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Editorial on the Research Topic
 Long Non-coding RNAs and Immunity



Next-generation sequencing has shown that the majority of the human genome does not encode proteins, yet many such “non-coding” regions are actively transcribed into RNA. In particular, long non-coding RNAs (lncRNAs) have received considerable interest for their essential roles in numerous biological processes. Defined as non-protein-coding transcripts longer than 200 nucleotides, lncRNAs are frequently expressed in a tissue-specific or developmental stage-specific manner (1, 2). Multiple studies have shown lncRNAs to be dysregulated in disease, and genome-wide association studies (GWAS) have also identified numerous single nucleotide polymorphisms (SNPs) within lncRNAs (3–5). These features distinguish them as attractive candidates for therapeutic targets or biomarkers. While still in its infancy, the dissection of lncRNA biology has unveiled critical roles in immune cell development and function. However, as the functions of most lncRNAs are yet to be determined, the field must fill a considerable void to understand the breadth of their roles in immunity. This Research Topic focuses on how lncRNAs contribute to immune function in a variety of different contexts, and what key questions drive this rapidly expanding field.


DOSAGE COMPENSATION AND X-LINKED IMMUNE GENES

Females have a more responsive immune system than males (6, 7), potentially driving a higher predisposition to autoimmune diseases such as systemic lupus erythematosus (SLE) (8). The X chromosome carries a significant number of immune-related genes, but how this translates to sex disparities in immune diseases remains to be determined. Xist is one of the best characterized lncRNAs, and functions as an effector of dosage compensation in female cells. Xist maintains inactivation of one X chromosome by binding along its length and recruiting repressive factors to silence transcription. Immune cells, however, regulate X chromosome inactivation through diverse mechanisms that are not limited to the use of Xist RNA, as recently revealed by Syrett et al. For instance, the inactivated X in female murine plasmacytoid dendritic cells (pDCs) lacks both Xist RNA and the repressive chromatin modification H3K27me3. Interestingly, pDCs from female mice that spontaneously develop SLE-like disease show increased biallelic expression of the X-linked gene Tlr7, as compared to healthy female mice. Further delineating the mechanisms of X chromosome inactivation in immune cells will be necessary before we can develop a complete understanding of how sex and sex-linked genes contribute to autoimmune diseases.



LNCRNAS IN RICKETTSIAL INFECTION

The Rickettsia genus of Gram-negative obligate intracellular bacteria is transmitted to humans via arthropod vectors, including ticks, fleas, and lice, and can infect the vascular endothelium to cause illnesses such as Rocky Mountain spotted fever. There are increasing concerns over the prevalence of Rickettsia due to climate change and the spread of vector populations. Understanding rickettsial infection and developing novel therapeutics to mitigate its spread through the vascular endothelium will thus be crucial in the near future. Chowdhury et al. have begun to address the roles of lncRNAs in the host response to Rickettsia species using a mouse model of R. conorii infection. The authors identified two enhancer lncRNAs affecting expression of nearby genes, Id2 and Apol10b, which have not been previously studied in rickettsial infection. Furthermore, these two lncRNAs exhibit differential expression in infected macrophages compared to endothelial cells, emphasizing the cell type-specificity of lncRNAs. The resulting genome-wide analysis of lncRNA expression during rickettsial infection establishes a foundation to further study the host immune response to Rickettsia species and reveals cell type-specific signaling pathways mediated by enhancer lncRNAs.



VIRAL AND HOST LNCRNAS IN ANTIVIRAL IMMUNITY

Some of the most interesting advancements in our understanding of lncRNAs in immunity come from the study of their roles in viral infection. While it would be intuitive to assume host lncRNAs exist to suppress viral infections, it has been shown that host lncRNAs can actually increase viral replication and pathogenesis during certain infections (9). This begets the need to further examine what purpose both host and viral lncRNAs serve, and how it may change in the context of non-infected and infected states. Wang reviews in detail the known lncRNAs involved in multiple steps of the viral life cycle and infection.



LNCING GWAS SNPS TO DISEASE PATHOGENESIS

GWAS have provided a more complete understanding of complex diseases. Of the more than 70,000 variant-trait associations cataloged from GWAS (10), a majority of these map to non-coding regions of the genome, including those containing lncRNAs. Despite this, the impact of only a few SNPs on lncRNA function has been described. A major limitation in the field is that the function of most lncRNAs is unknown. In addition, while SNPs in lncRNAs likely affect their secondary and tertiary structure, we cannot currently predict how this will alter their function. Castellanos-Rubio and Ghosh review the disease-associated lncRNA SNPs that have been described thus far. Further inquiry and development of tools to interpret lncRNA structure and function will be necessary before the impact of lncRNA SNPs (and other genetic variants) on disease can be fully realized.



CIRCULAR RNAS AS A NEW CLASS OF IMMUNE REGULATORS

While lncRNAs typically display features associated with linear messenger RNA, such as 5′ capping, alternative splicing, and polyadenylation, non-coding RNA loci can also be transcribed to form circular RNA (circRNAs). These circRNAs form closed loops without 5′ capping or polyadenylation and can contain multiple exons. Similar to lncRNAs, circRNAs are frequently expressed in a tissue-specific manner, undergo chemical modifications, and function through varied mechanisms. Yang et al. review the mechanisms of circRNA biogenesis, summarize the current understanding of their function in immunity, and present approaches and limitations to studying circRNA function.



CONCLUSION

lncRNAs are now an established class of functional molecules with physiological relevance shown in nearly every human organ system. Their roles in immunity have been identified in immune cell differentiation, maintenance, and effector function. Given that only a fraction of lncRNAs have been functionally characterized a significant wealth of insight awaits discovery. Moreover, as personalized medicine begins to drive the use of genetic tools in the clinic, we can expect the identification of clinically-relevant lncRNA variants and the development of therapeutics that target lncRNA function.
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Circular ribonucleic acid (RNA) molecules (circRNAs) are covalently closed loop RNA molecules with no 5′ end caps or 3′ poly (A) tails, which are generated by back-splicing. Originally, circRNAs were considered to be byproducts of aberrant splicing. However, in recent years, development of high-throughput sequencing has led to gradual recognition of functional circRNAs, and increasing numbers of studies have elucidated their roles in cancer, neurologic diseases, and cardiovascular disorders. Nevertheless, studies of the functions of circRNAs in the immune system are relatively scarce. In this review, we detail relevant research on the biogenesis and classification of circRNAs, describe their functional mechanisms and approaches to their investigation, and summarize recent studies of circRNA function in the immune system.
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INTRODUCTION

Circular RNA (circRNA) is a covalently closed loop molecular form of RNA, and was discovered more than two decades ago (1, 2). Initially, circRNA was considered to be an aberrant byproduct of splicing (3–6). Recently, numerous circRNAs have been identified as a consequence of rapid developments in bioinformatics and high-throughput sequencing. Jeck et al. detected >25,000 circRNAs in fibroblasts using a genome-wide RNase R enrichment strategy (7). Memczak et al. identified 1950 circRNAs in humans, 1903 in mice, and 724 in Caenorhabditis elegans using RNA-sequencing data combined with analyses of the human leukocyte database (8). circRNAs are also expressed in fungi, plants, and protists (9–12).

Current research on circRNAs focuses on their role in cancer, neurologic diseases, and cardiovascular disorders. In this review, we cover relevant research on the biogenesis and classification of circRNAs and their functional mechanisms and methodological approaches to their study, along with summarizing recent investigations of the roles of circRNAs in the immune system.



BIOGENESIS OF CIRCRNAS

Rather than canonical splicing, circRNAs are generated through back-splicing (13, 14) (Figure 1). Back-splicing can be accompanied by transcription (15) or may occur after transcription has been completed (16). Three main mechanisms have been reported to produce circRNAs: exon skipping, intron pairing-driven circularization, and RNA binding protein (RBP)-driven circularization.


[image: image]

FIGURE 1. Formation and classification of circRNAs and models of circRNA function. circRNAs are formed by back-splicing. There are three major types of circRNA: ecircRNA, ciRNA, and EIciRNA. EcircRNAs function mainly in the cytoplasm through the “microRNA sponge” mechanism, whereas EIciRNA and ciRNA accumulate in the nucleus and facilitate transcription of their parent genes via cis-regulatory effects. In addition, some circRNAs have been reported to act by interacting with or encoding proteins.




Exon Skipping

Skipping of exons leads to the formation of a lariat structure containing the skipped exon. If introns are spliced before the lariat is unraveled by debranching enzymes, a stable exon-containing circRNA will be produced (7), along with a linear transcript excluding the skipped exon(s). This mechanism was an early understanding of how circRNAs are formed because the linear transcripts that are produced alongside circRNAs were described some years ago (17, 18).



Intron Pairing-Driven Circularization

Intron pairing-driven circularization is based on reverse complementary matches (RCMs) within flanking introns, and was established independently of the exon-skipping mechanism of circularization. RCMs can induce base-pairing between flanking introns, promoting a hairpin formation, bringing the 5′ and 3′ termini of an exon into spatial proximity, and inducing “head-to-tail” splicing. Intriguingly, the protein adenosine deaminases acting on RNA (ADAR) also participate in this process, together with RCMs. ADAR can unzip double-stranded RNA molecules by converting adenosine residues within them into creatinine molecules, thereby reducing the formation of circRNAs (19). Furthermore, Jeck et al. determined that, unlike sequence regions involved in generation of non-circular transcripts, the 200 bp upstream or downstream of a back-splice site contain canonical complementary ALU repeats, suggesting that intronic pairing may drive the circularization of exonic circRNAs (ecircRNAs). Jeck et al. also found that the length of introns flanking ecircRNAs are greater than those flanking linear RNA exons (7).



RBP-Driven Circularization

In addition to the involvement of introns and exons, some RNA-binding proteins also contribute to the formation of circRNAs. For example, in Drosophila, the splicing factor muscleblind (MBL) drives the circularization of the second exon of MBL to produce circMBL, by binding specifically to MBL binding sites within introns flanking circMBL sequences (15). More importantly, the interaction between MBL and circMBL contributes to regulation of the levels of MBL protein. When MBL is present in excess, it reduces the production of MBL mRNA by promoting circMBL formation. A protein called “quaking” (QKI) was identified by Conn et al. and shown to promote the production of circRNAs during human epithelial–mesenchymal transition by binding to a motif within circRNA flanking introns (20). RBM20 is also an RNA-binding protein that regulates numerous cardiac-specific gene-editing processes. Mutation of RMB20 is involved in dilated cardiomyopathy through its effects on the generation of circRNAs from Titin (21). The RNA-binding protein FUS can mediate circRNA formation by mediating RNA back-splicing in neurons (22). Moreover, HNRNPL, an RNA splicing factor, participates in regulation of circRNA formation in prostate cancer (23). In conclusion, the formation of circRNAs is dependent upon the regulation of cis elements and trans-factors (24).




CIRCRNA CLASSIFICATION

Studies have identified three main types of circRNA: ecircRNA, circular intronic RNA (ciRNA), and exon–intron circRNA (EIciRNA) (Figure 1). Published data suggest that ecircRNAs function mainly through the microRNA “sponge” mechanism, proposed first by Memczak et al. who found there were 63 microRNA-7 binding sites on CDR1as, and hence designated CDR1as a “microRNA sponge.” EcircRNA can enhance levels of microRNA target genes through adsorption of microRNA molecules. Unlike ecircRNAs, intron-containing circRNAs (ciRNAs or EIciRNAs), in general, reside in the nucleus and regulate gene transcription (25–27). Chen et al. found that the function of ci-ankrd52, which is derived from the second intron of ANKRD52, may depend on a consensus motif containing a 7-nucleotide (nt) GU-rich element near its 5′ splice site and an 11-nt C-rich element close to the branchpoint to avoid being debranched. Ci-ankrd52 accumulates mainly in the nucleus and promotes transcription of ANKRD52 through a cis-regulatory effect of RNAPol II (25).



CIRCRNA CHARACTERISTICS

circRNAs are not degraded readily by RNase R, and are more stable than their cognate linear mRNAs, with half-lives exceeding 48 h (7). circRNAs also exhibit a degree of conservation between species. Jeck et al. identified ecircRNAs from 14.4% of actively transcribed genes in human fibroblasts. Furthermore, they identified 69 ecircRNAs from murine testes that mapped to precisely orthologous chromosome locations compared with human circRNAs (7).

Numerous circRNAs exhibit specificity to tissue, developmental period, or cell type. Memczak et al. found that different cells express specific circRNAs through identification of circRNAs in four human cell types: cluster of differentiation (CD)19+ leukocytes, CD34+ leukocytes, neutrophils, and HEK293 cells. Analogously, they noted that several nematode circRNAs were expressed in oocytes but absent in 1- or 2-cell embryos (8).

Although most circRNAs do not have the potential for translation (28), several recent studies have confirmed that circRNAs can be translated into proteins. Legnini et al. screened differentially expressed circRNAs in Duchenne muscular dystrophy by RNA sequencing. They determined that circ-ZNF609 can affect muscle formation through regulation of myoblast proliferation. Surprisingly, they also found that circ-ZNF609 can encode a protein (29), but whether this protein has a role in myoblast proliferation is not known. Yang et al. demonstrated that modification of N6-methyladenosine (m6A), which is induced by the methyltransferase METTL3/14 and suppressed by the demethylase FTO, promotes protein translation through recruiting an initiation factor, eIF4G2, and a m6A reader, YTHDF3. Furthermore, they found that m6A-containing circRNAs, with the potential to be translated into proteins, are common in the human transcriptome (30). Yang et al. also demonstrated that circ-FBXW7 can be translated into the protein FBXW7-185aa, thereby co-regulating the stability of c-Myc, along with its parent gene-encoded protein, FBXW7, to inhibit the progress of malignant glioma (31). Pamudurti et al. described the discovery of numerous circRNA-translated proteins or peptides based on ribosome “footprinting” experiments in Drosophila brains. They demonstrated that ribosomes can bind at the stop codon of circMbl and that a protein encoded by circMbl can be identified by protein spectroscopy (32).

Several reports have detailed many chemical modifications present on DNA and RNA. Surprisingly, recent breakthrough investigations of chemical modification of circRNAs have demonstrated that a m6A modification occurs in circRNA. This was discovered first by Yang et al. who further demonstrated that this modification promotes protein translation through recruitment of the initiation factor eIF4G2, and the m6A reader YTHDF3 (30) (Figure 1). Zhou et al. further confirmed the existence of the m6A modification in circRNAs, and also proposed some characteristics of m6A-modified circRNAs (33).



MECHANISMS OF CIRCRNA FUNCTION


MicroRNA Sponge

MicroRNAs produced by Dicer processing enzymes from single-stranded RNA precursors with a hairpin structure of ~70–90 nt are single-stranded small RNAs of ~21–23 nt (34, 35). Through initiation of RNA-induced silencing complex (RISC), mRNAs are degraded or their translation is hindered by base pairing with target gene transcripts (36, 37). Memczak et al. was the first to propose the microRNA sponge model. They found that there were 63 microRNA-7 binding sites within the circular transcript CDR1as (ciRS-7). Hansen et al. determined that a testes-specific circRNA called Sry can also serve as a sponge for microRNA-138 (38). Recent studies have shown that various circRNAs can function to adsorb microRNAs, thereby releasing target mRNAs (Figure 1). This process is associated with several diseases. In 2017, Han et al. demonstrated that circMTO1 upregulates p21 by competitively binding to microRNA-9, thereby inhibiting the proliferation of hepatocellular carcinoma (39). Zhong et al. clarified that the circRNA MYLK acts as a competing endogenous RNA (ceRNA) to bind directly to microRNA-29a, thereby promoting the development of bladder cancer by activating VEGFA/VEGFR2 signaling pathway and the Ras-Erk pathway (40). The circRNA circEPSTI1 was discovered to be an endogenous competitive RNA and sponge for microRNAs. Through binding to microRNA-4753 and microRNA-6809, circEPSTI1 upregulates expression of B cell CLL/lymphoma 11A (BCL11A), promotes the proliferation of triple-negative breast cancer cells, and inhibits their apoptosis (41).



Interactions Between circRNAs and Proteins

Rather than acting as microRNA sponges in the cytoplasm, some circRNAs act by interacting with corresponding proteins (Figure 1). In 2016, circ-foxo3 was found to impede cell-cycle progression by forming a ternary complex with p21 and Cdk2 proteins (42). In addition, another circRNA, circ-Amotl1, which is highly expressed in cancerous cell lines, can increase nuclear retention of the oncogenic protein c-myc to promote its stability, and increase its affinity for binding to several promoters, thereby upregulating c-myc targets such as HIF1α, Cdc25a, ELK-1, and JUN (43). This observation reveals a novel function of circRNAs in tumorigenesis. Conceivably, there are circRNAs other than circ-Amotl1 that act by similar mechanisms. In 2017, Abdelmohsen et al. was the first to report competition between a circRNA and its cognate mRNA for the RNA-binding protein HuR, which has been studied extensively and can regulate protein expression through interaction with a wide range of RNAs. They proposed that high levels of circPABPN1, a circRNA derived from PABPN1, repress HuR binding to PABPN1 mRNA through binding to HuR itself, causing a reduction in PABPN1 mRNA translation (44). This mechanism, based on the interaction between a circRNA and its cognate mRNA, provided new insights and spurred further investigation of the roles of circRNAs in the nucleus.



Regulation of Transcription in cis

Multiple non-coding RNAs, including HOTAIR and MALAT1, are known to regulate gene transcription in trans; that is, they influence the transcription of genes other than their parent genes. However, there have been studies that have shown circRNAs, mainly intron-containing circRNAs (ciRNAs or EIciRNAs), can have cis-regulatory effects on gene expression. In 2013, Chen et al. reported that ci-ankrd52, which is generated from the second intron of ANKRD52, accumulates primarily in the nucleus and promotes transcription of ANKRD52 via the cis-regulatory effects of RNAPol II (25). In 2014, Li et al. proposed a model for the cis-regulatory effects of EIciRNAs based on their findings from investigation of two EIciRNAs: circEIF3J and circPAIP2. They proposed that EIciRNAs may interact with proteins such as U1 snRNP via RNA–RNA interplay between U1 snRNA and EIciRNA. Then, EIciRNA–U1 snRNP complexes could interact with Pol II at the promoter regions of parental genes, thereby enhancing their transcription (Figure 1). This phenomenon produces a positive feedback loop because, once transcription has been initiated, EIciRNA generation will increase, further promoting gene transcription (26).



circRNAs as Biomarkers

In addition to being detected inside cells, circRNA has also been reported to be present in extracellular fluids. Li et al. enriched exosomes in serum samples from patients suffering from colon cancer to examine circRNA expression in exosomes. Compared with healthy controls, hundreds of circRNAs were expressed differentially in serum exosomes from patients with colon cancer (45). In 2016, Guarnerio et al. was the first to report that chromosomal translocations can produce fusion circRNAs in acute promyelocytic leukemia. Furthermore, using an MLL/AF9-AML model, they found that f-circM9 could contribute to progression of acute myeloid leukemia (46). Based on those findings, Tan et al. confirmed that the common fusion gene in non-small-cell lung cancer (NSCLC), EML4-ALK, can produce a fused circRNA called F-circEA, and demonstrated that F-circEA promotes the proliferation and migration of cells. F-circEA was also detected in the serum of EML4-ALK-positive patients, indicating that this circRNA is highly likely to be useful as a diagnostic marker for EML4-ALK-positive NSCLC (47). With further research it is likely that disease-specific circRNAs will be developed as disease biomarkers.




APPROACHES TO STUDIES OF CIRCRNA


Identification Tools of circRNA

Identification of circRNA after sequencing is the first step in circRNA research. Various identification tools have been developed. Whether the identification of circRNAs is accurate and comprehensive is dependent upon the rigor and reliability of the algorithm. The Find_circ algorithm uses bowtie2 to map the original reads to the reference genome, discards all mapped sequences, takes 20 nt of each unmapped read as an anchor, and then determines the location of the anchor in the genome again to identify whether the splicing of circRNA is present (8). The CIRCexplorer algorithm uses the TopHat algorithm to map the RNA-sequencing reads to the human hg19 reference genome, and then maps the unmapped reads with the TopHat-Fusion algorithm. Such reads, unmapped with TopHat but mapped with TopHat-Fusion on the same chromosome in a back-spliced order, are extracted as candidate back-spliced junctionreads (48). The CIRI algorithm proposes paired chiastic clipping (PCC) signals to identify circRNAs. The PCC signal is detected by collecting and comparing the alignment information of all the segments of a read. PCC signals do not rely on existing annotation information, so back-splicing can be identified from zero to predict various types of circRNA, including intronic and intergenic circRNAs (49). In 2015, Hansen et al. found that short circRNAs (especially circRNAs < 200 nt in length) are degraded readily by RNase R, and that a circRNA predicted by a single algorithm specifically has a higher false-positive rate. Conclusively, they suggested that identification of circRNAs can be done using a combination of different tools or RNA libraries with linear RNA being removed (50). We have summarized the four commonly used circRNA algorithms in Table 1.



Table 1. Identification algorithms for circRNA.
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Enrichment and Verification of circRNAs

RNase R is a member of the Escherichia coli RNR superfamily. It can cleave RNA in the 3′-5′ direction and digest almost all linear RNAs, but it cannot digest circRNAs readily (52). High-throughput sequencing for genome-wide identification of circRNAs requires enrichment of circRNA through treatment of samples with RNase R to remove linear RNAs, followed by enhancement of the concentration of circRNAs to facilitate their identification. Two approaches are used for the identification of circRNAs: reverse transcription-polymerase chain reaction (RT-PCR) and northern blotting. In RT-PCR, after digestion by RNase R, cDNA samples are amplified with divergent primers and convergent primers. Subsequent agarose-gel electrophoresis reveals that amplification with divergent primers generates a band in the RNase R(+) group, whereas the convergent primers produce no band. Divergent and convergent primers generate bands in the RNase R(–) group, indicating that circRNAs are present and resistant to digestion by RNase R (31, 53). Northern blotting is conducted using probes specific for circRNA and mRNA. The results show that linear mRNA cannot be detected in the RNase R(+) group, whereas its corresponding circRNA is visible, indicating that mRNAs are digested, whereas circRNAs are not (54). Notably, some circRNAs will also decrease in abundance after long-term digestion by RNase R, probably because of susceptibility to RNase R.



Knockdown and Knockout of circRNAs

Technology based on RNA interference is used widely to knockdown circRNA expression. To eliminate non-specific knockdown effects on cognate linear RNA, a specific small interfering RNA (siRNA) or short-hairpin RNA (shRNA) targeting circRNA must be directed to the back-splicing site. This strategy limits the design of siRNA sequences, and siRNA or shRNA targeting back-splicing sites will be partially complementary to the cognate linear RNA, raising the possibility of unwanted effects on expression of linear RNA. To solve this problem, Li et al. proposed that the control sequence should be partially replaced (~10 nt) by a siRNA sequence targeting the back-splicing site (24). Similarly, knockout of circRNAs in animals risks simultaneously influencing expression of the cognate linear RNA and completely knocking out a gene is highly likely to affect expression of neighboring genes (55, 56). Based on the mechanism of circRNA production, Zhang et al. achieved knockout of circGCN1LI in human PA1 cells by removing an intron complementary sequence using CRISPR/Cas9 (16).



circRNA Overexpression

Plasmids used commonly to overexpress circRNAs are universal loop-forming framework vectors and gene-specific flanking sequence vectors. For example, Liang et al. cloned the exon2/3 and flanking sequences of ZKSCAN1 to construct a vector, and then overexpressed circ-ZKSCAN1. Then, the flanking sequence was modified, and exons2/3 of ZKSCAN1 was replaced with a polyclonal restriction site to construct an empty vector: pcDNA3.1(+) CircRNA Mini Vector (57). Overexpression using a gene-specific flanking vector sequence is consistent with generation of natural circRNAs in vivo. Based on the characteristics of circRNA flanking sequences, length-appropriate flanking repeats (Alu elements) and circRNA sequences are cloned to generate a eukaryotic expression vector construct. In 2015, Lu et al. found that tRNA introns can form circular RNAs (tricRNAs) (58) and, in 2016, Schmidt et al. created a new circRNA expression vector based on tRNA splicing and transformation. First, they designed restriction enzyme sites in the two bulge–helix–bulge (BHB) regions of the tRNA intron and inserted the circRNA sequence for expression (59). In brief, the vector produced a circRNA by joining BHB motifs via an RtcB enzyme, which was not dependent upon a reverse-complementary sequence.

In general, different circRNAs with different loop-forming characteristics exhibit variation in looping efficiency. Moreover, circRNA production by overexpression vectors is accompanied by the production of linear isoforms, which is an additional challenge for strategies employing circRNA overexpression.




CIRCRNAS IN IMMUNITY


circRNAs in Anti-virus Immunity

Few reports have elucidated the role of circRNA in immune responses. Nevertheless, Chen et al. attempted to construct circRNAs to transfect cells based on in vitro transcription followed by auto-splicing circulation. Surprisingly, they found that in vitro circRNAs induced activation of cellular immune response pathways and inhibited RNA virus infection, which is mediated by retinoic acid-inducible gene-I (RIG-I); however, endogenous circRNAs did not induce this pathway because of their binding to specific RNA-binding proteins (60) (Figure 2). These findings suggest that exogenous introduction of circRNAs could be used to activate antiviral immune responses for therapeutic purposes. Nevertheless, some interesting questions must be solved: How do RBPs recognize self and non-self circRNAs, and then induce activation of non-self circRNAs on the RIG-1 pathway?
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FIGURE 2. CircRNAs in immune responses. Exogenous circRNAs can activate the RIG-1 cellular immune response pathway to suppress viral replication. The immune factor NF90/NF110 can promote circRNA formation by stabilizing the intron complementary sequence. Under viral infection, NF90/NF110 is exported from the nucleus to the cytoplasm to inhibit virus replication. Meanwhile, circRNA expression in the nucleus is decreased. Thus, endogenous circRNAs can be used as “molecular indicators” of antiviral proteins to prompt antiviral immune responses. circRNAs can also function as “microRNA sponges” to increase expression of target proteins involved in antiviral responses or tumor immunity, such as PD-L1. mcircRasGEF1B can help to protect cells from bacterial infection by enhancing the stability of mature ICAM-1 mRNA. In addition, circRNAs can be involved in immune responses by interacting with proteins or their host genes.



In addition, Li et al. found that circRNAs are involved in viral infection via the immune response factor NF90/NF110 (61). First, they applied a genome-wide siRNA screening strategy targeting all unique human genes with a Dox-inducible circmCherry expression vector to profile proteins involved in circRNA biogenesis. Consequently, they determined that NF90/NF110, encoded by the interleukin enhancer binding factor 3 (ILF3) gene, promoted circRNA formation by stabilizing the intron complementary sequence. Upon viral infection, NF90/NF110 was exported from the nucleus to the cytoplasm to inhibit virus replication. Meanwhile, circRNA expression in the nucleus was decreased (Figure 2). In this way, circRNAs may be used as “molecular indicators” of NF90/NF110 to prompt antiviral immune responses. However, the detailed mechanisms by which antiviral proteins promote circRNA biogenesis and key elements within circRNAs to interact with antiviral proteins have yet to be explored.

The two studies mentioned above provide evidence to support circRNA involvement in antiviral immunity through interactions with specific antiviral proteins (62). However, one of the studies elucidated the function of exogenous circRNAs in antiviral immunity, and the other study suggested endogenous circRNAs may be used as molecular indicators of antiviral proteins to prompt antiviral immune responses. In addition to interacting with antiviral proteins, circRNAs may have other roles during antiviral immune responses. Through sequencing of the whole transcriptome, Shi et al. found that expression of 536 circRNAs was dysregulated significantly in herpes simplex virus 1 (HSV-1) -infected cells in contrast to uninfected human fibroblasts. Similarly, they screened differentially expressed genes and microRNAs in HSV-1-infected cells. Furthermore, they undertook analyses of Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) databases. Their results suggested that these differentially expressed genes were very enriched in the pathways of immune responses, such as the NOD-like receptor signaling pathway and JAK-STAT signaling pathway (63). An integrated analysis of the circRNA–microRNA–gene axis revealed circRNAs can regulate the genes associated with host immune responses, which was mediated by microRNAs. These data suggest that circRNAs can regulate host antiviral immune responses through interactions with the corresponding microRNAs (Figure 2). However, these results based on large-scale bioinformation analyses should be validated experimentally.

Interestingly, several studies have demonstrated that some viruses can encode their own microRNAs, which facilitates the entry, replication, and virulence of viruses by targeting host transcripts, including some antiviral signaling molecules (64–67). For example, microRNA-BHRF1-3 encoded by the Epstein–Barr virus diminishes the levels of CXC-chemokine ligand 11, a chemoattractant in immune responses (68). In recent years, ceRNAs, including long non-coding RNA and circRNA (which can combine with microRNAs completely with a protein-coding target) have been studied widely. Ghosal et al. established a database named “HumanViCe” in which circRNAs that can sponge virus microRNAs can be predicted, and these circRNAs are enriched in pathways associated with the entry and replication of viruses and host immune responses (69). In summary, HumanViCe can aid exploration of the roles of circRNAs in viral infection but also circRNAs may act as potential antiviral targets.



circRNAs Acting Against Bacterial Infections

Ng et al. identified a lipopolysaccharide (LPS)-inducible circRNA generated from linear RasGEF1B, named mcircRasGEF1B, the expression of which is dependent upon the LPS-Toll-like receptor-4-nuclear factor-kappa B (LPS-TLR4-NF-κB) pathway. mcircRasGEF1B is cell type-specific, exhibits evolutionary conservation between mice and humans, and localizes preferentially to the cytoplasm (70). Also, its knockdown using the corresponding antisense oligodeoxynucleotide (ASOs) reduces intercellular adhesion molecule (ICAM-1) expression in the LPS/TLR4 signaling pathway by affecting the stability of the mature ICAM-1 mRNA, but not mRNA splicing (70) (Figure 2). In the immune system, ICAM-1 recruits leukocytes to sites of tissue inflammation, as well as enhancing adhesion between antigen-presenting cells and T cells (71, 72). In addition, ICAM-1 has been reported to inhibit M2 polarization of macrophages in tumors (73). Therefore, we speculate that mcircRasGEF1B may contribute to suppression of polarization of M2 macrophages during immune responses. These discoveries broaden our understanding and suggest that circRNAs may be important for the “fine tuning” of immune responses, and may help to protect cells from microbial infection.



circRNA as a ceRNA in Tumor Immunity

The relationship between microRNAs and immunity has been well-studied, leading to the hypothesis that circRNA may contribute to immune regulation through interactions with microRNAs. Zhang et al. reported that hsa_circ_0020397 can upregulate expression of PD-L1 (the target gene of microRNA-138) by binding to microRNA-138 in colorectal cancer cells. The consequent increase in PD-L1 levels contributes to tumor escape from immune responses (74, 75) (Figure 2). This information provides new insights for “checkpoint therapy” in cancer patients. Zheng et al. demonstrated that circHIPK3 rescues the downregulation of microRNA-124 on expression of interleukin (IL)-6R (76), implying that circHIPK3 may function in tumor immunity response. There are several bioinformatics databases that can be used to predict circRNAs that could bind to microRNAs, including circbase, starBasev2.0, and circinteractome (77).



circRNAs Regulate Immunity via Proteins

In addition to microRNAs, circRNAs can interact directly with proteins that function in immune responses. Similarly, we can predict such circRNAs using bioinformatics databases, then verify the predictions using in vitro and in vivo experiments. Using the circinteractome database, we found that the host gene of hsa_circ_0032139 is HIF1A, which plays an important part in inflammation via NF-κB and mitogen-activated protein kinase (MAPK) pathways (78). Under hypoxia, degradation of HIF1A protein is prevented, leading to its accumulation, and association with HIF1B to exert transcription regulation on target genes, including pro-inflammatory cytokines, most glycolytic enzymes, and glucose transporters, among others (79–83). Presumably, hsa_circ_0032139 can regulate inflammation through its association with HIF1A. Another circRNA, hsa_circ_0038481, has been predicted to associate with TLR4, a classical pattern-recognition receptor. This implies that hsa_circ_0038481 may be involved in LPS-stimulated signaling pathways, such as the NF-κB and MAPK.



circRNAs in Immune-Related Diseases

Rheumatoid arthritis (RA) is a chronic, inflammatory synovitis-based systemic disease of unknown etiology (84). Zheng et al. screened the top-ten upregulated, and downregulated circRNAs in RA patients based on analyses of peripheral-blood mononuclear cell chips, and selected the top-five corresponding microRNAs for each circRNA (85). We can speculate that these differentially expressed circRNAs may function in RA by acting as sponges of the corresponding microRNAs, which have been reported to be associated with RA. More importantly, the study by Zheng et al. provides clues that circRNAs may have the same effects as their host genes in RA. For example, hsa_circ_0038644, one of the dysregulated circRNAs in RA, is spliced from PRKCB, which is associated with LPS-induced activation of the NF-κB signaling pathway (86). Therefore, we hypothesized that hsa_circ_0038644 can aggravate inflammation in RA patients.

Type-2 diabetes mellitus (T2DM) is characterized by hyperglycemia, insulin resistance, and chronic inflammation (87). Fang et al. found circANKRD36 to be upregulated markedly in the peripheral blood cells of T2DM patients. Furthermore, an association was noted between circANKRD36 expression and inflammatory factors (88). Therefore, circANKRD36 may serve as a potential biomarker and be involved in inflammation in T2DM.

Similarly, Li et al. measured circRNA expression in the T cells of patients with systemic lupus erythematosus (SLE). They found hsa_circ_0045272 to be downregulated significantly. Furthermore, they demonstrated that hsa_circ_0045272 regulated apoptosis and IL-2 production negatively (89). However, the mechanisms underlying the involvement of hsa_circ_0045272 in SLE pathogenesis merits further exploration.

Numerous studies have shown that a high proportion of tumor-infiltrating lymphocytes (TILs) in the tumor microenvironment can improve clinical outcomes. Weng et al. showed that high expression of hsa_circ_0064428 is associated with a low proportion of TILs, poor survival, large tumor volume, and tumor metastasis in patients with hepatocellular carcinoma (90). These observations suggest that hsa_circ_0064428 can act as a potential immune-associated prognosis biomarker for hepatocellular carcinoma.

Overall, the roles of circRNAs in immune diseases have been studied based on large-scale microarray and RNA sequencing analyses, by which differentially expressed circRNAs were screened to further verify their functions experimentally. However, the mechanisms by which circRNAs regulate disease development merit further exploration.




PERSPECTIVES

Although circRNAs have become a hot topic in RNA research in recent years, several important areas merit investigation. For example, Dong et al. showed that circRNA can be reverse-transcribed in vivo and fused into the genome to generate a pseudogene (91). Further research is needed to elucidate the molecular mechanisms underlying circRNA trans-transcriptional translocation and the effects of pseudogenes derived from circRNAs. In addition, unlike linear mRNA, construction of overexpression vectors for circRNA is challenging because it requires splicing of the two termini of amplified fragments to generate loop structures. Moreover, data in the mouse circRNA database is incomplete, which poses specific obstacles for in vivo experiments. Finally, circRNAs in the cytoplasm, which act as microRNA sponges, have been studied widely, but circRNAs that can function through this mechanism are in the minority. Most circRNAs rarely contain so many miRNA binding sites and have low expression (24, 28), so future research should explore other mechanisms of circRNAs.

Few studies have focused on circRNAs in the immune response. Reminiscent of studies in cancer, circRNA research in immunity also requires measuring circRNA expression, and then elucidating the function of differentially expressed circRNAs and the mechanisms underlying it. Notably, circRNA localization could aid exploration of the mechanisms by which circRNAs regulate immune responses. circRNAs in the cytoplasm are likely to act as microRNA sponges, whereas circRNAs in the nucleus are likely to interact with proteins, or elicit effects by promoting/suppressing the role of their host genes (Figure 2). Excitingly, circRNAs are promising markers or drug targets for some immune diseases, which could facilitate rapid diagnosis and treatment.
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In females, the long non-coding RNA Xist drives X-chromosome Inactivation (XCI) to equalize X-linked gene dosage between sexes. Unlike other somatic cells, dynamic regulation of Xist RNA and heterochromatin marks on the inactive X (Xi) in female lymphocytes results in biallelic expression of some X-linked genes, including Tlr7, Cxcr3, and Cd40l, implicated in sex-biased autoimmune diseases. We now find that while Xist RNA is dispersed across the nucleus in NK cells and dendritic cells (DCs) and partially co-localizes with H3K27me3 in bone marrow-derived macrophages, it is virtually absent in plasmacytoid DCs (p-DCs). Moreover, H3K27me3 foci are present in only 10–20% of cells and we observed biallelic expression of Tlr7 in p-DCs from wildtype mice and NZB/W F1 mice. Unlike in humans, mouse p-DCs do not exhibit sex differences with interferon alpha production, and interferon signature gene expression in p-DCs is similar between males and females. Despite the absence of Xist RNA from the Xi, female p-DCs maintain dosage compensation of six immunity-related X-linked genes. Thus, immune cells use diverse mechanisms to maintain XCI which could contribute to sex-linked autoimmune diseases.

Keywords: Xist RNA, X-chromosome inactivation, long non-coding RNA, plasmacytoid dendritic cells, macrophages, sex differences, NK cells, interferon alpha


INTRODUCTION

In the immune system, long non-coding RNAs (lncRNAs) are being increasingly recognized as important regulators of gene expression for both innate and adaptive immune responses (1). Indeed, lncRNAs can function as regulators of immune cell differentiation, lymphocyte activation, and inflammatory responses. For example, the lncRNA Morrbid is abundantly expressed in nuclei of neutrophils, eosinophils, and monocytes, and Morrbid deletion reduces the numbers of these short-lived myeloid cells (2). Similar to Morrbid, lnc-DC is also upregulated during differentiation of common myeloid progenitors into dendritic cells (DCs), and regulates DC differentiation through cytoplasmic interactions with the transcription factor STAT3 (3). Activation of DCs and macrophages through specific TLRs results in dramatic upregulation of lincRNA-Cox2, which regulates over 500 genes encoding inflammatory molecules (4).

One of the best characterized lncRNAs is Xist, which is required for silencing the X-chromosome during X-chromosome Inactivation (XCI). Females use XCI for dosage compensation of X-linked genes between the sexes. XCI is initiated during early female mammalian embryonic development (5) by allele-specific upregulation of Xist from the future inactive X (Xi) (6–8). Xist RNA functions in cis to recruit chromatin complexes that deposit heterochromatic modifications (including H3K27me3 and H2a-ubiquitin) across the X, resulting in transcriptional silencing (9–11). During XCI maintenance, these epigenetic modifications are enriched on the Xi and contribute to its transcriptional silencing after cell division, to ensure dosage compensation of X-linked genes. In differentiating embryonic stem cells, Xist is continuously expressed from the Xi throughout the cell cycle, and Xist RNA remains tethered to the Xi of its origin throughout mitosis (12).

The majority of somatic cells maintain XCI through continuous expression of Xist from the Xi, and enrichment of Xist RNA transcripts and heterochromatin marks on the Xi are cytologically visible. Surprisingly, we have shown that mature naive T and B cells from female mice and humans lack these epigenetic modifications on the Xi. However, Xist RNA and some heterochromatin modifications are present on the Xi in in vitro activated lymphocytes (13, 14), suggesting that XCI is dynamically regulated in lymphocytes. Using RNA FISH, Xist RNA localization patterns in lymphocytes can be categorized into four classes: Type I Xist RNA patterns exhibit robust signals, Type II patterns have dispersed signals within the X-chromosome territory, Type III patterns have diffuse signals across the nucleus, and Type IV patterns lack detectible signal (14, 15). This dynamic localization of Xist RNA and heterochromatin marks suggests relaxed transcriptional silencing on the Xi, which is supported by recent observations by our group and others of biallelic expression of the X-linked genes Tlr7, Cxcr3, and Cd40l in mouse and human T and B cells (14, 16).

Based on our findings in lymphocytes, we assessed Xist RNA localization patterns on the Xi in terminally differentiated myeloid and lymphoid-derived cells. We found that NK cells and dendritic cells (DCs) have Xist RNA transcripts dispersed across the nucleus, while bone marrow derived macrophages (BMDMs) have Xist RNA pinpoints clustered at the Xi, and exhibit co-localization of Xist RNA and the heterochromatin mark H3K27me3. Interestingly, resting and activated plasmacytoid DCs (p-DCs) lack Xist RNA localization at the Xi, and most cells also lack H3K27me3. Additionally, we observed biallelic expression of Tlr7 in wildtype and disease-stage NZB/W F1 p-DCs, yet there were no sex differences with interferon alpha production, unlike in human cells. Together, these data reveal that immune cells use diverse mechanisms to maintain XCI that could contribute to sex-linked autoimmune diseases.



MATERIALS AND METHODS


Mice

Female mice (aged 2–6 months) of various backgrounds (C57BL/6, BALB/c, NZB × NZW F1) were purchased from Jackson Laboratories, and used to isolate bone marrow derived macrophages (BMDM), NK cells, dendritic cells (DCs), and plasmacytoid DCs. All mice were maintained at the Penn Vet animal facility. Animal experiments were approved by the University of Pennsylvania Institutional Animal Care and Use Committee (IACUC). Euthanasia via carbon dioxide was used for animal sacrifice prior to spleen isolation.



Fluorescence Activated Cell Sorting (FACS) Isolation of NK Cells, Lymphoid and Myeloid Dendritic Cells From Spleen

Spleens were harvested on ice in FACS buffer (PBS/3%FCS) and single-cell suspensions were prepared by meshing cells through 40-um strainers, then cells were stained with antibodies for fluorescence activated cell sorting (FACS) analyses. Briefly, cells were stained with fluorochrome-conjugated or biotinylated antibodies to mouse. Staining was performed in PBS/1%BSA containing mouse IgG Fc fragments (Jackson Immunoresearch, Cat # 115-006-020). Dead cells and doublets were excluded and sorting was performed on a FACS Aria II machine using the following markers at a concentration of 1:100 unless otherwise specified: NK cells: TCRb+CD19 (H57-597/6D5, BioLegend), NK1.1 (PK138, BD Pharmingen), NKP46 (29A1.4, eBiosciences). m-DCs: CD11c (N418, BioLegend), CD11b (M1/70, eBiosciences, 1:200). L-DCs: CD8a (53-6.7, eBiosciences). Data were analyzed using FlowJo software.



Isolation and in vitro Stimulation of Plasmacytoid Dendritic Cells (p-DCs) and Bone Marrow Derived Macrophages

Plasmacytoid dendritic cells (p-DCs) were isolated from spleen and peripheral lymph nodes by negative selection using a plasmacytoid dendritic cell isolation kit (#130-107-093, Miltenyi Biotec). p-DCs were cultured in RPMI-1640 containing 2 mM L-glutamine, 10% FCS, 1% Pen/Strep and 50 μM β-mercaptoethanol. P-DCs were stimulated with 1 μM CpG (ODN 1826, InvivoGen) and cultured for 3 days.

Bone marrow was isolated from female 6 week old C57BL/6J mice and cultured in complete DMEM (10% FBS, 1% NaPyruvate, 1% HEPES, 30% L929 conditioned medium) and re-fed on day 4. Macrophages were isolated 8 days after differentiation by washing petri culture dishes with Mg2+ and Ca2+ EDTA-free 4C PBS. Under these culture conditions we estimate that the population of BMDMs is 98% pure using flow cytometry (data not shown). Cells were re-plated with complete DMEM with 10% L929 conditioned media and stimulated with either 1 μM CpG (ODN 1826, InvivoGen) or 1 μg/mL LPS (Sigma) for 3 days.



Xist RNA FISH, Tlr7 RNA FISH, and Immunofluorescence Detection of H3K27me3

Sequential RNA fluorescence in situ hybridization (FISH) and immunofluorescence (IF) for immune cells was performed following established protocols for splenocytes (14, 15), where Xist RNA FISH was performed first followed by IF for the same locations on the slides. For Xist RNA FISH, two Cy3-labeled 20-nucleotide oligo probes were designed to recognize regions within Xist RNA exon 1 (synthesized by IDT). For IF, cells were blocked with 0.2% PBS-Tween, 0.5% BSA. Histone H3K27me3 (Active Motif; Cat. #39155) was diluted 1:100 for IF. Single-molecule RNA FISH for Tlr7 was performed according to Stellaris protocols, using Cy3-labeled oligo probes for exonic regions (Stellaris), and FITC-labeled oligo probes for intronic regions (Stellaris). Images were obtained using a Nikon Eclipse microscope and were categorized by the four types of Xist RNA localization patterns as described previously (14, 15). Statistical significance was calculated using two-tailed t-tests and ANOVA.



Analysis of Gene Expression and IFN-α Protein Production in p-DCs

To determine levels of X-lined and IFNα gene expression, p-DCs were isolated from spleens of (NZB × NZW) F1 [NZB/W F1] mice by negative selection using a plasmacytoid dendritic cell isolation kit (#130-107-093, Miltenyi Biotec). p-DCs were cultured as described above and stimulated with 10 μg/mL R848 (Resiquimod, Sigma Aldrich) or 1 μM CpG (InvivoGen) and cultured for 6 h. Cells and supernatants were collected after 6 h of culturing (NS: unstimulated; R848, CPG: activated). RNA was isolated using TRIzol (Invitrogen), and cDNA was synthesized with qScript cDNA SuperMix (Quanta). qRT-PCR was performed using the following primer pairs [For Seq 5′-3′; Rev Seq 5′-3′]: Rpl13a [AGC CTA CCA GAA AGT TTG CTTAC; GCT TCT TCT TCC GAT AGT GCA TC], Xist [GCT GGT TCG TCT ATC TTG TGGG; CAG AGT AGC GAG GAC TTGA AGAG], Cxcr3 [TAC CTT GAG GTT AGT GAA CGT CA; CGC TCT CGT TTT CCC CAT AATC], Cfp [TTC ACC CAG TAT GAG GAG TCC; GCTG ACC ATT GTG GAG ACCT], Irak1 [TCC TCC ACC AAG CAG TCA AG; AAA ACC ACC CTC TCC AAT CCT], Il2rg [CTC AGG CAA CCA ACC TCAC; GCT GGA CAA CAA ATG TCT GGT AG], Msn [GGCT TCC CGT GGA GTG AAA TC; GTC CGG GGC CTT TTT GTC AA], Tlr7 [ATG TGG ACA CGG AAG AGA CAA; GGT AAG GGT AAG ATT GGT GGTG], Ifna2 [TAC TCA GCA GACC TTG AAC CT; CAG TCT TGG CAG CAA GTT GAC], Ccl4 [TTC CTG CTG TTT CTC TTA CACCT; CTG TCT GCC TCT TTT GGT CAG], Irf7 [CTC CTG AGC GCA GCC TTG; GTT CTTAC TGC TGG GGC CAT], Ifit2 [GGA GAG CAA TCT GCG ACAG; GCT GCC TCA TTT AGA CCT CTG].

To determine expression levels, the housekeeping gene Rpl13a was used for normalization (2∧ΔΔCT). Combined qRT-PCR results are shown from three independent experiments.

Total serum IFNα from in vitro p-DCs cell culture supernatants was measured using a VeriKine Mouse IFN alpha ELISA Kit (42120, pbl assay science). Supernatants were collected after 6 h of culture and were undiluted for ELISA. The plate was read at 450 nm immediately after development and was analyzed using protein standards provided in the kit (400, 200, 100, 50, 25, 12.5, 0 pg/mL).




RESULTS


NK Cells Predominantly Lack Xist RNA on the Xi and Xist RNA Is Dispersed Across the Nucleus in Dendritic Cells

To determine if XCI is dynamically regulated in NK cells, lymphoid-DCs (L-DCs), and myeloid DCs (m-DCs) each of these cell types were isolated from female mouse spleens (Figure 1A). These cells are derived from common lymphoid progenitors and common myeloid progenitors, which reside in the bone marrow, and are known to have robust Xist RNA “clouds” on the Xi (15). We used fluorescence activated cell sorting (FACS) to isolate each population following the surface marker profiling shown in Figure 1B, then immediately cytospun and fixed the cells on glass slides, which preserves nuclear RNA signals. We used Cy3-labeled short oligo probes for Xist to perform RNA FISH, and classified the percentage of cells for each localization pattern (Types I-IV) (14, 15). NK cells predominantly lacked detectible Xist RNA signals (Type IV) and 20–50% of cells exhibited Type III patterns with diffuse Xist RNA pinpoints dispersed across the nucleus (Figures 1C,D). M-DCs and L-DCs had about 10% Type II cells, where Xist RNA pinpoints are localized in a nuclear territory encompassing the inactive X (Xi), and 40–90% Type III cells (Figure 1D). These results show that NK cells have less Xist RNA localized to the Xi compared to m-DCs and L-DCs, and suggest that NK cells may have more genes that escape XCI than DCs.
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FIGURE 1. Xist RNA transcripts are mostly absent from the Xi in female NK cells and DCs. (A) Schematic showing the origin for the immune cells examined here. Hematopoietic stem cells (HSCs); common lymphoid progenitors (CLPs); common myeloid progenitors (CMPs); plasmacytoid dendritic cells (p-DCs); myeloid-derived DCs (m-DCs); lymphoid-derived DCs (L-DCs). (B) Sorting strategy for isolation of m-DCs (MHC-II+, CD11c+, CD11b+, CD8alo), L-DCs (MHC-II+, CD11c+, CD11b+, CD8ahi), and NK cells (NK1.1+) using FACS. Spleens from two female mice were pooled for each experiment (repeated twice), and flow results from experiment 1 are shown. (C) Xist RNA FISH analyses of NK cells, m-DCs, L-DCs, using Cy3 labeled oligo probes. (D) Quantification of Xist RNA localization patterns (Types I–IV) for each experiment. The total number of nuclei counted for each cell type is shown above the column. Statistical significance was determined comparing each type of Xist RNA pattern (Types I–IV) for each cell type, using a two-tailed t-test. The comparison between NK cells and m-DCs for Type II patterns was the only significant difference (p < 0.024). NK cells and L-DCs had no significant differences in Xist RNA localization patterns.





Xist RNA and H3K27me3 Modifications Are Localized to the Xi in Bone Marrow Derived Macrophages (BMDM)

Cytokine production and phagocytic activity of macrophages exhibits sex-related differences (17, 18). As the expression of X-linked genes could contribute to these functional differences, we asked whether Xist RNA and H3K27me3 are localized to the Xi in macrophages. We cultured BMDMs for 8 days after isolation, and then activated the cells for 3 days using CpG or LPS. Unstimulated BMDMs had mostly Type II Xist RNA patterns (40–90%) and some Type III (~5–10%) (Figures 2A,B). Stimulation with either CpG or LPS increased the number of Type I Xist RNA patterns for about 5–10% of cells, yet the percentage of Type II and Type III patterns did not significantly change (Figures 2A,B). The number of Type I cells decreased by day 3 for both CpG and LPS stimulation, and Xist RNA signal persisted longer and in more cells with CpG stimulation (Figures 2A,B). Next, we examined the co-localization of Xist RNA signals with H3K27me3 foci using sequential RNA FISH followed by IF. As shown in Figures 2C,D, Xist RNA signals co-localized with a focus of H3K27me3 in 30–50% of BMDMs, and in vitro stimulation did not change the level of co-localization (Figure 2C). About 20–50% of cells had an Xist RNA signal yet lacked H3K27me3 foci, and very few cells (5–12%) had a H3K27me3 focus and lacked Xist RNA signal (Figures 2C,D). These results suggest that Xist RNA localization at the Xi is necessary for H3K27me3 enrichment on this chromosome in BMDMs.
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FIGURE 2. Xist RNA and H3K27me3 foci are localized to the Xi in most female BMDMs. (A) Xist RNA FISH for resting BMDMs and in vitro stimulated cells (using 1 μM CpG), collected 3 days after stimulation. (B) Quantification of Xist RNA localization patterns for BMDMs stimulated with either 1 μM CpG or 1 μg/mL LPS. The total number of nuclei counted for each cell type is shown above the column. Statistical significance for comparisons of resting (day 0) vs. stimulated cells was performed for each type of Xist RNA localization pattern (Types I–IV) using a two-tailed t-test, and the only significant difference was for CpG-stimulated Type I cells (p < 0.005). (C) Sequential Xist RNA and H3K27me3 IF for resting and stimulated BMDMs. White arrows indicate H3K27me3 foci. (D) Quantification of co-localization patterns for Xist RNA and H3K27me3 foci. Results from two independent experiments are shown. The total number of nuclei counted for each cell type is shown above the column. Statistical significance for comparisons of resting (day 0) vs. stimulated cells was performed for each type of localization pattern using a two-tailed t-test, and the only significant difference was for CpG-stimulated Type I cells (p < 0.005).





Plasmacytoid DCs Lack Xist RNA and H3K27me3 foci on the Xi and Biallelically Express Tlr7

Plasmacytoid DCs (p-DCs) are a distinct lineage of DCs that produce interferon (IFN) in response to viral nucleic acids detected by TLR7 and TLR9 (19). TLR7-mediated stimulation of female plasmacytoid DCs (p-DCs) from human females results in higher levels of IFN regulatory factor 5 (IRF5) and IFNα compared to p-DCs from males (20, 21). TLR7 is an X-linked gene that is prone to escape XCI in female B and T cells (14, 16), and exhibits elevated expression in some female immune cells (22). In female Systemic Lupus Erythematosus (SLE) patients, p-DCs are a major source of aberrant IFN production that contributes to disease progression (23). We asked whether Xist RNA was localized to the Xi in p-DCs pooled from lymph nodes and spleen using RNA FISH. Surprisingly, we did not detect any Xist RNA signal in p-DCs, and 100% of the cells were Type IV (Figures 3A,B). Xist RNA signals were also absent from the Xi and the nucleus in LPS or CpG-stimulated p-DCs (Figures 3A,B). Next, we investigated whether the repressive chromatin modification H3K27me3, which localizes to the Xi in fibroblasts and some activated lymphocytes, was present in p-DCs. Using sequential RNA FISH followed by immunofluorescence (IF) detection, we found that the majority of p-DCs lacked H3K27me3 foci (Figure 3C) and that 10–20% of p-DCs had a detectible focus of H3K27me3 (Figure 3D). In sum, p-DCs lack Xist RNA localization to the Xi and enrichment of H3K27me3, suggesting that the chromatin of the Xi may be prone to reactivation of some X-linked genes.
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FIGURE 3. Female plasmacytoid DCs lack Xist RNA at the Xi and exhibit biallelic expression of Tlr7 in some cells. (A) Xist RNA FISH for resting p-DCs and in vitro activated p-DCs after days 1–3 of culture. P-DCs were isolated from spleen and lymph nodes from female mice, in two independent experiments and stimulated with CpG. For the second isolation, cells were stimulated for 3 days before collection for RNA FISH. (B) Quantification of Xist RNA localization patterns for p-DCs showing that all p-DCs are missing Xist RNA on the Xi. The total number of nuclei counted for each cell type is shown above the column. (C) Sequential Xist RNA FISH followed by immunofluorescence (IF) for H3K27me3 enrichment at the Xi. (D) Quantification of co-localization patterns for Xist RNA and H3K27me3 foci. Results from two independent experiments are shown. The total number of nuclei counted for each cell type is shown above the column. (E) Single-molecule RNA FISH for Tlr7 transcripts using wildtype p-DCs from healthy mice. Oligo probes specific for exonic Tlr7 were Cy3-labeled (red), and intronic Tlr7 probes were FITC-labeled (green). White arrows indicate pinpoint signals for nascent Tlr7 expression from the X-chromosome, with signals from both exonic and intronic probes. (F) single-molecule Tlr7 RNA FISH in p-DCs from NZB/W F1 mice with SLE-like disease. Disease development was assessed by proteinuria and DNA autoantibodies prior to p-DC isolation from spleen and lymph nodes. White arrows indicate pinpoint signals for nascent Tlr7 expression from the X-chromosome, with signals from both exonic and intronic probes. (G) Schematic for counting allele-specific expression, and quantification of monoallelic and biallelic Tlr7 expression in wildtype and NZB/W F1 p-DCs. The percentages of total numbers for biallelic and monoallelic expressing cells are shown in parentheses.



To determine whether the absence of Xist RNA localization to the Xi affects Tlr7 expression in p-DCs, we performed RNA FISH using oligo probes specific for the exonic and intronic regions of Tlr7. Resting p-DCs had low yet detectible signals for Tlr7 RNA: the majority of cells lacked Tlr7 RNA pinpoints, yet we could identify some cells with monoallelic (one pinpoint) and also biallelic (two pinpoints) expression (Figure 3E). Next, we isolated p-DCs from (NZB × NZW) F1 female mice (NZB/W F1), which is a high quality model of spontaneous SLE-like disease with a strong female bias. Disease was assessed by proteinuria, serum double strand DNA antibodies, and sudden weight loss (24). NZB/W F1 female mice have increased numbers of p-DCs and produce more IFNα compared to healthy female C57BL/6 mice (25). The p-DCs from diseased female mice had more robust exonic Tlr7 signals and more biallelic Tlr7 expression compared to healthy mice (Figures 3F,G). Thus, the absence of Xist RNA and H3K27me3 enrichment on the Xi in p-DCs correlates with elevated expression of Tlr7 during SLE-like disease.



Female p-DCs do not Require Xist RNA Localized on the Xi for X-linked Gene Dosage Compensation

Because female p-DCs lacked Xist RNA and H3K27me3 enrichment at the Xi (Figure 3), we first asked whether Xist RNA was transcribed in these cells. We isolated splenic p-DCs from males and females, and stimulated cells using two methods (CPG or R848), then isolated total RNA for qRT-PCR. We also included naïve and stimulated B cells for comparison, as Xist RNA levels are similar between naïve B cells that lack Xist RNA localization at the Xi and stimulated cells which have robust Xist RNA clouds (15). Xist is expressed at similar levels in unstimulated and stimulated female pDCs, regardless of the method of activation (Figure 4A). Thus, Xist transcription and localization are uncoupled in pDCs, and this may account for the absence of H3K27me3 enrichment on the Xi in these cells.


[image: image]

FIGURE 4. p-DCs do not exhibit a sex difference with IFNα production and X-linked genes are dosage compensated in the absence of Xist RNA localization at the Xi. (A) Relative quantity (2∧ΔCt) of Xist RNA in unstimulated male and female pDCs, and cells stimulated with CPG, R848. Female B cells (naïve and CPG stimulated) were included as positive controls. (B) Relative quantity (2∧ΔΔCt) of four IFNα signature genes. P-DCs were activated with R848 for 6 h or were unstimulated (NS). The housekeeping gene Rpl13a was used for normalization, and male unstimulated samples (NS) were normalized to 1. (C) Concentration of IFNα protein produced by cultured male and female p-DCs from NZB/W F1 mice measured by ELISA. (D) Relative quantity (2∧ΔΔCt) of six X-linked immune genes from male and female splenic p-DCs from NZB/W F1 mice. P-DCs were activated with R848 for 6 h or were unstimulated (NS). The housekeeping gene Rpl13a was used for normalization, and unstimulated samples (NS) were normalized to 1.



We next asked if female pDCs from NZB/W F1 mice produced more of the X-linked Tlr7 gene than males, and if this resulted in higher levels of IFNα. To determine whether p-DCs exhibited sex-biased gene expression of IFNα and IFNα signature genes, we isolated splenic p-DCs from male and female NZB/W F1 mice at early and late stage disease. We cultured the cells in the presence or absence of the Tlr7 agonist R848 for 6 h, then harvested cells for RNA isolation. We used qRT-PCR to determine the steady state levels for the IFNα signature genes Ifna2, Ccl4, Irf7, and Ifit2, which are expressed in p-DCs (26, 27). We saw no significant sex differences between the expression of these genes in female and male p-DCs stimulated with R848 (Figure 4B).

Higher levels of IFNα production have been reported in p-DCs from human females compared to males (20, 21). Next, we asked whether pDCs from NZB/W F1 mice exhibited sex differences with IFNα protein levels. To determine if female p-DCs produced more IFNα than male p-DCs, we determined the IFNα concentration in supernatants of cultured male and female p-DCs (resting and in vitro activated using R848) by ELISA. While the IFNα concentrations were variable, we saw no significant increase in IFNα production in female p-DCs (Figure 4C), suggesting that, unlike in humans, murine female and male p-DCs produce similar levels of IFNα.

Next, we asked whether female p-DCs, which lack Xist RNA at the Xi, exhibit greater expression of X-linked genes known to be subject to XCI. We performed qRT-PCR for six X-linked immune genes expressed in p-DCs from male and female NZB/W F1 mice. We did not observe any significant sex differences with the expression of Cxcr3, Cfp, Irak1, Il2rg, Msn, and Tlr7 (Figure 4D). Together, these results suggest that female mouse p-DCs are capable of maintaining X-linked gene dosage compensation in the absence of Xist RNA localized at the Xi.




DISCUSSION

Taken together, our findings reveal wide diversity in the localization of the epigenetic modifications Xist RNA and H3K27me3 at the Xi in myeloid and lymphoid lineages. This new insight may have important implications for understanding how X-linked gene expression from the Xi is regulated in diverse immune cell populations. NK cells have faint and dispersed Xist RNA signals across the nucleus (Type III) and nuclei that lack Xist RNA (Type IV), which suggests that some X-linked genes in these cells may be prone to reactivation. Dosage of the X-linked gene XIAP affects NK cell function in patients with X-linked lymphoproliferative syndrome presenting with chronic inflammatory bowel disease (28), which underscores the importance of X-linked gene expression in NK cells. We found that resting BMDMs, unlike lymphocytes, have predominantly Type II Xist RNA patterns, and that in vitro stimulation with CpG generates few Type I cells. Thus, the epigenetic features of the Xi in female BMDMs more closely resembles that of female fibroblasts, but with less robust Xist RNA clouds. Xist RNA localization on the Xi is correlated with H3K27me3 foci in BMDMs, which is observed in fibroblasts (9), differentiating mouse embryonic stem cells (29), and activated B cells (15).

We also found that splenic m-DCs and L-DCs have more robust and detectible Xist RNA signals compared to NK cells, with most of these DCs classified as Type III with dispersed Xist RNA across the nucleus and some cells being Type II with clustered Xist RNA pinpoints. In contrast, p-DCs are completely distinct from other DCs, lymphocytes, and BMDMs as they lack detectible Xist RNA and are exclusively Type IV. However, we observed that 10–20% of p-DCs have H3K27me3 foci, which suggests that Xist RNA localization at the Xi is not required for H3K27me3 enrichment in these cells. It is possible that the 80–90% of p-DCs that lack Xist RNA/H3K27me3 enrichment are primed for gene-specific reactivation from the Xi. In support, we observe biallelic expression of Tlr7 in some p-DCs from both healthy and disease-state NZB/W F1 female mice. These results support a model where Xist RNA and heterochromatin marks localized on the Xi promote transcriptional silencing, and gene reactivation may occur from the Xi more readily when these epigenetic modifications are missing.

Despite the absence of Xist RNA transcripts on the Xi, it was surprising that female mouse p-DCs maintained dosage compensation of six X-linked immune genes, including Tlr7. We hypothesize that the fidelity of transcriptional silencing of these genes on the Xi is likely maintained by DNA methylation and additional heterochromatin marks (besides H3K27me3) in female p-DCs. It is possible that there are X-linked genes besides the six examined here that specifically escape XCI in female mouse p-DCs. Future experiments that detect allele-specific expression from the Xi will reveal whether Xist RNA localization influences gene reactivation in p-DCs. It has been reported that human female p-DCs have elevated TLR7 expression and increased IFNα production compared to male cells (21). We were surprised to find that male and female p-DCs from NZB/W F1 mice express similar levels of Tlr7, and that IFNα concentrations from in vitro cultured cells did not exhibit sex differences. Our findings suggest that the Xi in female pDCs is more transcriptionally silent than the human Xi in p-DCs, which is supported by the observations that the human Xi from various tissues contains more genes that escape XCI (15–25% X-linked genes escape XCI) compared to the mouse Xi (30, 31). We cannot exclude the possibility that human p-DCs may also lack Xist RNA on the Xi, which contributes to female-specific overexpression of TLR7 in human p-DCs, and that increased expression could come from both the Xa and Xi. TLR7 has been recently shown to escape XCI in healthy human B cells (16), and it is possible that TLR7 might be bi-allelically expressed in human p-DCs. Additional studies examining the allelic expression profiles of X-linked genes in human p-DCs are necessary to reveal the origins of female-biased TLR7 expression. In conclusion, our results demonstrate that female murine immune cells use diverse mechanisms to maintain XCI, which may underlie sex differences with some immune responses and the observed sex-bias in predisposition to autoimmune diseases.
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Recent discovery that much of the mammalian genome does not encode protein-coding genes (PCGs) has brought widespread attention to long noncoding RNAs (lncRNAs) as a novel layer of biological regulation. Enhancer lnc (elnc) RNAs from the enhancer regions of the genome carry the capacity to regulate PCGs in cis or in trans. Spotted fever rickettsioses represent the consequence of host infection with Gram-negative, obligate intracellular bacteria in the Genus Rickettsia. Despite being implicated in the pathways of infection and inflammation, the roles of lncRNAs in host response to Rickettsia species have remained a mystery. We have profiled the expression of host lncRNAs during infection of susceptible mice with R. conorii as a model closely mimicking the pathogenesis of human spotted fever rickettsioses. RNA sequencing on the lungs of infected hosts yielded reads mapping to 74,964 non-coding RNAs, 206 and 277 of which were determined to be significantly up- and down-regulated, respectively, in comparison to uninfected controls. Following removal of short non-coding RNAs and ambiguous transcripts, remaining transcripts underwent in-depth analysis of mouse lung epigenetic signatures H3K4Me1 and H3K4Me3, active transcript markers (POLR2A, p300, CTCF), and DNaseI hypersensitivity sites to identify two potentially active and highly up-regulated elncRNAs NONMMUT013718 and NONMMUT024103. Using Hi-3C sequencing resource, we further determined that genomic loci of NONMMUT013718 and NONMMUT024103 might interact with and regulate the expression of nearby PCGs, namely Id2 (inhibitor of DNA binding 2) and Apol10b (apolipoprotein 10b), respectively. Heterologous reporter assays confirmed the activity of elncRNAs as the inducers of their predicted PCGs. In the lungs of infected mice, expression of both elncRNAs and their targets was significantly higher than mock-infected controls. Induced expression of NONMMUT013718/Id2 in murine macrophages and NONMMUT024103/Apol10b in endothelial cells was also clearly evident during R. conorii infection in vitro. Finally, shRNA mediated knock-down of NONMMUT013718 and NONMMUT024103 elncRNAs resulted in reduced expression of endogenous Id2 and Apl10b, demonstrating the regulatory roles of these elncRNAs on their target PCGs. Our results provide very first experimental evidence suggesting altered expression of pulmonary lncRNAs and elncRNA-mediated regulation of PCGs involved in immunity and during host interactions with pathogenic rickettsiae.

Keywords: Rickettsia, long non-coding (lnc) RNA, enhancer long non-coding (elnc) RNA, RNA sequencing, transcription start site, inhibitor of DNA binding 2 protein, apolipoprotein L 10b, host immune responses


INTRODUCTION

Arthropod-borne Rickettsia species include obligate intracellular, Gram-negative bacteria known to cause spotted fever and typhus groups of rickettsial dieases in humans (1). The clinical spectrum of spotted fever group (SFG) rickettsioses varies in severity from mild to fatal cases of Rocky Mountain spotted fever (RMSF) caused by Rickettsia rickettsii, Mediterranean spotted fever (MSF) due to R. conorii, and Queensland tick typhus following infection with R. australis (1). A majority of human rickettsial diseases involve transmission from arthropod vectors, for example naturally circulating infected ticks in case of R. rickettsii and R. conorii. Due mainly to the predilection of pathogenic rickettsiae to target endothelial cells lining the microvasculature in their mammalian hosts and cell-to-cell spread during the course of infection (1, 2), a prominent feature of pathogenesis is the innate immune activation and inflammatory perturbations of microvascular endothelium, leading to complications such as ocular inflammation or retinitis, myocarditis, endocarditis, pulmonary, and cerebral edema due to fluid imbalance associated with the derangements of endothelial barrier, and multi-organ failure in severe cases (1–6). Employing both patient samples and established experimental models of infection, a number of studies have delved into the definition of host responses during rickettsial infections (7, 8), but the mechanisms underlying the activation and regulation of such immune mechanisms remain largely unknown.

Functional annotation of the mammalian genome (FANTOM) and Encyclopedia of DNA Elements (ENCODE) projects have challenged the central dogma of molecular biology by suggesting that non-protein-coding regions carry multiple overlapping codes that profoundly affect gene expression and other cellular processes. Notably, protein-coding sequences occupy <2% of the genome in mammals, whereas a much larger fraction is transcribed into non-coding RNAs (ncRNAs) (9–12). A majority of ncRNA transcripts are functionally active RNAs broadly classified into short non-coding RNAs (miRNA) of less than and long non-coding (lnc) RNAs of more than 200 nucleotides (13, 14). Short ncRNAs are now established as highly versatile molecules capable of interacting with other RNAs, DNA, or a vast repertoire of proteins, highlighting their regulatory potential (15). In recent years, lncRNAs have also been implicated in diverse major biological processes, including immune regulation, cell cycle, apoptosis, post-transcriptional, and translational regulation, epigenetic modification, and nuclear genome organization, highlighting their regulatory activities in the determination of host-pathogen interactions (12). Among these, an important sub-class of lncRNAs derived from the enhancer loci of the genome are designated as enhancer long non-coding (elnc) RNAs or eRNAs (16–19). Active enhancers are traditionally considered as the principal regulatory components of the genome capable of enabling cell or tissue type and cell-cycle specific gene expression in cis and trans. As such, elncRNA(s) have received considerable attention by virtue of their ability to control protein coding genes (PCGs) by locus control mechanism (20). Potential elncRNAs are generally characterized by higher occupancy of chromatin monomethylation of histone H3 at lysine 4 (H3K4Me1) (signature of enhancer loci) when compared to trimethylation of histone H3 at lysine 4 (H3K4Me3) (signature of promoter loci) and other epigenetic signatures such as RNA pol II, DNaseI hypersensitivity site, and p300 binding sites at or around the transcription start site (TSS). Enhancer elements in the genome play an active role in controlling the transcription of PCGs by stabilizing enhancer-promoter interactions (16, 21).

Although NCBI chromatin and epigenetic gene expression omnibus (GEO) databases have enabled the identification of cell- and tissue-specific active enhancers in both human and mouse (22, 23), active elncRNAs are currently characterized in only a limited numbers of cells and tissues and their functional roles in the host responses and pathogenesis of rickettsial diseases remain poorly understood. In the present study, we have elucidated lncRNA signatures of the host lungs in a murine model of rickettsial disease and identified two elncRNAs that may be involved in the host response to infection.



MATERIALS AND METHODS


Preparation of R. conorii Stocks

Monolayers of cultured Vero cells as the host were infected with R. conorii (Strain Malish 7) to allow for intracellular growth and replication of rickettsiae. Heavily-infected cells (infection of ≥80% of cells with ≥50 intracellular rickettsiae) were gently lysed using glass beads for the isolation and purification of rickettsial stocks by differential centrifugation. The rickettsial preparations were stored at −80°C by slow freezing as aliquots of ≤ 0.5 ml and gently thawed on ice to avoid loss of viability. The infectious titer of stocks thus prepared was determined by rickettsial citrate synthase (gltA)-based quantitative PCR and plaque formation assays using standard protocols and procedures (24, 25).



Mice and Infection

To identify lncRNA transcripts expressed during R. conorii infection, we employed an established mouse model of infection (26). C3H/HeN mice were obtained from the Jackson Laboratory and housed in an ABSL3 laboratory suite. Following acclimatization, the animals were infected with a high dose of R. conorii (2.25 × 105 pfu/mouse) administered through the tail vein injection. The control group of animals received identical volume of saline intravenously (26). The animals were then monitored at least once daily for overt signs of disease (ruffled fur, hunched posture, and photophobia) and the body weights were recorded. On day 3 post-infection, mice were euthanized and the lungs were removed aseptically. The tissues thus collected were either snap-frozen or stored at −20°C in RNAlater™ solution. All the animal procedures were performed in accordance to the National Institutes of Health Guide for the Care and use of Laboratory Animals, and were maintained by the approval of Institutional Animal Care and Use Committee at the University of Texas Medical Branch (UTMB) (protocol #1109042). The University has a file with the Office of Laboratory Animal Welfare and an approved Assurance Statement (#A3314-01). Use of any cell line in this study was exempt by Institutional Review Board (IRB), and approved by Institutional Biosafety committee (IBC), UTMB.



RNA Extraction and cDNA Library Preparation

Total RNA from lung tissues was extracted using TRIzol reagent according to the manufacturer's instructions (Invitrogen). RNA samples were subjected to treatment with DNaseI (NEB) to remove any contaminating DNA and then enriched with Ribo-Zero rRNA Removal kit (Illumina). Concentration of RNA in sample preparations using the MultiSkan Go UV/Vis instrument for microsample analysis (Thermo Scientific) and the quality of RNA was evaluated on a bioanalyzer (Agilent Technologies). The samples with an RNA integrity number (RIN) of >9 were subjected to RNA-sequencing (12). Briefly, RNA fragments of 50 bases were generated by incubating purified total RNA in a fragmentation buffer (Ambion) and fragmented RNA was then ligated with 5′ and 3′-adaptors using a T4 RNA ligase (NEB). Adaptor-ligated RNAs were reverse transcribed and subjected to PCR amplification with barcoded primers (Illumina) (27, 28). Finally, amplified cDNA libraries were purified using standard gel purification procedures.



RNA Sequencing, Mapping, and Data Analysis

RNA sequencing was performed on an Illumina HiSeq 1500 at the Next Generation Sequencing Core facility at the UTMB. Briefly, 50 base long reads were obtained from the RNA derived from the lungs of R. conorii-infected and uninfected control (n = 3 for each) mice. The first 14 bases of the reads were trimmed and only reads with high base quality (phred score >15) were used for downstream analysis. All high quality reads were then grouped according to their designation as infected or control. To identify ncRNAs, all reads were first mapped to Mus musculus Ref-seq (mm9) genome (to remove reads from mRNAs), and the remaining unmapped reads were then mapped to known mouse ncRNA transcripts in the NONCODE (NONCODE_V4) database with an allowance of up to two mismatches employing CLC Genomic Workbench 9.0.1 (http://www.clcbio.com) RNA-sequencing Analysis tool. The RNA-sequencing data were normalized by calculating “reads per kilobase million” (RKPM) as described earlier (12). Expression of all mRNA and ncRNA transcripts was determined in each infected sample by dividing the normalized reads from R. conorii-infected sample with those from the corresponding mock-infected sample. Mann–Whitney U-Test was used to compare the differences in relative abundance of identified lncRNA and mRNA transcripts between groups. We next applied Min/Max method to identify the expression of potential lncRNA candidates and their nearby PCGs. Up-regulation of lncRNA transcripts and/or PCGs was determined as the ratio of the lowest normalized reads in the infected group to the highest normalized reads in the control group (n = 3). Conversely, down-regulation of lncRNA transcripts and/or PCGs was ascertained by dividing the highest normalized reads in the infected group with the lowest normalized reads of the sample in the uninfected control group (n = 3 for each group). The FASTQ files for RNA sequencing data were submitted to GenBank (Accession number GSE121808).



Quantitative Real-Time PCR (qRT-PCR)

Approximately 1 μg of RNA from mock and R. conorii-infected lungs was reverse transcribed using a cDNA Synthesis Kit (Applied Biosystems). The cDNA was subjected to qPCR using SYBR Green as the reporter on a StepOnePlus instrument (Applied Biosystems). PCR reactions were performed in triplicate using the primer sequences listed in Supplementary Table 3. The datasets were normalized using 18S RNA as the housekeeping gene. The levels of expression and relative quantification were determined via calculations based on the 2−ΔΔCt method (12).



Cataloging of lncRNAs

To catalog lncRNAs, we captured the strand of origin, nature of origin, chromosomal origin, number of exons, and lengths of all the differentially expressed lncRNAs from NONCODE_V4 database. We grouped lncRNAs based on their strand of origin (sense or anti-sense), source of origin (chromosome number 1–20 and mitochondrial DNA), nature of origin [sense-exonic, sense intronic, antisense, antisense-exonic, antisense intronic and LINC (long intergenic non-coding) RNA], exonic composition (uni-exonic, bi-exonic and multi-exonic), and the length of transcripts (length ~200–500, 501–2,000, 2,001–5,000, and ≥5,001 bp) as described earlier (12).



TSS Evidence and Filtering of Up-Regulated lncRNA Transcripts

We utilized UCSC genome browser to further categorize up-regulated lncRNA transcripts based on their origin and orientation to the nearby PCGs. We cataloged them into “head to head,” “head to tail,” “tail to tail,” and “tail to head” orientation, and all these classifications were utilized for selection of transcripts for further downstream analysis (29).

The TSSs of lncRNAs and nearby PCGs as reported in the NONCODE database and UCSC genome browser (www.genome.ucsc.edu), respectively, were used to compute the distance of lncRNAs to the nearest PCGs for downstream filtering of transcripts. To identify up-regulated elncRNAs, lncRNA transcripts originating from sense-exonic, sense intronic, antisense to the PCGs, antisense-exonic, antisense intronic and LINC transcripts for which TSS are within a 2 kb window of TSS or transcription end site (TES) of nearby PCGs (29, 30), were excluded from the analysis. The remaining lncRNA transcripts were analyzed for chromatin and epigenetic signatures as described below.



Analysis of ChIP-Seq GEO Data for Chromatin and Epigenetic Signatures

We performed quantitative assessment of chromatin signatures H3K4me1 and H3K4me3 around the TSS of up-regulated lncRNAs to identify elncRNAs. Briefly, ChIP-Seq datasets for H3K4me1 (GSM769013) and H3K4me3 (GSM769012) in the mouse lung were downloaded from the NCBI GEO database (http://www.ncbi.nlm.nih.gov/gds). The genomic sequence of 4 kb around the TSS of filtered lncRNAs was extracted and mapped to the ChIP-seq datasets using Samtools. The reads were normalized by subtracting the reads of lung input (GSM 918739) within same 4 kb window. Based on the profile of chromatin signatures around the TSS of lncRNAs, we cataloged them into either enhancer or promoter (or canonical) lncRNAs. To identify active elncRNAs in the mouse lung, we utilized GEO data for RNA Pol II (GSM918724), p300 co-activator binding site (GSM722862), DNaseI hypersensitivity site (GSM1014194), and CTCF (CCCTC binding protein) binding sites (GSM918722). The mapping of reads was performed with an allowance of upto two base mismatches, and all reads mapping within the 4 kb window around the TSS were used for identification of active elncRNAs as described earlier (31).



Analysis of Hi-3C GEO Data and qRT-PCR

To determine the interaction(s) between an active elncRNA and its nearby PCGs, we applied a combinatorial approach based on the analysis of high throughput sequencing of Chromosome Conformation Capture (Hi-C) and virtual 4C profiles by 3D Epigenome browser (www.3dgenome.org). We uploaded the Hi-C tracks to identify the signals for interactions between the coordinates of elncRNAs and potential PCGs. For further confirmation, we utilized visualization of virtual 4C profiles to identify the location of genomic contact loci of elncRNA in relation to the anchoring point for the promoter of nearby PCGs (32, 33). We next performed qRT-PCR for active elncRNAs and their targets on the RNA from infected mouse lungs to investigate the possibility of correlative changes in their expression. The primer sequences for qRT-PCR are listed in Supplementary Table 3.



Cell Culture and Infection

Murine RAW264.7 macrophages, NIH3T3 fibroblasts, and SV40-transformed mouse endothelial cells (SVEC) 4-10 were maintained at 37°C with 5% CO2 in Dulbecco's Modified Eagle's Medium supplemented with 10% fetal bovine serum (Aleken Biologicals), 10 mM L-glutamine (Thermo Fisher Scientific), 100 Units each of Penicillin and Streptomycin according to previously published procedures (34–36). For experiments with rickettsiae, the Penicillin-Streptomycin mix was removed from the culture medium a minimum of 24 h prior to and during the infection. All experiments were performed with exponentially growing cells at relatively low passage numbers of 5–15. Because endothelial cells and macrophages are the major targets of rickettsial infection, we infected RAW264.7 macrophages and SVECs with R. conorii for 3 and 24 h (MOI = 5).



Reporter Constructs and Transient Transfection

Genomic loci of active elncRNAs flanking the boundaries of epigenetic signature were PCR amplified using Phusion High Fedelity DNA polymerase (NEB). The purified PCR fragments were cloned in both sense and antisense orientation upstream of the SV40 promoter in a pGL3 firefly promoter plasmid (Promega). Simultaneously, we picked two other genomic coordinates flanking Chr18: 60429728-60430126 and Chr13: 60430551-60430958 with a minimal ratio of H3K4Me1/H3K4Me3 and negligible peaks of other epigenetic signatures (RNA pol II, P300, and DNaseI hypersensitivity site) and cloned them into the pGL3 promoter plasmid to serve as negative controls in our experiments. All inserts in the promoter plasmid were confirmed by DNA sequencing at the UTMB Molecular Genomics Core facility. The primer sequences and restriction sites of inserts are also listed in Supplementary Table 3. Transfection-grade, endotoxin-free plasmids were prepared using an EndoFree® Plasmid Purification kit (Qiagen). We transfected these plasmids along with a pRL-SV40 plasmid as an internal control in mouse NIH3T3 fibroblasts and RAW264.7 macrophages at about 80% confluence. For each assay, 1 μg of blank plasmid (pGL3 promoter plasmid) or elncRNA constructs or negative controls, and 200 ng of pRL-SV40 were co-transfected using Lipofactamine 3000 (Invitrogen). After 24 h of transfection, cell lysates were prepared and dual luciferase assay was performed according to manufacturer's instructions (Promega). Firefly and Renilla luciferase signals were recorded using a GloMax® 20/20 Single-Tube Luminometer (Promega). The signal ratio in each well was calculated by dividing the luciferase signal by Renilla signal.



Knock-Down of elncRNAs and qRT-PCR

Two distinct targets based on the published guidelines (37) were chosen to design short hairpin RNAs (shRNAs) for elncRNA knock-down using an RNAi consortium designing tool (www. broadinstitute.org). To avoid potential confounding effects of non-specific knock-down, shRNA sequences were further verified through a BLAST search in the NCBI. The shRNAs were then cloned into a pLKO.1 lentivirus puro vector (Addgene plasmid #8453; Addgene, Cambridge, MA, USA), followed by sequencing at the UTMB sequencing core to confirm the orientation of the insert. The shRNA target sites and sequences are listed in the Supplementary File 1 and Supplementary Table 3. Endotoxin-free plasmid preparations and transfection of plasmids carrying shRNA hairpin constructs or scrambled sequences (control) were carried out as detailed above. Transfected cells were allowed to recover for 24 h prior to infection with R. conorii. Efficiency of knock-down was confirmed by qPCR assay.



Statistical Analysis

D'Agostino & Pearson omnibus normality test was performed to ensure normal distribution of data. Comparisons between the unmatched groups were done by unpaired t-test or Mann–Whitney U-test, whereas comparisons amongst the matched groups were performed by paired t-test or Wilcoxon signed rank test. The correlative analysis was performed using Spearmann correlation test. GraphPad Prism version 5 (GraphPad Software Inc., San Diego, California) was used for all statistical analyses with P ≤ 0.05 suggesting statistically significant changes.




RESULTS

To determine changes in the lncRNA profile during rickettsial infection, we performed RNA sequencing (RNA-seq) on the lungs of susceptible mice infected with R. conorii on day 3 post-infection. The step-by-step schematics for the methods utilized and decision points are presented in Supplementary Figure 1. A total of 152.46 (n = 3) and 160.3 (n = 3) million reads were obtained from the lungs of mock- and R. conorii-infected mice, respectively. We first mapped the libraries to the Ref-Seq to remove reads originating from the annotated Mus musculus (mm9) coding transcripts and the remaining 106.71 and 108.08 million reads were then mapped to NONCODE_V4 database containing 74,964 ncRNA transcripts (38). The total number of reads from each cDNA library and the reads mapping to mRNAs and ncRNAs are presented in Supplementary Table 1. As expected, the reads mapping neither to Ref-seq genes nor ncRNAs predominantly corresponded to the ribosomal RNA (rRNA) and transfer RNA (tRNA) transcripts. All coding and ncRNA transcripts with undetectable expression were excluded from the analysis. We thus identified a total of 1,168 and 6,216 ncRNAs that were either up- or down-regulated, respectively, in the lungs of infected mice (Cut-off fold ≥3, P ≤ 0.05) (Supplementary Figure 2). We next applied Min/Max method to identify ncRNA transcripts exhibiting a high degree of regulation in response to infection, restricting the number of up- and down-regulated ncRNAs in our datasets to 206 and 277, respectively, of which further removal of any ncRNA transcripts with a length of <200 bp allowed us to retain 179 up-regulated and 271 down-regulated lncRNA transcripts (Figure 1A). To validate our results from RNA-seq, we randomly selected 4 up-regulated ncRNA transcripts (NONMMUT007594, NONMMUT019215, NONMMUT024102, and NONMMUT029515) to independently determine their expression levels by qRT-PCR. Notably, the expression of all of these transcripts in the lungs of R. conorii-infected mice was significantly higher, albeit to varying degrees in terms of average fold-induction, than the corresponding controls (Figure 1B). Finally, comparison of our data from RNA sequencing and qRT-PCR using Spearmann correlation analysis revealed high level of correlation, confirming excellent agreement between the findings from two independent approaches (r2 = 0.98) (Figure 1C).
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FIGURE 1. Differentially expressed lncRNA transcripts in lungs of mouse infected with R. conorii. (A) Differentially expressed lncRNA transcripts (n = 3, control and infected mice) based on Min/Max method (3-fold cut-off); (B) Validation of expression of four randomly selected up-regulated lncRNA transcripts (from RNA-sequencing analysis) by qPCR in infected mouse lungs (n = 4). The error bars represents standard error of mean (SEM) and the level of significance are shown as **P ≤ 0.01, and ***P ≤ 0.001; and (C) Spearmann correlation of fold change of 4 lncRNA transcripts as determined by RNA sequencing and qPCR methods (r2 = 0.98, P < 0.001).



We next cataloged differentially expressed lncRNAs based on their strand of origin, classification, chromosomal distribution, number of exons, and length. Of up-regulated lncRNAs, the distribution on sense and antisense strands was determined to be 87 (48.6%) and 92 (51.4%), whereas a total of 140 (51.7%) and 131 (48.3%) down-regulated lncRNAs were found to be transcribed from the sense and anti-sense strands, respectively, (Figure 2A). Based on the specifics of their origin, we categorized them into different classes, namely sense-exonic, sense intronic, antisense, antisense-exonic, antisense intronic and LINC (Supplementary Figure 3A). Of 179 up-regulated lncRNA transcripts, a majority (113 or 63.1%) were sense-exonic and the remaining included 37 (20.7%) LINC, 12 antisense-exonic (6.7%), 12 antisense (6.7%), 3 sense-intronic (1.7%), and another 2 antisense-intronic (1.1%). The down-regulated lncRNA transcripts were represented by 121 LINC (44.6%), 63 sense-exonic (23.2%), 48 antisense (17.7%), 36 sense-intronic (13.3%), and 3 antisense-exonic (1.1%) (Figure 2B). Further analysis suggested that most of the differentially expressed lncRNA transcripts are transcribed from chromosome 1, 4, 6, 7, 11, and 13. Majority of the up-regulated lncRNA transcripts are sense-exonic in nature and mainly transcribed from chromosome 4, 6, 7, 11, 16, and 19. However, majority of the down-regulated transcript are LINC in nature and predominantly transcribed from chromosome 1, 2, 6, 7, 15, and 16 (Figures 2C,D). Based on exonic composition, about 27 (15.08%) of up-regulated lncRNA transcripts are mono-exonic, 54 (30.17%) are bi-exonic, and remaining 98 (54.75%) transcripts are multi-exonic. On the otherhand, about 31 (11.44%), 59 (21.77%), and 181 (66.79%) down-regulated transcripts are mono-exonic, bi-exonic and multi-exonic, respectively, (Supplementary Figure 3B). Next, we performed size based cataloging of differentially regulated lncRNAs. Majority of the regulated lncRNA transcripts range from 501 to 2,000 nucleotides (n = 106, 59.22% for up-regulated and n = 148, 54.61% for down-regulated), followed by those ranging from 200 to 500 nucleotides including both up-regulated (n = 37, 20.67%) and down-regulated (n = 59, 21.77%) transcripts. About 28 (15.64%) and 46 (16.97%) up- and down-regulated transcripts are within the range of 2,001–5,000 nucleotides. As expected, only a low number of up-regulated (n = 8, 4.47%) and down-regulated (n = 18, 6.64%) transcripts belong to the category of ≥5,001 nucleotides (Supplementary Figure 3C).
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FIGURE 2. Cataloging of differentially expressed lncRNA transcripts. (A) Strand specific origin of differentially expressed lncRNA transcripts; (B) Cataloging of lncRNA transcripts based on their origin; (C) Chromosomewise distribution of category of up-regulated lncRNA transcripts; and (D) Chromosomewise distribution of category of down-regulated lncRNA transcripts.



An important chromatin signature for identification of enhancers is the combination of H3K4Me1 and p300 binding in the absence of H3K4Me3, a mark that has been classically associated with active or poised TSSs. Accordingly, the ratio of H3K4me1/H3K4me3 around TSSs is a useful indicator to segregate lncRNAs into enhancer-associated (elnc) or promoter-associated (plnc) RNAs. We, therefore, recorded the TSSs of up-regulated lncRNAs and their nearest PCGs from the NONCODE database and UCSC genome browser, respectively. The combinatorial evidence of TSS, chromosomal origin, and relative position of lncRNAs to PCGs was then utilized to classify up-regulated lncRNAs into completely overlapping, partially overlapping, head to head, head to tail, and tail to tail category (Supplementary Figure 4A). A majority of up-regulated lncRNAs (126 out of 179) were determined to be completely overlapping and a few (n = 16, 8.92%) were from loci partially overlapping with PCGs. Of those remaining, 10 (5.92%), 22 (12.29%), and 5 (2.79%) transcripts were belonging to head to head, head to tail, and tail to tail orientation, respectively, (Figure 3A). Based on all the cataloging, we excluded lncRNA transcripts belong to classes sense-exonic, antisense-exonic and sense-intronic lncRNAs, to prevent the confounding influence of reads of chromatin and epigenetic signatures from the overlapping mRNAs. Furthermore, orientation of lncRNAs with respect to nearest PCGs also eliminated any ambiguous LINC lncRNAs, for which the TSSs are located within 2 kb region of both the head and tail ends of nearby PCGs. We, however, retained antisense lncRNAs for which the location of TSSs was 2 kb beyond either end of nearby PCGs. We next employed ChIP-seq data for enriched chromatin state around a 4 kb window of the TSS to determine the Log2(H3K4me1: H3K4me3) ratio for classifying the up-regulated lncRNAs as elncRNA (ratio of ≥1.2) or plnc/can-lncRNA (ratio of ≤ 0.8). Such quantitative analysis of H3K4Me1/H3K4Me3 ratio allowed for the designation of a total of 9 and 22 transcripts, respectively, as elnc and plncRNAs, whereas 4 transcripts did not clearly qualify for either category (Figure 3B). Genomic annotations of elncRNAs, plncRNAs and their respective nearby PCGs are presented in Supplementary Table 2.
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FIGURE 3. Cataloging of up-regulated lncRNA transcripts based on chromatin signatures. (A) cataloging of up-regulated lncRNA transcripts based on their orientation with respect to nearby PCGs; (B) Representative plot showing log2 ratio of chromatin signatures H3K4Me1 and H3K4Me3 (after normalization with input) around 4 window of transcription start site (TSS) of lncRNAs; (C) Average normalized RPKM (reads per kilobase million) values of H3K4Me1 in elncRNAs and plncRNAs; (D) Average normalized RPKM (reads per kilobase million) values of H3K4Me3 in elncRNAs and plncRNAs; (E) Distribution of distances of elncRNAs and plncRNAs from their respective nearby genes; and (F) Correlation between fold changes of elncRNAs and plncRNAs and their closest protein coding genes (PCGs), respectively. The linear regression curves of the best fit are shown as dotted line for elncRNA and solid line for plncRNA. ***P ≤ 0.001.



We further compared average normalized reads for a 4 kb window around the TSSs of elnc and plncRNAs to ensure that elncRNAs and plncRNAs are enriched with H3K4Me1 and H3K4Me3, respectively. As expected, normalized average read densities for H3K4Me1 in elncRNA were significantly higher than plncRNA, while those for H3K4Me3 were significantly higher for plncRNA (Figures 3C,D). Normalized RPKM values against the positions of 4 kb window are presented in the Supplementary Figures 4B,C. Because mechanistic investigations of the regulation of PCGs have implicated elncRNA interactions with looping factors to facilitate chromosomal looping between the enhancer and the promoter(s) of target gene(s), we captured the distances of up-regulated elncRNAs and plncRNAs in relation to the position of proximal PCGs. This analysis suggested that on an average, elncRNAs were located in close proximity to the PCGs, when compared to plncRNAs (Figure 3E). Moreover, to test whether transcription of elncRNAs is responsible for the regulation of nearby PCGs, we estimated the correlation between changes in the expression of elncRNAs (r2 = 0.3) and plncRNAs (r2 = 0.01) with their nearby PCGs. As shown, correlation of expression of elncRNAs and their nearby PCGs was determined to be stronger than plncRNAs (Figure 3F).

To identify active elncRNAs, we further subjected our dataset for the analysis of other epigenetic signatures, namely RNA pol II, p300, DNaseI hypersensitivity site, and CTCF, within the same 4 kb window around the TSSs of elnc and plncRNAs. The normalized average RPKM values suggested significantly higher read densities of RNA pol II, p300, and DNaseI hypersensitivity sites for elncRNAs in comparison to plncRNAs (Figures 4A–C), but not for CTCF (Figure 4D). Normalized RPKM values against the positions of 4 kb window are presented in the Supplementary Figures 5A–D. Based on epigenetic landscapes, we identified 3 active elncRNA transcripts NONMMUT013718 (Figure 4E), NONMMUT024103 (Figure 4F), and NONMMUT013717 (a splice variant of NONMMUT013718).
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FIGURE 4. Analysis of epigenomic signatures around transcription start site (TSS) of elncRNAs and plncRNAs. (A–D) Average normalized RPKM (reads per kilobase million) values of RNA polII, p300, DNaseI hypersensitivity site, and CCCTC binding factor (CTCF) in elncRNAs and plncRNAs, respectively; (E,F) Contrast chromatin (H3K4Me1 and H3K4Me3) and epigenetic (RNA polII, p300, DNaseI hypersensitivity and CTCF binding site) landscapes (in mouse lungs) around TSS of NONMMUT013718 and NONMMUT024103 elncRNAs, respectively. ***P ≤ 0.001 and ns = non-significant.



To delineate the possibility of interactions between elncRNAs and the promoters of their nearby PCGs, we sequentially analyzed both Hi-C and virtual 4C profiles by constructing a window around the genomic coordinates of active elncRNAs by 3D Epigenome browser. The triangular heatmap for elncRNA NONMMUT013718 demonstrates the potential for interactions with the PCG ID2 (Figure 5A). To further validate this observation and to identify elncRNA regions in contact with the promoter of Id2, we applied virtual 4C profiles supported by 3D genome browser. There are several points of contact for the promoter of Id2 within a 1 Mb window around the anchoring point, including the highest peak representing the potential for interactions with NONMMUT013718 elncRNA (Supplementary Figure 6A). On the other hand, NONMMUT024103 elncRNA regulatory region is just 2.4 kb upstream and relatively adjacent to the promoter of nearby Apol10b gene and a signal of interaction between these two loci is evident in Hi-C heat map (Figure 5B). Similarly, virtual 4C profile analysis also indicates that the promoter of Apol10b lies in apparent contact with NONMMUT024103 elncRNA (Supplementary Figure 6B). Finally, to ascertain whether or not higher expression of elncRNAs NONMMUT013718 and NONMMUT024103 correlates with the expression of their respective target genes ID2 and Apol10b, we performed qRT-PCR on the RNA from lungs of mice infected with R. conorii. We observed higher expression of both elncRNAs NONMMUT013718 and NONMMUT024103 as well as their target genes ID2 and Apol10b in the mouse lungs in response to infection (Figures 5C,D).
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FIGURE 5. Analysis of Hi-C interaction and qPCR. (A) The triangle heatmap of Hi-C tracks of NONMMUT013718 elncRNA and its proximal PCG ID2 and their interacting loci; (B) The triangle heatmap of Hi-C tracks of NONMMUT024103 elncRNA and its proximal PCG Apol10b and their interacting loci; (C,D) Expression of NONMMUT013718 and NONMMUT024103 elncRNA and their respective target genes ID2 and ApoL10b in infected mouse lungs (n = 4). The error bars represents standard error of mean (SEM) and the levels of significance are shown as ***P ≤ 0.001.



To assess the potential regulatory effects of NONMMUT013718 and NONMMUT024103 elncRNAs on nearby PCGs, we performed dual luciferase assay using NIH3T3 and RAW264.7 cells in light of their high transfection efficiency. For NONMMUT013718 elncRNA, we observed a significant increase of luciferase activity, suggesting its ability to drive the downstream PCG in comparison to the blank plasmid (pGL3) as well as negative controls in both NIH3T3 and RAW264.7 cells. Similarly, increased luciferase signal activity was also evident in case of NONMMUT024103 elncRNA, when compared with blank pGL3 and corresponding negative controls (Figures 6A–D). To further investigate whether transcriptional activation of nearby PCGs by elncRNAs is orientation independent, we cloned the genomic regions of both elncRNAs in reverse orientation in pGL3 promoter plasmid. Consistent with the findings above, both elncRNAs (NONMMUT013718 and NONMMUT024103) in the reverse orientation significantly enhanced luciferase signal in comparison to the blank plasmid and negative controls (Figures 6E–H).
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FIGURE 6. Heterologous reporter assays demonstrating enhancer activity of elncRNA loci. Co-transfection of enhancer reporter construct (sense or antisense orientation) and Renilla reporter plasmid in NIH3T3 cells and Raw 264.7 murine macrophages. (A,B) Transfection of NONMMUT013718 and NONMMUT024103 elncRNA constructs (sense orientation) in NIH3T3 cells, and (C,D) in Raw 264.7 murine macrophages, respectively; (E,F) Transfection of NONMMUT013718 and NONMMUT024103 elncRNA constructs (anti-sense orientation) in NIH3T3 cells, and (G,H) in Raw 264.7 murine macrophages, respectively. The data are presented as Mean ± SEM for six independent (n = 6) experiments. The negative controls are blank promoter plasmid or inserts with minimal H3K4Me1/H3K4Me3 ratio (Neg E1 and E2). The levels of significance are shown as **P ≤ 0.01; ***P ≤ 0.001.



Importantly, pulmonary vascular cells (endothelial cells from different vascular structures, smooth muscle cells, and adventitial fibroblasts) comprise one of the main functional and structural cell types of the lung and resident macrophages are located in close proximity to the epithelial surface of the respiratory system. Since endothelial cells and macrophages are the predominant targets of rickettsial infection, we carried out q-RT-PCR measurements on RNA isolated from murine RAW264.7 macrophages and endothelial cells (SVECs) infected with R. conorii for 3 and 24 h. The expression of both elncRNA NONMMUT013718 and its target ID2 in infected macrophages was significantly higher than mock-infected controls at both 3 and 24 h post-infection (Figure 7A), while that of NONMMUT024103 elncRNA and its target Apol10b both were below the range of detection at either 3 or 24 h post- infection (data not shown). On the other hand, expression of elncRNA NONMMUT024103 and its target Apol10b was significantly higher in SVECs at 3 h post-infection, while only modest increase in NONMMUT024103 was noticeable at 24 h (Figure 7B). Expression of NONMMUT013718 elncRNA remained below the limit of detection, whereas its target ID2 remained below the level of control at both 3 and 24 h of infection in SVECs (Supplementary Figure 7).
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FIGURE 7. Expression of elncRNAs and their targets in an in vitro model of R. conorii infection. (A) Expression of NONMMUT013718 and its target Id2 in murine Raw264.7 macrophages after infection with R. conorii for 3 and 24 h (n = 6); (B) Expression of NONMMUT024103 and its target Apol10b in murine SVEC endothelial cells after infection with R. conorii for 3 and 24 h (n = 4). The error bars represent standard error of mean (SEM) and the levels of statistical significance are shown as **P ≤ 0.01; ***P ≤ 0.001; and ns, non-significant.



To further confirm the functional role of NONMMUT013718 and NONMMUT024103 in activation of their respective target genes ID2 and Apol10b, we constructed shRNA plasmids against the target site of both NONMMUT013718 and NONMMUT024103 elncRNAs. We chose RAW264.7 macrophages and SVECs for shRNA mediated knock-down based upon higher expression of NONMMUT013718 and NONMMUT024103 elncRNAs, respectively. We verified transfection and knock-down efficiency of NONMMUT013718 and NONMMUT024103 elncRNAs in RNA isolated from RAW264.7 macrophages and SVECs infected with R. conorii for 3 and 24 h, respectively. After infection following transfection, expression level of NONMMUT013718 and NONMMUT024103 was found to be significantly lower. Remarkably, knock-down of NONMMUT013718 and NONMMUT024103 down-regulated the expression of ID2 gene in macrophages, and Apol10b in SVECs (Figure 8).
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FIGURE 8. shRNA mediated knock-down of elncRNAs and its target genes during rickettsial infection. Endogenous mRNA expression of Id2 and Apol10b in RAW264.7 macrophages and SVEC endothelial cells after trasfection of NONMMUT013718 shRNA and NONMMUT024103 shRNAs, respectively, following infection with R. conorii for 24 and 3 h, respectively. pLKO.1 scramble plasmid was used as a negative control. Knock-down efficiency of (A) NONMMUT013718 and its target gene Id2; and (B) NONMMUT024103 and its target gene Apol10b were quantified by qPCR. The error bars represented standard error of mean (SEM) and the levels of statistical significance are shown as *P ≤ 0.05; ***P ≤ 0.001; and ns, non-significant.





DISCUSSION

One of the most remarkable findings of the Human Genome Project is that only about 2% of the DNA accounts for ~20,000 protein-coding genes. Accordingly, it has become increasingly apparent within the past few years that noncoding genome plays an important role in the regulation of coding genome and substantial progress has been made in assessing the contributions of small, single-stranded noncoding microRNAs as regulatory determinants of host responses following infection, immunization, and autoimmunity (39, 40). lncRNAs have been estimated to constitute about 70–90% of the genomic dark matter, which is generically defined as the transcribed yet untranslated component of the human genome. Although loss-of-function approaches have implicated lncRNAs in the biology of both innate and adaptive immune cells during inflammatory insults, their involvement in host responses and pathogenesis of intracellular bacteria remains to be explored to enhance our understanding of their roles in microbial infections. In the present study, we have investigated the global lncRNA profile in the lungs of susceptible murine hosts during infection with R. conorii, the causative agent of Mediterranean spotted fever. For this first investigation, we employed a well-established mouse model based on its documented versatility to understand the pathogenesis of human spotted fever group rickettsioses and focused on the lungs as one of the major organ systems targeted by rickettsiae during in vivo infection (1, 41). Surprisingly, our RNA sequencing analysis revealed a relatively large number of differentially expressed non-coding transcripts in the lungs during R. conorii infection, including 179 up-regulated and 271 down-regulated transcripts of >200 bases length annotated as the lncRNAs in the NONCODE (v4.0) database, an integrated web-based resource dedicated to the analysis of non-coding RNAs (excluding tRNAs and rRNAs). To ensure the consistency of observations, we further validated increased expression of four randomly selected lncRNAs via an independent quantitative PCR-based approach. Thus, although our global analysis was suggestive of potentially important roles for lncRNAs in the determination of coding transcriptome of the host cells or organ systems following infection, an obvious next step emerging from the initial studies was to identify lncRNA candidates with either known functions or potential functional implications. To this end, in-depth analysis of the patterns of histone protein methylation from ChIP sequencing data in conjunction with high throughput chromosome conformation capture sequencing and visualization of Hi-C data in a virtual 4C format revealed that two elncRNAs NONMMUT013718 and NONMMUT024103 may have downstream roles in the regulation of their respective target genes Id2 and Apol10b during rickettsial infection.

Histone proteins in the eukaryotic genome undergo several covalent post-translational modifications, including acetylation, methylation, phosphorylation, ubiquitylation, and sumoylation. Such modifications have a profound effect on gene expression by altering chromatin structure or recruiting modifiers of chromatin activity. Single and trimethylation of histone protein 3 at lysine 4 (H3K4Me1 and H3K4Me3) are well-established features for cataloging of enhancer and promoter elements in the genome (18, 29). Specifically, active enhancers are highly enriched with the presence of H3K4me1 and p300/CBP transcription co-activator binding sites. p300/CBP are two similar acetyltransferases in humans, which play a central role in the pathways responding to intracellular, extracellular, and intercellular signals. These pathways control key cellular functions via altering expression of target genes, through the action of p300/CBP in the nucleus. Open chromatin in the genome is generally ascertained by DNaseI hypersensitivity mapping, however other regulatory elements of the genome such as the promoters, silencers, and insulators also possess DNaseI hypersensitivity sites, rendering exclusive analysis of these sites insufficient for the identification of enhancers (42). Therefore, DNaseI hypersensitivity sites in conjuntion with the p300/CBP protein in the genomic regions indicate the presence of enhancer elements in the genome. p300/CBP recruits RNA polymerase II at the site of enhancers for transcription of elncRNAs (43) and a previous study has documented that a number of uni- and bidirectional elncRNA transcripts have higher occupancy of H3K4Me1, p300/CBP, and RNA pol II (16, 43). On the other hand, CCCTC-binding protein (CTCF) in the genome is considered a hallmark for potential insulator elements that inhibit transcription. Presence of CTCF binding sites in the same domain of enhancer and promoter of the PCG blocks the interaction between these regulatory elements of the genome (31). Based on the H3K4Me1 to H3K4Me3 ratio, we stringently annotated up-regulated lncRNA transcripts into elncRNAs and plncRNAs. Our analysis showed that most of the elncRNA candidates are from intergenic regions and tend to be closely located to the nearby protein coding genes. Moreover, a pattern of positive correlation of expression between elncRNAs and nearby PCGs indicates that these elncRNAs might be associated with nearby PCGs for their expression and function. In addition, examination of the transcription start sites of NONMMUT013718 and NONMMUT024103 within the Gene Expression Omnibus dataset on mouse lung tissues further suggests the likelihood of active elncRNA functions for these transcripts. Enhancers have been proposed to interact with their target promoters by different mechanisms based on their genomic positions. For example, enhancers interact with the PCGs either by transcription of elncRNAs from distal regulatory loci or by formation of chromatin loops with nearby genes (44, 45). Our findings of the ability of NONMMUT013718 and NONMMUT024103 to drive the expression of downstream luciferase reporter genes in an orientation-independent manner and the effects of shRNA-mediated elncRNA knockdown on the expression of target genes during infection suggest the possibility of elncRNA interactions with the promoter of PCGs Id2 and Apol10b, respectively. Intriguingly, both of these elncRNAs and their putative targets are found to be highly up-regulated during R. conorii infection, which lends further support to the plausible involvement of their potential regulatory roles in the activation of respective proximal PCGs.

In vitro models of infection to delineate interactions between rickettsiae and their target host cells have long been established and routinely used in light of better tractability and direct applicability to decipher the fine details of cellular, molecular, and pathophysiological mechanisms of disease pathogenesis. Although pathogenic rickettisae as intracellular parasites display a predilection to primarily target microvascular endothelial cells lining the small and medium-sized vessels, invasion and infection of macrophages at the site of arthropod feeding during natural transmission to the mammalian hosts and in established needle inoculation-based animal models mimicking human disease is also evident (46). A recent study further documents notable differences in the ability of virulent vis-à-vis avirulent strains of rickettsiae to proliferate in macrophage-like cells in vitro as an important determinant of pathogenicity (47). In this context, an intriguing finding of the present study is the up-regulation of elncRNA NONMMUT013718 and Id2 during R. conorii infection of RAW264.7 macrophages, whereas only endothelial cells exhibit induced expression of NONMMUT024103 and Apol10b in response to infection. In light of previous evidence indicating that a significant fraction of lncRNAs show lineage-specific expression (48), we interpret these results as the host cell-specific and selective response in regards to the expression of a particular elncRNA.

The proteins belonging to the apolipoprotein (Apol) family are highly conserved across species and are generally thought to be involved in lipid transport and metabolism, due mainly to the association of Apol-1 as a subclass of high-density lipoproteins in human blood. Amongst Apols, the Apol1 in humans is unique in that it can be secreted due likely to its N-terminal signal peptide, accounts for the trypanosome lytic factor activity of human serum, and displays structural and functional similarities with Bcl-2 proteins involved in the regulation of apoptosis and autophagy. In addition, cultured human umbilical vein endothelial cells express CG12_1 (Apol-like) gene as a delayed early marker of inflammation in response to in vitro treatment with tumor necrosis factor-α and CG12_1 has been demonstrated to be specifically expressed in endothelial cells lining the normal and atherosclerotic iliac artery and aorta (49). The functions of other members of the Apol family classified on the basis of sequence homology to Apol1, however, are not well-understood. In a recent study, mouse Apol9a and Apol9b have been documented as bonafide interferon-stimulated genes (ISGs) with antiviral activity against Theiler's murine encephalomyelitis virus (50). Our laboratory has previously reported on the ISG response to R. conorii infection and its role in the interference with bacterial replication in human microvascular endothelial cells (51), suggesting the possibility of a potential link between higher expression of NONMMUT024103 elncRNA and Apol10b and the type 1 interferon response of host cells.

Inhibitor of DNA binding (Id) proteins, including Id1, Id2, Id3, and Id4, are basic helix-loop-helix (bHLH) transcription regulators. Although other bHLH proteins are known to regulate the transcription of a number of target genes by functioning as homo- or heterodimers, interactions between ubiquitously expressed E protein transcription factors and Id proteins by virtue of their destitute DNA-binding domain inhibit the formation of transcriptionally active complexes (52). Consequently, Id proteins are involved in the control of multiple cellular processes, including differentiation, proliferation, and fate determination (53, 54). Id2 also performs multiple essential functions in the hematopoietic system for the development of dendritic cells, NK cells, intraepithelial T cells, and lymphoid tissue inducer cells (55–57). Although the findings of this study are the first to demonstrate increased expression of NONMMUT0013718 and Id2 in macrophages but not endothelial cells infected in vitro, it remains to be determined whether changes in the lungs during in vivo Rickettsia infection are due to increased transcription within target host cells, increased recruitment of inflammatory cells, or possibly a combinatorial effect of both. During Listeria monocytogenes infection, Id2 regulates gene expression by CD8+ T cells and determines the magnitude of effector responses, suggesting a mechanism involving Id2 governed and E protein-mediated survival and differentiation of mature T cells (58). Published findings from the mouse model of rickettsiosis employed in this study yield evidence for increased expression of T cell targeting chemokines CXCL9 and CXCL10 in the lungs and infiltration of CD8+ T cells in the perivascular space around Rickettsia-infected microvessels (59). In addition, CD8+ T cells have been implicated in protective immunity against rickettsial infections, which is mediated in part by the cytotoxicity toward infected cells. Therefore, further studies to investigate potential regulatory roles of NONMMUT0013718 and Id2 in the determination of host immune responses to rickettsiae with particular attention to T cell mediated immunity are justified and currently ongoing.



CONCLUSION

In conclusion, the present study reports on differential expression of a number of lncRNA transcripts in the lungs as one of the prominent target organs in an established mouse model of rickettsial infection. From this subset of lncRNAs, we have identified two active elncRNAs through systematic application of genomics, epigenomics, and functional analysis to further demonstrate selective, cell-specific regulation of these lncRNAs and their potential target genes in vascular endothelial cells and macrophages as the target host cells in vitro. Given the data suggesting contributions of lncRNA-based regulatory networks in the modulation of host gene expression and differentiation as well as homing of T cells, further in-depth mechanistic enquiries of these versatile biological mediators in host-pathogen crosstalk and pathogenesis should unveil new strategies to counteract bacterial infections.
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Emerging evidence has proved that long noncoding RNAs (lncRNAs) participate in various physiological and pathological processes. Recent evidence has demonstrated that lncRNAs are crucial regulators of virus infections and antiviral immune responses. Upon viral infections, significant changes take place at the transcriptional level and the majority of the expression modifications occur in lncRNAs from both the host and viral genomes with dynamic regulatory courses. These lncRNAs exert diverse effects. Some are antiviral either through directly inhibiting viral infections or through stimulating antiviral immune responses, while others are pro-viral through directly promoting virus replication or through influencing cellular status, such as suppressing antiviral mechanisms. Consequently, these dynamic regulations lead to disparate pathophysiological outcomes and clinical manifestations. This review will focus on the roles of lncRNAs in viral infection and antiviral responses, summarize expression patterns of both host- and virally derived lncRNAs, describe their acting stages and modes of action, discuss challenges and novel concepts, and propose solutions and perspectives. Research into lncRNA will help identify novel viral infection-related regulators and design preventative and therapeutic strategies against virus-related diseases and immune disorders.
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INTRODUCTION

In the RNA world hypothesis, RNA was proposed to be the original form of life, at least the vital compartment of original life, as its spatial structure possesses two major characteristics that biological functional macromolecules required—diversity and flexibility. However, during subsequent process of life development, RNA transferred its role of information storage to DNA that is more stable, and its catalytic activity to protein which has more sophisticated spatial structure, while RNA itself gradually becomes the intermediate between DNA and protein in life organization. RNA only reserved its activity diversity in some fundamental complexes, such as spliceosome, telomerase, ribosome, signal recognition particle (SRP), some metabolic riboswitches, and ribozymes. This is described as the center dogma of modern molecular genetics and was deeply believed by the academic community until the revealing of large portion of noncoding RNA transcript in the latest annotation of genome sequences and interpretation of transcriptome data. We now know that the role of RNA is much further beyond just the message of genome information, it still preserves its ancient diversity and mystery, leaving us to discover.

Facilitated by fast-developing sequencing techniques and bioinformatics, genomes, and transcription profiling in the early Twenty-first century were conducted in human being and other metazoan species, leading to the unexpected observation that while majority of genome is transcribed only small portion is protein coding sequences (approximately 2% in mammalian genome) (1, 2). More detailed annotation and advanced bioinformatics analysis further helped us to reveal various epigenetic elements and genomic origination of these noncoding genes in different cell types and tissues, through projects such as Encyclopedia of DNA Elements (ENCODE) (3) and The Cancer Genome Atlas (TCGA) Research Network (4). The complexity has led us to shift our understanding of genomic information from linear model to modular model, which combines transcription and function of noncoding RNA with DNA regulatory elements, epigenetic modification and spatial origination.

Amid this progress, as a transcriptional class, lncRNAs were first described in the year of 2002 by Okazaki et al. in the study of large-scale sequencing of full-length cDNA libraries in mouse (5). Actually, lncRNA is an arbitrary category definition mainly referring to RNA transcripts with no obvious peptide coding capacity, usually longer than 200 nucleotides to distinguish from short noncoding RNA, such as microRNA, short interfering RNAs (siRNAs), and Piwi-interacting RNAs (piRNAs). Both long and short noncoding RNA compose regulatory RNAs with diverse unknown functions, in contrast to the housekeeping RNAs with certain functions including ribosomal RNA (rRNA), transfer RNA (tRNA), and small nucleolar RNAs (snoRNAs). However, some recent evidences suggest that some tRNA derived RNA fragments also have regulatory function in diverse aspects, such as intergenerational inheritance (6) and viral infection (7).

The number of lncRNA transcripts being identified keeps increasing these years. Up to now, according to a comprehensive bioinformatics analysis using data from 25 independent studies, 58,648 genes were identified as lncRNAs for human being (8). Interestingly, the number of lncRNAs correlates with the developmental complexity of species, at least in all the annotated eukaryotes, with highest lncRNAs amount in primates followed by mouse and scaling down accordingly to yeast (9). While the transcriptional sequence of lncRNAs are less conserved than that of protein coding genes, their promoter sequences and genomic locations are as conserved as coding genes (10, 11), indicating their expression are under tightly regulatory control and evolutional constrains. This is supported by the observation that lncRNA expression profiles are more tissue specific and cell-type selective than that of coding RNA (8), suggesting lncRNAs prefer to perform subtly function in cell-type specific manners, although majority of them are still less characterized.

Another protagonist of this review is virus. As an anciently derived organization as RNA, virus has some unique connection with RNA molecules. Virus is the only organism on this planet that reserves RNA as the genome and its RNA could be replicated through RNA dependent RNA polymerase and translated into DNA through reverse transcriptase in the life cycle of viral infection, which makes RNA spectrum more diverse in infected cells, including host-derived, virally derived and even some chimeric RNAs. However, host cells have developed mechanisms to distinguish virally derived RNA from its own RNA through pattern recognition receptors (PRRs), such as Toll-like receptors (TLR) and RIG-I-like receptors (RLR). Viral transcribed RNA usually has a 5′ triphosphate uncapped terminal, which could be recognized by host canonical sensor RIG-I (12, 13). Double-stranded RNA (dsRNA) is commonly produced during viral infection as genetic materials or replicating intermediates during virus replication, which will trigger dsRNA sensors in host cells, including canonical sensor MDA5 in the cytoplasm (14) and membrane receptor TLR3 (15) (Figure 1). Interaction between virus and its host has never halted since its very beginning. Being the simplest but efficient obligated parasites, virus have evolved a variety of strategies to manipulate hosts to provide material and energy to complete their life cycle, including duplicating their genome, producing their RNAs and proteins, packaging infective particles and finally releasing to infect other host cells. On the other hand, the host has developed an immune system whose activation launches immune responses to eliminate viral infections. Many viral components or their intermediate, such as their nucleic acids, can activate host immune system when being recognized by host cell PRRs and subsequently trigger downstream cascade signaling transduction (Figure 1). With the help of adaptor proteins, serine/threonine-protein kinase TBK1 phosphorylates IRF3/7 and TRAF6 activates Nuclear factor-κB (NF-κB) signaling, leading to the transcription of type I interferon (IFN) and inflammatory cytokines, along with many noncoding genes (16, 17) (Figure 1). IFN is the most efficient antiviral cytokine. Through JAK/STAT signaling, IFN triggers lots of effecter genes' expression including many noncoding genes, and induces the antiviral status of host cells to defeat invasion. However, uncontrolled antiviral responses and inflammatory status are also detrimental to host cells. So, immune responses must be finely regulated to minimize cytotoxic effect and autoimmunity output, which requires negative feedback regulatory mechanism to control the duration and magnitude of antiviral responses. A large amount of proteins and increasing lncRNAs have been proved to be involved in this regulatory loop. However, during a long time evolution, these regulatory factors are also utilized by some virus to escape host defense in many cases. The competing between host cells and virus has evolved to be a mutual-driving interaction involving more and more regulatory proteins and lncRNAs from both sides. As a research hotspot, interests and studies progress rapidly in recent years. While many reviews have been published on this theme in recent years (9, 18–20), more and more host- or viral- encoded lncRNAs have been characterized and novel action models of lncRNA functions have been revealed. For example, lncRNA directly regulates metabolic activity of the host cells and lncRNA interacts with singling adaptors or sensors to exert functions. This review will focus on these recent advances and cutting-edge technologies in this area to present a comprehensive view of mammalian host- and viral- derived lncRNAs.
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FIGURE 1. lncRNAs influence immune defense responses through directly interacting with sensors, adaptors, effecters, and transcriptional factors. Light blue represents sensors, cyan represents effecters, light purple represents signaling adaptors, and light brown represents transcriptional factors.





VIRALLY DERIVED RNAs

The existence of viral noncoding RNAs has already been known for decades (21, 22). In the year of 1971, it was reported in the plant that viroids, as the smallest infectious pathogens known, are composed solely of a short strand of circular, single-stranded RNA which are capable of autonomous replication (23, 24). So viroid has been considered to be the living relics of the hypothetical RNA world. The expression of noncoding RNAs in host cells from animal viruses has also been described years ago. Some of them are very abundant after infection, such as PAN (polyadenylated nuclear RNA) from Kaposi's sarcoma-associated herpesvirus (KSHV) (25), EBER1/2 (Epstein-Barr virus encoded small RNA 1 and 2) from Epstein-Barr virus (26, 27) and VA RNA (virus-associated RNA) from adenovirus (28). Aside from duplication by RNA-dependent RNA polymerase, some viral RNAs are transcribed by host polymerase III, such as VA RNAs and EBER1/2, while some are transcribed by polymerase II and polyadenylated, such as PAN RNA (Table 1). Some viral lncRNAs in host cells are not generated from canonical working flow, instead they are processed by unique maturation steps and even degradation of host cellular machineries. For example, flavivirus genome RNA is degraded by 5′-3′ exonuclease Xrn1 in host cells as a defense mechanism. However, flavivirus has developed a special secondary or tertiary structure of its RNA to halt Xrn1 processing to the 3′ end. So Xrn1 stalls on this structures and creates a large amount of degradation intermediates in host cells, named subgenomic flavivirus RNA (sfRNA) or Xrn1-resistant RNAs (xrRNAs) (43) (Table 1), as a specific feature of flavivirus infection. It has to be underlined that viral RNA amount in host cell is highly correlated with viral infection activity. Some RNAs are only expressed during latency, for example latency-associated transcript (LAT) from herpes simplex virus type 1 (HSV-1), while some are highly expressed during the lytic phase, such as PAN RNA. This trait of expression makes viral RNAs to be potential targets in clinical detection of relative virus infection.



Table 1. The expressions, functions and mechanisms of viral lncRNAs in viral infection.
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MAMMALIAN lncRNAs

As RNA polymerase I only transcribes ribosomal RNAs in eukaryotes, most lncRNAs discussed here are transcribed by polymerase II (Table 2) and undergo similar splicing and modification processing as message RNA (mRNA), such as methylguanosine at the 5′-terminus and a polyadenylated tail at the 3′-terminus. These lncRNAs are often referred to as canonical lncRNA. Genetically, compared with mRNA, lncRNAs harbor fewer of exons pre transcripts and alternately spliced isoforms per gene locus, and the lengths of lncRNA transcripts are more concentrated within the range of 100–1000 nucleotides (66). RNA polymerase III also transcribes some regulatory ncRNAs, such as RNA Alu, 7SK, BC200, B1 and B2 RNAs (67). Compared with canonical lncRNA, these regulatory RNAs are shorter in length, usually no more than 500 nucleotides, and function mainly through interacting with transcription factors and RNA polymerase II to regulate transcription (68) or influencing mRNA translation (69).



Table 2. The expressions, functions, and mechanisms of host lncRNAs in viral infection.

[image: image]




Genomic location of lncRNA usually closely associates with its molecular function or mode of activity. Based on the relationship with the nearest coding gene in genome, host lncRNAs are classified into four categories. LncRNA genes with a distance further than 5-kb to the nearest coding genes are defined as intergenic lncRNAs, which are also called long intergenic noncoding RNAs (lincRNAs). However, 5-kb distance is an arbitrary threshold by experience, sometime it varies case by case. Intergenic lncRNAs are functionally referring to lncRNAs without overlapping or sharing transcriptional machinery with other genes, which tend to be independent genes at both expression and function levels. So they are easier to be genetically manipulated compared with other lncRNAs (70). Intergenic lncRNAs prefer to function through exerting in trans activity far from their transcription site, which is the case for Firre affecting topological organization of multichromosomal regions through interacting with the nuclear-matrix factor heterogeneous nuclear ribonucleoprotein U (hnRNPU) (71). Some intergenic lncRNAs also influence the expression of the nearby genes via promoter competition for a shared set of enhancers (72) or via histone modification regulation (73).

To categorize functionally, lncRNAs with a coding gene in less than 5-kb distance are classified into three biotypes, antisense head to head lncRNA, antisense overlapping lncRNA and sense overlapping lncRNA (Figure 2). The antisense head to head lncRNAs or divergent lncRNAs, which means they are transcribed in the antisense direction and positioned head to head to protein-coding genes, account for a significant proportion of host lncRNA (about 20% in mammals and about 70% in lower metazoans) and are predicted to be strongly related to functions in transcription and development (74). Generally, the expression of antisense lncRNA are likely to be co-expressed with its overlapping coding gene as reported (10), probably because this lncRNA-coding gene pair shares the same chromatin transcriptional loop with a synergistic effect. However, the expressions of sense overlapping lncRNA do not exhibit obvious correlation with coding gene and even in many cases sense lncRNA depresses the expression of proximate coding gene, such as lncRNA Flicr dampening Foxp3 expression in Treg cells (75), probably through competing for shared transcriptional elements. So it might be summarized that lncRNAs tend to promote its nearby antisense strand transcription while depress the sense nearby gene expression.
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FIGURE 2. Classification of lncRNAs from host genome according to their positions to the nearest coding genes.



There are always some unique lncRNA species that resist common categorization, for example intron-derived lncRNA with snoRNA ends (sno-lncRNAs) (76) and exon-derived circular RNAs (circRNAs) (77), which are also transcribed by RNA polymerase II but do not have 5′ and 3′ terminus of mRNA due to RNA splicing alternation. They are believed to function through altering splicing, affecting parental gene expression, or sponging microRNA binding.



EXPRESSION OF lncRNA DURING VIRAL INFECTIONS

Virally derived RNAs are relative simple in their expression regulations, usually constitutively expressed upon invasion or induced expressed after the latency stage, probably due to our little knowledge on it. However, host-derived lncRNAs have been proved to exhibit more complicated spatial and temporal expression patterns, which this part of review focuses on.

A member of high throughout transcriptomic analyses in both human and mouse have revealed that viral infection induced great changes in host cell transcriptome, which includes large amount of protein coding genes along with lncRNAs (78). Promoter prediction and expression correlation analysis revealed that a great proportion of induced lncRNAs in viral infection are direct targets of IFN signaling or IFN-stimulated genes (ISGs). This is supported by experimental data from expression profiling of mouse macrophages with vesicular stomatitis virus (VSV) infection or recombinant IFNβ stimulation (45) and primary human hepatocytes with direct IFNα treatment (60). Interestingly, host lncRNAs have different expression pattern dynamics—some are induced in minutes while some are expressed in days. Another high throughput study in HuH7 hepatocytes that focused on the late time-point of IFN stimulation (72 h post high dose IFNα2 treatment) revealed another group of IFN-regulated lncRNAs, half being upregulated and half downregulated, while nearly all protein encoding genes changed were upregulated (79, 80). This elegant study clearly indicates that host lncRNAs have more complicated roles in gene expression regulation than what we previously expected.

Aside from IFN-regulated lncRNAs, there are some host lncRNAs that are induced by virus as viral hijacked lncRNA, whose expression does not rely on IFN signaling, as revealed by experiment data from wild type and IFN receptor deficiency macrophages (45). These IFN-independent lncRNAs tend to be manipulated by virus and involved in viral invasion. This is in the case of two intergenic lncRNAs, lncRNA-ACOD1 and VIN (virus inducible lincRNA). LncRNA-ACOD1 expression can be induced by many virus, including VSV, Sendai virus (SeV), HSV-1, and vaccinia virus (VACV), partly dependent on NF-κB signaling, and its induction is attenuated by IRF3 signaling as IRF3 knockout led to a higher expression, indicating lncRNA-ACOD1 is a favorable lncRNA for virus rather than host (45). VIN was identified as viral induced lncRNAs in human lung epithelial cells by several influenza A virus (IAV) strains (H1N1, H3N2, H7N7) and VSV. However, it could not be induced by infection of influenza B virus, treatment of RNA mimics stimulus, or treatment of IFNβ, indicating VIN was selectively utilized by some virus during millions of years' evolution (81). Interestingly, there are some host RNAs identified to be regulated by only one specific virus, such as CSR19, CSR21, CSR26, and CSR34 in hepatitis C virus (HCV) infection (58), indicating their specific role for HCV infection.

It is noteworthy that some host lncRNA's expression also is responsive to viral infection in some specific organs, for example placenta in mammal, which is usually believed to an immune tolerance place. A recent study pointed out that SeV infection of human trophectoderm progenitor cells induced an lncRNA expression, named lncRHOXF1, which was transcribed from the X chromosome. lncRHOXF1 promoted the host response to viral infections (82).



lncRNA WORKING MECHANISMS AT THE MOLECULAR LEVEL

As for the working mode of RNA, aside from riboswitches and ribozymes whose RNA structure alone performs the functional units, most ncRNAs operate as complexes with proteins, such as ribosome, telomerase, snRNP, snoRNP, and RISC complex of microRNAs. LncRNAs also perform in a similar manner, interacting with diverse proteins to perform different functions.

In cell nucleus, lncRNAs usually associate with chromatin modification protein or epigenetic modulator to regulate coding gene expression in trans or in cis, for example host lncRNA-EPS and lncRNA-COX1 (51, 83). In some cases, the activity of one lncRNA could have more than one target or even the whole chromatin. LncRNA Firre was reported to interact with multiple sites of the genome and influences chromatin topological organization through interacting with the nuclear-matrix factor hnRNPU (71). The well-known lncRNA XIST from X chromosome regulated the expression status of the whole X chromosome through recruitment of the polycomb repressive complexes PRC1/2 (84). Another example is NORAD, a conserved and broadly expressed long noncoding RNA, which preserves the whole genome stability in mitosis by serving as a molecular decoy for PUMILIO proteins (85).

Many lncRNAs utilize base pairing to bind other molecules of nucleic acids, such as microRNAs, as competing endogenous RNAs (ceRNAs) to regulate other RNA transcripts (86, 87). For instance, lncRNA linc-MD1 binds miR-133 and miR-135 in myocytes to liberate the expression of muscle-specific transcription factors MAML1 and MEF2C (88). LncRNAs also function through associating signaling transductors or enzymes. In the cytoplasm of dendritic cells, host lncRNA lnc-DC binds transcription factor STAT3 to protect its phosphorylation on tyrosine-705 through preventing protein phosphatase SHP1 binding (89). Another example is from Song's lab, showing that NF-κB-upregulated lncRNA NKILA binds to NF-κB/IκB complex and directly masks phosphorylation motifs of IκB, thereby inhibiting IKK-induced IκB phosphorylation and thus NF-κB activation (90).

In summary, lncRNAs associate with various molecules through base-pairing or spatial structure interaction to exploit different actions as illustrated in Figure 3. However, it is still unknown whether there are other undiscovered modes of action for lncRNA.
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FIGURE 3. Molecular modes of lncRNA activities. (i) competitive binding microRNA as a sponge RNA, (ii) binding protein as a competitive inhibitor, (iii) binding one protein to prevent its interaction with another protein, (iv) influencing the PTM modification of the binding protein, (v) affecting the activity of the binding protein. PTM, post translational modification.





lncRNAs REGULATING VIRAL LIFE CYCLE

The course of viral infection cycle in host cells is the trigger of host immune defense and the causes of pathological damages. Taking enveloped virus for example, the life cycle of virus can be summarized as following: First, virus enters the host cell membrane through receptor-mediated endocytosis, followed by viral genome release into the cytoplasm. After passing through a refined procedure of genome integration and latency, or without latency, viral genome utilizes cellular machinery and viral enzymes to synthesize protein component, replicate their genome, and then assemble new progeny virions. Finally infective virions are released and infect other host cells. While large amount of molecules and medicines have been proved to target the process of viral life cycle, increasing number of lncRNAs are revealed to regulate different steps in this process.


Viral Gene Expression

During HSV infection, host paraspeckle lncRNA NEAT1, together with paraspeckle protein P54nrb and PSPC1, associates with HSV-1 genomic DNA and recruits STAT3 to paraspeckle. They facilitate the interaction between STAT3 and viral gene promoters to increase viral gene expression and viral replication, as reported in both human and mouse cell lines (62). However, during human immunodeficiency virus (HIV) infection, NEAT1 and paraspeckle bodies negatively regulate viral production in human cell line through increasing nucleus-to-cytoplasm export of instability element (INS)-containing HIV-1 mRNAs to promote HIV-1 transcript splicing (63). These results indicate that NEAT1 and paraspeckle probably perform different roles in different viral infections. As an important nuclear body for gene expression regulation, paraspeckles are targeted by some viral RNAs. Epstein-Barr virus (EBV) derived lncRNAs oriPtL and oriPtR are bi-directionally transcribed RNAs from EBV latency origin of replication in the nucleus. They bind paraspeckle protein NONO and RNA-editing enzyme ADAR to modulate global viral lytic gene expression and viral DNA replication through an evolutionarily conserved and thermodynamically stable hairpin at their family of repeat (FR) regions (31).



Viral RNA Stability

To affect viral RNA stability or directly degrade viral RNA during infection, host cells have developed many defense mechanisms, including endoribonuclease RNaseL, exoribonuclease Xrn1, and RNAi pathway. However, some viruses have evolved their own strategies to counteract this degradation, such as poliovirus and other group C enterovirus. RNaseL, which degrades single stranded RNAs, is activated by the second messenger 2′-5′-linked oligoadenylate (2–5As) produced by its synthetase OAS, another important sensor for dsRNA in the cytoplasm. Poliovirus and other group C enterovirus have a conserved RNA structure within the open reading frame which functions as a competitive inhibitor of the antiviral endoribonuclease RNaseL (Figure 1). Hence, this viral RNA was named the RNaseL competitive inhibitor RNA (RNase L ciRNA) (32). Another example is flavivirus sfRNA. As described in the sections above, flavivirus produces large amount of sfRNAs which can halted exoribonuclease Xrn1 digesting, and sfRNAs can also repress the RNAi machinery by saturation of endoribonuclease Dicer (33, 34). It is the same for adenovirus VA RNAs whose structure and high abundancy sequestrate several key members of the RNAi pathway, such as Dicer and Exportin 5 (37).



Transition and Rhythm of Viral Life Cycle

Stage transition and rhythm of viral life cycle is closely associated with the course of pathological processing and immune response status. So maintaining viral latency or switching to lytic reactivation is intensively regulated by both virus and host, which involves many lncRNAs from both sides. It has been reported that viral RNA ASP, an HIV antisense transcript, recruits polycomb repression complex 2 (PRC2) to the HIV-1 5′ LTR, resulting in the accumulation of suppressive H3K27 trimethylation to facilitate the establishment of HIV latency (38). Another case is PAN RNA from KSHV. During initiation of the lytic phase, KSHV expresses a highly abundant long noncoding transcript, viral PAN RNA, which guides specific demethylases and PRC2 to the KSHV genome to mediate activation of viral gene expression, leading to the production of infectious virus and lytic infection (39–41). On the other hand, host cells are also trying to influence the life cycle of virus. It has been reported that host lncRNA NRON, highly expressed in resting CD4+ T lymphocytes, maintains HIV-1 latency by retaining transcription factor NFAT in the cytoplasm to suppress NFAT-mediated viral gene activation (44).



Metabolic Regulation

As viral replication requires large amounts of material and energy, it has developed some strategies to hijack metabolic network of host cells to direct metabolite flow to their benefit. However, for a long time we knew little about the underlying molecular mechanism of how virus performs. Recently, a host intergenic lncRNA, lncRNA-ACOD1, was reported to be induced by many viruses as mentioned above and further results from our lab revealed that it promoted viral infection through manipulating host cell metabolism. In the cytoplasm, it directly binds to glutamic-oxaloacetic transaminase 2 (GOT2) near the substrate niche. This RNA-protein interaction promotes the catalytic activity of GOT2 to facilitate metabolite production, such as L-aspartate, α-ketoglutarate and subsequent lipid production, which feeds virus and accelerates viral replication (45). This work marked lncRNA-AOCD1 as a metabolic regulator that is hijacked by virus in infection. The large number of unstudied virally induced transcripts makes it highly likely that future studies will reveal a much greater share for this class of lncRNAs in regulation of viral infection.

Recently more and more studies have revealed that metabolic regulation is vital for host immune regulation. Metabolite is not just the source of energy and nutrition, but also a regulator of host cells immunity, which is the case for itaconate pathway in innate immunity (91) and tetrahydrobiopterin (BH4) in adaptive immunity (92). Although it still at the beginning, metabolic lncRNA probable also has other functions in immune regulation.

It is noteworthy that while lncRNA-ACOD was revealed to be induced in many organs and tissues, including liver, spleen, lung, and lymph nodes, it has a constitutive high-expression level in heart, which is a high energy-consuming organ. Considering lncRNA-ACOD1 as a metabolic regulator, its high expression in heart indicates that it may also participate in the regulation of cardiovascular function.

If host cells cannot take back the control of metabolism, as a protective mechanism for host cells, initiating mitochondria-induced cell death of viral infected cell at early stage of infection can shut down the energy source for virus and restrict viral infection spreading. However, some viruses have evolved to maintain host cell alive at least until they completely fulfill the infective cycle and infect other cells. John H. Sinclair et al. found a 2.7-kilobase viral RNA transcript (RNA2.7 or Beta2.7) from human cytomegalovirus (HCMV) protected host cells from apoptosis, and RNA2.7 accounts for >20% of total viral transcription at the early stage of infection (12 to 24 h) (29). RNA2.7 interacted with complex I and prevented translocation of its essential subunit GRIM-19 to stabilize the mitochondrial membrane potential, resulting in continued adenosine triphosphate (ATP) production to support virus replication (30).

These two studies above represent delicate strategies in modulating the metabolic viability of the infected cell by noncoding RNAs from both virus and host. Researchers have begun to apply these RNAs or the functional fragment in the diagnoses and therapies of clinical relevant disorders. For example, the 800 nucleotide subdomain of RNA2.7, which plays an anti-apoptotic role and maintains a high level of ATP production in neurons, has been exploited in the development of a novel therapeutic for Parkinson's disease (93).



Packaging and Releasing

Packaging and releasing is the last step of life cycle for virus, which is also an excellent chance for host to block infection. It has been reported that cytidine deaminase APOBEC3G (A3G) has a broad antiviral activity against diverse retroviruses and retrotransposons, through inducing C-to-U mutations in the minus-strand viral DNA after its encapsidation into virions (94, 95). However, this process relies on polymerase III-transcribed host 7SL RNA, which is the RNA component of SRP, also known as 4.5S RNA. Studies with HIV-1 infection revealed that A3G selectively interacts with 7SL RNA, then interacted with the RNA-binding domain of HIV-1 Gag protein and was preferentially packaged into virus particles. So 7SL RNA encapsulated into retroviruses functions as a key cofactor of the antiviral protein A3G (46, 47), which proposes a new working model for Pol III-transcribed host noncoding RNAs to participate antiviral immune responses.




lncRNAs REGULATING ANTIVIRAL INNATE IMMUNE RESPONSES

Effective induction of IFN and cytokines along with the downstream effectors expression are crucial for host antiviral response and is known to be orchestrated by multiple mechanisms (96, 97). Nowadays increasing evidences point to the presence of lncRNA-mediated regulatory mechanisms on this pathway. Just like protein regulators, some lncRNAs involved in this mechanism promote this response as positive regulator to strengthen antiviral defense, while others function to attenuate immune responses as a negative feedback regulator to avoid excessive immune pathological effect or are utilized by virus to escape antiviral defense.


Antiviral Innate Immune Signaling and Cytokine Productions

The first step of host antiviral responses is sensing viral invasion. Interestingly, some viral sensors in host are also regulated by lncRNAs, which is the case of canonical sensor RIG-I. A recent research revealed an IFN-induced host lncRNA lnc-Lsm3b competed with viral RNAs in binding RIG-I monomer. The binding of lnc-Lsm3b to RIG-I protein obstructs the conformational shift of RIG-I protein which is essential for its activation. So lnc-Lsm3b prevents downstream signaling and thereby terminates IFN production. As host lnc-Lsm3b is an immune induced gene at the late stage of innate response, so in viral infection it functions as a negative feedback regulator of RIG-I pathway (48) (Figure 1). Another example comes from viral RNAs, a particular sfRNA from dengue virus DENV-2 clade (PR-2B). It has been reported to bind E3 ubiquitin ligase TRIM25. This binding prevents the deubiquitinylation of TRIM25 by ubiquitin-specific peptidase 15 (USP15). Ubiquitinated TRIM25 is unable to polyubiquitinate RIG-I and stabilize RIG-I, resulting in a significant decrease in the IFN production and an impaired antiviral responses to facilitate viral infection (35) (Figure 1).

Another viral sensor, double-stranded RNA-dependent protein kinase (PKR) is a cytoplasmic sensor of viral RNA, whose activation induces translation inhibition to suppress viral protein synthesis through phosphorylation of eIF2a. However, some viral lncRNAs, such as VA RNAs and EBERs, bind to PKR, but do not induce PKR activation. Instead, they prevent PKR dimerization and auto-phosphorylation. Therefore, signaling through PKR to eIF2a is blocked and translation of viral proteins is properly initiated (27, 28) (Figure 1).

The downstream immune signaling is also regulated directly by lncRNAs through RNA-protein interactions. For example, host lncRNA lnc-DC regulates STAT3 signaling as that is described above. Another example is NF-κB, which is believed to be a key director of inflammatory cytokine expression and late stage IFN production in antiviral immune responses. Lethe, an intergenic lncRNA that is also considered as a pseudogene, is selectively induced by inflammatory cytokines and glucocorticoid receptor agonist. Functionally, it interacts with NF-κB active subunit RelA to inhibit RelA DNA binding and target gene activation, as a negative feedback to NF-κB (49). So Lethe could have profound effect in immune responses. Another example for NF-κB is p50-associated COX2 extragenic RNA (PACER), which is an antisense head to head lncRNA with coding gene cyclooxygenase 2 (COX2). PACER associates with p50, a repressive subunit of NF-κB, and occludes it from the COX-2 promoter to facilitate active NF-κB dimer p65/p50 to COX2 promoter to promote its expression (50). Interestingly, there is an intergenic lncRNA nearby Cox2 (Ptgs2) gene in mouse, named lincRNA-Cox2. However, lincRNA-Cox2 does not alter Cox2 (Ptgs2) expression in mouse. As an immune-induced gene, it regulates expression of a group of immune response genes, including chemokines, chemokine receptors, and ISGs, through binding hnRNP A/B and A2/B1 (51).

Some lncRNA can directly regulate the transcription of cytokines. Inflammatory cytokine tumor necrosis factor α (TNFα) is a potent activator of host immune responses to viral infections. It has been reported its transcription is regulated by an intergenic lncRNA from host genome, named THRIL which is short for TNFα and hnRNPL related immunoregulatory lincRNA. THRIL functions through binding hnRNPL to form a functional lncRNA/hnRNPL complex that binds to TNFα promoter. However, it is downregulated by TNFα or TLR stimulation as a negative feedback mechanism during viral infection (52). As an essential host lncRNA for the formation of nuclear body paraspeckle, NEAT1 regulates many immune-related genes expression, including antiviral cytokine IL8 (64) and host sensor RIG-I and DDX60 (65). NEAT1 transits the splicing factor proline and glutamine-rich protein (SFPQ) to paraspeckle to remove its transcriptional inhibitory effects, promoting the expression of immune responses genes.

Virally encoded RNAs also participate in regulating host IFN and cytokine production as an immune modulator for the sake of virus. KSHV derived PAN RNA was proved in to interact with histone H1/H2A, single-stranded binding proteins (SSBPs) and interferon regulatory factor 4 (IRF4) in infected cells to decrease the expression of IFNγ, IFNα, interleukin-18, and RNase L to facilitate viral infection in primate cell lines (42).

Taken together, despite only small fraction of lncRNAs being studied, existing data points a critical role for this class of lncRNAs in regulation of immune signaling and cytokine expression. Increasing evidence of lncRNA directly interacting with signaling molecules has also been found not only in immune signaling but also in other biomedical flied including p53 signaling (98) and EGFR signaling (99). However, we still do not know how many other sensors, adaptors and transcription factors could interact with lncRNA to be modulated. We just put up some of the remaining questions in antiviral signaling as illustrated in Figure 1: Is TBK1-IRF3 activity regulated by some lncRNA? Does lncRNA interact with signaling adaptors, such as STING or TRAF6, to modulate their protein modifications and functions? Resolving these questions will help us deepen our understanding of relationship between lncRNAs and signaling cascades. Furthermore, as many protein factors have been identified as negative or positive regulators of immune signaling, defining the interaction of the regulatory lncRNAs with these proteins in the context of immune responses will yield an uncharted regulatory network of immune cascades.



Expression of Interferon-Stimulated Genes (ISGs)

ISGs comprise antiviral effectors and immune regulators and a number of lncRNAs exert their functions through regulating ISGs to modulate the antiviral effect. There are many such cases for IFN-induced lncRNAs. LncRNA NRIR (negative regulator of IFN response) was identified in primary human hepatocytes as an intergenic lncRNA (60), originated from a locus downstream of the protein-coding ISG CMPK2, and therefore it was also named lncRNA-CMPK2. NRIR could be induced by IFNα, IFNβ, and IFNγ through JAK-STAT pathway to generate a spliced polyadenylated nuclear transcript. Functionally, knocking down NRIR in human hepatocyte cell line significantly increased many antiviral ISGs expression, including CMPK2, viperin, IFIT1, IFIT3, ISG15, MxA, CXCL10, and IFITM1, and subsequently decreased HCV replication, suggesting NRIR acts as a repressor of ISGs expression (60). Although its molecular mechanism yet to be further determined, the case of NRIR indicates that lncRNAs play an important role in the feedback loop of IFN-induced gene expression regulation. In addition, NRIR is reported to have a remarkably high level in livers of patients with HCV infection than that in healthy donors, indicating this negative regulator could be utilized by HCV in vivo (60).

Another example is host lncRNA EGOT (Eosinophil Granule Ontogeny Transcript), which is a polyadenylated nuclear conserved lncRNA (100). EGOT was first described to be expressed in eosinophils and is thought to function in mature eosinophils (101). Later studies from GTEx Consortium revealed that the highest levels of EGOT were found in nonhematopoietic tissues such as breast, pancreas, pituitary, vagina and kidney cortex (102). Interestingly, EGOT genomic locus in human being was marked by monomethylation of Lys4 of histone H3 (H3K4), but not trimethylation of H3K4, indicating that EGOT could be an enhancer RNA (103). Its function remained obscure until a recent study using human liver cell line HuH7 cells revealed that the level of EGOT was dramatically induced by viral infection, such as HCV, influenza, and Semliki Forest virus (SFV), and high doses of IFNα stimulation (58), and furthermore, knockdown experiment in HCV infected cells revealed that EGOT negatively regulated antiviral responses through inhibiting a subset of ISGs' expression as a negative feedback regulatory mechanism of IFN pathway. However, this mechanism is often utilized by viruses, such as HCV, influenza, and Semliki Forest virus (SFV) (58).

While described above are two lncRNAs upregulated in viral infection, host lncRNA NRAV (Negative Regulator of Antiviral Response) was markedly reduced in infection with influenza virus and a number of other viruses in several cell lines. NRAV was firstly described in a study on genes expression changes in response to influenza virus H1N1 infection in human alveolar epithelium cell line A549 (59). Importantly, overexpression experiments with cDNA microarray analysis revealed NRAV depressed the expression of many antiviral effecters, including IFIT2, IFIT3, IFITM3, MxA, and OASL (59). Studies in human cell lines or transgenic mice showed that enforced expression of NRAV markedly promoted viral replication while knockdown of NRAV suppresses viral replication in IAV infection model. Furthermore, molecular studies revealed that the spatial structure of NRAV associates with the promoters of IFITM3 and MxA to alter their epigenetic histone modifications to suppress their initial transcription rates (59). It is noteworthy that NRAV is an antisense overlapping lncRNA and locates in the first intron of DYNLL1 gene encoding human dynein light chain, however, they are transcribed as independent operating unit, which is a unique working model in trans for antisense overlapping lncRNA.

Host lncRNA LUARIS (lncRNA up-regulator of antiviral response IFN signaling) is also down-regulated, like NRAV in viral infection, and as it was named, it functions to promote ISGs expression. LUARIS was identified in a screen for IRF3-dependent genes in HuS immortalized human hepatocytes as an IFN-reduced lncRNA originally named lncRNA#32 (57). It was reported that during HBV or HCV infection in primary hepatocytes, LUARIS associates with hnRNPU and functions through activating transcription factor 2 (ATF2) to promote the expression of multiple ISGs. And silencing of LUARIS dramatically reduced the level of ISGs' expression and increased cellular sensitivity to encephalomyocarditis virus (EMCV) infection (57). These data indicate LUARIS has evolved to control the magnitude of the IFN response through multiple regulatory pathways to prevent possible toxicity of overstimulation.

While many lncRNAs regulate the expressions of multiple ISGs, some lncRNAs can only modulate a single ISG target, for example BISPR (BST2 IFN-Stimulated Positive Regulator). Host lncRNA BISPR belongs to antisense head to head lncRNAs, which is transcribed from a bidirectional promoter shared with BST2/Tetherin. BST2 is an IFN-induced restriction factor that blocks the budding of enveloped viruses by tethering them to the cell surface. Independent studies from two groups revealed that BISPR/BST2 gene-pair is induced by IFN stimulation in many cells, such as human hepatocyte cell line HuH7 (79, 80) and monocyte cell line THP1 (61). Interestingly, the increase of BISPR expression precedes that of BST2 after IFN stimulation, indicating that BISPR induces or facilitates the initiation of BST2 transcription. Future studies revealed that BISPR knockdown reduced BST2 expression and ectopic expression of BISPR RNA enhanced BST2 expression, indicating that BISPR RNA mediates this function, rather than the transcription (61). Mechanistically, BISPR obstructs the repressive activity of PRC2 at the promoter of BST2 to facilitate the transcription. BISPR also interacts with methyltransferase component EZH2 and an enhancer region to promote the formation of enhancer-promoter complex. Since many lncRNAs belong to antisense head to head lncRNAs and many immunity-related genes have bidirectional promoters, the mechanism of BISPR and BST2 study shed light on these antisense lncRNA family's functional and molecular exploration.

Aside from transcription, the translation of ISG mRNA is also regulated by noncoding RNAs. It was reported that conserved host RNA-binding proteins G3BP1, G3BP2, and CAPRIN1, which were required for ISG translation, were targeted by a non-coding RNA from dengue virus. Human pathogen dengue virus is a positive-strand RNA flavivirus and it produces abundant non-coding sfRNA, which directly binds to G3BP1, G3BP2, and CAPRI, as a molecular sponge, to antagonize ISGs translation (36). This mechanism impairs establishment of the antiviral defense of host cells, allowing virus to replicate and escape from the IFN response. Interestingly, Dengue sfRNA response has not been observed in other flaviviruses. The unique association of this sfRNA molecule to dengue viral pathogenesis provides a potential molecular target for clinical diagnosis and future therapeutic options for dengue virus infection.




lncRNAs IN ANTIVIRAL ADAPTIVE IMMUNITY

lncRNA transcriptome profiling in different T cell lineages has been performed and characterized in both humans and mice (104, 105). Thousands of lncRNAs have been identified to closely associate with T lymphocyte differentiation and a number of them are identified as novel T helper (Th) cell lineage-specific lncRNAs. Most of these lncRNAs are intragenic or adjacent to lineage-specific protein-coding genes in the genome. And many were bound and regulated by the key transcription factors T-bet, GATA-3, STAT4, and STAT6 as revealed by RNA-Seq data and ChIP-Seq data (106). Some of these lncRNAs have been proved to have functions for T cells, including an enhancer-like lncRNA called IfngAS1 (also known as Tmevpg1 or NeST) promoting Th1 cytokine IFNγ expression (53), host lncRNA Th2-LCR lncRNA controlling Th2 cytokines IL-4, IL-5, and IL-13 expression (107), and lincR-Ccr2-5′AS regulating the migration of Th2 cells (106). However, few of them have been characterized for molecule mechanism. To our knowledge, it is the only case for IfngAS1 located adjacent to the IFNG in both mice and humans (54, 55). IfngAS1 promotes IFNγ expression by binding to WD repeat-containing protein 5 (WDR5), a component of histone H3 lysine 4 (H3K4) methyltransferase complex, and alter histone 3 methylation at the IFNγ locus (53, 56).

Despite these discovery in T lymphocytes have been achieved, many questions are yet to be answered. For example, it is not clear whether T cell activation signaling is regulated by lncRNA as an intrinsic regulation; whether TCR complex involves the interaction with lncRNA during T cell activation and whether B lymphocyte differentiation and function being regulated by lncRNA. The lack of mechanistic insight in this field is due, in part to technical obstacles. For example, cell-specific gene-manipulating for lncRNA genes in vivo is much harder than coding genes, because base-pair insertions usually do not lead to functional mutation for noncoding genes. The development of gene editing techniques, such as CRISPR system will provide more convenient approaches for research to manipulate lncRNA genes in specific lymphocytes in the future. Other obstacles include the low abundance of samples, as the number of one specific T cell subtype is very low. With the development of trace amount detection technique, such as SHERLOCK (108) and DETECTR (109), and super-resolution structured illumination microscopy (SIM)2 and Cryo-scanning electron microscopy (Cryo-SEM), RNA molecule will be better detected for small amount or even in single cell.



CHALLENGES AND PERSPECTIVE

lncRNAs from host and virus exert their functions through various mechanisms, such as associating with transcription factors, chromatin modifiers, signaling adapters, enzymes and microRNAs, to influence gene expression, host metabolism, post translational modification, and protein activities. Although great achievements have been obtained in the field of lncRNA, there are still a significant number of concerns to be solved. While the linear sequence of RNA is relative easy to analyze, RNA spatial structure is still difficult to be examined or predicted as the RNA structure is flexible and usually interacts with other molecules in vivo. Nevertheless, great effort has been made to interpret the physiological structures of RNAs using elaborate biochemical methodologies to distinguish single-strand, double-strand, exposed, and buried regions. Some approaches are used to resolve one specific lncRNA structure at a single-nucleotide resolution (110) and some are designed to reveal the whole higher-order transcriptome structure in living cells (111–113). Nevertheless, RNA modification adds another layer of complexity in RNA structural and functional research. One example is that a study from Tao Pan's laboratory demonstrated that RNA local structures are altered by one site of N6-methyladenosine (m6A), which is the most abundant modification in eukaryotic RNA (114, 115). This local change in structure increases the binding by heterogeneous nuclear ribonucleoprotein C (hnRNPC) (116). So the RNA functional studies have evolved to the combination of linear sequence, spatial structure and RNA modification, which set a higher level of requirement for experimental exploration and bioinformatics analysis.

Another challenge in RNA mechanistic study is the identification of lncRNA binding molecules. Aside from nucleic acid, protein is so far the only recognized molecule that RNA interacts with. Whether there are other compounds, such as small chemical molecules or metal ions, interacting with lncRNA in vivo is largely unknown. Nevertheless, a number of approaches have been developed to get comprehensive profile of RNA-binding proteins (RBPs) in vivo. Ultraviolet (UV) crosslinking has been used to covalently stabilize native protein-RNA interactions in living cells. The crosslinked proteins are isolated by oligo (dT) purification for mass spectrometry identification. This approach, named RNA-protein interactome capture, identified over a thousand RBPs within different cells and species, such as human HeLa and HEK293 cells (117, 118), mouse embryonic stem cells (119), Saccharomyces cerevisiae (120), and Caenorhabditis elegans (121). Many proteins identified were not previously recognized to bind RNA, namely unorthodox RBPs, include many metabolic enzymes, regulators of alternative splicing, the E3 ubiquitin ligase, and the FAST kinase domain-containing protein 2 (FASTKD2) (122, 123). Furthermore, to determine how RBPs bind to RNA in living cells, Matthias W. Hentze et al. have improved the resolution of this approach from protein level to RNA binding peptide level, by adding a protease digestion step followed by a second round of oligo (dT) capture and mass spectrometry. They have discovered numerous RNA-binding domains (RBDs) in human HeLa cells and revealed that catalytic centers and protein-protein interacting domains are preferred RNA binding sites (124). Interestingly, nearly half of the RNA-binding sites were mapped to intrinsically disordered protein regions, indicating flexible protein domains are the favorable part for RNA-protein interactions. Recently, a new approach, RNA interactome with click chemistry (RICK), has been developed to capture the nascent RNA-protein interactome. Using this method, newly transcribed RNAs were integrated with 5-ethynyluridine and after UV crosslinking, the RNA-protein complex was labeled with biotin via click chemical reaction and subjected to purification and identification (125). This method allows identification of proteins bound to a wide range of RNA species, including the nonpolyadenylated RNAs that were neglected in the past.

Many techniques are designed to examine the binding proteins of one specific RNA molecule (126). Ci Chu et al. developed the method of chromatin isolation by RNA purification (ChIRP) using antisense DNA oligonucleotides to capture and purify specific lncRNA-chromatin complexes, initially to address lncRNA-binding sites on the genome (127). They further developed the methodology that enabled the identification of lncRNA-binding proteins and RNA-RNA interactions (128, 129). Two other groups have also developed similar approaches independently, RNA antisense purification (RAP) (130) and capture hybridization analysis of RNA targets (Chart) (131), with some differences in cross-linking and chromatin shearing. As ChIRP-like methods use chemical cross-linking, they do not differentiate direct interactions from indirect interactions. Another method named cross-linking ligation and sequencing of hybrids (CLASH) uses UV crosslinking that captures only direct RNA-protein interaction, which is suitable for investigation of RNA-protein interaction in nucleus (132).

Some lncRNAs are not sensitive to siRNA mediated RNA degradation, especially the ones located in the nucleus, as siRNA machinery is mainly located in cytoplasm. So knocking down and knocking out strategies often interfere lncRNA studies. Despite the technical hurdles and difficulties, much effort has been made to inactivate lncRNA genes in mouse models and these studies have made great discoveries. An elegant review by Lingjie Li et al. summarized genetic targeting strategies used to study lncRNA loci in vivo (133). However, these gene deletion approaches are difficult to scale up for genome-wide functional screening of lncRNAs, as many lncRNA are induced or suppressed in viral or other immune relative models. Happily, integrated genome-wide CRISPR interference (CRISPRi) and CRISPR activation (GRISPRa), a novel systematic functional screening system of lncRNAs has been developed (134). This technique represses or activates transcription via recruitment of a nuclease-dead Cas9 (dCas9) enzyme to the transcriptional start site (TSS) of genes by a customizable single guide RNA (sgRNA). A study designed a sgRNA library targeting 16,401 lncRNA loci, with 10 sgRNAs against each lncRNA TSS. In seven diverse human cell lines, 499 lncRNA loci were identified to be necessary for robust cellular growth. Surprisingly, the majority of these lncRNA genes showed growth modifying function exclusively in one cell type, and not a single lncRNA modified cell growth across all the cell line tested (135). This is a promising approach for lncRNA functional screening in other models, for example it could be used for the identification of viral specific lncRNAs or cell type-specific antiviral lncRNAs.

As illustrated by the literature, the most significant character that lncRNAs differ from other RNA molecules is that lncRNAs exhibit high cellular- and organ- specific expression patterns. Therefore, lncRNAs modulate protein activities and signaling pathways only in specific cell types. Understanding the mechanisms of specific expression regulation at multiple levels, including but not limited to specific transcriptional factors, epigenetic modification, and local chromatin spatial organization, will help us better understand spatial and temporal regulation of lncRNAs and choose more specific interfering target in certain pathological circumstances, such as viral infection. However, as the strong correlation between lncRNA expression patterns and its functions, analysis of lncRNA expression profiles in different cells under different physiological and pathological models is a good way to predict the relevant functions of one specific lncRNA or a panel of lncRNAs. Furthermore, combining more omics data at the same time, such as transcriptome, epigenomics, proteinomics, phosphoproteomics and metabolomics, and conducting integrated correlation analysis with coding genes, epigenetic modification, protein modification and metabolite, will provide more detailed function information of lncRNAs and might draw the whole regulatory network draft for us.
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Immune-mediated diseases, such as celiac disease, type 1 diabetes or multiple sclerosis, are a clinically heterogeneous group of diseases that share many key genetic triggers. Although the pathogenic mechanisms responsible for the development of immune mediated disorders is not totally understood, high-throughput genomic studies, such as GWAS and Immunochip, performed in the past few years have provided intriguing hints about underlying mechanisms and pathways that lead to disease. More than a hundred gene variants associated with disease susceptibility have been identified through such studies, but the progress toward understanding the underlying mechanisms has been slow. The majority of the identified risk variants are located in non-coding regions of the genome making it difficult to assign a molecular function to the SNPs. However, recent studies have revealed that many of the non-coding regions bearing disease-associated SNPs generate long non-coding RNAs (lncRNAs). LncRNAs have been implicated in several inflammatory diseases, and many of them have been shown to function as regulators of gene expression. Many of the disease associated SNPs located in lncRNAs modify their secondary structure, or influence expression levels, thereby affecting their regulatory function, hence contributing to the development of disease.
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INTRODUCTION

Immune mediated disorders, such as celiac disease (CeD), inflammatory bowel diseases (IBD), atherosclerosis, rheumatoid arthritis (RA), type 1 diabetes (T1D) or multiple sclerosis (MS) among others, are a group of clinically heterogeneous diseases caused by dysfunction of the immune system. These disorders, share underlying pathogenic mechanisms that are not totally understood, although the general belief is that they develop due to an imbalance in the interaction between genetic and environmental factors (1, 2).

Immune mediated disorders share dysregulation of many key regulatory pathways and techniques, such as genome wide association studies (GWAS) coupled with next generation sequencing (NGS), have significantly increased our knowledge of genetic factors underlying such diseases (3). In the past decade or so, hundreds of risk alleles, both common and disease specific, have been identified by GWAS. Moreover, using the Immunochip platform in which 200,000 polymorphisms in 186 immune disease related regions were analyzed, additional immune disease associated variants were identified that revealed common susceptibility loci for several of these diseases (4–7). While these studies have helped identify immune disease conferring gene variants, the progress toward the understanding of the underlying mechanisms has remained limited. This difficulty is particularly exacerbated by the fact that around 90% of the SNPs associated with these diseases are located in non-coding regions, making it difficult to link them to specific biological pathways (8–10).

Advances in the sequencing and annotation of the human genome have revealed that many non-coding regions of the genome encode long non-coding RNAs (lncRNAs). The importance of lncRNA molecules in different biological processes is beginning to be appreciated although there is much that remains to be understood. LncRNAs are RNA molecules longer than 200 bp in length with no protein-coding potential. LncRNA expression is generally cell-lineage specific and they have diverse and still not very well-characterized mechanisms of action. The emerging view is that lncRNAs are fundamental regulators of transcription as they have been shown to control every level of the gene expression program. LncRNAs have been shown to control processes like protein synthesis, RNA maturation, and transport to regulate genes post-transcriptionally and they are also involved in transcriptional gene silencing through regulating the chromatin structure (11–13).

Many lncRNAs are enriched for disease-associated SNPs, suggesting that these SNPs might alter the function of lncRNAs e.g., by altering their secondary structures (14). Moreover, expression profile analyses of lncRNAs located in autoimmune disease-associated regions showed that lncRNAs are enriched in these loci, suggesting that lncRNAs may be crucial for interpreting GWAS findings (15). Disease associated SNPs can modify the lncRNA sequence or alter their gene expression levels, affecting their regulatory capacity, and alterations in the structure and function of lncRNAs have been associated with several immune-mediated diseases. However, the precise mechanism by which lncRNA variants contribute to the pathogenesis of disease remains unknown in the majority of cases (16).

As previously done with protein coding genes, intergenic SNPs have been analyzed in the context of lncRNA expression quantitative trait loci (eQTLs), namely, genetic variants that would explain variation in the lncRNA expression levels (17). More than 100 cis-eQTLs have been found in different tissues that appear to regulate the expression of nearby lncRNAs. In general, these eQTLs are lncRNA specific and do not regulate the expression of neighboring protein coding genes, but since lncRNAs can regulate the expression of protein-coding genes, both, located close by or farther away in the genome, it is possible that these SNPs also influence the function of protein-coding genes. Moreover, a considerable number of the lncRNA cis-eQTLs belong to disease-associated SNPs, making lncRNAs a potential link between non-coding SNPs and the expression of protein-coding genes (18–21) (Figure 1A).
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FIGURE 1. Possible effects of a disease associated SNP on lncRNA regulation and function. Red dots represent disease associated SNPs. (A) A SNP in the promoter region of a lncRNA can change the amount of transcribed lncRNA (cis-eQTL) by altering the binding of transcription factor binding sites (TFBS) or the chromatin accessibility altering downstream effects. (B) An intronic SNP in a lncRNA can influence the splicing of the lncRNA generating different isoforms that will act differently. (C) A SNP in the exonic sequence of a lncRNA can change its secondary structure altering the binding to the molecular partners.



Disease associated SNPs have been also suggested to be involved in “splicing models,” in which the presence of different alleles would influence the splicing of the lncRNA by regulating exon skipping (22) (Figure 1B). In this way, different isoforms of the lncRNA would present different affinity for their binding partners affecting the regulation of downstream events. It has been observed, that when human endothelial cells are stimulated with lipopolysaccharide (LPS) several lncRNAs show splice variant-specific expression at different stimulation time points (23), underlining the importance of SNP regulated splicing in lncRNA function.

As it is generally believed that lncRNA molecules adopt specific secondary and tertiary structures to execute their functions, it is likely that disease associated SNPs have an impact on lncRNA structure (Figure 1C). The analysis of secondary structures has largely been performed using computational tools, and several tools can predict changes in lncRNA structures caused by the presence of different alleles of a certain SNP (24–26). For example, GWAS SNPs associated with IBD and T1D have been shown to disrupt the structure of an lncRNA implicated in the pathogenesis of both diseases, which associates with the BACH2 gene (27). However, this field is still in its infancy and the principles that underlie the impact of SNPs on lncRNA structure and function remains to be fully established.

In this article, we have reviewed the link between four intergenic GWAS variants that are located within lncRNA sequences, which have been associated with inflammatory diseases, and we discuss the studies that have been carried out to characterize their contribution to the development of disease pathogenesis. As of now, these four inflammatory-disease associated SNPs are the best mechanistically characterized in the context of lncRNA function.



LNC13 AND CELIAC DISEASE SUSCEPTIBILITY

Celiac disease is a complex, chronic, immune-mediated disease that affects ~1% of the population and develops in genetically susceptible individuals in response to ingested gluten proteins from wheat, barley, and rye (28). The strongest genetic association, around 40% of the genetic risk (29), maps to the human leukocyte antigen (HLA) region in chromosome 6p21, and virtually all CeD patients carry HLA-DQ2 or HLA-DQ8 heterodimers (30, 31).

Two GWA studies, together with the Immunochip project, have identified a total of 39 non-HLA loci associated with the genetic risk of CeD (32–34). Only 3 of the CeD associated SNPs are linked to protein-altering variants located in exonic regions, although some potentially causative coding genes have been proposed, mainly related to the immune response, due to the existence of signals near their 5′ or 3′ regulatory regions. Although some lncRNAs have been related to celiac disease pathogenesis due to the location of an associated SNP within their transcriptional region, and differential expression found in samples from CeD patients (35, 36), the exact mechanism by which they contribute to disease development is not understood.

The only functionally characterized lncRNA harboring a CeD associated intergenic SNP so far has been found linked to the NF-κB pathway (37), which is known to be constitutively active in the CeD mucosa (38, 39). This lncRNA, named lnc13, harbors the SNP rs917997 and it is located in the associated region 2q12, with the sense sequence overlapping the coding gene IL18RAP that had been proposed, but never firmly confirmed, as the functional candidate gene in the region (40–42).

This lncRNA is expressed in different human cells and tissues, including mononuclear cells in the lamina propria, where it was observed to be localized in the nucleus. Lnc13 quantification in small intestinal biopsy samples from celiac patients and controls showed markedly lower levels of this lncRNA in CeD samples, contrary to the expression of the coding mRNA, IL18RAP (42). In fact, it is known that IL18RAP expression is induced in response to inflammation via NF-κB in certain immune cells (43). The characterization of the regulation, function and mechanisms of action of lnc13 revealed that under basal conditions lnc13 represses the expression of certain CeD related genes (STAT1, MYD88, IL1RA, and TRAF2) via its interaction with hnRNPD (Heterogeneous Nuclear Ribonucleoprotein D), a nuclear AU1 rich RNA binding protein, and HDAC1 (Histone Deacetylase 1), a histone deacetylase which negatively regulates transcription, proteins on the chromatin (Figure 2A). In response to inflammatory stimuli, lnc13 is degraded by Decapping enzyme 2 (DCP2), releasing the protein complex from chromatin and allowing the expression of the proinflammatory genes (37).
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FIGURE 2. Schematic representation of the function of inflammation associated SNP harboring lncRNAs. (A) Lnc13 harbors a CeD associated SNP that changes the secondary structure of the lncRNA modifying its binding with the proteins hnRNPD and HDAC1 and regulating the expression of disease related inflammatory genes. (B) LINC00305 interacts with the transmembrane protein LIMR facilitating the binding of this protein to AHRR that in turn induces the translocation of the latter to the nucleus inducing NFκB and subsequent inflammatory gene expression. Atherosclerosis patients present higher levels of this lincRNA which could be influenced by a SNP located in the promoter region of LINC00305. (C) IFNG-AS1 is closely located to IFNG gene. Activation of its transcription leads to induction of IFNG by WDR5 mediated H3K4me3 methylation. IBD patients present higher levels of IFNG-AS1 that could be related to a disease associated SNP located in the enhancer region of the lncRNA. (D) Suggested SNP related splicing model for ANRIL mediated inflammation regulation. The inflammation associated allele will affect ANRIL splicing generating a linear ANRIL that will interact with a member of the PRC1 complex mediating an epigenetic transcriptional repression of the INK4a gene via H3K27me3.



Although the GWAS disease association has been generally attributed to the SNP rs917997 (33), located 1.5 kb away from the coding gene, linkage analysis of the lnc13 region revealed that there are a total of six SNPs in total linkage disequilibrium within the lncRNA sequence. The nucleotide changes in lnc13 cause a disruption of the secondary structure of this lncRNA decreasing its affinity to bind hnRNPD and chromatin, resulting in higher expression of the proinflammatory genes (37). Thus, patients with the risk haplotype have a higher basal expression of CeD related inflammatory genes, thereby increasing their predisposition to develop the disease (Figure 2A).

The SNPs in lnc13 have also been associated with other inflammatory diseases, such as T1D, Crohn's disease or rheumatoid arthritis (44–46). Interestingly, while the risk signal in CeD corresponds to the T allele, the C allele is the risk allele in T1D, suggesting that the function of the lncRNA may be cell specific, but equally affected by the SNPs in different inflammatory diseases.

In summary, it is known that lnc13 and the CeD associated SNP rs917997 contribute to the pathology of celiac disease by regulating expression of certain immune related genes that play a role in the development of inflammation in the intestinal epithelia. However, other cell-type and allele specific functions cannot be excluded, due to the association of this SNP with other inflammatory conditions.



LINC00305 AND INFLAMMATORY RESPONSE IN ATHEROSCLEROSIS

Atherosclerosis is a complex, chronic disease of the arterial wall triggered by multiple factors including amongst others, inflammation and lipid metabolism (47). Monocyte-mediated inflammation plays a critical role in atherosclerosis due to the secretion of proinflammatory cytokines and amplification of local inflammation (48).

Although a locus in the 9p21.3 region is the strongest genetic factor for atherosclerosis described so far, GWAS have led to the identification of a substantial number of additional genetic loci associated with atherosclerosis and atherosclerosis-related complications (49). Analysis of atherosclerosis GWAS SNPs, revealed that the SNP rs2850711 is located within an intronic sequence of a long intergenic non-coding RNA named LINC00305. This lincRNA was found to be overexpressed in atherosclerotic plaques and in peripheral blood mononuclear cells (PBMCs) from patients, supporting its role in the disease. Analysis of LINC00305 in the cell types that composed the plaques revealed that monocytes are the primary cell type expressing this lncRNA and that its expression was induced in response to stimulation with lipopolysaccharide (LPS). Further functional studies, demonstrated that LINC00305 interacts with the transmembrane protein LIMR (Lipocalin-1 Interacting Membrane Receptor) enhancing its interaction with AHRR (Aryl-Hydrocarbon Receptor Repressor) which at the same time promotes NF-κB activation and subsequent inflammatory gene expression (Figure 2B) (50).

The development of atherosclerotic plaques is induced by the change in phenotype of the vascular smooth muscle cells in response to the cytokines secreted by inflammatory cells (51). To investigate the functional significance of LINC00305 in the pathogenesis of atherosclerosis, the lincRNA was stably overexpressed in human monocytes and these were co-cultured with human aortic smooth muscle cells. It was observed that those muscle cells that were cultured in the presence of the monocytes overexpressing LINC00305 showed less expression of their basal markers, thus suggesting that they were switching to the pathogenic phenotype (50). Independent studies, have shown that overexpression of this lincRNA induces apoptosis in hypoxia induced endothelial cells (52). Further analysis of the role of this lincRNA in the regulation of apoptosis, revealed that it acts as an endogenous sponge for miR-136 which had been previously related to apoptosis in the context of atherosclerosis (52, 53).

Although it is quite clear that LINC00305 plays a functional role in development of atherosclerosis by inducing production of inflammatory cytokines in monocytes, and by regulating apoptosis via miR-136, the role of the associated SNP in the function of the lincRNA remains to be elucidated. The GWAS SNP rs2850711 is transmitted in a linkage disequilibrium (LD) block of a total of 16 SNPs, all of which are located within introns, and hence probably do not influence the secondary structure of the lincRNA. Although there are no in vitro molecular studies evaluating this possibility, it is noteworthy that one of the associated SNPs lies within an experimentally confirmed USF2 (Upstream Transcription Factor 2) binding region (54). As USF2 is a protein that has been associated with cholesterol metabolism and atherosclerosis development (55), further mechanistic studies assessing the contribution of the SNP alleles in the function and regulation of the lincRNA are necessary to understand how the SNPs in non-coding regions identified by GWAS influence the inflammatory environment in atherosclerosis.



IFNG-AS1 (NEST OR TMEVPG1) AND ULCERATIVE COLITIS

Inflammatory bowel diseases (IBD) are chronic common inflammatory gastrointestinal disorders clinically comprised of Crohn's disease (CD) and ulcerative colitis (UC) (56). These diseases are believed to develop due to inappropriate inflammatory responses to intestinal microbes and foreign antigens in genetically susceptible individuals (57, 58).

Meta-analyses of multiple GWAS have implicated 163 genetic loci in IBD susceptibility. Although functional analysis of the associated SNPs have revealed multiple pathophysiological mechanisms, the function for many of the genes in close association with these loci are yet to be determined (59, 60). It has been observed that several lncRNAs are differentially expressed in inflammatory bowel disease, and that the expression profiling of lncRNAs can be useful to stratify IBD patients from healthy controls (27, 61, 62).

When comparing the genomic location of differentially expressed lncRNAs with those of IBD susceptibility loci, IFNG-AS1 (also called NeST or Tmevpg1) was found to fulfill both criteria (61). The IBD associated SNP rs7134599 is located in the region 12q15 in close proximity to the inflammatory cytokine IFNG. This SNP is in total LD with 10 other SNPs within the lncRNA gene. Additionally, IFNG-AS1 is significantly overexpressed in intestinal samples of ulcerative colitis patients and its expression appears to correlate with the elevated levels of IFNG, IL1, IL6, and TNF-α observed in patients (61). Increased expression level of this lncRNA has also been related to other inflammatory diseases, such as Hashimoto's thyroiditis or Sjögren syndrome (63, 64) although the mechanisms by which it contributes to development of these diseases remain unclear.

IFNG-AS1 gene was first related with the immune response in the context of susceptibility to persistent Theiler's virus infection. It was observed that IFNG-AS1 is expressed in immune cells of mouse and human origin and it was speculated that this lncRNA may regulate the expression of IFNG (65). Further studies, demonstrated that IFNG-AS1 contributes to IFNG expression regulation as part of the Th1 differentiation program and that T-bet guides epigenetic remodeling of the lncRNA enhancers, leading to recruitment of stimulus-inducible transcription factors, such as NF-κB (66, 67). More recently, it was observed that different mouse strains with different genotype composition of IFNG-AS1 were sufficient to confer disparate immune-related phenotypes. Specifically, certain alleles, derived from SJL/J mouse strain, were responsible for the failure to clear Theiler's virus, but at the same time they conferred resistance to lethal infection with Salmonella enterica Typhimurium and induced synthesis of Ifng in CD8+ T cells. Functional analysis performed in this same study, showed that IFNG-AS1 is a nuclear lncRNA that can act in trans. IFNG-AS1 binds WDR5, a component of active chromatin remodeling complexes increasing H3K4me3 methylation which in turn programs an active chromatin state that induces Ifng gene transcription (68) (Figure 2C).

Although IFNG-AS1 is differentially expressed in IBD samples and harbors a disease associated SNP (61) the exact impact of the different alleles in the development of the disease has not been assessed so far. In silico interaction evaluation of human IFNG-AS1 lncRNA and WDR5 protein using CatRapid (69), an algorithm that estimates the binding propensity of protein-RNA pairs, states that these two molecules are also able to interact, suggesting that it may act in a similar way as described in mice. Analysis of the location of the SNPs that are in LD with the associated SNP rs7134599 reveals that all of them are located in intronic regions, suggesting that they will most likely not affect the secondary structure of the RNA molecule. However, analysis of the region using HaploReg v4.1 (70) shows that 4 of the SNPs are located within enhancer histone marks and all of them are predicted to disturb a protein binding motif that could change the regulation of the lncRNA expression, thereby influencing the levels of IFNG.

Thus, INFG-AS1 is clearly involved in the immune response and inflammatory processes involved in disease, and although in silico data point to a disturbance of lncRNA expression regulation mediated by the IBD associated SNPs uncovered by GWAS, the true relevance of these SNPs have still to be experimentally confirmed.



ANRIL AND INFLAMMATION

The antisense non-coding RNA in the INK4 locus or ANRIL was first described in melanoma patients (71) and since its discovery it has been shown to be involved in several types of cancers (72). This lncRNA is located in the 9p21 region, that has been associated by GWAS not only to cancer but also to other diseases that are related with inflammation, such as coronary artery disease (73) or type 2 diabetes (T2D) (74). ANRIL is expressed as either linear or circular forms, that have been observed to have opposing effects in disease development (75), making the deciphering of the functionality of this lncRNA and the involvement of its related SNPs highly complicated.

ANRIL has been described to interact with CBX7 (Chromobox 7), one of the members of the polycomb repressive complex 1 (PRC1). CBX7 binds both, ANRIL and H3K27me3 to mediate an epigenetic transcriptional repression of the INK4a (Inhibitor of CDK4) gene, which is located adjacent to the ANRIL gene (Figure 2D) (76). INK4a is a cell cycle inhibitor that is lost in a wide spectrum of cancers (77), but it has been also been reported to act as an anti-inflammatory molecule that is able to suppress the production of IL-6 in macrophages (78). ANRIL itself has been also shown to regulate the inflammatory response by its interaction with the YY1 (Yin Yang 1) protein (79), a transcription repressor involved in cancer development and immune processes (80).

The influence on gene expression of the variants within ANRIL region have been analyzed in a variety of tissues and cells, but the results have been inconsistent (75). Several SNPs have been described to be involved in alternative splicing events, and modifying ANRIL structure has been suggested to lead to changes in its function and consequent regulation of downstream inflammatory genes (Figure 2D) (22). Although the exact mechanism by which the SNPs within ANRIL confer susceptibility to disease has not been firmly established, it seems clear that the disease associated SNPs are related with ANRIL expression, suggesting that modulation of its expression mediates disease susceptibility.

One example of SNP-dependent ANRIL related inflammation is the correlation between the lead periodontitis associated SNP, rs1333048, and the levels of the C-reactive protein. Periodontitis is a complex, chronic inflammatory disease associated with increased concentration of high-sensitive C-reactive protein (hsCRP), a marker for systemic inflammation. It was found that AA-genotype of ANRIL rs1333048 is associated with significantly elevated hsCRP plasma levels in patients with periodontitis (81). However, the functional relationship between the SNP, ANRIL and the hsCRP molecule has not been clearly established.

Another disease in which ANRIL has been functionally implicated is Type 2 diabetes (T2D). Although the major causes of T2D are insulin resistance and beta cell dysfunction, recent evidence implicates the immune system in the pathogenesis of this disease that can be considered as an autoinflammatory disease (82). T2D associated SNPs in the ANRIL locus were evaluated, and it was observed that the risk genotype was correlated with increased levels of ANRIL expression. Moreover, although the associated SNPs did not seem to influence insulin secretion, it was observed that they affect human beta cell proliferation index, with homozygous risk alleles showing approximately half of the proliferation capacity observed in the presence of the protective alleles (83). Although this study suggests that ANRIL lncRNA may play a role in human islets and uncovers a link between T2D associated SNPs and beta cell proliferation, once again, the functional relationship between the SNPs and the biological process is still not understood.

Additionally, ANRIL is significantly downregulated in the inflamed intestinal mucosa of Crohn's and inflammatory bowel disease patients (84). At the same time its reduced levels in rats have been related to prevention of coronary atherosclerosis due to lower expression of inflammatory factors (85) which are upregulated in patients with coronary artery disease (86).

It therefore seems clear that disease associated SNPs in ANRIL lncRNA influence its function in the context of inflammatory diseases. However, the involvement of ANRIL in inflammation and the influence of the GWAS SNPs in the function of the different isoforms of ANRIL needs further investigation.



CONCLUDING REMARKS

Although our knowledge about the genetic variants contributing to immune mediated diseases has increased considerably in the last decade, the intergenic location of the great majority of the associated SNPs has made it difficult to decipher their functional roles in disease development. As disease associated SNPs are enriched within lncRNAs, and as many of these RNA molecules have been implicated in the regulation of inflammatory processes, a new field of study focused on the influence of disease-associated SNPs in the function of inflammation-related lncRNAs has been opened. Interestingly, such lncRNAs have been linked to major immune-mediated diseases as celiac disease, type 1 diabetes or rheumatoid arthritis. The experimental approaches utilized so far have been mainly focused on the expression analysis of the SNP harboring lncRNA in diseased tissues, but functional studies evaluating the contribution of each allele to lncRNA function, and thus to disease development, is mostly missing. In general, the function of the lncRNA itself, and the mechanisms by which they contribute to inflammatory disease development, are mostly uncharacterized. Analyzing the position and the linkage disequilibrium block of the associated SNP within the lncRNA sequence can help predict the functional impact of the allelic variant. Associated SNPs may not only affect the expression of the lncRNA itself, but also their splicing, their secondary structure or their ability to regulate expression of downstream genes. Thus, approaches that evaluate the functional differences of the lncRNA alleles are necessary in order to understand how the disease-associated SNPs affect the function of such inflammation related lncRNAs.

As our knowledge about the molecular mechanisms by which the inflammation related lncRNAs exert their biological functions increases, so will our understanding of how the disease associated SNPs influence lncRNA function thereby opening up the possibility for targeting such lncRNAs for diagnostic and therapeutic purposes.
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