alcohol consumption. In addition to artificially 
increasing Gi/o signaling using viral DREADD strategies, ago-
nists have been developed to preferentially activate Gi/o-protein 
signal pathways over the competing β-arrestin recruitment 
and signaling pathways for receptors endogenously expressed 
in the dorsal striatum, with recent advances in opioid receptor 
pharmacology being a prime example (14–16). For this study, 
the delta-opioid receptor (DOR), a Gi/o-coupled GPCR with 
strong expression in the dorsal striatum (17), provided us with 
a powerful tool to investigate our hypothesis that Gi/o signaling 
in the dorsal striatum can reduce alcohol use. DORs are thought 
to play a protective role in AUD, as DOR knockout (KO) mice 
display increased alcohol consumption and preference compared 
with wild-type, kappa-, or mu-opioid receptor KO mice, sug-
gesting that DOR expression prevents escalated alcohol intake 
compared with other opioid receptor subtypes (18). Moreover, 
DORs are heavily expressed in the dorsal striatum presynapti-
cally on corticostriatal glutamatergic inputs (19), both pre- and 
postsynaptically on interneurons within this brain region, and 
enriched on D2 receptor-expressing MSNs (as compared with D1 
receptor-expressing MSNs) (20–22). Furthermore, direct activa-
tion (23) or indirect activation of DORs via alcohol-induced 
release of endogenous enkephalins (24) in the dorsal striatum 
induces long-term depression (LTD).

The importance of the activation of dorsal striatal DORs in 
the modulation of alcohol intake was first evident in a report 

by Nielsen et al., where infusion of the DOR-selective agonist 
SNC80 into the dorsal striatum increased alcohol intake in rats 
while the DOR antagonist naltrindole reduced intake (25). 
This finding that DOR agonist SNC80 increased alcohol was 
somewhat surprising as DOR expression was previously men-
tioned to be protective against increased alcohol intake (18). 
Yet, our recent work investigating a panel of DOR agonists sug-
gests that SNC80 prefers to recruit β-arrestin protein through 
a mechanism called biased signaling (also termed functional 
selectivity) (26, 27), where we have additionally correlated 
in  vitro β-arrestin recruitment with in  vivo increased alcohol 
intake (28). In that same study investigating the behavioral 
effects of DOR biased signaling, we also observed that DOR 
agonists that weakly recruit β-arrestin, particularly TAN-67 
(and thus are G-protein-biased), decreased alcohol intake in 
mice in a limited-access, drinking-in-the-dark (DID) protocol 
to 10% alcohol (28).

Therefore, here we hypothesized that activation of Gi/o signal-
ing in the dorsal striatum would be beneficial in reducing alcohol 
intake, whereas β-arrestin signaling will lead to enhanced alcohol 
use. To begin to investigate this hypothesis, we first utilized 
hM4Di DREADD technology (12) to identify the broad role of 
Gi/o-coupled receptor activation in the dorsal striatal on voluntary 
alcohol intake in C57Bl/6 male mice using a two-bottle choice, 
limited-access DID protocol. In addition, we selectively infused 
our previously identified differentially biased DOR agonists in 
wild-type and β-arrestin-2 KO mice to more specifically inves-
tigate the effect of increased dorsal striatal DOR Gi/o-protein 
signaling (versus β-arrestin) on voluntary alcohol intake.

MATERIALS AND METHODS

Drugs and Chemicals
SNC80 and SB205607 (TAN-67) were purchased from Tocris, 
R&D systems (Minneapolis, MN, USA); naltrindole hydro-
chloride, forskolin, 200 proof ethyl alcohol, leu-enkephalin, 
sodium chloride, DMSO, cocaine hydrochloride, and clozap-
ine-N-oxide (CNO) were purchased from Sigma-Aldrich (St. 
Louis, MO, USA). For dorsal striatal infusion studies, TAN-67 
and SNC80 were diluted in 0.9% saline to a concentration 
of 10  µM; for cellular assays, drugs were dissolved in water. 
Cocaine was dissolved in 0.9% saline for an administered 
dose of 15  mg/kg, and CNO was dissolved in 100% DMSO 
and diluted to a concentration of 0.2  mg/ml in saline (final 
DMSO concentration of 0.5% and administered dose of 2 mg/
kg). Both cocaine and CNO were injected intraperitoneally 
(i.p.) during experimentation. Non-Cre-dependent AAV8-
hSyn-hM4Di-mCherry (7.4  ×  1012  vg/ml) virus and AAV8-
hSyn-EGFP (3.9 ×  1012  vg/ml) virus were obtained from the 
University of North Carolina Vector Core. Both viruses were 
chosen as they specifically express in neurons through use of 
the synapsin promoter. A 100 mg/kg ketamine (Henry Schein, 
Dublin, OH, USA):10 mg/kg xylazine (Sigma-Aldrich) cocktail 
was administered to induce anesthesia for cannulation surger-
ies and before transcardial perfusion. All systemic drugs were 
injected at a volume of 10 ml/kg.
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Cell Culture and Biased Signaling Assays
Competition binding assays were performed using the Tag-
lite assay according to the manufacturer's protocol (Cis-Bio, 
Bedford, MA, USA). In short, Tb-labeled HEK293-SNAP-
hDOR cells/well (4,000 cells/well) were plated in 10 µl Tag-lite 
medium into low-volume 384-well plates in the presence of 
5 µl 8 nM fluorescent naltrexone (final concentration) and 5 µl 
of an increasing concentration of TAN-67, leu-enkephalin, 
or SNC80 and incubated at room temperature for 3 h. cAMP 
inhibition and β-arrestin-2 recruitment assays were performed 
as previously described (28). In brief, for cAMP inhibition 
assays HEK293 (Life Technologies, Grand Island, NY, USA) 
cells (15,000 cells/well, 7.5  µl) transiently expressing FLAG-
mDOR (29, 30), SNAP-rDOR, or SNAP-hDOR (Cis-Bio), 
and pGloSensor22F-cAMP plasmids (Promega, Madison, WI, 
USA) were incubated with Glosensor reagent (Promega, 7.5 µl, 
2% final concentration) for 90 min at 37°C/5% CO2. Cells were 
stimulated with 5 µl DOR agonist 20 min before 30 µM forskolin 
(5  µl) stimulation for an additional 15  min. For β-arrestin-2 
recruitment assays, CHO-hDOR PathHunter β-arrestin-2 cells 
(DiscoverX, Fremont, CA, USA) were plated (2,500 cells/well, 
10 µl) before stimulation with 2.5 µl DOR agonists for 90 min 
at 37°C/5% CO2, after which cells were incubated with 6 µl cell 
assay buffer for 60 min at room temperature as per the manu-
facturer's protocol. Luminescence and fluorescence for each 
of the assays were measured using a FlexStation3 plate reader 
(Molecular Devices, Sunnyvale, CA, USA).

SNAP-rDOR Construction
Rat DOR cDNA was amplified from the pUC17-rDOR plasmid 
(Versaclone cDNA NP_036749, R&D systems) using the following 
forward (5′-CTTCGATATCTTGGAGCCGGTGCCTTCTG-3′) 
and a standard M13 reverse primer using the Pfu Ultra II Hotstart 
PCR Mastermix (Agilent, Santa Clara, CA, USA) according to 
the manufacturer's protocol. The amplified rDOR PCR product 
and the pSNAP-hDOR plasmid (Cis-Bio) were restricted using 
EcoRV and XhoI restriction enzymes (New England BioLabs, 
Ipswich, MA, USA), and the rDOR construct was exchanged 
with the hDOR gene followed by ligation with T4 DNA Ligase 
(New England BioLabs) and transformation into NEB5α com-
petent cells (New England BioLabs). The SNAP-rDOR was fully 
sequenced to ensure correct orientation and absence of point 
mutations introduced during amplification.

Animals
37 male C57BL/6 mice (age 6  weeks) were purchased from 
Harlan and habituated for to the facility 1 week before surgery. 
For β-arrestin-2 KO animals, animals were bred in house, and 16 
animals were selected for surgery [for complete details on strain 
origin see Ref. (28)]. Throughout the experiment, animals were 
kept in at ambient temperature of 21°C in a room maintained on 
a reversed 12L:12D cycle (lights off at 10:00, lights on at 22:00) 
in Purdue University's animal facility, which is accredited by the 
Association for Assessment and Accreditation of Laboratory 
Animal Care. This study was carried out in accordance with 
the recommendations of the National Institutes of Health 

Guide for the Care and Use of Laboratory Animals. The pro-
tocol (#1305000864) was approved by the Purdue University 
Institutional Animal Care and Use Committee.

Surgical Cannulation
Directly before surgery, mice were anesthetized with ketamine/
xylazine (i.p.). A Kopf model 1900 stereotaxic alignment system 
(David Kopf Instruments, Tujunga, CA, USA) was used to drill 
two holes using Kyocera #69 drill bits at the following coordinates 
from bregma: AP = +1 mm, ML = ±1.5 mm, DV: −3.25 mm 
(31, 32). For experiments involving drug infusion, an additional 
two holes were drilled using Kyocera #60 drill bits at the follow-
ing coordinates from bregma: AP = −2.4 mm, ML = ±1.6 mm, 
and 1 mm screws were positioned to ensure head-cap stability. 
A bilateral 22-gage guide cannula (cut 1.5 mm below pedestal, 
PlasticsOne, Roanoke, VA, USA) was attached to the skull using 
Geristore dental cement (DenMat, Lompoc, CA, USA). In total, 
two animals did not wake up from surgery, and eight animals 
were euthanized after their cannulas came off postoperation or 
throughout alcohol training and/or experimentation.

Viral Injection
After cannulation surgery, animals were single housed in double 
grommet cages to allow recovery and individual measurement 
of fluid intake. One-week postsurgery, mice were anesthetized as 
previously described and injected bilaterally with 450 nl of virus 
using a Harvard Apparatus infusion pump at a speed of 50 nl/
min via internal cannula with 0.5 mm projection (PlasticsOne). 
The internal cannula was left in place for an additional 5 min to 
allow viral dispersion and prevent backflow of the viral solution 
into the injection syringe. All biohazard work was approved by 
the Institutional Biohazard Committee at Purdue University 
(#13-013-16).

Voluntary Alcohol Intake
One-week postsurgery and/or 1-week post-viral injection, mice 
were exposed to a limited-access (4  h/day), two-bottle choice 
(water versus 10% ethanol), DID protocol 3 h into their active 
cycle (dark phase) until the alcohol intake was stable as previously 
described (29). This model has previously shown that TAN-67 
administration before the 4-h session decreases alcohol intake 
with a correlated decrease in blood ethanol concentration (with 
no TAN-67 effects on alcohol metabolism) (29). Mice were trained 
for 3 weeks during which the mice initially increased their alcohol 
intake before reaching steady state consumption. Bottle weights 
were measured directly before and after the 4-h access period to 
the second decimal point to determine fluid intake during this 
access period. Weights of bottles were corrected for any spillage 
with fluid bottles placed on empty cages.

Drug Infusion or Injection
After 3  weeks of exposure to the drinking model described 
earlier, alcohol and water intake on the day of infusion (Friday) 
was compared with the average alcohol intake over the preceding 
3 days (Tuesday–Thursday) to determine if either drug injection 
or infusion altered voluntary alcohol intake in the following 
manipulations. For experiments involving viral expression, the 
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AAV injected mice were injected with i.p. saline (with 0.5% 
DMSO) for vehicle measurements in week 4 and 2 mg/kg CNO 
(i.p.) the following week (week 5). The dose of CNO of 2 mg/kg  
was utilized as it has previously been shown to be effective in 
mice in activating expressed DREADDs (33, 34). Also, this 
relatively low dose limits high concentrations of clozapine 
caused by metabolism of CNO (35). For experiments involving 
direct drug infusion into the dorsal striatum, animals received 
a 150 nl bilateral infusion of saline into the dorsal striatum on 
Friday of the fourth week of alcohol exposure. In weeks 5 and 
6, animals received either a 150 nl infusion of 10 µM TAN-67 
or SNC80, respectively, thereby allowing for a within subjects' 
analysis. The order of the drug infusions was chosen to mitigate 
potential DOR internalization and/or degradation as SNC80 is a 
high internalizing agonist in vitro and in vivo (36, 37). Doses of 
TAN-67 and SNC80 were determined based on previous studies 
of SNC80 infusions in rats (25) and in vivo specificity of TAN-67 
and SNC80 for the DOR over MOR or KOR had been previously 
established using KO animals (29, 38). Importantly, no seizure 
behavior was observed up SNC80 infusion (39) following any 
dorsal striatal infusions.

Locomotor Activity
Square locomotor boxes from Med Associates (L 27.3 cm × W 
27.3 cm × H 20.3 cm, St. Albans, VT, USA) were used to monitor 
locomotor activity during the active/dark phase as previously 
described (28). For AAV experiments, animals were placed in 
the locomotor box 15 min before CNO (2 mg/kg, i.p.) injection 
to allow baseline locomotor activity scoring. After 15 min, all ani-
mals were injected with CNO and then placed back into the box 
for an additional 60 min of testing to measure the total distance 
traveled in 60  min following drug injection. For intra-dorsal 
striatal infusion of SNC80, animals received either 10 µM SNC80 
or vehicle (saline 0.9%) infusion and were placed immediately in 
the boxes for 90 min; locomotor data were analyzed 30 min after 
drug infusion as this is when drinking experiments began in the 
previously described alcohol intake studies.

Cannula Location and 
Immunohistochemical Analysis
For animals undergoing drug infusions, animals were sacrificed 
via transcardial perfusion within 1  week following their final 
drinking session. During analysis, it was determined that the 
cannula of one mouse from these experiments was not positioned 
properly and this animal was removed from analysis (placement 
was too ventral). Cannulation location and viral expression was 
verified with confocal microscopy (Nikon A1, Nikon, Melville, 
NY, USA) with an area of capture of 1.69 mm2. The experimenter 
performing analysis was blind to the experimental conditions; all 
images were evaluated in greyscale to prevent unintentional bias.

Cocaine-Induced c-Fos Activation in 
DREADD-Expressing Animals
For viral expression studies, both groups of mice were injected 
with 2 mg/kg CNO (i.p.) during the dark/active phase for each 
animal. Twenty minutes later, animals were injected with 15 mg/kg  

cocaine (i.p.) to induce expression of immediate-early gene c-Fos. 
Brains were collected 90 min following cocaine exposure via tran-
scardial perfusion. Extracted brain samples embedded and frozen 
in Tissue-Tek® O.C.T. compound (VWR, Radnor, PA, USA) in 
tissue molds (VWR) and sliced into 50  µm coronal sections 
via cryostat (Leica Microsystems Inc., Buffalo Grove, IL, USA). 
Immunohistochemical staining was conducted using primary 
rabbit anti-c-Fos antibody (sc-52, Santa Cruz Biotechnology, 
Dallas, TX, USA), diluted 1:1,000. Control-GFP animal brains 
were applied Alexa-Fluor 594 goat anti-rabbit antibody (A-11012, 
Life Technologies, Grand Island, NY, USA) diluted 1:1,000. 
hM4Di-mCherry animal brains were applied Alexa-Fluor 488 goat 
anti-rabbit (A-11008, Life Technologies, Grand Island, NY, USA) 
diluted 1:1,000. Brain slices were mounted onto microscope slides 
(Fisher Scientific, Hampton, NH, USA) for confocal microscopy 
with an area of the capture of 0.40 mm2. Images were processed 
using ImageJ software (NIH, Bethesda, MD, USA) for the num-
ber of c-Fos positive cells in the dorsal striatum surrounding the 
viral injection site in infected cell populations. The experimenter 
performing analysis was blind to the experimental conditions; all 
images were evaluated in greyscale to prevent unintentional bias.

Statistical Analysis
All data are presented as means ± SEM and was performed using 
GraphPad Prism7 software (GraphPad Software, La Jolla, CA, 
USA). Differences between control-GFP and hM4Di-mCherry 
animals were analyzed by student two-tailed t-test for differences 
in baseline water intake, alcohol intake, alcohol preference, loco-
motion after CNO injection, and c-Fos expression in the dorsal 
striatum. Differences in alcohol intake after saline injection and 
CNO injection were evaluated by repeated measures, multiple 
comparisons (Bonferroni) two-way ANOVA. For in vitro assays, 
non-linear regression using a dose–response to either inhibition 
(binding, cAMP) or stimulation (β-arrestin-2 recruitment) was 
conducted to determine pIC50 or pEC50, respectively. In direct 
dorsal striatal drug infusion experiments, differences in volun-
tary alcohol intake, water intake, and alcohol preference were 
analyzed by repeated measures, multiple comparisons (Tukey) 
two-way ANOVA. The Grubb's outlier test (alpha  =  0.05) was 
used to identify potential outliers throughout the study. Statistical 
analysis was conducted in guidance with and approved by Purdue 
University's Department of Statistics.

RESULTS

Activation of a Gi/o-Coupled DREADD in 
the Dorsal Striatum Decreases Alcohol 
Intake
Cannula placement was verified postmortem (n  =  10–11) 
through immunohistochemical analysis of viral expression 
(Figure 1A). Viral infusions of control-GFP (green fluorescent 
protein) or hM4Di-mCherry in the dorsal striatum did not alter 
baseline alcohol intake, water intake, or alcohol preference when 
comparing the two groups [Figure  1B, t(20) =  0.81, p =  0.32; 
Figure 1C, t(20) = 0.60, p = 0.42; Figure S1A in Supplementary 
Material, t(20) = 1.01, p = 0.55]. Vehicle injection (0.5% DMSO, 
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Figure 1 | Activation of virally expressed hM4Di in the dorsal striatum decreases alcohol intake in mice. Cannula placement was verified for all animals included in 
behavioral analysis (A). C57BL/6 mice (n = 10–11) injected in the dorsal striatum with either AAV8-hSyn-EGFP (GFP) or AAV8-hSyn-hM4Di-mCherry (hM4Di) were 
trained to consume alcohol in a two-bottle, drinking-in-the-dark protocol. Both groups of animals displayed a similar increase in alcohol intake (B) and preference 
(C). Vehicle injection (saline 0.9%, i.p.) did not change alcohol intake (D). Systemic clozapine-N-oxide (CNO) injection (2 mg/kg i.p.) significantly decreased alcohol 
intake in mice expressing hM4Di, but not GFP, in the dorsal striatum (E). Significance by unpaired, Student's t-test for AUC or two-way ANOVA with Bonferroni 
posttest for matching, **p < 0.01.
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i.p.) did not affect alcohol intake for control or hM4Di-expressing 
animals in alcohol intake (Figure 1D; see Table 1 for full statisti-
cal analysis for experimental group), water intake (Figure S1B in 
Supplementary Material), or alcohol preference in control-GFP or 
hM4Di-mCherry mice (Figure S1E in Supplementary Material). 
Unlike saline injection, CNO injection (2 mg/kg, i.p.) significantly 
reduced alcohol intake in hM4Di-expressing mice compared 
with GFP-control, as evaluated by two-way ANOVA (Figure 1E; 
Figure S1D in Supplementary Material, effect of drug  ×  virus: 
p = 0.03), where Bonferroni posttest analysis revealed that CNO 
significantly reduced alcohol intake only in hM4Di-expressing 
animals and not control-GFP-expressing mice (p <  0.002). No 
significant change in water intake was observed after CNO injec-
tion in the testing period for in either group of animals (Figure 
S1C in Supplementary Material). CNO injection did not alter 
alcohol preference in control-GFP or hM4Di-mCherry mice 
(Figure S1F in Supplementary Material).

Both viruses properly expressed in the dorsal striatum 
(Figure 2A). Differences in visualization of the control-GFP and 

hM4Di-mCherry expression may potentially result from differ-
ences in viral load and protein expression or inherent differences 
in quantum yield and extinction coefficients between GFP and 
mCherry (40). Considering that the striatum is part of the basal 
ganglia that controls movement (6, 41), we determined whether 
CNO activation of dorsal striatal hM4Di altered locomotor activ-
ity where we observed that CNO did not alter locomotor activity 
between control-GFP and hM4Di-mCherry expressing mice in a 
60-min locomotor period after injection [Figure 2B, t(19) = 0.78, 
p  =  0.45]. To confirm the inhibitory functionality of hM4Di 
expression, we determined if CNO activation of hM4Di could 
prevent cocaine-induced c-Fos expression (42, 43), an acceptable 
approach previously used in other studies to validate functional-
ity of inhibitory DREADDs (42–45). We observed that activation 
of striatal hM4Di with CNO (2 mg/kg, i.p.) before a cocaine chal-
lenge (15 mg/kg, i.p.) significantly inhibited c-Fos activation in 
animals expressing hM4Di versus GFP controls (control were also 
administered CNO before cocaine challenge) [Figures  2C,D; 
t(13) = 2.78, p < 0.02], suggesting that activation of hM4Di via 
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Table 1 | Analysis of alcohol-related behaviors in control-GFP versus hM4Di-
mCherry designer receptors exclusively activated by designer drugs (DREADD)-
expressing mice.

df Alcohol intake Water 
intake

Alcohol 
preference

Baselinea (Student's 
t-test)

20 t = 0.812
p = 0.32

t = 0.603
p = 0.42

t = 1.01
p = 0.55

Vehicleb

Drug 1, 19 F = 0.18
p = 0.86

F = 0.52
p = 0.48

F = 3.82
p = 0.07

Virus F = 0.04
p = 0.85

F = 0.00
p = 0.96

F = 0.26
p = 0.42

Drug × virus F = 0.00
p = 0.99

F = 0.26
p = 0.61

F = 2.85
p = 0.11

Clozapine-N-oxideb

Drug 1, 19 F = 4.00
p = 0.06

F = 1.20
p = 0.29

F = 0.42
p = 0.52

Virus F = 1.26
p = 0.28

F = 2.37
p = 0.14

F = 0.90
p = 0.35

Drug × virus F = 5.17
p = 0.03

Control versus 
DREADD p < 0.002

F = 0.28
p = 0.60

F = 1.01
p = 0.33

aStudent's t-test.
bTwo-way, repeated measures (Bonferroni) ANOVA.
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CNO before cocaine challenge inhibited cAMP pathway activity 
by Gi/o-coupled inhibition. The variability in c-Fos expression in 
control-GFP may be a result of intrinsic differences in response 
to psychostimulants between animals, which has been commonly 
observed in C57Bl/6 mice (46).

In Vitro Characterization of the  
β-Arrestin-2 Biased DOR Agonist, SNC80
We have previously established that systemic activation of the 
Gi/o-coupled DOR with TAN-67, an agonist that only weakly 
recruits β-arrestin-2 to hDOR (Figure 3A), reduces voluntary 
intake in mice, but that SNC80, an hDOR agonist that strongly 
recruits β-arrestin-2 (Figure  3A) increases alcohol intake 
(28). However, we previously had not determined if a differ-
ence in receptor binding was observed between TAN-67 and 
SNC80 at hDOR to potentially explain differences in ligand 
bias. Using a SNAP-tag HTRF® (Cis-Bio) approach we found 
that hDOR, TAN-67 exhibited a pKi = 7.7 ± 0.1 and SNC80 
a pKi  =  7.2  ±  0.2, with pKi  =  5.8  ±  0.1 for leu-enkephalin 
(Figure 3B), suggesting that the only clear difference between 
TAN-67 and SNC80 is β-arrestin-2 recruitment efficacy. The 
surprisingly low affinity observed for leu-enkephalin may 
be an artifact of the fluorescent binding assay that relies on 
a large N-terminal SNAP-tag, which may potential interfere 
with the binding of relatively large peptide ligand, such as leu-
enkephalin, but not small molecules.

Expanding from our previous study, we determined the 
equiactive bias factors for TAN-67 and SNC80 at hDOR using 
leu-enkephalin as a reference ligand (47) for β-arrestin-2 recruit-
ment compared with Gi/o-stimulated cAMP inhibition (a more 
positive bias factor = indicative of bias toward β-arrestin-2, more 
negative bias factor = indicative of bias toward cAMP activity). 

TAN-67 displayed a bias factor of −1.4 (cAMP biased) versus a 
+0.85 bias factor for SNC80 (β-arrestin-2-biased) (Figure 3C). 
To estimate what concentration of SNC80 to infuse in vivo, we 
relied on the Nielsen et al. reported findings in rat (25). Our 
in vitro assays suggest minimal differences in cAMP inhibition 
between human hDOR (Figure  3D), rat rDOR (Figure  3E), 
and mDOR (Figure 3F) for SNC80 (pIC50 = 7.8 ± 0.3, n = 3, 
pIC50 = 8.4 ± 0.1, n = 5, pIC50 = 8.4 ± 0.4, n = 3, respectively) 
and leu-enkephalin (pIC50 = 8.7 ± 0.2, n = 5, pIC50 = 8.9 ± 0.2, 
n  =  5, pIC50  =  8.3  ±  0.1, n  =  6, respectively). Because the 
affinity and efficacy of TAN-67 is very comparably to SNC80 
(Figures  3A,B), we decided to infuse 10  nM TAN-67 and 
SNC80 into the mouse dorsal striatum to investigate the role of 
Gi/o signaling versus β-arrestin-2 recruitment in the modulation 
of alcohol use.

Differential Modulation of Alcohol Intake 
Following Dorsal Striatal DOR Activation 
by Gi/o-Biased Versus β-Arrestin-2-Biased 
DOR Agonists
Cannula terminus location and patency were validated 
via trypan blue dye infusion into the dorsal striatum upon 
experimental completion (Figure 4A). Wild-type male animals 
(n = 9–10) were successfully trained to consume alcohol using 
a limited-access, two-bottle-choice (water versus 10% alcohol), 
DID protocol as shown by increased daily alcohol intake and 
preference (Figures 4B,C) compared with water intake (Figure 
S2A in Supplementary Material). For intra-striatal infusions, a 
significant drug (p = 0.03, see Table 2 for full statistical analysis 
for experimental group and Table S1 in Supplementary Material 
for Tukey comparisons between infusion weeks) and drug × test 
session effect (p <  0.0001) was observed, with no effect of test 
session alone, where Tukey multiple comparisons test revealed 
that 10 µM of TAN-67 significantly decreased voluntary alcohol 
intake (p  =  0.04) while 10  µM SNC80 significantly increased 
alcohol intake (p  =  0.0005). Importantly, vehicle (saline 0.9%) 
infusion did not affect alcohol intake (Figure 4D). No changes 
in water intake or alcohol preference were noted during these 
drug infusion testing sessions (Figures S2B,C in Supplementary 
Material).

Genetic KO of β-Arrestin-2 Provides 
Additional Support for the Critical Role of 
DOR-Mediated Gi/o-Coupling in the Dorsal 
Striatum in Decreasing Alcohol Intake
β-Arrestin-2 KO male C57Bl/6 mice (n = 12) were surgically 
implanted with a bilateral cannula into the dorsal striatum before 
alcohol training, and cannula terminus location and patency 
were validated via trypan blue dye infusion upon experimental 
completion (Figure 5A). KO animals were successfully trained 
to consume alcohol using a limited-access, two-bottle-choice 
(water versus 10% alcohol), DID protocol (Figures  5B,C) 
compared with water intake (Figure S3A in Supplementary 
Material). A significant effect of drug (p = 0.003, see Table 3 for 
full statistical analysis for experimental group and Table S2 in 
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Figure 2 | Verification of viral expression and functionality of control-GFP or hM4Di-mCherry in the dorsal striatum. Viral expression verification via confocal 
microscopy of control-GFP (left) and hM4Di-mCherry (right) in the dorsal striatum (scale bar = 100 µm) (A). C57BL/6 mice (n = 10–11 per group) expressing GFP or 
hM4Di in the dorsal striatum did not display significant clozapine-N-oxide (CNO) (2 mg/kg, i.p.) induced locomotor activity in the 60-min session after CNO injection 
(B). Immunohistochemical representation of c-Fos activation in the dorsal striatum in animals expressing control-GFP (left) and hM4Di-mCherry (right) in the dorsal 
striatum (scale bar = 100 µm) (C). Decreased c-Fos expression in dorsal striatum after cocaine challenge (15 mg/kg, i.p.) in C57BL/6 mice (n = 7–8) expressing 
hM4Di-mCherry versus control-GFP observed confocal microscopy (D). Significance by unpaired two-tailed t-test, *p < 0.05.
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Supplementary Material for Tukey comparisons between infu-
sion weeks), test session (p = 0.002), and drug ×  test session 
(p = 0.0021) was identified for intra-dorsal striatal infusions, 
where multiple comparisons test found no effect of vehicle 
(saline 0.9%, p = 0.968) on alcohol intake. 10 µM of TAN-67 
significantly decreased voluntary alcohol intake (p = 0.0113), 
and 10 µM of SNC80 also significantly decreased alcohol intake 
(p = 0.0021) (Figure 5D). This decrease was in contrast with 
that observed in wild-type animals and is the first report of 
SNC80's ability to decrease voluntary alcohol intake, further 
suggesting that β-arrestin-2 functionality is key for SNC80-
increased voluntary alcohol intake. No changes in water intake 
were noted during testing periods (Figure S3B in Supplementary 
Material), but a decrease in alcohol preference was noted for 
SNC80 infusion (p  =  0.0018, Figure S3C in Supplementary 
Material). We have previously observed hyperlocomotion 
upon systemic SNC80 administration in both wild-type and 
β-arrestin-2 KO mice with increased alcohol intake or no 
change in alcohol intake, respectively (28, 48). Therefore, we 
questioned whether the decrease in alcohol intake upon dorsal 
striatal SNC80 infusion in the β-arrestin-2 KO was the result of 
changes in locomotion. However, SNC80 (10 µM) infusion into 
the dorsal striatum of β-arrestin-2 KO animals did not cause 
hyperlocomotion compared with vehicle infusion [Figures 
S4A,B in Supplementary Material, paired two-tailed Student's 
t-test: t(6)  =  1.68, p  =  0.14], although the trend (albeit not 
significant) toward a decrease in locomotor activity suggests 
that there may be a potential influence of SNC80 on locomotor 

activity with respect to the decrease in alcohol intake observed 
upon SNC80 infusion in β-arrestin-2 KO animals.

DISCUSSION

Through both chemogenetic and pharmacologic activation of 
Gi/o-protein signaling, we observed that activation of Gi/o-protein-
coupled receptors in the dorsal striatum significantly decreases 
alcohol intake in male C57BL/6 mice by either inhibitory 
DREADD activation or activation of endogenously expressed 
DORs using a G-protein biased agonist. We specifically targeted 
the dorsal striatum as it plays an important role in modulating 
habitual alcohol use (2, 3, 7, 9), has strong DOR expression (20), 
and, crucially, is a region where DOR agonist SNC80 has been 
shown to increase alcohol intake in rats (25). Here, activation of 
virally expressed Gi/o-coupled DREADDs in the dorsal striatum 
was capable of decreasing alcohol intake while no effect was 
observed in control-GFP animals upon CNO administration 
(Figure 1). For activation of endogenous dorsal striatal DORs, our 
findings that local dorsal striatal infusion of TAN-67 decreased 
alcohol intake and SNC80 increased alcohol intake (Figure  4; 
Figure S3 in Supplementary Material) agreed with our systemic 
findings (28) and also confirmed the previously observed alcohol 
intake increase following local dorsal striatal infusion of SNC80 in 
rats (25). Furthermore, through the use of β-arrestin-2 KO mice, 
we were able to shift the direction of alcohol intake modulation 
by SNC80 from significantly increasing intake to significantly 
decreasing consumption when β-arrestin-2 signaling pathways is 
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Figure 3 | SNC80 is a β-arrestin-biased agonist with comparable potency across species in heterologous cell systems. At the hDOR, SNC80 acts as a β-arrestin-2 
super-agonist compared with the endogenous agonist leu-enkephalin and the weak β-arrestin-2 recruiter TAN-67 (A). SNC80 and TAN-67 bind to hDOR with similar 
affinity (B). Schematic representation of the observed ligand bias of TAN-67 and SNC80 at hDOR, with calculated bias factor (C). SNC80 and Leu-enkephalin have 
similar potency to inhibit forskolin-induced cAMP production at hDOR (D), rDOR (E), and mDOR (F). A representative summation is shown (n ≥ 3).
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not present (Figure 5; Figure S3 in Supplementary Material). This 
was expected as TAN-67 and SNC80 displayed similar binding 
and G-protein pathway efficacy at DOR in vitro, suggesting that 
the removal of potential β-arrestin-2 recruitment would allow 
the agonists to behave similarly (Figure 3). This shift is in agree-
ment with our hypothesis that DOR-mediated Gi/o signaling is a 
potential strategy to reduce alcohol use, whereas DOR-mediated 
β-arrestin signaling is to be avoided.

While the dorsal striatum as a region in general is implicated in 
procedural learning (49–51), the dorsolateral striatum subregion 
is heavily associated with habitual behavior (behavioral actions 
that persist despite reward devaluation) (52) and the dorsomedial 
striatum with goal-directed learning (53). Chronic alcohol expo-
sure may preferentially activate the dorsolateral striatum versus 
the dorsomedial striatum, as observed by increased glutamater-
gic transmission (54) and decreased GABAergic transmission 
(54, 55) in this subregion in animals exposed to chronic inter-
mittent alcohol. Moreover, in rats, alcohol self-administration 
upregulates brain-derived neurotrophic factor (BDNF) in both 
the DLS and DMS, but with more robust increases in BDNF in 
the DLS (56, 57). Furthermore, infusion of BDNF in the DLS 
decreases alcohol self-administration (57). In rats, initial alcohol 
seeking was attenuated upon inactivation of the DMS (with no 
effect upon inactivation of the DLS). However, upon longer 

exposure to operant alcohol training, animals became insensitive 
to alcohol devaluation, and inactivation of the DLS re-sensitizes 
the animals to devaluation (6). Our results presented here did 
not differentiate between the DMS and the DLS, although future 
studies warrant investigation of Gi/o-protein activity in these 
dorsal striatal subregions for potential subregion-specific differ-
ences in alcohol intake upon Gi/o-protein activation.

To broadly validate the role of the dorsal striatum in alcohol 
consumption, we first virally expressed a Gi/o-coupled DREADD 
(hM4Di) to artificially activate Gi/o-protein signaling pathways 
in this region to determine how increased Gi/o-protein activity 
altered alcohol intake. In the present study, activation by the 
hM4Di DREADD ligand CNO decreased alcohol intake of ani-
mals expressing hM4Di in the dorsal striatum and had no effect 
on control-GFP animals (Figure 1). Despite recent concerns on 
the use of DREADD technology and CNO's conversion to clozap-
ine in vivo, the low dose of 2 mg/kg was specific in its behavioral 
effects on the hM4Di-expressing mice compared with control 
GFP-expressing animals in drinking behavior (35), thus ruling 
out the potential issue that decreased consumption resulted 
from CNO (or clozapine following CNO conversion) activating 
endogenous muscarinic M4 receptors, which are also highly 
expressed in the striatum (58). In addition, as previously men-
tioned, no differences in locomotor activity were observed upon 
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Table 2 | Two-way, repeated measures ANOVA of alcohol-related behaviors in 
wild-type mice upon biased delta-opioid receptor agonist infusion in the dorsal 
striatum.

Two-way 
ANOVA

df Drug  
injection,  

alcohol intake

Drug  
injection,  

water intake

Drug injection, 
alcohol 

preference

Drug 2, 16 F = 4.38
p = 0.03

F = 0.63
p = 0.56

F = 1.40
p = 0.28

Test session 1, 8 F = 0.39
p = 0.55

F = 2.11
p = 0.18

F = 0.33
p = 0.58

Drug × test 
session

2, 16 F = 20.22
p < 0.0001

F = 0.49
p = 0.62

F = 1.39
p = 0.28

Multiple comparisons 
(Tukey)

VEH p > 0.99
TAN-67 p = 0.042
SNC80 p = 0.0005

VEH p > 0.96
TAN-67 
p > 0.99
SNC80 

p = 0.54

VEH p > 0.97
TAN-67 p = 0.85
SNC80 p = 0.88

Figure 4 | Dorsal striatal infusion of Gi/o-protein biased delta-opioid receptor (DOR) agonist TAN-67 decreases voluntary alcohol intake, while β-arrestin-2 biased 
DOR agonist SNC80 increases alcohol intake in wild-type mice. Cannula placement was verified for all animals included in behavioral analysis (A). C57BL/6 male, 
wild-type mice (n = 9–10) were trained to consume 10% alcohol over the course of 3 weeks, during which they increased their alcohol intake (B) and alcohol 
preference (C). Vehicle saline (0.9%) infusion did not change alcohol intake while TAN-67 (10 µM) significantly decreased alcohol intake and SNC80 (10 µM) 
significantly increased alcohol intake (D). Significance by repeated measures, multiple comparisons (Tukey) two-way ANOVA, *p < 0.05 and ***p < 0.001.
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CNO administration in either control or DREADD-expressing 
mice, suggesting that the observed decrease in consumption did 
not result from hypolocomotion (Figure  2). Our viral AAV8-
DREADD construct was expressed under a human synapsin pro-
moter which specifically targets neurons (59), and given that the 
majority of the dorsal striatum consists of MSNs and AAV8 has 

been shown to infect GABAergic neurons in the mouse striatum 
(60), activation of virally expressed striatal hM4Di receptors in 
our experimental design likely inhibited both the D1R-MSNs and 
D2R-MSNs of the direct and indirect pathways, respectively. This 
net inhibition may be responsible for the observed no net change 
in locomotor activity and a modest—albeit significant—decrease 
in alcohol intake (3, 6, 8, 35, 41). We did not verify the potential of 
preferential tropism of the AAV8-DREADD construct [although 
AAV8 transduction in the striatum suggests that serotype 8 suc-
cessfully transduces GABAergic neurons in the mouse striatum 
(60, 61)], thus limiting our conclusions on the specificity of 
increased Gi/o-protein activity by DREADD activation on striatal 
GABAergic and/or cholinergic neurons. Furthermore, while our 
DREADD strategy was successful in confirming that inhibition of 
dorsal striatum by increased Gi/o-protein signaling can decrease 
alcohol consumption, CNO is known to be an unbiased ligand for 
DREADD receptors (62, 63). Therefore, we next continued with 
an approach where we could more selectively activate endogenous 
Gi/o-protein signaling over β-arrestin pathways.

Because of the limitations of potential tropism and possible 
β-arrestin-2 recruitment in our DREADD strategy, we next inves-
tigated changes in alcohol intake upon activation of Gi/o-protein 
activity by infusing DOR agonists into the dorsal striatum, 
where DORs are endogenously expressed presynaptically on 
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Table 3 | Two-way, repeated measures ANOVA of alcohol-related behaviors in 
β-arrestin-2 knockout mice upon biased delta-opioid receptor agonist infusion in 
the dorsal striatum.

Two-way 
ANOVA

df Drug injection, 
alcohol intake

Drug injection, 
water intake

Drug injection, 
alcohol preference

Drug 2, 
26

F = 7.31
p = 0.003

F = 1.07
p = 0.36

F = 3.11
p = 0.062

Test session 1, 
13

F = 25.28
p = 0.0002

F = 0.93
p = 0.35

F = 7.19
p = 0.019

Drug × test 
session

2, 
26

F = 7.92
p = 0.0021

F = 2.46
p = 0.11

F = 4.03
p = 0.03

Multiple 
comparisons 
(Tukey)

VEH p > 0.97
TAN-67 p = 0.011
SNC80 p = 0.0021

VEH p > 0.99
TAN-67 p = 0.95
SNC80 p = 0.28

VEH p > 0.99
TAN-67 p > 0.99

SNC80 p = 0.018

Figure 5 | Genetic knockout (KO) of β-arrestin-2 reveals critical role of Gi/o signaling in reducing alcohol intake via dorsal striatal delta-opioid receptor activation. 
Cannula placement was verified for all animals included in behavioral analysis (A). C57BL/6 male, β-arrestin-2 KO mice (n = 12) were trained to consume 10% 
alcohol over the course of 3 weeks, during which they increased their alcohol intake (B) and alcohol preference (C). Vehicle saline (0.9%) infusion did not change 
alcohol intake, but both TAN-67 and SNC80 (10 µM) significantly decreased alcohol intake (D). Significance by repeated measures, multiple comparisons (Tukey) by 
two-way ANOVA, *p < 0.05 and **p < 0.01.
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corticostriatal glutamatergic inputs (19), pre- and postsynapti-
cally on cholinergic interneurons, and on D2-MSNs (20–22). 
In designing our DOR drug infusion experiments, we infused 
known DOR agonists into the dorsal striatum of either wild-
type or β-arrestin-2 KO mice once a week (following 3 weeks of 
alcohol drinking) to assess changes in voluntary alcohol intake 
in response to drug infusion. In the first infusion test week, we 

infused vehicle (saline 0.9%) to ensure that handling and infu-
sion alone did not change voluntary alcohol intake (Figures  4 
and 5). In the second infusion test week, TAN-67 was infused, 
followed by SNC80 infusion in the third infusion test week. This 
specific order of drug infusion was determined based upon the 
in vitro β-arrestin-2 recruitment profiles of TAN-67 and SNC80 
(Figure 3) and previously published work on SNC80's ability to 
cause rapid DOR internalization [and potential degradation (64)] 
in vitro and in vivo (in the striatum) (20, 37). Thus, we infused 
TAN-67 first to prevent potential SNC80-induced desensitiza-
tion of the DOR system and we did not counterbalance our drug 
infusions, thus limiting our conclusions on how observed SNC80 
responses may be confounded by potential inflammation upon 
repeated drug infusion into this brain region. Because we spe-
cifically observe different behavioral effects with SNC80, which 
was injected last in both wild-type and β-arrestin-2 KO mice, we 
would argue that the observed responses represent a true phar-
macological effect and are not a negative or positive consequence 
of repeated infusions.

Our findings that activation of Gi/o signaling in the dorsal 
striatum reduces alcohol intake would suggest a role for adenylyl 
cyclase and cAMP in this behavior. Recently, reductions in cAMP 
levels in the dorsal striatum by adenylyl cyclase type 1 (AC1) 
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inhibition and AC1-KO have been associated with decreased 
ethanol-induced locomotor sensitization (65). Furthermore, 
blockade of dorsal striatal Gs-coupled dopamine D1 receptors 
(but not blockade of Gi/o-coupled dopamine D2) attenuates alco-
hol consumption (8), suggesting indeed that inhibition of cAMP 
production in the dorsal striatum may contribute to reduced 
alcohol use. In the dorsal striatum, alcohol can induce LTD of 
fast spiking interneuron-medium spiny neuron synapses via a 
mechanism involving DORs, as this LTD was blocked by a DOR 
antagonist and the effect was mimicked when using the DOR 
agonist DPDPE (24). Moreover, the effects of DPDPE can also be 
blocked by activating adenylyl cyclases with forskolin (24). In our 
hands, we find that DPDPE is relatively unbiased and thus also 
efficiently recruits β-arrestin (28). This may be relevant as it has 
been shown that LTD may also rely on functional β-arrestin-2 
expression: activation of hippocampal metabotropic gluta-
matergic receptors attenuated LTD in β-arrestin-2 KO animals 
(66, 67) and, upon metabotropic glutamate receptor activation, 
β-arrestin-2 scaffolding proteins increase the synaptic strength 
of hippocampal neurons (68). Currently, no studies have investi-
gated the role of β-arrestin-2 in alcohol and DOR-mediated LTD 
in the dorsal striatum, nor have studies investigated if contribu-
tions of cAMP and β-arrestin to LTD change in alcohol-exposed 
or alcohol-dependent animals.

The observation that β-arrestin-2 activation in the dorsal 
striatum increases alcohol intake in mice is in agreement with 
reported elevated expression levels of β-arrestin-2 gene (Arrb2) 
and β-arrestin-2 protein levels in the striatum of ethanol-
preferring alko alcohol rats in comparison with alko non-
alcohol rat counterparts, as well as decreased voluntary alcohol 
intake in β-arrestin-2 KO (69). Despite these connections of 
β-arrestin expression and voluntary alcohol intake, conflicting 
results exist on how alcohol intake is altered in β-arrestin-2 KO 
animals. Li et al. (70) observed that their β-arrestin-2 KO mice 
displayed increased voluntary alcohol consumption compared 
with wild-type mice, in line with behavior by our β-arrestin-2 
KO mice which also showed slightly higher alcohol intake 
than wild-type mice (Figure  5) (28). One potential explana-
tion is that the Björk et  al. study used alcohol solutions that 
contained saccharin (28, 69, 70). Importantly, as a number of 
these aforementioned studies (including ours presented here) 
utilize global β-arrestin-2 KO animal models, we are limited 
in our interpretation on how global β-arrestin-2 expression 
affects general alcohol behavior because of potential com-
pensatory expression of the β-arrestin-1 isoform, particularly 
because isoform-selective differences in behavior have been 
observed (71, 72). The effect of β-arrestin expression on alco-
hol intake is noteworthy as altered levels of β-arrestin-2 have 
been observed as a result of acute and/or chronic morphine 
exposure in rats (73), elevated glucocorticoid activity in vitro 
(74), during inflammation in  vivo in synoviocytes, and after 
cerebral hypoxia/ischemia (75). It is possible that alcohol intake 
and preference by subjects in these situations is enhanced, and 
that effectiveness of therapeutic drugs may be altered in these 
subjects, i.e., an unbiased drug may become β-arrestin-biased 
and increase alcohol use.

The dorsal striatum contains a large variety of Gi/o-coupled 
GPCRs besides DORs, including the muscarinic M4 and seroto-
nin 5-HT1B receptors (10, 11). In line with our current findings, 
all three Gi/o-coupled receptors the respective KO animals (DOR 
KO, M4R KO, and 5-HT1B KO mice) consume more alcohol com-
pared with wild-type littermates (18, 76, 77). Here, our findings 
indicate that activation of dorsal striatal Gi/o-coupled receptors, 
either via endogenous DORs or by virally expressed DREADDs, 
is sufficient to decrease voluntary alcohol intake in C57Bl/6 
male mice. As β-arrestin-2 recruitment is associated with rapid 
internalization of DORs in vitro and in vivo [where DORs are 
degraded upon internalization (36, 37, 64)], we hypothesize that 
β-arrestin-2 recruitment to DORs by SNC80 can lead to rapid 
desensitization of endogenously expressed DORs, resulting in 
increased alcohol similar to that observed in DOR KO mice (18). 
In addition, SNC80-induced β-arrestin-2 recruitment may lead 
to β-arrestin-dependent signaling events (78), such as increased 
phosphorylation of ERK (79, 80). Previously, we discovered that 
agonists of the Gi/o-coupled DOR can either decrease or increase 
alcohol intake in mice (29, 81, 82), and closer examination of the 
pharmacology of the DOR agonists revealed that agonists that 
strongly recruit β-arrestin-2 increased alcohol intake, whereas 
agonists that were Gi/o-protein biased decreased alcohol intake 
in mice (28), suggesting that Gi/o-protein biased ligands may 
be a therapeutic option in treating AUD. Combined with our 
current results, these studies suggest a potentially broad role 
for striatal Gi/o-coupled signaling to decrease alcohol intake, 
which could be accomplished via G-protein biased ligands 
that activate Gi/o-coupled receptors robustly expressed in the 
dorsal striatum, such as the DOR. Therefore, the development 
of Gi/o-protein biased DOR agonists or agonists for other striatal 
Gi/o-coupled receptors, such as the M4, 5-HT1b, dopamine D2 
(83), kappa-opioid (84), and/or GPR88 receptor (85), could 
present a novel strategy to treat AUD by decreasing excessive 
alcohol consumption.
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