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Editorial on the Research Topic

Cardioimmunology: Inflammation and Immunity in Cardiovascular Disease

Despite great advances in the diagnosis and treatment witnessed in the last decades, cardiovascular
disease (CVD) remains one of the leading causes of morbidity and mortality in Western
Countries. This is in part due to the fact that basic pathogenic mechanisms remain in most cases
poorly understood, thus significantly limiting the effectiveness of the therapeutic interventions.
In this regard, mounting recent evidence shows how immuno-inflammatory activation plays
a pivotal role in many cardiovascular disorders, thus opening new unconventional treatment
options. Indeed, after the demonstration that atherosclerosis is primarily a chronic inflammatory
disease of the arterial wall (1), data suggest that a dysregulation of the immune system and
inflammatory pathwaysmay be the leadingmechanisms in a large number of CVDs, including heart
failure, pericardial disease, cardiomyopaties, and rhythm disorders (2, 3). Immuno-inflammatory
mechanisms may play a role in mediating or modulating even hereditary cardiovascular disorders
with monogenic etiologies, such as long QT syndrome and arrhythmogenic right ventricular
cardiomyopathy (4–6). In the present Frontiers Research Topic, an international selection of
investigators contributed original data and up to date reviews to increase our current understanding
on the role of the immune system and inflammation in CVD to advance the field forward.

Several contributions focused on the impact of immunity and inflammation on the development
of atherosclerosis and related complications. Immune cell trafficking in homeostasis and
inflammation is specifically directed and orchestrated by a wide family of chemotactic cytokines,
collectively known as chemokines, representing an important protective response toward infectious
agents and other injuring factors. However, evidence indicates that excessive or inappropriate
activation of the chemokine network is involved in several autoimmune and allergic disorders,
transplant rejection, as well as in ischemic heart disease (7). Szentes et al. reviewed the role of the
chemokine receptor CXC3 and associated CXC chemokines in the pathogenesis of atherosclerosis
and during acute myocardial infarction. They provided evidence that intense chemokine signaling
occurs from the forming of the atherosclerotic plaque and plaque destabilization, to all phases of
acute coronary events and infarct healing. In this view, they proposed CXCR3-binding chemokines
as promising biomarkers for the risk assessment of coronary heart disease, despite the short half-life
and the high intra-individual variability. Validation studies in large populations are warranted.

Type 2 immunity, involving specific cell types, such as mast cells, eosinophils, basophils,
alternatively activated M2 macrophages, type 2 innate lymphoid cells, and T-helper (Th) 2 cells,
and cytokines (IL-4, IL-5, IL-9, IL-13, IL-25, IL-33), and thymic stromal lymphopoietin, are known
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to critically contribute to the pathogeneses of helminth
infection and allergic diseases. However, increasing evidence
points to an important role for type 2 immunity actors in
maintaining metabolic homeostasis and facilitating the healing
process after tissue injury (8). Xu et al. reviewed basic and
human data indicating that type 2 immunity-related cell
types and cytokines contribute to different physiological and
pathological responses after myocardial infarction, particularly
by inhibiting the inflammatory activation and promoting
angiogenesis and collagen deposition, critical for myocardial
repair.Moreover, mast cells can also actively regulate contractility
of cardiomyocytes, thereby conferring further potential benefits
to the infarcted myocardium. The review provides a framework
to deepen our understanding of how type 2 immune responses
may facilitate the recovery of cardiac functions after myocardial
function, also serving as potential biomarkers for disease severity
and prognosis.

Leukotrienes (LTs), acting via several receptors types
including BLT1 (receptor for LTB4), participate in various
cardiovascular diseases driven by vascular inflammation,
particularly atherogenesis and vascular remodeling after
angioplasty (9). However, the precise role of BLTR1 signaling
in monocytes during vascular inflammation remains unclear.
By studying a mouse model of wire-injured femoral artery,
Baek et al. provide original data demonstrating that BLTR1
in monocytes is a pivotal player in monocyte-to-macrophage
differentiation with subsequent macrophage infiltration into
neointima, leading to vascular remodeling after vascular
injury. This study adds to our knowledge in the basic
mechanisms of vascular inflammation, also supporting the
potential role of BLTR1 as an innovative therapeutic target for
cardiovascular disease.

Other papers in this Research Topic investigated specific
molecular aspects possibly underlying inflammatory pathways
involved in the development of CVD. Lysophosphatidylcholine
acyltransferase (LPCAT) is a key player in regulating the
composition of polyunsaturated phosphatidylcholines (PCs) in
mammalian membranes (10). LPCAT3 is highly expressed
in macrophages, cells actively involved in atherogenesis in
which the plasma membrane provides an important platform
that mediates inflammation. Starting from such premises,
Jiang et al. demonstrated that in animal models LPCAT3
deficiency promotes membrane PC remodeling and macrophage
inflammatory response, specifically increasing toll like receptor-4
expression and inflammatory cytokines release. However, these
changes had only a marginal influence on the development of
atherosclerosis in mice on a Western type diet.

In another study, Sáez et al. identified the activation of
endothelial connexin43 (Cx43) hemichannels as a new pathway
affected by inflammatory mediators, supporting a possible
involvement of these ion channels in the pathogenesis of
CVD. The authors intriguingly proposed that the reduction of
hemichannel activity by selective hemichannel blockers might
represent a strategy against endothelial dysfunction induced by
pro-inflammatory cytokines.

The key role of endothelium in CVD also represented
the focus of the paper by Anand et al., by reviewing the

impact of human immunodeficiency virus (HIV) on endothelial
cells. In fact, cardiovascular events have become an important
cause of morbidity and mortality in HIV-infected individuals,
where endothelial dysfunction has been identified as a critical
link between infection, immune-inflammatory activation, and
atherosclerosis (11). By discussing the multiple mechanisms by
which viral proteins can damage the vascular endothelium, the
authors highlighted how a more detailed exploration into the
mechanisms of HIV-induced endothelial dysfunction is essential
to develop targeted approaches to prevent and treat HIV-related
vascular diseases.

Given the increasingly recognized key role of inflammatory
activation in the induction and progression of atherosclerosis,
the development of inflammation-targeting therapies as an
innovative approach to CVD currently represents a field of great
interest. In this view, important lessons derive from rheumatic
diseases. In fact, these conditions represent spontaneous “human
models” of chronic systemic inflammation associated with
accelerated and diffuse atherosclerotic damage, in which anti-
inflammatory drugs constitute the cornerstone for patient’s
treatment (12). By focusing on the main mechanisms linking
the inflammatory pathogenic background underlying rheumatic
diseases and related vascular damage, Bartoloni et al. analyzed
current evidence on the potential atheroprotective effects of
disease-modifying anti-rheumatic drugs (DMARDs). Although
data suggest that DMARDs, particularly biologic therapies
such as TNFα antagonists, may improve surrogate markers of
CVD and reduce cardiovascular adverse outcome, the authors
highlight as the actual effect of anti-rheumatic therapies on
CVD in these patients is rather uncertain due to great literature
inconsistency, pointing out to still unresolved questions.

Dipeptidyl peptidase-4 inhibitors (DPP-4i), commonly used
as hypoglycemic agents, represent another attractive class of
drugs for treating CVD by targeting inflammation. DPP-4
is a protease widely expressed on cell membranes where it
plays important roles in immune-regulation, inflammation, and
oxidative stress (13). Data indicate that DPP-4i exert potent
activities in the cardiovascular system, particularly by regulating
blood pressure (BP). Starting from this evidence, Zhang et al.
reviewed the current literature and showed that DDP-4i can
decrease BP, at least in part by suppressing inflammatory
responses and oxidative stress, in turn improving vascular
endothelial function. Further research is needed to better define
the actual clinical impact of these non-conventional effects of
DDP-4i on the cardiovascular system.

The potential contribution of traditional Chinese medicine
to the pharmacotherapeutic armamentarium targeting
inflammatory pathways involved in cardiovascular damage,
is the focus of the study by Zhang et al. These authors
investigated the anti-inflammatory activities of ginkolide B
(GB), a major monomer extract from leaves of Ginkgo biloba
traditionally used in Chinese herbal medicine, during myocardial
ischemia/reperfusion (I/R) injury. In fact, inflammatory signaling
not only mediates the properties of plaques that precipitate I/R,
but also influences the clinical consequences of the post-
infarction remodeling and heart failure (14). By using both in
vivo and in vitro I/R models, Zhang et al. provided evidence that
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GB significantly prevented ultrastructural myocardial changes,
also reducing the infarct size. Such beneficial effects resulted from
a suppression of the inflammatory response, as demonstrated by
the decline in nuclear factor-kappa B activation, inflammatory
cytokines expressions, and leukocyte tissue infiltration. Since
many patients pay for supplements with claims of benefits,
frequently not evidence-based, clinicians who are up to date on
the evidence for supplements of traditional Chinese medicine
could properly advise their patients on where there may or may
not benefit.

Diabetes mellitus (DM) is a progressive metabolic disease
characterized by an imbalance in glucose homeostasis, impaired
insulin secretion, and abnormal lipid and carbohydrate
metabolism. DM represents a major cause of CVD, at
least in part by inducing oxidative stress and activating
inflammatory pathways in the cardiovascular system. Edible
fungi, which contain a number of bioactive components with
few adverse effects, are reported to exert many pharmacological
effects, including metabolism regulation by reducing the
oxidative stress (15). Wang et al. treated diabetic mice with
an albino mutant strain of Auricularia cornea and reported
significant hypoglycemic effects by reducing blood glucose
levels, modulating glucose tolerance, and recovering the
serum levels of glycated hemoglobin A1c, glucagon, and
insulin. These changes were associated with evident anti-
oxidative and anti-inflammatory activities via the regulation
of NF-κB signaling. Further research is needed to understand
whether natural compounds may have a therapeutic role in
reducing the inflammatory burden in diabetes and related
cardiovascular involvement.

Heart failure (HF) represents a leading cause of morbidity and
mortality in Western countries. Accumulating data in the last
few years demonstrated how immune-inflammatory activation
is critically involved in the pathogenesis and progression
of this condition, with important diagnostic and therapeutic
implications (16). Some papers included in this topic further
support this view, by both providing new original data and
critically reviewing already existing information.

Cardiorespiratory fitness (CRF), defined as the ability of the
circulatory, respiratory, and muscular systems to supply oxygen
during sustained physical activity, is an objective measure of
habitual physical activity and a prognostic indicator in HF
(17). Serum levels of C-reactive protein (CRP), a systemic
inflammatory marker, and of N-terminal pro-brain natriuretic
peptide (NT-proBNP), a biomarker of myocardial strain, also
independently associate to adverse outcomes in HF patients
(18, 19). In this scenario, vanWezenbeek et al. demonstrated that
serum levels of CRP predict CRF impairment in patients with
HF across a wide range of ejection fraction, independently from
NT-proBNP levels. These new findings point to the inhibition
of systemic inflammation with anti-inflammatory drugs as an
independent therapeutic strategy improving CRF in patients
with HF, thereby adding potential benefits to already existing
interventions alleviating myocardial strain.

Obesity is “the disease of the modern era.” It is accompanied
by structural and functional alterations in the heart ranging
from subclinical impairment of left ventricle systolic and
diastolic functions to overt forms of HF (20). Sokolova

et al. investigated the involvement of inflammatory pathways
in obesity-associated myocardial remodeling, specifically the
cytosolic pattern recognition receptor NLRP3, which is an
important regulator of the inflammatory cytokine cascade. The
evidence that they provided that cardiac concentric remodeling
in obesity is modulated by NLRP3 inflammasome, through the
effects on systemic inflammation and metabolic disturbances,
may open new avenues for preventing HF in obese patients. More
research in this fascinating area is warranted.

Systemic inflammation can negatively affect cardiac function
and sepsis represents an excellent proof of this concept. In
fact, acute HF due to myocardial dysfunction is one of the
major complications of severe sepsis, significantly contributing
to increased mortality (21). However, the precise underlying
mechanisms remain incompletely understood, thereby limiting
the development of effective therapies. In a mouse model
injected with lipopolysaccharide (LPS), Chen et al. tested
the potential benefits of trimetazidine (TMZ), a clinically
effective anti-anginal agent which showed protective effects
in HF (22). TMZ significantly attenuated cardiac dysfunction,
by promoting neutrophil recruitment to cardiac tissue and
reducing inflammatory programmed cell death (pyroptosis).
Future research is warranted to determine the clinical impact of
these intriguing, but yet preliminary data.

Mast cells are ubiquitous innate immune cells chiefly involved
in allergic disease and host defense. They act by producing
a number of mediators which are also deeply involved in
regulating the fibrotic process (23). Legere et al. reviewed
current knowledge on the relationship between mast cells
and cardiac fibrosis, also underlining how the manipulation
of their mediators may represent potential opportunities for
intervention. The authors alert us on discrepancies currently
existing in the results of both in-vitro and animal models,
alternatively suggesting mast cells with pro- or anti-fibrotic
activities. A better understanding of these findings is urgently
needed to move this field forward.

In addition to the unspecific inflammatory activation
mediated by the cells of the innate immune system, autoimmune
responses of the adaptive immune system to myocardial antigens
can contribute to the progression of HF. Starting from recent data
demonstrating that autoreactive CD4+-helper T cells specifically
targeting cardiomyocytes contribute to the progression of HF
(24), Gröschel et al. investigated whether also CD8+-cytotoxic
T cells are involved in an animal model of pressure overload-
HF induced by transverse aortic constriction (TAC). Although
CD8+-cells activate after TAC, this seems to be a largely
inefficient process leading only to low-grade cytotoxicity as the
progression from cardiac hypertrophy toHFwas not significantly
accelerated. The authors concluded that, in contrast to CD4+-
T cells, CD8+-T cells do not have a major impact on pressure
overload-induced HF.

Myocarditis is the archetype of the inflammatory heart
disease, resulting from an intricate interplay between
microbial agents and immune response, both innate and
adaptive (25).

In this Frontiers Topic, Maisch focused on the cardio-
immunology of myocarditis, providing an up-to-date review
discussing pathogenetic phases and clinical faces of myocarditis,
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as well as specific treatment options beyond symptomatic HF
and anti-arrhythmic therapy. Although great advances in this
field have been achieved in the last several years, the author
warns the scientific community that there is still much work to
be done.

Myocarditis also represents the most common cardiac
immune-related adverse event (irAE) during treatment
with immune checkpoint inhibitors (ICIs), a new class of
monoclonal antibodies, which have shown unprecedented
efficacy in treating multiple cancers by promoting the anti-
tumor immune response in the host. In fact, activation of
immune responses in non-target organs can induce a wide
spectrum of irAEs, in some cases also involving the heart.
Besides myocarditis, other cardiac irAEs include congestive HF,
Takotsubo cardiomyopathy, pericardial disease, arrhythmias, and
conduction disease. Tajiri and Ieda reviewed the mechanisms
and clinical aspects of cardiotoxicities associated with ICIs,
also analyzing available information regarding diagnosis,
management, and prognosis. The main message deriving from
this review is that although cardiac irAEs are relatively rare, they
can be life-threatening, thereby requiring high vigilance from
cardiologists and oncologists.

The role of innate lymphoid cells (ILCs) in myocarditis,
as well as during cardiac ischemia and healthy conditions,
is investigated by Bracamonte-Baran et al. ILCs are a subset
of leukocytes with lymphoid properties but lacking antigen
specific receptors, considered the link between the innate
and adaptive response. The authors demonstrated that the
heart, unlike other organs, cannot be infiltrated by circulating
ILCs even during cardiac inflammation or ischemia. Thus,
the ILCs present during inflammatory conditions, are derived
from the heart-resident and quiescent steady-state population,
at least in part driven by cardiac fibroblast-derived IL-33
production. If in one hand this study shows that the heart
is a unique niche in terms of the ILC compartment, on
the other hand it remains to be elucidated at what stage
of fetal development or early life, is the heart populated
by ILCs.

Accumulating data indicate that the immune system can
promote cardiac arrhythmias by means of autoantibodies
and/or inflammatory cytokines that directly affect the
expression and/or the function of specific ion channels
on the surface of cardiomyocytes (26, 27). For these
conditions, the terms of autoimmune and inflammatory
cardiac channelopathies has recently been coined,
respectively (3, 4).

In this topic, Qu et al. comprehensively reviewed the role
of autoimmune calcium channelopathies in promoting cardiac
rhythm disturbances. They discussed how anti-calcium channel
autoantibodies, either inhibitory or agonist-like, are involved
in the pathogenesis of the immune-mediated congenital heart
block (iCHB), as well as ventricular arrhythmias in patients
with dilated cardiomyopathy. Future directions in diagnosis

and therapeutic approach are also provided, underlying the
potential role of innovative anti-arrhythmic interventions based
on the modulation of the immune system or the autoantibody
distraction from ion channel binding sites (decoy-peptide
based therapy).

Among autoimmune calcium channelopathies, the most
investigated is the iCHB. It is a rare but potentially life-
threatening rhythm disorders critically related to the
transplancental passage of anti-Ro/SSA from the mother to
the fetus (28). Ample experimental evidence demonstrated
the an inhibitory cross-reactivity of these autoantibodies with
the L- and T-type calcium channels plays a key role in the
pathogenesis of the disease (29, 30). Fredi et al. provided
the first report from the Italian Registry on iCHB, in which
89 cases have been recruited between 1969 and 2017. The
paper provided important information regarding pre- and
post-natal outcomes, treatment, recurrence rate and maternal
follow-up. The authors stated that the registry at present is
mainly rheumatological, but the involvement of pediatric
cardiologists and gynecologists is planned. Reducing the
heterogeneity in management patterns throughout different
Italian centers represent the other key point which emerged from
this registry.

Aortic valve stenosis, representing the major cardiac valve
disease, is characterized by inflammation, atherosclerosis,
and calcification (31). Small non-coding RNA (miRNAs) are
increasingly recognized as master regulators of gene expression
in several physiological and pathological conditions. Specifically,
miR-146 is actively involved in the regulation of the immune
response as well as in inflammatory process of atherosclerosis
(32, 33). Petrkova et al. provided the first report plausibly
implicating miR-146a in aortic valve stenosis, thereby indirectly
supporting a role for immune-inflammatory activation in the
pathogenesis of the disease. More research in this emerging area
are warranted.

In conclusion, the high quality contributions of this
Research Topic significantly enriched our knowledge of
the emerging field of Cardioimmunology, both in terms
of basic/translational mechanisms and clinical implications
for patients’ management. In addition, by emphasizing
challenges and unmet needs, this Research Topic provides
important directions for further investigation in this fascinating
area of cardiovascular medicine and autoimmune and
inflammatory diseases.
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The present work was done to elucidate whether hemichannels of a cell line derived 
from endothelial cells are affected by pro-inflammatory conditions (high glucose and 
IL-1β/TNF-α) known to lead to vascular dysfunction. We used EAhy 926 cells treated 
with high glucose and IL-1β/TNF-α. The hemichannel activity was evaluated with the 
dye uptake method and was abrogated with selective inhibitors or knocking down 
of hemichannel protein subunits with siRNA. Western blot analysis, cell surface bioti-
nylation, and confocal microscopy were used to evaluate total and plasma membrane 
amounts of specific proteins and their cellular distribution, respectively. Changes in 
intracellular Ca2+ and nitric oxide (NO) signals were estimated by measuring FURA-2 
and DAF-FM probes, respectively. High glucose concentration was found to elevate 
dye uptake, a response that was enhanced by IL-1β/TNF-α. High glucose plus IL-1β/
TNF-α-induced dye uptake was abrogated by connexin 43 (Cx43) but not pannexin1 
knockdown. Furthermore, Cx43 hemichannel activity was associated with enhanced 
ATP release and activation of p38 MAPK, inducible NO synthase, COX2, PGE2 receptor 
EP1, and P2X7/P2Y1 receptors. Inhibition of the above pathways prevented completely 
the increase in Cx43 hemichannel activity of cells treated high glucose and IL-1β/TNF-α. 
Both synthetic and endogenous cannabinoids (CBs) also prevented the increment in 
Cx43 hemichannel opening, as well as the subsequent generation and release of ATP 
and NO induced by pro-inflammatory conditions. The counteracting action of CBs also 
was extended to other endothelial alterations evoked by IL-1β/TNF-α and high glucose, 
including increased ATP-dependent Ca2+ dynamics and insulin-induced NO production. 
Finally, inhibition of Cx43 hemichannels also prevented the ATP release from endothelial 
cells treated with IL-1β/TNF-α and high glucose. Therefore, we propose that reduction 
of hemichannel activity could represent a strategy against the activation of deleterious 
pathways that lead to endothelial dysfunction and possibly cell damage evoked by high 
glucose and pro-inflammatory conditions during cardiovascular diseases.
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INTRODUCTION

The endothelial cell lining of vessels walls plays central roles in 
regulating vascular homeostasis, such as the maintenance of 
vessel integrity, supply of oxygen and nutrients to underlying 
tissues and promotion of a well-balanced redox and immune 
environment (1). Under physiological conditions, endothelial 
cells maintain a proper interface barrier between blood and tis-
sue; surveilling and combating possible perturbations of invading 
pathogens or endogenous threats in response to tissue damage (2). 
The endothelium rapidly reacts to acute damage by modulating 
blood flow, permeability, leukocyte infiltration, and tissue edema 
(2). If the stimulus persists, chronic endothelial activation accom-
panied of sustained inflammation may lead to vascular dysfunc-
tion, precipitating macrophage recruitment, angiogenesis, and 
subsequent loss of vascular homeostasis (3). Chronic activation 
and dysfunction of endothelial cells are common features and 
part of the underlying origin of myocardial infarction, diabetes, 
stroke, obesity, unstable angina, metabolic syndrome, and sudden 
cardiac death (4). Although diverse conditions are present dur-
ing these diseases, including high blood glucose levels, insulin 
resistance, oxidative stress, and upregulated cytokine production 
(5), the full underlying mechanisms associated with endothelial 
activation and dysfunction are not fully understood.

In the last decade, several studies have established that 
hemichannels mediate the physiological release of different 
signaling molecules (e.g., ATP, glutamate, NAD+, and PGE2) that 
preserve the progression of multiple biological processes, includ-
ing long-term synaptic transmission (6), vessel contractility (7), 
and glucose sensing (8), among others. Hemichannels result from 
the oligomerization of six connexin monomers around a central 
pore, which along with forming the building blocks of gap junc-
tion channels, also acts as a solitary or non-junctional channels in 
the plasma membrane (9). Hemichannels are permeable to ions 
and small molecules; constituting routes of exchange between 
intracellular and extracellular compartments (10). Under certain 
pathophysiological scenarios, rather than being beneficial, the 
prolonged opening of hemichannels contributes to disease 
progression by different ways, including the enhanced release 
of paracrine substances (e.g., ATP and glutamate), intracellular 
Ca2+ handling alterations, and ionic and osmotic imbalance 
(11). A cornerstone underlying this phenomenon rise from the 
overproduction of inflammatory mediators as result of impaired 
operation of the innate and adaptive immune system (12).

There are plenty of data pointing out the detrimental effects of 
inflammation on endothelial function (2) and hyperglycemia is 
one of the most emblematic pro-inflammatory condition during 
different cardiovascular diseases (13, 14). Indeed, animal and 
clinical studies have shown that hyperglycemia causes the sys-
temic production of pro-inflammatory cytokines such as TNFα 
and lL-1β (15, 16), as well as endothelial dysfunction (5). Among 
other changes, high glucose concentration in concert with pro-
inflammatory cytokines alters numerous intracellular signaling 
pathways in endothelial cells (17, 18), which consequently lead to 
reduced endothelial barrier function, compromised vascular tone 
regulation and insulin resistance (5). Although prior evidence 
has described that IL-1β/TNF-α or high glucose (25–45  mM) 

causes a prominent opening of hemichannels in diverse brain 
cell types (8, 19–23), whether high glucose concentration and/or 
pro-inflammatory cytokines can modulate hemichannel activity 
in endothelial cells remain poorly studied.

We hypothesize that high glucose concentration in combina-
tion IL-1β/TNF-α increase the hemichannel activity of endothe-
lial cells, resulting in several cell alterations. Here, we show 
that high glucose concentration and IL-1β/TNF-α and increase 
the activity of endothelial connexin 43 (Cx43) hemichannels. 
Inhibition of these channels prevented the alterations of puriner-
gic signaling, [Ca2+]i signal dynamics, and nitric oxide (NO) 
production. Moreover, two endogenous cannabinoids (CBs): 
methanandamide (Meth) or 2-arachidonylglycerol (2-AG), as 
well as one synthetic CB: WIN 55,212-2 (WIN), prevent these 
events. In particular, they counteracted the persistent opening 
of endothelial Cx43 hemichannels mainly due to increase in the 
amount of Cx43 in the cell surface, which consequently prevented 
the manifestation of different endothelial alterations.

MATERIALS AND METHODS

Reagents and Antibodies
The mimetic peptides Gap19 (KQIEIKKFK, intracellular loop 
domain of Cx43), Tat-L2 (YGRKKRRQRRRDGANVDMHLK 
QIEIKKFKYGIEEHGK, second intracellular loop domain of 
Cx43), and 10panx1 [WRQAAFVDSY, first extracellular loop 
domain of pannexin1 (Panx1)] were obtained from Genscript 
(NJ, USA). HEPES, water (W3500), Dulbecco’s Modified Eagle 
Medium (DMEM), A74003, MRS2179, brilliant blue G (BBG), 
oxidized ATP (oATP), ns-398, sc-19220, indometacin, L-N6, 
SB203580, Lucifer yellow (LY), Meth and 2-AG, WIN-55,212-2 
(WIN), Cx43 polyclonal antibody, ethidium (Etd) bromide, and 
probenecid (Prob) were purchased from Sigma-Aldrich (St. 
Louis, MO, USA). Fetal bovine serum (FBS) was obtained from 
Hyclone (Logan, UT, USA). Penicillin, streptomycin, FURA-
2AM, DAF-FM diacetate, diamidino-2-phenylindole (DAPI), 
BAPTA-AM, goat anti-mouse Alexa Fluor 488 were obtained 
from Invitrogen (Carlsbad, CA, USA). The CB1 receptor antago-
nist (SR1): SR-141716A and the CB2 receptor antagonist (SR2): 
SR-144528 were kindly provided by Sanofi-Aventis Recherche 
(Bagneux, France). Normal goat serum (NGS) was purchased 
from Zymed (San Francisco, CA, USA). Anti-Cx43 monoclonal 
antibody (610061) was obtained from BD Biosciences (Franklin 
Lakes, NJ, USA). IL-1β and TNF-α were obtained from Roche 
Diagnostics (Indianapolis, MI, USA). Horseradish peroxidase 
(HRP)-conjugated anti-rabbit IgG, Sulfo-NHS-SS-biotin, and 
NeutrAvidin immobilized on agarose beads were purchased from 
Pierce (Rockford, IL, USA).

Cell Cultures
The human endothelial cell line EAhy 926 was kindly donated 
by Cora-Jean S. Edgell, University of North Carolina, Chapel 
Hill. ECs were seeded onto plastic dishes (Nunclon) or onto glass 
coverslips (Gassalem, Limeil-Brevannes, France) in DMEM, 
supplemented with penicillin (5 U/ml), streptomycin (5 µg/mL), 
and 10% FBS and kept at 37°C in a 5% CO2/95% air atmosphere 
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at nearly 100% relative humidity. Passaging was performed at 
~90% confluence and cells were re-seeded at 1 × 104 cells/cm2. 
Primary endothelial cells were isolated by collagenase (0.25 mg/
mL) digestion from umbilical cord veins (HUVEC) from normal 
pregnancies and cultured (37°C, 5% CO2) up to passage 2 in 
medium 199 (M199) containing 10% new born calf serum, 10% 
fetal calf serum, 3.2 mM l-glutamine, and 100 U/mL penicillin–
streptomycin. Passaging was performed at ~90% confluence and 
cells were re-seeded at 1 × 104 cells/cm2.

Treatments
Cells were treated for 1, 24, 48, or 72 h with a mixture of IL-1β 
and TNF-α (10  ng/mL of each) plus different concentrations 
of glucose (5, 25, or 45  mM). Mimetic peptides against Cx43 
hemichannels (gap19 and Tat-L2, 100 µM) and Panx1 channels 
(10panx1, 100 µM), as well as Prob (500 µM), were applied to cell 
cultures 15 min prior to and co-applied with Etd for time-lapse 
recordings (see below). CB agonists: WIN, Meth, and 2-AG were 
applied 1 h prior to and co-applied with the cytokines and glucose 
treatment. SR1 and SR2 antagonists were co-applied with the CB 
agonists. Similarly, in another set of experiments, SB203580 (p38 
MAP kinase inhibitor), L-N6 [inducible NO synthase (iNOS) 
inhibitor], indomethacin (COX1 and COX2 inhibitor), sc-560 
(COX1 inhibitor), ns-398 (COX2 inhibitor), sc-19220 (EP1 recep-
tor antagonist), BAPTA-AM (intracellular Ca2+ chelator), BBG 
(non-competitive P2X7 antagonist), oATP (P2X7 antagonist), 
MRS2179 (P2Y1 antagonist), or A740003 (P2X7 antagonist) were 
applied 1 h prior to and co-applied with IL-1β and TNF-α plus 
25 mM glucose for 72 h.

siRNA Transfection
siRNA duplexes against mouse Cx43 or Panx1 were predesigned 
and obtained from Origene (Rockville, MD, USA). siRNA (10 nM) 
was transfected using Oligofectamine (Invitrogen) according to 
the Origene application guide for Trilencer-27 siRNA. Sequences 
for siRNAs against human Cx43 and Panx1 were siRNA-Cx43: 
rGrCrCrTrTrCrTrTrGrCrTrGrArTrCrCrArGrTrGrGrTrAr-
CrATC and siRNA-Panx1: rGrArTrCrTrCrGrArTrTrGrGr-
TrArCrArCrArGrArTrArArGrCTG, respectively. Transfection 
experiment was performed 24 h before treating cells with IL-1β 
and TNF-α plus 25 mM glucose for 72 h.

Dye Uptake and Time-Lapse Fluorescence 
Imaging
For time-lapse fluorescence imaging, cells plated on glass cover-
slips were washed twice in Hank’s balanced salt solution. Then, 
cells were incubated with Locke’s solution containing 5 µM Etd 
and mounted on the stage of an Olympus BX 51W1I upright 
microscope with a 40× water immersion objective for time-lapse 
imaging. Images were captured by a Retiga 1300I fast-cooled 
monochromatic digital camera (12-bit) (Qimaging, Burnaby, 
BC, Canada) controlled by imaging software Metafluor software 
(Universal Imaging, Downingtown, PA, USA) every 30 s (expo-
sure time = 0.5 s; excitation and emission wavelengths were 528 
and 598  nm, respectively). The fluorescence intensity recorded 

from 25 regions of interest (representing 25 cells per coverslip) 
was defined as the subtraction (F-F0) between the fluorescence 
(F) from respective cell (25 cells per field) and the background 
fluorescence (F0) measured where no labeled cells were detected. 
The mean slope of the relationship F-F0 over a given time interval 
(ΔF/ΔT; F0 remained constant along the recording time) repre-
sents the Etd uptake rate. To assess for changes in slope, regression 
lines were fitted to points before and after the various experimen-
tal conditions using Excel software, and mean values of slopes 
were compared using GraphPad Prism software and expressed 
as AU/min. At least four replicates (four sister coverslips) were 
measured in each independent experiment.

Western Blot Analysis
Cells were rinsed twice with PBS (pH 7.4) and harvested by 
scraping with a rubber policeman in ice-cold PBS containing 
5  mM EDTA, Halt (78440), and M-PER protein extraction 
cocktail (78501) according to the manufacturer instructions 
(Pierce, Rockford, IL, USA). The cell suspension was sonicated 
on ice. Proteins were measured using the Bio-Rad Bradford assay. 
Aliquots of cell lysates (100 µg of protein) were resuspended in 
Laemmli’s sample buffer, separated in an 8% sodium dodecyl 
sulfate polyacrylamide gel electrophoresis (SDS-PAGE) and 
electro-transferred to nitrocellulose sheets. Nonspecific protein 
binding was blocked by incubation of nitrocellulose sheets in 
PBS-BLOTTO (5% nonfat milk in PBS) for 30 min. Blots were 
then incubated with primary antibody at 4°C overnight, followed 
by four 15  min washes with PBS. Then, blots were incubated 
with HRP-conjugated goat anti-rabbit antibody at room tem-
perature for 1 h and then rinsed four times with PBS for 15 min. 
Immunoreactivity was detected by enhanced chemiluminescence 
reaction using the SuperSignal kit (Pierce, Rockford, IL, USA) 
according to the manufacturer’s instructions.

Cell Surface Biotinylation and 
Quantification
Cells cultured on 100-mm dishes were washed three times with 
ice-cold Hank’s saline solution (pH 8.0), and 3  mL of sulfo-
NHS-SS-biotin solution (0.5  mg/mL) was added followed by a 
30 min incubation at 4°C. Then, cells were washed three times 
with ice-cold saline containing 15 mM glycine (pH 8.0) to block 
unreacted biotin. The cells were harvested and incubated with 
an excess of immobilized NeutrAvidin (1 mL of NeutrAvidin per 
3 mg of biotinylated protein) for 1 h at 4°C after which 1 mL of 
wash buffer (saline solution, pH 7.2 containing 0.1% SDS and 1% 
Nonidet P-40) was added. The mixture was centrifuged for 2 min 
at 600 g at 4°C. The supernatant was removed and discarded, and 
the pellet was resuspended in 40  µL of saline solution, pH 2.8 
containing 0.1 M glycine, to release the proteins from the biotin. 
After the mixture was centrifuged at 600 g at 4°C for 2 min, the 
supernatant was collected, and the pH was adjusted immediately 
by adding 10  µL of 1  M Tris, pH 7.5. Relative protein amount 
was measured using Western blot analysis as described above. 
Resulting immunoblot signals were scanned, and the densitomet-
ric analysis was performed with IMAGEJ software.
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Dye Coupling
Cells plated on glass coverslips were bathed with recording 
medium ( HCO3

−  free F-12 medium buffered with 10 mM HEPES, 
pH 7.2) and permeability mediated by gap junctions was tested 
by evaluating the transfer of LY to neighboring cells. Briefly, 
single ECs were iontophoretically microinjected with a glass 
micropipette filled with 75 mM LY (5% w/v in 150 mM LiCl) in 
recording medium containing 200 µM La3+ to avoid cell leakage 
of the microinjected dye via hemichannels, leading to underscore 
the extent of dye coupling. Fluorescent cells were observed using 
a Nikon inverted microscope equipped with epifluorescence 
illumination (Xenon arc lamp) and Nikon B filter to LY (exci-
tation wavelength 450–490  nm; emission wavelength above 
520 nm) and XF34 filter to DiI fluorescence (Omega Optical, Inc., 
Brattleboro, VT, USA). Photomicrographs were obtained using a 
CCD monochrome camera (CFW-1310M; Scion; Frederick, MD, 
USA). Three minutes after dye injection, cells were observed to 
determine whether dye transfer occurred. The incidence of dye 
coupling was scored as the percentage of injections that resulted 
in dye transfer from the injected cell to more than one neighbor-
ing cell. Three experiments were performed for every treatment 
and dye coupling was tested by microinjecting a minimum of 10 
cells per experiment.

Immunofluorescence
Cells grown on glass coverslips were fixed at room temperature 
with 2% paraformaldehyde for 30  min and then washed three 
times with PBS. Then, cells were incubated three times for 5 min 
in 0.1 M PBS-glycine, followed by 30 min incubation with 0.1% 
PBS-Triton X-100 containing 10% NGS. The permeabilized cells 
were incubated with anti-β-tubulin monoclonal antibody (Sigma, 
1:400) and anti-Cx43 polyclonal antibody (SIGMA, 1:400) diluted 
in 0.1% PBS-Triton X-100 with 2% NGS at 4°C overnight. After 
five rinses in 0.1% PBS-Triton X-100, cells were incubated with 
goat anti-mouse IgG Alexa Fluor 555 (1:1,000), goat anti-rabbit 
IgG Alexa Fluor 488 (1:1,000), or Alexa Fluor 488-phalloidin at 
room temperature for 50  min. After several rinses, coverslips 
were mounted in DAPI Fluoromount-G medium and examined 
with an Olympus BX 51W1I upright microscope with a 40× water 
immersion objective or a confocal laser-scanning microscope 
with a 63× objective (Olympus, Fluoview FV1000, Tokyo, Japan).

Intracellular Ca2+ and NO Imaging
Cells plated on glass coverslips were loaded with 5  µM Fura-
2-AM or 5 µM DAF-FM diacetate in DMEM without serum at 
37°C for 45 min and then washed three times in Locke’s solution 
(154 mM NaCl, 5.4 mM KCl, 2.3 mM CaCl2, 5 mM HEPES, pH 
7.4) followed by de-esterification at 37°C for 15 min. The experi-
mental protocol for Ca2+ signal and NO imaging involved data 
acquisition every 5 s (emission at 510 and 515 nm, respectively) at 
340/380-nm and 495 excitation wavelengths, respectively, using 
an Olympus BX 51W1I upright microscope with a 40× water 
immersion objective. Changes were monitored using an imaging 
system equipped with a Retga 1300I fast-cooled monochromatic 
digital camera (12-bit) (Qimaging, Burnaby, BC, Canada), 
monochromator for fluorophore excitation, and METAFLUOR 
software (Universal Imaging, Downingtown, PA, USA) for image 

acquisition and analysis. Analysis involved determination of 
pixels assigned to each cell. The average pixel value allocated to 
each cell was obtained with excitation at each wavelength and 
corrected for background. Due to the low excitation intensity, no 
bleaching was observed even when cells were illuminated for a 
few minutes. The FURA-2 ratio was obtained after dividing the 
340-nm by the 380-nm fluorescence image on a pixel-by-pixel 
base (R = F340 nm/F380 nm).

Measurement of Extracellular ATP 
Concentration
Cells were seeded (2 × 106 cells in 35 mm dishes) in DMEM con-
taining 10% FBS and treated with IL-1β and TNF-α plus 25 mM 
glucose for 72 h. Supernatants were collected, filtered (0.22 µm), 
and stored at −20°C before used for experiments. Then, extracel-
lular ATP was measured using a luciferin/luciferase biolumi-
nescence assay kit (Sigma-Aldrich). The amount of ATP in each 
sample was inferred from standard curves and normalized for the 
protein concentration as determined by the BCA assay (Pierce).

Data Analysis and Statistics
For each data group, results were expressed as mean ± SEM; n 
refers to the number of independent experiments. Detailed statis-
tical results were included in the figure legends. Statistical analy-
ses were performed using GraphPad Prism (version 7, GraphPad 
Software, La Jolla, CA, USA). Normality and equal variances were 
assessed by the Shapiro–Wilk normality test and Brown–Forsythe 
test, respectively. Unless otherwise stated, data that passed these 
tests were analyzed by unpaired t test in case of comparing two 
groups, whereas in case of multiple comparisons, data were ana-
lyzed by one or two-way analysis of variance (ANOVA) followed, 
in case of significance, by a Tukey’s post hoc test. A probability of 
p < 0.05 was considered statistically significant.

RESULTS

IL-1β/TNF-α Plus High Glucose Enhance 
the Activity of Cx43 Hemichannels in 
Endothelial Cells
Previous studies have revealed that stimulation with IL-1β/TNF-
α or high glucose (25–45 mM) causes a prominent opening of 
hemichannels in diverse brain cell types (8, 19–22). Given that 
inflammatory mediators play crucial roles in the activation of 
endothelial cells and because hemichannels may contribute to 
this process as they do in other tissues (24, 25), we examined 
whether two pro-inflammatory cytokines and high glucose could 
modulate the activity of these channels in the human endothelial 
cell line EAhy 926. The functional state of hemichannels was 
evaluated by measuring the rate of ethidium (Etd) uptake. Etd only 
move across the plasma membrane in normal cells by permeating 
specific large-pore channels such as hemichannels (26). After its 
binding to RNA and DNA, Etd becomes fluorescent, revealing 
channel opening when appropriate blockers are employed.

After incubation with 45 mM but not 25 mM glucose, EAhy 
cells exhibited a significant twofold increment in Etd uptake 
compared with physiological glucose concentration (5  mM) 
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Figure 1 | High glucose and IL-1β plus TNF-α increase the activity of connexin 43 (Cx43) hemichannels in endothelial cells. (A) Averaged Etd uptake rate of EAhy 
cells treated for 72 h with different concentrations of glucose alone (control, white circles) or in combination with a mixture of IL-1β/TNF-α (red circles; 10 ng/mL for 
each). #p < 0.05, 45 mM glucose (control) compared to 5 mM glucose (control), *p < 0.05, IL-1β/TNF-α compared to control; &p < 0.05, high glucose (IL-1β/TNF-α) 
compared to 5 mM glucose (IL-1β/TNF-α) [two-way analysis of variance (ANOVA) followed by Tukey’s post hoc test]. (B) Time-lapse measurements of Etd uptake by 
EAhy cells treated for 72 h with 5 mM glucose (control, white circles) or 25 mM glucose and IL-1β/TNF-α (red circles). (C–E) Representative immunofluorescence 
images depicting phalloidin-actin (green) and Etd-nucleus (red) staining from dye uptake measurements (10 min exposure to dye) in EAhy cells treated for 72 h with 
5 mM glucose [control (C)], 25 mM glucose and IL-1β/TNF-α (D) alone or plus 100 µM gap19. (F) Averaged Etd uptake rate by EAhy cells treated for several time 
periods with 5 mM glucose (control, white circles) or 25 mM glucose and IL-1β/TNF-α (red circles). *p < 0.05, IL-1β/TNF-α and high glucose compared to control 
(two-way ANOVA followed by Tukey’s post hoc test). (G) Averaged Etd uptake rate normalized with control condition (dashed line) by EAhy cells treated for 72 h with 
25 mM glucose and IL-1β/TNF-α alone or in combination with the following blockers: 100 µM Tat-L2, 100 µM Tat-L2H126K/I130N, 100 μM gap19, 100 µM gap19I130A, 
siRNACx43, 100 µM 10panx1, 500 µM probenecid (Prob), siRNAPanx1; and siRNAscrb. *p < 0.05, IL-1β/TNF-α and high glucose compared to control; #p < 0.05, effect of 
blockers compared IL-1β/TNF-α and high glucose (one-way ANOVA followed by Tukey’s post hoc test). Data were obtained from at least three independent 
experiments (see scatter dot plot) with four repeats each one (≥35 cells analyzed for each repeat). Calibration bar = 20 µm.
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(Figure  1A). Relevantly, a combination of IL-1β and TNF-α 
(10 ng/mL of each) enhanced the response evoked by 45 mM glu-
cose (Figure 1A), whereas 25 mM glucose (hereinafter referred 

as to “high glucose”) only increased Etd uptake when applied 
in combination with IL-1β/TNF-α (Figures  1A–D). Moreover, 
IL-1β/TNF-α and high glucose triggered a time-dependent 
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Figure 2 | Endothelial connexin 43 (Cx43) hemichannel opening evoked by 
high glucose and IL-1β/TNF-α depends on Ca2+ signaling and activation of 
p38 MAPK/inducible NO synthase/COX2-dependent pathways and EP1/P2 
receptors: prevention by cannabinoids. (A) Averaged Etd uptake rate 
normalized with control conditions (5 mM glucose, dashed line) of EAhy cells 
treated for 72 h with 25 mM glucose and IL-1β/TNF-α alone or in combination 
with the following agents: 10 µM SB203580, 1 µM L-N6, 15 µM indometacin 
(indomet); 1 µM sc-560; 5 µM ns-398; 20 µM sc-19220, 10 µM BAPTA, 
10 µM Brilliant blue G (BBG), 200 µM oxidized ATP (oATP), 10 µM MRS2179; 
and 10 µM A740003. *p < 0.05, effect of blockers compared to IL-1β/TNF-α 
and high glucose [one-way analysis of variance (ANOVA) followed by Tukey’s 
post hoc test]. (B) Averaged Etd uptake rate normalized with control 
conditions (5 mM glucose, dashed line) by EAhy cells treated for 72 h with 
25 mM glucose and IL-1β/TNF-α (red bar) alone or in combination with the 
following cannabinoids: WIN (5 µM, white bars), 2-arachidonylglycerol (5 µM, 
light gray bars), and Meth (5 µM, dark gray bars). It is also shown the effect of 
the respective cannabinoid co-treatment with the CB1 or CB2 receptor 
antagonist, SR-141716A (5 µM) and/or SR-144528 (5 µM), respectively. 
*p < 0.05, effect of each cannabinoid compared to the effect induced by 72 h 
treatment with IL-1β/TNF-α and high glucose; #p < 0.05, effect of each 
cannabinoid receptor antagonist compared to the effect of the respective 
cannabinoid (one-way ANOVA followed by Tukey’s post hoc test). Data were 
obtained from at least three independent experiments (see scatter dot plot) 
with four repeats each one (≥35 cells analyzed for each repeat).
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proportional rise in Etd uptake, being 72 h of treatment the most 
significant as it evoked a 3.5-fold augment in relation to control 
treatment (Figure 1F). No changes in Etd uptake were observed 
upon treatment with IL-1β/TNF-α and plus high sucrose or high 
mannitol excluding the possibility of an osmolarity-mediated 
response (Figure S1A in Supplementary Material).

Endothelial cells express functional Cx43 hemichannels (27–
29) and Panx1 channels (30, 31). Pannexins encompass a three-
member protein family that constitute unopposed membrane 
channels referred as pannexons that—just like hemichannels—
allow paracrine/autocrine communication in cellular tissues 
(32). The involvement of Cx43 hemichannels in IL-1β/TNF-α 
and high glucose-mediated Etd uptake was examined employing 
specific mimetic peptides (Tat-L2 and gap19) with sequences 
homologous to intracellular L2 loop domains of Cx43 (33, 34). 
Cells treated with IL-1β/TNF-α and high glucose for 72 h and 
incubated for 15 min of incubation with Tat-L2 (100 µM) or gap19 
(100 µM) before and during the dye uptake evaluation showed an 
Etd uptake close to that of control cells (Figures 1C,E,G). In addi-
tion, a mutated TAT-L2 (200 µM TAT-L2H126K/I130N), in which 2 aa 
crucial for interaction of L2 domain to the carboxyl tail of Cx43 
are modified, was unsuccessful in trigger a comparable inhibition 
(Figure 1G). Likewise, we noticed that an inactive form of gap19 
containing the I130A modification (gap19I130A), did not inhibit 
the IL-1β/TNF-α and high glucose-induced Etd uptake in EAhy 
cells (Figure 1G). Consistent with these findings, knockdown of 
Cx43 with siRNA fully abolished the Etd uptake caused by IL-1β/
TNF-α and high glucose (Figure  1G). Conversely, scrambled 
siRNA, siRNA for Panx1, the Panx1 mimetic peptide 10panx1 
(100 µM), or probenecid (200 µM) failed to cause a similar sup-
pression (Figure 1G). These results strongly bring up that IL-1β/
TNF-α and high glucose significantly increase the activity of Cx43 
hemichannels, but not Panx1 channels  in EAhy endothelial cells.

Endothelial Cx43 Hemichannel Activity 
Induced by IL-1β/TNF-α Plus High Glucose 
Depends on p38 MAP Kinase/iNOS/COX2/
EP1 and Purinergic Pathways
During inflammatory conditions, endothelial cells display a 
strong stimulation of the iNOS and cyclooxygenase 2 (COX2) (35, 
36), two enzymes that generate byproducts (NO and prostaglan-
dins, respectively) associated with Cx43 hemichannel activation 
(37–39). In addition, prior research has unveiled the participation 
of p38 MAP kinase (p38 MAPK) in both the opening of Cx43 
hemichannels (20) and inflammatory activation of endothelial 
cells (40, 41). Accordingly, we examined the influence of p38 
MAPK, iNOS, and COX2 pathways on the IL-1β/TNF-α and 
high glucose-induced Etd uptake in EAhy cells. The Etd uptake 
triggered by IL-1β/TNF-α and high glucose treatment for 72 h 
was greatly reduced by blockade of p38 MAPK with SB202190 
(10 µM) or inhibition of iNOS with L-N6 (5 µM) (Figure 2A). 
Notably, COX inhibition by indomethacin (15 µM) reduced the 
~3.5-fold increase on Etd uptake evoked by IL-1β/TNF-α and 
high glucose to control conditions (Figure  2A). To investigate 
which COX was implicated in the above effect, we used sc-560 
and ns-398, specific inhibitors for COX1 and COX2, respectively. 

sc-560 (1  µM) failed in neutralizing the Etd uptake caused by 
IL-1β/TNF-α and high glucose, whereas ns-398 (5  µM) com-
pletely abolished it (Figure 2A).

Previous findings indicate that NO elevates COX2 activity and 
prostaglandin E2 (PEG2) generation in macrophages (42) and 
a similar phenomenon seems to occur in inflamed endothelial 
cells (43). Given that activation of PEG2 receptor 1 (EP1) lead to 
increases in [Ca2+]i (44) and the latter is a well-known mechanism 
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Figure 3 | WIN counteracts the increase in surface levels of connexin 43 
(Cx43) induced by high glucose and IL-1β/TNF-α in endothelial cells. (A) Total 
(upper panel) and surface (bottom panel) levels of Cx43 by EAhy cells treated 
for 72 h with 5 mM glucose (control), 25 mM glucose, and IL-1β/TNF-α alone 
or in combination with 5 µM WIN. The Cx43 phosphorylated (P1–P2) and non-
phosphorylated (NP) forms are indicated in the left. Total and surface amount 
of each analyzed band were normalized according to the amount of α-tubulin 
and Na+/K+ ATPase detected in each lane, respectively. (B) Quantification of 
total (white bars) and surface (black bars) amount of Cx43 normalized to 
control (dashed line) in EAhy cells harvested 72 h after treatment with 25 mM 
glucose and IL-1β/TNF-α alone or in combination with 5 µM WIN. *p < 0.05, 
IL-1β/TNF-α and high glucose compared to control; #p < 0.05, effect of each 
cannabinoid compared to the effect induced by IL-1β/TNF-α and high glucose 
(two-tailed Student’s unpaired t-test). Averaged data were obtained from at 
least three independent experiments (see scatter dot plot).
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that increase the open probability of Cx43 hemichannels (45), we 
examined if this signaling is involved in the IL-1β/TNF-α and 
high glucose-mediated Etd uptake in EAhy cells. Blockade of 
EP1 receptor with sc-19220 (20 µM) was found to diminish the 
Etd uptake caused by IL-1β/TNF-α and high glucose, whereas 
5 µM BAPTA-AM, a Ca2+ chelator, caused a similar inhibition 
(Figure  2A). The opening of Cx43 hemichannels has been 
correlated with [Ca2+]i-mediated purinergic signaling (46, 47), 
thereby, we tested if purinergic receptors participate in the IL-1β/
TNF-α and high glucose-induced Etd uptake in EAhy cells. 
Remarkably, 200 µM oATP, a general P2X receptor blocker, or 
10 µM A740003 and 10 µM BBG, both P2X7 receptor inhibitors, 
partially antagonized the Etd uptake induced by IL-1β/TNF-α 
and high glucose (Figure  2A). Similarly, the blockade of P2Y1 
receptors with 10 µM MRS2179 evoked a partial but significant 
reduction in the IL-1β/TNF-α and high glucose-induced Etd 
uptake. All these data suggest that endothelial Cx43 hemichan-
nel activity triggered by IL-1β/TNF-α and high glucose rely on 
the stimulation of p38 MAPK/iNOS/COX2/EP1–dependent 
pathway(s) and the P2X7/P2Y1 receptor-mediated changes in 
cytoplasmic Ca2+ signal.

CBs Counteract the Opening of Cx43 
Hemichannels Induced by IL-1β/TNF-α 
Plus High Glucose in Endothelial Cells
An unresolved topic in the field of hemichannels is to recognize 
compounds that could prevent their increased opening during 
pathological conditions. Possible aspirants for this intent are CBs, 
as they successfully prevent the persistent Cx43 hemichannel 
opening triggered by different inflammatory conditions in glial 
cells (48–50). Whether plant-derived, synthetic, or endocan-
nabinoids, CBs are biolipid molecules that activate at least two 
CB receptors: CB1 and CB2 (51). Because endothelial cells express 
CB1/CB2 receptors (52) and CBs elicit anti-inflammatory defense 
facing cytokine-dependent endothelial dysfunction (53), we 
examined whether CBs could ameliorate the increase in Cx43 
hemichannel activity evoked by IL-1β/TNF-α and high glucose 
in EAhy cells.

To elucidate whether CBs could regulate the Cx43 hemichan-
nel activity in EAhy cells, we pre-incubated the cells with synthetic 
and endogenous CBs for 1 h and then were co-applied for 72 h 
along with IL-1β/TNF-α and high glucose. WIN-55,212-2 (WIN; 
5  µM), a synthetic agonist of CB1/CB2 receptors, completely 
blunted the IL-1β/TNF-α and high glucose-induced Etd uptake 
in EAhy cells since these cells showed an Etd uptake comparable 
to control values (Figure 2B). Furthermore, we used two endog-
enous CB1/CB2 receptor agonists: 2-AG and methanandamide 
(Meth), the latter being a synthetic analog of the endocannabi-
noid anandamide. We observed that 5 µM 2-AG and 5 µM Meth 
reduced the increase in Etd uptake rate of EAhy cells caused 
by the IL-1β/TNF-α and high glucose treatment to ~169 and 
~146%, respectively (Figure 2B). CB1 and CB2 receptor antago-
nists, SR-141716 (SR1) and SR-144528 (SR2), respectively, were 
employed to characterize the sub-type of CB receptor implicated 
in the counteracting response on Etd uptake evoked by IL-1β/
TNF-α and high glucose (Figure  2B). With the application of 

10 µM SR1 antagonist, WIN, 2-AG, and Meth failed in preventing 
the IL-1β/TNF-α and high glucose-mediated Etd uptake in EAhy 
cells, whereas 10 µM SR2 was ineffective in evoke a comparable 
preventing effect (Figure 2B). These findings indicate that CB1, but 
not CB2 receptors are the major contributors to the WIN, 2-AG, 
and Meth counteracting responses of the IL-1β/TNF-α and high 
glucose-evoked Cx43 hemichannel activity in endothelial cells.

WIN Counteract the Increment in Cx43 
Surface Amount and Gap Junctional 
Uncoupling Triggered by IL-1β/TNF-α Plus 
High Glucose in Endothelial Cells
Connexin 43 hemichannel activity could depend on increments 
in both the open probability per channel and/or the number of 
channels at the cell surface. Previous studies have correlated the 
hemichannel-dependent Etd uptake with elevated surface levels 
of Cx43 in different cell types (8, 39, 50) or increase in open 
probability without changes in the total amount of Cx43 in the 
cell surface (54). Here, we evaluated if the counteracting effect of 
CBs on IL-1β/TNF-α and high glucose-mediated hemichannel 
activity depend on changes in surface amount of Cx43. IL-1β/
TNF-α and high glucose caused a slight but significant ~30% 
decrease in total Cx43 compared to control conditions, a response 
fully suppressed by 5 µM WIN (Figures 3A,B). Moreover, IL-1β/
TNF-α and high glucose also evoked a ~1.7-fold rise in surface 
amount of Cx43 and experiments with WIN fully blunted this 
effect (Figures 3A,B). Therefore, the ameliorative effects of CBs 
on IL-1β/TNF-α and high glucose-induced Cx43 hemichannel 

17

https://www.frontiersin.org/Immunology/
https://www.frontiersin.org
https://www.frontiersin.org/Immunology/archive


Figure 4 | WIN prevents the high glucose and IL-1β/TNF-α-induced decrease in endothelial coupling through a mechanism that does not involve changes in 
connexin 43 (Cx43) distribution. (A–F) Representative fluorescence and phase contrast micrographs of Lucifer yellow (LY) transfer by EAhy cells treated for 72 h with 
5 mM glucose [control (A,D)], 25 mM glucose, and IL-1β/TNF-α (B,E) alone or in combination with 5 µM WIN (C,F). (G) Averaged data of dye coupling (percentage 
of injections that resulted in LY transfer) of EAhy cells treated for 72 h with 5 mM glucose (control, white bar), 25 mM glucose, and IL-1β/TNF-α (red bars) alone or in 
combination with 5 µM WIN. *p < 0.05, IL-1β/TNF-α and high glucose compared to control; #p < 0.05, effect of each cannabinoid compared to the effect induced 
by IL-1β/TNF-α and high glucose (one-way analysis of variance followed by Dunnett’s post hoc test). Data were obtained from at least three independent 
experiments (see scatter dot plot) with four repeats each one (≥10 cells analyzed for each repeat). (H–K) Representative fluorescence images depicting Cx43 
(green), tubulin (red), and DAPI (blue) immunolabeling of EAhy cells treated for 72 h with 5 mM glucose [control (H,I)] and 25 mM glucose plus IL-1β/TNF-α (J,K). 
Insets: 1.7× magnification of the indicated area of panels (I,K). White arrows indicate Cx43 labeling in cell–cell interfaces. Calibration bars: white = 35 µm, 
yellow = 60 µm, and green = 25 µm.
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activity may take place because they interfere with the increment 
in surface amount of Cx43.

Endothelial-to-endothelial gap junctional communication 
is critical for the endothelium-derived hyperpolarization and 
concomitant vasodilation of the arteriolar smooth muscle (55). 
Given that increased Cx43 hemichannel opening induced by 
inflammatory conditions has been described to occur along 

with a rise in endothelial dye coupling (27), we evaluated if the 
endothelial gap junction coupling was altered upon treatment 
with IL-1β/TNF-α and high glucose. Under control conditions 
around ~80% of EAhy cells exhibited LY intercellular diffusion 
to neighboring cells (Figures 4A,D,G). Nonetheless, 72 h after 
treatment with IL-1β/TNF-α and high glucose intercellular 
dye transfer decreased by ~38% compared with control levels 

18

https://www.frontiersin.org/Immunology/
https://www.frontiersin.org
https://www.frontiersin.org/Immunology/archive


Figure 5 | WIN mitigates the connexin 43 (Cx43) hemichannel-dependent 
release of ATP evoked by high glucose and IL-1β/TNF-α in endothelial cells. 
Averaged data of ATP release from EAhy cells treated for 72 h with 5 mM 
glucose (control, white bar), 25 mM glucose, and IL-1β/TNF-α (black bars) 
alone or in combination with the following agents: 100 µM gap19, 100 µM 
Tat-L2, 100 µM 10panx1, 500 µM probenecid (Prob), 5 µM, WIN and/or 5 µM 
SR-141716A (SR1). *p < 0.05, IL-1β/TNF-α and high glucose compared to 
control; #p < 0.05, effect of each agent compared to the effect induced by 
IL-1β/TNF-α and high glucose; &p < 0.05, effect of each cannabinoid 
receptor antagonist compared to the effect of the respective cannabinoid 
(one-way analysis of variance followed by Tukey’s post hoc test). Data were 
obtained from at least three independent experiments (see scatter dot plot) 
with four repeats each one.
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(Figures 4B,E,G). Equivalently, to the counteracting influence on 
IL-1β/TNF-α and high glucose-evoked Etd uptake, WIN entirely 
prevented the reduction in endothelial cell–cell coupling induced 
by IL-1β/TNF-α and high glucose (Figures 4C,F,G). Given that 
endocytosis of gap junctions from the plasma membrane is 
a process that might cause cellular uncoupling, we explored if 
IL-1β/TNF-α and high glucose-induced endothelial uncoupling 
was correlated with alterations in the cellular distribution of 
Cx43. In control EAhy cells, Cx43 was observed as fine to large 
granules scattered at cellular interfaces and perinuclear regions 
(Figures 4H,I) and comparable features were detected in those 
treated with IL-1β/TNF-α and high glucose (Figures 4J,K) or plus 
5 µM WIN (Figures S1B–D in Supplementary Material). These 
findings indicate that IL-1β/TNF-α and high glucose-induced 
cell-to-cell uncoupling may depend on a mechanism implicating 
the closure and/or decreased permeability of Cx43 gap junctions 
rather than withdrawal from the apposition membranes.

IL-1β/TNF-α Plus High Glucose Promotes 
the Cx43 Hemichannel-Induced Release of 
ATP From Endothelial Cells: Counteracting 
Action by WIN
Endothelial cells subjected to inflammatory conditions exhibit 
elevated release of ATP via the opening of Cx43 hemichannels 
(27, 56), a major signal involved in leukocyte recruitment and 
vascular inflammation (57). Given that P2X7 and P2Y1 recep-
tors are involved in the Etd uptake evoked by IL-1β/TNF-α 
and high glucose in EAhy cells (Figure  2A), we evaluated 
whether this treatment could also impact the release of ATP via 
Cx43 hemichannels. IL-1β/TNF-α and high glucose strongly 
enhanced the release of ATP by ~6-folds compared to control 
conditions (Figure 5). Importantly, gap19 and Tat-L2, but not 
10panx1 or probenecid, prominently reduced to control values 
the extracellular ATP concentration of cells treated with IL-1β/
TNF-α and high glucose-induced release of ATP (from ~68 
to ~13 and ~12 pmol/106 cells, respectively) (Figure 5). These 
findings indicate that IL-1β/TNF-α and high glucose elevate 
the release of ATP in a Cx43 hemichannel-dependent form in 
EAhy endothelail cells. In this context, we tested the probable 
counteracting influence of WIN on this response. We observed 
that 1 h pretreatment and co-incubation with 5 µM WIN drasti-
cally reduced the IL-1β/TNF-α and high glucose-mediated 
release of ATP (from ~68 to ~11  pmol/106 cells) (Figure  5). 
Interestingly, WIN failed in decreasing the ATP release in EAhy 
cells pre-incubated with 10 µM SR1 antagonist. Altogether, these 
findings support that CB1 receptors are the main contributors to 
the WIN-mediated inhibition of Cx43 hemichannel-dependent 
release of ATP evoked by IL-1β/TNF-α and high glucose in 
endothelial cells.

IL-1β/TNF-α and High Glucose-Induced 
Changes in ATP-Dependent Ca2+ 
Dynamics Are Prevented by WIN in 
Endothelial Cells
Although cytoplasmic Ca2+ is crucial for proper endothelial 
barrier permeability and remodeling, its abnormal signaling 

during inflammatory conditions could lead to multiple vascular 
diseases (58, 59). Relevantly, both endothelial [Ca2+] signaling 
and hemichannel functional state are interdependent processes 
that may be enhanced during pathological conditions (60). In this 
context and because intracellular BAPTA greatly blunted IL-1β/
TNF-α and high glucose-mediated Etd uptake (Figure 1A), we 
investigated if this condition could modulate the basal Ca2+ signal 
in EAhy cells. As indicated by the assessment of Fura-2 ratio 
(340/380), IL-1β/TNF-α and high glucose-stimulated EAhy cells 
showed basal Ca2+ signal that was similar to control conditions 
(Figures 6A,C,K). Despite that IL-1β/TNF-α and high glucose 
fail in modulate basal Ca2+ signal, these data do not rule out 
whether this condition affects the Ca2+ signal responses evoked 
by autocrine/paracrine signals, including ATP. With this in mind, 
we also studied the impact of IL-1β/TNF-α and high glucose on 
ATP-mediated Ca2+ signaling, as this transmitter can be released 
through Cx43 hemichannels from EAhy cells (Figure 6). Under 
control conditions, treatment with 500 µM ATP caused a rapid Ca2+ 
signal response with a small peak amplitude (Figures 6A,B,E,L). 
However, high glucose induced a sustained ATP-dependent Ca2+ 
signal response with a peak amplitude ~4-fold higher than that 
of control conditions (Figures 6C,D,F,L). This phenomenon was 
accompanied of a ~4- and ~4.5-fold increment in the integrated 
ATP-dependent Ca2+ signal response (Figure  6M) and the 
remaining difference between final and initial basal Ca2+ signal 
(Figure 6N), respectively.

In endothelial cells, ATP-mediated [Ca2+]i responses involve 
different purinergic receptors, including P2X7 and P2Y1 recep-
tors (61, 62), both being implicated in the hemichannel opening 
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Figure 6 | Continued
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Figure 6 | High glucose and IL-1β/TNF-α enhance ATP-dependent Ca2+ dynamics in endothelial cells: prevention by WIN. (A–D) Representative photomicrographs 
of basal (A,C) or 500 µM ATP-induced (B,D) Ca2+ signal denoted as Fura-2 ratio (340/380 nm excitation) of EAhy cells treated for 72 h with 5 mM glucose [control 
(A,B)] or 25 mM glucose and IL-1β/TNF-α (C,D). Calibration bar: 180 µm. (E–J) Representative plots of relative changes in [Ca2+]i signal over time induced by 
500 µM ATP (gray vertical line) in EAhy cells treated for 72 h with 5 mM glucose [control (E)], 25 mM glucose, and IL-1β/TNF-α (F) alone or in combination with the 
following agents: 10 µM A740003 (G), 10 µM A740003 plus 10 µM MRS2179 (H), 5 µM, WIN (I) and 5 µM, WIN plus 5 µM SR-141716A [SR1 (J)]. (K) Averaged 
data of basal Fura-2 ratio by EAhy cells treated for 72 h with 5 mM glucose (control, white bar), 25 mM glucose, and IL-1β/TNF-α (red bars) alone or in combination 
with the following agents: 10 µM A740003 (A74), 10 µM A740003 plus 10 µM MRS2179 (A74 + MRS), 5 µM WIN (WIN) and 5 µM, WIN plus 5 µM SR-141716A 
(WIN + SR1). (L–N) Averaged data of ATP-induced peak amplitude normalized to basal Fura-2 ratio (L), integrated ATP-induced Fura-2 ratio response (M), and 
altered basal Fura-2 ratio (N) of EAhy cells treated for 72 h with 5 mM glucose (control, white bar), 25 mM glucose, and IL-1β/TNF-α (red bars) alone or in 
combination with the following agents: 10 µM A740003 (A74), 10 µM A740003 plus 10 µM MRS2179 (A74 + MRS), 5 µM WIN (WIN) and 5 µM, WIN plus 5 µM 
SR-141716A (WIN + SR1). *p < 0.05, IL-1β/TNF-α and high glucose compared to control; #p < 0.05, effect of each pharmacological agent compared to the effect 
induced by IL-1β/TNF-α and high glucose; &p < 0.05, effect of each cannabinoid receptor antagonist compared to the effect of the respective cannabinoid (one-way 
analysis of variance followed by Tukey’s post hoc test). Data were obtained from at least three independent experiments (see scatter dot plot) with four repeats each 
one (≥35 cells analyzed for each repeat).
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triggered by IL-1β/TNF-α and high glucose (Figure 2A). Notably, 
blockade of P2X7 receptors with 10  µM A740003 completely 
suppressed the sustained response pattern of ATP-mediated 
Ca2+ signal in IL-1β/TNF-α and high glucose-stimulated EAhy 
cells (Figure  6G). In addition, A740003 partially inhibited the 
integrated and remaining basal ATP-dependent Ca2+ signal 
responses (Figures 6M,N), but did not affect the peak amplitude 
induced by IL-1β/TNF-α and high glucose (Figure 6L). Notably, 
simultaneous inhibition of P2X7 and P2Y1 receptors with 10 µM 
A740003 and 10 µM MRS2179, respectively, completely blunted 
the ATP-dependent Ca2+ signal in IL-1β/TNF-α and high glucose-
stimulated EAhy cells (Figure 6H). The latter was paralleled with 
a total suppression of the IL-1β/TNF-α and high glucose-induced 
increase of the Ca2+ signal evoked by ATP (Figures 6L–N). These 
findings indicate that upon ATP exposure, the transient peak 
in [Ca2+]i signal recorded in IL-1β/TNF-α and high glucose-
stimulated EAhy cells, likely came from Ca2+ released from 
intracellular stores due to stimulation of P2Y1 and IP3 receptors, 
whereas the following sustained Ca2+ signal could involve the 
participation of P2X7 receptors. Interestingly, IL-1β/TNF-α 
and high glucose-stimulated EAhy cells showed ATP-mediated 
Ca2+ signals similar to those recorded in control conditions 
when they were pre-treated with 10 µM WIN (Figures 6I,L–N). 
Moreover, WIN-induced prevention of ATP-induced Ca2+ signal 
did not occur in IL-1β/TNF-α and high glucose-stimulated 
EAhy cells co-incubated with the CB1 receptor antagonist SR1 
(Figures 6J,L–N). The above data support that CB1 receptors are 
responsible of the WIN-mediated prevention in the disturbing 
actions of IL-1β/TNF-α and high glucose on the dynamics of 
ATP-mediated Ca2+ signals in endothelial cells.

WIN and Blockers of Cx43 Hemichannels 
Prevent the NO Production of Endothelial 
Cells Treated With IL-1β/TNF-α and High 
Glucose
Altered iNOS-derived NO production has been involved in the 
beginning of acute and chronic inflammatory conditions associ-
ated with diverse diseases, including arthritis, sepsis, ischemia/
reperfusion, diabetes, and atherosclerosis (63). Because LN-6, 
a specific iNOS blocker, strongly blunted the IL-1β/TNF-α and 
high glucose-mediated Etd uptake in EAhy cells (Figure  2A), 

we investigated whether Cx43 hemichannels also modulate 
NO production. DAF fluorescence experiments indicated that 
IL-1β/TNF-α and high glucose-treated EAhy cells exhibited a 
~2-fold increase in basal NO amount compared with control 
values (Figures  7A,B,G). Interestingly, treatment with 5  µM 
WIN fully prevented the IL-1β/TNF-α and high glucose-induced 
increase in NO production, the latter response being dependent 
on CB1 receptors as SR1 abolished the counteracting action of 
WIN (Figures  7C,G). Insulin is a well-known inducer of NO 
production in normal endothelial cells, however, under inflam-
matory conditions, the insulin-mediated production of NO 
is impaired (64). In this context, we evaluated whether IL-1β/
TNF-α and high glucose could disturb the insulin-mediated 
production of NO. As expected, 30  min treatment with 1  µM 
insulin induced a ~75% increase in NO levels in control EAhy 
cells (Figures 7D,G). Remarkably, IL-1β/TNF-α and high glucose 
increased in ~1-fold the insulin-mediated production of NO 
(Figures  7E,G), a response that was completely prevented by 
5 µM WIN (Figures 7F,G). Supporting the involvement of CB1 
receptors in the latter phenomenon, the counteracting influence 
of WIN on the insulin-mediated NO production did not occur 
in EAhy cells stimulated with IL-1β/TNF-α and high glucose 
plus co-incubation with SR1 (Figure 7G). Finally, we found that 
100 µM gap19 or 100 µM Tat-L2 co-applied along with IL-1β/
TNF-α and high glucose, fully suppressed the IL-1β/TNF-α and 
high glucose-mediated potentiation in NO production induced 
by insulin, turning NO levels to control values (Figure  7G). 
Altogether, these results support that Cx43 hemichannels serve 
as a crucial step in the modulatory actions evoked by IL-1β/
TNF-α and high glucose on insulin-mediated production of NO 
in endothelial cells.

DISCUSSION

Here, we demonstrated for the first time that high glucose con-
centrations elevate the Cx43 hemichannel activity in cultured 
endothelial cells. A mixture of IL-1β and TNF-α, two pro-inflam-
matory cytokines that open hemichannels in different cell types 
(19, 20, 22), enhanced this phenomenon. Furthermore, IL-1β/
TNF-α and high glucose-induced Cx43 hemichannel activity was 
associated with ATP release and activation of p38 MAPK, iNOS, 
COX2, PGE2 receptor EP1, and P2X7/P2Y1 receptors. In addition, 
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Figure 7 | High glucose and IL-1β/TNF-α increase basal and insulin-
induced production of nitric oxide (NO) in endothelial cells: prevention by WIN 
and connexin 43 (Cx43) hemichannel blockers. (A–F) Representative 
fluorescence micrographs of basal (A–C) or 1 µM insulin-induced (D–F) 
production of NO (DAF-FM, green and pseudo-colored scale) of EAhy cells 
treated for 72 h with 5 mM glucose [control (A,D)], 25 mM glucose, and 
IL-1β/TNF-α (B,E) alone or in combination with 5 µM WIN (C,F). (G) Average 
of DAF fluorescence by EAhy cells treated for 72 h with 5 mM glucose 
(control; white bars), 25 mM glucose and IL-1β/TNF-α (red bars) alone or with 
different combinations of the following compounds: 5 µM WIN (WIN), 5 µM 
SR-141716A (SR1), 1 µM insulin, 100 µM gap19, and 100 µM Tat-L2. 
*p < 0.05, IL-1β/TNF-α and high glucose compared to control; #p < 0.05, 
effect of each compound compared to the effect induced by IL-1β/TNF-α 
and high glucose; &p < 0.05, effect of each cannabinoid receptor antagonist 
compared to the effect of the respective cannabinoid; Ψp < 0.05, effect of 
insulin compared to the respective control (one-way analysis of variance 
followed by Tukey’s post hoc test). Data were obtained from at least three 
independent experiments (see scatter dot plot) with four repeats each one 
(≥35 cells analyzed for each repeat). Calibration bar = 40 µm.
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we describe that a synthetic CB: WIN, and two endogenous 
CBs; 2-AG and Meth; counteract the IL-1β/TNF-α and high 
glucose-mediated Cx43 hemichannel opening and subsequent 
ATP release. These CBs also counteract diverse cell endothelial 
alterations evoked by IL-1β/TNF-α plus high glucose, including 
the increase in ATP-mediated Ca2+ signals and NO production.

As assayed by Etd uptake, we demonstrated that 45 mM glucose 
increments by itself the activity of Cx43 hemichannels in EAhy 
cells, whereas 25  mM glucose did it only in combination with 
the mixture of IL-1β and TNF-α. In fact, two specific mimetic 

peptides known to reduce Cx43 hemichannel opening (Tat-L2 
and gap19), but not their inactive forms, significantly inhibited 
the IL-1β/TNF-α and high glucose-evoked Etd uptake. In addi-
tion, the latter effect did not occur in EAhy cells stimulated with 
siRNAs that downregulated Cx43. All these data indicate that 
IL-1β/TNF-α and high glucose specifically elevate the opening of 
Cx43 hemichannels in EAhy endothelial cells.

How do IL-1β/TNF-α and high glucose induce Cx43 
hemichannel activity in EAhy endothelial cells? Prior research 
has determined that IL-1β and TNF-α or high glucose augment 
the functional state of Cx43 hemichannels via the p38 MAPK 
pathway and subsequent NO-mediated S-nitrosylation of Cx43 
(20, 37, 39). Moreover, COX and PGE2 receptor EP1 stimulation is 
necessary for the long-lasting Cx43 hemichannel activity elicited 
during inflammatory conditions (38). Here, by using a battery 
of selective inhibitors, we have shown that the IL-1β/TNF-α and 
high glucose-induced Cx43 hemichannel opening comprises the 
activation of both p38 MAPK and iNOS, as well as the stimulation 
of PGE2 receptor EP1. In addition, IL-1β/TNF-α and high glucose 
raised the production of NO in EAhy cells (see below). These 
findings are consistent with the fact that NO stimulates COXs and 
the subsequent production of PGE2 (42). The latter prostaglandin 
is essential for [Ca2+]i elevations evoked by EP1 receptors (44), 
which are highly expressed in endothelial cells (65).

Multiple studies argue that pro-inflammatory cytokines or 
high glucose may contribute to a chronic activation of endothelial 
cells and thereby a long-term production of key “danger” signals, 
such as ATP (66–68), which is involved with vascular inflamma-
tion (62). In this context, two findings reveal that ATP signaling 
is fundamental in the opening of endothelial Cx43 hemichannels 
evoked by IL-1β/TNF-α and high glucose. First, we detected that 
blockade of both P2X7 and P2Y1 receptors partially abrogated 
the IL-1β/TNF-α and high glucose-induced Cx43 hemichannel 
activity. Second, the activity of Cx43 hemichannels was linked to 
the release of ATP in IL-1β/TNF-α and high glucose-stimulated 
EAhy cells. In conformity with this study, recent findings have 
elucidated that ATP elicits its own release via hemichannels and 
further stimulation of purinergic receptors (8, 38, 39). Here, auto-
crine/paracrine release of ATP seems to govern Cx43 hemichannel 
activity as an alternative mechanism to that caused by p38 MAPK 
and NO production (Figure 8). The activity of Cx43 hemichannels 
could take place upon elevations in [Ca2+]i caused by activation 
of P2Y1 or P2X7 receptors (8, 38, 39). Accordingly, prior evidence 
have described that a moderate rise in [Ca2+]i (>500 nM) increase 
the open probability of Cx43 hemichannel opening (6, 34, 45). In 
agreement with this evidence, we detected that chelation of [Ca2+]i 
with BAPTA totally blunted the IL-1β/TNF-α and high glucose-
induced Etd uptake in EAhy cells. In this scenario, endothelial 
Cx43 hemichannels could participate directly in the release of 
ATP, as they are permeable to this compound (69). Alternatively, 
because these channels are conduits for Ca2+ (70), they indirectly 
may contribute to perpetuate [Ca2+]i-dependent pathways associ-
ated with ATP release (e.g., exocytosis) (Figure 8). The intensity 
of this response might impact the outcome of the inflammation. 
In that regard, it has been demonstrated that opening of Cx43 
hemichannels could lead to preconditioning (71) as well as to cell 
death (21).
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Figure 8 | Schematic diagram showing the possible pathways involved in the activation of connexin 43 (Cx43) hemichannels evoked by high glucose and IL-1β/
TNF-α in endothelial cells. Upon stimulation with high glucose and IL-1β/TNF-α, endothelial cells respond with intracellular signal transduction that possibly involve 
NF-κβ signaling associated with p38 MAPK and inducible NO synthase (iNOS) activation, nitric oxide (NO) production, and further stimulation of COX2. The latter 
likely induce the production of PGE2, which acting on EP1 metabotropic receptor promotes the release of Ca2+ from intracellular stores. Rise in [Ca2+]i, is a known 
condition that causes opening of Cx43 hemichannels enabling the release of ATP. ATP released via Cx43 hemichannels may activate P2X7 receptors, and its 
degradation to ADP may stimulate P2Y1 receptors. These events trigger the influx of extracellular Ca2+ and activation of IP3 receptors and further release of Ca2+ 
stored in the endoplasmic reticulum. The later induces an unknown self-perpetuating mechanism (see Discussion), in which high levels of [Ca2+]i could reactivate 
iNOS, COX2, EP1 metabotropic receptors, and Cx43 hemichannels (not depicted). On the other hand, cannabinoids (CBs) acting on CB1Rs possibly counteract the 
NF-κβ-dependent activation of the above-mentioned pathways. This response results in the inhibition of p38 MAPK and NO production, as well as the consequent 
reduction ATP release through Cx43 hemichannels. In parallel, activation of CB1Rs may neutralize the reduction in gap junction communication evoked by high 
glucose and IL-1β/TNF-α. Main inhibitors used throughout this study are shown in red.
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Past research has established that plant-derived, synthetic, 
and endogenous CBs may provide protective actions against 
several cardiovascular pathologies, including ventricular 
arrhythmias (72) and cardiomyopathies (73). In fact, CBs 
diminish endothelial dysfunction by inhibiting the production 
of inflammatory mediators (e.g., free radical and cytokines) and 
their signaling pathways (e.g., NF-κβ) (53, 74). However, whether 
endothelial hemichannels are part of the targets involved in the 
anti-inflammatory actions of CBs remained unknown. Here, 
we observed that WIN, 2-AG, and Meth completely suppressed 
the Cx43 hemichannel-mediated Etd uptake induced by IL-1β/
TNF-α and high glucose in EAhy cells. These preventive actions 
were completely neutralized by the CB1 receptor antagonist 
SR1, which is in according with the participation of CB1 recep-
tors in Cx43 hemichannel opening (48, 50), as well as their 
demonstrated expression and function in endothelial cells (52, 
75). Interestingly, WIN fully reduced not only the IL-1β/TNF-α 
and high glucose-induced Etd uptake but also significantly pre-
vented the release of ATP triggered by these pro-inflammatory 

conditions. Similar inhibitory responses on Cx43 hemichannel-
dependent ATP release have been observed for CBs in activated 
astrocytes (50). Other mechanism of hemichannel modulation 
different of that resulting from covalent modifications (e.g., 
phosphorylation and/or S-nitrosylation) is the trafficking of 
hemichannels to non-junctional membranes. In this study, we 
demonstrated that WIN fully abrogated the IL-1β/TNF-α and 
high glucose-induced augment in plasma membrane levels of 
Cx43, revealing that alterations in surface protein expression are 
possibly sufficient to account for the regulation of hemichannel 
activity triggered by IL-1β/TNF-α and high glucose or CBs in 
EAhy cells. It is important to mention that pharmacotherapy 
involving CBs is still under intense debate. The latter is mainly 
due to the negative side effects that CBs may exert on the nervous 
system and peripheral glucose metabolism (76, 77) most likely 
due to their low affinity to the molecular targets. Future studies 
will elucidate whether or not targeting specifically endothelial 
cells with CB receptor agonists could counteract endothelial 
dysfunction in vivo.
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Multiple lines of work point out that hemichannels and gap 
junctions are contrarily modulated by inflammatory agents (78). 
In agreement with those observations, we noted that in addition 
to elevate endothelial Cx43 hemichannel activity, IL-1β/TNF-α 
and high glucose suppressed the cell-to-cell gap junctional 
communication in EAhy cells, as measured by intercellular LY 
diffusion. Relevantly, WIN fully prevented the IL-1β/TNF-α 
and high glucose-induced reduction in endothelial coupling 
via the activation of CB1 receptors. As deducted from western 
blot analysis, the modulation of dye coupling triggered by IL-1β/
TNF-α and high glucose or WIN could be in part attributed to 
changes in Cx43 amount, namely, total reduction or increment, 
respectively. Moreover, immunofluorescence labeling showed no 
differences in the distribution of Cx43 in EAhy cells treated with 
IL-1β/TNF-α and high glucose alone or plus WIN, indicating that 
endocytosis or degradation of gap junctions do not account for 
the regulation of endothelial coupling.

Prior findings in diverse cell types, including endothelial cells, 
have revealed that ATP produces a biphasic [Ca2+]i response: the 
release of stored Ca2+ (first spike) and Ca2+ influx from the extra-
cellular medium (sustained response) (61, 79). The first spike in 
ATP-elicited [Ca2+]i response depends on P2Y receptors, while the 
second sustained event take place due to P2X receptors. Here, we 
noticed that upon acute stimulation with ATP, control EAhy cells 
displayed a small Ca2+ signal peak that returned rapidly to control 
values. In contrast, IL-1β/TNF-α and high glucose-treated EAhy 
cells showed increased ATP-induced Ca2+ signals compared to 
control, particularly, in terms of peak amplitude, integrated area, 
and sustained signal. Notably, in these conditions the initial Ca2+ 
signal peak was inhibited by MRS2179, but not by P2X7 recep-
tor blockers, suggesting the implication of metabotropic P2Y1 
receptors. Given that ADP is the major ligand for P2Y1 receptors, 
and because they participate in endothelial Ca2+ dynamics (80), 
in our studies, ADP produced from ATP conversion possibly 
generated the P2Y1-mediated changes in [Ca2+]i elicited by acute 
ATP application. On the other hand, the ATP-induced sustained 
Ca2+ signal detected in IL-1β/TNF-α and high glucose-stimulated 
EAhy cells was fully counteracted by blocking P2X7 receptors, 
indicating that influx of Ca2+ is also necessary for ATP-induced 
Ca2+ signal in EAhy cells. Interestingly, the above Ca2+ response 
associated with P2Y1/P2X7 receptors was completely inhibited by 
WIN-dependent activation of CB1 receptors in IL-1β/TNF-α and 
high glucose-stimulated EAhy cells. These data denote that ATP-
mediated Ca2+ dynamics depend on the inflammatory profile of 
endothelial cells and can be antagonized by the anti-inflammatory 
actions of CBs (Figure 8). ATP released from endothelial cells 
could activate distant cells in a paracrine form, resulting in Ca2+ 
responses that may rely on the endothelial inflammatory profile. 
In this scenario, stimulation of purinergic receptors may be shut 
down due to diffusion of ATP to far-off areas in conjunction with 
desensitization of P2Y1 receptors and degradation of extracellular 
ATP via exonucleases.

In endothelial cells, NO can be produced from l-arginine 
in a reaction catalyzed by endothelial NO synthase (eNOS) 
and iNOS (36, 81). Yet despite both NOS isoforms catalyze the 
same biochemical reaction, eNOS and iNOS are very different 
enzymes, being the former involved in the constitutive NO 

production at nanomolar levels, whereas the latter generates 
micromolar amounts of NO only when stimulated (82). NO 
exerts important vasodilatory and protective effects on the 
vasculature (83). However, high NO production has been linked 
to the pathogenesis of chronic inflammatory diseases, including 
atherosclerosis (63). Relevant to this point, previous studies have 
revealed that pro-inflammatory conditions (e.g., high glucose) 
elicit the formation of endothelial NO (36, 84). In agreement with 
this information, we identify that IL-1β/TNF-α and high glucose 
clearly increase NO production in EAhy cells, which could be 
an alternative mechanism of hemichannel regulation through the 
S-nitrosylation of Cx43 (37).

Insulin is a direct-acting vasodilator in intact vessels (85) and 
has been described to induce the production of NO in normal 
endothelial cells (86). Nevertheless, endothelial cells subjected to 
pro-inflammatory conditions, such as high glucose and cytokine 
treatment, loss the ability to form NO (87, 88). As expected, in 
control EAhy cells, insulin promoted an evident augment in NO 
production. Surprisingly, in EAhy cells stimulated with IL-1β/
TNF-α and high glucose, the insulin-mediated NO production 
was higher than that of control conditions, revealing that insulin 
sensitivity is not inhibited. This unexpected finding might occur 
by the degree of inflammation developed by EAhy cells under the 
pro-inflammatory treatment used. Perhaps the NO response to 
insulin treatment become reduced at later time points not ana-
lyzed in the present work or the application of more intense pro-
inflammatory conditions is required to develop that outcome. As 
occurred with IL-1β/TNF-α and high glucose-induced changes 
in hemichannel opening, ATP release and [Ca2+]i dynamics, the 
enhanced production of NO was greatly prevented by the activa-
tion of CB1 receptors with WIN.

High glucose and IL-1β/TNF-α are well established condi-
tions that disturb vascular homeostasis through different 
cellular and molecular mechanisms (5). Here, we identify the 
function of endothelial Cx43 hemichannels as a new pathway 
affected by inflammatory mediators, revealing their possible 
implication in the pathogenesis of multiple vascular diseases. 
Supporting this idea, the increased production of NO caused 
by IL-1β/TNF-α and high glucose was completely impeded 
by blockade of endothelial Cx43 hemichannels. Furthermore, 
this study demonstrated that intracellular Ca2+ associated with 
COX2/EP1 receptor signaling and purinergic receptor activa-
tion—likely via ATP release—are crucial to maintain persistent 
opening of Cx43 hemichannels and possibly for preserving 
the p38 MAPK-dependent NO production observed in IL-1β/
TNF-α and high glucose-stimulated endothelial cells. The above 
may reproduce a self-perpetuating mechanism, in which both 
NO or high [Ca2+]i levels could reactivate Cx43 hemichannels 
(Figure  8). This phenomenon likely may lead to cell death, 
either by Ca2+ overload or through the reaction of NO with the 
superoxide anion, which yield peroxynitrite, a potent oxidant 
that alters DNA, lipids and proteins. We propose that reduction 
of hemichannel activity by CB agonists or selective hemichannel 
blockers might represent a strategy against the activation of del-
eterious pathways that trigger endothelial dysfunction and pos-
sibly cell damage evoked by high glucose and pro-inflammatory 
cytokines. The latter should favor the generation and design of 
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novel CB agonists that could preserve their positive role without 
having side effects in general physiology.
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Figure S1 | Etd uptake induced by high glucose and IL-1β/TNF-α is not related 
to osmolarity changes, whereas high glucose/IL-1β/TNF-α plus WIN do not affect 
connexin 43 (Cx43) distribution in endothelial cells. (A) Averaged Etd uptake rate 
normalized with respect to control condition (dashed line) of EAhy cells treated 
for 72 h with 5 mM glucose and IL-1β/TNF-α alone or in combination with 20 or 
40 mM sucrose or 20 or 40 mM mannitol. Data were obtained from three 
independent experiments (see scatter dot plot) with two repeats each one (≥35 
cells analyzed for each repeat). (B,C) Representative fluorescence images 
depicting Cx43 (green), tubulin (red), and DAPI (blue) immunolabeling of EAhy 
cells treated for 72 h with 25 mM glucose plus IL-1β/TNF-α and 5 µM WIN. 
Insets: 1.7× magnification of the indicated area of panels (C). Calibration bars: 
white = 35 µm, yellow = 60 µm, and green = 25 µm.

Figure S2 | High glucose and IL-1β/TNF-α increase the activity of connexin 43 
hemichannels and nitric oxide production in HUVEC endothelial cells. (A) 
Averaged Etd uptake rate normalized with control condition (dashed line) by 
HUVEC cells treated for 72 h with 25 mM glucose and IL-1β/TNF-α alone or in 
combination with the following blockers: 100 µM gap26, 100 µM 10panx1, 10 µM 
WIN or 5 µM WIN plus 5 µM SR-141716A (SR1). *p < 0.05, IL-1β/TNF-α and high 
glucose compared to control; #p < 0.05, effect of blockers compared IL-1β/TNF-α 
and high glucose. (B) Average of DAF fluorescence by HUVEC cells treated for 
72 h with 5 mM glucose (control; white bars), 25 mM glucose and IL-1β/TNF-α 
(red bars) alone or with different combinations of the following compounds: 5 µM 
WIN (WIN), 5 µM SR-141716A (SR1), 1 µM insulin or 100 µM gap26. *p < 0.05, 
IL-1β/TNF-α and high glucose compared to control; #p < 0.05, effect of each 
compound compared to the effect induced by IL-1β/TNF-α and high glucose; 
&p < 0.05, effect of each cannabinoid receptor antagonist compared to the effect 
of the respective cannabinoid; Ψp < 0.05, effect of insulin compared to the 
respective control (one-way analysis of variance followed by Tukey’s post hoc 
test). Data were obtained from three independent experiments (see scatter dot 
plot) with three repeats each one (≥35 cells analyzed for each repeat).
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The chemokine receptor CXCR3 and associated CXC chemokines have been extensively

investigated in several inflammatory and autoimmune diseases as well as in tumor

development. Recent studies have indicated the role of these chemokines also in

cardiovascular diseases. We aimed to present current knowledge regarding the role of

CXCR3-binding chemokines in the pathogenesis of atherosclerosis and during acute

myocardial infarction.

Keywords: inflammation, chemokine, I-TAC, atherosclerosis, coronary artery disease, myocardial infarction

INTRODUCTION

Atherosclerosis is a chronic inflammatory disease, with immune cells and their effector molecules
initiating and maintaining the progression of atherosclerotic lesion formation, accompanying
and also precipitating acute coronary events and the following reparatory processes (1, 2).
Chemotactic cytokines, or so-called chemokines have been shown to facilitate leukocyte migration
during inflammatory responses to various stimuli, including their recruitment to the sites of
atherosclerotic lesions (3).

Several chemokines have been associated with cardiovascular inflammatory changes.
Chemokines CCL2, CCL5, CCL20, CXCL1, MIF (migration inhibitory factor), and CX3CL1 play
a role in monocyte mobilization and recruitment (4). Monocyte binding to endothelial cells and
their diapedesis into the subendothelial space is promoted by chemokine heterodimers CXCL4-
CCL5. CXCL4 also affects monocyte differentiation into M4 macrophages, predominantly present
in the adventitia and intima (5). Recruitment and survival of neutrophils is facilitated by CCL2,
CCL3, CCL5, and CXCL1; (4) they also interact with CXCL4 (6) and CXCL12 (7).

Activated T lymphocytes (primarily Th1 cells) accumulate early and abundantly in the
atherosclerotic lesions and are present in the plaques at all stages (3, 8). The Th1 cells recruited to
the lesion recognize LDL as antigen and produce proinflammatory mediators such as interferon-
gamma (IFN-γ) and tumor necrosis factor (TNF) (3, 8, 9). IFN-γ is the major proatherogenic
cytokine, promoting local expression of adhesion molecules, cytokines and chemokines such as
CXCL9, CXCL10, and CXCL11 and their main receptor CXCR3 by macrophages and endothelial
cells (10). Chemokine signaling through CXCR3 facilitates recruitment and selective homing of
active Th1 cells to the site of plaque development or rupture (Figure 1) (10–12).
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The present review focuses on the role of the IFN-
γ inducible chemokines and their receptor CXCR3 in the
development of atherosclerosis and consequent coronary artery
disease. Possible clinical implications of the presented findings
are not entirely clear, but the currently available clinical
studies suggest that this might be a promising area of
intervention in the future of cardiovascular therapy and
prevention (13).

BIASED SIGNALING THROUGH CXCR3

CXCR3 is a 7-transmembrane spanning (7-TMS) G-protein-
coupled cell surface receptor that allows functional selectivity
on tissue, receptor as well as ligand levels (6). It binds
three inflammatory chemokines CXCL9, CXCL10, and CXCL11
(14, 15). It was also shown to weakly bind CXCL4 (platelet
factor 4), with questionable in vivo significance (16). CXCR3
has three alternative splice variants: CXCR3A, CXCR3B, and
CXCR3Alt that activate different intracellular signaling pathways,
depending also on the ligand they bind (14). For example,
Gαi heterotrimeric G protein activation and β-arrestin 1 and
2 recruitment was shown after stimulation with CXCL10 and
CXCL11 on CXCR3A, however on CXCR3B it was shown only
after stimulation with CXCL11 in high doses and was not
detectable on CXCR3Alt. ERK1/2 phosphorylation and receptor
internalization occurred on all three variants after stimulation, its
intensity and signal duration depending on the chemokine ligand
and splice variant assessed (14).

Different chemokines binding to CXCR3 appear to have
slightly different roles in T cell trafficking. CXCL10 is abundantly
expressed by all atheroma-associated cells such as T cells
and monocytes and is supposed to facilitate T cell retention
within the lesion (15, 17). CXCL11 interacts with CXCR3 with
higher affinity and is a stronger agonist, demonstrated by its
ability to mobilize intracellular calcium and also chemotactic
migration of CXCR3+ cells. It is not active on resting or
naïve T cells suggesting that CXCL11 does not play a role
under normal conditions only during IL-2 stimulated T cell
response (17, 18). CXCL11 was shown to be the physiologic
inducer of CXCR3 down-regulation on the cellular surface after
T cell contact with IFN-activated endothelial cells (19). This
might serve as an arrest signal for the activated T cells and
lead to restraining inflammatory responses (8). Besides CXCR3,
CXCL11 also binds to receptor CXCR7 (ACKR3), whichmay also
be a possible regulation point for CXCR3-mediated responses
(16, 20). CXCL11 also has an antagonistic effect on CCR5,
counteracting its inflammatory activities in leukocyte activation
(21).

Biased signaling on CXCR3 results in different effect of
its ligands during inflammatory events. It seems that CXCL9
and CXCL10 promote inflammation through inducing T cell
polarization into Th1/Th17 cells, while CXCL11 drives the
development of regulatory T cells (Treg) cells which play a role
in restraining inflammation (22). Based on the above, CXCR3
may be hypothesized to play a dual role by mediating both
proinflammatory and anti-inflammatory pathways.

CXCR3 BINDING CHEMOKINES IN

ATHEROMA DEVELOPMENT

Experimental data demonstrated that targeted deletion or
pharmacological inhibition of CXCR3 results in reduced plaque
formation, which is accompanied by reduced recruitment of
Th1 cells and increased migration of regulatory T-lymphocytes
to lesions in apoE–/– mice (23, 24). In line, Apoe–/– /Cxcl10–
/– mice showed reduced atherogenesis with enhanced numbers
and activity of Treg cells (25). Moreover, antibody-mediated
CXCL10 inhibition resulted in a more stable plaque phenotype
in a vulnerable plaque mouse model (26).

High levels of IFN-γ induced chemokines CXCL9, CXCL10,
and CXCL11 can be detected in human atheromas throughout
all stages of plaque development (7). Niki et al. found
elevated CLXCL10 levels to be associated with coronary
atherosclerosis (27), while Segers et al. revealed a close correlation
between high local concentrations of CXCL10 and unstable
plaque characteristics by analyzing human carotid plaque
specimens (26). CXCL4 and CXCL12 were also detected within
atherosclerotic lesions (7, 28). CXCL12 was suggested to mediate
anti-inflammatory action through neutrophil cells (7). CXCL4
is produced by platelets and plays a role in T cell-platelet
interactions (29). Its levels were found to be correlated with the
histological and clinical severity of atherosclerosis (28).

CXCR3 BINDING CHEMOKINES IN

ANGINA PECTORIS

There is an increased systemic inflammatory activity present
in patients with coronary artery disease, characterized by
an increased proportion of IFN-γ positive Th1 lymphocytes.
In patients with stable angina pectoris, enhanced systemic
expression of CXCL9, CXCL10, and CXCR3 can be observed.
Interestingly, lower levels of these chemokines and CXCR3 were
found in the peripheral cells of patients with acute coronary
syndrome, which indicates a sequestering of circulating CXCR
positive cells from blood to the site of infarction via an intense
in situ release of these chemokines (10, 11). Plasma levels of
CXCL12 are decreased in patients with stable and unstable
angina compared with healthy controls. CXCL12 thus might
have a protective effect in unstable angina through stabilizing the
atherosclerotic plaque (7).

Other anti-inflammatory molecules known for their
protective effect in cardiovascular diseases were found to
influence T cell trafficking through the chemokine system.
Adiponectin was shown to inhibit CXCR3 ligand production in
macrophages, while heparin competes for binding with CXCL9,
CXCL10, and CXCL11 on endothelial cells (30, 31).

CXCR3 BINDING CHEMOKINES IN

MYOCARDIAL INFARCTION

It has been reported that CXCL10 and CXCR3 mRNA levels
are up-regulated in the infarcted murine myocardium, with a
marked increase in the number of CXCR3+/CD45+ leukocytes,
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FIGURE 1 | Development and progression of the atherosclerotic lesion.

CXCR3+/CD3+ T lymphocytes and CXCR3+ myofibroblasts
(32, 33). Although CXCR3 is well-known to activate pro-
inflammatory Th1 lymphocyte responses, deficiency of CXCR3
did not affect post-infarction cardiac remodeling (34). In
contrast, Cxcl10–/– mice subjected to myocardial infarction
were characterized by enhanced adverse ventricular remodeling,
early expansion of the fibrotic scar, and increased neutrophil
infiltration with marked reduction of recruitment of CXCR3
expressing leukocytes and T cells (33). Notably, CXCR3-
independent proteoglycan signaling may mediate the anti-
fibrotic effects of CXCL10 in the infarcted heart (34). In contrast
to CXCL10, the role of CXCL9 and CXCL11 in infarct healing is
not known.

Through receptor CXCR3, CXCL9, and CXCL10 promote
T cell polarization into effector Th1/Th17 cells releasing pro-
inflammatory mediators. Meanwhile, CXCL4 and CXCL11
promoted the differentiation of T cells into Treg1 cells,
responsible for restraining the inflammatory response through
IL-10, TGF-β and contact dependent pathways (22, 35, 36).
Platelet surface expression of CXCR4 and CXCR7 receptors is
elevated in acute coronary syndrome compared to stable angina.

High CXCR7 levels are also associated with better improvement
of left ventricular function after myocardial infarction. CXCR7
expression might contribute to regenerative function of platelets
following acute coronary events (37).

Timely resolution of cardiac inflammatory responses plays
a pivotal role in optimal tissue reparation (38, 39). Excessive,
prolonged or inadequately contained inflammation can cause
several complications such as cardiac rupture or dilatative
ventricular remodeling and may lead to impaired cardiac
function. Activation of pro-apoptotic pathways can cause
unnecessary loss of cardiomyocytes and the extension of the
inflammation to the non-infarcted area results in enhanced
fibrosis and increased infarct size (38–40). Blockade of leukocyte
related inflammatory mediators was shown to cause a marked
reduction in infarct size and prevented the extension of ischemic
cardiomyocyte injury following reperfusion in experimental
studies (38).

During myocardial infarction, the dual role of CXCR3 in
inflammatory processes might enable CXCR3+ cells to set
off an appropriately rapid and robust inflammatory response
in the beginning (1). Also, it might contribute to the
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timely resolution of symptoms by restraining the inflammation
afterwards. It seems that the activation of the plaque rather
than the degree of coronary stenosis precipitates ischemia and
infarction. Endothelial erosion or plaque rupture was found to be
responsible for the majority of coronary thrombotic events (1, 9)
(Box 1).

CLINICAL EXPERIENCE WITH CXCR3

BINDING CHEMOKINES IN ISCHEMIC

HEART DISEASE

The clinical relevance of CXCR3 binding chemokines in ischemic
heart disease is not fully understood. As summarized in
Table 1, clinical studies to date aimed to find an association
between plasma levels of different cytokines and several
aspects of coronary events. It seems that complex patterns
rather than individual changes in plasma chemokine levels
might be associated with cardiovascular risk (50, 53, 59).

Box 1 | Chemokines, CXCR3, and CXCL9 (Mig), CXCL10 (IP-10), and

CXCL11 (I-TAC)

Chemokines

Chemokines are a structurally related superfamily of more than 50

small signaling proteins (cytokines) that were originally named after their

chemotactic effect on leukocytes. They all share a conserved cysteine motif

in the mature sequence of the chemokines. Based on the number and

arrangement of the N-terminal cysteine residues in this motif, chemokines

can be divided into four families (CXC, CC, C, and CX3C) (41, 42). Besides

regulating leukocyte migration and degranulation, chemokines take active

part in a number of complex processes like angiogenesis or hematopoiesis

and were found to participate in several diseases related to the immune

system such as atherogenesis, multiple sclerosis, asthma, HIV-infection or

cancer (7, 18, 41–43).

Chemokines bind to 7-TMS G-protein-coupled cell surface receptors.

The activation of chemokine receptors can be followed by one of several

signaling pathways, including inhibition of adenylate cyclase, activation of

phosphoinositol 3-kinase, phospholipase C and D, protein kinase C and A,

inositol triphosphate generation and transient calcium influx (44). More than

20 chemokine receptors have been discovered so far; their names mirror the

nomenclature of chemokine family names (CXCR1-7, CCR1-10, etc.) (45).

CXCR3

CXCR3 is a chemokine receptor expressed by activated T lymphocytes,

including CD4+ T helper 1 (Th1) cells, CD8+ cytotoxic T lymphocytes

(CTL), and CD4+ and CD8+ memory T cells, as well as monocytes,

M1 macrophages, natural killer (NK) cells, leukemic B-cells, eosinophils,

mast cells, plasmocytoid dendritic cells, endothelial cells (ECs) and vascular

smooth muscle cells (SMCs) (44, 46). Up-regulation of CXCR3 has been

described in multiple sclerosis and transplant rejection (47). CXCR3 is also

expressed by various tumor cells (48).

CXCL9 (Mig), CXCL10 (IP-10), and CXCL11 (I-TAC)

These three non-ELR chemokines are on the same branch of the

phylogenetic tree and consequently share common characteristics. Their

main receptor is CXCR3, but they can also act as antagonists for CCR3.

They are constitutively expressed at low levels in normal tissues including

thymus and spleen, where they are probably involved in activated (CXCR3+)

T cell trafficking. Their expression is strongly induced by IFN-γ and they

are produced in a wide variety of cell types, including atheroma-associated

endothelial cells and macrophages (7, 17, 41, 44).

Ardigo et al. found that when using a combined multimarker
chemokine model (including CXCL10), serum concentrations
of the chemokines were differentially regulated in individuals
with clinical coronary artery disease compared with subjects
with no such history. Their findings suggest that chemokine
profile models using multiple chemokines may represent a strong
signal of coronary artery disease with even higher specificity than
traditional risk factors (49).

In a large case-control study of 312 patients with coronary
heart disease and 472 controls, a significant association of
increased serum CXCL10 was found with the risk of coronary
heart disease. Higher CXCL10 levels were also found to
be independently correlated with established laboratory risk
markers of coronary heart disease such as acute-phase proteins
and inflammatory cytokines (50).

In patients with stable angina pectoris, Fernandes et al. found
significantly higher levels of CXCL9, CXCL10, and CXCR3
compared to healthy controls (11). In patients with unstable
angina, increased inflammatory activity was confirmed compared
to stable angina patients by elevated high sensitivity C-reactive
protein and serum amyloid A protein levels. However, the levels
of CXCL9, CXCL10, and CXCR3 remained low in patients
with unstable angina, comparable to the control group and
significantly lower than in patients with stable angina. The
authors suggested local release and intense uptake of these
molecules by circulating leukocytes migrating to the site of
active inflammation, which would explain their lower levels in
the peripheral blood. Blood samples were drawn within 48 h
of the index consultation of the unstable patients, and it was
hypothesized that samples taken in a different time frame might
capture serum elevations in CXCR3 and related chemokines (11).

Safa et al. (51) in a larger study in 260 patients and 100
healthy controls managed to capture elevated CXCL10 levels
in patients with unstable angina. In this study the serum
levels of CXCL10 were measured at the time of admission and
were found to be elevated both in patients with stable and
unstable angina pectoris. CXCL10 was also elevated in acute
myocardial infarction, measured 3–5 days after admission. The
study also confirmed the correlation of tradition risk factor
with CXCL10, as mean serum levels of CXCL10 in patients
with hypertension, dyslipidemia, obesity, diabetes and smoking
were significantly higher as compared to the control group
(51).

While elevated serum CXCL10 was found to be significantly
associated with increased risk of coronary heart disease, it
was not an independent risk factor for future coronary events
in population-based case-control studies (52, 53). CXCL10
modestly correlated with traditional cardiovascular risk factors
in the PRIME study (49). Age was found to be the strongest
positive confounder in the MONICA/CORA Augsburg cohort,
with the levels of circulating immune mediators increasing
with age (52). The investigators of the Tromsø Study found
that higher CXCL10 levels were protective for women when
assessing the 10-year risk of incident myocardial infarction. In
the multivariable model, the composite risk of 6 biomarkers
including CXCL10 improved the traditional risk factor model by
14% (54).
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TABLE 1 | Clinical studies with CXCR3 binding chemokines in coronary artery disease.

Study Molecules/

Receptor

n Disease/Intervention Description Results

Ardigo et al.

(49)

CXCL10

CCL11/eotaxin-1

CCL2/MCP-1

CCL3

CCL7

CCL8

CCL13

(CXCL8 and

CCL5/RANTES not

analyzed)

50 patients

48 controls

CAD, incident AMI Cross-sectional study of a

multidimensional approach, utilizing

profiles of several inflammatory

biomarkers.

Models using multiple chemokines

more accurately distinguished cases

and controls compared with models

using traditional risk factors.

Rothenbacher

et al. (50)

CXCL10

IL-8

RANTES/CCL5

MCP-1/CCL2

MIP-1α

312 patients

472 controls

Stable CAD Case-control study investigating the

association of chemokines with the

risk of stable coronary heart disease.

Serum levels of CXCL10 and IL-8

were higher, and serum levels of

RANTES were lower in CHD patients

when compared with age- and

gender-matched controls.

Fernandes et

al. (11)

CXCL9

CXCL10

CXCR3

IL-12

IFN-γ

50 patients

10 controls

Stable or unstable

angina pectoris

To explore whether this increase in

Th1 activity could also be detected in

circulating cells indicating a systemic

activation.

Serum IL-12 and intracellular

expression of IFN-γ were significantly

elevated in patients with unstable

angina. An enhanced expression of

IFN-γ chemokines IP-10, Mig and

CXCR3 in patients with stable angina

was also observed.

Safa et al. (51) CXCL10 300 patients

100 controls

Stable or unstable

angina pectoris

AMI

A comparative study to evaluate the

CXCL10, CCL20 and CCL22 levels in

patients with ischemic heart disease.

Serum levels of CXCL10 were

significantly higher in patients with

AMI, SA or UA as compared with the

healthy control group.

PRIME (52) CXCL10

RANTES/CCL5

MCP-1/CCL2

eotaxin-1/CCL11

621 patients

1242

controls

CAD To quantify the association between

systemic levels of chemokines with

future coronary heart disease and to

assess their usefulness for risk

prediction.

None of the chemokines were

independent predictors of CAD, either

with respect to stable angina or to

acute coronary syndrome.

MONICA/CORA

Augsburg (53)

CXCL10

MCP-1/CCL2

IL-8

381 patients

1977

controls

CAD To assess whether elevated systemic

levels of these chemokines precede

coronary events.

Elevated systemic levels of the

chemokines MCP-1, IL-8, and

CXCL10 precede CAHD but do not

represent independent risk factors.

The Tromsø

study (54)

CXCL10

apolipoprotein

B/apolipoprotein

A1 ratio

kallikrein

lipoprotein a

matrix

metalloproteinase 9

thrombospondin 4

419 patients

398 controls

AMI To survey multiple protein biomarkers

for association with the 10-year risk of

incident AMI and identify a clinically

significant risk model.

The protein biomarker model

improved identification of 10-year AMI

risk above and beyond traditional risk

factors with 14% better allocation to

either high or low risk group.

Ferdousie et

al. (55)

CXCL10

CXCL12

80 patients CAD/PTCA To evaluate the potential correlation

between serum levels of chemokines

CXCL10 and CXCL12 and the degree

of coronary artery occlusion.

A significant correlation between the

serum levels of CXCL10 and CXCL12

and the severity of coronary artery

occlusion was found.

Kawamura et

al. (56)

CXCL10

MCP-1

CCR2

CCR5

CXCR2

CXCR3

55 patients

20 controls

CAD/PTCA To investigate whether coronary

stenosis is associated with a

significant expression ofleukocyte

CXCL10 –CXCR3.

Increased plasma concentrations of

IP10 were accompanied by a

compensatory decrease in the

CXCR3 expression on lymphocytes,

but not monocytes.

Ørn et al. (57) CCL4

CXCL8

CXCL10

CXCL16

CCL3

CXCL7

42 patients AMI/PCI To assess the levels of selected

chemokines during AMI and the

subsequent 60 days.

After PCI, high levels of CCL4,

CXCL16, CXCL10 and CXCL8 within

the first week after PCI correlated

positively with the degree of

myocardial damage and infarct size

after 2 months.

(Continued)
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TABLE 1 | Continued

Study Molecules/

Receptor

n Disease/Intervention Description Results

Koten et al.

(58)

CXCL10 53 patients

20 controls

AMI/PCI stable

angina pectoris

To examine the serum levels of

CXCL10 in AMI.

The serum CXCL10 level was

increased in AMI, and a higher level of

serum CXCL10 before PCI may be

informative regarding infarct size.

Keeley et al.

(59)

CXCL1

CXCL5

CXCL8

CXCL9

CXCL10

CXCL11

CXCL12

156 patients Coronary artery

stenosis

To examine whether plasma levels of

angiogenic and angiostatic

chemokines are associated with of

the presence and extent of coronary

collaterals in patients with chronic

ischemic heart disease.

Plasma chemokine concentrations

are associated with the presence and

extent of spontaneously visible

coronary artery collaterals and may

be mechanistically involved in their

recruitment.

Kao et al. (60) CXCL11

CCR5

Transplant CAD To demonstrate that CXCL11 is

involved in the pathogenesis of

transplant CAD.

This study demonstrated a correlation

between circulating CXCL11

chemokine levels and development of

transplant CAD in humans.

A significant correlation was found between elevated serum
CXCL10 and CXCL12 levels and the severity of coronary
artery occlusion in patients with coronary heart disease
who underwent PTCA (55). In patients with restenosis after
PTCA, decreased concentrations of CXCL10 were followed by
the decrease of CXCR3 expression on lymphocytes but not
monocytes, suggesting a possible role of CXCL10 signaling
on monocytes in neointimal hyperplasia in patients with
restenosis (56).

CXCL8, CXCL10, and CXCL16 were found to be correlated
with maximum troponin T levels, infarct size and impaired
myocardial function assessed by cardiac magnetic resonance in
patients after successful PCI (57). Serum CXCL10 level before
PCI also proved to be an independent predictor of cumulative
CK release and was negatively correlated with infarct size, as
indicated by peak CK and CK-MB enzymes (58).

Better clinical outcome was found to be associated with
recruitment of coronary collaterals (61). This form of vascular
remodeling was shown to be accompanied by alterations in
chemokine levels (59). Higher levels of angiogenic ligands
CXCL5, CXCL8, and CXCL12 indicate the presence of collaterals,
while the concentration of the angiostatic CXCL11 was associated
with their absence. The higher extent of collateralization
was associated with increased CXCL1 and decreased CXCL9,
CXCL10, and CXCL11 (59).

Several chemokines have been linked to the development
of acute transplant rejection episodes and transplant coronary
artery disease in animals and also in human studies (60).
Following heart transplantation, elevated CXCL11 levels
have shown an association with the development of severe
transplant coronary artery disease (60). CXCR3 ligands have
also been studied in patients with left ventricular dysfunction
and heart failure (62–64). Circulating levels of CXCL9,
CXCL10, and CXCL11 were increased in subclinical as
well as symptomatic left ventricular dysfunction, reaching
statistical significance only in symptomatic patients (62).
Addition of these CXCR3 ligands to established risk factors
significantly improved the risk prediction models for left

ventricular dysfunction (63). In a pilot study by Altara et
al. levels of CXCL10 positively correlated with the severity
of heart failure, especially in patients with advanced heart
failure (64). Also, higher systemic levels of CXCL10 have been
demonstrated to be independent risk factors for ischemic
stroke (52).

CONCLUSIONS

The chemokine network specifically directs the trafficking
of immune cells in homeostasis and during inflammation.
Excessive or inappropriate chemokine expression can lead to
unnecessary leukocyte recruitment typical for autoimmune or
allergic diseases. Chemokines have been extensively studied in
diseases associated with T cell mediated inflammatory responses
like multiple sclerosis, asthma bronchiale, AIDS and also in
patients with transplant rejection (47, 60, 65).

Inflammatory processes in ischemic heart disease involve
intense chemokine signaling from the forming of the
atherosclerotic plaque and plaque destabilization to all
phases of acute coronary events and infarct healing (36).
IFN-γ inducible chemokines CXCL9, CXCL10, and CXCL11
attract activated T cells through CXCR3 receptor to the site
of infarction. Modulation of their action might prevent the
excessive recruitment of leukocytes to sites of inflammation and
consequently influence the clinical outcome of the disease (47).

CXCR3 binding chemokines might be promising biomarkers
for the risk assessment of coronary heart disease. Chemokine
levels however have a short half-life and may have high
intraindividual variability; (52) this results in difficulties in
estimating the best sampling time and may generate conflicting
clinical results.

CXCL10 is the most extensively studied of the three
chemokines in the clinical setting of ischemic heart disease; less
is known about the role of CXCL9 and CXCL11. New clinical
studies are needed to fill in the gaps and properly map the role
of alterations in chemokine levels in coronary artery disease and
during acute coronary events.
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Given the importance of high-mobility group box 1 (HMGB1) and 5-lipoxygenase (5-LO)

signaling in vascular inflammation, we investigated the role of leukotriene signaling in

monocytes on monocyte-to-macrophage differentiation (MMD) induced by HMGB1, and

on vascular inflammation and subsequent intimal hyperplasia in a mouse model of wire-

injured femoral artery. In cultured primary bone marrow-derived cells (BMDCs) stimulated

with HMGB1, the number of cells with macrophage-like morphology was markedly

increased in association with an increased expression of CD11b/Mac-1, which were

attenuated in cells pre-treated with Zileuton, a 5-LO inhibitor as well as in 5-LO-deficient

BMDCs. Of various leukotriene receptor inhibitors examined, which included leukotriene

B4 receptors (BLTRs) and cysteinyl leukotriene receptors (cysLTRs), the BLTR1 inhibitor

(U75302) exclusively suppressed MMD induction by HMGB1. The importance of BLTR1

in HMGB1-induced MMD was also observed in BMDCs isolated from BLTR1-deficient

mice and BMDCs transfected with BLTR1 siRNA. Although leukotriene B4 (LTB4) had

minimal direct effects on MMD in control and 5-LO-deficient BMDCs, MMD attenuation

by HMGB1 in 5-LO-deficient BMDCs was significantly reversed by exogenous LTB4,

but not in BLTR1-deficient BMDCs, suggesting that LTB4/BLTR1-mediated priming

of monocytes is a prerequisite of HMGB1-induced MMD. In vivo, both macrophage

infiltration and intimal hyperplasia in our wire-injured femoral artery were markedly

attenuated in BLTR1-deficient mice as compared with wild-type controls, but these

effects were reversed in BLTR1-deficient mice transplanted with monocytes from control

mice. These results suggest that BLTR1 in monocytes is a pivotal player in MMD with

subsequent macrophage infiltration into neointima, leading to vascular remodeling after

vascular injury.

Keywords: high mobility group box 1, 5-lipoxygenase, leukotriene B4 receptor, monocyte-to-macrophage

differentiation, vascular restenosis, intimal hyperplasia
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INTRODUCTION

Vascular endoluminal interventional procedures injure
vascular walls, and result in the release endogenous damage-
associated molecular patterns (DAMPs) (1, 2). Of the various
DAMP proteins, high mobility group box 1 protein (HMGB1)
has emerged as an important regulator of inflammatory
responses resulting from tissue injury (3–5), and been implicated
as an active player in vascular inflammation with resultant
intimal hyperplasia after arterial injury (6). In a previous
study, we found HMGB1 enhanced monocyte-to-macrophage
differentiation (MMD) and resultant vascular inflammation
in injured vasculature (7), and thus, we suggested coordinated
relationships exist between local vascular injury and pattern
recognition receptor-related signals in the process of vascular
inflammation.

Monocyte recruitment to injured tissues, their subsequent
transformation into macrophages, and the overproduction
of inflammatory cytokines are major steps in the process
of vascular inflammation (8, 9). These sequential events
stimulate vascular smooth muscle cell (VSMC) proliferation and
extracellular matrix deposition in neointima, which result in
intimal hyperplasia and vascular occlusion (10). Furthermore,
several key proteins involved in the leukotriene cascades, such
as, 5-lipoxygenase (5-LO) and arachidonate 5-lipoxygenase
activating protein (FLAP), and leukotriene (LT) receptors are
highly expressed in human atherosclerotic plaque (11–13), which
suggests their potential involvements in vascular inflammation.

Previous studies have reported genetic targeting of 5-LO
reduced lesion size in atherosclerosis prone mouse strains (14–
16). Likewise, in a previous study, we found 5-LO importantly
contributed to the development of atherosclerosis by increasing
the expressions of adhesion molecules on monocytes, and
thus, increasing monocyte adhesion to vascular endothelium
(17). In FLAP-deficient mice, neointima hyperplasia in injured
arteries was significantly attenuated by reducing inflammatory
cytokine release from FLAP-deficient macrophages (18), which
suggested 5-LO in macrophages plays a pivotal role in vascular
inflammation. However, although 5-LO in inflammatory cells has
been proposed to be an important player in the development
of vascular inflammation (12, 19), the importance of 5-LO
signaling pathways in monocytes in vascular inflammation with
subsequent vascular remodeling in injured vasculatures remains
unclear.

Leukotrienes (LTs) are considered to mediate inflammatory
responses in various cardiovascular diseases characterized by
vascular inflammation (20). LTs exert their actions via four
subclasses of receptors, such as, BLT1 and BLT2 (receptors

Abbreviations: HMGB1, High mobility group box 1 protein; 5-LO,

5-Lipoxygenase; MMD, monocyte to macrophage differentiation; BMDC,

Bone marrow derived cell; BLTR, receptor for leukotriene B4; CysLTR, receptor

for cysteinyl-leukotrienes; DAMP, Damage-associated molecular patterns; VSMC,

Vascular smooth muscle cell; FLAP, 5-Lipoxygenase activating protein; LT,

Leukotriene; LTB4, Leukotriene B4; BMDM, Bone marrow derived monocyte;

PBMC, Peripheral blood mononuclear cell; LDPI, Laser Doppler perfusion

imaging; H&E, Hematoxylin and Eosin; α-SMA, alpha-smooth muscle actin;

DAPI, 4′6-Diamidino-2-phenylindole; WT, Wild-type.

for LTB4), and CysLT1 and CysLT2 (receptors for cysteinyl-
leukotrienes) (21). Previous studies have implicated LT
receptor activation in atherogenesis and vascular remodeling
after angioplasty (21, 22), and studies on the genetic and
pharmacological targeting of BLTR1 in atherosclerotic mouse
strains further supported the involvement of leukotriene-
signaling in vascular inflammation (23–25). However, the precise
role of BLTR1 signaling in monocytes in the process of vascular
inflammation remains unclear.

In a previous study, we described the importance of 5-LO
in monocytes during vascular inflammation (7). However, our
incomplete understanding of how 5-LO signaling pathways in
monocytes contribute to vascular inflammation explains the
incapability of current treatments to prevent vascular remodeling
in the injured vasculatures. Given the importance of HMGB1
and 5-LO signaling in monocytes during vascular inflammation,
we investigated the role of leukotriene signaling in monocytes
on MMD induced by HMGB1. To further determine the
contribution of 5-LO signaling in monocytes in macrophage
infiltration into neointima lesions, we also investigated the
importance of BLTR1 signaling in monocytes in vascular
inflammation and subsequent intimal hyperplasia using BLTR1-
deficient mice and BLTR1-deficient mice transplanted with
monocytes fromWTmice.

MATERIALS AND METHODS

Ethics Statement and Animals
All experiments involving animals conformed with the Guide for
the Care and Use of Laboratory Animals published by the US
National Institute of Health (NIH Publication No. 85-23, 2011
revision), and all animal-related experimental protocols were
approved by the Pusan National University Institutional Animal
Care and Use Committee of the College of Medicine (PNU-2016-
1310). Genotyping, including that of 5-LO-deficient mice and
BLTR1-deficient mice, was performed by PCR using a protocol
provided by the Jackson Laboratory (Harlan Nossan, ITA). Wild-
type (WT) control mice (C57BL/6J) were purchased from the
Jackson Laboratory. Animals were housed in an air-conditioned
room at 22–25◦C and kept under a 12-h light/dark cycle. Food
and water were provided ad libitum.

Vascular Injury Models and Blood Flow

Measurement
C57BL/6J (WT), 5-LO-deficient and BLTR1-deficient male mice
(7 wk-old) were subjected to right femoral artery injury using a
0.25mm diameter angioplasty guidewire under chloral hydrate
(450 mg/kg, intraperitoneal injection) anesthesia and aseptic
conditions, as previously described (26). The adequacy of
anesthesia was confirmed by response to toe pinch. Wire-
injured femoral arteries were harvested from mice euthanized
by carbon dioxide insufflations and cervical dislocation, and
then cross sectioned (4µm). Tissue sections were stained
with hematoxylin and eosin (H&E) and immunohistological
marker antibodies. Femoral arterial blood flow was measured
using a laser Doppler perfusion imaging (LDPI) analyzer
(Moor Instruments, Devon, UK) at 0, 1, 2, 3, and 4 wks after

Frontiers in Immunology | www.frontiersin.org 2 August 2018 | Volume 9 | Article 193837

https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles


Baek et al. BLTR1 in Monocytes Mediates Intimal Hyperplasia

femoral artery injury. The changes in blood flow were calculated
using the colors of histogram pixels.

Chemicals and Antibodies
Zileuton and alpha-smooth muscle actin (α-SMA) antibody
were purchased from Sigma-Aldrich (St. Louis, MO, USA).
LTB4, U75302 and REV5901 were from Cayman Chemical
Inc (Ann Arbor, MI, USA). MK 886 was purchased from
EMD Serono (Rockland, MA, USA), HMGB1 from R&D
systems (Minneapolis, MN, USA), CD11b antibody from Abcam
(Cambridge, MA, USA), and BLTR1 antibody from Biorbyt
(Cambridge, UK). CD36, CD14, β-actin, and 5-LO antibodies
were purchased from Santa Cruz Biotechnology (Santa Cruz,
CA, USA), R-phycoerythrin PE-conjugated mouse anti-human
CD11b/Mac-1 antibody and PE-conjugated mouse IgG isotype
control antibody from BD (San Diego, CA, USA). Horseradish
peroxidase (HRP)-conjugated IgG antibody was used as the
secondary antibody from Santa Cruz Biotechnology. Restriction
enzymes were purchased from Promega (Madison, WI, USA).
5-LO and BLTR1 siRNA oligonucleotides were synthesized by
Bioneer (Daejeon, ROK). siRNA molecules were transfected
into cells using Lipofectamine 2000 siRNA transfection reagent
(Invitrogen, Carlsbad, CA, USA). PCR primers were from
Bioneer.

Isolation of Bone Marrow-Derived Cells

and Culture
Bone marrow derived cells (BMDCs) were isolated from mice (7
wks, male) euthanized by carbon dioxide insufflation and cervical
dislocation. Briefly, after bone marrow cells were harvested from
femurs and tibiae, red blood cells were lysed using lysing buffer
(Sigma-Aldrich) and incubated in RPMI1640 containing 10%
heat-inactivated fetal bovine serum (FBS) for 24 h. Non-adherent
cells were harvested and centrifuged at 1300 rpm for 10min,
and the cell pellets so obtained were washed twice with PBS and
resuspended in RPMI 1640 containing 10% FBS. BMDCs were
maintained in RPMI 1640 containing 10% FBS and antibiotic-
antimycotic (Life technologies, Carlsbad, CA, USA) at 37◦C. Cells
(5 × 105/mL) were seeded and cultured for 24 h in complete
medium for further experiments.

Flow Cytometric Analysis
BMDCs were resuspended in fluorescence activated cell sorter
(FACS) buffer (PBS containing 1% FCS and 0.05% NaN3), to
assess the surface expression of CD11b/Mac-1 protein. Cells were
incubated with a FcR blocker to block non-specific antibody
binding, and then incubated with PE-conjugated anti-mouse
CD11b antibody (1:500). Analysis was performed using a FACS
Calibur and CELLQUESTPRO software BD, and 1 × 104 cells
were recorded per sample. Live cells were gated based on size
(FSC) and granularity (SSC), and then CD11b/Mac-1 expression
was analyzed. Fluorescence was analyzed by FACS as described
above.

Reverse Transcription-PCR Analysis
Total RNA was isolated from cells using QIAzol (Qiagen,
Hilden, Germany) and reverse transcribed into cDNA using the

Improm-II Reverse Transcription System (Promega). cDNA
amplification was performed using primers specific for 5-LO
(forward, 5′-ATTGCCATCCAGCTCAACCAAACC-3′; reverse,
5′-TGGCGATACCAAACACCTCAGACA-3′). 5-LO mRNA
levels in BMDCs were quantified by RT-PCR using GAPDH
mRNA as the internal standard. Relative intensities were
expressed as fold changes vs. GAPDH.

Western Blot Analysis
BMDC lysates were prepared in ice-cold lysis buffer, and equal
amounts of proteins were separated on 8∼10% polyacrylamide
gel under reducing conditions, and then transferred to
nitrocellulose membranes (Amersham-Pharmacia Biotech,
Piscataway, NJ, USA). Membranes were blocked with 5%
skim milk in TBST and incubated overnight with primary
antibody (1:1000) in 5% skim milk. Blots were washed with
TBST, incubated with HRP-conjugated secondary antibody for
2 h, and developed using ECL Western blot detection reagents
(Amersham-Pharmacia Biotech). Membranes were re-blotted
with anti-β-actin antibody (Santa Cruz Biotechnology) as an
internal control. Signals from bands were quantified using
US-SCAN-IT gel 5.1 software (Silk Scientific, Orem, Utah, USA).
Results were expressed as relative densities.

Quantitative Real-Time Reverse

Transcription Analysis
Total RNA was isolated from cells using QIAzol (Qiagen) and
reverse transcribed into cDNA using the Improm-II Reverse
Transcription System (Promega). BLTR1 gene expression was
determined by real-time PCR using 1 ng of reverse-transcribed
cDNA and a LightCycler 96 system equipped with LightCycler
DNA Master SYBR Green I (Roche Molecular Biochemicals,
Mannheim, Germany). PCR was performed under the following
conditions: 95◦C for 10min followed by 50 amplification cycles
of 95◦C for 10 s, 45◦C for 10 s, and 72◦C for 10 s. Amplification
efficiencies were calculated and normalized with respect to
mouse GAPDH. The PCR primers used were as follows:
forward, 5’-TTACCACCTGGTGAACCTGGTGGAA-3’; reverse,
5’-TTCGAAGACTCAGGAATGGTGGAG-3’. Quantities were
calculated using standard curves.

Measurement of LTB4 Production
LTB4 production was measured in extracellular medium using
an LTB4 assay kit (Cayman Chemical Inc., Ann Arbor, MI, USA)
according to the manufacturer’s instructions. Briefly, BMDCs
were stimulated with HMGB1 (100 ng/ml), and LTB4 levels
in concentrated media were quantified by ELISA (Bio-Tek
Instrument Inc., Winooski, VT, USA).

Preparation of BLTR1 siRNA and in vitro

Transfection
Small interfering RNA (siRNA) for BLTR1 and scrambled
siRNA (negative control) were designed and synthesized
using a SilencerTM siRNA construction kit purchased from
Bioneer. The sequences of BLTR1 siRNA and scrambled
siRNA were 5′-GAUCUGCGCUCCGAACUAUdTdT-3′ and
5′-AUAGUUCGGAGCGCAGAUCdTdT-3′, respectively. For
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siRNA transfection, cells were seeded and transfected with
BLTR1 siRNA using Lipofectamine 2000 (Invitrogen, NY,
USA) according to the manufacturer’s protocol. Transfection
efficiencies were monitored using a fluorescent oligonucleotide
(BLOCK-iT Fluorescent Oligo; Invitrogen) and estimated to be
between 80 and 90%.

Immunofluorescence Analysis
Wire-injured femoral arteries were harvested and serial paraffin
sections (4µm) of femoral arteries were incubated with
mouse-anti α-SMA (1:400) and rabbit-anti CD36 (1:200)
antibodies. Alexa488-conjugated IgG and Alexa594-conjugated
IgG (Abcam) were used to detect immunofluorescence signals
for α-SMA and CD36, respectively. After nuclei were visualized
by staining with 0.1µg/ml diamidino-2-phenylindole (DAPI),
slides were mounted in Vectashield. Fluorescence images were
visualized by scanning confocal microscopy (LSM 510, Carl Zeiss,
Oberkochen, Germany), and analyzed by National Institutes of
Health (NIH) image software (Image J, NIH, USA).

Transplantation of Bone Marrow-Derived

Monocytes
BMDCs were harvested from the femurs and tibiae of mice
(7 wks, male), which had been euthanized by carbon dioxide
insufflation and cervical dislocation, and bone marrow-derived
monocytes (BMDMs, CD11b-positive cells) were then separated
using MACS technology (Miltenyi, Bergisch Gladbach, GER)
using a standard procedure. BMDCs were then stained with
fluorochrome-labeled monoclonal anti-CD11b, sorted using a
BD ARIAIII cell sorter (Becton Dickinson, San Jose, CA, USA),
washed, and resuspended at 1 × 107 cells/ml. Recipient BLTR1-
deficient mice were administered 1 × 107 BMDMs per mouse
by tail vein injection. The expressions of BLTR1 mRNA and
protein in peripheral blood monocytes (PBMCs) isolated from
three groups of BMDMs-transplanted mice (WTWT mice,
WT monocytes into WT mice; KOKO mice, BLTR1-deficient
monocytes into BLTR1-deficient mice; and WTKO mice, WT
monocytes into BLTR1-deficient mice) were determined by Real
Time PCR and immunocytochemistry, respectively.

Statistical Analysis
Results were expressed as means ± SEMs. One-way analysis of
variance (ANOVA) followed by Turkey’s multiple comparison
test was used to determine the significance of differences.
Statistical significance was accepted for P values < 0.05.

RESULTS

A Role for 5-LO in MMD Induced by

HMGB1
The effects of HMGB1 on the expression of 5-LO mRNA and
protein in BMDCs were determined using semi-quantitative
RT-PCR and Western blot analysis. In previous studies,
HMGB1 were secreted to 10–100 ng/ml physiologically or
pathologically (27, 28). Thus, BMDCs were treated with HMGB1
at concentrations of 100 ng/ml in our study. As shown in
Figure 1A, HMGB1 at concentration of 100 ng/ml increased the

mRNA and protein expression of 5-LO in a time-dependent
manner in BMDCs and THP-1 cells (Supplementary Figure 1),
which were attenuated by inhibition of various receptors for
HMGB1 (Supplementary Figure 2). To determine the functional
role of 5-LO increased in HMGB1-stimulated cells, LTB4
production in HMGB1-treated cells was measured using ELISA.
As shown in Figure 1B, LTB4 production in HMGB1-stimulated
cells was gradually increased up to 24 h (approximately 10 ng/107

cells), suggesting the potential involvement of 5-LO-derived LTs
in MMD induction by HMGB1.

To evaluate the potential role for 5-LO on MMD induction
by HMGB1, we determined the effects of Zileuton (10 or
30µM), a 5-LO inhibitor, on MMD induced by HMGB1. When
the cellular morphology of HMGB1-stimulated BMDCs were
photographed under a phase contrast microscope, the majority of
cells had a macrophage-like morphology, were larger than non-
stimulated cells, and strongly adherent and irregular or spindle
shaped. Immunocytochemistry of HMGB1-stimulated BMDCs
also revealed that the surface expression of CD11b/Mac-1 (red)
was markedly increased, which was significantly attenuated by
pre-treatment with Zileuton, suggesting a potential role for 5-LO
in MMD induced by HMGB1 (Figure 1C).

Participation of BLTR1 Signaling in

Monocytes During HMGB1-Induced MMD
To evaluate the role of leukotriene (LT) receptor signaling
in monocytes during HMGB1-induced MMD, BMDCs
were stimulated with HMGB1 (100 ng/ml) for 10 days in
the presence of various leukotriene receptor inhibitors,
including U75302 (a BLTR1 inhibitor), LY255283 (a BLTR2
inhibitor), REV5901 (a cysLTR1 inhibitor), and HAMI3379
(a cysLTR2 inhibitor). As shown in Figure 2, flow cytometric
analysis showed an increase in the surface expression of
CD11b/Mac-1 on BMDCs stimulated with HMGB1, which
were attenuated dose-dependently by pretreatment with a
BLTR1 inhibitor (U75302), but not by BLTR2 and cysLTR
inhibitors. To further identify the role of BLTR1 in monocytes,
we determined HMGB1-induced CD11b/Mac-1 expression in
BLTR1-deficient BMDCs. As shown in Figure 3, HMGB1-
induced expression of CD11b/Mac-1 on BMDCs was
markedly attenuated in BLTR1-depleted cells using siRNA
as well as in BLTR1-deficient cells isolated from BLTR1-
deficient mice, suggesting a pivotal involvement of BLTR1 in
HMGB1-induced MMD.

Exogenous LTB4 Augmented

HMGB1-Induced MMD in 5-LO-Deficient

BMDCs, but Not in BLTR1-Deficient

BMDCs
On the basis of the hypothesis that 5-LO-derived LTB4 in
HMGB1-stimulated cells might play an important role in the
process of MMD, the effects of exogenous LTB4 on MMD were
investigated in 5-LO-deficient cells. Although LTB4 (1–10 ng/ml)
had minimal direct effects on MMD in control and 5-LO-
deficient BMDCs (Supplementary Figure 3), the attenuated
MMD in 5-LO-deficient cells stimulated with HMGB1 was
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FIGURE 1 | Role of 5-LO in monocytes on monocyte-to-macrophage differentiation (MMD) induced by HMGB1. (A) Time-courses of the expressions of 5-LO mRNA

and protein in BMDCs stimulated with HMGB1 (100 ng/ml) were determined using RT-PCR and Western blot, respectively. Bottom: Blot densities were quantified and

presented as the means ± SEMs of 6–7 independent experiments. *P < 0.05; **P < 0.01 vs. corresponding value at 0 h. (B) Time-course of LTB4 production in

vehicle- or HMGB1 (100 ng/ml)-stimulated BMDCs as determined by ELISA. Bottom: Color signals were quantified, and data were presented as the means ± SEMs

of 6–7 independent experiments. *P < 0.05; **P < 0.01 vs. value at 0 h. (C) Representative immunocytochemical images of BMDCs stimulated with HMGB1.

BMDCs were pre-treated with Zileuton at 10 or 30µM for 1 h, and then stimulated with HMGB1 (100 ng/ml) for 10 days. Cells were stained with anti-CD11b/Mac-1

(red) and DAPI (blue), and then morphological changes and CD11b/Mac-1 expressions were photographed under a phase contrast microscope. Arrows indicate cells

with a macrophage-like morphology. Right: Images were analyzed using Image J, and data were presented as the means ± SEMs of 3–4 independent experiments.

**P < 0.01 vs. control, ##P < 0.01 vs. vehicle.

significantly reversed to the control level when cells were pre-
treated with LTB4 at 10 ng/ml, a concentration comparable
to that produced in HMGB1 (100 ng/ml)-stimulated control
cells (Figure 4), which indicated the importance of the role
played by LTB4 in HMGB1-induced MMD. Interestingly,

the attenuated MMD by HMGB1 in BLTR1-deficient cells
was not reversed by pre-treating cells with exogenous LTB4
(Figure 4). Collectively, these findings indicate the important
role of LTB4-BLTR1 signaling in HMGB1-induced MMD in
monocytes.
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FIGURE 2 | A potential role of BLTR1 signaling in monocytes on HMGB1-induced MMD. Representative flow cytometric images of CD11b/Mac-1 expression in

BMDCs treated with HMGB1 (100 ng/ml) in the presence or absence of inhibitors for BLTR1 (U75302), BLTR2 (LY255283), cysLTR1 (REV5901), and cysLTR2

(HAMI3379). Bottom: Surface expressions of CD11b/Mac-1 on macrophages were expressed as mean fluorescent intensities. Quantified data were presented as the

means ± SEMs of 7–8 independent experiments. **P < 0.01 vs. control, #P < 0.05; ##P < 0.01 vs. vehicle.

FIGURE 3 | Identification of the role played by BLTR1 in monocytes during HMGB1-induced MMD. (A) Representative flow cytometric images of CD11b/Mac-1

expression in BLTR1-depleted BMDCs. BMDCs were transfected with negative control or BLTR1 siRNA for 48 h, and then stimulated with HMGB1 (100 ng/ml) for 10

days. Right: Mean fluorescent intensities were quantified, and data were presented as the means ± SEMs of 5–6 independent experiments. **P < 0.01 vs.

corresponding negative control in vehicle, ##P < 0.01 vs. negative control in HMGB1. (B) Representative flow cytometric images of CD11b/Mac-1 expression in

BLTR1-deficient BMDCs. BMDCs isolated from wild-type (WT) or BLTR1-deficient (KO) mice were stimulated with HMGB1 for 10 days, and then cellular expressions

of CD11b/Mac-1 were determined by flow cytometry. Right: Differential interface flow cytometric images of CD11b/Mac-1 expression were quantified, and data were

presented as the means ± SEMs of 4–5 independent experiments. **P < 0.01 vs. corresponding control, #P < 0.05; ##P < 0.01 vs. corresponding value in WT

mice.
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FIGURE 4 | Role of LTB4-BLTR1 signaling in monocytes on HMGB1-induced MMD. Representative flow cytometric images of CD11b/Mac-1 expression in

HMGB1-stimulated BMDCs in the presence or absence of exogenous LTB4. BMDCs isolated from wild-type (WT), 5-LO-deficient (KO), and BLTR1-KO mice, were

incubated with LTB4 (10 ng/ml) for 1 h, and then treated with HMGB1 (100 ng/ml) to induce MMD. The cellular expressions of CD11b/Mac-1 were determined by flow

cytometry. Bottom right: Differential CD11b/Mac-1 expressions in interface flow cytometric images were quantified, and data were presented as the means ± SEMs of

8–9 independent experiments. **P < 0.01 vs. corresponding value in control, ##P < 0.01 vs. corresponding value in WT mice.

Role of BLTR1 in Vascular Inflammation

and Neointima Formation in Wire-Injured

Vasculature
To investigate the potential involvement of HMGB1 in
the progression of vascular inflammation and neointima
formation, we determined the levels of HMGB1 in the injured
vasculatures. At 4 wks after wire injury, HMGB1 levels
were markedly increased in neointima lesions of the injured
vasculatures from both control and BLTR1-deficient mice.
However, blood flow changes and neointima formation in the
injured vasculatures were attenuated in BLTR1-deficient mice
compared to those of control mice. Likewise, macrophage
infiltration into neointima was also markedly attenuated in
BLTR1-deficient mice (Figure 5), suggesting BLTR1 contributed
to vascular inflammation and subsequent neointima formation
induced by damage-associated mediators secreted in the injured
vasculatures.

To investigate the contribution of BLTR1 in monocytes
to macrophage infiltration of neointima lesions, BMDMs of
WT mice were adoptively transferred into BLTR1-deficient
mice. When BLTR1 mRNA levels in PBMCs isolated from
the three groups of BMDM-transplanted mice (WTWT, WT
monocytes into WT mice; WTKO, WT monocytes into

BLTR1-deficient mice; and KOKO, BLTR1-deficient monocytes
into BLTR1-deficient mice) were determined by Real Time
PCR, an increase in BLTR1 mRNA levels in the monocytes
of recipient mice was detected at 1 and 5 wks after adoptive
transplantation (Figure 6A). Likewise, an increase in BLTR1
protein levels observed in monocytes of recipient mice was also
detected at 5 wks after adoptive transplantation (Figure 6B).
As shown in Figure 6C, intimal hyperplasia and macrophage
infiltration were significantly increased in WT monocyte-
recipient mice (WTKO) comparing with that in BLTR1-deficient
mice transferred with BLTR1-deficient BMDMs (KOKO). These
observations suggested that BLTR1 in monocytes played a critical
role in the infiltration of macrophage into neointima lesions, and
that they influenced neointima formation in our murine model
of femoral artery injury.

DISCUSSION

In this study, we investigated the importance of leukotriene
signaling in monocytes on monocyte-to-macrophage
differentiation and vascular inflammation and resultant
intimal hyperplasia in a mouse model of wire-injured femoral
artery. In cultured primary BMDCs, genetic or pharmacological
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FIGURE 5 | Involvement of BLTR1 in macrophage infiltration and neointima formation in wire-injured femoral arteries. Doppler images: Blood flow in the femoral

arteries of WT and BLTR1-deficient (KO) mice at 4 wks after wire injury (WI) was assessed using a LDPI analyzer. In these color-coded images, red hue indicates

regions of maximum perfusion, medium perfusion values are shown in yellow, and lowest perfusion values are represented as blue. Arrows indicate blood flow in an

injured femoral artery. Photographs are representative of 5-6 independent experiments. H&E: Cross sections of mouse femoral arteries were prepared at 4 wks after

WI, and stained with H&E. HMGB1 and CD36: HMGB1 and macrophage infiltration in the indicated neointima were stained with anti-HMGB1 antibody and anti-CD36

antibody, respectively. α-SMA: VSMCs were stained with anti-α-SMA antibody. Images are representative of 5–6 independent experiments. Bottom: LDPI ratio was

quantified as the ratio of the blue-to-red pixels in the injured artery (WI) vs. non-injured arteries (Control). Neointima volumes in the cross sections of injured femoral

artery were determined using an image analyzer. Numbers of HMGB1-positive and CD36-positive cells in neointima area were quantified, and data were presented as

the means ± SEMs of 3-4 independent experiments. **P < 0.01 vs. WT mice.

inhibition of the 5-lipoxygenase pathway in monocytes
attenuated MMD induced by HMGB1, an endogenous damage-
associated molecular patterns. Among various inhibitors for
leukotriene receptors, U75302, a BLTR1 inhibitor, exclusively
attenuatedMMD induced byHMGB1. The importance of BLTR1
signaling during HMGB1-induced MMD was also demonstrated
using BLTR1-deficient BMDCs. Thus, BLTR1 signaling in
monocytes was suggested as a pivotal player in MMD induced
by HMGB1, leading to vascular inflammation after vascular
injury.

MMD is a key event in the process of vascular inflammation,
which results in the remodeling of the injured vasculatures
(29). Thus, an understanding of the fundamental molecular
mechanisms that underlie this differentiation is an important
aspect of identifying new therapeutic strategies. In our previous
study, the importance of 5-LO in monocytes was identified
using genetic and pharmacological inhibition of the 5-LO
pathway in monocytes (7). In addition, in accordance with
previous report by Yu et al. (18) in which disruption of the LT
synthesis/response pathway in myeloid cells restrained several
components of response to injury, we showed in a previous

in vivo study 5-LO in monocytes played a pivotal role in vascular
inflammation and resultant restenosis (7). However, although the
importance of 5-LO in monocytes during MMDwith subsequent
vascular inflammation was identified, the 5-LO-linked signaling
in monocytes mediating MMD need to be identified to develop
specific target-based therapeutics, because 5-LO in monocytes
exert its action via production of various leukotrienes (LT)
including LTB4 and cysteinyl LTs.

Leukotrienes exert their actions via four subclasses of
7-transmembrane G-protein-coupled cell surface receptors.
BLTR1 and BLTR2 are high and low affinity receptors of
LTB4, respectively, whereas CysLT1 and CysLT2 are activated
by cysteinyl-LTs (30–32). Thus, we stimulated BMDCs in the
presence of various inhibitors for LT receptors including LTB4
receptors (BLTR1 or BLTR2) or cysteinyl LT receptors (cysLTR1
or cysLTR2). In our present study, U75302 (a BLTR1 inhibitor)
exclusively attenuated MMD induced by HMGB1 among
various inhibitors. The importance of BLTR1 in monocytes on
HMGB1-induced MMD was also demonstrated using BLTR1-
deficient cells. Moreover, HMGB1 increased 5-LO expression
in monocytes with subsequent production of LTB4 in the
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FIGURE 6 | Identification of a pivotal role for BLTR1 in monocytes on vascular inflammation and neointima formation in the wire-injured femoral artery. (A) Expressions

of BLTR1 mRNA in PBMCs isolated from three groups of mice transplanted with BMDMs (WTWT, WT cells into WT mice; KOKO, BLTR1-deficient cells into

BLTR1-deficient mice; and WTKO, WT cells into BLTR1-deficient mice) were determined by Real Time PCR. PCR signals were quantified, and data were presented as

the means ± SEMs of 4–5 independent experiments. *P < 0.05; **P < 0.01 vs. KOKO mice. (B) Expressions of BLTR1 protein in PBMCs isolated from these three

groups of mice at 5 wks post-transplantation were determined by immunocytochemistry. Photographs are representative of 3–4 independent experiments.

(Continued)
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FIGURE 6 | (C) Doppler imaging: Blood flow in the femoral arteries of WTWT, WTKO, and KOKO mice at 4 wks after wire injury were monitored using a LDPI analyzer.

Arrows indicate blood flow in the injured femoral artery. Photographs are representative of 4–5 independent experiments. H&E: Cross sections of the femoral arteries

of WTWT, WTKO, and KOKO mice at 4 wks after wire injury were stained with H&E. CD36 & α-SMA: Infiltrating macrophages in indicated neointima was stained with

anti-CD36 antibody, and VSMCs were stained with anti-α-SMA antibody. Photographs are representative of 4–5 independent experiments. Bottom: LDPI ratio was

quantified as the ratio of the blue-to-red pixels in the injured artery (WI) vs. non-injured arteries (Control). Neointima volumes were determined using an image analyzer.

Numbers of CD36-positive cells within neointima area in the injured artery of WT and BLTR1-deficient mice were quantified, and data were expressed as the means ±

SEMs of 4–5 independent experiments. **P < 0.01 vs. WTWT mice, ##P < 0.01 vs. KOKO mice.

present study, suggesting that HMGB1 might induce MMD via
production of 5-LO-mediated production of LTB4.

To determine the direct functional role of exogenous LTB4
on MMD, BMDCs were stimulated with various concentrations
of LTB4 in the absence or presence of HMGB1. We found that
LTB4 had minimal effects on MMD in cells from control, 5-LO-
deficient and BLTR1-deficientmice. However,MMD suppression
by HMGB1 was significantly reversed by exogenous LTB4 in
5-LO-deficient cells, but not in BLTR1-deficient cells, suggesting
LTB4/BLTR1 signaling as a pivotal player for HMGB1-induced
MMD. Thus, LTB4/BLTR1-mediated priming of monocytes is
considered as an essential prerequisite for HMGB1-induced
MMD based on the previous report that exogenous LTB4
potentiated the priming effect of cytokines on human monocytes
(33). However, further studies are remained to determine the
precise roles of these signals in cell priming.

The molecular processes that initiate inflammation in arterial
walls after mechanical injury are not fully understood. Recently,
endogenous molecules released during cell death and stress,
termed DAMPs, could activate pattern recognition receptors
and lead to inflammation, because endoluminal vascular
interventional procedures cause stretching of vessel walls and
subsequent cell necrosis (34). Thus, coordinated relationships
exist between local vascular injury and pattern recognition
receptor-related signals in the process of vascular inflammation
(20). Of the various DAMPs, HMGB1 has emerged as an
important regulator of inflammatory responses resulting from
tissue injury (3, 4), and has been implicated as an active player
in vascular inflammation leading to intimal hyperplasia after
arterial injury (6). Reportedly, HMGB1 is known to have pro-
inflammatory cytokine-like activity, promote chemotaxis, and
stimulate cellular migration and growth (35). Interestingly, in a
previous study we found HMGB1 enhanced MMD and caused
vascular inflammation (7). Collectively, these observations
suggest that HMGB1-related signals in monocytes might be
considered therapeutic targets for the treatment of vascular
inflammation.

In our in vivo study, both macrophage infiltration and
intimal hyperplasia in the wire-injured femoral artery were
markedly attenuated in BLTR1-deficient mice compared to

that in wild-type control mice. Although the importance

of BLTR1 in vascular smooth muscle cells in the intimal
hyperplasia has been reported previously (16), we expected
the potential role for BLTR1 in monocytes in vascular
inflammation on the basis of our in vitro data in which
the BLTR1 signaling in monocytes played a pivotal role in
MMD induced by HMGB1. To confirm the contribution
of BLTR1 in monocytes in macrophage infiltration into
neointimal lesion, BMDMs isolated from WT mice were
adoptively transferred into BLTR1-deficient mice as previously
described (7, 18). In our present study, intimal hyperplasia and
macrophage infiltration were significantly greater in BLTR1-
deficient mice administered WT BMDMs than those in BLTR1-
deficient mice administered BLTR1-deficient BMDMs. Based
on these results, it was suggested that BLTR1 in monocytes
played a pivotal role in MMD induced by HMGB1, and
subsequent macrophage infiltration in the injured vasculatures
with neointima formation in our murine wire-injured femoral
artery model.
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Aims: Cardiac dysfunction can be a fatal complication during severe sepsis. The

migration of neutrophils is significantly impaired during severe sepsis. We sought to

determine the role of trimetazidine (TMZ) in regulation of neutrophil migration to the heart

in a mouse model of sepsis and endotoxemia, and to identify the mechanism whereby

TMZ confers a survival advantage.

Methods and Results: C57/BL6 mice were (1) injected with LPS followed by 24-h

TMZ administration, or (2) treated with TMZ (20 mg/kg/day) for 1 week post cecal

ligation and puncture (CLP) operation. Echocardiography and Millar system detection

showed that TMZ alleviated cardiac dysfunction and histological staining showed the

failure of neutrophils migration to heart in both LPS- and CLP-induced mice. Bone

marrow transplantation revealed that TMZ-pretreated bone marrow cells improved

LPS- and CLP-induced myocardial dysfunction and enhanced neutrophil recruitment in

heart. In CXCL2-mediated chemotaxis assays, TMZ increased neutrophils migration via

AMPK/Nrf2-dependent up-regulation of CXCR2 and inhibition of GRK2. Furthermore,

using luciferase reporter gene and chromatin immunoprecipitation assays, we found that

TMZ promoted the binding of the Nrf2 and CXCR2 promoter regions directly. Application

of CXCR2 inhibitor completely reversed the protective effects of TMZ in vivo. Co-culture

of neutrophils and cardiomyocytes further validated that TMZ decreased LPS-induced

cardiomyocyte pyroptosis by targeting neutrophils.

Conclusion: Our findings suggested TMZ as a potential therapeutic agent for septic or

endotoxemia associated cardiac dysfunction in mice.

STUDY HIGHLIGHTS

What is the current knowledge on the topic?

Migration of neutrophils is significantly impaired during severe sepsis, but the underlying

mechanisms remain unknown.
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What question did this study address?

The effects of TMZ on cardiac dysfunction via neutrophils migration.

What this study adds to our knowledge

TMZ attenuated LPS-induced cardiomyocyte pyroptosis and cardiac dysfunction by

promoting neutrophils recruitment to the heart tissues via CXCR2.

How this might change clinical pharmacology or translational science

Our findings suggested TMZ as a potential therapeutic agent for septic cardiac

dysfunction.

Keywords: pyroptosis, trimetazidine, septic cardiac dysfunction, neutrophil, AMPK-Nrf2-CXCR2 axis

KEY POINTS

1. TMZ attenuates cardiac dysfunction via neutrophils migration
2. TMZ decreases cardiomyocyte pyroptosis by targeting

neutrophils

INTRODUCTION

Sepsis is a life-threatening organ dysfunction caused by a
dysregulated host response to infection, and is one of the
most common causes of death in hospitalized patients (1). So
far, the therapeutic options for sepsis are nonspecific and are
limited to support of organ function. In addition, there are
still no approved drugs that specifically target sepsis (2). One
of the major complications of sepsis, myocardial dysfunction,
contributes significantly to increased mortality (3). However, the
precise mechanisms that cause myocardial dysfunction during
sepsis remain incompletely understood (3). Thus, elucidation
of the pathophysiologic processes of sepsis-induced myocardial
dysfunction, and seeking new specific drugs, may develop more
effective therapies to treat it.

Neutrophil migration into infection sites constitutes the first
line of defense against infection (4). The failure of neutrophil
migration to the infection site is associated with increased
severity of illness and multi-organ dysfunction during septic
shock (5, 6). Neutrophil recruitment to the infection site is
dependent on the CXC chemokines (7). In murine, CXC
chemokines regulate the recruitment of neutrophils via a specific
seven-transmembrane type G protein-coupled receptor, CXCR2,
while in humans it is dependent on both CXCR1 and CXCR2
(8). However, in some pathological conditions, phosphorylation
of CXCR2 by the G protein-coupled receptor kinase 2 (GRK2)
triggered receptor desensitization and internalization, resulting
in reduced expression of CXCR2 on the surface of neutrophils
(9). Previous studies have revealed that the decreased expression

Abbreviations: NADPH, nicotinamide adenine dinucleotide phosphate; EF,

ejection fraction; FS, fraction shortening; LVAW, left ventricle anterior wall;

LVPW, left ventricle posterior wall; dP/dt max, peak instantaneous rate of

left ventricular pressure increase; dP/dt min, peak instantaneous rate of left

ventricular pressure decline; LPS, lipopolysaccharide; MPO, myeloperoxidase.

TMZ, trimetazidine.

of CXCR2 impaired neutrophil recruitment to the infection site
and played a major role in the poor outcome secondary to the
sepsis (10). Hence, it is necessary to investigate the regulation
of neutrophil recruitment during sepsis-induced myocardial
dysfunction.

AMPK, 5′ adenosine monophosphate-activated protein

kinase, is a crucial regulator of cellular energy homeostasis (11).

A recent study has reported that activated AMPK enhanced
the abilities of neutrophil chemotaxis and bacterial killing

in sepsis (12). Nuclear factor erythroid-2-related factor-2
(Nrf2), which is one of the downstream signals of AMPK,

is a critical transcriptional factor for antioxidation. We, and

others, have found that activation of Nrf2, via AMPK, inhibited
LPS-induced inflammatory response (13, 14). Upon activation,
Nrf2 dissociates from Kelch-like ECH-associated protein 1
(Keap1), and in turn, translocates into the nucleus to bind to the
antioxidant responsive element (ARE) in gene promoters (15).
Nrf2 was found to regulate the expression of many antioxidant
enzymes and proteins, such as NADPH quinineoxidoreductase-1
(NQO-1), heme oxygenase-1 (HO-1), and glutathione S-
transferase (GST). Recently, it has been indicated that Nrf2 also
transcriptionally regulates inflammation-related genes (16).

Trimetazidine (TMZ) is a clinically effective anti-anginal
agent due to the inhibition of long-chain 3 ketoacyl coenzyme A
thiolase activity, which leads to decreased fatty acid oxidation and
increased glucose oxidation (17). Previous studies have indicated
the protective effects of TMZ on heart failure (18), oxidative
stress damage (19), cell apoptosis (14), and endothelial function
(20). Our recent study has demonstrated that TMZ improves
LPS-induced cardiac dysfunction by regulating the function of
macrophages (14). Given the pivotal function of neutrophils in
inflammatory response, the detailed role of TMZ in regulating
neutrophils function during septic cardiac dysfunction need to
be explored.

Pyroptosis is a form of inflammatory programmed cell death
(PCD). Unlike apoptosis or necrosis, pyroptosis features pore
formation of the plasma membrane, cell swelling, and membrane
rupture, causing leakage of cytosolic contents (21). During
LPS-induced pyroptosis, caspase-11 is first activated by directly
binding to LPS (22). Subsequently, activated caspase-11 processes
interleukin (IL)-1β/IL-18 into their active forms (23). Pyroptosis
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was initially defined as an antimicrobial reaction in immune
cells (24). However, few studies have focused on cardiomyocyte
pyroptosis in septic cardiac dysfunction.

In this study, we demonstrated that TMZ ameliorated
LPS- and cecal ligation and puncture (CLP)-induced cardiac
dysfunction and cardiomyocyte pyroptosis by promoting
CXCR2-dependent neutrophil migration to cardiac tissue.

MATERIALS AND METHODS

Reagents
LPS, SB225002, Percoll, and Compound C (CC) were from
Sigma-Aldrich (St. Louis, MO). TMZ was from Servier (Tianjin,
China). RPMI1640 medium was from Thermo Fisher Scientific
(Walham, MA). Nrf2 siRNA was from RiboBio (Guangzhou,
China). CXCL2 was from R&D Systems (Minneapolis, MN).
DAPI and IL-1β ELISA kit were from Boster (Wuhan, China).
Myeloperoxidase (MPO) assay kit and lacate dehydrogenase
(LDH) assay kit were from Nanjing Jiancheng Bioengineering
Institute (Nanjing, China). Lipofectamine 2000 was from
Invitrogen (Waltham, MA). Protein A/G agroase, anti-Nrf2, and
anti-CXCR2 were from Santa Cruz Biotechnology (Dallas, TX).
Anti-Ly6G, anti-MPO, anti-GRK2, and isotype antibody were
from Abcam (Cambridge, MA). Anti-AMPK and anti-phospho-
AMPK were from Cell Signaling Technology (Danvers, MA).
Anti-caspase-11 was from Novus Biologicals (Littleton, CO).
FITC-CD11b and Percp/Cy5.5-Ly6G were from eBioscience (San
Diego, CA). PE-CXCR2 was from BD Biosciences (San Jose,
CA). Lysis buffer and BCA protein assay were from Beyotime
(Shanghai, China).

Animals
All experiments were performed with the approval of the
Animal Research Committee of Tongji Medical College, and
in accordance with ARRIVE and NIH guidelines for animal
welfare. Male C57BL/6 mice at the age of 8–10 week-olds were
purchased from the Institutional Animal Research Committee
of Tongji Medical College, housed at a temperature of 23–25◦C
and a humidity of 55 ± 5% with free access to food and water.
(1) Model of LPS-induced endotoxemia: Mice were randomly
divided into 4 groups (n = 8), and received saline, single
TMZ, single LPS, or LPS and TMZ combination interventions,
respectively. In LPS and TMZ combination interventions, mice
were first injected with LPS (15 mg/kg) in 100 µl of sterile
saline by intraperitoneal injection, then 6 h later, TMZ (20mg/kg)
was administrated intragastrically (i.g.) every 6 h for a total of
three times. In the 6-group animal experiments, the CXCR2
antagonist SB225002 (10 mg/kg) was injected intraperitoneally
30min before LPS injection (10). (2) Model of CLP sepsis: The
mice (n = 10 in each group) were first pre-treated with TMZ for
1 day. Then the CLP model of sepsis of moderate severity was
performed in accordance with the original protocol developed by
Chaudry’s lab, with additional modifications (25). In brief, mice
were anesthetized with i.p. injection of sodium pentobarbital
(Sigma-Aldrich) with a dose of 30 mg/kg. A midline incision
was made, and after externalization, the cecum was ligated (1 cm
from the apex) and punctured twice (through-through) with

a 27-G needle. Next, a small amount of fecal mass from the
punctured cecum was gently squeezed out to ensure patency of
punctures, cecum was relocated, and 4/0 sutures were used to
close the peritoneum and skin. Sham-operated mice underwent
only incision and cecum exteriorization. After the sham or CLP
operations, the mice were then treated with TMZ (20 mg/kg/day)
for 6 consecutive days. The survival rate was determined daily
for 7 days after CLP. Cardiac function of mice was assessed
by echocardiography and Millar catheter, and then the mice
were sacrificed. Part of heart tissue was kept in 10% formalin,
dissected and cut into slices. The remaining portions of heart
tissue was immediately snap-frozen and stored at −80◦C for
western blotting examination.

Bone Marrow Transplantation
We performed bone marrow transplantation in TMZ or
vehicle treated-wild type (WT) C57BL/6 mice using previously
established methods (26). Briefly, 10-week-old WT C57BL/6
donor mice were pre-treated using TMZ (20 mg/kg in saline
solution for 3 days) or equal amount of solvent (saline solution)
as vehicle (TMZ BM and Vehicle BM groups in donor mice),
meanwhile, the recipient mice were also pre-treated using TMZ
(20 mg/kg in saline solution for 3 days) or equal amount of
solvent (saline solution) as vehicle (TMZ and Vehicle groups
in recipient mice). Then before the BM transplantation, the
recipient mice received 850 rads of γ-irradiation and were
administered with the antibiotic, Baytril. The next day, fresh
bone marrow cells were isolated from a separate cohort of
saline pre-treated C57BL/6 vehicle mice and nonirradiated TMZ
pre-treated mice (n = 5 mice/group and pooled), respectively,
and were injected into irradiated mice (6 × 106) in 200
µL volume through the tail vein. Twenty-four hours after
bone marrow transplantation, the mice were subjected to LPS
injection (15 mg/kg) or CLP surgery. Six hours after LPS
administration and 1 day after CLP, mice hearts were harvested
for immunohistochemistry Ly6G, MPO staining, and other tests.

Echocardiography and Haemodynamic
Analyses
Transthoracic echocardiography (Vevo3100, Visual Sonics,
Canada) was performed under anesthesia (2% isoflurane) (27).
For the haemodynamic analyses, a Millar Cather Transducer
(Millar Instruments, Houston), connected to a pressure
transducer (Millar Instruments), was inserted through the right
carotid artery into the left ventricle cavity, and stable-state
haemodynamic parameters were recorded and analyzed with
LabChart software (ADInstruments, Colorado Springs, CO).

Bone Marrow Derived Neutrophil (BMDN)
Isolation and Chemotaxis Assay
BMDNs were isolated by Percoll gradient method as described
previously (6). The purity of BMDNs was > 95% and was
identified by Wright-Giemsa staining and Gr-1+ expression
using flow cytometry, respectively.

Isolated BMDNs were re-suspended in RPMI1640 medium
and pretreated with AMPK inhibitor CC (2µM) or Nrf2
siRNA. BMDNs were then treated with LPS (5µg/ml) for 1 h,
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followed with TMZ (20µM) treatment for 2 h. After that,
BMDN chemotaxis was assessed toward CXCL2 (30 ng/ml) or
medium alone in a 24-well Boyden chamber using a 5-µm-
pore membrane. Two hours later, the membrane was removed.
The images of migrated BMDNs were captured under an optical
microscope, and numbers of BMDNs were counted in at least five
random fields per well.

Immunofluorescent Assay of CXCR2
Isolated BMDNs were pretreated with LPS (5µg/ml) for 1 h,
and then treated with TMZ (20µM) for 2 h. After that, BMDNs
were affixed on glass slides and incubated with anti-CXCR2 as
described previously (8). BMDN nuclei were stained with DAPI.
Fluorescent images were captured using fluorescence microscope
(Nikon, Japan).

Flow Cytometry Analysis
To determine the expression of CXCR2 on cell surface, BMDNs
were stained with antibodies against FITC-CD11b, Percp/Cy5.5-
Ly6G and PE-CXCR2. The expression of CXCR2 levels were
analyzed by FACS Calibur flow cytometer (BD Biosciences, San
Jose, CA) in the cell population of CD11b+Ly6G+.

Transfection With siRNA
For the transfection, BMDNs were seeded in 6-well plate in
optium-medium, then transfected using Lipofectamine 2,000
according to manufacturer’s instruction.

Luciferase Reporter Assays
Promoter fragments (−3011/+254, −2319/+254, and
−1408/+254) of mouse CXCR2 were subcloned into the
MluI/XholI sites of PGL3 vector (Promega, Madison, WI). The
primers are shown in Supplemental Table 2. The construct of
mutant CXCR2 was introduced by site-directed mutagenesis
(Stratagene, La Jolla, CA). Mouse Nrf2 expression vector was
purchased from Genecopoeia (EX-Mm04093-M03, Rockville,
MD). All plasmids were sequenced in order to ensure sequence
accuracy. Cells were transfected with CXCR2 promoter
constructs and Nrf2 expressing plasmid using Lipofectamine
2000. pRL-TK (Promega, Madison, WI) was co-transfected
as an internal control in each group. Forty-eight hours after
transfection, cells were harvested for the Dual-Luciferase
reporter assay (Promega, Madison, WI).

Chromatin Immunoprecipitation (ChIP)
Assays
HEK293T cells were cultured in 100-mm plates and transfected
with empty or Nrf2 vector. Cells were incubated with 1%
formaldehyde to cross-link protein-DNA complexes at 48 h
after transfection. Cells were then lysed and sonicated to
shear the chromatin to fragments. Sheared chromatin was then
immunoprecipitated with anti-Nrf2 or normal IgG overnight at
4◦C. Chromatin-antibody complexes were recovered by Protein
A/G agroase. The immunoprecipitated DNA was analyzed by
PCR to amplify CXCR2 promoter sequences. PCR products were
analyzed by 1% agarose gel.

Co-culture of BMDNS and Cardiomyocytes
Primary adult cardiomyocytes were isolated as described
previously (28). BMDNs seeded in 6-well plates were first
administrated with SB225002 (1µM), then stimulated with LPS
(5µg/ml) for 1 h, and finally with TMZ (20µM) treatment for
2 h. After that, BMDNs were collected, washed, and seeded onto
the transwell insert (0.4µm pore size) above cardiomyocytes.
Cardiomyocytes were harvested for 24 h at 37◦C and then used
for further analysis.

Western Blotting Analysis
Cell lysates were generated by lysis buffer containing protease
and phosphatase inhibitors. Equal amounts of protein were
separated by 10% SDS-polyacyral-amide gels and transferred
to PVDF membranes. Membranes were blocked with blocking
buffer containing 5% BSA in TBST for 2 h at room temperature.
Incubation of specific primary antibodies at 1:1000 dilutions was
followed by appropriate second antibody. Then, immunoreactive
bands were detected using ECL and analyzed by Quantity One
software (Bio-Rad Laboratories, Philadelphia, PA).

Statistical Analysis
All animal data are presented as mean ± SEM and in-vitro
data are presented as mean ± SD. One-way ANOVA with
Bonferroni post hoc test was used for comparison amongmultiple
groups using SPSS 17.0 software, and sample distribution
was determined by the Shapiro–Wilk normality test (W
test). Differences with P < 0.05 were considered statistically
significant.

RESULTS

TMZ Protected Against LPS- and
CLP-Induced Cardiac Dysfunction and
Promoted Neutrophil Migration to Heart
Tissue
An LPS-induced endotoxemia model and a CLP-induced
sepsis model were both taken in C57BL/6 mice. In the
endotoxemia model, mice were injected intraperitoneally
with LPS, and then either TMZ or saline (Figure 1A) was
administered. In the sepsis model, mice were treated with
TMZ (20 mg/kg/day) for 7 consecutive days post CLP or
sham operations (Figure 1B). Consistent with our previous
observations, echocardiographic parameters showed that LPS
stimulation induced significant cardiac dysfunction, as indicated
by decreased EF%, FS%, LVAW;s and LVPW;s, and increased
LVID;s (Figures 1C–E). Similarly, haemodynamic analyses
revealed that LPS injection led to decreased values of heart
rate, Pmax, dp/dtmax and dp/dtmin (Figures 1F–I). However,
TMZ administration reversed the impairments of LPS-induced
cardiac functions. In addition, TMZ treatment exerted similar
cardioprotective effects 1 day and 7 days post CLP surgery,
including increased EF%, FS%, without affecting heart rates
of mice (Figure 1K, Supplemental Figures 1A–D). Moreover,
the 7-day survival rate was increased from 20.74 to 70.00%
after TMZ treatment compared with CLP-induced septic mice,
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FIGURE 1 | TMZ improved LPS- and CLP-induced myocardial dysfunction and increased neutrophil migration to heart tissue. (A) Schematic drawing of experimental

schedule for the endotoxemia mice study (n = 8 mice per group). Mice were first injected with LPS (15 mg/kg) in 100 µl of sterile saline by i.p. Then TMZ (20 mg/kg)

was administrated by i.g. every 6 h for three times at 6 h after LPS injection. 24 h after injection with LPS or saline, cardiac function of the mice was assessed by

echocardiography and Millar catheter. (B) Schematic drawing of experimental schedule for the septic mice study (n = 10 mice per group). Mice were treated with TMZ

(Continued)
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FIGURE 1 | (20 mg/kg/day) for 7 consecutive days post CLP or sham operations, 1 and 7 days post CLP, cardiac function of mice was assessed by

echocardiography; (C–E) Left ventricular ejection fraction (LVEF), left ventricular fractional shortening (LVFS) and left ventricular diameters were measured by

two-dimensional echocardiography. (F–I) Heart rate, Pmax, dp/dtmax, and dp/dtmin were assessed by cardiac catheterization. (J) Survival rates of wild-type (WT)

(n = 10 per group) undergoing severe sepsis (cecal ligation and puncture [CLP] operation). (K) LVEF and LVFS in CLP model were measured by two-dimensional

echocardiography. (L) Representative histological cardiac tissues stained with H&E, Ly6G, and MPO as the indicated groups at 24 h after LPS injection. (M)

Quantification of Ly6G positive cells in 1 mm2 after LPS stimulation; (N) Quantification of MPO positive cells in 1 mm2. (O) Representative images of heart tissues

immunostained with Ly6G on day 1 post CLP. Scale bar: 50µm. (P) Quantification of Ly6G positive cells in 1 mm2 post CLP. (Q) MPO activity assay in heart tissues

was performed at 24 h after LPS injection. Data is presented as mean ± SEM of three independent experiments. *P < 0.05 vs. Con group in LPS-induced model or

Sham group in CLP-induced model; #P < 0.05 vs. LPS-treated group or CLP-induced group. LVAW;d, left ventricular anterior wall in diastole; LVAW;s, left ventricular

anterior in systole; LVID;d, left ventricular internal diameter in diastole; LVID;s, left ventricular internal diameter in diastole; Pmax, peak systolic pressure.

accompanied by reduced peritoneal bacterial load (Figure 1J
and Supplemental Figure 1E), indicating the improved cardiac
function after TMZ treatment confers a survival advantage in
sepsis.

In histological studies, H&E staining of heart tissue in
the control and TMZ group represented normal distribution
of cardiomyocyte and myocardial structures (Figure 1L).
Meanwhile, the LPS-induced cardiac structural disarray and
interstitial edema was reversed by TMZ (Figure 1L). Ly6G and
MPO staining (markers of infiltrating neutrophils) showed
that the numbers of Ly6G and MPO positive cells in heart
tissue was negligible in both the saline and TMZ groups, as
well as in LPS- and CLP-induced mice heart. Interestingly,
the number of neutrophils in heart tissue was significantly
increased in the LPS+TMZ group when compared with LPS
group (Figures 1L–N, Supplemental Figure 2). TMZ treatment
also increased the number of neutrophils in heart tissue post CLP
surgery (Figures 1N–P, Supplemental Figure 2). Meanwhile,
the MPO activity in LPS+TMZ group was markedly higher
than in the LPS group 24 h after LPS injection (Figure 1Q).
Collectively, these results suggest that TMZ ameliorates LPS- and
CLP-induced cardiac dysfunction in endotoxemia and sepsis,
accompanied by increasing neutrophils recruitment into heart
tissues.

TMZ-Pretreated Bone Marrow Cells
Ameliorated LPS- and CLP-Induced
Myocardial Dysfunction and Enhanced
Neutrophil Recruitment to the Heart
To detect whether the effects of TMZ on neutrophil recruitment
was dependent on resident cells or bone marrow (BM) derived
cells, we performed BM transplantation experiments. Compared
with mice that received vehicle BM cells, mice receiving
TMZ pretreated BM cells showed improvement of cardiac
function, reflected by increased values of EF%, FS%, LVAW;s,
LVPW;s, heart rate, Pmax, dp/dtmax and dp/dtmin, as well as
decreased values of LVID;d and LVID;s (Figures 2A–G) post LPS
stimulation. In the CLP-induced sepsis model, mice receiving
TMZ pretreated BM cells showed similar improvement of cardiac
function as observed in the post LPS-induced endotoxemia
model (Figure 2H). Furthermore, H&E staining revealed that
compared with vehicle pretreated BM cells, the TMZ pretreated
BM cells that injected in recipient mice attenuated the
myocardial injury, indicated by reduced irregular arrangement
of cardiomyocyte and interstitial edema (Figure 2I). Moreover,
in both LPS-induced endotoxemia and CLP-induced sepsis
models, the Ly6G and MPO staining showed that the number

of neutrophils recruited into heart tissue was significantly
increased in TMZ BM > vehicle mice compared with vehicle
BM > vehicle mice, and TMZ BM > TMZ mice compared
with TMZ BM > vehicle mice, respectively, (Figures 2I–M).
Consistently, the MPO activities in TMZ BM > vehicle and
TMZ BM > TMZ groups were remarkably higher compared
with vehicle BM > vehicle and TMZ BM > vehicle groups
(Figure 2N). Taken together, this data indicates that TMZ-
pretreated bone marrow cells attenuate LPS- and CLP-induced
myocardial depression, and enhance themigration of neutrophils
into heart tissue.

TMZ Enhanced Neutrophil Migration by
Regulating CXCR2 Expression Through
AMPK Pathway
To examine whether TMZ had a direct effect on neutrophil
migration, we isolated bone marrow derived neutrophils
(BMDNs) from differentially treated mice, and assessed the
migration ability of BMDNs. As shown in Figures 3A,B, BMDNs
isolated from LPS-induced mice showed a marked impaired
chemotactic response toward CXCL2, when compared with
the control group (29). However, TMZ treatment remarkably
rescued declined BMDNmigration by LPS stimulation.

Next, isolated BMDNs from C57BL/6 mice were pretreated
with TMZ or LPS in vitro. Consistently, TMZ significantly
ameliorated LPS-induced failure of BMDN migration toward
CXCL2 (Figures 3C,D). Additionally, both the untreated and
TMZ-treated BMDNs exhibited normal and homogeneous
expression of CXCR2 in the CXCR2 fluorescent staining.
However, LPS significantly reduced expression of CXCR2 in
BMDNs, which was reversed by TMZ treatment (Figures 3E–F).

Next, we found that TMZ reversed LPS-reduced
phosphorylation of AMPK in BMDNs (Figure 3G). Consistently,
pretreatment with the AMPK specific inhibitor, CC, significantly
prevented TMZ-enhanced BMDNs migration (Figures 3H–I).
In addition, flow cytometry analyses showed that TMZ elevated
the expression of CXCR2 on the membrane in LPS-induced
BMDNs, which was reversed by CC (Figures 3J–K). Thus, the
TMZ regulated CXCR2 expression in an AMPK-dependent
manner, which in turn enhanced neutrophil migration.

TMZ Improved Neutrophil Migration by
Decreasing GRK2 and Increasing CXCR2
Expression in an AMPK/Nrf2 Dependent
Manner
As shown in Figures 4A,B, we found that TMZ markedly
reversed the reduced Nrf2 expression in the nucleus of
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FIGURE 2 | TMZ-pretreated bone marrow cells ameliorated LPS- and CLP-induced myocardial dysfunction and promoted neutrophils recruitment to heart tissues.

Irradiated TMZ pretreated (20 mg/kg, i.g., Tid, for 3 days) and vehicle pretreated wild-type (WT) mice received either vehicle or TMZ pretreated bone marrow subjected

to LPS challenge (15 mg/kg, i.p.) or CLP surgery, respectively. 6 h after LPS injection and 1 day post-CLP, mice were subjected to echocardiography and

haemodynamic analyses. Mice were then sacrificed and heart tissues were stained with H&E and immunochemistry staining. (A–C) Statistical analysis of

echocardiographic results after LPS challenge. (D–G) Statistical analysis of haemodynamic results after LPS challenge. (H) Statistical analysis of echocardiographic

results post-CLP. (I) Representative histological H&E, Ly6G, and MPO staining of heart sections as the indicated groups. (J) Quantitative analysis of Ly6G-positive

cells in 1 mm2 after LPS challenge. (K) Quantitative analysis of MPO-positive cells in 1 mm2 after LPS challenge. (L) Representative Ly6G staining of heart sections as

the indicated groups in CLP-induced sepsis. (M) Quantitative analysis of Ly6G-positive cells in 1 mm2 post CLP; (N) MPO activity assay in heart tissues was

performed at 6 h after LPS injection. Data is presented as mean ± SEM of three independent experiments. *P < 0.05 vs. vehicle BM > vehicle mice; #P < 0.05 vs.

vehicle BM > TMZ mice, n = 8 mice per group after LPS challenge, and n = 5 mice per group post CLP.
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FIGURE 3 | TMZ enhanced neutrophil migration by regulating CXCR2 expression through AMPK pathway. (A) 8–10 week-old C57BL/6 male mice were first injected

with LPS (15 mg/kg), then TMZ (20 mg/kg) was administrated by gavage every 6 h for 3 times after LPS injection for 6 h. Representative images of migrated BMDNs

by transwell assay. (B) Relative quantitative assay of migrating BMDNs under optical microscopy. (C) Neutrophils isolated from non-simulated mice bone marrow, then

BMDNs were subjected to LPS stimulation (5µg/ml) for 1 h and subsequently treated with TMZ (20µM) for 2 h. Representative images of migrated BMDNs by

transwell assay. (D) Relative quantitative assay of migrating BMDNs under optical microscopy. (E) Representative images of BMDN immunofluorescent CXCR2 (green)

staining. Nuclei were stained by DAPI (blue). (F) Quantitative of CXCR2 expression by measuring fluorescence intensity. (G) Phosphorylation of AMPK in BMDNs was

examined by western blotting. (H) BMDNs were first treated with AMPK inhibitor CC (CC) (1µM) for 1 h, then subjected to LPS stimulation (5µg/ml) for 1 h,

subsequently treated with TMZ (20µM) for 2 h in vitro. Representative images of migrated BMDNs by transwell assay. (I) Relative quantitative assay of migrating

BMDNs under optical microscopy. (J) Flow cytometry was performed to examine the expression of CXCR2 on the membrane of neutrophils. (K) Quantitative of

CXCR2 expression by FACS. Data were presented as mean ± SEM in vivo and mean ± SD in vitro of three independent experiments. Scale bar: 50µm. *P < 0.05 vs.

Con group; #P < 0.05 vs. LPS group; §P < 0.05 vs. LPS+TMZ group, n = 8 mice per group.
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FIGURE 4 | TMZ promoted neutrophil migration by decreasing GRK2 and increasing CXCR2 expression in an AMPK/Nrf2 dependent manner. (A) BMDNs were first

treated with CC (1µM) for 1 h, then subjected to LPS stimulation (5µg/ml) for 1 h, subsequently treated with TMZ (20µM) for 2 h. Western blotting analysis of nuclear

Nrf2 and total GRK2 in response to different stimulations. Lamin B and GAPDH were used as loading controls, respectively. (B,C) Quantification of Nrf2/Lamin B and

GRK2/GAPDH was performed from the western blotting and expressed as fold induction. (D) BMDNs were first transfected with si-Nrf2 for 24 h, then subjected to

LPS stimulation (5µg/ml) for 1 h, subsequently treated with TMZ (20µM) for 2 h. Representative images of transwell assays for BMDNs under optical microscope.

Scale bar: 50µm. (E) Relative quantitative assay of migrating BMDNs under optical microscopy. (F) Flow cytometry was performed to examine the expression of

CXCR2 on the membrane of BMDNs. (G) Quantitative assay of CXCR2 expression by FACS. (H) Western blotting analysis of nuclear Nrf2 and total GRK2 in response

to different stimulations after transfection. Lamin B and GAPDH were used as loading controls, respectively. (I,J) Quantification of Nrf2/Lamin B and GRK2/GAPDH

was performed from the western blotting and expressed as fold induction. Data is presented as mean ± SEM in vivo and mean ± SD in vitro of three independent

experiments. *P < 0.05 vs. Con group; #P < 0.05 vs. LPS group; §P < 0.05 vs. LPS+TMZ group.

LPS-treated BMDNs, whereas CC abrogated this influence of
TMZ. On the other hand, byWestern blotting analyses, we found
that TMZ treatment significantly inhibited LPS-induced GRK2
over-expression, which was attenuated by CC, indicating that

TMZ negatively affected GRK2 expression via AMPK activation
(Figures 4A,C). To verify whether Nrf2 regulates BMDN
migration, BMDNs were transfected with Nrf2 siRNA. In LPS-
treated BMDNs, Nrf2 silence significantly prevented the effects
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of TMZ on enhancing neutrophil migration (Figures 4D,E),
downregulating CXCR2 membrane expression (Figures 4F,G),
inhibiting Nrf2 expression (Figures 4H,I), and increasing GRK2
expression (Figures 4H,J).

CXCR2 Is Transcriptionally Regulated by
TMZ via Nrf2 in LPS-Induced Cardiac
Dysfunction
To understand how Nrf2 affects the expression of CXCR2,
we performed in silico promoter analyses on mouse CXCR2
gene. Bioinformatic analyses revealed a CXCR2 potential ARE
(antioxidant responsive element) binding sequence upstream
of the CXCR2 translational initiation site (−919/−909).
Subsequently, three fragments (−3011/+254, −2319/+254,
−1408/+254) of promoter sequence of CXCR2 and an ARE
mutant fragment of −1408/+254 were inserted into the
luciferase reporter plasmid (Figures 5A,B). Luciferase reporter
gene assays revealed that Nrf2 increased the luciferase activity of
all three fragments, but not in the mutant fragment (Figure 5B),
indicating that Nrf2 affected the transcriptional activity of
CXCR2 via binding to the potential ARE sequence. To confirm
this binding, we performed chromatin immunoprecipitation
assays. In agreement with the results of luciferase reporter gene
assays, the CXCR2 proximal promoter (−919/−909) was present
in Nrf2 immunoprecipitates from cells expressing Nrf2, but
not cells expressing the empty vector control. In contrast, distal
promoter sequences (−2727/−2717) could not be amplified
in Nrf2 immunoprecipitates (Figure 5C). Moreover, TMZ
increased transcriptional activity of CXCR2 in the proximal
promoter sequence from −1408 to +254 compared with
LPS, and this effect was dependent on the expression of Nrf2
(Figure 5D). Together, this data demonstrates that CXCR2 is
transcriptionally regulated by TMZ through the transcription
factor Nrf2.

To test whether the expression of CXCR2 in neutrophils
contributes to the protective effects of TMZ against LPS-induced
cardiac dysfunction, a specific CXCR2 antagonist, SB225002,
was introduced to inhibit the expression of CXCR2 in vivo
(Figure 5E). Results showed that TMZ significantly ameliorated
LPS-induced cardiac dysfunction, whereas CXCR2 antagonist
almost completely abrogated the protective effects of TMZ in
LPS-induced mice (Figures 5F–H and Supplemental Table 1).
These results indicate that TMZ prevents LPS-induced cardiac
depression via up-regulating the expression of neutrophil’s
CXCR2.

TMZ Decreased LPS-Induced
Cardiomyocyte Pyroptosis by Targeting
Neutrophils
Inflammatory response in some pathological conditions can
induce cardiac cell death, subsequently leading to heart failure,
which is associated with pyroptosis (13). Activation of caspase-
11 (cleaved caspase-11) and marked increase of IL-1β and
LDH were served as biomarkers of pyroptosis (22, 30). In
this study, Western blotting showed that the expression of
cardiac cleaved caspase-11 was remarkably increased in the

LPS group (Figures 6A,B), and similar changes in IL-1β and
LDH were consistently observed (Figures 6C,D). Increased
caspase-11 in the LPS stimulated heart was also detectable
by fluorescence staining (Figures 6E,F). These results indicated
an induction of cardiomyocyte pyroptosis in LPS stimulated
septic mice. As expected, TMZ treatment effectively reduced
LPS-induced cardiomyocyte pyroptosis (Figures 6A–F). On the
other hand, the specific CXCR2 antagonist, SB225002, attenuated
the protective effects of TMZ on LPS-induced cardiomyocyte
pyroptosis (Figures 6A–F). Moreover, the protective effects
of TMZ on LPS-induced cardiac pyroptosis were associated
with increased neutrophils in heart tissue (Figures 6G,H).
Consistently, in in-vitro experiments, cardiomyocytes co-
cultured with LPS-stimulated neutrophils exhibited significant
pyroptosis, reflected by increased levels of cleaved caspase-11,
IL-1β, and LDH (Figures 6I–L). Conversely, TMZ-pretreated
BMDNs decreased cardiomyocyte pyroptosis induced by LPS,
indicating a protective effect of TMZ on cardiomyocyte
pyroptosis mediated by neutrophils (Figures 6I–L). After adding
the CXCR2 specific inhibitor SB225002, the protective effects of
TMZ on LPS-induced cardiomyocyte pyroptosis were blocked
(Figures 6I–L). This data suggests that TMZ attenuates LPS-
induced cardiomyocyte pyroptosis via neutrophils mediated by
CXCR2 in vivo and in vitro.

DISCUSSION

In the current study, we found that the anti-anginal agent
TMZ significantly attenuated LPS- and CLP-induced myocardial
dysfunction in mice, by increasing neutrophilic migration to
heart tissue (Figure 6M), via promoting neutrophil recruitment
to the heart. Mechanistically, we found that TMZ promoted
neutrophils through an AMPK/Nrf2/CXCR2 dependent manner
secondary to LPS stimulation. CXCR2 was transcriptionally
regulated by TMZ via Nrf2, which directly bound to the
CXCR2 promoter sequence. Finally, TMZ reduced LPS-induced
cardiomyocyte pyroptosis via neutrophils.

Sepsis and endotoxemia are both systemic inflammatory
responses to infection and can lead to tissue injury and multiple
organ failure (31–33). The cardiovascular system is one of
the most frequently affected organ systems in sepsis and
endotoxemia (33, 34). Septic patients with secondary cardiac
dysfunction had a 50-70% increase in mortality when compared
to those without cardiac dysfunction (3). The myocardial
contractile dysfunction is driven by several factors, such as
cardiodepressant mediators, mitochondrial dysfunction and/or
apoptosis (35, 36). During sepsis-induced cardiac dysfunction,
various cell types and factors involved in the up-regulation
of inflammatory gene transcription and initiation of innate
immunity in heart (3). Our previous study demonstrated the
protective role of TMZ against LPS-induced cardiac dysfunction,
by targeting the macrophage mediated pro-inflammatory
response, especially through activating macrophages in bone
marrow (14). In this study, we found that the myocardial
beneficial effects of TMZ were associated with increased
neutrophil recruitment after LPS challenge. Furthermore, in
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FIGURE 5 | CXCR2 is transcriptionally regulated by TMZ via Nrf2 in LPS-induced cardiac dysfunction. (A) Nrf2 ARE consensus binding site, potential Nrf2 binding site

and the mutant Nrf2 binding site relative to potential Nrf2 binding site on mouse CXCR2. Blue indicates binding site, red indicates mutated base. (B) Luciferase activity

of the constructs transfected into HEK293T cells. The first base before ATG represents−1. (C) Nrf2 chromatin immunoprecipitation. HEK293T cells were transfected

with an empty plasmid or plasmid expressing Nrf2. PCR assays on input and IP fractions amplified the CXCR2 promoter containing the putative Nrf2 site

(−919/−909, top panel) or a distal region of the Nrf2 promoter (−2727/−2717, bottom panel). (D)−1408/+254 CXCR2 promoter constructs and si-Nrf2 were

transfected into HEK293T cells, and then subjected to TMZ (20µM), LPS (5µg/ml) or combination stimulations. Relative luciferase activity of−1408/+254 CXCR2

promoter construct after stimulations. (E) Schematic drawing of experimental schedule for the mice study. 8–10 week-old C57BL/6 male mice were first

intraperitoneally injected with the CXCR2 inhibitor SB225002 (10 mg/kg) and LPS (15 mg/kg), then TMZ was administrated by gavage every 6 h for 3 times after LPS

injection for 6 h. (F,G) Ejection fraction and fractional shortening was measured by two-dimensional echocardiography. (H) Representative images of left ventricular

myocardium H&E staining. Scale bars: 100µm. Data is presented as mean ± SEM in vivo and mean ± SD in vitro of three independent experiments. *P < 0.05 vs.

corresponding Control group or GFP control; #P < 0.05 vs. LPS group; §P < 0.05 vs. LPS+TMZ group. n = 8 mice per group.

bone marrow transplantation experiments, we identified that
TMZ pre-treated bone marrow cells, other than resident cells,
prevented LPS-induced cardiac dysfunction and promoted
neutrophil recruitment into the heart. Even though TMZ was
pre-treated in the group vehicle BM > TMZ, vehicle pre-treated
bone marrow cells did not prevent LPS- or CLP-induced cardiac

dysfunction and failed to promote neutrophil recruitment into
the heart. Given that CXCR2 plays an important role in the
retention and release of neutrophils in bone marrow (37), we
speculate that the role of TMZ is different in bone marrow
versus peripheral tissue (heart), and TMZ mainly acts in bone
marrow.
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FIGURE 6 | TMZ decreased LPS-induced cardiomyocyte pyroptosis by targeting neutrophils. (A) 8–10 week-old C57BL/6 male mice were first injected with the

CXCR2 inhibitor SB225002 (10 mg/kg) and LPS (15 mg/kg), then TMZ was administrated by gavage every 6 h for 3 times after LPS injection for 6 h. Cleaved

caspase-11 (marked by arrow) expression in heart tissue was measured by western blotting. (B) Quantification of cleaved Casp-11/ pro-Casp-11 was performed from

the western blotting analysis and expressed as fold induction. (C) IL-1β levels in heart tissues were measured by ELISA. (D) LDH levels in heart tissue. (E)

Representative images of left ventricular myocardium caspase-11 (red) fluorescent staining. Blue indicates DAPI staining. Scale bar: 50µm. (F) Relative caspase-11

fluorescent intensity. (G) Representative images of left ventricular myocardium MPO staining. Scale bar: 50µm. (H) Quantification of MPO-positive cells in 1 mm2. (I)

BMDNs were first administrated with SB225002 (1µM), then stimulated with LPS (5µg/ml) for 1 h, and finally with TMZ (20µM) treatment. Primary cardiomyocytes of

adult mice were co-cultured with stimulated BMDNs by transwell. Cardiomyocytes were seeded in the bottom chamber and BMDNs into the upper chamber. Western

blotting analysis of Casp-11 in cardiomyocyte and GAPDH used as loading control. (J) Quantification of cleaved Casp-11/ pro-Casp-11 was performed from the

western blotting analysis and expressed as fold induction. (K) Relative expression of IL-1β mRNA in cardiomyocyte (normalized to GAPDH mRNA). (L) LDH levels in

cardiomyocytes. (M) The proposed model for this study was summarized. Data is presented as mean ± SEM in vivo and mean ± SD in vitro of three independent

experiments. *P < 0.05 vs. corresponding Control group; #P < 0.05 vs. LPS group; §P < 0.05 vs. LPS+TMZ group.
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To elucidate the functions of increased neutrophils in
heart tissue, we assessed the ability of neutrophil migration.
Migration of neutrophils was regulated by corresponding
chemokines via binding to the specific chemokine receptors,
which belong to the G protein-coupled receptor family (38).
CXCR2 plays an important role in mice neutrophil recruitment
into the infected site (39). The failure of neutrophil migration
was associated with CXCR2 depression (8). GRK2 is a
serine/threonine proteins kinase and its activation increased the
internalization of the chemokine receptor CXCR2 (9). However,
the detailed mechanism underlying the direct regulation of
CXCR2 expression on themembrane of neutrophils during sepsis
has been poorly investigated. Previous studies have reported
that AMPK activation enhances neutrophil chemotaxis and
bacterial killing (12). The present study demonstrates that
TMZ promoted LPS-inhibited BMDN migration in vitro is
accompanied by an increase in CXCR2 membrane expression,
which was significantly prevented by the AMPK inhibitor
CC. Moreover, TMZ induced accumulation of Nrf2 in the
nucleus in BMDNs contributed to the increased CXCR2
membrane expression. Additionally, the suppression of GRK2
induced by TMZ also reduced the rapid internalization of
CXCR2.

When cells were exposed to oxidative or electrophilic stress,
Nrf2 disassociated from Keap1 and translocated into the nucleus,
where it was able to regulate the transcription of its target
genes by binding to the anti-oxidative response element (ARE)
located in the promoter area (13). Nrf2 regulates antioxidant
genes, resulting in elimination of reactive oxygen species (ROS)
and decreased inflammation (40). Recently, Nrf2 has been
evidenced to bind to the pro-inflammatory genes IL-6 and IL-
1, blocking their transcriptions in macrophages (41). Moreover,
Nrf2 activation protected cardiac tissue from injury caused by
diabetic cardiomyopathy (42). In this study, for the first time,
we provided evidences that Nrf2 directly binds to a new site
located in the CXCR2 promoter sequence, resulting in higher
expression of CXCR2 on the membrane and increased neutrophil
migration. Furthermore, TMZ significantly enhanced the LPS-
inhibited transcriptional activity of CXCR2, while blockage of
Nrf2 abrogated the effects of TMZ. In addition, blockage of
CXCR2 in vivo inhibited the cardiac protective effects of TMZ
in LPS-stimulated mice.

Sepsis is the systemic inflammatory response to infection
and the inflammatory process contributed to the occurrence
of pyroptosis (1). Whether or not cardiomyocyte pyroptosis
is involved in sepsis-induced cardiac dysfunction still needs
to be elucidated. Pyroptosis is a highly pro-inflammatory
form of programmed cell death that occurs in response to
diverse organism insults. Pyroptosis occurs when canonical
inflammasomes, including NLRP1, NLRP3, NLRC4, and
AIM2 activates caspase- 1. On the other hand, activation of
noncanonical inflammasomes is triggered by intracellular
LPS directly binding to the murine caspase-11 and its human
counterparts, caspase-4 and caspase-5 (22). Inhibition of caspase-
1 protected against inflammation and cardiac dysfunction that
results from myocardial infarction (MI) (43). Recent studies
have revealed that attenuation of cardiomyocyte pyroptosis

effectively ameliorates diabetic cardiomyopathy (13). Our
results showed the involvement of pyroptosis in the heart of
LPS-treated mice, indicated by activation of caspase-11, IL-1β
release, and LDH release. Interestingly, TMZ significantly
suppressed LPS-induced pyroptosis, which was reversed by the
CXCR2 antagonist, SB225002. Combined with MPO staining,
these results suggest that increased neutrophil recruitment is
associated with decreased cardiomyocyte pyroptosis. The direct
recruitment of neutrophils to the injured tissue is essential to
eliminate the pathogen. However, in some specific condition
(just like pyroptosis, a form of inflammatory programmed
cell death), the neutrophils were pronounced accumulated
in heart to help opsonization of pore-induced intracellular
traps (PITs). The PIT initiated a robust and coordinated
innate immune response involving multiple mediators that
attracted neutrophils to efferocytose the PIT (44, 45). The
enhanced neutrophils recruitment would effectively contribute
to the attenuation of pyroptosis via efferocytosing the PIT.
TMZ may reduce pyroptosis via efferocytosing the PIT, which
is mediated by the enhanced neutrophils. Considering the
complex inflammatory environment during lytic cell death, we
reasoned that additional signals likely contributed to neutrophil
recruitment. Indeed, besides inducing pyroptosis, caspase-1
also induces secretion of IL-1β and IL-18. IL1β−/−IL18−/−

mice had significantly reduced neutrophil recruitment after
the induction of pyroptosis in the tissue (44, 46). Thus, the
normal caspase-1 induced pyroptosis led to secretion of IL-1β
and IL-18, which could increase neutrophil recruitment. Besides
inflammatory cytokines, the CXCL2 and CXCR2 signaling
pathway also contributed to the neutrophil recruitment. In
our current study, we mainly focused on the CXCR2 signaling
pathway and investigated the role of TMZ during sepsis. We
speculate that neutrophil mediated efferocytose of the PITs would
play a corresponding role during LPS-induced cardiomyocyte
pyroptosis.

In conclusion, our results showed that TMZ attenuated LPS-
induced cardiomyocyte pyroptosis and cardiac dysfunction by
promoting neutrophil recruitment to cardiac tissue via CXCR2.
This suggests that TMZmay be a potential drug for the treatment
of septic cardiac dysfunction.
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Heart failure due to pressure overload is frequently associated with inflammation. In

addition to inflammatory responses of the innate immune system, autoimmune reactions

of the adaptive immune system appear to be triggered in subgroups of patients with

heart failure as demonstrated by the presence of autoantibodies against myocardial

antigens. Moreover, T cell-deficient and T cell-depleted mice have been reported to be

protected from heart failure induced by transverse aortic constriction (TAC) and we have

shown recently that CD4+-helper T cells with specificity for an antigen in cardiomyocytes

accelerate TAC-induced heart failure. In this study, we set out to investigate the potential

contribution of CD8+-cytotoxic T cells with specificity to a model antigen (ovalbumin,

OVA) in cardiomyocytes to pressure overload-induced heart failure. In 78% of cMy-mOVA

mice with cardiomyocyte-specific OVA expression, a low-grade OVA-specific cellular

cytotoxicity was detected after TAC. Adoptive transfer of OVA-specific CD8+-T cells

from T cell receptor transgenic OT-I mice before TAC did not increase the risk of

OVA-specific autoimmunity in cMy-mOVA mice. After TAC, again 78% of the mice

displayed an OVA-specific cytotoxicity with on average only a three-fold higher killing of

OVA-expressing target cells. More CD8+ cells were present after TAC in the myocardium

of cMy-mOVA mice with OT-I T cells (on average 17.5/mm2) than in mice that did not

receive OVA-specific CD8+-T cells (3.6/mm2). However, the extent of fibrosis was similar

in both groups. Functionally, as determined by echocardiography, the adoptive transfer of

62

https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org/journals/immunology#editorial-board
https://www.frontiersin.org/journals/immunology#editorial-board
https://www.frontiersin.org/journals/immunology#editorial-board
https://www.frontiersin.org/journals/immunology#editorial-board
https://doi.org/10.3389/fimmu.2018.02665
http://crossmark.crossref.org/dialog/?doi=10.3389/fimmu.2018.02665&domain=pdf&date_stamp=2018-11-15
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles
https://creativecommons.org/licenses/by/4.0/
mailto:rdresse@gwdg.de
https://doi.org/10.3389/fimmu.2018.02665
https://www.frontiersin.org/articles/10.3389/fimmu.2018.02665/full
http://loop.frontiersin.org/people/395664/overview
http://loop.frontiersin.org/people/427700/overview
http://loop.frontiersin.org/people/446448/overview
http://loop.frontiersin.org/people/637723/overview
http://loop.frontiersin.org/people/39180/overview


Gröschel et al. CTL Activation by Pressure Overload

OVA-specific CD8+-T cells did not significantly accelerate the progression from

hypertrophy to heart failure in cMy-mOVA mice. These findings argue therefore against

a major impact of cytotoxic T cells with specificity for autoantigens of cardiomyocytes in

pressure overload-induced heart failure.

Keywords: autoimmunity, autoantigen, pressure overload, cytotoxic T cells, adoptive transfer, transgenic T cell

receptor, heart failure

INTRODUCTION

In many clinical studies signs of inflammation have been
observed during the progression of chronic heart failure (1).
Inflammation is thereby not restricted to heart failure occurring
in the cause of classic inflammatory cardiomyopathies. It can
occur also in response to hemodynamic overload (2). Increased
levels of pro-inflammatory cytokines including interleukin (IL)-6
and tumor necrosis factor (TNF)-α were observed in the
circulation of patients with pressure overload (3, 4). However,
clinical studies targeting TNF-α by anti-inflammatory drugs have
been largely unsuccessful in the therapy of heart failure (5, 6).
Therefore, the pathophysiological basis of the inflammatory
response to hemodynamic load needs to be further investigated
to identify better therapeutic targets.

In addition to the unspecific immune response to tissue
damage or cellular stress that is mediated by cells of the
innate immune system, autoimmune responses of the adaptive
immune system to myocardial antigens can contribute to the
progression of heart failure. This is most obvious from studies
of autoantibodies against myocardial antigens. Antibodies,
e.g., against β1-adreno-receptors andM2-acetylcholine-receptors
were found after transverse aortic constriction (TAC) in animal
models (7). In patients, such autoantibodies of the IgG isotype
can directly impair cardiac function (8, 9) and are therefore
promising therapeutic targets (10, 11). Autoreactive T helper cells
must also exist in these patients, since their help is required for
immunoglobulin class switching to IgG in the autoreactive B
cells.

We have recently demonstrated that T helper cells with
specificity for an antigen in cardiomyocytes can contribute to the
progression of heart failure after TAC also independently
of autoantibodies (12). For this purpose, cMy-mOVA
mice expressing the model antigen ovalbumin (OVA) on
cardiomyocytes (13) were crossed with OT-II mice (14)
expressing a transgenic T cell receptor (TCR) on CD4+-T cells
with specificity for OVA. In the resulting double-transgenic
cMy-mOVA-OT-II mice, progression from hypertrophy to heart
failure after TAC was accelerated compared to cMy-mOVA
mice. No OVA-specific antibodies were found after TAC but
more T cells infiltrated the myocardium of cMy-mOVA-OT-II
than cMy-mOVA mice where they could directly contribute to
maladaptive cardiac remodeling (12).

It has not been investigated so far, whether CD8+-cytotoxic
T lymphocytes (CTL) with specificity for an antigen in
cardiomyocytes become also activated in response to pressure
overload and contribute to the progression of heart failure. To
address these questions, we analyzed whether CD8+-T cells

with specificity against OVA become activated in cMy-mOVA
mice after TAC. Moreover, we adoptively transferred CD8+-
T cells with specificity for OVA from OT-I mice, carrying a
transgenic TCR with specificity for OVA on CD8+-T cells (15),
into cMy-mOVA mice before TAC to investigate whether they
would contribute to the progression of heart failure. We show
here that CTL with specificity for an antigen in cardiomyocytes
indeed can become activated after TAC but fail to accelerate
progression into heart failure.

MATERIALS AND METHODS

Animal Experiments
All animal experiments were approved by the responsible agency
(Niedersächsisches Landesamt für Lebensmittelsicherheit und
Verbraucherschutz) and were carried out in compliance with
German and European legislation (Directive 2010/63/EU). OVA-
transgenic cMy-mOVA (13), TCR-transgenic OT-I (15), and
double-transgenic cMy-mOVA-OT-I mice were bred in the
central animal facility at the UniversityMedical Center Göttingen
under specific pathogen-free conditions in individually ventilated
cages and in a 12 h light-dark cycle. Both, OT-I and cMy-mOVA
mice have a C57BL/6 background. Mice aged between 8 and
12 weeks were used for experiments. Male and female mice
were equally distributed but otherwise randomly assigned to the
experimental groups. The cMy-mOVA mice that received OVA-
specific CD8+-T cells purified by magnetic activated cell sorting
(MACS) from lymph nodes of OT-I mice are designated cMy-
mOVA+OT-I mice. The adoptive transfer of 107 CD8+-T cells
was performed by intravenous injection into the tail vein 1 day
before surgery.

TAC and sham surgery was performed as described previously
(12, 16). Briefly, the mice received intraperitoneal injections of
medetomidin (0.5 mg/kg), midazolam (5 mg/kg), and fentanyl
(0.05 mg/kg) for anesthesia. The transversal aorta was displayed
after horizontal incision at the jugulum and a 26-gauge needle
was tied against the aorta. The surgical thread was not tied
in sham-operated mice. The skin was closed after removal of
the needle and the anesthesia was reversed by subcutaneous
injection of atipamezol (2.5 mg/kg) and flumazenil (0.5 mg/kg).
The mice received buprenorphine (60 µg/kg) subcutaneously 1 h
after surgery for further analgesia. Metamizole (1.33 mg/ml) had
to be added to the drinking water for 1 week to achieve long-term
analgesia.

The pressure gradient over the aortic ligature was measured
using pulsed wave Doppler 3 days after surgery. At this time
point, approximately 50 µl blood were taken from the orbital
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sinus of the mice to determine the presence of adoptively
transferred CD8+-T cells in the blood of cMy-mOVA+OT-I
mice. For echocardiography, themice were anesthetized with 3-%
isoflurane, and temperature, respiration, and ECG-controlled
anesthesia was maintained with 1.5-% isoflurane.

At the end of the experiments, 10 weeks after the operation,
the mice were sacrificed in isoflurane anesthesia by cervical
dislocation. The hearts were excised, perfused via the aorta with
0.9% NaCl and after weighting of the ventricles, one-third of
the heart from the middle part was fixed in 3.7% formaldehyde
solution overnight and the other two thirds oriented toward
the basis and the apex of the heart were snap frozen in
liquid nitrogen. Finally, spleens were harvested and placed in
Dulbecco’s modified Eagle medium (DMEM) on ice for further
analysis.

Echocardiography
A Vevo2100 (VisualSonics, Toronto, Canada) system with a 30
MHz center frequency transducer was used for transthoracic
echocardiography. B-mode recordings (16, 17) were used to
determine the long axis in systole (Ls) and diastole (Ld), the
end-diastolic (LVIDd) and end-systolic (LVIDs) left ventricular
(LV) chamber diameter and the anterior and posterior wall
thickness in systole (AWThs and PWThs) and diastole (AWThd
and PWThd), the area of the endocardium in systole (Area s) and
diastole (Area d) and the area of the epicardium in systole (Epi s).
The recordings and analyses were done blinded to the treatment
of the mice. Fractional area shortening (FAS) was calculated as
(Area d–Area s)/Area d × 100. The ejection fraction (EF) was
calculated as (5/6 × Area d × Ld−5/6 × Area s × Ls)/(5/6 ×

Area d × Ld) × 100. Echocardiographic LV weight (LVW) was
estimated using the formula: 1.05× 5/6 x (Epi s× (Ls+ (AWThs
+ PWThs)/2)–Area s× Ls).

Histology and Immunohistochemistry
Formaldehyde-fixed heart samples were embedded in paraffin
before 5µm sections were cut. Collagen was visualized by Sirius
Red staining to measure the extent of fibrosis as described
previously (12, 17). Presence of immune cells in the myocardium
was determined by immunohistochemistry (12, 18) using
anti-CD3 (1:200, MCA1477, rat IgG1, ABD Serotec, Oxford,
UK), anti-CD4 (1:200, clone 4SM95, rat IgG1, eBiosciences,
Frankfurt, Germany), anti-CD8 (1:200, clone 4SM15, rat IgG2a,
eBiosciences), anti-CD45R(B220) (1:200, clone RA3-6B2, rat
IgG2a, Biolegend, Fell, Germany), and anti-F4/80 monoclonal
antibodies (1:200, clone A3-1, rat IgG2b, Biolegend), respectively.
For all antibodies except anti-F4/80, antigen retrieval was
performed by boiling the slides 5 times for 5min in sodium
citrate buffer (10 mmol/L sodium citrate, pH 6, 0.05% Tween 20).
Polyclonal biotinylated goat anti-rat IgG secondary antibodies
(1:200, 112-065-062, Jackson laboratories) and HRP-conjugated
streptavidin (405210, Biolegend) served as secondary and tertiary
reagents.

The slides were scanned with a 20x objective (UPlanApo,
NA 0.75) using the dotSlide SL slide scanner (Olympus,
Hamburg, Germany) equipped with a peltier-cooled XC10
camera. The extent of fibrosis and the numbers of stained cells

in two complete heart sections were quantified using cellSens
Dimensions software (Olympus) by a scientist blinded to the
treatment of the mice. Fibrotic areas were determined as the
proportion of the area of collagen relative to the sum of the area
of collagen and the area of cardiomyocytes.

Lymphocyte Preparation
Lymphocytes were obtained from lymph nodes of OT-I mice
for adoptive transfers and from spleens of the cMy-mOVA and
cMy-mOVA+OT-I mice in the experiments for analysis using
a Tenbroeck homogenizer. Untouched CD3+CD8+ cells from
OT-I mice were obtained by MACS (130-104-075, Miltenyi
Biotec GmbH, Bergisch Gladbach, Germany) according to the
manufacturer’s protocol. The CD8+-T cells were incubated for
5min with 5µM of the dye carboxyfluorescein succinimidyl
ester (CFSE; C-1157, Invitrogen) in phosphate buffered saline
(PBS)/0.1% bovine serum albumin at 37◦C and washed 3 times
with DMEM containing 10% fetal calf serum (FCS) before
adoptive transfer. The splenocytes of experimental animals were
subjected to a removal of erythrocytes by incubation for 5min in
lysis buffer (155mMNH4Cl, 10mMKHCO3, 0.1mM EDTA, pH
7.4-7.8).

Flow Cytometry
Flow cytometry was performed as described previously (19) on
a FACS Calibur flow cytometer (BD Biosciences, Heidelberg,
Germany) using CellQuestPro data acquisition and analysis
software. Antibodies used for flow cytometry (anti-CD3, clone
17A2, rat IgG2b, PE-labeled; anti-CD8, clone 53-6.7, rat IgG2a

PE/Cy5-labeled; anti-TCRVβ5.1/5.2, clone MR9-4, mouse IgG1,
FITC-labeled) and the respective isotype controls were purchased
from Biolegend. The anti-H2Kb/SIINFEKL antibody (clone
25-D1.16, mouse IgG1, APC-labeled) was obtained from BD
Biosciences. For staining of cell surface antigens, 5 × 105 cells
were incubated in 100 µl PBS with 1 µg of the respective primary
monoclonal antibody for 30min at 4◦C before washing with PBS.
Blood samples were directly stained and processed with BD FACS
Lysing Solution (#349202, Becton Dickinson) according to the
manufacturer’s instructions.

Target Cells to Determine OVA-Specific

Cytotoxicity
To monitor OVA-specific cytotoxicity, an enhanced green
fluorescent protein (eGFP) or OVA-eGFP fusion protein
expression cassette under control of an ubiquitously active
hEF1α/CAG composite promoter in the pEGFP-1 vector
(Clontech, Heidelberg, Germany) was introduced into the
mouse leukemia cell line RMA (20), which carries the
major histocompatibility complex (MHC) haplotype (H2b). For
transfection, 107 cells were mixed with 40 µg of the linearized
vector before electroporation (250mV and 960 µF). Successfully
transfected cells were selected with 1,000 ng/ml G418 for 2 weeks
before single cell clones were picked. Expression of eGFP was
determined by flow cytometry to select stably transfected clones.
The characterization of the selected clones expressing eGFP
(RMA-con) or the OVA-eGFP fusion protein (RMA-OVA) is
shown in Supplementary Figure 1.
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Cytotoxicity Assay
The cytotoxic effector cells were used either directly at the day
of preparation (day 0) or after restimulation with OVA for 4
days in 51Cr-release assays. For restimulation, the splenocytes
were cultured in round-bottomed microtiter plates (5 × 105

cells per well) in DMEM with 1µM OVA and 10 ng/ml
mouse IL-2 (#12340026, Immunotools, Friesoythe, Germany).
Target cells were labeled by incubating 1 x 106 cells in 200
µl DMEM containing 100 µl FCS and 50 µCi Na512 CrO4

(Hartmann Analytic, Braunschweig, Germany) for 1 h at 37◦C
and washed three times with DMEM. Effector cells were
added to 5 x 103 51Cr-labeled target cells in triplicates at
various effector to target (E:T) ratios in 200 µl DMEM with
10% FCS per well of round-bottomed microtiter plates. The
E:T ratios always indicate the ratio of CD3+CD8+ effector
cells to target cells. Spontaneous release was determined by
incubation of target cells in the absence of effector cells. The
microtiter plates were centrifuged for 5min at 40x g, incubated
at 37◦C for 4 h, and then centrifuged again. Supernatant and
sediment were separately taken to determine radioactivity in
each well using aMicroBeta2 counter (PerkinElmer Life Sciences,
Köln, Germany). Percentage of specific lysis was calculated by
subtracting percent spontaneous 51Cr-release (20). The resistance
of parental RMA cells and the transfected clones to killing by
MACS-separated IL-2-activated natural killer (NK) cells was
determined by 51Cr-release assays in comparison to YAC-1 target
cells as described previously (21).

Statistics
Results are shown as means with standard error of the mean
(SEM). The data were evaluated with the SPSS software
(IBM, Armonk, NY, USA). Analyses of variance (ANOVA) was
used to compare data sets with more than two experimental
groups and the Bonferroni post hoc test was employed for
subsequent comparisons between the groups. Cytotoxicity data
were analyzed by 2-way ANOVA adjusted for E:T ratios. Mixed
linear models with the specification auto-regressive process AR
(1) were employed to analyze alterations over time in the
echocardiography data sets. Data of two groups such as sham
and TAC were compared by t-test. If the Levene test indicated
inequality of variances, an unequal variance t-test has been used
instead of Student’s t-test. The Kolmogorov-Smirnov test was
used to assess normal distribution. More than two groups of not
normally distributed data were analyzed by the Kruskal-Wallis
test. The Mann-Whitney U-test was used to compare two groups
of not normally distributed data. The Kruskal-Wallis test and the
U-test were also used frequently when only some data within
a related set of data were not normally distributed in order to
allow for uniform reporting of the analyses. The Bonferroni-
Holm correction was used to adjust for multiple testing in post
hoc comparisons of two groups. Categorical data were analyzed
by Fisher‘s exact test. The survival curves of mice were compared
by Log Rank (Cox-Mantel) tests. P-values of < 0.05 in two-
sided tests were considered to be significant and three levels
of significance are usually indicated in the figures (∗P < 0.05,
∗∗P < 0.01, ∗∗∗P < 0.001).

RESULTS

OVA-Specific CTL Can Become Activated

in cMy-mOVA Mice After TAC
The investigation of the potential role of CTL in cardiac
autoimmunity elicited by pressure overload is hampered by
the lack of known relevant autoantigens. Therefore, we used
cMy-mOVA mice that express OVA on the plasma membrane
of cardiomyocytes (13) to determine whether a CTL response
to this model antigen occurs after TAC. Splenocytes were
harvested 10 weeks after TAC or sham surgery and re-
stimulated in vitro for 4 days with 1µM OVA. Afterwards,
the cells were used as effector cells in 51Cr release assays
against mouse leukemia RMA cells, which express either an
OVA-EGFP fusion protein (RMA-OVA), and are therefore
targets for OVA-specific CTL, or EGFP only as control (RMA-
con). The characteristics of these target cell lines that were
generated to measure OVA-specific CTL responses are shown in
Supplementary Figure 1. Both, RMA-con and RMA-OVA cells
were hardly killed by splenocytes from sham-operated mice
(Figure 1A). Splenocytes from TAC-operated mice, in contrast,
killed RMA-OVA cells significantly better than RMA-con cells
(Figure 1B). The presence of an OVA-specific cellular cytotoxic
activity against RMA target cells, which are resistant against
NK cells, demonstrates that indeed OVA-specific CTL became
activated in response to cardiac pressure overload although the
specific lysis of OVA-expressing target cells was on average
still low. In accord with these data, a significantly higher
proportion of mice that underwent TAC (77.8%) than sham
surgery (23.1%) exerted a higher cytotoxic activity against RMA-
OVA than RMA-con cells (P = 0.0274, Fisher’s exact test;
Figure 1C). Notably, in some mice, the OVA-specific cytotoxicity
after TAC was considerably higher than on average (Figure 1D),
whereas in others no OVA-specific CTL activity was detected
(Figure 1E).

OVA-Specific CD8+-T Cells Do Not

Accelerate Progression of cMy-mOVA

Mice Into Heart Failure
The observation of a cytotoxic activity against a myocardial
antigen after TAC justified further investigation. To increase the
likelihood and potentially also the strength of an OVA-specific
CTL response after TAC, we crossed cMy-mOVAmice with OT-I
mice to obtain animals that express OVA on cardiomyocytes
and have CD8+-T cells mostly with specificity for this antigen.
Previously, we have used this strategy successfully to generate
cMy-mOVA-OT-II mice that have CD4+-T cells with specificity
for OVA (12). Unexpectedly, all of these double-transgenic
cMy-mOVA-OT-I mice died before reaching an age of 10 days
(Supplementary Figure 2A). Their myocardium did not display
an infiltration of CD3+-T cells (Supplementary Figure 2B)
making it unlikely that a vigorous autoimmune response of
OVA-specific CTL to OVA-expressing cardiomyocytes was the
underlying reason of death. However, we could not continue to
bread these mice to determine the actual reason of death and
decided to circumvent this problem by adoptively transferring
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FIGURE 1 | OVA-specific CTL become activated in cMy-mOVA mice after TAC. The cytotoxic activity of splenocytes against RMA-OVA and RMA-con target cells

was determined by 51Cr-release assays at several CD3+CD8+ effector cell to target cell (E:T) ratios 10 weeks after (A) sham (n = 13) or (B) TAC (n = 9) surgery.

Means and standard errors of the mean (SEM) are displayed. Differences between sham and TAC-operated mice were analyzed by 2-way ANOVA adjusted for the E:T

ratios and the respective P-values are indicated. (C) The proportion of mice exerting a higher cytotoxic activity against RMA-OVA than RMA-con cells is displayed. The

difference between sham and TAC-operated mice has been analyzed by Fisher‘s exact test and the P-value is displayed. (D) The OVA-specific cellular cytotoxicity

was higher in some mice after TAC. Means and SEM of triplets are shown for mouse 112. (E) The lack of an OVA-specific cytotoxicity in mouse 109 that also

underwent TAC is shown for comparison.

OVA-specific CD8+-T cells from OT-I mice into cMy-mOVA
mice before surgery.

Thus, cMy-mOVA mice received at day 1 before TAC or
sham surgery 107 MACS-separated CFSE-labeled CD3+CD8+

cells from OT-I mice (cMy-mOVA+OT-I) or PBS (cMy-
mOVA) by intravenous injection (n = 14 per group). The
transgenic TCR of OT-I mice was detected by a TCRVβ5.1/5.2-
specific antibody. The purity of the transferred CD8+-T
cells carrying the transgenic Vβ5.1/5.2+ TCR was >90%
(Supplementary Figure 3). Three days after surgery, the pressure
gradient over the aortic ligature was determined using pulsed
wave Doppler. In all mice that underwent TAC an aortic
stenosis was obtained. The pressure gradients in mice that
had received CD8+-T cells from OT-I mice before TAC
was not significantly different from control mice after TAC
(Supplementary Figure 4A). At day 3 after surgery, also
blood was taken to verify by flow cytometry the successful
transfer of OT-I-derived cells. On average about 2% of the
lymphocytes in the blood were CD3+CFSE+ OT-I-derived T cells
(Supplementary Figure 4B) suggesting that most transferred

cells were at this time point in other compartments than the
peripheral blood. Signs of a dilution of CFSE due to cell
proliferation were not observed in the non-lymphocyte-depleted
recipients. Six mice (3 after sham and 3 after TAC intervention)
were at this point excluded from further analysis since <0.5% of
the lymphocytes in the blood of the recipients were CD3+CFSE+

T cells. A few additional mice (sham: n = 3, TAC: n = 4)
were operated and already sacrificed at the end of the first week
in order to exclude an early loss of the transferred T cells.
Similar proportions (on average 2.3%) of CFSE-labeled T cells
were found among the splenocytes of sham and TAC-operated
mice (Supplementary Figure 4C). Furthermore, the proportion
of TCRVβ5.1/5.2+-T cells was increased in these mice compared
to cMy-mOVA mice (n = 7) that did not receive OT-I-derived
T cells (Supplementary Figure 4D), indicating that OVA-specific
T cells were still present in both sham and TAC-operated mice 1
week after the intervention.

Echocardiography was performed to determine heart function
3 days before and 1, 4, and 8 weeks after the intervention. Cardiac
hypertrophy developed within 1 week after TAC as indicated
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FIGURE 2 | OVA-specific CD8+-T cells promote cardiac dilatation but do not accelerate the progression from hypertrophy to heart failure after TAC in cMy-mOVA

mice. Echocardiography was performed in cMy-mOVA and in cMy-mOVA+OT-I mice before (pre; n = 14 per group for cMy-mOVA and n = 11 per group for

cMy-mOVA+OT-I mice) as well as 1 week (n = 14 for cMy-mOVA and n = 11 for cMy-mOVA+OT-I mice), 4 weeks (n = 14 cMy-mOVA and n = 11 (sham) or 10 (TAC)

for cMy-mOVA+OT-I mice), and 8 weeks (n = 14 (sham) or 10 (TAC) for cMy-mOVA and n = 11 (sham) or 9 (TAC) for cMy-mOVA+OT-I mice) after sham or TAC

surgery. (A) Anterior wall thickness in diastole (AWThd), (B) left ventricular weight/body weight (LVW/BW) ratio, (C) area of the endocardium in diastole (Area d),

(D) area of the endocardium in systole (Area s), (E), ejection fraction (EF), and (F) fractional area shortening (FAS) were determined and means plus SEM are displayed.

Differences between the time points within each experimental group were analyzed by a mixed linear model (time) and the P-values are given in the panels. Significant

differences in the Bonferroni post hoc test (P < 0.05) compared to the previous time point are indicated for cMy-mOVA (#) and cMy-mOVA+OT-I mice (§). Differences

between sham and TAC groups at a given time point were analyzed by t-tests and significant differences are indicated by black bars (*P < 0.05, **P < 0.01,

***P < 0.001). Similarly, differences between cMy-mOVA and cMy-mOVA+OT-I mice after TAC were analyzed and red bars and stars indicate significant P-values.

by the anterior wall thickness in diastole (AWTHd; Figure 2A)
and the left ventricular weight/body weight (LVW/BW) ratio
(Figure 2B). A dilation of the left ventricle occurred in both

experimental groups between the first and the fourth week as
indicated by an increase of the area of the endocardium in
diastole (Area d; Figure 2C) and the area of the endocardium
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in systole (Area s; Figure 2D). Notably, the dimensions of Area
d and Area s further progressed from week 4 to week 8 only
in cMy-mOVA+OT-I mice and both parameters were greater
in the mice with OVA-specific CTL than in cMy-mOVA mice 8
weeks after TAC. However, heart function after TAC measured
as ejection fraction (EF; Figure 2E) or fractional area shortening
(FAS; Figure 2F) was not significantly different between cMy-
mOVA+OT-I and cMy-mOVA mice at any time point. On
average EF and FAS were, however, more reduced 10 weeks
after TAC in cMy-mOVA+OT-I than cMy-mOVA mice. When
the development of heart failure over time was analyzed for the
individual groups, a significant reduction of the EF was observed
in cMy-mOVA mice between week 1 and week 4 and in cMy-
mOVA+OT-I mice between week 4 and week 8 (Figure 2E).
The FAS was reduced in both cMy-mOVA+OT-I and cMy-
mOVA mice already 1 week after TAC and declined further until
week 4 in cMy-mOVA mice and from week 4 to week 8 in
cMy-mOVA+OT-I mice. In summary, the presence of CD8+-T
cells with specificity for an antigen in cardiomyocytes appeared
to promote left ventricular dilation but failed to significantly
accelerate the progression from hypertrophy to heart failure at
least during the time period analyzed here.

All sham-operated mice survived until the end of the
experiment and did not show any clinical signs of sickness
during the course of the experiment. Four of the 14 cMy-
mOVA mice died or had to be sacrificed before the end of the
experiment due to illness (Supplementary Figure 5A). Of the
11 cMy-mOVA+OT-I mice, 9 remained in the experiment until
the end of the observation time (Supplementary Figure 5B). The
survival of the mice that had received OT-I-derived CD8+-T
cells before TAC was not different from controls [P = 0.5608;
Log Rank (Cox-Mantel) test], suggesting that the ventricular
dilation observed in echocardiography does not translate into an
enhanced heart failure related mortality.

More T Cells Infiltrate the Myocardium of

cMy-mOVA+OT-I Than cMy-mOVA Mice,

but Fibrosis and Cardiac Hypertrophy Are

Similar
The mice were sacrificed 10 weeks after surgery. The infiltration
of the myocardium with cells of the immune system was assessed
by immunohistochemistry (Figure 3A). More CD3+-T cells
were present in the myocardium of TAC than sham-operated
mice (Figure 3B). Notably, more CD3+-T cells infiltrated the
myocardium of cMy-mOVA+OT-I than cMy-mOVA mice after
TAC but also after sham surgery. The same pattern was observed
when the numbers of CD8+ cells were determined (Figure 3C),
suggesting that adoptively transferred OT-I-derived CD8+-T
cells were enriched in the myocardium of the cMy-mOVA+OT-I
mice. CD4+ T cells (Figure 3D) and CD45R(B220)+ B cells
(Figure 3E) as well as F4/80+ myeloid cells (Figure 3F), which
include monocytes and macrophages, increased in numbers after
TAC but were not more abundant in cMy-mOVA+OT-I than
cMy-mOVA mice, arguing for a specific enrichment of the OVA-
specific CD8+-T cells in the OVA-expressing myocardium.

The cardiac hypertrophy after TAC at autopsy measured as
ventricular weight/body weight ratio was similar in cMy-mOVA
and cMy-mOVA+OT-I mice (Figure 4A). Myocardial fibrosis
was analyzed on Sirius Red stained complete cross-sections
(Figures 4A,B) and found to be similarly increased in cMy-
mOVA and cMy-mOVA+OT-I mice after TAC (Figures 4A,C).

OVA-Specific CTL Can Become Activated

in cMy-mOVA+OT Mice After TAC and

Have a Higher Cytotoxic Activity Than

OVA-Specific CTL in cMy-mOVA Mice
At autopsy, splenocytes were harvested. The proportion of
CD3+CD8+ cells was analyzed by flow cytometry and found
to be similar in mice that had received CD8+-T cells
from OT-I mice and controls (Supplementary Figure 4E).
The proportion of CD3+TCRVβ5.1/5.2+-T cells was not
increased among the splenocytes of cMy-mOVA+OT-I mice
(Supplementary Figure 4F), suggesting that the transferred
CD8+-T cells were either in other compartments or mostly lost
at this time point. When the splenocytes were then directly
used as effector cells in 51Cr-release assays against RMA-con
and RMA-OVA target cells, they did not exert any OVA-specific
cytotoxicity. However, following a restimulation with 1µMOVA
for 4 days, an OVA-specific cellular cytotoxicity was detected in
both sham and TAC-operated mice (Figure 5A). It was much
higher in TAC than sham-operated cMy-mOVA+OT-I mice
because the RMA-OVA cells were killed significantly better by
splenocytes from TAC than sham-operated mice (P = 0.009,
2-way ANOVA adjusted for E:T ratios), in contrast to RMA-con
cells (P = 0.5905, 2-way ANOVA adjusted for E:T ratios). OVA-
restimulated splenocytes from a significantly higher proportion
of cMy-mOVA+OT-I mice that underwent TAC (77.8%) than
sham surgery (20.0%) exerted an OVA-specific cytotoxic activity
(P = 0.0230, Fisher’s exact test; Figure 5B). These frequencies
were very similar to those observed in cMy-mOVA mice
(Figure 1C). Therefore, we compared the OVA-specific CTL
activity in cMy-mOVA and cMy-mOVA+OT-I mice. It was not
different in sham-operated cMy-mOVA and cMy-mOVA+OT-
I mice but after TAC splenocytes from cMy-mOVA+OT-I mice
killed RMA-OVA cells significantly better than splenocytes from
cMy-mOVA mice (Figure 5C). In conclusion, this suggests that
the risk to elicit OVA-specific CTL activity is not increased after
adoptive transfer of OT-I-derived CD8+-T cells. However, if
(presumably very few) OVA-specific CTL become activated in
response to TAC in an animal, they can exert a higher cytotoxic
activity upon antigen-specific restimulation, if the high affinity
OT-I-derived CD8+-T cells had been transferred.

DISCUSSION

In recent years clear evidence has been accumulated that
autoimmune responses can contribute to the progression
of heart failure. This is best documented by the presence
of autoantibodies with direct cardio-depressive effects in
subgroups of patients with dilative cardiomyopathy, in which the
therapeutic removal of those antibodies by immunoadsorption
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FIGURE 3 | More infiltration of CD3+ and CD8+ cells in the myocardium of cMy-mOVA+OT-I than cMy-mOVA mice. (A) The infiltration of CD3+ and CD8+ cells was

analyzed by immunohistochemistry in the myocardium of sham and TAC-operated cMy-mOVA and cMy-mOVA+OT-I as illustrated here. The bars indicate 50µm. The

arrow heads point to CD3+ or CD8+ cells, respectively. The numbers of infiltrating CD3+-T cells (B), CD8+ cells (C) CD4+ cells (D), CD45R(B220)+ B cells (E) and

F4/80+ monocytes/macrophages (F) were determined in the myocardium after 10 weeks in sham and TAC-operated cMy-mOVA (sham n = 14, TAC n = 10) and

cMy-mOVA+OT-I mice (sham n = 11, TAC n = 9) and means plus SEM are shown. The P-value of a Kruskal-Wallis test comparing all groups is indicated. Differences

between two groups were analyzed by U-tests and significant P-values are given in the panels (*P < 0.05, **P < 0.01, ***P < 0.001). The Bonferroni-Holm correction

was used to adjust for multiple testing in the two group comparisons.

is beneficial (11). Notably, similar autoantibodies were also
found in animal models of pressure overload (7). More
recently, the investigation of the role of T cells in the
pathophysiology of pressure overload has been initiated.
Our interest in this topic has been stimulated by the
finding that pressure overload after TAC, but not volume
overload after aorto-caval shunt, was associated with myocardial
inflammation and induced a gene expression profile indicating
an activation of T cell receptor signaling pathways in the
myocardium (16).

The impact of T cells in the pathophysiology of pressure
overload has been investigated initially in T cell-deficient and
T cell-depleted mice. Mice lacking a functional recombination
activation gene 2 (Rag2), which do not have B and T cells, were
reported to be protected from the transition from hypertrophy
to heart failure after TAC (22). Similarly, TCRα-deficient mice
or mice in which T cells were depleted by administration of
anti-CD3 antibodies, had a preserved cardiac function after TAC
(23). Recently, it has been demonstrated that blocking of T
cell activation by abatacept, a cytotoxic T-lymphocyte-associated
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FIGURE 4 | Similar cardiac hypertrophy and fibrosis in cMy-mOVA and

cMy-mOVA+OT-I mice after TAC. (A) The ventricular weight/body weight

(VW/BW) ratio was determined at autopsy after 10 weeks in sham and

TAC-operated cMy-mOVA and cMy-mOVA+OT-I mice. (B) Fibrosis of the

myocardium was analyzed by Sirius Red staining in cMy-mOVA and

cMy-mOVA+OT-I mice after sham and TAC surgery. The bars indicate

100µm. (C) The areas containing collagen were determined on complete left

ventricular cross sections of cMy-mOVA (sham n = 14, TAC n = 10) and

cMy-mOVA+OT-I mice (sham n = 11, TAC n = 9). Means plus SEM are

shown in (A,C). The P-value of a Kruskal-Wallis test comparing all groups is

indicated. Differences between two groups were analyzed by U-tests and

significant P-values are given in the panels (*P < 0.05, **P < 0.01,

***P < 0.001). The Bonferroni-Holm correction was used to adjust for multiple

testing in the two group comparisons.

protein 4 (CTLA4)-Ig fusion protein, delays progression of TAC-
induced heart failure (24, 25). The question which type of T
cells is involved in pressure overload-induced heart failure has
also been addressed by some studies. Specifically CD4+-T cells
appeared to be important since mice deficient for MHC class
II molecules, which lack CD4+-T cells were protected from
progression into heart failure after TAC similarly to RAG2-
deficient mice lacking all T cells and in contrast to CD8-deficient
mice lacking CD8+-T cells (22). We have recently demonstrated
that possessing high numbers CD4+-T cells with specificity for
an antigen in cardiomyocytes can accelerate progression into
heart failure after TAC (12). This effect was independent of
autoantibodies suggesting that T helper cells can have a direct
effect on maladaptive cardiac remodeling.

In the present study, we investigated the role of CD8+-T
cells with specificity for an antigen in cardiomyocytes during
the progression of heart failure in response to pressure overload.
We show that CTL with specificity for OVA can become
activated after TAC in cMy-mOVA mice expressing OVA in
cardiomyocytes. The cytotoxic activity was detected after OVA-
specific restimulation of CTL in vitro. The CTL activity was
on average low, suggesting that its induction is an inefficient
process. Moreover, it appeared to be unlikely that such a low-
grade CTL activity has a major impact on heart function.
This is in agreement with the finding by Laroumanie and
colleagues that mice lacking CD8+-T cells were not protected
from TAC-induced heart failure (22). However, mice possessing
higher numbers of CD8+-T cells with specificity for antigens
in cardiomyocytes might carry a substantially higher risk that
such CTL become activated due to pressure overload and
subsequently contribute to the deterioration of heart function.
To elevate the number of CD8+-T cells with specificity for an
antigen in cardiomyocytes, we adoptively transferred CD8+-
T cells with that specificity from OT-I into cMy-mOVA mice
before TAC. It has been previously shown that the adoptive
transfer of naïve OVA-specific CD8+-T cells from OT-I mice
into cMy-mOVA mice does not cause myocarditis unless the
mice are either immunized with OVA plus a strong adjuvant
or are infected with an OVA-expressing virus (13, 26). In
agreement with these observations, sham-operated mice that had
received OT-I-derived CD8+-T cells did not develop any signs
of disease in our study. After TAC, these cMy-mOVA+OT-I
mice developed a cardiac hypertrophy and progressed into heart
failure similarly to cMy-mOVA control mice. Functionally, only
the left ventricular dilation was significantly more pronounced in
the cMy-mOVA+OT-I than cMy-mOVA mice. Although more
T cells infiltrated the myocardium of cMy-mOVA+OT-I than
cMy-mOVA mice, the cardiac fibrosis was similar. Systemically,
an OVA-specific CTL activity was detectable also in these
mice only after in vitro restimulation of splenocytes with the
antigen. Even though this activity in the cMy-mOVA+OT-I mice
was significantly higher after TAC than after sham operation,
presumably only very few OVA-specific CTL became activated in
response to TAC. This suggests that pressure overload does not
provide sufficient danger signals or other adjuvant-like signals
to break tolerance and to activate CTL robustly. Although they
could exert a higher cytotoxic activity upon antigen-specific
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FIGURE 5 | OVA-specific CTL become activated in cMy-mOVA+OT-I mice after TAC and have a higher cytotoxic activity than OVA-specific CTL in cMy-mOVA mice.

(A) The cytotoxic activity of splenocytes against RMA-OVA and RMA-con target cells was determined by 51Cr-release assays at several CD3+CD8+ E:T ratios 10

weeks after sham (n = 10) or TAC (n = 9) surgery either directly after autopsy (day 0) or after restimulation in vitro with 1µM OVA (day 4). Means and SEM are

displayed. Differences between sham and TAC-operated mice were analyzed by 2-way ANOVA adjusted for the E:T ratios and the respective P-values are indicated

(ns, non-significant). (B) The proportion of mice exerting a higher cytotoxic activity against RMA-OVA than RMA-con cells is displayed. The difference between sham

and TAC-operated mice has been analyzed by Fisher‘s exact test and the P-value is displayed. (C) The OVA-specific cytotoxicity against RMA-OVA target cells of CTL

from cMy-mOVA and cMy-mOVA+OT-I mice after sham (n = 9) or TAC (n = 9) surgery is compared by 2-way ANOVA adjusted for the E:T ratios and the respective

P-value is indicated.

restimulation than non TCR-transgenic CTL with that specificity
in cMy-mOVA mice, they did not significantly impair cardiac
function.

At day 3 after the intervention, transferred OT-I-derived T
cells were found in the blood and at one week also in the
spleen of TAC and sham-operated mice. At these time points,
they constituted 2 to 3% of the peripheral lymphocytes. At the
end of the experiment, 10 weeks after the intervention, we did
not detect the transferred cells in the spleen by flow cytometry
anymore, suggesting that most OT-I-derived OVA-specific T cells
were present in other compartments or got lost over time due
to absence of an antigenic stimulation. However, the increased
OVA-specific cellular cytotoxicity in the spleen and the higher
numbers of T cells in heart of cMy-mOVA+OT-I mice indicate
that at least some of the transferred T cells got activated after
TAC and survived. It should be mentioned that the adoptive
transfer even of high numbers of OT-I-derived CD8+-T cells
(107 in our experiment) into the cMy-mOVA+OT-I mice did not

increase the OVA-specific CD8+-T cells to similar numbers as
reached for OVA-specific CD4+-T cells in the double-transgenic
cMy-mOVA-OT-II mice, in which stably most CD4+-T cells are
OVA-specific (12). A constant presence of similar numbers of
OVA-specific CD8+-T cells could potentially increase the risk to
elicit a functionally relevant auto-reactivity also of CTL in cMy-
mOVA mice after TAC. Unfortunately, due to the early death
of the double-transgenic cMy-mOVA-OT-I mice, this has been
impossible to achieve in our experiments. Moreover, it needs
to be mentioned that the cMy-mOVA+OT-I displayed a more
severe left ventricular dilation 8 weeks after TAC than cMy-
mOVA mice. Hence, we cannot exclude that CD8+-T cells with
specificity for an antigen in cardiomyocytes would impair the
cardiac function at later time points beyond the observation
period of our study. Transferring OVA-specific CD4+-T cells
together with OVA-specific CD8+-T cells before TAC could
potentially support the survival of the OVA-specific CTL and
might augment their effects in cMy-mOVAmice.
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In comparison to CD4+-T cells (12), CD8+-T cells with
specificity for a model antigen in cardiomyocytes have little
impact on the progression of pressure overload-induced heart
failure. This observation might be understandable in view of
reports that cardiomyocytes largely lack MHC class I molecules
under non-inflammatory conditions (18, 27) even though they
are inducible by pro-inflammatory cytokines (18) and CTL-
mediated killing of cardiomyocytes clearly occurs during viral
myocarditis (13). A low expression level ofMHC class Imolecules
on cardiomyocytes could explain why the OVA-specific CD8+-T
cells had little impact in the cMy-mOVA+OT-I mice after TAC
although they reached the OVA-expressing tissue as suggested
by the presence of higher numbers of CD3+-T cells in the
myocardium of these mice. In contrast, in cMy-mOVA-OT-II
mice, OVA released from dying cells is expected to be taken-up
by professional antigen specific cells, which then stimulate OVA-
specific T helper cells to release cytokines involved in cardiac
remodeling (12). Therefore, CTL with specificity for antigens
in other myocardial cells than cardiomyocytes, e.g., cardiac
fibroblasts, might have different consequences for heart function.

CONCLUSIONS

In this study, we have shown that CTL with specificity for a
model antigen in cardiomyocytes, i.e., OVA in cardiomyocytes
of cMy-mOVA mice, can become activated after TAC. Yet, this
apparently is an inefficient process leading only to low-grade
cytotoxicity. Adoptive transfer of OVA-specific CD8+-T cells
from TCR-transgenic OT-I mice does not substantially increase
the risk to elicit a cytotoxic activity against OVA after TAC.
In agreement with this finding, the progression from cardiac
hypertrophy to heart failure was not significantly accelerated
in these cMy-mOVA+OT-I mice. Thus, CD8+-T cells with
specificity for an antigen in cardiomyocytes, in contrast to
CD4+-T cells (12), apparently do not have a major impact on
progression and mortality of pressure overload-induced heart
failure.
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Evidence for increased risk of cardiovascular morbidity and mortality in chronic

inflammatory rheumatic diseases has accumulated during the last years. Traditional

cardiovascular risk factors contribute in part to the excess of cardiovascular risk

in these patients and several mechanisms, including precocious acceleration of

subclinical atherosclerotic damage, inflammation, and immune system deregulation

factors, have been demonstrated to strictly interplay in the induction and progression

of atherosclerosis. In this setting, chronic inflammation is a cornerstone of rheumatic

disease pathogenesis and exerts also a pivotal role in all stages of atherosclerotic

damage. The strict link between inflammation and atherosclerosis suggests that

cardiovascular risk may be reduced by rheumatic disease activity control. There are

data to suggest that biologic therapies, in particular TNFα antagonists, may improve

surrogate markers of cardiovascular disease and reduce CV adverse outcome. Thus,

abrogation of inflammation is considered an important outcome for achieving not only

control of rheumatic disease, but also reduction of cardiovascular risk. However, the

actual effect of anti-rheumatic therapies on atherosclerosis progression and CV outcome

in these patients is rather uncertain due to great literature inconsistency. In this paper,

we will summarize some of the main mechanisms linking the inflammatory pathogenic

background underlying rheumatic diseases and the vascular damage observed in these

patients, with a particular emphasis on the pathways targeted by currently available

therapies. Moreover, we will analyze current evidence on the potential atheroprotective

effects of these treatments on cardiovascular outcome pointing out still unresolved

questions.
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INTRODUCTION

The long-term prognosis of chronic inflammatory rheumatic
diseases (RDs), such as rheumatoid arthritis (RA), psoriatic
arthritis (PsA), and ankylosing spondylitis (AS), is significantly
influenced by increased risk of cardiovascular (CV) morbidity
and mortality. In a large population-based, observational study,
CV events resulted the third most frequent comorbidity in RA
patients after depression and asthma (1). However, the evidence
that screening and management of CV comorbidities in these
patients is far from optimal deserves attention considering that
high prevalence of atherosclerosis seems to occur yet in the
earliest stages of the disease and also in young subjects free from
CV risk factors, as demonstrated in particular in RA patients (2).

Chronic RDs and atherosclerotic endothelial damage share

a similar inflammatory pathogenic background and multiple
mechanisms contribute to subclinical atherosclerosis in these
patients (3). It is demonstrated that disease-related inflammatory
and immune mechanisms have a pivotal role in the pathogenesis
of atherosclerosis and CV risk and that the contribution of

traditional CV risk factors is at least as important as disease-

specific factors (4). Indeed, prevalence of classic CV risk factors
is higher in these patients in comparison to general population
(5–8). In particular, hypertension, and diabetes mellitus represent
two major factors to monitor in RD patients, both being
associated with other CV comorbidities, disease activity and
increased risk of CV events (5–9).

As inflammation is a cornerstone of the pathogenesis of
systemic RDs and considering its pivotal role in driving all
stages of atherosclerosis, it is compelling to hypothesize that
controlling the pathways that induce synovial and systemic
inflammation may provide benefit on CV risk in these patients
(10). Although inconsistency in results between studies mainly
due to different study design and different outcome measures,
there are data suggesting that biologic therapies, in particular
tumor necrosis factor-α inhibitors (TNFα-i), improve surrogate
markers of subclinical atherosclerosis. Moreover, better control
of RA activity has recently been associated with fewer CV events
(11, 12). In a recent prospective study, failure in achieving
disease activity control increased from 4- to 8-fold the risk
to develop subclinical atherosclerosis and CV events at 1 year
of follow-up (13). Although it is quite difficult to provide an
actual long-term estimation of CV risk due to the lack of
validated scores, tight, and sustained control of RD activity is
necessary to effectively prevent CV disease development. Treat-
to-target and abrogation of inflammation are now considered two
main outcomes for achieving RD control. In addition, effective
pharmacological treatment could favor physical activity, with
consequent decrease of risk of obesity, diabetes, hypertension,
and at least, CV disease. It is to note, however, that introduction
of biologic agents is less frequent in RA patients with multiple
concomitant comorbidities, although with active disease, and
that some medications commonly used in these patients, such as
corticosteroids (CS) and non-steroidal anti-inflammatory drugs,
are known to enhance CV risk (14). In particular, some drugsmay
exert a dual effect. Indeed, if short-term CS treatment may lead to
initial beneficial effect due to rapid suppression of inflammatory

burden, it is well-known that long-term side effects of CS therapy
may have a net adverse association with CV disease risk (15). Of
consequence, the real effect of non-biologic and biologic therapy
on CV risk and outcome in these patients is still uncertain.

In this perspective, a literature search was performed to
identify articles investigating medium- and long-term effect of
non-biologic and biologic therapies on subclinical atherosclerosis
measures and CV outcome in patients with RA, PsA, and AS.
Articles were identified in PubMed by using Mesh terms and
keywords. Search was restricted to English language.

INFLAMMATION: A LINK BETWEEN

ATHEROSCLEROSIS AND RHEUMATIC

DISEASES

The definite demonstration that atherosclerosis is a dynamic
process greatly driven by inflammatory factors has highlighted
interesting pathogenic links between atherosclerotic arterial
wall damage and inflammatory mechanisms underlying
the pathogenesis of systemic RDs (16) (Figure 1). Systemic
inflammation contributes to all stages of atherosclerosis
starting from activation of endothelial layer and recruitment
of inflammatory cells within arterial layer to monocyte
differentiation and foam cell formation, with subsequent plaque
development. Moreover, these molecules promote apoptosis of
arterial smooth muscle cells, matrix degradation, and fibrosis
with subsequent destabilization and rupture of atherosclerotic
plaques. Immune dysregulation, through the involvement of
T lymphocytes, contributes to amplification of inflammatory
response driving atherosclerotic damage. T helper (Th)1 cells, in
particular, secrete several cytokines, such as interferon (IFN)γ,
interleukin (IL)-2, IL-12, IL-18, and TNFα, which contribute
to vascular endothelial damage and plaque progression (17).
Interestingly, these cytokines, in particular TNFα, IL-6, and
IL-18, have been associated with endothelial dysfunction,
carotid atherosclerosis, CV morbidity, and risk of CV events
and mortality in patients with systemic RDs (18). Among
inflammatory biomarkers, C-reactive protein (CRP), IL-6, IL-1,
and TNFα have been extensively studied and employed as
predictive tools of CV risk and future CV events (16, 17, 19).
Strong evidence supports the direct role of these molecules
in contributing to atherogenesis by favoring endothelial
dysfunction, vascular oxidative stress, foam cell formation, and
atherosclerotic plaque destabilization (16, 17, 19). In addition,
pro-inflammatory cytokines may induce atherosclerosis causing
an alteration of lipid profile. In particular, TNFα and IL-6 have
been shown to induce a pro-atherogenic profile and insulin
resistance in patients with RDs (18).

Given the importance of pro-inflammatory cytokines in
atherosclerosis and CV disease risk, effective modulation of
inflammatory response in systemic RDs is expected to reduce
risk and incidence of CV events and multiple pathways have
been identified as potential therapeutic targets for the prevention
and treatment of CV disease. In this setting, canakinumab, an
inhibitor of IL-1β, was associated with significant reduction
of recurrent CV events in patients with previous myocardial
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FIGURE 1 | Common inflammatory mechanisms driving the pathogenesis of chronic rheumatic diseases and athrosclerosis.

infarction and persistently elevated CRP levels (20). Three
doses of canakinumab were tested and only the 150mg dose
reduced the relative risk of composite CV endpoint by 15%,
mainly driven by a 24% reduction of relative risk of myocardial
infarction. No significant reduction in CV death was observed
and canakinumab was associated with an increased risk of fatal
infection and sepsis. Surely, given the modest absolute clinical
benefit, routine use of canakinumab in patients with previous
myocardial infarction is not justified until more data are available.

On the other hand, in systemic RDs, randomized controlled
trials (RCT)s of disease-modifying anti-rheumatic drugs
(DMARDs), and biologic anti-cytokine therapies have not
been powered to detect the impact of these agents on the
modification of subclinical atherosclerosis and CV disease risk.
Of consequence, data on the effect of these therapies on CV
outcome in patients with RDs have been mainly driven by
observational and pharmaco-epidemiological studies which
suggest that close control of inflammation and disease activity in
RDs may favorably affect some CV disease risk factors, reducing
the rate of progression of subclinical atherosclerosis and the
incidence of CV events (12) (Table 1).

DO ANTI-RHEUMATIC THERAPIES LOWER

THE RISK OF ACCELERATED

ATHEROSCLEROSIS?

Endothelial dysfunction, a potentially reversible step in
atherosclerosis development, and structural vascular wall

damage, assessed either as intima-media thickness (IMT)
and carotid plaque, are considered important predictors of
subsequent CV events in the general population as well as in
patients with RA (21, 22). Multiple mechanisms, including
systemic inflammatory burden, have been implicated in the
pathophysiology of micro and macro-vascular endothelial
dysfunction in patients with RDs and different methods are
employed to detect precocious atherosclerosis in these patients
(23). Thus, therapies reducing inflammation and disease activity
are expected to improve vascular function and, possibly, arterial
wall organic damage. In this setting, however, no definite
conclusions can be driven on the effect of anti-rheumatic
therapies on vascular endothelial function in inflammatory
RDs. Multiple variables, including differences in study design,
population enrolled, disease duration, instrumental technique
employed in the assessment of subclinical atherosclerosis, length
of follow-up, class of biologic drug used and concomitant
therapies, hamper data interpretation and explain the high
variability of study results. However, analysis of data derived by
meta-analysis and systematic reviews, observational studies, and
few RCTs allows to highlight some observations.

Conventional DMARDs
• Hydroxychloroquine (HCQ) has been associated with lower

risk of diabetesmellitus (24), a better lipid profile characterized
by reduced low-density lipoprotein and trygliceride levels (25)
and antithrombotic effect on platelet aggregation. Moreover,
in vitro studies demonstrated a potential vasoprotective
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TABLE 1 | Effect of non-biologic and biologic drugs on CV risk in RD patients.

Drug Lipid profile Metabolic syndrome PWV AIx ED IMT Plaque CV events

RHEUMATOID ARTHRITIS

HCQ Improve ↓

MTX Improve ↓ ↓

TNFα-i Worsen/neutral ↓ ↓ ↓ ↓

TCZ Worsen ↓ ↓ ↓ ↔ ↔ ↔

ABT Neutral ↔ ↔ ↔ ↔ ↓

RTX Neutral ↔ ↔ ↓ ↔

PSORIATIC ARTHRITIS

TNFα-i Worsen/neutral

UST ↔

SEC ↔

ANKYLOSING SPONDYLITIS

TNFα-i Worsen/neutral ↔ ↔

SEC ↔

HCQ, hydroxychloroquine; MTX, methotrexate; TNFα-I, tumor necrosis factorα inhibitors; TCZ, tocilizumab; ABT, abatacept; RTX, rituximab; UST, ustekinumab; SEC, secuckinumab;

PWV, pulse wave velocity; AIx, augmentation index; ED, endothelial dysfunction; IMT, intima-media thickness; CV, cardiovascular.

↓, significantly decreased; ↔, no significant effect.

effect by reduction of vascular endothelial adhesion molecule
expression (26). Despite this beneficial evidence on lipid
and glucose homeostasis, no studies explored the effects of
HCQ on surrogate markers of atherosclerosis. Interestingly, a
recent meta-analysis demonstrated that patients with RA and
systemic connective diseases assuming HCQ are characterized
by a significant reduction of CV events in comparison to
non-HCQ users (27).

• Methotrexate (MTX) has several favorable effects on markers
of CV damage. In particular, MTX therapy has been associated
with improvement in reverse cholesterol transport (28),
reduction of foam cell formation (29), down-regulation of
adhesion molecule expression on endothelial surface (30), and
reduced risk of metabolic syndrome (31). Moreover, response
to MTX therapy is associated with reduction of circulating
cytokines, including TNFα, IL-6, and IL-1, which exert
atherogenic activity. Effects ofMTX onmeasures of subclinical
atherosclerosis has been explored in few studies showing a
favorable response in atherosclerosis progression (32–34). In
a recent observational study, 6-month MTX monotherapy
was associated with a more pronounced favorable effect on
endothelial function in comparison to TNFα-i ± MTX in a
cohort of RD patients (35). The effect was independent of
disease activity improvement. However, the small number of
patients enrolled and themethod used to detect atherosclerosis
progression (change in Reactive Hyperemic Index) suggest
caution in data interpretation.

TNFα Inhibitors
• Short and medium-term studies demonstrated that TNFα-

i are effective in improving arterial stiffness, evaluated as
reduction of pulse wave velocity (PWV), and endothelial
dysfunction, expressed as improvement in flow-mediated
vasodilation (FMD), in RA patients, thus suggesting a link

between chronic inflammation and endothelial dysfunction
and arterial stiffness (11, 36, 37).

• TNFα-i therapy is associated with prevention or reversion of
IMT progression in RD patients responding to treatment in
studies with up to 5-year follow-up (36). The effect on IMT
seems more relevant in RA patients with early disease (38).

• A beneficial effect on measures of microvascular endothelial
dysfunction has been depicted in a small cohort of AS patients
following 1 month of etanercept therapy, thus suggesting
that suppression of inflammation is associated with rapid
reversal of microvascular dysfunction in these patients (39).
On the other hand, no effect of TNFα-i treatment has been
detected on arterial stiffness and augmentation index (AIx) in
wider cohorts of AS patients, suggesting that different disease-
specific mechanims may contribute to endothelial impairment
(40).

• AIx, a composite measure of arterial stiffness and speed
of reflected wave from peripheral vascular resistances,
usually does not change following TNFα-i therapy (36, 37).
Intriguingly, this may suggest that arterial stiffness, a surrogate
measure of macrovacular function, is more sensitive to
inflammatory burden in RDs in comparison to other vascular
functional parameters.

• Different TNFα-i may exert different effects on subclinical
atherosclerosis. In this setting, adalimumab and etanercept
have been associated with significant reduction of arterial
stiffness in RA patients, while no change in the same
measure was detected following infliximab administration
(40). However, the limited number of studies does not allow
to demonstrate a clear class-specific effect of TNFα-i on
endothelial function in these patients (11).

Other Non-TNFα-i Therapies
Very few data are available on the effect of other non-TNFα-i
targeted therapies on subclinical vascular endothelial damage.
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Inhibition of IL-6, a potent inflammatory cytokine inducing
hepatic acute phase reactant production, has been associated with
improvement of endothelial function, expressed as FMD, arterial
stiffness and AIx, in open-label RCTs (40, 41). Interestingly,
no changes in carotid IMT were reported (42), suggesting that
rapid suppression of inflammation exerts more pronounced
effect on endothelial function and that longer follow-up may
be needed to detect significant changes of structural arterial
wall damage. Conversely, B-cell blockade with rituximab was
associated with improvement of carotid IMT in a pilot study
without exerting significant effect on arterial stiffness and AIx
in open label studies (43–45). Despite studies on atherosclerosis-
prone mice demonstrated a favorable effect of abatacept in
atherogenesis reduction, treatment with abatacept in humans was
not associated with an improvement of surrogate measures of
subclinical atherosclerosis, including aortic stiffness, AIx, carotid
IMT, and plaques (40, 46).

DO ANTI-RHEUMATIC THERAPIES LOWER

THE RISK OF CARDIOVASCULAR

EVENTS?

Conventional DMARDs
• Although no RCT explored the independent effect of MTX on

major CV outcomes, robust evidence supports that patients
treated with MTX are characterized by a significant lower
risk of all CV events, myocardial infarction and stroke in
comparison to RD patients not receiving MTX (12, 47, 48).
The effect was more evident in responders to therapy and the
pooled relative reduction resulted 28% for all CV events and
19% for myocardial infarction (12). Moreover, the evidence
was stronger for overall reduction of CV morbidity and
mortality and weaker for stroke risk reduction (12).

• As observed with MTX, no randomized studies evaluated the
risk of CV diseases in RD patients treated with non-MTX
non-biologic therapies. Observational data suggest that long
exposure to leflunomide and sulfasalazine may be associated
with a reduced risk of all CV events and myocardial infarction
(38, 46).

TNFα Inhibitors
• Meta-analysis of cohort studies demonstrated that use of

TNFα-i in RA patients is associated with a 30% relative
reduction in all CV events and a 41% reduction of myocardial
infarction in comparison to other non-biologic therapies (12).
Subsequent systematic literature review of different studies
confirmed the safety of biologic therapies in RDs patients with
respect to CV outcome (40). However, the high variability
in study design, CV outcome definition, populations enrolled
and disease activity hamper data interpretation and makes it
difficult to compare results among studies (40).

• As observed for MTX, the favorable effect on CV outcome
may depend on clinical response since a lower incidence of
myocardial infarction has been observed in responders to
therapy (49).

• A recent prospective study with a longer follow-up (median
5 years) demonstrated that TNFα-i therapy in RA patients
is associated with a significant reduction of 39% in the risk
of myocardial infarction in comparison to DMARD therapy
(50). This is the first demonstration that duration of TNFα-i
exposure may be associated with reduction of CV risk in these
patients and suggests that stable suppression of inflammation
and disease activity control are mandatory targets in the
prevention of CV disease risk.

• A prospective analysis of the same cohort depicted that,
compared to DMARDs, ever-exposure to TNFα-i therapy
is not associated to a significant effect on the risk of first
ischemic stroke over a median period of 5 years. Although not
statistically significant, there was a trend toward a reduction in
mortality at 30 days and at 1 year following the event among
patients treated with TNFα-i at stroke occurrence compared
to the other group (51). This may suggest different and
still unexplored pathogenic mechanims underlying ischemic
cerebrovascular events in RA patients.

Other Non-TNFα-i Therapies
• Unfavorable lipid profile has been observed following TCZ

therapy. However, pooled analysis of clinical trials and post-
marketing safety data suggest that the CV disease risk in TCZ
users is comparable to the risk associated with other biologic
therapies (52–54). Indeed, a clear inverse relationship, known
as the “lipid paradox,” has been demonstrated between lipid
levels and CV risk in RA patients with an increased risk of
CV disease also in patients with low total cholesterol and
low-density lipoprotein (LDL) levels in the setting of active
inflammation (55). Despite the global increase in LDL, total
cholesterol, and triglyceride levels following the reduction of
inflammatory burden, a favorable anti-inflammatory change
of high-density lipoprotein composition and function has
been demonstrated following tocilizumab administration, thus
suggesting its positive net effect on CV risk (56).

• Abatacept may be associated with lower risk of myocardial
infarction in comparison with TNFα-i. A retrospective study
enrolling RA patients initiating biologic therapies, patients
treated with abatacept were characterized by a lower risk of
myocardial infarction in comparison to patients on TNFα-i
therapy (57). Interestingly, these data have been recently
confirmed in a large population-based cohort of RA patients
demonstrating that abatacept was associated with a significant
29% reduced risk of a CV composite endopoint (myocardial
infarction, stroke/transient ischemic attack, and coronary
revascularization) when compared with TNFα-i therapy, in
particular in patients with diabetes mellitus (58).

• Data on CV outcome in patients treated with rituximab
are scarce. Observational studies did not observe significant
differences in CV event rates in patients treated with rituximab
in comparison to TNFα-i therapy or abatacept (40, 46).

• The period passed from the introduction of anti IL-12/23
targeted therapies is too short to draw hypothesis on their
effect on CV outcome (40, 59).
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OPEN QUESTIONS AND FUTURE

DIRECTIONS

Despite broad evidence suggests that non-biologic and biologic
therapies may be associated with a reduced risk of CV events and
more favorable CV outcome in RD patients, several points should
be considered in data interpretation, suggesting caution in their
feasibility.

• The high variability in study designs and inclusion/exclusion
criteria, in disease characteristics (grade of activity,
seropositivity, duration, concomitant CV risk factors,
concomitant therapies as non-steroidal anti-inflammatory
drugs), in CV event definition, and in cohort enrolled
represent a major limit to consider.

• The median follow-up of almost all studies was too short
to effectively detect a significant reduction of long-term CV
events. Similarly, the variable follow-up across studies makes it
difficult to verify the durability of therapy effect on subclinical
atherosclerosis measure improvement.

• The application in many studies of surrogate markers of
atherosclerosis to estimate CV disease risk due to the low
number of CV events, which limited statistical significance
detection, remains an important limit in the interpretation of
study results.

• Further studies are needed to investigate if the reduction
of CV risk is a direct effect of these targeted therapies
on atherosclerotic process or an indirect manifestation of
the general reduction of systemic inflammation and disease
activity.

• Research should focus on evaluation of drug-specific class
effects on CV disease risk in order to enable better and

personalized use of targeted therapies according to patient CV
risk phenotype and disease characteristics.

• Further studies are needed to more deeply elucidate the
contribution of inflammation to the pathophysiology of
atherosclerosis in RDs and to identify specific non-invasive
biomarkers to be employed as tool to identify patients with
higher CV risk and guide therapy selection.

• The effect of targeted therapies on CV risk as well as
pathogenic mechanisms leading to atherosclerotic damage in
patients with SA and PsA should be further investigated.

• Larger, prospective studies with longer follow-up and RCTs
with hard CV end-points are urgently needed to better
characterize the CV outcome in these patients.

• Specific CV disease screening by validated CV risk
score in RD patients should be implemented in order
to quantify the CV long-term outcome and guide the
better primary and secondary CV preventive therapeutic
strategy.

• Despite advances in the treatment of these chronic RDs
and better control of disease activity, CV-related mortality
remains elevated in these patients. Under-recognition and
suboptimally treatment of CV risk factors in association with
the unavailability of validated treatment recommendations
represent major causes for the lack of proper CV risk
management in usual clinical care.
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Inflammation urges most of the characteristics of plaques involved in the pathogenesis

of myocardial ischemia/reperfusion injury (MI/RI). In addition, inflammatory

signaling pathways not only mediate the properties of plaques that precipitate

ischemia/reperfusion (I/R) but also influence the clinical consequences of the

post-infarction remodeling and heart failure. Here, we studied whether Ginkgolide B (GB),

an effective anti-inflammatory monomer, improved MI/RI via suppression of inflammation.

Left anterior descending (LAD) coronary artery induced ischemia/reperfusion (I/R) of

rats or A20 silencing mice, as well as hypoxia/reoxygenation (H/R) induced damages of

primary cultured rat neonatal ventricular myocytes or A20 silencing ventricular myocytes,

respectively, served as MI/RI model in vivo and in vitro to discuss the anti-I/R injury

properties of GB. We found that GB significantly alleviated the symptoms of MI/RI

evidently by reducing infarct size, preventing ultrastructural changes of myocardium,

depressing Polymorphonuclears (PMNs) infiltration, lessening histopathological damage

and suppressing the excessive inflammation. Further study demonstrated that GB

remarkably inhibited NF-κB p65 subunit translocation, IκB-α phosphorylation, IKK-β

activity, as well as the downstream inflammatory cytokines and proteins expressions via

zinc finger protein A20. In conclusion, GB could alleviate MI/RI-induced inflammatory

response through A20-NF-κB signal pathway, which may give us new insights into the

preventive strategies for MI/RI disease.

Keywords: Ginkgolide B, Myocardial ischemia/reperfusion injury, Inflammation, A20, NF-κB
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INTRODUCTION

Myocardial ischemia/reperfusion injury (MI/RI) with high
morbidity and mortality rates has become one of the decisive
factors for the events of cardiovascular diseases (1, 2). The
mechanisms ofMI/RI refer to a series of complicated pathological
processes, including inflammatory response, calcium overload,
complement activation, cell autophagy, and apoptosis (3).
And, it has repeatedly been shown that the earliest phases
of ischemia/reperfusion (I/R) are dominated by an acute
inflammatory response. Presently, the mechanisms driving this
acute and robust inflammatory response are still unknown.
However, over the last decades, it has become increasingly clear
that Zinc finger protein A20 is considered to be a pivotal link to
the inflammation throughout the whole pathological process of
myocardial ischemia/reperfusion induced tissue injury (4).

Zinc finger protein A20, also described as the TNF-α-
induced protein 3 (TNFAIP3), is a widely expressed cytoplasmic
signaling protein, commonly deemed as an anti-inflammatory,
nuclear factor-kappa B (NF-κB) inhibitory, and anti-apoptotic
molecule (5, 6). A20 was one key part of the mechanisms
involved in multiple autoimmune and inflammatory diseases,
such as coronary artery disease, psoriasis, systemic sclerosis,
coeliac disease, type 1 diabetes, inflammatory bowel disease, and
rheumatoid arthritis. A20 comprehensively results in alterations
to the signaling pathways leading to inflammatory changes, and
in consequence, regulates the intensity and duration of signaling
by several critical factors mainly dependent on NF-κB pathway
(7). And, we have also reported that up-regulating A20 could
protect blood brain barrier against ischemic stroke superimposed
on systemic inflammatory challenges (8). However, no data have
been published focused on the role of A20 in pathogenesis of
MI/RI.

Moreover, an increasing body of evidence suggested that I/R

could elevate the activation of NF-κB, whereas inflammatory

response was inhibited after NF-κB deactivation, and cardiac
function restored. IκB-α, regarded as an inhibitor, binds to NF-

κB p65/p50 heterodimer in cytoplasm (9–11). Phosphorylation
and subsequent degradation of IκB-α caused by IKK-β activation
lead to the release of NF-κB and then translocation to

nucleus. Ultimately, that will stimulate the production of various
inflammatory cytokines, such as interleukin (IL)-1β, tumor
necrosis factor (TNF)-α, IL-6 and cell adhesion molecules which
acts directly or indirectly to depress cardiac function (12).
Meanwhile, PMNs infiltration also remarkably influences the
post-ischemic perfused myocardium and various metabolites
into the myocardial cells as well. Therefore, suppressing PMNs
infiltration and NF-κB activation can obviously alleviate MI/RI
induced damages and consequently offer myocardial protection
(13, 14).

Ginkgolide B (GB, Figure 1), an effective flavonoid monomer,
was extracted from Ginkgo biloba leaves with multiple
modulatory or protective functions and has been used in
the treatment of cardio-cerebral vascular system damage for
years (15–17). Most recently, researchers have discovered that
GB could exert modulatory or protective functions against
inflammatory reactions induced cascade effect to subsequently

FIGURE 1 | Chemical structure of GB.

alleviate ischemia reperfusion diseases (18, 19). Moreover, there
has been reported that GB could protect against IR-induced
myocardial dysfunction and degradation of the membrane
phospholipids (20). However, there has been no research
reported on the relations between A20 and GB, meanwhile the
specific mechanism of its anti-inflammatory effects is still limited
and need an in-depth elucidation.

Thus, in this study, we investigated the role of GB in the
protection of inflammation induced by MI/RI in vivo. We also
made positive efforts to elucidate the role of A20-NF-κB signal
pathway in the protection of ventricular myocytes exposed to
H/R in vitro.

MATERIALS AND METHODS

Materials and Reagents
GB (PubChem CID: 65243), 2, 3, 5-Triphenyltetrazolium
chloride (TTC) was purchased from Sigma (St. Louis, MO,
United States). DMEM medium (high glucose) and newborn
calf serum were purchased from Gibco (Grand Island, NY,
United States). TNF-α, IL-1β, and IL-6 ELISA kits were products
of Sigma (St. Louis, MO, United States). Anti-A20, anti-ICAM-1,
anti-VCAM-1, anti-iNOS, anti-NF-κB p65, anti-p-IκB-α, anti-
IKK-β, anti-Histone, anti-β-actin, goat anti-rabbit and anti-
mouse IgG antibodies were products of Santa Cruz (Santa Cruz,
CA, United States). Enhanced chemiluminescence (ECL) plus kit
was product of Keygen Biotech.

Animals
Male Sprague-Dawley rats (250–300 g, Experimental Animal
Center of Shandong University) were used for the current
study. A20 gene silencing male mouse strains were provided
by Beijing Biocytogen Co., Ltd. Rats and mice were housed in
a temperature-controlled environment (18–22◦C) with a 12 h
light-dark cycle and allowed free access to food and water before
the experiment. All the experiments were approved by the ethics
committee of the Shandong Provincial Hospital affiliated to
Shandong University (NSFC: No. 2018-019).
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In vivo I/R Procedure to Induce MI/RI in

Rats
I/R surgery was exactly carried out in accordance with the
procedure in Figure 2A. The rats were anesthetized with
300 mg/kg chloral hydrate (i.p.). Electrocardiograph was
continuously applied to monitor the changes of S-T segment so
as to determine the success of surgery. After a left thoracotomy,
the left anterior descending (LAD) coronary artery was twined
with a plastic tube by a 6-0 silk suture for reversible LAD
occlusion. Reperfusion for 120min was initiated by releasing

the suture and removing the tension after transient regional
myocardial ischemia for 40min according to the procedure.
Before the rats were sacrificed, the blood samples were
collected.

Randomly selected rats were divided into 5 groups as follows
(n = 8 per group): (1) Control group, rats did not receive I/R,
saline was administered; (2) I/R group, I/R rats administered with
saline; (3) 8 mg/kg GB group, I/R rats received 8 mg/kg of GB;
(4) 16 mg/kg GB group, I/R rats received 16 mg/kg of GB; (5) 32
mg/kg GB group, I/R rats received 32 mg/kg of GB. Saline and

FIGURE 2 | Effects of GB on infarct size in MI/RI rats model. (A) The experimental procedures of in vivo MI/RI rats model. (B) Treatment with GB significantly reduced

the infarct size in MI/RI rats model. Data were expressed as mean ± S.D. (n = 8). ##P < 0.01, I/R group vs. control group; *P < 0.05, **P < 0.01, 8, 16, 32 mg/kg

GB groups vs. I/R group.

Frontiers in Immunology | www.frontiersin.org 3 December 2018 | Volume 9 | Article 284484

https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles


Zhang et al. Ginkgolide B Alleviates MI/RI Injury

FIGURE 3 | Effects of GB on the ultrastructure of myocardial tissue, histopathological changes, histopathological scores, PMNs counting, MPO activity and ICAM-1,

VCAM-1, iNOS expressions in MI/RI rats model. (A1–5) Representative transmission electron microscopy (TEM) observation of myocardial tissue injury for control

group (A1), I/R group (A2), I/R + 8 mg/kg GB group (A3), I/R + 16 mg/kg GB group (A4), I/R + 32 mg/kg GB group (A5). (B1-5) Representative light microscopic

(Continued)
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FIGURE 3 | appearance of rat myocardial histopathological morphology (HE staining; original magnification × 200) for control group (B1), I/R group (B2), I/R + 8

mg/kg GB group (B3), I/R + 16 mg/kg GB group (B4), I/R + 32 mg/kg GB group (B5). (C) Effect of GB on histopathological scores, (D) effect of GB on myocardial

PMNs counting, (E) effect of GB on MPO activity, effect of GB on expressions of ICAM-1, VCAM-1, iNOS (F) and effect of GB on expression of A20 (G). The location

of the histological images were taken in three random fields of infarcted area. Data were expressed as mean ± S.D. (n = 8). ##P < 0.01, I/R group vs. control group;

*P < 0.05, **P < 0.01, 8, 16, 32 mg/kg GB groups vs. I/R group.

GB were, respectively administered intraperitoneally for 7 days
before cardiac I/R operation.

In vivo I/R Procedure to Induce MI/RI in

A20 Gene Silencing Mice
I/R surgery was exactly carried out in accordance with the
procedure in Figure 5A. The mice were anesthetized with 60
mg/kg 3% sodium pentobarbital (i.p.). Electrocardiograph was
continuously applied to monitor the changes of S-T segment so
as to determine the success of surgery. A longitudinal incision
was made at the left margin of the sternum 2∼3mm and between
the second and third costal points. The intercostal artery was
ligatured and the thymus and pericardium were separated to
expose the heart. After a left thoracotomy, the LAD coronary
artery was tied in a slipknot using a 7-0 silk suture. In sham
operated mice, silk sutures were placed around LAD but were
not ligated. After transient regional myocardial ischemia for
30min, unlock slipknot, the blood flow of the coronary artery was
recovered for 90min. Before the rats were sacrificed, the blood
samples were collected.

Randomly selected mice were divided into 5 groups as follows
(n = 8 per group): (1) Control group, A20 gene silencing mice
did not receive I/R, saline was administered; (2) I/R group, I/R
A20 gene silencing mice administered with saline; (3) 12 mg/kg
GB group, I/R A20 gene silencing mice received 12 mg/kg of GB;
(4) 24 mg/kg GB group, I/R A20 gene silencing mice received 24
mg/kg of GB; (5) 48 mg/kg GB group, I/R A20 gene silencing
mice received 48 mg/kg of GB. Saline and GB were, respectively
administered intraperitoneally for 7 days before cardiac I/R
operation.

Measurement of Infarct Size
Infarct size was determined by TTC staining technique. After
I/R procedure, the hearts were excised and frozen at −80◦C for
4 h. The left ventricle area of heart was cut into five 2–3 mm-
thick slices from the apex to the base. After incubation in 2%
TTC in PBS (pH 7.4) solution for 15min (37◦C), the third slice
was immersed in formalin (4%) for another 30min. Then, the
area of the infarcted tissues was photographed with a digital
camera and measured by Image-Pro Plus software (version 6.0,
Media Cybernetic, United States) according to computerized
planimetry. Infarct size was expressed as the percentage of
infarcted area to the risk region× 100%.

Transmission Electron Microscopy
The third heart slice was fixed in 3.0%, pH 7.2 glutaraldehyde
buffered fixative for 2–3 days. Then the specimens were
embedded in Polybed 812 before being rinsed in PBS. 60–80
nm-thick specimens were analyzed with a transmission electron
microscope (JEM-2000EX) in three random fields.

Histopathological Examination and

Analysis of PMNS Infiltration Intensity
The third heart slice was stained with hematoxylin-eosin (H&E)
and analyzed by light microscopy in three random fields.
The intensity of histopathological damage was evaluated via
pathological scores in accordance with the criteria reported by
the previous study (21): (1) score 0: no damage; (2) score 1:
mild damage; (3) score 2: moderate damage; (4) score 3: severe
damage; (5) score 4: highly severe damage. The mean of the
absolute number of PMNs was also recorded in three random
high-power fields (HPF).

Immunohistochemistry
Immunohistochemistry was applied to evaluate the expressions
of ICAM-1, VCAM-1, and iNOS. The third heart slice was frozen
and blocked by 10% normal serum. And, anti-ICAM-1, anti-
VCAM-1 and anti-iNOS antibodies were incubated overnight at
4◦C after being. Then, the heart slice was incubated with anti-
rabbit IgG primary antibody for 30min. Immunohisochemical
staining protocol was used for further immunohistological
analysis under the fluorescence microscope in three random
fields. Image-Pro Plus software (version 6.0) was applied to
quantify the optical density of positive staining area, as described
previously (22). The results were expressed as mean optical
density mean± S.D.

MPO Activity Assay
The ischemic tissue samples were homogenized and sonicated
to release the MPO into the supernatant. Then, the activity of
MPO was measured using kits according to the manufacture
instructions (AmyJet Scientific Inc., Wuhan, China).

In vitro H/R Procedure to Induce H/R Injury

in Ventricular Myocytes
Rat ventricular myocytes were separated from the hearts of 1–
4-day-old Sprague-Dawley rats according to trypsin enzymic
digestion and differential attachment methods as described
previously (21). Three days later, the cells were finally purified at
a density of 1 × 105/mL in DMEM medium supplemented with
10% fetal calf serum in 95% air/5% CO2 at 37

◦C.
H/R treatment procedure (Figure 4A). The cells were

incubated in 95% N2/5% CO2 for 2 h (hypoxia) and then in 95%
air/5%CO2 for 2 h (reoxygenation). Randomly selected cells were
divided into five groups as follows (n= 8 per group): (1) Control
group, cells did not receive H/R and were cultured in DMEM
medium; (2) H/R group, cells receive H/R; (3) 1µM GB group,
H/R cells were pre-incubated with 1µM GB for 24 h; (4) 10µM
GB group, H/R cells were pre-incubated with 10µMGB for 24 h;
(5) 100µMGB group, H/R cells were pre-incubated with 100µM
GB for 24 h.
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FIGURE 4 | Effects of GB on cell viability and the expressions of ICAM-1, VCAM-1, iNOS, NF-κB p65, p-IκB-α, IKK-β by Western blot in H/R ventricular myocytes

model. (A) The experimental procedures of in vitro H/R ventricular myocytes model. (B) GB significantly increased the cell viability after H/R procedure. (C) GB

decreased the expression of ICAM-1. (D) GB decreased the expression of VCAM-1. (E) GB decreased the expression of iNOS. GB blocked the translocation of

NF-κB p65 from cytosolic (F) to nuclear (G). (H) GB down-regulated the expression of p-IκB-α. (I) GB decreased the expression of IKK-β. (J) GB increased the

expression of A20. The NF-κB p65 protein levels were assayed separately in cytosolic (F) and nuclear (G) extracts. Results were expressed as Protein/reference

protein ratio. Data were expressed as mean ± S.D. of three independent experiments. ##P < 0.01 H/R group vs. control group; *P < 0.05, **P < 0.01, 1, 10,

100 µM GB groups vs. I/R group.
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FIGURE 5 | Effects of GB on infarct size in A20 gene silencing MI/RI mice model. (A) The experimental procedures of in vivo A20 gene silencing MI/RI mice model. (B)

Treatment with GB significantly reduced the infarct size in A20 gene silencing MI/RI mice model. Data were expressed as mean ± S.D. (n = 8). ##P < 0.01, I/R

group vs. control group; *P < 0.05, **P < 0.01, 12, 24, 48 mg/kg GB groups vs. I/R group.

Reconstruction of A20 Gene Silencing

Ventricular Myocytes
After the density of ventricular myocytes reached 1 × 105/mL,
the cells were transfected with pGPU6/Hygro in control group
while pGPU6/Hygro-A20 in other groups for 24 h using the
GenePharma Transfection Reagent. After the transfection, cells
were treated with H/R.

In vitro H/R Procedure to Induce H/R Injury

in A20 Gene Silencing Ventricular Myocytes
The A20 gene silencing cells were incubated in 95% N2/5%
CO2 for 2 h (hypoxia) and then in 95% air/5% CO2 for 2 h
(reoxygenation). Randomly selected cells were divided into 5

groups as follows (n = 8 per group): (1) Control group, cells did
not receive H/R and were cultured in DMEM medium; (2) H/R
group, A20 gene silencing cells receive H/R; (3) 1µM GB group,
H/R A20 gene silencing cells were pre-incubated with 1µM GB
for 24 h; (4) 10µMGB group, H/R A20 gene silencing cells were
pre-incubated with 10µM GB for 24 h; (5) 100µM GB group,
H/R A20 gene silencing cells were preincubated with 100µMGB
for 24 h.

Analysis of Cell Vitality
Cell viability of ventricular myocytes was quantified with 3-(4,5-
dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT)
colorimetric assay. At the end of H/R procedure, cells were
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TABLE 1 | Effects of GB on serum inflammatory cytokines in MI/RI rats model.

Group Dose

(mg/kg)

TNF-α (pg/mL) IL-1β (pg/mL) IL-6 (pg/mL)

Control 13.63 ± 3.61 56.41 ± 12.19 31.94 ± 8.34

I/R 86.34 ± 15.40## 239.56 ± 17.38## 103.78 ± 10.45##

I/R+GB 8 66.34 ± 10.98** 185.65 ± 21.76** 90.13 ± 14.53*

16 48.54 ± 8.07** 133.49 ± 23.68** 62.34 ± 8.31**

32 27.39 ± 6.31** 85.68 ± 9.78** 50.49 ± 3.98**

Values were expressed as mean ± SD (n = 8).
##P < 0.01 I/R group vs. control group; ∗P < 0.05, **P < 0.01, 8, 16, 32 mg/kg GB

groups vs. I/R group.

TABLE 2 | Effects of GB on supernatant inflammatory cytokines in H/R ventricular

myocytes model.

Group Concentration

(µM)

TNF-α

(pg/mL)

IL-1β

(pg/mL)

IL-6 (pg/mL)

Control 5.21 ± 2.16 87.29 ± 6.89 23.10 ± 3.15

H/R 62.17 ± 5.96## 875.09 ± 47.10## 681.34 ± 29.32##

H/R+GB 1 43.26 ± 10.11** 529.21 ± 43.43** 501.21 ± 22.31**

10 32.18 ± 2.98** 329.11 ± 20.98** 209.34 ± 13.34**

100 16.88 ± 2.16** 192.10 ± 40.19** 102.09 ± 21.08**

Values were expressed as mean ± SD (n = 8).
##P< 0.01 H/R group vs. control group; *P< 0.05, **P< 0.01, 1, 10, 100µMGB groups

vs. I/R group.

incubated with 5 mg/mL MTT for 4 h at 37◦C and the insoluble
formazan crystals were dissolved in 100 µl of DMSO for 15min.
Results were expressed as percentage of the optical density (OD)
at 490 nm measured in control cells.

Measurement of TNF-α, Il-1β, and Il-6
Before rats and mice were sacrificed, the blood samples were
obtained. After H/R procedure, the cell supernatant was collected
from medium. The expressions of TNF-α, IL-1β, and IL-6 were
determined via ELISA kits both in blood samples and cell
supernatant.

Extraction of Myocardial Tissues Protein
RIPA Lysis Buffer (Beyotime Inc., China) and 1%
phenylmethanesulfonyl fluoride (PMSF) were used to extract the
proteins in myocardial tissue. Then, the myocardial tissues were
homogenized and ultrasonically ground to no precipitation.
Finally, the samples were centrifuged at 12,000 × g at 4◦C for
30min and the total protein was collected from the supernatant.
All the steps above were carried out on the ice in order to avoid
protein denaturation.

Western Blot Analysis
Nuclear and Cytoplasmic Protein Extraction Kit (Beyotime
Biotechnology, Beijing, China) was applied to extract the
cytoplasmic and nuclear proteins from cells according to the
manufacturer’s instruction as described previously (21). The
protein concentrations were determined by BCA assay.

Protein samples (50 µg) was loaded to SDS-PAGE gel, and
then transferred to a PVDF membrane at 20V and 100mA
overnight. The membranes were blocked with 5% skim milk,
and then incubated with primary antibodies (1:800) against
CD40, ICAM-1, VCAM-1, iNOS, NF-κB p65, p-IκB-α, and
IKK-β proteins for 4 h at 37◦C. The horseradish peroxidase-
conjugated secondary antibody (1:1,000) was added and detected
using an ECL plus kit. Protein expression levels were determined
by quantitating protein band densities of images taken by Gel
Imaging System using Quantity One software.

Statistical Analysis
The results were expressed as the mean ± S.E.M. Significance
of difference between groups were compared using one-way
analysis of variance (ANOVA) followed by Bonferroni correction
for multiple comparisons. A probability value of P < 0.05 was
considered to be statistically significant. All statistical figures
were performed using Graph Pad Prism software (Version 5.0).

RESULTS

Effect of GB on MI/R-Induced

Inflammatory Injury IN MI/RI Rats Model
GB Reduced Infarct Size in MI/RI Rats
As the results shown in Figure 2B, infarct size in the I/R group
was 41.5 ± 4.9% (P < 0.01 vs. control group), whereas 8, 16,
32 mg/kg GB decreased infarct size to 32.4 ± 3.7%, 25.2 ± 5.0%
and 21.3 ± 4.0% (P < 0.01), respectively, compared with the I/R
group.

GB Improved Cardiac Ultrastructural

Characterization, Alleviated Pmns Infiltration,

Decreased the Amount of Serum Inflammatory

Cytokines and Inhibited Overexpressions of

Myocardial Tissue ICAM-1, VCAM-1, and iNOS in

MI/RI Rats
In the control group, mitochondria containing cristae with
high electron density are elongated and tightly aligned between
myofibrils (Figure 3A1). However, in I/R group, the cardiac
myofibers were disconnected and damaged, nuclear stained
deeper, and the mitochondria became swelling and degeneration
(Figure 3A2). In 8 mg/kg GB group, there were still some breaks
and loss of mitochondrial cristae associated with loss of the
mitochondrial matrix (Figure 3A3). In 16 mg/kg GB group, the
damaged mitochondria showed mild loss of cristae, swelling,
myelin figures and membrane disruption (Figure 3A4). In 32
mg/kg GB group, only a few swollen mitochondria was observed
(Figure 3A5).

In the control group, the myocytes arranged regularly and no
inflammatory cells were observed in the myocardial interstitium.
After I/R procedure, the myocytes arranged irregularly, the
tissue became necrotic, and a large number of inflammatory
cells were observed in the myocardial interstitium accompanied
by the formation of fibrotic scars. But GB could significantly
improve the histological injury, characterized by regularly
arranged myocytes and alleviative inflammatory infiltration
(Figures 3B1–5). As demonstrated in Figure 3C, 8, 16, 32 mg/kg
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FIGURE 6 | Effects of GB on the ultrastructure of myocardial tissue, histopathological changes, histopathological scores, PMNs counting, MPO activity and ICAM-1,

VCAM-1, iNOS expressions in A20 gene silencing MI/RI mice model. (A1-5) Representative transmission electron microscopy (TEM) observation of myocardial tissue

injury for control group (A1), I/R group (A2), I/R + 12 mg/kg GB group (A3), I/R + 24 mg/kg GB group (A4), I/R + 48 mg/kg GB group (A5). (B1-5) Representative

(Continued)
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FIGURE 6 | light microscopic appearance of rat myocardial histopathological morphology (HE staining; original magnification × 200) for control group (B1), I/R group

(B2), I/R + 12 mg/kg GB group (B3), I/R + 24 mg/kg GB group (B4), I/R + 48 mg/kg GB group (B5). (C) Effect of GB on histopathological scores, (D) effect of GB

on myocardial PMNs counting, (E) effect of GB on MPO activity, effect of GB on expressions of ICAM-1, VCAM-1, iNOS (F) and effect of GB on expression of A20 (G).

The location of the histological images were taken in three random fields of infarcted area. Data were expressed as mean ± S.D. (n = 8). ##P < 0.01 I/R group vs.

control group; *P < 0.05, **P < 0.01, 12, 24, 48 mg/kg GB groups vs. I/R group.

GB markedly decrease the histopathological scores compared
with I/R group (P < 0.01). Meanwhile, all GB groups remarkably
decreased the total numbers of infiltrated and adherent PMNs
compared with I/R group (Figure 3D).

Then, MPO activity was measured to evaluate the level of
neutrophilic infiltration. In control group, the MPO activity was
very low at 1.57 ± 0.16 U/g protein (Figure 3E). However, the
MPO activity was significantly elevated in I/R group (4.72 ±

0.51 U/g protein) (P < 0.01 vs. control group). Interestingly, the
current study indicated that pretreatment with GB 8 mg/kg (3.79
± 0.86 U/g protein, P< 0.05), 16mg/kg (3.30± 0.43 U/g protein,
P < 0.01) and 32 mg/kg (2.40 ± 0.33 U/g protein, P < 0.01)
could inhibit MPO activity in myocardial tissue compared with
I/R group.

As shown in Table 1, the levels of TNF-α, IL-1β, and IL-6 were
increased by 6.33-fold, 4.25-fold, and by 3.25-fold (P < 0.01),
respectively, compared with control group. 8, 16, 32 mg/kg GB
could dose-dependently decrease the levels of TNF-α by 23.2%
(P < 0.05), 43.8% (P < 0.01) and 68.3% (P < 0.01), respectively,
IL-1β by 22.5, 44.3, and 64.2% (P < 0.01), respectively, and IL-
6 by 13.2% (P < 0.05), 39.9% (P < 0.01) and 51.3% (P < 0.01),
respectively, compared with I/R group.

As shown in Figure 3F, the expressions of ICAM-1, VCAM-
1, and iNOS in I/R group were significantly elevated compared
with control group. However, 8, 16, 32 mg/kg GB could
effectively reduce the expressions of ICAM-1, VCAM-1 and
iNOS compared with I/R group. The original pictures were put
in the Supplementary Material.

Gb Increased Expression of A20 in MI/RI Rats
As shown in Figure 3G, the level of A20 in I/R group was
obviously higher in contrast with control group (P < 0.01). But
8, 16, 32 mg/kg GB remarkably increased the level of A20 in
response to I/R injury (P < 0.01 vs. I/R group).

Effect of GB on H/R-Induced Injury in H/R

Ventricular Myocytes Model
GB Increased Cell Viability Against H/R Injury in

Ventricular Myocytes
As shown in Figure 4B, the cell viability in H/R group was
markedly reduced to 54.5 ± 5.6% (P < 0.01 vs. control group).
1, 10, 100µMGB could significantly increase the viability of cells
received H/R injury (66.6± 5.8, 73.6± 9.3, 81.8± 4.7%, P < 0.01
vs. H/R group).

GB Inhibited Overproduction of Inflammatory

Cytokines in H/R Ventricular Myocytes
The productions of TNF-α, IL-1β, and IL-6 in H/R group
were markedly increased by 11.93-, 10.03-, and 29.50-fold,

respectively, compared with control group (P < 0.01) in Table 2.
Pretreatment with 1, 10, 100µM GB could significantly reduce
the levels of TNF-α by 30.4, 48.2, and 72.8% (P < 0.01), IL-1β by
39.5, 62.4, and 78.0% (P < 0.01), IL-6 by 26.4, 69.3, and 85.0% (P
< 0.01), respectively, compared with H/R group.

GB Prevented Overexpressions of ICAM-1, VCAM-1

and iNOS, Translocation of NF-κB p65,

Phosphorylation of IκB-α, Activity of IKK-β and

Increased Expression of A20 in H/R Ventricular

Myocytes
Compared with control group, the expressions of ICAM-1,
VCAM-1, and iNOS markedly increased to about 7.18-, 6.65-,
and 3.56-fold (P < 0.01) after H/R procedure (Figures 4C–E).
While pretreatment with 1, 10, 100µM GB reduced the
expressions of ICAM-1 by 18.6, 41.4, and 63.2% (P < 0.01),
VCAM-1 by 24.2, 46.4, and 66.0% (P < 0.01) and iNOS by 27.3,
48.8, and 76.9% (P < 0.01) compared with H/R group.

As shown in Figures 4F,G, the levels of NF-κB p65 were
relatively high in the cytoplasm of cells but low in nucleus in
control group. However, an evident translocation of p65 from
the cytosol into nucleus showed in H/R group. Pretreatment with
1, 10, 100µM GB could inhibit such nuclear translocation in a
concentration-dependent manner.

As shown in Figure 4H, the total IκB-α in each group was
not different. Then we checked the level of p-IκB-α in each
group. Compared with control group, the level of p-IκB-α in H/R
group significantly increased by 3.25-fold (P < 0.01). However,
1, 10, 100µM GB all showed a notably inhibitory effect on
phosphorylation of IκB-α by 19.6, 47.5, and 62.6% (P < 0.01)
compared with H/R group.

And, we furtherly checked whether GB had an influence on
IKK-β activity. The results in Figure 4I showed that the level of
IKK-β significantly increased by 2.72-fold inH/R group (P< 0.01
vs. control group). In contrast, 1, 10, 100µM GB could reduce
the expressions of IKK-β by 13.7, 29.8, and 54.5% (P < 0.01)
compared with H/R group.

As shown in Figure 4J, there was a small increased expression
of A20 after H/R procedure (P < 0.01 vs. control group). While
pre-incubation of GB (1, 10, 100µM) all significantly enhanced
the expressions of A20 in response to H/R injury (P < 0.01 vs.
H/R group).

Effect of GB on MI/R-Induced

Inflammatory Injury in A20 Gene Silencing

MI/RI Mice Model
In I/R group, it was found that I/R procedure could markedly
increase infarct size (Figure 5B), destroy cardiac ultrastructural
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TABLE 3 | Effects of GB on serum inflammatory cytokines in A20 gene silencing

MI/RI mice model.

Group Dose (mg/kg) TNF-α (pg/mL) IL-1β (pg/mL) IL-6 (pg/mL)

Control 34.21 ± 6.44 39.53 ± 10.98 18.39 ± 3.14

I/R 134.31 ± 10.98## 193.53 ± 23.67## 76.55 ± 6.98##

I/R+GB 12 119.82 ± 14.33* 153.12 ± 17.09** 68.05 ± 3.29*

24 87.09 ± 5.09** 89.31 ± 14.13** 52.12 ± 6.99**

48 40.01 ± 13.32** 58.39 ± 4.56** 48.15 ± 6.11**

Values were expressed as mean ± SD (n = 8).
##P < 0.01, I/R group vs. control group; *P < 0.05, **P < 0.01, 12, 24, 48 mg/kg GB

groups vs. I/R group.

characterization (Figures 6A1–5), aggravate pathological
changes (Figures 6B1–5C), trigger PMNs infiltration
(Figure 6D), cause inflammatory cytokines overproduction
(Table 3) and upregulate expressions of ICAM-1, VCAM-1,
iNOS (Figure 6F). As shown in Figure 6G, there showed
successful and stable A20 gene silencing in mice except the
control group. It was interesting that, after A20 gene was
silenced, 12, 24, 48 mg/kg GB all failed to improve the outcomes
induced by MI/RI (Figure 6 and Table 3).

Effect of GB on H/R-Induced Injury in A20

Gene Silencing H/R Ventricular Myocytes

Model
GB Could Not Increase Cell Viability After A20 Gene

Silencing
The cell viabilities in H/R + A20 silencing group (Figure 7A)
were significantly reduced (P< 0.01 vs. control group). After A20
gene silencing, GB could not elevate the cell viability against to
H/R injury.

GB Could Not Inhibit the Expression of Inflammatory

Factors, Translocation of NF-κB p65,

Phosphorylation of IκB-α and Activity of IKK-β After

A20 Gene Silencing
Compared with control group, the expressions of TNF-α, IL-
1β, IL-6, ICAM-1, VCAM-1, and iNOS in H/R + A20 silencing
group were obviously increased (Table 4 and Figures 7B–D).
Whereas, after A20 gene silencing, GB could not influence the
expressions of TNF-α, IL-1β, IL-6, ICAM-1, VCAM-1, and iNOS.

The levels of NF-κB translocation, IκB-α phosphorylation and
IKK-β activity were significantly affected in H/R + A20 silence
group (Figures 7E–H). Nevertheless, after A20 gene silencing, all
GB groups had no impact on NF-κB p65 translocation, IκB-α
phosphorylation and IKK-β activity compared with H/R + A20
silence group.

Stable A20 Gene Silencing in Ventricular Myocytes
As shown in Figure 7I, there was little A20 expressed after
transfection by preincubation with pGPU6/Hygro in control
group. In addition, the ventricular myocytes in other groups were
preincubated with pGPU6/Hygro-A20 and no A20 expressed
after transfection.

DISCUSSION

This is the first investigation studied on MI/RI both in vivo
and in vitro to examine whether GB played a vital role in the
whole pathological process of MI/RI, whether GB regulated the
expression of A20 in response to H/R injury, and whether NF-κB
signal pathway was heavily involved in the whole pathogenesis.

Inflammation is responsible for the development of
many cardiovascular or cerebrovascular diseases, such as
atherosclerosis, myocardial infarction, stroke, hyperlipidemia,
and neurodegeneration (23, 24). And, it is an important form
of cardiomyocyte death in the early stage of MI/RI, which
further leads to severe complications such as arrhythmia and
heart failure. It was traditionally believed that the process
of I/R gradually provokes severe inflammatory response and
subsequent cardiac rupture, ventricular aneurysm formation, and
exacerbation of left ventricular (LV) remodeling (25). However,
not only the pathogenesis of I/R may lead to the inflammatory
response, but inflammation itself may aggravate the I/R injury.
But so far, the information of molecular mechanisms underlying
the proinflammatory process of MI/RI is far from certain.
Therefore, study on inflammation participating in MI/RI is quite
meaningful for preventive therapy.

Recently, herbal treatment of cardiovascular and
cerebrovascular diseases has gained much attention. GB, a
major monomer of extracts from leaves of Ginkgo biloba
traditionally used in Chinese herbal medicine, displays a wide
range of biological activities, including anti-inflammatory and
anti-oxidant effects (26). It has been reported that GB could exert
neuroprotective effects against cerebral ischemia/reperfusion
injury (CI/RI) via suppressing inflammatory response and
scavenging oxygen free radical (27, 28). Both MI/RI and
CI/RI are hypoxic and anoxic diseases, which have similar
characteristics in pathogenesis and treatment, suggesting that GB
may possess a potential value in the treatment strategy of MI/RI.
Meanwhile, we have just proved that Ginkgolide C (GC) which
possessed the similarity chemical structure to GB could exert
a protective effect against MI/RI via inhibiting inflammation
which might involve in blocking CD40-NF-κB signal pathway
(21). However, it has not been illuminated whether GB has the
similar effect of improving MI/RI yet. Consequently, in this
study we investigated whether the strong anti-inflammatory
property of GB constituted a part of molecular mechanisms of
MI/RI protective effect.

It is well established that infarct size is a very important

indicator reflecting therapeutic effect of MI/RI. One of the
most effective strategy for reducing the size followed by acute

myocardial infarction is the early and successful myocardial

reperfusion which can improve the clinical outcome to a great
degree (29). In this study, we found that pretreatment of GB for
7 days could remarkably protect against the I/R insult through
significant reduction of infarct size. In addition, we found
that GB largely improves myocardium damage as evidenced
by restoration of myocardial ultrastructure and suppression of
myofibrillar degeneration.

PMNs, which are involved in multiple non-infectious
inflammatory processes including the response to MI/RI, serves
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FIGURE 7 | Effects of GB on cell viability (A) and the expressions of (B) ICAM-1, (C) VCAM-1, (D) iNOS, (E) cytoplasm NF-κB p65, (F) nucleus NF-κB p65, (G)

p-IκB-α, (H) IKK-β and (I) A20 by Western blot in A20 gene silence H/R ventricular myocytes model. Results were expressed as Protein/reference protein ratio. Data

were expressed as mean ± S.D. of three independent experiments. ##P < 0.01, H/R group vs. control group; *P < 0.05, **P < 0.01, 1, 10, 100µM GB groups vs.

I/R group.
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TABLE 4 | Effects of GB on supernatant inflammatory cytokines in A20 gene silence H/R ventricular myocytes model.

Group Concentration (µM) TNF-α (pg/mL) IL-1β (pg/mL) IL-6 (pg/mL)

Control 4.13 ± 0.18 69.33 ± 18.25 16.19 ± 2.26

H/R+A20− 72.19 ± 6.59## 906.19 ± 73.20## 729.35 ± 81.00##

H/R+GB+A20− 1 68.33 ± 10.31 872.12 ± 67.34 681.98 ± 69.21

10 62.18 ± 5.68 912.33 ± 89.76 633.10 ± 58.22

100 65.33 ± 8.32 890.65 ± 76.38 637.39 ± 58.31

Values were expressed as mean ± SD (n = 8).
##P < 0.01, H/R group vs. control group; *P < 0.05, **P < 0.01, 1, 10, 100µM GB groups vs. I/R group.

FIGURE 8 | Schematic diagram describing the mechanism in the inhibitory effect of GB on H/R induced ventricular myocytes inflammatory injury. GB could alleviate

MI/RI-induced inflammatory injury via up-regulating A20 and inhibiting IKK/IκB/NF-κB signal pathway.

as a key effector in the innate immune system (30). Following
MI/RI, a large increase in the number of circulating PMNs
occurred, which could predict the major adverse cardiac events
in MI/RI patients with larger infarct size and worse cardiac

function (31). Therefore, suppression of PMNs infiltration is
a main resource of relieving the damage of MI/RI. In this
study, a convincing show of histopathological damage was
found in in vivo I/R groups which suggested that there was
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a definite relationship between MI/RI and PMNs infiltration.
Nevertheless, pretreatment with GB could significantly attenuate
PMNs infiltration, as determined by histopathological scores and
the counting of PMNs. MPO, regarded as a precise marker of
MI/RI and a risk factor for long-term mortality, is secreted by
PMNs. Similarly, the elevated level of MPO in I/R groups was
decreased after pretreatment with GB. These findings provide a
potential link between GB’s MI/RI protective effect and PMNs
infiltration inhibitory property.

Moreover, in vitro H/R-treated ventricular myocytes were
applied to imitate the pathological process of in vivo I/R
injury, which helped to thoroughly validate the cardioprotective
property of GB. Interestingly, we found for the first time that
GB could significantly increase the cell viability after I/R-like
insult which indicated that GB could exert anti-MI/RI effect via
promoting viability and tolerance of cells injured byH/R-induced
inflammation.

So far, observed data implicate that NF-κB is deemed as
one of the key players in pathogenesis of I/R injury. And
they have also shown that active NF-κB-mediated signaling
significantly increased I/R-induced heart damage (32, 33).
NF-κB functions as a crucial transcription factor in both
inflammatory cells and myocardial cells, linking the coordinated
inflammatory and cell death signaling pathways proposed in
the concept of necroinflammation. However, lots of studies
indicated that inhibition of NF-κB signal pathways could
remarkably suppress the inflammation induced by MI/RI (34–
36). Under normal conditions, NF-κB proteins were bound by
members of the inhibitor of κB (IκB) family as components
of inactive cytoplasmic complexes (37, 38). After ubiquitylation
and proteasomal degradation of phosphorylated IκB family
members, nuclear translocation of NF-κB family members would
be released (39). In the present work, the level of NF-κB
p65 translocation was obviously elevated after H/R procedure.
Whereas, our results indicated that GB could effectively
reverse this activated effect. In addition, pretreatment with GB
could significantly block the notable phosphorylation of IκB-
α triggered by H/R procedure. These results suggest that the
reduction in phosphorylation of IκB-α and translocation of NF-
κB p65 is at least one of the targets of GB for inhibiting I/R-
induced inflammation.

Genetic evidence suggests that IKK complex (IKK-α, β, and
γ), a supporting role in activating the NF-κB pathway, is pivotal
for activating phosphorylation-dependent IκB degradation and
NF-κB nuclear translocation (40). Therefore, we detected
whether GB had an influence on the activity of IKK-β.
Unsurprisingly, GB could also inhibit IKK-β activation in H/R
injured ventricular myocytes. Consequently, we determined
that IKK-β/IκB-α/NF-κB signal pathway was one of the
anti-inflammatory targets of GB.

Numerous data have proved that there was a positive feedback
between NF-κB activation and its downstream inflammatory
cytokines, such as TNF-α, IL-1β, and IL-6; cell adhesion
molecules, such as ICAM-1 and VCAM-1; and nitric oxide
synthase (NOS) (41–43). Therefore, this study has also checked
this point. It implies that, blockade of NF-κB pathway by GB
has shown positive efficacy in the management of MI/RI induced
inflammation.

NF-κB signal pathway is mediated by several regulatory
mechanisms to keep the homeostasis of tissue. Zinc finger
protein A20, serves as a tumor suppressor gene and susceptibility
gene/biomarker of disease, involved in various inflammatory
diseases, especially MI/RI (44, 45). Previous studies have verified
that A20 was a central and inducible negative regulator of NF-
κB which regulates multiple inflammatory signaling cascades.
Silencing of A20 can significantly promote the translocation of
NF-κB p65, finally leading to a pro-inflammatory state (46). Our
present study showed that the level of A20 is low under normal
conditions. However, A20 was significantly up-regulated by all
GB-treated groups and the consequences were severe inhibition
of NF-κB signal pathway. According to the fact, we concluded
that the MI/RI protective effect of GB might partly attribute to
NF-κB inhibitionmediated by upregulation of A20. Furthermore,
we silence the A20 gene both in vivo and in vitro to verify
our hypothesis. After A20 was silenced, GB failed to reduce
infarct size, improve cardiac ultrastructural characterization,
inhibit PMNs infiltration and downregulate expressions of
inflammatory cytokines and proteins in vivo. In addition,
GB had no effect on cell viability and inflammatory factors
at all (Data Sheet 1 in Supplementary Material). Therefore,
it was obvious that GB exerted the protective effect against
MI/RI through inhibiting NF-κB signal pathway via A20
(Figure 8).

In conclusion, this is the first time to find out that GB
alleviated MI/RI-induced inflammatory insult both in vivo and
in vitro via up-regulating A20 dependent NF-κB signal pathway.
Thus, GB could be applied as a preventive and valuable agent
against MI/RI.
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With the success of antiretroviral therapy (ART), a dramatic decrease in viral burden

and opportunistic infections and an increase in life expectancy has been observed

in human immunodeficiency virus (HIV) infected individuals. However, it is now clear

that HIV- infected individuals have enhanced susceptibility to non-AIDS (Acquired

immunodeficiency syndrome)-related complications such as cardiovascular disease

(CVD). CVDs such as atherosclerosis have become a significant cause of morbidity

and mortality in individuals with HIV infection. Though studies indicate that ART itself

may increase the risk to develop CVD, recent studies suggest a more important role

for HIV infection in contributing to CVD independently of the traditional risk factors.

Endothelial dysfunction triggered by HIV infection has been identified as a critical link

between infection, inflammation/immune activation, and atherosclerosis. Considering

the inability of HIV to actively replicate in endothelial cells, endothelial dysfunction

depends on both HIV-encoded proteins as well as inflammatory mediators released in

the microenvironment by HIV-infected cells. Indeed, the HIV proteins, gp120 (envelope

glycoprotein) and Tat (transactivator of transcription), are actively secreted into the

endothelial cell micro-environment during HIV infection, while Nef can be actively

transferred onto endothelial cells during HIV infection. These proteins can have significant

direct effects on the endothelium. These include a range of responses that contribute to

endothelial dysfunction, including enhanced adhesiveness, permeability, cell proliferation,

apoptosis, oxidative stress as well as activation of cytokine secretion. This review

summarizes the current understanding of the interactions of HIV, specifically its proteins

with endothelial cells and its implications in cardiovascular disease. We analyze recent in

vitro and in vivo studies examining endothelial dysfunction in response to HIV proteins.

Furthermore, we discuss the multiple mechanisms by which these viral proteins damage

the vascular endothelium in HIV patients. A better understanding of the molecular

mechanisms of HIV protein associated endothelial dysfunction leading to cardiovascular

disease is likely to be pivotal in devising new strategies to treat and prevent cardiovascular

disease in HIV-infected patients.
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INTRODUCTION

The introduction of highly active antiretroviral therapy has
lead to a drastic reduction in viral burden and opportunistic
infections, resulting in a remarkable improvement in the
life expectancy of HIV-infected individuals. However, it is
now evident that HIV-infected individuals have an enhanced
susceptibility to non-AIDS (Acquired Immunodeficiency
syndrome)-related comorbidities such as cardio-vascular
diseases (CVDs), which have emerged as prominent
causes of morbidity and mortality in this population
(1–9). Atherosclerotic CVD rates and risk of myocardial
infarction are significantly elevated in HIV-infected individuals
than the general population (1, 10, 11). Studies further
indicate that both clinical cardiovascular events such as
coronary heart disease (11–13), peripheral artery disease
(14), as well as subclinical cardiovascular damage such
as elevation of intima-media thickness (15, 16), coronary
calcification (17), abnormal ankle-brachial index (18) and silent
myocardial ischemia (19) are much higher in HIV-infected
individuals (20).

ETIOPATHOGENESIS OF
CARDIOVASCULAR DISEASE IN PATIENTS
WITH HIV INFECTION

The increased cardiovascular risk in HIV-infected individuals
is attributable to a combination of multiple factors, including
higher prevalence of traditional risk factors, inherent effects
of the HIV infection, effects of antiretroviral therapy and the
presence of other co-morbidities seen frequently in HIV-positive
patients (such as hepatitis C virus and herpes family virus co-
infections). Though initial studies indicated a predominance
of traditional CVD risk factors (21, 22) and effect of ART
(23) as major causes for CVD among HIV-positive individuals
(10, 24, 25), evidence from experimental and observational
studies (26, 27) in recent years have redirected attention
more toward the consequences of HIV infection itself. Hsue
et al demonstrated a correlation between HIV infection and
premature atherosclerosis even in the absence of detectable
viremia, immunodeficiency, and ART exposure, with the
atherosclerosis being independent of traditional cardiovascular
risk factors (28).

Among multiple pathogenic effects that contribute to
atherosclerosis and ultimately CVD, HIV-induced endothelial
dysfunction is now established as a major contributing factor.
Higher plasma HIV RNA levels have been shown to correlate
with endothelial dysfunction in HIV-infected patients (29). A
transgenic mouse model expressing HIV viral proteins env,
tat, nef, vpu, vpr, and rev demonstrated aortic endothelial
dysfunction and increased arterial stiffness (30). HIV-infected
patients had significantly impaired endothelial function, as
demonstrated by reduced flow-mediated dilation, a measure
of endothelial vasomotor function in comparison to the HIV-
negative group (31).

ENDOTHELIAL DYSFUNCTION AND
CARDIOVASCULAR DISEASE

Endothelial dysfunction as a precursor of atherosclerosis
and future cardiovascular events has been demonstrated in
multiple population studies (32, 33). The development of
atherosclerosis resulting from dysfunctional endothelium is
highly complex and regulated by several factors. Endothelial
dysfunction is characterized by decreased anti-oxidant, anti-
inflammatory and anti-thrombotic properties (due to reduced
NO bioavailability) and increased endothelial permeability, pro-
inflammatory cytokine levels, and adhesion molecule expression.
Leukocyte recruitment and adhesion represent the initial events
in development of atherosclerosis. Leukocyte recruitment is
mediated by several chemoattractants such as IL-6, IL-8,
and MCP-1 and adherence of leukocytes to the endothelium
is mediated by cell adhesion molecules (CAM). Leukocytes,
especially monocytes traverse the endothelium, and migrate
into the intima (34). Transmigration of leukocytes, as well as
infiltration of plasma contents into the vascular wall is facilitated
by an increase in endothelial permeability. These infiltrated
plasma contents such as modified low-density lipoprotein (LDL),
along with substances produced by infiltrated leukocytes, such
as cytokines and chemokines, alter smooth muscle function and
contribute to the development of atherosclerosis (35). Further,
in the intima, the monocytes differentiate into macrophages,
expressing receptors that facilitate lipid uptake. On lipid uptake
and accumulation, macrophages transform into foam cells.
These foam cells initiate atherosclerotic lesions, which are later
characterized by plaque formation (34). Studies suggest that
HIV impairs several of these processes that maintain vascular
homeostasis, potentially leading to atherosclerosis (Table 1).
Several mechanisms have been suggested to explain how HIV
infection induces endothelial dysfunction leading to CVD,
including direct HIV infection of endothelial cells (ECs),
inflammation and effect of HIV proteins HIV proteins released
in the endothelial microenvironment or directly transferred to
ECs by HIV and HIV-infected cells represent critical mediators
of endothelial dysfunction. This article reviews the current
understanding of the mechanisms by which HIV, in particular,
the different HIV proteins drive EC dysregulation, potentially
leading to CVD.

HIV ENCODED PROTEINS AND
ENDOTHELIAL DYSFUNCTION

HIV is a retrovirus with a glycoprotein-rich envelope
surrounding a nucleocapsid. The HIV structural and
regulatory/accessory proteins are designed for the virus to
adapt efficiently to the human host, thereby promoting its
replication and transmission. The HIV viral genome contains
9 principal genes, gag, pol, env, tat, rev, vpu, vpr, vif, and nef.
The Gag-Pol precursor protein undergoes proteolytic cleavage
to generate the matrix p17, capsid p24, nucleocapsids p9
and p6, reverse transcriptase, protease, and integrase, all of
which are major structural components of the viral core. The
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TABLE 1 | Summary of the potential mechanisms by which HIV protein-induced endothelial dysfunction contribute directly or indirectly to the development of

atherosclerosis and CVD.

HIV protein Endothelial dysfunctiona Association with cardiovascular disease

Gp120

Tat

Nef

↑Apoptosis

(36–43)

Promotes atherosclerotic plaque formation and plaque instability

Gp120

Tat

Nef

↑IL-6

(44–46)

Increases intima media thickness

Monocyte/macrophage recruitment

Stimulates synthesis of acute phase proteins (CRP)

Gp120 ↑IL-8

(47)

Leukocyte recruitment

Mediates release of MCP-1

Tat ↑IL-1β

(48)

Induces macrophage/foam cell apoptosis,

Increased expression of pro-inflammatory cytokines

Increased expression of adhesion molecules

Migration of vascular smooth muscle cells and ECs

Tat

Nef

↑MCP-1

(49, 50)

Increases monocyte recruitment

Gp120 ↑ET-1

(51)

Increased smooth muscle proliferation and migration

Gp120

Tat

Nef

↑ICAM-1

(52–54)

Adherence and transmigration of leukocytes into the vessel wall

Tat ↑VCAM-1

(48, 55)

Adherence and transmigration of leukocytes into the vessel wall

Tat ↑E-selectin

(48)

Initial rolling of leukocytes on ECs

Gp120

Tat

↑ Endothelial permeability

(47, 51, 56–59)

Facilitates infiltration of leukocytes and plasma contents into

vessel wall

Gp120 ↑ MMP-2, ↑ MMP-9

(60)

Facilitates endothelial damage leading to unstable plaque

formation

Gp120 ↓ NO levels

(61, 62)

Abnormal vascular tone regulation and enhanced platelet

adhesion and aggregation

Gp120

Tat

↑ROS

(55, 56, 63, 64)

Increased foam cell formation leading to plaque growth

aReferences are in parenthesis.

Env undergoes proteolytic cleavage to generate the envelope
glycoproteins gp120 and gp41. Tat and Rev are the regulatory
proteins, while Vpu, Vpr, Vif, and Nef are the accessory proteins
(65). Among these viral proteins, gp120, Tat and Nef play a
major role in the pathogenesis of endothelial dysfunction. The
experimental evidence supporting a functional role for the HIV
viral proteins in the disruption of EC cell biology is outlined in
the following sections.

HIV gp120
HIV envelope glycoprotein is synthesized as a precursor
glycoprotein, gp160, which is then processed into an amino
terminus subunit, gp120, and a carboxyl transmembrane subunit,

gp41. The envelope glycoprotein, gp120 is expressed on the
outer layer of the virus, as well as on the surface of infected
cells. Gp120 is critical for virus infection, as the protein is
necessary for binding to specific cell surface receptors on target
cells and facilitating virus entry. The primary receptor for gp120
is the CD4 receptor, while the main co-receptors are CXCR4
and CCR5. Gp120 is found both in the free form in the body
fluids of HIV-positive patients (66, 67) and bound form on the
surface of apoptotic CD4 positive T-cells (68). In fact, gp120
has been shown in the germinal center of lymph nodes in
HIV-infected individuals under ART with no detectable viral
replication (69). Multiple studies have confirmed that gp120,
both in soluble and surface bound form, has an important role in
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viral pathogenesis on diverse uninfected bystander cells (70–74),
including ECs.

Gp120 is associated with apoptosis, adhesion molecule
expression, pro-inflammatory cytokine production and EC
permeability. Gp120 present either on viral particles, surface
of infected cells, or as free soluble protein causes endothelial
apoptosis predominantly by direct interaction with the co-
receptor, CXCR4. Gp120 induces apoptosis in human coronary
ECs (36), human umbilical vein ECs (HUVECs) (37, 38), lung
microvascular ECs (LMVECs) (39), and brain microvascular
ECs (BMVECs) (40, 41). EC apoptosis is an important process,
initially in atherosclerotic plaque formation, and later in the
progression to an advanced stage of atherosclerosis, when
the plaques become vulnerable to rupture (42, 75, 76). The
molecular mechanism by which gp120 exerts its endothelial
toxicity, may involve caspase-3 activation (38), Bax upregulation
(38), protein kinase C (PKC) activation (77) and p38 mitogen-
activated protein (MAP) kinase signaling (41). Gp120 also
induces an increase in reactive oxygen species (ROS), signaling
oxidative stress to the ECs (56, 63). Oxidative stress induced
by generation of excess reactive oxygen species is a critical
process in the development of atherosclerosis (78). HIV-
induced ROS likely contributes to endothelial dysfunction
through direct effects on the endothelium and/or indirectly
through monocytes /macrophages contacting the vessel wall.
The viral glycoptotein is also able to increase endothelin-
1 (ET-1) secretion (51) and promote surface expression of
Endothelial monocyte activating polypeptide II (EMAPII) (79).
ET-1 mediates the reduction of vascular nitric oxide production
by ECs, leading to the smooth muscle proliferation and
migration, which in turn leads to arterial vasoconstriction (80),
whereas EMAPII is released in response to stress such as
hypoxia, mechanical strain and apoptosis (81) and acts as a
pro-apoptotic factor. In addition, a recent study has shown
that HIV gp120 (X4 and R5) promotes EC senescence and
impairs the regulation of senescence-associated microRNAs (82).
Senescent ECs develop a dysfunctional phenotype acquiring pro-
inflammatory, pro-oxidant, vasoconstrictor, and prothrombotic
properties (83).

Gp120 is directly involved in upregulation of pro-
inflammatory cytokines such as IL-6 and IL-8 in primary
ECs (44). IL-6 and IL-8 play a major role in recruitment
of leukocytes, especially of the monocyte/macrophage and
neutrophil lineage, respectively. IL-6 can also actively promote
atherogenesis, both directly by inducing vascular endothelial
dysfunction, extracellular matrix degradation and indirectly
by stimulating hepatocytes synthesis of acute phase proteins
involved in inflammation, such as C-reactive protein (84).
Gp120 also facilitates monocyte (52) and T-cell adherence (85)
to the vascular endothelium through upregulation of CAMs.
Among the CAMs, E-selectin is involved in the initial rolling of
leukocytes on the endothelial cells, while ICAM-1 and VCAM-1
induce firm adhesion and transmigration of leukocytes across the
endothelium (86). Gp120 augments expression of ICAM-1, but
not VCAM-1 or E-selectin, in ECs of multiple origins, including
human coronary artery, lung, brain, umbilical vein, and dermal
microvascular ECs (52).

Gp120 also increases endothelial permeability by various
mechanisms including cytoskeletal rearrangement (56), down-
regulation of tight junction proteins (51) and PKC activation
(47). An increase in endothelial permeability was observed
in brain endothelial cultures of HIV gp120 transgenic mice
(87), compared to non-transgenic mice. Gp120 also induces
expression of the matrix metalloproteases (MMPs), MMP-
2 and MMP-9, that mediate endothelial damage with the
formation of an unstable atherosclerotic plaquemorphology (60).
Additionally, gp120 reduces the EC-derived nitric oxide (NO)
synthesized by the NO synthase, thus affecting endothelium-
dependent vasorelaxation and enhancing platelet adhesion and
aggregation (61, 62).

HIV Tat
HIV Tat (trans-activator of transcription) is a regulatory protein
encoded by the tat gene that enhances viral transcription
(88). Tat has been detected in the sera of HIV patients (89),
even during complete ART (cART) (90). Tat is secreted into
the extracellular microenvironment by HIV-infected T-cells
and monocyte/macrophages (89, 91). In the circulation, Tat is
suggested to act as a proto-cytokine, modulating the functions
of several cells including ECs (92). Thus, Tat is involved in
the pathogenesis of several HIV-associated disease conditions
ranging from pulmonary hypertension to cognitive abnormalities
(36, 48, 93–95). Tat protein possesses both transcription
promotion and membrane transduction properties. Tat has five
discrete domains, the N-terminal, cysteine-rich, core, basic, and
C-terminal domain. Tat interacts with three known receptors
to trigger endothelial dysfunction. The C-terminal domain,
containing an Arg-Gly-Asp (RGD) sequence, binds with high
affinity to the integrins alphaVbeta1 and alphaVbeta3 receptors
(96). The basic domain binds to the integrin alphaVbeta5
receptor (97) as well as the Flk-1/KDR receptor (98). Tat activates
these receptors to initiate endothelial signaling pathways that
affect diverse processes such as endothelial permeability (57, 58),
cytokine production (59), adhesion (48), angiogenesis (99–102),
and apoptosis (43).

Tat exhibits a dual function with regard to survival regulation,
exhibiting either EC proliferation or apoptosis, depending on
the micro-environment conditions (103). One of the prominent
properties of Tat is that of a direct angiogenic factor (92).
Endothelial proliferation is enhanced by factors such as FGF-
2 (fibroblast growth factor) (104). Tat activates Rac1 through a
signaling cascade involving RhoA, Ras, and extracellular signal-
regulated kinase (ERK), which in turn, induces EC proliferation
and survival (105). Tat mediates Rac1 activation through PAK-
1, phosphorylates c-Jun N-terminal kinase (JNK), activates
endothelial NADPH oxidase and regulates actin cytoskeletal
dynamics (106). Tat has been suggested to play a role in HIV-
related Kaposi sarcoma by promoting EC proliferation and
tumor angiogenesis, where Tat binds specifically and activates
the Flk-1/kinase insert domain receptor (Flk- 1/KDR), a VEGF-
A tyrosine kinase receptor, and promotes angiogenesis (98).
Contrary to its role in angiogenesis, Tat also induces the apoptosis
of primary microvascular ECs via either TNF-alpha secretion or
through activation of the Fas-dependent pathway (43). Fiala et al.
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(36) analyzed the pathogenesis of HIV-related cardiomyopathy,
and found that exogenous Tat protein was capable of activating
apoptosis of both ECs or cardiomyocytes. A recent report
indicates that HIV Tat along with morphine induces autophagy
in pulmonary ECs, suggesting a role for Tat in HIV-related
pulmonary arterial hypertension in the presence of opioids (107).
In addition, Tat also promotes EC senescence and dysregulation
of senescence-associated microRNAs (82).

Tat stimulates the release of pro-inflammatory cytokines and
induces expression of CAMs (45, 48, 55, 108, 109) in ECs
of diverse origin (i.e., pulmonary artery, umbilical vein, aorta,
and brain). In human vascular ECs (HUVECs), Tat stimulates
the upregulation of inflammatory mediators, including IL-1β,
MCP-1, VCAM-1 and E-selectin through nuclear factor-kappa
B (NF-κB) (48, 108). IL-1β can induce macrophage and foam
cell apoptosis, causing the release of their lipid content into the
intima of the artery and contributing toward the lipid core in the
plaque (110). IL-1β can also induce the expression of cytokines,
adhesion molecules and the migration and mitogenesis of
vascular smooth muscle and endothelial cells (111). MCP-1 is
a major chemokine involved in monocyte recruitment during
atherosclerosis development (35). Expression of IL-6 and MCP-
1 is dependent upon the activity of the kinases, PKC (45) and
cAMP-dependent protein kinase A (49). Tat stimulated ICAM-
1 expression in HUVECs by suppressing miR-221/-222 via an
NF-κB-dependent pathway (53), while Tat stimulated VCAM-
1 expression through p38 MAP kinase and NF-kB activation
(55). Upregulation of these adhesion molecules resulted in
monocyte (45, 108, 112) and T-cell (113) adhesion to the
endothelium. Furthermore, Matzen et al showed that Tat in
combination with TNF-alpha, a cytokine increased in sera and
tissues of HIV-infected patients, acts synergistically to increase
the adhesion of leukocytes to ECs, suggesting that both these
proteins act in co-operation to contribute to the vascular damage
during HIV infection (113). Finally, Tat induces endothelial
oxidative stress through activation of NADPH oxidase and
through decreased antioxidant capacity. Tat-induced MAPK
signaling requires upstream superoxide production by various
NADPH oxidase subunits. Moreover, Tat-induced ROS activates
the NF-kB pathway (55) and decreases GSH levels (64). Tat
also attenuates the expression of the mitochondrial superoxide
scavenger, Manganese-superoxide dismutase (Mn-SOD) (46,
114).

HIV Nef
HIV Nef is a 27-kD, n-myristoylated accessory protein that
lacks enzymatic activity. It is an adaptor molecule containing
multiple domains essential for interaction with host cell
signaling molecules (115, 116). Nef is involved in modulation
of several intracellular functions that include regulation of
protein trafficking and cell signaling pathways, attenuation of
antibody maturation in B cells (117), and increase in HIV
infectivity (118). The presence of Nef has been shown in the
endothelium of coronary and pulmonary arteries of SIV-HIV-
Nef-infected macaques (50). Sowinski et al (119) demonstrated
that Nef induces the formation of conduit-like nanotubes,
connecting HIV-positive cells to bystander cells. Further, Wang

et al. (50) showed that Nef transfer from HIV-infected cells
to ECs promotes endothelial dysfunction (50, 120). Nef is
also delivered to bystander cells through exosomes (121). ECs,
especially those present in developing atherosclerotic plaques,
would therefore be in a prime physical position to receive Nef
transfer from circulating monocytes and T cells. Transgenic
mice that express CD4-promoter-driven Nef develop multiple
pathologies including vasospasm in the heart (122). Studies show
that Rhesus macaques demonstrate pulmonary hypertension
(PH)-like pulmonary vascular remodeling, when infected with
chimeric SHIVnef virions, but not with SIV, indicating a role of
HIV-Nef in PH, with certain Nef gene variants showing a higher
propensity to develop PH (123, 124).

Similar to gp120 and Tat, Nef has been associated with several
aspects of HIV-induced endothelial dysfunction. Acheampong
et al. (42) showed that Nef, when expressed both extracellularly
and endogenously, induces apoptosis in primary human brain
microvascular ECs (HB-MVECs) by activation of caspases. A
microarray analysis of apoptosis genes in Nef-transduced HB-
MVECs demonstrated that the up-regulated genes belong to both
mitochondrial and Fas/FasL apoptotic pathways, indicating that
Nef may utilize multiple pathways to induce apoptosis in ECs.
In contrast, in the context of Kaposi’s sarcoma, Nef and KSHV
oncogene K1 synergistically promote angiogenesis by inducing
cellular miR-718 to regulate the PTEN/AKT/mTOR signaling
pathway. However, in Kaposi’s sarcoma, Nef in combination
with KSHV oncogene K1 synergistically induces cellular miR-718
to regulate the PTEN/AKT/mTOR signaling pathway and thus
promotes angiogenesis. This pathway is an important factor in
aberrant neovascularization caused by KS-associated herpesvirus
(KSHV) (125).

Nef-expressing T cells demonstrate enhanced adherence to
ECs as observed by their impaired diapedesis and migration
into the subendothelial space (126). Fan et al have shown ERK
kinase-mediated ICAM-1 upregulation in vascular ECs stably
expressing Nef (54). Furthermore, Nef increases endothelial
MCP-1 production through activation of the NF-kB signaling
pathway (50). In a recent study, Nef was shown to be
involved in the alteration of EC cholesterol homeostasis
through phosphorylation of Caveolin-1 (Cav-1), leading to Cav-
1 redistribution and impairment of HDL-mediated cholesterol
efflux in ECs (127). In addition to its direct effects on ECs,
Nef activates macrophages and produces foam cells (128). The
interactions of these foam cells with ECs could also contribute
to EC dysfunction, and potentially facilitate the development of
atherosclerosis.

CONCLUSION AND FUTURE
PERSPECTIVES

In summary, the present review underscores the role of HIV-
encoded proteins, specifically Gp120, Tat and Nef, in the
pathogenesis of endothelial dysfunction, a precursor for the
development of CVD (Figure 1). Our understanding of the
complex interaction of traditional factors, inflammation and
immune activation, cART and HIV in the progression of CVD
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FIGURE 1 | HIV proteins and their effects on endothelial dysfunction.
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has grown rapidly over the past decade. However, a more detailed
exploration into the mechanisms of HIV-induced endothelial
dysfunction is needed to formulate targeted approaches to
prevent and treat HIV-related vascular diseases. Presently,
large prospective studies such as REPRIEVE (NCT02344290), a
randomized trial to prevent vascular events in HIV, are being
carried out that will provide valuable data on the relation between
inflammation, CVD and HIV infection (129). Research efforts
will also need to focus on identifying HIV-specific markers that
could predict the risk of developing CVD and facilitate the early
detection of CVD in HIV patients. An accurate assessment of
patients based on such biomarkers could be incorporated in
guidelines such as the European AIDS Clinical Society guidelines
(130) on the joint management and prevention of CVD in HIV
patients, thereby providing vital information to guide clinicians
on the most appropriate approach to prevent and treat CVD in
this high-risk population.
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Background: Impaired cardiorespiratory fitness (CRF) is a hallmark of heart failure

(HF). Serum levels of C-reactive protein (CRP), a systemic inflammatory marker, and

of N-terminal pro-brain natriuretic peptide (NT-proBNP), a biomarker of myocardial

strain, independently predict adverse outcomes in HF patients. Whether CRP and/or

NT-proBNP also predict the degree of CRF impairment in HF patients across a wide

range of ejection fraction is not yet established.

Methods: Using retrospective analysis, 200 patients with symptomatic HF who

completed one or more treadmill cardiopulmonary exercise tests (CPX) using a

symptom-limited ramp protocol and had paired measurements of serum high-sensitivity

CRP and NT-proBNP on the same day were evaluated. Univariate and multivariate

correlations were evaluated with linear regression after logarithmic transformation of CRP

(log10) and NT-proBNP (logN).

Results: Mean age of patients was 57 ± 10 years and 55% were male. Median CRP

levels were 3.7 [1.5–9.0] mg/L, and NT-proBNP levels were 377 [106–1,464] pg/ml,

respectively. Mean peak oxygen consumption (peak VO2) was 16± 4mlO2•kg
−1

•min−1.

CRP levels significantly correlated with peakVO2 in all patients (R = −0.350, p < 0.001)

and also separately in the subgroup of patients with reduced left ventricular ejection

fraction (LVEF) (HFrEF, N = 109) (R = −0.282, p < 0.001) and in those with preserved

EF (HFpEF, N = 57) (R = −0.459, p < 0.001). NT-proBNP levels also significantly

correlated with peak VO2 in all patients (R = −0.330, p < 0.001) and separately in

patients with HFrEF (R = −0.342, p < 0.001) and HFpEF (R = −0.275, p = 0.032).

CRP and NT-proBNP did not correlate with each other (R = 0.05, p = 0.426), but

independently predicted peak VO2 (R = 0.421, p < 0.001 and p < 0.001, respectively).
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van Wezenbeek et al. Biomarkers For CRF in HF

Conclusions: Biomarkers of inflammation and myocardial strain independently

predict peak VO2 in HF patients. Anti-inflammatory therapies and therapies alleviating

myocardial strain may independently improve CRF in HF patients across a large spectrum

of LVEF.

Keywords: heart failure, biomarker, systemic inflammation, myocardial strain, cardiorespiratory fitness,

cardiopulmonary exercise testing

INTRODUCTION

Heart failure (HF) is a syndrome that presents clinically with
dyspnea, fatigue, and/or edema caused by structural or functional
cardiac defects that lead to reduced cardiac output and/or
increased cardiac pressure at rest or during stress. Impaired
cardiorespiratory fitness (CRF) is a hallmark of heart failure (HF)
(1). CRF is defined as the ability of the circulatory, respiratory,
andmuscular systems to supply oxygen during sustained physical
activity (2). CRF is expressed in metabolic equivalents (METs)
and measured by peak oxygen uptake (peak VO2) using exercise
tests (3). CRF is both an objective measure of habitual physical
activity, as well as a prognostic indicator in HF.

C-reactive protein (CRP), a marker for systemic
inflammation, is produced by the hepatocytes upon
inflammation, infection, or tissue injury (4). Patients with
HF show signs of chronic systemic inflammation, as shown
by elevated serum levels of CRP (5). Increased levels of CRP
are associated with an increased risk for CVD events and for
mortality (6, 7). Higher CRP levels are also associated with worse
cardiopulmonary exercise performance in patients with ischemic
heart disease and systolic HF (8, 9).

Natriuretic peptides are peptide hormones that function
as counter-regulatory mechanisms for the Renin-Angiotensin-
Aldosterone-system (RAAS), and therefore cause a decrease in
arterial pressure, central venous pressure, pulmonary capillary
wedge pressure, cardiac output, and total blood volume through
natriuresis and diuresis (10). Brain natriuretic peptide (BNP)
is produced by the ventricles in response to an increase in
myocardial stretch, damage, or ischemia (10). N-terminal pro-
brain natriuretic peptide (NT-proBNP) is the biologically inactive
peptide that is cleaved off the pro-hormone, proBNP (11). The
diagnostic and prognostic power of both BNP and NT-proBNP

Abbreviations: CRF, Cardiorespiratory Fitness; HF, Heart Failure; HFrEF, Heart

Failure with Reduced Ejection Fraction; HFpEF, Heart Failure with Preserved

Ejection Fraction; METs, Metabolic Equivalents; VO2, Oxygen Consumption;

CRP, C-Reactive Protein; NT-proBNP, N-Terminal Pro-Brain Natriuretic Peptide;

WBC, White Blood Cell; NLR, Neutrophil to Leukocyte Ratio; ANP, Atrial

Natriuretic Peptide; CVD, Cardiovascular Disease; CVP, Central Venous Pressure;

RAAS, Renin Angiotensin Aldosterone System; LVEF, Left Ventricular Ejection

Fraction; LVEDV, Left Ventricular End Diastolic Volume; LVESV, Left Ventricular

End Systolic Volume; CPX, Cardiopulmonary Exercise Test; TET, Treadmill

Exercise Time; Peak VO2, Peak Oxygen Consumption; VE/VCO2, Ventilatory

Efficiency; ACS, Acute Coronary Syndrome; MI, Myocardial Infarction; ARNI,

Angiotensin Receptor-Neprilysin Inhibitor; ACEI, Angiotensin-Converting-

Enzyme Inhibitor; PARADIGM-HF, Prospective Comparison of ARNI with ACEI

to Determine Impact on Global; Mortality and Morbidity in Heart Failure;

CANTOS, Canakinumab Antiinflammatory Thrombosis Outcome Study; ROC,

Receiver Operating Characteristic; AUC, Area Under the Curve.

is similar, however, NT-proBNP is less sensitive to breakdown
than BNP is, which results in a more accurate measurement and
reproducibility (11). Plasma levels of NT-proBNP have shown to
relate to a low peak oxygen uptake (peak VO2) in HF patients
(12).

Serum levels of CRP and NT-proBNP have shown to predict
adverse outcomes in patients with HF, both in HF with reduced
ejection fraction (HFrEF, LVEF <50%) and in HF with preserved
ejection fraction (HFpEF, LVEF >50%). Although CRP and
NT-proBNP provide independent and complementary insight
into CRF, whether CRP and/or NT-proBNP also independently
predict the degree of CRF impairment in HF patients is not yet
established. We hypothesize that two biomarkers, CRP, and NT-
proBNP, by acting as surrogates for different pathophysiologic
mechanisms, inflammation and myocardial strain, respectively,
will independently predict the degree of CRF impairment in
patients with HF across the spectrum of LVEF including both
HFrEF and HFpEF. The objective of this study was to investigate
whether CRP and/or NT-proBNP can independently predict CRF
impairment, defined as reduced peak VO2 in patients with HF
across a wide range of ejection fraction.

MATERIALS AND METHODS

Study Design
We retrospectively queried a database of de-identified data that
was prospectively collected data from patients with symptomatic
HF who completed one or more cardiopulmonary exercise tests
(CPX) using a symptom-limited ramp protocol on a treadmill
and had paired measurements of serum high-sensitivity CRP and
NT-proBNP on the same day. All members of the research team
have completed training on the ethical conduct of research on
human subjects. The VCU Institutional Review Board approved
of the study, which was conducted according to the International
Conference onHarmonization Good Clinical Practice Guidelines
and the Declaration of Helsinki.

Cardiopulmonary Exercise Testing
All patients underwent maximal CPX with a certified exercise
physiologist under the supervision of a physician with a
metabolic cart connected to a treadmill (Vmax Encore, Viasys,
Yora Linda, CA) using a ramp protocol, as described before
(13). Oxygen and carbon dioxide sensors were calibrated
before the test with known oxygen, nitrogen, and carbon
dioxide concentrations and the flow sensor was calibrated using
a 3-L syringe. Subjects were asked to exercise to maximal
fatigue. Twelve-lead ECG measurements were done at baseline,
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throughout the test, and during recovery. Every 2min blood
pressure was measured using an automated exercise compatible
device (Tango, SunTech Medical). Expired gases were sampled
during exercise with a mouthpiece-mounted sensor and were
analyzed continuously to measure oxygen consumption (VO2),
carbon dioxide production (VCO2), and minute ventilation
(VE). The peak VO2 (mlO2•kg

−1
•min−1) during exercise was

defined as the highest 10-s average value for VO2 during the
last 30 s of the exercise. Peak VO2 measured during exercise
is the most objective variable for assessment of functional
capacity as is an important prognostic indicator (3). American
Heart Association/American College of Cardiology guidelines for
exercise testing contraindications and termination criteria were
followed.

Doppler Echocardiography
Subjects underwent transthoracic Doppler echocardiogram.
Echocardiography was performed according to the American
Society of Echocardiography measurement guidelines and
provides information on both cardiac dimensions and function
(14). LV end-diastolic and end-systolic volumes (LVEDV,
LVESV), EF, and early transmitral E wave velocities were
obtained. Early mitral annulus (e′) velocities obtained by
tissue Doppler were averaged between lateral and septal e′

and tricuspid annulus plane systolic excursion. The E/e′ ratio
provides information on diastolic function and was calculated to
estimate LV filling pressures (15, 16).

Biomarker Analysis
We analyzed differential comprehensive metabolic profile and
plasma levels of biomarkers including high-sensitivity CRP
and NT-proBNP. CRP, a marker for systemic inflammation,
is increased in HF and has shown to relate to poor exercise
performance (8, 9). CRP values <3.0 mg/L were considered
within normal range. CRP values >3.0 mg/L have shown to
be associated with an increased risk of cardiovascular disease
(6). N-terminal pro-brain natriuretic peptide (NT-proBNP),
a biomarker of myocardial strain, correlates with exercise
capacity in HF (12). NT-proBNP values <300 ng/ml were
considered within normal range (17). Both CRP and NT-proBNP
independently predict adverse outcomes in patients with HF
(7, 18, 19). Furthermore, we analyzed White Blood Cell (WBC)
count, absolute neutrophils, and leukocyte count. Neutrophil to
leukocyte ratio (NLR) is a measure for systemic inflammation
(20). A NLR >4 has prognostic value in cardiovascular disease
(21).

Data Analysis
For the data analysis, each of the tests were considered as
a separate measurement for data analysis. We assessed the
correlation between different clinical parameters and peak
oxygen consumption (peak VO2), as the preferred measures of
CRF obtained during effort-limited maximal cardiopulmonary
exercise testing (CPX). This was done for the entire HF group
and then analyzed separately for 2 groups of patients stratified
according to LVEF<50% (HFrEF) or≥50% (HFpEF). According
to the Fick principle, peak VO2 is determined by stroke volume,

heart rate, and arterial-venous oxygen difference and therefore
reflects both cardiac, vascular, and peripheral skeletal muscle
components. The cause of exercise intolerance has been proposed
to be different in HFrEF and HFpEF patients, therefore we
stratified according to LVEF (22).

Statistical Analysis
Data was tested for deviation from Gaussian distribution
using the Kolmogorov–Smirnov test, and due to a lack of
deviation, is presented as mean and standard deviation. Data
that deviated from Gaussian distribution is presented as median
and interquartile range. For normally distributed continuous
variables, differences between groups were evaluated using
independent-samples t-test, and for not normally distributed
variables with the Mann–Whitney U-test. Correlations between
continuous variables were assessed using linear regression.
Multivariate analysis using stepwise linear regression was used
to assess predictors of CRF with available clinical parameters.
A ROC curve analysis was performed to evaluate whether
the biomarkers had discriminative value for reduced CRF
defined as peak VO2 <10 mlO2•kg

−1
•min−1and peak VO2 <14

mlO2•kg
−1

•min−1. SPSS Statistics 24.0 (IBM, Armonk, NY)
statistical software package was used for all analyses. No missing
data imputation method used. A p-value < 0.05 was considered
statistically significant.

TABLE 1 | Clinical characteristics in all patients.

Patient characteristics (N = 200)

Age, y 57 (10)

Male sex, n (%) 110 (55%)

BMI, kg/m2 35 (8)

BIOMARKERS

CRP, mg/L 7.1 (8.9) 3.7 [1.5–9.0]

WBC, ×109/L 7.2 (2.4)

Absolute Neutrophils, ×109/L 4.0 [3.1–5.2]

Absolute Lymphocytes, ×109/L 1.9 (0.6)

Neutrophil-to-Lymphocyte ratio 2.3 [1.6–3.1]

NT-proBNP, ng/ml 1306 (3092) 377 [106–1464]

DOPPLER ECHOCARDIOGRAPHY PARAMETERS

LVEF, % 44 (14)

E/e’ 15 (8)

CARDIOPULMONARY EXERCISE PARAMETERS

Treadmill exercise time, min 8.7 (2.8)

Peak VO2, mlO2•kg
−1

•min−1 16 (4)

Peak VO2 % of predicted 54 (16)

VE/VCO2 slope 33 (7)

DASI score 30 (16)

MLWHF score 46 (26)

BMI, Body Mass Index; WBC, White Blood Cell Count; NLR, Neutrophil to Leukocyte

Ratio; DASI, Duke Activity Status Index; MLWHF, Minnesota Living With Heart Failure;

LVEF, Left Ventricular Ejection Fraction; VO2, Oxygen uptake; VE, Minute Ventilation;

VCO2, Carbon Dioxide output. Data shown as mean and (standard deviation) or median

and [interquartile range].

Frontiers in Cardiovascular Medicine | www.frontiersin.org 3 December 2018 | Volume 5 | Article 178110

https://www.frontiersin.org/journals/cardiovascular-medicine
https://www.frontiersin.org
https://www.frontiersin.org/journals/cardiovascular-medicine#articles


van Wezenbeek et al. Biomarkers For CRF in HF

RESULTS

We evaluated a total of 366 CPX from 200 different patients (2.0
± 1.3 studies per patient) of which the clinical characteristics
are shown in Table 1 for all patients. Clinical characteristics
are shown separately for patients with HF with reduced LVEF
(LVEF <50%) and for patients with HF with preserved LVEF
HFpEF (LVEF ≥50%) in Table 2. Mean age of patients was
57 ± 10 years and 110 (55%) were male. Mean LVEF was 44
± 14% (HFrEF, N = 109 and HFpEF, N = 57) (Figure 1),
with a mean LVEF of 36 ± 11% in HFrEF, and 58 ± 6% in
HFpEF. Median high-sensitivity CRP levels were 3.7 [1.5–9.0]
mg/L, respectively andmedianNT-proBNP levels were 377 [106–
1,464] pg/ml, respectively. In HFrEF, median CRP levels were
4.2 [1.9–9.2] mg/L, and median NT-proBNP levels were 1,029
[280–2,263] pg/ml. In HFpEF, median CRP levels were 3.7 [0.6–
10.8] mg/L and median NT-proBNP levels were 102 [46–183]
pg/ml, respectively (P < 0.001 for NT-proBNP, P = 0.03 for
CRP between HFpEF and HFrEF). The distribution of LVEF,
CRP, and NT-proBNP is shown in Figure 1. Mean White Blood
Cell (WBC) count and median Neutrophil to Leukocyte Ratio
(NLR) was 7.2 (2.4) × 109/L and 2.3 [1.6–3.1], with a mean
WBC count and median NLR of 7.4 (2.6) × 109/L and 2.0
[1.5–2.7] in HFpEF, and 6.9 (2.1) × 109/L and 2.3 [1.6–3.2] in
HFrEF, respectively, (P = 0.198 for WBC count, P = 0.07 for
NLR). Mean peak oxygen consumption (peak VO2) was 16 ± 4
mlO2•kg

−1
•min−1and mean treadmill exercise time (TET) was

8.7± 2.8min.

CRP as a Predictor of CRF
CRP levels significantly and inversely correlated with peak VO2

(R = −0.350, p < 0.001, N = 316), and with TET (R = −0.342,
p < 0.001, N = 314) as shown in Figure 2. The association
between CRP and peak VO2 and between CRP and TET
remained significant when the analysis was limited to HFrEF
patients (R = −0.282, p < 0.001, N = 192 for peak VO2 and
R = 0.336, p < 0.001, N = 190 for TET) and to HFpEF patients
(R = −0.459, p < 0.001, N = 90 for peak VO2 and R = −0.345,
p < 0.01, N = 90 for TET).

NT-proBNP as a Predictor of CRF
NT-proBNP levels significantly and inversely correlated with
peak VO2 (R = −0.330, p < 0.001, N = 258) and with TET
(R = −0.412, p < 0.001, N = 256) as shown in Figure 3. The
association betweenNT-proBNP and peak VO2 and betweenNT-
proBNP and TET remained significant when the analysis was
limited to HFrEF patients (R = −0.354, p < 0.001, N = 168 for
peak VO2 and R = −0.437, p < 0.001, N = 166 for TET) as well
as in HFpEF patients (R = −0.275, p = 0.032, N = 61 for peak
VO2 and R=−0.459, p < 0.001, N = 61 for TET).

Multivariate Analysis
Multivariate analysis including CRP and NT-proBNP showed
that both CRP and NT-proBNP independently predicted peak
VO2 (R = 0.421, p < 0.001 and p < 0.001, respectively), and
TET (R = 0.478, p < 0.001, and p < 0.001, respectively).
CRP and NT-proBNP did not exhibit collinearity (R = +0.05,

TABLE 2 | Clinical characteristics in HFpEF and HFrEF patients.

HFpEF (N = 57) HFrEF (N = 109)

Age, y 53 (9) 57 (10) P = 0.03

Male sex, n (%) 19 (33%) 78 (72%) P < 0.001

BMI, kg/m2 40 (8) 34 (8) P < 0.001

BIOMARKERS

CRP, mg/L 6.4 (7.1) 3.7 [0.6–10.8] 7.7 (9.7) 4.2 [1.9–9.2] P = 0.03

NT-proBNP, ng/ml 172 (266) 102 [46-183] 1906 (3693) 1029 [280–2263] P < 0.001

HgB, g/dl 13.1 (1.8) 13.2 (1.7) P = 0.75

HBA1c, % 7.7 (1.9) 6.8 (1.4) P < 0.001

WBC, ×109/L 7.4 (2.6) 6.9 (2.1) P = 0.198

Absolute Neutrophils, ×109/L 4.1 [3.0–5.4] 4.0 [3.1–5.2] P = 0.71

Absolute Lymphocytes, ×109/L 2.1 (0.6) 1.8 (0.6) P = 0.002

Neutrophil-to-Lymphocyte ratio 2.0 [1.5–2.7] 2.3 [1.6–3.2] P = 0.07

DOPPLER ECHOCARDIOGRAPHY PARAMETERS

LVEF, % 58 (6) 36 (11) P < 0.001

LVEDV, ml 110 (32) 172 (62) P < 0.001

LVESV, ml 47 (19) 115 (55) P < 0.001

E′ 8.1 (2.4) 6.5 (3.6) P = 0.01

E/e′ 11.3 (4.7) 17.2 (8.3) P < 0.001

CARDIOPULMONARY EXERCISE PARAMETERS

Treadmill exercise time, min 9.4 (2.6) 8.4 (2.8) P = 0.005

Peak VO2, mlO2•kg
−1

•min−1 16.5 (4.6) 15.4 (4.3) P = 0.04

Peak VO2 % of predicted 55 (17) 52 (14) P = 0.356

VE/VCO2 slope 30 (5) 33 (7) P < 0.001

BMI, Body Mass Index; HgB, Hemoglobin; HBA1c, Hemoglobin A1c; WBC, White Blood Cell Count; NLR, Neutrophil to Leukocyte Ratio; LVEF, Left Ventricular Ejection Fraction; LVEDV,

Left Ventricular End Diastolic Volume; LVESV, Left Ventricular End Systolic Volume; VO2, Oxygen uptake; VE, Minute Ventilation; VCO2, Carbon Dioxide output. Data shown as mean

and (standard deviation) or median and [interquartile range].
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FIGURE 1 | Distribution of LVEF, CRP, and NT-proBNP levels in the population.

Histogram showing the distribution of (A) LVEF, (B) CRP levels, and (C)

NT-proBNP levels in the population. LVEF, Left Ventricular Ejection Fraction.

p = 0.426, N = 255). When the analysis was limited to HFrEF
patients, CRP and NT-proBNP predicted peak VO2 (R = 0.432,
p< 0.001, p< 0.001, respectively) and TET (R= 0.496, p< 0.001,
p< 0.001, respectively). When the analysis was limited to HFpEF

patients, NT-proBNP predicted peak VO2 independent from
CRP (R = 0.287, p = 0.5 for CRP, p = 0.04 for NT-proBNP) and
TET (R = 0.459, p = 0.988 for CRP, p < 0.001 for NT-proBNP).
Furthermore, multivariate analysis including NT-proBNP, BMI,
age, and sex significantly predicted peak VO2 (R = 0.631,
p < 0.001, p < 0.001, p = 0.04, respectively, with a trend for
sex (p = 0.08). NT-proBNP, CRP, BMI, age, and sex significantly
predicted TET (R = 0.651, p < 0.001, p = 0.006, p < 0.001,
p < 0.001, p = 0.029, respectively). When the analysis was
limited to HFrEF patients, BMI, age, sex, NT-proBNP, and CRP
predicted Peak VO2 (R = 0.669, p < 0.001, p < 0.001, p < 0.001,
p < 0.001, p= 0.03, respectively) and TET (R= 0.716, p < 0.001,
p < 0.001, p < 0.001, p < 0.001, p = 0.002, respectively).
When the analysis was limited to HFpEF patients, BMI, and age
significantly predicted peak VO2 (R = 0.669, p < 0.001, and
p< 0.001, respectively) and BMI, age, and NT-proBNP predicted
TET (R= 0.680 p < 0.001, p= 0.017, p= 0.03, respectively).

ROC Curve Analysis
A ROC curve analysis was performed to evaluate whether
CRP and NT-proBNP have discriminative value for reduced
CRF, defined as peak VO2 <10 mlO2•kg

−1
•min−1and peak

VO2 <14 mlO2•kg
−1

•min−1(Figure 4). For peak VO2 < 10
mlO2•kg

−1
•min−1, the area under the curve (AUC) = 0.660

95% CI [0.544–0.776], P = 0.014 for CRP and AUC = 0.749
95% CI [0.669–0.829], P < 0.001 for NT-proBNP. For peak VO2

<14 mlO2•kg
−1

•min−1, AUC = 0.658 95% CI [0.597–0.718],
P < 0.001 for CRP and AUC = 0.608 95% CI [0.537–0.678]
P = 0.003 for NT-proBNP.

DISCUSSION

CRF is an important determinant of quality of life and prognostic
indicator in patients with HF (23, 24). In the current study,
we show that systemic inflammation, as measured by elevated
CRP levels, and myocardial strain, as indicated by elevated NT-
proBNP levels, independently predict impaired CRF in patients
with HF, reflected in reduced peak VO2. Both CRP and NT-
proBNP show a high discriminative value for reduced CRF as
defined by peak VO2 <10 mlO2•kg

−1
•min−1and peak VO2 <14

mlO2•kg
−1

•min−1.

Systemic Inflammation in Heart Failure
HF is characterized by systemic inflammation, as shown by
elevated circulating levels of inflammatory biomarkers in patients
that increase with progression of the disease (25). For one,
systemic inflammation may be the result of HF by means of
tissue hypoperfusion and neurohormonal activation (26), or
inflammation may play a pathophysiologic role in HF (27, 28).
It is suggested that the pro-inflammatory state contributes to
the development and progression of HF, not only by impairing
myocardial function but also by affecting other organs and
tissues and thereby adding to other aspects of the HF syndrome
including cachexia and anemia (25).

The preferred inflammatory biomarker in cardiovascular
disease is CRP (29, 30). HF patients have elevated CRP levels
and such levels tend to increase with clinical decompensation
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and predict worse outcomes (5, 31, 32). Elevated CRP levels
reflect inflammatory and immune deregulation in HF (31, 33).
Elevated CRP levels also correlate with worse cardiac function
(34, 35), and worse functional capacity in patients with ischemic
heart disease and systolic HF (8, 9). The association between
elevated CRP levels and HF is however complex and likely
only incompletely understood. CRP is produced in the liver in
response to cytokines such as Interleukin-6 (IL-6) (36). IL-6 is
considered a secondary cytokine produced by myeloid cells in
response to Interleukin-1 (IL-1) and Tumor Necrosis Factor-α
(TNF-α) (36). Elevated IL-1 and TNF-α levels have been reported
in patients with HF (33, 37). Moreover, IL-1 and TNF-α are also
known as soluble cardiodepressant factors in patients with sepsis
(38). More recently enhanced IL-1 activity has been described
in patients with acute decompensated HF (31). IL-1 induces
a reversible left ventricular systolic dysfunction in the mouse
that is characterized by β-adrenergic receptor desensitization and
impaired contractile reserve (39). This data points to an active
role of IL-1 in the pathophysiology of HF.

Myocardial Strain
Elevated NT-proBNP levels reflect myocardial strain due to
increased pressure, however, levels may also increase in response
to other insults such as ischemia or inflammatory cytokines.
NT-proBNP has shown to predict adverse outcomes in HF
patients (10). Although BNP exerts protective effects on the
heart during HF, the circulating levels of BNP or NT-proBNP
reflect worse hemodynamics (elevated filling pressures) and
neurohormonal activation (40). A lack of endogenous BNP
response facilitates the onset of HF in animal experimental
models (41), whereas potentiation of the BNP effects using
recombinant BNP or neprylisin inhibitors help prevent
HF (42).

Limitations
The retrospective nature of the study limited the power of our
analyses, specifically in the HFpEF cohort for which the sample
size was smaller than for HFrEF patients. Another limitation
of our study is that every visit in the data analysis was used
as separate data point, which results in some patients being
represented more than once in the database. Having patients
represented more than once can alter the representation of the
patient population, as a single patient could have provided more
than one data entry leading to an over-representation of their
specific clinical characteristics. Lastly, we were not able to address
the role of other biomarkers for inflammation in HF in our
study.

Potential Implications for Diagnosis, Risk

Stratification, and Treatment
According to our findings, both elevated CRP and NT-proBNP
levels are independently predictive of impaired CRF in HF
and predictive of moderately or severe reduction in peak
VO2. A scoring system that would include both biomarkers is
therefore likely to yield a better discrimination than only one
of the markers. In non-ST elevation ACS, CRP, and BNP in
combination with troponin I were predictive of mortality, MI

and CHF. Further, a combination of the biomarkers provided
additional prognostic value (43). These observations were
validated in a cohort of 1,635 patients in the TACTICS-TIMI
18 study, and after adjustment for known clinical predictors,
the number of elevated biomarkers remained predictive of the
composite end point. Specifically, patients with one, two, and
three elevated biomarkers had a 2.1, 3.1, and 3.7-fold increase
in the risk of death, MI, or development of CHF after 6 months
(43). A scoring system that could utilize the prognostic power
of both CRP and NT-proBNP would allow for risk stratification
beyond that solely provided by each of the markers used
separately to predict CRF in patients with HF across a wide range
of LVEF.

Inhibiting systemic inflammation with anti-inflammatory
therapies and alleviating myocardial strain may represent two
independent therapeutic strategies to improve CRF in patients
with HF. Phase II studies have started exploring the effects
of Interleukin-1 blockers in HF. A pilot feasibility study in
7 patients was conducted to test the efficacy of Anakinra on
CP exercise performance in patients with HF and evidence
of CRP. CRP levels were greatly reduced and peak VO2

significantly improved (31). In the REDHART sub study, 60
patients with HFrEF and elevated CRP were randomly assigned
to daily subcutaneous injections of Anakinra 100mg for weeks,
12 weeks, or placebo (44). Treatment with Anakinra did not
affect peak VO2 or VE/VCO2 slope at 2 weeks; however,
patients showed improvement in peak VO2 when assigned
to the 12-week group. Further, the incidence of death or
rehospitalization for HF at 24 weeks was 6, 31, and 30% for
the Anakinra 12-week, Anakinra 2-week, and placebo groups,
respectively. In the D-HART pilot study, the effects of IL-
1 blockade with Anakinra on aerobic exercise capacity and
CRP in patients with HFpEF were examined (45). Anakinra
led to a statistically significant improvement in peak VO2

consumption and a significant reduction in plasma CRP
levels.

In a follow up study, the Diastolic Heart Failure Anakinra
Response Trial-2 (DHART-2), patients with stable symptomatic
HFpEF were treated with Anakinra to confirm the effects on
peak VO2 and CRP and observe its effects on serum NT-proBNP
(46). Twenty-eight patients completed two visits or more and
Anakinra was found to significantly reduce CRP as well as NT-
proBNP levels. After 12 weeks of IL-1 blockade with Anakinra,
NT-proBNP was reduced at a magnitude that correlated with
CRP reduction. Anakinra however failed to increase peak VO2

in the DHART2 study. The potential benefits of IL-1 blockade
in patients with heart disease is further supported by the results
of the phase III Canakinumab Antiinflammatory Thrombosis
Outcome Study (CANTOS) (47), in which patients with prior
acute myocardial infarction were randomized to canakinumab,
IL-1β blocker, or placebo, and showed a significant reduction
in major adverse cardiac events. A small single-center sub-
study of the CANTOS trial showed a significant improvement
in peak VO2 in canakinumab-treated patients at 3 and 12
months (46).

Neprilysin inhibitors have also provided a novel therapeutic
strategy to combat HF symptoms and promote CRF. Another
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FIGURE 2 | CRP as predictor of CRF in HFrEF and HFpEF. Correlations are shown in (A) between CRP and Peak VO2 in patients with HFpEF (R = −0.459,

P < 0.001) and with HFrEF (R = −0.282, P < 0.001) and in (B) between CRP and TET in patients with HFpEF (R = −0.345, P < 0.001) and with HFrEF

(R = −0.336, P < 0.001). VO2, Oxygen uptake; HFpEF, Heart Failure with preserved Ejection Fraction; HFrEF, Heart Failure with reduced Ejection Fraction; TET,

Treadmill Exercise Time.

FIGURE 3 | NT-proBNP as predictor of CRF in HFrEF and HFpEF. Correlations are shown in (A) between NT-proBNP and Peak VO2 in patients with HFpEF

(R = −0.275, P = 0.032) and with HFrEF (R = −0.354, P < 0.001) and in (B) between NT-proBNP and TET in patients with HFpEF (R = −0.459, P < 0.001) and with

HFrEF (R = −0.437, P < 0.001). VO2, oxygen uptake; HFpEF, Heart Failure with preserved Ejection Fraction; HFrEF, Heart Failure with reduced Ejection Fraction; TET,

Treadmill Exercise Time.

study was completed to compare the effects of Candoxatril (novel
neutral endopeptidase inhibitor) with those of Furosemide in
the treatment of patients with mild HF (37). Male patients with

mild HF were randomly assigned to treatment with 20mg of
Furosemide twice a day, 200mg of Candoxatril twice a day,
or 400mg of Candoxatril twice a day, for 9 days. For patients
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AUC: 0.660, 

P=0.014 
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P<0.001 

 

pVO2<10 
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pVO2<14 
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AUC: 0.658 

P<0.001 

 

AUC: 0.608 

P=0.003 

 

BA
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FIGURE 4 | Discriminative value of CRP and NT-proBNP for reduced CRF. ROC curves depicting the discriminative value of CRP in (A) and of NT-proBNP in (B) for

reduced CRF defined as Peak VO2 < 10 mlO2•kg
−1

•min−1 (AUC = 0.660, P = 0.014 for CRP and AUC = 0.749, P < 0.001 for NT-proBNP). ROC curves depicting

the discriminative value of CRP in (C) and NT-proBNP in (D) for reduced CRF defined as Peak VO2 < 14 mlO2•kg
−1

•min−1 (AUC = 0.658, P < 0.001 for CRP and

AUC = 0.608, P = 0.003 for NT-proBNP). ROC, Receiver operating characteristic; CRF, Cardiorespiratory Fitness; VO2, oxygen uptake; AUC. Area Under the Curve.

assigned to Furosemide, treadmill exercise capacity decreased by
30 ± 26 s compared to an increase of 12 ± 35 and of 35 ± 31 s
for 200mg of Candoxatril twice a day and 400mg of Candoxatril
twice a day, respectively (37). A pilot study was completed
to evaluate the short-term effects of sacubitril/valsartan on
maximal exercise capacity evaluated by peak VO2 in stable
patients with symptomatic HFrEF, with a secondary end point
looking at changes in the VE/VCO2 slope. When compared
with baseline peak VO2, patients experienced a significant

increase in peak VO2 at 30 days (+0.92 mlO2•kg
−1

•min−1),
which corresponded to a 7.9% increase (38). These beneficial
effects on CRF, fit well with the overall favorable effects of
sacubitril/valsartan on major adverse cardiovascular events
and cardiac death in the Prospective Comparison of ARNI
(Angiotensin Receptor-Neprilysin Inhibitor) with ACEI
(Angiotensin-Converting-Enzyme Inhibitor) to Determine
Impact on Global Mortality and Morbidity in Heart Failure
(PARADIGM-HF) trial (48).
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CONCLUSION

Biomarkers of inflammation and myocardial strain
independently predict reduced peak VO2 in HF patients. Anti-
inflammatory therapies and therapies alleviating myocardial
strain may independently improve CRF in HF patients across a
large spectrum of LVEF.
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Acyltransferase 3
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Not Sufficient to Induce
Atherosclerosis in a Mouse Model

Hui Jiang 1,2, Zhiqiang Li 1,2, Chongmin Huan 1,2,3 and Xian-Cheng Jiang 1,2*

1Department of Cell Biology, State University of New York Downstate Medical Center, Brooklyn, NY, United States,
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Mammalian cell membrane phosphatidylcholines (PCs), the major phospholipids,

exhibit diversity which is controlled by Lands’ cycle or PC remodeling pathway.

Lysophosphatidylcholine acyltransferase (LPCAT) is one of the major players in the

pathway and plays an important role in maintaining cell membrane structure and function.

LPCAT3 is highly expressed in macrophages, however, its role in mediating inflammation

is still not understood, since contradictory results were reported previously. The order

of LPCAT mRNA levels in mouse macrophages is as follows: LPCAT3 > LPCAT1 >

LPCAT2 >> LPCAT4. In order to investigate the role of LPCAT3 in macrophages, we

prepared myeloid cell-specific Lpcat3 knockout (KO) mice and found that the deficiency

significantly reduced certain polyunsaturated phosphatidylcholines, such as 16:0/20:4,

18:1/18:2, 18:0/20:4, and 18:1/20:4 in macrophage plasma membrane. Lpcat3

deficiency significantly increased toll like receptor 4 protein and phosphorylated c-Src

in membrane lipid rafts, and increased LPS-induced IL-6 and TNFα releasing through

activation of MAP kinases and NFκB. Moreover, the ablation of LPCAT3 in macrophages

significantly increase of M1 macrophages. However, macrophage deletion of Lpcat3 in

(LDL receptor) Ldlr KO mice, both male and female, on a Western type diet, did not

have a significant impact on atherogenesis. In conclusion, LPCAT3 is one of LPCATs in

macrophages, involved in PC remodeling. LPCAT3 deficiency has no effect on cholesterol

efflux. However, the deficiency promotes macrophage inflammatory response, but such

an effect has a marginal influence on the development of atherosclerosis.

Keywords: lysophosphatidylcholine acyltransferase 3 (LPCAT3), phosphatidylcholine remodeling, macrophage

Lpcat3 gene knockout mice, inflammation, atherosclerosis

INTRODUCTION

Phosphatidylcholines (PCs), the major phospholipids, on mammalian cell membrane exhibit
structural diversity (1, 2). Polyunsaturated PCs ensure the fluidity of cell membrane.
In macrophages, the plasma membrane provides a platform that mediates inflammation.
lipopolysaccharide (LPS) or peptidoglycan treatment promotes the assembly of the toll like
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receptor (TLR) complex in lipid rafts (3–5). We found that a
decrease in macrophage plasma membrane sphingomyelin level
can effectively prevent inflammatory responses by reducing TLR4
expression (6–8), thus decreasing atherosclerosis (6, 7, 9). It is
also reported that cellular lipids are important regulators of c-Scr
activation by altering the recruitment of C-Scr to the plasma
membrane (10) and many studies also have shown a critical
role for c-Src in macrophage-mediated inflammatory responses
(11). It is known that the composition of polyunsaturated PCs in
membranes is regulated by LPCATs (12–14).

There are four isoforms for LPCAT (13, 15–18). The
major isoform in the liver and macrophage is LPCAT3 (14,
18–20). LPCAT3 exhibits an acyl donor preference toward
polyunsaturated fatty acid-CoA molecules like arachidonoyl-
CoA (18, 21). Modifications of polyunsaturated PC composition
on cell membrane have an impact on many biological processes
(22–27). We found that Lpcat3 deficiency significantly reduces
polyunsaturated PCs on the hepatocytes and enterocytes and
impacts plasma lipid metabolism (28).

The development of atherosclerosis is closely related with
inflammation. Macrophage-derived foam cells in the vessel
wall can produce many pro-inflammatory chemokines and
cytokines (29) which promote atherogenesis. Previously, one
study showed that Lpcat3 silencing significantly increased LPS-
mediated inflammatory response in macrophages and this
could be due to the decrease of macrophage membrane
polyunsaturated PCs (14). On the contrary, another study
indicated that Lpcat3 silencing did not influence macrophage
LPS-induced inflammatory response, although PC composition
changes were also observed (19). We still do not understand
the discrepancy of both studies and still do not know whether
PC remodeling in macrophage has an impact on inflammation.
Very recently, it has been reported that Lpcat3 deficiency
in hematopoietic cells influence cholesterol and phospholipid
metabolism and promotes atherosclerosis in a mouse model
(30). However, macrophage specific Lpcat3 deficiency on
atherosclerosis is still not precisely evaluated. In this study, we
utilized myeloid cell-specific Lpcat3 deficient mice to study the
effect of Lpcat3 deficiency on cholesterol efflux, inflammation,
and atherosclerosis.We hypothesized that alterations in the levels
of macrophage membrane polyunsaturated PCs affect membrane
fluidity, cholesterol efflux and inflammatory responses.

MATERIALS AND METHODS

Generation of Myeloid Cell-Specific

Lpcat3-Deficient Mice
Lpcat3-Flox mice (28) were crossed with LysM-Cre transgenic
mice (Jackson Laboratory) to establish Lpcat3-Flox/LysM-Cre
mice according to the strategy (Figure 1A). We used both male
and female mice, with C57BL/6 background and at age of
12-week-old. Our studies were approved by the Institutional

Abbreviations: LPCAT3, lysophosphatidylcholine acyltransferase 3;

PC, phosphatidylcholine; KO, knockout; cre, cre recombinase; LPS,

lipopolysaccharide; TLR4, toll like 4 receptor; WT, wild type.

Animal Care and Use Committee of State University of New
York Downstate Medical Center.

Bone Marrow-Derived Macrophage

Isolation
Mice were sacrificed by CO2. Bone marrow cells were isolated
and macrophages were cultured as we did before (7). To
eliminated the effect of FBS on macrophage surface PC
composition, medium was changed to serum-free medium (0.2%
BSA DMEM) for 24 h before all in vitro experiments.

mRNA Measurement
Total RNA was extracted from the cells using Trizol method
(Invitrogen). The SuperscriptTM III First-strand Synthesis
kit (Invitrogen) was used for cDNA synthesis. SYBR Select
Master Mix kit (Applied Biosystems) was used for PCR with
following program: activation at 95◦C for 10min followed
by 40 amplification cycles of 95◦C for 15 s and 60◦C for 60 s.
The gene encoding Gapdh was used as internal controls.
Relative gene expression is expressed as the mean ± SD. Mouse
Lpcat3 primers: forward, TTTCTGGTTCCGCTGCATGT,
reverse, CCGACAGAATGCACACTCCTTC; Gapdh primers:
forward, TGTAGACCATGTAGTTGAGGTCA; reverse, AGGTC
GGTGTGAACGGATTTG. Lpcat1 primers: forward, CGTGA
ATATGTGGTCGCCTTG, reverse, ATGCTGCCATCCTCA
GGAGAT. Lpcat2 primers: forward, GTCCAGCAGACTACG
ATCAGTG, reverse, CTTATTGGATGGGTCAGCTTTTC.
Lpcat4 primers: forward, TTCGGTTTCAGAGGATACGACAA,
reverse, AATGTCTGGATTGTCGGACTGAA.

Measurement of Total LPCAT3 Activity and

PC Subspecies
LPCAT3 activity was measured according to a published
protocol, using NBD-lysoPC and arachidonoyl-CoA as
subtracts (20). Liquid chromatography-coupled tandem
mass spectrometry (LC-MS/MS) was used for the measurement
of PC subspecies as described (20).

M1/M2 Measurement
Control and Lpcat3 KO mice were euthanized by CO2, and
peritoneal macrophages were harvested by washing abdominal
cavity with cold PBS. Harvested peritoneal resident macrophages
were made to single-cell suspensions. Cells were then blocked
with 0.5% BSA (w/v) and 2% FBS (v/v) in PBS and then stained
with antibodies F4/80 (1:600 dilutions; BD Bioscience), CD11b
(1:600 dilutions; BD Bioscience), and CD80 (1:600 dilutions;
BD Bioscience) or CD206 (1: 400; Thermo Fisher). After being
washed 3 times, cells were suspended in PBS and analyzed by
Flow-cytometery.

Western Blot for Macrophage Lipid Rafts

Lyn, TLR4, Total c-Scr, and Phosphorylated

c-Scr
Macrophages (50 × 106), derived from Bone marrow, were
homogenized. A previously reported method was used for lipid
rafts isolation (8). Equal amount of protein from all fragments
were used for Western blots with specific antibodies to Lyn
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FIGURE 1 | Myeloid cell-specific Lpcat3 KO mouse preparation. (A) Strategy for myeloid cell-specific Lpcat3-deficient mice preparation. (B) LPCAT3 mRNA tissue

distribution. (SI, small intestine; AT, adipose tissue) (C) Macrophage LPCAT1, LPCAT2, and LPCAT3 mRNA tissue distribution. mRNAs were measured by Real-time

PCR. Values are mean ± SD, n = 4, *P < 0.01.

FIGURE 2 | LPCAT3 activity and PC composition measurements. (A,B) LPCAT3 activity measurement and quantification. The detail procedure was stated in

“Materials and Methods.” (C,D) PC subspecies measured by LC/MS/MS. Values are mean ± SD, n = 3–4, *P < 0.05, **P < 0.01.
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(Santa Cruz), TLR4 (Santa Cruz), total c-Scr (Cell Signaling), and
phospho-Src-Tyr416 (Cell Signaling).

TNF-α and IL-6 Measurements
Bone marrow–derived macrophages were treated with 10 ng/ml
LPS for 16 h and TNF- α and IL-6 released to the medium were
analyzed with ELISA kits (eBiosciences).

Western Blot for Macrophage p38 and

p42/44
To eliminate lipoprotein effect from FBS to cell surface PC
composition, Bone marrow-derived macrophage from Control
and Lpcat3 KO mice were changed to serum-free medium 24 h
before experiment. Macrophages were then treated with 1µg/ml
LPS in 0.2% BSADMEM for 0, 10, and 20min. Cells were washed
with cold PBS and harvested. Cells were homogenized in TSE
buffer (50mM Tris, 200mM NaCl, 1mM EDTA, pH 7.5). Cell
lysates were used for Western blots with antibodies against p38
and p42/44 (Cell Signaling). The maximum intensity of each
band was measured by Image-Pro Plus version 4.5 software
(Media Cybernetics Inc.).

Nuclear Preparation and Western Blot for

P65
We isolated macrophage nucleus using a Kit (Thermo Scientific).
The nuclear preperation was utilized for Western blot with
specific antibodies to p65 (Santa Cruz) and anti-histone 3 (H3).

Isolation of Lipid Rafts
Bone marrow-derived macrophages (50 × 106) were
homogenized and lipid rafts were isolated by a previously
reported method (8).

Cholesterol Efflux (ex vivo) Measurement
Bone marrow-derived macrophages were labeled with
[3H]cholesterol carried by acetylated-LDL. The cholesterol
efflux was measured by an established method (7).

Bone Marrow Transplantation and

Atherosclerosis Study Model
Ldlr KO female or male mice (age 8 weeks, Jackson Laboratory)
were utilized. Bone marrow transplantation was performed as
previously described (7). After 8 weeks transplantation, all mice
were on a high fat high cholesterol diet for 3 months.

FIGURE 3 | Lpcat3 KO macrophages promotes p38, p42/44, and NFκB activation. WT and Lpcat3 KO macrophages were treated with 1µg/ml LPS. (A) Western

blot and quantitative display of total p38 and phosphorylated p38. (B) Western blot and quantitative display of total p42/44 and phosphorylated p42/44. Macrophage

nucleus were isolated and p65 was measured by Western blot. (C) Western blot and quantitative display of p65. Values are mean ± SD, n = 3–4, *P < 0.01; **P <

0.01.
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Mouse Atherosclerotic Lesion

Measurement
Weused themethod which we reported before for atherosclerotic
lesion measurement (7).

Statistical Analysis
Mean ± SD is expressed for each results. Data between two
groups were analyzed by the unpaired, two-tailed Student’s t-
test, and among multiple groups by ANOVA followed by the
Student-Newman-Keuls (SNK) test.

RESULTS

Production of Myeloid Cell-Specific

Lpcat3-Deficient Mice
To produce myeloid cell-specific Lpcat3 KO mice, we crossed
Lpcat3-Flox mice with LysM-Cre transgenic mice. We collected
bone marrow derived macrophage, liver, small intestine, adipose
tissue, kidney, spleen from the homozygous KO male mice.
Compared with controls, Lpcat3 mRNA level was decreased by
80% in the macrophage but no other tissues (Figure 1B). We
also noticed that among the tested tissues, macrophage is the
lowest one for LPCAT3 expression (Figure 1B). Moreover, we
found that, besides LPCAT3, LPCAT1, and LPCAT2 are also
LPCAT isoforms expressed in macrophages and both may also
play important roles in PC remodeling in the cell. This is different
from the liver and small intestine, where LPCAT1, LPCAT2, and
LPCAT4 are negligible (28). Compared with controls, the mRNA
levels of LPCAT1 and LPCAT2 were significantly reduced by 30
and 35%, respectively, in Lpcat3 KO macrophages (Figure 1C).
We then measured total LPCAT3 activity using NBD-lysoPC
and arachidonoyl-CoA (14) in the macrophage homogenate
and found it was decreased by 80% compared with controls

(Figures 2A,B). Similar results were obtained with female mice
(data not shown).

Effect of Lpcat3 Deficiency on Macrophage

Inflammation, Cholesterol Efflux, and ER

Stress
PC subspecies populations in macrophage homogenates were
analyzed by LC/MS/MS. We found that Lpcat3 deficiency
decreased the amount of polyunsaturated PCs (16:0/20:4,
18:1/18:2, 18:0/20:4, and 18:1/20:4) in the membrane
(Figure 2C), while other PCs have no significant changes
except 16:0/18:0 which was increased (Figure 2D). These
changes could affect macrophage mediated inflammatory
response.

We investigated to consequence of Lpcat3 deficiency in
macrophage inflammatory responses. After LPS (1µg/ml)
treatment, Lpcat3 KO macrophages significantly increased
levels of phosphorylated p38 and p42/44 (Figures 3A,B). We also
measured nucleus NFκB subunit p65 and found it was increased
in Lpcat3 KOmacrophages (Figure 3C).

We then sought to investigate TLR4 levels in the KO
macrophages and controls, since TLR4 is upstream of NFκB
and MAP kinase. Lipid rafts play essential role in TLR4-
mediated signaling (4, 31), thus, we examined whether Lpcat3
deficiency affects TLR4 levels in the lipid rafts. We isolated
lipid rafts which are enriched with Lyn kinase (marker of lipid
rafts) (Figure 4A) and different subspecies of sphingomyelin
(Figure 4B), as reported before (7). As seen on Figure 4A, lipid
raft regions contain much more TLR4 protein compared with
controls.

A recent report indicated that c-Src phosphorylation
(activation)-mediated NFκB activation and then TNFα elevation
could participate in macrophage activation and inflammation

FIGURE 4 | Lipid rafts TLR4 and phosphorylated c-Src measurement. Macrophage lipid rafts isolated according a method in “Materials and Methods.” (A) Western

blot of Lyn Kinase (a lipid rafts marker) and TLR4 in each fractions from lipid rafts isolation. (B) LC/MS/MS measurement for sphingomyelin levels in rafts and non-rafts

regions. (C) Western blot of phosphorylated c-Src and total c-Src in each fractions from lipid rafts isolation. The picture is the representative of three experiments. *p<

0.05.
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(32). We found that Lpcat3 deficiency dramatically increased
phosphorylated c-Src in macrophage lipid rafts (Figure 4C) as
assessed by Western blot using phospho-Src-Tyr416 antibody.

To further confirm the impact of macrophage Lpcat3
deficiency mediated inflammation, we utilized F4/80, CD11b,
and CD80 antibodies to label M1 and F4/80, CD11b, and CD206
antibody to label M2 macrophages, respectively, then measured
abundancy of both macrophages using Flow cytometry.
We found that Lpcat3 deficiency significantly increased M1
(Figure 5A) but not M2 macrophages (Figure 5B). We further
treated macrophages with LPS and IL-4, respectively. We found
that LPS treatment significantly increased IL-1β mRNA levels in
the deficient macrophages (Figure 5C), while IL-4 treatment had
no effect on arginase1 (Figure 5D) but increased CD206 mRNA
levels (Figure 5E).

We also determined the impact of the deficiency-related
proinflammatory cytokine production. We stimulated the
macrophage with LPS and found that Lpcat3 deficiency
significantly promotes IL-6 and TNFα secretion from
macrophages, compared with controls (Figures 5F,G).

A previous study indicated that fetal liver derived Lpcat3
deficient macrophage reduced cholesterol efflux (30).
We first utilized Ac-LDL to load bone marrow derived

macrophages with cholesterol and we did not find a difference in
cholesterol accumulation between control and Lpcat3 deficiency
(Figure 6A). We then utilized Ac-LDL and [3H]-cholesterol
to load the cells with [3H]-cholesterol and then evaluated
cholesterol efflux using apoA-I. We also did not find significant
difference between control and Lpcat3 deficiency (Figure 6B).
We further measured mRNA levels of ABCA1 and ABCG1, both
transporters are involved in cholesterol efflux, and we did not
find any significant changes (Figure 6C).

It has been reported that Lpcat3 knockdown in macrophages
exacerbated mRNAs of genes which are involved in ER stress
(14). We measured mRNA levels of BIP, IRE1α, and PERK in
control and Lpcat3 KO microphages and found that BIP mRNA
was significantly reduced while mRNA levels of IRE1α and PERK
had no significant difference (Figure 6D).

Bone Marrow Transplantation and

Atherosclerosis Evaluation
To evaluate the impact of the Lpcat3 deficiency on
atherosclerosis, we transplanted Lpcat3 KO or wide type
(WT) bone marrow into lethally irradiated Ldlr KO mice to
produce Lpcat3 KO→Ldlr KO (experimental) and WT→Ldlr

FIGURE 5 | Evaluation of inflammation in Lpcat3 KO macrophages. (A,B) M1/M2 macrophage measurement. Harvested peritoneal macrophages were made to

single-cell suspensions. Cells were stained with antibodies F4/80, CD11b, and CD80 or CD206. Cell suspension was analyzed by Flow cytometry. (C) Macrophages

were treated 10 ng/ml LPS for 16 h, IL-1β mRNA was measured. (D,E) Macrophages were treated 20 ng/ml IL-4 for 24 h, arginase-1, and CD206 mRNAs were

measured, respectively. (F,G) Macrophages were treated with 10 ng/ml LPS for 16 h and TNF-α and IL-6 released to the medium were analyzed with ELISA kits

(eBiosciences). Values are mean ± SD, n = 3–4, *P < 0.01; **P < 0.01.
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FIGURE 6 | Measurements of cholesterol loading and efflux, ER stress markers, and plasma lipids. WT and Lpcat3 KO bone marrow derived macrophages were

labeled with [3H]cholesterol carried by acetylated-LDL. (A) Cellular cholesterol measurement after acetylated-LDL loading. (B) ApoA-I mediated cholesterol efflux. (C)

mRNA levels of ABCA1 and ABCG1. (D) mRNA levels of ER stress markers (BIP, IRE1α, and PERK) were measured by real-time PCR. (E,F) Plasma cholesterol and

triglyceride levels in WT→Ldlr KO and Lpcat3 KO→Ldlr KO mice. Values are mean ± SD, n = 4–8, *P < 0.01.

KO (control) mice. We then fed the animal with a high fat
high cholesterol diet (0.15% cholesterol, 20% saturated fat) for
3 months. We found no significant changes in plasma lipid
cholesterol and triglyceride levels (Figures 6E,F). We also found
that there was no difference in body weight gain in these animals
(data not shown).

Finally, we evaluated atherosclerosis in these mice. We found
that, after 3 months on a high fat high cholesterol diet, all mice
had lesions in the aortic arch. However, Lpcat3 KO→Ldlr KO
mice did not show significant bigger lesions than that of the
WT→Ldlr KOmice (Figures 7A–E). The male mice also showed
same results (Figures 8A–E).

DISCUSSION

In this study, we have demonstrated that depletion of the
Lpcat3 in macrophages induced a significant 1) reduction
of polyunsaturated PCs on cell membrane; 2) induction of
M1 macrophages in peritoneal region; and 3) induction of
macrophage inflammation through TLR4 and c-Src pathways.
However, myeloid cell-specific Lpcat3 deficiency did not
significantly increase atherosclerosis in Ldlr KO female and male
mice fed a high fat high cholesterol diet for 3 months.

One of the key findings of this study is that LPCAT3 is one
of the LPCATs in macrophages (Figure 1C). LPCAT1, LPCAT2,
and LPCAT3 can make contribution to PC remodeling in
macrophages. LyM-Cre-mediated Lpcat3 ablation significantly
reduced macrophage LPCAT3 activity (80%) (Figure 2B)
and reduced polyunsaturated PC levels on the plasma
membrane of macrophages (Figure 2C), but not saturated
and monounsaturated PCs (Figure 2D).

Another key finding of this study is that LyM-Cre-mediated
macrophage Lpcat3 deficiency has pro-inflammation properties.
A previous study indicated that LPCAT3 siRNA significantly
increased LPS-mediated inflammatory response in macrophages
(14). We found that Lpcat3 deficiency-mediated macrophage
plasma membrane polyunsaturated PC levels reduction
can induce TLR4 expression in the lipid rafts (Figure 4A),
thereby inducing both MAP kinase and NFκB (Figure 3)
activation and promoting inflammatory cytokine productions
(Figures 5C,D). Cellular lipids function are important regulators
of c-Src activation by altering the recruitment of C-Src
to lipid rafts in the plasma membrane (10). Studies have
shown a critical role for c-Src in macrophage-mediated
inflammatory responses (11). c-Src activates MAP kinases
(33–35) and NFκB (36–38). A recent report indicated that c-Src
phosphorylation (activation) could participate in macrophage
inflammation through NFκB activation and TNFα elevation
(32). We found that Lpcat3 deficiency dramatically increased
phosphorylated-c-Src in macrophage lipid rafts (Figure 4C),
indicating, besides TLR4 pathway, c-Src pathway might also
play an important role in Lpcat3-dificiency-mediated effect in
macrophages.

It has been reported that acute Lpcat3 knockdown in
hepatocytes and macrophage exacerbated ER stress (14).

However, the same group of researchers reported that genetic
deletion of Lpcat3 from the liver did not influence the expression

of ER stress markers (39). Previously, we also found that

Lpcat3 deficiency in small intestine had no effect on ER stress

markers (40). We found in this study that besides a significant
reduction of BIP, IRE1, and PERK had no significant changes
(Figure 6C).
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FIGURE 7 | Atherosclerosis measurement in male WT→Ldlr KO and Lpcat3 KO→Ldlr KO mice. (A) Aortic arches with atherosclerotic plaques (white areas). (B)

Aortic root assay for lesion areas after H&E staining. Six alternate sections (10µm thick) sliced from paraffin-fixed aortic root tissues of each transplanted mouse were

used for the analysis. (C) En face aortic plaque analysis after Oil Red O staining. (D) Quantitative display of root assay. (E) Quantitative display of en face assay. Red

arrows indicate lesion area. Values are mean ± SD. N = 8–9.

We compared our results in this study with a very recent
similar study (30). We noticed the following similarity and
differences. First of all, we utilized bone marrow derived
macrophages from myeloid cell-specific Lpcat3-deficient mice,
while Thomas et al. utilized fetal liver cells derived macrophages
from whole body Lpcat3 deficient mice. LyM-Cre could only
mediate 80% LPCAT3 deficiency (Figures 2A,B) instead of 100%
(30). Secondly, both macrophages displayed major reductions in
the arachidonate content of phosphatidylcholines (Figure 2C).
Thirdly, we found macrophage Lpcat3 deficiency have no
effect on Ac-LDL-mediated cholesterol accumulation as well as
cholesterol efflux (Figures 6A,B), while Thomas et al. found that
Lpcat3 deficiency cause an increase in the ratio of free to esterified
cholesterol and a reduction in cholesterol efflux in macrophages.
Fourthly, we found that macrophage Lpcat3 deficiency promote
inflammation, while the other study did not find changes
in macrophage inflammatory response. Finally, we found
that myeloid cell-specific Lpcat3-deficiency had no significant
changes in atherogenesis (Figures 7, 8), while, hematopoietic-
specific Lpcat3-deficiency promotes atherosclerosis (30).

Although we cannot explain why there was a different
outcome of myeloid cell-specific Lpcat3 deficiency and
hematopoietic cell-specific Lpcat3 deficiency, in terms of
mouse atherosclerosis, we speculate that, owning to their
hematopoietic origin, Lpcat3 KO fetal liver also harbored Lpcat3
KO B-cells, T-cells, mast cells, and granulocytes in the Lpcat3 KO
chimeric mice (Lpcat3 KO fetal liver cells→Ldlr KO) (30). Thus,
it is impossible to rule out the possible contributions of these
cells in the development of atherogenesis. We prepared myeloid
cell-specific Lpcat3-deficient mice and transplanted their bone
marrow into Ldlr KO mice, and then evaluate atherosclerosis in
these mice (Figures 7, 8). Nevertheless, we still cannot rule out
the contribution of cells besides macrophages in myeloid cell
lineage (41).

We also speculate that Lpcat3 deficiency-mediated changes in
macrophage might not be sufficient enough to have an impact
on atherogenesity. In PC remodeling system, besides LPCAT3,
there are LPCAT1, LPCAT2, and LPCAT4 (13, 15–17). In this
study, we indicated that LPCAT1 and LPCAT2 are expressed
in macrophages, whereas LPCAT4 expression level is negligible
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FIGURE 8 | Atherosclerosis measurement in female WT→Ldlr KO and Lpcat3 KO→Ldlr KO mice. (A) Aortic arches with atherosclerotic plaques (white areas). (B)

Aortic root assay for lesion areas after H&E staining. Six alternate sections (10µm thick) sliced from paraffin-fixed aortic root tissues of each transplanted mouse were

used for the analysis. (C) En face aortic plaque analysis after Oil Red O staining. (D) Quantitative display of root assay. (E) Quantitative display of en face assay. Red

arrows indicate lesion area. Values are mean ± SD. N = 8–9.

(Figure 1D). Thus, LPCAT1, LPCAT2, and LPCAT3 can all
play role in PC remodeling in macrophages. This is different
from hepatocytes and enterocyte where LPCAT3 is the major
LPCAT (28). LPCAT1 and LPCAT2 are not only involved in PC
remodeling activity but also involved in production of platelet
activating factor (PAF) (17, 42), a potent proinflammatory
phospholipid (43, 44). We found that LPCAT3 deficiency has an
impact on downregulation of LPCAT1 and LPCAT2 (Figure 1D)
and this could result in reduction of PAF or could be due to
regulating lysoPC and/or arachidonic acid (14, 19) availability
in macrophages. Further studies are needed to evaluate this
LPCAT3 deficiency-mediated effect.

There is limitation of bone marrow transplantation approach
of this study. The transplanted macrophage containing LDL
receptor. However, LDL receptor contained macrophages have
negligible effect on high fat high cholesterol diet induced
atherosclerosis in Ldlr KO mice (45). Thus, many researchers
including us, in the last 20 years, did similar bone marrow

transplantation and evaluate atherosclerosis relevance of the
genes, which we are interested in, in Ldlr KO mice under
atherogenic diet.

In conclusion, LPCAT3 contributes to PC remodeling in
mouse macrophages and PC composition in macrophage plasma
membranes. Lpcat3 deficiency promotes inflammation. However,
such an effect has no significant effect on the development of
atherosclerosis.
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Immune checkpoint inhibitors (ICIs) have changed the treatment landscape of advanced

cancers. Unfortunately, these agents can induce a wide spectrum of immune-related

adverse events (irAEs) through activation of immune responses in non-target organs,

including the heart. As the clinical use of ICI therapy increases rapidly, management

of irAEs is becoming extremely important. The most commonly presented cardiac

irAE is myocarditis. Histopathologically, T-cell (with a predominance of CD8+ cells)

and macrophage infiltration in the myocardium is typically observed in ICI-associated

myocarditis. Other presentations of cardiac irAEs include congestive heart failure,

Takotsubo cardiomyopathy, pericardial disease, arrhythmias, and conduction disease.

Although cardiac irAEs are relatively rare, they can be life-threatening. Hence,

cardiologists and oncologists should be vigilant for these presentations.

Keywords: immune checkpoint inhibitors, myocarditis, cardiotoxicity, programmed cell death protein 1, cytotoxic

T-lymphocyte antigen 4, immune-related adverse events, immune checkpoint, autoimmunity

INTRODUCTION

Immune checkpoint inhibitors (ICIs), including monoclonal antibodies (mAbs) against cytotoxic
T-lymphocyte-associated antigen 4 (CTLA-4), programmed cell death protein 1 (PD-1), and
programmed cell death ligand 1 (PD-L1), are being routinely used in clinical settings and have
shown unprecedented efficacy in treating multiple cancers (1–6). Unfortunately, these agents
can induce a wide spectrum of immune-related adverse events (irAEs) (7–9) through activation
of immune responses in non-target organs, including the heart. In recent years, several cases
of cardiotoxicity have been reported in cancer patients treated with ICIs (10–17). Although its
frequency is lower than that for other irAEs, cardiotoxicity can become life-threatening, making
it an important consideration for cardiologists, oncologists, and immunologists.

In this review, we describe the mechanisms and summarize the reported clinical scenarios of
cardiotoxicities associated with ICIs. Evidence available for diagnosis, management, and prognosis
are considered.

PHYSIOLOGICAL ROLES OF IMMUNE CHECKPOINTS

T lymphocytes play a pivotal role as modulators and effectors of the immune system. Naïve T
cells are activated after recognizing a cognate peptide presented by antigen-presenting cells (APCs)
via interaction between the major histocompatibility complex (MHC) on the APCs and the T cell
receptor (TCR), but further co-stimulatory signals are required for activation. CD28 is a stimulatory
co-receptor expressed on T cells. Binding of CD80 (also known as B7-1) or CD86 (also known as
B7-2) molecules on APCs with CD28 molecules provides an essential signal for T cell activation.
However, to prevent destructive immune activation, these signals are finely regulated by immune
checkpoints (e.g., CTLA-4 and PD-1) (18).
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CTLA-4
CTLA-4 is an inhibitory co-receptor expressed on activated
T cells. CTLA-4 inhibits T cell functions by competing with
CD28 for binding with B7 ligands, CD80, and CD86. CTLA-4 is
homologous to CD28 but has much higher binding affinity and
avidity for B7 ligands. In resting naïve T cells, unlike CD28, which
is constitutively expressed on the cell surface, CTLA-4 is localized
primarily in intracellular vesicles (19). CTLA-4 is upregulated on
the cell surface in response to TCR activation and the signal is
enhanced by co-stimulation through CD28 and/or interleukin-2
(20). Of note, the stronger the TCR signal, the greater the CTLA-
4 translocation to the cell surface, thereby preventing harmful T
cell activation (19–21).

PD-1:PD-L1/2 Pathway
PD-1 is another inhibitory receptor and plays a pivotal role in
regulating the effector phase of T cell responses through binding
with its ligands PD-L1 and programmed death ligand 2 (PD-
L2) (21). PD-L1 is expressed constitutively on hematopoietic
cells and a wide range of non-hematopoietic cells, including
hepatocytes, astrocytes, epithelial cells, muscle cells including
cardiomyocytes, vascular endothelial cells, and pancreatic cells
(22, 23). PD-L1 is also expressed on numerous tumors, and its
expression is reported to be associated with poor prognosis in
several cancers (24–26). In contrast to PD-L1, PD-L2 is expressed
primarily on APCs and certain B cell lymphomas (20, 21).
Similar to CTLA-4 signaling, PD-1 signaling abrogates T cell
proliferation and cytokine production and reduces T cell survival
(23). PD-1 exhibits minimal expression on resting immune cells.
However, upon activation, PD-1 expression is induced on the
surface of T cells, B cells, natural killer cells, natural killer T cells,
dendritic cells, and macrophages (23).

IMPLICATIONS OF BLOCKING THE
CTLA-4 AND PD-1 PATHWAYS IN CANCER

To date, six ICIs have been approved by the United States
Food and Drug Administration: ipilimumab (anti-CTLA-4
mAb); nivolumab and pembrolizumab (anti-PD-1 mAbs); and
atezolizumab, avelumab, and durvalumab (anti-PD-L1 mAbs)
(Table 1). Antibody therapies against the CTLA-4 and PD-
1/PD-L1 axes have revolutionized the treatment of cancer
(Figure 1).

Cancer is characterized by genetic mutations that can
lead to the expression of various tumor-associated antigens.
APCs present these antigens via MHC molecules expressed
on their surface, which interact with TCRs. Thus, T cells can
recognize tumor-associated antigens as “non-self ” and attack
tumor cells expressing these antigens (27). However, CTLA-4
inhibits T cell activation and clonal expansion. In the tumor
immunotherapy setting, CTLA-4-targeting mAbs support the

Abbreviations: α-MHC, myosin heavy chain α isoform; APC, antigen-presenting

cells; CTLA-4, cytotoxic T-lymphocyte-associated antigen 4; ICI, immune

checkpoint inhibitor; irAE, immune-related adverse event; mAb, monoclonal

antibody; PD-1, programmed cell death protein 1; PD-L1, programmed cell death

ligand 1; TCR, T cell receptor.

activation and proliferation of effector T cells, resulting in broad
activation of immune responses against tumor cells (28). In
contrast, CTLA-4 blockade inhibits regulatory T cell-mediated
immunosuppression (28). These are thought to be the main
mechanisms of action of CTLA-4 blockade.

PD-1 is expressed on tumor-infiltrating lymphocytes in many
cancers. Chronic or high exposure to tumor antigens can induce
persistent PD-1 expression, which leads to a state of exhaustion
or anergy (lack of response). PD-1 blockade may reverse anergy
of tumor-specific T cells. PD-1 is upregulated on the cell
surface of many different tumor types. Tumor PD-L1 expression
indicates an active tumor immune microenvironment and is
strongly associated with efficacious responses to PD-1- and PD-
L1-targeting mAbs (29). It is commonly accepted that PD-L1
expression on tumors and immune cells can inhibit the T-cell
antitumor response and facilitate cancer development. However,
the role of PD-L2 in antitumor immunity remains controversial
(30, 31).

irAEs

Due to the central role played by immune checkpoints in the
maintenance of self-tolerance, immune checkpoint blockade
can induce a spectrum of adverse events, called irAEs (32).
Remarkably, irAEs can affect almost any organ system (Figure 2)
and have been reported at a substantially high frequency. irAEs
occur in up to 90% of patients (10–15% grade 3/4) treated with
ipilimumab (1) and 79% of patients (13% grade 3/4) treated
with pembrolizumab (3). In a meta-analysis, the incidence was
reported to be 75% in patients treated with CTLA-4-targeting
mAbs and 30% for PD-1- and/or PD-L1-blockingmAbs (33). The
frequency of grade 3/4 irAEs was substantially higher in patients
treated with a combination of ipilimumab and nivolumab
(54%) than in those receiving ipilimumab monotherapy (20%)
(34).

irAEs are generally managed with corticosteroids, and less
commonly, with other immunomodulatory agents (35). There
are no prospective studies that have investigated management
strategies for irAEs. According to the various organs involved,
grade 1–2 events mainly affect the gut and skin, whereas
grade 3–4 events are mainly restricted to the digestive tract.
Cardiac, neurologic, renal, ocular, and hematologic irAEs are
uncommon (35).

CARDIOTOXICITY ASSOCIATED WITH
IMMUNE CHECKPOINT INHIBITION

Insights From Animal Studies
During the establishment of central tolerance in the thymus,
most autoreactive T cells are deleted; however, some autoreactive
T cells are released into the periphery (36, 37). In healthy
individuals, peripheral tolerance mechanisms regulate the
numbers of these cells. CTLA-4 competes with CD28 to
downregulate T cell activation, resulting in immunotolerance and
prevention of pathologic immune responses to cardiac antigens
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TABLE 1 | FDA-approved ICIs for cancer therapy.

Target Drug Indication

CTLA-4 Ipilimumab Melanoma

PD-1 Nivolumab Melanoma, NSCLC, SCLC, RCC, HCC, Hodgkin lymphoma, head and neck cancer, urothelial

carcinoma, microsatellite instability-high, or mismatch repair-deficient metastatic colorectal cancer

PD-1 Pembrolizumab Melanoma, NSCLC, head and neck squamous cell carcinoma, Hodgkin lymphoma, urothelial

carcinoma, microsatellite instability-high cancer, gastric cancer, cervical cancer, primary mediastinal large

B-cell lymphoma

PD-L1 Atezolizumab NSCLC, urothelial carcinoma

PD-L1 Durvalumab NSCLC, urothelial carcinoma

PD-L1 Avelumab Urothelial carcinoma, Merkel cell carcinoma

CTLA-4 and PD-1 in combination Ipilimumab and

nivolumab

Melanoma, RCC, microsatellite instability-high, or mismatch repair-deficient metastatic colorectal cancer

CTLA-4, cytotoxic T lymphocyte-associated antigen 4; FDA, Food and Drug Administration; HCC, hepatocellular carcinoma; ICI, immune checkpoint inhibitor; NSCLC, non-small cell

lung cancer; PD-1, programmed cell death protein 1; PD-L1, programmed cell death ligand 1; RCC, renal cell carcinoma; SCLC, small cell lung cancer.

FIGURE 1 | Distinct roles of CTLA-4 and PD-1/PD-L1 in the regulation of antitumor immune responses. (A) Interactions between CTLA-4/B7 and PD-1/PD-L1 inhibit

T cell-mediated tumor cell killing. (B) Blockade of CTLA-4, PD-1, and PD-L1 results in T cell activation and proliferation, which reactivates T cell-mediated tumor cell

killing.

(38). Interactions between PD-1 and its ligands also maintain
cardiac-reactive T cells in an anergic state (38) (Figure 3).

Mice deficient in CTLA-4 develop severe myocarditis with

massive T cell infiltration (39). The cardiac presentation of

PD-1-deficient mice is dependent on their background; mice

on the BALB/c background develop autoimmune dilated
cardiomyopathy (40), but PD-1-deficient autoimmune-
prone MRL mice show lymphocytic myocarditis with massive
infiltration of CD4+ and CD8+ T cells (41). PD-L1 is significantly
upregulated on the surface of cardiac endothelial cells during

myocarditis. PD-L1 deficiency in MRL mice induces similar
severe myocarditis (42).

Cardiac irAEs of ICIs in Patients With
Cancer
Incidence
There are contrasting reports on the rates of cardiac irAEs
associated with ICI therapies. For example, no incidence of
myocarditis was identified after a pooled analysis of 448
patients treated with nivolumab and ipilimumab combination
therapy (43). In contrast, a pharmacovigilance study identified
myocarditis in 18 of 20,594 patients (0.09%) treated with
nivolumab alone or in combination with ipilimumab (13), and
a cohort study of 964 patients from a multicenter registry
reported a prevalence of 1.14%, which increased to as high as
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FIGURE 2 | The clinical spectrum of irAEs associated with immune checkpoint

inhibitors. irAEs, immune-related adverse events.

2.4% for combination therapy with anti-PD-1/anti-CTLA-4 (44).
According to the latter report, ICI-associated myocarditis can no
longer be considered a “rare” adverse effect. So far, ICI-associated
myocarditis appears to be a class effect, and the incidence seems
to be higher when patients are treated with a combination of ICIs
(13, 44).

Clinical Presentation and Management
The most common cardiac irAE is myocarditis (45).
Histopathologically, T cell (with a predominance of CD8+ cells)
and macrophage infiltration in the myocardium are typically
observed in ICI-related myocarditis (10, 12–15, 46). This
myocarditis sometimes involves the cardiac conduction system,
leading to conduction block. Other presentations of cardiac irAEs
include congestive heart failure, Takotsubo cardiomyopathy,
pericardial disease, arrhythmias, and conduction disease (47).

The time to onset of myocarditis is variable. An analysis of
VigiBase, theWorld Health Organization’s database of individual
case safety reports that includes 101 cases of severe myocarditis,
revealed that myocarditis was diagnosed at a median of 27 days
(range, 5–155 days) after the initiation of ICI therapy, with

76% of the cases occurring in the first 6 weeks of treatment
(48). A medical record review of 30 ICI-related cardiotoxicity
patients from two cardio-oncology units revealed that themedian
onset of cardiotoxicity was 65 days (range, 2–454 days) and it
occurred after a median of three (range, 1–33) infusions (49). In a
multicenter cohort including 35myocarditis patients, the median
time to onset was 34 days and 81% of the patients developed
cardiac irAE within 3 months (44). Notably, fatal myocarditis
can develop after only a single treatment with an ICI (11, 13).
Unfortunately, there is insufficient information regarding the
time of onset of cardiac irAEs relating to specific treatment
regimes. In general, most irAEs were reported to occur within
3–6 months of the initiation of anti-CTLA-4- or anti-PD-1-
targeting therapy (47, 50). While the risk of severe irAEs appears
to be dose-dependent with anti-CTLA-4 antibodies, toxicities
with anti-PD-1/anti-PD-L1 antibodies are reported to be dose-
independent (47, 50).

Cardiac signs and symptoms of ICI-related cardiotoxicity
vary from asymptomatic to sudden death (10–17, 51) and lack
specificity. Sometimes cardiac irAE is accompanied by other
organ irAEs, especially those in skeletal muscles (11, 13).

Currently, patients who are likely to develop cardiac irAEs
cannot be identified before ICI therapy. Therefore, early
detection of ICI-related myocarditis is thought to be important
for improved management. Mahmood et al. (44) showed that
measuring troponin levels at baseline and at each cycle of ICI
treatment may be useful for surveillance because this parameter
was abnormal in 94% of ICI-myocarditis patients at clinical
presentation. In contrast, Sarocchi et al. (52) measured troponin
levels at each nivolumab administration in 59 patients and found
an elevation in only six patients, none of whom developed overt
cardiac irAEs. These researchers mentioned possible reasons
for a “false positive” elevation of troponin, including it being
a consequence of myocardial oxygen demand-supply mismatch
due to aggravation of the clinical status or the presence of
subclinical ICI-induced myocarditis. An elevation of troponin
indicates the presence of, but not the underlying reason for,
myocardial injury. Therefore, myocarditis or other myocardial
damage should be considered in cases presenting with elevated
troponin, and these patients should be referred immediately
to cardiologists/onco-cardiologists for further evaluation (44).
Mahmood et al. (44) also reported abnormal electrocardiograms
in 89% of ICI-related myocarditis patients. In contrast, NT-
ProBNP was abnormal in 66%, and the left ventricular ejection
fraction (LVEF) was abnormal in only 49% of these patients.
Thus, NT-proBNP or LVEF may be less useful for early diagnosis
of cardiac irAEs than troponin or ECG. Information on the utility
of hsCRP as an early biomarker of cardiac irAEs is lacking.

Pharmacovigilance data show that the mortality of ICI-
associated myocarditis exceeded 60% in patients receiving
ipilimumab-nivolumab combination therapy (13). Mahmood
et al. (44) reported that nearly half of all myocarditis cases
developed a major adverse cardiac event (a combination of
cardiovascular death, cardiac arrest, cardiogenic shock, and
hemodynamically significant complete heart block). Escudier
et al. (49) reported after a medical record review of 30 ICI-related
cardiotoxicity patients that eight (27%) died of cardiovascular
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FIGURE 3 | The role of immune checkpoints in establishing peripheral tolerance to the heart. During the establishment of central tolerance in the thymus, most

autoreactive T cells are deleted; however, some autoreactive T cells are released into the periphery. In health, peripheral tolerance mechanisms keep these cells in

check. CTLA-4 competes with CD28 to downregulate T-cell activation, resulting in immunotolerance and prevention of pathologic immune responses to

cardiac-antigens. PD-1-PD-1 ligand interactions also maintain the cardiac-reactive T cells in an anergic state. Antibodies against CTLA-4, PD-1, or PD-L1 may

activate cardiac antigen-reactive T cells that escape central tolerance. These T cells can clonally expand and attack the heart.

complications. They also reported that cardiovascular mortality
was significantly associated with conduction abnormalities and
ipilimumab-nivolumab combination therapy (49).

Currently, there are no guidelines for the treatment of
cardiac irAEs. Steroids have been used to treat cardiac
irAEs in most cases (11, 13–16, 44, 45). For steroid non-
responders, other immunosuppressive agents, high-dose
intravenous immunoglobulin therapy, plasmapheresis, and
immunoadsorption therapy have been used (45, 53).

CONCLUSIONS

ICI therapies have changed the treatment landscape of advanced
cancer. As the clinical use of ICI therapy rapidly increases,
management of irAEs is extremely important. Cardiac irAEs
are relatively rare but can be life-threatening. Large scale,
prospective, and longitudinal cohort studies are needed to
clarify predisposing risk factors and long-term consequences
of ICI-induced cardiac irAEs. In addition to clinical studies,
basic studies are crucially needed to provide insights into
underlying mechanisms and to find biomarkers to identify high

risk patients and minimize the risk of ICI-associated cardiac
irAEs.
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Type 2 immunity participates in the pathogeneses of helminth infection and allergic

diseases. Emerging evidence indicates that the components of type 2 immunity are

also involved in maintaining metabolic hemostasis and facilitating the healing process

after tissue injury. Numerous preclinical studies have suggested regulation of type 2

immunity-related cytokines, such as interleukin-4, -13, and -33, and cell types, such as

M2 macrophages, mast cells, and eosinophils, affects cardiac functions after myocardial

infarction (MI), providing new insights into the importance of immune modulation in the

infarcted heart. This review provides an overview of the functions of these cytokines and

cells in the setting of MI as well as their potential to predict the severity and prognosis

of MI.

Keywords: myocardial infarction, type 2 immunity, interleukin, M2 macrophages, mast cells, eosinophils, immune

modulation

INTRODUCTION

Type 2 immunity is characterized by the production of interleukin (IL)-4, IL-5, IL-9, IL-13,
IL-25, IL-33, and thymic stromal lymphopoietin, as well as specific cell types including mast
cells, eosinophils, basophils, alternatively activated M2 macrophages, type 2 innate lymphoid cells
(ILC2), and T-helper (Th) 2 cells. It has mainly been considered to participate in the pathogeneses
of helminth infection and allergic diseases. However, growing evidence suggests that these cell types
and related cytokines are also involved in maintaining metabolic homeostasis and facilitating the
healing process after tissue injury (1). Studies in experimental models and serum biomarker data
from humans have proven the participation of type 2 immunity in the progression of myocardial
infarction (MI). In this review, we will discuss several pivotal type 2 immunity-associated cytokines
and cell types that modulate cardiac functions, followingMI and their potential value as biomarkers
of MI.

CYTOKINES

Activation of innate immunity and extensive inflammation are the typical pathological features of
MI. Accumulating evidence suggests type 2 cytokines are critical participants in tissue repair and
regeneration owing to their ability to regulate the functions of nearby cells and immunomodulation.
Moreover, they may serve as ideal biomarkers to predict the severity and clinical outcomes of MI.
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IL-4
IL-4 is an important Th2 cytokine with multiple biological
functions, which mainly has an anti-inflammatory effect.
Previous studies have demonstrated an association of elevated
serum IL-4 with a reduced risk of cardiovascular diseases
(2). Furthermore, the IL-4 level is lower in MI patients who
later develop left ventricular dysfunction (3), indicating its
cardioprotective properties.

One of the well-clarified mechanisms of IL-4 is in mediating
myocardial repair via converting macrophages to the M2
phenotype. Administration of a long-acting IL-4 complex at 1 h
after MI increases the proportion of cardiac M2 macrophages in
both the infarct and border myocardium, along with increased
tissue repair-related gene expression in M2 macrophages, and
an improved cardiac structure (more connective tissue in the
infarct zone) and functions. Further experiments suggested that
IL-4 promotes fibrotic tissue formation via M2 macrophages
rather than a direct interaction with cardiac fibroblasts. However,
these effects are not observed when administrated at a late
phase (7 or 28 days after MI), implying that IL-4 affects the
early recruitment and polarization of M2 macrophages in the
acute phase after MI (4). Similarly, injection of IL-4 plasmid
DNA (carried by graphene oxide) around the border zone
after coronary artery ligation largely reduces the number of
inflammatory M1 macrophages, and polarizes macrophages to
the reparative M2 phenotype in the mouse heart, leading to
enhancement of cardiac functions (5).

IL-4 may also affect the functions of cardiac fibroblasts,
thus participating in the profibrotic process directly. In the
Ang II-induced hypertension model, wild-type (WT) mice
exhibit higher cardiac fibrosis compared with IL-4−/− mice,
as indicated by the increase in the interstitial collagen fraction
and mRNA levels of procollagen type-I α1 and procollagen
type-III α1. In vitro experiments have demonstrated that IL-
4 promotes the expression of procollagen type-I α1 and
procollagen type-III α1 in mouse cardiac fibroblasts via binding
to IL-4Rα, and consequently increasing the production of
collagen (6). Treatment of anti-IL-4 neutralizing antibodies
reduces both the number and proliferation of fibroblasts as
well as infiltration of CD68+ macrophages (7). These findings
suggest the sophisticated interaction between IL-4 and various
cell types in the heart, which may lead to opposing outcomes
under different pathological conditions.

IL-13
IL-13 also polarizes macrophages to the M2 phenotype through
binding to IL-4Rα and activating the subsequent signal
transducers and activators of transcription (STAT) 6 signaling
pathway (8). In a mouse model of MI, IL-13 significantly
increases in the myocardium with a peak on day 3. Further
experiments in IL-13−/− mice suggested that IL-13 enhances
cardiac functions by recruiting more monocytes/macrophages
to the infarct and border area and inducing M2 macrophages.
Interestingly, in contrast to the IL-13−/− female mice, IL-13−/−

male mice exhibit a significant higher mortality and increased left
ventricular dilation compared with WT mice after MI (9).

Recently, IL-13 was also found to induce mitosis of isolated
cardiomyocytes when bound to IL-13Rα1. Through activation of
the STAT3/periostin signaling pathway, IL-13 facilitates cardiac
regeneration (10). Intraperitoneal administration of IL-13
significantly reduces the scar area and increases cardiomyocyte
cell cycle activity/mitosis in a cardiomyocyte-specific Gata4
knockout neonatal mouse after cryoinfarction (11). However,
whether the salutary effects of IL-13 on the injured myocardium
in the adult mouse model of MI are also partially related to its
underlying regeneration property needs to be examined further.

IL-33
IL-33, a member of the IL-1 family, has an important role in
adaptive and innate immunities (12). After tissue injury, IL-33
released by the damaged endothelial or epithelial cells promotes
immune cell recruitment and tissue repair (13, 14). In the heart,
IL-33 is mainly released by cardiac fibroblasts responding to
biomechanical stress (15). The cognate receptors of IL-33 have
two isoforms: transmembrane ST2 (ST2L) and soluble ST2 (sST2)
(16). The long form ST2L is expressed on various kinds of
immune cells such as macrophages, mast cells, basophils, Th2
cells, regulatory T cells, and ILC2 (17–22). Gene ablation of IL-33
or ST2 has demonstrated that the IL-33/ST2 signaling pathway
is crucial for reducing cardiac hypertrophy, ventricular chamber
dilation, and cardiac fibrosis under mechanical stress (15, 23).
However, the soluble form sST2, which serves as a decoy receptor,
may impede the cardioprotective effects by neutralizing IL-33
(24). Accumulating evidence suggests that the IL-33/ST2 system
has a profound effect on cardiac functions and potential value to
predict the severity and prognosis of acute coronary syndrome
(ACS).

In rats, IL-33 is elevated significantly within the first 12
weeks after MI. However, the mRNA level of sST2 shows a
similar pattern to inflammatory and fibrosis markers with a peak
at 1 week, suggesting that sST2 impairs the cardioprotective
effects at an early stage post-MI (25). Preclinical studies have
demonstrated that early pharmacological treatment targeting
the IL-33/ST2 system promotes cardiac functions in MI rats.
Through downregulating and upregulating gene expression
of sST2 and IL-33, respectively, mineralocorticoid receptor
antagonists reduce cardiac fibrosis and mitigate inflammation
responses in the infarcted myocardium (26). Furthermore, β-
blocker significantly decreases the infarct size and promote
cardiac functions by reducing the sST2 level (27).

Further experiments showed that IL-33 reduces hypoxia-
induced apoptosis of cardiomyocytes in vitro through
suppressing caspase-3 activity and increasing anti-apoptotic
protein expression (cellular inhibitor of apoptosis protein
1, X-linked inhibitor of apoptosis protein, survivin, B-cell
lymphoma 2, and B-cell lymphoma-extra large). In a rat model
of myocardial ischemia-reperfusion (IR) injury, subcutaneous
injection of IL-33 significantly reduces the infarct size and
myocardial fibrosis. The benefits of IL-33 on cardiac functions
were then abolished by ST2 gene deletion, indicating that IL-33
exerts cardioprotective effects through combination with the ST2
receptor (28). In the diabetic myocardium, a low level of IL-33
is associated with chronic activation of protein kinase (PK) CβII
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that increases the vulnerability of the myocardium to IR injury.
Exogenous IL-33 supplementation reduces the phosphorylation
of PKCβII, cardiomyocyte apoptosis, and infarct size after
cardiac IR injury. In addition, anoxia/reoxygenation-induced
apoptosis of high glucose preconditioned cardiomyocytes and
activation of PKCβII are alleviated by IL-33 in vitro (29).
IL-33 treatment also significantly suppresses proinflammatory
cytokine and chemokine expression, including IL-1β, IL-6, IL-17,
tumor necrosis factor-α (TNF-α), monocyte chemoattractant
protein (MCP)-1, and interferon-γ (IFN-γ)-induced protein 10,
and reduces macrophage infiltration after MI. These effects are
mediated by inhibition of p38 mitogen-activated protein kinase
and nuclear factor kappa-light-chain-enhancer of activated B
cells pathways (30).

Human studies have demonstrated that the circulating levels
of IL-33 and sST2 are associated with the severity of ACS patients,
and may thus serve as potential biomarkers. The serum level of
IL-33 is significantly lower in patients with ACS compared with
stable angina pectoris patients and control individuals (31, 32).
Similarly, another study showed that the circulating level of
IL-33 is significantly lower in ACS patients than in patients
with coronary artery disease (33). In contrast, sST2 is negatively
correlated with the outcomes of MI patients. For MI patients,
serum sST2 immediately elevated on day 1 afterMI and correlates
positively with peak creatine kinase and negatively with the left
ventricular ejection fraction (LVEF) (34). In addition, a higher
sST2 level is observed in patients with a larger infarct size, lower
LVEF, transmural infarction, and microvascular obstruction (35).
These findings indicate that the sST2 level well-reflects the
severity of myocardial injury. Moreover, sST2 can predict both
short term (36–39) and long term (39–43) cardiac adverse events
and mortality in ACS patients.

CELL TYPES

Apart from type 2 cytokines, the recruitment and activation of
M2 macrophages, mast cells, and eosinophils, which are key type
2 immunity-related cell types, affect cardiac functions in the
progression of MI via various mechanisms (Figure 1).

M2 Macrophages
So far, two subsets of macrophages have been identified in the
heart, according to their different origins: (1) resident cardiac
macrophages derived from the yolk sac and fetal liver during
embryonic development and (2) macrophages differentiated
from circulating monocytes when they migrate into hearts (44,
45). Although there are less macrophages in the myocardium
compared with cardiomyocytes, endothelial cells, fibroblasts,
and smooth muscle cells (46), they are indispensable for both
cardiac homeostasis and myocardial repair. Based on surface
markers and gene expression profiles, macrophages are generally
divided into classically activated M1 and alternatively activated
M2 macrophages, although their phenotypes and functions
might be more complex in vivo (47, 48). After MI, the
injuredmyocardium sequentially mobilizes Ly-6Chigh monocytes
and Ly-6Clow monocytes via C-C chemokine receptor type

2 and CX3C chemokine receptor 1, respectively (49). Ly-
6Chigh monocytes differentiate into M1 macrophages, which
dominate in the heart before day 3 post-MI and are responsible
for degradation of the extracellular matrix and clearance of
cellular debris; whereas Ly-6Clow monocytes differentiate into
M2 macrophages that are the prominent subset during day
4–7 post-MI and mainly involved in the healing process
(50). Accumulating evidence suggests that M2 macrophages
participate in the resolution of inflammation and cardiac repair,
which benefits cardiac functions after MI. In the next sections,
we will summarize their subpopulations, biological functions,
modulation methods, and polarization mechanisms.

Subpopulations
In response to different stimuli or pathological stresses, M2
macrophages polarize into distinctive phenotypes, namely M2a,
M2b, and M2c (51, 52). M2a macrophages can be elicited
by IL-4 or IL-13 with increased levels of CD206 (53) and
arginase 1 (54), which support cell growth, collagen formation,
and tissue repair by promoting the biosynthesis of polyamine
and proline (55). Chemokines, such as C-C motif chemokine
ligand (CCL) 2 (56), CCL17 (57), CCL22 (58), and CCL24
(59), are overexpressed in M2a macrophages, contributing to
the recruitment of eosinophils, basophils, and Th2 cells. In
addition, fibronectin, β IG-H3, and factor VIII subunit A
are overexpressed in M2a macrophages, which are associated
with extracellular matrix deposition and tissue remodeling (60,
61). However, the production of proinflammatory cytokines,
including IL-1, IL-6, and TNF-α, is low in M2a macrophages
(62), whereas the level of anti-inflammatory cytokines, including
IL-10 and transforming growth factor-β (TGF-β), is high (63).
M2b macrophages (elicited by immune complexes or Toll-like
receptor ligands) are characterized by a low level of IL-12 and
high level of IL-10. In contrast to elevated anti-inflammatory
cytokines in M2a and M2c macrophages, M2b macrophages
exhibit increased proinflammatory cytokines including IL-1β, IL-
6, and TNF-α (64, 65). Another obvious distinction betweenM2b
and M2a is that M2b cells have higher expression of sphingosine
kinase 1 enzyme (66). They similarly regulate the recruitment of
immune cells (eosinophils, Th2 cells, and regulatory T cells) by
selective production of CCL1 (67). In terms ofM2cmacrophages,
they are induced by IL-10, TGF-β, or glucocorticoid stimulation
and express a high level of the surface marker CD163 (68)
with decreased proinflammatory cytokines (IL-6, IL-12, and
TNF-α) and proinflammatory mediators (inducible nitric oxide
synthase and cyclooxygenase) (69). Previous studies have shown
high quantities of matrix metalloproteinases (MMP)-7, MMP-
8, MMP-9, and tissue inhibitor of metalloproteinase-1 in M2c
macrophages, suggesting their potential to regulate fibrosis after
MI (68, 70, 71). M2c macrophages also express high levels of
chemokines CCL16 and CCL18 that attract naïve T cells and
eosinophils (51).

Biological Functions: Anti-inflammation,

Angiogenesis, and Collagen Deposition
Macrophages are related to the processes of initiation,
maintenance, and resolution of the inflammatory response
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FIGURE 1 | Functions of M2 macrophages, mast cells, and eosinophils in MI.

and myocardial repair after MI (72, 73). Cardiac resident
macrophages begin to apoptose by 2 h and almost vanish within
24 h after MI. In contrast, a considerable number of monocytes
are recruited into the myocardium and then differentiate
into macrophages, which peak at day 6 after MI (74). M2
macrophages, which dominate the infiltration during day 4–7
post-MI, facilitate the recovery of cardiac functions via secretion
of anti-inflammatory cytokines, neovascularization, and collagen
deposition (72) (Figure 2).

Anti-inflammation
Previous studies have demonstrated that an exaggerated
inflammatory response increases ventricular dilatation
and cardiac dysfunction after MI (75), whereas attenuated
inflammation suppresses scar formation (76), and increases
the risk of cardiac rupture (77). Hence, timely resolution of
inflammation is crucial for myocardial repair.

Owing to the ability to secrete pro/anti-inflammatory
cytokines, macrophages are essential modulators of the
inflammatory process after MI. In apoE−/− atherosclerotic
mice, prolonged presence of Ly-6Chigh monocytes and higher
proinflammatory gene expression in the infarcted myocardium
hamper inflammation resolution and infarct healing (78),
indicating the importance of timely infiltration by reparative M2
macrophages. Indeed, M2 macrophages restrict the expansion of
inflammation through the release of anti-inflammatory cytokines
including IL-10 and TGF-β. Further experiments demonstrated
that IL-10 suppresses inflammation by restraining infiltration of
inflammatory cells and the synthesis of inflammatory cytokines

(IL-1β, IL-6, and TNF-α) in vivo (79). Early inhibition of TGF-β
leads to increased infiltration of neutrophils and gene expression
of IL-1β, TNF-α, and MCP-1, along with left ventricular dilation
and decreased cardiac contractility, indicating that TGF-β
protects the myocardium by regulating the inflammatory
process (80).

Angiogenesis
Angiogenesis increases cardiac tissue perfusion, which makes it
critical to salvage an infarcted myocardium. The beneficial effects
of macrophages on cardiac functions are mediated partially by
facilitating angiogenesis. Compared withWTmice, macrophage-
deficient mice exhibit impaired angiogenesis and infarct healing
(72). To further clarify the specific subtypes of macrophages that
induce angiogenesis, circulating macrophages were depleted in
the inflammatory phase (M1 macrophages) and healing phase
(M2 macrophages), respectively. Consequently, there was a
decline in quantity of microvascular α-actin+ smooth muscle
cells and CD31+ endothelial cells in the infarcted myocardium
whenM2macrophages were depleted (49). In addition, increased
infiltration of M2 macrophages into myocardium after fibroblast
growth factor (FGF)-2/hepatocyte growth factor administration
is accompanied by enhanced angiogenesis (81). Simultaneously,
M1, M2a, and M2c macrophages were injected subcutaneously
into mice to determine their specific roles. In accordance
with the above findings, compared with M1 macrophages,
M2 macrophages had a higher angiogenic potential. When
FGF-2 was neutralized in M2a or placental growth factor
(PlGF) was blocked in M2c macrophages, angiogenesis and
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FIGURE 2 | After myocardial ischemic attack, resident cardiac macrophages begin to develop apoptose by 2 h and circulating monocytes infiltrate into the injury site

and differentiate into macrophages. Elicited by IL-4 and IL-13, macrophages polarize toward the M2 phenotype through activation of STAT6. M2 macrophages

facilitate the recovery of cardiac functions via secretion of anti-inflammatory cytokines, promoting angiogenesis and collagen deposition.

tube formation were reduced significantly, indicating that FGF
signaling in M2a macrophages and PlGF signaling in M2c
macrophages might be possible mechanisms of angiogenesis
following MI (82). Apart from the release of angiogenic
cytokines, M2 macrophages may regulate angiogenesis by
transferring miRNAs. Angiogenic early outgrowth cells (EOCs),
which are largely positive for M2 macrophage markers,
were extracted from humans. Intramyocardial transplantation
of EOCs from healthy donors into MI mice improved
neovascularization in the infarct border zone and promoted
cardiac repair. However, EOCs extracted from patients with
chronic heart failure had loss of miRNA-126 and miRNA-130a
and showed impaired cardiac neovascularization. Anti-miRNA-
126 transfection decreased the angiogenic capacity of EOCs
from healthy donors, whereas miRNA-126 mimic transfection
increased the angiogenic capacity of EOCs from patients with
chronic heart failure (83).

Collagen deposition
During the reparative phase after MI, collagen deposition in the
infarcted myocardium stabilizes the damaged tissue and prevents
infarct expansion and ventricular dysfunction. Depletion of
macrophages decreases collagen deposition and wall thickness,
increases left ventricular dilation, and leads to a high mortality
after MI (72, 84). In contrast, injection of activated macrophages
(73) or macrophage colony-stimulating factor (85) facilitates
collagen deposition and myocardial repair.

M2macrophage-depletedTrib1−/− mice were used to identify
the contribution of M2 macrophages to cardiac repair. Trib1−/−

mice exhibit decreased collagen fibril formation and more
frequent cardiac rapture, whereas exogenous administration of
IL-4, which promoted M2 macrophage polarization, increases
the collagen volume in the infarct zone (86). Coculture with M2
macrophages isolated from the infarcted myocardium (86) or
their secretome (87) enhances activation of cardiac fibroblasts in
vitro. These effects might be ascribed to IL-1α and osteopontin,
because gene expression of Il1α and Spp1 is increased in
M2 macrophages at 7 days after MI, and neutralization
of IL-1α or osteopontin significantly reduces the fibroblast-
myofibroblast transition when cocultured with M2 macrophages
(86). Additionally, TGF-β released byM2macrophages promotes
synthesis of collagen type I and III (88, 89) through activation of
Smad3 signaling in cardiac fibroblasts (90).

Modulation Methods and Polarization Mechanisms
Although numerous methods have been applied to promote the
shift from M1 macrophages toward M2 macrophages after MI,
the precise mechanisms of M1/M2 polarization have not been
fully investigated in most studies (Table 1).

STAT proteins play an essential role in the immune
response, inflammation, as well as cell growth and differentiation
(127), and participate in various cardiovascular diseases (128,
129). It has been confirmed that IL-4 and IL-13 mediate
macrophage polarization toward M2a macrophages depending
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TABLE 1 | Modulation methods and mechanisms of macrophage polarization.

Modulation

methods

Approaches Animal

strains

Pathological

status

Polarization

mechanisms

Biological effects References

DRUG TREATMENT

BIO Intraperitoneal SD rats MI Not investigated Cardiac fibrosis↓

Cardiac function↑

(91)

N-propargyl

caffeamide

Intraperitoneal SD rats MI Not investigated Infarct size↓ (92)

DAPT Intravenous SD rats MI Not investigated Arrhythmia↓

Sympathetic hyperinnervation↓

(93)

Pyridostigmine Contained in water Wistar

rats

MI Not investigated Anti-oxidant enzyme activity↓

Cytokine production↓

(94)

Pyridostigmine Contained in water Wistar

rats

MI Not investigated LV diastolic function↑

Parasympathetic modulation↑

Sympathetic modulation↑

(95)

Eplerenone Intracerebroventricular Wistar

rats

MI Not investigated Cardiomyocyte apoptosis↓

LVEF↑

(96)

Atorvastatin Intragastric Wistar

rats

MI Not investigated Arrhythmia↓

Sympathetic hyperinnervation↓

(97)

Dapagliflozin Intragastric Wistar

rats

MI STAT3 signaling

pathway

Cardiac contractility and

relaxation↑

Cardiac fibrosis↓

Oxidative and nitrosative stress↓

(98)

Nicorandil Intragastric Wistar

rats

MI RhoA/Rho-kinase

signaling↓

Cardiac contractility and

relaxation↑

Cardiac fibrosis↓

(99)

HGF and FGF-2

contained

microparticle

Intramyocardial Wistar

rats

MI Not investigated Angiogenesis↑ (81)

Telmisartan Intragastric Zucker

diabetic

fatty rats

IR injury Ubiquitin-proteasome

system↓

Cardiac function↑

Infarct size↓

(100)

Sitagliptin +

G-CSF

Contained in food

and

intraperitoneal,

respectively

C57/BL6

mice

MI Not investigated Cardiomyocyte hypertrophy↓

LV dilatation↓

(101)

Niacin Intragastric C57BL/6

mice

MI PGD2/DP1 axis↑ Cardiac function↑ (102)

Hydrogen sulfide Intraperitoneal C57BL/6

mice

MI Lipolysis↑

fatty acid oxidation↑

Cardiac function↑

Survival↑

(103)

IL-2/Anti-IL-2

immune complex

Intraperitoneal C57BL/6

mice

MI Not investigated Cardiomyocyte apoptosis↓

Infarct size↓

LV function↑

(104)

Long-acting IL-4

complex

Intraperitoneal C57BL/6

mice

MI Not investigated Angiogenesis↑

Cardiomyocyte hypertrophy↓

Connective tissue formation↑

Infarct size↓

(4)

Topiramate Intraperitoneal C57BL/6

mice

MI Not investigated Cardiac rupture↓

Collagen density↑

Infarct size↓

Survival↑

(105)

BAY 60-6583 Intravenous C57BL/6

mice

IR injury PI3K/PKB pathway↑ Infarct size↓

Inflammation↓

(106)

Suppressing IRF5

by siRNA

Intravenous C57BL/6

mice

MI IRF5 Infarct healing↑ (107)

IL-10 Subcutaneous C57BL/6J

mice

MI Not investigated ECM deposition↓

Inflammation↓

LV function↑

(87)

Ω-Alkynyl

arachidonic acid

Intraperitoneal C57BL/6N

mice

MI Regulating cross-talk

between PKM2, HIF-1α

and iNOS

CK-MB↓

Infarct size↓

(108)

(Continued)
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TABLE 1 | Continued

Modulation

methods

Approaches Animal

strains

Pathological

status

Polarization

mechanisms

Biological effects References

CRMP2 siRNA Intravenous ApoE−/−

mice

MI IRF5↓ Cardiac fibrosis↓

Inflammation↓

LVEF↑

Scar size↓

Survival↑

(109)

Graphene

oxide-carried IL-4

plasmid DNA

Intramyocardial Balb/C

mice

MI Not investigated Angiogenesis↑

Cardiac fibrosis↓

Inflammatory cell infiltration↓

LV function↑

Survival↑

(5)

Hemin formulated

in designed

lipid-based

particles

Intravenous Balb/C

mice

MI Not investigated Angiogenesis↑

Infarct-related regional function↑

Scar tissue↓

(110)

Histone

deacetylase

inhibitor

Intraperitoneal CD1

mice

MI Not investigated Angiogenesis↑

LV dilation↓

LVEF↑

(111)

FGF-9 Intramyocardial Db/db

diabetic

mice

MI Not investigated Cardiac function↑

Infarct size↓

Inflammation↓

(112)

Ac-SDKP Intraperitoneal Mice MI Not investigated Cardiac function↑

Collagen deposition↓

(113)

HBSP Subcutaneous

injection

Rabbits MI Not investigated Coronary atherosclerosis↓ (114)

GENE MODIFICATION

Depletion of

Caveolin-1

Gene modification Cav1−/−

mice

MI TGF-β/Smad2↑ Cardiac fibrosis↑

Inflammatory cell infiltration↑

Survival↓

(115)

Depletion of

Lp-PLA2

Gene modification BmLp-

PLA−/−

mice

MI Not investigated Angiogenesis↑

Collagen deposition↑

Infarct size↓

LVEF↑

(116)

Depletion of Wnt Gene modification Cfms-

icre;Wlsfl/fl

mice

MI Not investigated Angiogenesis↑

Infarct-related regional function↑

(117)

Inhibition of

PTP1B

Gene modification PTP1B−/−

mice

MI Not investigated Angiogenesis↑

LV Diastolic function↑

Myocardial perfusion↑

(118)

MIF deficiency Gene modification MIF

deficient

mice

MI Not investigated Cardiac remodeling↓

Cardiac rupture↓

(119)

Urokinase

plasminogen

activator

overexpression

Gene modification SR-uPA

mice

MI Not investigated Cardiac fibrosis↑ (120)

CELL TRANSPLANTATION AND TISSUE ENGINEERING

MSCs Intramyocardial SD rats MI Not investigated Cardiac fibrosis↓

LVEF↑

(121)

MSCs Intramyocardial Macrophage

depletion

mice

MI Not investigated Infarct healing↑ (84)

BM-MSCs Intravenous NOD/SCID

γ null

mice

MI IL-10 mediated Cardiac function↑

Cardiac remodeling↓

(122)

FM-MSCs Cell sheets Lewis

rats

MI Not investigated Angiogensis↑

Cardiac fibrosis↓

Cardiac function↑

(123)

(Continued)
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TABLE 1 | Continued

Modulation

methods

Approaches Animal

strains

Pathological

status

Polarization

mechanisms

Biological effects References

Bone marrow

transplantation

Intravenous C57BL/6

mice

MI Not investigated Cardiac function↑

Cardiac remodeling↓

Survival↑

Wall thickness↑

(124)

Myocardial ECM

patch

Sutured onto

infarct area

Wistar

rats

MI Not investigated Cardiac function↑ (125)

PHB patch Patched on

epicardial

Wistar

rats

MI Not investigated Angiogenesis↑ (126)

BIO, (2’Z,3’E)-6-Bromoindirubin-3’-oxime; DAPT, N-N-(3,5-difluorophenacetylL-alanyl)-S-phenylglycine-t-butyl ester; LV, left ventricular; HGF, hepatocyte growth factor; G-CSF,

granulocyte-colony stimulating factor; PI3K/PKB, phosphatidylinositol 3-kinase/ protein kinase B; ECM, extracellular matrix; PKM2, pyruvate kinase isozymes M2; HIF, hypoxia-inducible

factor; Inos, inducible nitric oxide synthase; CRMP2, collapsin response mediator protein 2; Ac-SDKP, N-acetyl-seryl-aspartyl-lysyl-proline; HBSP, helix B surface peptide; Smad, mothers

against decapentaplegic homolog 2; Lp-PLA2, lipoprotein-associated phospholipase A2; PTP1B, protein tyrosine phosphatase 1B; MIF, macrophage migration inhibitory factor; SR-uPA,

overexpression of urokinase plasminogen activator; MSCs, mesenchymal stem cells; FM-MSCs, fetal membrane-derived mesenchymal stem cells; BM-MSCs, bone marrow-derived

mesenchymal stem cells; PHB, poly(3-hydroxybutyrate).

on STAT6 signaling (130), whereas IFN-γ mediates macrophage
polarization toward M1 macrophages depending on STAT1
signaling (131, 132). There is antagonism between STAT1 in M1
macrophages and STAT6 in M2 macrophages (133). Therefore,
regulation of STAT1 and STAT6 axes is critical for the shift from
M1 to M2 macrophages. Prostaglandin D2 (PGD2) participates
in the resolution of inflammation (134) through binding to
D prostanoid (DP1 and DP2) receptors (135). Macrophages
express high levels of DP1 and DP2 (136), and activation of the
DP1 receptor regulates macrophage infiltration and promotes
inflammation resolution (137). Inmice withmacrophage-specific
genetic deletion of DP1, macrophages are largely polarized to
M1 phenotypes, leading to an extended inflammation period
after MI with decreased myocardial repair. In vitro experiments
showed that a DP1 receptor agonist inhibits Janus kinase
2/STAT1 phosphorylation by facilitating combination of the
separated PKA regulatory IIα subunit and the transmembrane
domain of IFN-γ receptor, which in turn induces STAT6
phosphorylation in macrophages (138). Similarly, another study
confirmed that niacin activates the PGD2/DP1 axis to polarize
macrophages toward the M2 subtype and promotes cardiac
healing post-MI (102). In addition, STAT3 is widely recognized
as the primary transcription factor modulating IL-10 signaling
in macrophages, and activation of the STAT3 pathway is a
potential mechanism for polarization toward M2c macrophages
(139, 140). Dapagliflozin, a selective sodium-dependent glucose

transporter inhibitor, acts as an antioxidant and enhances

STAT3 activity during myocardial ischemia. Simultaneously,

dapagliflozin preferentially activates M2c macrophages by

increasing IL-10 expression and attenuating myofibroblast
infiltration during post-infarction remodeling (98).

Apart from STAT, interferon regulatory factor (IRF) 5 has

been identified as another transcription factor modulating
M1 macrophage polarization (141). In IRF5-silenced mice,

expression of a M1 macrophage marker decreases, and the

resolution of inflammation and infarct healing are augmented
(107). By silencing upstream gene expression of collapsin

response mediator protein-2, the level of IRF-5 decreases, which

is accompanied by an increase of M2 macrophages. Such an
M1/M2 switch is reversed by overexpression of IRF5 (109). These
studies provide novel gene modification strategies to modulate
M2 macrophage polarization.

Overall, targeting STAT and IRF signaling might be effective
approaches to facilitate differentiation of macrophages toward
the M2 phenotype, which is beneficial for cardiac repair after
MI. More studies should be performed to investigate the precise
mechanism of M2 polarization following MI (Figure 3).

Mast Cells
Mast cells arise from hematopoietic pluripotent precursors in
bone marrow and thenmature in response to proper stimuli such
as stem cell factor (c-kit ligand) and IL-3 (142). In contrast to
the various phenotypes of macrophages, mast cells appear to be
simpler and their effects are largely mediated by degranulation.
With regard to their perivascular location and abundant bioactive
granules, such as chymases, tryptases, histamine, renin, and
cathepsins (143), mast cells are assumed to actively participate
in cardiovascular diseases. Cardiac mast cells exist in both the
hearts of humans (144) and animals (145, 146), and are essential
to maintain aminopeptidase activity in the normal heart (147). In
addition, manymast cells accumulate in the subepicardial layer of
the infarct zone after MI (148, 149), indicating their involvement
in the pathological process. Although numerous studies have
been conducted to elucidate the role of mast cells after MI, the

effects of mast cells on the ischemic or infarcted myocardium are
still controversial (Figure 4).

Ischemia-Reperfusion (IR) Injury and Ischemic

Preconditioning (IPC)
Although timely and efficient reperfusion is the most critical
therapy for MI, it may also induce continuing necrosis of
cardiomyocytes and exacerbate inflammation because of IR
injury. IPC is an effective approach to reduce myocardial
IR injury and improve cardiac functions (150). It has been
demonstrated that mast cells contribute to the protective effects
of IPC against IR injury in the small intestines (151) and
cerebrum (152). However, in the setting of myocardial IR injury,
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FIGURE 3 | Mechanisms of macrophage polarization after MI.

FIGURE 4 | In the setting of MI, the diverse biological effects of mast cells are largely mediated by their granules containing renin, chymase, tryptase, and TNF-α.

Degranulation of mast cells induces activation of local RAS, inflammatory cell recruitment, angiogenesis, and regulation of cardiomyocyte contractility and apoptosis.

current evidence indicates that mast cell granules are generally
deleterious and might augment myocardial injury.

Earlier studies did not find any association between mast
cells and IR injury or IPC after MI, because their numbers

and granular content are not affected after IPC (153), and
neither a mast cell stabilizer nor mast cell degranulating
compound 48/80 influence the antiarrhythmic effects of IPC
(154, 155). Nevertheless, mast cell peroxidase, which is a
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marker of mast cell degranulation, exhibits a remarkable increase
in the coronary perfusate after IPC or compound 48/80
pretreatment, indicating the potential involvement of mast cell
degranulation in IPC (156). Further experiments demonstrated
that norepinephrine preconditioning reduces myocardial injury
by promoting degranulation (157, 158), whereas adrenoceptor
blocker (158) or mast cell stabilizer (159) treatments during
IPC largely decrease the degranulation of mast cells, and thus
mitigate the salutary effects of IPC. These findings imply that
IPC facilitates discharge of toxic substances via premature
mast cell degranulation and consequently alleviate detrimental
effects during the following prolonged ischemia. Additionally,
inhibition of mast cell degranulation by an adenosine A2a

receptor agonist (160) or relaxin (161, 162) at the reperfusion
phase reduces the oxidative injury, infarct size, and ventricular
arrhythmia in an IR model.

More recently, mast cells have been reported to be a crucial
source of renin in the myocardium (163) and thus elicit
post-IR arrhythmia by activating the local renin angiotensin
(Ang) system (RAS) (164, 165). After IPC, the level of
adenosine elevates rapidly in the myocardium (166). Ex
vivo experiments showed that adenosine further activates the
PKCε/aldehyde dehydrogenase type 2 (ALDH2) pathway in
cardiac mast cells via combination with adenosine A2b/A3

receptors, in turn, reduces the local secretion of renin and
biosynthesis of Ang II, which induces arrhythmia by modulating
sympathetic nerve endings (167). In accordance with the
above findings, activation of Gi-coupled receptors, such as
histamine-H4 and sphingosine-1-phosphate-S1P1 receptors on
mast cells, also reduce the infarct size and the occurrence
of arrhythmia through triggering the PKCε/ALDH2 pathway.
In contrast, pharmacological inhibition of ALDH2 by glyceryl
trinitrate treatment or gene modification (ALDH2∗2 knock-
in mice) abolishes the cardioprotective effects in IR models
(168–170).

In addition to renin, IR injury can be caused by other
granules in mast cells. Chymases effectively facilitate the
conversion of Ang I (171, 172)/proAng-12 (173) (a proteolytic
product of angiotensinogen) to Ang II, which may contribute
to neutrophil infiltration via CXC chemokines (174) and
cardiac tissue remodeling after IR injury. Interestingly, Ang
II production is blocked by inhibition of chymases, but
not Ang I-converting enzyme, suggesting that local chymase-
induced Ang II production is independent from classic
RAS activation. In fact, inhibition of chymases protects
cardiomyocytes from apoptosis after IR injury by reducing
the level of pro-MMP-9, cleaved MMP-9, and neutrophil
infiltration, and increasing activation of endothelial nitric
oxide synthase (175). Moreover, mouse mast cell protease
4 (a homolog of human chymase) depletion significantly
reduces the late, but not early, infarct area and improves left
ventricular functions by ameliorating insulin-like growth factor-
1 degradation and activating subsequent prosurvival signals
(176). In addition, under oxidative stress, TNF-α, which is
released during mast cell degranulation, is recognized as a
crucial substance that induces cardiomyocyte apoptosis after IR.
TNF-α upregulates transcription of IL-6 in recruited leukocytes

and subsequent induction of intracellular adhesion molecule-
1 in cardiomyocytes, which mediates neutrophil adherence to
cardiomyocytes and neutrophil-mediated cardiomyocyte injury
(177, 178). Mast cell stabilizers (ketotifen and cromoglycate)
inhibit TNF-α secretion (179) and may attenuate myocardial
injury after IR. These findings indicate that inhibition of mast
cell degranulation or the release of specific granules may be a
promising strategy to alleviate IR injury.

Cardiac Fibrosis
Studies have demonstrated the profibrotic properties of mast cells
under various pathological conditions, such as atrial fibrillation
(180), valvular heart disease (181, 182), and heart failure (183,
184). However, in MI, credible evidence is lacking for the
correlation between mast cells and cardiac fibrosis, except for
some indirect observations. Mast cell precursors are recruited
in the area of collagen deposition at 2–3 days after reperfusion,
which is mediated by macrophage-derived stem cell factor (185).
In the chronic phase of MI, in situ hybridization demonstrated
that plasminogen activator inhibitor-1, which induces tissue
fibrosis by inhibiting MMPs, mainly lies in cardiomyocytes and
perivascular mast cells around the infarction border zone (186).
In a rat model of MI, inhibition of chymases significantly reduces
the fibrotic area and mRNA levels of collagen I, collagen III, and
TGF-β, which is important for the growth of fibroblasts (187). In
addition, chymases facilitate the proliferation of fibroblasts in a
dose-dependent manner in vitro (175). Additionally, bradykinin
B2 receptor antagonist (Hoe140) administration reduces the
number ofmyofibroblasts and attenuates interstitial fibrosis post-
MI, in accordance with the reduction in mast cell infiltration
(188). More studies are needed to ascertain the functions of mast
cells in cardiac fibrosis and their underlying mechanisms in MI.

Protective Properties
Despite the long-held view thatmast cells and their degranulation
are detrimental to myocardial repair, studies continue to uncover
their favorable effects. Clinical studies have shown that a
high level of baseline serum immunoglobulin E (>200 IU/ml)
is associated with less cardiac arrest or cardiogenic shock
events in MI patients. It was speculated that immunoglobulin
E facilitates mast cell infiltration and degranulation in the
ischemic myocardium and thus improves the prognosis (189).
Indeed, in a canine model of myocardial IR injury, mast
cells accumulate along the cardiac vasculature for 4 weeks or
longer and exhibit a defect in granular content (tryptases and
chymases). In vitro experiments demonstrated that mast cell
tryptases upregulate the expression of angiogenic cytokines by
endothelial cells, including IL-8 and MCP-1, which might be
mediated by protease-activated receptor 2 (PAR2) activation
(149). In addition, mast cell-deficient rats (c-kit deficiency)
exhibit a decreased coronary microvessel density around the
infarct zone, a larger infarct core, and poorer left ventricular
functions compared with WT rats (190). Hence, the infiltration
of mast cells might promote the angiogenic activity of cardiac
endothelial cells and subsequent healing process in the infarcted
myocardium via tryptase secretion. However, c-kit deficiency
affects the functions of mast cells as well as other immune cells.
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Models of specific depletion of tryptases, such asMcpt6−/− mice
(191), are necessary to verify the effects of tryptases in vivo.
Recently, a more reliable c-kit-independent mast cell-deficient
(Cpa3cre/+) mouse was used to investigate the role of mast
cells. Similarly, a large amount of mast cell progenitors, which
mainly originated from white adipose tissue, were aggregated
in the heart and differentiated into mature mast cells after MI.
Although no differences were found in the capillary density,
collagen deposition and the infarct size between Cpa3cre/+ and
WTmice, it demonstrated that mast cell-derived tryptases inhibit
PKA activation and subsequent troponin I and myosin-binding
protein C phosphorylation by promoting PAR-2 activation
and, in turn, increase the Ca+ sensitivity and contractility of
cardiomyocytes (192).

The underlying cardioprotective abilities of mast cells have
also been illustrated by direct transplantation (mast cells
or their granular components). Mast cell granules (MCGs)
obtained by collecting a cell suspension after compound
48/80 stimulation has been proven to be therapeutic in MI.
Early MCG injection at the infarct site augments myocardial
angiogenesis and reduces cardiomyocyte apoptosis. Treatment
with MCGs enhances endothelial cell migration, tube formation,
and hypoxic resistance of cardiomyocytes in vitro (193). In
addition, intracoronary functional mast cell implantation
promotes cardiac fibroblast-to-myofibroblast conversion
and angiogenesis compared with non-functional mast cells
(KitW/W−V mouse-derived mast cells), thereby preserving
cardiac functions. However, these effects cannot be sustained
long term (194). In addition, mast cells enhance cardiac
functions by supporting the growth of stem cells. Mast cells
or MCGs (extracted by freeze-thaw cycles and filtration)
promote the migration and proliferation, but not myogenic
differentiation, of mesenchymal stem cells (MSCs) via activation
of the platelet-derived growth factor pathway in the early phase
of MI. These effects may retain a sufficient number of MSCs
for further myofibroblast differentiation in the healing phase
(195).

Taken together, mast cell granules are very likely the
main determinants in mediating beneficial effects after MI,
including angiogenesis, cardiomyocyte contractility regulation,
anti-apoptosis, hypoxia resistance, fibroblast-to-myofibroblast
conversion, and the survival of stem cells. However, concerning
the sophisticated composition of MCGs and different extraction
methods, more studies are required to identify the key regulatory
factors in their granules and to address the mechanisms using
specific animal models.

Eosinophils
Eosinophils differentiate from multipotent progenitors in
bone marrow and are then released into peripheral blood.
They contain various kinds of specific granular contents
including eosinophil cationic protein (ECP), eosinophil
peroxidase, major basic protein, eosinophil-derived neurotoxin,
cytokines, growth factors, chemokines, and enzymes (196). As an
indispensable component of type 2 immunity, eosinophils
comprehensively interact with other immune cells and
participate in the process of helminth infection and allergic

diseases through degranulation activity. Recent data suggest
that eosinophils are also involved in the progression of
MI owing to their proinflammatory and prothrombotic
properties.

Biomarkers for ACS
In MI patients, serum ECP elevates significantly during
the initial 2–3 days, whereas the number of eosinophils
in peripheral blood decreases, indicating that eosinophils
probably infiltrate into the infarcted myocardium and participate
in the acute inflammatory process after MI (197). The
activation and degranulation of eosinophils in the infarcted
myocardium may affect the structure of heart and lead to cardiac
rupture (198).

Many studies have investigated the relationship between
eosinophils or ECP and clinical outcomes of MI patients.
Patients with a higher eosinophil-to-leukocyte ratio at 24 h
after admission have significantly higher occurrence of major
adverse cardiovascular events (199). Similarly, baseline ECP
levels before stent implantation are higher in patients who
suffer major adverse cardiac events such as cardiac death,
recurrent MI, and clinically driven target lesion revascularization
(200, 201). However, it was also reported that a high level of
eosinophils (blood samples collected within 72 h after admission)
is associated with a lower 1-year risk of death after multivariate
adjustment (202). In addition, severe ACS patients have lower
blood eosinophils compared with less severe ACS patients
(203, 204). The inconsistent results of the relationship between
eosinophil numbers and clinical outcomes of MI patients may
due to the timing of blood sample collection or different patient
cohorts.

By analyzing thrombus aspiration samples during emergency
coronary angiography, eosinophils were found to be largely
contained in the coronary thrombus of ACS patients and
associated with a larger thrombus area, indicated that eosinophils
caused the occurrence of MI by facilitating thrombus growth
in the coronary artery (204, 205). In accordance with the above
results, eosinophil degranulation, ECP levels, and the thrombus
score were higher in ST-segment elevation MI patients with
major adverse cardiac events at the 1-year follow-up (206).

Potential Mediator of Tissue Repair
Growing evidence has demonstrated that eosinophils also
induce tissue repair. In a mouse model of cardiotoxin-induced
tibialis anterior muscle injury, eosinophils largely aggregate
in the injured site and activate the IL-4/IL-13 signaling
pathway in fibro/adipogenic progenitors via secretion of IL-4.
Consequently, the proliferation of fibro/adipogenic progenitors
facilitate myogenesis. The regeneration ability is impaired in
1dblGATA mice (unique loss of eosinophil lineage) (207).
Similarly, eosinophils are recruited into the liver after hepatic
injury and release IL-4 that directly promotes hepatocyte
proliferation via blinding to IL-4Rα on these cells (208). However,
studies concerning the role of eosinophils in the injured
myocardium are lacking. It will be intriguing to further clarify
the role of eosinophils in MI with regard to their specific abilities.
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CONCLUSION

Type 2 immunity-related cell types and cytokines participate in
various physiological and pathological processes after MI. M2
macrophages inhibit the inflammatory response and promote
angiogenesis and collagen deposition, thereby conferring benefits
to the infarcted myocardium. Modulation of the macrophage
polarization status is critical for myocardial repair. Although
mast cells and their granules have been regarded as detrimental
to myocardial healing, recent studies using more reliable mouse
models have indicated that mast cell-derived tryptases actively
regulate contractility of cardiomyocytes. Additionally, injection
of MCGs preserves cardiac functions after MI by promoting
angiogenesis, fibroblast-to-myofibroblast conversion, migration
and proliferation of MSCs, and reducing cardiomyocyte
apoptosis. In terms of eosinophils, the serum level of eosinophils
and their granules, especially ECP, are closely related to the
severity and clinical outcomes of ACS patients. Interestingly,
two studies have revealed their underlying ability to activate
intrinsic tissue repair of both muscular and hepatic injuries.
However, these properties have not been tested in the setting
of MI. Owing to the comprehensive interactions with immune
and myocardial cells, type 2 cytokines have been proven to

facilitate the recovery of cardiac functions after MI and serve
as potential biomarkers to evaluate the severity and prognosis
of MI. Nevertheless, the roles of basophils, ILC2, Th2 cells,
and other type 2 cytokines in MI remain obscure. More studies
are needed to further clarify the role of type 2 immunity
in MI.
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Objective: Neonatal Lupus (NL) is a rare syndrome caused by placental transfer of

maternal anti-SSA/Ro and anti-La/SSB autoantibodies to the fetus. The rarity of this

condition requires the establishment of multidisciplinary registries in order to improve

our knowledge.

Method: Inclusion criteria in this retrospective study were the maternal confirmed

positivity for anti-SSA/Ro and/or anti-SSB/La antibodies, and the presence of II or III

degree congenital heart block (CHB) in utero or neonatal period (up to 27 days after birth).

Result: Eighty-nine cases of CHB were observed in 85 women with 88 pregnancies

that occurred between 1969 and 2017. CHB was mostly detected in utero (84 cases,

94.2%), while five cases were observed in the neonatal period. A permanent pacemaker

was implanted in 51 of 73 children born alive (69.8), whereas global mortality rate was

25.8% (23 cases): 16 in utero, five perinatal, and two during childhood. By univariate

analysis, factors associated with fetal death were pleural effusion (p = 0.005, OR > 100;

CI 95% 2.88->100 and hydrops (p= 0.003,OR= 14.09; CI 95% 2.01–122). Fluorinated
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steroids (FS) were administered in 71.4% pregnancies, and its use was not associated

with better survival. Some centers treated all cases with fluorinated steroids and some

centers did not treat any case. CHBwas initially incomplete in 24 fetuses, and of them five

cases of II degree block reverted to a lower degree block after treatments. Recurrence

rate in subsequent pregnancies was 17.6% (3 out of 17). A prophylactic treatment was

introduced in 10 of these 16 subsequent (58.8%) pregnancies, mostly with FS or high

dose intravenous immunoglobulins.

Conclusion: This is the first report from the Italian Registry of neonatal lupus/CHB.

The live birth rate was nearly 80%, with nearly two thirds of the children requiring the

implantation of a pacemaker. The management of fetuses diagnosed with CHB was

heterogeneous across Italian Centers. The registry at present is mainly rheumatological,

but involvement of pediatric cardiologists and gynecologists is planned.

Keywords: pregnancy, congenital heart block, neonatal lupus, outcome, risk factors, therapy

INTRODUCTION

Neonatal lupus (NL) is a rare disorder mainly caused by
the transplacental passage of maternal autoantibodies
anti-SSA/Ro and/or anti-SSB/La (1, 2), usually during the
second trimester of gestation (3, 4); these antibodies can
reach the fetal heart, inducing inflammation (macrophage
infiltration and giant cell formation), calcification, and
fibrosis, which lead to aberrant signal conduction at the
atrio-ventricular node. The most common manifestations
are cutaneous or cardiac, while liver damage or cytopenia
are less frequent. NL can occur in the offspring of
mothers with a diagnosis of connective tissue disease
(CTD), mostly Sjögren Syndrome (SS), or Systemic Lupus
Erythematosus (SLE), but most cases are reported in
asymptomatic women.

Cardiac involvement is usually irreversible and represents
the most feared manifestation. It is characterized by advanced
congenital heart block (CHB) (II or III degree) in an otherwise
structurally normal heart.

Anti-SSA/Ro autoantibodies are found in ∼85–90% of
mothers of children with CHB (1), and prospective studies
of pregnancies in anti-SSA/Ro positive patients estimated the
risk of CHB to be 1–2% (5, 6). Recurrence rate in subsequent
pregnancies is about 12–19% (1, 7, 8).

Several groups addressed the morbidity and mortality
associated with CHB in different countries (9–13). Mortality
ranges from 16 to 29%, whereas the rates of children
receiving pacemaker vary from 50 to 79%, frequently
within the first year of life. Studies are heterogeneous, also
including cases not associated with maternal antibodies
(9–14) (Table 1). The Italian Registry of Neonatal Lupus
(Lu.Ne registry) was created to collect data also in Italy,
supported by a grant from the Italian Society of Rheumatology.
The aim was to determine the mortality and morbidity
associated with CHB in an Italian cohort enrolling
women with a confirmed positivity for anti-SSA/Ro and/or
anti-SSB/La antibodies.

PATIENTS AND METHODS

Study Cohort
The Lu.Ne registry was created in 2016, partially funded by
the Italian Society of Rheumatology, after approval of the
Institutional Review Board of the Coordinating Center in Brescia.
Inclusion criteria were thematernal confirmed positivity for anti-
SSA/Ro and/or anti-SSB/La antibodies and the presence of II
or III degree CHB in utero or within the neonatal period (0–
27 days after birth) (15) documented by electrocardiography
and/or fetal echocardiography. For this study cases enrolled in
the registry up to May 2018 were included. Medical records of
pregnant women attending 11 Italian referral centers (mainly
Rheumatology or Internal Medicine Departments, whose ethical
committees approved the study) from 1969 to 2017 were
retrospectively evaluated. In cases of variability of CHB grade,
the most severe degree of CHB ever reached was considered
for statistical analysis. This study was performed according
to the principles of the Declaration of Helsinki with written
informed consent from all subjects and was approved by the Ethic
Committee of the Coordinating Center (approval number 2,417)
and the participating centers.

Data Collection and Definitions
Data were collected through an online electronic data sheet
prepared in a Research Electronic Data Capture (REDCap)
platform. Data obtained from medical files included: maternal
age at birth, ethnicity, obstetrical history, the presence of a
systemic connective tissue disease (CTD), an organ autoimmune
disease or other known obstetrical risk factors.

The following data were collected about the fetus/child: the
time of occurrence of CHB, the lowest prenatal ventricular and
atrial heart rate, the presence of endocardial fibroelastosis (EFE),
pericardial effusion, hydrops, dilated cardiomyopathy (DCM),
valvulopathy or other anomalies (including ventricular and
atrial-septal defects, intraauricular communication), treatment
for CHB (dose and duration), maternal, and fetal outcomes. For
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TABLE 1 | Outcome of infants with CHB in the present study and in five large international series of cases (9–13).

Lopes et al. (9) Eliasson et al. (10) Izmirly et al. (11) Levesque

et al. (12)

Van der Berg

et al. (13)

Present study

N. of fetuses 57 with normal

cardiac anatomy

175 325 202 in utero +12

in the neonatal

period

56 84 in utero +5 in

the neonatal

period

Total mortality 13 (23%) 27 (15%) 57 (17.5%) 49 (23%) 9 (16%) 23 (25.8%)

Mortality in utero 6 (10%) 16 (9%) 18 (6%) 27 (13%) 8 (14.2%) (five

additional cases of

termination of

pregnancies for

various reasons

16 (17.9%)

Perinatal mortality 7 (14%) 10 (6.2%) 39 (12.7%)

considered as 1 year

after birth

8 (4%) 1 (2.3) 5 (5.6%)

PM cumulative

prevalence

29 (56.7%) 102 (64%) 70% (the cumulative

probability)

148 (79%) 30 (70%) 51 (69.8%)

Late onset

cardiomiopathy

3 (5.6%) 8 (5.8%) Four cases of heart

transplantation

35 (18%) 6 (14%) 2 (2.2%)

Treated with FS 6 (10%) 67 (38%) 152 (47.8%) 79 (39%) 14 (27%) 60 (71.4%%)

Effects of FS None None on mortality;

possibly reversal on II

CHB

Possibly reversal on II

CHB

None None None on mortality;

possibly reversal

on II CHB

Reversal of II degree

CHB after FS

None In 3/7 fetuses treated

vs. 0/8 untreated

In 4/13 fetuses

treated vs. 1/8

untreated

In 1/13 treated vs.

1/11 untreated

In 2/14 treated vs.

1/42

Five cases, all

treated; see

footnote*

Variables associated

with death

Atrial rate <120 bpm,

ventricular rate <55

bpm, hydrops,

Detection <20 gw,

ventricular rate <50

bpm, hydrops,

impaired left

ventricular function

Earlier gestational

age, lower ventricular

rate, hydrops, EFE

Hydrops,

prematurity (<37

weeks gestation)

Not analyzed Hydrops, pleural

effusion

Survival rate at 10

years for a child born

alive

NA NA 86% 88% NA 90%

Maternal anti-SSA/Ro

antibodies

72% 80% of 162

pregnancies with

documented

antibody status

100% 99.5 % 89% 100%

*1 case regressed from II degree to variable CHB (alternating between I and II degree), 2 from II to I degree and 2 regression from II degree to no CHB. Three out of the five fetuses were

treated with a combined protocol composed by fluorinated steroids plus plasmapheresis plus IVIg, one received dexametasone plus plasmapheresis and one only dexametasone. NA,

not available; CHB, congenital heart block; EFE, endocardial fybroelastosis; DCM, dilated cardiomyopathy; FS, fluorinated steroids; bpm, beats per minute.

children, we collected information on pacemaker implantation
(PM), postnatal DCM, death, and other complications.

Fetal complications were defined according to common
definitions (10–13). Atrioventricular block (AVB)-II◦ was
defined as the intermittent mechanical dissociation of atrial and
ventricular activation diagnosed by M-mode echocardiography
and AVB-III◦ as the complete mechanical dissociation of atrial
and ventricular activation diagnosed by M-mode (10, 13).
AVB-I◦ was assessed only in the recent years, using pulsed
Doppler echocardiography in the left ventricular outflow tract
to record simultaneously mitral valve inflow and aortic outflow
(mitral-aorta), from which the time delay from atrial systole
to ventricular systole could be inferred. AVB-I◦ was diagnosed
when this fetal mechanical Doppler PR interval was found to be
>150ms (16).

DCM was defined as increased size of the left ventricle or
multiple chambers in the absence of chamber wall hypertrophy

with associated decreased contractility on echocardiogram (11,
12); endocardial fibroelastosis as the presence of abnormal
areas of echogenicity on the endocardial surface of the cardiac
chambers and/or valve leaflets on echocardiogram or endocardial
fibrosis on biopsy or autopsy. Hydrops fetalis was defined
as an abnormal accumulation of fluid in at least two fetal
compartments (11, 12).

In each center, autoantibodies tests were performed in a
referral laboratory certified for diagnosis.

Statistical Evaluation
Categorical variables were reported as proportion and/or
percentage, while continuous variables as mean (±SD) values.
Fisher’s exact test or Chi-square test for categorical variables and
Student’s t-test or Wilcoxon-Mann-Whitney test for continuous
variables were applied as appropriate. Multivariate analysis was
not performed due to limited number of cases collected. P <
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0.05 were considered significant and Odds Ratio (OR) with 95%
Confidence Interval (95% CI) was indicated.

RESULTS

Patients
By May 2018, the registry included 89 cases of CHB from 85
patients who had 88 pregnancies. The 85 women were Caucasian
(n = 79, 92.9%), African (n = 3, 3.5%), Asian (n = 2, 2.3%),
and Afro-Caribbean (n = 1, 1.2%) (Table 2). An organ-specific
autoimmune disease was diagnosed in 12 women: autoimmune
thyroiditis (n = 8, 9.4%), celiac disease (n = 3, 3.5%), multiple
sclerosis (n= 1, 1.2%).

Sixty patients reported previous pregnancies, without
previous documented cases of CHB, except for one case of
cutaneous NL. When their first child with CHB was diagnosed,
46 mothers (54.1%) fulfilled the classification criteria for CTDs:
undifferentiated connective-tissue disease (UCTD) (n = 24,
28.2%), SS (n = 18, 21.2%), SLE (n = 4, 4.7%), whereas the
others were considered as anti-SSA/Ro carriers. Few cases of
acquired cardiovascular risk factors were collected: two patients
were smokers, one suffered from hypertension and obesity, and
one had diabetes mellitus.

Four cases of multiple pregnancies were collected: three were
spontaneous dichorionic biamniotic twins, with one affected, and
one unaffected fetus for each pair. The other multiple pregnancy
was a triplet gestation after in vitro fertilization: two out the three
fetuses were affected by CHB (one III and one II degree) and one
unaffected. The triplet pregnancy has already been described (17).

TABLE 2 | Demographic information.

Maternal demography N = 85 (%)

ETHNICITY

Caucasian 79 (92.9)

African 3 (3.5)

Asian 2 (2.3)

Afro-Caribbean 1(1.2)

MATERNAL DIAGNOSIS AT CHB DETECTION

Undifferentiated Connective Tissue Disease 24 (28.2)

Sjögren’s Syndrome 18 (21.2)

Systemic Lupus Erythematosus 4 (4.7)

Carriers of anti-SSA/Ro 24 (28.2)

Carriers of anti-SSA/Ro + anti-SSB/La 15 (17.6)

ASSOCIATED ORGAN-SPECIFIC AUTOIMMUNE DISEASE

Autoimmune thyroiditis 8 (9.4)

Celiac disease 3 (3.5)

Multiple sclerosis 1(1.2)

None/Unknown 73 (85.6)

AUTOANTIBODIES PROFILE

Anti-SSA/Ro 85 (100)

Anti-SSB/La 50 (58.8)

CHB, congenital heart block.

Including the triplet pregnancy, three gestations that occurred
after assisted reproductive technology procedures were collected.

All mothers were anti-SSA/Ro positive by inclusion criteria,
and SSB/La antibodies were present in 58.8%. AntiRo52 status
was available in 58.8% of the mothers, and all were positive.

The mean age at conception was 31.5 years (SD 5.3, range
22–42), 84 cases (94.4%) were diagnosed in utero at a median
term of 21 gestational weeks (gw) (SD 4, range 17–38) and
five (5.6%) were diagnosed in the neonatal period (15). CHB
was initially incomplete in 24 fetuses (five with alternating II-
III degree, two with alternating I-II degree, and 17 II degree).
Considering the highest degree of CHB shown by the fetus/child,
71 (66 in utero and 5 neonatal) (79.8%) third-degree (complete)
CHB, 18 (20.2%) second-degree CHB were included (Table 2).

Fetal/Neonatal Outcomes
Among the 89 cases, 73 (82%) children were born alive at
a mean gestational week (gw) of 35.3 (SD 3.0, range 28–41),
7 elective terminations of pregnancy (TOP) were performed
at a mean term of 22 gw, and nine intra-uterine fetal deaths
occurred at a mean term of 26 gw (Table 3). All the cases
of TOP were CHB grade III. Table 4 reports the univariate
statistical comparison of clinical and demographic features
among survivors at birth and the deceased. By univariate analysis,
factors associated with fetal death were pleural effusion (p =

0.005, OR > 100; CI 95% 2.88->100) and hydrops (p = 0.003,
OR= 14.09; CI 95% 2.01–122).

The five cases diagnosed in the perinatal period or within the
neonatal period (0–27 days after birth) occurred in the 1970–
1980s: all these five newborns had III degree CHB; four of them
received a pacemaker at a mean age of 7.2 years (range 2–18).

Treatment
Prior to CHB identification, only a limited number of patients
were receiving treatments (Table 5), in all cases for maternal
disease: nine were treated with low dose aspirin (LDA), eight with
not-fluorinated steroids, seven with hydroxychloroquine (HCQ),
and one with immunosuppressive therapy (Table 5).

TABLE 3 | Outcomes of 89 cases of CHB.

Pregnancy outcome N = 89 (%)

Live birth 73 (82)

Intrauterine fetal death 9 (10.1)

Termination of pregnancy 7 (7.8)

CHB DETECTION

In utero 84 (94.2)

CHB GRADE

II degree 18 (20.2)

III degree 71 (79.8)

OVERALL MORTALITY 23 (25.8)

In utero 16 (18)

Neonatal 5 (5.6)

Childhood 2 (2.2)
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TABLE 4 | Comparison of clinical and demographic features among children born

alive and fetuses died in utero.

Live birth

n = 68 (%)

Deceased

n = 16 (%)

p-value

IN UTERO DETECTED PATIENTS (84 CASES)

Maternal diagnosis of CTD 37 (54.4) 7 (43.7) 0.44

Non-Caucasian ethnicity 4 (5.4) 2 (12.5) 0.31

Maternal age at conception

(SD)

31 (6.03) 32 (4.16) 0.76

Type of conception

Spontaneous 64 (94.1) 16 (100.0) 0.73

Assisted reproduction

techniques

4 (5.9) 0

Timing of pregnancy

Planned 21 (30.9) 6 (37.5) 0.767

Unplanned/unknown 47 (69.1) 10 (62.5)

Gestational age at detection

(gw) (SD)

22.8 (4.7) 20.7 (1.0) 0.27

Ventricular rate at nadir ≤50

bpm (n = 73)

21 (36.2) 6 (40) 0.78

Mean ventricular rate at

nadir bpm (SD) (n = 73),

44.7 (27.9) 43.5 (30.8) 0.41

CHB grade (n = 84)

II degree 16 (23.5) 2 (12.5) 0.3

III degree 52 (76.5) 14 (87.5)

Impaired left ventricular

function (n = 71)

5 (8.9) 3 (18.7) 0.35

Dilated cardiomyopathy

(n = 74)

10 (12.6) 3 (27.3) 0.39

Hydrops (n = 82) 2 (3.0) 5 (31.2) 0.003*

Pleural effusion (n = 81) 0 3 (18.7) 0.005**

Pericardial effusion (n = 81) 8 (12.3) 5 (31.2) 0.12

Endocardial fibroelastosis

(n = 81)

1 (1.5) 2 (13.3) 0.09

Intrauterine growth

restriction (n = 75)

12 (19.3) 3 (23.1) 0.71

Oligohydramnios (n = 84) 5 (7.8%) 0 0.58

CTD, connective tissue disease; gw, gestational week; bpm, beats per minute; *OR,

14.09; CI 95% 2.01–122, **OR > 100; CI 95% 2.88->100.

After CHB detection, fluorinated steroids (FS) were
administered in 60 (71.4%) pregnancies, with a mean total
duration of treatment of 9.5 weeks (range 4–18 weeks).
Twenty steroid-treated fetuses (33%) received intravenous
immunoglobulin (IVIg) and 17 (28.3%) received cycles with
plasma exchange as well. Sixteen newborns received IVIg at birth.

Effects of treatments in the 60 treated pregnancies were
analyzed and in the majority of the cases no variation in the
progression of CHB was observed (46 cases, 76.7%) (Table 5).

CHB was initially incomplete in 24 fetuses, all of them were
treated at least with FS; five cases of regression from grade
II CHB was observed. In detail: one change occurred from II
degree to variable CHB (alternating between I and II degree),
two from II to I degree and two regression from II degree to no
CHB. Three out of the five fetuses were treated with a combined
protocol composed by fluorinated steroids plus plasmapheresis

TABLE 5 | Therapy before and after CHB detection.

Live birth

n = 73 (%)

Deceased

n = 16 (%)

p-value

THERAPY BEFORE CHB DETECTION

LDA 6 (8.2) 3 (16.6) 0.36

Non-fluorinated steroids 6 (8.2) 2 (12.5) 0.67

Hydroxychloroquine 7 (9.6) 0 0.33

DMARDs 0 (0) 1 (6.2) 0.19

MATERNAL THERAPY AFTER FETAL CHB DETECTION (n = 84)

Live birth

n = 68 (%)

Deceased

n = 16 (%)

p-value

Any treatment 50 (73.5) 10 (62.5) 0.46

Fluorinated steroids 50 (73.5) 10 (62.5) 0.46

Intravenous

Immunoglobulin

18 (26.4) 2 (12.5) 0.41

Plasma exchange 16 (23.5) 1 (6.2) 0.28

Other (beta-mimetics) 6 (8.9) 1 (6.2) 0.81

CHB VARIATION DURING/AFTER THERAPY (n = 60)

Live birth

treated

n = 50 (%)

Deceased

treated

n = 10 (%)

p-value

Regression 5 (10) 0 0.74

Progression 3 (6) 1 (10)

Unchanged 38 (76) 8 (80)

Unknown 4 (8) 1 (10)

LDA, low dose aspirin; DMARDS, immunosuppressive therapy.

plus IVIg, 1 received dexamethasone plus plasmapheresis, and
one only dexamethasone.

Fourteen cases of newborns small for gestational age,
five cases of intrauterine growth retardation, four cases
of olygohydramnios, one case of maternal hypertension
were recorded in the 60 mothers treated with FS; these
complications may be related to the treatment with FS,
particularly olygohydramnios and hypertension.

Postnatal Outcomes
Among the 73 live births, five newborns died within 10 days after
birth (Table 6). These five children were born prematurely and in
four cases death occurred even if a pacemaker was placed at birth.

Out of the remaining 68 children, two died later, one due to
late onset DCM at the age of 21months after a PM placed at birth,
and 1 at the age of 6 years for a sudden death, probably due to a
thrombotic event, however autopsy was not performed. Another
child underwent cardiac transplantation at the age of 17 months
for late onset DCM in 2003, and at present he is doing well.

Overall DCM was recorded in six cases at birth, while two
cases of late onset DCM were observed (2.2%) (see Table 1). All
the children with DCM were permanently paced, and two of
them died (25%).

Overall a PM was placed in 51 of the 73 children born alive
(69.8%): 19 (37.2%) at birth, 10 (19.6%) within the first month of
life, 11 (21.5%) within the first year of life, and 11 later (21.5%).
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TABLE 6 | Pregnancy outcome and postnatal follow-up in pregnancies ended

with a live birth.

Pregnancy outcome Live birth n = 73 (%)

Medium gestational week of delivery (SD) (n = 70) 35.3 (3.0)

Delivery (n = 73)

Cesarean section 58 (82.3)

Vaginal 12 (17.1)

unknown 3 (6)

Preterm deliveries <37 weeks 53 (72.6)

Preterm deliveries <34 weeks 26 (35.6)

Sex (n = 71)

Female 44 (62)

Male 27 (38)

Medium weight at birth (grams) (SD) (n = 69) 1776.5 (523.5)

Medium length (cm) (SD) (n = 40) 40.5 (5.8)

APGAR (1–10) (n = 55) 8.5 (1)

DCM at birth (n = 72) 5 (7.0)

POSTNATAL OUTCOME

At birth/Neonatal PM implantation 29 (39.7)

Neonatal death 5 (6.8)

Infant/childhood PM implantation 22 (30.1)

Infant/childhood death 2 (3.1)

Overall PM pacing 51 (69.8)

Overall mortality 23 (25.8)

DCM, dilated cardiomyopathy; PM, pacemaker.

Within the first year of life, more than 50% of the surviving
children were paced (40 children, 54.8%).

Recurrence
After the index pregnancy, 14 women had 17 subsequent
pregnancies (reviewed in Table 7): three were complicated
by a CHB therefore the recurrence rate in our cohort was
17.6%. Nine patients received treatments during 10 pregnancies
(58.8%): hydroxychloroquine in 1, IVIg alone in 1, not-
fluorinated steroids (for maternal indication) alone in 3, not-
fluorinated steroids and IVIg in 3, IVIg and HCQ in 1,
and IVIg with plasmapheresis and fluorinated steroids in 1.
Non fluorinated steroids and HCQ were administered before
pregnancy, fluorinated steroids were introduced at conception in
two cases, and IVIG and plasmapheresis were started from week
12 (see Table 7 for details).

Adverse events possibly related with a prolonged use of
steroids (maternal hypertension, intra-uterine growth restriction,
oligohydramnios) occurred in three. The recurrence rate was not
statistically different in mothers who received steroids compared
to those who did not (28.6 vs. 11.1%, respectively, p = 0.55), but
the numbers are low. All the three recurrences of CHB occurred
after an index pregnancy complicated with fetal or neonatal death
due to a complete CHB.

Maternal Follow-Up
At the time of index pregnancy, 39 patients were considered as
asymptomatic autoantibodies carriers. Two years after the latest

pregnancy, 11 patients of them developed signs/symptoms that
fulfilled the criteria for connective tissue disease: six cases of
UCTD and five of SS. In six patients, a chronic treatment was
required: oral steroids in four, HCQ in three, and methotrexate
in one.

DISCUSSION

This paper describes the first data from the Italian Registry
of neonatal cardiac lupus syndrome, including 89 retrospective
cases of CHB associated with anti-SSA/Ro and/or anti-SSB/La
antibodies. This registry was created in order to collect the cases
diagnosed and treated in different Centers, some of them with
a longstanding interest in this rare condition. Although some of
the cases included in this registry have been already published
(17–20), this remains the first effort to analyze all the data as a
collaborative national study.

The results that were obtained are in many aspects in line
with the published large retrospective studies (Table 1) (9–
13). The number of cases of complete and incomplete CHB
(79.8 vs. 20.2%) and the cumulative probability of pacemaker
implantation, almost 70%, were very similar to already published
data (1, 9–13) (see Table 1).

The risk of fetal mortality in the present cohort was 18% and
the overall mortality was 25.8%, slightly higher in our cohort
than reported in other publications (see Table 1). On statistical
analysis, several risks factors that were associated or had a trend
toward an increased risk for mortality were confirmed. The
presence of hydrops and fetal serositis are well established risk
factors for adverse outcome, confirmed in several previous papers
(1, 11, 12). No other risk factors were identified in our cases,
in particular fetal mortality was not associated with a maternal
diagnosis of SLE or SS at the time of pregnancy or a specific
ethnicity as previously reported (11).

Some confusion existed in the past on the definition of
“congenital” heart block, with some cases detected after birth;
for this reason a multidisciplinary group proposed to define
congenital heart block as an atrioventricular block diagnosed in
utero, at birth or within the neonatal period (15) and in the
present report five cases were diagnosed after birth.

In our registry data on subsequent pregnancies after a case
of CHB were also collected; recurrence rate of CHB was 17.6%,
strikingly similar to what found (17.4%) (7) in the American
Research Registry for Neonatal Lupus; in our registry all the three
fetuses with recurrent CHB were born alive.

Till date, the management of CHB remains very controversial
and there are no generalized recommendations on how to treat
CHB or if a prophylactic treatment is required during pregnancy.
Various treatment approaches have been reported, including
steroids, plasmapheresis, IVIg, several immunosuppressive
agents, and hydroxychloroquine (21). Fluorinated steroids (FS)
could cross the placenta because they are only partially
inactivated by 11ß-hydroxysteroid dehydrogenase complex
expressed in syncytial trophoblast cells and have satisfactory
bioavailability to the fetus (22), and are the drugs with
the largest clinical experience. Side effects of high dose
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TABLE 7 | Subsequent pregnancies after an index pregnancy complicated with CHB: treatment and pregnancy outcomes.

Index pregnancy

outcome

Maternal

diagnosis

Year of

pregnancy

Fetal

ECHO

Treatment Pregnancy

outcome

Pregnancy

complications

Pt 1 CHB III degree, born

alive

SS 2005 yes Prednisolone 28 mg/w

IVIg 400mg/kg every 3w

between 12 and 24th gw

Born alive,

without CHB

no

Pt 2 CHB III degree,

neonatal detection,

infant death

SS 1978 yes no Neonatal CHB III

degree

no

Pt 3 CHB III degree, born

alive

Carrier

anti-SSA/Ro

2014 yes no Born alive,

without CHB

no

Pt 4 CHB III degree, infant

death

UCTD 2003 yes no Born alive,

without CHB

no

2006 yes no Born alive,

without CHB

no

Pt 5 CHB II degree, born

alive

SS 2007 yes IVIg 400 mg/kg every 3w

between 12 and 24th gw

HCQ 200 mg/daily

Born alive,

without CHB

no

Pt 6 CHB III degree, TOP UCTD 2006 yes Prednisone 35 mg/w; IVIg

400 mg/kg every 3w

between 12 and 24th gw

Born alive,

without CHB

Polyhydramnios

2008 yes Prednisone 25 mg/w; IVIg

400 mg/kg every 3w

between 12 amd 24h gw

Born alive,

without CHB

Maternal

hypertension

Pt 7 CHB III degree, TOP SS 2002 yes Prednisone 35 mg/w; Born alive,

without CHB

no

2009 yes no Born alive,

without CHB

no

Pt 8 CHB III degree,

intra-uterine fetal

death

Carrier

SSA/Ro

+SSB/La

2012 yes Betametasone 28 mg/w,

IVIg 1 g/kg every 2w for

13w, Plasmapheresis for

14w

CHB II degree Olygo-

anydramnios

Pt 9 CHB III degree, born

alive

UCTD 1999 yes Betametasone 10 mg/w Born alive,

without CHB

IUGR, maternal

hypertension

Pt 10 CHB III degree,

intra-uterine fetal

death

Carrier

SSA/Ro

+SSB/La

2001 yes Dexametasone 28 mg/w CHB III degree PM at birth

Pt 11 CHB III degree, TOP UCTD 2007 yes IVIg400 mg/kg every 3w

between 12 and 24th gw

Born alive,

without CHB

Pt 12 CHB III degree, born

alive

Carrier

SSA/Ro

+SSB/La

2015 yes no Born alive,

without CHB

Pt 13 CHB III degree,

intra-uterine fetal

death

UCTD 2014 yes HCQ Born alive,

without CHB

Oligohydramnios

We did not include in the table one case that ended with an early termination of pregnancy required by parents at 11 gw. ECHO, echocardiography; HCQ, hydroxychloroquine;

TOP, termination of pregnancy; PM, pacemaker; UCTD, undifferentiated connective tissue disease; SS, Sjögren Syndrome; IUGR, intra-uterine growth restriction; IVIg, intravenous

immunoglobulin; HCQ, hydroxychloroquine.

FS during pregnancy may be important: increased blood
pressure, osteopenia, osteonecrosis, susceptibility to infections,
gestational diabetes, premature rupture of the membranes
and olygohydramnios. In the present study 60 women were
treated with FS: olygohydramnios occurred in 6.6% of cases,
intrauterine growth retardation in 8.3% and hypertension
in 1.7%.

Retrospective data over a wide time span ranging from
the 1970s through 2017 were collected in the present study,

therefore the treatment strategies were very heterogeneous.
Steroids resulted as the most used drugs, reaching the highest
rate compared with other registries (see Table 1) and this
result confirms that there is no consensus regarding treatment
with steroids. Moreover, in many occasions, it depends on the
historical approach followed in the single center (23): some
centers treated no patients, irrespective of the fetal status,
whereas in others hospitals FS were used almost in all cases.
The most consistent data on the possible efficacy in CHB were
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published by Jaeggi et al. (24) in 2004. The authors reported a
higher one-year survival rate and less complications or features
associated with NL in 21 treated complete CHB compared
with 11 patients who did not receive FS. This study, however,
displays some limitations. Firstly, the authors compared fetuses
from two different eras: the historical cohort from 1990 to
1996 did not receive steroids, whereas all fetuses between 1997
and 2003 were treated. A second important limitation was
the higher rate of risk factors for a poor prognosis present
in the untreated cohort. Subsequent works did not confirm
these findings (10–12, 25). In fact, we also did not find any
significant differences on fetal mortality between the groups
treated and not with FS, which is consistent with the large
international series.

In particular Izmirly et al. (25) compared 71 fetuses
with isolated CHB who received FS within 1 week of
detection with 85 who received no treatment and evaluated
the development of EFE, dilated CMP, hydrops, mortality,
and PM implantation. These authors observed that FS did
not significantly prevent development of disease beyond
the atrio-ventricular node [adjusted Hazard Risk (HR) =

0.90; p = 0.77], nor reduce mortality (HR = 1.63; p =

0.47), or forestall/prevent PM implantation (HR = 0.87;
p = 0.53), so they concluded that no evidence supports
fluorinated steroids to prevent disease progression or death in
isolated CHB.

Another possible indication for the use of FS is for the
prevention of the evolution from incomplete to complete
CHB. Whereas, complete CHB is considered irreversible,
regression from incomplete block after treatment has been
described (10, 11, 26–28). In our cohort an improvement was
observed in five cases, all treated with FS and three treated
with a combination therapy recently published (29). In brief,
in that paper (29) the authors wanted to summarize the
possible effects of each single procedure: they demonstrated
that plasmapheresis could remove anti/SSA-Ro autoantibodies
(30), FS could reduce local inflammation and IVIg could
limit the effects of autoantibodies. They used this approach in
12 patients with second or third degree CHB. No variation
occurred in the six cases with complete CHB, whereas an
improvement occurred in 50% of second degree CHB. The
authors reported no side effects in the fetuses or in the
mothers, proposing this combination therapy as a therapeutic
option in second degree CHB. Unfortunately, since such
improvement has been observed also in the absence of any
treatment (12) or only with FS, it is not possible to draw
any definite conclusion. The recent paper by Cuneo et al.
(28) underlines as timing may very relevant for a possible
therapeutical windows.

Several hypotheses have been proposed showing the
potential usefulness of IVIG to prevent cardiac tissue damage:
firstly increasing the elimination of maternal autoantibodies
through IVIG saturation, secondly decreasing placental
transport of autoantibodies through FcγRn leading to
the modulation of inhibitory signaling on macrophages,
with consequent reduction of the inflammatory response
and fibrosis. This explain the patients treated during

pregnancies and the 16 newborns treated immediately after
birth (31–33).

There are no specific guidelines for the prevention of
recurrence of CHB in subsequent pregnancies and this explains
the extreme heterogeneity of treatment that was observed in
this cohort, ranging from only clinical and echocardiography
monitoring to combined therapies during pregnancy. Non-
fluorinated steroids do not cross the placenta and would
not be useful at all. Intravenous immunoglobulin has been
proposed in the prevention of recurrence in small case
series and in two prospective studies that were performed
in Europe and in United States (34, 35) with a similar
protocol (400 mg/kg every 3 weeks from 12 to 24 gw).
Four of our cases were included in the European trial. Both
the studies were terminated early because of an unchanged
prevalence of recurrence and it was concluded that IVIg at the
proposed dose was ineffective at reducing the recurrence rate of
cardiac NL.

In the last years, the use of HCQ was shown to
be a possible approach to the secondary prevention of
the recurrence of CHB. Retrospective analysis from an
international cohort (36) reported a higher recurrence rate
in pregnancies not treated with HCQ compared with those
treated with HCQ. In our study only a limited number
of pregnancies were exposed to HCQ not allowing any
possible further analysis. However, since the use of HCQ
is compatible with pregnancy (37) and is generally a well-
tolerated drug, it may be proposed in patients with known
antibody positivity.

Our study has several limitations. Data were collected
retrospectively and in some pregnancies not all of the data were
available, which limits the power of our statistical analysis. It is
well established that the distinction between II and III degree AV
block in uteromay be difficult, problematic and time consuming
and, when revised centrally, some diagnoses of II degree might
be reclassified as III degree and viceversa (13). For this paper
it was not possible to reassess the diagnosis centrally therefore
some complete CHB could be misdiagnoses as incomplete (13).
CHB cases whose mothers were anti-SSA/Ro negative were
not included (17). This first report of the registry is mainly
driven by rheumatological centers, and some geographical Italian
regions are not represented; only the centers whose ethical
committees approved the study enrolled cases for this initial
analysis. This peculiarity might also explain why in our registry
the majority of the mothers already had a diagnosis of CTD
at the time of the index pregnancy, an evidence that differs
from other experiences. The syndrome of course requires a
multidisciplinary approach, not only for the clinical management
of each case but also for the systematic collection of the data
and their analysis. Pediatric cardiologists and gynecologists play
a fundamental role in the management of this condition, and it
is planned to involve them in further collections and analyses
of data.

In conclusion, this is the first preliminary report of the
data from the Italian Registry of neonatal cardiac lupus
syndrome, that was established in 2016. Italian centers showed
an heterogenous pattern of management of CHB fetuses, with
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some centers treating all cases with FS and some centers
treating no cases. The establishment of this registry might
help to share the data, to make more homogenous the
management of this rare condition and to stimulate further
multidisciplinary studies.
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Mast cells (MC) are innate immune cells present in virtually all body tissues with key

roles in allergic disease and host defense. MCs recognize damage-associated molecular

patterns (DAMPs) through expression of multiple receptors including Toll-like receptors

and the IL-33 receptor ST2. MCs can be activated to degranulate and release pre-formed

mediators, to synthesize and secrete cytokines and chemokines without degranulation,

and/or to produce lipid mediators. MC numbers are generally increased at sites of

fibrosis. They are potent, resident, effector cells producing mediators that regulate the

fibrotic process. The nature of the secretory products produced by MCs depend on

micro-environmental signals and can be both pro- and anti-fibrotic. MCs have been

repeatedly implicated in the pathogenesis of cardiac fibrosis and in angiogenic responses

in hypoxic tissues, but these findings are controversial. Several rodent studies have

indicated a protective role for MCs. MC-deficient mice have been reported to have

poorer outcomes after coronary artery ligation and increased cardiac function upon MC

reconstitution. In contrast, MCs have also been implicated as key drivers of fibrosis.

MC stabilization during a hypertensive rat model and an atrial fibrillation mouse model

rescued associated fibrosis. Discrepancies in the literature could be related to problems

with mouse models of MC deficiency. To further complicate the issue, mice generally

have a much lower density of MCs in their cardiac tissue than humans, and as such

comparing MC deficient and MC containing mouse models is not necessarily reflective

of the role of MCs in human disease. In this review, we will evaluate the literature regarding

the role of MCs in cardiac fibrosis with an emphasis on what is known about MC

biology, in this context. MCs have been well-studied in allergic disease and multiple

pharmacological tools are available to regulate their function. We will identify potential

opportunities to manipulate human MC function and the impact of their mediators with a

view to preventing or reducing harmful fibrosis. Important therapeutic opportunities could

arise from increased understanding of the impact of such potent, resident immune cells,

with the ability to profoundly alter long term fibrotic processes.
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INTRODUCTION

Mast cells (MCs) are tissue-specific innate immune cells located
in sites throughout the body, including the heart (1). After

differentiation from hematopoietic stem cells along the myeloid
pathway, committed MC precursors which can be identified by

flow cytometry transiently travel through the blood and enter

into tissues to differentiate into a terminal tissue-specific MC
phenotype (2). Degranulated mast cells can be identified in

most species by their expression of c-Kit, FCεRI and mast cell
specific proteases. MCs are known as sentinel cells, surveying the
microenvironment and responding to stimuli via expression of
Pattern Recognition Receptors (PRRs) that detect Pathogen and
Damage-Associated Molecular Patterns (PAMPs and DAMPs)
(3, 4). MCs respond in several ways: (1) they can be activated
to degranulate and release stores of pre-formed mediators from
their characteristic granules, (2) they can synthesize and secrete
mediators de novo without degranulation, or (3) a combination
of degranulation and de novo synthesis can occur.

MC degranulation occurs not only in the context of
allergy (5), but also in viral infection (6, 7), skin burns (8),
fractures (9), and cardiac (10) and liver ischemia reperfusion
injury (11, 12). MC degranulation is associated with pro-
inflammatory effects, primarily due to release of histamine,
tumor necrosis factor [TNF], and proteases. MC granules
contain a plethora of mediators including, but not limited
to: MC-specific and non-specific proteases (tryptase, chymase,
cathepsin G), lysosomal enzymes (β-hexosaminidase), biogenic
amines (histamine, serotonin, dopamine), cytokines (TNF,
interleukin[IL]-4, IL-5), and growth factors (stem cell factor
[SCF], basic fibroblast growth factor [bFGF]) (13). Overall,
MC degranulation is an important contributor to inflammatory
processes in injury and infection.

MCs are multi-functional cells capable of discrete as well as
overwhelming responses and have ongoing immune regulatory
and sentinel roles. They can selectively secrete numerous
mediators that range from pro-inflammatory (IL-1β, IL-6,
interferon[IFN]-γ) to anti-inflammatory (IL-10, IL-13), as well
as pro-fibrotic (transforming growth factor-β1 [TGF-β1], bFGF)
and anti-fibrotic (vascular endothelial growth factor [VEGF], IL-
33, prostaglandin D2 [PGD2]) (14–17). Given the potential for
MCs to produce pro- and anti-fibrotic mediators, their role in
tissue remodeling is controversial. Local stimuli present after
tissue injury and during wound healing can result in vastly
different MC responses.

After myocardial infarction (MI), wound healing restores
function to damaged tissue. Fibrosis is the deposition of a
collagen-based scar mediated by fibroblasts, which differentiate
upon activation into myofibroblasts for collagen deposition.
Normally, fibrotic deposition is essential to restore proper
function, but excessive remodeling decreases contractility and
cardiac function leading to chronic heart failure (18–20). Cardiac
tissue resident MCs respond to DAMPs after injury to influence
the progression of cardiac remodeling. Yet the exact role of
MCs in cardiac fibrosis is controversial, as numerous studies
have ascribed detrimental, neutral and beneficial roles (Table 1).
Achieving a better understanding of how the multifaceted MC

response influences post-MI healing should increase the potential
to harness their activities and provide opportunities for therapy.

MAST CELLS AS ENHANCERS IN

CARDIAC FIBROSIS

MC degranulation products have important impacts on fibrosis
(Figure 1A), though exact cardiac degranulation stimuli are
not well-defined. MC chymase and tryptase generate the active
pro-fibrotic form of TGF-β1 from latent forms released by
MCs during degranulation, as well as what is present in the
microenvironment (44–51). TGF-β1 is important in fibrosis
through promotion of fibroblast activation, myofibroblast
differentiation and collagen synthesis (18, 19). MC tryptase
can directly induce these actions on fibroblasts independently
of TGF-β1 (52–57). In vitro, MC chymase induces TGF-β1
production by rat cardiac fibroblasts (58). Angiotensin II (AngII)
is a major mediator of fibrosis that activates fibroblasts to
the myofibroblast phenotype for proliferation and collagen
deposition (18, 19). MC chymase is an angiotensin converting
enzyme (ACE)-independent generator of AngII in humans, dogs
and mice (20, 47, 59–61). Studies employing ACE inhibition or
reduction of AngII show decreased cardiac fibrosis (62–65).

In addition to tryptase and chymase, MCs store bFGF in their
granules (3, 20, 45, 66), which, as its name suggests, is another
enhancer of fibrosis. MCs also serve as sources of TNF, which is
released during degranulation (13) and promotes cardiac fibrosis
via induction of cardiomyocyte apoptosis, inflammation and
MMP-9 production (67–70). Finally, MCs produce IL-1β during
degranulation (14), which promotes fibrotic remodeling of the
heart in a similar manner to TNF (70–74). Althoughmechanisms
of action are not well-elucidated, Wang et al. found that blocking
TNF and IL-1β reduced cardiac remodeling and cardiomyocyte
apoptosis following AngII-induced fibrosis (70).

Numerous studies have attempted to understand MC roles in
cardiac fibrosis in vivo (Table 1). Studies in rats, dogs and mice
have shown that inhibition of MC degranulation or chymase
activity reduces expression of fibrosis-associated genes and
collagen deposition inmodels of dilated cardiomyopathy (DCM),
ovariectomy-induced left ventricular diastolic dysfunction and
MI (22–24, 26, 29). These studies are limited in their assessment
of MC function exclusively through degranulation capacity, as
they did not assess MC involvement in fibrosis through de
novo mediator production. In a spontaneously hypertensive rat
(SHR) model, degranulation inhibition increased MC number
observed histologically, as well as myocardial IL-10 and IL-6
content, leading to improved outcomes and reduced fibrosis
compared to untreated SHR (30). MCs are well-established
sources of both IL-6 and IL-10 (14, 75). Therefore these
results could suggest a potential role for MCs independent
of degranulation.

Studies assessing MCs in cardiac fibrosis often analyze MC
density changes that occur during remodeling, concluding a
pro-fibrotic role. Studies in the mouse have demonstrated
peak increases in mast cells at 7 days post-MI which result
from increased infiltration of mast cell precursors identified as
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TABLE 1 | The role of mast cells in animal models of cardiac fibrosis.

Study Findings Confounder?

PRO-FIBROTIC

Zweifel et al. (21) Rat cardiac allograft model, fibrosis correlated to mucosal MC

density

Formaldehyde fixed tissue

Palaniyandi et al. (22) Rat dilated cardiomyopathy, degranulation inhibitor reduced

fibrosis and MC density

Formaldehyde fixed tissue, fibrosis associated with granulated MC

density

Kanemitsu et al. (23) Rat MI and left ventricular repair, chymase inhibition reduced

fibrosis-associated gene expression

None

Wang et al. (24) OVX rats, degranulation inhibition reduced collagen content and

MC density

Formaldehyde fixed, fibrosis associated with granulated MC density

Somasundaram et al. (25) Canine MI, MC density elevated 7–28 dpMI, associated with

increased inflammatory infiltration

Fibrosis associated with granulated MC density

Matsumoto et al. (26) Canine heart failure, chymase inhibition decreased type I and III

collagen gene expression

None

Luitel et al. (27) Murine pulmonary artery bypass, MC density, fibrosis, hypertrophy

increased 21 days post overload

Formaldehyde fixed, fibrosis associated with granulated MC density

Liao et al. (28) Murine transverse aortic constriction, disodium cromoglycate

reduced atrial fibrillation and associated fibrosis, reconstitution of

WT mice with W/Wv bone marrow decreased collagen content

Use of Kit-dependent MC deficient mice, formaldehyde fixed, fibrosis

associated with granulated MC density, improper use of disodium

cromoglycate

Wei et al. (29) Rat MI, chymase inhibition reduced hypertrophy, fibrosis, and

infarct size

None

Levick et al. (30) Spontaneously hypertensive rats, degranulation inhibition

decreased collagen volume fraction and improved outcomes

Telly’s fixative (contains formaldehyde and glacial acetic acid),

degranulation inhibition increased MC density and improved outcome

Akgul et al. (31) Human end stage cardiomyopathy, positive correlation between

MC and collagen content pre-LVAD that did not persist post-LVAD

Formaldehyde fixed

Dilsizian et al. (32) Human ischemic cardiomyopathy, MCs elevated in ischemic

patients

Formaldehyde fixed, fibrosis associated with granulated MC density

Batlle et al. (33) Human idiopathic dilated cardiomyopathy, positive correlation

between MC density and collagen content

Formaldehyde fixed

Roldão et al. (34) Human Chagas disease, MC chymase content positively

correlated to collagen content

Autopsy samples, no indication of fixative used

ANTI-FIBROTIC

Joseph et al. (35) Rat homocysteine-induced hypertrophy, Ws/Ws MC deficient rats

have increased fibrosis and collagen content

Kit-dependent MC deficiency, formaldehyde fixed

Shao et al. (36) Murine ischemic injury, W/Wv MC deficient mice had impaired

fractional shortening and increased scar size, MC transplantation

into the myocardium increased cardiac function, capillary density

and decreased scar size

Kit-dependent MC deficiency, no indication of fixative used

Kwon et al. (37) Rat MI, administration of low doses of MC granule content

increased capillary density and decreased fibrosis at infarct

No indication of fixative used

Nazari et al. (38) Murine MI, MCs injected into hearts of mice promoted

mesenchymal stem cell proliferation early after MI and reduced

fibrosis

No indication of fixative used

NEUTRAL

Briest et al. (39) Rat norepinephrine cardiac fibrosis, degranulation inhibition did

not impact collagen content or gene expression

None

Buckley et al. (40) Murine transverse aortic constriction, Wsh MC deficient mice had

no difference in fibrosis compared to WT

Kit-dependent MC deficiency, formaldehyde fixed (but didn’t assess

MC density)

Ngkelo et al. (41) Murine MI, Cpa3cre+/- mice had no difference in fibrosis compared

to WT

No indication of fixative used

Frangogiannis et al. (42) Human chronic ischemic LV dysfunction in LV samples from CABG

patients, no relationship between MC density and fibrosis

Formaldehyde fixed

Milei et al. (43) Human Chagas disease, no relationship between MC density and

fibrosis

No indication of fixative used nor of disease stage, controls were

autopsy samples

Lin−CD45+CD34+β7-integrin+FcγRII/III+ cells. Suchmast cell
increases were dependent on SCF (41), and are also associated
with a degree of local mast cell precursor proliferation within the
heart tissue. In canine MI and murine pulmonary artery bypass

models, increases in MC density occurred alongside increases in
inflammatory cell infiltration (25), fibrosis and cardiomyocyte
hypertrophy (27), but no mechanistic relationships were found.
Studies often only identify granulatedMC populations. Common
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FIGURE 1 | (A) Mast cell granule products are typically associated with fibrosis. Mast cell chymase converts Angiotensin I (AngI) to AngII independently of ACE. AngII

generation directly contributes to fibrosis by inducing differentiation of fibroblasts to myofibroblasts. Mast cell degranulation-derived TNF and IL-1β induce

cardiomyocyte apoptosis, MMP-9 production and inflammatory cell recruitment that enhances tissue remodeling. Mast cell tryptase can act directly on fibroblasts to

induce proliferation and differentiation to the myofibroblast phenotype. Tryptase and chymase both act on latent TGF-β to convert it to the active form, which also

induces fibroblast differentiation to the myofibroblast phenotype and collagen deposition. Additionally, mast cells release TGF-β upon degranulation, further

contributing to the activation and differentiation of fibroblasts. (B) Mast cell secretion products can protect against fibrosis. Mast cells can produce IL-13, which in the

presence of apoptotic neutrophils can induce M2c phenotype macrophages. M2c macrophages are associated with decreased fibrosis. IL-13 can also induce

proliferation of local cTRM via IL-4Rα signaling, which are known to be anti-fibrotic. Mast cells can also produce IL-10, which acts in the heart to decrease IL-1β and

TNF levels, reduce MMP-9 expression and activity, and increase capillary density to reduce fibrotic remodeling. IL-33, which is released by stressed cardiomyocytes

and fibroblasts, but can also be produced by mast cells, has been shown to protect cardiomyocytes and fibroblasts from death under hypoxic conditions. This results

in decreased inflammation and reduction in fibrosis. VEGF, which promotes angiogenesis and recapillarization of the cardiac tissue, is associated with reduced fibrosis

and is another mast cell product. Finally, CXCL10 has been shown to inhibit fibroblast migration into the myocardium and delay differentiation to the pro-fibrotic

myofibroblast phenotype. Figure created in BioRender.

immunohistochemical (IHC) techniques for MCs identify
granule-associated contents, ignoring populations of MCs that
are not granulated, either due to immaturity or recent granule
release. Additionally, MC degranulation releases SCF, a potent
growth and chemotactic factor for MCs (13, 76), resulting in local
proliferation (77) and recruitment (78). Therefore, increases in
MC density may be due to activation of MCs from degranulation
and not tissue damage.

In a transverse aortic constriction model (TAC),
reconstitution of irradiated WT mice with bone marrow
from W/Wv MC-deficient mice led to decreased collagen
content compared to WT bone marrow recipients (28). MCs
are radioresistant (79), therefore efficiency of MC removal after

irradiation must be assessed, and was not in this paper. In a rat
cardiac allograft model, fibrosis was positively correlated with
certain subsets of “mucosal” MCs (MMC) but not “connective
tissue”(CTMC) as defined by expression of mouse MCP-1
and MCP-2, respectively (21). This may reflect changes in
the maturity of MC populations at this site and the presence
of newly recruited cells. MC activation in atherosclerosis
was associated with plaque progression and destabilization
(80), which implicate MCs in promoting MI but does not
directly link them to later fibrotic changes. Overall, MCs
have the potential to promote cardiac fibrosis and increased
numbers of granulated MCs are often associated with fibrosis
in animal models, but mechanistic data is lacking. Care
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needs to be taken in experimental design to properly assess
MC contribution.

MAST CELLS AS INHIBITORS OF

CARDIAC FIBROSIS

MCs can synthesize and secrete a wide array of proteins
without degranulating, allowing them to manipulate the cardiac
microenvironment after ischemic damage or reperfusion injury
in the heart (Figure 1B). MCs produce a wide array of pro-
inflammatory cytokines and chemokines with proven roles in
the recruitment of immune cells (13, 14). Conversely, MCs
produce anti-inflammatory mediators such as IL-10 (75), IL-
13, and CXCL10. IL-10 is known to prevent excessive cardiac
remodeling via STAT3 activation and NF-κB suppression (81–
83). CXCL10 acts in the damaged myocardium independently
of CXCR3 to delay fibroblast migration and differentiation (84–
87). While not classically considered part of the anti-fibrotic
response, MCs can produce VEGF-A (13, 14), among other
important angiogenic mediators, which can increase capillary
density in damaged tissues and promote proper repair in cardiac
and hepatic fibrosis (88–90).

IL-13 is produced by MC in response to several stimuli
(14), including IL-33 (91). MCs express the IL-33 receptor
ST2 abundantly on their cell surface (92–95). IL-33 is released
by cardiomyocytes and fibroblasts after damage and also
produced by MCs themselves (14). IL-33 is known to promote
cardiomyocyte survival and reduces fibrosis after MI (96–98).
Some of these actions may be via IL-13 induction. IL-13 acts on
cardiac tissue resident macrophage (cTRM) populations, which
are seeded embryonically in the heart and display M2-associated
and anti-fibrotic phenotypes (99–102). cTRM self-renew and
expand their populations in response to sterile inflammation
and IL-4Rα signaling (103). Cardiac MC IL-13 production
could expand the cTRM population locally. IL-13 also reduces
expression of pro-inflammatory cytokines by infiltrating cells and
may impact efferocytosis, the clearance of apoptotic cells from
injured or inflamed tissues (104).

Anti-fibrotic roles of MCs have also been analyzed in vivo
(Table 1). MC-deficient rats and mice had reduced collagen
content compared to controls in models of homocysteine
induced hypertrophy and coronary artery ligation (CAL) (35),
while direct MC transplantation into the murine myocardium
post-CAL increased cardiac function, and capillary density
and decreased scar size (36). It is important to note that
traditional MC-deficient models (rat and mouse) involve
mutations in the gene for c-Kit (105), which encodes the SCF
receptor, a growth factor critical for MCs. This mutation also
reduces hematopoietic stem cells, germ cells and melanocytes,
among other effects (105). MC reconstitution experiments
should be performed to confirm observations are truly MC
dependent, though it is not practical in all models. Several
studies have focused on MC granule (MCG) contents in
fibrosis. Administration MCGS isolated from rat peritoneal
MCs to the myocardium during acute MI decreased fibrosis
and increased capillary density. In vitro MCG treatment of

cardiomyocytes promoted survival under hypoxic conditions
(37). MCG treatment of mesenchymal stem cells (MSC) in
vitro prevented TGF-β1 mediated transition of MSCs to
myofibroblasts in an alternative fibrotic pathway (38), even
though individual MC granule products chymase and tryptase
are pro-fibrotic. While there is limited evidence showing MCs
are protective during cardiac fibrosis, these studies indicate that
MC can have an anti-fibrotic role and could potentially be
targeted therapeutically.

MAST CELLS AS BYSTANDERS IN

CARDIAC FIBROSIS

Several studies suggest MCs do not influence cardiac fibrosis
(Table 1). In a norepinephrine model, rats treated with
degranulation inhibitor disodium cromoglycate had comparable
collagen and Col1 mRNA content compared to untreated rats,
therefore MCs were thought to be irrelevant (39). However,
degranulation inhibition would have little impact on MC
production of fibrosis regulating mediators. TAC of Wsh MC-
deficient mice, another Kit-dependent deficiency model, resulted
in hypertrophy and impaired cardiac function, but equivalent
fibrosis compared to WT mice (40). Ngkelo et al. compared
a newly developed MC-deficient mouse strain to a classical
c-Kit mutation-dependent model. W/Wv mice and WT mice
treated with disodium cromoglycate underwent MI, resulting
in increased fibrosis and infarct size. Upon utilization of
MC-deficient Cpa3Cre/+ mouse model, a more MC-specific
deficiency, no difference in fibrosis was observed. Rather, MCs
were important in myofilament Ca2+ sensitization and cardiac
contractility (41). It remains problematic that animal models
for cardiac fibrosis are limited in their ability to mimic chronic
fibrotic changes seen clinically. Several potential factors in
experimental design may also contribute to discrepancies in
animal models that will be discussed herein.

RELEVANCE OF RESEARCH IN HUMAN

CARDIAC FIBROSIS

Similar to animal models, data on MC involvement in human
cardiac fibrosis is inconsistent (Table 1). Several human studies
of cardiovascular disease have equated increases in MC density
to a detrimental role in fibrotic remodeling without a clear
functional relationship between the two variables (31, 32, 106).
Positive correlations were observed between MC density and
collagen content in human idiopathic dilated cardiomyopathy
(33), end stage cardiomyopathy (31), and Chagas disease (34).
It remains unclear whether this is a protective response,
epiphenomenon or pathological process. Studies also indicate
that MCs have no role in human cardiac fibrosis in data from
patients with ischemic LV dysfunction (42) and Chagas disease
(43). Overall, data varies as to the role of MCs in human
cardiac fibrosis.

Human cardiac tissue is difficult to obtain and usually received
as a biopsy or autopsy sample. Biopsy samples are limited in
their location and tissue volume, while autopsy samples are
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often delayed in being treated appropriately to preserve MC.
Normal control tissues are even more difficult to obtain than
diseased. Future human cardiac fibrosis studies should aim to
better characterize the role of MCs in disease and expand analysis
beyond histological characteristics to gain mechanistic insights
necessary to design new therapeutic strategies.

CONFOUNDING FACTORS IN MAST CELL

CARDIAC FIBROSIS RESEARCH

The role of MCs in cardiac fibrosis is contentious, although
it is clear they have the potential to modify fibrotic responses
and tissue repair. There are several potential reasons for
observed discrepancies. First, mice are not an ideal model
to study cardiac MCs. Unlike rats and dogs, mice have
low heart MC content. Dogs on average have 6.8 ± 1.6
cardiac MCs/mm2, while C57BL/6 mice have 0.6 ± 0.2
cardiac MCs/mm2 (107). Data shows that MC density increases
in murine hearts after damage (22, 28, 30, 33, 76, 108,
109), but it is unclear if statistically significant increases in
MC content have physiological relevance, or that murine
cardiac MC responses mirror those in humans. Recent
evidence suggests that the distribution of mast cells in
the hearts of mice also differs considerably from that in
humans (110).

Second, there is widespread improper use of MC stabilizing
agents. Disodium cromoglycate is used to inhibit MC
degranulation in mice and rats. However, while disodium
cromoglycate can inhibit IgE-dependent MC degranulation
in rats, it does not inhibit this response in mice at similar or
higher doses (111). This calls into question the validity of studies
in which disodium cromoglycate has been used to treat mice.
MC stabilization drugs only prevent calcium-dependent MC
degranulation, but MC secretion of mediators independently of
degranulation is not impeded.

Third, mouse models of MC deficiency involving mutations
in c-Kit result in a lack of hematopoietic stem cells, germ cells,
and melanocytes, among others (105). The advent of several Kit-
independent models of MC deficiency have allowed researchers
to determine if lack of MCs impacts the pathogenesis of various
diseases, or if differences are due to deficiencies in other areas.
Preferable models include Cpa3Cre/+ and Cpa3-Cre; Mcl-1fl/fl

mice. Discrepancies are already starting to appear (41, 112, 113),
suggesting that increases or decreases in density of numerous cell
types in Kit-dependent models contribute more to disease than
lackingMCs. Reconstitution experiments help in this respect, but
only if appropriate reconstitution can be achieved, which is not
always possible.

Finally, tissue fixation for MC staining greatly impacts the
ability to visualize MCs. The aldehyde tissue fixation does not
allow for proper visualization of MCs, but reduces detection
of MCs by 57–49% depending on the IHC method. Proper
identification of MCs via IHC requires fixation with Carnoy’s
fixative to fully visualize MCs in tissue (114). Care needs to
be taken in designing studies of MCs in cardiac fibrosis, with
consideration given to the variety of actions of these cells and the
difficulty of their experimental manipulation.

THERAPEUTIC APPROACHES

There are discrepancies as to the exact role of MCs in cardiac
fibrosis, but it is clear that these cells have the potential to
promote or protect against remodeling in the myocardium. MCs
have been reported in numerous studies to be increased at sites of
fibrosis (21, 25, 27, 33, 41, 76) and are a rich source of selectively
induced regulatory mediators, making them a powerful target for
manipulation of the remodeling myocardium. Stem cell therapies
are an emerging area of research to promote cardiac regeneration
after damage. Adenoviral gene transfer of SCF into pig andmouse
myocardium increased c-Kit+ cells following MI, and reduced
fibrosis (115, 116). Direct myocardial injection of SCF following
MI increased recruitment of Lin−/c-Kit+ cells to the heart and
promoted wound healing (117). SCF is thought to recruit and
induce proliferation of cardiac cells (CSC), c-Kit+ bone marrow
cells that regenerate damaged tissue (118, 119).

However, few efforts have been made to differentiate CSCs
from MCs in cardiac tissue, often only identifying Lin−/c-Kit+

cells and assessing CD45 expression (116). Recent evidence
suggests that in human hearts, the vast majority of c-Kit+ cells are
tryptase+ with weak/low CD45+ (120), indicating these are MCs,
not CSCs. Benefits conferred by SCF expansion of c-Kit+ cells
could therefore be due to expansion of MC populations instead.

MC degranulation products are pro-fibrotic through
several pathways (44–49, 52–57) (Figure 1A). Inhibiting
MC degranulation or actions of MC-associated proteases
promotes proper wound healing after myocardial damage
(23, 26, 29, 30). MC stabilizing drugs, such as ketotifen and
disodium cromoglycate, have been used in human subjects
(121–125). MCs express a wide array of receptors that can be
targeted for activation and secretion of chemokines, growth
factors, and cytokines (13, 14) without degranulation (3, 4, 126).
MC activation with IL-33 via ST2 results in production of
several cytokines that may protect against remodeling (91).
Examples include the aforementioned beneficial roles of IL-13
and VEGF-A. Additionally, MCs could be targeted to produce
IL-33, which is known to be present in the injured myocardium
and is associated with improved outcomes post MI (96–98, 127).
Induction of MC IL-10 production in combination with
degranulation inhibition could limit excessive production of
AngII and TGF-β1 while dampening excessive remodeling
processes through IL-10 inhibition of NF-κB and activation of
STAT3 (81, 83). Given that MCs respond to DAMPs (e.g., IL-33)
by producing mediators that are beneficial in fibrosis, blocking
degranulation alone could allow them to exert beneficial effects
without further stimulation that has the potential to be off target.
Future studies should focus on elucidating mechanisms by which
cardiac MC respond to DAMPs in situ, as well as the potential
of a dual function therapy that blocks MC degranulation and
promotes beneficial mediator production to fully harness the
power of these cells.

CONCLUSION

Overall, the role of MCs in cardiac fibrosis is still not well-
understood. Discrepancies exist within and between animal
models, and in vitro data indicates a potential for pro- and
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anti-fibrotic activity. Future studies into the role of MCs in
cardiac fibrosis should be carefully designed to use animal models
with appropriate MC content and accurate MC deficiencies with
confirmation by MC reconstitution. MC stabilizing drugs should
also be employed with appropriate species activity. Effort should
be made wherever possible to expand on the current breadth
of knowledge in human patient samples, as cardiac tissue is
underused but potentially valuable. Human in vitromodels could
also be employed more effectively since primary human MCs
can be readily generated. MCs are situated in cardiac tissue in
close proximity to the remodeling myocardium and represent
a valuable target for therapeutic manipulation following cardiac
damage when we have the necessary information to more reliably
predict the impact of such interventions in the human cardiac
setting. A better understanding of their role and activities is
urgently needed to move forward in this field.
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Innate lymphoid cells (ILC) are a subset of leukocytes with lymphoid properties that lack

antigen specific receptors. They can be stimulated by and exert their effect via specific

cytokine axes, whereas Natural Killers (NK) cells are the only known cytotoxic member

of this family. ILCs are considered key in linking the innate and adaptive response in

physiologic and pathologic environments. In this study, we investigated the properties

of non-cytotoxic cardiac ILCs in physiologic, inflammatory, and ischemic conditions. We

found that in healthy humans and mice, non-cytotoxic cardiac ILCs are predominantly

a type 2-committed population with progenitor-like features, such as an absence

of type-specific immunophenotype, intermediate GATA3 expression, and capacity to

transiently express Pro-myelocytic Leukemia Zinc Finger protein (PLZF) upon activation.

During myocarditis and ischemia, in both human and mice, cardiac ILCs differentiated

into conventional ILC2s. We found that cardiac ILCs lack IL-25 receptor and cannot

become inflammatory ILC2s. We found a strong correlation between IL-33 production

in the heart and the ability of cardiac ILCs to become conventional ILC2s. The main

producer of IL-33 was a subset of CD29+Sca-1+ cardiac fibroblasts. ILC2 expansion

and fibroblast-derived IL-33 production were significantly increased in the heart in mouse

models of infarction and myocarditis. Despite its progenitor-like status in healthy hearts,

cardiac ILCs were unable to become ILC1 or ILC3 in vivo and in vitro. Using adoptive

transfer and parabiosis, we demonstrated that the heart, unlike other organs such

as lung, cannot be infiltrated by circulating ILCs in adulthood even during cardiac

inflammation or ischemia. Thus, the ILC2s present during inflammatory conditions are

derived from the heart-resident and quiescent steady-state population. Non-cytotoxic

cardiac ILCs are a resident population of ILC2-commited cells, with undifferentiated

progenitor-like features in steady-state conditions and an ability to expand and develop

pro-inflammatory type 2 features during inflammation or ischemia.
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INTRODUCTION

Innate lymphoid cells (ILCs), formerly named nuocytes (1), are
a subset of leukocytes with lymphoid properties in terms of
their responsiveness and cytokine production, but lack antigen
specific receptors (2–4). ILCs are considered to play a key
role in the cross-talk between the innate and adaptive immune
responses, thus providing a functional link between them (5).

Three classic subsets of ILCs have been described, named ILCs
type 1 (ILC1s), type 2 (ILC2s), and type 3 (ILC3s), based on
their functional profiles (3). ILCs plasticity and capacity of trans-
differentiation have been widely reported (6–8). Non-cytotoxic
ILC1s mirror and complement Th1 response, as those cells are
stimulated by IL-12, and express IFNγ and TNFα upon activation
(9, 10). ILC1s development depends on the transcription nuclear
factor Tbet (11). The main role of ILC1’s is assisting in the anti-
viral response in a non-cytotoxic manner, thus supporting the
Th1 response (12–14). Natural Killer (NK) cells are considered
the only known cytotoxic subtype of ILCs, belong to the type
1 subset, and display significant functional and phenotypic
differences as compared with non-cytotoxic ILCs (12).

ILC2s are classic mediators of the Th2 response and have
been associated with typical Th2 processes, like anti-helmintic
and allergic responses in the gastrointestinal and respiratory
tracts (15–19). In addition, ILC2s were shown to be involved
in tissue remodeling in the lung and liver and also play a role
in regulation of the lipid metabolism in adipose tissues (20–
24). The main products of ILC2s are IL-5 and IL-13, which
contribute to eosinophils and other granulocytes maturation in
the bone marrow and their chemotaxis. ILC2s characteristic
nuclear transcription factor is GATA3 (17, 25–28). The main
stimulator of classic ILC2s is IL-33, a cytokine known to be
produced as an alarmin by a wide range of cells, such as
endothelial cells during cellular stress and noxious conditions
(29–32). In lung tissues, a subset of inflammatory ILC2s (i-ILC2s)
was described that specifically responds to IL-25 stimulation
but not IL-33 and has a combination of ILC2 and ILC3-like
properties (33–35).

ILC3s contribute to the Th17 response by producing IL-
17A and GM-CSF in response to IL-23 and IL-1β stimulation
(36, 37). ILC3s differentiation is dependent on the nuclear factor
Rorγt (38). This ILC subset is involved in anti-bacteria responses

Abbreviations: CCR-, C-C chemokine receptor; CHILP, common helper-like

innate lymphoid progenitor; cKit, proto-oncogene tyrosine-protein kinase Kit

(synonym of CD117 and mast/stem cell growth factor receptor); CD, cluster

of differentiation; CRTH2, chemoattractant Receptor-homologous molecule

expressed on T-Helper type 2 cells (synonymous of DP2, Prostaglandin D2

receptor 2); EAM, experimental autoimmune myocarditis; GATA3, G-A-T-A

sequence-recognizing transcription factor 3; Id2, DNA-binding protein inhibitor

2; i-ILC, inflammatory innate lymphoid cell; ILC, innate lymphoid cell; ILCP,

innate lymphoid cell progenitor; KLRG1, killer cell lectin-like receptor subfamily

G member 1; LVAD, left ventricle assist device; MFI, geometric mean fluorescence

intensity; MI, myocardial infarction; NK, natural killer; PBMC, peripheral

blood mononuclear cell; PLZF, pro-myelocytic leukemia zinc finger protein;

Rorγt, retinoic acid receptor alpha-related orphan receptor gamma; Tbet, T-box

transcription factor TBX21; tSNE, t-distributed stochastic neighbor embedding;

γc, IL-2 receptor common gamma chain.

but is also linked to autoimmune diseases such as psoriasis,
inflammatory bowel disease, and ankylosing spondylitis (39–41).

ILCs originate in the bone marrow from common lymphoid
progenitors that give rise to common helper innate lymphoid
progenitors (CHILP), which progress to ILCs progenitors
(ILCPs) (25, 42, 43). ILCPs finally differentiate into classic ILC1s,
ILC2s, or ILC3s, depending on the specific cytokine milieu in
the target organ (25). Moreover, several stages of differentiation
were described between ILCPs and classically differentiated ILCs.
A first example are ILC2 progenitors, which have been found
predominantly in the bone marrow, but also described in murine
liver tissues (44). ILC2 progenitors have been described to have
a LineagenegSca-1+Id2+GATA3+ phenotype, with upregulation
of ILC type 2-associated genes as Klrg1, Il2rα, Ccr9 (27, 44–46).
The second example are peripheral human multipotent ILCPs,
which lack type-specific phenotype but express CD117 (cKit)
(47). Peripheral ILCPs are a circulating population that has
been described as being able to infiltrate organs such as liver,
lung, and cord blood, and its final fate is determined by tissue-
specific microenvironments, being able to differentiate into
ILC1s, ILC2s, and ILC3s (47). The development of ILCs depends
on the expression of the IL-2 receptor common γ-chain (γc),
whereas recombinant activating gene (RAG) is not required (48).
GATA3, although considered characteristic of fully differentiated
classic ILC2s, is also required for the development of ILCPs
(49). In addition, a nuclear factor—the Pro-myelocytic Leukemia
Zinc Finger Protein (PLZF)—is needed for the development of
ILCPs and its differentiation into specific ILC types. PLZF is
known to be transiently expressed during ILCP activation and
differentiation (42, 49). Although it was reported that PLZF
gene expression (Zbtb16) is transversally decreased in ILC2
progenitors as compared to earlier progenitors (44), its complex
expression dynamics over time during ILC development has not
been completely elucidated.

Little is known about non-cytotoxic cardiac ILCs. Their
identity, origin, phenotype, and functionality has not been
studied so far. We have previously described the role NK
cells in myocarditis (50, 51). Thus, in this study we seek to
comprehensively characterize non-cytotoxic cardiac ILCs, their
function and behavior during heart inflammatory diseases.

Compared with other organs in which ILCs have been
described, the heart has unique histological, cellular, and
functional properties. Volumetrically, the heart is mainly a
muscular organ, lacking a classic epithelium, but rather having
an extensive endothelial layer in the endocardium and a serosal
epithelium, which constitute the pericardium (52). Multiple
type of mesenchymal and bone marrow-derived cells reside
in the heart, generating a complex microenvironment (53).
The lineage and origins of cardiac cells are complex and not
entirely understood (52). We and others have shown that cardiac
fibroblasts are active contributors to cardiac inflammation by
producing GM-CSF, CCL2, or CCL11 (54–58). Interestingly,
IL-33 is produced by cardiac endothelial cells during pressure
overload (30).

In this study, we evaluated non-cytotoxic cardiac ILCs
in healthy human and mouse hearts and in ischemic
cardiomyopathy and myocarditis. We found that cardiac ILCs
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are an ILC2-commited population. Under normal conditions,
the cardiac ILC population was mainly undifferentiated with
an incomplete ILC2 phenotype, while lacking ILC1 and ILC3
markers. During ischemia and myocarditis cardiac ILCs
differentiated into ILC2s but not ILC1s and ILC3s. The number
of ILC2s in the heart was associated with an increase of IL-33
production by cardiac fibroblasts. Furthermore, we found that
non-cytotoxic cardiac ILCs are strictly cardiac resident cells
during adulthood and circulating ILCs and ILCPs are unable to
seed heart tissues.

RESULTS

Innate Lymphoid Cells Type 2 Are

Predominant in Heart of Patients With

Ischemic Cardiomyopathy or Myocarditis
We used multiparameter flow cytometry to comprehensively
characterize non-cytotoxic cardiac ILCs in human
endomyocardial biopsy samples. Biopsies were taken from
ischemic cardiomyopathy (n = 5) and myocarditis (n = 5)
patients with heart failure during left ventricular assist device
(LVAD) implantation. Both groups displayed similar clinical,
hemodynamic, and echocardiographic features. The only
significant difference between the groups was a lower mean
age of the myocarditis patients (Table 1). Controls were rapid
autopsy specimens from deceased patients without any cardiac
pathology (n = 4). To exclude all lymphocytes, myeloid cells,
other classic leukocytes subsets including CD11b+ NK cells,
and other potential CD45dim cells, we used a Lineage channel
containing CD3, TCRαβ, CD20, CD11c, CD11b, CD123,
BDCA2, CD14, FcεR1α, CD31, and CD34 in the flow cytometry
gating strategy. Among CD45+Lineageneg cells, non-cytotoxic
ILCs were characterized as CD127 (IL-7R)+ (Figure 1A and
Supplementary Figure 1). CD11b+ NK cells, a cytotoxic ILC1
subset, were excluded from this analysis with the Lineage cocktail,
whereas CD11bneg NK cells were excluded from the non-
cytotoxic ILC analysis by gating on CD127+CD56negNKp44neg

cells (59) (Figure 1 and Supplementary Figure 1). Non-
cytotoxic ILC immunophenotypes were determined as
ILC1 Tbet+, ILC2 CRTH2+, ILC3 Rorγt+IL23R+, or
CD56+ (Figure 1A and Supplementary Figure 1) (59). The
undifferentiated ILC population was CD127+CD45+Lineageneg

but also negative for all other cell type-specific markers such
as CD56, NKp44, CRTH2, Rorγt, and IL23R (Figure 1A
and Supplementary Figure 1). A significant proportion of
non-cytotoxic ILCs was undifferentiated in normal controls,
as well as in ischemic cardiomyopathy and myocarditis. The
undifferentiated ILC population was predominant in normal
controls, representing around 75% of the ILCs (Figures 1B,C). In
ischemic cardiomyopathy and myocarditis, the undifferentiated
ILC population decreased to about 25%, and ILC2 became
the dominant population, representing around 65% of total
ILCs (Figures 1B,C). That shift of undifferentiated ILCs to
ILC2s was accompanied by minimal changes in non-cytotoxic
ILC1 and ILC3 subpopulations (Figures 1B,C). In order
to comprehensively characterize the entire ILC population

TABLE 1 | Clinical and hemodynamic characteristics of patients.

Variable Ischemic

cardiomyopathy

Myocarditis Intergroup P

Number of patients 5 5 -

% of males 100% 100% -

Age (years) 62.40 ± 2 .73 35.00 ± 8.32 0.01

Height (cm) 173.60 ± 2.22 180.60 ± 3.04 0.10

Weight (Kg) 81.68 ± 5.41 96.42 ± 5.66 0.09

EF (%) 21.00 ± 2.44 16.00 ± 1.00 0.09

LVIDd (cm) 7.20 ± 0.21 7.25 ± 0.30 0.89

LVPWd (cm) 1.06 ± 0.02 0.87 ± 0.08 0.05

IVSd (cm) 0.94 ± 0.09 0.90 ± 0.08 0.76

BNP (pg/mL) 971.60 ± 531.10 1285.00 ± 536.70 0.71

Troponin level 5/5 <0.15 pg/m 2/2 available <0.15

pg/mL

-

Patients going to OHT 5/5 4/5 (1 patient to

Jarvik)

-

Days on LVAD 339.80 ± 50.70 688.00 ± 208.10 0.14

EF, Ejection fraction; LVIDd, Left ventricular internal diameter end diastole; LVPWd,

Left ventricular posterior wall end diastole; IVSdL, Interventricular septum end diastole;

BNP, Brain natriuretic peptide; OHT, Orthotopic heart transplant; LVAD, Left ventricular

assist device.

and clearly dissect NK cells from the non-cytotoxic ILCs, we
performed similar flow cytometry analyses in autopsymyocardial
specimens, but placing CD11b in a separated channel out of
the Lineage cocktail (Supplementary Figure 2). We confirmed
that cardiac NK cells are mutually exclusive of non-cytotoxic
ILCs, displaying a CD11b+CD56+NKp44negCD127neg profile.
Conversely, non-cytotoxic ILCs were strictly CD127+. Following
this alternative strategy, we found identical pattern of non-
cytotoxic cardiac ILCs in the human heart. There were no
ILC1 and ILC3 while 20% of cardiac ILC2s population were
CRTH2+ ILC2s. The non-cytotoxic cardiac ILCs were mainly
undifferentiated ILCs (∼80%) (Supplementary Figure 2).

To better understand and validate the ILC2 and
undifferentiated ILCs phenotype observed in the heart based
on CRTH2 expression, we performed immunophenotyping of
healthy human PBMCs (n = 3), (Supplementary Figure 3). We
found a population of activated NKp44+CD127negCD56+Tbet+

population distinct from non-cytotoxic circulating ILCs, which
were mainly comprised of ILC2s (∼60%) which homogenously
expressed CRTH2. No undifferentiated ILC population was
found in clear contrast to its dominant presence in the heart
(Supplementary Figure 3).

Since cardiac ILCs are an extremely infrequent population,
we performed analyzes of the immunophenotype clustering
pattern of the non-cytotoxic cardiac ILC subpopulations using
t-distributed Stochastic Neighbor Embedding (tSNE), a machine
learning algorithm of dimensional reduction, in order to validate
the conventional gating analyses. The clustering pattern in tSNE
plots is considered a strong supportive evidence of the feasibility
of those small subsets (60, 61). tSNE analyses were performed
on concatenates of all the samples for each group, and a robust
nucleated clustering of undifferentiated ILCs and ILC2s was
observed (See Methods for technical details). ILC2 pattern in
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FIGURE 1 | Majority of human ILCs are undifferentiated in healthy hearts, whereas ILC2s predominate in ischemic cardiomyopathy and myocarditis. (A) Human

cardiac ILCs gating strategy, ILCs were defined as CD45+LineagenegCD127+, NK cells as CD56+NKp44+, non-cytotoxic ILC1s (blue) as Tbet+, ILC2s (gray) as

CRTH2+GATA3int−high, ILC3s (transparent red) as Rorγt+ IL-23R+.Undifferentiated ILCs (transparent orange) were defined as ILCs negative for all type-specific

markers. (B) Representative flow cytometry plots showing median examples of the profile of undifferentiated ILCs and ILC2s gated in Rorγtneg Tbetneg ILCs.

(C) Frequency of ILC subsets in healthy human hearts, ischemic cardiomyopathy and myocarditis. (D) tSNE clustering analyses of ILCs immunophenotypes.

(E) Comparison of CRTH2 expression in two distinctive ILC2s population in normal hearts, ischemic cardiomyopathy and myocarditis. Data show n = 5 for ischemic

cardiomyopathy, n = 5 for myocarditis and n = 4 for controls. tSNE plots are concatenates of all the samples for group. Bar graphs shows Mean and SD. Statistics

were calculated using Dunnett’s test. **P < 0.01.

both ischemic cardiomyopathy and myocarditis showed two
distinctive and significantly populated clusters (Figure 1D). The
difference between those two clusters was the magnitude of
CRTH2 expression (Figure 1E). We found an increase in the

proportion of cells belonging to the cluster with a higher
expression of CRTH2 in both diseases (Figures 1D,E). Thus,
we observed increased proportion of the ILC2 population in
the heart of patients with chronic ischemic cardiomyopathy and
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myocarditis, in contrast to a predominantly undifferentiated ILC
profile in healthy human hearts.

Cardiac ILC2 Population Increases in

Murine Models of Myocardial Infarction

and Myocarditis
Next, we examined murine cardiac ILCs in two models of
cardiac diseases, myocardial infarction (MI) and experimental
autoimmune myocarditis (EAM), using the flow cytometry
approach. Severity of EAM at day 21 was assessed with standard
histology (H&E, Supplementary Figure 4A). The gating
strategy followed the same rationale as human experiments,
while using the standardized markers for mouse ILCs. Mouse
ILCs were defined as CD45+LineagenegCD90+, where the
Lineage was CD3, TCRβ, CD5, CD19, CD11b, CD11c,
GR1, FcεR1α, CD31, and TER119, to exclude other CD45+

populations, erythroid and endothelial cells. The CD11b+

NK population was excluded by the presence of CD11b in
the Lineage cocktail. Downstream in the gating strategy,
CD11bneg NK cells were identified by NKp46 positivity and
further Rorγt evaluation. Within the non-cytotoxic ILCs
(CD45+LineagenegCD90+NKp46neg) the classic subpopulations
were characterized as Tbet+ ILC1s, ST2+KLRG1+GATA3int−high

ILC2s, Rorγt+ ILC3s and TbetnegRorγtnegST2lowKLRG1neg−int

undifferentiated ILCs population (Figure 2A). We did not find
differences in the composition of the cardiac ILCs compartment
between naïve, mock immunized and sham surgery controls
(Supplementary Figure 4B). Within the CD90+NKp46+

population we did not found Rorγt, which excluded the
existence of NKp46+ ILC3s (Supplementary Figure 4C). The
ILC population did not express Rorγt or IL25R nor hyper-high
levels of KLRG1 (Figure 2A and Supplementary Figure 4D).
Thus, we ruled out an inflammatory ILC (i-ILC2) and ILC3
identity (Figures 2A,B and Supplementary Figure 4D).
Unlike peripheral ILCPs (47), the cardiac ILC population was
CD117 (cKit) negative (Supplementary Figure 4D). Around
75% of cardiac ILCs were undifferentiated in naïve controls,
resembling the findings in human endomyocardial biopsy
samples (Figures 1B, 2B). We found a significant increase
of ILC2 to about 45% of total cardiac ILC population in MI,
paralleled by a decrease in the undifferentiated ILC population
(Figures 2B–C). The proportion of ILC1s and ILC3s was
negligible. In EAM, although the flow cytometry plot showed a
qualitatively more robust ILC2 differentiation with stronger ST2
expression, the increase in the proportion of this population was
not statistically significant relative to controls (Figures 2B–C).
Nevertheless, the absolute ILC count in the heart demonstrated
a significant increase in both, undifferentiated and ILC2s in
EAM as compared to controls (Supplementary Figures 4C,D).
In fact, the increase in the absolute number of cardiac ILC2 in
MI was comparable to that in EAM (Supplementary Figure 4E).
In EAM, the undifferentiated population also expanded
significantly (Supplementary Figure 4F). ILC2s had a higher
GATA3 expression as compared with undifferentiated ILCs in
all conditions, although undifferentiated ILCs intermediately
express GATA3 (Figure 2D). GATA3 mean fluorescent intensity

(MFI) expression in EAM and MI was normalized to the
mean GATA3 MFI of naïve controls. The normalized GATA3
expression by ILC2s in naïve hearts was 1.5 higher than the
mean of undifferentiated ILCs (Figure 2E). In MI and EAM
hearts, we observed a 2.5-fold upregulation of GATA3 in the
expanded ILC2 population, compared to undifferentiated ILCs
(Figure 2E). To confirm the reliability of such a small population,
we validated the conventional gating strategy with tSNE analyses
of concatenated samples for each experimental group, following
the same approach used with human samples. We also found a
robust clustering of the undifferentiated and ILC2 population,
thus supporting the homogeneity of each subset and ruling out
significant noise interference (Figure 2F).

In order to precisely discriminate NK cells from non-cytotoxic
ILCs, we analyzed non-cytotoxic ILCs and NK cells in the
hearts of WT Balb/c mice, placing CD11b and CD3 out of
the Lineage cocktail (Supplementary Figure 5A). We found that
the vast majority of NK cells were CD11b+CD90negCD122+.
Importantly, the CD11bnegCD90+NKp46+ population was
strictly an NK population and not an ILC3 subset, as
it displayed a downstream CD122+Rorγtneg status, thus
confirming again the absence of ILC3 in murine heart
tissues (Supplementary Figure 5A). With this alternative gating
strategy, we found an identical pattern amongst non-cytotoxic
ILCs as in the previous experiments, with predominance of
undifferentiated ILCs over ILC2s (Supplementary Figure 5B).

Despite we observed a significantly more robust expansion
of ILC2s percentagewise during myocarditis in humans
as compared with murine EAM, the predominance of
undifferentiated ILCs and the overall composition of this
compartment in naïve mouse hearts resembled the human
controls. Also, a similar expansion of differentiated ILC2s
was observed in murine and human ischemic heart diseases.
Thus, our findings suggest that heart ILCs are a quiescent and
phenotypically undifferentiated population which develop ILC
type 2 features during inflammatory processes such as ischemia
and autoimmunity.

A Subset of Cardiac Fibroblasts Express

IL-33 During MI and EAM
IL-33 is the main stimulus for ILC2 differentiation and expansion
(33, 62). We found that in both humans and mice, ILC2
expanded during cardiac ischemia and myocarditis despite the
differences in the initial insult.We used a knock-in IL-33 reporter
mouse strain (il33citrine/+) to determine the source of IL-33
during MI and EAM. A small proportion of cardiac resident
cells constitutively express IL-33 in naïve state (Figure 3A). The
number of IL-33-producing cardiac cells significantly expanded
during MI and EAM, about 6-fold and 10-fold, respectively
(Figure 3A). In all conditions, the predominant IL-33+ cells were
CD45negCD31negCD29+ cardiac fibroblasts (Figure 3A). Within
the cardiac fibroblasts, the IL-33 production was restricted to
the Sca-1+ subset (Figure 3B). The proportion of IL-33+ cells
among fibroblasts showed a 20-fold increase in MI and EAM
compared to controls (Figure 3C). tSNE analysis demonstrates
a well-defined cluster of Sca-1+ cardiac fibroblasts, representing
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FIGURE 2 | Undifferentiated ILCs are predominant in naïve mice hearts, while the ILC2 compartment expands during MI and EAM. (A) Mouse cardiac ILCs gating

strategy, defining ILCs as CD45+LineagenegCD90+, CD11bneg NK cells and NKp46+ ILC3s as CD90+NKp46+, non-cytotoxic ILC1s (blue) as Tbet+, ILC2s (gray)

as ST2+KLRG1+GATA3int−high, ILC3s (transparent red) as Rorγt+. Undifferentiated ILCs (transparent orange) as ILCs negative for all ILC type-specific markers.

(B) Representative flow cytometry plots show median examples of the profile of undifferentiated ILCs and ILC2s in naïve, MI and EAM hearts gated on Rorγtneg

Tbetneg ILCs. Frequency of ILC types in naïve, MI, EAM hearts. (D) Representative flow cytometry histograms show GATA3 expression on ILC2s (black) and

undifferentiated ILCs (orange). (E) Normalized GATA3 MFI in naïve, MI, and EAM hearts. (F) tSNE analysis shows ILC2 clustering (black) within the undifferentiated

population (orange). Plots, including tSNE analyses, show concatenates of all mice in each group of 1 of 3 independent experiments (n = 4–5 group / experiment).

Bar graphs shows Mean and SD. Statistics for (C,E) calculated by Dunnett’s test. **P < 0.01.

about 50% of total CD29+ fibroblasts (Supplementary Figure 6).
The sub-population of IL-33+ fibroblasts was entirely restricted
to the cluster of Sca-1+ fibroblasts (Supplementary Figure 6).
We used microscopy flow cytometry (ImageStream) to verify the
reliability of the signal of the IL-33 reporter molecule (citrine)

and visually corroborate the conventional flow cytometry
results. We confirmed the predominance of Sca-1+ fibroblasts
as the source of IL-33. The IL-33/citrine signal showed the
expected homogeneous intracellular pattern, thus ruling out
auto-fluorescence phenomena. Even within the IL-33+ cells,
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the citrine intensity was dimmer in controls as compared
with MI and EAM (Figures 3D–F). The absolute number
of ILC2s in the heart showed a linear correlation with the
proportion of IL-33 producing cells amongst total cellularity in all
conditions (Figure 3G), whereas the ILC2s’ absolute count had
an exponential correlation with the proportion of IL-33+ cells
within the fibroblasts (Figure 3H). These results strongly suggest
that, regardless of the type of noxa (autoimmune or ischemic),
IL-33 is produced by a subset of cardiac fibroblasts during tissue
damage, leading to a differentiation of quiescent cardiac ILCs and
expansion of the ILC2 compartment.

Naïve Cardiac ILCs Are a Type-2

Committed Population With

Restricted Plasticity
To evaluate the functional capacity and plasticity of
the predominantly undifferentiated non-cytotoxic ILC
population in a naïve mouse heart, we performed
in vitro differentiation experiments. We FACS sorted
CD45+LineagenegCD90+NKp46neg ILCs from naïve mice
hearts. Then, ILCs were stimulated with different cytokines
for 6 days to induce type-specific differentiation. To induce
ILC1 differentiation, we used recombinant cytokines IL-2+IL-
7+IL-12, to generate ILC2s we used IL-2+IL-7+IL-33 and for
ILC3 induction, IL-2+IL-7+IL-23. As controls we included
plain media and IL-2+IL-7 only. ILCs in media only were
undifferentiated with mild expression of Ki67 and no expression
of the PLZF (Figure 4A). Unspecific stimulation with IL-2+IL-7
induced a moderate activation of cardiac ILCs, characterized by
co-expression of Ki67 and PLZF (Figure 4A), but no significant
Rorγt, Tbet, or ST2 and KLRG1 expression (Figures 4B,C).
The proportion of ILC2s under stimulation with IL-2+IL-7 was
slightly higher than plain media (Figure 4C). ILCs stimulated
with type 1, 2, and 3 differentiating conditions were activated
(Figure 4A), reaching statistical significance in every case in
respect to the media control (Figure 4D). Nevertheless, the
proportion of activated PLZF+Ki67+ cells was significantly
higher with the IL-33 stimulation as compared to controls as
well as IL-12 and IL-23 conditions (Figure 4D). Unexpectedly,
IL-12 and IL-23 were unable to induce ILC1 and ILC3
differentiation, respectively (Figure 4B). No differences were
observed between controls, stimulation with IL-23 and IL-1β
(Supplementary Figures 7A–E). IL-33, in conjunction to IL-
2+IL-7, induced a robust ILC2 differentiation (Figures 4A,C,E).
Finally, as a functional readout, the main ILC1, 2, and 3 cytokines
were analyzed in the supernatants by ELISA. Congruent with the
immunophenotype, neither IFNγ, TNFα nor IL-17A increased
in any of the conditions and remain at basal levels (Figure 4F
and Supplementary Figure 7F). IL-33 induced a marked and
significant production of IL-5 and IL-13 (Figure 4F).

The monotonic PLZF/Ki67 co-expression (∼85%) achieved
only in IL-33 conditions suggests that the entire non-cytotoxic
cardiac ILC population, including the undifferentiated ones,
have a type 2-biased functionality evidenced by responsiveness
to IL33. To rule out the possibility of exclusive expansion of
already differentiated ILC2 during this experiments, we FACS

sorted CD45+LineagenegCD90+NKp46negST2+ cardiac ILCs
and culture them with IL-2+IL-7+IL-33 for 6 days. That
small subset failed to significantly proliferate and differentiate
(Supplementary Figure 7G), thus strongly suggesting that
undifferentiated ILC population, or at least a subset of them,
can differentiate to a full ILC2 status, but not to ILC1 or
ILC3 phenotype.

These results confirm that naïve non-cytotoxic cardiac ILC
population is committed with an ILC2 fate and functionality,
despite its undifferentiated status in steady-state conditions.

Naïve Cardiac ILCs Transiently Express

PLZF Upon Activation and

ILC2 Differentiation
PLZF has been described as a nuclear factor transiently expressed
by subsets of ILC progenitors during activation, including
the subset of ILC2-commited progenitors (42). As naïve
cardiac ILCs were predominantly undifferentiated but ILC2-
commited, we decided to perform timeline in vitro experiments
to study the dynamics of their activation and steady-state
properties. We determined the kinetics of Ki67 and PLZF
expression to address the naïve cardiac ILCs’ proliferation
capacity and progenitor features (Figure 5A). Also, we analyzed
the progression of the ILC2-associated transcription factor
GATA3 (Figure 5B) and the evolution of ILC2 phenotype
(Figure 5C) over time under the influence of IL-33. Naïve
cardiac ILCs CD45+LineagenegCD90+NKp46neg were FACS
sorted and cultured in vitro with IL-2+IL-7+IL-33, and its
phenotypic and functional changes assessed on days 1, 3, 5,
and 7. The activation dynamics showed a low baseline ILCs
activation at day 1. Ki67+PLZF+ co-expression progressively
increased, reaching significance at day 3 and peaking at
day 5 (Figures 5A,D), when a monotonic co-expression was
achieved. PLZF and Ki67 levels abruptly decayed after day
5, returning to baseline levels by day 7, demonstrating a
pattern of transient PLZF expression after cytokine-induced
activation (Figures 5A,D). GATA3, however, showed different
kinetics than PLZF, as it progressively increased, reaching a
plateau at day 5 and persisting significantly elevated at day 7
(Figures 5B,E). The ILC2 phenotype developed progressively
in terms of KLRG1 and ST2 co-expression, following a
quasi-linear dynamic after day 3 (Figures 5C,F). Finally, the
production of IL-5 and IL-13 increased in parallel following
an exponential pattern (Figure 5G). Therefore, we found that
cardiac ILCs, in addition to having an undifferentiated phenotype
and negligible cytokine production in resting conditions,
display a progenitor-like activation pattern, implying transient
expression of PLZF. This behavior suggests an incomplete, yet
biased, differentiation in normal conditions, compatible with a
committed progenitor status.

Cardiac ILCs Are a Strictly

Resident Population
To differentiate resident vs. infiltrating status of cardiac non-
cytotoxic ILCs, we performed adoptive transfer experiments.
Bone marrow ILC progenitors, LineagenegCD45+Id2+Sca-1+
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FIGURE 3 | IL-33 is expressed by cardiac fibroblasts during MI and EAM. (A) Pie charts represent the percentage and total number of the heart IL-33-producing

population and its composition in naïve, MI, and EAM hearts. Charts are based on concatenates of all mice in a group. (B) Representative flow plots of IL-33

expression by CD45negCD31negCD29+ fibroblasts are shown for all conditions. Median examples are shown. (C) Frequency of IL-33 producing cardiac fibroblasts

(Continued)
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FIGURE 3 | in naïve, MI and EAM hearts. (D–F) Representative examples of Microscopy flow cytometry (ImageStream) single cells images, showing the pattern of

IL-33, Sca-1, and CD29 expression in cardiac fibroblasts. Representative examples of 500–1,500 events per sample are shown. (G) Linear regression of absolute

number of ILC2s and percentage of IL-33+ cells in naïve, MI, and EAM hearts analyzed together. Blue line shows linear function and black lines the 95% confidence

interval. (H) Regression plot shows an exponential correlation between absolute number of ILC2s and percentage of IL-33+ cells amongst fibroblasts, represented by

the blue line. Data of 1 of 2 independent experiments, n = 5 for controls and EAM, n = 3 for MI. Bar graphs shows Mean and SD. Correlations estimated using

Pearson r. Statistic difference of means were calculated with Dunnett’s test. **P < 0.01.

cells were FACS sorted from semi-allogeneic H2b/d Id2GFP

reporter mice and transferred into RAG2−/−
γc−/− H2d

mice, allowing to track the transferred ILCs based on H2-Kb

expression (Figure 6A). After 28 days of the transference, no
heart-infiltrating ILCs were detected, but we found a small
but well-defined infiltrating ILC population in lung tissues
(Figures 6B,C). To further investigate the origin of cardiac
ILCs, we performed parabiosis experiments. In this experimental
setting, CD45.1 mice underwent EAM induction (on days 0
and 7), and were surgically paired to CD45.2 naïve mice on
day 2. Pairs with a mock immunized CD45.1 mouse and naïve
CD45.1 were used as controls (Figure 6D). In naïve parabionts,
the chimeric cells were CD45.1, whereas in mock and EAM
parabionts, the chimeric cells were tracked based on CD45.2
expression (Figure 6E). We checked establishment of leukocyte
chimerism in peripheral blood at day 14 in every case, finding
a successful engraftment of 30–40% (not shown). On day 21,
all groups had leukocyte chimerism in their hearts, about 20%
in naïve parabionts and 35–40% in mock and EAM parabionts
(Figures 6F,G). Nevertheless, the chimerism in the cardiac
ILC compartment was disproportionately low as compared
with the total leukocyte engraftment. In all conditions, the
chimeric ILCs represented about 5% of the heart ILC population
(Figures 6F,G). Leukocyte mixed chimerism also occurred in
lungs, with 50% engraftment in naïve parabionts and about
20% in mock and EAM parabionts. In naïve parabionts, the
specific pulmonary ILC engraftment was also disproportionally
low as compared with the leukocyte chimerism, representing
about 8% of the ILC population compared to 50% of leukocyte
population. Conversely, in mock and EAM mice, both known
to have systemic inflammation due to use of CFA as adjuvant
(63), the ILC engraftment in the lungs was proportional and
not statistically different as compared to the whole leukocyte
chimerism, representing both 20–30% of the ILC and leukocyte
compartments, respectively (Figures 6H,I). Lung engraftment
demonstrated the intrinsic infiltrative capacity of circulating
ILCs. These adoptive transfer and parabiosis results suggest
that heart is a unique niche with resident ILCs that are not
replenished from blood ILCs even during cardiac inflammation
during myocarditis or after ischemia.

DISCUSSION

ILCs are a subset of leukocytes which play a key role in multiple
immune processes, providing a link between the innate and
the adaptive responses (2). Originally, ILCs were considered
patrollers of mucosa- and epithelium-associated tissues, such as
the respiratory tract, gut, and skin (15). Further investigation has
revealed their presence and physiologic importance in organs,

such as the liver and adipose tissue, having an impact even in
modulating metabolic processes (20, 21, 23). In this paper, we
investigated characteristics of heart ILCs.

We found that in normal human heart and naïve mouse
tissues, cardiac ILCs lack a well-defined immunophenotype,
and we denoted them as undifferentiated. Those ILCs did not
express ILC1 nor ILC3 markers. In normal human hearts,
the majority of cardiac ILCs were undifferentiated as they did
not express the ILC2-specific marker CRTH2 (64). In naïve
mice, the predominant undifferentiated cardiac ILCs expressed
intermediate levels of GATA3 and variable levels of KLRG1. They
did not express ST2 as conventional ILC2s do. Undifferentiated
ILCs neither expressed high levels of KLRG1, IL25R (IL-
17RB), nor Rorγt as is characteristic for inflammatory ILC2s (i-
ILC2s) (34). The predominance of ILCs without a fully mature
phenotype in normal hearts is different from the typical complete
ILC differentiation described in organs such as the skin, lung,
and gut (65). Our findings support the concept that normal ILCs
status depends on an organ-specific milieu leading to a tissue-
specific ILC training, a phenomenon previously described as
“ILC-poiesis” (47).

Inflammation associated with ischemic cardiomyopathy is
considered to bemodulated by amonocyte/macrophage response
and a cytotoxic, Th1, Th17, and Treg responses (54, 55, 66–70).
Autoimmune myocarditis predominantly exhibits Th1 and Th17
responses during the inflammatory phase, with Th17 activity
being required for the progression to dilated cardiomyopathy
(DCM) in chronic stages (58, 71, 72).

We found a robust increase of classic ILC2s, which replaced
a majority of the undifferentiated ILC population in a group of
patients with both ischemic- and myocarditis- end-stage heart
failure. Remarkably, almost no ILC1s and ILC3s were detected,
despite the differences in the etiology of both diseases and
the fact that both Th17 and Th1 responses are essential for
their pathogenesis. We found significant similarities in the non-
cytotoxic ILC compartment between human and murine hearts
in steady-state and ischemic conditions. Regarding myocarditis,
the expansion of ILC2s was significantly more robust in human
cardiomyopathy than in murine EAM, which might be an
evidence for inter-species differences. This finding could be also
influenced, by the chronicity of the analyzed human myocarditis
as compared with the EAMmodel.

ILCs are influenced by the complex interaction of microbiota,
external environment, stromal, parenchymal, and immune cells
(9, 73, 74). Our experimental data strongly suggest that
cardiac ILCs are biased toward an ILC2 fate, regardless of
the differences in the pathologic T cell milieu and despite
the undifferentiated ILC status in steady-state physiologic
conditions. Furthermore, IL-33 reporter mice showed a massive
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FIGURE 4 | Naïve cardiac ILCs are an ILC type-2 committed population. (A) PLZF/Ki67 activation pattern of ILCs under different in vitro conditions: Media, IL-2+IL-7,

IL-2+IL-7+IL-12 (to induce ILC1s), IL-2+IL-7+IL-33 (to induce ILC2s) and IL-2+IL-7+IL-23 (to induce ILC3s). (B) Flow cytometry plots show ILC1 (blue) and ILC3

(transparent red) differentiation under different conditions, based on Rorγt and Tbet expression. (C) Plots show undifferentiated ILCs (transparent orange) and ILC2s

(gray) compartments after in vitro stimulation, based on KLRG1 and ST2 expression. (D) Comparison of PLZF+Ki67+ activated population in different conditions.

(E) Comparison of different ILC subpopulations after in vitro stimulation. (F) Comparison of cytokine profile determined by ELISA under different stimulating conditions.

In F, ***indicates significance of both bars with respect to all other conditions. Flow cytometry plots show median representative examples. Graphics show results of 1

of 4 independent experiments, each one made in triplicates for each condition. Bar graphs shows Mean and SD. Statistics calculated with one-way ANOVA and

Bonferroni post-test. *P < 0.05; **P < 0.01; ***P < 0.001.

increase in IL-33 production by Sca-1+ cardiac fibroblasts
during ischemia and myocarditis, which was correlated with an
expansion of the ILC2 compartment. These findings complement
our previous reports about the immunologic importance of

Sca-1+ cardiac fibroblasts and its role in inflammatory heart
diseases, such as the influence of Sca-1+ cardiac fibroblasts
in the development of heart failure via secretion of GM-
CSF (55).
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FIGURE 5 | Undifferentiated naïve cardiac ILCs transiently express PLZF upon activation. (A) Timeline of PLZF+Ki67+ activation pattern under in vitro

ILC2-differentiating conditions, IL-2+IL-7+IL-33. (B) Progression of GATA3 expression, showing the gate of GATA3+ ILCs. (C) Time course of ILC2 phenotype

development, based on KLRG1 and ST2 co-expression. (D) Graph representing the evolution of the PLZF+Ki67+ co-expression. (E) Timeline of GATA3

(Continued)
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FIGURE 5 | expression during in vitro IL-33 stimulation. (F) Time curve showing the progression of ILC2 phenotype development. (G) Curve showing the evolution of

IL-5 (blue) and IL-13 (red) production under IL-2+IL-7+IL-33 stimulation, as measured by ELISA of supernatants. Graphics show results of 1 of 2 independent

experiments, each one made in triplicates for each condition. Asterisks represent the statistical significance of each time-point with respect to day 1-baseline values.

Dots and whiskers show Mean and SD. Statistics calculated with one-way ANOVA and Bonferroni post-test. *P < 0.05; **P < 0.01; ***P < 0.001.

We propose that, regardless of the triggers and initial noxa,
cardiac fibroblasts produce IL-33 as an alarmin, inducing the final
differentiation of the ILC2-biased population. Thus, in the heart,
the ILC2 development is not restricted to Th2-predominant
inflammatory processes. This ILC cardiac-specific feature might
lead to diversification and deviation of the immune response,
and contribute with an innate component in acute and chronic
inflammatory heart diseases.

In addition, we found the existence of a baseline low levels
of IL-33 production in heart tissues in normal physiologic
conditions. We hypothesize that this is one of the components
of the heart micro-environment that generates the ILC2-bias of
the quiescent undifferentiated cardiac ILCs. Similar phenomenon
seems to occur in the lung, but in this case the exposure to
external environment leads to complete ILC2 differentiation (74).

In vitro experiments demonstrated that activation of
undifferentiated cardiac ILCs was characterized by a transient
co-expression of Ki67 and PLZF, as described for ILC progenitors
(42, 43). Nevertheless, cardiac ILCs did not express CD117 (cKit)
nor have multipotent capacity, unlike the peripheral ILCPs
present in cord blood, lung, and liver (47). Despite the fact that
cardiac ILCs expressed PLZF under the influence of only IL-2 and
IL-7, the presence of IL-33 in the milieu was strictly required for
final ILC2 development. As a consequence, the phenotype and
functionality of cardiac ILCs are not compatible with previously
described peripheral ILCPs. Conversely, cardiac ILCs are a
non-multipotent population that retain restricted progenitor-
like features, such as the capacity to express PLZF and lack of
completely differentiated phenotype in normal conditions.

The residence and infiltration properties of ILCs are still a
matter of debate. The preferential role of tissue resident ILCs
in early stages of the inflammatory responses is widely accepted
(15). Nevertheless, their migratory and infiltrative capacities have
also been described (47, 65). We showed here, using adoptive
transfer experiments of bone marrow derived-ILC progenitors,
that ILCs have an intrinsic infiltrative capacity in adult lymphoid-
deficient mice RAG2−/−

γc−/−, as was evident in lung tissues.
Conversely, bone-marrow-derived ILC progenitors were unable
to seed the heart. Similarly, we demonstrated that circulating
chimeric ILCs were able to populate lungs in naïve, mock and
EAM parabionts, but were unable to seed heart tissues. These
findings suggest that heart is a restricted niche for ILCs, and
the limited traffic is a heart-specific phenomenon rather than an
intrinsic feature of migratory ILCs.

Overall, our study shows that the heart is a unique niche
in terms of the ILC compartment. Cardiac ILCs seem to be
strictly resident population in adulthood. It remains to be
elucidated in which stage of fetal development or early life
the heart is populated by ILCs, a complicated conundrum
due to the complexity of the embryologic development of the

heart (52). Cardiac ILC resident population is constituted by
quiescent ILC2-committed undifferentiated cells, which remain
in resting status in physiologic conditions. Importantly, heart
inflammation of multiple etiologies and Th skewness, such as
ischemia and autoimmunity, activates a fibroblast-IL-33-ILC
axis, which induces activation and differentiation of ILC2s.

IL-33 production in heart has been shown in other pathologic
conditions, such as pressure overload (30). Soluble ST2, thought
to be a homeostatic neutralizing molecule, has been described
as a biomarker of heart failure of any etiology (75, 76).
These facts prompt us to propose the existence of a heart
stroma/parenchima-IL-33-resident ILC axis that deserves to
be explored as a biomarker and potential therapeutic target
for multiple inflammatory heart diseases. Our data show that
important features, such as the balance between tissue resident
and infiltrating ILCs, their status in physiologic conditions,
and their final fate do not depend only on intrinsic ILC’s
cellular capacities, but also on organ-specific properties and
microenvironments. In this regard, our findings are aligned
with recent theoretical proposals about the dynamic changes
of the innate lymphoid compartment over time and in tight
association with organ-specific and microenvironmental features
(77), which might have implications in physiologic homeostasis
and pathologic processes.

MATERIALS AND METHODS

Human Samples
Heart Samples
Endomyocardial biopsies from the apex of the left ventricle were
obtained from patients with end stage heart failure (American
Heart Association, AHA, stage D) due to chronic ischemic
cardiomyopathy or secondary to progression of myocarditis-
related cardiomyopathy undergoing implantation of LVAD
devices at the Texas Heart Institute. Informed consent was
obtained from human subjects and the study protocol was
approved by the Committee for the Protection of Human
Subjects (University of Texas Health Science Center at Houston.
IRB #HSC-MS-05-0074) as previously described (78). Samples
were properly preserved in cryovials embedded in liquid nitrogen
(−190◦C) and then kept at −80◦C in the tissue bank at the
Texas Heart Institute, Houston, TX. Aliquots of the samples
were shipped frozen and processed for flow cytometry in Dr.
Ciháková lab, at Johns Hopkins University, Department of
Pathology, Baltimore, MD. Reported diagnoses correspond to
clinical charts, based on standard histology (H&E), clinical
presentation, hemodynamic parameters, and routine clinical
biochemical and serology parameters. Patient’s information of all
samples was processed with random non-linked code relabeling
in a database at the time of preservation. Furthermore, for
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FIGURE 6 | Circulating ILCs cannot infiltrate heart tissues. (A) FACS sorting strategy of bone marrow ILC progenitors, CD45+Lineageneg Id2+Sca1+, transferred into

RAG2−/−
γc−/−. (B) Flow cytometry plots of infiltrating H2Kb ILCs in heart and lung. (C) Bar graphs comparing the detectable infiltrating ILC population in heart and

lung. (D) Scheme of parabiosis experiment. (E) Gating strategy used to analyze ILC population at the peak of EAM, using a naïve parabiont as

(Continued)
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FIGURE 6 | representative example. In naïve pairs the infiltrating ILCs were CD45.1 (red boxes), and in Mock and EAM pairs the infiltrating ILCs were CD45.2 (blue

boxes). (F) Flow cytometry plots showing the source of leukocytes and ILCs in heart. (G) Bar graphs comparing the proportion of infiltrating ILCs and leukocytes in

heart. (H) Flow cytometry plots showing the source of leukocytes and ILCs in lung. (I) Bar graphs comparing the proportion of infiltrating ILCs and leukocytes in lung

tissues. Naïve n = 8, EAM n = 3, Mock n = 2. Bar graphs shows Mean and SD. Statistics were calculated with Student t (C) and one-way ANOVA and Bonferroni

post-test (G–I). **P < 0.01, ***P < 0.001.

each sample, a separate random non-linked code was assigned
for the analyses process. Autopsy samples were obtained upon
request, with a time of ischemia of 16–24 h from the Department
of Pathology, Johns Hopkins Hospital, aliquot and frozen in
cryovials at−80◦C.

Blood Samples
Approximately eight milliliters of blood was drawn under
aseptic conditions from consenting healthy volunteers from
the basilic vein in the cubital fossae, and collected in CPTTM

cell tubes (BD Vacutainer, Ref# 362753). Then, tubes were
spin at room temperature (∼21

◦

C) at 1,800 g for 30min
without deceleration. Then the layer of PBMCs was gently
removed, transferred into conical tubes and washed in PBS. After
adjusting cell concentration, the PBMCs were processed in fresh
for immunostaining.

Mice
All purchased mice were obtained at 6–10 weeks old, and
all mice used for experiments were 8–10 weeks old for
EAM, mock and naïve conditions and 9–11 weeks old for
MI and sham surgery. We purchased the following strains
from Jackson labs: WT Balb/cJ mice (JAX000651), CD45.1
WT Balb/cJ mice (JAX006584), RAG2−/−

γc−/− mice on
Balb/c background (JAX014593), Id2 reporter mouse on
C57BL/6 background (B6.129S(Cg)-Id2tm2.1Blh/ZhuJ,
JAX016224). Those C57BL/6 Id2 reporters were crossed
with CD45.1 Balb/c (JAX006584) to obtain semi-allogeneic
H2b/d CD45.1+ Id2GFP/+ reporter mice in F1. Genotyping
of Id2 alleles was done by PCR following vendor instructions
(primers: common forward CAAGAAGGTGACCAAGATGGA;
common TCTGGGCAGTGGCGTACTT; forward mutant
GATCACTCTCGGCATGGACG), and H2 haplotyping and
CD45.1 cogenic expression by FACS. il-33citrine/citrine mice
on Balb/c background (Il33tm1Anjm) (79) were obtained from
Dr. Andrew McKenzie, MRC Center Cambridge). To obtain
IL-33 citrine reporter animals (heterozygous il-33citrine/+),
we crossed Balb/c il-33citrine/citrine mice with WT Balb/cJ
mice; whereas functionally IL-33 KO mice were obtained
by following a homozygous x homozygous crossing scheme
(il-33citrine/citrine × il-33citrine/citrine). For terminal experiments,
mice were euthanized by cervical dislocation after achievement
of deep anesthesia status with a single intra-peritoneal dose of
Avertin (Tribromoethanol 2.5% w/v; dose of 0.02 mL/gram of
body weight).

EAM Induction
To induce EAM, we injectedmice with 125µg of α-myosin heavy
chain peptide (MyHCα614-629, Ac-SLKLMATLFSTYASAD)
emulsified in CFA supplemented with 4 mg/mL heat-killed

Mycobacterium tuberculosis strain H37Ra on days 0 and 7. On
day 0, mice also received a dose of 500 ng pertussis toxins
intraperitoneally (57, 71, 80).

EAM Histology Assessments
Myocarditis severity was evaluated by histology on day 21. Heart
tissues were fixed in SafeFix solution, paraffin embedded and then
cut in 5µm serial sections. Sections were stained with H&E and
ventricular inflammation was evaluated with light microscopy,
and scores from two independent evaluators (DC andWBB) were
averaged using the following criteria: grade 0, no inflammation;
grade 1, <10% of the heart section is involved; grade 2, 10–25%;
grade 3, 25–50%; grade 4, 50–75%; grade 5, >75% (57).

Myocardial Infarction
To induce MI, we performed permanent ligation of the left
anterior descending coronary artery or to a sham operation
without ligation. Briefly, mice were anesthetized with 3.5%
isoflurane, endotracheal intubation performed and then
mechanical ventilation started and kept throughout the
operation via small animal ventilator (Harvard Apparatus, model
845). Pre-operational analgesics (0.05 mg/kg Buprenorphine)
and paralytics (1 mg/kg Succinylcholine) were administrated
prior to operation. A thoracotomy was performed on the
3rd or 4th intercostal space. A 8-0-polyethylene suture was
advanced sub-epicardially and perpendicular to the left anterior
descending coronary artery. For permanent occlusion, a ligation
was done around the artery. The immediate impact was verified
by myocardial bleaching and decreased contractility below the
occlusion. The chest and skin were closed with a 6-0 nylon
suture. Those procedures were performed by the same surgeon,
who was also blinded to the experimental design (GC). Mice that
died during recovery from anesthesia were excluded from the
analysis. Sham-operated animals underwent a similar procedure
but without coronary artery ligation (55).

Flow Cytometry (FACS), Imaging Flow

Cytometry (ImageStream), and

FACS Sorting
Human myocardial biopsy samples weight ranged between 80
and 300mg. Mouse heart and lungs were perfused in situ with
PBS using a peristaltic pump (Rainin PR-1), via left and right
ventricles for 5–6min or until the organs looked bleached and
pale. In murine experiments approximately half of mice hearts
(sagittal cut) were used for FACS, having a weight between 70
and 90mg; whereas the remaining cardiac tissues were used for
histology. Heart and lung FACS specimens were cut in fragments
of ∼2 mm3. Fragments were placed in GentleMACS C Tubes
(Miltenyi Biotec) in 5mL of enzymatic digestion buffer: Hank’s
Balanced Salt Solution [HBSS] supplemented with 600 U/mL
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Collagenase II and 60 U/mLDNase I (Worthington). Afterwards,
samples were digested for 30min at 37◦C in an ellipsoid shaker,
and then further mechanically dissociated with GentleMACS
(Miltenyi Biotec). Cell suspension was filtered through a 40µm
cell strainer. Finally, cells were washed and re-suspended in
PBS, cell count estimated with hemocymeter counting and then
concentration adjusted to 106-107 cells/150–200 µL of PBS.
Viability of cells was determined using a Live/Dead staining of
nitrogenated products (Thermofisher). Prior to immunostaining,
samples were treated for 5min with unconjugated Fc Receptor
Binding Inhibitor (αCD16/32 for mice, Biolegend; and
pan-Fc blocker for human samples, eBioscience). Surface
immunostaining was performed using standard protocols,
concentrations and times of incubation suggested by vendors
of the fluorochrome-labeled antibodies (eBiosciences, BD
Biosciences and BioLegend). For intracellular cytokine staining,
cells were fixed and then permeabilized with appropriated
nuclear staining reagents from eBiosciences. Experimental
FACS data were acquired with an LSR II (BD Biosciences) or
ImageStream MK-II (Millipore). Gates were stablished based
on proper Fluorescent Minus One (FMO) Controls for markers
with incomplete separation (Supplementary Figure 8). For
FACS sorting the processing steps were identical. Heart ILCs
CD45+CD31negLineagenegCD90+ were sorted using a FACSAria
II Cell Sorter (BD Biosciences) and collected in HBSS + 10%
FBS. Data were analyzed with FlowJo v10.4 (Tree Star), tSNE
algorithm embedded in FlowJo v10.4 (Tree Star) and for Imaging
Flow cytometry we used Ideas v6.0 (Millipore). tSNE analyses
were performed on concatenates of all samples belonging to
determinate experimental group, using 1,000 iterations with the
following parameters: Perplexity 20, Theta 0.5, and Learning
rate of 200.

Fluorescent Antibodies
Anti-human Abs: GATA3 (PE-Cy7), Tbet (PerCP-Cy5.5), CD56
(PE-Texas Red), IL23R (PE), CD3, TCRαβ, TCRγδ, CD19, CD20,
CD1a, CD11b, CD11c, CD123, BDCA2, CD14, FcεR1a (FITC),
CD127 (BV711), NKp44 (BV605), CRTH2 (BV421), CD117
(APC-Cy7), CD4 (AF700), Rorγt (APC), CD45 (BUV395).

Anti-mouse Abs: PLZF (PE-Cy7), GATA3 (PerCP-Cy5.5),
CD45 (PE-Texas Red), CD3, CD8, CD5, TCRβ, CD19, CD11b,
CD11c, GR1, TER119, CD31, FcεRIα (FITC), Ki67 (BV605), ST2
(BV421), KLRG1 (APC-Cy7), CD4 (AF700), CD90 (BUV395),
CD11b (APC), NKp46 (BV711), IL25R (PE).

In vitro Culture
For in vitro experiments, hearts from 10 naïve Balb/cJ WT mice
were processed and pooled. After sorting cardiac ILCs, cells were
washed and resuspended in standard lymphoid cell-appropriated
media: RPMI + L-glutamate + non-essential aminoacids +

sodium piruvate + penicillin/streptomycin. Cells were placed
in round bottom 96-well plates in a concentration of ≈600–
800 cells/well/200 µL. Recombinant IL-2, IL-7, IL-33, IL-12,
IL-23, IL-1β (Biolegend) were added at a concentration of
20 ng/mL. At the end of the pre-established time of culture,
cells were spin down (300 g × 8min), harvested, washed
and stained for FACS as described above. Supernatants were

collected for ELISA analysis (IL-5, IL-13, IL-17A, TNFα, IFNγ,
R&D Systems).

Adoptive Transfer of ILCs
Bone marrow cells were obtained by flushing mechanically
the content of the femurs of Id2 reporter mice. Both femurs
were harvested for each mouse, and 10 mice pooled for each
transfer experiment. In brief, both femoral epiphysis were
surgically removed after euthanasia of a donor mice. Then,
using a 22G needle and a syringe loaded with 4mL of PBS,
the bone marrow was flushed into a 15mL conical tube.
After washing and standard treatment with ACK buffer, the
single cell suspension was handled as described for FACS
staining. Then, using FACSAria II, the CD45+LineagenegativeSca-
1+Id2+ ILCPs were FACS sorted as described above. Finally,
cells were resuspended at a concentration of 104 ILCPs
(CD45+LinnegativeSca-1+Id2+) per 200 µL of RPMI and injected
intravenously in mice retro-orbitally.

Parabiosis Surgery
Mice were anesthetized with inhaled isoflurane, 4.0–5.0%.
Maintenance anesthesia was kept during surgery with
intramuscular injections of ketamine (80 mg/kg) and xylazine
(16 mg/kg). For complementary analgesia buprenorphine (0.1
mg/kg) was intraperitoneally injected concurrent to initial
analgesia, and 12 h postoperatively. Longitudinal incisions
in the skin and subcutaneous tissues were made through
the skin starting from the elbow joint and extended down
to the knee joint. In order to promote skin anastomosis, a
continuous 5-0 absorbable Vicryl suture was also used through
the muscular layer to connect the pairs. Non-absorbable 4-0
discontinuous sutures were made to attach corresponding
subcutaneous tissues between parabionts. Surgical stapler was
used to connect the skins of the pairs. Baytril (Enrofloxacin)
was used upon the completion of the procedure as antibiotic
prophylaxis. All parabiosis surgeries were done by one surgeon
(JS). Animals were provided with moistened chow and gel
food diet supplement every other day until sacrifice on days
19–20 after the parabiosis. Mice were daily evaluated for signs
of pain and discomfort. In the set of experiments reported in
this study, no additional analgesia doses were required. The
establishment of mixed chimerism was evaluated on day 14
after the surgery in peripheral blood by FACS using CD45.1 and
CD45.2 immunostaining of PBMCs.

Statistical Analyses
Comparison between groups was estimated as follows: (a)
two independent groups using Student t, (b) three or more
independent experimental groups using one-way ANOVA
plus Bonferroni’s post-test, (c) two experimental groups
in respect to a single control group using Dunnetts’s test.
Significance of numerical correlations was calculated with
Pearson r of best-fitting mathematical functions. Shapiro-
Wilk test was used to verify Gaussian distribution prior
to further statistical analysis. We used non-parametric
U-Mann Whitney for comparison of histological scores
between 2 groups. In every case α = 0.05 and β = 0.20
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(Potency = 80%) were used as thresholds to estimate
significance. All calculations were made using GraphPad
Prism v6.0.
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Supplementary Figure 1 | Flow cytometry gating strategy for human ILCs. Basic

gating strategy of human cardiac ILCs. FSC and SSC parameters allowed an initial

morphologic gate and exclusion of doublets. Live/Dead Aqua dye was used to

exclude dead cells and cells with incompetent membrane. ILCs were defined

CD45+LineagenegCD127+. The TbetnegRorγneg population was also negative

for NKp44 and IL-23R.

Supplementary Figure 2 | Comprehensive analysis of cardiac ILCs, including NK

cells and non-cytotoxic ILC population. (A) Gating strategy in which CD11b was

excluded of the Lineage cocktail. NK cells were CD45+CD11b+CD56+

CD127neg and predominantly NKp44neg. Non-cytotoxic ILCs were defined as

LineagenegCD11bnegCD56negCD127+. (B) Bar graphs showing the proportion

of CD45+Lineageneg cells represented by NK cells and the non-cytotoxic

ILC subsets.

Supplementary Figure 3 | Analysis of circulating ILCs in peripheral blood. Basic

gating strategy used to analyze non-cytotoxic ILCs and NK cells in PBMCs.

CD11b was removed from the Lineage cocktail. Activated NK cells were defined

as NKp44+CD56+Tbet+, whereas non-cytotoxic ILCs were CD127+NKp44neg.

ILC3s (red) were IL23R+Tbetint, ILC1 (blue) were Tbet+ and ILC2s (orange) were

defined based on CRTH2 expression (FMO control is shown in

dashed histogram).

Supplementary Figure 4 | Expansion of absolute number of ILC2s during MI and

EAM. (A) Representative H&E ventricular histology images of EAM and mock

immunized mice, and histology scores. (B) Bar graphs showing the similarity of

ILC compartment composition in naïve, mock immunized and sham surgery

controls. (C) Flow cytometry analysis of Rorγt and FcεR1a in NKp46+CD90+

ILCs. (D) Flow cytometry plots showing cKit and IL25R expression in total heart’s

ILCs population. (E) Absolute number of murine cardiac ILC2s in control, MI and

EAM hearts. (F) Absolute number of undifferentiated ILC in control, MI, EAM

hearts. Flow plots show concatenates of representative examples of 1 of 3

independent experiments, where n = 5 for naïve controls and EAM, n = 4 for MI in

this experiment, and n = 2–3 mock and sham. Bar graphs shows Mean and SD.

Statistics were calculated using Dunnett’s test. ∗P < 0.05. ∗∗ P < 0.01.

Supplementary Figure 5 | Comprehensive analysis of murine ILC compartment

including NK cells and non-cytotoxic ILCs. (A) Basic gating strategy followed to

analyze murine cardiac ILCs and NK cells. CD11b and CD3 were placed in

independent channels out of the Lineage cocktail. Classic NK cells were

CD11b+CD90negNKp46+CD122+. CD11bneg NK cells were

CD90+NKp46+CD122+. Non-cytotoxic were defined ILC1s (blue) as Tbet+,

ILC2s (gray) as ST2+KLRG1+, ILC3s (transparent red) as Rorγt+.

Undifferentiated ILCs (transparent orange) as ILCs negative for all ILC type-specific

markers. (B) Bar graphs showing the proportion of total leukocytes (CD45+ cells)

represented by the NK and non-cytotoxic ILC subsets.

Supplementary Figure 6 | tSNE analysis of cardiac fibroblast population shows

restriction of IL-33+ cells to Sca-1+ cardiac fibroblast cluster. tSNE plots of

cardiac fibroblasts and IL-33 production in naïve hearts, MI and EAM. It shows

Sca-1neg cells in gray, Sca-1+ in orange, and IL-33+ events in green. Majority of

IL-33+ events (green) overlap with Sca-1+ cluster (orange).

Supplementary Figure 7 | In vitro responses to IL-23 are comparable to IL-1β

and in vitro culture of ST2+ non-cytotoxic ILCs. (A–C) Flow plots showing

phenotypic differentiation in vitro of naïve heart ILCs under control

IL-2+IL-7+IL-1β differentiation condition. (D,E) Bar graphs comparing cardiac

ILCs differentiation under control, IL-23- and IL-1β-inducing type 3 conditions.

(F) ELISA results showing the cytokine production profile of cardiac ILCs under

control, IL-23- and IL-1β-inducing type 3 conditions. (G) Flow cytometry plots

gated on live cells, showing the cellularity retrieved after a 6-day culture of ST2+

non-cytotoxic ILCs in IL-2+IL-7+IL-33 conditions. Flow cytometry plots show

median representative examples. Graphics show results of 1 of 2–4 independent

experiments, each one made in triplicates for each condition. Bar graphs shows

Mean and SD. Statistics calculated with one-way ANOVA and

Bonferroni post-test.

Supplementary Figure 8 | Fluorescence Minus One (FMO) controls.

Representative examples of histogram overlay of FMO controls (gray) with stained

cardiac ILCs (open red histogram) used to set flow cytometry gates in human

(A) and mouse (B) experiments.
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Myocarditis and inflammatory cardiomyopathy are syndromes, not aetiological disease

entities. From animal models of cardiac inflammation we have detailed insight of the

strain specific immune reactions based on the genetic background of the animal

and the infectiosity of the virus. Innate and adaptive immunity also react in man. An

aetiological diagnosis of a viral vs. a non-viral cause is possible by endomyocardial

biopsy with histology, immunohistology and PCR for microbial agents. This review deals

with the different etiologies of myocarditis and inflammatory cardiomyopathy on the

basis of the genetic background and the predisposition for inflammation. It analyses

the epidemiologic shift in cardiotropic viral agents in the last 30 years. Based on the

understanding of the interaction between infection and the players of the innate and

adaptive immune system it summarizes pathogenetic phases and clinical faces of

myocarditis. It gives an up-to-date information on specific treatment options beyond

symptomatic heart failure and antiarrhythmic therapy. Although inflammation can resolve

spontaneously, specific treatment directed to the causative etiology is often required.

For fulminant, acute, and chronic autoreactive myocarditis without viral persistence

immunosuppressive treatment can be life-saving, for viral inflammatory cardiomyopathy

ivIg treatment can resolve inflammation and often eradicate the virus.

Keywords: myocarditis, endomyocardial biopsy, immunohistology, PCR of cardiotropic viruses,

immunopathogenesis, ivIg, immunosuppressive therapy

INTRODUCTION

More than a century ago, when coronary artery disease was neglectable, inflammation of the heart
(=myocarditis) was thought to be the dominant cause of any cardiac disease (1). It has been
known for decades that the heart is target of immunological effector organs, the T- and B-cells,
their products such as circulating antibodies, mediators and cytokines (2). Nowadays, the heart
is also considered an immunological organ reacting to damage and stress (3) and even with an
antibody response to stress proteins (4). This occurs on the basis of a genetic background (5) and
also epigenetic mechanisms (6), which led to the distinction between familial and non-familial
cardiomyopathies in the latest classification of cardiomyopathies (7) and clarification of terms in
the recent position statement of the working group on myocardial and pericardial diseases (8).
Further insight in treatment options has been given in 2012 (9) and recently updated in 2018 (10).

The term cardiomyopathies is much younger than myocarditis and was first used by Hickie
and Hall 1960 (11). The WHO/ISFC (World Health Organization/ International Society and
Federation of Cardiology) Task Force defined it as “heart muscle diseases of unknown cause”
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(12). In 1996 the term cardiomyopathies was applied to all heart
muscle diseases, which lead to functional impairment of the heart
(13). Dilated cardiomyopathy (DCM) was one of 3 main clinical
phenotypes (dilated, hypertrophic, restrictive cardiomyopathy).
Remarkably, the 1996 task force included inflammatory heart
muscle diseases (myocarditis, perimyocarditis), hypertensive,
and ischemic cardiomyopathies and other forms of heart failure
of known origin in the group of secondary cardiomyopathies.
Inflammatory cardiomyopathy was then defined as inflamed
myocardium assessed histologically as myocarditis in association
with cardiac dysfunction. The pathohistological criteria at that
time were the Dallas criteria (14), which distinguished active,
recurrent, healing and borderline myocarditis. The etiology
was assumed to be either Infectious, toxic or autoimmune.
Non inflammatory viral cardiomyopathy was defined as viral
persistence in a dilated heart without ongoing inflammation.
Inflammatory cardiomyopathy was further specified in a World
Heart Federation consensus meeting in 1999 by quantitative
immunohistological criteria for inflammation (> 14 infiltrating
cells/mm2) (15, 16) and referred to it in the consensus document
2013 (8). These infiltrating cells in the myocardium could be T-
and B lymphocytes, their activated forms and up to 4 monocytes
or macrophages/mm2. The underlying microbial agent had to
be assessed or excluded by molecular biological methods, e.g.,
polymerase chain reaction (PCR) or in situ hybridization (17).

LESSONS LEARNED FROM ANIMAL
STUDIES

Animal studies have contributed much to our understanding
of the role of the immune system in cardiac homeostasis and
disease (18):

1) In healthy mice hearts all major leukocyte classes including
mononuclear phagocytes, neutrophils, B and T cells are
present. They can be resident or from circulating blood. The
normal mouse heart also contains resident cardiac dendritic
cells and mast cells.

2) Between individual cardiomyocytes a network of resident
macrophages exists, which are heterogeneous and
ontogenetically diverse.

3) Leukocyte distribution is not uniform but the cells adhere to
niches: Embryonically derived macrophages are adjacent to
coronary vasculature, fetally derived monocytes are close to
endocardial trabeculae, the aortic valve is rich in dendritic
cells, the AV node contains a relatively high concentration
of macrophages.

4) Immune cells and macrophages in particular also participate
in organ development and steady-state physiology of tissue
such as housekeeping tasks formaintaining cardiac function,
cell and matrix turnover, and angiogenesis.

5) Macrophages interact with the conduction system.
Depletion of macrophages in mice hearts may lead to
conduction abnormalities (19).

6) The pericardial adipose tissue can readily supply leukocytes
during myocardial injury. Mast cells accumulate preferably
in white adipose tissue.

7) It has been shown that in injured hearts of mice and men
resident and circulating leukocytes can be activated any
form of injury such as in infarction (20) or after cardiac
surgery (21).

8) Genetic studies indicated that susceptibility to
Coxsackievirus (CV) B3 depended on the strain of mice
used for infection. Virological studies revealed that different
strains of CVB developed different magnitudes of cardiac
organ involvement from very active forms of myocarditis
to no inflammation at all. Also organ specificity for either
heart and/or pancreas depended on the susceptibility of
the mice. But also infectiosity of different CVB strains was
important. More recently CVB3 strains were isolated with
5-terminal deletions in genomic RNAs from a patient with
idiopathic dilated cardiomyopathy. These deletions lacked
portions of the 5′stem-loop I, which is a RNA secondary
structure required for viral RNA replication. These findings
suggest that even mutant viruses can be responsible for
persistent infection. And in this changed structure they may
also escape conventional PCR detection (22).

9) In the beginning of myocarditis viral infection of the
heart is recognized by pattern recognition receptors (PRRs)
such as toll like receptors (TLR) 2, 3, 4, 7, and 8. The
downstream effects of each TLR activation may be different
to each TLR, but all share a common a pro-inflammatory
response. For instance after TLR2 stimulation by a damaged
self-protein such as cardiac myosin monocytes produced
pro-inflammatory cytokines such as IL-6, IL-8, and TNF-
α. Cardiac myosin has often been used as antigen for
immunization and initiation of experimental autoimmune
myocarditis models. Viral murine myocarditis has focused
on CVB3 infection. Signaling of the adaptor protein
Myd88 downstream of TLR4 led to activation of NF-κB,
which decreased survival. In contrast signaling of adaptor
protein TRIF up-regulates the antiviral IFN-β response and
improves survival.

10) In mice strains susceptible to infection with CVB3
myocardial disease occurs in 3 pathogenetic phases
(infection, autoimmune reaction, dilated cardiomyopathy)
with 3 symptomatic faces (malaise, inflammation, heart
failure) (23, 24). In phase 1 CVB3 enters the myocardial
cells via the coxsackie/adenoviral receptor (CAR)
hereby initiating first the innate and later the adaptive
immune responses. Mast cells as early responders produce
proinflammatory cytokines (TNF, IL-1ß, IL-r). Neutrophils
and monocytes produce additional mediators such as IL-
12. An increased production of interleukin-1b (IL-1b) and
tumor necrosis factor-alpha during the early innate response
to viral infection is a prerequisite for the induction of heart-
specific autoimmune myocarditis. Its severity is determined
by the number of T helper 1 (Th1) and Th2 cytokines.
The Th1 pathway by interleukin-12 (IL-12) and gamma
interferon (IFNgamma) is in principle proinflammatory and
can lead to myocardial infiltration of the heart. It can also be
down regulated by INFgamma production. The prototype
Th2 cytokine is IL-4. It is frequent in severe forms of
autoimmune myocarditis where eosinophils are prominent.
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FIGURE 1 | Immune system and cytokine pattern in various susceptical and resistant mouse myocarditis models [Balbc, A/J mice, after CVB3 infection with a

consecutive autoimmune reaction to cardiac myosi (25)].

Since it can go along with an IFNgamma increase, the
disease is limited. IL-13, another Th2 cytokine, protects
from infection, and reduces inflammation. Th17 cytokines
also contribute to disease. The signature cytokine IL-17A is
not essential for cardiac inflammation, but it is needed for
the progression to heart failure (Figure 1) (25).

Myeloid differentiation primary response protein 88(MYD88)
and IL-1 receptor-associated kinase 4(IRAK4) enhance
myocardial inflammation by activating TNF receptor-
associated factor 6(TRAF6) and nuclear factor-kappa b
(NFKB). This decreases the production of antiviral type I
interferons in the affected host. In phase 2 after presentation
by dendritric cells the antigen-specific T-cells are the key
players of cardiac damage. They may be counteracted
by Treg cells. Inflammation may thus be ended or go on
chronically as autoimmune reaction. T helper cells promote
the development of cardiac dilatation by stimulating cardiac
fibroblasts (phase 3). The autoimmune reactivity develops
because coxsackievirus shares epitopes with cardiac myosin
(23, 26), which as endogenous antigen contributes to this
chronic inflammation.

Cardiac myosin as antigen has been used as a prototype
protein in experimental autoimmune myocarditis (EAM), as
well as many others antigens, e.g., Troponin I. They all can be
prototypes of a B-cell driven myocarditis.

In these animal models phase 1, the infection phase,
was followed by an antiviral and an autoimmune reaction
(phase 2) (23, 26). This 2nd phase can be followed by
lethal cardiac decompensation in a fibrotic heart with
severe myocyte loss (phase 3) or by the resolution of
the inflammation.

In man a similar triphasic pathogenetic process was assumed.
The corresponding clinical correlates are malaise, inflammation
and heart failure.

11) Our understanding of the pathogenetic processes following
viral infection or myocyte destruction has been widened
particularly by analyzing the steps leading to the activation
of the innate immune system. The innate immune system
is triggered by pathogen-associated molecular patterns
(PAMP) and damage-associated molecular patterns (DAMP
via Toll-like (TLR) and Nod-like receptors (NLR). These
receptors are assembled in the inflammasome, which is a
multiprotein intracellular complex located predominantly in
macrophages. It activates proinflammatory cytokines such as
interleukin-1b and IL-18 after detecting infective microbial
agents or sterile stressors. Inflammasomes can also induce
pyroptosis, a form of programmed cell death. They can
induce the adaptive immune system consequently (27). A
dysregulation of inflammasomes can be associated with
autoimmune syndromes such as an autoreactive myocarditis
(Figure 2).

CLINICAL DIAGNOSIS IN HUMAN
MYOCARDITIS

According to the position statement of the European Society
of Cardiology Working Group on Myocardial and Pericardial
Diseases (8) the appropriate clinical work-up includes careful
patient assessment for symptoms, auscultation, EKG for a
new left bundle branch block (LBB) or severe recent rhythm
disturbances at rest or exercise. Laboratory investigations
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FIGURE 2 | Sequence of events in myocardial inflammation.

should include cardiac biomarkers such as nt-pro BNP for the
assessment of heart failure, troponin I or T for myocyte necrosis
and c-reactive protein (CRP) for inflammation. Among the
non-invasive imaging techniques echocardiography can indicate
cardiac inflammation, when in a symptomatic patient exhibits
segmental or global wall motion abnormality and coronary artery
disease or left bundle branch block (LBB) are not present. A
small pericardial effusion in this context may also lead the way.
Cardiac MRI is very helpful by establishing cardiac inflammation
or postmyocarditic lesions in a follow-up investigation by early or
late gadolinium enhancement (LGE). In principle the Lake Louise
MRI protocol should be followed. But no noninvasive diagnostic
method can substitute endomyocardial biopsy to reach a final
aetiological diagnosis, when histology, immunhistology and PCR
for microbial agents are evaluated together.

Clinical symptoms can be diverse, from to life-threating
cardiogenic shock and lethal ventricular rhythm disturbances,
acute or chronic heart failure or an acute chest wall syndrome. In
some cases they might even allow a suspicion of the underlying
pathogenetic process (Table 1).

Our understanding of the underlying aetiopathogenesis in
man started some 35 years ago with the analysis of the
antibody response to cardiac antigens in patients with suspected
myocardial inflammation.

AUTOANTIBODY—MEDIATED IMMUNE
RESPONSE IN HUMAN MYOCARDITIS

The humoral immune response was at that time assessed
by the indirect immunoflourescence test or Elisa against

TABLE 1 | From symptoms to aetiological diagnoses.

Clinical

phenotype

Symptoms and features Aetiological diagnoses

Acute

life-threating

heart failure,

severe rhythm

disturbance

Shock, NYHA III-IV, elevated

Troponin I/T, elevated

Nt-proBNP

Fulminant myocarditis, e.g.,

giant cell or eosinophilia or

toxic myocarditis, borreliosis

Acute heart

failure(AHF)

Dyspnoe, edema, reduce

EF, but also diastolic AHF,

variable EKG, intermittent

Troponin I/T-and Nt-proBNP

elevations

Viral or autoreactive

myocarditis order

inflammatory

cardiomyopathy (DCMi)

Chronic heart

failure(CHF)

CHF symptoms, no CAD,

EKG, with LSB, RSB,

AV-Block, variable

ST-/T-alterations, some

troponin I/T and Nt-proBNP

elevations

Viral or autoreactive focal

myocarditis or DCMi or

borderline myocarditis

Acute chest wall

syndrome

Angina like symptoms, but

no CAD, variable

ST-/T-alterations, in EKG,

some Troponin I/T and

Nt-proBNP elevations

Parvovirus B19 or other

virus with or without

pericarditis

cardiac proteins together with testing for antibodies against
cardiotropic viruses. At that time we have focused on
antibodies cross-reacting between enteroviral epitopes with
cardiac myolemma and sarcolemma (28–31). We also examined
the prevalence and possible pathogenicity against laminin (32),
fibrils, intermediate filaments (33), and against mitochondria
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FIGURE 3 | A selection of circulating anticardiac antibodies [from Maisch and Pankuweit (9) with permission from Springer-Nature].

FIGURE 4 | Viral infection, antigen presentation, response by the adaptive immune system [inserted images from Maisch and Pankuweit (9) with permission

from Springer-Nature]. AMLA, antimyolemmal antibodies(ab); ASA, antisarcolemmal ab; AFA, antifibrillary ab; AIDA, antiintercalated disk ab(fig.); BAR, betarecepator

ab; ANA, antinuclear ab.

(34, 35). Antibodies directed against myofibrillar proteins (36),
troponins were in the focus of other investigators (37). Of
particular interest was also the antibody response to the beta-
receptor in the sera of patients with myocarditis and dilated
cardiomyopathy (38, 39) and the muscarinic acetylcholine
receptor (40). Of note, also the cardiac conduction tissue
was addressed by the humoral immune response to the
sinus and atrioventricular nodes and Purkinje fibers (41, 42)
(Figures 3, 4, Table 2).

IMMUNE COMPLEXES

Since anticardiac antibodies may find their corresponding targets
in the circulating blood, in serous body fluids or the targeted
tissue itself immune complexes may also play a role in the
pathogenetic process (54).

The most important question still is, which of these antibodies
were only diagnostic markers of former myocyte destruction
similar to the antibodies after a vaccination or which antibodies
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TABLE 2 | Anticardiac antibodies [modified from Maisch and Pankuweit (9) with permission from Springer-Nature].

Antigen Antibody Cross-

reactivity

Pathomechanism References

Actin Anti-actin Unknown Unknown (43)

Acetylcholin-receptor Anti-Ach Unknown Bradycardia (44)

Aconitate hydratase Anti-AH, Unknown Impaired metabolism (31)

Adenin nucleotide translocator Anti-ANT Enterovirus Impaired metabolism (45)

Beta1-receptor Anti-β1 Enterovirus Pos. chronotropic (38)

Beta1-receptor Anti-β1 Neg. inotropic (46, 47)

Creatine kinase Anti-CK Unknown Impaired metabolism (31)

Conduction system Anti-sinus node

Anti-AV node

Anti-Purkinje

Unknown Bradycardia

AV-Block

Conduction defect

(41, 42)

Desmin Anti-desmin Unknown Unknown (33)

Dihydrolipoamide dehydrogenase Anti-DLD, Unknown Impaired metabolism (31)

Extracted Nuclear Antigens

(ENA, SSA, SSB)

ENA, ANCA

Anti-SSA

Anti-SSB

Unknown Neutrophil degranulation,

Congenital AV-Block

(48)

Hsp60, hsp70, Vimentin Anti-hsp60,

Anti-hsp70,

Anti-vimentin

Multiple Unknown (4)

Laminin Anti-laminin Unknown Unknown (32, 49)

Mitochondria /Microsomes AMA Multiple Inhibition of

sarcosin dehydrogenase

(31, 34, 50)

Myolemma AMLA Enterovirus Lytic ab (2, 28, 29)

Myosin Anti-myosin Enterovirus Neg. inotropic (51, 52)

Nicotinamideadenine-dinucleotide

dehydro-genase

Anti-NADD Unknown Impaired metabolism (31)

Nuclear Antigens ANA Unknown Immune complex

– mediated

(4)

Pyruvate kinase Anti-PK Unknown Impaired metabolism (31)

Troponin I (& T) Anti-Troponin I Unknown Negative inotropic (53)

Ubiquinol-cyto-chrome-c-reductase Anti-UCR Unknown Impaired metabolism (31)

Sarcolemma ASA Enterovirus Lytic (3, 24, 26)

Ab, antibody; ASA, antisarcolemmal antibody; AMA, antimytochondrial antibody; AMLA, antimyolemmal antibody; Ach, acetylcholin; ANT, adenine nucleotide translocator; AH, aconitate

hydratase; PK, pyruvate kinase; DLD, dihydrolipoamide dehydrogenase; CK, creatine kinase; NADD, nicotinamideadeninedinucleotide dehydrogenase; UCR, ubiquinol-cytochrome-c

reductase; hsp, heat shock protein; ANA, antinuclear antigen; ANCA, anti-neutrophil cytoplasmic antigen; SR-Ca-ATPase, sarcoplasmatic reticulum calcium ATP-ase.

are pathogenetically truly harmful. Pathogenetic relevance was
therefore attributed to those antibodies which were fixed to
autologous cardiac tissue in the endomyocardial biopsy sample
in vivo und proved cytolytic or protective in in vitro assays.

IMPROVEMENTS IN HISTOLOGY,
IMMUNOHISTOLOGY AND MOLECULAR
BIOLOGY METHODS

Endomyocardial biopsy (EMB) is the appropriate standard
to diagnose myocarditis. It should be performed early in the
course of the disease to optimize diagnostic accuracy and
reduce the sampling error especially in focal myocarditis.
Standard histology and immunohistology can be characteristic
for certain types of inflammation (e.g., giant cell, eosinophilic
myocarditis, sarcoidosis, lymphocytic). Immunohistology
confirms the pathogenetic relevance of the autoantibodies,

when they are fixed to the appropriate cardiac target protein.
Polymerase chain reaction (PCR) identifies the underlying
viral etiology or excludes it. This implies different treatment
algorithms (13–17, 43, 55–59). Therefore, multiple specimens
should be taken and immediately fixed in 10% buffered
formalin. Additional samples should be snap frozen in liquid
nitrogen for immunohistochemistry and stored at −80◦C.
And 1–2 samples should be stored in special tubes at room
temperature for viral PCR (8, 15, 17, 60). To increase the
diagnostic sensitivity of immunohistochemistry, the use of a
large panel of monoclonal and polyclonal antibodies including
anti-CD3, anti-CD4, anti-CD8, anti-CD68, and anti HLA-
DR is mandatory for the identification and characterization
of the inflammatory infiltrate (8, 15, 17). Quantitative
immunohistochemistry should be performed for infiltrating
cells. Specific binding of these antibodies indicating an
inflammatory reaction is demonstrated by peroxidase double
staining procedure.
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TABLE 3 | Comparison of qualitative Dallas (14) and quantitative World Heart Federation (WHF) criteria (15, 16).

Biopsy diagnosis Dallas criteria WHF criteria histology* WHF criteria viral etiology

1st EMB:

Active myocarditis

Infiltrate (>5 per hpf or nests),

myocytolysis,

edema (only H&E staining)

>50/mm2
=fulminant m.

>14/mm2
=active m.

(Quantitative) PCR on viruses

If positive: viral m. or DCMi; If

negative: autoreactive m.

Borderline myocarditis Infiltrate (>5 per hpf or nests), (only

H&E staining)

Not applicable Not applicable

No myocarditis No infiltrate <14/mm2 If negative: DCM

If positive: viral DCM

2nd EMB:

Ongoing myocarditis

Infiltrate (>5 per hpf or nests),

myocytolysis, edema

(only H&E staining)

>14/mm2 (Quantitative) PCR on viruses,

If positive: viral m. or DCMi; If

negative: autoreactive m.

Healed/resolved myocarditis No infiltrate, but focal fibrosis <14/mm2 If negative: DCM

If positive: viral DCM

* The infiltrate should be classified according the leukocyte markers used by peroxidase staining of CD3, CD4, CD8, CH45R0, CD68 positive cells. MHC class I and class II activation

can be assessed.

DCMi, dilated cardiomyopathy with inflammation; EMB, endomyocardial biopsy; H&E, hematoxilin and eosin staining; hpf, high power field; m, myocarditis.

Inflammation in endomyocardial biopsies is diagnosed by the
WHF-criteria, which means a presence of ≥14 leucocytes/mm2

(8, 15) in European centers, whereas the qualitative Dallas criteria
of active or borderline myocarditis in the first, and ongoing or
resolving or resolved myocarditis in a subsequent biopsy are still
applied in many American publications (Table 3).

An equally important diagnostic contribution of EMB comes
from the molecular analysis with DNA–RNA extraction and RT-
PCR amplification of suspected viral genomes (15–17, 61), which
is also part of the WHF criteria (Table 3). In order to exclude
systemic infection, peripheral blood should be investigated in
parallel with the biopsies (15, 17). Quantification of virus load
and determination of virus replication may add diagnostic value
(61). For detection of cardiotropic viruses total DNA and RNA
should be extracted from the biopsy samples. Primer pairs
specific for Coxsackievirus B (CVB), parvovirus B19 (PVB19),
cytomegalovirus (CMV), adenovirus type 2, influenza virus A,
human herpes virus 6 (HHV6) and Epstein–Barr virus (EBV)
should be used to perform polymerase chain reaction (PCR)
and in case of PVB19 quantitative real-time PCR to determine
viral load.

HISTOLOGICAL PHENOTYPES AND
CLINICAL MANIFESTATIONS

The association of the clinical phenotypes such as cardiogenic
shock with fulminant myocarditis, acute heart failure with active
lymphocytic or other forms of viral and non-viral myocarditis
and chronic heart failure with borderline myocarditis can be
derived from Table 1 and Figure 5. The biopsy findings in
these patients fit into these histopathological categories. The
inflammasome is a platform in cells of the innate immune
system allowing transition from the innate to the adaptive
anticardiac immune response directed against myocardial and
pericardial targets (11, 46, 62). The proinflammatory cascade in
inflammasomes can be terminated intrinsicly, for example by
Caspase-1 self-cleavage (63).

EPIDEMIOLOGICAL INSIGHT BY
HISTOLOGY AND PCR BASED
ETIOLOGIES IN PATIENTS WITH
SUSPECTED MYOCARDITIS

The last WHO report on the epidemiology of inflammatory
heart diseases, which explicitly listed viral causes of myocarditis
dates back to the year 1981. It filed the following incidences
of viral myocarditis per 1000: Coxsackie- B 36, Influenza- B
18, Influenza A- 12, Coxsackie A- 10, Cytomegalo- 9, Echo- 7,
Adeno- 5 und Epstein Barr Virus 4,5. Meanwhile epidemiological
data show a wide divergence in different parts of the world with
new endemics or epidemics. To follow epidemiological trends
one can assess the incidence of aetiological factors in changing
frequencies as assessed by endomyocardial biopsies in tertial
referral centers. Their data have limits by the sample size of
all biopsied patients per year as the denominator. The region
or sometimes the continent could be another selection bias.
Registries can show longitudinal trends, however. Our registry
of suspected myocarditis / inflammatory dilated cardiomyopathy
was started 1987. The histological diagnosis of myocarditis
was based on the Dallas criteria in the first years 10 years.
Later on we used the quantitative WHF-criteria and refined the
PCR for cardiotropic microbial agents as part of a common
consensus. By a longitudinal comparison an epidemiological
shift from entero- and adenoviruses to Parvovirus B19 becomes
apparent (Figure 6A).

A retrospective analysis of 3,345 patients‘ biopsies in the
Marburg registry (60) revealed (Figure 6B):

- Only one third of the patients who underwent endomyocardial
biopsy with the suspected diagnosis myocarditis or dilated
cardiomyopathy showed inflammation in their biopsy.

- The greatest proportion of the patients was virus-negative,
however. This applied to the patients with dilated
cardiomyopathy with no inflammation. Such patients
with an EF between 45 and 55% (3rd column) made up
71.5%, those with an EF <45% were virus-negative in
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FIGURE 5 | Histological phenotypes and components of myocarditis and inflammatory cardiomyopathy can correlate with clinical manifestations (faces).

79.8%. These groups are identical with heart failure of
unknown origin.

- Parvovirus B 19 became by far the leading viral aetiological
factor across all 4 groups of cardiomyopathies with or without
inflammation. It ranged between 17.6% in non-inflammatory
but viral cardiomyopathy (=viral heart disease) and 33.3% in
inflammatory Parvovirus B19 positive cardiomyopathy with
an EF <45%.

FUTURE SEROLOGIC DIAGNOSTIC
MARKERS

Distinct patterns of microRNAs are well described in coronary
artery disease and myocardial infarction but not yet in
inflammatory cardiomyopathies. De Rosa et al recently showed
different gradients of microRNA expression in ischemic and
non-ischemic forms of heart failure (64).

Treatment
Current recommendations and guidelines for the treatment
of heart failure also apply to inflammatory cardiomyopathy.
“Unloading the heart” is the principle of chronic heart failure
of any cause. This has been successfully demonstrated in many
heart failure trials on ACE-inhibition and angiotensin receptor
blockade. Details and a comprehensive bibliography were
summarized previously (9). Waagstein et al. demonstrated
first a positive trend for betablockade in congestive
cardiomyopathy (65).

Antiphlogistic treatment with non-steroidal anti-
inflammatory drugs (NSAIDs) such as ibuprofen or
indomethacin or IL-antagonists such as anakinra should be
reserved for patients with additional pericardial involvement.
NSAIDs should be used only for short term application (66, 67),
since in murine Coxsackie B3 myocarditis it was shown that
NSAIDs can be detrimental (68). NSAIDs are cyclooxigenase
inhibitors. Anakinra blocks the cytokine activity of IL-1. In
peri (myo)carditis first line treatment with colchicine is now
recommended not only in recurrent forms but also for the
first attack of pericarditis (67). Figure 7 shows that colchicine
is an inhibitor of the mitosis of tubulin in macrophages and
neutrophiles. Its application inhibits primarily the innate
immune system.

Antiarrhythmic treatment and device therapy also follows
current heart failure guidelines [see Maisch and Pankuweit (9)
for references].

Stem Cell Transplantation
Virtually no data on stem cell transplantation in myocarditis with
heart failure and only scarce uncontrolled data in patients with
dilated cardiomyopathy are available (9).

SPECIFIC TREATMENT ALGORITHMS

Figure 8 reflects diagnostic and therapeutic algorithms in
different forms of myocarditis. They are also the basis of the
double-blind randomized European Study on Epidemiology and
Treatment of InflammatoryMyocardial Disease (ESETCID) (70).
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B

Inflammation (n = 1098) No inflammation (n = 2247)

(1) EF > 45% (2) EF < 45% (3) EF > 45% (4) EF < 45%

N = 816 282 1663 584

LVEDD (mm) 54 ± 10 65 ± 7 51 ± 9 66 ± 11

VIRUS POSITIVE (%)

Influenza A 1.3 0 0 0.1

PVB 19 20.4* 33.3** 23.9* 17.6

EV 1.5 2.8 1.1 0.5

ADV 1.5 2.1 1.4 1.2

CMV 3.1 3.9 2.0* 0.8

Borrel. Burgd. 0 0 0.1 0

Virus negative 72.2 57.9 71.5 79.8

*p < 0.05 (group1 vs. 2 or group 3)

**p < 0.05 (group 2 vs. 4).

Pankuweit et al. (60).

FIGURE 6 | (A) Epidemiological shift in the Myocarditis Registry from entero-(green line) and adenoviruses (brown line) to Parvovirus B 19 (dark blue line) in the late

1980-ties. The number of patients with nonviral myocarditis (light blue line) varied from 50 to 80% in the same time span. (B) PCR-based etiology of viral and

autoreactive myocarditis and dilated cardiomyopathy without inflammation (4th column) [modified from Pankuweit et al. (60)]. PCR-Based etiology of myocarditis and

dilated cardiomyopathy. Investigation of endomyocardial biopsies from 3345 patients (1997–2003).

Immunosuppressive Treatment
Idiopathic Giant Cell Myocarditis
Giant cells in addition to a lymphocytic infiltrate are the
histological hall-mark of this very rare, fulminant and often
lethal disease. If suspected, it is a clear biopsy indication.
Its prevalence in Marburg registry 1989–2012 is 3 in 10,000
biopsied patients. The etiology is considered autoimmune based
on a genetic predisposition. It resembles experimental giant cell
myocarditis in Lewis rats after immunization with myosin (71).
When compared to an isolated cardiac sarcoid the histological
differential diagnosis is sometimes difficult (72). If untreated the
natural course is lethal. The giant cell myocarditis treatment trial
proposed treatment with 5mg monoclonal anti CD3–antibodies
given i.v. for 10 days. Cyclosporin should be started with 25mg
bid and increased daily by 25mg to achieve a target serum
level of 200 ng/ml. This serum level should be kept for 1 year.
Methylprednisolone should be started with 10 mg/kg i.v. for 3

days and then be tapered after 3 weeks to a final dose of 5mg for
the rest of the year (73, 74). The study was stopped for lack of
patients (Table 4).

Cardiac Sarcoidosis
In cardiac sarcoidosis the giant cells are only found in the non
caseous granuloma (94, 95). In our registry it is 6-times more
frequent with 19 in 10,000 biopsied patients than giant cell
myocarditis. Granuloma are often located in the midmyocardial
layer, which is not accessible to endomyocardial biopsy. So the
diagnosis of cardiac sarcoidosis can be suspected in patients
with systemic sarcoidosis and a biopsy just showing myocarditis.
Early cardiac symptoms can be AV-block or severe ventricular
arrhythmias leading to sudden death or severe heart failure.
The etiology of sarcoidosis remains obscure, although recently a
variant in the btnl2 gene and the btnl2 risk allele were described as
risk factors (9, 96, 97). The treatment is either corticoid treatment
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FIGURE 7 | Antininflammatory action of different modes of therapy in perimyocarditis [modified from Maisch (69) with permission from Springer-Nature].

FIGURE 8 | Etiology driven treatment in myocarditis and inflammatory cardiomyopathy [modified from Maisch (69) with permission from Springer-Nature].

alone or in combination with other immunosuppressive drugs
e.g., azathioprine or cyclosporine (98).

Eosinophilic Heart Disease
Eosinophilic heart disease (EHD) and endstage endomyocardial
fibrosis are rare diseases. The Marburg Registry has collected 10
cases over 23 years. Its common pathogenetic denominator is

the excessive production of cytotoxic eosinophils, which could
damage the heart in different ways (9, 99, 100):

a) In the course of an allergic reaction,
b) As an autoimmune disease,
c) As malignant eosinophilic leukemia,
d) Following a parasitic or protozoal infection (tropical form),
e) As Churg-Strauss-syndrome or
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TABLE 4 | Trials for immunosuppressive treatment in myocarditis [modified from Maisch and Pankuweit (9) with permission from Springer-Nature].

References Treatment No pts/

Controls

Treated pts

improved

Treated pts

Unch/deter.

Controls

improved

Controls

unch/deter.

Endpoint/Comments

A. OBSERVATIONAL STUDIES AND SMALL TRIALS WITH IMMUNOSUPPRESSION

Fenoglio et al. (75) P, A & P 18/4 7 (39%) 11 (61%) 2 (50%) 2 (50%) EF/observational, no PCR

Hosenpud et al. (76) A & P 6/0 0 (0%) 6 (100%) EF/No co, no PCR, no co

biopsy

Anderson et al. (77) A & P 10/7 3 (30%) 7 (70%) 2 (28,5%) 5 (71,5%) Prospective, open label,

randomized

Marboe and Fenoglio (78) P, A & P 16/18 9 (56%) 7 (44%) 7 (39%) 11 (61%) P, A & P mixed

Latham et al., (79) P 26/26 Majority Minority nd nd EF/No viral PCR, no biopsy

Maisch et al. (80) A & P 21/21 all virus

negative

10 (47%) 11 (53%) 3 (14%) 18 (86%) EF (6 mo)/RCT pilot

Kühl et al. (81) P 31/0 20 (54%) 11 (46%) nd nd EF; observational/ No co EMB

Camargo et al. (82) P 68/0 Majority Minority nd nd EF/observational, No viral PCR

Liu Dezue et al. (83) D 128/0 Favorable,

but no data

nd nd nd Observational/No EMB, CM

Sun (84) D 32/0 Majority Minority nd nd EF/observational, EKG only, no

PCR, CM

Wu and Chen (85) D & P 31/0 Majority Minority nd nd Observational/ No EMB, CM,

Frustaci et al. (86) A & P 41/0 21 (51%) 20 (49%) nd nd EF/RCT, virus negative pts

improved

Escher et al. (87) A & P 114 Majority Minority nd nd EF 6 mo/observational, no co

biopsy

References No pts/Co Treatment Endpoints Treated pts

improved

Treated pts

Unch/deter.

Controls

improved

Controls unch/deter. Comments

B. DOUBLE BLIND, RANDOMIZED, AND CONTROLLED TREATMENT TRIALS (RCT) WITH IMMUNOSUPPRESSIVE DRUGS IN MYOCARDITIS

Parillo et al. (88) 51 /51 P vs. Pl EF after 3

mo, mortality

53%

No difference

47%

No difference

27%

No difference

73%

No difference

RCT,

no PCR

Mason et al. (89) MTT 64/47 A/C & P

vs. Pl

EF/function

+Mortality

No difference

No difference

No difference

No difference

No difference

No difference

No difference

No difference

RCT, no PCR (90)

Wojnicz et al. (91) 41/43 A & P

vs. Pl

EF/function In majority In minority Minority with

spontaneous

improvement

Majority No PCR, HLA as

criterium

of inflammation

Cooper et al. (74), Maisch

et al. (69, 70)

11/? Cyclo+P

vs. Pl

Mortality

12 mo

Improved nd nd nd RCT, stopped for

lack of pts

Frustaci et al. (92)

TIMIC

43/42 A & P

vs. Pl

EF (6 mo)

Mortality

88,3

nd

11,7

nd

0

nd

100

nd

WHF, RCT, virus

negative pts only

Maisch et al. (93)

ESETCID

54/47 Tx arms with

A& P

vs. Pl

EF/function

MACE

EF+MACE

improved

after 6 month

Some

spontaneous

improvement

WHF, RCT,

intermediate results

A, Azathioprin; co, controls; CM, Chinese medicine; Cyclo, Cyclosporine; D, Dexamethason; DC, dilated cardiomyopathy; deter, deteriorated; EF, Ejection fraction; EMB, endomyocardial

biopsy; mo, months; nd, no data; P, prednisone; Pl, placebo; PCR, polymerase chain reaction for viral RNA and DNA in EMB; pts, patients; RCT, randomized controlled trial; unch,

unchanged; WHF, quantitative World Heart Federation biopsy criteria.

f) As idiopathic form.

Classic Löffler’s endocarditis develops in 3 stages:

1) Eosinophilic endomyocarditis, in which mature eosinophils
infiltrate the endocardium and myocardium and damage
with their products such as the cationic protein or by
IL-5, which has also been discussed as a late mediator
of fibrosis.

2) Thrombotic endocardial disease, in which apical obliteration
and valve involvement occur.

3) Endomyocardial fibrosis as terminal stage, in which restrictive
cardiomyopathy prevails.

The 3 stages can be identified noninvasively by colorflow
Doppler echocardiography, cardiac MRI, and by EMB. In
the peripheral blood the eosinophils can sometimes be
degranulated. They are diagnosed as neutrophils, which
obviously impairs the diagnosis of eosinophilia. The definite
diagnosis should be established by endomyocardial biopsy.
The causative therapy of the tropical form is the treatment of
the underlying helminthic or protozoal infection. In all other
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forms immunosuppression has been recommended either
by prednisone, interferon or the tyrosinekinase inhibitors
imatinib or mepolizumab. As a humanized monoclonal antibody
mepolizumab binds to and inhibits interleukin-5 (IL-5). In the
Marburg registry longterm prednisone and azathioprine gave
a survival rate of 9 out 10 patients over a mean period of 8.4
years (9).

Rheumatic Diseases and Collagen
Disorders With Cardiac Manifestations
Cardiac symptoms may be “behind the curtain” of the clinical
manifestations in rheumatic diseases. The diagnosis relies on
clinical manifestation, echocardiography, cardiac MRI, and
sometimes on endomyocardial biopsy and/or pericardiocentesis.
The management includes pain relief with NSAIDs,
immunosuppression as systemic therapy, and in patients
with larger pericardial effusions undergoing pericardiocentesis
with intrapericardial instillation of triamcinolone acetate.
Longterm, oral colchicine (2–3 tablets per day with 0.5mg) is
recommended (9).

Autoreactive Myocarditis
It is common belief that an infection with cardiotropic
viruses may cause sequestration of myocardial cells. This can
trigger in predisposed patients an autoreactive cellular and
humoral immune reaction which in turn leads to further
myocardial damage.

With this hypothesis in mind immunosuppressive
treatment either by prednisone alone or in combination
with azathioprin or cyclosporin was initiated. However,
most studies listed in Table 4A were carried out before
quantitative immunohistochemistry for the assessment of the
infiltrate and PCR for cardiotropic viruses were available. So
it remained unclear, if prednisone and immunosuppression
were started when virus particles were still present. According
to a current dogma, in such a situation immunosuppression
is contraindicated.

Our controlled pilot study on immunosuppression (80) before
the initiation of ESETCID (93) excluded patients with a viral
genome in the myocardium and was therefore directed to
autoreactive, virus-negative myocarditis cases. It demonstrated
improvement of cardiac function (EF >5% after 6 months) in
47% of patients treated with verum, but also in 14% in the placebo
group, which could be interpreted as spontaneous recovery.

In a post-hoc stratification of myocarditis patients treated with
prednisone and azathioprine Frustaci et al. (86) also found that
improvement with immunosuppression was demonstrable only
in the virus-negative cases.

The first randomized controlled trial on prednisone in patients
with idiopathic dilated cardiomyopathy with biopsies taken was
carried out by Parillo et al (88), who randomly assigned 102 DCM
patients to treatment with 60 mg/d for 3 months or without
prednisone. 53% of the patients who received prednisone showed
improvement of ejection fraction by >5%, but only 27% of the
controls improved spontaneously (p= 0.005).

The Myocarditis Treatment Trial (MTT) by Mason et al.
(89) showed neither benefit nor harm. Mortality after 6

months of treatment with cyclosporin A or azathioprine and
prednisone showed an insignificant trend when compared
to placebo. The study was underpowered and did not
distinguish viral from non-viral disease as pointed out later (90).
Wojnicz et al. (91) randomized 84 patients with dilated heart
muscle disease and suspected myocarditis when an increased
HLA MHC expression was found in EMB. Treatment of
azathioprine and prednisone was compared with placebo after
3 months. In the treatment group ejection fraction improved,
survival remained comparable, however, between verum and
placebo groups.

In the TIMIC study the ejection fraction in the treatment
group of 43 patients increased from 26.5% at baseline
to 45.6% after 6 months (p < 0.001). Accordingly left
ventricular enddiastolic volume, left ventricular enddiastolic
diameter, and New York Heart Association class decreased
significantly (92).

The ESETCID (European Study on the Epidemiology and
Treatment of Cardiac Inflammatory Disease) is a double
blind, randomized, placebo controlled three-armed trial with
prednisolone and azathioprine for autoreactive (virus negative)
inflammatory dilated cardiomyopathy in patients with an
ejection fraction <45% at baseline. Its intermediate results
from the immunosuppressive treatment arm demonstrated a
positive trend in EF and MACE after 6 months of treatment
and a significant benefit after 1 year of follow-up (93).
For the initial and steady state dosages of prednisolone and
azthioprine see Maisch et al. (93). The control group without
immunosuppressive treatment also showed some spontaneous
resolution of the infiltrate.

INTRAVENOUS IMMUNOGLOBULIN

Intravenous immunoglobulins (ivIg) interact widely with the
host immune system. They can stimulate anti-inflammatory
cytokines, develop anti-idiotypic activities, increase FCgamma
receptor saturation and the expression of the inhibitory
FCgRIIB. Inhibitory actions comprise the suppression of
proinflammatory cytokines, the interruption of the complement
cascade, the inhibition of dendritic cells, of leukocyte adhesion,
of apoptosis and of metalloproteinases. They can bind microbial
particles, contribute to the self-antigen sequestration and
interfere with B and T cell regulation (9). Anthony et al
have shown that the anti-inflammatory activity of monomeric
IgG depends on the sialysation of the N-linked glycan of
the IgG Fc fragment (101). Their beneficial effect has also
been reported in different clinical settings of autoimmune
disease including acute and chronic myocarditis, in dilated
cardiomyopathy, in experimental enteroviral myocarditis (102)
and in Parvovirus B19 associated heart disease (103). IgM and
IgA enriched immunoglobulins appear to be effective in lower
doses (104).

Table 5 gives an overview on the ivIg studies. Many,
but not all studies reported hemodynamic benefit or clinical
improvement. The IMAC, a randomized controlled trial,
demonstrated improvement in both, the treatment and placebo
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TABLE 5 | Iv-Immunoglobulin treatment in myocarditis and inflammatory dilated cardiomyopathy.

References Design n EMB Viral PCR IvIg dose Outcome

Drucker et al. (105) Retrospective,

historic control

46 children Partly nd 2 g/kg single dose Reduced LVEDD

McNamara et al. (106) Uncontrolled 10 adults Partly nd 2 g/kg Improvement of EF

after 12 months

Takeda et al. (107) Case report 1 Myocarditis EBV 2 g/kg for 2 days Improvement

Nigro et al. (108) Case reports 3 children Myocarditis Parvo B19 2 g/kg over 5 days Improved

Tsai et al. (109) Case report 1 child nd Mycoplasma

peumoniae

(serology)

2 g/kg over 2 days Improved

McNamara et al. (110) IMAC RCT 62 Only ten active and

3 borderline

myocarditis

nd 2 g/kg, single shot

vs. controls

Not improved

Alter et al. (111) Case report 1 Myocarditis Varicella 2 g/kg over 2 days Normalized

Shioji et al. (112) Case report 1 Fulminant

myocarditis

nd, negative

serology

2 g/kg Improved

Tedeschi et al. (113) Case report 1 nd nd, negative

serology

2 g/kg Improved

Kishimoto et al. (114) Case series 9 adults 4 myocarditis only nd 1-2 g/kg Improved NYHA, EF

& SF

Wang et al. (115) Case report 1 child Fulminant

myocarditis

Coxsackie A 16 1/kg for 2 days Patient died

Dennert et al. (116) Uncontrolled 25 post mortem

myocarditis

Parvo B19 2 g/kg Decrease in viral

load and improved

EF after 6 months

Maisch et al. (117) Controlled 18 (ivIg) vs.

17(controls)

CMV myocarditis CMV by PCR or ISH 14 days, multiple

doses

Improved and

eradicated CMV

Modified from Maisch and Pankuweit (9, 10) with permission from Springer-Nature.

CMV, Cytomegalovirus; DC, dilated cardiomyopathy; deter, deteriorated; EBV, Epstein Barr virus; EF, Ejection fraction; EMB, endomyocardial biopsy; ISH, in situ hybridization; LVEDD,

left ventricular enddiastolic diameter; NYHA, New York Heart Association classification; mo, months; n, number of pts; nd, no data; PCR, polymerase chain reaction for viral RNA and

DNA in EMB; RCT, randomized controlled trial; SF, shortening fraction; unch, unchanged.

arms (110), so that in a multi-institutional analysis the benefit
in a pediatric myocarditis or cardiomyopathy population was
questioned (118).

In CMV-myocarditis one controlled trial of 18 patients
showed the eradication of inflammation and the elimination
of the virus (117). The patients had received 2 ml/kg i.v.
cytomegalovirus hyperimmunoglobulin (CMVhIg) for 3 days
and 1 ml/kg for 2 additional 2 days.

In a case of varicella myocarditis high-dose immunoglobulins
demonstrated clinical improvement and the resolution of
inflammation (111).

In theMarburg Registry 20 g i.v. pentaglobin (ivIgGAM) given
in adenoviral myocarditis resulted in clinical improvement by
the eradication of the inflammatory infiltrate and the virus. In
Parvo B19 myocarditis clinical improvement and elimination of
inflammation in the biopsy is noted, whereas the virus may still
persist although the viral load may decrease.

IMMUNOADSORPTION

The therapeutical concept of immunoadsorption follows a
different concept: the elimination of cardiotoxic autoantibodies
together with proinflammatory cytokines. The positive
result of a pilot study of patients with idiopathic dilated

cardiomyopathy needs further confirmation in a larger endpoint
study (119, 120).

ANTIVIRAL TREATMENT

Interferon-Beta
Interferons belong to the natural defense system against
many viral infections. In entero- and adenoviral myocarditis
interferon-beta has eliminated the viral genome and decreased
inflammation in a phase 2 study, when applying dosages of
2 to 6 × 106 IU every 2nd day (121). The response to
interferon-beta in Parvovirus B19 and human herpes virus 6
myocarditis has been less impressive as shown by the BICC
study (122).

PERSPECTIVE AND CONCLUSION

Although we have learned much about inflammatory heart
disease from various animal models of viral or autoimmune
myocarditis, we are aware that animal models cannot be
translated one to one to myocarditis in patients. Enteroviral
myocarditis in man has almost completely disappeared in
Europe. Parvovirus B 19 as infective agent has emerged instead
but its pathogenesis is still poorly understood and animal models
for this virus are still missing. Separation of myocarditis in 3
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phases is an auxiliary construction. But myocardial inflammation
in man is continuum. Personalized treatment should be tailored
within the time frame from infection to innate and adaptive
response. There is still much work to be done.
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Patients with autoimmune diseases are at increased risk for developing cardiovascular

diseases, and abnormal electrocardiographic findings are common. Voltage-gated

calcium channels play a major role in the cardiovascular system and regulate cardiac

excitability and contractility. Particularly, by virtue of their localization and expression

in the heart, calcium channels modulate pace making at the sinus node, conduction

at the atrioventricular node and cardiac repolarization in the working myocardium.

Consequently, emerging evidence suggests that calcium channels are targets to

autoantibodies in autoimmune diseases. Autoimmune-associated cardiac calcium

channelopathies have been recognized in both sinus node dysfunction atrioventricular

block in patients positive for anti-Ro/La antibodies, and ventricular arrhythmias

in patients with dilated cardiomyopathy. In this review, we discuss mechanisms

of autoimmune-associated calcium channelopathies and their relationship with the

development of cardiac electrical abnormalities.

Keywords: calcium channel, autoantibodies, autoimmune, channelopathy, cardiac electrical abnormalities

INTRODUCTION

Voltage gated calcium channels (VGCCs) are macromolecular complexes which include the main
pore forming α1-subunits, the accessory β, α2δ, and γ-subunits (1–4). In the heart, VGCCs
mediate calcium (Ca) influx in response to membrane depolarization and modulate excitability,
contraction, hormonal secretion and gene transcription (1–6). There are many pathologies, both
genetic and acquired, involving VGCCs. Mutations in VGCCs cause dysfunctions of Ca channels,
resulting in abnormal excitation of the cardiomyocyte, and cardiac arrhythmias (2, 6–8), which
contribute substantially to morbidity and mortality. Among the different pathophysiological
mechanisms of arrhythmogenesis, a new area of interest has recently emerged and is related
to autoimmune-associated Ca channel dysfunction (autoimmune Ca channelopathies) in cardiac
arrhythmias (9–12). This review summarizes the recent findings on the roles of cardiac Ca channels
in autoantibodies-associated cardiac arrhythmias.
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VOLTAGE-GATED CALCIUM CHANNELS IN
THE HEART

L-type and T-type Ca channels are the two major classes of
VGCCs in the heart. The L-type Ca channel is a high voltage-
activated, long-lasting, and the T-type channel is characterized
by a low voltage-activated, transient-type channel (2, 3, 5, 6, 13,
14). There are 10 isoforms of mammalian genes encoding the
α1 subunit. (5, 15–18). CACNA1S, CACNA1C, CACNA1D, and
CACNA1F encode α1S, α1C, α1D, and α1F subunits (L-type Ca
channels) respectively. CACNA1A, CACNA1B, and CACNA1E
encode α1A, α1B, and α1E subunits (P/Q-, N-, and R-types),
respectively, (19–21). The T-type Ca channels α1G, α1H, and α1I

subunits are encoded by CACNA1G, CACNA1H, and CACNA1I,
respectively, (22–24). Among these channels, the L-type Ca
channels α1C and α1D isoforms and the T-type Ca channels α1G

and α1H isoforms are the major VGCCs expressed in the heart
(25–27). The features and tissue distribution of the L-type and
T-type Ca channels are summarized in Table 1.

L-type Ca Channels in the Heart
α1C L-type Ca Channel
Cardiac α1C L-type VGCC is a protein complex comprised
of α1C, β2, and α2/δ subunits. The α1 subunit is the pore-
forming subunit, which determines the major features of the
channel, such as ion selectivity, activation-inactivation and the
sensitivity to Ca channel blockers (3, 6, 15, 16). The β2 and
α2/δ accessory subunits play important roles in the regulation of
the biophysical properties of Ca channels (36). The α1C VGCC
is universally expressed in the heart and plays a critical role
in excitation–contraction coupling, impulse generation in sinus
node (SAN) and its conduction in the atrioventricular node
(AVN). The Ca ions entering the cardiomyocytes through α1C

VGCCs also shape the plateau phase of the ventricular action
potential and induce the release of Ca from the sarcoplasmic
reticulum (calcium induced-calcium release) which initiates the
myocardial contraction (1, 6, 36).

α1D L-type Ca Channel
In contrast to the ubiquitously expressed α1C VGCCs in the heart,
α1D VGCCs are restricted to the supraventricular tissue of the
adult heart, with the highest expression in the atria, SAN, and
AVN, but they are not expressed in the normal adult ventricles
(5, 28, 37–42). In the fetal heart, however, α1D VGCCs are
expressed throughout the heart including the ventricles, atria,
SAN, and AVN (39). While α1C VGCCs activate at more positive
(−40 and −30mV) potentials, α1D VGCCs activate between
−60 and −40mV at a range of diastolic depolarization of the
SAN (28, 42). This unique feature allows α1D VGCCs to play
an important role in the automaticity of SAN pacemaker cells
(29, 43, 44). The unexpected SAN dysfunction reported in mice
lacking α1D VGCCs was the first evidence of their importance in
heart automaticity (28, 42, 44). Deletion of the α1D VGCC gene
impairs pace making in the SAN and atrioventricular conduction
in the AVN but has no effect on myocardial contractility (42, 44).

T-type Ca Channels in the Heart
There are 3 isoforms of T-type VGCC: α1G (23, 45), α1H (24), and
α1I (45, 46). Among them, α1G and α1H are the major isoforms
in the myocardium and their expression is developmentally
regulated (17, 30, 31). While α1H T-type VGCC constitutes the
predominant isoform in embryonic heart tissue (32); α1G T-
type VGCC expression increases during the perinatal period
and reaches its maximal level in adulthood. In adult SAN,
α1G expression is higher than α1H T-type VGCC (26, 27, 33).
In contrast to α1D L-type VGCC, which requires accessary
subunits for normal gating, α1G or α1H subunits expression
alone exhibit native T-type Ca channel properties (17, 47, 48).
In addition, T-type VGCCs open at significantly more negative
membrane potentials that overlap the pacemaker potentials of
SAN cells (30, 49). The threshold for activation is −70 to
−60mV, and the channel is fully activated at −30 to −10mV
(17, 31, 49). T-type VGCCs are expressed in the SAN (34),
the AVN (50), and the Purkinje fibers (51, 52), supporting
their roles in the generation of the diastolic depolarization,
the automaticity of SAN and the impulse conduction of
the heart (30, 31, 53, 54). Indeed, homozygous transgenic
mice lacking α1G VGCC exhibit first-degree atrioventricular
block (AVB) and bradycardia (25). Collectively, both L-
type, and T-type Ca channels by virtue of their tissue-
specific localization can modulate automaticity, conduction
and repolarization, and as such, agents and compounds like
autoantibodies (discussed below) which interact and target
these channels are expected to affect the electrical activity of
the heart.

AUTOANTIBODIES-ASSOCIATED
CARDIAC CALCIUM CHANNELOPATHIES

Autoimmune disorders and cardiovascular disorders are
associated with significant morbidity and mortality and are
a major health problem both in the USA and worldwide.
While the field of “cardio-immunology” is being formally
established, recent and emerging advances in this area indicate
that autoantibodies play an important role in the development of
cardiac arrhythmias.

Autoantibodies Against Ca Channel and
Ventricular Arrhythmias: Anti-α1C

Subunit Antibody
Autoimmunity is one of the main mechanisms involved in
the pathogenesis of dilated cardiomyopathy (DCM) (55–57).
Sudden death caused by ventricular arrhythmias is one of
the leading causes of death in patients with DCM (58–
60). Results from previous studies indicated that the VGCC
plays an important role in the pathogenesis of DCM (11, 61,
62). The function of VGCCs in DCM is affected either by
autoantibodies directed against the regulatory pathway/accessary
subunits or autoantibodies targeting the pore forming α1

subunit itself. Several autoantibodies indirectly affecting the
L-type VGCCs have been identified in patients with DCM
(63–65). The presence of antibody against the β-adrenoceptor
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TABLE 1 | Features of Ca channels in the heart.

Channel Gene Activation Distribution Developmental change Function

α1C VGCC Cav1.2 −40mV Ubiquitous Increase with developmental

stage

• Action potential in SAN and AVN,

• Inotropy, contraction of atria

and ventricles

α1D VGCC Cav1.3 −60mV SAN, AVN, Atria in adult heart;

Ubiquitous in immature heart

Decrease with developmental

stage

• Pace making,

• AVN conduction

• Atrial excitability

α1G VGCC Cav3.1 −70mV Supraventricular tissue, 30-fold

more in SAN than in atria

Increase during development,

maximal at adult stage

• Pacing making

• AVN conduction

α1H VGCC Cav3.2 −70mV Supraventricular tissue Predominant in embryonic stage

references (6, 14, 15, 17, 18, 28–35).

was first reported in a patient with Chagas’ disease by
Sterin-Borda et al. (66). Ten years later, Wallukat and
Wollenberger demonstrated the presence of an agonist-like anti-
β1 adrenoceptor in DCM patients (67). Subsequent studies
showed that these autoantibodies in DCM target the second
extra-cellular loop of the β1-adrenoreptor (68), resulting in
a positive chronotropic effect. Autoantibodies against β1-
adrenoceptors were closely related to ventricular arrhythmias
in patients with DCM (69). Anti-β1-adrenoceptor antibodies
induced in an animal model caused action potential duration
prolongation, with higher propensity for induction of early
repolarization, promoting the development of ventricular
arrhythmias which increased the risk of sudden death (69–
71). Notably, Christ et al. (72) demonstrated that anti-
β1 adrenoceptor antibodies increased L-Type Ca current,
ICa−L in adult rat ventricular cells in concordance with the
prolongation of the action potential duration. Autoantibodies
against adenine nucleotide translocators, which cross-react with
VGCCs, increases the Ca inflow which causes myocyte damage
by Ca overload in DCM (73–75).

The evidence of the presence of agonist-like autoantibodies
directly against the L-type VGCC α1C subunits in DCM was
demonstrated by Liao et al. (76) and Xiao et al. (11) subsequently
demonstrated that autoantibodies against α1C Ca channel are
arrhythmogenic and lead to sudden cardiac death in patients
with DCM. In a prospective study, the authors compared
ventricular arrhythmias and sudden death in 80 patients with
DCM and age- and gender-matched controls for 32 months.
Autoantibodies against L-type α1C subunits (anti-α1C) were
detected by ELISA in 39 patients with DCM (48.8%) and 5
controls (6.3%). Higher incidence of ventricular arrhythmias
and sudden cardiac death was observed in anti-α1C antibody-
positive patients as compared to the antibody-negative patients.
The presence of anti-α1C antibodies was identified as the
strongest independent predictor for sudden death in DCM
(11). The arrhythmogenic effect of anti-α1C antibodies was
reproduced in a rat model (11). Perfusion of affinity purified
anti-α1C antibodies lead to ventricular arrhythmias by action
potential duration prolongation and triggered activity (11). This
effect was blocked by pre-incubating the anti-α1C antibodies
with its specific peptide and Ca channel blockers, indicating
the specificity of the arrhythmogenic effect of the anti-α1C

antibodies (11). To further investigate the underlying mechanism
of the anti-α1C antibodies, Xiao et al. using immunofluorescent
approach demonstrated that anti-α1C antibodies were able
specifically to bind to the Ca channel on the myocyte, enhancing
the channel’s activities (hence the agonist-like effect). In a
prospective study, Yu et al. (62) recruited 2096 patients with
congestive heart failure, of which 841 dilated cardiomyopathy
patients (DMC) 1,255 ischemic cardiomyopathy (ICM) patients,
and 834 controls. By the end of a median follow up of
52 months, 102 cases of DCM had sudden cardiac death.
Interestingly, the rate of anti-Ca channel antibody in DCM
was significantly higher in DCM patients compared to controls.
After adjusting for risk factor including age, left ventricular
ejection fraction (LVEF), hypertension, diabetes, New York

Heart Association (NYHA) functional classification, QTc, and

medications, Cox regression analysis revealed that the presence
of anti-Ca channel antibodies still remains an independent

risk factor for sudden cardiac death in DCM patients. In
conclusion, there are novel agonist-like anti-α1C Ca channel

antibodies in patients with DCM, which prolong action potential

duration and QT interval, induce early after depolarizations,
and ventricular tachycardia, eventually leading to sudden cardiac

death. These antibodies could serve as novel clinical markers
and as positive predictor of sudden death in DCM (Figure 1)

(61, 62).

Autoimmune-Associated
Brady-Arrhythmias and Conduction
Abnormalities: Cardiac L-type Ca Channels
and Anti-ro Antibodies
While presence of the anti-α1C Ca channel antibody is identified
as a strong predictor for ventricular arrhythmias and sudden
cardiac death in DCM (11), its role has not been well-established
in other autoimmune-associated cardiac electrical abnormalities.
The best studied disease caused by autoantibody related L-type
Ca channel dysfunction is autoimmune-associated congenital
heart block (CHB) characterized by AVB, and sinus bradycardia
(10, 35, 77–80). CHB is a conduction abnormality that affects
structurally normal hearts of fetuses and/or newborn to mothers
with autoantibodies against the intracellular ribonucleoproteins
SSA-Ro and SSB-La (10, 79, 80). The hallmark of CHB is
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FIGURE 1 | Proposed mechanism of the pathogenic role of anti-Ca channels

autoantibodies in Dilated Cardiomyopathy. Anti-Ca channels autoantibodies

target L-type Ca channels in the ventricular myocyte resulting in an increase in

L-type Ca current (ICaL ) which in turn leads to action potential prolongation

and ventricular arrhythmias.

various degrees of AVB, with complete AVB being the most
common, for which more than 60% of affected children require
lifelong pacemakers (81), and carries mortality rate up to 30%
(81, 82). Because anti-Ro antibodies are the most prevalent
autoantibodies in CHB (83–85), anti-La antibodies are not
discussed in this review. There are 2 subtypes of anti-Ro
autoantibodies: anti-52 and anti-60 kD SSA/Ro (collectively
termed anti-Ro antibodies in this review). Anti-Ro antibodies
result from an autoimmune response to the SSA-Ro antigen,
which is an intracellular ribonucleoprotein that is not accessible
to the circulating anti-Ro antibodies in the normal cardiac
myocyte, likely because of their large size. Anti-Ro antibodies
are more prevalent in certain autoimmune diseases including
Sjögren’s syndrome, systemic lupus erythematosus, scleroderma,
rheumatoid arthritis, systemic sclerosis, and myositis (86, 87).
Intriguingly, these anti-Ro antibodies are also present in the
general healthy population (87–89). The incidence of CHB is
about 1:11,000 (81, 90); however, this incidence dramatically
increases to about 5% in anti-Ro positive mothers and up to
18% in subsequent pregnancies thereby affecting the decision
to have a second child (79, 81). The causal relationship of
anti-Ro antibodies to the development of CHB was reproduced

in both active and passive mice models of CHB (81, 91–93).
Various degree of AVB developed in pups born to female
mice immunized with recombinant 52 SSA/Ro protein (active
immunization) (81, 93, 94). Transfer of anti-Ro antibodies from
mothers with CHB children (anti-Ro antibody positive IgG)
directly into timely pregnant mice also resulted in first degree
AVB and, surprisingly, sinus bradycardia in about 70% of the
pups (passive immunization) (91). Similarly, clinical data (95, 96)
also confirmed similar sinus bradycardia in newborns of mothers
with anti-Ro antibody positive IgG, indicating that the spectrum
of CHB extends beyond AVN to also affect SAN.

Anti-Ro Antibody Positive IgG Inhibits Both α1C and

α1D Ca Currents
As mentioned above, the hallmark of CHB is AVB. The
conduction of the impulse through the AVN depends critically
on α1C Ca current, ICa−L, which activates at more positive (−40
and−30mV) potentials (97). It is logical to speculate that anti-Ro
antibody positive IgG might target α1C Ca channel to disturb the
electrical conduction at AVN as seen in CHB. Anti-Ro antibody
positive IgG and affinity purified anti-52 Ro antibodies from
mothers with CHB children, but not anti-Ro antibody negative
IgG from healthy mothers, inhibited ICa−L in isolated SAN,
AVN cells, Purkinje fibers and in ventricular cells by 50–59%
(77, 78, 98–100). In addition, anti-Ro antibody positive IgG had
no effect on K currents (the transient outward current, Ito and
the inward rectifier, IK1), or the Na current (INa), indicating its
specificity toward Ca channels (98). To exclude the possibility
of potential contamination from other ion currents, α1C Ca
channels expressed in Xenopus oocytes were similarly inhibited
about 50% by anti-Ro antibody positive IgG (92, 99, 100).

While inhibition of α1C ICa−L could account for the AVB seen
in CHB, the contribution of α1C ICa−L to diastolic depolarization
of the SA node is generally considered to be minor. SAN
pacemaker depolarization occurs between −60 and −40mV;
however α1C ICa−L activates at more positive (−40 and−30mV)
potentials (101). Knockout of the α1D Ca channel, which
activates at −60 and −40mV in mice, results in significant sinus
bradycardia and AVB (28, 42, 102), a phenotype reminiscent
to that seen in CHB. Mangoni et al. (44) showed ICa−L in
SAN cells was decreased by 75% in α1D Ca channel knockout
mice compared with wild-type mice, which indicates that the
contribution of the α1D Ca channel to total ICa−L is significant
in the mouse SA node cell. Furthermore, our previous studies
demonstrated that both α1D Ca channel transcripts and proteins
are expressed in human fetal heart and in adult rabbit SAN
(39, 40). Collectively, these data suggest that α1D, along with
α1C, contribute to form ICa−L, playing a critical role in pace
making activity in SAN and are a potential target by anti-Ro
antibodies. Because there are no biophysical methods or specific
blockers to separate α1D from α1C ICaL in native cells, the specific
effect of anti-Ro antibodies on α1D ICa−L has been challenging.
Initial studies were carried out in expression systems to allow
individual expression of α1D ICa−L to characterize the effect of
anti-Ro antibody positive IgG. Anti-Ro antibody positive IgG
from mothers with CHB children inhibited α1D ICa−L by about
43% in tsA201 cells and about 33% in Xenopus oocytes (40, 77,
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FIGURE 2 | Effects of anti-Ro antibodies from mothers of children with congenital heart block on an isolated multicellular AV nodal preparation (left) and Langendorff

perfused whole heart (Right). (A) Simultaneous control action potentials from the crista terminalis (black tracing) and the AV node area (red tracing). (B) Superfusion of

the preparation with positive IgG (800µg/mL) for 10min resulted in 2:1 AV block (indicated by the arrows) which progressed to near complete inhibition of the AV

node action potential by 15min (B), (green tracing). (C) ECG was recorded by the conventional ECG machine in lead I, except for the use of silver wires at the

recording end of the leads. One lead was inserted in the atrium, the second in the left ventricle near the apex, and the third in Tyrode’s solution (ground). “P” indicates,

the P wave and on the ECG. Regular sinus rhythm (horizontal scale, 50 mm/s and vertical scale: 5 mm/mV) at 300 beats/min in Tyrode’s solution. (D) After 5min of

perfusion with positive IgG (800µg/mL), there was bradycardia associated with a 2:1 second degree AV block that degenerated into complete AV block by 15min of

IgG perfusion (E). The sectioned heart in the middle panel illustrates the location of the microelectrode recordings.

78, 92, 99, 100). To overcome this limitation of using expression
systems, our group has tested the effect of anti-Ro antibodies
on α1D ICa−L in native neonatal cardiomyocytes, in which the
α1C gene was effectively silenced by lentivirus. Adding anti-Ro
antibody positive IgG resulted in 35% reduction of α1D ICa−L

in naïve cardiomyocytes (103), similar to the results seen using
expression systems.

Because anti-Ro antibodies inhibit both α1C and α1D

ICa−L, it is anticipated that anti-Ro antibodies will cause both
sinus bradycardia and AVB. Further experimental evidence
using isolated multicellular AVN preparations (Figures 2A,B)
and Langendorff-perfused whole hearts (Figures 2C–E)
demonstrated that anti-Ro antibody positive IgG resulted
in bradycardia associated with 2:1 AVB then complete
third degree AVB as recorded by surface EG. In contrast,
perfusion of the AVN preparation or whole heart with
control anti-Ro antibody negative IgG had no effect on
ECG parameters (78). The sinus bradycardia and AVB were
also demonstrated in Langendorff-perfused human hearts
by our group (77) and by others (104, 105). Similar findings
were obtained using the optical mapping technique, which

allows simultaneous recording of voltage action potentials at
multiple areas of the heart including the AVN area. Perfusion
of hearts with anti-Ro antibody positive IgG revealed the
sites of conduction abnormalities at the sinoatrial junction
and AVN, thereby confirming the site of action for these
autoantibodies (106).

In summary, α1D and α1C Ca channels both contribute
to total ICa−L in the heart, with α1D Ca channels playing a
more critical role in the SAN and α1C Ca channels in the
AVN. Anti-Ro antibodies inhibit ICa−L emanating from both
α1D and α1C, resulting in AVB and sinus bradycardia seen in
CHB. This causal relationship was confirmed by reproducing
active and passive mice CHB models by induction of anti-
Ro antibodies (active immunization) or passive transfer of
the anti-Ro positive maternal IgG into pregnant mice (passive
immunization). Altogether, anti-Ro autoantibodies’ inhibition
of Ca channels are causally related to the development
of CHB, but the low incidence of CHB children born to
anti-Ro antibodies positive mothers suggest that additional
factor(s) may be necessary to contribute to the full spectrum
of CHB.
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FIGURE 3 | Schematic representation of alternative mechanism of linking anti-Ro antibodies to the development of atrioventricular block: fetal cardiomyocytes

undergoing “physiological” apoptosis cause the surface translocation of the intracellular located Ro antigens. Circulating maternal anti-Ro antibodies which can cross

the placenta, subsequently bind to the translocated Ro antigens at the cell surface; provoke the secretion of proinflammatory cytokines such as TGFβ from

macrophages. Excessive TGFβ secretion activates fibroblasts leading to scars promoting myofibroblasts in the Atrioventricular node, resulting in atrioventricular block.

Anti-ro Antibody Positive IgG Inhibits Ca Currents by

Binding Directly to the Pore Forming Subunit of the

Ca Channels
As pointed out earlier, anti-Ro antibody positive IgG cannot cross
the sarcolemma of a normal fetal cardiac myocyte, and hence
one can suspect that its effects are not directly mediated through
its antigen, SSA/Ro, but rather via sarcolemma targets such as
Ca channels. Evidence for direct interaction between anti-Ro
antibodies and Ca channels is provided by the direct binding of
anti-Ro antibodies on the pore forming α1 subunit of VGCC,
resulting in inhibition of ICaL. Indeed, using immunostaining and
Western blots, it was demonstrated that anti-Ro antibody positive
IgG binds directly to the Ca channels’ α1 subunit (99, 107). In a
subsequent study, purified GST fusion proteins corresponding to
the extracellular loop S5–S6 of each of the four domains that form
the pore of the α1D subunit were expressed and their reactivity
to anti-Ro antibody positive IgG was tested. Fourteen percent
of anti-Ro antibody positive IgG reacted specifically with the
extracellular loop S5-S6 of the first domains of the α1D subunit,
as demonstrated by both ELISA and Western blots (108). L-
type Ca channels’ inhibition by anti-Ro antibodies is one of the
mechanisms for the electrocardiographic abnormalities seen in
CHB. The resulting formulation of the “Ca channel hypothesis”
was based on the above experimental findings and was driven
by the fact that AVN electrogenesis depends on the L-type Ca
channels. Inhibition of this channel will ultimately lead to AVB, as
seen in CHB. The “Ca channel hypothesis” states that circulating
maternal antibodies directly cross react with L-type Ca channel
pore forming protein α1-subunit, inhibiting the currents and
leading to the development of AVB (97).

T-type Ca Channel and
Autoimmune-Associated Congenital Heart
Block
T-type α1G VGCCs subtype participates with α1H in regulating
electrical conduction through the AVN (18, 27, 31, 34). α1G

VGCC is highly expressed in the AVN in human hearts
(27, 31, 32). Homozygous α1G knockout mice exhibit first-
degree AVB and bradycardia, a phenotype seen in CHB (25).
These findings suggest α1G VGCC as an additional potential
cross-reactive target with anti-Ro antibody positive IgG in
the development of CHB. Hu et al. demonstrated that anti-
Ro antibody positive IgG decreased both ICaL and T-type
Ca current (ICa−T) without affecting the delayed rectifier K
current, IK, and the funny current, If, in rabbit SAN cells (98).
The average inhibition of ICa−T by anti-Ro antibody positive
IgG was 31.4% at −40mV and 44.1% at −20mV in rabbit
SAN cells (98). In addition, although anti-Ro antibody positive

IgG inhibited the α1H ICaT expressed in the Xenopus oocyte

(100), α1H Ca channel knockout mice have no ECG changes
(109), likely secondary to the low level of α1H expression in

the human neonatal AVN cells (107). These findings support

the conclusion that the α1G Ca channel is the target for

anti-Ro antibody positive IgG. Strindberg et al. demonstrated
α1G mRNA and proteins in human fetal hearts and that

α1G ICa−T rather than α1H ICa−T is the dominant current
in the AVN in newborns (107). Experimental data using

immunoprecipitation, Western blot and immunofluorescent
staining have demonstrated accessibility of anti-Ro antibody
positive IgG to the α1G epitope on the surfaces on the
cardiomyocytes in the human fetal heart (107). Reactivity to

α1G T-type VGCC was significantly higher in CHB maternal
sera compared to controls. Binding epitope of anti-Ro antibody
positive IgG was mapped to the extracellular S5–S6 portion of
repeat I of α1G subunit (aa305–319; designated as p305). Using
the patch-clamp technique, the authors also demonstrated that
anti-Ro antibody positive IgG inhibited ICa−T in isolated mice
SAN cells (107). Taken together, these results indicate that anti-
Ro antibody positive IgG readily target an extracellular epitope
of α1G T-type VGCC and inhibit the current in human fetal
cardiomyocytes, thus contributing to the development of AVB as
seen in CHB.
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FIGURE 4 | Schematic illustration of the Ca channel hypothesis. Maternal anti-Ro antibodies cross react and bind to α1C (yellow), α1D (green), and α1G (red) Ca

channels in the fetal human heart, inhibit all three Ca currents leading to sinus bradycardia and atrioventricular (AV) block (acute effect). Furthermore, fetal heart Ca

channels are exposed chronically (chronic effect) (1) to maternal anti-Ro antibodies during pregnancy. Binding of anti-Ro antibodies to Ca channels (2), can cause

cross-linking of the adjacent ion channels by the two Fab arms of IgG (3) to increase the internalization of the channel/antibody complex and thereby decrease of the

channel density on the cell membrane. Internalized Ca channels are lysed by lysosomes (4). If the number of Ca channels on cell surface decreased to a critical level,

then cell death will occur. Cell death, per se, could trigger inflammation subsequent to leukocytic influx resulting in damage of the surrounding healthy myocytes such

as in sinoatrial node and AV node which can cause permanent sinus bradycardia and AV block.

Anti-52kD Ro antibodies are present in 80% of mothers of
children with CHB; however, the risk of having CHB children
is low, with only 1–2% in single anti-Ro antibody positive
pregnancies (84). Markham et al. investigated if reactivity with
p305 (anti-Ro/p305) can be used clinically to more accurately
predict CHB in anti-Ro antibody positive patients (110). Using
anti-Ro antibody positive IgG and with multiple control groups,
reactivity was determined and compared for binding to anti-
Ro/p305. In mothers carrying anti-Ro antibodies, positive anti-
Ro/p305 antibodies were detected in 3/59 (5%) CHB pregnancies,
4/30 (13%) unaffected pregnancies with a CHB-sibling, and
0/42 (0%) of unaffected pregnancies with no CHB-sibling.
Similarly, using umbilical blood from 61 CHB and 41 healthy
with CHB-sibling, in which reactivity would unambiguously
substantiate exposure to maternal antibody, no association of
anti-Ro/p305 with CHB was detected. These data indicate that
anti-Ro/p305 reactivity in pregnant anti-Ro antibody-positive
patients is not a robust maternal marker for assessing increased
risk of CHB (110).

As described above, it is well-recognized that maternal
anti-Ro antibody is associated with the development of the
congenial AVB, at least in part resulting from an inhibitory
cross-reaction with L- and T-type Ca channels. More recent,
studies demonstrated that 10–60% of anti-Ro-positive subjects
are at increased risk of developing QTc prolongation as a
result of anti-Ro antibodies’ interference with K channels, (111–
115) resulting in complex ventricular arrhythmia, (116, 117)
including Torsade’s de Pointes (TdP) (118, 119). Lazzerini et al.
(119) recently evaluated 25 consecutive patients who experienced
TdP, where anti-Ro antibody was present in 15 out of 25
patients. Purified anti-Ro positive IgG from TdP patients cross-
reacted with the Human Ether-a-go-go-related Gene (hERG)
K channel and significantly inhibited the resulting current,
IKr. This observation indicates that anti-Ro antibodies may
represent a novel, clinically silent risk factors for TdP. To
date, studies on the association of anti-Ro antibodies and atrial
fibrillation are scarce. In our previous study (120), we were
able to induce atrial fibrillation in the α1D knockout mice but
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not in the wild-type mice. One can speculate that the unique
atrial specific distribution of α1D Ca channel, together with the
documented inhibitory effect of the anti-Ro antibodies on the
α1D Ca channels, may suggest that anti-Ro positive patients
might be at increased risk of having atrial fibrillation, warranting
further investigations.

CONCLUSIONS AND FUTURE
DIRECTIONS

Cardiac Ca channels, including both L- and T-type Ca
channels, play critical roles in the impulse generation in the
SAN, the conduction through the AVN and the development
of arrhythmias. Autoantibodies targeting Ca channels have
been identified in 2 major pathologies, DCM and CHB. In
addition, several autoantibodies are directly related to sudden
death in patients with DCM, including anti-N/K-ATPase, anti-
M2 muscarinic acetylcholine receptors, and anti-β1 receptor
antibodies, indirectly affecting the L-type VGCCs. Early risk
stratification to effectively prevent adverse outcomes in DCM
has been challenging. Recent studies confirmed the presence
of autoantibodies directly against Ca channel α1C subunit in
DCM, which was identified as a strong predictor for ventricular
arrhythmias and sudden cardiac death, indicating that anti-α1C
Ca channel antibodies might be a valuable biomarker to predict
sudden death in DCM.

The association of anti-Ro autoantibodies with CHB
is generally accepted, but the predictive value of these
autoantibodies is still low despite overwhelming experimental
data demonstrating causality between anti-Ro antibodies and
electrocardiographic abnormalities seen in CHB (Figure 2).
This indicates that anti-Ro antibodies are necessary, but
not sufficient, for inducing the clinical electrocardiographic
phenotype. To date, two hypotheses have been proposed to
explain the molecular mechanism(s) by which maternal anti-Ro
antibodies lead to the development of CHB in the fetal hearts
(79, 121). The “apoptosis hypothesis” (Figure 3) suggests that
intracellular antigens translocate to the surface of cardiomyocytes
undergoing apoptosis during physiological remodeling, thereby

exposing the antigens to the circulating maternal anti-Ro
antibodies. Binding of anti-Ro antibodies to the cell surface
antigens promotes pro-inflammatory and pro-fibrotic responses
(122, 123), causing the fibrosis of the AVN, which eventually
leads to the development of the irreversible AVB (124, 125).
The “Ca channel hypothesis” explained in this review is based
on molecular mimicry, whereby anti-Ro antibodies directly
cross-react and subsequently inhibit the cardiac Ca channels’
activity, thereby causing sinus bradycardia and AVB (77, 78, 108)
(Figure 4). This occurs by anti-Ro autoantibodies binding to
Ca channels and the resulting inhibition of ICaL (Acute effect,
Figure 4). The subsequent cross-linkage and downregulation
of Ca channels and lysis by lysosomes followed by intracellular
Ca dysregulation leads to cell death/apoptosis, inflammation,
and fibrosis of the AVN (Figure 4). The ultimate proof of
direct autoantibodies’ involvement in CHB is provided by the
identification of the site of action on the different subunits of
cardiac Ca channels (126–128), including α1C and α1D subunits
of L-type VGCCs and α1G subunit of T-type VGCCs (Figure 4).
Although autoantibodies are utilized as diagnostic or prognostic
markers in other pathologies, unfortunately, to date, there is
no specific maternal marker for assessing the increased risk of
having CHB children during an anti-Ro positive pregnancy.
It is possible that, instead of having a single CHB-inducing
antibody specificity, future studies may focus on several different
specificities that may act synergistically to induce AVB in
fetal hearts.

Peptide-based therapeutic approaches are one of the growing
classes of novel therapeutic agents. The development of short
non-immunogenic peptides and their use as decoy targets
for pathogenic autoantibodies is expected to minimize and/or
prevent autoantibody association with ion channels and their
functions. This therapeutic path awaits further development
and progress.
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The Antidiabetic and Antinephritic
Activities of Auricularia cornea (An
Albino Mutant Strain) via Modulation
of Oxidative Stress in the db/db Mice
Di Wang 1,2†, Xue Jiang 2†, Shanshan Teng 2, Yaqin Zhang 2, Yang Liu 1, Xiao Li 1* and Yu Li 1*

1 Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, Jilin Agricultural University,

Changchun, China, 2 School of Life Sciences, Jilin University, Changchun, China

This study first systematically analyzed the constituents of an albino mutant strain of

Auricularia cornea (AU). After 8 weeks of continuous treatment with metformin (Met)

(0.1 g/kg) and AU (0.1 and 0.4 g/kg), db/db mice showed hypoglycemic functioning,

indicated by reduced bodyweight, food intake, plasma glucose, serum levels of glycated

hemoglobin A1c and glucagon, hepatic levels of phosphoenolpyruvate carboxykinase

and lucose-6-phosphatasem, and increased serum levels of insulin. The effect of

hypolipidemic functions were indicated by suppressed levels of total cholesterol and

triglyceride, and enhanced levels of hepatic glycogen and high-density lipoprotein

cholesterol. The renal protective effect of AU was confirmed by the protection in renal

structures and the regulation of potential indicators of nephropathy. The anti-oxidative

and anti-inflammatory effects of AU were verified by a cytokine array combined with

an enzyme-linked immunosorbent assay. AU decreased the expression of protein

kinase C α and β2 and phosphor-nuclear factor-κB, and enhanced the expression of

catalase, nuclear respiratory factor 2 (Nrf2), manganese superoxide dismutase 2, heme

oxygenase-1 and−2, heat shock protein 27 (HSP27), HSP60, and HSP70 in the kidneys

of db/db mice. The results confirmed that AU’s anti-diabetic and anti-nephritic effects

are related to its modulation on oxidative stress.

Keywords: Auricularia cornea, diabetes, diabetic nephropathy, oxidative stress, inflammation

INTRODUCTION

Diabetes mellitus (DM) is a progressive metabolic disease characterized by an imbalance in glucose
homeostasis, impaired insulin secretion, and abnormal lipid and carbohydrate metabolism (1).
The prevalence of DM has increased four-fold in the past three decades, and the global diabetic
population is∼382 million (2).

Long-term hyperglycemia can induce secondary complications such as renal damage (3).
Diabetic nephropathy (DN), a major cause of end-stage renal disease and cardiovascular disease
(4), is characterized by an elevated lipid profile and increased oxidative stress (5). DN affects around
30% of patients with type 1 and 25% of patients with type 2 diabetes, which indicates excessive
morbidity and mortality (4). Hyperglycemia induces the excessive production of mitochondrial
superoxide and leads directly to the overproduction of reactive oxygen species (ROS), which
can cause tubulointerstitial fibrosis and inflammatory cell infiltration (6). The accumulation of
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inflammatory cells in the glomerulus of DN patients stimulates
the secretion of cytokines and chemokines, which transfer
inflammatory cells to damaged areas (7).

ROS can be eliminated by nuclear respiratory factor 2 (Nrf2),
a type of leucine zipper transcription factor that regulates
the expression of phase 2 detoxification genes such as heme
oxygenase 1 (HO-1) (8). Severe kidney damage has been observed
in Nrf2 knockout diabetic mice (9). Nuclear factor-κB (NF-
κB), an important inflammatory transcription factor, can be
activated by extremely high levels of proinflammatory cytokines
and consequently helps to generate more pro-inflammatory
mediators under pathological conditions, including diabetes (10).
NF-κB participates in the cellular response to stimulations,
including ROS (11).

The conventional therapeutic agents for diabetes cannot
effectively restore β-cell function, and the long-term nature
of the treatment causes multiple side effects, including
peripheral hyperinsulinemia, and hypoglycemia and increased
cardiovascular risks (12, 13). These therapeutic strategies
suppress blood glucose levels and reduce hypertension by
blocking the renin-angiotensin system, which has a negative
therapeutic effect on diabetic complications such as DN (5).
Therefore, alternative agents with fewer side effects and greater
activities against complications are needed. Edible fungi, which
contain plenty of bioactive components with few adverse
effects, are reported to show various pharmacological activities
(14). Our previous studies confirmed that the antidiabetic
activities of Cordyceps militaris, Paecilomyces hepialid, and
Inonotus obliquus are related to the regulation of oxidative
stress in diet-streptozotocin-induced diabetic Sprague-Dawley
rats models (15–17). An albino mutant strain of Auricularia
cornea entitled Yu Muer (AU) was first reported and cultured
by the research team led by Prof. Li (the Chinese Academy of
Engineering) at Jilin Agricultural University, Jilin, China. AU
exhibits antineoplastic activity and antioxidant effects in H22
bearing mice (18). However, the antidiabetic and antinephritic
activities of AU and their underlying mechanisms have not
been reported.

The db/db mouse model exhibits insulin resistance at around
2 weeks of age and eventually develops hyperglycemia induced
by β cell failure at 4–8 weeks, which accurately reflects
the pathophysiology of diabetes (19). In the present study,
the antidiabetic and antinephritic activities of AU and its
possible oxidative stress-related mechanisms were analyzed on
db/db mice.

MATERIALS AND METHODS

Detection of AU Components
The cultured fruitbodies of AU (provided by Prof. Li’s group at
Jilin Agricultural University, Jilin, China) were shattered by a
crusher and dry stored for the follow-up experiment. Figure S1
presents a picture of AU.

Main Components Analysis
The main components of AU, including total protein, total
sugar, reducing sugar, crude fat, total ash, crude fiber, and

total flavones, were assessed by the Kjeldahl method (20),
phenol-sulfuric acid method (21), direct titration (22), Soxhlet
extraction (23), combustion method (24), double differences
method (25), and UV spectrophotometry (26), respectively. Total
triterpenoids and mannitol were assessed by high performance
liquid chromatography (HPLC) (27, 28).

Fatty Acids Analysis
AU was extracted with a 1:1 ratio of ether: petroleum ether (V:V)
via evaporation at 80◦C, then 0.5M of NaOH in a methanol
solution and 25% Boron trifluoride (BF3) were added stepwise
and incubated at 60◦C for 30 and 20min, respectively. Finally,
a saturated solution of NaCl and hexane was mixed with the
samples, and the levels of fatty acids were analyzed using a
gas chromatography-mass spectrometer (QP2010, Shimadzu,
Japan) (29).

Amino Acids Analysis
AU was hydrolyzed by HCl (6 mol/L) at 110◦C for 24 h, and
the amino acid composition of AU was analyzed by HPLC using
an Agilent 1260 (Agilent, California, America) equipped Agilent
C18 column (4.6× 250mm× 5µm) at 1.0 mL/min with mobile
phase A (25mM acetate buffer, pH 5.8) and mobile phase B
(acetonitrile) (30).

Minerals Analysis
AU (0.5 g) was placed in a digestion tank and mixed with nitric
acid (5mL) to digest for 27min (at 100, 140, 160, and 180◦C,
3min of each, and at 190◦C for 15min). The levels of minerals
including zinc (Zn), kalium (K), ferrum (Fe), manganese (Mn),
natrium (Na), cuprum (Cu), and calcium (Ca) were detected
using inductively coupled plasma optical emission spectrometry
(ICP-OES, optima 8,000) (31), and lead (Pb), selenium (Se),
mercury (Hg), chromium (Cr), cadmium (Cd), and arsenic
(As) were analyzed using inductively coupled plasma mass
spectrometry (Thermo Fisher Scientific ICAPQ) (32).

Animal Care and Experimental Design
The experimental animal protocol was approved by the Animal
Ethics Committee of Jilin University (20170301). All procedures
were carried out on the basis of the Laboratory Animal Care
and Use recommendations, which are intended to reduce the
use of animals and minimize animal distress. The male db/db
mice and wild db/+ littermates in a C57BLKs/J background [8
weeks, SCXK (Su) 2015-0001] were purchased from the Nanjing
Biomedical Research Institute of Nanjing University (Nanjing,
China). Mice were housed at a temperature of 23 ± 1◦C and
humidity of 60% with a 12-h light-dark cycle (lights on 07:00–
19:00) and free access to food and water. After 1 week of
adaptation, the db/db mice with non-random blood glucose
levels >11.1 mmol/L were considered to be diabetes. The mice
were randomly divided into four groups (n = 12/group) and
treated with 4.0mL/kg of physiological saline (model group),Met
at 0.1 g/kg (positive control group) and AU at doses of 0.1 and 0.4
g/kg (AU-treated groups) by gavage once per day, respectively,
for eight consecutive weeks. The db/+mice (n = 12) were orally
treated with 4.0 mL/kg of physiological saline (control group) for
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eight consecutive weeks. AU fruiting body was pulverized using
the ultrafine grinder (XDW-6A, Ji’nan Tatsu Micro Machinery
Co.. Ltd., Ji’nan, China) and mixed with physiological saline.
Before administration, the mixture was shaken up. Throughout
the experimental period, the body weights and blood glucose
concentrations of the mice were measured once a week. Due
to the limited amount of sera and tissues, we randomly stagger
samples to guarantee a sample size of 10 for each of the
following assays.

Sample Collection and Parameter
Determination
The mice were fasted for 2 h before sacrifice. Blood samples were
collected and then centrifuged at 3,000 rpm for 10min twice,
and the collected sera were stored at −80◦C. Tissues (kidney
and liver) were harvested and washed in ice-cold physiological
saline solution. Half of each tissue was homogenized in
double distilled water and/or a radioimmunoprecipitation
assay (RIPA) buffer (Sigma-Aldrich, USA) containing 1%
protease inhibitor cocktail and 2% phenylmethanesulfonyl
fluoride (Sigma-Aldrich, USA) and stored at −80◦C for the
subsequent experiment, while the other half was embedded with
10% neutral phosphate-buffered formalin for histopathological
examination. Enzyme-linked immunosorbent assay (ELISA)
commercial kits (Shanghai Yuanye Bio-Technology Co. Ltd.,
Shanghai, China) were used to determine the levels of
granulocyte colony-stimulating factor (G-CSF, CK-E20002),
glycated hemoglobin A1c (GhbA1c; CK-E20512), insulin (INS,
CK-E20353), total cholesterol (TC; CK-E91839), triglyceride
(TG; CK-E91733), high-density lipoprotein cholesterol (HDL-
C; CK-E93031), alanine aminotransferase (ALT; CK-E90314),
aspartate aminotransferase (AST; CK-E91386), and glucagon
(GC; CK-E92275) in serum; the levels of interleukin (IL)-
2 (CK-E20010), IL-1β (CK-E20533), IL-10 (CK-E20005), ROS
(CK-E91516), microalbuminuria (MAU/ALB, CK-E95121), 6-
keto-prostaglandin F1α (6-K-PGF1α; CK-E30144), and matrix
metalloproteinase-9 (MMP-9; CK-E90157) in kidney; the level of
N-acetyl-β-D-glucosidase (NAG; CK-E20276) in urine; the levels
of phosphoenolpyruvate carboxykinase (PEPCK; CK-E93964)
and glucose-6-phosphatase (G-6-Pase; CK-E94770) in liver; and
the levels of glutathione peroxidase (GSH-Px; CK-E92669),
superoxide dismutase (SOD; CK-E20348). and catalase (CAT;
CK-E92636) in serum and kidney. Glycogen assay kits (A043)
(Nanjing Jiancheng Bioengineering Institute, Nanjing, China)
were used to detect the level of hepatic glycogen.

Proteome Profiling of Kidney
Twenty-six cytokines from the kidney samples of db/db
mice were quantified using a Cytokine Array Kit (ARY018,
R&D Systems, Minneapolis, MN). Briefly, the kidney was
excised and homogenized in RIPA buffer with 1% protease
inhibitor cocktail (Sigma-Aldrich, USA). After centrifugation
at 10,000 rpm for 10min, the protein concentration of
the supernatant was quantitated using a bicinchoninic acid
(BCA) protein assay kit (Merck Millipore, USA). Membranes
containing 26 different cytokine antibodies were blocked
with BSA for 1 h at room temperature and then incubated

with 100 µg of protein supernatant mixed with a cocktail
of biotinylated detection antibodies. Streptavidin-HRP and
chemiluminescence were used to detect the antibodies bound to
the membrane antibodies. The membranes were then exposed
and quantified using Image J software (National Institutes of
Health, Bethesda, MD).

Western Blot
One part of the kidney tissues obtained from the db/db mice was
homogenized in RIPA buffer with a 1% protease inhibitor cocktail
on ice for 30min. After centrifugation (10,000 rpm for 10min)
and elimination of the precipitate, total protein concentrations
were determined by BCA protein assay kit (Merck Millipore,
USA). Denatured protein samples (40 µg) were subjected to 12%
sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-
PAGE) (Bio-Rad, USA) and then electro blotted onto 0.45µm
PVDFmembranes (Bio Basic, Inc., USA). After blocking with 5%
bovine serum albumin (BSA) for 4 h, the transferred membranes
were incubated overnight at 4◦C in the corresponding primary
antibodies (at a dilution of 1:2,000) containing total-NF-κB (t-
NF-κB, ab32536), phosphor-NF-κB (p-NF-κB, ab86299), Nrf2
(ab137550), catalase (CAT, ab16731), HO-1 (ab68477), HO-2
(ab90492), manganese superoxide dismutase 2 (SOD2, ab13533),
protein kinase C alpha (PKC-α, ab23513), PKC β2 (ab32026),
heat shock protein 27 (HSP27, ab12351), HSP 60 (ab45134),
and HSP70 (ab181606) (Abcam, Cambridge, USA), and the
reference protein glyceraldehyde-3-phosphate dehydrogenase
(GAPDH; ABS16) (Merck Millipore, Darmstadt, Germany). The
transferred membranes were washed five times with TBS buffer
and then incubated with horseradish peroxidase-conjugated
goat anti-rabbit secondary antibody (sc-3836) (Santa Cruz
Biotechnology, Santa Cruz, USA) for 4 h at 4◦C. The protein
bands were established and fixed by Immobilon Western HRP
substrate (Millipore Corporation, Billerica, USA). The relative
intensity of protein expression was quantified using Image J
software (National Institutes of Health, Bethesda, MD).

Histopathological Observation
Ten percent formalin-fixed kidney tissues were dehydrated in
ethyl alcohol (from 70 to 100%) and dealcoholized in xylene.
Subsequently, the tissues were embedded in paraffin and cut into
5-mm thick sections. Sections were then deparaffinized in xylene
and rehydrated in ethyl alcohol (from 100 to 70%) in reverse
order. All specimens were stained with hematoxylin and eosin
(H&E) and periodic acid Schiff (PAS) and assessed for kidney
damage and inflammation under an inverted microscope CKX41
(Olympus, Japan).

Statistical Analysis
All data were expressed as the mean ± S.E.M. Differences were
determined by one-way analysis of variance followed by post-
hocmultiple comparisons (Dunn’s test) using SPSS 16.0 software
(IBM Corporation, Armonk, USA). Statistical significance was
declared for p-values under 0.05.
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RESULTS

Composition of AU
The AU consisted of 56.9% total sugar, 2.8% reducing sugar, 8.1%
protein, 4.2% total ash, 2.4% crude fat, 8.0% crude fiber and
3.1 × 10−4% total triterpenoids (Table 1). Among 17 types of
amino acid detected, the concentrations of glutamic acid, aspartic
acid, leucine and arginine were higher than others (Table 1).
Seven minerals, Zn, Fe, Mn, Ca, Cu, Na, and K were detected in
AU (Table 1).

The concentrations of Pb, Cr, As, and Se in the AU were
below the limit of detection, and the AU didn’t contain Hg or
Cd (Table 1). Among 35 types of fatty acid tested, only 16 types
of fatty acid were existed in the AU (Table 2).

The Hypoglycemic Effect of AU on
db/db Mice
Compared with db/+ mice, the db/db mice showed increased
bodyweight and changes in the organ indices of the kidney,
spleen and liver (P < 0.001, Table 3). After 8 weeks of
administration of AU at doses of 0.1 and 0.4 g/kg, bodyweight was
reduced by 9.1 and 13.6%, respectively (P < 0.05, Table 3). AU
at 0.4 g/kg strongly enhanced the kidney and spleen indices and
reduced the liver indices (P < 0.05, Table 3). The high levels of
food intake observed in the db/db mice were also suppressed by
Met and AU after 8 weeks of administration (P < 0.05; Table S1).

Increased blood glucose levels were observed in the db/db
mice compared with the db/+mice. Similar toMeet, AU remitted

TABLE 1 | Main components of AU.

Compounds Contents (%) Compounds Contents (%) Compounds Contents (%)

Main components Total protein 8.1 Total sugar 56.9 Reducing sugar 2.8

Crude fat 2.4 Total ash 4.2 Crude fiber 8.0

Total triterpenoids (×10−4) 3.1 Total flavones NDI Mannitol NDII

Amino acid Aspartic acid (Asp) 0.6 Glutamic acid (Glu) 0.7 Cystine (Cys) 0.3

Serine (Ser) 0.4 Glycine (Gly) 0.3 Histidine (His) 0.2

Arginine (Arg) 0.5 L-Threonine (Thr) 0.3 Alanine (Ala) 0.4

Proline (Pro) 0.3 Tyrosine (Tyr) 0.2 Valine (Val) 0.3

DL-Methionine (Met) (×10−2) 6.0 Isoleucine (Ile) 0.2 Leucine (Leu) 0.5

Phenylalanine (Phe) 0.4 Lysine (Lys) 0.3

Minerals Zinc (Zn) (×10−3) 3.6 Ferrum (Fe) (×10−3) 4.3 Manganese (Mn) (×10−3) 0.5

Calcium (Ca) 0.1 Cuprum (Cu) (×10−3) 0.6 Natrium (Na) (×10−2) 1.7

Kalium (K) 1.1 Lead (Pb) (×10−5) 1.2 Mercury (Hg) NDIII

Chromium (Cr) (×10−4) 5.0 Arsenic (As) (×10−6) 4.0 Cadmium (Cd) NDIII

Selenium (Se) (×10−6) 2.6

AU, Auricularianigricans; ND, not detected; NDI, the detection limit was 1 g/kg; NDII, the detection limit was 0.056 g/kg; NDIII, the detection limit was 20 µg/kg.

TABLE 2 | The composition and percentage content of fatty acids.

Compounds Contents (%) Compounds Contents (%) Compounds Contents (%)

Octoic acid (C8:0) NDI Heptadecenoic acid (C17:1) (×10−3) 4.0 Docosanoic acid (C22:0) (×10−2) 2.2

Capric acid (C10:0) NDII Stearic acid (C18:0) 0.2 Eicosatrienoic acid (C20:3n6) NDXI

Undecanoic acid (C11:0) NDIII Trans-oleic acid (C18:1n9t) (×10−3) 2.0 Erucic acid (C22:1n9) NDXII

Lauric acid (C12:0) NDIV Oleic acid (C18:1n9c) 0.6 Eicosatrienoic acid (C20:3n3) NDXIII

Tridecanoic acid (C13:0) NDV Trans-linoleic acid (C18:2n6t) NDVII Arachidonic acid (C20:4n6) NDXIV

Myristic acid (C14:0) (×10−3) 4.0 Linoleic acid (C18:2n6c) 0.8 Tricosanoic acid (C23:0) (×10−3) 4.0

Myristoleic acid (C14:1) NDVI Arachidic acid (C20:0) (×10−2) 1.3 Docosadienoic acid (C22:2n6) NDXV

Pentadecanoic acid (C15:0) (×10−2) 3.4 γ-linolenic acid (C18:3n6) NDVIII Eicosapentaenoic acid (C20:5n3) NDXVI

Pentadecenoic acid (C15:1) NDVII Eicosaenoic acid (C20:1n9) (×10−2) 2.8 Tetracosanoic acid (C24:0) (×10−2) 3.8

Hexadecanoic acid (C16:0) 0.3 α-linolenic acid (C18:3n3) NDIX Nervonic acid (C24:1n9) NDXVII

Palmitoleic acid (C16:1) (×10−3) 4.0 Heneicosanoic acid (C21:0) NDX Docosahexaenoic acid (C22:6n3) NDXVIII

Heptadecanoic acid (C17:0) (×10−3) 8.0 Eicosadienoic acid (C20:2) (×10−3) 3.0

ND, not detected; NDI, the detection limit was 4.20 mg/kg; NDII, the detection limit was 3.83 mg/kg; NDIII, the detection limit was 3.54 mg/kg; NDIV , the detection limit was 2.99 mg/kg;

NDV , the detection limit was 2.91 mg/kg; NDVI, the detection limit was 2.82 mg/kg; NDVII, the detection limit was 2.64 mg/kg; NDVIII, the detection limit was 2.51 mg/kg; NDIX , the

detection limit was 2.36 mg/kg; NDX , the detection limit was 2.05 mg/kg; NDXI, the detection limit was 2.68 mg/kg; NDXII, the detection limit was 2.42 mg/kg; NDXIII, the detection limit

was 3.21 mg/kg; NDXIV , the detection limit was 4.66 mg/kg; NDXV , the detection limit was 2.88 mg/kg; NDXVI, the detection limit was 3.31 mg/kg; NDXVII, the detection limit was 4.83

mg/kg; NDXVIII, the detection limit was 4.33 mg/kg.
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TABLE 3 | The effects of AU on body weights and organ indices.

Week db/+ db/db 0.1 g/kg Met 0.1 g/kg AU 0.4 g/kg AU

Body weights (g) 1 20.0 ± 0.3 43.0 ± 0.5### 43.1 ± 0.8 43.9 ± 0.4 44.3 ± 0.8

2 21.1 ± 0.3 45.1 ± 0.7### 44.9 ± 0.7 44.7 ± 0.5 44.8 ± 1.0

3 21.0 ± 0.3 45.3 ± 0.7### 44.6 ± 1.0 43.8 ± 0.9 44.7 ± 1.2

4 20.9 ± 0.4 45.5 ± 1.0### 44.1 ± 0.8 45.4 ± 0.9 45.4 ± 1.1

5 21.0 ± 0.3 47.7 ± 0.9### 44.0 ± 0.8* 46.1 ± 0.9 45.9 ± 1.1

6 21.8 ± 0.3 52.4 ± 0.9### 46.6 ± 0.9** 50.6 ± 0.7 47.1 ± 1.4*

7 21.6 ± 0.3 53.6 ± 0.6### 48.9 ± 1.2* 49.0 ± 1.0* 48.4 ± 1.5*

8 22.0 ± 0.3 54.7 ± 0.6### 50.1 ± 1.1** 49.5 ± 1.2* 49.0 ± 1.7*

9 21.9 ± 0.6 55.9 ± 0.5### 52.6 ± 0.3** 50.8 ± 1.4* 48.3 ± 2.1*

Organ indices (%) Kidney 1.28 ± 0.03 0.69 ± 0.02### 0.78 ± 0.03* 0.80 ± 0.07 0.85 ± 0.05*

Spleen 0.34 ± 0.06 0.14 ± 0.03### 0.14 ± 0.01 0.21 ± 0.06** 0.20 ± 0.08*

Liver 4.04 ± 0.12 6.78 ± 0.14### 6.66 ± 0.13 6.52 ± 0.19 6.11 ± 0.11*

The data were analyzed using a one-way ANOVA and they are expressed as means ± S.E.M. (n = 10). ###P < 0.001 vs. db/+ mice; *P < 0.05, and **P < 0.01 vs. non-treated

db/db mice.

the increased levels of blood glucose (P < 0.05, Figure 1A).
The db/db mice showed significantly elevated levels of GHbA1c
and GC and diminished levels of INS in serum, all of which
were reversed after administration with Met and AU (P < 0.05,
Figures 1B–D).

The Hypolipidemic and Liver Protective
Effects of AU on db/db Mice
Hyperlipoproteinemia is a common complication of DM (33).
Compared with vehicle-treated db/db mice, serum TG and TC
levels were significantly decreased (P < 0.05, Figures 2A,B);
while the serum HDL-C concentration was increased (P < 0.05,
Figure 2C) after 8 weeks of AU treatment.

The liver plays a significant role in blood glucose homeostasis,
lipid metabolism, and glucose storage (34). ALT and AST, which
remain at high levels in diabetes patients, reflect the impaired
liver function (35). Similar to Meet, the 8-week AU treatment
resulted in 11.2 and 14.0% reductions in the serum levels of ALT
and AST, respectively (P < 0.05, Figures 2D,E).

Gluconeogenesis is one of the major pathways for the
production of endogenous glucose. PEPCK and G-6-Pase are
two rate-limiting enzymes that regulate hepatic gluconeogenesis
(36). Compared with the db/+ mice, enhanced levels of PEPCK,
and G-6-Pase (P < 0.001, Figures 2F,G) were observed in the
db/db mice, which were suppressed by Met and AU (P <

0.05, Figures 2F,G). AU enhanced hepatic glycogen levels by
>94.1% in db/db mice (P < 0.01, Figure 2H). AU and Met
improved vacuolar degeneration of hepatocytes in the db/db
mice in pathological examinations, further confirming their
hepatoprotective effects (Figure 2I).

The Renal Protection of AU on db/db Mice
As a specific and sensitive index of renal tubular damage (37),
the high levels of NAG in urine were significantly reduced by
AU in the db/db mice (P < 0.01; Figure 3A). Furthermore, 8
weeks of AU administration resulted in an 11.5% increment in
serum levels of G-CSF (P < 0.05, Figure 3B), a 36.6% reduction

in renal levels of MAU/ALB (P < 0.01, Figure 3C), and a 21.2%
reduction in renal levels of 6-keto-PGF1α (P < 0.05, Figure 3D).
Meanwhile, AU at 0.1 g/kg enhanced the renal levels of MMP-9
by 38.5% (P < 0.05, Figure 3E) in the db/db mice.

The tubulointerstitial and glomerular damage caused by DN
is closely related to inflammatory cytokines (12). Among the
detected inflammatory cytokines, 8 weeks of AU administration
resulted in a reduction of>28.9% in IL-2 levels and an increment
of >24.2% in IL-10 levels in the kidney of the db/db mice (P <

0.05, Figures 3F,G).
The renal protective effect of AU was further confirmed

by the H&E and PAS staining. The neutrophil infiltrations in
renal papillae, inflammatory cell infiltrations, and thickened
basement membrane of renal tubular epithelial cells in the
db/db mice were all improved by 8 weeks of AU and Met
administration (Figures 3H,I). Encouragingly, AU had no effect
on the organ structures of the spleen, indicating its safe use in
animals (Figure S2).

Antioxidative Effects of AU on db/db Mice
The cytokines-related to inflammation and oxidative stress in
the kidneys of db/db mice treated with AU were systematically
screened using high-throughput renal antibody chip analysis.
Among the 26 detected cytokines, AU influenced the levels of
HSP27, HSP60, HSP70, and SOD2 oxidative stress-related
cytokines in the kidney (Figure S3 and Table S2). The
overproduction of superoxide induced by hyperglycemia
leads to cellular damage, which can be equilibrated by the
activities of antioxidant and redox factors (38). Based on the
results of the cytokine array assay and ELISA detection, the
underproduction of CAT, GSH-Px, and SOD were noted in the
kidneys of the db/db mice (P < 0.05, Table 4), all of which were
significantly enhanced by Met and AU administration (P < 0.05,
Table 4). Eight weeks of AU administration resulted in a >26.6%
reduction in ROS levels in the kidneys of the db/db mice (P
< 0.05, Table 4). AU also enhanced the serum levels of CAT,
GSH-Px, and SOD in the db/db mice (P < 0.05, Figure S4).
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FIGURE 1 | The hypoglycemic effect of AU on db/db mice. (A) AU reduced the fasting plasma glucose in db/db mice. AU regulated the serum levels of (B) GHbA1c,

(C) INS, and (D) GC in db/db mice after 8-week administration. The data were expressed as means ± S.E.M. (n = 10) and analyzed using a one-way ANOVA. # P <

0.05 vs. db/+ mice, ### P < 0.001 vs. db/+ mice, *P < 0.05, **P < 0.01 and ***P < 0.001 vs. non-treated db/db mice. GHbA1c, glycated hemoglobin A1c; INS,

insulin; GC, glucagon.

FIGURE 2 | The hypolipidemic and liver protective effects of AU on db/db mice. AU regulated the serum levels of (A) TG, (B) TC, (C) HDL-C, (D) AST, and (E) ALT in

db/db mice. AU reduced the levels of (F) PEPCK and (G) G-6-Pase in liver and enhanced the levels of (H) hepatic glycogen in db/db mice. The data were expressed

as means ± S.E.M. (n = 10) and analyzed using a one-way ANOVA. #P < 0.05, ##P < 0.01, and ###P < 0.001 vs. db/+ mice, *P < 0.05, **P < 0.01, and

*** P< 0.001 vs. non-treated db/db mice. (I) Histopathological analysis in liver via H&E staining (scale bar: 50µm; magnification: 200×). TG, triglyceride; TC, total

cholesterol; HDL-C, high-density lipoprotein cholesterol; AST, aspartate aminotransferase; ALT, alanine aminotransferase; PEPCK, phosphoenolpyruvate

carboxykinase; G-6-Pase, glucose-6-phosphatase; H&E, hematoxylin eosin.

Based on the results of the high-throughput renal antibody
chip analysis, we further studied the effects of AU on oxidative
stress. Compared with the model mice, the expressions levels
of PKC-α, PKC-β2, and p-NF-κB in kidney tissues were
significantly downregulated by AU (P < 0.05, Figure 4A).
Met and AU administration increased the expression levels of
HSP27, HSP60, and HSP70 by western blot, as a validation
of the high-throughput renal antibody chip analysis (P
< 0.05, Figure 4B). The expressions levels of Nrf2, HO-
1, HO-2, SOD2, and CAT were significantly upregulated
in the kidneys of the db/db mice after 8 weeks of AU

administration, indicating its antioxidant activities (P < 0.05,
Figure 4C).

DISCUSSION

AU contains multifarious nutritive materials (7 varieties of
mineral, 17 varieties of amino acid, and 16 varieties of
fatty acid). Polysaccharides extracted from fungi show various
pharmacological activities, including antidiabetic properties (17).
Selenium, an essential trace element, helps to prevent diabetes
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FIGURE 3 | The renal protection of AU via anti-inflammation on db/db mice. (A) AU reduced the NAG levels in urine of db/db mice. (B) AU enhanced the serum levels

of G-CSF in db/db mice. AU reduced the levels of (C) MAU/ALB and (D) 6-keto-PGF1α and enhanced the levels of (E) MMP-9 in kidney of db/db mice. AU reduced

the levels of (F) IL-2 and enhanced the levels of (G) IL-10 in kidney of db/db mice. The data were analyzed using a one-way ANOVA and they are expressed as means

± S.E.M. (n = 10). #P < 0.05, and ##P < 0.01 vs. db/+ mice, ### P < 0.001 vs. db/+ mice, *P < 0.05, **P < 0.01, and ***P < 0.001 vs. non-treated db/db

mice. Histopathological analysis in kidney via (H) H&E staining (scale bar: 20µm; magnification: 400×) and (I) PAS staining (scale bar: 20µm; magnification: 400×).

NAG, N-acetyl-β-D-glucosidase; G-CSF, granulocyte colony-stimulating factor; MAU/ALB, microalbuminuria; 6-keto-PGF1α, 6-keto-prostaglandin F1α; MMP-9,

matrix metalloproteinase-9; IL, interleukin; H&E, hematoxylin eosin; PAS, periodic acid Schiff.

TABLE 4 | The effects of AU on oxidative stress related factors in kidney of mice.

db/+ db/db 0.1 g/kg Met 0.1 g/kg AU 0.4 g/kg AU

CAT (U/mg) 9.0 ± 0.5 7.2 ± 0.3# 8.7 ± 0.6* 10.0 ± 1.1* 8.3 ± 0.4*

GSH-Px (U/mg) 74.3 ± 6.6 44.1 ± 2.1### 53.1 ± 3.9* 65.1 ± 6.3** 58.5 ± 5.3*

SOD (U/mg) 37.0 ± 2.6 25.3 ± 2.1## 32.9 ± 2.7* 35.5 ± 3.3* 34.2 ± 3.4*

ROS (U/mg) 48.6 ± 0.3 66.1 ± 4.9# 41.0 ± 1.8*** 48.5 ± 4.8* 44.8 ± 2.3**

The data were analyzed using a one-way ANOVA and they are expressed as means ± S.E.M. (n = 10). #P < 0.05, ##P < 0.01, and ###P < 0.001 vs. db/+mice; *P < 0.05, **P < 0.01,

and ***P < 0.001 vs. non-treated db/db mice. CAT, catalase; GSH-Px, glutathione peroxidase; SOD, superoxide dismutase; ROS, reactive oxygen species.

effectively via antioxidation (14). Based on the contents of AU
and our experimental data, we successfully confirmed that AU
exhibited a hypoglycemic effect by reducing blood glucose levels,
modulating glucose tolerance, and recovering the serum levels of
GHbA1c, GC, and INS. The high level of food intake observed
in the db/db mice was strongly reversed by Met and AU. AU
appeared to affect glucose metabolism mainly by reducing body
weight and altering appetite. Among patients with diabetes, 55–
80% have glycogen deposition abnormalities and steatohepatitis

in their livers. Patients also showed a decreased entry rate
of glucose into peripheral tissues, elevated hepatic glucose
production, and gluconeogenesis (39). The glucose disposal and
glycogen accumulation stimulated by insulin is an important way
of regulating glucose concentration (34). Glycogen, a primary
intracellular storable form of glucose, can be produced by
gluconeogenesis. PEPCK and G-6-Pase are two rate-limiting
enzymes that regulate hepatic gluconeogenesis and accelerate the
transformation of glycogen, fat, and protein into glucose. The
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FIGURE 4 | The anti-oxidation and anti-inflammation of AU may be related to Nrf2 signaling. (A) AU reduced the expression levels of PKC-α, PKC β2, and p-NF-κB in

the kidney of db/db mice. (B) AU enhanced the expression levels of HSP26, HSP60, and HSP70 in the kidney of db/db mice. (C) AU enhanced the expression levels

of Nrf2, HO-1, HO-2, SOD2, and CAT in the kidney of db/db mice. The data on quantified protein expression were normalized to the levels of GAPDH, except for

p-NF-κB, which was normalized to the expression levels of t-NF-κB. The data were analyzed using a one-way ANOVA and they are expressed as means ± S.E.M. (n

= 10). #P < 0.05, ##P < 0.01, and ###P < 0.001 vs. db/+ mice, *P < 0.05, **P < 0.01, and ***P < 0.001 vs. non-treated db/db mice. PKC, protein kinase C;

NF-κB, nuclear factor-κB; HSP, heat shock protein; Nrf2, nuclear respiratory factor 2; HO-1, heme oxygenase 1; HO-2, heme oxygenase 2; SOD2, manganese

superoxide dismutase 2; CAT, catalase; GAPDH, glyceraldehyde-3-phosphate dehydrogenase.

inhibition of PEPCK and G-6-Pase expression can effectively
regulate the increased blood glucose (36, 40), which is consistent
with the results of our present study. Lipid peroxidation
caused by hyperglycemia induces liver damage in diabetes
(41). Insufficient insulin leads to the accumulation of lipids,
specifically TG and TC, in hyperglycemic patients, and thus
causes diabetes-related complications (42). The accumulation
of excessive adipose cells in the liver leads to hepatic steatosis
and further fatty liver damage (43). The beneficial effects of
AU on lipid metabolism indices and liver structures strongly
confirmed its protective effect on the liver in the db/db mice.
Combined with hyperglycemia and insulin resistance during
the development of DN, oxidative stress, and inflammation
are reported to be involved in inducing tubular fibrosis and
mesangial expansion (44). The renal protective effect of AU
was demonstrated by the down-regulation of the levels of NAG

in urine and MAU/ALB in the kidney, and up-regulation of
the levels of G-CSF and MMP-9 in the kidney of the db/db
mice. Microalbuminuria is an early predictive risk factor for
nephropathy, which can lead to abnormalities in the kidney
tissues such as nodules and expansions of the mesangium (45).
The fibrinolytic activity of MMP-9 plays a beneficial role in
preventing crescentic proliferative glomerulonephritis in mice
(46). G-CSF reduces pro-inflammatory cytokine expression and
prevents the endothelialization of damaged vascular tissue (47),
which helps to stop the progression of DN in rats (48).

Intense inflammatory reaction is accompanied by the
progression of DN, which can develop into nephritides in
the late stage (49). AU increased the levels of IL-2 and IL-
10 in the kidneys of db/db mice, further demonstrating its
renoprotective effect. Proinflammatory CD4+ cells are activated
by the overproduction of IL-2, leading to the deterioration of
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glomerular damage by recruiting neutrophils (50). As an efficient
anti-inflammatory cytokine, IL-10 can improve hyperglycemia,
and insulin resistance (51). NF-κB signaling is exacerbated in
the glomeruli and renal tubes in patients with DN, and regulates
the expression of inflammatory mediators and proinflammatory
cytokines (10, 52). Hyperglycemia in diabetes leads to the
activation of PKC, which further enhances the activation of NF-
κB (53). The renal protection of AU in db/db mice may be
partially related to its anti-inflammatory effects via the regulation
of NF-κB signaling.

Hyperglycemia and lipotoxicity, a state induced by
dyslipidemia, lead to renal injury due to oxidative stress
through the production of excess ROS (54). Oxidative stress
triggers inflammatory reactions, such as basement membrane
thickening and inflammatory cell infiltration, by activating
NF-κB signaling, and finally exacerbates kidney damage in DN
(49, 55). On the one hand, heat shock proteins (HSPs) contribute
to protein homeostasis, accelerate regeneration, and minimize
injury, thus protecting cells against various stressors such as
oxidative stress as part of the defense system (56). Alternatively,
oxidative damage can be prevented by enhancing the activities
of antioxidant enzymes including CAT, GSH-Px, and SOD,
which strengthen the response of the antioxidant defense system
(57). SOD catalyzes the translation of superoxide radicals into
hydrogen peroxide, which is then decomposed into oxygen and
water by CAT, thus preventing the accumulation of ROS (58).
AU successfully regulated Nrf2 and its downstream targets. Nrf2
can neutralize ROS by activating and regulating intracellular
antioxidant effects (59). Preventing the degradation of Nrf2
resulted in the transcription of downstream antioxidant enzymes
such as HO-1 and SOD (60). Evidence suggests that Nrf2-
dependent ARE activation influences the upregulation of HSPs
such as HSP70 (61). The antidiabetic and antinephritic activities
of AU in db/db mice may be partially related to its anti-oxidative
and anti-inflammatory activities via Nrf2 signaling. However,
more experiments need to be performed to prove Nrf2 is a
downstream effector of AU to perform antioxidative effects.

There were some limitations to our present study. High-
throughput renal antibody chip analysis shows that AU
influences the levels of apoptosis-related cytokines in kidneys,
which we failed to detect in the present study. We will further
investigate the anti-apoptotic effects of AU as part of its renal
protection effect in db/db mice. Although we detected the main
components of the albinomutant strain ofA. cornea, based on the
present results, we are still hard to conclude which compounds
cause the antidiabetic and antinephritic activities. In our ongoing
experiments, we have already separated the polysaccharides
from the albino mutant strain of A. cornea, which showed

hyperglycemic effects in db/db mice. We will further study
whether the polysaccharides are responsible for these effects in
AU. Furthermore, we only proved that AU attenuated diabetes
and its following kidney oxidative pressure and inflammation.
However, AU’s pharmacological effect at macroalbuminuria stage
still needs further investigation.

In conclusion, the anti-diabetic and anti- nephritic effects
of AU and its possible anti-oxidation and anti-inflammation
mechanisms-possible related to Nrf2 signaling- were explored in
db/db diabetic models.

ETHICS STATEMENT

The experimental animal protocol was approved by the Animal
Ethics Committee of Jilin University (20170301). All efforts were
carried out on the basis of the recommendations of Laboratory
Animal Care and Use, which were made to reduce the use
of animals and minimize animal distress. The male db/db
mice and wild db/+ littermates in a C57BLKs/J background
[8 weeks, SCXK (Su) 2015-0001] were purchased from the
Nanjing Biomedical Research Institute of Nanjing University
(Nanjing, China). Animals were housed at the temperature
of 23 ± 1◦C and humidity of 60% with a 12-h light-
dark cycle (lights on 07:00–19:00) and free access to food
and water.

AUTHOR CONTRIBUTIONS

XL and YuL: conceptualization. XJ, ST, YZ, and YaL: experiment
and result. DW and XJ: article writing. All authors listed have
made a substantial, direct and intellectual contribution to the
work, and approved it for publication.

FUNDING

This work was supported by the Special Fund for Agro-scientific
Research in the Public Interest (No. 201503137), the Science
and Technology Bureau of Changchun (No.15SS11), the Key
Scientific and Technological Project of Jilin Province in China
(Grant No. YYZX201609), and the Special Projects of the
Cooperation between Jilin University and Jilin Province of China
(Grant No. SXGJSF2017-1).

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found
online at: https://www.frontiersin.org/articles/10.3389/fimmu.
2019.01039/full#supplementary-material

REFERENCES

1. Saha MR, Dey P, Sarkar I, De Sarker D, Haldar B, Chaudhuri TK,

et al. Acacia nilotica leaf improves insulin resistance and hyperglycemia

associated acute hepatic injury and nephrotoxicity by improving systemic

antioxidant status in diabetic mice. J Ethnopharmacol. (2018) 210:275–86.

doi: 10.1016/j.jep.2017.08.036

2. Borgohain MP, Chowdhury L, Ahmed S, Bolshette N, Devasani K, Das TJ,

et al. Renoprotective and antioxidative effects of methanolic Paederia foetida

leaf extract on experimental diabetic nephropathy in rats. J Ethnopharmacol.

(2017) 198:451–9. doi: 10.1016/j.jep.2017.01.035

3. Foster SR, Dilworth LL, Omoruyi FO, Thompson R, Alexander-Lindo RL.

Pancreatic and renal function in streptozotocin-induced type 2 diabetic rats

administered combined inositol hexakisphosphate and inositol supplement.

Frontiers in Immunology | www.frontiersin.org 9 May 2019 | Volume 10 | Article 1039229

https://www.frontiersin.org/articles/10.3389/fimmu.2019.01039/full#supplementary-material
https://doi.org/10.1016/j.jep.2017.08.036
https://doi.org/10.1016/j.jep.2017.01.035
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles


Wang et al. Antidiabetic and Antinephritic Effects of Fungus

Biomed Pharmacother. (2017) 96:72–7. doi: 10.1016/j.biopha.2017.

09.126

4. Yuan D, Liu XM, Fang Z, Du LL, Chang J, Lin SH. Protective effect of

resveratrol on kidney in rats with diabetic nephropathy and its effect on

endoplasmic reticulum stress. Eur Rev Med Pharmaco. (2018) 22:1485–93.

doi: 10.26355/eurrev_201803_14497

5. Cui Y, Shi Y, Bao Y, Wang S, Hua Q, Liu Y. Zingerone attenuates

diabetic nephropathy through inhibition of nicotinamide adenine

dinucleotide phosphate oxidase 4. Biomed Pharmacother. (2018) 99:422–30.

doi: 10.1016/j.biopha.2018.01.051

6. Krishan P, Singh G, Bedi O. Carbohydrate restriction ameliorates

nephropathy by reducing oxidative stress and upregulating HIF-1alpha

levels in type-1 diabetic rats. J Diabetes Metab Disord. (2017) 16:47.

doi: 10.1186/s40200-017-0331-5

7. Hu X, Zhang X, Jin G, Shi Z, SunW, Chen F. Geniposide reduces development

of streptozotocin-induced diabetic nephropathy via regulating nuclear factor-

kappa B signaling pathways. Fundamen Clini Pharmacol. (2017) 31:54–63.

doi: 10.1111/fcp.12231

8. Ha Kim K, Sadikot RT, Yeon Lee J, Jeong HS, Oh YK, Blackwell

TS, et al. Suppressed ubiquitination of Nrf2 by p47(phox)

contributes to Nrf2 activation. Free Rad Biol Med. (2017) 113:48–58.

doi: 10.1016/j.freeradbiomed.2017.09.011

9. GuoW, Tian D, Jia Y, HuangW, JiangM,Wang J, et al. MDM2 controls NRF2

antioxidant activity in prevention of diabetic kidney disease. Biochim Biophys

Acta. (2018) 1865:1034–45. doi: 10.1016/j.bbamcr.2018.04.011

10. Lee H, Lim Y. Tocotrienol-rich fraction supplementation reduces

hyperglycemia-induced skeletal muscle damage through regulation of

insulin signaling and oxidative stress in type 2 diabetic mice. J Nutr Biochem.

(2018) 57:77–85. doi: 10.1016/j.jnutbio.2018.03.016

11. Moniruzzaman M, Ghosal I, Das D, Chakraborty SB. Melatonin ameliorates

H2O2-induced oxidative stress through modulation of Erk/Akt/NFkB

pathway. Biol Res. (2018) 51:17. doi: 10.1186/s40659-018-0168-5

12. Ding L, Lu S, Wang Y, Chen H, Long W, Ma C, et al. BPI-3016, a novel

long-acting hGLP-1 analogue for the treatment of Type 2 diabetes mellitus.

Pharmacol Res. (2017) 122:130–9. doi: 10.1016/j.phrs.2017.05.007

13. Liu C-W, WangY-C, Hsieha C-C, Lu H-C, Chiang D-C. Guava (Psidium

guajava Linn.) leaf extract promotes glucose uptake and glycogen

accumulation by modulating the insulin signaling pathway in high-

glucose-induced insulin-resistant mouse FL83B cells. Process Biochem. (2015)

50:1128–35. doi: 10.1016/j.procbio.2015.03.022

14. Liu Y, You Y, Li Y, Zhang L, Yin L, Shen Y, et al. The characterization,

selenylation, and antidiabetic activity of mycelial polysaccharides

from Catathelasma ventricosum. Carbohydr Polym. (2017) 174:72–81.

doi: 10.1016/j.carbpol.2017.06.050

15. Dong Y, Jing T, Meng Q, Liu C, Hu S, Ma Y, et al. Studies on the

antidiabetic activities of Cordyceps militaris extract in diet-streptozotocin-

induced diabetic Sprague-Dawley rats. BioMed Res Int. (2014) 2014:160980.

doi: 10.1155/2014/160980

16. Wang J, Teng L, Liu Y, HuW, ChenW, Hu X, et al. Studies on the antidiabetic

and antinephritic activities of paecilomyces hepiali water extract in diet-

streptozotocin-induced diabetic sprague dawley rats. J Diabetes Res. (2016)

2016:4368380. doi: 10.1155/2016/4368380

17. Wang J, Hu W, Li L, Huang X, Liu Y, Wang D, et al. Antidiabetic activities

of polysaccharides separated from Inonotus obliquus via the modulation of

oxidative stress in mice with streptozotocin-induced diabetes. PLoS ONE.

(2017) 12:e0180476. doi: 10.1371/journal.pone.0180476

18. Cao Yuchun BH, Li Xiao, Bau T, Li Yu. Anti-tumor activities of Auricularia

cornea fruiting body extract in H22 bearing mice.Mycosystema. (2017) 36:10.

doi: 10.13346/j.mycosystema.160243

19. Senturk B, Demircan BM, Ozkan AD, Tohumeken S, Delibasi T,

Guler MO, et al. Diabetic wound regeneration using heparin-mimetic

peptide amphiphile gel in db/db mice. Biomater Sci. (2017) 5:1293–303.

doi: 10.1039/C7BM00251C

20. Sáez-Plaza P, Michałowski T, Navas MJ, Asuero AG, Wybraniec S. An

overview of the kjeldahl method of nitrogen determination. part early history

I, chemistry of the procedure, and titrimetric finish. Criti Rev Anal Chem.

(2013) 43:178–223. doi: 10.1080/10408347.2012.751786

21. Chow PS, Landhausser SM. Amethod for routine measurements of total sugar

and starch content in woody plant tissues. Tree Physiol. (2004) 24:1129–36.

doi: 10.1093/treephys/24.10.1129

22. Xue P, Zhao Y, Wen C, Cheng S, Lin S. Effects of electron beam

irradiation on physicochemical properties of corn flour and improvement

of the gelatinization inhibition. Food Chem. (2017) 233:467–75.

doi: 10.1016/j.foodchem.2017.04.152

23. De Santiago E, Dominguez-Fernandez M, Cid C, De Pena MP. Impact

of cooking process on nutritional composition and antioxidants of

cactus cladodes (Opuntia ficus-indica). Food Chem. (2018) 240:1055–62.

doi: 10.1016/j.foodchem.2017.08.039

24. Jurak E, Punt AM, Arts W, Kabel MA, Gruppen H. Fate of carbohydrates

and lignin during composting and mycelium growth of Agaricus

bisporus on wheat straw based compost. PLoS ONE. (2015) 10:e0138909.

doi: 10.1371/journal.pone.0138909

25. Tesfaye T, Sithole B, Ramjugernath D, Chunilall V. Valorisation of chicken

feathers: characterisation of chemical properties. Waste Manage. (2017)

68:626–35. doi: 10.1016/j.wasman.2017.06.050

26. Zhao C, Zhao X, Zhang J, Zou W, Zhang Y, Li L. Screening of bacillus strains

from sun vinegar for efficient production of flavonoid and phenol. Indian J

Microbiol. (2016) 56:498–503. doi: 10.1007/s12088-016-0602-8

27. Chen B, Ke B, Ye L, Jin S, Jie F, Zhao L, et al. Isolation and

varietal characterization of Ganoderma resinaceum from areas of

Ganoderma lucidum production in China. Sci Hortic. (2017) 224:109–14.

doi: 10.1016/j.scienta.2017.06.002

28. Wang X, Wang X, Guo Y. Rapidly simultaneous determination of six effective

components in cistanche tubulosa by near infrared spectroscopy. Molecules.

(2017) 22:843. doi: 10.3390/molecules22050843

29. Massouras T, Triantaphyllopoulos KA, Theodossiou I. Chemical composition,

protein fraction and fatty acid profile of donkey milk during lactation. Int

Dairy J. (2017) 75:83–90. doi: 10.1016/j.idairyj.2017.06.007

30. Wang YQ, Ye DQ, Zhu BQ, Wu GF, Duan CQ. Rapid HPLC analysis

of amino acids and biogenic amines in wines during fermentation

and evaluation of matrix effect. Food Chem. (2014) 163:6–15.

doi: 10.1016/j.foodchem.2014.04.064

31. Peyton DP, Healy MG, Fleming GTA, Grant J, Wall D, Morrison L, et al.

Nutrient, metal and microbial loss in surface runoff following treated sludge

and dairy cattle slurry application to an Irish grassland soil. Sci Total Environ.

(2016) 541:218–229. doi: 10.1016/j.scitotenv.2015.09.053

32. Santos WPC, Ribeiro NM, Santos D, Korn GAM, Lopes MV. Bioaccessibility

assessment of toxic and essential elements in produced pulses, Bahia, Brazil.

Food Chem. (2018) 240:112–22. doi: 10.1016/j.foodchem.2017.07.051

33. Yu J, Cui P-J, Zeng W-L, Xie X-L, Liang W-J, Lin G-B, et al. Protective

effect of selenium-polysaccharides from the mycelia of Coprinus comatus

on alloxan-induced oxidative stress in mice. Food Chem. (2009) 117:42–7.

doi: 10.1016/j.foodchem.2009.03.073

34. Shen SC, Cheng FC, Wu NJ. Effect of guava (Psidium guajava Linn.) leaf

soluble solids on glucose metabolism in type 2 diabetic rats. Phytother Res.

(2008) 22:1458–64. doi: 10.1002/ptr.2476

35. Karim N, Jeenduang N, Tangpong J. Anti-glycemic and anti-hepatotoxic

effects of mangosteen vinegar rind from garcinia mangostana against

HFD/STZ-induced type II diabetes in mice. Pol J Food Nutr Sci. (2018)

68:163–9. doi: 10.1515/pjfns-2017-0018

36. Cui X, Qian DW, Jiang S, Shang EX, Zhu ZH, Duan JA. Scutellariae radix

and coptidis rhizoma improve glucose and lipid metabolism in T2DM rats via

regulation of the metabolic profiling andMAPK/PI3K/Akt signaling pathway.

Int J Mol Sci. (2018) 19:3634. doi: 10.3390/ijms19113634

37. El-Ashmawy NE, Khedr EG, El-Bahrawy HA, El-Berashy SA. Effect

of human umbilical cord blood-derived mononuclear cells on

diabetic nephropathy in rats. Biomed Pharmacother. (2017) 97:1040–5.

doi: 10.1016/j.biopha.2017.10.151

38. Noratto GD, Chew BP, Atienza LM. Red raspberry (Rubus idaeus L.) intake

decreases oxidative stress in obese diabetic (db/db) mice. Food Chem. (2017)

227:305–14. doi: 10.1016/j.foodchem.2017.01.097

39. Abdel-Moneim A, El-Twab SMA, Yousef AI, Reheim ESA, Ashour

MB. Modulation of hyperglycemia and dyslipidemia in experimental

type 2 diabetes by gallic acid and p-coumaric acid: the role of

Frontiers in Immunology | www.frontiersin.org 10 May 2019 | Volume 10 | Article 1039230

https://doi.org/10.1016/j.biopha.2017.09.126
https://doi.org/10.26355/eurrev_201803_14497
https://doi.org/10.1016/j.biopha.2018.01.051
https://doi.org/10.1186/s40200-017-0331-5
https://doi.org/10.1111/fcp.12231
https://doi.org/10.1016/j.freeradbiomed.2017.09.011
https://doi.org/10.1016/j.bbamcr.2018.04.011
https://doi.org/10.1016/j.jnutbio.2018.03.016
https://doi.org/10.1186/s40659-018-0168-5
https://doi.org/10.1016/j.phrs.2017.05.007
https://doi.org/10.1016/j.procbio.2015.03.022
https://doi.org/10.1016/j.carbpol.2017.06.050
https://doi.org/10.1155/2014/160980
https://doi.org/10.1155/2016/4368380
https://doi.org/10.1371/journal.pone.0180476
https://doi.org/10.13346/j.mycosystema.160243
https://doi.org/10.1039/C7BM00251C
https://doi.org/10.1080/10408347.2012.751786
https://doi.org/10.1093/treephys/24.10.1129
https://doi.org/10.1016/j.foodchem.2017.04.152
https://doi.org/10.1016/j.foodchem.2017.08.039
https://doi.org/10.1371/journal.pone.0138909
https://doi.org/10.1016/j.wasman.2017.06.050
https://doi.org/10.1007/s12088-016-0602-8
https://doi.org/10.1016/j.scienta.2017.06.002
https://doi.org/10.3390/molecules22050843
https://doi.org/10.1016/j.idairyj.2017.06.007
https://doi.org/10.1016/j.foodchem.2014.04.064
https://doi.org/10.1016/j.scitotenv.2015.09.053
https://doi.org/10.1016/j.foodchem.2017.07.051
https://doi.org/10.1016/j.foodchem.2009.03.073
https://doi.org/10.1002/ptr.2476
https://doi.org/10.1515/pjfns-2017-0018
https://doi.org/10.3390/ijms19113634
https://doi.org/10.1016/j.biopha.2017.10.151
https://doi.org/10.1016/j.foodchem.2017.01.097
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles


Wang et al. Antidiabetic and Antinephritic Effects of Fungus

adipocytokines and PPARgamma. Biomed Pharmacother. (2018) 105:1091–7.

doi: 10.1016/j.biopha.2018.06.096

40. Guo Y, Dai R, Deng Y, Sun L, Meng S, Xin N. Hypoglycemic activity

of the extracts of Belamcanda chinensis leaves (BCLE) on KK-A(y)

mice. Biomed Pharmacother. (2018) 110:449–55. doi: 10.1016/j.biopha.2018.

11.094

41. Taghizadeh M, Rashidi AA, Taherian AA, Vakili Z, Mehran M. The protective

effect of hydroalcoholic extract of rosa canina (Dog Rose) fruit on liver

function and structure in streptozotocin-induced diabetes in rats. J Dietary

Suppl. (2018) 15:624–35. doi: 10.1080/19390211.2017.1369205

42. Palazhy S, Viswanathan V. Lipid abnormalities in type 2 diabetes mellitus

patients with overt nephropathy. Diabetes Metab J. (2017) 41:128–34.

doi: 10.4093/dmj.2017.41.2.128

43. Elaidy SM, Hussain MA, El-Kherbetawy MK. Time-dependent

therapeutic roles of nitazoxanide on high-fat diet/streptozotocin-induced

diabetes in rats: effects on hepatic peroxisome proliferator-activated

receptor-gamma receptors. Can J Physiol Pharmacol. (2018) 96:485–97.

doi: 10.1139/cjpp-2017-0533

44. Mima A. Renal protection by sodium-glucose cotransporter 2 inhibitors and

its underlyingmechanisms in diabetic kidney disease. J Diabetes Compl. (2018)

32:720–5. doi: 10.1016/j.jdiacomp.2018.04.011

45. Hieshima K, Suzuki T, Sugiyama S, Kurinami N, Yoshida A, Miyamoto F, et al.

Smoking cessation ameliorates microalbuminuria with reduction of blood

pressure and pulse rate in patients with already diagnosed diabetes mellitus.

J Clini Med Res. (2018) 10:478–85. doi: 10.14740/jocmr3400w

46. Lelongt B, Bengatta S, Delauche M, Lund LR, Werb Z, Ronco PM. Matrix

metalloproteinase 9 protects mice from anti–glomerular basement membrane

nephritis through its fibrinolytic activity. J Exp Med. (2001) 193:793–802.

doi: 10.1084/jem.193.7.793

47. Gong J-H, Dong J-Y, Xie T, Lu S-L. Influence of high glucose and AGE

environment on the proliferation, apoptosis, paracrine effects, and cytokine

expression of human adipose stem cells in vitro. Int J Diabetes Dev Countr.

(2017) 38:228–37. doi: 10.1007/s13410-017-0574-1

48. So BI, Song YS, Fang CH, Park JY, Lee Y, Shin JH, et al. G-CSF prevents

progression of diabetic nephropathy in rat. PLoS ONE. (2013) 8:e38493.

doi: 10.1371/journal.pone.0077048

49. Xu HL, Wang XT, Cheng Y, Zhao JG, Zhou YJ, Yang JJ, et al. Ursolic

acid improves diabetic nephropathy via suppression of oxidative stress and

inflammation in streptozotocin-induced rats. Biomed Pharmacother. (2018)

105:915–21. doi: 10.1016/j.biopha.2018.06.055

50. Bertelli R, Di Donato A, Cioni M, Grassi F, Ikehata M, Bonanni A, et al.

LPS nephropathy in mice is ameliorated by IL-2 independently of regulatory

T cells activity. PLoS ONE. (2014) 9:e111285. doi: 10.1371/journal.pone.01

11285

51. Denys A, Udalova IA, Smith C, Williams LM, Ciesielski CJ, Campbell J, et al.

Evidence for a dual mechanism for IL-10 suppression of TNF- production

that does not involve inhibition of p38 mitogen-activated protein kinase or

NF- B in primary human macrophages. J Immunol. (2002) 168:4837–45.

doi: 10.4049/jimmunol.168.10.4837

52. Mousum SA, Ahmed S, Gawali B, Kwatra M, Ahmed A, Lahkar

M. Nyctanthes arbor-tristis leaf extract ameliorates hyperlipidemia- and

hyperglycemia-associated nephrotoxicity by improving anti-oxidant and

anti-inflammatory status in high-fat diet-streptozotocin-induced diabetic

rats. Inflammopharmacology. (2018) 26:1415–28. doi: 10.1007/s10787-018-0

497-6

53. Hamzawy M, Gouda SAA, Rashid L, Attia Morcos M, Shoukry H, Sharawy

N. The cellular selection between apoptosis and autophagy: roles of vitamin

D, glucose and immune response in diabetic nephropathy. Endocrine. (2017)

58:66–80. doi: 10.1007/s12020-017-1402-6

54. Shao M, Lu X, Cong W, Xing X, Tan Y, Li Y, et al. Multiple low-

dose radiation prevents type 2 diabetes-induced renal damage through

attenuation of dyslipidemia and insulin resistance and subsequent

renal inflammation and oxidative stress. PLoS ONE. (2014) 9:e92574.

doi: 10.1371/journal.pone.0092574

55. Gargouri B, Bhatia HS, Bouchard M, Fiebich BL, Fetoui H. Inflammatory and

oxidative mechanisms potentiate bifenthrin-induced neurological alterations

and anxiety-like behavior in adult rats. Toxicol Lett. (2018) 294:73–86.

doi: 10.1016/j.toxlet.2018.05.020

56. Lappalainen J, Oksala NKJ, Laaksonen DE, Khanna S, Kokkola T, Kaarniranta

K, et al. Suppressed heat shock protein response in the kidney of

exercise-trained diabetic rats. Scand J Med Sci Sports. (2018) 28:1808–17.

doi: 10.1111/sms.13079

57. Singh P, Prasad SM. Antioxidant enzyme responses to the oxidative stress due

to chlorpyrifos, dimethoate and dieldrin stress in palak (Spinacia oleracea L.)

and their toxicity alleviation by soil amendments in tropical croplands. Sci

Total Environ. (2018) 630:839–48. doi: 10.1016/j.scitotenv.2018.02.203

58. Zhang C, Zhang L, Liu H, Zhang J, Hu C, Jia L. Antioxidation, anti-

hyperglycaemia and renoprotective effects of extracellular polysaccharides

from Pleurotus eryngii SI-04. Int J Biol Macromol. (2018) 111:219–28.

doi: 10.1016/j.ijbiomac.2018.01.009

59. Lin YC, Chang YH, Yang SY, Wu KD, Chu TS. Update of pathophysiology

and management of diabetic kidney disease. J Formosan Med Assoc. (2018)

117:662–75. doi: 10.1016/j.jfma.2018.02.007

60. Giribabu N, Karim K, Kilari EK, Salleh N. Phyllanthus niruri leaves aqueous

extract improves kidney functions, ameliorates kidney oxidative stress,

inflammation, fibrosis, and apoptosis and enhances kidney cell proliferation in

adult male rats with diabetes mellitus. J Ethnopharmacol. (2017) 205:123–37.

doi: 10.1016/j.jep.2017.05.002

61. Alani B, Salehi R, Sadeghi P, Khodagholi F, Digaleh H, Jabbarzadeh-

Tabrizi S, et al. Silencing of Hsp70 intensifies 6-OHDA-induced apoptosis

and Hsp90 upregulation in PC12 cells. J Mol Neurosci. (2015) 55:174–83.

doi: 10.1007/s12031-014-0298-3

Conflict of Interest Statement: The authors declare that the research was

conducted in the absence of any commercial or financial relationships that could

be construed as a potential conflict of interest.

Copyright © 2019 Wang, Jiang, Teng, Zhang, Liu, Li and Li. This is an open-access

article distributed under the terms of the Creative Commons Attribution License (CC

BY). The use, distribution or reproduction in other forums is permitted, provided

the original author(s) and the copyright owner(s) are credited and that the original

publication in this journal is cited, in accordance with accepted academic practice.

No use, distribution or reproduction is permitted which does not comply with these

terms.

Frontiers in Immunology | www.frontiersin.org 11 May 2019 | Volume 10 | Article 1039231

https://doi.org/10.1016/j.biopha.2018.06.096
https://doi.org/10.1016/j.biopha.2018.11.094
https://doi.org/10.1080/19390211.2017.1369205
https://doi.org/10.4093/dmj.2017.41.2.128
https://doi.org/10.1139/cjpp-2017-0533
https://doi.org/10.1016/j.jdiacomp.2018.04.011
https://doi.org/10.14740/jocmr3400w
https://doi.org/10.1084/jem.193.7.793
https://doi.org/10.1007/s13410-017-0574-1
https://doi.org/10.1371/journal.pone.0077048
https://doi.org/10.1016/j.biopha.2018.06.055
https://doi.org/10.1371/journal.pone.0111285
https://doi.org/10.4049/jimmunol.168.10.4837
https://doi.org/10.1007/s10787-018-0497-6
https://doi.org/10.1007/s12020-017-1402-6
https://doi.org/10.1371/journal.pone.0092574
https://doi.org/10.1016/j.toxlet.2018.05.020
https://doi.org/10.1111/sms.13079
https://doi.org/10.1016/j.scitotenv.2018.02.203
https://doi.org/10.1016/j.ijbiomac.2018.01.009
https://doi.org/10.1016/j.jfma.2018.02.007
https://doi.org/10.1016/j.jep.2017.05.002
https://doi.org/10.1007/s12031-014-0298-3
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles


REVIEW
published: 09 May 2019

doi: 10.3389/fimmu.2019.01050

Frontiers in Immunology | www.frontiersin.org 1 May 2019 | Volume 10 | Article 1050

Edited by:

Robert Murray Hamilton,

Hospital for Sick Children, Canada

Reviewed by:

Rui Li,

University of Pennsylvania,

United States

Hal Broxmeyer,

Indiana University Bloomington,

United States

*Correspondence:

Bing Zheng

hxzheng@yangtzeu.edu.cn

Quan Gong

gongquan1998@163.com

Specialty section:

This article was submitted to

Inflammation,

a section of the journal

Frontiers in Immunology

Received: 16 July 2018

Accepted: 24 April 2019

Published: 09 May 2019

Citation:

Zhang J, Chen Q, Zhong J, Liu C,

Zheng B and Gong Q (2019) DPP-4

Inhibitors as Potential Candidates for

Antihypertensive Therapy: Improving

Vascular Inflammation and Assisting

the Action of Traditional

Antihypertensive Drugs.

Front. Immunol. 10:1050.

doi: 10.3389/fimmu.2019.01050

DPP-4 Inhibitors as Potential
Candidates for Antihypertensive
Therapy: Improving Vascular
Inflammation and Assisting the
Action of Traditional Antihypertensive
Drugs

Jianqiang Zhang 1, Qiuyue Chen 1, Jixin Zhong 2, Chaohong Liu 3, Bing Zheng 1,4* and

Quan Gong 1,4*

1Department of Immunology, School of Medicine, Yangtze University, Jingzhou, China, 2Cardiovascular Research Institute,

Case Western Reserve University, Cleveland, OH, United States, 3Department of Microbiology, School of Basic Medicine,

Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China, 4Clinical Molecular Immunology

Center, School of Medicine, Yangtze University, Jingzhou, China

Dipeptidyl peptidase-4 (DPP-4) is an important protease that is widely expressed on

the surface of human cells and plays a key role in immune-regulation, inflammation,

oxidative stress, cell adhesion, and apoptosis by targeting different substrates. DPP-4

inhibitors (DPP-4i) are commonly used as hypoglycemic agents. However, in addition to

their hypoglycemic effect, DPP-4i have also shown potent activities in the cardiovascular

system, particularly in the regulation of blood pressure (BP). Previous studies have

shown that the regulatory actions of DPP-4i in controlling BP are complex and that the

mechanisms involved include the functional activities of the nerves, kidneys, hormones,

blood vessels, and insulin. Recent work has also shown that inflammation is closely

associated with the elevation of BP, and that the inhibition of DPP-4 can reduce BP by

regulating the function of the immune system, by reducing inflammatory reactions and

by improving oxidative stress. In this review, we describe the potential anti-hypertensive

effects of DPP-4i and discuss potential new anti-hypertensive therapies. Our analysis

indicated that DPP-4i treatment has amild anti-hypertensive effect as amonotherapy and

causes a significant reduction in BP when used in combined treatments. However, the

combination of DPP-4i with high-dose angiotensin converting enzyme inhibitors (ACEI)

can lead to increased BP. We suggest that DPP-4i improves vascular endothelial function

in hypertensive patients by suppressing inflammatory responses and by alleviating

oxidative stress. In addition, DPP-4i can also regulate BP by activating the sympathetic

nervous system, interfering with the renin angiotensin aldosterone system (RAAS),

regulating Na/H2O metabolism, and attenuating insulin resistance (IR).

Keywords: DPP-4, DPP-4i, GLP-1, inflammation, cardiovascular effects, hypertension
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INTRODUCTION

Dipeptidyl peptidase-4 (DPP-4), which is also referred to as
adenosine deaminase complexing protein 2 (ADCP2), cluster
of differentiation 26 (CD26), or adenosine deaminase binding
protein (ADBP), is an important protease that is widely expressed
on the surface of human cells. As a member of the leukocyte
surface antigen family, DPP-4 plays an important role in the
immune system, and can regulate inflammation, oxidative stress,
cell adhesion, and apoptosis. Due to their inhibitory effects
on T cell activation and function, DPP-4 inhibitors (DPP-4i)
have been successfully evaluated in vivo as immunosuppressive
therapies using animal models of rheumatoid arthritis (RA),
multiple sclerosis (MS), and transplantation. Otherwise, it cleaves
N-terminal two amino acids with alanine or proline in the
penultimate position by way of its enzyme activity. The substrates
of DPP-4 can be divided into three groups: regulatory peptide;
chemokines and cytokines, and neuropeptides (1). The most
well-known substrates are glucagon-like peptide 1 (GLP-1),
neuropeptide Y (NPY), stromal-cell-derived factor-1 (SDF-1),
substance P, and B-type natriuretic peptide (BNP) (1). In addition
to catalytic functions, DPP4 also interacts with different types
of ligands, including adenosine deaminase (ADA), caveolin-1,
fibronectin, and C-X-C chemokine receptor type 4 (CXCR4) (1).

Due to the efficacy of GLP-1 upon blood glucose regulation,
DPP-4i has gradually become a new anti-diabetic drug for the
treatment of type 2 diabetes mellitus (T2DM). In addition to
its activity against hyperglycemia, DPP-4i has shown beneficial
cardiovascular effects including cardioprotective action,
endothelial protection, and an anti-hypertensive effect. Both
the EXamination of cArdiovascular outcoMes with alogliptIN
vs. standard of carE in patients with type two diabetes mellitus
and acute coronary syndrome (EXAMINE) study, and the
Saxagliptin Assessment of Vascular Outcomes Recorded in
Patients With Diabetes Mellitus-Thrombolysis in Myocardial
Infarction 53 trialin (SAVOR-TIMI 53), examined the effects
of DPP-4 inhibition on cardiovascular outcomes. However,
these studies found no significant improvements in a range of
safety endpoints for cardiovascular diseases (2, 3). Although its
efficacy upon cardiovascular terminal events are not completely
satisfactory, DPP-4i has shown beneficial cardiovascular benefits
in many research studies, including the alleviation of vascular
inflammation, the protection of endothelial cells, and the
reduction of blood pressure (BP). For example, Leung et al.
reported that DPP-4i could improve left ventricle systolic and
diastolic function in T2DM (4). It has also been reported that
alogliptin treatment results in a significant improvement of
glomerular filtration rate (GFR) and left ventricular ejection
fraction (LVEF) in patients with T2DM by increasing left
ventricular systolic function (5). In another study, Read et al.
reported that sitagliptin could remarkably improve cardiac
ejection fraction (6). In addition, Jax et al. demonstrated that
linagliptin treatment significantly improved microvascular
function, but had no effect upon macrovascular function (7).
Ida et al. provided evidence that trelagliptin treatment resulted
in a visible increase of serum adiponectin level, which could
regulate the function of vascular endothelial cells (8). Additional

evidence has also suggested that DPP-4i can regulate BP. In
the present review, describe the roles and mechanisms of
DPP-4i in the improvement of hypertension, and discuss new
anti-hypertensive therapies for T2DM patients or non-diabetics.

THE ROLE OF DPP-4 INHIBITORS IN

HYPERTENSION

The first DPP-4 inhibitor, sitagliptin, was approved as an
anti-hyperglycemic agent for T2DM in the United States of
America in 2006. Since then, a range of other drugs have been
developed and used clinically, including sitagliptin, vidagliptin,
saxagliptin, alogliptin, and linagliptin. Compared with classical
oral-hypoglycemic drugs, biguanides, thiazolidinediones,
sulfonylureas, and alpha glucosidase inhibitors, patients
receiving DPP-4i treatment have a lower incidence of
hypoglycemic events and gain less weight. In addition to
its outstanding glucose-lowering effect, DPP-4i have also shown
non-metabolic functional activities, including anti-inflammatory
effect and cardiovascular protection, particularly with regards to
BP regulation.

Recent clinical trials and experimental studies have suggested
that DPP-4i, can regulating cardiovascular function via different
pathways directly, in either a direct or indirect manner. Extensive
clinical studies have confirmed that DPP-4i exerts protective
effects on hypertension patients. For example, sitagliptin and
vildagliptin treatment could lower systolic blood pressure (SBP)
independently of a reduction in blood glucose (9, 10). Some
other studies showed that both SBP and diastolic blood pressure
(DBP) were reduced after treatment with vildagliptin (11, 12).
Furthermore, the hypotensive effect was not only limited to
patients with diabetes, but also included other patients. For
example, Hussain et al. found that sitagliptin significantly
reduced BP in non-diabetic patients (13). Many other groups
have provided evidence to support and therefore confirm
this phenomenon (14). Consistent with these clinical trials,
several recent studies have reported that DPP-4i can alleviate
hypertensive conditions in animal models (15–19). In contrast,
several studies have reported that humans or animals treated with
DPP-4i do not show changes in BP when compared with placebo
(4, 20, 21). Furthermore, some studies have demonstrated that
a combination of DPP-4 and high-dose angiotensin converting
enzyme inhibitors (ACEI) can actually increase blood pressure
(22, 23). It is therefore very valuable to clarify the mechanism of
BP regulation in response to DPP-4i, particularly in combined
drug treatments (Table 1).

DPP-4 INHIBITORS AND BP REGULATION:

POTENTIAL MECHANISMS

Primary hypertension is a cardiovascular syndrome characterized
by elevated BP, and represents the leading cause of cardiovascular
disease and stroke and the primary cause of death and
disease burden worldwide (24). Hypertension is caused
by the interaction of genetic factors with environmental
factors, although there is no unified understanding of the
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TABLE 1 | The regulatory effects of DPP-4i on blood pressure in the clinical researches and animal experiments.

Drugs Subjects Number Duration Effects Date References

Saxagliptin Humans 102 48w SBP ↓ and DBP ↓ 2018 (12)

Sitagliptin Humans 454 24w SBP ↓ and DBP ↓ 2017 (14)

Vildagliptin Humans 2108 24w SBP ↓ and DBP ↓ 2016 (11)

Sitagliptin Humans 70 12w SBP ↓ and DBP ↓ 2016 (13)

Sitagliptin/

Vildagliptin/

Saxagliptin

Humans 25 48w No effect 2016 (4)

Sitagliptin/

vildagliptin

Humans 51 12w SBP ↓ 2016 (10)

Vildagliptin Rats 48 4w DBP ↓ 2016 (19)

Vildagliptin Rats 17 1w SBP ↓ 2015 (17)

Sitagliptin with enalapril

(10 mg/kg)

Rats 12 3w SBP ↑ and DBP ↑ 2015 (23)

Linagliptin Rats 59 16w No effect 2013 (21)

Linagliptin Mice 60 12w No effect 2012 (20)

Linagliptin Rats 48 1w Mean BP ↓ 2012 (15)

Saxagliptin Rats 52 8w SBP↓ and DBP↓ 2012 (18)

Sitagliptin Rats 16 2w SBP↓ 2012 (16)

Sitagliptin

with enalapril

(10/5mg)

Humans 24 3w 5 mg: BP↑

10 mg: BP↓

2010 (22)

mechanisms involved. At present, the generally accepted
mechanisms underlying hypertension are said to involve nerves,
kidneys, hormones, blood vessels, and insulin resistance. In
addition to these traditional mechanisms, it is widely believed
that mild inflammation can lead to BP elevation and its
associated cardiovascular complications. Current treatments
for hypertension include angiotensin II (AngII) type 1 receptor
blockers (ARB), angiotensin converting enzyme inhibitors
(ACEIs), calcium channel antagonists, beta receptor blockers,
and diuretics. Although the use of antihypertensive drugs has
significantly improved the quality of life of patients and reduced
the incidence and mortality of hypertension complications, half
of all patients are still not optimistic about BP control (25).
Therefore, it is particularly important to identify new candidates
for antihypertensive treatment. In view of the beneficial effects
of DPP-4i on blood pressure regulation, we aimed to review
the effects of DPP-4i upon hypertension in association with the
immune system, blood vessels, the nervous system, hormones,
kidneys, and insulin resistance. We also attempt try to provide
an effective strategy for anti-hypertensive therapy.

Immunological Mechanisms of DPP-4i

Upon Hypertension
Many chronic diseases are closely related to non-specific
inflammatory processes, such as insulin resistance, metabolic
syndrome, T2DM, and coronary heart disease, which are
associated with increased infiltration and cell proliferation of
immune cells and the elevated release of inflammatorymediators.
Recent data suggests that innate and adaptive immune systems
contribute to low-grade inflammation and play a role in the
development and progression of hypertension (26).

It has been found that DPP-4/CD26 participates in non-
specific inflammation by predominantly regulating the activation
and chemotaxis of mononuclear/macrophages, NK cells, and
T cells. Inflammatory mediators secreted from these immune
cells, such as chemokines, cytokines, adhesion molecules, and
reactive oxygen species (ROS), can disturb the functional activity
of the vascular endothelium (27), for example, by increasing the
proliferation of smooth muscle cells and participating in vascular
remodeling (28). da Silva Júnior et al. suggested that DPP-4
is associated with endothelial inflammation and microvascular
function, and that DPP-4 can significantly increase blood flow
(29). T lymphocytes have a general role in contributing to
inflammatory responses associated with hypertension (30). Early
studies showed that T cells can secret and deliver AngII via the
endogenous renin-angiotensin system (RAS), therefore leading
to an increase in BP (31, 32). The application of DPP-4i
reduces the production of cytokines controlling the proliferation
of T lymphocytes (33). In view of this, we hypothesize that
DPP-4 inhibitors could show potential hypotensive effects by
inhibiting T cell activation and function, and reduce the secretion
of inflammatory cytokines. In addition, DPP-4i also inhibits
inflammation by suppressing the activation and chemotaxis of
monocytes and macrophages (34–36).

It is well-known that naive T cells are stimulated by
antigen presentation by antigen-presenting cells (APCs), and
T cells can differentiate into different types of effector T-
cells: Th1 cells, Th2 cells, Th17 cells, and Treg cells (37).
Activated T cells secrete a variety of inflammatory mediators.
For example, studies have shown that Th17 cells have very
high expression levels of DPP-4 (38), and that interleukin
17 (IL-17) secreted by Th17 cells initiates the progression of
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AngII-induced hypertension (30). Saxagliptin was previously
shown to inhibit the AngII-induced activation of a range
of cardiac proinflammatory/profibrotic signaling intermediates,
including interleukin 18 (IL-18), interleukin 17A (IL-17A),
nuclear transcription factor-κB (NF-κB), and TLR4 (39).
Interleukin 6 (IL-6) and tumor necrosis factor alpha (TNF-α)
have been positively correlated with blood pressure (40, 41), and
the inhibition of DPP-4 has been shown to down-regulate the
expression of IL-6 and TNF-α (36, 42, 43). In contrast, Tinsley
et al. found that interleukin 10 (IL-10), released by Treg cells, has
beneficial effects in terms of reducing inflammation, ameliorating
endothelial function, and lowering BP in hypertensive pregnant
rats (44). Furthermore, the DPP-4 inhibitor MK0626 has been
shown to increase IL-10 levels (34).

Inflammation and oxidative stress result in a series of vascular
stress reactions, causing vascular endothelial dysfunction, which
then leads to hypertension (45–47). The administration of
DPP-4i inhibits the immune response and relieves oxidative
stress (48–50). Mega et al. also found that the administration
of sitagliptinin rats with T2DM reduced the levels of lipid
peroxidation (51). Alam et al. suggested that sitagliptin can
prevent inflammation and fibrosis of the heart and kidney
by improving oxidative stress (52). Koibuchi et al. reported
that the beneficial effects of linagliptin in cardiovascular injury
appeared to be attributed to the reduction of oxidative stress
and the downregulation of angiotensin converting enzyme (ACE)
(53). Moreover, many studies were performed to explore the
deeper mechanism. For example, Jo et al. showed that DPP-
4i can restrain the activity of the nod-like receptor protein
3 (NLRP3) inflammasome by alleviating nicotinamide adenine
dinucleotide phosphate (NADPH) oxidase 2-associated oxidative
stress (43). Hu et al. further showed that the treatment of
vascular endothelial cells with sitagliptin could inhibit the TNF-
induced expression of vascular cell adhesion mole 1 (VCAM-
1) mRNA (54). Other research showed that advanced glycation
end products (AGE), and receptor of advanced glycation end
products (RAGE), induces the release of ROS and stimulates
DPP-4 expression from ECs by interacting with the mannose
6-phosphate/insulin-like growth factor II receptor (M6P/IGF-
IIR) (55). GLP-1 inhibit AGE/RAGE-induced ROS release and
inflammatory reactions via the cAMP pathway by targeting
glucagon-like peptide 1 receptor (GLP-1R) (56). Consistent
with this, linagliptin significantly inhibited AGE-induced ROS
generation by increasing the expression of GLP-1 (55). DPP-
4 inhibition via gemigliptin prevents the abnormal vascular
remodeling induced by oxidative stress via the activation of
nuclear factor erythroid-derived 2 (NF-E2)-related factor 2
(57). Liraglutide also exerts anti-inflammatory effects through
the GLP-1R/cyclic adenosine monophosphate (cAMP) pathway
via cascading cAMP-dependent protein kinase/Liver kinase B1
(PKA/LKB1), thereby increasing nitric oxide production and
suppressing NF-κB (58). The activation of NF-κB can also be
suppressed by DPP-4 inhibitor (59).

Investigating the regulatory activity of DPP-4 upon the
inflammatory mediators and oxidative stress associated with
elevated BP may provide us with good expectations for the
future use of DPP-4i in the treatment of hypertension, especially

in patients with inflammation. However, until now, there is
still a deficiency in our understanding of the immunological
mechanisms associated with DPP-4i and BP regulation. Further
research is urgently required in this regard.

Vascular Mechanisms Underlying the

Effect of DPP-4i on Hypertension
Vascular smooth muscle can be affected by various physical and
chemical factors, resulting in either relaxation or contraction,
thus causing effect upon BP. The structure and function of
large arteries and arterioles play an important role in the
pathogenesis of hypertension. Endothelial cells (ECs) covering
the inner surface of the vascular wall can generate, activate, and
release various vasoactive substances and regulate cardiovascular
function, including nitric oxide (NO), prostacyclin (PGI2),
endothelin-1 (ET-1), and endothelium-derived contracting
factors (EDCF). However, other, non-endothelium derived
substances, can also affect vascular smooth muscle cells and
endothelial cells in different pathways.

NO is a crucial physiological signaling molecule in a diverse
array of organ systems, and has important anti-inflammation
effects, thereby exerting effect upon cardiovascular function,
including vasodilation and endothelium protection. NO is
synthesized by three types of NO synthase (NOS): endothelial
NOS (eNOS), neuronal NOS (nNOS), and inducible NOS (60).
Recent studies have shown that DPP-4 inhibitors can increase
NO levels in hypertensive models (61–63). Linagliptin, a DPP-
4 inhibitor, has been reported to upregulate eNOS and restore
endothelium-dependent vasodilation (64, 65). Besides the direct
vasodilative effects of NO/NOS, the vasodilation caused by
DPP-4i also appears to be related to GLP-1. A previous meta-
analysis provided evidence that GLP-1 analogs could significantly
reduce sitting SBP, suggesting that GLP-1 may be associated
with BP and vascular function (66). Consistent with this, other
researchers have shown that GLP-1 can induce vasodilation
(67–69). The vasodilatory response of GLP-1 may occur via
two different pathways: GLP-1R-dependent and independent
pathways. Hattori et al. reported that the activator of GLP-1
receptor liraglutide increased eNOS phosphorylation and NO
production in a protein kinase-dependent manner (58). The
metabolite of active GLP-1(7-36), GLP-1(9-36), is also known
to have a vasodilatory effect via the NO/cyclic guanosine
monophosphate (cGMP)-dependent mechanism (68). It has also
been reported that insulin which was induced by GLP-1 could
affect the diastolic function of the blood vessels via the nitric
oxide pathway (70). Moreover, another study reported that the
vasodilatory effects of GLP-1 are independent of insulin action
(71). Other vasodilatory substances, such as a-type natriuretic
peptide (ANP), cGMP, and cAMP can be induced by the
GLP-1R agonist exenatide (72). In addition, BNP, another
substrate of DPP-4, also possesses vasodilatation activity (73).
We hypothesize that DPP-4i could simultaneously enhance the
concentration of activated BNP, thus promoting vasodilatation.

In contrast, another substrate of DPP-4i, neuropeptide Y1-
36 (NPY1-36), has shown potent vasoconstrictive effects. NPY
is a Y1-receptor agonist released from the sympathetic nerve
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terminals. NPY1-36 can be converted to its inactive form NPY3-
36 by DPP-4 (74). Stimulation of a sympathetic nerve leads to the
release of NPY which has stronger vasoconstriction properties
than norepinephrine (75). NPY1-36 causes vasoconstriction via
Y1 receptors, whereas NPY3-36 is a selective Y2-receptor agonist
without effect on vascular tone (76, 77). DPP-4i prevents the
inactivation of NPY1-36 and exerts contraction effects which are
dependent upon catecholamine (78, 79). Simultaneously, NPY
can inhibit the activity of vasodilator substances and enhance
vasoconstrictor substances, resulting in a significant increase in
vasoconstriction (80). Prieto et al. previously showed that NPY
elevates Ca2+ influx by stimulating L-type calcium channels,
leading to the secretion and potentiation of noradrenaline
(81). Other studies have also shown that NPY is able to
hydrolyze phosphoric inositol on cell membranes into an
inositol trisphosphate (IP3) signal substance, which can promote
the release of calcium ions and increase the concentration
of extracellular calcium ions (82). In addition, some studies
have reported that vasoconstriction is affected by the sodium
potassium pump; inhibition of this pump can change the
polarization of the cell membrane, thereby regulating Na+/Ca2+

exchange (83).
These studies gave us some insight into how DPP-4i causes

effects upon the vascular endothelium. Further studies should
now be performed to identify the precise mechanisms involved
with the action of DPP-4i. We believe that the different efficacies
of DPP-4i in regulating the function of vascular endothelial cell
are possibly associated with the immunity of the human body,
the distribution of cytokines, and the administration of drugs.
The vasoconstriction of NPY is highly Ca2+-dependent, thus
suggesting that the combination of DPP-4i and Ca2+ antagonists
can improve the situation. And Y1 receptor antagonists could
also prevent the prohypertensive effect of NPY and possibly
augment the antihypertensive effects of DPP-4i.

Neural Mechanisms of the Action of

DPP-4i on Hypertension
The sympathetic nervous system (SNS) plays an important role
in regulating the heart and other visceral organs. The activity of
the sympathetic nerve is responsible for the physiological needs
of the body when it is in a state of tension, causing constricted
blood vessels, increased heart rate, dilated pupils, and reduced
secretion of the digestive glands. Vasoconstriction is caused
by noradrenaline activated alpha-1 adrenergic receptor released
from sympathetic ganglion neurons. In contrast, Beta-1 receptors
are mainly distributed in the heart, and can increase myocardial
contractility, self-regulation, and conduction function. As a result
of vasoconstriction and heart excitement by SNS activation, there
is a consequential rise in BP.

Substance P is an important neuropeptide and acts as both a
vasodilator and sympathetic activator; it can also be degraded by
DPP-4. Previous research has shown that substance P is highly
expressed in the heart. The expression of tachykinin precursor 1
(TAC1), the gene encoding substance P, was up-regulated when
the BP is raised, indicating an involvement of substance P in
high BP conditions (84). DPP-4 is a potent lyase of substance

P and DPP-4i prevents the degradation of substance P from an
activated state to an inactivated state. Concurrent with DPP-
4 and ACEI, the intra-arterial administration of substance P
stimulated the SNS (85). Further evidence was provided by
another clinical study which suggested that sitagliptin could
reduce BP under low-dose enalapril treatment without effects on
cardiac rhythm and hormonal level, but increased hypertensive
response in combination with high-dose enalapril accompanied
by increasing heart rate and norepinephrine concentration. This
result suggests that the SNS was activated during maximal ACEI
and sitagliptin treatment (22). Consistent with the findings
in humans, the same result was also found in spontaneously
hypertensive rats (SHR) (86). One reasonable explanation for
this is that high-dose ACEI and DPP-4i significantly reduced
the degradation of substance P, due to the combined inhibition
of ACE and DPP-4. Therefore, when combined with high doses
of ACEI and DPP-4i, substance P may lead to sympathetic
activation rather than vasodilation.

In addition, it has also been shown that BP can be elevated by
GLP-1 and theGLP-1 receptor. Recent studies have demonstrated
that GLP-1 and GLP-1R agonists induced a sustained elevation of
BP in rodents (45, 87). This elevation in BP may have occurred as
a result of the increased sympathetic activity by GLP-1 receptor
activation in the central nervous system (88). Yamamoto et al.
reported that centrally and peripherally administered GLP-1R
agonists increased BP and heart rate by enhancing sympathetic
activity in a dose-dependent manner (89). Similarly, Trahair
et al. reported that intravenous GLP-1 administration attenuated
the hypotensive response in healthy older individuals (90). In
contrast, another study indicated that GLP-1 does not contribute
to sympathetic activation (91).

In conclusion, the BP lowering effect of DPP-4i may
be reduced by stimulating sympathetic activity via reducing
degradation of GLP-1 and substance P when combined with
ACEI, especially in high-dose ACEI. We suggest that combined
treatment with agents that block the SNS could diminish the
hypertensive effect of DPP-4i and that this effect may be
enhanced by agents with no effect on the SNS.

Hormonal Mechanisms Underlying the

Effect of DPP-4i on Hypertension
The renin angiotensin aldosterone system (RAAS) plays a role in
regulating BP. Renin is secreted from the juxtaglomerular cells
in the renal afferent arteriole, converting the angiotensinogen
released by the liver into angiotensin I (AngI). Angiotensin
I is subsequently converted to angiotensin II (AngII) by the
angiotensin-converting enzyme (ACE) found on the surface of
vascular endothelial cells, predominantly those of the lungs.
AngII is the major effector of RAAS, acting on AngII receptor
type 1 (AT1), causing contraction of the smooth muscle of the
arteriole and stimulating the adrenocortical spherical band to
secrete aldosterone. AngII receptor type 2 (AT2) is generally
considered to be an antagonist of the AT1 receptor, regulating
the relaxation of the smooth muscle (92). Aldosterone induced
by AngII promoting the reabsorption of sodium and water from
the kidney, can increase water retention, and norepinephrine
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secretion via positive feedback from the sympathetic end of the
anterior membrane, eventually leading to an increase in BP.

Recent studies have shown that DPP-4i can exert
antihypertensive effects by interfering with the function of
the RAAS system. For example, in a previous study, teneligliptin
ameliorated hypertension and comorbid cardiac remodeling
in SHR by attenuating circulating AngII (93). Treatment
with liraglutide and linagliptin during AngII infusion down-
regulated the AT1 receptor and up-regulated AT2 receptor
expression, suggesting that DPP-4i may reduce BP via the AngII
receptor-mediated pathway (94). In addition, sodium/hydrogen
exchanger 1 (NHE-1), a membrane-bound enzyme, is thought
to be partly mediated by AngII and involved in modulating
intracellular acidity; its activation would lead to intracellular
Na+ retention, thus enhancing Na+/Ca2+ exchange and H2O
reabsorption (95, 96). Moreover, Kawase et al. found that
teneligliptin suppressed NHE-1 expression, an effect that was
enhanced by AngII, showing that DPP-4i could reduce BP by
inhibiting the AngII-NHE-1 pathway (93). However, GLP-1 may
also participate in regulating the function of RAAS. For example,
Chaudhuri et al. showed that exenatide administration could lead
to the reduction of renin, angiotensin II, and angiotensinogen in
the plasma concentrations (72).

In addition, ACE inactivates substance P via the carboxy
terminus. Combined treatment with high-dose ACEI and
sitagliptin significantly increased BP by elevating the expression
of substance P, while low-dose ACEI had no such effect (22).
We suggest that when using combined treatments of DPP-4i and
anti-hypertensive drugs targeting RAAS, then high-dose ACEIs
should be avoided. Moreover, the important effect of the AngII
receptor upon BP control should not be underestimated. We
should also remember that treatment with both DPP-4i and ARB
may exert synergistic anti-hypertensive effects.

Renal Mechanisms Underlying the Action

of DPP-4i on Hypertension
Various factors act upon the renal system and cause water-
sodium retention, thus increasing cardiac output and peripheral
vascular resistance. Water and salt metabolism can regulate
blood-volume by affecting plasma crystal osmotic pressure.
Increased osmotic pressure leads to elevated blood volume and
higher BP. There are many active substances that can affect the
excretion of water and sodium in the kidneys, including BNP,
anti-diuretic hormone, and aldosterone.

DPP-4 is also expressed in the renal proximal tubular
brush border, where it regulates Na+/H2O reabsorption (97).
DPP-4i exerts diuretic and natriuretic effects by inhibiting
the activity of DPP-4 (98); sitagliptin was recently shown to
reduce BP by increasing sodium excretion and reducing H2O
reabsorption (15). The hypotensive effect of DPP-4i seems
to contribute to the reducing activity of NHE3, a Na+/H+

exchanger isoform responsible for reabsorption of NaHCO3

and NaCl (15, 99). Researches have shown that exogenous
treatment with GLP-1 can induce diuretic and natriuretic effects
mediated by downregulation of the activity of NHE3 (100–102).
This phenomenon indicates that the diuretic and natriuretic

effects of DPP-4i are mediated by preventing the degradation
of GLP-1. GLP-1 could increase the urinary excretion of cAMP,
suggesting that cAMP signaling pathways may participate in this
process (101). Crajoinas et al. demonstrated that GLP-1 activates
the cAMP/PKA signaling pathway by binding to its receptor
GLP-1R and by then phosphorylating the PKA consensus site
of NHE3 (101). However, Girardi et al. suggested that the
effect of DPP-4i in reducing NHE3 activity results from the
inhibition of a tyrosine kinase signaling pathway rather than by
activation of PKA (103). The natriuretic effect of teneligliptin
was partially associated with GLP-1R, and the natriuretic effect
was inhibited by the GLP-1R antagonist, exendin9-39; diuresis,
however, was not affected (98). Ronn et al. previously showed
that these diuretic and natriuretic effects cannot be fully inhibited
by the GLP-1 inhibitor exendin9-39 in SHR, which lack the
expression of GLP-1 receptors (104). These findings indicated the
involvement of some other unknown pathways.

BNP is a member of the natriuretic peptide family which plays
an important physiological role in maintaining cardiovascular
and renal homeostasis (105). It is well-known that BNP has
potent diuretic and natriuretic effects. DPP-4 converts BNP1-
32 into its inactive form BNP3-32 (106) and can attenuate the
diuretic and natriuretic effects of BNP1-32 (107). This means that
DPP-4i can enhance the diuretic and natriuretic effects of BNP1-
32. Another member of the natriuretic peptide family, A-type
natriuretic peptide (ANP), which also has diuresis activity, was
shown to be stimulated by exenatide, a GLP-1 receptor agonist
(72, 108). It has also been reported that exenatide and liraglutide
induced an increased concentration of ANP through the GLP-1
receptor-dependent pathway (108). In addition, insulin induced
by GLP-1 may also promote ANP secretion (72).

Generally, the diuretic and natriuretic effects of DPP-4i are
associated with the reduced degradation of GLP-1 and BNP.
Similarly, another natriuretic peptide, ANP, is increased via a
GLP-1 pathway. Anti-hypertensive drugs, diuretics, are especially
effective for elderly and obese hypertensive patients when
monotherapy is not satisfactory, and can significantly reduce
cardiac load. Combined treatment with diuretics andDPP-4i may
amplify the effects of diuretics upon the reduction of BP and
decreasing cardiac load.

Insulin Resistant Mechanisms Underlying

the Action of DPP-4i on Hypertension
Insulin resistance (IR) is considered as a pathological condition
in which cells fail to respond normally to the hormone insulin
(109). Recently, it is generally believed that IR is common in
patients with hypertension and plays a key role in cardiovascular
complications. A body of evidence has indicated that IR is closely
related to the occurrence and development of hypertension
(110). Insulin acts directly on the vascular tissue, including
endothelial cells (111), and smooth muscle cells (112). In patients
with T2DM, extended treatment with insulin can significantly
improve endothelial-dependent vasodilation (113). Drugs that
improve insulin sensitivity have also shown beneficial effects in
the control of BP (114). Insulin improves arterial endothelial
function in healthy individuals but not in metabolic syndrome
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patients with IR; this phenomenon demonstrates that IR may be
responsible for increased cardiovascular disease risk (70).

The administration of DPP-4 promotes IR (115, 116),
and insulin sensitivity has been shown to be improved
when DPP-4 was down-regulated (111, 117). Furthermore,
clinical research has shown that DPP-4i can improve β

cell activity and increase insulin release (118), and that the
long term administration of DPP-4i can improve insulin
sensitivity (119, 120). For example, Smits et al. found that
GLP-1-based therapies, including exenatide or sitagliptin,
could significantly lower BP in the same manner as insulin
therapy (121), thus suggesting that the hypotensive effects
of insulin may be associated with GLP-1 (122). Chen et al.
further suggested that saxagliptin could upregulate nesfatin-
1 secretion and ameliorate insulin resistance (12), while
other research has demonstrated that nesfatin-1 increases the
secretion of GLP-1 (123). Ahren et al. suggested that GLP-1
may increase insulin release via a cAMP-dependent pathway
(83). Other investigators have suggested that a NOS-related
pathway may also contribute to improve insulin release.
NOS inhibitors, for example, NG-monomethyl-L-arginine
(L-NMMA), and asymmetrical dimethylarginine, can both
improve insulin sensitivity (124, 125). With an improvement
of IR, initiated by the stimulatory production of NO from
the endothelium, insulin gradually exhibits its vasodilatory
action (111, 117).

In summary, IR disturbs the function of the vascular
endothelium and weakens the anti-hypertensive effect of insulin.
DPP-4i could reduce BP by improve IR, particularly in
patients with T2DM. And with the improvement of IR, the

vascular inflammation can be improved, thereby reducing the
cardiovascular complications.

CONCLUSIONS

As a differentiation antigen on the surface of T cells, DPP-
4/CD26 plays an important role in regulating the activation
and chemotaxis of mononuclear-macrophages, NK cells, and
T cells. DPP-4 inhibitors can regulate anti-inflammatory and
anti-hypertensive effects by regulating the functions of these
immune cells, especially T cells. We found that DPP-4i exhibits
strong inhibitory effects on inflammation and oxidative stress,
and a few studies provide direct evidence that DPP-4iDPP-
4i reduces BP by regulating immune reactions. Moreover,
the inflammatory factors regulated by DPP-4i are also closely
associated with hypertension. We speculate that DPP-4i could
reduce BP by regulating T cell activation, thus alleviating
vascular inflammation and improving oxidative stress. However,
due to the lack of research data at present, and because the
mechanism underlying the action of DPP-4iDPP-4i upon BP is
complex, further studies are now needed to identify the precise
mechanism involved.

The substrates of DPP-4 plays an important role in regulating
blood pressure. GLP-1, substance P, and BNP, commonly show
a vasodilation effect, while NPY has a significant hypertensive
effect. Our literature review indicated that the effect of
vasoconstriction is closely associated with elevated calcium
concentration. Thus, the combination of calcium antagonists
may be a potent solution to resist the effect of vasoconstriction
in DPP-4i treatment. In addition, the regulation of Na/H2O

FIGURE 1 | The potential mechanisms of DPP-4i in regulating blood pressure. DPP-4i has shown unique advantages in regulating blood pressure in the six

mechanisms, including the aspects of immune systems, blood vessel, nervous system, hormone, kidney, and insulin resistance.
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metabolism, the reduction of circulating AngII levels, and
improvements in insulin resistance, may all contribute to
anti-hypertensive activities. In contrast, in some situations,
particularly when combined with high-dose ACEI, DPP-4i may
exhibit hypertensive effects by stimulating sympathetic activity
and alleviating the degradation of GLP-1 and substance P. The
hypertensive effects of DPP-4i may be diminished by agents that
block the SNS and enhanced by hypotensive agents with no effect
on the SNS (86). Furthermore, antihypertensive drugs that do
not block the SNS may exhibit an increasing BP effect of DPP-4
inhibitors by lowering basal vascular tone (86).

In summary, the effects of DPP-4i on BP occur in a highly
context-dependent manner, and the mechanisms of DPP4-i in
regulating BP are summarized in Figure 1. DPP-4i has shown
good anti-hypertensive potency and combined treatment has
better effect than DPP-4i alone. However, combination with
high-dose ACEI could increase blood pressure. DPP-4i has
shown BP modulating effects in the aspect of five traditional
etiological mechanisms of hypertension, indicating that DPP-4i
has great potential as a combined therapy for the treatment of
hypertension; this exploits the fact that a combination of drugs
causes effects on different targets. For patients with diabetes and
hypertension, the advantage of DPP-4i is that it regulates blood
pressure and improves insulin resistance. In addition, DPP-4i
can alleviate vascular inflammation in hypertension by regulating
inflammatory responses and improving vascular endothelial
function, thereby reducing the incidence of cardiovascular
complications.When combining DPP-4i with ARB and diuretics,
the improvement of cardiac load and ventricular remodeling
can be augmented. Notably, the opposite effects of DPP-4i, that
promote sympathetic activation and vasoconstriction, cannot be
ignored when combinedwith anti-hypertensive drugs. High-dose

ACEI with DPP-4i may diminish the effect of anti-hypertensive
drugs due to increased sympathetic activation, while low-dose
ACEI has no such effect. Anti-sympathetic drugs, such as β-
blockers, may represent suitable candidates in combination with
DPP-4 for the treatment of hypertension with which to prevent
sympathetic activity. Vasoconstriction of NPY induced by DPP-
4i can similarly elevate BP via a Ca2+-dependent vasoconstrictive
effect, thus suggesting that the combination of DPP-4i and Ca2+

antagonists can improve the situation.
Until now the specific etiological mechanism of hypertension

has not yet been fully identified, and choosing the most
appropriate and effective antihypertensive drugs is still a
problem. Because it has multiple targets, DPP-4i would be a good
choice with which to treat hypertension, especially in patients
with chronic inflammatory diseases, such as coronary heart
disease, diabetes mellitus, and hyperlipidemia. Because existing
studies are still deficient, the specific mechanism of DPP-4i in
regulating BP has not yet been completely clarified. Further
investigations are now needed to illustrate the modulatory
mechanisms and effects of DPP-4i on BP.
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miR-146a has been implicated in the regulation of the immune response as well as

in inflammatory process of atherosclerosis. In the present study, we have investigated

the expression of miR-146a and its targets, TLR4 a IRAK1, in aortic valve stenosis.

A total of 58 patients with aortic stenosis (non- and atherosclerotic; tissue obtained

during standard aortic valve replacement) were enrolled. The relative expression of

mir-146a was higher in valvular tissue from patients with atherosclerosis compared to

those without atherosclerosis (p = 0.01). Number of the IRAK1 and TLR4 transcripts

did not differ between the investigated groups. There was a trend toward elevation

of miR-146a expression in context of inflammatory infiltrate observed in the valvular tissue

from patients with atherosclerosis (p= 0.06). In conclusion, in line with the acknowledged

role of miR-146a in atherosclerotic inflammation, our data suggest it may be extended

to the specific location of aortic valves in aortic stenosis.

Keywords: aortic stenosis, microRNA, IRAK1, TLR4, epigenetics

INTRODUCTION

Aortic valve stenosis represents the major cardiac valve disease which is characterized by
inflammation, atherosclerosis, and calcification (1, 2). In addition to proatherogenic risk factors,
mechanical forces, metabolic alteration, and environmental effects [rev. e.g., by Pasipoularides (3)
and Cho et al. (4)], genetic and namely epigenetic mechanism have been recently nominated to
play a role in aortic stenosis pathogenesis (5). In general, as reviewed by Menon and Lincoln (6)
or Kishore and Petrek (7), epigenetic mechanisms exert their regulatory effects via processes of
methylation, histone modification, and also activities of small non-coding RNAs—miRNAs.

Reflecting miRNAs effects as master regulators of gene expression in physiological and
pathophysiological processes encompassing also cardiovascular system [reviewed e.g., by Kishore
et al. (8)], it is relevant to address possible involvement of miRNAs as epigenetic factors involved in
pathogenesis of aortic stenosis, including its atherosclerotic component. In this context, miR-146a
could be a plausible candidate: apart from its proinflammatory/atherogenic properties (9, 10), miR-
146a has been shown to be an important element in controlling signaling pathways including
NF-kB, TRAF6, and IRAK1 (11, 12). These genes encode two key adapter molecules downstream of
cytokine and Toll-like receptors (TLR) that have been involved in development of atherosclerosis
(13), and recently also implicated in pathogenesis of aortic valve disease (14).
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To investigate a plausible role of this candidate miRNA
in aortic valve stenosis, we, therefore, investigated the
expression of miR-146a in valvular tissues obtained from
patients undergoing standard aortic valve replacement.
We also determined the expression of Toll-like receptor
(TLR)-4 and the interleukin-1 receptor associated kinase 1
(IRAK1) mRNA as plausible targets of miR-146a. Analyzing the
obtained data, we wished to reveal if there was any relationship
between miR-146a, their targets and pathological processes in
valvular tissues.

MATERIALS AND METHODS

Patients
Fifty-eight patients (for their characteristics see Table 1) with
aortic valve stenosis have been enrolled, valvular tissue was
obtained during standard aortic valve replacement (AVR);
patients were enrolled on a consecutive basis, in time order
of their AVR procedure. Presence of atherosclerosis was
detected by angiography of coronary arteries prior the surgery;
atherosclerosis was defined as more than 30% limitation
of perfusion; 26 patients belonged to this category and 32
patients had non-altered perfusion. The patients who showed
presence of inflammation, patients with systemic diseases and/or
malignancies were excluded from the study. All patients have
consented in writing to the participation in this study according
to the Declaration of Helsinki and the Ethics committee of
University Hospital and Faculty of Medicine, Palacky University
Olomouc approved the study protocol.

TABLE 1 | Characteristics of study groups.

Parameter Non-

atherosclerotic

Atherosclerotic

Number (no.) of patients 32 26

Age (years) 68.6 (7.6) 71.0 (8.1)

Sex (Males/Females) 18/14 20/6

Cholesterol (mmol/L) 4.78 (1.20) 4.51 (1.03)

Triglycerides (mmol/L) 1.56 (1.15) 1.46 (0.71)

HDL (mmol/L) 1.33 (0.42) 1.33 (0.29)

LDL (mmol/L) 2.74 (1.15) 2.53 (0.88)

Height (cm) 168 (9.5) 166.7 (10.4)

Weight (kg) 83.1 (12.8) 84.7 (15.6)

BMI 29.4 (5.0) 30.5 (5.8)

Smoking (absolute no./from

all patients) (%)

5/32 (15.6) 5/26 (19.2)

Inflammation, absolute

no./from all assessed

specimen (%)

19/29 (65.5) 13/23 (56.5)

Fibrosis, absolute no./from

all assessed specimen (%)

16/31 (51.6) 11/26 (42.3)

Patients with aortic stenosis were divided based on assessment of coronary perfusion into

two groups: those with non-altered perfusion (non-atherosclerotic) and with decreased

perfusion (atherosclerotic), for details see section materials and methods.

If not specified otherwise, the values represent the mean and standard deviation

(in brackets).

Terms “Inflammation” and “Fibrosis” refers to valvular tissue.

miRNA/mRNA Determination
The valvular tissue obtained during surgery was placed into RNA
later solution to prevent RNA degradation. Subsequently, total
RNA was extracted from aortic valvular tissues by mirVanaTM

miRNA Isolation Kit; whole (complete, homogenized) tissue
specimen were used for the extraction procedure For the
miRNA detection, RNA was reverse transcribed using TaqMan
MicroRNA Reverse Transcription kit and TaqMan MicroRNA
Assays using a specific reverse primer and real time PCR
was performed with primer-probe with specific primers
for miR-146a (all so far mentioned reagents/kits/primers
were from Life Technologies, Thermo Fisher Scientific,
Waltham, MA, USA) and LightCycler 480 Probes Master
(Roche Life Sciences, Indianapolis, IN, USA). Expression levels
of miR-146a were normalized to RNU6B (Life Technologies,
as above). Real time PCR was performed in Rotor Gene
detection system (Corbett Research, Mortlake, NSW, Australia).
Program was set up for holding at for 10min, followed
by 40 cycles consisting of for 15 s and for 60 s. TLR-4 and
IRAK1 mRNA expression was determined by the same
methodology, the probes used for the assessment of this
gene were (TLR4 left primer: CTCTCCTGCGTGAGACCAG,
TLR4 right primer: CAGCTCCATGCATTGATAAGTAA;
IRAK1 left primer: tgcctggtgtacggcttc, IRAK1 right primer:
ctgaggccaggagagaggt) obtained from Roche Applied Science
(Penzberg, Germany). Expression levels of TLR4 and IRAK1
were normalized to GAPDH (left primer: agccacatcgctcagacac,
right primer: gcccaatacgaccaaatcc).

Histopathological Examination
Tissue sections were evaluated by a histopathologist to assess
presence of inflammatory infiltrate and fibrosis (absolute and
relative values are shown in Table 1, bottom lines); the extent
of infiltrate, if present, was semi-quantitated (grading + to + +

++). Standard procedure utilizing hematoxylin-eosin staining in
formalin-fixed paraffin-embedded (FFPE) samples was utilized.

Statistical Analysis
The non-parametric Mann–Whitney U-test was performed to
assess the relative expression of miR-146a, TLR4, and IRAK-
1 transcripts and to test for differences between patient
subgroups. Pearson’s correlation coefficient was used to examine
the relationship between miR-146a and TLR4 and miR-
146a and IRAK1 expressions. P < 0.05 was considered
statistically significant.

RESULTS

miR-146a was detected in 58 of 58 samples (100%). When the
study subjects were separated based on angiography perfusion
data into two subgroups, miR-146a was elevated in the aortic
valve tissues from 26 patients with decreased coronary perfusion
as a marker of atherosclerosis compared to 32 patients with
non-altered perfusion, p= 0.01 (Figure 1A).

TLR-4 transcripts were detected in 47 of 58 samples
(81%). TLR-4 mRNA expression did not differ between the
atherosclerotic and non-atherosclerotic subjects (p > 0.05),
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FIGURE 1 | The relative expression of miR-146a (A), TLR4 m-RNA (B),

and IRAK1 m-RNA (C) in the valvular tissue obtained from patients with aortic

stenosis with signs of atherosclerosis (A; n = 26 6=) and without atherosclerosis

(N; n = 32 6=). The miR-146a expression was normalized to the RNU6B

expression, expression of TLR-4 and IRAK1 was normalized to GADPH. The

lines represent median values and the following symbols denote

P-values: * = 0.01; 1 = 0.64; x = 0.57. 6=Note: for TLR4 (B) N = 26 and

A = 21 patients.

Figure 1B. There was a trend to negative correlation (r = −0.2)
between the miR-146a and TLR-4 mRNA expression (p= 0.1).

IRAK1 mRNA was detected in all 58 investigated samples
(100%). There was no difference between IRAK1 mRNA relative

FIGURE 2 | The relative expression of miR-146a in the valvular tissue obtained

from patients with aortic stenosis. Description of abbreviations designating

patient subgroups: non-atherosclerotic patients with (NI+, n = 19) or without

inflammatory cell infiltrate (NI-, n = 10); atherosclerotic patients with (AI+, n =

13) or without inflammatory cell infiltrate (AI-, n = 10). The lines represent

median values and the symbols denote P-values: * = 0.10, # = 0.06.

expression in atherosclerotic and non-atherosclerotic subjects
(p > 0.05), Figure 1C. There was no relationship between the
miR-146a and IRAK1 mRNA expressions.

When study subjects were further sub-grouped according
to absence/presence of inflammatory cellular infiltrate, a trend
toward miR-146a elevation was observed in patients with
infiltrated valvular tissue (Figure 2), this observation was more
pronounced in atherosclerotic patients (p= 0.06) than in patients
without atherosclerosis (p = 0.1). Figure 3 shows representative
examples of valvular histopathology.

DISCUSSION

This study investigated the expression of miR-146a and of its
targets, TLR4 and IRAK1, in valvular tissue obtained from the
patients with aortic valve stenosis. Upregulation of miR-146a
expression in valvular tissue was observed in the subgroup
of patients with decreased coronary perfusion as a marker of
atherosclerosis. miR-146a expression tended to be elevated in
those atherosclerotic patients whose valvular tissue contained
inflammatory cell infiltrate. These findings extend the previous
and recent reports (9, 10, 15, 16) about the role of miR-146a in
atherosclerosis in general to the specific location in aortic valve
stenosis. Overall, though obtained in a smaller scale study limited
to patients, our data may implicate this non-coding miRNA, and
in wider sense epigenetic factors, as eligible research targets in
further investigations of pathogenesis of aortic valve disease.

miR-146a has been implicated in several key physiological
processes including innate immune and inflammatory responses.
It has been previously shown that upregulation of miR-146
family (miR-146a/b) regulated downstream toll-like receptor 4
(TLR4) signaling, IL-1 receptor associated kinase 1 (IRAK1), and
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FIGURE 3 | (A, B) Aortic valve tissue histopathology HE, 40x (A), 100x (B); A:

dystrophic calcification of valve, absence of inflammatory infiltration, B:

presence of mononuclear (lymphoplasmacytic) inflammatory infiltration in

connective tissue of aortic valve.

TNF-receptor associated factor-6 (TRAF6) through a negative-
feedback regulation loop (11, 17). In this context, we analyzed
expression of target genes miR-146a, specifically of the TLR4
and IRAK1 genes. There was, however, no difference between
expression of the TLR4 and also of the IRAK transcripts between
the groups of atherosclerotic and non-atherosclerotic patients,
only an insignificant inverse relationship between miR-146a
and TLR4 miRNA expression could be described. While this
observation is in contrast with some reports, e.g., of a correlation
between miR-146a and TLR4, IRAK1 in patients with coronary
artery disease (18), others have observed reduced expression of
IRAK1 by upregulation of miR-146a, e.g., in psoriasis (19) and in
senescent cells (20). It is, therefore, conceivable that expression
and mutual relationship of miR-146a and its targets may reflect a
specific localization of inflammatory processes. This suggestion
implied from our primary analyses of miR-146a expression
and TLR4 and IRAK transcripts should be, therefore, verified
by further experiments, preferably with expanded collection of
aortic valve samples, eventually of different stages, and also on
protein level.

It should be also mentioned that the expression of both
miR-146a and its targets is, on an individual basis, affected by
variations in their gene sequences. Functional single nucleotide
polymorphisms (SNPs) have been reported in TLR4, IRAK1
genes (21, 22) and importantly they are also located in pre-
miR146a—those were responsible not only for the establishment
of diversity among individuals but also for changes in their
expression and/or development of different disease phenotypes,
including coronary heart disease (23–25).

Despite limitations of the present study (analysis of a single
miRNA in a cohort comprising only patients with aortic
valve stenosis, not subjects without this pathology), to our
knowledge we present the first report plausibly implicating
miR-146a in aortic valve stenosis. A spectrum of miRNAs,
but not including miR-146a, has been recently found to
be deregulated in patients with aortic stenosis [reviewed by
Menon and Lincoln (6)]; miR-146a has also not been noted
in microarray expression study combined with bioinformatics
analyses (26), nor in a recent report by Duan et al. (27).
In this context, it is desirable to conduct studies of miRNA-
146a expression in extended cohorts including specimen from
patients without valvular disease. These studies should address
in greater detail presence and plausible role of miRNA-
146a targets, preferably including in situ hybridization and/or
immunohistochemistry experiments, also for characterizing the
cellular infiltrate. If our data are validated and extended,
there may be yet another plausible candidate for further
studies of miRNAs involvement in aortal valve stenosis,
which could also be explored on the level of exosomes
and extracellular vesicles as recently proposed by Blaser and
Aikawa (28).
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Background: Obesity is an increasingly prevalent metabolic disorder in the modern

world and is associated with structural and functional changes in the heart. The

NLRP3 inflammasome is an innate immune sensor that can be activated in response

to endogenous danger signals and triggers activation of interleukin (IL)-1β and

IL-18. Increasing evidence points to the involvement of the NLRP3 inflammasome in

obesity-induced inflammation and insulin resistance, and we hypothesized that it also

could play a role in the development of obesity induced cardiac alterations.

Methods and Results: WT, Nlrp3−/−, and ASC−/− (Pycard−/−) male mice were

exposed to high fat diet (HFD; 60 cal% fat) or control diet for 52 weeks. Cardiac

structure and function were evaluated by echocardiography and magnetic resonance

imaging, respectively. Whereas, NLRP3 and ASC deficiency did not affect the cardiac

hypertrophic response to obesity, it was preventive against left ventricle concentric

remodeling and impairment of diastolic function. Furthermore, whereas NLRP3 and

ASC deficiency attenuated systemic inflammation in HFD fed mice; long-term HFD did

not induce significant cardiac fibrosis or inflammation, suggesting that the beneficial

effects of NLRP3 inflammasome deficiency on myocardial remodeling at least partly

reflect systemic mechanisms.Nlrp3 and ASC (Pycard) deficient mice were also protected

against obesity-induced systemic metabolic dysregulation, as well as lipid accumulation

and impaired insulin signaling in hepatic and cardiac tissues.

Conclusions: Our data indicate that the NLRP3 inflammasome modulates cardiac

concentric remodeling in obesity through effects on systemic inflammation and

metabolic disturbances, with effect on insulin signaling as a potential mediator within

the myocardium.

Keywords: inflammasome, NLRP3, heart, cardiac remodeling, obesity, high-fat diet
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INTRODUCTION

Obesity is an emerging health problem in the modern world,
leading to a reduced life expectancy, and is defined as
increased adipose mass resulting from a chronic imbalance
between energy intake and expenditure (1). Obesity-related
conditions, such as insulin resistance, type 2 diabetes
mellitus (T2DM), cardiovascular disorders (CVD), non-
alcoholic fatty liver disease (NAFLD) are a great concern,
in particular in developing countries, but the mechanisms
by which obesity promotes these disorders still remains
unclear (2, 3).

Abundant evidence suggests that obesity is accompanied
by structural and functional alterations in the heart (4–6).
According to a recently established paradigm regarding the
impact of obesity on the cardiac geometry, obesity is associated
with left ventricle (LV) hypertrophy with predominance of
concentric remodeling (4–6). The majority of published studies
have concluded that obesity results in subclinical impairment
of LV systolic and diastolic functions, which are believed to
be precursors to more overt forms of cardiac dysfunction and
heart failure (HF). Several theories have been postulated to
explain these obesity-associated cardiac abnormalities, such as
alterations in myocardial substrate utilization, mitochondrial
dysfunction, neurohormonal dysfunction, leptin resistance, and
impaired insulin signaling (4, 7–10). However, the multifaceted
interplay between direct cardiac effects of obesity and its
associated comorbidities (i.e., T2DM and atherosclerosis)
that also impact the myocardium makes it challenging to
understand the relation between obesity and different aspects of
cardiac remodeling.

The cytosolic pattern recognition receptor NLRP3 is an
important part of the innate immune system that can sense
danger signals from various microbes, as well as non-microbial
endogenous signals, such as extracellular ATP, crystals, saturated
fatty acids (FA) and certain other metabolic stress-related
molecules (11–14). Upon activation, that occurs in a two-
step manner, NLRP3 forms a multiprotein complex called
NLRP3 inflammasome with the adaptor protein ASC, also
referred to as Pycard, resulting in caspase-1 activation. Active
caspase-1 cleaves the pro-forms of the cytokines interleukin
(IL)-1β and IL-18 to their active and secreted forms of
which IL-1β is of particular importance as an upstream
mediator in the inflammatory cytokine cascade (15). Compelling
evidence suggests a significant role of NLRP3 inflammasome
in the initiation and progression of metaflammation (i.e.,
metabolically-induced inflammation) and related diseases, such
as obesity, T2DM, NAFLD, and atherosclerosis (16–18). In
addition, we and others have recently demonstrated that NLRP3
inflammasome is functional in the heart with the potential to
regulate cardiac function and cell death (19). Based on these
previous studies, we hypothesized that the NLRP3 inflammasome
plays a role in the development of cardiac dysfunction and
remodeling during diet-induced obesity. The present study was
designed to explore this hypothesis by examining Nlrp3 and
ASC (Pycard) deficient mice in a model of obesity induced
cardiac remodeling.

METHODS

Mice
C57BL/6J mice were purchased from The Jackson Laboratory
(Bar Harbor, ME, USA). All knockout mice were back-bred onto
the C57BL/6 strain. Nlrp3−/− and Asc−/− (Pycard−/−) mice
were generated by Millenium Pharmaceuticals (Cambridge, MA,
USA), back-bred at least seven (Nlrp3−/−) or nine (Asc−/−/
Pycard−/−) generations before being used (20, 21). Mice were
housed in an air-conditioned, temperature-regulated room with
a 12/12 h daylight/night cycle with free access to water and food.
The diet and genetic background are major determinants of gut
microbial composition which again could influence metabolic
and inflammatory diseases. To minimize the effects of other
factors than genetics in our study, including effects on gut
microbiota, the mice were co-housed throughout the study. The
separate mouse strains were littermates, bred from the same
parents, raised in the same cage until weaning where 4–6 mice
of the same strain where co-housed in the same open cages
(Eurostandard type III), and all cages were placed in the same
room in a randomized manner. Obesity was induced by feeding
mice a HFD (D12492), composed of 60% fat, 20% protein, and
20% carbohydrate (Research Diets, New Brunswick, NJ, USA) for
52 weeks. Control mice were fed a low fat standardized control
diet, containing 10% fat, 20% protein and 70% carbohydrate
(D12450B, ResearchDiets). Body weight was regularlymonitored
weekly. Food intake was determined at 21 weeks by weighing the
food and correcting for the amount not eaten, including spillage.
The experimental animal protocol (FOTS id 4641) was approved
by the Norwegian Animal Research Committee and conforms to
the Guide for the Care and Use of Laboratory Animals published
by the US National Institutes of Health (NIH Publication, 8th
Edition, 2011).

Echocardiography
Echocardiographic examination was performed with the VEVO
2100 system (VisualSonics, Toronto, Canada). Mice were
lightly anesthetized with a mixture of 98.25% O2 and 1.75%
isoflurane maintained by mask ventilation, and were placed
on a heated examination table to maintain body temperature.
Standard echocardiography examination, including long and
short axis images of the LV and atrium, and doppler recordings,
were performed (22). Recorded data were analyzed offline
using the Vevo 2100 1.1.0 software (VisualSonics). Relative
LV wall thickness was calculated with the formula: (IVSd
+ LVPWd)/LVIDd.

Magnetic Resonance Imaging
Magnetic Resonance Imaging (MRI) experiments were
performed by using a 9.4T preclinical MR system (Agilent
Technologies, Inc., CA, USA). Two different gradients and RF
coil set-ups have been employed because of the mice changing
size during the study period. The images were acquired with
either a 100 gauss/cm, 60mm ID gradient and a quadrature
volume RF coils (35mm ID, Rapid Biomedical, DE) or a 60
gauss/cm, 72mm ID gradient and an active-decoupled phase
array surface coil (Neos Biotec, Spain) plus quadrature volume
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RF coils (72mm ID, Rapid Biomedical) combination. Anesthesia
was induced with a mixture of O2 and 4% isoflurane, and
maintained with 1.5–2.0% isoflurane in freely breathing animals.
Animal temperature was maintained around 37◦C by heated
air. Cardiac and respiratory gated cine-MRI was acquired in
the true short-axis orientation. The key parameters were 1mm
slice thickness; TE/TR 2.2/4.6ms; 2 averages; field of view 25.6
× 25.6mm; matrix size 128 × 128. One mid-ventricular slice
and one four chamber long axis slice were acquired using a
nine-point velocity-encoded black-blood gradient echo cine
sequence as previously described (23). Imaging parameters
were: TE = 2.4ms; TR = 3.2ms; field-of-view = 30 × 30mm
or 40 × 40mm; acquisition matrix 96 × 96 and zero filled to
128 × 128; slice thickness 1mm; venc = 10 cm/s, averages = 2
(using rotating field-of-view). Data were analyzed as previously
described (24).

Blood and Tissue Sampling
Mice were fasted for 4 h and put in deep anesthesia with amixture
of 4–5% isoflurane and O2. Arterial blood was collected (by a
small incision of the carotid artery) into tubes containing 50 µl
of 0.5M EDTA. Plasma was prepared by centrifugation at 500
× g for 20min and 4◦C, snap-frozen in liquid N2 and stored at
−80◦C. The heart was extirpated and separated into LV and RV,
together with lungs and liver, rinsed in saline solution, blotted dry
and weighed. A standardized 2mm slice was taken from the LV
using a mouse heart slicer matrix (Zivic instruments, Pittsburgh,
PA, USA). The heart slice and the left lateral lobe of the liver were
fixated in 4% formalin and embedded in paraffin. Remaining
tissue was snap-frozen in liquid N2 and stored at−80◦C.

Analysis of Glucose, Lipids, and

Inflammatory Cytokines
Plasma insulin was determined by Mouse Ultrasensitive Insulin
ELISA (ALPCO, Salem, NH, USA), plasma leptin by Mouse
Leptin ELISA (ALPCO), plasma glucose by Mouse Glucose
Colorimetric Assay kit (Cayman, Ann Arbor, MI, USA),
triglycerides by LabAssay Triglyceride (WakoPure Chemical
Industries, Richmond, VA, USA), and cholesterol by Cholesterol
E (Wako Diagnostics, Richmond, VA, USA). Homeostasis model
assessment—insulin resistance (HOMA-IR) was calculated
using the following formula: HOMA-IR = [I0(mU/L) ×

G0(mg/dl)]/405 (25). Plasma levels of interleukin IL-18 and TNF
were measured by using multiplex magnetic bead assay (Bio-Rad
Laboratories, Berkeley, CA, USA) following the manufacturer’s
instructions. LV triglyceride levels were measured using
LabAssay Triglyceride kit (WakoPure Chemical Industries).

Liver Histology and Lipids
To examine liver histology, livers were fixed in formalin
and embedded in paraffin and then cut into 5µm sections.
Sections were deparaffinized and stained with hematoxylin
(Vector Laboratories, Burlingame, CA, USA) and eosin (Histolab
Products AB, Gothenburg, Sweden). Images were captured by
use of a Nikon DS Fi1 camera and a Nikon Eclipse E400
microscope (Nikon Instruments, Melville, NY, USA). Liver lipids
were extracted from frozen samples according to Bligh and Dyer

(26), evaporated under nitrogen, and re-dissolved in isopropanol
before analysis. Lipids from liver were measured enzymatically
on a Hitachi 917 system (Roche Diagnostics GmbH, Mannheim,
Germany) using the TAG kit (Triglycerides GPO-PAP) and
cholesterol kit (CHOD-PAP) from Roche Diagnostics.

Cardiac Histology and

Immunohistochemistry
Four micron transverse sections of formalin-fixed, paraffin-
embedded mouse hearts were deparaffinized in xylene,
rehydrated in alcohol series and immersed in distilled water,
followed by high-temperature antigen retrieval in citrate
buffer (pH 6) and blocked with 0.5% bovine serum albumin
(Sigma-Aldrich, St. Louis, MO, USA). Slides were stained
with primary antibody against Mac-2 (1:750, Cedarlane,
Burlington, Canada) for 1 h at room temperature. After washing,
slides were incubated for 30min with peroxidase-conjugated
secondary antibody (Impress-Vector, Vector Laboratories),
rinsed and developed with chromogen for immunoperoxidase
staining (DAB Plus, Vector Laboratories). The sections were
counterstained with hematoxylin. Omission of the primary
antibody was used as negative control. The stained sections were
scanned (AxioScan Z1, Carl Zeiss, Oberkochen, Germany), and
the amount of positive DAB-staining was quantitatively assessed
using z9.uio.no, an in-house analysis application devised for
whole slide images, by estimating cross sectional coverage of
antibody expression within the tissue relative to the total area of
the cross section of the tissue.

To measure cardiomyocyte (CM) cross-sectional area, LV
sections were deparaffinized and rehydrated as described above
and boiled at 98◦C in citrate buffer pH 6, followed by 20min
cooling at room temperature (RT) before overnight incubation at
(4◦C) with Alexa-488 conjugated wheat germ agglutinin (WGA;
Thermo Fisher Scientific, Waltham, MA, USA). Sections were
rinsed in PBS and coverslipped with a water-soluble antifading
mounting medium (Thermo Fisher Scientific). Areas showing
CM cross sections were photographed with Nikon Eclipse E400
fluorescence microscope and CM area was quantified by an in
house made macro for ImageJ (27). All histological analyses were
performed blinded of genotype and treatment.

Collagen Staining
For collagen staining, sections were deparaffinized and
rehydrated as described above. Sections were thereafter
incubated for 60min in Sirius Red Solution (Histolab Products)
followed by 2 × rinsing in acidified water containing 5%
acetic acid. After two quick dips in 100% EtOH, the sections
were incubated in xylene and mounted with Eukitt R© (Sigma-
Aldrich). The stained sections were scanned and analyzed as
described for Mac-2, but detecting red chromogen instead of
DAB-positive staining.

Quantification of Gene Expression
Total RNA from mouse LV was extracted using TRIzol
(Invitrogen, San Diego, CA, USA), DNase treated, cleaned
up using RNeasy Mini Columns (Qiagen, Hilden, Germany),
and stored at −80◦C. cDNA was synthesized using High
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Capacity cDNA Reverse Transcription Kit (Thermo Fisher
Scientific). Quantification of gene expression was performed
in duplicate by quantitative real-time PCR, using Power
Sybr Green Master Mix (Applied Biosystems, Foster By, CA,
USA). Target gene expression was quantified using the relative
standard curve method, using a standard curve generated
with serial dilution of a pool of aliquots of sample cDNA,
and subsequently normalized to glyceraldehyde 3-phosphate
dehydrogenase (GAPDH) gene expression. Primers, designed to
span exon-exon boundaries to avoid amplification of genomic
DNA, were used. The sequences of the specific PCR-primers are
listed in Supplementary Table S1.

Assessment of Peripheral Insulin

Sensitivity
WTandNlrp3−/− mice onHFD or control diet for 52 weeks were
fasted for 4 h and received an i.p. injection of insulin (2 IU/kg
of Novolin GE, Novo Nordisk, Bagsværd, Denmark). The mice
were sacrificed 10min after insulin administration, LV and liver
samples were isolated and snap-frozen in liquid N2, and protein
homogenates were prepared in T-PER Tissue Protein Extraction
Reagent (Thermo Fisher Scientific) supplemented with protease
and phosphate inhibitors (Complete Protease Inhibitor
Cocktail, Roche Diagnostics), cleared by centrifugation, and
concentrations were measured using a Pierce BCA Protein Assay
(Thermo Fisher Scientific). Protein homogenates were separated
under denaturing conditions on 10% SDS-polyacrylamide gels
(Mini-PROTEAN TGX Precast gels, Bio-Rad, Hercules, CA,
USA) and electro-blotted on to PVDF membranes (Thermo
Fisher Scientific). The membranes were blocked in Superblock
T20 (Thermo Fisher Scientific), and incubated with antibodies
against phospho-Akt Ser473 (1:1,000 dilution; Cat# 9271, Cell
Signaling Technology, Danvers, HA, USA), Akt (1:1,000; Cat#
9272, Cell Signaling Technology), and GAPDH (0.05µg/ml;
Cat# G8795, Sigma-Aldrich) which was used as a normalization
control for the proteins of interest. Thereafter, the blots were
incubated with a horseradish peroxidase-conjugated anti-rabbit
or anti-mouse antibody (Cell Signaling Technology). Protein
expression was detected by chemiluminescence (SuperSignal
Dura; Thermo Fisher Scientific) and the Fujifilm LAS-3000
Imaging system. Densitometric quantification was performed
using ImageJ.

Statistical Analysis
GraphPad Prism 7.0 software was used for data analysis
(GraphPad Software, CA, USA). Statistical analyses were
performed using two-way ANOVA. Student t-tests were
performed where two-way ANOVA was significant. p-value
below 0.05 was considered as statistical significance. Data are
shown as mean± standard error of the mean (SEM).

RESULTS

NLRP3 Inflammasome Does Not Affect

Obesity-Induced LV Hypertrophy
Exposure to a HFD for 52 weeks induced profound obesity as
compared to mice fed a control diet in all three genotypes (i.e.,

WT, Nlrp3−/−, and Asc−/− [Pycard−/−] mice) (Figure 1A).
A significant separation of body weight between mice on
HFD and control diet was observed from week 9, determining
the initial moment of obesity. Notably, although all mouse
genotypes showed increased weight during HFD, WT mice
gained significantly more weight than the inflammasome
deficient mice (Figure 1A). In contrast, no differences
in weight gain were seen between the three genotypes
during control diet (Figure 1A). Importantly, there were
no significant differences in food intake comparing the
different mouse genotypes (Supplementary Figure S1).
As expected, HFD-induced obesity was associated with
significant cardiac hypertrophy in WT mice, as indicated by an
increased LV mass normalized to tibia length (Figure 1B) and
increased CM cross-sectional area (Figures 1C,D). However,
whereas NLRP3 and ASC deficiency affected body weight
during HFD, it did not affect obesity-induced hypertrophic
response (Figures 1B–D).

NLRP3 and ASC Deficiency Have a

Beneficial Effect on Obesity-Induced LV

Remodeling and Dysfunction
Cardiac structure was monitored by echocardiography. As
displayed in Figure 2A, HFD induced a significant increase in
LV end-diastolic internal diameter (LVIDd) inWT andNlrp3−/−

mice, with a non-significant trend in Asc−/− (Pycard−/−) mice
(p = 0.22). WT mice on HFD also had markedly increased
LV end-diastolic posterior wall (LVPWd) thicknesses and end-
diastolic intraventricular septum (IVSd) (Figures 2B,C), but,
notably, this was not observed in Nlrp3−/− and Asc−/−

(Pycard−/−) mice. To further assess geometrical changes in
the LV, we calculated relative wall thickness (RWT). This
revealed a clear pattern of concentric remodeling in obese
WT mice (RWT > 0.48), but not in Nlrp3−/− and Asc−/−

(Pycard−/−) mice, which were protected against these obesity-
induced alterations (Figure 2D).

Cardiac MRI analysis allowed us to more accurately assess
cardiac mechanics and function and showed that obesity
induced a significant reduction in LV systolic function in
WT mice, but not in Nlrp3−/− and Asc−/− (Pycard−/−),
as determined by longitudinal strain (Figure 2E). Moreover,
whereas obeseWTmice displayed impaired LV diastolic function
as evident by a markedly reduced mitral annulus velocity
during early diastole (e′), this was not seen in NLRP3 and
ASC (Pycard) deficient mice (Figure 2F). Notably, on control
diet both Nlrp3−/− and Asc−/−(Pycard−/−) mice had reduced
e′ compared to WT, but obesity did not affect e′ in these
mice. There were no statistical differences in gene expression of
atrial natriuretic peptide (ANP) between the different groups,
indicating that the fetal gene programme was not activated by
HFD (Supplementary Figure S2).

Taken together, our results so far show that NLRP3
and ASC deficiency during obesity does not affect the
hypertrophic response but prevents obesity-induced LV
concentric remodeling and early signs of systolic and
diastolic dysfunction.
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FIGURE 1 | NLRP3 inflammasome does not affect obesity-induced LV hypertrophy. WT, Nlrp3−/−, and Asc−/− (Pycard−/−) male mice were exposed to high fat diet

(HFD; 60 cal% fat) or control diet for 52 weeks. (A) Comparison of bodyweight gain in mice on control or HFD during the 52 weeks [WT: Control, n = 12; HFD, n = 12,

Nlrp3−/−: Control, n = 11; HFD, n = 12, and Asc−/− (Pycard−/−): Control, n = 10; HFD, n = 12]. (B) Left ventricle (LV) weight normalized to tibia length weeks [WT:

Control, n = 11; HFD, n = 11, Nlrp3−/−: Control, n = 8; HFD, n = 8, and Asc−/− (Pycard−/−): Control, n = 10; HFD, n = 6]. (C) Representative images of wheat

germ agglutinin (WGA) stained LV sections [WT: Control, n = 8; HFD, n = 9, Nlrp3−/−: Control, n = 7; HFD, n = 7, and Asc−/− (Pycard−/−): Control, n = 8; HFD,

n = 5). Scale bar: 100µm. (D) Quantification of cardiomyocyte cross-sectional surface area. Data are means ± SEM. *P < 0.05, **P < 0.01 vs. control diet as

determined by two-way ANOVA and Tukey’s multiple comparisons test. #P < 0.05 vs. NLRP3-HFD and ASC-HFD as determined by repeated measures two-way

ANOVA and Tukey’s multiple comparisons test.

NLRP3 and ASC Deficiency Protects

Against Obesity-Induced Metabolic

Dysfunction and Inflammation
Obesity-induced changes in the myocardium could be secondary
to systemic changes. We, therefore, next examined the
influence of NLRP3 inflammasome on systemic, metabolic
and inflammatory changes following 52 weeks on HFD. Plasma
glucose and in particular insulin levels and insulin resistance,
as assessed by HOMA-IR, were all elevated in obese WT mice
(Figures 3A–C), with no significant changes in Nlrp3−/− and
Asc−/− (Pycard−/−) mice. This suggests that the absence of
inflammasome components led to improved maintenance of
glucose homeostasis and increased insulin sensitivity during
HFD. Similarly, Nlrp3−/− and Asc−/− (Pycard−/−) mice were
protected against HFD-induced dyslipidaemia, while WT mice
demonstrated significantly elevated triglycerides (TG) and
cholesterol plasma levels in response to HFD (Figures 3D,E).
Excessive leptin production is associated with high BMI and
insulin resistance in T2DM (28), and as expected, HFD-
fed WT mice exhibited a marked increase in plasma leptin
compared with mice on control diet (Figure 3F). This increase
in leptin levels during HFD was significantly attenuated in
NLRP3 and ASC (Pycard) deficient mice (Figure 3F). Finally,

metabolic disturbances during obesity seems to interact with
low-grade inflammation, and as shown in Figure 3G, IL-18 levels
were significantly elevated in obese WT mice, but remained
unchanged in HFD fed Nlrp3−/− and Asc−/− (Pycard−/−) mice
(Figure 3G), using an assay which detects only the mature form
of IL-18. Furthermore, HFD increased plasma levels of TNF,
which was alleviated by NLRP3 and ASC deficiency (Figure 3H).
Thus, it seems that NLRP3 and ASC deficiency protects mice
against HFD-induced metabolic dysregulation, increased leptin
levels and systemic inflammation. Plasma levels of IL-1β were
under the detection limit in all mice (data not shown), using a
highly sensitive method (Bio-Plex Pro, Bio-Rad).

Absence of NLRP3 Inflammasome

Components Suppresses Obesity-Induced

Hepatic Steatosis
Liver is a target organ for metabolic changes during obesity.
We, therefore, performed a thorough pathological examination
of the liver with respect to mouse genotypes and the diets.
As illustrated in Figure 4A, consumption of a HFD resulted
in an abnormal appearance with atypical yellowish coloration
of the livers from WT mice with severe steatosis and lipid
droplet accumulation, while livers from Nlrp3−/− and Asc−/−

Frontiers in Immunology | www.frontiersin.org 5 July 2019 | Volume 10 | Article 1621253

https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles


Sokolova et al. NLRP3 in Obesity-Induced Cardiac Remodeling

FIGURE 2 | Beneficial effect of NLRP3 and ASC deficiency on obesity-induced LV concentric remodeling and dysfunction. WT, Nlrp3−/−, and Asc−/− (Pycard−/−)

male mice were exposed to a high fat diet (HFD; 60 cal% fat) or a control diet for 52 weeks. Cardiac structure and function was assessed by echocardiography. WT:

Control, n = 6; HFD, n = 10, Nlrp3−/−: Control, n = 6; HFD, n = 7, and Asc−/− (Pycard−/−): Control, n = 6; HFD, n = 7, and cardiac magnetic resonance imaging

[MRI; WT: Control, n = 6; HFD, n = 6, Nlrp3−/−: Control, n = 6; HFD, n = 6, and Asc−/− (Pycard−/−): Control, n = 6; HFD, n = 6]. (A) Left ventricular internal

diameter at end diastole (LVIDd), (B) LV posterior wall thickness at end diastole (LVPWd), (C) interventricular septum thickness at end diastole (IVSd), (D) LV relative

wall thickness (RWT), (E) longitudinal strain (MRI), and (F) early diastolic mitral annular velocity (e′ peak; MRI). Data are means ± SEM. *P < 0.05, **P < 0.01,

***P < 0.001 vs. control diet. #P < 0.05 vs. WT HFD.

(Pycard−/−) mice retained dark red coloration without steatosis.
There was no accumulation of lipid droplets in livers from the
mice on a control diet in either of the genotypes as evaluated by
hematoxylin and eosin staining (Figure 4A). Liver weights were
markedly elevated in WT mice compared with Nlrp3−/− and
Asc−/− (Pycard−/−) mice during HFD, but not during control
diet (Figure 4B). HFD-induced liver steatosis in WT mice
was also verified biochemically with markedly elevated hepatic
levels of cholesterol and TG (Figures 4C,D), and importantly,
Nlrp3−/− and Asc−/− (Pycard−/−) livers showed significantly
reduced levels of these lipid components in response to HFD
feeding compared with WT mice (Figures 4A–D). Thus, in line
with our findings that NLRP3 and ASC (Pycard) deficient mice
were protected against obesity-induced metabolic dysfunction
(Figure 3), these mice were also able to suppress development of
hepatic steatosis during HFD.

Obesity-Induced LV Remodeling Is Not

Associated With Cardiac Fibrosis and

Inflammation
Previous studies have suggested that cardiac fibrosis and
inflammation are potential contributors to obesity-induced
changes in cardiac structure and function (29). However, as
indicated in Figure 5A and quantified in Figure 5B, there

was no cardiac fibrosis development in none of the obese
mouse genotypes. Moreover, although we found increased
gene expression of collagen I mRNA in obese WT mice,
in general the differences were modest across the different
genotypes and without any differences in collagen III mRNA
levels (Figures 5C,D). Cardiac inflammation was evaluated
by staining for Mac-2 positive macrophages (Figure 6A). We
did observe a significant increase in Mac-2 positive staining
in WT mice on HFD compared to WT mice on control
diet (Figure 6B), with the same tendency in Nlrp3−/− and
Asc−/− (Pycard−/−) mice. The absolute number of Mac-2
macrophages was however low in all genotypes. Moreover,
cardiac gene expression of IL-1β, IL-18, and TNF was not
statistically different between mice on control diet and HFD
and between the different genotypes (Figures 6C–E). We also
evaluated cardiac NLRP3 gene expression, and in line with
expression of inflammatory cytokines, there was no increase
in NLRP3 mRNA in WT and Asc−/− (Pycard−/−) mice on
HFD (Figure 6F). Finally, we were not able to detect the
mature IL-1β protein by western blot technique within the
myocardium in either of the genotypes (data not shown).
These results may suggest that HFD-induced myocardial
remodeling was not related to local cardiac inflammation or
fibrosis, but rather systemic effects, i.e., inflammation and
metabolic changes.
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FIGURE 3 | NLRP3 and ASC deficiency protects mice against obesity-induced metabolic dysregulation and inflammation. WT, Nlrp3−/−, and Asc−/− (Pycard−/−)

male mice were exposed to a high fat diet (HFD; 60 cal% fat) or a control diet for 52 weeks and plasma was collected. Plasma (A) glucose, (B) insulin, (C) HOMA-IR

[homeostatic model assessment of insulin resistance calculated from measured glucose and insulin levels], (D) triglycerides, (E) cholesterol, (F) leptin, (G) interleukin

(IL)-18, and (H) tumor necrosis factor (TNF). WT: Control, n = 8; HFD, n = 8, Nlrp3−/−: Control, n = 8; HFD, n = 7, and Asc−/−: Control, n = 7; HFD, n = 7. Data are

means ± SEM. *P < 0.05, **P < 0.01, ***P < 0.001 vs. control diet; #P<0.05 vs. WT-HFD as determined by two-way ANOVA and Tukey’s multiple comparisons test.

Cardiac Insulin Sensitivity Is Preserved in

Obese NLRP3 Deficient Mice
As in the livers (Figure 4), heart homogenates from WT mice
showed a significant HFD-induced elevation of TG content,
which was not seen in the Nlrp3−/− and Asc−/− (Pycard−/−)
hearts (Figure 7A). It is increasingly accepted that impaired
insulin signaling could affect metabolic changes in various
tissues during obesity (30). To determine whether downstream
insulin signaling was altered in the hearts and livers of obese
WT and Nlrp3−/− mice, we examined the acute effect of a
subcutaneous injection of insulin (2 IU/kg) on phosphorylation
at Ser473 of Akt, a major target of insulin receptor signaling.
The serine-threonine kinase Akt is activated by several ligand-
receptor systems previously shown to be cardioprotective (31).
While obese WT mice showed a marked reduction in Akt
phosphorylation upon insulin treatment in both cardiac and

hepatic tissue,Nlrp3−/− mice were protected against this obesity-
induced effect (Figures 7B,C).

DISCUSSION

Obesity and metabolic disease-related cardiac remodeling and
HF are a growing worldwide concern (4, 5). The NLRP3
inflammasome may represent a molecular link between over
nutrition, metabolic stress, inflammation and development of
metabolic and cardiovascular diseases. Herein, we examined the
effect of long-term HFD consumption on obesity associated
cardiac remodeling in NLRP3 and ASC (Pycard) deficient mice.
We found that the cardiac hypertrophic response to obesity
was independent of the NLRP3 inflammasome, while deficiency
of NLRP3 and ASC blunted the concentric form of cardiac
remodeling and the impairment of diastolic function seen in
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FIGURE 4 | Obesity-induced hepatic steatosis is suppressed by NLRP3 and ASC deficiency. WT, Nlrp3−/−, and Asc−/− (Pycard−/−) male mice were exposed to

high fat diet (HFD; 60 cal% fat) or a control diet for 52 weeks and liver was extirpated. (A) Representative images of livers and hematoxylin and eosin staining from

mice on HFD and Control diet. Scale bar: 100µm. (B) Liver weights related to tibia length (TL). Hepatic levels of (C) cholesterol and (D) triglycerides. WT: Control, n =

10; HFD, n = 10, Nlrp3−/−: Control, n = 7; HFD, n = 7, and Asc−/−(Pycard−/−): Control, n = 9; HFD, n = 5. Data are shown as mean ± SEM. **P < 0.01,

***P < 0.001 vs. control diet; #P < 0.05, ##P < 0.01, ###P < 0.001 vs. WT-HFD as determined by two-way ANOVA and Tukey’s multiple comparisons test.

obeseWTmice. Whereas, NLRP3 and ASC deficiency attenuated
systemic inflammation and metabolic disturbances in HFD fed
mice; long-term HFD did not induce significant cardiac fibrosis
or inflammation, suggesting that the beneficial effects of NLRP3
inflammasome deficiency on myocardial remodeling at least
partly reflect systemicmechanisms. However, in both hepatic and
cardiac tissue, NLRP3 inflammasome deficiency counteracted
lipid accumulation and the impaired insulin signaling in WT
mice on HFD. The latter mechanisms could be an important
mediator of the beneficial effect of NLRP3 deficiency on HFD
induced myocardial remodeling, linking systemic and local
effects within the myocardium.

Many different models have been used to address mechanisms
for how obesity and metabolic disease causes cardiac remodeling
and HF development, including leptin or leptin receptor

deficient mice and mice with pharmacologically induced (e.g.,
streptozotocin) diabetes (32). In this study we used a model of
diet-induced obesity (60% calories from fat), as it recapitulates
many of the obesity-associated conditions in humans, such
as adipose tissue remodeling, insulin resistance and hepatic
steatosis. The reported cardiac phenotype of mice fed a HFD over
an extended period of time varies in severity (33). However, the
phenotype of our obese mice is similar to some previous studies,
i.e., not overt HF, but more resembling the early alterations
associated with development of diabetic cardiomyopathy (34,
35). Thus, while others have observed HF developing after
15 weeks using the same protocol (36), we found consistent
cardiac hypertrophy and a concentric form of LV remodeling
without overt HF in the WT mice. Our data show that although
NLRP3 and ASC (Pycard) deficient mice gained significantly
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FIGURE 5 | Obesity-induced LV remodeling is not associated with cardiac fibrosis. WT, Nlrp3−/−, and Asc−/− (Pycard−/−) male mice were exposed to high fat diet

(HFD; 60 cal% fat) or control diet for 52 weeks and cardiac fibrosis was evaluated. (A) Representative images of picrosirius red stained left ventricle (LV) from a WT

mouse on control diet and HFD. Scale bar: 500µm. (B) Quantification of picrosirius red positive areas in LV. LV expression of (C) collagen I mRNA and (D) collagen III

mRNA. WT: Control, n = 10; HFD, n = 10, Nlrp3−/−: Control, n = 7; HFD, n = 7, and Asc−/− (Pycard−/−): Control, n = 7; HFD, n = 7. Data are shown as mean ±

SEM. **P < 0.01 vs. control diet; #P < 0.05 vs. WT-HFD as determined by two-way ANOVA and Tukey’s multiple comparisons test.

less weight after 1 year on a HFD, all three genotypes did
develop obesity, which was associated with cardiac hypertrophy,
with similar heart weights and cardiomyocyte cross-sectional
areas in the different mouse strains. However, NLRP3 and
ASC (Pycard) deficiency appears to be preventive against LV
concentric remodeling with potentially beneficial effects on
cardiac geometry and diastolic dysfunction, the latter may
be of particular relevance in relation to metabolic induced
cardiomyopathy (4).

Inflammation is suggested to play a pathogenic role in
development of myocardial dysfunction, including diabetic
cardiomyopathy and HF with preserved ejection fraction
(HFpEF). Others and we have previously implicated the NLRP3
inflammasome as a pathogenic mediator acting locally in the
heart in ischemia reperfusion injury (19, 37, 38). Somewhat
surprisingly, we did not find increased cardiac inflammation or
cardiac fibrosis after 52 weeks of HFD in the present study.
However, this is in fact in line with some previous studies
(34, 35), illustrating the contrast between our model and those
of e.g., leptin receptor deficiency (i.e., db/db mice) and type 1
diabetes (e.g., streptozotocin treatment) (33). In a rat model of

streptozotocin and HFD-induced diabetic cardiomyopathy with
severe cardiac inflammation and fibrosis, Luo et al. previously
reported beneficial effects of NLRP3 gene silencing (39). More
recently, and in contrast to our findings, Pavillard et al. showed
reduced cardiac hypertrophy in NLRP3 deficient mice and
NLRP3 inhibition with MCC950 during HFD for 15 weeks (40).
This discrepancy might be explained by the different durations
of the experiments, 15 and 52 weeks, respectively. Also, they did
not include in vivo examination of cardiac structure and function.
Nonetheless, in our opinion, long-term exposure to HFD is a
relevant model for examining the effects of an unhealthy diet and
obesity on the myocardium, and will more accurately reflect the
situation in patients withmoderate obesity, T2DM, liver steatosis,
hyperlipidemia and insulin resistance than the models of leptin
receptor deficiency (i.e., db/db mice) and type 1 diabetes (e.g.,
streptozotocin treatment).

NLRP3 inflammasome is considered to have a critical role
in sensing obesity-associated metabolic stress and mediating
the associated inflammatory response and insulin resistance
development (14, 41). This was confirmed in our study with a
marked reduction in systemic, hepatic and also cardiac measures
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FIGURE 6 | Obesity-induced LV remodeling is not associated with cardiac inflammation. WT, Nlrp3−/−, and Asc−/− (Pycard−/−) male mice were exposed to high fat

diet (HFD; 60 cal% fat) or control diet for 52 weeks and cardiac inflammation was evaluated. (A) Representative images of Mac-2 positive macrophages (arrows) in left

ventricle (LV) from a WT mouse on control diet and HFD. Scale bar: 100µm. (B) Quantification of Mac-2 positive areas in LV. LV gene expression, of (C) interleukin

(IL)-1β mRNA, (D) IL-18, (E) tumor necrosis factor (TNF), and (F) NLRP3, presented relative to levels of GAPDH mRNA. WT: Control, n = 10; HFD, n = 10, Nlrp3−/−:

Control, n = 7; HFD, n = 7, and Asc−/− (Pycard−/−): Control, n = 7; HFD, n = 7. Data are shown as mean ± SEM. *P < 0.05 vs. control diet; #P < 0.05 vs.

WT-HFD as determined by two-way ANOVA and Tukey’s multiple comparisons test.

of insulin resistance. It is increasingly accepted that impaired
insulin signaling could affect metabolic changes in various
tissues during obesity (30). Moreover, the serine-threonine
kinase Akt, a major target of insulin receptor signaling, has
previously shown to be cardioprotective. This is in line with our
results showing that while obese WT mice exhibited a marked
reduction in Akt phosphorylation upon insulin treatment in
both cardiac and hepatic tissue, this was not seen in NLRP3−/−

mice. The latter mechanism could be an important mediator
of the beneficial effect of NLRP3 deficiency on HFD induced
myocardial remodeling, linking systemic and local effects within
the myocardium.

Moreover, plasma levels of mature IL-18, activated by the
NLRP3 inflammasome, and TNF, a cytokine that could be
activated down-stream to NLRP3 activation, were increased

with obesity and markedly reduced in inflammasome deficient
mice. Thus, even though there was no cardiac inflammation,
there was an NLRP3-dependent systemic inflammatory response
to obesity. Also, NLRP3 inflammasome deficiency reduced
triglyceride levels both in the liver and within the heart. Based
on our own and previous findings, it is tempting to term the
Nlrp3−/− and Asc−/− (Pycard−/−) mice as models of cardiac
response in metabolically healthy obesity (42). In extension of
this, we hypothesize that the hypertrophic response we observe is
related to the obesity per se.However, the concentric remodeling,
a hallmark feature of diabetic cardiomyopathy and HFpEF was
not observed in the inflammasome deficient mice suggesting
that these features may be NLRP3 inflammasome-dependent.
The lack of local cardiac inflammation and fibrosis in our
results, suggests that the cardiac remodeling and dysfunction
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FIGURE 7 | Cardiac insulin sensitivity is preserved in obese NLRP3 deficient mice. WT, and Nlrp3−/− male mice were exposed to high fat diet (HFD; 60 cal% fat) or

control diet for 52 weeks. (A) Left ventricle concentration of triglycerides [WT: Control, n = 10; HFD, n = 10, Nlrp3−/−: Control, n = 7; HFD, n = 7, and, Asc−/−

(Pycard−/−): Control, n = 7; HFD, n = 7]. WT and Nlrp3−/− mice on control diet or HFD for 52 weeks were fasted for 4 h and received an i.p. injection of insulin (2

IU/kg). Mice were euthanized and after 10min heart and liver were extirpated. Ratio of phosphorylated (Ser473) Akt to total Akt in mice on control diet or HFD in (B)

left ventricle and (C) liver (WT: Control, n = 6; HFD, n = 4, Nlrp3−/−: Control, n = 4; HFD, n = 4) were determined by immunoblot analysis. Data are normalized to

corresponding GAPDH. Data are shown as mean ± SEM. *P < 0.05, **P < 0.01 vs. control diet; #P < 0.05 vs. WT-HFD as determined by two-way ANOVA and

Tukey’s multiple comparisons test.

in obese WT mice is more likely mediated by external factors,
such as systemic inflammatory and metabolic responses, rather
than intrinsic processes in the heart, and these systemic
responses are attenuated in NLRP3 inflammasome deficient
mice. It is, therefore, tempting to hypothesize that NLRP3
inflammasome may link low-grade systemic inflammation to
maladaptive myocardial remodeling and impaired diastolic
function with insulin resistance as an important mediator within
the myocardium. Notably, this model is in agreement with
the novel HFpEF paradigm postulated by Paulus and Tschope,
which suggest that a systemic inflammatory state induced by
comorbidities, such as obesity and diabetes mellitus, triggers
concentric cardiac remodeling and LV dysfunction in HFpEF
(6). Our findings may suggest that NLRP3 inflammasome could

be an important mediator in this process. Whereas, we found
significantly higher levels of the mature IL-18 protein in WT
as compared to Nlrp3−/− and Asc−/− (Pycard−/−) mice, none
of the genotypes showed detectable levels of IL-1β in plasma
(multiplex) and myocardium (western blot). The inability to
measure IL-1β does, however, not mean that this NLRP3
inflammasome product is of less importance than IL-18. It could
rather reflect technical problems with measuring this cytokine
in mice models that has also previously been recognized (43).
Although being a very potent cytokine, IL-1β is usually released
in small amounts and has a very short plasma half-life (44).

The present study has some limitations as we did not use co-
housed littermate controls all through the study. To minimize
the effects of other factors than genetics, including effects on
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gut microbiota, the separate mouse strains were littermates; bred
from the same parents, raised in the same cage until weaning
where 4–6 mice of the same strain where co-housed in the
same open cages. Gut microbiota has been recently established
to have a contributory role in the development of cardio-
metabolic disorders, such as atherosclerosis, obesity, and T2DM
(45), and the impact of this “new organ.” should be investigated
in forthcoming studies. Moreover, based on our experimental
approach, we cannot conclude if the cardiac phenotype in
Nlrp3−/− and Asc−/− (Pycard−/−) mice is secondary to weight
gain or caused by direct effect of NLRP3 inflammasome on
myocardial function.

Collectively, our data suggests that obesity drives cardiac
hypertrophy per se, while systemic inflammation and metabolic
dysfunction promotes adverse effects on cardiac remodeling
and function, and these systemic effects were attenuated
in Nlrp3−/− and Asc−/− (Pycard−/−) mice. Although our
data may suggest a role for improved insulin-mediated Akt
phosphorylation in Nlrp3−/− and Asc−/− (Pycard−/−) mice,
further studies are needed to elucidate themolecular mechanisms
for the role of NLRP3 activation during HFD, including the
effects on myocardial remodeling. Further studies should also
address NLRP3 inflammasome as a target for therapy in both
experimental and clinical metabolic induced cardiac remodeling
including HFpEF.
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