Research Topic

The Role of Epstein Barr Virus in Lymphoproliferative Disease

About this Research Topic

The Epstein-Barr virus (EBV), the first human cancer virus, is a double-stranded DNA gamma-1 herpesvirus that infects more than 90% of the adult population worldwide. EBV was discovered through its association with Burkitt lymphoma over fifty years ago and was the first human virus whose genome was fully sequenced. Following primary infection, the virus finds its permanent reservoir in resting memory B cells, although other cell types can also be infected. EBV-associated cancers are an infrequent outcome of EBV’s latent infection but, in light of the high global prevalence of the infection, they represent a very significant fraction of the cancer burden worldwide. Globally, EBV is estimated to be responsible for ~200,000 new cancer cases each year, including lymphomas (Burkitt’s lymphoma, Hodgkin’s lymphoma, NK/T-cell lymphoma, and immunosuppression-related lymphomas), epithelial cancers (nasopharyngeal carcinoma, ~10% of gastric carcinomas), and a very diverse spectrum or rare lymphoproliferative diseases.

The essential feature of EBV-associated cancer is the presence of EBV-infected tumor cells in the diagnostic biopsy, although a co-factor role for EBV has also been proposed in malignancies where the virus is found primarily in the tumor microenvironment. In addition, cell-free, plasma EBV DNA (pEBVd) levels usually correlate with the presence of EBV in tumor tissue in EBV-associated cancers, and may be a better biomarker to define these malignancies. The mechanisms leading to cell transformation in EBV-infected cells have been studied for many decades, but new discoveries continue to be generated, in particular in regard to the protean ways by which EBV hijacks the cellular genetic and epigenetic machinery to maintains its latent state in the host, and occasionally replicate and infect new cells. Much progress has recently been made in characterizing the pattern of EBV gene expression and EBV-induced epigenetic aberrations in tumor cells and their precursors. EBV-specific immune responses are critical to maintain latency, and immune suppression often leads to the outgrowth of EBV-infected clones and lymphoma. Complex interactions in the tumor microenvironment are also important for the development of EBV-associated cancers.

Importantly, EBV also represents a potential target for novel cancer diagnostic and therapeutic approaches, including the possibility of prevention by vaccination. This Research Topic will highlight current knowledge of EBV-associated cancers, spanning basic biology and virology, global prevalence landscape, risk factors, immune response, novel therapies, and potential vaccine strategies.


Keywords: EBV, Lymphoma, lymphoproliferative, microenvironment, epigenetic


Important Note: All contributions to this Research Topic must be within the scope of the section and journal to which they are submitted, as defined in their mission statements. Frontiers reserves the right to guide an out-of-scope manuscript to a more suitable section or journal at any stage of peer review.

The Epstein-Barr virus (EBV), the first human cancer virus, is a double-stranded DNA gamma-1 herpesvirus that infects more than 90% of the adult population worldwide. EBV was discovered through its association with Burkitt lymphoma over fifty years ago and was the first human virus whose genome was fully sequenced. Following primary infection, the virus finds its permanent reservoir in resting memory B cells, although other cell types can also be infected. EBV-associated cancers are an infrequent outcome of EBV’s latent infection but, in light of the high global prevalence of the infection, they represent a very significant fraction of the cancer burden worldwide. Globally, EBV is estimated to be responsible for ~200,000 new cancer cases each year, including lymphomas (Burkitt’s lymphoma, Hodgkin’s lymphoma, NK/T-cell lymphoma, and immunosuppression-related lymphomas), epithelial cancers (nasopharyngeal carcinoma, ~10% of gastric carcinomas), and a very diverse spectrum or rare lymphoproliferative diseases.

The essential feature of EBV-associated cancer is the presence of EBV-infected tumor cells in the diagnostic biopsy, although a co-factor role for EBV has also been proposed in malignancies where the virus is found primarily in the tumor microenvironment. In addition, cell-free, plasma EBV DNA (pEBVd) levels usually correlate with the presence of EBV in tumor tissue in EBV-associated cancers, and may be a better biomarker to define these malignancies. The mechanisms leading to cell transformation in EBV-infected cells have been studied for many decades, but new discoveries continue to be generated, in particular in regard to the protean ways by which EBV hijacks the cellular genetic and epigenetic machinery to maintains its latent state in the host, and occasionally replicate and infect new cells. Much progress has recently been made in characterizing the pattern of EBV gene expression and EBV-induced epigenetic aberrations in tumor cells and their precursors. EBV-specific immune responses are critical to maintain latency, and immune suppression often leads to the outgrowth of EBV-infected clones and lymphoma. Complex interactions in the tumor microenvironment are also important for the development of EBV-associated cancers.

Importantly, EBV also represents a potential target for novel cancer diagnostic and therapeutic approaches, including the possibility of prevention by vaccination. This Research Topic will highlight current knowledge of EBV-associated cancers, spanning basic biology and virology, global prevalence landscape, risk factors, immune response, novel therapies, and potential vaccine strategies.


Keywords: EBV, Lymphoma, lymphoproliferative, microenvironment, epigenetic


Important Note: All contributions to this Research Topic must be within the scope of the section and journal to which they are submitted, as defined in their mission statements. Frontiers reserves the right to guide an out-of-scope manuscript to a more suitable section or journal at any stage of peer review.

About Frontiers Research Topics

With their unique mixes of varied contributions from Original Research to Review Articles, Research Topics unify the most influential researchers, the latest key findings and historical advances in a hot research area! Find out more on how to host your own Frontiers Research Topic or contribute to one as an author.

Topic Editors

Loading..

Submission Deadlines

01 October 2018 Manuscript
16 December 2018 Manuscript Extension

Participating Journals

Manuscripts can be submitted to this Research Topic via the following journals:

Loading..

Topic Editors

Loading..

Submission Deadlines

01 October 2018 Manuscript
16 December 2018 Manuscript Extension

Participating Journals

Manuscripts can be submitted to this Research Topic via the following journals:

Loading..
Loading..

total views article views article downloads topic views

}
 
Top countries
Top referring sites
Loading..

Comments

Loading..

Add a comment

Add comment
Back to top
);